A comprehensive step-by-step guide

Programming in

Scala

Second Edition

Updated for Scala 2.8

Martin Odersky

] Lex Spoon
artima Bill Venners

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=i&v=2010_12_13

Praise for the first edition of
Programming in Scala

Programming in Scala is probably one of the best programming books
I’ve ever read. I like the writing style, the brevity, and the thorough explana-
tions. The book seems to answer every question as it enters my mind—it’s
always one step ahead of me. The authors don’t just give you some code
and take things for granted. They give you the meat so you really understand
what’s going on. I really like that.

- Ken Egervari, Chief Software Architect

Programming in Scala is clearly written, thorough, and easy to follow.
It has great examples and useful tips throughout. It has enabled our organi-
zation to ramp up on the Scala language quickly and efficiently. This book
is great for any programmer who is trying to wrap their head around the
flexibility and elegance of the Scala language.

- Larry Morroni, Owner, Morroni Technologies, Inc.

The Programming in Scala book serves as an excellent tutorial to the
Scala language. Working through the book, it flows well with each chapter
building on concepts and examples described in earlier ones. The book takes
care to explain the language constructs in depth, often providing examples
of how the language differs from Java. As well as the main language, there
is also some coverage of libraries such as containers and actors.

I have found the book really easy to work through, and it is probably
one of the better written technical books I have read recently. I really would
recommend this book to any programmer wanting to find out more about the
Scala language.

- Matthew Todd

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=ii&v=2010_12_13

I am amazed by the effort undertaken by the authors of Programming in
Scala. This book is an invaluable guide to what I like to call Scala the Plat-
form: a vehicle to better coding, a constant inspiration for scalable software
design and implementation. If only I had Scala in its present mature state
and this book on my desk back in 2003, when co-designing and implement-
ing parts of the Athens 2004 Olympic Games Portal infrastructure!

To all readers: No matter what your programming background is, I feel
you will find programming in Scala liberating and this book will be a loyal
friend in the journey.

- Christos KK Loverdos, Software Consultant, Researcher

Programming in Scala is a superb in-depth introduction to Scala, and it’s
also an excellent reference. I’d say that it occupies a prominent place on my
bookshelf, except that I’'m still carrying it around with me nearly everywhere
I go.

- Brian Clapper, President, ArdenTex, Inc.

Great book, well written with thoughtful examples. I would recommend
it to both seasoned programmers and newbies.
- Howard Lovatt

The book Programming in Scala is not only about how, but more im-
portantly, why to develop programs in this new programming language. The
book’s pragmatic approach in introducing the power of combining object-
oriented and functional programming leaves the reader without any doubts
as to what Scala really is.

- Dr. Ervin Varga, CEO/founder, EXPRO L.T. Consulting

This is a great introduction to functional programming for OO program-
mers. Learning about FP was my main goal, but I also got acquainted with
some nice Scala surprises like case classes and pattern matching. Scala is an
intriguing language and this book covers it well.

There’s always a fine line to walk in a language introduction book be-
tween giving too much or not enough information. I find Programming in
Scala to achieve a perfect balance.

- Jeff Heon, Programmer Analyst

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

iii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=iii&v=2010_12_13

I bought an early electronic version of the Programming in Scala book,
by Odersky, Spoon, and Venners, and I was immediately a fan. In addition
to the fact that it contains the most comprehensive information about the
language, there are a few key features of the electronic format that impressed
me. I have never seen links used as well in a PDF, not just for bookmarks,
but also providing active links from the table of contents and index. I don’t
know why more authors don’t use this feature, because it’s really a joy for
the reader. Another feature which I was impressed with was links to the
forums (“Discuss”) and a way to send comments (“Suggest”) to the authors
via email. The comments feature by itself isn’t all that uncommon, but the
simple inclusion of a page number in what is generated to send to the authors
is valuable for both the authors and readers. I contributed more comments
than I would have if the process would have been more arduous.

Read Programming in Scala for the content, but if you're reading the
electronic version, definitely take advantage of the digital features that the
authors took the care to build in!

- Dianne Marsh, Founder/Software Consultant, SRT Solutions

Lucidity and technical completeness are hallmarks of any well-written
book, and I congratulate Martin Odersky, Lex Spoon, and Bill Venners on a
job indeed very well done! The Programming in Scala book starts by setting
a strong foundation with the basic concepts and ramps up the user to an
intermediate level & beyond. This book is certainly a must buy for anyone
aspiring to learn Scala.

- Jagan Nambi, Enterprise Architecture, GMAC Financial Services

Programming in Scala is a pleasure to read. This is one of those well-
written technical books that provide deep and comprehensive coverage of the
subject in an exceptionally concise and elegant manner.

The book is organized in a very natural and logical way. It is equally well
suited for a curious technologist who just wants to stay on top of the current
trends and a professional seeking deep understanding of the language core
features and its design rationales. I highly recommend it to all interested
in functional programming in general. For Scala developers, this book is
unconditionally a must-read.

- Igor Khlystov, Software Architect/Lead Programmer, Greystone Inc.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

v

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=iv&v=2010_12_13

The book Programming in Scala outright oozes the huge amount of hard
work that has gone into it. I’ve never read a tutorial-style book before that
accomplishes to be introductory yet comprehensive: in their (misguided) at-
tempt to be approachable and not “confuse” the reader, most tutorials silently
ignore aspects of a subject that are too advanced for the current discussion.
This leaves a very bad taste, as one can never be sure as to the understanding
one has achieved. There is always some residual “magic” that hasn’t been
explained and cannot be judged at all by the reader. This book never does
that, it never takes anything for granted: every detail is either sufficiently
explained or a reference to a later explanation is given. Indeed, the text is
extensively cross-referenced and indexed, so that forming a complete picture
of a complex topic is relatively easy.

- Gerald Loeffler, Enterprise Java Architect

Programming in Scala by Martin Odersky, Lex Spoon, and Bill Venners:
in times where good programming books are rare, this excellent introduction
for intermediate programmers really stands out. You’ll find everything here
you need to learn this promising language.

- Christian Neukirchen

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=v&v=2010_12_13

Programming in Scala
Second Edition

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=vi&v=2010_12_13

Programming 1n Scala
Second Edition

Martin Odersky, Lex Spoon, Bill Venners

artima

ARTIMA PRESS
WALNUT CREEK, CALIFORNIA

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=vii&v=2010_12_13

Programming in Scala
Second Edition

Martin Odersky is the creator of the Scala language and a professor at EPFL in
Lausanne, Switzerland. Lex Spoon worked on Scala for two years as a post-doc
with Martin Odersky. Bill Venners is president of Artima, Inc.

Artima Press is an imprint of Artima, Inc.
P.O. Box 305, Walnut Creek, California 94597

Copyright © 2007-2010 Martin Odersky, Lex Spoon, and Bill Venners.
All rights reserved.

First edition published as PrePrint™ eBook 2007
First edition published 2008

Second edition published as PrePrint™ eBook 2010
Second edition published 2010

Build date of this impression December 13, 2010
Produced in the United States of America

No part of this publication may be reproduced, modified, distributed, stored in a
retrieval system, republished, displayed, or performed, for commercial or
noncommercial purposes or for compensation of any kind without prior written
permission from Artima, Inc.

All information and materials in this book are provided "as is" and without
warranty of any kind.

The term “Artima” and the Artima logo are trademarks or registered trademarks of

Artima, Inc. All other company and/or product names may be trademarks or
registered trademarks of their owners.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

viii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=viii&v=2010_12_13

to Nastaran - M.O.
to Fay - L.S.
to Siew - B.V.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=ix&v=2010_12_13

Overview

Contents

List of Figures

List of Tables

List of Listings

Foreword

Foreword to the First Edition
Acknowledgments

Introduction

1. A Scalable Language

2. First Steps in Scala

3. Next Steps in Scala

4. Classes and Objects

5. Basic Types and Operations

6. Functional Objects

7. Built-in Control Structures

8. Functions and Closures

9. Control Abstraction

10. Composition and Inheritance

11. Scala’s Hierarchy

12. Traits

13. Packages and Imports

14. Assertions and Unit Testing

15. Case Classes and Pattern Matching
16. Working with Lists

17. Collections

18. Stateful Objects

19. Type Parameterization

20. Abstract Members

21. Implicit Conversions and Parameters
22. Implementing Lists

23. For Expressions Revisited

24. The Scala Collections API

25. The Architecture of Scala Collections
26. Extractors

27. Annotations

28. Working with XML

29. Modular Programming Using Objects
30. Object Equality

31. Combining Scala and Java

32. Actors and Concurrency

33. Combinator Parsing

34. GUI Programming

35. The SCells Spreadsheet

A. Scala Scripts on Unix and Windows
Glossary

Bibliography

About the Authors

Index

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xi
Xxii
XXiV
XXVi
XXX1V
XXXVi
XXXViii
xli
49
68
81
103
117
139
159
184
207
222
250
258
277
295
309
344
377
399
422
447
479
503
516
532
607
631
647
655
669
684
710
724
759
788
800
825
826
842
845
846

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=x&v=2010_12_13

Contents

Contents xi
List of Figures xxii
List of Tables Xxiv
List of Listings XXVi
Foreword XXXiV
Foreword to the First Edition XXXVi
Acknowledgments Xxxviii
Introduction xli
1 A Scalable Language 49
1.1 Alanguage that growsonyou 50
1.2 What makes Scala scalable? 55
1.3 WhyScala?. oL 58
1.4 Scala’sroots 65
1.5 Conclusion o 67
2 First Steps in Scala 68
Step 1. Learn to use the Scala interpreter 68
Step 2. Define some variables 70
Step 3. Define some functions 72
Step 4. Write some Scala scripts 74
Step 5. Loop with while; decide withif 75

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xi&v=2010_12_13

Contents

Step 6. Iterate with foreachand for
Conclusion

Next Steps in Scala

Step 7. Parameterize arrays with types
Step8. Uselists
Step9. Usetuples
Step 10. Usesetsandmaps
Step 11. Learn to recognize the functional style
Step 12. Read lines fromafile
Conclusion

Classes and Objects

4.1 Classes, fields,and methods
4.2 Semicoloninference
43 Singletonobjects Lo
44 AScalaapplication
4.5 The Applicationtrait.
46 Conclusion

Basic Types and Operations

5.1 Somebasictypes
52 Literals
5.3 Operatorsare methods
5.4 Arithmetic operations
5.5 Relational and logical operations
5.6 Bitwiseoperations
5.7 Objectequality
5.8 Operator precedence and associativity
5.9 Richwrappers
5.10 Conclusion L o

Functional Objects

6.1 A specification for class Rational
6.2 Constructing aRational
6.3 Reimplementing the toString method
6.4 Checking preconditions
6.5 Addingfields L L.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

77
80

81
81
85
90
91
96
99
102

103
103
108
109
112
115
116

117
117
118
125
128
129
131
132
134
137
137

139
139
140
142
143
143

Xii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xii&v=2010_12_13

Contents

6.6 Selfreferences
6.7 Auxiliary constructors
6.8 Private fieldsand methods
6.9 Definingoperators
6.10 IdentifiersinScala
6.11 Method overloading
6.12 Implicit conversions
6.13 Awordofcaution
6.14 Conclusion

Built-in Control Structures

7.1 Ifexpressions
7.2 Whileloops
7.3 Forexpressions.
7.4 Exception handling with try expressions
7.5 Matchexpressions
7.6 Living without break and continue
7.7 Variablescope
7.8 Refactoring imperative-stylecode
7.9 Conclusion L Lo

Functions and Closures

8.1 Methods
82 Localfunctions.
8.3 First-class functions
8.4 Short forms of function literals
8.5 Placeholdersyntax
8.6 Partially applied functions
87 Closures i
8.8 Special functioncall forms.
89 Tailrecursion.
8.10 Conclusion

Control Abstraction

9.1 Reducing code duplication
9.2 Simplifying clientcode
9.3 Currying e
9.4 Writing new control structures

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

145
146
148
149
151
154
156
157
157

159
160
161
164
169
173
175
177
181
183

184
184
186
188
190
191
192
195
199
202
206

207
207
211
213
215

Xiii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xiii&v=2010_12_13

Contents

9.5 By-name parameters
9.6 Conclusion

10 Composition and Inheritance
10.1 A two-dimensional layout library
10.2 Abstractclasses
10.3 Defining parameterless methods
10.4 Extendingclasses
10.5 Overriding methods and fields
10.6 Defining parametric fields
10.7 Invoking superclass constructors
10.8 Using override modifiers
10.9 Polymorphism and dynamic binding
10.10 Declaring final members
10.11 Using composition and inheritance
10.12 Implementing above, beside, and toString
10.13 Defining a factory object
10.14 Heightenand widen
10.15 Putting it all together
10.16 Conclusion oL

11 Scala’s Hierarchy
11.1 Scala’sclass hierarchy
11.2 How primitives are implemented
11.3 Bottomtypes
114 Conclusion

12 Traits
12.1 Howtraitswork
12.2 Thin versus rich interfaces
12.3 Example: Rectangular objects
124 The Orderedtrait
12.5 Traits as stackable modifications
12.6 Why not multiple inheritance?
12.7 Totrait,ornotto trait?
128 Conclusiono

13 Packages and Imports

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

218
221

222
222
223
224
227
229
230
232
233
235
237
239
240
242
244
248
249

250
250
254
256
257

258
258
261
262
265
267
271
275
276

277

X1V

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xiv&v=2010_12_13

13.1
13.2
13.3
134
13.5
13.6
13.7

Contents

Putting code in packages
Concise access to related code . .
Imports
Implicit imports
Access modifiers
Package objects
Conclusion

14 Assertions and Unit Testing

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Assertions
Unit testing in Scala
Informative failure reports
Using JUnit and TestNG
Tests as specifications
Property-based testing
Organizing and running tests . .
Conclusion

15 Case Classes and Pattern Matching

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

A simple example
Kinds of patterns
Pattern guards
Pattern overlaps
Sealed classes
The Optiontype
Patterns everywhere
A largerexample
Conclusion

16 Working with Lists

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

Listliterals
The Listtype
Constructing lists
Basic operations on lists
Listpatterns
First-order methods on class List

Higher-order methods on class List

Methods of the List object . . .

277
278
282
286
287
292
294

295
295
297
298
300
302
305
306
308

309
309
314
324
325
326
328
330
335
343

344
344
345
345
346
347
349
361
369

XV

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xv&v=2010_12_13

17

18

19

20

16.9

Contents

Processing multiple lists together

16.10 Understanding Scala’s type inference algorithm
16.11 Conclusion

Collections

17.1
17.2
17.3
17.4
17.5
17.6

Sequences,
Setsandmaps
Selecting mutable versus immutable collections
Initializing collections
Tuples
Conclusion

Stateful Objects

18.1
18.2
18.3
18.4
18.5
18.6
18.7

What makes an object stateful?
Reassignable variables and properties
Case study: Discrete event simulation
A language for digital circuits
The Simulation API
Circuit Simulation
Conclusion,

Type Parameterization

19.1
19.2
19.3
194
19.5
19.6
19.7
19.8
19.9

Functional queues
Information hiding
Variance annotations
Checking variance annotations
Lowerbounds
Contravariance
Object privatedata
Upperbounds
Conclusion,

Abstract Members

20.1
20.2
20.3
20.4
20.5

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

A quick tour of abstract members
Typemembers
Abstractvals.
Abstractvars.
Initializing abstractvals

371
372
376

377
377
381
390
392
396
398

399
399
402
405
406
409
413
421

422
422
426
429
433
436
438
441
443
446

447
447
448
449
450
451

XVvi

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xvi&v=2010_12_13

21

22

23

24

Contents

20.6 Abstracttypes e
20.7 Path-dependenttypes
20.8 Structural subtyping
209 Enumerations. L.
20.10 Case study: Currencies
20.11 Conclusion oo

Implicit Conversions and Parameters

21.1 TImplicitconversions
21.2 Rules forimplicitso,
21.3 Implicit conversion to an expected type
21.4 Converting the receiver
21.5 Implicitparameters.
21.6 Viewbounds
21.7 When multiple conversions apply
21.8 Debugging implicits
219 Conclusion Lo

Implementing Lists

22.1 TheList classinprinciple
222 The ListBufferclass
22.3 The Listclassinpractice
22.4 Functional ontheoutside
225 Conclusion oL

For Expressions Revisited

23.1 Forexpressions.ot
23.2 Then-queens problem
23.3 Querying with for expressions
23.4 Translation of for expressions
23.5 Goingtheotherway
23.6 Generalizingfor Lo,
237 Conclusion Lo

The Scala Collections API

24.1 Mutable and immutable collections
24.2 Collections consistency
24.3 Trait Traversable

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

459
461
464
466
468
478

479
479
482
485
486
489
495
498
501
502

503
503
509
511
513
514

516
517
519
522
524
528
529
531

532
533
535
537

XVvil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xvii&v=2010_12_13

25

26

27

Contents

244 Trait Iterable
24.5 The sequence traits Seq, IndexedSeq, and LinearSeq .

24.6 Sets .
247 Maps

24.8 Synchronized setsand maps
24.9 Concrete immutable collection classes
24.10 Concrete mutable collectionclasses

24.11 Arrays

24.12 Strings

24.13 Performance characteristics
24.14 Equality

24.15 Views

2416 Tterators
24.17 Creating collections from scratch
24.18 Conversions between Java and Scala collections
24.19 Migrating from Scala2.7
2420 Conclusion

The Architecture of Scala Collections

25.1 Builders o
25.2 Factoring out common operations
25.3 Integrating new collections
254 Conclusion e

Extractors

26.1 Anexample: extracting email addresses
26.2 EXtractors
26.3 Patterns with zero or one variables
26.4 Variable argument extractors
26.5 Extractors and sequence patterns
26.6 Extractors versus case classes
26.7 Regularexpressions
26.8 Conclusion,

Annotations

27.1 Why have annotations?
27.2 Syntax of annotations
27.3 Standard annotations

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

542
546
551
557
562
564
571
578
583
584
585
587
593
601
603
605
606

607
608
609
614
630

631
631
632
635
637
640
641
642
646

647
647
648
650

XViil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xviii&v=2010_12_13

Contents
274 Conclusion

28 Working with XML
28.1 Semi-structureddata
282 XML OVerVIew v v it e e e
283 XMLliterals
28.4 Serialization
28.5 Taking XML apart
28.6 Deserialization
28.7 Loadingandsaving
28.8 Pattern matchingon XML
289 Conclusion oo

29 Modular Programming Using Objects
29.1 Theproblem
29.2 Avrecipe application,
293 Abstraction
29.4 Splitting modules into traits
29.5 Runtimelinking
29.6 Tracking module instances
297 Conclusion Lo

30 Object Equality
30.1 EqualityinScala
30.2 Writing an equality method
30.3 Defining equality for parameterized types
30.4 Recipes for equals and hashCode
30,5 Conclusion L oo

31 Combining Scala and Java
31.1 Using ScalafromJava
31.2 Annotations
31.3 Existentialtypes
31.4 Using synchronized
31.5 Compiling Scala and Java together
316 Conclusion oo

32 Actors and Concurrency

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

654

655
655
656
657
659
661
662
663
665
668

669
670
671
674
677
680
681
683

684
684
685
698
703
709

710
710
713
718
722
722
723

724

XiX

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xix&v=2010_12_13

Contents

32.1 Troubleinparadise 724
32.2 Actors and message passing 725
32.3 Treating native threadsasactors 729
32.4 Better performance through thread reuse 730
325 Goodactorsstyle. oL 733
32.6 A longer example: Parallel discrete event simulation . . 740
3277 Conclusion oo 757
Combinator Parsing 759
33.1 Example: Arithmetic expressions 760
33.2 Running your parseroo0.. 0. 762
33.3 Basic regular expression parsers 763
33.4 Anotherexample: JSON 764
33,5 Parseroutput Lo 766
33.6 Implementing combinator parsers 772
33.7 String literals and regular expressions 781
33.8 Lexingandparsing 782
33.9 Errorreporting 782
33.10 Backtracking versus LL.(1) 784
33.11 Conclusion 786
GUI Programming 788
34.1 A first Swing application 788
342 Panelsandlayouts 791
343 Handlingevents 793
34.4 Example: Celsius/Fahrenheit converter 796
345 Conclusiono o 798
The SCells Spreadsheet 800
35.1 The visual framework 800
35.2 Disconnecting data entry and display 803
353 Formulas oL 806
354 Parsingformulas 808
355 Evaluation 813
35.6 Operation libraries 816
35.7 Change propagation 819
358 Conclusion L o 823

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xx&v=2010_12_13

Contents
A Scala Scripts on Unix and Windows
Glossary
Bibliography
About the Authors

Index

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

825

826

842

845

846

XX1

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxi&v=2010_12_13

List of Figures

2.1 The basic form of a function definition in Scala. 73
2.2 The syntax of a function literal in Scala. 79
3.1 All operations are method calls in Scala. 84
3.2 Class hierarchy for Scalasets. 92
3.3 Class hierarchy for Scalamaps. 94
10.1 Class diagram for ArrayElement. 228
10.2 Class diagram for LineElement. 233
10.3 Class hierarchy of layout elements. 236
10.4 Class hierarchy with revised LineElement. 240
11.1 Class hierarchy of Scala. 252
12.1 Inheritance hierarchy and linearization of class Cat. 274
14.1 ScalaTest’s graphical reporter. 307
18.1 Basicgates. 406
18.2 A half-addercircuit. 408
18.3 A full-adder circuit. 409
19.1 Covariance and contravariance in function type parameters. . 441
22.1 Class hierarchy for Scalalists. 504
22.2 The structure of the Scala lists shown in Listing 22.2. 508
24.1 Collection hierarchy. 536
25.1 Anexample Patriciatrie. 625

34.1
34.2
343

35.1
35.2
35.3
354

List of Figures

A simple Swing application: initial (left) and resized (right).
A reactive Swing application: initial (left) after clicks (right).
A converter between degrees Celsius and Fahrenheit.

A simple spreadsheettable.
Cells displaying themselves.
Cells displaying their formulas.
Cells thatevaluate.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

789
791
796

801
806
812
818

XX1il

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxiii&v=2010_12_13

List of Tables

3.1 Some List methods andusages 88
5.1 Somebasictypes. 118
5.2 Special character literal escape sequences 122
5.3 Operatorprecedence 135
5.4 Somerich operations 138
5.5 Richwrapperclasses. 138
12.1 Linearization of types in Cat’s hierarchy 275
13.1 Effects of private qualifiers on LegOfJourney.distance . 290
16.1 Basiclistoperations 347
17.1 Common operations forsets 384
17.2 Common operations formaps 386
17.3 Default immutable set implementations 388
17.4 Default immutable map implementations 388
24.1 Operations in trait Traversable 539
24.2 Operations in trait Iterable 544
243 OperationsintraitSeq 548
244 Operations in trait Buffer 551
24.5 OperationsintraitSet 552
24.6 Operations in trait mutable.Set 553
247 OperationsintraitMap 558
24.8 Operations in traitmutable.Map 560
24.9 Operations in trait ConcurrentMap 577
24.10 Performance characteristics of sequence types 586

XXiv

24.1
241
24.1

33.1

List of Tables

1 Performance characteristics of set and map types
2 Operations in trait Iterator
3 Factory methods for sequences

Summary of parser combinators

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

586
595
602

770

XXV

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxv&v=2010_12_13

List of Listings

3.1 Parameterizing an array withatype. 82
3.2 Creating and initializing an array. 85
3.3 Creating and initializingalist. 86
34 Creatingandusingatuple. 90
3.5 Creating, initializing, and using an immutable set. 91
3.6 Creating, initializing, and using a mutable set. 93
3.7 Creating, initializing, and using a mutable map. 94
3.8 Creating, initializing, and using an immutable map. 95
3.9 A function without side effectsorvars. 97
3.10 Reading lines fromafile. 99
3.11 Printing formatted character counts for the lines of a file. . 102
4.1 Final version of class ChecksumAccumulator. 107
4.2 Companion object for class ChecksumAccumulator. 110
4.3 The Summer application. 112
4.4 Using the Applicationtrait. 115
6.1 Rationalwithfields. 145
6.2 Rational with an auxiliary constructor. 147
6.3 Rational with a private field and method. 148
6.4 Rational with operator methods. 150
6.5 Rational with overloaded methods. 155
7.1 Scala’s idiom for conditional initialization. 160
7.2 Calculating greatest common divisor with a while loop. . . 161
7.3 Reading from the standard input with do-while. 162
7.4 Calculating greatest common divisor with recursion. 163
7.5 Listing files in a directory with a for expression. 164

XXVi

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19

8.1
8.2
8.3
8.4

9.1
9.2
9.3
94
9.5

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

List of Listings

Finding .scala files using a for with a filter.
Using multiple filters in a for expression.
Using multiple generators in a for expression.
Mid-stream assignment in a for expression.
Transforming an Array[File] to Array[Int] with a for.

A try-catchclauseinScala.
A try-finallyclausein Scala.
A catch clause that yieldsavalue.
A match expression with side effects.
A match expression that yieldsavalue.
Looping without break or continue.
A recursive alternative to looping with vars.
Variable scoping when printing a multiplication table. . . .
A functional way to create a multiplication table.

LongLines with a private processLine method.
LongLines with a local processLine function.
A parameter with a default value.
A function with two parameters that have defaults.

Using closures to reduce code duplication.
Defining and invoking a “plain old” function.
Defining and invoking a curried function.
Using the loan pattern to write toafile.
Using a by-name parameter.

Defining an abstract method and class.
Defining parameterless methods width and height.
Defining ArrayElement as a subclass of Element.
Overriding a parameterless method with a field.

Declaring a final method.
Declaring afinalclass.
Class Element with above, beside, and toString.
A factory object with factory methods.
Class Element refactored to use factory methods.
Hiding implementation with private classes.

166
166
167
168
169
171
172
173
174
174
176
176
179
182

185
187
201
202

211
214
214
218
219

224
225
227
229
231
232
238
238
243
244
245
246

XX Vil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxvii&v=2010_12_13

10.13
10.14

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

List of Listings

Element with widen and heighten methods.
The Spiral application.

The definition of trait Philosophical.
Mixing in a trait using extends.
Mixing in a traitusingwith.
Mixing in multiple traits.
Defining an enrichment trait.
Abstract class IntQueue.
A BasicIntQueue implemented with an ArrayBuffer. . .
The Doubling stackable modification trait.
Mixing in a trait when instantiating withnew.

Stackable modification traits Incrementing and Filtering.

Placing the contents of an entire file into a package.

Long form of a simple package declaration.
Multiple packages in the same file.
Concise access to classes and packages.
Symbols in enclosing packages not automatically available.
Accessing hidden package names.
Bob’s delightful fruits, ready for import.
Importing the members of a regular (not singleton) object. .
Importing a package name.
How private access differs in Scalaand Java.
How protected access differs in Scala and Java.
Flexible scope of protection with access qualifiers.

Accessing private members of companion classes and objects.

A packageobject.

Usingan assertion. v v v v v v vt
Using ensuring to assert a function’s result.
Writing a test method with Suite.
Writing a test function with FunSuite.
Writing a JUnit test with JUnit3Suite.
Writing a TestNG test with TestNGSuite.
Specifying and testing behavior with a ScalaTest FlatSpec.
Specifying and testing behavior with the specs framework. .
Writing property-based tests with ScalaCheck.

247
248

258
259
260
260
264
268
268
269
270
270

278
278
279
279
280
280
283
283
284
287
288
289
292
293

296
296
297
298
301
302
303
304
305

XX Viil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxviii&v=2010_12_13

15.1
15.2
15.3
154
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22

16.1

17.1

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

List of Listings

Defining case classes.
The simplifyTop function, which does a pattern match. . .
A pattern match with an empty “default” case.
A pattern match with wildcard patterns.
A pattern match with constant patterns.
A pattern match with a variable pattern.
A pattern match with a constructor pattern.
A sequence pattern with a fixed length.
A sequence pattern with an arbitrary length.
A pattern match with a tuple pattern.
A pattern match with typed patterns.
Using isInstanceOf and asInstanceOf (poor style). . . .
A pattern with a variable binding (via the @ sign).
A match expression with a pattern guard.
Match expression in which case order matters.
A sealed hierarchy of case classes.
Defining multiple variables with one assignment.
A for expression with a tuple pattern.
Picking elements of a list that match a pattern.
The top half of the expression formatter.
The bottom half of the expression formatter.
An application that prints formatted expressions.

A merge sort function for Lists.
Default map and set definitions in Predef.

A mutable bank accountclass.
Aclass with publicvars.

How public vars are expanded into getter and setter methods.

Defining getter and setter methods directly.
Defining a getter and setter without an associated field.

The halfAdder method.
The fullAdder method.
The Simulationclass.
The first half of the BasicCircuitSimulation class. . . .
The second half of the BasicCircuitSimulation class.
The CircuitSimulationclass.

310
312
314
315
315
316
318
318
319
319
320
321
323
324
325
327
330
334
334
337
338
341

360

382

400
402
403
403
404
407
408
410
414
415
419

XX1X

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxix&v=2010_12_13

19.1
19.2
19.3
194
19.5
19.6
19.7
19.8
19.9
19.10
19.11
19.12

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14

21.1
21.2
21.3
21.4
21.5
21.6
21.7

22.1
22.2

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

List of Listings

A basic functional queuve.
Hiding a primary constructor by making it private.
An apply factory method in a companion object.
Type abstraction for functional queues.
A nonvariant (rigid) Cellclass.
A type parameter with a lowerbound.
A contravariant output channel.
Covariance and contravariance of Functionls.

Demonstration of function type parameter variance.

An optimized functional queue.
A Person class that mixes in the Ordered trait.
A merge sort function with an upper bound.

Overriding abstract vals and parameterless methods.

Declaring abstractvars.
How abstract vars are expanded into getters and setters. . .
A trait that uses its abstract vals.

Pre-initialized fields in an anonymous class expression.

Pre-initialized fields in an object definition.
Pre-initialized fields in a class definition.
Initializing a trait with lazy vals.
Modeling suitable food with an abstract type.
Implementing an abstract type in a subclass.
The US currency zone.
Currency zones for Europe and Japan.
A converter object with an exchange rates map.
The full code of class CurrencyZone.

An implicit parameter list with multiple parameters.
A function with anupperbound.
A function with an implicit parameter.
A function that uses an implicit parameter internally.
A function withaviewbound.
Sample code that uses an implicit parameter.
Sample code after type checking and insertion of implicits.

The definition of the Nil singleton object.
Prepending a supertype element to a subtype list.

425
426
427
428
431
437
438
439
440
442
444
444

450
450
451
452
454
454
455
456
460
461
473
475
476
477

491
493
494
496
497
500
500

505
507

XXX

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxx&v=2010_12_13

List of Listings XXX1

22.3 The definition of method : : (cons) in class List. 507
22.4 The definition of method : :: in class List. 509
22.5 The definition of method map in class List. 511
22.6 The definition of the : : subclass of List. 512
24.1 Mixing in the SynchronizedMap trait. 563
25.1 Anoutline of the Builderclass. 608
25.2 Implementation of filter in TraversableLike. 609
25.3 Implementation of map in TraversableLike. 612
25.4 The CanBuildFromtrait. 612
255 RNABases. 614
25.6 RNA strands class, first version. 615
25.7 RNA strands class, second version. 618
25.8 RNA strands class, final version. 622
25.9 RNA companion object—final version. 623
25.10 An implementation of prefix maps with Patricia tries. . . . 626
25.11 The companion object for prefix maps. 629
26.1 The EMail string extractor object. 633
26.2 The Twice string extractor object. 636
26.3 The UpperCase string extractor object. 636
26.4 The Domain string extractor object. 638
26.5 The ExpandedEMail extractor object. 639
26.6 An extractor that defines an unapplySeq method. 640
26.7 How the r method is defined in StringOps. 644
29.1 A simple Foodentityclass. 671
29.2 Simple Recipeentityclass. 672
29.3 Food and Recipe examples foruse intests. 672
29.4 Mock database and browser modules. 673
29.5 Database and browser modules with categories added. . . . 674
29.6 A Browser class with an abstract database val. 675
29.7 A Database class with abstract methods. 676
29.8 The SimpleDatabase object as a Database subclass. . . . 676
29.9 The SimpleBrowser object as a Browser subclass. 677
29.10 A student database and browser. 677
29.11 A trait for food categories. 678
29.12 A Database class that mixes in the FoodCategories trait. 678

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxi&v=2010_12_13

29.13
29.14
29.15
29.16
29.17

30.1
30.2
30.3
30.4
30.5

31.1

32.1
322
323
324
325
32.6
32.7
32.8

33.1
332
333
334
335
33.6

34.1
342
343
344

35.1
35.2
353
354

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

List of Listings

A SimpleDatabase object composed solely of mixins.

A SimpleFoodstrait.
A SimpleRecipes trait withaself type.
An app that dynamically selects a module implementation.

Using a singleton type.

A superclass equals method that calls canEqual.
A subclass equals method that calls canEqual.
Hierarchy for binary trees.
A parameterized type with equals and hashCode.
Class Rational with equals and hashCode.

A Scala method that declares a Java throws clause.

Asimpleactor.
An actor that calls receive.
Anactor thatcallsreact.
An actor’s act method thatuses loop.
An actor that uses a helper actor to avoid blocking itself. . .
An actor that uses case classes for messages.
The Simulant trait.
Adder components.o

An arithmetic expression parser.
A regular expression parser for Java identifiers.
Datain JSON format.
Asimple JSONparser.
A full JSON parser that returns meaningful results.
The ~ combinator method.

A simple Swing applicationin Scala.
Component assembly onapanel.
Implementing a reactive Swing application.
An implementation of the temperature converter.

Code for spreadsheet in Figure 35.1.
The main program for the spreadsheet application.
A spreadsheet with a rendererComponent method.
First version of the Model class.

678
678
679
680
682

696
697
699
703
704

715

726
728
732
733
735
740
748
755

761
763
765
766
770
778

789
791
795
797

802
803
804
805

XXXil

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxii&v=2010_12_13

355
35.6
35.7
35.8
35.9

List of Listings

Classes representing formulas.
A spreadsheet that parses formulas.
The evaluate method of trait Evaluator.
A library for arithmetic operations.
The finished spreadsheet component.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

807
811
814
816
822

XXX1ii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxiii&v=2010_12_13

Foreword

I’'m not sure where I first came across the Scala language. Maybe on a fo-
rum for programming language enthusiasts such as Lambda the Ultimate,
or maybe in more pedestrian quarters: Reddit, or the like. Although I was
intrigued at first blush, I owe my deeper exploration and enthusiasm for the
language to two individuals: David Pollak, creator of the Lift web frame-
work, and Steve Jenson, a former colleague at Twitter and generally brilliant
programmer.

Following David and Steve, I arrived to Scala in the late-middle stage of
the language’s history to date. By 2008, Scala had spent five years evolving
from its initial release, and had formed around it a tight-knit community of
academics, tinkerers, and even a few consultants. The mailing lists were
full of spirited debates, announcements of exciting libraries, and a general
camaraderie and shared joy for seeing what this powerful new tool could do.
What Scala lacked, at that point, was a collection of success stories around
major production deployments.

The decision to use Scala at Twitter, where I then worked, was not
an easy one to make. Our infrastructure was buckling under the weight
of extreme growth. Picking a relative unknown as our language of choice
for building the high-performance distributed systems that would keep our
fledgling service alive was risky. Still, the benefits that Scala offered were
(and are) compelling, and our engineers were quickly able to produce proto-
types that proved out the language’s effectiveness.

In the intervening time, I've seen a heartening number of companies large
and small adopting Scala. In that time, too, the question of Scala’s complex-
ity has been raised. From the outside, Scala’s many features might appear
to be a kind of complexity. To understand Scala, though, is to understand
its goal of being a scalable language. You can be writing real-world code in
Scala in an afternoon. As your understanding of the language and, indeed,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxiv&v=2010_12_13

Foreword

of the art and science of programming as a whole expands, there’s more of
Scala there to wield to your advantage. That’s not complexity. It’s flexibility.

To be clear: Scala will challenge you. That’s part of the joy of using it.
You won’t understand the full power of its type system by the end of your first
day. You won’t understand the zen of objects being functions and functions
being objects in your first week. Each feature of the language is another
light bulb waiting to switch on over your head. I'm certain you’ll enjoy the
experience of being gradually illuminated as you read this book and write
code. I’ve watched programmers learn Scala on the job and succeed. It can
be done, and it can be fun.

As Scala programmers like me have grown to better understand what
this powerful language can do, so too has Scala evolved to meet program-
mers’ needs. Scala 2.8 smoothes out some rough spots in the collection
libraries and adds useful features like named and default arguments to meth-
ods. While Scala has been a perfectly productive language to work with for
some time, as of 2.8 it feels even more solid and polished. The new 2.8
release is icing on the cake.

In my experience, Scala was ready for production deployments two years
ago. Today, it’s even better, and I can’t imagine building a new system with-
out it. Presently, I’'m doing just that. For me, Scala has gone from being a
risky gamble to a trusted tool in two short years. I look forward to taking
advantage of the latest features in Scala 2.8, and to using this book as the
definitive reference for it, direct from the creator of the language I’'ve grown
to depend on.

Alex Payne
Portland, Oregon
October 27, 2010

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XXXV

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxv&v=2010_12_13

Foreword to the First Edition

Martin Odersky made a huge impact on the Java world with his design of the
Pizza language. Although Pizza itself never became popular, it demonstrated
that object-oriented and functional language features, when combined with
skill and taste, form a natural and powerful combination. Pizza’s design be-
came the basis for generics in Java, and Martin’s GJ (Generic Java) compiler
was Sun Microsystem’s standard compiler starting in 1.3 (though with gener-
ics disabled). I had the pleasure of maintaining this compiler for a number
of years, so I can report from first-hand experience that Martin’s skill in lan-
guage design extends to language implementation.

Since that time, we at Sun tried to simplify program development by ex-
tending the language with piecemeal solutions to particular problems, like
the for-each loop, enums, and autoboxing. Meanwhile, Martin continued his
work on more powerful orthogonal language primitives that allow program-
mers to provide solutions in libraries.

Lately, there has been a backlash against statically typed languages. Ex-
perience with Java has shown that programming in a static language results
in an abundance of boilerplate. The common wisdom is that one must aban-
don static typing to eliminate the boilerplate, and there is a rising interest
in dynamic languages such as Python, Ruby, and Groovy. This common
wisdom is debunked by the existence of Martin’s latest brainchild, Scala.

Scala is a rastefully typed language: it is statically typed, but explicit
types appear in just the right places. Scala takes powerful features from
object-oriented and functional languages, and combines them with a few
novel ideas in a beautifully coherent whole. The syntax is so lightweight,
and its primitives so expressive, that APIs can be used with virtually no syn-
tactic overhead at all. Examples can be found in standard libraries such
as parser combinators and actors. In this sense Scala supports embedded
domain-specific languages.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxvi&v=2010_12_13

Foreword to the First Edition XXX Vil

Will Scala be the next great language? Only time will tell. Martin Oder-
sky’s team certainly has the taste and skill for the job. One thing is sure:
Scala sets a new standard against which future languages will be measured.

Neal Gafter
San Jose, California
September 3, 2008

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxvii&v=2010_12_13

Acknowledgments

Many people have contributed to this book and to the material it covers. We
are grateful to all of them.

Scala itself has been a collective effort of many people. The design
and the implementation of version 1.0 was helped by Philippe Altherr, Vin-
cent Cremet, Gilles Dubochet, Burak Emir, Stéphane Micheloud, Nikolay
Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. Phil Bag-
well, Antonio Cunei, Iulian Dragos, Gilles Dubochet, Miguel Garcia, Philipp
Haller, Sean McDirmid, Ingo Maier, Donna Malayeri, Adriaan Moors, Hu-
bert Plociniczak, Paul Phillips, Aleksandar Prokopec, Tiark Rompf, Lukas
Rytz, and Geoffrey Washburn joined in the effort to develop the second and
current version of the language and tools.

Gilad Bracha, Nathan Bronson, Caoyuan, Aemon Cannon, Craig Cham-
bers, Chris Conrad, Erik Ernst, Matthias Felleisen, Mark Harrah, Shriram
Krishnamurti, Gary Leavens, David Maclver, Sebastian Maneth, Rickard
Nilsson, Erik Meijer, Lalit Pant, David Pollak, Jon Pretty, Klaus Ostermann,
Jorge Ortiz, Didier Rémy, Miles Sabin, Vijay Saraswat, Daniel Spiewak,
James Strachan, Don Syme, Erik Torreborre, Mads Torgersen, Philip Wadler,
Jamie Webb, John Williams, Kevin Wright, and Jason Zaugg have shaped the
design of the language by graciously sharing their ideas with us in lively and
inspiring discussions, by contributing important pieces of code to the open
source effort, as well as through comments on previous versions of this doc-
ument. The contributors to the Scala mailing list have also given very useful
feedback that helped us improve the language and its tools.

George Berger has worked tremendously to make the build process and
the web presence for the book work smoothly. As a result this project has
been delightfully free of technical snafus.

Many people gave us valuable feedback on early versions of the text.
Thanks goes to Eric Armstrong, George Berger, Alex Blewitt, Gilad Bracha,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxviii&v=2010_12_13

Acknowledgments

William Cook, Bruce Eckel, Stéphane Micheloud, Todd Millstein, David
Pollak, Frank Sommers, Philip Wadler, and Matthias Zenger. Thanks also to
the Silicon Valley Patterns group for their very helpful review: Dave Astels,
Tracy Bialik, John Brewer, Andrew Chase, Bradford Cross, Raoul Duke,
John P. Eurich, Steven Ganz, Phil Goodwin, Ralph Jocham, Yan-Fa Li, Tao
Ma, Jeffery Miller, Suresh Pai, Russ Rufer, Dave W. Smith, Scott Turnquest,
Walter Vannini, Darlene Wallach, and Jonathan Andrew Wolter. And we’d
like to thank Dewayne Johnson and Kim Leedy for their help with the cover
art, and Frank Sommers for his work on the index.

We’d also like to extend a special thanks to all of our readers who con-
tributed comments. Your comments were very helpful to us in shaping this
into an even better book. We couldn’t print the names of everyone who con-
tributed comments, but here are the names of readers who submitted at least
five comments during the eBook PrePrint™ stage by clicking on the Suggest
link, sorted first by the highest total number of comments submitted, then
alphabetically. Thanks goes to: David Biesack, Donn Stephan, Mats Hen-
ricson, Rob Dickens, Blair Zajac, Tony Sloane, Nigel Harrison, Javier Diaz
Soto, William Heelan, Justin Forder, Gregor Purdy, Colin Perkins, Bjarte
S. Karlsen, Ervin Varga, Eric Willigers, Mark Hayes, Martin Elwin, Calum
MacLean, Jonathan Wolter, Les Pruszynski, Seth Tisue, Andrei Formiga,
Dmitry Grigoriev, George Berger, Howard Lovatt, John P. Eurich, Marius
Scurtescu, Jeff Ervin, Jamie Webb, Kurt Zoglmann, Dean Wampler, Nikolaj
Lindberg, Peter McLain, Arkadiusz Stryjski, Shanky Surana, Craig Borde-
lon, Alexandre Patry, Filip Moens, Fred Janon, Jeff Heon, Boris Lorbeer,
Jim Menard, Tim Azzopardi, Thomas Jung, Walter Chang, Jeroen Dijkmei-
jer, Casey Bowman, Martin Smith, Richard Dallaway, Antony Stubbs, Lars
Westergren, Maarten Hazewinkel, Matt Russell, Remigiusz Michalowski,
Andrew Tolopko, Curtis Stanford, Joshua Cough, Zemian Deng, Christo-
pher Rodrigues Macias, Juan Miguel Garcia Lopez, Michel Schinz, Peter
Moore, Randolph Kahle, Vladimir Kelman, Daniel Gronau, Dirk Detering,
Hiroaki Nakamura, Ole Hougaard, Bhaskar Maddala, David Bernard, Derek
Mahar, George Kollias, Kristian Nordal, Normen Mueller, Rafael Ferreira,
Binil Thomas, John Nilsson, Jorge Ortiz, Marcus Schulte, Vadim Gerassi-
mov, Cameron Taggart, Jon-Anders Teigen, Silvestre Zabala, Will McQueen,
and Sam Owen.

We would also like to think those who submitted comments and errata
after the first edition was published, including Felix Siegrist, Lothar Meyer-
Lerbs, Diethard Michaelis, Roshan Dawrani, Donn Stephan, William Uther,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

XXX1X

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xxxix&v=2010_12_13

Acknowledgments

Francisco Reverbel, Jim Balter, and Freek de Bruijn.

Lex would like to thank Aaron Abrams, Jason Adams, Henry and Emily
Crutcher, Joey Gibson, Gunnar Hillert, Matthew Link, Toby Reyelts, Jason
Snape, John and Melinda Weathers, and all of the Atlanta Scala Enthusiasts
for many helpful discussions about the language design, its mathematical
underpinnings, and how to present Scala to working engineers.

Lastly, Bill would also like to thank Gary Cornell, Greg Doench, Andy
Hunt, Mike Leonard, Tyler Ortman, Bill Pollock, Dave Thomas, and Adam
Wright for providing insight and advice on book publishing.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

x1

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xl&v=2010_12_13

Introduction

This book is a tutorial for the Scala programming language, written by peo-
ple directly involved in the development of Scala. Our goal is that by reading
this book, you can learn everything you need to be a productive Scala pro-
grammer. All examples in this book compile with Scala version 2.8.1.

Who should read this book

The main target audience for this book is programmers who want to learn
to program in Scala. If you want to do your next software project in Scala,
then this is the book for you. In addition, the book should be interesting to
programmers wishing to expand their horizons by learning new concepts. If
you’re a Java programmer, for example, reading this book will expose you
to many concepts from functional programming as well as advanced object-
oriented ideas. We believe learning about Scala, and the ideas behind it, can
help you become a better programmer in general.

General programming knowledge is assumed. While Scala is a fine first
programming language, this is not the book to use to learn programming.

On the other hand, no specific knowledge of programming languages is
required. Even though most people use Scala on the Java platform, this book
does not presume you know anything about Java. However, we expect many
readers to be familiar with Java, and so we sometimes compare Scala to Java
to help such readers understand the differences.

How to use this book

Because the main purpose of this book is to serve as a tutorial, the recom-
mended way to read this book is in chapter order, from front to back. We
have tried hard to introduce one topic at a time, and explain new topics only

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xli&v=2010_12_13

Introduction

in terms of topics we’ve already introduced. Thus, if you skip to the back
to get an early peek at something, you may find it explained in terms of
concepts you don’t quite understand. To the extent you read the chapters
in order, we think you’ll find it quite straightforward to gain competency in
Scala, one step at a time.

If you see a term you do not know, be sure to check the glossary and
the index. Many readers will skim parts of the book, and that is just fine.
The glossary and index can help you backtrack whenever you skim over
something too quickly.

After you have read the book once, it should also serve as a language
reference. There is a formal specification of the Scala language, but the lan-
guage specification tries for precision at the expense of readability. Although
this book doesn’t cover every detail of Scala, it is quite comprehensive and
should serve as an approachable language reference as you become more
adept at programming in Scala.

How to learn Scala

You will learn a lot about Scala simply by reading this book from cover to
cover. You can learn Scala faster and more thoroughly, though, if you do a
few extra things.

First of all, you can take advantage of the many program examples in-
cluded in the book. Typing them in yourself is a way to force your mind
through each line of code. Trying variations is a way to make them more fun
and to make sure you really understand how they work.

Second, keep in touch with the numerous online forums. That way, you
and other Scala enthusiasts can help each other. There are numerous mailing
lists, discussion forums, a chat room, a wiki, and multiple Scala-specific
article feeds. Take some time to find ones that fit your information needs.
You will spend a lot less time stuck on little problems, so you can spend
your time on deeper, more important questions.

Finally, once you have read enough, take on a programming project of
your own. Work on a small program from scratch, or develop an add-in to a
larger program. You can only go so far by reading.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xlii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xlii&v=2010_12_13

Introduction

EBook features

This book is available in both paper and PDF eBook form. The eBook is not
simply an electronic copy of the paper version of the book. While the content
is the same as in the paper version, the eBook has been carefully designed
and optimized for reading on a computer screen.

The first thing to notice is that most references within the eBook are
hyperlinked. If you select a reference to a chapter, figure, or glossary entry,
your PDF viewer should take you immediately to the selected item so that
you do not have to flip around to find it.

Additionally, at the bottom of each page in the eBook are a number of
navigation links. The “Cover,” “Overview,” and “Contents” links take you to
the front matter of the book. The “Glossary” and “Index” links take you to
reference parts of the book. Finally, the “Discuss” link takes you to an online
forum where you discuss questions with other readers, the authors, and the
larger Scala community. If you find a typo, or something you think could be
explained better, please click on the “Suggest” link, which will take you to
an online web application where you can give the authors feedback.

Although the same pages appear in the eBook as the printed book, blank
pages are removed and the remaining pages renumbered. The pages are num-
bered differently so that it is easier for you to determine PDF page numbers
when printing only a portion of the eBook. The pages in the eBook are,
therefore, numbered exactly as your PDF viewer will number them.

Typographic conventions

The first time a term is used, it is italicized. Small code examples, such as
x + 1, are written inline with a mono-spaced font. Larger code examples are
put into mono-spaced quotation blocks like this:

def hello() {
println("Hello, world!"™)
}

When interactive shells are shown, responses from the shell are shown in a
lighter font:

scala> 3 + 4
resO: Int = 7

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xliii

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xliii&v=2010_12_13

Introduction xliv
Content overview

* Chapter 1, “A Scalable Language,” gives an overview of Scala’s design
as well as the reasoning, and history, behind it.

* Chapter 2, “First Steps in Scala,” shows you how to do a number of ba-
sic programming tasks in Scala, without going into great detail about
how they work. The goal of this chapter is to get your fingers started
typing and running Scala code.

* Chapter 3, “Next Steps in Scala,” shows you several more basic pro-
gramming tasks that will help you get up to speed quickly in Scala.
After completing this chapter, you should be able to start using Scala
for simple scripting tasks.

» Chapter 4, “Classes and Objects,” starts the in-depth coverage of Scala
with a description of its basic object-oriented building blocks and in-
structions on how to compile and run a Scala application.

* Chapter 5, “Basic Types and Operations,” covers Scala’s basic types,
their literals, the operations you can perform on them, how precedence
and associativity works, and what rich wrappers are.

* Chapter 6, “Functional Objects,” dives more deeply into the object-
oriented features of Scala, using functional (i.e., immutable) rational
numbers as an example.

* Chapter 7, “Built-in Control Structures,” shows you how to use Scala’s
built-in control structures: if, while, for, try, and match.

* Chapter 8, “Functions and Closures,” provides in-depth coverage of
functions, the basic building block of functional languages.

* Chapter 9, “Control Abstraction,” shows how to augment Scala’s basic
control structures by defining your own control abstractions.

* Chapter 10, “Composition and Inheritance,” discusses more of Scala’s
support for object-oriented programming. The topics are not as funda-
mental as those in Chapter 4, but they frequently arise in practice.

* Chapter 11, “Scala’s Hierarchy,” explains Scala’s inheritance hierar-
chy and discusses its universal methods and bottom types.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xliv&v=2010_12_13

Introduction

* Chapter 12, “Traits,” covers Scala’s mechanism for mixin composi-
tion. The chapter shows how traits work, describes common uses, and
explains how traits improve on traditional multiple inheritance.

* Chapter 13, “Packages and Imports,” discusses issues with program-
ming in the large, including top-level packages, import statements, and
access control modifiers like protected and private.

» Chapter 14, “Assertions and Unit Testing,” shows Scala’s assertion
mechanism and gives a tour of the various tools available for writing
tests in Scala.

* Chapter 15, “Case Classes and Pattern Matching,” introduces twin
constructs that support you when writing regular, non-encapsulated
data structures. Case classes and pattern matching are particularly
helpful for tree-like recursive data.

* Chapter 16, “Working with Lists,” explains in detail lists, which are
probably the most commonly used data structure in Scala programs.

* Chapter 17, “Collections,” shows you how to use the basic Scala col-
lections, such as lists, arrays, tuples, sets, and maps.

* Chapter 18, “Stateful Objects,” explains stateful (i.e., mutable) objects,
and the syntax Scala provides to express them. The chapter concludes
with a case study on discrete event simulation, which shows some
stateful objects in action.

» Chapter 19, “Type Parameterization,” explains some of the techniques
for information hiding introduced in Chapter 13 by means of a con-
crete example: the design of a class for purely functional queues. The
chapter builds up to a description of variance of type parameters and
how it interacts with information hiding.

* Chapter 20, “Abstract Members,” describes all kinds of abstract mem-
bers that Scala supports. Not only methods, but also fields and types
can be declared abstract.

* Chapter 21, “Implicit Conversions and Parameters,” covers two con-
structs that can help you omit tedious details from source code, letting
the compiler supply them instead.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xlv

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xlv&v=2010_12_13

Introduction

Chapter 22, “Implementing Lists,” describes the implementation of
class List. It is important to understand how lists work in Scala,
and furthermore the implementation demonstrates the use of several
of Scala’s features.

Chapter 23, “For Expressions Revisited,” shows how for expressions
are translated to invocations of map, flatMap, filter, and foreach.

Chapter 24, “The Scala Collections API,” gives a detailed tour of the
collections library.

Chapter 25, “The Architecture of Scala Collections,” shows how the
collection library is built and how you can implement your own col-
lections.

Chapter 26, “Extractors,” shows how to pattern match against arbitrary
classes, not just case classes.

Chapter 27, “Annotations,” shows how to work with language exten-
sion via annotation. The chapter describes several standard annota-
tions and shows you how to make your own.

Chapter 28, “Working with XML,” explains how to process XML in
Scala. The chapter shows you idioms for generating XML, parsing it,
and processing it once it is parsed.

Chapter 29, “Objects As Modules,” shows how Scala’s objects are rich
enough to remove the need for a separate modules system.

Chapter 30, “Object Equality,” points out several issues to consider
when writing an equals method. There are several pitfalls to avoid.

Chapter 31, “Combining Scala and Java,” discusses issues that arise
when combining Scala and Java together in the same project, and sug-
gests ways to deal with them.

Chapter 32, “Actors and Concurrency,” shows you how to use Scala’s
actors concurrency library. Although you can use the Java Platform’s
concurrency primitives and libraries from Scala programs, actors can
help you avoid the deadlocks and race conditions that plague the tra-
ditional “threads and locks” approach to concurrency.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xlvi

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xlvi&v=2010_12_13

Introduction

* Chapter 33, “Combinator Parsing,” shows how to build parsers using
Scala’s library of parser combinators.

* Chapter 34, “GUI Programming,” gives a quick tour of a Scala library
that simplifies GUI programming with Swing.

* Chapter 35, “The SCells Spreadsheet,” ties everything together by
showing a complete spreadsheet application written in Scala.

Resources

At http://www.scala-lang.org, the main website for Scala, you’ll find
the latest Scala release and links to documentation and community resources.
For a more condensed page of links to Scala resources, visit this book’s web-
site: http://booksites.artima.com/programming_in_scala_2ed. To
interact with other readers of this book, check out the Programming in Scala
Forum, at: http://www.artima.com/forums/forum. jsp?forum=282.

Source code

You can download a ZIP file containing the source code of this book, which is
released under the Apache 2.0 open source license, from the book’s website:
http://booksites.artima.com/programming_in_scala_2ed.

Errata

Although this book has been heavily reviewed and checked, errors will in-
evitably slip through. For a (hopefully short) list of errata for this book, visit
http://booksites.artima.com/programming_in_scala_2ed/errata.
If you find an error, please report it at the above URL, so that we can be sure
to fix it in a future printing or edition of this book.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

xlvii

http://www.scala-lang.org
http://booksites.artima.com/programming_in_scala_2ed
http://www.artima.com/forums/forum.jsp?forum=282
http://booksites.artima.com/programming_in_scala_2ed
http://booksites.artima.com/programming_in_scala_2ed/errata
http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=xlvii&v=2010_12_13

Programming in Scala
Second Edition

println("Hello, reader!")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=48&v=2010_12_13

Chapter 1

A Scalable Language

The name Scala stands for “scalable language.” The language is so named
because it was designed to grow with the demands of its users. You can apply
Scala to a wide range of programming tasks, from writing small scripts to
building large systems.'

Scala is easy to get into. It runs on the standard Java platform and in-
teroperates seamlessly with all Java libraries. It’s quite a good language
for writing scripts that pull together Java components. But it can apply its
strengths even more when used for building large systems and frameworks
of reusable components.

Technically, Scala is a blend of object-oriented and functional program-
ming concepts in a statically typed language. The fusion of object-oriented
and functional programming shows up in many different aspects of Scala;
it is probably more pervasive than in any other widely used language. The
two programming styles have complementary strengths when it comes to
scalability. Scala’s functional programming constructs make it easy to build
interesting things quickly from simple parts. Its object-oriented constructs
make it easy to structure larger systems and to adapt them to new demands.
The combination of both styles in Scala makes it possible to express new
kinds of programming patterns and component abstractions. It also leads to
a legible and concise programming style. And because it is so malleable,
programming in Scala can be a lot of fun.

This initial chapter answers the question, “Why Scala?” It gives a high-
level view of Scala’s design and the reasoning behind it. After reading the
chapter you should have a basic feel for what Scala is and what kinds of

IScala is pronounced skah-lah.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=49&v=2010_12_13

Section 1.1 Chapter 1 - A Scalable Language

tasks it might help you accomplish. Although this book is a Scala tutorial,
this chapter isn’t really part of the tutorial. If you’re eager to start writing
some Scala code, you should jump ahead to Chapter 2.

1.1 A language that grows on you

Programs of different sizes tend to require different programming constructs.
Consider, for example, the following small Scala program:

var capital = Map("US" -> "Washington", "France" -> "Paris")
capital += ("Japan" -> "Tokyo")

println(capital("France™))

This program sets up a map from countries to their capitals, modifies the map
by adding a new binding ("Japan" -> "Tokyo"), and prints the capital asso-
ciated with the country France.? The notation in this example is high-level, to
the point, and not cluttered with extraneous semicolons or type annotations.
Indeed, the feel is that of a modern “scripting” language like Perl, Python, or
Ruby. One common characteristic of these languages, which is relevant for
the example above, is that they each support an “associative map” construct
in the syntax of the language.

Associative maps are very useful because they help keep programs leg-
ible and concise. However, sometimes you might not agree with their “one
size fits all” philosophy, because you need to control the properties of the
maps you use in your program in a more fine-grained way. Scala gives you
this fine-grained control if you need it, because maps in Scala are not lan-
guage syntax. They are library abstractions that you can extend and adapt.

In the above program, you’ll get a default Map implementation, but you
can easily change that. You could for example specify a particular implemen-
tation, such as a HashMap or a TreeMap, or you could specify that the map
should be thread-safe, by mixing in a SynchronizedMap trait. You could
specify a default value for the map, or you could override any other method
of the map you create. In each case, you can use the same easy access syntax
for maps as in the example above.

ZPlease bear with us if you don’t understand all details of this program. They will be
explained in the next two chapters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

50

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=50&v=2010_12_13

Section 1.1 Chapter 1 - A Scalable Language

This example shows that Scala can give you both convenience and flex-
ibility. Scala has a set of convenient constructs that help you get started
quickly and let you program in a pleasantly concise style. At the same time,
you have the assurance that you will not outgrow the language. You can al-
ways tailor the program to your requirements, because everything is based
on library modules that you can select and adapt as needed.

Growing new types

Eric Raymond introduced the cathedral and bazaar as two metaphors of soft-
ware development.? The cathedral is a near-perfect building that takes a long
time to build. Once built, it stays unchanged for a long time. The bazaar, by
contrast, is adapted and extended each day by the people working in it. In
Raymond’s work the bazaar is a metaphor for open-source software devel-
opment. Guy Steele noted in a talk on “growing a language” that the same
distinction can be applied to language design.* Scala is much more like a
bazaar than a cathedral, in the sense that it is designed to be extended and
adapted by the people programming in it. Instead of providing all constructs
you might ever need in one “perfectly complete” language, Scala puts the
tools for building such constructs into your hands.

Here’s an example. Many applications need a type of integer that can
become arbitrarily large without overflow or “wrap-around” of arithmetic
operations. Scala defines such a type in library class scala.BigInt. Here
is the definition of a method using that type, which calculates the factorial of
a passed integer value:’

def factorial(x: BigInt): BigInt =
if (x == 0) 1 else x * factorial(x - 1)

Now, if you call factorial (30) you would get:
265252859812191058636308480000000

BigInt looks like a built-in type, because you can use integer literals and
operators such as * and - with values of that type. Yet it is just a class that

3 Raymond, The Cathedral and the Bazaar. [Ray99]

4Steele, “Growing a language.” [Ste99]

Sfactorial(x), or x! in mathematical notation, is the result of computing
1%2=*...*x, with0! defined to be 1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

51

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=51&v=2010_12_13

Section 1.1 Chapter 1 - A Scalable Language

happens to be defined in Scala’s standard library.® If the class were missing,
it would be straightforward for any Scala programmer to write an implemen-
tation, for instance, by wrapping Java’s class java.math.BigInteger (in
fact that’s how Scala’s BigInt class is implemented).

Of course, you could also use Java’s class directly. But the result is not
nearly as pleasant, because although Java allows you to create new types,
those types don’t feel much like native language support:

import java.math.BigInteger

def factorial(x: BigInteger): Biglnteger =
if (x == BigInteger.ZERO)
BigInteger.ONE
else
x.multiply(factorial(x.subtract(BigInteger.ONE)))

BigInt is representative of many other number-like types—big decimals,
complex numbers, rational numbers, confidence intervals, polynomials—the
list goes on. Some programming languages implement some of these types
natively. For instance, Lisp, Haskell, and Python implement big integers;
Fortran and Python implement complex numbers. But any language that
attempted to implement all of these abstractions at the same time would sim-
ply become too big to be manageable. What’s more, even if such a language
were to exist, some applications would surely benefit from other number-
like types that were not supplied. So the approach of attempting to provide
everything in one language doesn’t scale very well. Instead, Scala allows
users to grow and adapt the language in the directions they need by defining
easy-to-use libraries that feel like native language support.

Growing new control constructs

The previous example demonstrates that Scala lets you add new types that
can be used as conveniently as built-in types. The same extension principle
also applies to control structures. This kind of extensibility is illustrated by
Scala’s API for “actor-based” concurrent programming.

6Scala comes with a standard library, some of which will be covered in this book. For
more information, you can also consult the library’s Scaladoc documentation, which is avail-
able in the distribution and online at http://www.scala-lang.org.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

52

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=52&v=2010_12_13

Section 1.1 Chapter 1 - A Scalable Language

As multicore processors proliferate in the coming years, achieving ac-
ceptable performance may increasingly require that you exploit more paral-
lelism in your applications. Often, this will mean rewriting your code so that
computations are distributed over several concurrent threads. Unfortunately,
creating dependable multi-threaded applications has proven challenging in
practice. Java’s threading model is built around shared memory and locking,
a model that is often difficult to reason about, especially as systems scale up
in size and complexity. It is hard to be sure you don’t have a race condi-
tion or deadlock lurking—something that didn’t show up during testing, but
might just show up in production. An arguably safer alternative is a mes-
sage passing architecture such as the “actors” approach used by the Erlang
programming language.

Java comes with a rich, thread-based concurrency library. Scala pro-
grams can use it like any other Java API. However, Scala also offers an ad-
ditional library that essentially implements Erlang’s actor model.

Actors are concurrency abstractions that can be implemented on top of
threads. They communicate by sending messages to each other. An actor can
perform two basic operations, message send and receive. The send operation,
denoted by an exclamation point (!), sends a message to an actor. Here’s an
example in which the actor is named recipient:

recipient ! msg

A send is asynchronous; that is, the sending actor can proceed immediately,
without waiting for the message to be received and processed. Every actor
has a mailbox in which incoming messages are queued. An actor handles
messages that have arrived in its mailbox via a receive block:

receive {
case Msgl => ... // handle Msgl
case Msg2 => ... // handle Msg2
// ...

}

A receive block consists of a number of cases that each query the mailbox
with a message pattern. The first message in the mailbox that matches any of
the cases is selected, and the corresponding action is performed on it. If the
mailbox does not contain any messages that match one of the given cases,
the actor suspends and waits for further incoming messages.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

53

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=53&v=2010_12_13

Section 1.1 Chapter 1 - A Scalable Language

As an example, here is a simple Scala actor implementing a checksum
calculator service:

actor {
var sum = 0
loop {
receive {
case Data(bytes) => sum += hash(bytes)
case GetSum(requester) => requester ! sum
}
¥
}

This actor first defines a local variable named sum with initial value zero. It
then repeatedly waits in a loop for messages, using a receive statement. If it
receives a Data message, it adds a hash of the sent bytes to the sum variable.
If it receives a GetSum message, it sends the current value of sum back to the
requester using the message send requester ! sum. The requester field
is embedded in the GetSum message; it usually refers to the actor that made
the request.

We don’t expect you to understand fully the actor example at this point.
Rather, what’s significant about this example for the topic of scalability is
that neither actor nor loop nor receive nor message send (!) are built-in
operations in Scala. Even though actor, loop, and receive look and act
very much like built-in control constructs such as while or for loops, they
are in fact methods defined in Scala’s actors library. Likewise, even though
‘1’ looks like a built-in operator, it too is just a method defined in the actors
library. All four of these constructs are completely independent of the Scala
programming language.

The receive block and send (!) syntax look in Scala much like they
look in Erlang, but in Erlang, these constructs are built into the language.
Scala also implements most of Erlang’s other concurrent programming con-
structs, such as monitoring failed actors and time-outs. All in all, actors have
turned out to be a very pleasant means for expressing concurrent and dis-
tributed computations. Even though they are defined in a library, actors feel
like an integral part of the Scala language.

This example illustrates that you can “grow” the Scala language in new
directions even as specialized as concurrent programming. To be sure, you
need good architects and programmers to do this. But the crucial thing is

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

54

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=54&v=2010_12_13

Section 1.2 Chapter 1 - A Scalable Language

that it is feasible—you can design and implement abstractions in Scala that
address radically new application domains, yet still feel like native language
support.

1.2 What makes Scala scalable?

Scalability is influenced by many factors, ranging from syntax details to
component abstraction constructs. If we were forced to name just one as-
pect of Scala that helps scalability, though, we’d pick its combination of
object-oriented and functional programming (well, we cheated, that’s really
two aspects, but they are intertwined).

Scala goes further than all other well-known languages in fusing object-
oriented and functional programming into a uniform language design. For
instance, where other languages might have objects and functions as two dif-
ferent concepts, in Scala a function value is an object. Function types are
classes that can be inherited by subclasses. This might seem nothing more
than an academic nicety, but it has deep consequences for scalability. In fact
the actor concept shown previously could not have been implemented with-
out this unification of functions and objects. This section gives an overview
of Scala’s way of blending object-oriented and functional concepts.

Scala is object-oriented

Object-oriented programming has been immensely successful. Starting from
Simula in the mid-60’s and Smalltalk in the 70’s, it is now available in more
languages than not. In some domains objects have taken over completely.
While there is not a precise definition of what object-oriented means, there
is clearly something about objects that appeals to programmers.

In principle, the motivation for object-oriented programming is very sim-
ple: all but the most trivial programs need some sort of structure. The most
straightforward way to do this is to put data and operations into some form of
containers. The great idea of object-oriented programming is to make these
containers fully general, so that they can contain operations as well as data,
and that they are themselves values that can be stored in other containers, or
passed as parameters to operations. Such containers are called objects. Alan
Kay, the inventor of Smalltalk, remarked that in this way the simplest object
has the same construction principle as a full computer: it combines data with

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

55

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=55&v=2010_12_13

Section 1.2 Chapter 1 - A Scalable Language

operations under a formalized interface.” So objects have a lot to do with
language scalability: the same techniques apply to the construction of small
as well as large programs.

Even though object-oriented programming has been mainstream for a
long time, there are relatively few languages that have followed Smalltalk
in pushing this construction principle to its logical conclusion. For instance,
many languages admit values that are not objects, such as the primitive val-
ues in Java. Or they allow static fields and methods that are not members
of any object. These deviations from the pure idea of object-oriented pro-
gramming look quite harmless at first, but they have an annoying tendency
to complicate things and limit scalability.

By contrast, Scala is an object-oriented language in pure form: every
value is an object and every operation is a method call. For example, when
you say 1 + 2 in Scala, you are actually invoking a method named + defined
in class Int. You can define methods with operator-like names that clients
of your API can then use in operator notation. This is how the designer of
Scala’s actors API enabled you to use expressions such as requester ! sum
shown in the previous example: ‘!’ is a method of the Actor class.

Scala is more advanced than most other languages when it comes to com-
posing objects. An example is Scala’s traits. Traits are like interfaces in Java,
but they can also have method implementations and even fields. Objects are
constructed by mixin composition, which takes the members of a class and
adds the members of a number of traits to them. In this way, different as-
pects of classes can be encapsulated in different traits. This looks a bit like
multiple inheritance, but differs when it comes to the details. Unlike a class,
a trait can add some new functionality to an unspecified superclass. This
makes traits more “pluggable” than classes. In particular, it avoids the clas-
sical “diamond inheritance” problems of multiple inheritance, which arise
when the same class is inherited via several different paths.

Scala is functional

In addition to being a pure object-oriented language, Scala is also a full-
blown functional language. The ideas of functional programming are older
than (electronic) computers. Their foundation was laid in Alonzo Church’s
lambda calculus, which he developed in the 1930s. The first functional pro-
gramming language was Lisp, which dates from the late 50s. Other popular

7Kay, “The Early History of Smalltalk.” [Kay96]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

56

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=56&v=2010_12_13

Section 1.2 Chapter 1 - A Scalable Language

functional languages are Scheme, SML, Erlang, Haskell, OCaml, and F#.
For a long time, functional programming has been a bit on the sidelines,
popular in academia, but not that widely used in industry. However, recent
years have seen an increased interest in functional programming languages
and techniques.

Functional programming is guided by two main ideas. The first idea is
that functions are first-class values. In a functional language, a function is a
value of the same status as, say, an integer or a string. You can pass func-
tions as arguments to other functions, return them as results from functions,
or store them in variables. You can also define a function inside another
function, just as you can define an integer value inside a function. And you
can define functions without giving them a name, sprinkling your code with
function literals as easily as you might write integer literals like 42.

Functions that are first-class values provide a convenient means for ab-
stracting over operations and creating new control structures. This general-
ization of functions provides great expressiveness, which often leads to very
legible and concise programs. It also plays an important role for scalability.
As an example, the receive construct shown previously in the actor exam-
ple is an invocation of a method that takes a function as argument. The code
inside the receive construct is a function that is passed unexecuted into the
receive method.

In most traditional languages, by contrast, functions are not values. Lan-
guages that do have function values often relegate them to second-class sta-
tus. For example, the function pointers of C and C++ do not have the same
status as non-functional values in those languages: function pointers can
only refer to global functions, they do not allow you to define first-class
nested functions that refer to some values in their environment. Nor do they
allow you to define unnamed function literals.

The second main idea of functional programming is that the operations
of a program should map input values to output values rather than change
data in place. To see the difference, consider the implementation of strings
in Ruby and in Java. In Ruby, a string is an array of characters. Charac-
ters in a string can be changed individually. For instance you can change a
semicolon character in a string to a period inside the same string object. In
Java and Scala, on the other hand, a string is a sequence of characters in the
mathematical sense. Replacing a character in a string using an expression
like s.replace(';', '.") yields a new string object, which is different
from s. Another way of expressing this is that strings are immutable in Java

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

57

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=57&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

whereas they are mutable in Ruby. So looking at just strings, Java is a func-
tional language, whereas Ruby is not. Immutable data structures are one
of the cornerstones of functional programming. The Scala libraries define
many more immutable data types on top of those found in the Java APIs. For
instance, Scala has immutable lists, tuples, maps, and sets.

Another way of stating this second idea of functional programming is
that methods should not have any side effects. They should communicate
with their environment only by taking arguments and returning results. For
instance, the replace method in Java’s String class fits this description. It
takes a string and two characters and yields a new string where all occur-
rences of one character are replaced by the other. There is no other effect of
calling replace. Methods like replace are called referentially transparent,
which means that for any given input the method call could be replaced by
its result without affecting the program’s semantics.

Functional languages encourage immutable data structures and referen-
tially transparent methods. Some functional languages even require them.
Scala gives you a choice. When you want to, you can write in an imper-
ative style, which is what programming with mutable data and side effects
is called. But Scala generally makes it easy to avoid imperative constructs
when you want, because good functional alternatives exist.

1.3 Why Scala?

Is Scala for you? You will have to see and decide for yourself. We have found
that there are actually many reasons besides scalability to like programming
in Scala. Four of the most important aspects will be discussed in this section:
compatibility, brevity, high-level abstractions, and advanced static typing.

Scala is compatible

Scala doesn’t require you to leap backwards off the Java platform to step for-
ward from the Java language. It allows you to add value to existing code—to
build on what you already have—because it was designed for seamless in-
teroperability with Java.® Scala programs compile to JVM bytecodes. Their
run-time performance is usually on par with Java programs. Scala code can

8There is also a Scala variant that runs on the .NET platform, but the JVM variant cur-
rently has better support.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

58

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=58&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

call Java methods, access Java fields, inherit from Java classes, and imple-
ment Java interfaces. None of this requires special syntax, explicit interface
descriptions, or glue code. In fact, almost all Scala code makes heavy use of
Java libraries, often without programmers being aware of this fact.

Another aspect of full interoperability is that Scala heavily re-uses Java
types. Scala’s Ints are represented as Java primitive integers of type int,
Floats are represented as floats, Booleans as booleans, and so on. Scala
arrays are mapped to Java arrays. Scala also re-uses many of the stan-
dard Java library types. For instance, the type of a string literal "abc" in
Scala is java.lang.String, and a thrown exception must be a subclass of
java.lang.Throwable.

Scala not only re-uses Java’s types, but also “dresses them up” to make
them nicer. For instance, Scala’s strings support methods like toInt or
toFloat, which convert the string to an integer or floating-point number.
So you can write str.toInt instead of Integer.parseInt(str). How
can this be achieved without breaking interoperability? Java’s String class
certainly has no toInt method! In fact, Scala has a very general solution
to solve this tension between advanced library design and interoperability.
Scala lets you define implicit conversions, which are always applied when
types would not normally match up, or when non-existing members are se-
lected. In the case above, when looking for a toInt method on a string, the
Scala compiler will find no such member of class String, but it will find an
implicit conversion that converts a Java String to an instance of the Scala
class StringOps, which does define such a member. The conversion will
then be applied implicitly before performing the toInt operation.

Scala code can also be invoked from Java code. This is sometimes a bit
more subtle, because Scala is a richer language than Java, so some of Scala’s
more advanced features need to be encoded before they can be mapped to
Java. Chapter 31 explains the details.

Scala is concise

Scala programs tend to be short. Scala programmers have reported reduc-
tions in number of lines of up to a factor of ten compared to Java. These
might be extreme cases. A more conservative estimate would be that a typ-
ical Scala program should have about half the number of lines of the same
program written in Java. Fewer lines of code mean not only less typing, but
also less effort at reading and understanding programs and fewer possibili-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

59

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=59&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

ties of defects. There are several factors that contribute to this reduction in
lines of code.

First, Scala’s syntax avoids some of the boilerplate that burdens Java
programs. For instance, semicolons are optional in Scala and are usually left
out. There are also several other areas where Scala’s syntax is less noisy.
As an example, compare how you write classes and constructors in Java and
Scala. In Java, a class with a constructor often looks like this:

// this is Java
class MyClass {

private int index;
private String name;

public MyClass(int index, String name) {
this.index = index;
this.name = name;

}
In Scala, you would likely write this instead:
class MyClass(index: Int, name: String)

Given this code, the Scala compiler will produce a class that has two private
instance variables, an Int named index and a String named name, and a
constructor that takes initial values for those variables as parameters. The
code of this constructor will initialize the two instance variables with the
values passed as parameters. In short, you get essentially the same function-
ality as the more verbose Java version.” The Scala class is quicker to write,
easier to read, and most importantly, less error prone than the Java class.

Scala’s type inference is another factor that contributes to its concise-
ness. Repetitive type information can be left out, so programs become less
cluttered and more readable.

But probably the most important key to compact code is code you don’t
have to write because it is done in a library for you. Scala gives you many
tools to define powerful libraries that let you capture and factor out common
behavior. For instance, different aspects of library classes can be separated

9The only real difference is that the instance variables produced in the Scala case will be
final. You’ll learn how to make them non-final in Section 10.6.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

60

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=60&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

out into traits, which can then be mixed together in flexible ways. Or, li-
brary methods can be parameterized with operations, which lets you define
constructs that are, in effect, your own control structures. Together, these
constructs allow the definition of libraries that are both high-level and flexi-
ble to use.

Scala is high-level

Programmers are constantly grappling with complexity. To program pro-
ductively, you must understand the code on which you are working. Overly
complex code has been the downfall of many a software project. Unfortu-
nately, important software usually has complex requirements. Such com-
plexity can’t be avoided; it must instead be managed.

Scala helps you manage complexity by letting you raise the level of ab-
straction in the interfaces you design and use. As an example, imagine you
have a String variable name, and you want to find out whether or not that
String contains an upper case character. In Java, you might write this:

// this is Java
boolean nameHasUpperCase = false;
for (int i = 0; i < name.length(); ++i) {
if (Character.isUpperCase(name.charAt(i))) {
nameHasUpperCase = true;
break;

}
Whereas in Scala, you could write this:
val nameHasUpperCase = name.exists(_.isUpper)

The Java code treats strings as low-level entities that are stepped through
character by character in a loop. The Scala code treats the same strings
as higher-level sequences of characters that can be queried with predicates.
Clearly the Scala code is much shorter and—for trained eyes—easier to un-
derstand than the Java code. So the Scala code weighs less heavily on the
total complexity budget. It also gives you less opportunity to make mistakes.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

61

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=61&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

The predicate _.isUpper is an example of a function literal in Scala.'”
It describes a function that takes a character argument (represented by the
underscore character), and tests whether it is an upper case letter.!!

In principle, such control abstractions are possible in Java as well. You’d
need to define an interface that contains a method with the abstracted func-
tionality. For instance, if you wanted to support querying over strings, you
might invent an interface, named CharacterProperty, which has just one
method, hasProperty:

// this is Java
interface CharacterProperty {
boolean hasProperty(char ch);

}

With that interface you could formulate a method exists in Java: It takes a
string and CharacterProperty and returns true if there’s a character in the
string that satisfies the property. You could then invoke exists as follows:

// this is Java
exists(name, new CharacterProperty() {
public boolean hasProperty(char ch) {
return Character.isUpperCase(ch);

b;

However, all this feels rather heavy. So heavy, in fact, that most Java pro-
grammers would not bother. They would just write out the loops and live
with the increased complexity in their code. On the other hand, function
literals in Scala are really lightweight, so they are used frequently. As you
get to know Scala better you’ll find more and more opportunities to define
and use your own control abstractions. You’ll find that this helps avoid code
duplication and thus keeps your programs shorter and clearer.

Scala is statically typed

A static type system classifies variables and expressions according to the
kinds of values they hold and compute. Scala stands out as a language with

10A function literal can be called a predicate if its result type is Boolean.
I'This use of the underscore as a placeholder for arguments is described in Section 8.5.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

62

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=62&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

a very advanced static type system. Starting from a system of nested class
types much like Java’s, it allows you to parameterize types with generics, to
combine types using intersections, and to hide details of types using abstract
types.'> These give a strong foundation for building and composing your
own types, so that you can design interfaces that are at the same time safe
and flexible to use.

If you like dynamic languages such as Perl, Python, Ruby, or Groovy,
you might find it a bit strange that Scala’s static type system is listed as one
of its strong points. After all, the absence of a static type system has been
cited by some as a major advantage of dynamic languages. The most com-
mon arguments against static types are that they make programs too verbose,
prevent programmers from expressing themselves as they wish, and make
impossible certain patterns of dynamic modifications of software systems.
However, often these arguments do not go against the idea of static types in
general, but against specific type systems, which are perceived to be too ver-
bose or too inflexible. For instance, Alan Kay, the inventor of the Smalltalk
language, once remarked: “I’m not against types, but I don’t know of any
type systems that aren’t a complete pain, so I still like dynamic typing.”!3

We hope to convince you in this book that Scala’s type system is far
from being a “complete pain.” In fact, it addresses nicely two of the usual
concerns about static typing: verbosity is avoided through type inference and
flexibility is gained through pattern matching and several new ways to write
and compose types. With these impediments out of the way, the classical
benefits of static type systems can be better appreciated. Among the most
important of these benefits are verifiable properties of program abstractions,
safe refactorings, and better documentation.

Verifiable properties. ~Static type systems can prove the absence of certain
run-time errors. For instance, they can prove properties like: booleans are
never added to integers; private variables are not accessed from outside their
class; functions are applied to the right number of arguments; only strings
are ever added to a set of strings.

Other kinds of errors are not detected by today’s static type systems.
For instance, they will usually not detect non-terminating functions, array

12Generics are discussed in Chapter 19, intersections in Chapter 12, and abstract types in
Chapter 20.
13Kay, in an email on the meaning of object-oriented programming. [Kay03]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

63

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=63&v=2010_12_13

Section 1.3 Chapter 1 - A Scalable Language

bounds violations, or divisions by zero. They will also not detect that your
program does not conform to its specification (assuming there is a spec, that
is!). Static type systems have therefore been dismissed by some as not being
very useful. The argument goes that since such type systems can only de-
tect simple errors, whereas unit tests provide more extensive coverage, why
bother with static types at all? We believe that these arguments miss the
point. Although a static type system certainly cannot replace unit testing, it
can reduce the number of unit tests needed by taking care of some properties
that would otherwise need to be tested. Likewise, unit testing can not replace
static typing. After all, as Edsger Dijkstra said, testing can only prove the
presence of errors, never their absence.'* So the guarantees that static typing
gives may be simple, but they are real guarantees of a form no amount of
testing can deliver.

Safe refactorings. A static type system provides a safety net that lets you
make changes to a codebase with a high degree of confidence. Consider
for instance a refactoring that adds an additional parameter to a method. In
a statically typed language you can do the change, re-compile your system
and simply fix all lines that cause a type error. Once you have finished with
this, you are sure to have found all places that need to be changed. The same
holds for many other simple refactorings like changing a method name, or
moving methods from one class to another. In all cases a static type check
will provide enough assurance that the new system works just like the old.

Documentation. Static types are program documentation that is checked
by the compiler for correctness. Unlike a normal comment, a type annota-
tion can never be out of date (at least not if the source file that contains it
has recently passed a compiler). Furthermore, compilers and integrated de-
velopment environments can make use of type annotations to provide better
context help. For instance, an integrated development environment can dis-
play all the members available for a selection by determining the static type
of the expression on which the selection is made and looking up all members
of that type.

Even though static types are generally useful for program documentation,
they can sometimes be annoying when they clutter the program. Typically,

14Dijkstra, “Notes on Structured Programming,” [Dij70]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

64

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=64&v=2010_12_13

Section 1.4 Chapter 1 - A Scalable Language

useful documentation is what readers of a program cannot easily derive by
themselves. In a method definition like:

def f(x: String) = ...

it’s useful to know that £’s argument should be a String. On the other hand,
at least one of the two annotations in the following example is annoying:

val x: HashMap[Int, String] = new HashMap[Int, String]()

Clearly, it should be enough to say just once that x is a HashMap with Ints as
keys and Strings as values; there’s no need to repeat the same phrase twice.

Scala has a very sophisticated type inference system that lets you omit
almost all type information that’s usually considered annoying. In the previ-
ous example, the following two less annoying alternatives would work just
as well:

val x = new HashMap[Int, String]()
val x: Map[Int, String] = new HashMap()

Type inference in Scala can go quite far. In fact, it’s not uncommon for
user code to have no explicit types at all. Therefore, Scala programs often
look a bit like programs written in a dynamically typed scripting language.
This holds particularly for client application code, which glues together pre-
written library components. It’s less true for the library components them-
selves, because these often employ fairly sophisticated types to allow flexible
usage patterns. This is only natural. After all, the type signatures of the mem-
bers that make up the interface of a reusable component should be explicitly
given, because they constitute an essential part of the contract between the
component and its clients.

1.4 Scala’s roots

Scala’s design has been influenced by many programming languages and
ideas in programming language research. In fact, only a few features of
Scala are genuinely new; most have been already applied in some form in
other languages. Scala’s innovations come primarily from how its constructs
are put together. In this section, we list the main influences on Scala’s design.
The list cannot be exhaustive—there are simply too many smart ideas around
in programming language design to enumerate them all here.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

65

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=65&v=2010_12_13

Section 1.4 Chapter 1 - A Scalable Language

At the surface level, Scala adopts a large part of the syntax of Java and
C#, which in turn borrowed most of their syntactic conventions from C and
C++. Expressions, statements, and blocks are mostly as in Java, as is the
syntax of classes, packages and imports.'> Besides syntax, Scala adopts
other elements of Java, such as its basic types, its class libraries, and its
execution model.

Scala also owes much to other languages. Its uniform object model was
pioneered by Smalltalk and taken up subsequently by Ruby. Its idea of uni-
versal nesting (almost every construct in Scala can be nested inside any other
construct) is also present in Algol, Simula, and, more recently in Beta and
gbeta. Its uniform access principle for method invocation and field selection
comes from Eiffel. Its approach to functional programming is quite simi-
lar in spirit to the ML family of languages, which has SML, OCaml, and
F# as prominent members. Many higher-order functions in Scala’s standard
library are also present in ML or Haskell. Scala’s implicit parameters were
motivated by Haskell’s type classes; they achieve analogous results in a more
classical object-oriented setting. Scala’s actor-based concurrency library was
heavily inspired by Erlang.

Scala is not the first language to emphasize scalability and extensibil-
ity. The historic root of extensible languages that can span different appli-
cation areas is Peter Landin’s 1966 paper “The Next 700 Programming Lan-
guages.”'® (The language described in this paper, Iswim, stands beside Lisp
as one of the pioneering functional languages.) The specific idea of treating
an infix operator as a function can be traced back to Iswim and Smalltalk.
Another important idea is to permit a function literal (or block) as a param-
eter, which enables libraries to define control structures. Again, this goes
back to Iswim and Smalltalk. Smalltalk and Lisp both have a flexible syntax
that has been applied extensively for building internal domain-specific lan-
guages. C++ is another scalable language that can be adapted and extended

5 The major deviation from Java concerns the syntax for type annotations—it’s
“variable: Type” instead of “Type variable” in Java. Scala’s postfix type syntax re-
sembles Pascal, Modula-2, or Eiffel. The main reason for this deviation has to do with type
inference, which often lets you omit the type of a variable or the return type of a method.
Using the “variable: Type” syntax this is easy—just leave out the colon and the type. But
in C-style “Type variable” syntax you cannot simply leave off the type—there would be no
marker to start the definition anymore. You’d need some alternative keyword to be a place-
holder for a missing type (C# 3.0, which does some type inference, uses var for this purpose).
Such an alternative keyword feels more ad-hoc and less regular than Scala’s approach.

16 andin, “The Next 700 Programming Languages.” [Lan66]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

66

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=66&v=2010_12_13

Section 1.5 Chapter 1 - A Scalable Language

through operator overloading and its template system; compared to Scala it
is built on a lower-level, more systems-oriented core.

Scala is also not the first language to integrate functional and object-
oriented programming, although it probably goes furthest in this direction.
Other languages that have integrated some elements of functional program-
ming into OOP include Ruby, Smalltalk, and Python. On the Java platform,
Pizza, Nice, and Multi-Java have all extended a Java-like core with functional
ideas. There are also primarily functional languages that have acquired an
object system; examples are OCaml, F#, and PLT-Scheme.

Scala has also contributed some innovations to the field of programming
languages. For instance, its abstract types provide a more object-oriented
alternative to generic types, its traits allow for flexible component assembly,
and its extractors provide a representation-independent way to do pattern
matching. These innovations have been presented in papers at programming
language conferences in recent years.!”

1.5 Conclusion

In this chapter, we gave you a glimpse of what Scala is and how it might help
you in your programming. To be sure, Scala is not a silver bullet that will
magically make you more productive. To advance, you will need to apply
Scala artfully, and that will require some learning and practice. If you're
coming to Scala from Java, the most challenging aspects of learning Scala
may involve Scala’s type system (which is richer than Java’s) and its support
for functional programming. The goal of this book is to guide you gently up
Scala’s learning curve, one step at a time. We think you’ll find it a rewarding
intellectual experience that will expand your horizons and make you think
differently about program design. Hopefully, you will also gain pleasure and
inspiration from programming in Scala.
In the next chapter, we’ll get you started writing some Scala code.

7For more information, see [Ode03], [Ode05], and [Emi07] in the bibliography.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

67

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=67&v=2010_12_13

Chapter 2

First Steps in Scala

It’s time to write some Scala code. Before we start on the in-depth Scala
tutorial, we put in two chapters that will give you the big picture of Scala,
and most importantly, get you writing code. We encourage you to actually
try out all the code examples presented in this chapter and the next as you
go. The best way to start learning Scala is to program in it.

To run the examples in this chapter, you should have a standard Scala
installation. To get one, go to http://www.scala-lang.org/downloads
and follow the directions for your platform. You can also use a Scala plug-
in for Eclipse, IntelliJ, or NetBeans, but for the steps in this chapter, we’ll
assume you’re using the Scala distribution from scala-lang.org.!

If you are a veteran programmer new to Scala, the next two chapters
should give you enough understanding to enable you to start writing useful
programs in Scala. If you are less experienced, some of the material may
seem a bit mysterious to you. But don’t worry. To get you up to speed
quickly, we had to leave out some details. Everything will be explained in a
less “fire hose” fashion in later chapters. In addition, we inserted quite a few
footnotes in these next two chapters to point you to later sections of the book
where you’ll find more detailed explanations.

Step 1. Learn to use the Scala interpreter

The easiest way to get started with Scala is by using the Scala interpreter, an
interactive “shell” for writing Scala expressions and programs. Simply type
an expression into the interpreter and it will evaluate the expression and print

'We tested the examples in this book with Scala version 2.8.1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.scala-lang.org/downloads
scala-lang.org
http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=68&v=2010_12_13

Step 1 Chapter 2 - First Steps in Scala 69

the resulting value. The interactive shell for Scala is simply called scala.
You use it by typing scala at a command prompt:>

$ scala

Welcome to Scala version 2.8.1.

Type in expressions to have them evaluated.
Type :help for more information.

scala>

After you type an expression, such as 1 + 2, and hit enter:
scala> 1 + 2

The interpreter will print:
resO: Int = 3

This line includes:

* an automatically generated or user-defined name to refer to the com-
puted value (res0, which means result 0),

* acolon (:), followed by the type of the expression (Int),
* an equals sign (=),
* the value resulting from evaluating the expression (3).

The type Int names the class Int in the package scala. Packages in
Scala are similar to packages in Java: they partition the global namespace
and provide a mechanism for information hiding.? Values of class Int corre-
spond to Java’s int values. More generally, all of Java’s primitive types have
corresponding classes in the scala package. For example, scala.Boolean
corresponds to Java’s boolean. scala.Float corresponds to Java’s float.
And when you compile your Scala code to Java bytecodes, the Scala com-
piler will use Java’s primitive types where possible to give you the perfor-
mance benefits of the primitive types.

2If you’re using Windows, you’ll need to type the scala command into the “Command
Prompt” DOS box.

3If you're not familiar with Java packages, you can think of them as providing a full
name for classes. Because Int is a member of package scala, “Int” is the class’s simple
name, and “scala.Int” is its full name. The details of packages are explained in Chapter 13.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=69&v=2010_12_13

Step 2

Chapter 2 - First Steps in Scala

The resX identifier may be used in later lines. For instance, since res0
was set to 3 previously, res0 * 3 will be 9:

scala> resO = 3
resl: Int = 9

To print the necessary, but not sufficient, Hello, world! greeting, type:

scala> println("Hello, world!™)
Hello, world!

The println function prints the passed string to the standard output, similar
to System.out.println in Java.

Step 2. Define some variables

Scala has two kinds of variables, vals and vars. A val is similar to a final
variable in Java. Once initialized, a val can never be reassigned. A var, by
contrast, is similar to a non-final variable in Java. A var can be reassigned
throughout its lifetime. Here’s a val definition:

IR

scala> val msg = "Hello, world
msg: java.lang.String = Hello, world!

This statement introduces msg as a name for the string "Hello, world!".
The type of msg is java.lang.String, because Scala strings are imple-
mented by Java’s String class.

If you’re used to declaring variables in Java, you’ll notice one striking
difference here: neither java.lang.String nor String appear anywhere
in the val definition. This example illustrates type inference, Scala’s ability
to figure out types you leave off. In this case, because you initialized msg
with a string literal, Scala inferred the type of msg to be String. When the
Scala interpreter (or compiler) can infer types, it is often best to let it do
so rather than fill the code with unnecessary, explicit type annotations. You
can, however, specify a type explicitly if you wish, and sometimes you prob-
ably should. An explicit type annotation can both ensure the Scala compiler
infers the type you intend, as well as serve as useful documentation for fu-
ture readers of the code. In contrast to Java, where you specify a variable’s
type before its name, in Scala you specify a variable’s type after its name,
separated by a colon. For example:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

70

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=70&v=2010_12_13

Step 2

Chapter 2 - First Steps in Scala

scala> val msg2: java.lang.String = "Hello again, world!"
msg2: java.lang.String = Hello again, world!

Or, since java.lang types are visible with their simple names* in Scala
programs, simply:

"

scala> val msg3: String = "Hello vet again, world
msg3: String = Hello yet again, world!

Going back to the original msg, now that it is defined, you can use it as you’d
expect, for example:

scala> println(msg)
Hello, world!

What you can’t do with msg, given that it is a val, not a var, is reassign
it.> For example, see how the interpreter complains when you attempt the
following:

scala> msg = "Goodbye cruel world!"
<console>:6: error: reassignment to val
msg = "Goodbye cruel world!"

If reassignment is what you want, you’ll need to use a var, as in:

scala> var greeting = "Hello, world!"
greeting: java.lang.String = Hello, world!

Since greeting is a var not a val, you can reassign it later. If you are
feeling grouchy later, for example, you could change your greeting to:

scala> greeting = "Leave me alone, world!"
greeting: java.lang.String = Leave me alone, world!

To enter something into the interpreter that spans multiple lines, just keep
typing after the first line. If the code you typed so far is not complete, the
interpreter will respond with a vertical bar on the next line.

4The simple name of java.lang.String is String.
5In the interpreter, however, you can define a new val with a name that was already used
before. This mechanism is explained in Section 7.7.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

71

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=71&v=2010_12_13

Step 3 Chapter 2 - First Steps in Scala 72

scala> val multiline =
| "This is the next line."
multiline: java.lang.String = This is the next line.

If you realize you have typed something wrong, but the interpreter is still
waiting for more input, you can escape by pressing enter twice:

scala> val oops =
I
I

You typed two blank lines. Starting a new command.

scala>

In the rest of the book, we’ll leave out the vertical bars to make the code
easier to read (and easier to copy and paste from the PDF eBook into the
interpreter).

Step 3. Define some functions

Now that you’ve worked with Scala variables, you’ll probably want to write
some functions. Here’s how you do that in Scala:

scala> def max(x: Int, y: Int): Int = {
if (x>vy) x
else vy

}
max: (x: Int,y: Int)Int

Function definitions start with def. The function’s name, in this case max, is
followed by a comma-separated list of parameters in parentheses. A type an-
notation must follow every function parameter, preceded by a colon, because
the Scala compiler (and interpreter, but from now on we’ll just say compiler)
does not infer function parameter types. In this example, the function named
max takes two parameters, x and y, both of type Int. After the close paren-
thesis of max’s parameter list you’ll find another “: Int” type annotation.
This one defines the result type of the max function itself.® Following the

SIn Java, the type of the value returned from a method is its return type. In Scala, that
same concept is called result type.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=72&v=2010_12_13

Step 3

Chapter 2 - First Steps in Scala

“def” starts a function definition
function name
parameter list in parentheses

function’s result type
/ \ \ ¢equals sign

def max(x: Int, y: Int): Int = {
if (x > vy)

X
else \ function body

y in curly braces

Figure 2.1 - The basic form of a function definition in Scala.

function’s result type is an equals sign and pair of curly braces that contain
the body of the function. In this case, the body contains a single if expres-
sion, which selects either x or y, whichever is greater, as the result of the
max function. As demonstrated here, Scala’s if expression can result in a
value, similar to Java’s ternary operator. For example, the Scala expression
“if (x> vy) x else y” behaves similarly to “(x > y) ? x : v” in Java. The
equals sign that precedes the body of a function hints that in the functional
world view, a function defines an expression that results in a value. The basic
structure of a function is illustrated in Figure 2.1.

Sometimes the Scala compiler will require you to specify the result type
of a function. If the function is recursive,” for example, you must explicitly
specify the function’s result type. In the case of max however, you may leave
the result type off and the compiler will infer it.® Also, if a function consists
of just one statement, you can optionally leave off the curly braces. Thus,
you could alternatively write the max function like this:

scala> def max2(x: Int, y: Int) = if (x > y) x else y
max2: (x: Int,y: Int)Int

7 A function is recursive if it calls itself.

8Nevertheless, it is often a good idea to indicate function result types explicitly, even
when the compiler doesn’t require it. Such type annotations can make the code easier to read,
because the reader need not study the function body to figure out the inferred result type.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

73

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=73&v=2010_12_13

Step 4

Chapter 2 - First Steps in Scala

Once you have defined a function, you can call it by name, as in:

scala> max(3, 5)
res4: Int = 5

Here’s the definition of a function that takes no parameters and returns no
interesting result:

scala> def greet() = println("Hello, world!"™)
greet: ()Unit

When you define the greet() function, the interpreter will respond with
greet: ()Unit. “greet” is, of course, the name of the function. The empty
parentheses indicate the function takes no parameters. And Unit is greet’s
result type. A result type of Unit indicates the function returns no interesting
value. Scala’s Unit type is similar to Java’s void type, and in fact every
void-returning method in Java is mapped to a Unit-returning method in
Scala. Methods with the result type of Unit, therefore, are only executed for
their side effects. In the case of greet (), the side effect is a friendly greeting
printed to the standard output.

In the next step, you’ll place Scala code in a file and run it as a script. If
you wish to exit the interpreter, you can do so by entering :quit or :q.

scala> :quit
$

Step 4. Write some Scala scripts

Although Scala is designed to help programmers build very large-scale sys-
tems, it also scales down nicely to scripting. A script is just a sequence of
statements in a file that will be executed sequentially. Put this into a file
named hello.scala:

println("Hello, world, from a script!")

then run:®

9You can run scripts without typing “scala” on Unix and Windows using a “pound-
bang” syntax, which is shown in Appendix A.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

74

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=74&v=2010_12_13

Step 5 Chapter 2 - First Steps in Scala 75

$ scala hello.scala

And you should get yet another greeting:
Hello, world, from a script!

Command line arguments to a Scala script are available via a Scala array
named args. In Scala, arrays are zero based, and you access an element
by specifying an index in parentheses. So the first element in a Scala array
named steps is steps(0), not steps[0], as in Java. To try this out, type
the following into a new file named helloarg.scala:

// Say hello to the first argument
println("Hello, "+ args(0) +"!")

then run:
$ scala helloarg.scala planet

In this command, "planet" is passed as a command line argument, which
is accessed in the script as args (0). Thus, you should see:

Hello, planet!

Note that this script included a comment. The Scala compiler will ignore
characters between // and the next end of line and any characters between
/* and =/. This example also shows Strings being concatenated with the +

operator. This works as you’d expect. The expression "Hello, "+"world
will result in the string "Hello, world! v 10

Step 5. Loop with while; decide with if
To try out a while, type the following into a file named printargs.scala:

var i = 0

while (i < args.length) {
println(args(i))
i+=1

}

10¥ou can also put spaces around the plus operator, as in "Hello, " + "world!". In this
book, however, we’ll leave the space off between ‘+’ and string literals.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=75&v=2010_12_13

Step 5 Chapter 2 - First Steps in Scala 76

Note

Although the examples in this section help explain while loops, they do
not demonstrate the best Scala style. In the next section, you’ll see better
approaches that avoid iterating through arrays with indexes.

This script starts with a variable definition, var i = 0. Type inference
gives i the type scala.Int, because that is the type of its initial value, O.
The while construct on the next line causes the block (the code between
the curly braces) to be repeatedly executed until the boolean expression
i < args.length is false. args.length gives the length of the args array.
The block contains two statements, each indented two spaces, the recom-
mended indentation style for Scala. The first statement, println(args(i)),
prints out the ith command line argument. The second statement, i += 1, in-
crements i by one. Note that Java’s ++i and i++ don’t work in Scala. To
increment in Scala, you need to say either i =i + 1 or i += 1. Run this script
with the following command:

$ scala printargs.scala Scala is fun

And you should see:

Scala
is
fun

For even more fun, type the following code into a new file with the name
echoargs.scala:

var i = 0

while (i < args.length) {
if (1 '=0)

print(" ")

print(args(i))
i+=1

}

println()

In this version, you’ve replaced the println call with a print call, so that
all the arguments will be printed out on the same line. To make this readable,
you’ve inserted a single space before each argument except the first via the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=76&v=2010_12_13

Step 6

Chapter 2 - First Steps in Scala

if (i !=0) construct. Since i != 0 will be false the first time through
the while loop, no space will get printed before the initial argument. Lastly,
you’ve added one more println to the end, to get a line return after printing
out all the arguments. Your output will be very pretty indeed. If you run this
script with the following command:

$ scala echoargs.scala Scala is even more fun
You’ll get:
Scala is even more fun

Note that in Scala, as in Java, you must put the boolean expression for
a while or an if in parentheses. (In other words, you can’t say in Scala
things like if i < 10 as you can in a language such as Ruby. You must say
if (i <10) in Scala.) Another similarity to Java is that if a block has only
one statement, you can optionally leave off the curly braces, as demonstrated
by the if statement in echoargs.scala. And although you haven’t seen any
of them, Scala does use semicolons to separate statements as in Java, except
that in Scala the semicolons are very often optional, giving some welcome
relief to your right little finger. If you had been in a more verbose mood,
therefore, you could have written the echoargs.scala script as follows:

var 1 = 0;
while (i < args.length) {
if (i '=0) {
print(" ");
¥
print(args(i));
i+=1;
}
println();

Step 6. Iterate with foreach and for

Although you may not have realized it, when you wrote the while loops in
the previous step, you were programming in an imperative style. In the im-
perative style, which is the style you normally use with languages like Java,
C++, and C, you give one imperative command at a time, iterate with loops,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

77

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=77&v=2010_12_13

Step 6

Chapter 2 - First Steps in Scala

and often mutate state shared between different functions. Scala enables you
to program imperatively, but as you get to know Scala better, you’ll likely
often find yourself programming in a more functional style. In fact, one of
the main aims of this book is to help you become as comfortable with the
functional style as you are with imperative style.

One of the main characteristics of a functional language is that functions
are first class constructs, and that’s very true in Scala. For example, another
(far more concise) way to print each command line argument is:

args.foreach(arg => println(arg))

In this code, you call the foreach method on args, and pass in a function. In
this case, you’re passing in a function literal that takes one parameter named
arg. The body of the function is println(arg). If you type the above code
into a new file named pa.scala, and execute with the command:

$ scala pa.scala Concise is nice
You should see:

Concise
is
nice

In the previous example, the Scala interpreter infers the type of arg to
be String, since String is the element type of the array on which you’re
calling foreach. If you’d prefer to be more explicit, you can mention the
type name, but when you do you’ll need to wrap the argument portion in
parentheses (which is the normal form of the syntax anyway):

args.foreach((arg: String) => println(arg))

Running this script has the same behavior as the previous one.

If you’re in the mood for more conciseness instead of more explicitness,
you can take advantage of a special shorthand in Scala. If a function literal
consists of one statement that takes a single argument, you need not explicitly
name and specify the argument.!! Thus, the following code also works:

args.foreach(println)

"This shorthand, called a partially applied function, is described in Section 8.6.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

78

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=78&v=2010_12_13

Step 6

Chapter 2 - First Steps in Scala

function
parameters
in parentheses

20 N

(x: Int, yv: Int) => x + vV

right function
arrow body

Figure 2.2 - The syntax of a function literal in Scala.

To summarize, the syntax for a function literal is a list of named parameters,
in parentheses, a right arrow, and then the body of the function. This syntax
is illustrated in Figure 2.2.

Now, by this point you may be wondering what happened to those trusty
for loops you have been accustomed to using in imperative languages such
as Java or C. In an effort to guide you in a functional direction, only a func-
tional relative of the imperative for (called a for expression) is available in
Scala. While you won’t see their full power and expressiveness until you
reach (or peek ahead to) Section 7.3, we’ll give you a glimpse here. In a new
file named forargs.scala, type the following:

for (arg <- args)
println(arg)

The parentheses after the “for” contain arg <- args.!? To the right of
the <- symbol is the familiar args array. To the left of <- is “arg”, the name
of a val, not a var. (Because it is always a val, you just write “arg” by
itself, not “val arg”.) Although arg may seem to be a var, because it will
get a new value on each iteration, it really is a val: arg can’t be reassigned
inside the body of the for expression. Instead, for each element of the args
array, a new arg val will be created and initialized to the element value, and
the body of the for will be executed.

If you run the forargs.scala script with the command:

$ scala forargs.scala for arg in args

I3 D)

12You can say “in” for the <- symbol. You’d read for (arg <- args), therefore, as “for
arg in args.”

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

79

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=79&v=2010_12_13

Conclusion Chapter 2 - First Steps in Scala

You'll see:

for
arg
in
args

Scala’s for expression can do much more than this, but this example is
enough to get you started. We’ll show you more about for in Section 7.3
and Chapter 23.

Conclusion

In this chapter, you learned some Scala basics and, hopefully, took advantage
of the opportunity to write a bit of Scala code. In the next chapter, we’ll
continue this introductory overview and get into more advanced topics.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

80

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=80&v=2010_12_13

Chapter 3

Next Steps in Scala

This chapter continues the previous chapter’s introduction to Scala. In this
chapter, we’ll introduce some more advanced features. When you complete
this chapter, you should have enough knowledge to enable you to start writ-
ing useful scripts in Scala. As with the previous chapter, we recommend you
try out these examples as you go. The best way to get a feel for Scala is to
start writing Scala code.

Step 7. Parameterize arrays with types

In Scala, you can instantiate objects, or class instances, using new. When
you instantiate an object in Scala, you can parameterize it with values and
types. Parameterization means “configuring” an instance when you create it.
You parameterize an instance with values by passing objects to a constructor
in parentheses. For example, the following Scala code instantiates a new
java.math.BigInteger and parameterizes it with the value "12345":

val big = new java.math.BigInteger("12345")

You parameterize an instance with types by specifying one or more types
in square brackets. An example is shown in Listing 3.1. In this example,
greetStrings is a value of type Array[String] (an “array of string”) that
is initialized to length 3 by parameterizing it with the value 3 in the first line
of code. If you run the code in Listing 3.1 as a script, you’ll see yet another
Hello, world! greeting. Note that when you parameterize an instance with
both a type and a value, the type comes first in its square brackets, followed
by the value in parentheses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=81&v=2010_12_13

Chapter 3 - Next Steps in Scala

val greetStrings = new Array[String](3)

greetStrings(0) = "Hello"
greetStrings(1) = ", "
greetStrings(2) = "world!\n"

for (i <- 0 to 2)
print(greetStrings(i))

Listing 3.1 - Parameterizing an array with a type.

Note

Although the code in Listing 3.1 demonstrates important concepts, it does
not show the recommended way to create and initialize an array in Scala.
You’ll see a better way in Listing 3.2 on page 85.

Had you been in a more explicit mood, you could have specified the type
of greetStrings explicitly like this:

val greetStrings: Array[String] = new Array[String](3)

Given Scala’s type inference, this line of code is semantically equivalent to
the actual first line of Listing 3.1. But this form demonstrates that while
the type parameterization portion (the type names in square brackets) forms
part of the type of the instance, the value parameterization part (the values in
parentheses) does not. The type of greetStrings is Array[String], not
Array[String](3).

The next three lines of code in Listing 3.1 initialize each element of the
greetStrings array:

greetStrings(0) "Hello"
greetStrings(1) = ", "

greetStrings(2) = "world!\n"

As mentioned previously, arrays in Scala are accessed by placing the index
inside parentheses, not square brackets as in Java. Thus the zeroth element
of the array is greetStrings(0), not greetStrings[0].

These three lines of code illustrate an important concept to understand
about Scala concerning the meaning of val. When you define a variable
with val, the variable can’t be reassigned, but the object to which it refers
could potentially still be changed. So in this case, you couldn’t reassign

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

82

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=82&v=2010_12_13

Step 7

Chapter 3 - Next Steps in Scala

greetStrings to a different array; greetStrings will always point to the
same Array[String] instance with which it was initialized. But you can
change the elements of that Array[String] over time, so the array itself is
mutable.

The final two lines in Listing 3.1 contain a for expression that prints out
each greetStrings array element in turn:

for (i <- 0 to 2)
print(greetStrings(i))

The first line of code in this for expression illustrates another general rule
of Scala: if a method takes only one parameter, you can call it without a
dot or parentheses. The to in this example is actually a method that takes
one Int argument. The code 0 to 2 is transformed into the method call
(0).to(2)." Note that this syntax only works if you explicitly specify the
receiver of the method call. You cannot write “println 10, but you can
write “Console println 10”.

Scala doesn’t technically have operator overloading, because it doesn’t
actually have operators in the traditional sense. Instead, characters such as
+, -, *, and / can be used in method names. Thus, when you typed 1 + 2
into the Scala interpreter in Step 1, you were actually invoking a method
named + on the Int object 1, passing in 2 as a parameter. As illustrated
in Figure 3.1, you could alternatively have written 1 + 2 using traditional
method invocation syntax, (1) .+(2).

Another important idea illustrated by this example will give you insight
into why arrays are accessed with parentheses in Scala. Scala has fewer
special cases than Java. Arrays are simply instances of classes like any other
class in Scala. When you apply parentheses surrounding one or more values
to a variable, Scala will transform the code into an invocation of a method
named apply on that variable. So greetStrings(i) gets transformed into
greetStrings.apply(i). Thus accessing an element of an array in Scala
is simply a method call like any other. This principle is not restricted to
arrays: any application of an object to some arguments in parentheses will
be transformed to an apply method call. Of course this will compile only
if that type of object actually defines an apply method. So it’s not a special
case; it’s a general rule.

IThis to method actually returns not an array but a different kind of sequence, containing
the values O, 1, and 2, which the for expression iterates over. Sequences and other collections
will be described in Chapter 17.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

83

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=83&v=2010_12_13

Step 7 Chapter 3 - Next Steps in Scala 84

1+ 2

[N\

Int object ln\;ortztghgg 1 Pa;§ing£he Irr]lt
with value 1 . object 2 to the
named "+ ‘+'method

N

(1).+(2)

Figure 3.1 - All operations are method calls in Scala.

Similarly, when an assignment is made to a variable to which parentheses
and one or more arguments have been applied, the compiler will transform
that into an invocation of an update method that takes the arguments in
parentheses as well as the object to the right of the equals sign. For example:

greetStrings(0) = "Hello"
will be transformed into:
greetStrings.update(0, "Hello™)
Thus, the following is semantically equivalent to the code in Listing 3.1:

val greetStrings = new Array[String](3)

greetStrings.update(0, "Hello™)
greetStrings.update(1l, ", ")
greetStrings.update(2, "world!\n")

for (i <- 0.to(2))
print(greetStrings.apply(i))

Scala achieves a conceptual simplicity by treating everything, from ar-
rays to expressions, as objects with methods. You don’t have to remember
special cases, such as the differences in Java between primitive and their cor-
responding wrapper types, or between arrays and regular objects. Moreover,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=84&v=2010_12_13

Step 8

Chapter 3 - Next Steps in Scala

this uniformity does not incur a significant performance cost. The Scala com-
piler uses Java arrays, primitive types, and native arithmetic where possible
in the compiled code.

Although the examples you’ve seen so far in this step compile and run
just fine, Scala provides a more concise way to create and initialize ar-
rays that you would normally use. It looks as shown in Listing 3.2. This
code creates a new array of length three, initialized to the passed strings,

"zero", "one", and "two". The compiler infers the type of the array to be
Array[String], because you passed strings to it.

"

val numNames = Array(''zero", "one", "two")

Listing 3.2 - Creating and initializing an array.

What you’re actually doing in Listing 3.2 is calling a factory method,
named apply, which creates and returns the new array. This apply method
takes a variable number of arguments? and is defined on the Array compan-
ion object. You’ll learn more about companion objects in Section 4.3. If
you’re a Java programmer, you can think of this as calling a static method
named apply on class Array. A more verbose way to call the same apply
method is:

val numNames2 = Array.apply('zero", "one", "two")

Step 8. Use lists

One of the big ideas of the functional style of programming is that methods
should not have side effects. A method’s only act should be to compute and
return a value. Some benefits gained when you take this approach are that
methods become less entangled, and therefore more reliable and reusable.
Another benefit (in a statically typed language) is that everything that goes
into and out of a method is checked by a type checker, so logic errors are
more likely to manifest themselves as type errors. Applying this functional
philosophy to the world of objects means making objects immutable.

As you’ve seen, a Scala array is a mutable sequence of objects that all
share the same type. An Array[String] contains only strings, for example.

2Variable-length argument lists, or repeated parameters, are described in Section 8.8.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

85

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=85&v=2010_12_13

Step 8 Chapter 3 - Next Steps in Scala 86

Although you can’t change the length of an array after it is instantiated, you
can change its element values. Thus, arrays are mutable objects.

For an immutable sequence of objects that share the same type you can
use Scala’s List class. As with arrays, a List[String] contains only
strings. Scala’s List, scala.List, differs from Java’s java.util.List
type in that Scala Lists are always immutable (whereas Java Lists can be
mutable). More generally, Scala’s List is designed to enable a functional
style of programming. Creating a list is easy. Listing 3.3 shows how:

val oneTwoThree = List(1, 2, 3)

Listing 3.3 - Creating and initializing a list.

The code in Listing 3.3 establishes a new val named oneTwoThree, ini-
tialized with a new List[Int] with the integer elements 1, 2, and 3.3 Be-
cause Lists are immutable, they behave a bit like Java strings: when you call
a method on a list that might seem by its name to imply the list will mutate, it
instead creates and returns a new list with the new value. For example, List
has a method named °: ::” for list concatenation. Here’s how you use it:

val oneTwo = List(1l, 2)

val threeFour = List(3, 4)

val oneTwoThreeFour = oneTwo ::: threeFour
println(oneTwo +" and "+ threeFour +" were not mutated.")
println("Thus, "+ oneTwoThreeFour +" is a new list.")

If you run this script, you’ll see:

List(1, 2) and List(3, 4) were not mutated.
Thus, List(1, 2, 3, 4) is a new list.

Perhaps the most common operator you’ll use with lists is ‘: :’, which
is pronounced ‘“cons.” Cons prepends a new element to the beginning of an
existing list, and returns the resulting list. For example, if you run this script:

val twoThree = List(2, 3)
val oneTwoThree = 1 :: twoThree
println(oneTwoThree)

3You don’t need to say new List because “List.apply()” is defined as a factory method
on the scala.List companion object. You’ll read more on companion objects in Section 4.3.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=86&v=2010_12_13

Step 8 Chapter 3 - Next Steps in Scala 87

You'll see:
List(1, 2, 3)

Note

In the expression “1 : : twoThree”, : : is a method of its right operand,
the list, twoThree. You might suspect there’s something amiss with the
associativity of the : : method, but it is actually a simple rule to
remember: If a method is used in operator notation, such as a * b, the
method is invoked on the left operand, as in a. * (b)—unless the method
name ends in a colon. If the method name ends in a colon, the method is
invoked on the right operand. Therefore, in 1 : : twoThree, the : : method
is invoked on twoThree, passing in 1, like this: twoThree.::(1).
Operator associativity will be described in more detail in Section 5.8.

Given that a shorthand way to specify an empty list is Nil, one way to
initialize new lists is to string together elements with the cons operator, with
Nil as the last element.* For example, the following script will produce the
same output as the previous one, “List(1, 2, 3)™:

val oneTwoThree = 1 :: 2 :: 3 :: Nil
println(oneTwoThree)

Scala’s List is packed with useful methods, many of which are shown in
Table 3.1. The full power of lists will be revealed in Chapter 16.

Why not append to lists?

Class List does offer an “append” operation —it’s written :+ and is
explained in Chapter 24— but this operation is rarely used, because
the time it takes to append to a list grows linearly with the size of the
list, whereas prepending with : : takes constant time. Your options if
you want to build a list efficiently by appending elements is to prepend
them, then when you’re done call reverse; or use a ListBuffer, a
mutable list that does offer an append operation, and when you’re done
call toList. ListBuffer will be described in Section 22.2.

4The reason you need Nil at the end is that : : is defined on class List. If you try to just
say 1 :: 2 :: 3,it won’t compile because 3 is an Int, which doesn’t have a : : method.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=87&v=2010_12_13

Step 8

Chapter 3 - Next Steps in Scala

Table 3.1 - Some List methods and usages

What it is

What it does

List() orNil

List("Cool", "tools", "rule")

val thrill = "wWill" :: "fil1" ::

"until"” :: Nil

List("a", "b") ::: List("c", "d™)

thrill(2)

thrill.count(s =>s.length ==4)

thrill.drop(2)

thrill.dropRight(2)

thrill.exists(s =>s=="until")

thrill.filter(s => s.length==4)

thrill.forall(s =>

s.endsWith("1"))

thrill.foreach(s => print(s))

The empty List

Creates a new List[String] with the
three values "Cool", "tools", and
"rule"

Creates a new List[String] with the
three values "Will", "fill", and
"until"

Concatenates two lists (returns a new
List[String] with values "a", "b",
"e" and "d")

Returns the element at index 2 (zero
based) of the thrill list (returns
"until")

Counts the number of string elements in
thrill that have length 4 (returns 2)

Returns the thrill list without its first 2
elements (returns List("until"))

Returns the thrill list without its
rightmost 2 elements (returns
List("wWill™))

Determines whether a string element
exists in thrill that has the value
"until" (returns true)

Returns a list of all elements, in order, of
the thrill list that have length 4 (returns
List("will", "fill"))

Indicates whether all elements in the
thrill list end with the letter "1"
(returns true)

Executes the print statement on each of
the strings in the thrill list (prints
"Willfilluntil")

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

88

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=88&v=2010_12_13

Step 8

Chapter 3 - Next Steps in Scala

Table 3.1 - continued

thrill.foreach(print)

thrill.head

thrill.init

thrill.isEmpty

thrill.last

thrill.length

thrill.map(s =>s +"y")

thrill .mkString(", ")

thrill.remove(s => s.length ==4)

thrill.reverse

thrill.sort((s, t) =>
s.charAt(0).toLower <
t.charAt(0).toLower)

thrill.tail

Same as the previous, but more concise
(also prints "Willfilluntil")

Returns the first element in the thrill
list (returns "Will")

Returns a list of all but the last element in
the thrill list (returns
List("will", "fill"))

Indicates whether the thrill list is
empty (returns false)

Returns the last element in the thrill
list (returns "until™)

Returns the number of elements in the
thrill list (returns 3)

Returns a list resulting from adding a "y
to each string element in the thrill list
(returns

List("wWilly", "filly", "untily"))

Makes a string with the elements of the
list (returns "Will, fill, until")

Returns a list of all elements, in order, of
the thrill list except those that have
length 4 (returns List("until™))

Returns a list containing all elements of
the thrill list in reverse order (returns
List("until", "£il11", "Will"))

Returns a list containing all elements of
the thrill list in alphabetical order of
the first character lowercased (returns
List("fill", "until", "wWill"))

Returns the thrill list minus its first
element (returns
List("fill", "until"))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

89

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=89&v=2010_12_13

Step 9

Chapter 3 - Next Steps in Scala

Step 9. Use tuples

Another useful container object is the fuple. Like lists, tuples are immutable,
but unlike lists, tuples can contain different types of elements. Whereas a
list might be a List[Int] or a List[String], a tuple could contain both
an integer and a string at the same time. Tuples are very useful, for example,
if you need to return multiple objects from a method. Whereas in Java you
would often create a JavaBean-like class to hold the multiple return values,
in Scala you can simply return a tuple. And it is simple: to instantiate a new
tuple that holds some objects, just place the objects in parentheses, separated
by commas. Once you have a tuple instantiated, you can access its elements
individually with a dot, underscore, and the one-based index of the element.
An example is shown in Listing 3.4:

val pair = (99, "Luftballons™)
println(pair._1)
println(pair._2)

Listing 3.4 - Creating and using a tuple.

In the first line of Listing 3.4, you create a new tuple that contains the
integer 99, as its first element, and the string, "Luftballons", as its second
element. Scala infers the type of the tuple to be Tuple2[Int, String], and
gives that type to the variable pair as well. In the second line, you access
the _1 field, which will produce the first element, 99. The “.” in the second
line is the same dot you’d use to access a field or invoke a method. In this
case you are accessing a field named _1. If you run this script, you’ll see:

99
Luftballons

The actual type of a tuple depends on the number of elements it contains
and the types of those elements. Thus, the type of (99, "Luftballons")
is Tuple2[Int, String]. The type of ('u', 'r', "the", 1, 4, "me") is
Tuple6[Char, Char, String, Int, Int, String].5

5 Although conceptually you could create tuples of any length, currently the Scala library
only defines them up to Tuple22.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

90

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=90&v=2010_12_13

Step 10 Chapter 3 - Next Steps in Scala

Accessing the elements of a tuple

You may be wondering why you can’t access the elements of a tuple
like the elements of a list, for example, with “pair(0)”. The reason

is that a list’s apply method always returns the same type, but each
element of a tuple may be a different type: _1 can have one result type,
_2 another, and so on. These _N numbers are one-based, instead of
zero-based, because starting with 1 is a tradition set by other languages
with statically typed tuples, such as Haskell and ML.

Step 10. Use sets and maps

Because Scala aims to help you take advantage of both functional and im-
perative styles, its collections libraries make a point to differentiate between
mutable and immutable collections. For example, arrays are always muta-
ble; lists are always immutable. Scala also provides mutable and immutable
alternatives for sets and maps, but uses the same simple names for both ver-
sions. For sets and maps, Scala models mutability in the class hierarchy.

For example, the Scala API contains a base frait for sets, where a trait is
similar to a Java interface. (You’ll find out more about traits in Chapter 12.)
Scala then provides two subtraits, one for mutable sets and another for im-
mutable sets. As you can see in Figure 3.2, these three traits all share the
same simple name, Set. Their fully qualified names differ, however, because
each resides in a different package. Concrete set classes in the Scala API,
such as the HashSet classes shown in Figure 3.2, extend either the mutable
or immutable Set trait. (Although in Java you “implement” interfaces, in
Scala you “extend” or “mix in” traits.) Thus, if you want to use a HashSet,
you can choose between mutable and immutable varieties depending upon
your needs. The default way to create a set is shown in Listing 3.5:

var jetSet = Set("Boeing", "Airbus")
jetSet += "Lear"
println(jetSet.contains(''Cessna"))

Listing 3.5 - Creating, initializing, and using an immutable set.

In the first line of code in Listing 3.5, you define a new var named

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

91

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=91&v=2010_12_13

Step 10 Chapter 3 - Next Steps in Scala
scala.collection
Set
«trait»

| |

scala.collection.immutable scala.collection.mutable
Set Set
«trait» «trait»
scala.collection.immutable scala.collection.mutable
HashSet HashSet

Figure 3.2 - Class hierarchy for Scala sets.

jetSet, and initialize it with an immutable set containing the two strings,
"Boeing" and "Airbus". As this example shows, you can create sets in
Scala similarly to how you create lists and arrays: by invoking a factory
method named apply on a Set companion object. In Listing 3.5, you invoke
apply on the companion object for scala.collection.immutable. Set,
which returns an instance of a default, immutable Set. The Scala compiler
infers jetSet’s type to be the immutable Set[String].

To add a new element to a set, you call + on the set, passing in the new el-
ement. Both mutable and immutable sets offer a + method, but their behavior
differs. Whereas a mutable set will add the element to itself, an immutable
set will create and return a new set with the element added. In Listing 3.5,
you’re working with an immutable set, thus the + invocation will yield a
brand new set. Although mutable sets offer an actual += method, immutable
sets do not. In this case, the second line of code, “jetSet += "Lear"”, is
essentially a shorthand for:

jetSet = jetSet + "Lear"

Thus, in the second line of Listing 3.5, you reassign the jetSet var with a

new set containing "Boeing", "Airbus", and "Lear". Finally, the last line

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

92

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=92&v=2010_12_13

Step 10 Chapter 3 - Next Steps in Scala

of Listing 3.5 prints out whether or not the set contains the string "Cessna".
(As you’d expect, it prints false.)

If you want a mutable set, you’ll need to use an import, as shown in
Listing 3.6:

import scala.collection.mutable.Set

val movieSet = Set("Hitch", "Poltergeist")
movieSet += "Shrek"
println(movieSet)

Listing 3.6 - Creating, initializing, and using a mutable set.

In the first line of Listing 3.6 you import the mutable Set. As with Java,
an import statement allows you to use a simple name, such as Set, instead of
the longer, fully qualified name. As a result, when you say Set on the third
line, the compiler knows you mean scala.collection.mutable.Set. On
that line, you initialize movieSet with a new mutable set that contains the
strings "Hitch" and "Poltergeist"”. The subsequent line adds "Shrek"
to the mutable set by calling the += method on the set, passing in the string
"Shrek". As mentioned previously, += is an actual method defined on mu-
table sets. Had you wanted to, instead of writing movieSet += "Shrek",
therefore, you could have written movieSet.+=("Shrek").6

Although the default set implementations produced by the mutable and
immutable Set factory methods shown thus far will likely be sufficient for
most situations, occasionally you may want an explicit set class. Fortunately,
the syntax is similar. Simply import that class you need, and use the factory
method on its companion object. For example, if you need an immutable
HashSet, you could do this:

import scala.collection.immutable.HashSet

val hashSet = HashSet("Tomatoes", "Chilies")
println(hashSet + "Coriander")

Another useful collection class in Scala is Map. As with sets, Scala pro-
vides mutable and immutable versions of Map, using a class hierarchy. As

Because the set in Listing 3.6 is mutable, there is no need to reassign movieSet, which
is why it can be a val. By contrast, using += with the immutable set in Listing 3.5 required
reassigning jetSet, which is why it must be a var.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

93

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=93&v=2010_12_13

Step 10 Chapter 3 - Next Steps in Scala

scala.collection
Map
«trait»
| |
scala.collection.immutable scala.collection.mutable
Map Map
«trait» «trait»
scala.collection.immutable scala.collection.mutable
HashMap HashMap

Figure 3.3 - Class hierarchy for Scala maps.

you can see in Figure 3.3, the class hierarchy for maps looks a lot like the
one for sets. There’s a base Map trait in package scala.collection, and
two subtrait Maps: a mutable Map in scala.collection.mutable and an
immutable one in scala.collection.immutable.

Implementations of Map, such as the HashMaps shown in the class hier-
archy in Figure 3.3, extend either the mutable or immutable trait. You can
create and initialize maps using factory methods similar to those used for
arrays, lists, and sets. For example, Listing 3.7 shows a mutable map in
action.

import scala.collection.mutable.Map

val treasureMap = Map[Int, String]()
treasureMap += (1 -> "Go to island.")
treasureMap += (2 -> "Find big X on ground.")
treasureMap += (3 -> "Dig.")
println(treasureMap(2))

Listing 3.7 - Creating, initializing, and using a mutable map.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

94

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=94&v=2010_12_13

Step 10 Chapter 3 - Next Steps in Scala

On the first line of Listing 3.7, you import the mutable Map. You then de-
fine a val named treasureMap and initialize it with an empty mutable Map
that has integer keys and string values. The map is empty because you pass
nothing to the factory method (the parentheses in “Map[Int, String]()”
are empty).” On the next three lines you add key/value pairs to the map
using the -> and += methods. As illustrated previously, the Scala compiler
transforms a binary operation expression like 1 -> "Go to island." into
(1).->("Go to island."). Thus, when you say 1 -> "Go to island.",
you are actually calling a method named -> on an integer with the value 1,
passing in a string with the value "Go to island." This -> method, which
you can invoke on any object in a Scala program, returns a two-element tuple
containing the key and value.® You then pass this tuple to the += method of
the map object to which treasureMap refers. Finally, the last line prints the
value that corresponds to the key 2 in the treasureMap. If you run this code,
it will print:

Find big X on ground.

If you prefer an immutable map, no import is necessary, as immutable is
the default map. An example is shown in Listing 3.8:

val romanNumeral = Map(
1 -> "I", 2 > "II", 3 => "III", 4 => "IV", 5 -> "y"
)

println(romanNumeral(4))

Listing 3.8 - Creating, initializing, and using an immutable map.

Given there are no imports, when you say Map in the first line of List-
ing 3.8, you’ll get the default: a scala.collection.immutable.Map. You
pass five key/value tuples to the map’s factory method, which returns an im-
mutable Map containing the passed key/value pairs. If you run the code in
Listing 3.8 it will print “IV”.

"The explicit type parameterization, “[Int, String]”, is required in Listing 3.7 because
without any values passed to the factory method, the compiler is unable to infer the map’s
type parameters. By contrast, the compiler can infer the type parameters from the values
passed to the map factory shown in Listing 3.8, thus no explicit type parameters are needed.

8The Scala mechanism that allows you to invoke —> on any object, implicit conversion,
will be covered in Chapter 21.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

95

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=95&v=2010_12_13

Step 11 Chapter 3 - Next Steps in Scala

Step 11. Learn to recognize the functional style

As mentioned in Chapter 1, Scala allows you to program in an imperative
style, but encourages you to adopt a more functional style. If you are coming
to Scala from an imperative background—for example, if you are a Java
programmer—one of the main challenges you may face when learning Scala
is figuring out how to program in the functional style. We realize this style
might be unfamiliar at first, and in this book we try hard to guide you through
the transition. It will require some work on your part, and we encourage
you to make the effort. If you come from an imperative background, we
believe that learning to program in a functional style will not only make you
a better Scala programmer, it will expand your horizons and make you a
better programmer in general.

The first step is to recognize the difference between the two styles in
code. One telltale sign is that if code contains any vars, it is probably in
an imperative style. If the code contains no vars at all—i.e., it contains
only vals—it is probably in a functional style. One way to move towards a
functional style, therefore, is to try to program without vars.

If you’re coming from an imperative background, such as Java, C++, or
C#, you may think of var as a regular variable and val as a special kind of
variable. On the other hand, if you’re coming from a functional background,
such as Haskell, OCaml, or Erlang, you might think of val as a regular vari-
able and var as akin to blasphemy. The Scala perspective, however, is that
val and var are just two different tools in your toolbox, both useful, neither
inherently evil. Scala encourages you to lean towards vals, but ultimately
reach for the best tool given the job at hand. Even if you agree with this bal-
anced philosophy, however, you may still find it challenging at first to figure
out how to get rid of vars in your code.

Consider the following while loop example, adapted from Chapter 2,
which uses a var and is therefore in the imperative style:

def printArgs(args: Array[String]): Unit = {
var i = 0
while (i < args.length) {
println(args(i))
i+4=1

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

96

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=96&v=2010_12_13

Step 11 Chapter 3 - Next Steps in Scala

You can transform this bit of code into a more functional style by getting rid
of the var, for example, like this:

def printArgs(args: Array[String]): Unit = {
for (arg <- args)
println(arg)
}
or this:
def printArgs(args: Array[String]): Unit = {

args.foreach(println)

}

This example illustrates one benefit of programming with fewer vars.
The refactored (more functional) code is clearer, more concise, and less
error-prone than the original (more imperative) code. The reason Scala en-
courages a functional style, in fact, is that the functional style can help you
write more understandable, less error-prone code.

You can go even further, though. The refactored printArgs method is
not purely functional, because it has side effects—in this case, its side effect
is printing to the standard output stream. The telltale sign of a function with
side effects is that its result type is Unit. If a function isn’t returning any
interesting value, which is what a result type of Unit means, the only way
that function can make a difference in the world is through some kind of side
effect. A more functional approach would be to define a method that formats
the passed args for printing, but just returns the formatted string, as shown
in Listing 3.9:

def formatArgs(args: Array[String]) = args.mkString("\n")

Listing 3.9 - A function without side effects or vars.

Now you’re really functional: no side effects or vars in sight. The
mkString method, which you can call on any iterable collection (includ-
ing arrays, lists, sets, and maps), returns a string consisting of the result of
calling toString on each element, separated by the passed string. Thus if

args contains three elements "zero", "one", and "two", formatArgs will
return "zero\none\ntwo". Of course, this function doesn’t actually print

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

97

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=97&v=2010_12_13

Step 11 Chapter 3 - Next Steps in Scala

anything out like the printArgs methods did, but you can easily pass its
result to println to accomplish that:

println(formatArgs(args))

Every useful program is likely to have side effects of some form, be-
cause otherwise it wouldn’t be able to provide value to the outside world.
Preferring methods without side effects encourages you to design programs
where side-effecting code is minimized. One benefit of this approach is that
it can help make your programs easier to test. For example, to test any of
the three printArgs methods shown earlier in this section, you’d need to
redefine println, capture the output passed to it, and make sure it is what
you expect. By contrast, you could test the formatArgs function simply by
checking its result:

val res = formatArgs(Array('zero", "one", "two"))
assert(res == "zero\none\ntwo")

Scala’s assert method checks the passed Boolean and if it is false, throws
AssertionError. If the passed Boolean is true, assert just returns quietly.
You’ll learn more about assertions and testing in Chapter 14.

That said, bear in mind that neither vars nor side effects are inherently
evil. Scala is not a pure functional language that forces you to program
everything in the functional style. Scala is a hybrid imperative/functional
language. You may find that in some situations an imperative style is a better
fit for the problem at hand, and in such cases you should not hesitate to use
it. To help you learn how to program without vars, however, we’ll show you
many specific examples of code with vars and how to transform those vars
to vals in Chapter 7.

A balanced attitude for Scala programmers

Prefer vals, immutable objects, and methods without side effects.
Reach for them first. Use vars, mutable objects, and methods with side
effects when you have a specific need and justification for them.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

98

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=98&v=2010_12_13

Step 12 Chapter 3 - Next Steps in Scala 99
Step 12. Read lines from a file

Scripts that perform small, everyday tasks often need to process lines in files.
In this section, you’ll build a script that reads lines from a file and prints them
out prepended with the number of characters in each line. The first version
is shown in Listing 3.10:

import scala.io.Source
if (args.length > 0) {

for (line <- Source.fromFile(args(0)).getLines())
println(line.length +" "+ line)
}
else
Console.err.println("Please enter filename")

Listing 3.10 - Reading lines from a file.

This script starts with an import of a class named Source from package
scala.io. It then checks to see if at least one argument was specified on
the command line. If so, the first argument is interpreted as a filename to
open and process. The expression Source.fromFile(args(0)) attempts
to open the specified file and returns a Source object, on which you call
getlLines. The getLines method returns an Iterator[String], which
provides one line on each iteration, excluding the end-of-line character. The
for expression iterates through these lines and prints for each the length of
the line, a space, and the line itself. If there were no arguments supplied on
the command line, the final else clause will print a message to the standard
error stream. If you place this code in a file named countcharsl.scala,
and run it on itself with:

$ scala countcharsl.scala countcharsl.scala
You should see:

22 import scala.io.Source

0

22 if (args.length > 0) {

0

51 for (line <- Source.fromFile(args(0)).getLines())

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=99&v=2010_12_13

Step 12 Chapter 3 - Next Steps in Scala 100

35 println(line.length + + line)
11}
4 else

46 Console.err.println("Please enter filename")

Although the script in its current form prints out the needed information, you
may wish to line up the numbers, right adjusted, and add a pipe character, so
that the output looks instead like:

22 | import scala.io.Source

0 |

22 | if (args.length > 0) {

0 |

51 | for (line <- Source.fromFile(args(0)).getLines())
35 | println(line.length +" "+ line)

111}

4 | else
46 | Console.err.println("Please enter filename")

To accomplish this, you can iterate through the lines twice. The first time
through you’ll determine the maximum width required by any line’s charac-
ter count. The second time through you’ll print the output, using the max-
imum width calculated previously. Because you’ll be iterating through the
lines twice, you may as well assign them to a variable:

val lines = Source.fromFile(args(0)).getLines().tolList

The final toList is required because the getLines method returns an itera-
tor. Once you’ve iterated through an iterator, it is spent. By transforming it
into a list via the toList call, you gain the ability to iterate as many times
as you wish, at the cost of storing all lines from the file in memory at once.
The 1lines variable, therefore, references a list of strings that contains the
contents of the file specified on the command line.

Next, because you’ll be calculating the width of each line’s character
count twice, once per iteration, you might factor that expression out into a
small function, which calculates the character width of the passed string’s
length:

def widthOfLength(s: String) = s.length.toString.length
With this function, you could calculate the maximum width like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=100&v=2010_12_13

Step 12 Chapter 3 - Next Steps in Scala 101

var maxWidth = 0
for (line <- lines)
maxWidth = maxWidth.max(widthOfLength(line))

Here you iterate through each line with a for expression, calculate the char-
acter width of that line’s length, and, if it is larger than the current maximum,
assign it to maxWidth, a var that was initialized to 0. (The max method,
which you can invoke on any Int, returns the greater of the value on which
it was invoked and the value passed to it.) Alternatively, if you prefer to find
the maximum without vars, you could first find the longest line like this:

val longestline = lines.reduceLeft(
(a, b) => if (a.length > b.length) a else b
)

The reduceLeft method applies the passed function to the first two elements
in lines, then applies it to the result of the first application and the next
element in lines, and so on, all the way through the list. On each such
application, the result will be the longest line encountered so far, because the
passed function, (a, b) => if (a.length > b.length) a else b, returns
the longest of the two passed strings. “reduceLeft” will return the result
of the last application of the function, which in this case will be the longest
string element contained in lines.

Given this result, you can calculate the maximum width by passing the
longest line to widthOfLength:

val maxWidth = widthOfLength(longestLine)

All that remains is to print out the lines with proper formatting. You can
do that like this:

for (line <- lines) {
val numSpaces = maxWidth - widthOfLength(line)
val padding = " " * numSpaces
println(padding + line.length +" | "+ line)

}

In this for expression, you once again iterate through the lines. For each
line, you first calculate the number of spaces required before the line length
and assign it to numSpaces. Then you create a string containing numSpaces

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=101&v=2010_12_13

Conclusion Chapter 3 - Next Steps in Scala 102

spaces with the expression * numSpaces. Finally, you print out the in-
formation with the desired formatting. The entire script looks as shown in
Listing 3.11:

import scala.io.Source
def widthOfLength(s: String) = s.length.toString.length
if (args.length > 0) {

val lines = Source.fromFile(args(0)).getLines().tolList

val longestline = lines.reduceLeft(

(a, b) = if (a.length > b.length) a else b
)
val maxWidth = widthOfLength(longestLine)

for (line <- lines) {
val numSpaces = maxWidth - widthOfLength(line)
val padding = " " * numSpaces
println(padding + line.length +" | "+ line)
}
}
else
Console.err.println("Please enter filename")

Listing 3.11 - Printing formatted character counts for the lines of a file.

Conclusion

With the knowledge you’ve gained in this chapter, you should already be
able to get started using Scala for small tasks, especially scripts. In future
chapters, we will dive into more detail in these topics, and introduce other
topics that weren’t even hinted at here.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=102&v=2010_12_13

Chapter 4

Classes and Objects

You’ve already seen the basics of classes and objects in Scala in the previous
two chapters. In this chapter, we’ll take you a bit deeper. You’ll learn more
about classes, fields, and methods, and get an overview of semicolon infer-
ence. You'll learn more about singleton objects, including how to use them
to write and run a Scala application. If you are familiar with Java, you’ll find
the concepts in Scala are similar, but not exactly the same. So even if you’'re
a Java guru, it will pay to read on.

4.1 Classes, fields, and methods

A class is a blueprint for objects. Once you define a class, you can create
objects from the class blueprint with the keyword new. For example, given
the class definition:

class ChecksumAccumulator {
// class definition goes here

3
You can create ChecksumAccumulator objects with:
new ChecksumAccumulator

Inside a class definition, you place fields and methods, which are collectively
called members. Fields, which you define with either val or var, are vari-
ables that refer to objects. Methods, which you define with def, contain
executable code. The fields hold the state, or data, of an object, whereas the
methods use that data to do the computational work of the object. When you

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=103&v=2010_12_13

Section 4.1 Chapter 4 - Classes and Objects

instantiate a class, the runtime sets aside some memory to hold the image
of that object’s state—i.e., the content of its variables. For example, if you
defined a ChecksumAccumulator class and gave it a var field named sum:

class ChecksumAccumulator {
var sum = 0

}

and you instantiated it twice with:

val acc new ChecksumAccumulator
val csa = new ChecksumAccumulator

The image of the objects in memory might look like:

Since sum, a field declared inside class ChecksumAccumulator, is a var,
not a val, you can later reassign to sum a different Int value, like this:

acc.sum = 3

Now the picture would look like:

=¥6

One thing to notice about this picture is that there are two sum variables,
one in the object referenced by acc and the other in the object referenced

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

104

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=104&v=2010_12_13

Section 4.1 Chapter 4 - Classes and Objects 105

by csa. Fields are also known as instance variables, because every instance
gets its own set of the variables. Collectively, an object’s instance variables
make up the memory image of the object. You can see this illustrated here
not only in that you see two sum variables, but also that when you changed
one, the other was unaffected.

Another thing to note in this example is that you were able to mutate the
object acc referred to, even though acc is a val. What you can’t do with
acc (or csa), given that they are vals, not vars, is reassign a different object
to them. For example, the following attempt would fail:

// Won’t compile, because acc is a val
acc = new ChecksumAccumulator

What you can count on, therefore, is that acc will always refer to the same
ChecksumAccumulator object with which you initialize it, but the fields
contained inside that object might change over time.

One important way to pursue robustness of an object is to ensure that the
object’s state—the values of its instance variables—remains valid during its
entire lifetime. The first step is to prevent outsiders from accessing the fields
directly by making the fields private. Because private fields can only be
accessed by methods defined in the same class, all the code that can update
the state will be localized to the class. To declare a field private, you place a
private access modifier in front of the field, like this:

class ChecksumAccumulator {
private var sum = 0

Given this definition of ChecksumAccumulator, any attempt to access sum
from the outside of the class would fail:

val acc = new ChecksumAccumulator
acc.sum

5 // Won’t compile, because sum is private

Note

The way you make members public in Scala is by not explicitly specifying
any access modifier. Put another way, where you’d say “public” in Java,
you simply say nothing in Scala. Public is Scala’s default access level.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=105&v=2010_12_13

Section 4.1 Chapter 4 - Classes and Objects 106

Now that sum is private, the only code that can access sum is code defined
inside the body of the class itself. Thus, ChecksumAccumulator won’t be of
much use to anyone unless we define some methods in it:

class ChecksumAccumulator {
private var sum = 0

def add(b: Byte): Unit = {
sum += b

}

def checksum(): Int = {
return ~(sum & OxFF) + 1

}

The ChecksumAccumulator now has two methods, add and checksum, both
of which exhibit the basic form of a function definition, shown in Figure 2.1
on page 73.

Any parameters to a method can be used inside the method. One im-
portant characteristic of method parameters in Scala is that they are vals,
not vars.! If you attempt to reassign a parameter inside a method in Scala,
therefore, it won’t compile:

def add(b: Byte): Unit = {
b=1 // This won’t compile, because b is a val
sum += b

Although add and checksum in this version of ChecksumAccumulator
correctly implement the desired functionality, you can express them using a
more concise style. First, the return at the end of the checksum method
is superfluous and can be dropped. In the absence of any explicit return
statement, a Scala method returns the last value computed by the method.

The recommended style for methods is in fact to avoid having explicit,
and especially multiple, return statements. Instead, think of each method
as an expression that yields one value, which is returned. This philosophy
will encourage you to make methods quite small, to factor larger methods

I The reason parameters are vals is that vals are easier to reason about. You needn’t
look further to determine if a val is reassigned, as you must do with a var.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=106&v=2010_12_13

Section 4.1 Chapter 4 - Classes and Objects 107

into multiple smaller ones. On the other hand, design choices depend on the
design context, and Scala makes it easy to write methods that have multiple,
explicit returns if that’s what you desire.

Because all checksum does is calculate a value, it does not need an ex-
plicit return. Another shorthand for methods is that you can leave off the
curly braces if a method computes only a single result expression. If the
result expression is short, it can even be placed on the same line as the def
itself. With these changes, class ChecksumAccumulator looks like this:

class ChecksumAccumulator {

private var sum = 0

def add(b: Byte): Unit = sum += b

def checksum(): Int = ~(sum & OxFF) + 1
}

Methods with a result type of Unit, such as ChecksumAccumulator’s
add method, are executed for their side effects. A side effect is generally
defined as mutating state somewhere external to the method or performing
an I/O action. In add’s case, for example, the side effect is that sum is reas-
signed. Another way to express such methods is to leave off the result type
and the equals sign, and enclose the body of the method in curly braces. In
this form, the method looks like a procedure, a method that is executed only
for its side effects. The add method in Listing 4.1 illustrates this style:

// In file ChecksumAccumulator.scala
class ChecksumAccumulator {

private var sum = 0

def add(b: Byte) { sum += b }

def checksum(): Int = ~(sum & OxFF) + 1
}

Listing 4.1 - Final version of class ChecksumAccumulator.

One puzzler to watch out for is that whenever you leave off the equals
sign before the body of a function, its result type will definitely be Unit.
This is true no matter what the body contains, because the Scala compiler
can convert any type to Unit. For example, if the last result of a method is a
String, but the method’s result type is declared to be Unit, the String will
be converted to Unit and its value lost. Here’s an example:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=107&v=2010_12_13

Section 4.2 Chapter 4 - Classes and Objects 108

scala> def f(): Unit = "this String gets lost"
f: OUnit

In this example, the String is converted to Unit because Unit is the de-
clared result type of function f. The Scala compiler treats a function defined
in the procedure style, i.e., with curly braces but no equals sign, essentially
the same as a function that explicitly declares its result type to be Unit:

scala> def g() { "this String gets lost too" }
g: (OUnit

The puzzler occurs, therefore, if you intend to return a non-Unit value, but
forget the equals sign. To get what you want, you’ll need to insert the missing
equals sign:

scala> def h() = { "this String gets returned!" }
h: ()java.lang.String

scala> h
resO: java.lang.String = this String gets returned!

4.2 Semicolon inference

In a Scala program, a semicolon at the end of a statement is usually optional.
You can type one if you want but you don’t have to if the statement appears
by itself on a single line. On the other hand, a semicolon is required if you
write multiple statements on a single line:

val s = "hello"; println(s)

If you want to enter a statement that spans multiple lines, most of the time
you can simply enter it and Scala will separate the statements in the correct
place. For example, the following is treated as one four-line statement:

if (x < 2)
println("too small")
else
println("ok™)

Occasionally, however, Scala will split a statement into two parts against
your wishes:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=108&v=2010_12_13

Section 4.3 Chapter 4 - Classes and Objects 109

ty

This parses as two statements x and +y. If you intend it to parse as one
statement x + y, you can always wrap it in parentheses:

(x
+Y)

Alternatively, you can put the + at the end of a line. For just this reason,
whenever you are chaining an infix operation such as +, it is a common Scala
style to put the operators at the end of the line instead of the beginning:

X +
Vv +
V4

The rules of semicolon inference

The precise rules for statement separation are surprisingly simple for
how well they work. In short, a line ending is treated as a semicolon
unless one of the following conditions is true:

1. The line in question ends in a word that would not be legal as the
end of a statement, such as a period or an infix operator.

2. The next line begins with a word that cannot start a statement.

3. The line ends while inside parentheses (...) or brackets [...],
because these cannot contain multiple statements anyway.

4.3 Singleton objects

As mentioned in Chapter 1, one way in which Scala is more object-oriented
than Java is that classes in Scala cannot have static members. Instead, Scala
has singleton objects. A singleton object definition looks like a class defi-
nition, except instead of the keyword class you use the keyword object.
Listing 4.2 shows an example.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=109&v=2010_12_13

Section 4.3 Chapter 4 - Classes and Objects 110

// In file ChecksumAccumulator.scala
import scala.collection.mutable.Map

object ChecksumAccumulator {
private val cache = Map[String, Int]()

def calculate(s: String): Int =

if (cache.contains(s))
cache(s)

else {
val acc = new ChecksumAccumulator
for (c <- s)

acc.add(c.toByte)

val cs = acc.checksum()
cache += (s -> cs)
cs

Listing 4.2 - Companion object for class ChecksumAccumulator.

The singleton object in this figure is named ChecksumAccumulator, the
same name as the class in the previous example. When a singleton object
shares the same name with a class, it is called that class’s companion object.
You must define both the class and its companion object in the same source
file. The class is called the companion class of the singleton object. A class
and its companion object can access each other’s private members.

The ChecksumAccumulator singleton object has one method, named
calculate, which takes a String and calculates a checksum for the char-
acters in the String. It also has one private field, cache, a mutable map
in which previously calculated checksums are cached.? The first line of the
method, “if (cache.contains(s))”, checks the cache to see if the passed
string is already contained as a key in the map. If so, it just returns the

2We used a cache here to show a singleton object with a field. A cache such as this is
a performance optimization that trades off memory for computation time. In general, you
would likely use such a cache only if you encountered a performance problem that the cache
solves, and might use a weak map, such as WeakHashMap in scala.collection. jcl, so
that entries in the cache could be garbage collected if memory becomes scarce.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=110&v=2010_12_13

Section 4.3 Chapter 4 - Classes and Objects 111

mapped value, cache(s). Otherwise, it executes the else clause, which cal-
culates the checksum. The first line of the else clause defines a val named
acc and initializes it with a new ChecksumAccumulator instance.’ The next
line is a for expression, which cycles through each character in the passed
string, converts the character to a Byte by invoking toByte on it, and passes
that to the add method of the ChecksumAccumulator instances to which
acc refers. After the for expression completes, the next line of the method
invokes checksum on acc, which gets the checksum for the passed String,
and stores it into a val named cs. In the next line, cache += (s -> c¢s),
the passed string key is mapped to the integer checksum value, and this key-
value pair is added to the cache map. The last expression of the method, cs,
ensures the checksum is the result of the method.

If you are a Java programmer, one way to think of singleton objects is
as the home for any static methods you might have written in Java. You can
invoke methods on singleton objects using a similar syntax: the name of the
singleton object, a dot, and the name of the method. For example, you can
invoke the calculate method of singleton object ChecksumAccumulator
like this:

ChecksumAccumulator.calculate("Every value is an object.")

A singleton object is more than a holder of static methods, however. It is a
first-class object. You can think of a singleton object’s name, therefore, as a
“name tag” attached to the object:

@ mutable

map

(ChecksumAccumulator G

Defining a singleton object doesn’t define a type (at the Scala level of
abstraction). Given just a definition of object ChecksumAccumulator, you
can’t make a variable of type ChecksumAccumulator. Rather, the type
named ChecksumAccumulator is defined by the singleton object’s com-
panion class. However, singleton objects extend a superclass and can mix
in traits. Given each singleton object is an instance of its superclasses and

3Because the keyword new is only used to instantiate classes, the new object created here
is an instance of the ChecksumAccumulator class, not the singleton object of the same name.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=111&v=2010_12_13

Section 4.4 Chapter 4 - Classes and Objects 112

mixed-in traits, you can invoke its methods via these types, refer to it from
variables of these types, and pass it to methods expecting these types. We’ll
show some examples of singleton objects inheriting from classes and traits
in Chapter 13.

One difference between classes and singleton objects is that singleton
objects cannot take parameters, whereas classes can. Because you can’t in-
stantiate a singleton object with the new keyword, you have no way to pass
parameters to it. Each singleton object is implemented as an instance of
a synthetic class referenced from a static variable, so they have the same
initialization semantics as Java statics.* In particular, a singleton object is
initialized the first time some code accesses it.

A singleton object that does not share the same name with a companion
class is called a standalone object. You can use standalone objects for many
purposes, including collecting related utility methods together, or defining an
entry point to a Scala application. This use case is shown in the next section.

4.4 A Scala application

To run a Scala program, you must supply the name of a standalone singleton
object with a main method that takes one parameter, an Array[String],
and has a result type of Unit. Any standalone object with a main method of
the proper signature can be used as the entry point into an application. An
example is shown in Listing 4.3:

// In file Summer.scala
import ChecksumAccumulator.calculate

object Summer {
def main(args: Array[String]) {
for (arg <- args)
println(arg +": "+ calculate(arg))

Listing 4.3 - The Summer application.

4The name of the synthetic class is the object name plus a dollar sign. Thus the synthetic
class for the singleton object named ChecksumAccumulator is ChecksumAccumulators$.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=112&v=2010_12_13

Section 4.4 Chapter 4 - Classes and Objects 113

The name of the singleton object in Listing 4.3 is Summer. Its main
method has the proper signature, so you can use it as an application. The
first statement in the file is an import of the calculate method defined in the
ChecksumAccumulator object in the previous example. This import state-
ment allows you to use the method’s simple name in the rest of the file.> The
body of the main method simply prints out each argument and the checksum
for the argument, separated by a colon.

Note

Scala implicitly imports members of packages java.lang and scala, as
well as the members of a singleton object named Predef, into every Scala
source file. Predef, which resides in package scala, contains many
useful methods. For example, when you say println in a Scala source
file, you're actually invoking println on Predef. (Predef.println
turns around and invokes Console.println, which does the real work.)
When you say assert, you're invoking Predef.assert.

To run the Summer application, place the code from Listing 4.3 into a
file named Summer.scala. Because Summer uses ChecksumAccumulator,
place the code for ChecksumAccumulator, both the class shown in List-
ing 4.1 and its companion object shown in Listing 4.2, into a file named
ChecksumAccumulator.scala.

One difference between Scala and Java is that whereas Java requires you
to put a public class in a file named after the class—for example, you’d
put class SpeedRacer in file SpeedRacer.java—in Scala, you can name
.scala files anything you want, no matter what Scala classes or code you
putin them. In general in the case of non-scripts, however, it is recommended
style to name files after the classes they contain as is done in Java, so that
programmers can more easily locate classes by looking at file names. This is
the approach we’ve taken with the two files in this example, Summer.scala
and ChecksumAccumulator.scala.

Neither ChecksumAccumulator.scala nor Summer.scala are scripts,
because they end in a definition. A script, by contrast, must end in a re-
sult expression. Thus if you try to run Summer.scala as a script, the Scala
interpreter will complain that Summer.scala does not end in a result expres-
sion (assuming of course you didn’t add any expression of your own after

SIf you're a Java programmer, you can think of this import as similar to the static im-
port feature introduced in Java 5. One difference in Scala, however, is that you can import
members from any object, not just singleton objects.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=113&v=2010_12_13

Section 4.4 Chapter 4 - Classes and Objects 114

the Summer object definition). Instead, you’ll need to actually compile these
files with the Scala compiler, then run the resulting class files. One way to
do this is to use scalac, which is the basic Scala compiler, like this:

$ scalac ChecksumAccumulator.scala Summer.scala

This compiles your source files, but there may be a perceptible delay before
the compilation finishes. The reason is that every time the compiler starts up,
it spends time scanning the contents of jar files and doing other initial work
before it even looks at the fresh source files you submit to it. For this reason,
the Scala distribution also includes a Scala compiler daemon called f£sc (for
fast Scala compiler). You use it like this:

$ fsc ChecksumAccumulator.scala Summer.scala

The first time you run fsc, it will create a local server daemon attached to
a port on your computer. It will then send the list of files to compile to the
daemon via the port, and the daemon will compile the files. The next time
you run fsc, the daemon will already be running, so £sc will simply send
the file list to the daemon, which will immediately compile the files. Using
fsc, you only need to wait for the Java runtime to startup the first time. If
you ever want to stop the fsc daemon, you can do so with fsc -shutdown.
Running either of these scalac or fsc commands will produce Java
class files that you can then run via the scala command, the same command
you used to invoke the interpreter in previous examples. However, instead
of giving it a filename with a .scala extension containing Scala code to
interpret as you did in every previous example,® in this case you’ll give it
the name of a standalone object containing a main method of the proper
signature. You can run the Summer application, therefore, by typing:

$ scala Summer of love
You will see checksums printed for the two command line arguments:

of: -213
love: -182

The actual mechanism that the scala program uses to “interpret” a Scala source file is
that it compiles the Scala source code to Java bytecodes, loads them immediately via a class
loader, and executes them.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=114&v=2010_12_13

Section 4.5 Chapter 4 - Classes and Objects 115
4.5 The Application trait

Scala provides a trait, scala.Application, that can save you some finger
typing. Although we haven’t yet covered everything you’ll need to under-
stand exactly how this trait works, we figured you’d want to know about it
now anyway. Listing 4.4 shows an example:

import ChecksumAccumulator.calculate
object FallWinterSpringSummer extends Application {

for (season <- List("fall", "winter", "spring"))
println(season +": "+ calculate(season))

Listing 4.4 - Using the Application trait.

To use the trait, you first write “extends Application” after the name
of your singleton object. Then instead of writing a main method, you place
the code you would have put in the main method directly between the curly
braces of the singleton object. That’s it. You can compile and run this appli-
cation just like any other.

The way this works is that trait Application declares a main method
of the appropriate signature, which your singleton object inherits, making it
usable as a Scala application. The code between the curly braces is collected
into a primary constructor of the singleton object, and is executed when the
class is initialized. Don’t worry if you don’t understand what all this means.
It will be explained in later chapters, and in the meantime you can use the
trait without fully understanding the details.

Inheriting from Application is shorter than writing an explicit main
method, but it also has some shortcomings. First, you can’t use this trait if
you need to access command-line arguments, because the args array isn’t
available. For example, because the Summer application uses command-line
arguments, it must be written with an explicit main method, as shown in List-
ing 4.3. Second, because of some restrictions in the JVM threading model,
you need an explicit main method if your program is multi-threaded. Finally,
some implementations of the JVM do not optimize the initialization code of
an object which is executed by the Application trait. So you should in-
herit from Application only when your program is relatively simple and
single-threaded.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=115&v=2010_12_13

Section 4.6 Chapter 4 - Classes and Objects 116
4.6 Conclusion

This chapter has given you the basics of classes and objects in Scala, and
shown you how to compile and run applications. In the next chapter, you’ll
learn about Scala’s basic types and how to use them.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=116&v=2010_12_13

Chapter 5

Basic Types and Operations

Now that you’ve seen classes and objects in action, it’s a good time to look
at Scala’s basic types and operations in more depth. If you’re familiar with
Java, you’ll be glad to find that Java’s basic types and operators have the
same meaning in Scala. However there are some interesting differences that
will make this chapter worthwhile reading even if you’re an experienced
Java developer. Because some of the aspects of Scala covered in this chapter
are essentially the same in Java, we’ve inserted notes indicating what Java
developers can safely skip, to expedite your progress.

In this chapter, you’ll get an overview of Scala’s basic types, including
Strings and the value types Int, Long, Short, Byte, Float, Double, Char,
and Boolean. You’ll learn the operations you can perform on these types,
including how operator precedence works in Scala expressions. You’ll also
learn how implicit conversions can “enrich” variants of these basic types,
giving you additional operations beyond those supported by Java.

5.1 Some basic types

Several fundamental types of Scala, along with the ranges of values instances
of these types may have, are shown in Table 5.1. Collectively, types Byte,
Short, Int, Long, and Char are called infegral types. The integral types plus
Float and Double are called numeric types.

Other than String, which resides in package java.lang, all of the types
shown in Table 5.1 are members of package scala.! For example, the full

IPackages, which were briefly described in Step 2 in Chapter 2, will be covered in depth
in Chapter 13.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=117&v=2010_12_13

Section 5.2

Chapter 5 - Basic Types and Operations

Table 5.1 - Some basic types

Value type Range

Byte 8-bit signed two’s complement integer (-2” to 27 - 1, inclusive)
Short 16-bit signed two’s complement integer (-2 to 2! - 1, inclusive)
Int 32-bit signed two’s complement integer (-23! to 23! - 1, inclusive)
Long 64-bit signed two’s complement integer (-2°% to 293 - 1, inclusive)
Char 16-bit unsigned Unicode character (0 to 26 - 1, inclusive)
String a sequence of Chars

Float 32-bit IEEE 754 single-precision float

Double 64-bit IEEE 754 double-precision float

Boolean true or false

name of Int is scala.Int. However, given that all the members of package
scala and java.lang are automatically imported into every Scala source
file, you can just use the simple names (i.e., names like Boolean, Char, or
String) everywhere.

Savvy Java developers will note that Scala’s basic types have the exact
same ranges as the corresponding types in Java. This enables the Scala com-
piler to transform instances of Scala value types, such as Int or Double,
down to Java primitive types in the bytecodes it produces.

5.2 Literals

All of the basic types listed in Table 5.1 can be written with literals. A literal
is a way to write a constant value directly in code.

Fast track for Java programmers

The syntax of most literals shown in this section are exactly the same as in
Java, so if you’re a Java master, you can safely skip much of this section.
The two differences you should read about are Scala’s literals for raw
strings and symbols, which are described starting on page 122.

Integer literals

Integer literals for the types Int, Long, Short, and Byte come in three
forms: decimal, hexadecimal, and octal. The way an integer literal begins

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

118

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=118&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations

indicates the base of the number. If the number begins with a 0x or 0X, it
is hexadecimal (base 16), and may contain O through 9 as well as upper or
lowercase digits A through F. Some examples are:

scala> val hex = 0x5
hex: Int = 5

scala> val hex2 = 0x00FF
hex2: Int = 255

scala> val magic = Oxcafebabe
magic: Int = -889275714

Note that the Scala shell always prints integer values in base 10, no mat-
ter what literal form you may have used to initialize it. Thus the interpreter
displays the value of the hex?2 variable you initialized with literal 0xO0FF as
decimal 255. (Of course, you don’t need to take our word for it. A good
way to start getting a feel for the language is to try these statements out in
the interpreter as you read this chapter.) If the number begins with a zero, it
is octal (base 8), and may, therefore, only contain digits O through 7. Some
examples are:

scala> val oct 035 // (35 octal is 29 decimal)

oct: Int = 29

scala> val nov = 0777
nov: Int = 511
scala> val dec = 0321

dec: Int = 209

If the number begins with a non-zero digit, and is otherwise undecorated,
it is decimal (base 10). For example:

scala> val decl = 31
decl: Int = 31
scala> val dec2 = 255
dec2: Int = 255
scala> val dec3 = 20

dec3: Int = 20

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

119

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=119&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations 120

If an integer literal ends in an L or 1, it is a Long, otherwise it is an Int.
Some examples of Long integer literals are:

scala> val prog = OXCAFEBABEL
prog: Long = 3405691582

scala> val tower = 35L
tower: Long = 35

scala> val of = 311
of: Long = 31

If an Int literal is assigned to a variable of type Short or Byte, the
literal is treated as if it were a Short or Byte type so long as the literal value
is within the valid range for that type. For example:

scala> val little: Short = 367
little: Short = 367
scala> val littler: Byte = 38

littler: Byte = 38

Floating point literals

Floating point literals are made up of decimal digits, optionally containing a
decimal point, and optionally followed by an E or e and an exponent. Some
examples of floating-point literals are:

scala> val big = 1.2345
big: Double = 1.2345

scala> val bigger = 1.2345el
bigger: Double = 12.345

scala> val biggerStill = 123E45
biggerStill: Double = 1.23E47

Note that the exponent portion means the power of 10 by which the other
portion is multiplied. Thus, 1.2345e1 is 1.2345 times 10!, which is 12.345.
If a floating-point literal ends in an F or £, it is a Float, otherwise it is a
Double. Optionally, a Double floating-point literal can end in D or d. Some
examples of Float literals are:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=120&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations

scala> val little = 1.2345F
little: Float = 1.2345

scala> val littleBigger = 3e5f
littleBigger: Float = 300000.0

That last value expressed as a Double could take these (and other) forms:
scala> val anotherDouble = 3e5

anotherDouble: Double = 300000.0

scala> val yetAnother = 3e5D
yetAnother: Double = 300000.0

Character literals

Character literals are composed of any Unicode character between single
quotes, such as:

scala> val a = 'A'
a: Char = A

In addition to providing an explicit character between the single quotes, you
can provide an octal or hex number for the character code point preceded
by a backslash. The octal number must be between '\0' and '\377'. For
example, the Unicode character code point for the letter A is 101 octal. Thus:

scala> val ¢ = "\101'
c: Char = A

A character literal can also be given as a general Unicode character consist-
ing of four hex digits and preceded by a \u, as in:

scala> val d = "\u0041'
d: Char = A

scala> val f '"\u0044'

f: Char =D

In fact, such Unicode characters can appear anywhere in a Scala program.
For instance you could also write an identifier like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

121

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=121&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations 122

Table 5.2 - Special character literal escape sequences

Literal Meaning

\n line feed (\uOO0A)

\b backspace (\u0008)

\t tab (\u0009)

\f form feed (\u000C)

\r carriage return (\u000D)
\" double quote (\u0022)
\' single quote (\u0027)
\\ backslash (\u005C)

scala> val B\u0041\u0044 = 1

BAD: Int =1

This identifier is treated as identical to BAD, the result of expanding the two
Unicode characters in the code above. In general, it is a bad idea to name
identifiers like this, because it is hard to read. Rather, this syntax is intended
to allow Scala source files that include non-ASCII Unicode characters to be

represented in ASCII.

Finally, there are also a few character literals represented by special es-
cape sequences, shown in Table 5.2. For example:

scala> val backslash = "\\'

backslash: Char = \

String literals

A string literal is composed of characters surrounded by double quotes:

scala> val hello = "hello"
hello: java.lang.String = hello

The syntax of the characters within the quotes is the same as with character

literals. For example:

scala> val escapes = "\\\"\'"
escapes: java.lang.String = \"'

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=122&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations 123

Because this syntax is awkward for strings that contain a lot of escape
sequences or strings that span multiple lines, Scala includes a special syntax
for raw strings. You start and end a raw string with three double quotation
marks in arow ("""). The interior of a raw string may contain any characters
whatsoever, including newlines, quotation marks, and special characters, ex-
cept of course three quotes in a row. For example, the following program
prints out a message using a raw string:

println("""Welcome to Ultamix 3000.
Type "HELP" for help.""")

Running this code does not produce quite what is desired, however:

Welcome to Ultamix 3000.
Type "HELP" for help.

The issue is that the leading spaces before the second line are included in the
string! To help with this common situation, you can call stripMargin on
strings. To use this method, put a pipe character (|) at the front of each line,
and then call stripMargin on the whole string:

println(""" |[Welcome to Ultamix 3000.
| Type "HELP" for help.""".stripMargin)

Now the code behaves as desired:

Welcome to Ultamix 3000.
Type "HELP" for help.

Symbol literals

A symbol literal is written 'ident, where ident can be any alphanumeric
identifier. Such literals are mapped to instances of the predefined class
scala.Symbol. Specifically, the literal 'cymbal will be expanded by the
compiler to a factory method invocation: Symbol("cymbal"). Symbol lit-
erals are typically used in situations where you would use just an identifier
in a dynamically typed language. For instance, you might want to define a
method that updates a record in a database:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=123&v=2010_12_13

Section 5.2 Chapter 5 - Basic Types and Operations 124

scala> def updateRecordByName(r: Symbol, value: Any) {
// code goes here

}
updateRecordByName: (Symbol,Any)Unit

The method takes as parameters a symbol indicating the name of a record
field and a value with which the field should be updated in the record. In
a dynamically typed language, you could invoke this operation passing an
undeclared field identifier to the method, but in Scala this would not compile:

scala> updateRecordByName(favoriteAlbum, "OK Computer™)
<console>:6: error: not found: value favoriteAlbum
updateRecordByName (favoriteAlbum, "OK Computer")

Instead, and almost as concisely, you can pass a symbol literal:
scala> updateRecordByName('favoriteAlbum, "OK Computer™)
There is not much you can do with a symbol, except find out its name:

scala> val s = 'aSymbol
s: Symbol = 'aSymbol
scala> s.name

res20: String = aSymbol

Another thing that’s noteworthy is that symbols are inferned. If you write
the same symbol literal twice, both expressions will refer to the exact same
Symbol object.

Boolean literals

The Boolean type has two literals, true and false:

scala> val bool = true
bool: Boolean = true
scala> val fool = false
fool: Boolean = false

That’s all there is to it. You are now literally? an expert in Scala.

2figuratively speaking

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=124&v=2010_12_13

Section 5.3 Chapter 5 - Basic Types and Operations 125
5.3 Operators are methods

Scala provides a rich set of operators for its basic types. As mentioned in
previous chapters, these operators are actually just a nice syntax for ordinary
method calls. For example, 1 + 2 really means the same thing as (1) .+(2).
In other words, class Int contains a method named + that takes an Int and
returns an Int result. This + method is invoked when you add two Ints:

scala> val sum = 1 + 2 // Scala invokes (1).+(2)
sum: Int = 3

To prove this to yourself, you can write the expression explicitly as a
method invocation:

scala> val sumMore = (1).+(2)
sumMore: Int = 3

In fact, Int contains several overloaded + methods that take different
parameter types.® For example, Int has another method, also named +, that
takes and returns a Long. If you add a Long to an Int, this alternate + method
will be invoked, as in:

scala> val longSum = 1 + 2L // Scala invokes (1).+(2L)
longSum: Long = 3

The + symbol is an operator—an infix operator to be specific. Operator
notation is not limited to methods like + that look like operators in other
languages. You can use any method in operator notation. For example,
class String has a method, indexOf, that takes one Char parameter. The
index0f method searches the string for the first occurrence of the specified
character, and returns its index or -1 if it doesn’t find the character. You can
use indexOf as an operator, like this:

scala> val s = "Hello, world!"
s: java.lang.String = Hello, world!

scala> s indexOf 'o // Scala invokes s.indexOf(’o0’)
resO: Int = 4

3 Overloaded methods have the same name but different argument types. More on method
overloading in Section 6.11.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=125&v=2010_12_13

Section 5.3 Chapter 5 - Basic Types and Operations 126

In addition, String offers an overloaded indexOf method that takes
two parameters, the character for which to search and an index at which
to start. (The other index0f method, shown previously, starts at index zero,
the beginning of the String.) Even though this index0f method takes two
arguments, you can use it in operator notation. But whenever you call a
method that takes multiple arguments using operator notation, you have to
place those arguments in parentheses. For example, here’s how you use this
other index0f form as an operator (continuing from the previous example):

scala> s indexOf ('o', 5) // Scala invokes s.indexOf(’o’, 5)
resl: Int = 8

Any method can be an operator

In Scala operators are not special language syntax: any method can
be an operator. What makes a method an operator is how you use it.
When you write “s.index0f('o')”, indexOf is not an operator. But
when you write “s index0f 'o'”, indexOf is an operator, because
you’re using it in operator notation.

So far, you’ve seen examples of infix operator notation, which means the
method to invoke sits between the object and the parameter or parameters
you wish to pass to the method, as in “7 + 2”. Scala also has two other
operator notations: prefix and postfix. In prefix notation, you put the method
name before the object on which you are invoking the method, for example,
the ‘-’ in -7. In postfix notation, you put the method after the object, for
example, the “toLong” in “7 toLong”.

In contrast to the infix operator notation—in which operators take two
operands, one to the left and the other to the right—prefix and postfix oper-
ators are unary: they take just one operand. In prefix notation, the operand
is to the right of the operator. Some examples of prefix operators are -2.0,
!found, and ~OxFF. As with the infix operators, these prefix operators are
a shorthand way of invoking methods. In this case, however, the name
of the method has “unary_" prepended to the operator character. For in-
stance, Scala will transform the expression -2.0 into the method invoca-
tion “(2.0).unary_-". You can demonstrate this to yourself by typing the
method call both via operator notation and explicitly:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=126&v=2010_12_13

Section 5.3 Chapter 5 - Basic Types and Operations 127

scala> -2.0 // Scala invokes (2.0).unary_-
res2: Double = -2.0

scala> (2.0).unary_-
res3: Double = -2.0

The only identifiers that can be used as prefix operators are +, -, !, and ~.
Thus, if you define a method named unary_!, you could invoke that method
on a value or variable of the appropriate type using prefix operator notation,
such as !p. Butif you define a method named unary_x, you wouldn’t be able
to use prefix operator notation, because * isn’t one of the four identifiers that
can be used as prefix operators. You could invoke the method normally, as
in p.unary_x, but if you attempted to invoke it via *p, Scala will parse it as
if you’d written #.p, which is probably not what you had in mind!*

Postfix operators are methods that take no arguments, when they are in-
voked without a dot or parentheses. In Scala, you can leave off empty paren-
theses on method calls. The convention is that you include parentheses if the
method has side effects, such as println(), but you can leave them off if
the method has no side effects, such as toLowerCase invoked on a String:

scala> val s = "Hello, world!"
s: java.lang.String = Hello, world!

scala> s.toLowerCase
res4: java.lang.String = hello, world!

In this latter case of a method that requires no arguments, you can alterna-
tively leave off the dot and use postfix operator notation:

scala> s toLowerCase
res5: java.lang.String = hello, world!

In this case, toLowerCase is used as a postfix operator on the operand s.
To see what operators you can use with Scala’s basic types, therefore, all
you really need to do is look at the methods declared in the type’s classes
in the Scala API documentation. Given that this is a Scala tutorial, however,
we’ll give you a quick tour of most of these methods in the next few sections.

4All is not necessarily lost, however. There is an extremely slight chance your program
with the *p might compile as C++.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=127&v=2010_12_13

Section 5.4 Chapter 5 - Basic Types and Operations 128

Fast track for Java programmers

Many aspects of Scala described in the remainder of this chapter are the
same as in Java. If you’re a Java guru in a rush, you can safely skip to
Section 5.7 on page 132, which describes how Scala differs from Java in
the area of object equality.

5.4 Arithmetic operations

You can invoke arithmetic methods via infix operator notation for addition
(+), subtraction (-), multiplication (*), division (/), and remainder (%), on
any numeric type. Here are some examples:

scala> 1.2 + 2.3
res6: Double = 3.5

scala> 3 - 1
res7: Int = 2

scala> 'b'" - 'a’'
res8: Int = 1

scala> 2L * 3L
res9: Long = 6

scala> 11 / 4
resl0: Int = 2

scala> 11 % 4
resll: Int = 3

scala> 11.0f / 4.0f
resl?2: Float = 2.75

scala> 11.0 % 4.0
resl3: Double = 3.0

When both the left and right operands are integral types (Int, Long,
Byte, Short, or Char), the / operator will tell you the whole number por-
tion of the quotient, excluding any remainder. The % operator indicates the
remainder of an implied integer division.

The floating-point remainder you get with % is not the one defined by
the IEEE 754 standard. The IEEE 754 remainder uses rounding division, not
truncating division, in calculating the remainder, so it is quite different from

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=128&v=2010_12_13

Section 5.5 Chapter 5 - Basic Types and Operations 129

the integer remainder operation. If you really want an IEEE 754 remainder,
you can call IEEEremainder on scala.math, as in:

scala> math.IEEEremainder(11.0, 4.0)
resl4: Double = -1.0

The numeric types also offer unary prefix operators + (method unary_+)
and - (method unary_-), which allow you to indicate a literal number is
positive or negative, as in -3 or +4.0. If you don’t specify a unary + or -, a
literal number is interpreted as positive. Unary + exists solely for symmetry
with unary -, but has no effect. The unary - can also be used to negate a
variable. Here are some examples:

scala> val neg = 1 + -3
neg: Int = -2

scala> val vy = +3

y: Int = 3

scala> -neg
resl5: Int = 2

5.5 Relational and logical operations

You can compare numeric types with relational methods greater than (>), less
than (<), greater than or equal to (>=), and less than or equal to (<=), which
yield a Boolean result. In addition, you can use the unary ‘!’ operator (the
unary_! method) to invert a Boolean value. Here are a few examples:

scala> 1 > 2
resl6: Boolean = false

scala> 1 < 2
resl7: Boolean = true

scala> 1.0 <= 1.0
resl8: Boolean = true

scala> 3.5f >= 3.6f
resl9: Boolean = false

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=129&v=2010_12_13

Section 5.5 Chapter 5 - Basic Types and Operations 130

scala> 'a' >= 'A'
res20: Boolean = true

scala> val thisIsBoring = !true
thisIsBoring: Boolean = false

scala> !thisIsBoring
res2l: Boolean = true

The logical methods, logical-and (&&) and logical-or (| |), take Boolean
operands in infix notation and yield a Boolean result. For example:

scala> val toBe = true
toBe: Boolean = true

scala> val question = toBe || !toBe
question: Boolean = true

scala> val paradox = toBe && !toBe
paradox: Boolean = false

The logical-and and logical-or operations are short-circuited as in Java:
expressions built from these operators are only evaluated as far as needed to
determine the result. In other words, the right-hand side of logical-and and
logical-or expressions won’t be evaluated if the left-hand side determines
the result. For example, if the left-hand side of a logical-and expression
evaluates to false, the result of the expression will definitely be false,
so the right-hand side is not evaluated. Likewise, if the left-hand side of
a logical-or expression evaluates to true, the result of the expression will
definitely be true, so the right-hand side is not evaluated. For example:

scala> def salt() = { println("salt"); false }
salt: ()Boolean

scala> def pepper() = { println('pepper"); true }
pepper: ()Boolean

scala> pepper() && salt()
pepper

salt

res22: Boolean = false

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=130&v=2010_12_13

Section 5.6 Chapter 5 - Basic Types and Operations 131

scala> salt() && pepper()
salt
res23: Boolean = false

In the first expression, pepper and salt are invoked, but in the second, only
salt is invoked. Given salt returns false, there’s no need to call pepper.

Note

You may be wondering how short-circuiting can work given operators are
just methods. Normally, all arguments are evaluated before entering a
method, so how can a method avoid evaluating its second argument? The
answer is that all Scala methods have a facility for delaying the evaluation
of their arguments, or even declining to evaluate them at all. The facility is
called by-name parameters and is discussed in Section 9.5.

5.6 Bitwise operations

Scala enables you to perform operations on individual bits of integer types
with several bitwise methods. The bitwise methods are: bitwise-and (&),
bitwise-or (|), and bitwise-xor (*).> The unary bitwise complement operator
(~, the method unary_-~), inverts each bit in its operand. For example:

scala> 1 & 2
res24: Int = 0

scala> 1 | 2
res25: Int = 3

scala> 1 ~ 3
res26: Int = 2

scala> ~1

res27: Int = -2

The first expression, 1 & 2, bitwise-ands each bitin 1 (0001) and 2 (0010),
which yields 0 (0000). The second expression, 1 | 2, bitwise-ors each bit in

5The bitwise-xor method performs an exclusive or on its operands. Identical bits yield a
0. Different bits yield a 1. Thus 0011 ~ 0101 yields 0110.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=131&v=2010_12_13

Section 5.7 Chapter 5 - Basic Types and Operations 132

the same operands, yielding 3 (0011). The third expression, 1 ~ 3, bitwise-
xors each bit in 1 (0001) and 3 (0011), yielding 2 (0010). The final expres-
sion, ~1, inverts each bit in 1 (0001), yielding -2, which in binary looks like
Iirrrteretreateateate1te1ta1t11o.

Scala integer types also offer three shift methods: shift left (<<), shift
right (>>), and unsigned shift right (>>>). The shift methods, when used in
infix operator notation, shift the integer value on the left of the operator by
the amount specified by the integer value on the right. Shift left and unsigned
shift right fill with zeroes as they shift. Shift right fills with the highest bit
(the sign bit) of the left-hand value as it shifts. Here are some examples:

scala> -1 >> 31
res28: Int = -1

scala> -1 >>> 31
res29: Int = 1

scala> 1 << 2
res30: Int = 4

-1 in binary is 11111111111111111111111111111111. In the first ex-
ample, -1 >> 31, -1 is shifted to the right 31 bit positions. Since an Int
consists of 32 bits, this operation effectively moves the leftmost bit over un-
til it becomes the rightmost bit.° Since the >> method fills with ones as it
shifts right, because the leftmost bit of -1 is 1, the result is identical to the
original left operand, 32 one bits, or -1. In the second example, -1 >>> 31,
the leftmost bit is again shifted right until it is in the rightmost position, but
this time filling with zeroes along the way. Thus the result this time is binary
00000000000000000000000000000001, or 1. In the final example, 1 << 2,
the left operand, 1, is shifted left two positions (filling in with zeroes), re-
sulting in binary 00000000000000000000000000000100, or 4.

5.7 Object equality

If you want to compare two objects for equality, you can use either ==, or its
inverse !=. Here are a few simple examples:

The leftmost bit in an integer type is the sign bit. If the leftmost bit is 1, the number is
negative. If 0, the number is positive.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=132&v=2010_12_13

Section 5.7 Chapter 5 - Basic Types and Operations 133

scala> 1 ==
res31: Boolean = false

scala> 1 != 2
res32: Boolean = true

scala> 2 == 2
res33: Boolean

true

These operations actually apply to all objects, not just basic types. For ex-
ample, you can use == to compare lists:

scala> List(l, 2, 3) == List(l, 2, 3)
res34: Boolean = true

scala> List(1, 2, 3) == List(4, 5, 6)
res35: Boolean = false

Going further, you can compare two objects that have different types:

scala> 1 == 1.0
res36: Boolean

true

scala> List(l, 2, 3) == "hello"
res37: Boolean = false

You can even compare against null, or against things that might be null.
No exception will be thrown:

scala> List(l, 2, 3) == null
res38: Boolean = false

scala> null == List(1, 2, 3)
res39: Boolean = false

As you see, == has been carefully crafted so that you get just the equality
comparison you want in most cases. This is accomplished with a very simple
rule: first check the left side for null, and if it is not null, call the equals
method. Since equals is a method, the precise comparison you get depends
on the type of the left-hand argument. Since there is an automatic null check,
you do not have to do the check yourself.’

"The automatic check does not look at the right-hand side, but any reasonable equals
method should return false if its argument is null.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=133&v=2010_12_13

Section 5.8 Chapter 5 - Basic Types and Operations 134

This kind of comparison will yield true on different objects, so long as
their contents are the same and their equals method is written to be based on
contents. For example, here is a comparison between two strings that happen
to have the same five letters in them:

scala> ("he"+"110") == "hello"
res40: Boolean = true

How Scala’s == differs from Java’s

In Java, you can use == to compare both primitive and reference types.
On primitive types, Java’s == compares value equality, as in Scala. On
reference types, however, Java’s == compares reference equality, which
means the two variables point to the same object on the JVM’s heap.
Scala provides a facility for comparing reference equality, as well,
under the name eq. However, eq and its opposite, ne, only apply to
objects that directly map to Java objects. The full details about eq and
ne are given in Sections 11.1 and 11.2. Also, see Chapter 30 on how to
write a good equals method.

5.8 Operator precedence and associativity

Operator precedence determines which parts of an expression are evaluated
before the other parts. For example, the expression 2 + 2 * 7 evaluates to 16,
not 28, because the * operator has a higher precedence than the + operator.
Thus the multiplication part of the expression is evaluated before the addition
part. You can of course use parentheses in expressions to clarify evaluation
order or to override precedence. For example, if you really wanted the result
of the expression above to be 28, you could write the expression like this:

2 +2) =7

Given that Scala doesn’t have operators, per se, just a way to use meth-
ods in operator notation, you may be wondering how operator precedence
works. Scala decides precedence based on the first character of the methods
used in operator notation (there’s one exception to this rule, which will be
discussed below). If the method name starts with a *, for example, it will

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=134&v=2010_12_13

Section 5.8 Chapter 5 - Basic Types and Operations 135

have a higher precedence than a method that starts with a +. Thus 2 + 2 « 7
will be evaluated as 2 + (2 = 7), and a +++ b #++ ¢ (in which a, b, and c are
variables, and +++ and #+* are methods) will be evaluated a +++ (b *#** c),
because the #++ method has a higher precedence than the +++ method.

Table 5.3 - Operator precedence

(all other special characters)
* / %

>

(all letters)
(all assignment operators)

Table 5.3 shows the precedence given to the first character of a method
in decreasing order of precedence, with characters on the same line having
the same precedence. The higher a character is in this table, the higher the
precedence of methods that start with that character. Here’s an example that
illustrates the influence of precedence:

scala> 2 << 2 + 2
res4l: Int = 32

The << method starts with the character <, which appears lower in Ta-
ble 5.3 than the character +, which is the first and only character of the +
method. Thus << will have lower precedence than +, and the expression
will be evaluated by first invoking the + method, then the << method, as in
2 << (2+2). 2+ 2is 4, by our math, and 2 << 4 yields 32. Here’s another
example:

scala> 2 + 2 << 2
res42: Int = 16

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=135&v=2010_12_13

Section 5.8 Chapter 5 - Basic Types and Operations 136

Since the first characters are the same as in the previous example, the
methods will be invoked in the same order. First the + method will be in-
voked, then the << method. So 2 + 2 will again yield 4, and 4 << 2 is 16.

The one exception to the precedence rule, alluded to above, concerns
assignment operators, which end in an equals character. If an operator ends
in an equals character (=), and the operator is not one of the comparison
operators <=, >=, ==, or !=, then the precedence of the operator is the same
as that of simple assignment (=). That is, it is lower than the precedence of
any other operator. For instance:

X =y + 1
means the same as:
X %= (y + 1)

because #=1is classified as an assignment operator whose precedence is lower
than +, even though the operator’s first character is *, which would suggest a
precedence higher than +.

When multiple operators of the same precedence appear side by side in
an expression, the associativity of the operators determines the way operators
are grouped. The associativity of an operator in Scala is determined by its
last character. As mentioned on page 87 of Chapter 3, any method that ends
in a ‘:’ character is invoked on its right operand, passing in the left operand.
Methods that end in any other character are the other way around. They are
invoked on their left operand, passing in the right operand. So a * b yields
a.#(b),buta ::: byieldsb.:::(a).

No matter what associativity an operator has, however, its operands are
always evaluated left to right. So if a is an expression that is not just a simple
reference to an immutable value, then a ::: b is more precisely treated as
the following block:

{val x =a; b.:::(x) }

In this block a is still evaluated before b, and then the result of this evaluation
is passed as an operand to b’s : : : method.

This associativity rule also plays a role when multiple operators of the
same precedence appear side by side. If the methods end in ‘:’, they are

grouped right to left; otherwise, they are grouped left to right. For example,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=136&v=2010_12_13

Section 5.9 Chapter 5 - Basic Types and Operations 137

a:::b:::cistreatedasa ::: (b ::: c). Buta b * c, by contrast, is
treated as (a = b) = c.

Operator precedence is part of the Scala language. You needn’t be afraid
to use it. Nevertheless, it is good style to use parentheses to clarify what
operators are operating upon what expressions. Perhaps the only precedence
you can truly count on other programmers knowing without looking up is
that multiplicative operators, *, /, and %, have a higher precedence than
the additive ones + and -. Thus even if a + b << c yields the result you
want without parentheses, the extra clarity you get by writing (a + b) << c
may reduce the frequency with which your peers utter your name in operator
notation, for example, by shouting in disgust, “bills !%& %~ code!”?

5.9 Rich wrappers

You can invoke many more methods on Scala’s basic types than were de-
scribed in the previous sections. A few examples are shown in Table 5.4.
These methods are available via implicit conversions, a technique that will
be described in detail in Chapter 21. All you need to know for now is that for
each basic type described in this chapter, there is also a “rich wrapper” that
provides several additional methods. To see all the available methods on the
basic types, therefore, you should look at the API documentation on the rich
wrapper for each basic type. Those classes are listed in Table 5.5.

5.10 Conclusion

The main take-aways from this chapter are that operators in Scala are method
calls, and that implicit conversions to rich variants exist for Scala’s basic
types that add even more useful methods. In the next chapter, we’ll show
you what it means to design objects in a functional style that gives new im-
plementations of some of the operators that you have seen in this chapter.

8By now you should be able to figure out that given this code, the Scala compiler would
invoke (bills. !+& %~ (code)).!().

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=137&v=2010_12_13

Section 5.10 Chapter 5 - Basic Types and Operations

Table 5.4 - Some rich operations

Code Result
0O max 5 5
Omin 5 0
-2.7 abs 2.7
-2.7 round -3L
1.51isInfinity false

(1.0/0) isInfinity true

4to6

"bob" capitalize
"robert" drop 2

Range(4, 5, 6)
llBobll
"bert"

Table 5.5 - Rich wrapper classes

Basic type Rich wrapper

Byte scala.
Short scala.
Int scala
Char scala.
Float scala.
Double scala.
Boolean scala.
String scala.

runtime.
runtime.
.runtime.
runtime.
runtime.
runtime.
runtime.
collection.immutable.StringOps

RichByte
RichShort
RichInt
RichChar
RichFloat
RichDouble
RichBoolean

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

138

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=138&v=2010_12_13

Chapter 6

Functional Objects

With the understanding of Scala basics you gained in previous chapters,
you’re ready to see how to design more full-featured classes in Scala. The
emphasis in this chapter is on classes that define functional objects, that is,
objects that do not have any mutable state. As a running example, we’ll
create several variants of a class that models rational numbers as immutable
objects. Along the way, we’ll show you more aspects of object-oriented
programming in Scala: class parameters and constructors, methods and op-
erators, private members, overriding, checking preconditions, overloading,
and self references.

6.1 A specification for class Rational

A rational number is a number that can be expressed as a ratio 7, where n
and d are integers, except that d cannot be zero. n is called the numerator
and d the denominator. Examples of rational numbers are %, %, %, and %
Compared to floating-point numbers, rational numbers have the advantage
that fractions are represented exactly, without rounding or approximation.
The class we’ll design in this chapter must model the behavior of rational
numbers, including allowing them to be added, subtracted, multiplied, and
divided. To add two rationals, you must first obtain a common denominator,
then add the two numerators. For example, to add % + %, you multiply both
parts of the left operand by 3 and both parts of the right operand by 2, which
gives you % + %. Adding the two numerators yields the result, %. To mul-
tiply two rational numbers, you can simply multiply their numerators and

multiply their denominators. Thus, % * % gives %, which can be represented

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=139&v=2010_12_13

Section 6.2 Chapter 6 - Functional Objects 140

more compactly in its “normalized” form as é You divide by swapping the
numerator and denominator of the right operand and then multiplying. For
instance % / % is the same as % * %, or %.

One, maybe rather trivial, observation is that in mathematics, rational
numbers do not have mutable state. You can add one rational number to
another, but the result will be a new rational number. The original num-
bers will not have “changed.” The immutable Rational class we’ll design
in this chapter will have the same property. Each rational number will be
represented by one Rational object. When you add two Rational objects,
you’ll create a new Rational object to hold the sum.

This chapter will give you a glimpse of some of the ways Scala enables
you to write libraries that feel like native language support. For example, at
the end of this chapter you’ll be able to do this with class Rational:

scala> val oneHalf = new Rational(l, 2)
oneHalf: Rational = 1/2

scala> val twoThirds = new Rational(2, 3)
twoThirds: Rational = 2/3

scala> (oneHalf / 7) + (1 - twoThirds)
resO: Rational = 17/42

6.2 Constructing a Rational

A good place to start designing class Rational is to consider how client
programmers will create a new Rational object. Given we’ve decided to
make Rational objects immutable, we’ll require that clients provide all data
needed by an instance (in this case, a numerator and a denominator) when
they construct the instance. Thus, we will start the design with this:

class Rational(n: Int, d: Int)

One of the first things to note about this line of code is that if a class doesn’t
have a body, you don’t need to specify empty curly braces (though you could,
of course, if you wanted to). The identifiers n and d in the parentheses after
the class name, Rational, are called class parameters. The Scala compiler
will gather up these two class parameters and create a primary constructor
that takes the same two parameters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=140&v=2010_12_13

Section 6.2 Chapter 6 - Functional Objects 141

Immutable object trade-offs

Immutable objects offer several advantages over mutable objects, and
one potential disadvantage. First, immutable objects are often easier to
reason about than mutable ones, because they do not have complex state
spaces that change over time. Second, you can pass immutable objects
around quite freely, whereas you may need to make defensive copies

of mutable objects before passing them to other code. Third, there is
no way for two threads concurrently accessing an immutable to corrupt
its state once it has been properly constructed, because no thread can
change the state of an immutable. Fourth, immutable objects make safe
hash table keys. If a mutable object is mutated after it is placed into a
HashSet, for example, that object may not be found the next time you
look into the HashSet.

The main disadvantage of immutable objects is that they sometimes
require that a large object graph be copied where otherwise an update
could be done in place. In some cases this can be awkward to express
and might also cause a performance bottleneck. As a result, it is not
uncommon for libraries to provide mutable alternatives to immutable
classes. For example, class StringBuilder is a mutable alternative to
the immutable String. We’ll give you more information on designing
mutable objects in Scala in Chapter 18.

Note

This initial Rational example highlights a difference between Java and
Scala. In Java, classes have constructors, which can take parameters,
whereas in Scala, classes can take parameters directly. The Scala notation
is more concise—class parameters can be used directly in the body of the
class; there’s no need to define fields and write assignments that copy
constructor parameters into fields. This can yield substantial savings in
boilerplate code, especially for small classes.

The Scala compiler will compile any code you place in the class body,
which isn’t part of a field or a method definition, into the primary constructor.
For example, you could print a debug message like this:

class Rational(n: Int, d: Int) {
println("'Created "+ n +"/"+ d)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=141&v=2010_12_13

Section 6.3 Chapter 6 - Functional Objects 142

Given this code, the Scala compiler would place the call to println into
Rational’s primary constructor. The println call will, therefore, print its
debug message whenever you create a new Rational instance:

scala> new Rational(l, 2)
Created 1/2
resO: Rational = Rational@90110a

6.3 Reimplementing the toString method

When we created an instance of Rational in the previous example, the in-
terpreter printed “Rational@90110a”. The interpreter obtained this some-
what funny looking string by calling toString on the Rational object. By
default, class Rational inherits the implementation of toString defined
in class java.lang.Object, which just prints the class name, an @ sign,
and a hexadecimal number. The result of toString is primarily intended
to help programmers by providing information that can be used in debug
print statements, log messages, test failure reports, and interpreter and de-
bugger output. The result currently provided by toString is not especially
helpful, because it doesn’t give any clue about the rational number’s value.
A more useful implementation of toString would print out the values of
the Rational’s numerator and denominator. You can override the default
implementation by adding a method toString to class Rational, like this:

class Rational(n: Int, d: Int) {
override def toString = n +"/"+ d

}

The override modifier in front of a method definition signals that a previous
method definition is overridden; more on this in Chapter 10. Since Rational
numbers will display nicely now, we removed the debug println statement
we put into the body of previous version of class Rational. You can test the
new behavior of Rational in the interpreter:

scala> val x = new Rational(l, 3)
x: Rational = 1/3

scala> val y = new Rational(5, 7)
y: Rational = 5/7

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=142&v=2010_12_13

Section 6.4 Chapter 6 - Functional Objects 143
6.4 Checking preconditions

As anext step, we will turn our attention to a problem with the current behav-
ior of the primary constructor. As mentioned at the beginning of this chapter,
rational numbers may not have a zero in the denominator. Currently, how-
ever, the primary constructor accepts a zero passed as d:

scala> new Rational(5, 0)
resl: Rational = 5/0

One of the benefits of object-oriented programming is that it allows you
to encapsulate data inside objects so that you can ensure the data is valid
throughout its lifetime. In the case of an immutable object such as Rational,
this means that you should ensure the data is valid when the object is con-
structed. Given that a zero denominator is an invalid state for a Rational
number, you should not let a Rational be constructed if a zero is passed in
the d parameter.

The best way to approach this problem is to define as a precondition of
the primary constructor that d must be non-zero. A precondition is a con-
straint on values passed into a method or constructor, a requirement which
callers must fulfill. One way to do that is to use require,' like this:

class Rational(n: Int, d: Int) {
require(d !'= 0)
override def toString = n +"/"+ d

}

The require method takes one boolean parameter. If the passed value is
true, require will return normally. Otherwise, require will prevent the ob-
ject from being constructed by throwing an I1legalArgumentException.

6.5 Adding fields

Now that the primary constructor is properly enforcing its precondition, we
will turn our attention to supporting addition. To do so, we’ll define a public
add method on class Rational that takes another Rational as a parame-
ter. To keep Rational immutable, the add method must not add the passed

IThe require method is defined in standalone object, Predef. As mentioned in Sec-
tion 4.4, Predef’s members are imported automatically into every Scala source file.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=143&v=2010_12_13

Section 6.5 Chapter 6 - Functional Objects 144

rational number to itself. Rather, it must create and return a new Rational
that holds the sum. You might think you could write add this way:

class Rational(n: Int, d: Int) { // This won’t compile
require(d !'= 0)
override def toString = n +"/"+ d
def add(that: Rational): Rational =
new Rational(n * that.d + that.n = d, d * that.d)

However, given this code the compiler will complain:

<console>:11: error: value d is not a member of Rational

new Rational(n * that.d + that.n % d, d * that.d)
<console>:11: error: value d is not a member of Rational

new Rational(n * that.d + that.n % d, d = that.d)

Although class parameters n and d are in scope in the code of your add
method, you can only access their value on the object on which add was
invoked. Thus, when you say n or d in add’s implementation, the compiler is
happy to provide you with the values for these class parameters. But it won’t
let you say that.n or that.d, because that does not refer to the Rational
object on which add was invoked.? To access the numerator and denominator
on that, you’ll need to make them into fields. Listing 6.1 shows how you
could add these fields to class Rational.’

In the version of Rational shown in Listing 6.1, we added two fields
named numer and denom, and initialized them with the values of class pa-
rameters n and d.* We also changed the implementation of toString and
add so that they use the fields, not the class parameters. This version of class
Rational compiles. You can test it by adding some rational numbers:

2 Actually, you could add a Rational to itself, in which case that would refer to the
object on which add was invoked. But because you can pass any Rational object to add, the
compiler still won’t let you say that.n.

3In Section 10.6 you’ll find out about parametric fields, which provide a shorthand for
writing the same code.

4Even though n and d are used in the body of the class, given they are only used inside
constructors, the Scala compiler will not emit fields for them. Thus, given this code the Scala
compiler will generate a class with two Int fields, one for numer and one for denom.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=144&v=2010_12_13

Section 6.6 Chapter 6 - Functional Objects 145

class Rational(n: Int, d: Int) {
require(d != 0)
val numer: Int = n
val denom: Int = d
override def toString = numer +"/"+ denom
def add(that: Rational): Rational =
new Rational(
numer = that.denom + that.numer * denom,
denom * that.denom

Listing 6.1 - Rational with fields.

scala> val oneHalf = new Rational(l, 2)
oneHalf: Rational = 1/2

scala> val twoThirds = new Rational(2, 3)
twoThirds: Rational = 2/3

scala> oneHalf add twoThirds
res3: Rational = 7/6

One other thing you can do now that you couldn’t do before is access the
numerator and denominator values from outside the object. Simply access
the public numer and denom fields, like this:

scala> val r = new Rational(l, 2)
r: Rational = 1/2

scala> r.numer
res4: Int = 1

scala> r.denom
res5: Int = 2

6.6 Self references

The keyword this refers to the object instance on which the currently exe-
cuting method was invoked, or if used in a constructor, the object instance

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=145&v=2010_12_13

Section 6.7 Chapter 6 - Functional Objects 146

being constructed. As an example, consider adding a method, lessThan,
which tests whether the given Rational is smaller than a parameter:

def lessThan(that: Rational) =
this.numer * that.denom < that.numer * this.denom

Here, this.numer refers to the numerator of the object on which lessThan
was invoked. You can also leave off the this prefix and write just numer;
the two notations are equivalent.

As an example where you can’t do without this, consider adding a max
method to class Rational that returns the greater of the given rational num-
ber and an argument:

def max(that: Rational) =
if (this.lessThan(that)) that else this

Here, the first this is redundant. You could have equally well left it off and
written: lessThan(that). But the second this represents the result of the
method in the case where the test returns false; were you to omit it, there
would be nothing left to return!

6.7 Auxiliary constructors

Sometimes you need multiple constructors in a class. In Scala, construc-
tors other than the primary constructor are called auxiliary constructors. For
example, a rational number with a denominator of 1 can be written more suc-
cinctly as simply the numerator. Instead of %, for example, you can just write
5. It might be nice, therefore, if instead of writing new Rational(5, 1),
client programmers could simply write new Rational(5). This would re-
quire adding an auxiliary constructor to Rational that takes only one argu-
ment, the numerator, with the denominator predefined to be 1. Listing 6.2
shows what that would look like.

Auxiliary constructors in Scala start with def this(...). The body
of Rational’s auxiliary constructor merely invokes the primary constructor,
passing along its lone argument, n, as the numerator and 1 as the denomina-
tor. You can see the auxiliary constructor in action by typing the following
into the interpreter:

scala> val y = new Rational(3)
y: Rational = 3/1

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=146&v=2010_12_13

Section 6.7 Chapter 6 - Functional Objects 147

class Rational(n: Int, d: Int) {
require(d !'= 0)
val numer: Int =n
val denom: Int = d
def this(n: Int) = this(n, 1) // auxiliary constructor
override def toString = numer +"/"+ denom

def add(that: Rational): Rational =
new Rational(
numer = that.denom + that.numer * denom,
denom * that.denom

Listing 6.2 - Rational with an auxiliary constructor.

In Scala, every auxiliary constructor must invoke another constructor of
the same class as its first action. In other words, the first statement in every
auxiliary constructor in every Scala class will have the form “this(...)”.
The invoked constructor is either the primary constructor (as in the Rational
example), or another auxiliary constructor that comes textually before the
calling constructor. The net effect of this rule is that every constructor invo-
cation in Scala will end up eventually calling the primary constructor of the
class. The primary constructor is thus the single point of entry of a class.

Note

If you’re familiar with Java, you may wonder why Scala’s rules for
constructors are a bit more restrictive than Java’s. In Java, a constructor
must either invoke another constructor of the same class, or directly invoke
a constructor of the superclass, as its first action. In a Scala class, only the
primary constructor can invoke a superclass constructor. The increased
restriction in Scala is really a design trade-off that needed to be paid in
exchange for the greater conciseness and simplicity of Scala’s constructors
compared to Java’s. Superclasses and the details of how constructor
invocation and inheritance interact will be explained in Chapter 10.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=147&v=2010_12_13

Section 6.8 Chapter 6 - Functional Objects 148
6.8 Private fields and methods

In the previous version of Rational, we simply initialized numer with n and
denom with d. As a result, the numerator and denominator of a Rational can
be larger than needed. For example, the fraction %6 could be normalized to

42
an equivalent reduced form, 17—1, but Rational’s primary constructor doesn’t
currently do this:

scala> new Rational(66, 42)
res6: Rational = 66/42

To normalize in this way, you need to divide the numerator and denominator
by their greatest common divisor. For example, the greatest common divisor
of 66 and 42 is 6. (In other words, 6 is the largest integer that divides evenly
into both 66 and 42.) Dividing both the numerator and denominator of % by
6 yields its reduced form, L. Listing 6.3 shows one way to do this:

class Rational(n: Int, d: Int) {
require(d != 0)

private val g = gcd(n.abs, d.abs)
val numer = n / g
val denom =d / g

def this(n: Int) = this(n, 1)

def add(that: Rational): Rational =
new Rational(
numer * that.denom + that.numer = denom,
denom * that.denom

)
override def toString = numer +"/"+ denom

private def gcd(a: Int, b: Int): Int =
if (b == 0) a else gcd(b, a % b)

Listing 6.3 - Rational with a private field and method.

In this version of Rational, we added a private field, g, and modified the
initializers for numer and denom. (An initializer is the code that initializes

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=148&v=2010_12_13

Section 6.9 Chapter 6 - Functional Objects 149

a variable, for example, the “n / g” that initializes numer.) Because g is
private, it can be accessed inside the body of the class, but not outside. We
also added a private method, gcd, which calculates the greatest common
divisor of two passed Ints. For example, gcd(12, 8) is 4. As you saw in
Section 4.1, to make a field or method private you simply place the private
keyword in front of its definition. The purpose of the private “helper method”
gcd is to factor out code needed by some other part of the class, in this case,
the primary constructor. To ensure g is always positive, we pass the absolute
value of n and d, which we obtain by invoking abs on them, a method you
can invoke on any Int to get its absolute value.

The Scala compiler will place the code for the initializers of Rational’s
three fields into the primary constructor in the order in which they appear
in the source code. Thus, g’s initializer, gcd(n.abs, d.abs), will execute
before the other two, because it appears first in the source. Field g will be
initialized with the result, the greatest common divisor of the absolute value
of the class parameters, n and d. Field g is then used in the initializers of
numer and denom. By dividing n and d by their greatest common divisor, g,
every Rational will be constructed in its normalized form:

scala> new Rational(66, 42)
res7: Rational = 11/7

6.9 Defining operators

The current implementation of Rational addition is OK, but could be made
more convenient to use. You might ask yourself why you can write:

X + VY
if x and y are integers or floating-point numbers, but you have to write:
x.add(y)
or at least:
X add vy

if they are rational numbers. There’s no convincing reason why this should
be so. Rational numbers are numbers just like other numbers. In a mathe-
matical sense they are even more natural than, say, floating-point numbers.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=149&v=2010_12_13

Section 6.9 Chapter 6 - Functional Objects 150

Why should you not use the natural arithmetic operators on them? In Scala
you can do this. In the rest of this chapter, we’ll show you how.

The first step is to replace add by the usual mathematical symbol. This
is straightforward, as + is a legal identifier in Scala. We can simply define
a method with + as its name. While we’re at it, you may as well imple-
ment a method named = that performs multiplication. The result is shown in
Listing 6.4:

class Rational(n: Int, d: Int) {
require(d != 0)

private val g = gcd(n.abs, d.abs)
val numer = n / g
val denom =d / g

def this(n: Int) = this(n, 1)

def + (that: Rational): Rational =
new Rational(
numer * that.denom + that.numer * denom,
denom * that.denom

)

def * (that: Rational): Rational =
new Rational(numer #* that.numer, denom * that.denom)

override def toString = numer +"/"+ denom

private def gcd(a: Int, b: Int): Int =
if (b == 0) a else gcd(b, a % b)

Listing 6.4 - Rational with operator methods.

With class Rational defined in this manner, you can now write:

scala> val x = new Rational(l, 2)
x: Rational = 1/2

scala> val vy = new Rational(2, 3)
y: Rational = 2/3

scala> x + vy
res8: Rational = 7/6

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=150&v=2010_12_13

Section 6.10 Chapter 6 - Functional Objects 151

As always, the operator syntax on the last input line is equivalent to a method
call. You could also write:

scala> x.+(y)
res9: Rational = 7/6

but this is not as readable.

Another thing to note is that given Scala’s rules for operator precedence,
which were described in Section 5.8, the * method will bind more tightly
than the + method for Rationals. In other words, expressions involving
+ and = operations on Rationals will behave as expected. For example,
x + x * y will execute as x + (x * y), not (X +X) * y:

scala> x + X * Yy
resl0: Rational = 5/6

scala> (x + x) * y
resll: Rational = 2/3

scala> x + (x * y)
resl2: Rational = 5/6

6.10 Identifiers in Scala

You have now seen the two most important ways to form an identifier in
Scala: alphanumeric and operator. Scala has very flexible rules for forming
identifiers. Besides the two forms you have seen there are also two others.
All four forms of identifier formation are described in this section.

An alphanumeric identifier starts with a letter or underscore, which can
be followed by further letters, digits, or underscores. The ‘$’ character also
counts as a letter, however it is reserved for identifiers generated by the Scala
compiler. Identifiers in user programs should not contain ‘$’ characters, even
though it will compile; if they do this might lead to name clashes with iden-
tifiers generated by the Scala compiler.

Scala follows Java’s convention of using camel-case’ identifiers, such as
toString and HashSet. Although underscores are legal in identifiers, they
are not used that often in Scala programs, in part to be consistent with Java,

SThis style of naming identifiers is called camel case because the identifiersHaveHumps
consisting of the embedded capital letters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=151&v=2010_12_13

Section 6.10 Chapter 6 - Functional Objects 152

but also because underscores have many other non-identifier uses in Scala
code. As aresult, it is best to avoid identifiers like to_string, __init__, or
name_. Camel-case names of fields, method parameters, local variables, and
functions should start with lower case letter, for example: length, flatMap,
and s. Camel-case names of classes and traits should start with an upper case
letter, for example: BigInt, List, and UnbalancedTreeMap.’

Note

One consequence of using a trailing underscore in an identifier is that if
you attempt, for example, to write a declaration like this,

“val name_: Int =1, you’ll get a compiler error. The compiler will
think you are trying to declare a val named “name_:". To get this to
compile, you would need to insert an extra space before the colon, as in:
“val name_ : Int =1".

One way in which Scala’s conventions depart from Java’s involves con-
stant names. In Scala, the word constant does not just mean val. Even
though a val does remain constant after it is initialized, it is still a variable.
For example, method parameters are vals, but each time the method is called
those vals can hold different values. A constant is more permanent. For ex-
ample, scala.math.Pi is defined to be the double value closest to the real
value of m, the ratio of a circle’s circumference to its diameter. This value
is unlikely to change ever, thus, Pi is clearly a constant. You can also use
constants to give names to values that would otherwise be magic numbers in
your code: literal values with no explanation, which in the worst case appear
in multiple places. You may also want to define constants for use in pattern
matching, a use case that will be described in Section 15.2. In Java, the con-
vention is to give constants names that are all upper case, with underscores
separating the words, such as MAX_VALUE or PI. In Scala, the convention is
merely that the first character should be upper case. Thus, constants named
in the Java style, such as X_OFFSET, will work as Scala constants, but the
Scala convention is to use camel case for constants, such as XOffset.

An operator identifier consists of one or more operator characters. Oper-
ator characters are printable ASCII characters such as +, :, ?, ~ or #.” Here

SIn Section 16.5, you’ll see that sometimes you may want to give a special kind of class
known as a case class a name consisting solely of operator characters. For example, the Scala
API contains a class named : :, which facilitates pattern matching on Lists.

"More precisely, an operator character belongs to the Unicode set of mathematical sym-
bols(Sm) or other symbols(So), or to the 7-bit ASCII characters that are not letters, digits,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=152&v=2010_12_13

Section 6.10 Chapter 6 - Functional Objects 153
are some examples of operator identifiers:
+ 4+ i 7> >

The Scala compiler will internally “mangle” operator identifiers to turn
them into legal Java identifiers with embedded $ characters. For instance, the
identifier : -> would be represented internally as $colon$minus§greater.
If you ever wanted to access this identifier from Java code, you’d need to use
this internal representation.

Because operator identifiers in Scala can become arbitrarily long, there is
a small difference between Java and Scala. In Java, the input x<-y would be
parsed as four lexical symbols, so it would be equivalent to x < - y. In Scala,
<- would be parsed as a single identifier, giving x <- y. If you want the first
interpretation, you need to separate the < and the - characters by a space.
This is unlikely to be a problem in practice, as very few people would write
x<-y in Java without inserting spaces or parentheses between the operators.

A mixed identifier consists of an alphanumeric identifier, which is fol-
lowed by an underscore and an operator identifier. For example, unary_+
used as a method name defines a unary + operator. Or, myvar_= used as
method name defines an assignment operator. In addition, the mixed identi-
fier form myvar_= is generated by the Scala compiler to support properties;
more on that in Chapter 18.

A literal identifier is an arbitrary string enclosed in back ticks (* ... ").
Some examples of literal identifiers are:

‘X' “<clinit>" yield®

The idea is that you can put any string that’s accepted by the runtime
as an identifier between back ticks. The result is always a Scala identifier.
This works even if the name contained in the back ticks would be a Scala
reserved word. A typical use case is accessing the static yield method in
Java’s Thread class. You cannot write Thread.yield() because yield is
a reserved word in Scala. However, you can still name the method in back
ticks, e.g., Thread. "yield ().

parentheses, square brackets, curly braces, single or double quote, or an underscore, period,
semi-colon, comma, or back tick character.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=153&v=2010_12_13

Section 6.11 Chapter 6 - Functional Objects 154
6.11 Method overloading

Back to class Rational. With the latest changes, you can now do addition
and multiplication operations in a natural style on rational numbers. But one
thing still missing is mixed arithmetic. For instance, you cannot multiply a
rational number by an integer, because the operands of » always have to be
Rationals. So for a rational number r you can’t write r * 2. You must write
r « new Rational (2), which is not as nice.

To make Rational even more convenient, we’ll add new methods to the
class that perform mixed addition and multiplication on rational numbers and
integers. While we’re at it, we’ll add methods for subtraction and division
too. The result is shown in Listing 6.5.

There are now two versions each of the arithmetic methods: one that
takes a rational as its argument and another that takes an integer. In other
words, each of these method names is overloaded, because each name is
now being used by multiple methods. For example, the name + is used
by one method that takes a Rational and another that takes an Int. In a
method call, the compiler picks the version of an overloaded method that
correctly matches the types of the arguments. For instance, if the argument
y in x.+(y) is a Rational, the compiler will pick the method + that takes
a Rational parameter. But if the argument is an integer, the compiler will
pick the method + that takes an Int parameter instead. If you try this:

scala> val x = new Rational(2, 3)
x: Rational = 2/3

scala> x * x

resl3: Rational = 4/9
scala> x = 2
resl4: Rational = 4/3

You’ll see that the * method invoked is determined in each case by the type
of the right operand.

Note

Scala’s process of overloaded method resolution is very similar to Java’s.
In every case, the chosen overloaded version is the one that best matches
the static types of the arguments. Sometimes there is no unique best
matching version; in that case the compiler will give you an “ambiguous
reference” error.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=154&v=2010_12_13

Section 6.11

Chapter 6 - Functional Objects

class Rational(n: Int, d: Int) {

require(d !'= 0)

private val g = gcd(n.abs, d.abs)
val numer = n / g
val denom =d / g

def this(n: Int) = this(n, 1)

def +
new

(that: Rational): Rational =
Rational(

numer * that.denom + that.numer =* denom,
denom * that.denom

)
def +

new

def -
new

(i: Int): Rational =
Rational (numer + i * denom, denom)

(that: Rational): Rational =
Rational(

numer * that.denom - that.numer * denom,
denom * that.denom

)
def -

new
def =

new

def =
new

def /
new

def /
new

(i: Int): Rational =
Rational (numer - i * denom, denom)

(that: Rational): Rational =

Rational (numer +* that.numer, denom * that.denom)

(i: Int): Rational =
Rational (numer =+ i, denom)

(that: Rational): Rational =

Rational (numer * that.denom, denom * that.numer)

(i: Int): Rational =
Rational (numer, denom * i)

override def toString = numer +"/"+ denom

private def gcd(a: Int, b: Int): Int =
if (b == 0) a else gcd(b, a % b)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

Listing 6.5 - Rational with overloaded methods.

155

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=155&v=2010_12_13

Section 6.12 Chapter 6 - Functional Objects 156
6.12 Implicit conversions

Now that you can write r * 2, you might also want to swap the operands, as
in 2 » r. Unfortunately this does not work yet:

scala> 2 = r
<console>:7: error: overloaded method value * with
alternatives (Double)Double <and> (Float)Float <and>
(Long)Long <and> (Int)Int <and> (Char)Int <and> (Short)Int
<and> (Byte)Int cannot be applied to (Rational)
2 %71
The problem here is that 2 = r is equivalent to 2.=(r), so it is a method
call on the number 2, which is an integer. But the Int class contains no
multiplication method that takes a Rational argument—it couldn’t because
class Rational is not a standard class in the Scala library.
However, there is another way to solve this problem in Scala: You can
create an implicit conversion that automatically converts integers to rational
numbers when needed. Try adding this line in the interpreter:

scala> implicit def intToRational(x: Int) = new Rational(x)

This defines a conversion method from Int to Rational. The implicit
modifier in front of the method tells the compiler to apply it automatically in
a number of situations. With the conversion defined, you can now retry the
example that failed before:

scala> val r = new Rational(2,3)
r: Rational = 2/3

scala> 2 = r
resl6: Rational = 4/3

Note that for an implicit conversion to work, it needs to be in scope. If
you place the implicit method definition inside class Rational, it won’t be
in scope in the interpreter. For now, you’ll need to define it directly in the
interpreter.

As you can glimpse from this example, implicit conversions are a very
powerful technique for making libraries more flexible and more convenient
to use. Because they are so powerful, they can also be easily misused. You’ll

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=156&v=2010_12_13

Section 6.13 Chapter 6 - Functional Objects 157

find out more on implicit conversions, including ways to bring them into
scope where they are needed, in Chapter 21.

6.13 A word of caution

As this chapter has demonstrated, creating methods with operator names and
defining implicit conversions can help you design libraries for which client
code is concise and easy to understand. Scala gives you a great deal of power
to design such easy-to-use libraries, but please bear in mind that with power
comes responsibility.

If used unartfully, both operator methods and implicit conversions can
give rise to client code that is hard to read and understand. Because im-
plicit conversions are applied implicitly by the compiler, not explicitly writ-
ten down in the source code, it can be non-obvious to client programmers
what implicit conversions are being applied. And although operator meth-
ods will usually make client code more concise, they will only make it more
readable to the extent client programmers will be able to recognize and re-
member the meaning of each operator.

The goal you should keep in mind as you design libraries is not merely
enabling concise client code, but readable, understandable client code. Con-
ciseness will often be a big part of that readability, but you can take concise-
ness too far. By designing libraries that enable tastefully concise and at the
same time understandable client code, you can help those client program-
mers work productively.

6.14 Conclusion

In this chapter, you saw more aspects of classes in Scala. You saw how to
add parameters to a class, define several constructors, define operators as
methods, and customize classes so that they are natural to use. Maybe most
importantly, you saw that defining and using immutable objects is a quite
natural way to code in Scala.

Although the final version of Rational shown in this chapter fulfills the
requirements set forth at the beginning of the chapter, it could still be im-
proved. We will in fact return to this example later in the book. For example,
in Chapter 30, you’ll learn how to override equals and hashcode to allow
Rationals to behave better when compared with == or placed into hash ta-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=157&v=2010_12_13

Section 6.14 Chapter 6 - Functional Objects 158
bles. In Chapter 21, you’ll learn how to place implicit method definitions

in a companion object for Rational, so they can be more easily placed into
scope when client programmers are working with Rationals.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=158&v=2010_12_13

Chapter 7

Built-in Control Structures

Scala has only a handful of built-in control structures. The only control struc-
tures are if, while, for, try, match, and function calls. The reason Scala
has so few is that it has included function literals since its inception. Instead
of accumulating one higher-level control structure after another in the base
syntax, Scala accumulates them in libraries. Chapter 9 will show precisely
how that is done. This chapter will show those few control structures that are
built in.

One thing you will notice is that almost all of Scala’s control structures
result in some value. This is the approach taken by functional languages, in
which programs are viewed as computing a value, thus the components of a
program should also compute values. You can also view this approach as the
logical conclusion of a trend already present in imperative languages. In im-
perative languages, function calls can return a value, even though having the
called function update an output variable passed as an argument would work
just as well. In addition, imperative languages often have a ternary operator
(such as the ?: operator of C, C++, and Java), which behaves exactly like
if, but results in a value. Scala adopts this ternary operator model, but calls
it if. In other words, Scala’s if can result in a value. Scala then continues
this trend by having for, try, and match also result in values.

Programmers can use these result values to simplify their code, just as
they use return values of functions. Without this facility, the programmer
must create temporary variables just to hold results that are calculated inside
a control structure. Removing these temporary variables makes the code a
little simpler, and it also prevents many bugs where you set the variable in
one branch but forget to set it in another.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=159&v=2010_12_13

Section 7.1 Chapter 7 - Built-in Control Structures 160

Overall, Scala’s basic control structures, minimal as they are, are suffi-
cient to provide all of the essentials from imperative languages. Further, they
allow you to shorten your code by consistently having result values. To show
you how all of this works, this chapter takes a closer look at each of Scala’s
basic control structures.

7.1 If expressions

Scala’s if works just like in many other languages. It tests a condition and
then executes one of two code branches depending on whether the condition
holds true. Here is a common example, written in an imperative style:

var filename = "default.txt"
if (largs.isEmpty)
filename = args(0)

This code declares a variable, filename, and initializes it to a default value.
It then uses an if expression to check whether any arguments were supplied
to the program. If so, it changes the variable to hold the value specified in
the argument list. If no arguments were supplied, it leaves the variable set to
the default value.

This code can be written more nicely, because as mentioned in Step 3
in Chapter 2, Scala’s if is an expression that results in a value. Listing 7.1
shows how you can accomplish the same effect as the previous example, but
without using any vars:

val filename =
if (largs.isEmpty) args(0)
else "default.txt"

Listing 7.1 - Scala’s idiom for conditional initialization.

This time, the if has two branches. If args is not empty, the initial
element, args(0), is chosen. Else, the default value is chosen. The if ex-
pression results in the chosen value, and the filename variable is initialized
with that value. This code is slightly shorter, but its real advantage is that it
uses a val instead of a var. Using a val is the functional style, and it helps
you in much the same way as a final variable in Java. It tells readers of the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=160&v=2010_12_13

Section 7.2 Chapter 7 - Built-in Control Structures 161

code that the variable will never change, saving them from scanning all code
in the variable’s scope to see if it ever changes.

A second advantage to using a val instead of a var is that it better sup-
ports equational reasoning. The introduced variable is equal to the expres-
sion that computes it, assuming that expression has no side effects. Thus,
any time you are about to write the variable name, you could instead write
the expression. Instead of println(filename), for example, you could just
as well write this:

println(if ('args.isEmpty) args(0) else "default.txt")

The choice is yours. You can write it either way. Using vals helps you safely
make this kind of refactoring as your code evolves over time.

Look for opportunities to use vals. They can make your
code both easier to read and easier to refactor.

7.2 While loops

Scala’s while loop behaves as in other languages. It has a condition and a
body, and the body is executed over and over as long as the condition holds
true. Listing 7.2 shows an example:

def gcdLoop(x: Long, y: Long): Long = {
var a = X
var b = y
while (a != 0) {
val temp = a
a=b % a
b = temp

}

Listing 7.2 - Calculating greatest common divisor with a while loop.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=161&v=2010_12_13

Section 7.2 Chapter 7 - Built-in Control Structures 162

Scala also has a do-while loop. This works like the while loop except
that it tests the condition after the loop body instead of before. Listing 7.3
shows a Scala script that uses a do-while to echo lines read from the stan-
dard input, until an empty line is entered:

var line =
do {
line = readLine()
println("Read: "+ line)
} while (line != "")

Listing 7.3 - Reading from the standard input with do-while.

The while and do-while constructs are called “loops,” not expressions,
because they don’t result in an interesting value. The type of the result is
Unit. It turns out that a value (and in fact, only one value) exists whose type
is Unit. It is called the unit value and is written (). The existence of () is
how Scala’s Unit differs from Java’s void. Try this in the interpreter:

scala> def greet() { println("hi") }
greet: ()Unit

scala> greet() == ()
hi
resO: Boolean = true

Because no equals sign precedes its body, greet is defined to be a proce-
dure with a result type of Unit. Therefore, greet returns the unit value, ().
This is confirmed in the next line: comparing the greet’s result for equality
with the unit value, (), yields true.

One other construct that results in the unit value, which is relevant here,
is reassignment to vars. For example, were you to attempt to read lines in
Scala using the following while loop idiom from Java (and C and C++),
you’ll run into trouble:

nn

var line =
while ((line = readLine()) != "") // This doesn’t work!
println("Read: "+ line)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=162&v=2010_12_13

Section 7.2 Chapter 7 - Built-in Control Structures 163

When you compile this code, Scala will give you a warning that comparing
values of type Unit and String using != will always yield true. Whereas
in Java, assignment results in the value assigned, in this case a line from
the standard input, in Scala assignment always results in the unit value, ().
Thus, the value of the assignment “line = readLine()” will always be ()
and never be "". As a result, this while loop’s condition will never be false,
and the loop will, therefore, never terminate.

Because the while loop results in no value, it is often left out of pure
functional languages. Such languages have expressions, not loops. Scala
includes the while loop nonetheless, because sometimes an imperative solu-
tion can be more readable, especially to programmers with a predominantly
imperative background. For example, if you want to code an algorithm that
repeats a process until some condition changes, a while loop can express it
directly while the functional alternative, which likely uses recursion, may be
less obvious to some readers of the code.

For example, Listing 7.4 shows an alternate way to determine a greatest
common divisor of two numbers.! Given the same two values for x and
y, the gcd function shown in Listing 7.4 will return the same result as the
gcdLoop function, shown in Listing 7.2. The difference between these two
approaches is that gcdLoop is written in an imperative style, using vars and
and a while loop, whereas gcd is written in a more functional style that
involves recursion (gcd calls itself) and requires no vars.

def gecd(x: Long, y: Long): Long =
if (v == 0) x else gcd(y, x % V)

Listing 7.4 - Calculating greatest common divisor with recursion.

In general, we recommend you challenge while loops in your code in the
same way you challenge vars. In fact, while loops and vars often go hand
in hand. Because while loops don’t result in a value, to make any kind of
difference to your program, a while loop will usually either need to update
vars or perform I/O. You can see this in action in the gcdLoop example
shown previously. As that while loop does its business, it updates vars a
and b. Thus, we suggest you be a bit suspicious of while loops in your code.

IThe ged function shown in Listing 7.4 uses the same approach used by the like-named
function, first shown in Listing 6.3, to calculate greatest common divisors for class Rational.
The main difference is that instead of Ints the gcd of Listing 7.4 works with Longs.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=163&v=2010_12_13

Section 7.3 Chapter 7 - Built-in Control Structures 164

If there isn’t a good justification for a particular while or do-while loop,
try to find a way to do the same thing without it.

7.3 For expressions

Scala’s for expression is a Swiss army knife of iteration. It lets you combine
a few simple ingredients in different ways to express a wide variety of itera-
tions. Simple uses enable common tasks such as iterating through a sequence
of integers. More advanced expressions can iterate over multiple collections
of different kinds, can filter out elements based on arbitrary conditions, and
can produce new collections.

Iteration through collections

The simplest thing you can do with for is to iterate through all the elements
of a collection. For example, Listing 7.5 shows some code that prints out
all files in the current directory. The I/O is performed using the Java API.
First, we create a java.io.File on the current directory, ".", and call its
listFiles method. This method returns an array of File objects, one per
directory and file contained in the current directory. We store the resulting

array in the filesHere variable.

val filesHere = (new java.io.File(".")).listFiles

for (file <- filesHere)
printin(file)

Listing 7.5 - Listing files in a directory with a for expression.

With the “file <- filesHere” syntax, which is called a generator, we
iterate through the elements of filesHere. In each iteration, a new val
named file is initialized with an element value. The compiler infers the
type of file to be File, because filesHere is an Array[File]. For each
iteration, the body of the for expression, println(file), will be executed.
Because File’s toString method yields the name of the file or directory, the
names of all the files and directories in the current directory will be printed.

The for expression syntax works for any kind of collection, not just
arrays.” One convenient special case is the Range type, which you briefly

2To be precise, the expression to the right of the <- symbol in a for expression can be

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=164&v=2010_12_13

Section 7.3 Chapter 7 - Built-in Control Structures 165

saw in Table 5.4 on page 138. You can create Ranges using syntax like
“1 to 5” and can iterate through them with a for. Here is a simple example:

scala> for (i <- 1 to 4)
println("'Iteration

Iteration 1

Iteration 2

Iteration 3

Iteration 4

+ 1)

If you don’t want to include the upper bound of the range in the values that
are iterated over, use until instead of to:

scala> for (i <- 1 until 4)
println("'Iteration

Iteration 1

Iteration 2

Iteration 3

+ 1)

Iterating through integers like this is common in Scala, but not nearly as
much as in other languages. In other languages, you might use this facility
to iterate through an array, like this:

// Not common in Scala...
for (i <- 0 to filesHere.length - 1)
println(filesHere(i))

This for expression introduces a variable i, sets it in turn to each integer
between 0 and filesHere.length - 1, and executes the body of the for
expression for each setting of i. For each setting of i, the i’th element of
filesHere is extracted and processed.

The reason this kind of iteration is less common in Scala is that you can
just as well iterate over the collection directly. If you do, your code becomes
shorter and you sidestep many of the off-by-one errors that can arise when
iterating through arrays. Should you start at O or 1? Should you add -1, +1,
or nothing to the final index? Such questions are easily answered, but easily
answered wrongly. It is safer to avoid such questions entirely.

any type that has certain methods, in this case foreach, with appropriate signatures. The
details on how the Scala compiler processes for expressions are described in Chapter 23.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=165&v=2010_12_13

Section 7.3 Chapter 7 - Built-in Control Structures 166

Filtering

Sometimes you do not want to iterate through a collection in its entirety. You
want to filter it down to some subset. You can do this with a for expression
by adding a filter: an if clause inside the for’s parentheses. For example,
the code shown in Listing 7.6 lists only those files in the current directory
whose names end with “.scala”

val filesHere = (new java.io.File(".")).listFiles

for (file <- filesHere if file.getName.endsWith(".scala"))
println(file)

Listing 7.6 - Finding .scala files using a for with a filter.

You could alternatively accomplish the same goal with this code:

for (file <- filesHere)
if (file.getName.endsWith(".scala"))
println(file)

This code yields the same output as the previous code, and likely looks more
familiar to programmers with an imperative background. The imperative
form, however, is only an option because this particular for expression is
executed for its printing side-effects and results in the unit value (). As
will be demonstrated later in this section, the for expression is called an
“expression” because it can result in an interesting value, a collection whose
type is determined by the for expression’s <- clauses.

You can include more filters if you want. Just keep adding if clauses.
For example, to be extra defensive, the code in Listing 7.7 prints only files
and not directories. It does so by adding a filter that checks the file’s
isFile method.

for (

file <- filesHere

if file.isFile

if file.getName.endsWith(".scala")
) println(file)

Listing 7.7 - Using multiple filters in a for expression.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=166&v=2010_12_13

Section 7.3 Chapter 7 - Built-in Control Structures 167

Nested iteration

If you add multiple <- clauses, you will get nested “loops.” For exam-
ple, the for expression shown in Listing 7.8 has two nested loops. The
outer loop iterates through filesHere, and the inner loop iterates through
fileLines(file) for any file that ends with .scala.

def filelLines(file: java.io.File) =
scala.io.Source.fromFile(file).getLines().tolList

def grep(pattern: String) =
for (
file <- filesHere
if file.getName.endsWith(".scala");
line <- filelines(file)
if line.trim.matches(pattern)
) println(file +": "+ line.trim)

grep(".«xgcd.=")

Listing 7.8 - Using multiple generators in a for expression.

If you prefer, you can use curly braces instead of parentheses to surround
the generators and filters. One advantage to using curly braces is that you can
leave off some of the semicolons that are needed when you use parentheses,
because as explained in Section 4.2, the Scala compiler will not infer semi-
colons while inside parentheses.

Mid-stream variable bindings

Note that the previous code repeats the expression line.trim. This is a
non-trivial computation, so you might want to only compute it once. You
can do this by binding the result to a new variable using an equals sign (=).
The bound variable is introduced and used just like a val, only with the val
keyword left out. Listing 7.9 shows an example.

In Listing 7.9, a variable named trimmed is introduced halfway through
the for expression. That variable is initialized to the result of 1line.trim.
The rest of the for expression then uses the new variable in two places, once
in an if and once in println.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=167&v=2010_12_13

Section 7.3 Chapter 7 - Built-in Control Structures 168

def grep(pattern: String) =

for {
file <- filesHere
if file.getName.endsWith(".scala")
line <- fileLines(file)
trimmed = line.trim
if trimmed.matches(pattern)

} printin(file +": "+ trimmed)

grep(".«=gcd.=")

Listing 7.9 - Mid-stream assignment in a for expression.

Producing a new collection

While all of the examples so far have operated on the iterated values and then
forgotten them, you can also generate a value to remember for each iteration.
To do so, you prefix the body of the for expression by the keyword yield.
For example, here is a function that identifies the .scala files and stores
them in an array:

def scalaFiles =
for {
file <- filesHere
if file.getName.endsWith(".scala")
} vield file

Each time the body of the for expression executes it produces one value,
in this case simply file. When the for expression completes, the result
will include all of the yielded values contained in a single collection. The
type of the resulting collection is based on the kind of collections processed
in the iteration clauses. In this case the result is an Array[File], because
filesHere is an array and the type of the yielded expression is File.

Be careful, by the way, where you place the yield keyword. The syntax
of a for-yield expression is like this:

for clauses yield body

The yield goes before the entire body. Even if the body is a block sur-
rounded by curly braces, put the yield before the first curly brace, not be-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=168&v=2010_12_13

Section 7.4 Chapter 7 - Built-in Control Structures 169

fore the last expression of the block. Avoid the temptation to write things
like this:

for (file <- filesHere if file.getName.endsWith(".scala")) {
yield file // Syntax error!
}

For example, the for expression shown in Listing 7.10 first transforms
the Array[File] named filesHere, which contains all files in the current
directory, to one that contains only .scala files. For each of these it gen-
erates an Iterator[String] (the result of the fileLines method, whose
definition is shown in Listing 7.8). An Iterator offers methods next and
hasNext that allow you to iterate over a collection of elements. This ini-
tial iterator is transformed into another Iterator[String] containing only
trimmed lines that include the substring "for". Finally, for each of these, an
integer length is yielded. The result of this for expression is an Array[Int]
containing those lengths.

val forLinelengths =

for {
file <- filesHere
if file.getName.endsWith(".scala")
line <- filelines(file)
trimmed = line.trim
if trimmed.matches(".=for.=")

} vield trimmed.length

Listing 7.10 - Transforming an Array[File] to Array[Int] with a for.

At this point, you have seen all the major features of Scala’s for ex-
pression. This section went through them rather quickly, however. A more
thorough coverage of for expressions is given in Chapter 23.

7.4 Exception handling with try expressions

Scala’s exceptions behave just like in many other languages. Instead of re-
turning a value in the normal way, a method can terminate by throwing an
exception. The method’s caller can either catch and handle that exception,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=169&v=2010_12_13

Section 7.4 Chapter 7 - Built-in Control Structures 170

or it can itself simply terminate, in which case the exception propagates to
the caller’s caller. The exception propagates in this way, unwinding the call
stack, until a method handles it or there are no more methods left.

Throwing exceptions

Throwing an exception looks the same as in Java. You create an exception
object and then you throw it with the throw keyword:

throw new IllegalArgumentException

Although it may seem somewhat paradoxical, in Scala, throw is an ex-
pression that has a result type. Here is an example in which that result type
matters:

val half =
if (n % 2 == 0)
n/?2
else
throw new RuntimeException(''n must be even')

What happens here is that if n is even, half will be initialized to half of n.
If n is not even, an exception will be thrown before half can be initialized
to anything at all. Because of this, it is safe to treat a thrown exception as
any kind of value whatsoever. Any context that tries to use the return from a
throw will never get to do so, and thus no harm will come.

Technically, an exception throw has type Nothing. You can use a throw
as an expression even though it will never actually evaluate to anything. This
little bit of technical gymnastics might sound weird, but is frequently useful
in cases like the previous example. One branch of an if computes a value,
while the other throws an exception and computes Nothing. The type of
the whole if expression is then the type of that branch which does compute
something. Type Nothing is discussed further in Section 11.3.

Catching exceptions

You catch exceptions using the syntax shown in Listing 7.11 The syntax for
catch clauses was chosen for its consistency with an important part of Scala:
pattern matching. Pattern matching, a powerful feature, is described briefly
in this chapter and in more detail in Chapter 15.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=170&v=2010_12_13

Section 7.4 Chapter 7 - Built-in Control Structures 171

import java.io.FileReader
import java.io.FileNotFoundException
import java.io.IOException

try {
val f = new FileReader("input.txt")
// Use and close file
} catch {
case ex: FileNotFoundException => // Handle missing file
case ex: IOException => // Handle other I/0 error

Listing 7.11 - A try-catch clause in Scala.

The behavior of this try-catch expression is the same as in other lan-
guages with exceptions. The body is executed, and if it throws an exception,
each catch clause is tried in turn. In this example, if the exception is of
type FileNotFoundException, the first clause will execute. If it is of type
IOException, the second clause will execute. If the exception is of neither
type, the try-catch will terminate and the exception will propagate further.

Note

One difference from Java that you’ll quickly notice in Scala is that unlike
Java, Scala does not require you to catch checked exceptions, or declare
them in a throws clause. You can declare a throws clause if you wish with
the @throws annotation, but it is not required. See Section 31.2 for more
information on @throws.

The finally clause

You can wrap an expression with a finally clause if you want to cause some
code to execute no matter how the expression terminates. For example, you
might want to be sure an open file gets closed even if a method exits by
throwing an exception. Listing 7.12 shows an example.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=171&v=2010_12_13

Section 7.4 Chapter 7 - Built-in Control Structures 172

import java.io.FileReader

val file = new FileReader("input.txt")

try {
// Use the file
} finally {
file.close() // Be sure to close the file
}
Listing 7.12 - A try-finally clause in Scala.
Note

Listing 7.12 shows the idiomatic way to ensure a non-memory resource,
such as a file, socket, or database connection is closed. First you acquire
the resource. Then you start a try block in which you use the resource.
Lastly, you close the resource in a finally block. This idiom is the same
in Scala as in Java, however, in Scala you can alternatively employ a
technique called the loan pattern to achieve the same goal more concisely.
The loan pattern will be described in Section 9.4.

Yielding a value

As with most other Scala control structures, try-catch-finally results in
a value. For example, Listing 7.13 shows how you can try to parse a URL
but use a default value if the URL is badly formed. The result is that of
the try clause if no exception is thrown, or the relevant catch clause if an
exception is thrown and caught. If an exception is thrown but not caught, the
expression has no result at all. The value computed in the finally clause, if
there is one, is dropped. Usually finally clauses do some kind of clean up
such as closing a file; they should not normally change the value computed
in the main body or a catch clause of the try.

If you’re familiar with Java, it’s worth noting that Scala’s behavior differs
from Java only because Java’s try-finally does not result in a value. As
in Java, if a finally clause includes an explicit return statement, or throws
an exception, that return value or exception will “overrule” any previous one
that originated in the try block or one of its catch clauses. For example,
given this, rather contrived, function definition:

def f(): Int = try { return 1 } finally { return 2 }

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=172&v=2010_12_13

Section 7.5 Chapter 7 - Built-in Control Structures 173

import java.net.URL
import java.net.MalformedURLException

def urlFor(path: String) =
try {
new URL(path)
} catch {
case e: MalformedURLException =>
new URL("http://www.scala-lang.org")

Listing 7.13 - A catch clause that yields a value.

calling £() results in 2. By contrast, given:
def g(): Int = try { 1 } finally { 2 }

calling g() results in 1. Both of these functions exhibit behavior that could
surprise most programmers, thus it’s usually best to avoid returning values
from finally clauses. The best way to think of finally clauses is as a way
to ensure some side effect happens, such as closing an open file.

7.5 Match expressions

Scala’s match expression lets you select from a number of alternatives, just
like switch statements in other languages. In general a match expression
lets you select using arbitrary patterns, which will be described in Chap-
ter 15. The general form can wait. For now, just consider using match to
select among a number of alternatives.

As an example, the script in Listing 7.14 reads a food name from the
argument list and prints a companion to that food. This match expression
examines firstArg, which has been set to the first argument out of the ar-
gument list. If it is the string "salt", it prints "pepper", while if it is the
string "chips", it prints "salsa", and so on. The default case is speci-
fied with an underscore (_), a wildcard symbol frequently used in Scala as a
placeholder for a completely unknown value.

There are a few important differences from Java’s switch statement.
One is that any kind of constant, as well as other things, can be used in

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=173&v=2010_12_13

Section 7.5 Chapter 7 - Built-in Control Structures 174

nn

val firstArg = if (args.length > 0) args(0) else

firstArg match {
case "salt" => println("pepper")
case '"chips" => println("salsa")
case "eggs" => println("bacon")
case _ => println("huh?")

Listing 7.14 - A match expression with side effects.

cases in Scala, not just the integer-type and enum constants of Java’s case
statements. In Listing 7.14, the alternatives are strings. Another difference
is that there are no breaks at the end of each alternative. Instead the break
is implicit, and there is no fall through from one alternative to the next. The
common case—not falling through—becomes shorter, and a source of errors
is avoided because programmers can no longer fall through by accident.

The most significant difference from Java’s switch, however, may be
that match expressions result in a value. In the previous example, each al-
ternative in the match expression prints out a value. It would work just as
well to yield the value rather than printing it, as shown in Listing 7.15. The
value that results from this match expression is stored in the friend vari-
able. Aside from the code getting shorter (in number of tokens, anyway),
the code now disentangles two separate concerns: first it chooses a food, and
then it prints it.

nn

val firstArg = if (largs.isEmpty) args(0) else

val friend =
firstArg match {
case "salt" => "pepper"
case '"chips" => "salsa"
case "eggs" => "bacon"
case _ => "huh?"
}
println(friend)

Listing 7.15 - A match expression that yields a value.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=174&v=2010_12_13

Section 7.6 Chapter 7 - Built-in Control Structures 175
7.6 Living without break and continue

You may have noticed that there has been no mention of break or continue.
Scala leaves out these commands because they do not mesh well with func-
tion literals, a feature described in the next chapter. It is clear what continue
means inside a while loop, but what would it mean inside a function literal?
While Scala supports both imperative and functional styles of programming,
in this case it leans slightly towards functional programming in exchange
for simplifying the language. Do not worry, though. There are many ways to
program without break and continue, and if you take advantage of function
literals, those alternatives can often be shorter than the original code.

The simplest approach is to replace every continue by an if and ev-
ery break by a boolean variable. The boolean variable indicates whether
the enclosing while loop should continue. For example, suppose you are
searching through an argument list for a string that ends with “.scala” but
does not start with a hyphen. In Java you could—if you were quite fond of
while loops, break, and continue—write the following:

int i = 0; // This is Java
boolean foundIt = false;
while (i < args.length) {
if (args[i].startsWith("-")) {
i=1+1;
continue;
}
if (args[i].endsWith(".scala")) {
foundIt = true;
break;
¥
i

=1+ 1;

To transliterate this Java code directly to Scala, instead of doing an if
and then a continue, you could write an if that surrounds the entire re-
mainder of the while loop. To get rid of the break, you would normally
add a boolean variable indicating whether to keep going, but in this case you
can reuse foundIt. Using both of these tricks, the code ends up looking as
shown in Listing 7.16.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=175&v=2010_12_13

Section 7.6 Chapter 7 - Built-in Control Structures 176

var 1 = 0
var foundIt = false

while (i < args.length && !foundIt) {
if (largs(i).startsWith("-")) {
if (args(i).endsWith(".scala"))
foundIt = true
}
i

i =1+1

Listing 7.16 - Looping without break or continue.

This Scala code in Listing 7.16 is quite similar to the original Java code.
All the basic pieces are still there and in the same order. There are two
reassignable variables and a while loop. Inside the loop, there is a test that
i is less than args.length, a check for "-", and a check for ".scala".

If you wanted to get rid of the vars in Listing 7.16, one approach you
could try is to rewrite the loop as a recursive function. You could, for exam-
ple, define a searchFrom function that takes an integer as an input, searches
forward from there, and then returns the index of the desired argument. Us-
ing this technique the code would look as shown in Listing 7.17:

def searchFrom(i: Int): Int =
if (i >= args.length) -1
else if (args(i).startsWith("-")) searchFrom(i + 1)
else if (args(i).endsWith(".scala")) i
else searchFrom(i + 1)

val i = searchFrom(0)

Listing 7.17 - A recursive alternative to looping with vars.

The version in Listing 7.17 gives a human-meaningful name to what the
function does, and it uses recursion to substitute for looping. Each continue
is replaced by a recursive call with i + 1 as the argument, effectively skipping
to the next integer. Many people find this style of programming easier to
understand, once they get used to the recursion.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=176&v=2010_12_13

Section 7.7 Chapter 7 - Built-in Control Structures 177

Note

The Scala compiler will not actually emit a recursive function for the code
shown in Listing 7.17. Because all of the recursive calls are in fail-call
position, the compiler will generate code similar to a while loop. Each
recursive call will be implemented as a jump back to the beginning of the
function. Tail-call optimization will be discussed in Section 8.9.

If after all this discussion you still feel the need to use break, there’s help
in Scala’s standard library. Class Breaks in package scala.util.control
offers a break method, which can be used to exit the an enclosing block
that’s marked with breakable. Here an example how this library-supplied
break method could be applied:

import scala.util.control.Breaks._
import java.io._

val in = new BufferedReader(new InputStreamReader(System.in))

breakable {
while (true) {
println("? ")
if (in.readLine() == "") break

}

This will repeatedly read non-empty lines from the standard input. Once the
user enters an empty line, control flow exits from the enclosing breakable,
and with it the while loop.

The Breaks class implements break by throwing an exception that is
caught by an enclosing application of the breakable method. Therefore,
the call to break does not need to be in the same method as the call to
breakable.

7.7 Variable scope

Now that you’ve seen Scala’s built-in control structures, we’ll use them in
this section to explain how scoping works in Scala.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=177&v=2010_12_13

Section 7.7 Chapter 7 - Built-in Control Structures 178

Fast track for Java programmers

If you’re a Java programmer, you’ll find that Scala’s scoping rules are
almost identical to Java’s. One difference between Java and Scala exists,
however, in that Scala allows you to define variables of the same name in
nested scopes. If you’re a Java programmer, therefore, you may wish to at
least skim this section.

Variable declarations in Scala programs have a scope that defines where
you can use the name. The most common example of scoping is that curly
braces generally introduce a new scope, so anything defined inside curly
braces leaves scope after the final closing brace.> As an illustration, consider
the function shown in Listing 7.18.

The printMultiTable function shown in Listing 7.18 prints out a mul-
tiplication table.* The first statement of this function introduces a variable
named i and initializes it to the integer 1. You can then use the name i for
the remainder of the function.

The next statement in printMultiTable is a while loop:

while (i <= 10) {

var j = 1

}

You can use i here because it is still in scope. In the first statement inside that
while loop, you introduce another variable, this time named j, and again
initialize it to 1. Because the variable j was defined inside the open curly
brace of the while loop, it can be used only within that while loop. If you
were to attempt to do something with j after the closing curly brace of this
while loop, after the comment that says j, prod, and k are out of scope,
your program would not compile.

All variables defined in this example—i, j, prod, and k—are local vari-
ables. Such variables are “local” to the function in which they are defined.
Each time a function is invoked, a new set of its local variables is used.

3There are a few exceptions to this rule, because in Scala you can sometimes use curly
braces in place of parentheses. One example of this kind of curly-brace use is the alternative
for expression syntax described in Section 7.3.

4The printMultiTable function shown in Listing 7.18 is written in an imperative style.
We’ll refactor it into a functional style in the next section.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=178&v=2010_12_13

Section 7.7 Chapter 7 - Built-in Control Structures 179

def printMultiTable() {
var i = 1
// only i in scope here
while (i <= 10) {
var j = 1
// both i and j in scope here
while (j <= 10) {
val prod = (i * j).toString
// i, j, and prod in scope here

var k = prod.length
// i, j, prod, and k in scope here

while (k < 4) {

print(" ")
k += 1
}
print (prod)
j+=1
}
// i and j still in scope; prod and k out of scope
println()
i+=1
}
// i still in scope; j, prod, and k out of scope

}

Listing 7.18 - Variable scoping when printing a multiplication table.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=179&v=2010_12_13

Section 7.7 Chapter 7 - Built-in Control Structures 180

Once a variable is defined, you can’t define a new variable with the same
name in the same scope. For example, the following script with two variables
named a in the same scope would not compile:

val a = 1
val a = 2 // Does not compile
println(a)

You can, on the other hand, define a variable in an inner scope that has the
same name as a variable in an outer scope. The following script would com-
pile and run:

val a = 1;

{
val a = 2 // Compiles just fine
println(a)

}

println(a)

When executed, the script shown previously would print 2 then 1, because
the a defined inside the curly braces is a different variable, which is in scope
only until the closing curly brace.’ One difference to note between Scala and
Java is that unlike Scala, Java will not let you create a variable in an inner
scope that has the same name as a variable in an outer scope. In a Scala
program, an inner variable is said to shadow a like-named outer variable,
because the outer variable becomes invisible in the inner scope.

You might have already noticed something that looks like shadowing in
the interpreter:

scala> val a = 1
a: Int =1
scala> val a = 2

a: Int = 2

scala> println(a)
2

3By the way, the semicolon is required in this case after the first definition of a because
Scala’s semicolon inference mechanism will not place one there.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=180&v=2010_12_13

Section 7.8 Chapter 7 - Built-in Control Structures 181

In the interpreter, you can reuse variable names to your heart’s content.
Among other things, this allows you to change your mind if you made a
mistake when you defined a variable the first time in the interpreter. The rea-
son you can do this is that, conceptually, the interpreter creates a new nested
scope for each new statement you type in. Thus, you could visualize the
previous interpreted code like this:

val a = 1;
{
val a = 2;
{
println(a)
}
}

This code will compile and run as a Scala script, and like the code typed
into the interpreter, will print 2. Keep in mind that such code can be very
confusing to readers, because variable names adopt new meanings in nested
scopes. It is usually better to choose a new, meaningful variable name rather
than to shadow an outer variable.

7.8 Refactoring imperative-style code

To help you gain insight into the functional style, in this section we’ll refac-
tor the imperative approach to printing a multiplication table shown in List-
ing 7.18. Our functional alternative is shown in Listing 7.19.

The imperative style reveals itself in Listing 7.18 in two ways. First,
invoking printMultiTable has a side effect: printing a multiplication ta-
ble to the standard output. In Listing 7.19, we refactored the function so
that it returns the multiplication table as a string. Since the function no
longer prints, we renamed it multiTable. As mentioned previously, one
advantage of side-effect-free functions is they are easier to unit test. To
test printMultiTable, you would need to somehow redefine print and
println so you could check the output for correctness. You could test
multiTable more easily, by checking its string result.

The other telltale sign of the imperative style in printMultiTable is its
while loop and vars. By contrast, the multiTable function uses vals, for
expressions, helper functions, and calls to mkString.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=181&v=2010_12_13

Section 7.8 Chapter 7 - Built-in Control Structures 182

// Returns a row as a sequence
def makeRowSeq(row: Int) =
for (col <- 1 to 10) vield {
val prod = (row * col).toString
val padding = " " % (4 - prod.length)
padding + prod
}

// Returns a row as a string
def makeRow(row: Int) = makeRowSeq(row).mkString

// Returns table as a string with one row per line
def multiTable() = {

val tableSeq = // a sequence of row strings
for (row <- 1 to 10)
yield makeRow(row)

tableSeq.mkString("\n")
}

Listing 7.19 - A functional way to create a multiplication table.

We factored out the two helper functions, makeRow and makeRowSeq, to
make the code easier to read. Function makeRowSeq uses a for expression
whose generator iterates through column numbers 1 through 10. The body of
this for calculates the product of row and column, determines the padding
needed for the product, and yields the result of concatenating the padding
and product strings. The result of the for expression will be a sequence
(some subclass of scala.Seq) containing these yielded strings as elements.
The other helper function, makeRow, simply invokes mkString on the re-
sult returned by makeRowSeq. mkString will concatenate the strings in the
sequence and return them as one string.

The multiTable method first initializes tableSeq with the result of a
for expression whose generator iterates through row numbers 1 to 10, and
for each calls makeRow to get the string for that row. This string is yielded,
thus the result of this for expression will be a sequence of row strings. The
only remaining task is to convert the sequence of strings into a single string.
The call to mkString accomplishes this, and because we pass "\n", we get
an end of line character inserted between each string. If you pass the string

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=182&v=2010_12_13

Section 7.9 Chapter 7 - Built-in Control Structures

returned by multiTable to println, you’ll see the same output that’s pro-
duced by calling printMultiTable:

4 5 6 7 8 9 10

8 10 12 14 16 18 20
12 15 18 21 24 27 30
12 16 20 24 28 32 36 40
10 15 20 25 30 35 40 45 50
12 18 24 30 36 42 48 54 60
14 21 28 35 42 49 56 63 70
16 24 32 40 48 56 64 72 80
18 27 36 45 54 63 72 81 90
20 30 40 50 60 70 80 90 100

© 00N VT i W N R
o O BN
© o W

=
o

7.9 Conclusion

Scala’s built-in control structures are minimal, but they do the job. They
act much like their imperative equivalents, but because they tend to result
in a value, they support a functional style, too. Just as important, they are
careful in what they omit, thus leaving room for one of Scala’s most powerful
features, the function literal, which will be described in the next chapter.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

183

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=183&v=2010_12_13

Chapter 8

Functions and Closures

When programs get larger, you need some way to divide them into smaller,
more manageable pieces. For dividing up control flow, Scala offers an ap-
proach familiar to all experienced programmers: divide the code into func-
tions. In fact, Scala offers several ways to define functions that are not
present in Java. Besides methods, which are functions that are members
of some object, there are also functions nested within functions, function lit-
erals, and function values. This chapter takes you on a tour through all of
these flavors of functions in Scala.

8.1 Methods

The most common way to define a function is as a member of some object.
Such a function is called a method. As an example, Listing 8.1 shows two
methods that together read a file with a given name and print out all lines
whose length exceeds a given width. Every printed line is prefixed with the
name of the file it appears in.

The processFile method takes a filename and width as parameters.
It creates a Source object from the file name and, in the generator of the
for expression, calls getLines on the source. As mentioned in Step 12 of
Chapter 3, getLines returns an iterator that provides one line from the file
on each iteration, excluding the end-of-line character. The for expression
processes each of these lines by calling the helper method, processLine.
The processLine method takes three parameters: a filename, a width,
and a line. It tests whether the length of the line is greater than the given
width, and, if so, it prints the filename, a colon, and the line.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=184&v=2010_12_13

Section 8.1 Chapter 8 - Functions and Closures 185

import scala.io.Source
object LonglLines {

def processFile(filename: String, width: Int) {
val source = Source.fromFile(filename)
for (line <- source.getLines())
processLine(filename, width, line)

}

private def processLine(filename: String,
width: Int, line: String) {

if (line.length > width)
println(filename +": "+ line.trim)

Listing 8.1 - LongLines with a private processLine method.

To use LongLines from the command line, we’ll create an application
that expects the line width as the first command-line argument, and interprets
subsequent arguments as filenames: '

object FindLongLines {
def main(args: Array[String]) {
val width args(0).toInt
for (arg <- args.drop(1))
Longlines.processFile(arg, width)

Here’s how you’d use this application to find the lines in LongLines.scala
that are over 45 characters in length (there’s just one):

$ scala FindLongLines 45 Longlines.scala
Longlines.scala: def processFile(filename: String, width: Int) {

'In this book, we usually won’t check command-line arguments for validity in example
applications, both to save trees and reduce boilerplate code that can obscure the example’s
important code. The trade-off is that instead of producing a helpful error message when given
bad input, our example applications will throw an exception.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=185&v=2010_12_13

Section 8.2 Chapter 8 - Functions and Closures 186

So far, this is very similar to what you would do in any object-oriented
language. However, the concept of a function in Scala is more general than
a method. Scala’s other ways to express functions will be explained in the
following sections.

8.2 Local functions

The construction of the processFile method in the previous section demon-
strated an important design principle of the functional programming style:
programs should be decomposed into many small functions that each do a
well-defined task. Individual functions are often quite small. The advantage
of this style is that it gives a programmer many building blocks that can be
flexibly composed to do more difficult things. Each building block should be
simple enough to be understood individually.

One problem with this approach is that all the helper function names can
pollute the program namespace. In the interpreter this is not so much of a
problem, but once functions are packaged in reusable classes and objects, it’s
desirable to hide the helper functions from clients of a class. They often do
not make sense individually, and you often want to keep enough flexibility
to delete the helper functions if you later rewrite the class a different way.

In Java, your main tool for this purpose is the private method. This
private-method approach works in Scala as well, as is demonstrated in List-
ing 8.1, but Scala offers an additional approach: you can define functions
inside other functions. Just like local variables, such local functions are vis-
ible only in their enclosing block. Here’s an example:

def processFile(filename: String, width: Int) {

def processLine(filename: String,
width: Int, line: String) {

if (line.length > width)
println(filename +": "+ line)

}

val source = Source.fromFile(filename)
for (line <- source.getlLines()) {
processLine(filename, width, line)
h
}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=186&v=2010_12_13

Section 8.2 Chapter 8 - Functions and Closures 187

In this example, we refactored the original LongLines version, shown in
Listing 8.1, by transforming private method, processLine, into a local func-
tion of processFile. To do so we removed the private modifier, which can
only be applied (and is only needed) for methods, and placed the definition
of processLine inside the definition of processFile. As a local function,
processLine is in scope inside processFile, but inaccessible outside.

Now that processLine is defined inside processFile, however, an-
other improvement becomes possible. Notice how filename and width are
passed unchanged into the helper function? This is not necessary, because
local functions can access the parameters of their enclosing function. You
can just use the parameters of the outer processLine function, as shown in
Listing 8.2:

import scala.io.Source
object LongLines {
def processFile(filename: String, width: Int) {

def processlLine(line: String) {
if (line.length > width)
println(filename +": "+ line)

}

val source = Source.fromFile(filename)
for (line <- source.getLines())
processLine(line)

Listing 8.2 - LongLines with a local processLine function.

Simpler, isn’t it? This use of an enclosing function’s parameters is a
common and useful example of the general nesting Scala provides. The
nesting and scoping described in Section 7.7 applies to all Scala constructs,
including functions. It’s a simple principle, but very powerful, especially in
a language with first-class functions.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=187&v=2010_12_13

Section 8.3 Chapter 8 - Functions and Closures 188
8.3 First-class functions

Scala has first-class functions. Not only can you define functions and call
them, but you can write down functions as unnamed [literals and then pass
them around as values. We introduced function literals in Chapter 2 and
showed the basic syntax in Figure 2.2 on page 79.

A function literal is compiled into a class that when instantiated at run-
time is a function value.” Thus the distinction between function literals and
values is that function literals exist in the source code, whereas function val-
ues exist as objects at runtime. The distinction is much like that between
classes (source code) and objects (runtime).

Here is a simple example of a function literal that adds one to a number:

(x: Int) => x + 1

The => designates that this function converts the thing on the left (any integer
x) to the thing on the right (x + 1). So, this is a function mapping any integer
xtox+1.

Function values are objects, so you can store them in variables if you like.
They are functions, too, so you can invoke them using the usual parentheses
function-call notation. Here is an example of both activities:

scala> var increase = (x: Int) => x + 1
increase: (Int) => Int = <functionl>
scala> increase(10)

resO: Int = 11

Because increase, in this example, is a var, you can reassign it a different
function value later on.

scala> increase = (x: Int) => x + 9999
increase: (Int) => Int = <functionl>

scala> increase(10)
resl: Int = 10009

2Every function value is an instance of some class that extends one of several FunctionN
traits in package scala, such as FunctionO for functions with no parameters, Functionl for
functions with one parameter, and so on. Each FunctionN trait has an apply method used to
invoke the function.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=188&v=2010_12_13

Section 8.3 Chapter 8 - Functions and Closures 189

If you want to have more than one statement in the function literal, surround
its body by curly braces and put one statement per line, thus forming a block.
Just like a method, when the function value is invoked, all of the statements
will be executed, and the value returned from the function is whatever the
expression on the last line generates.

scala> increase = (x: Int) => {
println("We")
println("are")
println("here!")
X + 1
}

increase: (Int) => Int = <functionl>

scala> increase(10)
We

are

here!

res2: Int = 11

So now you have seen the nuts and bolts of function literals and function val-
ues. Many Scala libraries give you opportunities to use them. For example,
a foreach method is available for all collections.® It takes a function as an
argument and invokes that function on each of its elements. Here is how it
can be used to print out all of the elements of a list:

scala> val someNumbers = List(-11, -10, -5, 0O, 5, 10)
someNumbers: List[Int] = List(-11, -10, -5, 0, 5, 10)

scala> someNumbers.foreach((x: Int) => println(x))
-11
-10
-5

>
10

As another example, collection types also have a filter method. This
method selects those elements of a collection that pass a test the user sup-

3 A foreach method is defined in trait Traversable, a common supertrait of List, Set,
Array, and Map. See Chapter 17 for the details.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=189&v=2010_12_13

Section 8.4 Chapter 8 - Functions and Closures 190

plies. That test is supplied using a function. For example, the function
(x: Int) => x> 0 could be used for filtering. This function maps positive
integers to true and all others to false. Here is how to use it with filter:

scala> someNumbers.filter((x: Int) => x > 0)
resd: List[Int] = List(5, 10)

Methods like foreach and filter are described further later in the book.
Chapter 16 talks about their use in class List. Chapter 17 discusses their use
with other collection types.

8.4 Short forms of function literals

Scala provides a number of ways to leave out redundant information and
write function literals more briefly. Keep your eyes open for these opportu-
nities, because they allow you to remove clutter from your code.

One way to make a function literal more brief is to leave off the parameter
types. Thus, the previous example with filter could be written like this:

scala> someNumbers.filter((x) => x > 0)
res5: List[Int] = List(5, 10)

The Scala compiler knows that x must be an integer, because it sees that
you are immediately using the function to filter a list of integers (referred to
by someNumbers). This is called target typing, because the targeted usage
of an expression—in this case an argument to someNumbers.filter()—is
allowed to influence the typing of that expression—in this case to determine
the type of the x parameter. The precise details of target typing are not
important to study. You can simply start by writing a function literal without
the argument type, and, if the compiler gets confused, add in the type. Over
time you’ll get a feel for which situations the compiler can and cannot puzzle
out.

A second way to remove useless characters is to leave out parentheses
around a parameter whose type is inferred. In the previous example, the
parentheses around x are unnecessary:

scala> someNumbers.filter(x => x > 0)
res6: List[Int] = List(5, 10)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=190&v=2010_12_13

Section 8.5 Chapter 8 - Functions and Closures 191
8.5 Placeholder syntax

To make a function literal even more concise, you can use underscores as
placeholders for one or more parameters, so long as each parameter appears
only one time within the function literal. For example, _ > 0 is very short
notation for a function that checks whether a value is greater than zero:

scala> someNumbers.filter(_ > 0)
res7: List[Int] = List(5, 10)

You can think of the underscore as a “blank” in the expression that needs
to be “filled in.” This blank will be filled in with an argument to the function
each time the function is invoked. For example, given that someNumbers
was initialized on page 189 to the value List(-11, -10, -5, 0, 5, 10), the
filter method will replace the blank in _ > 0 first with -11, as in -11 > 0,
then with -10, as in -10 > 0, then with -5, as in -5 > 0, and so on to the end
of the List. The function literal _ > 0, therefore, is equivalent to the slightly
more verbose x => x > 0, as demonstrated here:

scala> someNumbers.filter(x => x > 0)
res8: List[Int] = List(5, 10)

Sometimes when you use underscores as placeholders for parameters,
the compiler might not have enough information to infer missing parameter
types. For example, suppose you write _ + _ by itself:

scala> val f = _ + _
<console>:4: error: missing parameter type for expanded
function ((x$1, x$2) => x$1.$plus(x$2))

val £ = _ + _

In such cases, you can specify the types using a colon, like this:

scala> val £ = (_: Int) + (_: Int)
f: (Int, Int) => Int = <function2>
scala> f(5, 10)
res9: Int = 15

Note that _ + _ expands into a literal for a function that takes two parame-
ters. This is why you can use this short form only if each parameter appears

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=191&v=2010_12_13

Section 8.6 Chapter 8 - Functions and Closures 192

in the function literal at most once. Multiple underscores mean multiple pa-
rameters, not reuse of a single parameter repeatedly. The first underscore
represents the first parameter, the second underscore the second parameter,
the third underscore the third parameter, and so on.

8.6 Partially applied functions

Although the previous examples substitute underscores in place of individual
parameters, you can also replace an entire parameter list with an underscore.
For example, rather than writing print1n(_), you could write println
Here’s an example:

someNumbers. foreach(println _)
Scala treats this short form exactly as if you had written the following:
someNumbers.foreach(x => println(x))

Thus, the underscore in this case is not a placeholder for a single parameter.
It is a placeholder for an entire parameter list. Remember that you need
to leave a space between the function name and the underscore, because
otherwise the compiler will think you are referring to a different symbol,
such as for example, a method named println_, which likely does not exist.

When you use an underscore in this way, you are writing a partially ap-
plied function. In Scala, when you invoke a function, passing in any needed
arguments, you apply that function fo the arguments. For example, given the
following function:

scala> def sum(a: Int, b: Int, c: Int) = a +b + ¢
sum: (a: Int,b: Int,c: Int)Int

You could apply the function sum to the arguments 1, 2, and 3 like this:

scala> sum(1l, 2, 3)
resl0: Int = 6

A partially applied function is an expression in which you don’t supply all
of the arguments needed by the function. Instead, you supply some, or none,
of the needed arguments. For example, to create a partially applied function
expression involving sum, in which you supply none of the three required

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=192&v=2010_12_13

Section 8.6 Chapter 8 - Functions and Closures 193

arguments, you just place an underscore after “sum”. The resulting function
can then be stored in a variable. Here’s an example:

scala> val a = sum _
a: (Int, Int, Int) => Int = <function3>

Given this code, the Scala compiler instantiates a function value that takes
the three integer parameters missing from the partially applied function ex-
pression, sum _, and assigns a reference to that new function value to the
variable a. When you apply three arguments to this new function value, it
will turn around and invoke sum, passing in those same three arguments:

scala> a(l, 2, 3)
resll: Int = 6

Here’s what just happened: The variable named a refers to a function value
object. This function value is an instance of a class generated automatically
by the Scala compiler from sum _, the partially applied function expression.
The class generated by the compiler has an apply method that takes three
arguments.4 The generated class’s apply method takes three arguments be-
cause three is the number of arguments missing in the sum _ expression. The
Scala compiler translates the expression a(1, 2, 3) into an invocation of the
function value’s apply method, passing in the three arguments 1, 2, and 3.
Thus, a(1, 2, 3) is a short form for:

scala> a.apply(l, 2, 3)
resl2: Int = 6

This apply method, defined in the class generated automatically by the
Scala compiler from the expression sum _, simply forwards those three miss-
ing parameters to sum, and returns the result. In this case apply invokes
sum(1, 2, 3), and returns what sum returns, which is 6.

Another way to think about this kind of expression, in which an under-
score is used to represent an entire parameter list, is as a way to transform a
def into a function value. For example, if you have a local function, such as
sum(a: Int, b: Int, c: Int): Int, you can “wrap” it in a function value
whose apply method has the same parameter list and result types. When
you apply this function value to some arguments, it in turn applies sum to

4The generated class extends trait Function3, which declares a three-arg apply method.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=193&v=2010_12_13

Section 8.6 Chapter 8 - Functions and Closures 194

those same arguments, and returns the result. Although you can’t assign a
method or nested function to a variable, or pass it as an argument to another
function, you can do these things if you wrap the method or nested function
in a function value by placing an underscore after its name.

Now, although sum _ is indeed a partially applied function, it may not
be obvious to you why it is called this. It has this name because you are not
applying that function to all of its arguments. In the case of sum _, you are
applying it to none of its arguments. But you can also express a partially
applied function by supplying some but not all of the required arguments.
Here’s an example:

scala> val b = sum(1, _: Int, 3)
b: (Int) => Int = <functionl>

In this case, you’ve supplied the first and last argument to sum, but the mid-
dle argument is missing. Since only one argument is missing, the Scala
compiler generates a new function class whose apply method takes one ar-
gument. When invoked with that one argument, this generated function’s
apply method invokes sum, passing in 1, the argument passed to the func-
tion, and 3. Here are some examples:

scala> b(2)
resl3: Int = 6

In this case, b.apply invoked sum(1, 2, 3).

scala> b(5)
resl4: Int = 9

And in this case, b.apply invoked sum(1, 5, 3).

If you are writing a partially applied function expression in which you
leave off all parameters, such as println _ or sum _, you can express it
more concisely by leaving off the underscore if a function is required at that
point in the code. For example, instead of printing out each of the numbers
in someNumbers (defined on page 189) like this:

someNumbers. foreach(println _)
You could just write:
someNumbers . foreach(println)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=194&v=2010_12_13

Section 8.7 Chapter 8 - Functions and Closures 195

This last form is allowed only in places where a function is required, such as
the invocation of foreach in this example. The compiler knows a function
is required in this case, because foreach requires that a function be passed
as an argument. In situations where a function is not required, attempting to
use this form will cause a compilation error. Here’s an example:

scala> val ¢ = sum
<console>:5: error: missing arguments for method sum...
follow this method with "_' if you want to treat it as a
partially applied function

val ¢ = sum
scala> val d = sum _
d: (Int, Int, Int) => Int = <function3>

scala> d(10, 20, 30)
resl5: Int = 60

8.7 Closures

So far in this chapter, all the examples of function literals have referred only
to passed parameters. For example, in (x: Int) => x > 0, the only variable
used in the function body, x > 0, is x, which is defined as a parameter to the
function. You can, however, refer to variables defined elsewhere:

(x: Int) => x + more // how much more?

This function adds “more” to its argument, but what is more? From the point
of view of this function, more is a free variable, because the function literal
does not itself give a meaning to it. The x variable, by contrast, is a bound
variable, because it does have a meaning in the context of the function: it
is defined as the function’s lone parameter, an Int. If you try using this
function literal by itself, without any more defined in its scope, the compiler
will complain:

scala> (x: Int) => X + more
<console>:5: error: not found: value more
(x: Int) => x + more

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=195&v=2010_12_13

Section 8.7 Chapter 8 - Functions and Closures 196

Why the trailing underscore?

Scala’s syntax for partially applied functions highlights a difference

in the design trade-offs of Scala and classical functional languages
such as Haskell or ML. In these languages, partially applied functions
are considered the normal case. Furthermore, these languages have

a fairly strict static type system that will usually highlight every error
with partial applications that you can make. Scala bears a much closer
relation to imperative languages such as Java, where a method that’s
not applied to all its arguments is considered an error. Furthermore,
the object-oriented tradition of subtyping and a universal root type
accepts some programs that would be considered erroneous in classical
functional languages.

For instance, say you mistook the drop(n: Int) method of List for
tail(), and you therefore forgot you need to pass a number to drop.
You might write, “println(drop)”. Had Scala adopted the classical
functional tradition that partially applied functions are OK everywhere,
this code would type check. However, you might be surprised to find
out that the output printed by this println statement would always be
<function>! What would have happened is that the expression drop
would have been treated as a function object. Because println takes
objects of any type, this would have compiled OK, but it would have
given an unexpected result.

To avoid situations like this, Scala normally requires you to specify
function arguments that are left out explicitly, even if the indication is
as simple as a ‘_’. Scala allows you to leave off even the _ only when a
function type is expected.

On the other hand, the same function literal will work fine so long as
there is something available named more:

scala> var more = 1
more: Int = 1

scala> val addMore = (x: Int) => X + more
addMore: (Int) => Int = <functionl>

scala> addMore(10)
resl7: Int = 11

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=196&v=2010_12_13

Section 8.7 Chapter 8 - Functions and Closures

The function value (the object) that’s created at runtime from this function
literal is called a closure. The name arises from the act of “closing” the func-
tion literal by “capturing” the bindings of its free variables. A function literal
with no free variables, such as (x: Int) => x + 1, is called a closed term,
where a rerm is a bit of source code. Thus a function value created at run-
time from this function literal is not a closure in the strictest sense, because
(x: Int) =>x + 1is already closed as written. But any function literal with
free variables, such as (x: Int) => x + more, is an open term. Therefore,
any function value created at runtime from (x: Int) => x + more will by
definition require that a binding for its free variable, more, be captured. The
resulting function value, which will contain a reference to the captured more
variable, is called a closure, therefore, because the function value is the end
product of the act of closing the open term, (x: Int) => x + more.

This example brings up a question: what happens if more changes af-
ter the closure is created? In Scala, the answer is that the closure sees the
change. For example:

scala> more = 9999
more: Int = 9999

scala> addMore(10)
resl8: Int = 10009

Intuitively, Scala’s closures capture variables themselves, not the value to
which variables refer.’ As the previous example demonstrates, the closure
created for (x: Int) => x + more sees the change to more made outside
the closure. The same is true in the opposite direction. Changes made by
a closure to a captured variable are visible outside the closure. Here’s an
example:

List(-11, -10, -5, 0, 5, 10)
List(-11, -10, -5, 0, 5, 10)

scala> val someNumbers
someNumbers: List[Int]

scala> var sum = 0
sum: Int = 0

scala> someNumbers.foreach(sum += _)

5By contrast, Java’s inner classes do not allow you to access modifiable variables in
surrounding scopes at all, so there is no difference between capturing a variable and capturing
its currently held value.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

197

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=197&v=2010_12_13

Section 8.7 Chapter 8 - Functions and Closures 198

scala> sum
res20: Int = -11

This example uses a roundabout way to sum the numbers in a List. Variable
sum is in a surrounding scope from the function literal sum += _, which adds
numbers to sum. Even though it is the closure modifying sum at runtime, the
resulting total, -11, is still visible outside the closure.

What if a closure accesses some variable that has several different copies
as the program runs? For example, what if a closure uses a local variable of
some function, and the function is invoked many times? Which instance of
that variable gets used at each access?

Only one answer is consistent with the rest of the language: the instance
used is the one that was active at the time the closure was created. For
example, here is a function that creates and returns “increase” closures:

def makeIncreaser(more: Int) = (x: Int) => X + more

Each time this function is called it will create a new closure. Each closure
will access the more variable that was active when the closure was created.

scala> val incl = makeIncreaser(l)
incl: (Int) => Int = <functionl>

scala> val inc9999 = makeIncreaser(9999)
inc9999: (Int) => Int = <functionl>

When you call makeIncreaser (1), a closure is created and returned that
captures the value 1 as the binding for more. Similarly, when you call
makeIncreaser(9999), a closure that captures the value 9999 for more is
returned. When you apply these closures to arguments (in this case, there’s
just one argument, x, which must be passed in), the result that comes back
depends on how more was defined when the closure was created:

scala> incl(10)
res2l: Int = 11
scala> inc9999(10)
res22: Int = 10009

It makes no difference that the more in this case is a parameter to a method
call that has already returned. The Scala compiler rearranges things in cases
like this so that the captured parameter lives out on the heap, instead of the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=198&v=2010_12_13

Section 8.8 Chapter 8 - Functions and Closures 199

stack, and thus can outlive the method call that created it. This rearrangement
is all taken care of automatically, so you don’t have to worry about it. Capture
any variable you like: val, var, or parameter.

8.8 Special function call forms

Most functions and function calls you encounter will be as you have seen
so far in this chapter. The function will have a fixed number of parameters,
the call will have an equal number of arguments, and the arguments will be
specified in the same order and number as the parameters.

Since function calls are so central to programming in Scala, however, a
few special forms of function definitions and function calls have been added
to the language to address some special needs. Scala supports repeated pa-
rameters, named arguments, and default arguments.

Repeated parameters

Scala allows you to indicate that the last parameter to a function may be
repeated. This allows clients to pass variable length argument lists to the
function. To denote a repeated parameter, place an asterisk after the type of
the parameter. For example:

scala> def echo(args: Stringx) =
for (arg <- args) println(arg)
echo: (args: String*)Unit

Defined this way, echo can be called with zero to many String arguments:

scala> echo()

scala> echo("one")
one

scala> echo("hello", "world!™)
hello
world!

Inside the function, the type of the repeated parameter is an Array of
the declared type of the parameter. Thus, the type of args inside the echo
function, which is declared as type “String+” is actually Array[String].

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=199&v=2010_12_13

Section 8.8 Chapter 8 - Functions and Closures 200

Nevertheless, if you have an array of the appropriate type, and you attempt
to pass it as a repeated parameter, you’ll get a compiler error:

scala> val arr = Array("What's", "up", "doc?")
arr: Array[java.lang.String] = Array(What's, up, doc?)

scala> echo(arr)
<console>:7: error: type mismatch;

found : Array[java.lang.String]
required: String
echo(arr)

To accomplish this, you’ll need to append the array argument with a colon
and an _* symbol, like this:

scala> echo(arr: _=)
What's

up

doc?

This notation tells the compiler to pass each element of arr as its own argu-
ment to echo, rather than all of it as a single argument.

Named arguments

In a normal function call, the arguments in the call are matched one by one
in the order of the parameters of the called function:

scala> def speed(distance: Float, time: Float): Float =
distance / time
speed: (distance: Float,time: Float)Float

scala> speed(100, 10)
res28: Float = 10.0

In this call, the 100 is matched to distance and the 10 to time. The 100
and 10 are matched in the same order as the formal parameters are listed.

Named arguments allow you to pass arguments to a function in a differ-
ent order. The syntax is simply that each argument is preceded by a param-
eter name and an equals sign. For example, the following call to speed is
equivalent to speed(100,10):

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=200&v=2010_12_13

Section 8.8 Chapter 8 - Functions and Closures 201

scala> speed(distance = 100, time = 10)
res29: Float = 10.0

Called with named arguments, the arguments can be reversed without
changing the meaning:

scala> speed(time = 10, distance = 100)
res30: Float = 10.0

It is also possible to mix positional and named arguments. In that case, the
positional arguments come first.

Named arguments are most frequently used in combination with default
parameter values.

Default parameter values

Scala lets you specify default values for function parameters. The argument
for such a parameter can optionally be omitted from a function call, in which
case the corresponding argument will be filled in with the default.

An example is shown in Listing 8.3. Function printTime has one pa-
rameter, out, and it has a default value of Console.out.

def printTime(out: java.io.PrintStream = Console.out) =
out.println("time = "+ System.currentTimeMillis())

Listing 8.3 - A parameter with a default value.

If you call the function as printTime(), thus specifying no argument to
be used for out, then out will be set to its default value of Console.out.
You could also call the function with an explicit output stream. For example,
you could send logging to the standard error output by calling the function
as printTime(Console.err).

Default parameters are especially helpful when used in combination with
named parameters. In Listing 8.4, function printTime2 has two optional
parameters. The out parameter has a default of Console.out, and the
divisor parameter has a default value of 1.

Function printTime2 can be called as printTime2() to have both pa-
rameters filled in with their default values. Using named arguments, how-
ever, either one of the parameters can be specified while leaving the other as
the default. To specify the output stream, call it like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=201&v=2010_12_13

Section 8.9 Chapter 8 - Functions and Closures 202

def printTime2(out: java.io.PrintStream = Console.out,
divisor: Int = 1) =
out.println("time = "+ System.currentTimeMillis()/divisor)

Listing 8.4 - A function with two parameters that have defaults.

printTime2(out = Console.err)
To specify the time divisor, call it like this:

printTime2(divisor = 1000)

8.9 Tail recursion

In Section 7.2, we mentioned that to transform a while loop that updates
vars into a more functional style that uses only vals, you may sometimes
need to use recursion. Here’s an example of a recursive function that approx-
imates a value by repeatedly improving a guess until it is good enough:

def approximate(guess: Double): Double =
if (isGoodEnough(guess)) guess
else approximate(improve(guess))

A function like this is often used in search problems, with appropriate imple-
mentations for isGoodEnough and improve. If you want the approximate
function to run faster, you might be tempted to write it with a while loop to
try and speed it up, like this:

def approximateLoop(initialGuess: Double): Double = {
var guess = initialGuess
while (!isGoodEnough(guess))
guess = improve(guess)
guess

}

Which of the two versions of approximate is preferable? In terms of brevity
and var avoidance, the first, functional one wins. But is the imperative ap-
proach perhaps more efficient? In fact, if we measure execution times it turns

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=202&v=2010_12_13

Section 8.9 Chapter 8 - Functions and Closures 203

out that they are almost exactly the same! This might seem surprising, be-
cause a recursive call looks much more expensive than a simple jump from
the end of a loop to its beginning.

However, in the case of approximate above, the Scala compiler is able
to apply an important optimization. Note that the recursive call is the last
thing that happens in the evaluation of function approximate’s body. Func-
tions like approximate, which call themselves as their last action, are called
tail recursive. The Scala compiler detects tail recursion and replaces it with
a jump back to the beginning of the function, after updating the function
parameters with the new values.

The moral is that you should not shy away from using recursive algo-
rithms to solve your problem. Often, a recursive solution is more elegant
and concise than a loop-based one. If the solution is tail recursive, there
won’t be any runtime overhead to be paid.

Tracing tail-recursive functions

A tail-recursive function will not build a new stack frame for each call; all
calls will execute in a single frame. This may surprise a programmer inspect-
ing a stack trace of a program that failed. For example, this function calls
itself some number of times then throws an exception:

def boom(x: Int): Int =
if (x == 0) throw new Exception("boom!")
else boom(x - 1) + 1

This function is not tail recursive, because it performs an increment operation
after the recursive call. You’ll get what you expect when you run it:

scala> boom(3)
java.lang.Exception: boom!
at .boom(<console>:5)
at .boom(<console>:6)
at .boom(<console>:6)
at .boom(<console>:6)
at .<init>(<console>:6)

If you now modify boom so that it does become tail recursive:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=203&v=2010_12_13

Section 8.9 Chapter 8 - Functions and Closures 204

Tail call optimization

The compiled code for approximate is essentially the same as the
compiled code for approximateLoop. Both functions compile down
to the same thirteen instructions of Java bytecodes. If you look through
the bytecodes generated by the Scala compiler for the tail recursive
method, approximate, you’ll see that although both isGoodEnough
and improve are invoked in the body of the method, approximate is
not. The Scala compiler optimized away the recursive call:

public double approximate(double);
Code:
0: aload_0
1: astore_3
2: aload_0
3: dload_1
4 invokevirtual #24; //Method isGoodEnough: (D)Z
7

: ifeq 12
10: dload_1
11: dreturn
12: aload_0
13: dload_1

14: invokevirtual #27; //Method improve: (D)D
17: dstore_1
18: goto 2

def bang(x: Int): Int =
if (x == 0) throw new Exception('bang!")
else bang(x - 1)

You’ll get:

scala> bang(5)
java.lang.Exception: bang!
at .bang(<console>:5)
at .<init>(<console>:6)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=204&v=2010_12_13

Section 8.9 Chapter 8 - Functions and Closures 205

This time, you see only a single stack frame for bang. You might think that
bang crashed before it called itself, but this is not the case. If you think you
might be confused by tail-call optimizations when looking at a stack trace,
you can turn them off by giving the following argument to the scala shell
or to the scalac compiler:

-g:notailcalls
With that option specified, you will get a longer stack trace:

scala> bang(5)

java.lang.Exception: bang!
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .bang(<console>:5)
at .<init>(<console>:6)

Limits of tail recursion

The use of tail recursion in Scala is fairly limited, because the JVM instruc-
tion set makes implementing more advanced forms of tail recursion very
difficult. Scala only optimizes directly recursive calls back to the same func-
tion making the call. If the recursion is indirect, as in the following example
of two mutually recursive functions, no optimization is possible:

def isEven(x: Int): Boolean =

if (x == 0) true else isOdd(x - 1)
def isOdd(x: Int): Boolean =

if (x == 0) false else isEven(x - 1)

You also won’t get a tail-call optimization if the final call goes to a function
value. Consider for instance the following recursive code:

val funValue = nestedFun _
def nestedFun(x: Int) {

if (x !'= 0) { println(x); funValue(x - 1) }
}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=205&v=2010_12_13

Section 8.10 Chapter 8 - Functions and Closures 206

The funValue variable refers to a function value that essentially wraps a call
to nestedFun. When you apply the function value to an argument, it turns
around and applies nestedFun to that same argument, and returns the result.
You might hope, therefore, the Scala compiler would perform a tail-call opti-
mization, but in this case it would not. Thus, tail-call optimization is limited
to situations in which a method or nested function calls itself directly as its
last operation, without going through a function value or some other inter-
mediary. (If you don’t fully understand tail recursion yet, see Section 8.9).

8.10 Conclusion

This chapter has given you a grand tour of functions in Scala. In addition
to methods, Scala provides local functions, function literals, and function
values. In addition to normal function calls, Scala provides partially applied
functions and functions with repeated parameters. When possible, function
calls are implemented as optimized tail calls, and thus many nice-looking
recursive functions run just as quickly as hand-optimized versions that use
while loops. The next chapter will build on these foundations and show how
Scala’s rich support for functions helps you abstract over control.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=206&v=2010_12_13

Chapter 9

Control Abstraction

In Chapter 7, we pointed out that Scala doesn’t have many built-in control
abstractions, because it gives you the ability to create your own. In the pre-
vious chapter, you learned about function values. In this chapter, we’ll show
you how to apply function values to create new control abstractions. Along
the way, you’ll also learn about currying and by-name parameters.

9.1 Reducing code duplication

All functions are separated into common parts, which are the same in every
invocation of the function, and non-common parts, which may vary from
one function invocation to the next. The common parts are in the body of
the function, while the non-common parts must be supplied via arguments.
When you use a function value as an argument, the non-common part of
the algorithm is itself some other algorithm! At each invocation of such
a function, you can pass in a different function value as an argument, and
the invoked function will, at times of its choosing, invoke the passed func-
tion value. These higher-order functions—functions that take functions as
parameters—give you extra opportunities to condense and simplify code.
One benefit of higher-order functions is they enable you to create control
abstractions that allow you to reduce code duplication. For example, suppose
you are writing a file browser, and you want to provide an API that allows
users to search for files matching some criterion. First, you add a facility to
search for files whose names end in a particular string. This would enable
your users to find, for example, all files with a “.scala” extension. You
could provide such an API by defining a public filesEnding method inside

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=207&v=2010_12_13

Section 9.1 Chapter 9 - Control Abstraction 208

a singleton object like this:

object FileMatcher {
private def filesHere = (new java.io.File(".")).listFiles

def filesEnding(query: String) =
for (file <- filesHere; if file.getName.endsWith(query))
yield file
}

The filesEnding method obtains the list of all files in the current direc-
tory using the private helper method filesHere, then filters them based on
whether each file name ends with the user-specified query. Given filesHere
is private, the filesEnding method is the only accessible method defined in
FileMatcher, the API you provide to your users.

So far so good, and there is no repeated code yet. Later on, though, you
decide to let people search based on any part of the file name. This is good for
when your users cannot remember if they named a file phb-important .doc,
stupid-phb-report.doc, may2003salesdoc.phb, or something entirely
different, but they think that “phb” appears in the name somewhere. You go
back to work and add this function to your FileMatcher API:

def filesContaining(query: String) =
for (file <- filesHere; if file.getName.contains(query))
yield file

This function works just like filesEnding. It searches filesHere, checks
the name, and returns the file if the name matches. The only difference is
that this function uses contains instead of endsWith.

The months go by, and the program becomes more successful. Eventu-
ally, you give in to the requests of a few power users who want to search
based on regular expressions. These sloppy guys have immense directories
with thousands of files, and they would like to do things like find all “pdf”
files that have “oopsla” in the title somewhere. To support them, you write
this function:

def filesRegex(query: String) =
for (file <- filesHere; if file.getName.matches(query))
yield file

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=208&v=2010_12_13

Section 9.1 Chapter 9 - Control Abstraction 209

Experienced programmers will notice all of this repetition and wonder if it
can be factored into a common helper function. Doing it the obvious way
does not work, however. You would like to be able to do the following:

def filesMatching(query: String, method) =
for (file <- filesHere; if file.getName.method(query))
yield file

This approach would work in some dynamic languages, but Scala does not
allow pasting together code at runtime like this. So what do you do?

Function values provide an answer. While you cannot pass around a
method name as a value, you can get the same effect by passing around a
function value that calls the method for you. In this case, you could add a
matcher parameter to the method whose sole purpose is to check a file name
against a query:

def filesMatching(query: String,
matcher: (String, String) => Boolean) = {

for (file <- filesHere; if matcher(file.getName, query))
yield file
}

In this version of the method, the if clause now uses matcher to check the
file name against the query. Precisely what this check does depends on what
is specified as the matcher. Take a look, now, at the type of matcher itself.
It is a function, and thus has a => in the type. This function takes two string
arguments—the file name and the query—and returns a boolean, so the type
of this function is (String, String) => Boolean.

Given this new filesMatching helper method, you can simplify the
three searching methods by having them call the helper method, passing in
an appropriate function:

def filesEnding(query: String) =
filesMatching(query, _.endsWith(_))

def filesContaining(query: String) =
filesMatching(query, _.contains(_))

def filesRegex(query: String) =
filesMatching(query, _.matches(_))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=209&v=2010_12_13

Section 9.1 Chapter 9 - Control Abstraction 210

The function literals shown in this example use the placeholder syntax, in-
troduced in the previous chapter, which may not as yet feel very natural to
you. Thus, here’s a clarification of how placeholders are used in this exam-
ple. The function literal _.endsWith(_), used in the filesEnding method,
means the same thing as:

(fileName: String, query: String) => fileName.endsWith(query)

Because filesMatching takes a function that requires two String argu-
ments, however, you need not specify the types of the arguments. Thus
you could also write (fileName, query) => fileName.endsWith(query).
Since the parameters are each used only once in the body of the function, and
since the first parameter, fileName, is used first in the body, and the sec-
ond parameter, query, is used second, you can use the placeholder syntax:
.endsWith(). The first underscore is a placeholder for the first param-
eter, the file name, and the second underscore a placeholder for the second
parameter, the query string.

This code is already simplified, but it can actually be even shorter. No-
tice that the query gets passed to filesMatching, but filesMatching does
nothing with the query except to pass it back to the passed matcher func-
tion. This passing back and forth is unnecessary, because the caller already
knew the query to begin with! You might as well simply remove the query
parameter from filesMatching and matcher, thus simplifying the code as
shown in Listing 9.1.

This example demonstrates the way in which first-class functions can
help you eliminate code duplication where it would be very difficult to do
so without them. In Java, for example, you could create an interface con-
taining a method that takes one String and returns a Boolean, then create
and pass anonymous inner class instances that implement this interface to
filesMatching. Although this approach would remove the code duplica-
tion you are trying to eliminate, it would at the same time add as much or
more new code. Thus the benefit is not worth the cost, and you may as well
live with the duplication.

Moreover, this example demonstrates how closures can help you reduce
code duplication. The function literals used in the previous example, such as
.endsWith() and _.contains(_), are instantiated at runtime into func-
tion values that are not closures, because they don’t capture any free vari-
ables. Both variables used in the expression, _.endsWith(_), for example,
are represented by underscores, which means they are taken from arguments

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=210&v=2010_12_13

Section 9.2 Chapter 9 - Control Abstraction 211

object FileMatcher {
private def filesHere = (new java.io.File(".")).listFiles

private def filesMatching(matcher: String => Boolean) =
for (file <- filesHere; if matcher(file.getName))
yield file

def filesEnding(query: String) =
filesMatching(_.endsWith(query))

def filesContaining(query: String) =
filesMatching(_.contains(query))

def filesRegex(query: String) =
filesMatching(_.matches(query))

Listing 9.1 - Using closures to reduce code duplication.

to the function. Thus, _.endsWith(_) uses two bound variables, and no free
variables. By contrast, the function literal _.endsWith(query), used in the
most recent example, contains one bound variable, the argument represented
by the underscore, and one free variable named query. It is only because
Scala supports closures that you were able to remove the query parameter
from filesMatching in the most recent example, thereby simplifying the
code even further.

9.2 Simplifying client code

The previous example demonstrated that higher-order functions can help re-
duce code duplication as you implement an API. Another important use of
higher-order functions is to put them in an API itself to make client code
more concise. A good example is provided by the special-purpose looping
methods of Scala’s collection types.! Many of these are listed in Table 3.1
in Chapter 3, but take a look at just one example for now to see why these
methods are so useful.

I These special-purpose looping methods are defined in trait Traversable, which is ex-
tended by List, Set, and Map. See Chapter 17 for a discussion.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=211&v=2010_12_13

Section 9.2 Chapter 9 - Control Abstraction 212

Consider exists, a method that determines whether a passed value is
contained in a collection. You could of course search for an element by
having a var initialized to false, looping through the collection checking
each item, and setting the var to true if you find what you are looking for.
Here’s a method that uses this approach to determine whether a passed List
contains a negative number:

def containsNeg(nums: List[Int]): Boolean = {
var exists = false
for (num <- nums)
if (num < 0)
exists = true
exists

}
If you define this method in the interpreter, you can call it like this:
scala> containsNeg(List(1, 2, 3, 4))
resO: Boolean = false
scala> containsNeg(List(1, 2, -3, 4))

resl: Boolean = true

A more concise way to define the method, though, is by calling the higher-
order function exists on the passed List, like this:

def containsNeg(nums: List[Int]) = nums.exists(_ < 0)
This version of containsNeg yields the same results as the previous:

scala> containsNeg(Nil)
res2: Boolean = false

scala> containsNeg(List(0, -1, -2))
res3: Boolean = true

The exists method represents a control abstraction. It is a special-purpose
looping construct provided by the Scala library rather than being built into
the Scala language like while or for. In the previous section, the higher-
order function, filesMatching, reduces code duplication in the implemen-
tation of the object FileMatcher. The exists method provides a similar
benefit, but because exists is public in Scala’s collections API, the code

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=212&v=2010_12_13

Section 9.3 Chapter 9 - Control Abstraction 213

duplication it reduces is client code of that API. If exists didn’t exist, and
you wanted to write a containsOdd method, to test whether a list contains
odd numbers, you might write it like this:

def containsOdd(nums: List[Int]): Boolean = {
var exists = false
for (num <- nums)
if (num % 2 == 1)
exists = true
exists

}

If you compare the body of containsNeg with that of containsOdd, you’ll
find that everything is repeated except the test condition of an if expression.
Using exists, you could write this instead:

def containsOdd(nums: List[Int]) = nums.exists(_ % 2 == 1)

The body of the code in this version is again identical to the body of the cor-
responding containsNeg method (the version that uses exists), except the
condition for which to search is different. Yet the amount of code duplication
is much smaller because all of the looping infrastructure is factored out into
the exists method itself.

There are many other looping methods in Scala’s standard library. As
with exists, they can often shorten your code if you recognize opportunities
to use them.

9.3 Currying

In Chapter 1, we said that Scala allows you to create new control abstrac-
tions that “feel like native language support.” Although the examples you’ve
seen so far are indeed control abstractions, it is unlikely anyone would mis-
take them for native language support. To understand how to make control
abstractions that feel more like language extensions, you first need to under-
stand the functional programming technique called currying.

A curried function is applied to multiple argument lists, instead of just
one. Listing 9.2 shows a regular, non-curried function, which adds two Int
parameters, x and y.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=213&v=2010_12_13

Section 9.3 Chapter 9 - Control Abstraction 214

scala> def plainOldSum(x: Int, y: Int) = x +y
plain0ldSum: (x: Int,y: Int)Int

scala> plain0OldSum(1, 2)
res4: Int = 3

Listing 9.2 - Defining and invoking a “plain old” function.

By contrast, Listing 9.3 shows a similar function that’s curried. Instead
of one list of two Int parameters, you apply this function to two lists of one
Int parameter each.

scala> def curriedSum(x: Int)(y: Int) = x + Yy
curriedSum: (x: Int)(y: Int)Int

scala> curriedSum(1)(2)
res5: Int = 3

Listing 9.3 - Defining and invoking a curried function.

What’s happening here is that when you invoke curriedSum, you actu-
ally get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x, and returns a function
value for the second function. This second function takes the Int parameter
y. Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:

scala> def first(x: Int) = (v: Int) => x + Vv
first: (x: Int)(Int) => Int

Applying 1 to the first function—in other words, invoking the first function
and passing in 1—yields the second function:

scala> val second = first(l)
second: (Int) => Int = <functionl>

Applying 2 to the second function yields the result:
scala> second(2)

res6: Int = 3

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=214&v=2010_12_13

Section 9.4 Chapter 9 - Control Abstraction 215

These first and second functions are just an illustration of the currying
process. They are not directly connected to the curriedSum function. Nev-
ertheless, there is a way to get an actual reference to curriedSum’s “second”
function. You can use the placeholder notation to use curriedSum in a par-
tially applied function expression, like this:

scala> val onePlus = curriedSum(1)_
onePlus: (Int) => Int = <functionl>

The underscore in curriedSum(1)_ is a placeholder for the second parame-
ter list.2 The result is a reference to a function that, when invoked, adds one
to its sole Int argument and returns the result:

scala> onePlus(2)
res7: Int = 3

And here’s how you’d get a function that adds two to its sole Int argument:

scala> val twoPlus = curriedSum(2)_
twoPlus: (Int) => Int = <functionl>

scala> twoPlus(2)
res8: Int = 4

9.4 Writing new control structures

In languages with first-class functions, you can effectively make new control
structures even though the syntax of the language is fixed. All you need to
do is create methods that take functions as arguments.

For example, here is the “twice” control structure, which repeats an op-
eration two times and returns the result:

scala> def twice(op: Double => Double, x: Double) = op(op(x))
twice: (op: (Double) => Double,x: Double)Double

scala> twice(_ + 1, 5)
res9: Double = 7.0

2In the previous chapter, when the placeholder notation was used on traditional methods,
like println _, you had to leave a space between the name and the underscore. In this case
you don’t, because whereas println_ is a legal identifier in Scala, curriedSum(1)_ is not.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=215&v=2010_12_13

Section 9.4 Chapter 9 - Control Abstraction 216

The type of op in this example is Double => Double, which means it is a
function that takes one Double as an argument and returns another Double.

Any time you find a control pattern repeated in multiple parts of your
code, you should think about implementing it as a new control structure.
Earlier in the chapter you saw filesMatching, a very specialized control
pattern. Consider now a more widely used coding pattern: open a resource,
operate on it, and then close the resource. You can capture this in a control
abstraction using a method like the following:

def withPrintWriter(file: File, op: PrintWriter => Unit) {
val writer = new PrintWriter(file)
try {
op(writer)
} finally {
writer.close()

}
Given such a method, you can use it like this:

withPrintWriter(
new File('"date.txt"),
writer => writer.println(new java.util.Date)

)

The advantage of using this method is that it’s withPrintWriter, not user
code, that assures the file is closed at the end. So it’s impossible to for-
get to close the file. This technique is called the loan pattern, because a
control-abstraction function, such as withPrintWriter, opens a resource
and “loans” it to a function. For instance, withPrintWriter in the previ-
ous example loans a PrintWriter to the function, op. When the function
completes, it signals that it no longer needs the “borrowed” resource. The
resource is then closed in a finally block, to ensure it is indeed closed, re-
gardless of whether the function completes by returning normally or throw-
ing an exception.

One way in which you can make the client code look a bit more like a
built-in control structure is to use curly braces instead of parentheses to sur-
round the argument list. In any method invocation in Scala in which you’re
passing in exactly one argument, you can opt to use curly braces to surround
the argument instead of parentheses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=216&v=2010_12_13

Section 9.4 Chapter 9 - Control Abstraction 217

For example, instead of:

scala> println("Hello, world!"™)
Hello, world!

You could write:

scala> println { "Hello, world!" }
Hello, world!

In the second example, you used curly braces instead of parentheses to sur-
round the arguments to println. This curly braces technique will work,
however, only if you're passing in one argument. Here’s an attempt at vio-
lating that rule:

scala> val g = "Hello, world
g: java.lang.String = Hello, world!
scala> g.substring { 7, 9 }

<console>:1: error: ';' expected but ',' found.
g.substring { 7, 9 }

Because you are attempting to pass in two arguments to substring, you
get an error when you try to surround those arguments with curly braces.
Instead, you’ll need to use parentheses:

scala> g.substring(7, 9)
resl2: java.lang.String = wo

The purpose of this ability to substitute curly braces for parentheses for
passing in one argument is to enable client programmers to write function
literals between curly braces. This can make a method call feel more like a
control abstraction. Take the withPrintWriter method defined previously
as an example. In its most recent form, withPrintWriter takes two ar-
guments, so you can’t use curly braces. Nevertheless, because the function
passed to withPrintWriter is the last argument in the list, you can use cur-
rying to pull the first argument, the File, into a separate argument list. This
will leave the function as the lone parameter of the second argument list.
Listing 9.4 shows how you’d need to redefine withPrintWriter.

The new version differs from the old one only in that there are now two
parameter lists with one parameter each instead of one parameter list with

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=217&v=2010_12_13

Section 9.5 Chapter 9 - Control Abstraction 218

def withPrintWriter(file: File)(op: PrintWriter => Unit) {
val writer = new PrintWriter(file)
try {
op(writer)
} finally {
writer.close()

Listing 9.4 - Using the loan pattern to write to a file.

two parameters. Look between the two parameters. In the previous version
of withPrintWriter, shown on page 216, you see ...File, op.... Butin
this version, you see ...File) (op.... Given the above definition, you can
call the method with a more pleasing syntax:

val file = new File("date.txt")

withPrintWriter(file) {
writer => writer.println(new java.util.Date)

}

In this example, the first argument list, which contains one File argument, is
written surrounded by parentheses. The second argument list, which contains
one function argument, is surrounded by curly braces.

9.5 By-name parameters

The withPrintWriter method shown in the previous section differs from
built-in control structures of the language, such as if and while, in that the
code between the curly braces takes an argument. The withPrintWriter
method requires one argument of type PrintWriter. This argument shows
up as the “writer =>” in:

withPrintWriter(file) {
writer => writer.println(new java.util.Date)

}

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=218&v=2010_12_13

Section 9.5 Chapter 9 - Control Abstraction 219

What if you want to implement something more like if or while, however,
where there is no value to pass into the code between the curly braces? To
help with such situations, Scala provides by-name parameters.

As a concrete example, suppose you want to implement an assertion con-
struct called myAssert.> The myAssert function will take a function value
as input and consult a flag to decide what to do. If the flag is set, myAssert
will invoke the passed function and verify that it returns true. If the flag is
turned off, myAssert will quietly do nothing at all.

Without using by-name parameters, you could write myAssert like this:

var assertionsEnabled = true

def myAssert(predicate: () => Boolean) =
if (assertionsEnabled && !predicate())
throw new AssertionError

The definition is fine, but using it is a little bit awkward:
myAssert(() => 5 > 3)

You would really prefer to leave out the empty parameter list and => symbol
in the function literal and write the code like this:

myAssert(5 > 3) // Won’t work, because missing () =>

By-name parameters exist precisely so that you can do this. To make a by-
name parameter, you give the parameter a type starting with => instead of
() =>. For example, you could change myAssert’s predicate parame-
ter into a by-name parameter by changing its type, “() => Boolean”, into
“=>Boolean”. Listing 9.5 shows how that would look:

def byNameAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

Listing 9.5 - Using a by-name parameter.

Now you can leave out the empty parameter in the property you want
to assert. The result is that using byNameAssert looks exactly like using a
built-in control structure:

3You’ll call this myAssert, not assert, because Scala provides an assert of its own,
which will be described in Section 14.1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=219&v=2010_12_13

Section 9.5 Chapter 9 - Control Abstraction 220

byNameAssert(5 > 3)

A by-name type, in which the empty parameter list, (), is left out, is only
allowed for parameters. There is no such thing as a by-name variable or a
by-name field.

Now, you may be wondering why you couldn’t simply write myAssert
using a plain old Boolean for the type of its parameter, like this:

def boolAssert(predicate: Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

This formulation is also legal, of course, and the code using this version of
boolAssert would still look exactly as before:

boolAssert(5 > 3)

Nevertheless, one difference exists between these two approaches that is im-
portant to note. Because the type of boolAssert’s parameter is Boolean,
the expression inside the parentheses in boolAssert (5 > 3) is evaluated be-
fore the call to boolAssert. The expression 5 > 3 yields true, which is
passed to boolAssert. By contrast, because the type of byNameAssert’s
predicate parameter is => Boolean, the expression inside the parentheses
in byNameAssert (5 > 3) is not evaluated before the call to byNameAssert.
Instead a function value will be created whose apply method will evaluate
5 > 3, and this function value will be passed to byNameAssert.

The difference between the two approaches, therefore, is that if asser-
tions are disabled, you’ll see any side effects that the expression inside the
parentheses may have in boolAssert, but not in byNameAssert. For exam-
ple, if assertions are disabled, attempting to assert on “x / 0 == 0” will yield
an exception in boolAssert’s case:

scala> var assertionsEnabled = false
assertionsEnabled: Boolean = false

scala> boolAssert(x / 0 == 0)
java.lang.ArithmeticException: / by zero
at .<init>(<console>:9)
at .<clinit>(<console>)
at RequestResult$.<init>(<console>:9)
at RequestResult$.<clinit>(<console>)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=220&v=2010_12_13

Section 9.6 Chapter 9 - Control Abstraction 221

But attempting to assert on the same code in byNameAssert’s case will not
yield an exception:

scala> byNameAssert(x / 0 == 0)

9.6 Conclusion

This chapter has shown you how to build on Scala’s rich function support
to build control abstractions. You can use functions within your code to
factor out common control patterns, and you can take advantage of higher-
order functions in the Scala library to reuse control patterns that are common
across all programmers’ code. This chapter has also shown how to use cur-
rying and by-name parameters so that your own higher-order functions can
be used with a concise syntax.

In the previous chapter and this one, you have seen quite a lot of infor-
mation about functions. The next few chapters will go back to discussing
more object-oriented features of the language.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=221&v=2010_12_13

Chapter 10

Composition and Inheritance

Chapter 6 introduced some basic object-oriented aspects of Scala. This chap-
ter will pick up where Chapter 6 left off and dive with much greater detail
into Scala’s support for object-oriented programming. We’ll compare two
fundamental relationships between classes: composition and inheritance.
Composition means one class holds a reference to another, using the refer-
enced class to help it fulfill its mission. Inheritance is the superclass/subclass
relationship. In addition to these topics, we’ll discuss abstract classes, pa-
rameterless methods, extending classes, overriding methods and fields, para-
metric fields, invoking superclass constructors, polymorphism and dynamic
binding, final members and classes, and factory objects and methods.

10.1 A two-dimensional layout library

As a running example in this chapter, we’ll create a library for building and
rendering two-dimensional layout elements. Each element will represent a
rectangle filled with text. For convenience, the library will provide factory
methods named “elem” that construct new elements from passed data. For
example, you’ll be able to create a layout element containing a string using
a factory method with the following signature:

elem(s: String): Element

As you can see, elements will be modeled with a type named Element.
You’ll be able to call above or beside on an element, passing in a sec-
ond element, to get a new element that combines the two. For example,

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=222&v=2010_12_13

Section 10.2 Chapter 10 - Composition and Inheritance 223

the following expression would construct a larger element consisting of two
columns, each with a height of two:

val columnl = elem("hello") above elem("xx=")
val column?2 = elem("++«+") above elem("world")
columnl beside column2

Printing the result of this expression would give:

hello ===
Fekk World

Layout elements are a good example of a system in which objects can be
constructed from simple parts with the aid of composing operators. In this
chapter, we’ll define classes that enable element objects to be constructed
from arrays, lines, and rectangles—the simple parts. We’ll also define com-
posing operators above and beside. Such composing operators are also
often called combinators because they combine elements of some domain
into new elements.

Thinking in terms of combinators is generally a good way to approach
library design: it pays to think about the fundamental ways to construct ob-
jects in an application domain. What are the simple objects? In what ways
can more interesting objects be constructed out of simpler ones? How do
combinators hang together? What are the most general combinations? Do
they satisfy any interesting laws? If you have good answers to these ques-
tions, your library design is on track.

10.2 Abstract classes

Our first task is to define type Element, which represents layout elements.
Since elements are two dimensional rectangles of characters, it makes sense
to include a member, contents, that refers to the contents of a layout el-
ement. The contents can be represented as an array of strings, where each
string represents a line. Hence, the type of the result returned by contents
will be Array[String]. Listing 10.1 shows what it will look like.

In this class, contents is declared as a method that has no implementa-
tion. In other words, the method is an abstract member of class Element. A
class with abstract members must itself be declared abstract, which is done
by writing an abstract modifier in front of the class keyword:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=223&v=2010_12_13

Section 10.3 Chapter 10 - Composition and Inheritance 224

abstract class Element {
def contents: Array[String]

Listing 10.1 - Defining an abstract method and class.

abstract class Element ...

The abstract modifier signifies that the class may have abstract members
that do not have an implementation. As a result, you cannot instantiate an
abstract class. If you try to do so, you’ll get a compiler error:

scala> new Element
<console>:5: error: class Element is abstract;
cannot be instantiated
new Element
Later in this chapter you’ll see how to create subclasses of class Element,
which you’ll be able to instantiate because they fill in the missing definition
for contents.

Note that the contents method in class Element does not carry an
abstract modifier. A method is abstract if it does not have an implemen-
tation (i.e., no equals sign or body). Unlike Java, no abstract modifier is
necessary (or allowed) on method declarations. Methods that do have an
implementation are called concrete.

Another bit of terminology distinguishes between declarations and defi-
nitions. Class Element declares the abstract method contents, but currently
defines no concrete methods. In the next section, however, we’ll enhance
Element by defining some concrete methods.

10.3 Defining parameterless methods

As anext step, we’ll add methods to Element that reveal its width and height,
as shown in Listing 10.2. The height method returns the number of lines in
contents. The width method returns the length of the first line, or, if there
are no lines in the element, zero. (This means you cannot define an element
with a height of zero and a non-zero width.)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=224&v=2010_12_13

Section 10.3 Chapter 10 - Composition and Inheritance 225

abstract class Element {

def contents: Array[String]

def height: Int = contents.length

def width: Int = if (height == 0) 0 else contents(0).length
}

Listing 10.2 - Defining parameterless methods width and height.

Note that none of Element’s three methods has a parameter list, not even
an empty one. For example, instead of:

def width(): Int
the method is defined without parentheses:
def width: Int

Such parameterless methods are quite common in Scala. By contrast, meth-
ods defined with empty parentheses, such as def height(): Int, are called
empty-paren methods. The recommended convention is to use a parame-
terless method whenever there are no parameters and the method accesses
mutable state only by reading fields of the containing object (in particular, it
does not change mutable state). This convention supports the uniform access
principle,! which says that client code should not be affected by a decision
to implement an attribute as a field or method. For instance, we could have
chosen to implement width and height as fields instead of methods, simply
by changing the def in each definition to a val:

abstract class Element {
def contents: Array[String]
val height = contents.length
val width =
if (height == 0) 0 else contents(0).length
}

The two pairs of definitions are completely equivalent from a client’s point
of view. The only difference is that field accesses might be slightly faster
than method invocations, because the field values are pre-computed when the

IMeyer, Object-Oriented Software Construction [Mey00]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=225&v=2010_12_13

Section 10.3 Chapter 10 - Composition and Inheritance 226

class is initialized, instead of being computed on each method call. On the
other hand, the fields require extra memory space in each Element object.
So it depends on the usage profile of a class whether an attribute is better
represented as a field or method, and that usage profile might change over
time. The point is that clients of the Element class should not be affected
when its internal implementation changes.

In particular, a client of class Element should not need to be rewritten if
a field of that class gets changed into an access function so long as the access
function is pure, i.e., it does not have any side effects and does not depend
on mutable state. The client should not need to care either way.

So far so good. But there’s still a slight complication that has to do
with the way Java handles things. The problem is that Java does not imple-
ment the uniform access principle. So it’s string.length() in Java, not
string.length (even though it’s array.length, not array.length()).
Needless to say, this is very confusing.

To bridge that gap, Scala is very liberal when it comes to mixing param-
eterless and empty-paren methods. In particular, you can override a param-
eterless method with an empty-paren method, and vice versa. You can also
leave off the empty parentheses on an invocation of any function that takes
no arguments. For instance, the following two lines are both legal in Scala:

Array(1l, 2, 3).toString
"abc".length

In principle it’s possible to leave out all empty parentheses in Scala func-
tion calls. However, it is recommended to still write the empty parentheses
when the invoked method represents more than a property of its receiver ob-
ject. For instance, empty parentheses are appropriate if the method performs
I/O, or writes reassignable variables (vars), or reads vars other than the re-
ceiver’s fields, either directly or indirectly by using mutable objects. That
way, the parameter list acts as a visual clue that some interesting computa-
tion is triggered by the call. For instance:

"hello".length // no () because no side-effect
println() // better to not drop the ()

To summarize, it is encouraged style in Scala to define methods that take no
parameters and have no side effects as parameterless methods, i.e., leaving
off the empty parentheses. On the other hand, you should never define a

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=226&v=2010_12_13

Section 10.4 Chapter 10 - Composition and Inheritance 227

method that has side-effects without parentheses, because then invocations
of that method would look like a field selection. So your clients might be
surprised to see the side effects. Similarly, whenever you invoke a function
that has side effects, be sure to include the empty parentheses when you
write the invocation. Another way to think about this is if the function you’re
calling performs an operation, use the parentheses, but if it merely provides
access to a property, leave the parentheses off.

10.4 Extending classes

We still need to be able to create new element objects. You have already
seen that “new Element” cannot be used for this because class Element is
abstract. To instantiate an element, therefore, we will need to create a sub-
class that extends Element and implements the abstract contents method.
Listing 10.3 shows one possible way to do that:

class ArrayElement(conts: Array[String]) extends Element {
def contents: Array[String] = conts

}

Listing 10.3 - Defining ArrayElement as a subclass of Element.

Class ArrayElement is defined to extend class Element. Just like in
Java, you use an extends clause after the class name to express this:

. extends Element ...

Such an extends clause has two effects: it makes class ArrayElement in-
herit all non-private members from class Element, and it makes the type
ArrayElement a subtype of the type Element. Given ArrayElement ex-
tends Element, class ArrayElement is called a subclass of class Element.
Conversely, Element is a superclass of ArrayElement.

If you leave out an extends clause, the Scala compiler implicitly as-
sumes your class extends from scala.AnyRef, which on the Java platform
is the same as class java.lang.Object. Thus, class Element implicitly
extends class AnyRef. You can see these inheritance relationships in Fig-
ure 10.1.

Inheritance means that all members of the superclass are also members
of the subclass, with two exceptions. First, private members of the super-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=227&v=2010_12_13

Section 10.4 Chapter 10 - Composition and Inheritance 228

scala

AnyRef
«java.lang.Object»

i

Element
«abstract»

T

ArrayElement [K—— Array[String]

Figure 10.1 - Class diagram for ArrayElement.

class are not inherited in a subclass. Second, a member of a superclass is
not inherited if a member with the same name and parameters is already im-
plemented in the subclass. In that case we say the member of the subclass
overrides the member of the superclass. If the member in the subclass is
concrete and the member of the superclass is abstract, we also say that the
concrete member implements the abstract one.

For example, the contents method in ArrayElement overrides (or, al-
ternatively: implements) abstract method contents in class Element.> By
contrast, class ArrayElement inherits the width and height methods from
class Element. For example, given an ArrayElement ae, you can query its
width using ae.width, as if width were defined in class ArrayElement:

scala> val ae = new ArrayElement(Array("hello", "world"))
ae: ArrayElement = ArrayElement@d94e60

scala> ae.width
resl: Int = 5

20One flaw with this design is that because the returned array is mutable, clients could
change it. For the book we’ll keep things simple, but were ArrayElement part of a real
project, you might consider returning a defensive copy of the array instead. Another problem
is we aren’t currently ensuring that every String element of the contents array has the
same length. This could be solved by checking the precondition in the primary constructor,
and throwing an exception if it is violated.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=228&v=2010_12_13

Section 10.5 Chapter 10 - Composition and Inheritance 229

Subtyping means that a value of the subclass can be used wherever a
value of the superclass is required. For example:

val e: Element = new ArrayElement(Array('hello"))

Variable e is defined to be of type Element, so its initializing value should
also be an Element. In fact, the initializing value’s type is ArrayElement.
This is OK, because class ArrayElement extends class Element, and as a
result, the type ArrayElement is compatible with the type Element.’

Figure 10.1 also shows the composition relationship that exists between
ArrayElement and Array[String]. This relationship is called composition
because class ArrayElement is “composed” out of class Array[String],
in that the Scala compiler will place into the binary class it generates for
ArrayElement a field that holds a reference to the passed conts array. We’ll
discuss some design considerations concerning composition and inheritance
later in this chapter, in Section 10.11.

10.5 Overriding methods and fields

The uniform access principle is just one aspect where Scala treats fields and
methods more uniformly than Java. Another difference is that in Scala, fields
and methods belong to the same namespace. This makes it possible for a
field to override a parameterless method. For instance, you could change
the implementation of contents in class ArrayElement from a method to
a field without having to modify the abstract method definition of contents
in class Element, as shown in Listing 10.4:

class ArrayElement(conts: Array[String]) extends Element {
val contents: Array[String] = conts

}

Listing 10.4 - Overriding a parameterless method with a field.

Field contents (defined with a val) in this version of ArrayElement
is a perfectly good implementation of the parameterless method contents
(declared with a def) in class Element.

3For more perspective on the difference between subclass and subtype, see the glossary
entry for subtype.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=229&v=2010_12_13

Section 10.6 Chapter 10 - Composition and Inheritance 230

On the other hand, in Scala it is forbidden to define a field and method
with the same name in the same class, whereas it is allowed in Java. For
example, this Java class would compile just fine:

// This is Java
class CompilesFine {
private int f = 0;
public int f£() {
return 1;

}

But the corresponding Scala class would not compile:

class WontCompile {
private var f = 0 // Won’t compile, because a field
def £f =1 // and method have the same name
}

Generally, Scala has just two namespaces for definitions in place of Java’s
four. Java’s four namespaces are fields, methods, types, and packages. By
contrast, Scala’s two namespaces are:

* values (fields, methods, packages, and singleton objects)
* types (class and trait names)

The reason Scala places fields and methods into the same namespace is pre-
cisely so you can override a parameterless method with a val, something
you can’t do with Java.*

10.6 Defining parametric fields

Consider again the definition of class ArrayElement shown in the previous
section. It has a parameter conts whose sole purpose is to be copied into the
contents field. The name conts of the parameter was chosen just so that

4The reason that packages share the same namespace as fields and methods in Scala is
to enable you to import packages in addition to just importing the names of types, and the
fields and methods of singleton objects. This is also something you can’t do in Java. It will
be described in Section 13.3.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=230&v=2010_12_13

Section 10.6 Chapter 10 - Composition and Inheritance 231

it would look similar to the field name contents without actually clashing
with it. This is a “code smell,” a sign that there may be some unnecessary
redundancy and repetition in your code.

You can avoid the code smell by combining the parameter and the field
in a single parametric field definition, as shown in Listing 10.5:

class ArrayElement(
val contents: Array[String]
) extends Element

Listing 10.5 - Defining contents as a parametric field.

Note that now the contents parameter is prefixed by val. This is a
shorthand that defines at the same time a parameter and field with the same
name. Specifically, class ArrayElement now has an (unreassignable) field
contents, which can be accessed from outside the class. The field is initial-
ized with the value of the parameter. It’s as if the class had been written as
follows, where x123 is an arbitrary fresh name for the parameter:

class ArrayElement(x123: Array[String]) extends Element {
val contents: Array[String] = x123
}

You can also prefix a class parameter with var, in which case the correspond-
ing field would be reassignable. Finally, it is possible to add modifiers such
as private, protected,’ or override to these parametric fields, just as
you can do for any other class member. Consider, for instance, the following
class definitions:

class Cat {
val dangerous = false

}

class Tiger(
override val dangerous: Boolean,
private var age: Int

) extends Cat

5The protected modifier, which grants access to subclasses, will be covered in detail in
Chapter 13.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=231&v=2010_12_13

Section 10.7 Chapter 10 - Composition and Inheritance 232

Tiger’s definition is a shorthand for the following alternate class definition
with an overriding member dangerous and a private member age:

class Tiger(paraml: Boolean, param2: Int) extends Cat {
override val dangerous = paraml
private var age = param2

}

Both members are initialized from the corresponding parameters. We chose
the names of those parameters, paraml and param2, arbitrarily. The impor-
tant thing was that they not clash with any other name in scope.

10.7 Invoking superclass constructors

You now have a complete system consisting of two classes: an abstract class
Element, which is extended by a concrete class ArrayElement. You might
also envision other ways to express an element. For example, clients might
want to create a layout element consisting of a single line given by a string.
Object-oriented programming makes it easy to extend a system with new
data-variants. You can simply add subclasses. For example, Listing 10.6
shows a LineElement class that extends ArrayElement:

class LineElement(s: String) extends ArrayElement(Array(s)) {
override def width = s.length
override def height = 1

}

Listing 10.6 - Invoking a superclass constructor.

Since LineElement extends ArrayElement, and ArrayElement’s con-
structor takes a parameter (an Array[String]), LineElement needs to pass
an argument to the primary constructor of its superclass. To invoke a super-
class constructor, you simply place the argument or arguments you want to
pass in parentheses following the name of the superclass. For example, class
LineElement passes Array(s) to ArrayElement’s primary constructor by
placing it in parentheses after the superclass ArrayElement’s name:

. extends ArrayElement(Array(s))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=232&v=2010_12_13

Section 10.8 Chapter 10 - Composition and Inheritance 233

Element
«abstract»

1

ArrayElement [©—— Array[String]

T

LineElement

Figure 10.2 - Class diagram for LineElement.

With the new subclass, the inheritance hierarchy for layout elements now
looks as shown in Figure 10.2.

10.8 Using override modifiers

Note that the definitions of width and height in LineElement carry an
override modifier. In Section 6.3, you saw this modifier in the definition
of a toString method. Scala requires such a modifier for all members that
override a concrete member in a parent class. The modifier is optional if a
member implements an abstract member with the same name. The modifier
is forbidden if a member does not override or implement some other member
in a base class. Since height and width in class LineElement override
concrete definitions in class Element, override is required.

This rule provides useful information for the compiler that helps avoid
some hard-to-catch errors and makes system evolution safer. For instance, if
you happen to misspell the method or accidentally give it a different param-
eter list, the compiler will respond with an error message:

$ scalac LineElement.scala

.../LineElement.scala:50:

error: method hight overrides nothing
override def hight =1

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=233&v=2010_12_13

Section 10.8 Chapter 10 - Composition and Inheritance 234

The override convention is even more important when it comes to system
evolution. Say you defined a library of 2D drawing methods. You made it
publicly available, and it is widely used. In the next version of the library
you want to add to your base class Shape a new method with this signature:

def hidden(): Boolean

Your new method will be used by various drawing methods to determine
whether a shape needs to be drawn. This could lead to a significant speedup,
but you cannot do this without the risk of breaking client code. After all, a
client could have defined a subclass of Shape with a different implementation
of hidden. Perhaps the client’s method actually makes the receiver object
disappear instead of testing whether the object is hidden. Because the two
versions of hidden override each other, your drawing methods would end up
making objects disappear, which is certainly not what you want! These “ac-
cidental overrides” are the most common manifestation of what is called the
“fragile base class” problem. The problem is that if you add new members
to base classes (which we usually call superclasses) in a class hierarchy, you
risk breaking client code.

Scala cannot completely solve the fragile base class problem, but it im-
proves on the situation compared to Java.® If the drawing library and its
clients were written in Scala, then the client’s original implementation of
hidden could not have had an override modifier, because at the time there
was no other method with that name. Once you add the hidden method to
the second version of your shape class, a recompile of the client would give
an error like the following:

.../Shapes.scala:6: error: error overriding method
hidden in class Shape of type ()Boolean;

method hidden needs ‘override' modifier

def hidden(): Boolean =

That is, instead of wrong behavior your client would get a compile-time
error, which is usually much preferable.

%In Java 1.5, an @0verride annotation was introduced that works similarly to Scala’s
override modifier, but unlike Scala’s override, is not required.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=234&v=2010_12_13

Section 10.9 Chapter 10 - Composition and Inheritance 235
10.9 Polymorphism and dynamic binding

You saw in Section 10.4 that a variable of type Element could refer to
an object of type ArrayElement. The name for this phenomenon is poly-
morphism, which means “many shapes” or “many forms.” In this case,
Element objects can have many forms.” So far, you’ve seen two such forms:
ArrayElement and LineElement. You can create more forms of Element
by defining new Element subclasses. For example, here’s how you could
define a new form of Element that has a given width and height and is filled
everywhere with a given character:

class UniformElement (
ch: Char,
override val width: Int,
override val height: Int
) extends Element {
private val line = ch.toString * width
def contents = Array.fill(height)(1line)
}

The inheritance hierarchy for class Element now looks as shown in Fig-
ure 10.3. As a result, Scala will accept all of the following assignments,
because the assigning expression’s type conforms to the type of the defined
variable:

val el: Element = new ArrayElement(Array('hello"”, "world"))
val ae: ArrayElement = new LineElement("hello")

val e2: Element = ae

val e3: Element = new UniformElement('x', 2, 3)

If you check the inheritance hierarchy, you’ll find that in each of these four
val definitions, the type of the expression to the right of the equals sign is
below the type of the val being initialized to the left of the equals sign.

The other half of the story, however, is that method invocations on vari-
ables and expressions are dynamically bound. This means that the actual
method implementation invoked is determined at run time based on the class
of the object, not the type of the variable or expression. To demonstrate this

"This kind of polymorphism is called subtyping polymorphism. Another kind of poly-
morphism in Scala, called universal polymorphism, is discussed in Chapter 19.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=235&v=2010_12_13

Section 10.9 Chapter 10 - Composition and Inheritance

Element
«abstract»

A
I I

UniformElement ArrayElement

ﬁk

LineElement

Figure 10.3 - Class hierarchy of layout elements.

behavior, we’ll temporarily remove all existing members from our Element

classes and add a method named demo to Element. We’ll override demo in

ArrayElement and LineElement, but not in UniformElement:

abstract class Element {
def demo() {
println("Element's implementation invoked")
}
}

class ArrayElement extends Element {
override def demo() {
println("ArrayElement's implementation invoked")
}
}

class LineElement extends ArrayElement {
override def demo() {
println("LineElement's implementation invoked")

¥
}

// UniformElement inherits Element’s demo
class UniformElement extends Element

If you enter this code into the interpreter, you can then define this method

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

236

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=236&v=2010_12_13

Section 10.10 Chapter 10 - Composition and Inheritance 237

that takes an Element and invokes demo on it:

def invokeDemo(e: Element) {
e.demo()

}

If you pass an ArrayElement to invokeDemo, you’ll see a message indicat-
ing ArrayElement’s implementation of demo was invoked, even though the
type of the variable, e, on which demo was invoked is Element:

scala> invokeDemo(new ArrayElement)
ArrayElement's implementation invoked

Similarly, if you pass a LineElement to invokeDemo, you’ll see a message
that indicates LineElement’s demo implementation was invoked:

scala> invokeDemo(new LineElement)
LineElement's implementation invoked

The behavior when passing a UniformElement may at first glance look sus-
picious, but it is correct:

scala> invokeDemo(new UniformElement)
Element's implementation invoked

Because UniformElement does not override demo, it inherits the implemen-
tation of demo from its superclass, Element. Thus, Element’s implementa-
tion is the correct implementation of demo to invoke when the class of the
object is UniformElement.

10.10 Declaring final members

Sometimes when designing an inheritance hierarchy, you want to ensure that
a member cannot be overridden by subclasses. In Scala, as in Java, you do
this by adding a final modifier to the member. For example, you could
place a final modifier on ArrayElement’s demo method, as shown in List-
ing 10.7.

Given this version of ArrayElement, an attempt to override demo in its
subclass, LineElement, would not compile:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=237&v=2010_12_13

Section 10.10 Chapter 10 - Composition and Inheritance 238

class ArrayElement extends Element {
final override def demo() {
println("ArrayElement's implementation invoked")

}

Listing 10.7 - Declaring a final method.

elem.scala:18: error: error overriding method demo
in class ArrayElement of type ()Unit;

method demo cannot override final member
override def demo() {

You may also at times want to ensure that an entire class not be sub-
classed. To do this you simply declare the entire class final by adding a
final modifier to the class declaration. For example, Listing 10.8 shows
how you would declare ArrayElement final:

final class ArrayElement extends Element {
override def demo() {
println("ArrayElement's implementation invoked")

}

Listing 10.8 - Declaring a final class.

With this version of ArrayElement, any attempt at defining a subclass
would fail to compile:

elem.scala: 18: error: illegal inheritance from final class
ArrayElement

class LineElement extends ArrayElement {

We’ll now remove the final modifiers and demo methods, and go back
to the earlier implementation of the Element family. We’ll focus our atten-
tion in the remainder of this chapter to completing a working version of the
layout library.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=238&v=2010_12_13

Section 10.11 Chapter 10 - Composition and Inheritance 239
10.11 Using composition and inheritance

Composition and inheritance are two ways to define a new class in terms
of another existing class. If what you’re after is primarily code reuse, you
should in general prefer composition to inheritance. Only inheritance suffers
from the fragile base class problem, in which you can inadvertently break
subclasses by changing a superclass.

One question you can ask yourself about an inheritance relationship is
whether it models an is-a relationship.® For example, it would be reasonable
to say that ArrayElement is-an Element. Another question you can ask is
whether clients will want to use the subclass type as a superclass type.’ In
the case of ArrayElement, we do indeed expect clients will want to use an
ArrayElement as an Element.

If you ask these questions about the inheritance relationships shown in
Figure 10.3, do any of the relationships seem suspicious? In particular, does
it seem obvious to you that a LineElement is-an ArrayElement? Do you
think clients would ever need to use a LineElement as an ArrayElement?
In fact, we defined LineElement as a subclass of ArrayElement primarily
to reuse ArrayElement’s definition of contents. Perhaps it would be better,
therefore, to define LineElement as a direct subclass of Element, like this:

class LineElement(s: String) extends Element {
val contents = Array(s)
override def width = s.length
override def height = 1

}

In the previous version, LineElement had an inheritance relationship with
ArrayElement, from which it inherited contents. It now has a composition
relationship with Array: it holds a reference to an array of strings from
its own contents field.!” Given this implementation of LineElement, the
inheritance hierarchy for Element now looks as shown in Figure 10.4.

8Meyers, Effective C++ [Mey91]

9Eckel, Thinking in Java [Eck98]

10Class ArrayElement also has a composition relationship with Array, because its para-
metric contents field holds a reference to an array of strings. The code for ArrayElement
is shown in Listing 10.5 on page 231. Its composition relationship is represented in class
diagrams by a diamond, as shown, for example, in Figure 10.1 on page 228.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=239&v=2010_12_13

Section 10.12 Chapter 10 - Composition and Inheritance 240

Element
«abstract»
JaN

ArrayElement LineElement UniformElement

Figure 10.4 - Class hierarchy with revised LineElement.

10.12 Implementing above, beside, and toString

As a next step, we’ll implement method above in class Element. Putting
one element above another means concatenating the two contents values
of the elements. So a first draft of method above could look like this:

def above(that: Element): Element =
new ArrayElement(this.contents ++ that.contents)

The ++ operation concatenates two arrays. Arrays in Scala are represented
as Java arrays, but support many more methods. Specifically, arrays in
Scala can be converted to instances of a class scala.Seq, which represents
sequence-like structures and contains a number of methods for accessing and
transforming sequences. Some other array methods will be explained in this
chapter, and a comprehensive discussion will be given in Chapter 17.

In fact, the code shown previously is not quite sufficient, because it does
not permit you to put elements of different widths on top of each other. To
keep things simple in this section, however, we’ll leave this as is and only
pass elements of the same length to above. In Section 10.14, we’ll make
an enhancement to above so that clients can use it to combine elements of
different widths.

The next method to implement is beside. To put two elements beside
each other, we’ll create a new element in which every line results from con-
catenating corresponding lines of the two elements. As before, to keep things
simple we’ll start by assuming the two elements have the same height. This
leads to the following design of method beside:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=240&v=2010_12_13

Section 10.12 Chapter 10 - Composition and Inheritance 241

def beside(that: Element): Element = {
val contents = new Array[String](this.contents.length)
for (i <- 0 until this.contents.length)
contents(i) = this.contents(i) + that.contents(i)
new ArrayElement(contents)

}

The beside method first allocates a new array, contents, and fills it with
the concatenation of the corresponding array elements in this.contents
and that.contents. It finally produces a new ArrayElement containing
the new contents.

Although this implementation of beside works, it is in an imperative
style, the telltale sign of which is the loop in which we index through arrays.
The method could alternatively be abbreviated to one expression:

new ArrayElement (
for (
(linel, line2) <- this.contents zip that.contents
) vield linel + line2
)

Here, the two arrays this.contents and that.contents are transformed
into an array of pairs (as Tuple2s are called) using the zip operator. The
zip method picks corresponding elements in its two arguments and forms
an array of pairs. For instance, this expression:

n_on

Array(1l, 2, 3) zip Array('a", "b")
will evaluate to:
Array((1, "a"), (2, "b"))

If one of the two operand arrays is longer than the other, zip will drop the
remaining elements. In the expression above, the third element of the left
operand, 3, does not form part of the result, because it does not have a cor-
responding element in the right operand.

The zipped array is then iterated over by a for expression. Here, the
syntax “for ((linel, line2) <-...)” allows you to name both elements
of a pair in one pattern, i.e., 1linel stands now for the first element of the
pair, and 1ine?2 stands for the second. Scala’s pattern-matching system will

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=241&v=2010_12_13

Section 10.13 Chapter 10 - Composition and Inheritance 242

be described in detail in Chapter 15. For now, you can just think of this as a
way to define two vals, 1inel and 1ine2, for each step of the iteration.

The for expression has a yield part and therefore yields a result. The
result is of the same kind as the expression iterated over, i.e., it is an array.
Each element of the array is the result of concatenating the corresponding
lines, 1inel and 1ine2. So the end result of this code is the same as in
the first version of beside, but because it avoids explicit array indexing, the
result is obtained in a less error-prone way.

You still need a way to display elements. As usual, this is done by defin-
ing a toString method that returns an element formatted as a string. Here
is its definition:

override def toString = contents mkString "\n"

The implementation of toString makes use of mkString, which is defined
for all sequences, including arrays. As you saw in Section 7.8, an expression
like “arr mkString sep” returns a string consisting of all elements of the ar-
ray arr. Each element is mapped to a string by calling its toString method.
A separator string sep is inserted between consecutive element strings. So
the expression, “contents mkString "\n"” formats the contents array as
a string, where each array element appears on a line by itself.

Note that toString does not carry an empty parameter list. This follows
the recommendations for the uniform access principle, because toString is
a pure method that does not take any parameters.

With the addition of these three methods, class Element now looks as
shown in Listing 10.9.

10.13 Defining a factory object

You now have a hierarchy of classes for layout elements. This hierarchy
could be presented to your clients “as is.” But you might also choose to hide
the hierarchy behind a factory object. A factory object contains methods
that construct other objects. Clients would then use these factory methods
for object construction rather than constructing the objects directly with new.
An advantage of this approach is that object creation can be centralized and
the details of how objects are represented with classes can be hidden. This
hiding will both make your library simpler for clients to understand, because

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=242&v=2010_12_13

Section 10.13 Chapter 10 - Composition and Inheritance 243

abstract class Element {
def contents: Array[String]

def width: Int =
if (height == 0) 0 else contents(0).length

def height: Int = contents.length

def above(that: Element): Element =
new ArrayElement(this.contents ++ that.contents)

def beside(that: Element): Element =
new ArrayElement (
for (
(linel, line2) <- this.contents zip that.contents
) vield linel + line2
)

override def toString = contents mkString "\n"

}

Listing 10.9 - Class Element with above, beside, and toString.

less detail is exposed, and provide you with more opportunities to change
your library’s implementation later without breaking client code.

The first task in constructing a factory for layout elements is to choose
where the factory methods should be located. Should they be members of
a singleton object or of a class? What should the containing object or class
be called? There are many possibilities. A straightforward solution is to
create a companion object of class Element and make this be the factory ob-
ject for layout elements. That way, you need to expose only the class/object
combo of Element to your clients, and you can hide the three implementa-
tion classes ArrayElement, LineElement, and UniformElement.

Listing 10.10 is a design of the Element object that follows this scheme.
The Element companion object contains three overloaded variants of an
elem method. Each variant constructs a different kind of layout object.

With the advent of these factory methods, it makes sense to change the
implementation of class Element so that it goes through the elem factory
methods rather than creating new ArrayElement instances explicitly. To call
the factory methods without qualifying them with Element, the name of the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=243&v=2010_12_13

Section 10.14 Chapter 10 - Composition and Inheritance 244

object Element {

def elem(contents: Array[String]): Element =
new ArrayElement(contents)

def elem(chr: Char, width: Int, height: Int): Element =
new UniformElement(chr, width, height)

def elem(line: String): Element =
new LineElement(line)

Listing 10.10 - A factory object with factory methods.

singleton object, we will import Element.elem at the top of the source file.
In other words, instead of invoking the factory methods with Element.elem
inside class Element, we’ll import Element.elem so we can just call the
factory methods by their simple name, elem. Listing 10.11 shows what class
Element will look like after these changes.

In addition, given the factory methods, the subclasses ArrayElement,
LineElement and UniformElement could now be private, because they
need no longer be accessed directly by clients. In Scala, you can define
classes and singleton objects inside other classes and singleton objects. One
way to make the Element subclasses private, therefore, is to place them in-
side the Element singleton object and declare them private there. The classes
will still be accessible to the three elem factory methods, where they are
needed. Listing 10.12 shows how that will look.

10.14 Heighten and widen

We need one last enhancement. The version of Element shown in List-
ing 10.11 is not quite sufficient, because it does not allow clients to place el-
ements of different widths on top of each other, or place elements of different
heights beside each other. For example, evaluating the following expression
would not work correctly, because the second line in the combined element
is longer than the first:

new ArrayElement(Array("hello")) above
new ArrayElement(Array("world!"))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=244&v=2010_12_13

Section 10.14 Chapter 10 - Composition and Inheritance 245

import Element.elem
abstract class Element {
def contents: Array[String]
def width: Int =
if (height == 0) 0 else contents(0).length
def height: Int = contents.length

def above(that: Element): Element =
elem(this.contents ++ that.contents)

def beside(that: Element): Element =
elem(
for (
(linel, line2) <- this.contents zip that.contents
) vield linel + line2
)

override def toString = contents mkString "\n"

Listing 10.11 - Class Element refactored to use factory methods.

Similarly, evaluating the following expression would not work properly, be-
cause the first ArrayElement has a height of two, and the second a height of
only one:

new ArrayElement(Array("one", "two")) beside
new ArrayElement(Array('one"))

Listing 10.13 shows a private helper method, widen, which takes a width
and returns an Element of that width. The result contains the contents of
this Element, centered, padded to the left and right by any spaces needed
to achieve the required width. Listing 10.13 also shows a similar method,
heighten, which performs the same function in the vertical direction. The
widen method is invoked by above to ensure that Elements placed above
each other have the same width. Similarly, the heighten method is invoked
by beside to ensure that elements placed beside each other have the same
height. With these changes, the layout library is ready for use.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=245&v=2010_12_13

Section 10.14 Chapter 10 - Composition and Inheritance 246

object Element {

private class ArrayElement(
val contents: Array[String]
) extends Element

private class LineElement(s: String) extends Element {
val contents = Array(s)
override def width = s.length
override def height = 1

}

private class UniformElement (
ch: Char,
override val width: Int,
override val height: Int
) extends Element {
private val line = ch.toString * width
def contents = Array.fill(height)(line)
b

def elem(contents: Array[String]): Element =
new ArrayElement(contents)

def elem(chr: Char, width: Int, height: Int): Element =
new UniformElement(chr, width, height)

def elem(line: String): Element =
new LineElement(line)

Listing 10.12 - Hiding implementation with private classes.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=246&v=2010_12_13

Section 10.14 Chapter 10 - Composition and Inheritance

import Element.elem

abstract class Element {
def contents: Array[String]

def width: Int = contents(0).length
def height: Int = contents.length

def above(that: Element): Element = {
val thisl = this widen that.width
val thatl = that widen this.width
elem(thisl.contents ++ thatl.contents)

}

def beside(that: Element): Element = {
val thisl = this heighten that.height
val thatl = that heighten this.height
elem(

for ((linel, line2) <- thisl.contents zip thatl.contents)

yield linel + line2)
}

def widen(w: Int): Element =
if (w <= width) this

else {
val left = elem(' ', (w - width) / 2, height)
var right = elem(' ', w - width - left.width, height)

left beside this beside right
}

def heighten(h: Int): Element =
if (h <= height) this

else {
val top = elem(' ', width, (h - height) / 2)
var bot = elem(' ', width, h - height - top.height)
top above this above bot
}
override def toString = contents mkString "\n"

Listing 10.13 - Element with widen and heighten methods.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

247

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=247&v=2010_12_13

Section 10.15 Chapter 10 - Composition and Inheritance
10.15 Putting it all together

A fun way to exercise almost all elements of the layout library is to write
a program that draws a spiral with a given number of edges. This Spiral
program, shown in Listing 10.14, will do just that:

import Element.elem
object Spiral {

val space = elem(" ")

no,on

val corner = elem("+")

def spiral(nEdges: Int, direction: Int): Element = {
if (nEdges == 1)

elem("+")
else {
val sp = spiral(nEdges - 1, (direction + 3) % 4)
def verticalBar = elem('|', 1, sp.height)
def horizontalBar = elem('-', sp.width, 1)

if (direction == 0)

(corner beside horizontalBar) above (sp beside space)
else if (direction == 1)

(sp above space) beside (corner above verticalBar)
else if (direction == 2)

(space beside sp) above (horizontalBar beside corner)
else

(verticalBar above corner) beside (space above sp)

}

def main(args: Array[String]) {
val nSides = args(0).toInt
println(spiral(nSides, 0))

}

Listing 10.14 - The Spiral application.

Because Spiral is a standalone object with a main method with the
proper signature, it is a Scala application. Spiral takes one command-line

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

248

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=248&v=2010_12_13

Section 10.16 Chapter 10 - Composition and Inheritance 249

argument, an integer, and draws a spiral with the specified number of edges.
For example, you could draw a six-edge spiral as shown below on the left,
and larger spirals as shown to the right:

$ scala Spiral 6 $ scala Spiral 11 $ scala Spiral 17

+———t

I
|
I
[++]|
I
I
I

10.16 Conclusion

In this section, you saw more concepts related to object-oriented program-
ming in Scala. Among others, you encountered abstract classes, inheritance
and subtyping, class hierarchies, parametric fields, and method overriding.
You should have developed a feel for constructing a non-trivial class hierar-
chy in Scala. We’ll work with the layout library again in Chapter 14.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=249&v=2010_12_13

Chapter 11

Scala’s Hierarchy

Now that you’ve seen the details of class inheritance in the previous chapter,
it is a good time to take a step back and look at Scala’s class hierarchy as a
whole. In Scala, every class inherits from a common superclass named Any.
Because every class is a subclass of Any, the methods defined in Any are
“universal” methods: they may be invoked on any object. Scala also defines
some interesting classes at the bottom of the hierarchy, Null and Nothing,
which essentially act as common subclasses. For example, just as Any is a
superclass of every other class, Nothing is a subclass of every other class.
In this chapter, we’ll give you a tour of Scala’s class hierarchy.

11.1 Scala’s class hierarchy

Figure 11.1 shows an outline of Scala’s class hierarchy. At the top of the
hierarchy is class Any, which defines methods that include the following:

final def ==(that: Any): Boolean
final def !'=(that: Any): Boolean
def equals(that: Any): Boolean
def ##: Int

def hashCode: Int

def toString: String

Because every class inherits from Any, every object in a Scala program can
be compared using ==, !=, or equals; hashed using ## or hashCode; and
formatted using toString. The equality and inequality methods, == and !=,
are declared final in class Any, so they cannot be overridden in subclasses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=250&v=2010_12_13

Section 11.1 Chapter 11 - Scala’s Hierarchy 251

The == method is essentially the same as equals and != is always the
negation of equals.! So individual classes can tailor what == or ! = means by
overriding the equals method. We’ll show an example later in this chapter.

The root class Any has two subclasses: AnyVal and AnyRef. AnyVal is
the parent class of every built-in value class in Scala. There are nine such
value classes: Byte, Short, Char, Int, Long, Float, Double, Boolean, and
Unit. The first eight of these correspond to Java’s primitive types, and their
values are represented at run time as Java’s primitive values. The instances of
these classes are all written as literals in Scala. For example, 42 is an instance
of Int, 'x' is an instance of Char, and false an instance of Boolean. You
cannot create instances of these classes using new. This is enforced by the
“trick” that value classes are all defined to be both abstract and final. So if
you were to write:

scala> new Int
you would get:

<console>:5: error: class Int is abstract; cannot be
instantiated
new Int
The other value class, Unit, corresponds roughly to Java’s void type; it is
used as the result type of a method that does not otherwise return an interest-
ing result. Unit has a single instance value, which is written (), as discussed
in Section 7.2.

As explained in Chapter 5, the value classes support the usual arithmetic
and boolean operators as methods. For instance, Int has methods named +
and =, and Boolean has methods named | | and &&. Value classes also inherit
all methods from class Any. You can test this in the interpreter:

IThe only cases where == is does not directly call equals is for Java’s boxed numeric
classes such as Integer or Long. In Java, a new Integer (1) does not equal a new Long(1)
even though for primitive values 1 == 1L. Since Scala is a more regular language than Java it
was necessary correct this discrepancy by special-casing the == method for these classes.
Likewise, the ## method provides a Scala version of hashing that is the same as Java’s
hashCode, except for boxed numeric types, where it works consistently with ==. For in-
stance new Integer(1l) and new Long(1l) hash the same with ## even though their Java
hashCodes are different.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=251&v=2010_12_13

252

Chapter 11 - Scala’s Hierarchy

Section 11.1

* (S9SSe|D BAR[JBY10)

Sutaas

Bue|enel

“e[eOS JO Ayorerary sse[) - ['[] In31g

eleds

1Tun

eleds

«23lqobue|enel»

JoyAuy

eleds

109lqoeTedS

eleds

UOISISAUOD IDIAW] == = =S
2dAigns ——p>-

TeAAuy

e|eds

ejeds

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=252&v=2010_12_13

Section 11.1 Chapter 11 - Scala’s Hierarchy 253

scala> 42.toString
resl: java.lang.String = 42

scala> 42.hashCode
res2: Int = 42

scala> 42 equals 42
res3: Boolean = true

Note that the value class space is flat; all value classes are subtypes of
scala.AnyVal, but they do not subclass each other. Instead there are im-
plicit conversions between different value class types. For example, an in-
stance of class scala.Int is automatically widened (by an implicit conver-
sion) to an instance of class scala.Long when required

As mentioned in Section 5.9, implicit conversions are also used to add
more functionality to value types. For instance, the type Int supports all of
the operations below:

scala> 42 max 43
resd: Int = 43

scala> 42 min 43
res5: Int = 42

scala> 1 until 5
res6: Range = Range(1, 2, 3, 4)

scala> 1 to 5
res7: Range.Inclusive = Range(1l, 2, 3, 4, 5)

scala> 3.abs
res8: Int = 3

scala> (-3).abs
res9: Int = 3

Here’s how this works: The methods min, max, until, to, and abs are all
defined in a class scala.runtime.RichInt, and there is an implicit con-
version from class Int to RichInt. The conversion is applied whenever a
method is invoked on an Int that is undefined in Int but defined in RichInt.
Similar “booster classes” and implicit conversions exist for the other value
classes. Implicit conversions will be discussed in detail in Chapter 21.

The other subclass of the root class Any is class AnyRef. This is the
base class of all reference classes in Scala. As mentioned previously, on the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=253&v=2010_12_13

Section 11.2 Chapter 11 - Scala’s Hierarchy 254

Java platform AnyRef is in fact just an alias for class java.lang.0Object.
So classes written in Java as well as classes written in Scala all inherit from
AnyRef.? One way to think of java.lang.Object, therefore, is as the way
AnyRef is implemented on the Java platform. Thus, although you can use
Object and AnyRef interchangeably in Scala programs on the Java platform,
the recommended style is to use AnyRef everywhere.

Scala classes are different from Java classes in that they also inherit from
a special marker trait called ScalaObject.

11.2 How primitives are implemented

How is all this implemented? In fact, Scala stores integers in the same way
as Java: as 32-bit words. This is important for efficiency on the JVM and
also for interoperability with Java libraries. Standard operations like addition
or multiplication are implemented as primitive operations. However, Scala
uses the “backup” class java.lang.Integer whenever an integer needs to
be seen as a (Java) object. This happens for instance when invoking the
toString method on an integer number or when assigning an integer to a
variable of type Any. Integers of type Int are converted transparently to
“boxed integers” of type java.lang.Integer whenever necessary.

All this sounds a lot like auto-boxing in Java 5 and it is indeed quite
similar. There’s one crucial difference, though, in that boxing in Scala is
much less visible than boxing in Java. Try the following in Java:

// This is Java

boolean isEqual(int x, int y) {
return X == y;

}

System.out.println(isEqual (421, 421));

You will surely get true. Now, change the argument types of isEqual to
java.lang.Integer (or Object, the result will be the same):

2The reason the AnyRef alias exists, instead of just using the name java.lang.Object,
is because Scala was designed to work on both the Java and .NET platforms. On .NET,
AnyRef is an alias for System.Object.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=254&v=2010_12_13

Section 11.2 Chapter 11 - Scala’s Hierarchy 255

// This is Java

boolean isEqual(Integer x, Integer y) {
return x == vy;

}

System.out.println(isEqual (421, 421));

You will find that you get false! What happens is that the number 421
gets boxed twice, so that the arguments for x and y are two different objects.
Because == means reference equality on reference types, and Integer is a
reference type, the result is false. This is one aspect where it shows that
Java is not a pure object-oriented language. There is a difference between
primitive types and reference types that can be clearly observed.

Now try the same experiment in Scala:

scala> def isEqual(x: Int, y: Int) = x ==y
isEqual: (Int,Int)Boolean

scala> isEqual(421, 421)

resl0: Boolean = true

scala> def isEqual(x: Any, y: Any) = X ==Y

isEqual: (Any,Any)Boolean

scala> isEqual(421, 421)
resll: Boolean = true

In fact, the equality operation == in Scala is designed to be transparent
with respect to the type’s representation. For value types, it is the natural
(numeric or boolean) equality. For reference types other than Java’s boxed
numeric types, == is treated as an alias of the equals method inherited from
Object. That method is originally defined as reference equality, but is over-
ridden by many subclasses to implement their natural notion of equality. This
also means that in Scala you never fall into Java’s well-known trap concern-
ing string comparisons. In Scala, string comparison works as it should:

scala> val x = "abcd".substring(2)
x: java.lang.String = cd

scala> val y = "abcd".substring(2)
y: Jjava.lang.String = cd

scala> x ==y
resl?2: Boolean = true

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=255&v=2010_12_13

Section 11.3 Chapter 11 - Scala’s Hierarchy 256

In Java, the result of comparing x with y would be false. The programmer
should have used equals in this case, but it is easy to forget.

However, there are situations where you need reference equality instead
of user-defined equality. For example, in some situations where efficiency is
paramount, you would like to hash cons with some classes and compare their
instances with reference equality.’ For these cases, class AnyRef defines
an additional eq method, which cannot be overridden and is implemented
as reference equality (i.e., it behaves like == in Java for reference types).
There’s also the negation of eq, which is called ne. For example:

scala> val x = new String("abc™)
x: java.lang.String = abc

scala> val y = new String("abc")
y: java.lang.String = abc

scala> x ==

resl3: Boolean = true
scala> x eq v

resl4: Boolean = false
scala> x ne y

resl5: Boolean = true

Equality in Scala is discussed further in Chapter 30.

11.3 Bottom types

At the bottom of the type hierarchy in Figure 11.1 you see the two classes
scala.Null and scala.Nothing. These are special types that handle some
“corner cases” of Scala’s object-oriented type system in a uniform way.

Class Null is the type of the null reference; it is a subclass of every
reference class (i.e., every class that itself inherits from AnyRef). Null is not
compatible with value types. You cannot, for example, assign a null value
to an integer variable:

3You hash cons instances of a class by caching all instances you have created in a weak
collection. Then, any time you want a new instance of the class, you first check the cache.
If the cache already has an element equal to the one you are about to create, you can reuse
the existing instance. As a result of this arrangement, any two instances that are equal with
equals() are also equal with reference equality.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=256&v=2010_12_13

Section 11.4 Chapter 11 - Scala’s Hierarchy 257

scala> val i: Int = null
<console>:4: error: type mismatch;
found : Null(null)

required: Int

Type Nothing is at the very bottom of Scala’s class hierarchys; it is a sub-
type of every other type. However, there exist no values of this type whatso-
ever. Why does it make sense to have a type without values? As discussed in
Section 7.4, one use of Nothing is that it signals abnormal termination. For
instance there’s the error method in the Predef object of Scala’s standard
library, which is defined like this:

def error(message: String): Nothing =
throw new RuntimeException(message)

The return type of error is Nothing, which tells users that the method will
not return normally (it throws an exception instead). Because Nothing is a
subtype of every other type, you can use methods like error in very flexible
ways. For instance:

def divide(x: Int, y: Int): Int =
if (v!'=0)x/vy
else error('can't divide by zero")

The “then” branch of the conditional, x / v, has type Int, whereas the else
branch, the call to error, has type Nothing. Because Nothing is a subtype
of Int, the type of the whole conditional is Int, as required.

11.4 Conclusion

In this chapter we showed you the classes at the top and bottom of Scala’s
class hierarchy. Now that you’ve gotten a good foundation on class inher-
itance in Scala, you’re ready to understand mixin composition. In the next
chapter, you’ll learn about traits.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=257&v=2010_12_13

Chapter 12

Traits

Traits are a fundamental unit of code reuse in Scala. A trait encapsulates
method and field definitions, which can then be reused by mixing them into
classes. Unlike class inheritance, in which each class must inherit from just
one superclass, a class can mix in any number of traits. This chapter shows
you how traits work and shows two of the most common ways they are use-
ful: widening thin interfaces to rich ones, and defining stackable modifica-
tions. It also shows how to use the Ordered trait and compares traits to the
multiple inheritance of other languages.

12.1 How traits work

A trait definition looks just like a class definition except that it uses the key-
word trait. An example is shown in Listing 12.1:

trait Philosophical {
def philosophize() {
println("I consume memory, therefore T am!™)

}

Listing 12.1 - The definition of trait Philosophical.

This trait is named Philosophical. It does not declare a superclass, so
like a class, it has the default superclass of AnyRef. It defines one method,
named philosophize, which is concrete. It’s a simple trait, just enough to
show how traits work.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=258&v=2010_12_13

Section 12.1 Chapter 12 - Traits 259

Once a trait is defined, it can be mixed in to a class using either the
extends or with keywords. Scala programmers “mix in” traits rather than
inherit from them, because mixing in a trait has important differences from
the multiple inheritance found in many other languages. This issue is dis-
cussed in Section 12.6. For example, Listing 12.2 shows a class that mixes
in the Philosophical trait using extends:

class Frog extends Philosophical {
override def toString = "green"

}

Listing 12.2 - Mixing in a trait using extends.

You can use the extends keyword to mix in a trait; in that case you
implicitly inherit the trait’s superclass. For instance, in Listing 12.2, class
Frog subclasses AnyRef (the superclass of Philosophical) and mixes in
Philosophical. Methods inherited from a trait can be used just like meth-
ods inherited from a superclass. Here’s an example:

scala> val frog = new Frog
frog: Frog = green

scala> frog.philosophize()
I consume memory, therefore I am!

A trait also defines a type. Here’s an example in which Philosophical is
used as a type:

scala> val phil: Philosophical = frog
phil: Philosophical = green

scala> phil.philosophize()
I consume memory, therefore I am!

The type of phil is Philosophical, a trait. Thus, variable phil could have
been initialized with any object whose class mixes in Philosophical.

If you wish to mix a trait into a class that explicitly extends a superclass,
you use extends to indicate the superclass and with to mix in the trait.
Listing 12.3 shows an example. If you want to mix in multiple traits, you
add more with clauses. For example, given a trait HasLegs, you could mix
both Philosophical and HasLegs into Frog as shown in Listing 12.4.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=259&v=2010_12_13

Section 12.1 Chapter 12 - Traits 260

class Animal

class Frog extends Animal with Philosophical {
override def toString = "green"

¥

Listing 12.3 - Mixing in a trait using with.

class Animal
trait HasLegs

class Frog extends Animal with Philosophical with HasLegs {
override def toString = "green”

¥

Listing 12.4 - Mixing in multiple traits.

In the examples you’ve seen so far, class Frog has inherited an imple-
mentation of philosophize from trait Philosophical. Alternatively, Frog
could override philosophize. The syntax looks the same as overriding a
method declared in a superclass. Here’s an example:

class Animal

class Frog extends Animal with Philosophical {
override def toString = "green"
override def philosophize() {
println("It ain't easy being "+ toString +"!")
¥
}

Because this new definition of Frog still mixes in trait Philosophical, you
can still use it from a variable of that type. But because Frog overrides
Philosophical’s implementation of philosophize, you’ll get a new be-
havior when you call it:

scala> val phrog: Philosophical = new Frog
phrog: Philosophical = green

scala> phrog.philosophize()
It ain't easy being green!

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=260&v=2010_12_13

Section 12.2 Chapter 12 - Traits 261

At this point you might philosophize that traits are like Java interfaces
with concrete methods, but they can actually do much more. Traits can, for
example, declare fields and maintain state. In fact, you can do anything in
a trait definition that you can do in a class definition, and the syntax looks
exactly the same, with only two exceptions. First, a trait cannot have any
“class” parameters, i.e., parameters passed to the primary constructor of a
class. In other words, although you could define a class like this:

class Point(x: Int, y: Int)
The following attempt to define a trait would not compile:
trait NoPoint(x: Int, y: Int) // Does not compile

You’ll find out in Section 20.5 how to work around this restriction.

The other difference between classes and traits is that whereas in classes,
super calls are statically bound, in traits, they are dynamically bound. If
you write “super.toString” in a class, you know exactly which method
implementation will be invoked. When you write the same thing in a trait,
however, the method implementation to invoke for the super call is unde-
fined when you define the trait. Rather, the implementation to invoke will
be determined anew each time the trait is mixed into a concrete class. This
curious behavior of super is key to allowing traits to work as stackable mod-
ifications, which will be described in Section 12.5. The rules for resolving
super calls will be given in Section 12.6.

12.2 Thin versus rich interfaces

One major use of traits is to automatically add methods to a class in terms
of methods the class already has. That is, traits can enrich a thin interface,
making it into a rich interface.

Thin versus rich interfaces represents a commonly faced trade-off in
object-oriented design. The trade-off is between the implementers and the
clients of an interface. A rich interface has many methods, which make it
convenient for the caller. Clients can pick a method that exactly matches
the functionality they need. A thin interface, on the other hand, has fewer
methods, and thus is easier on the implementers. Clients calling into a thin
interface, however, have to write more code. Given the smaller selection of

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=261&v=2010_12_13

Section 12.3 Chapter 12 - Traits 262

methods to call, they may have to choose a less than perfect match for their
needs and write extra code to use it.

Java’s interfaces are more often thin than rich. For example, interface
CharSequence, which was introduced in Java 1.4, is a thin interface com-
mon to all string-like classes that hold a sequence of characters. Here’s its
definition when seen as a Scala trait:

trait CharSequence {
def charAt(index: Int): Char
def length: Int
def subSequence(start: Int, end: Int): CharSequence
def toString(): String
}

Although most of the dozens of methods in class String would apply to
any CharSequence, Java’s CharSequence interface declares only four meth-
ods. Had CharSequence instead included the full String interface, it would
have placed a large burden on implementers of CharSequence. Every pro-
grammer that implemented CharSequence in Java would have had to define
dozens more methods. Because Scala traits can contain concrete methods,
they make rich interfaces far more convenient.

Adding a concrete method to a trait tilts the thin-rich trade-off heavily
towards rich interfaces. Unlike in Java, adding a concrete method to a Scala
trait is a one-time effort. You only need to implement the method once, in
the trait itself, instead of needing to reimplement it for every class that mixes
in the trait. Thus, rich interfaces are less work to provide in Scala than in a
language without traits.

To enrich an interface using traits, simply define a trait with a small num-
ber of abstract methods—the thin part of the trait’s interface—and a poten-
tially large number of concrete methods, all implemented in terms of the
abstract methods. Then you can mix the enrichment trait into a class, imple-
ment the thin portion of the interface, and end up with a class that has all of
the rich interface available.

12.3 Example: Rectangular objects

Graphics libraries often have many different classes that represent something
rectangular. Some examples are windows, bitmap images, and regions se-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=262&v=2010_12_13

Section 12.3 Chapter 12 - Traits 263

lected with a mouse. To make these rectangular objects convenient to use,
it is nice if the library provides geometric queries such as width, height,
left, right, topLeft, and so on. However, many such methods exist that
would be nice to have, so it can be a large burden on library writers to pro-
vide all of them for all rectangular objects in a Java library. If such a library
were written in Scala, by contrast, the library writer could use traits to easily
supply all of these convenience methods on all the classes they’d like.

To see how, first imagine what the code would look like without traits.
There would be some basic geometric classes like Point and Rectangle:

class Point(val x: Int, val y: Int)

class Rectangle(val topLeft: Point, val bottomRight: Point) {
def left = topLeft.x
def right = bottomRight.x
def width = right - left
// and many more geometric methods...

}

This Rectangle class takes two points in its primary constructor: the co-
ordinates of the top-left and bottom-right corners. It then implements many
convenience methods such as 1eft, right, and width by performing simple
calculations on these two points.

Another class a graphics library might have is a 2-D graphical widget:

abstract class Component {
def topLeft: Point
def bottomRight: Point

def left = topLeft.x

def right = bottomRight.x

def width = right - left

// and many more geometric methods...

}

Notice that the definitions of left, right, and width are exactly the same
in the two classes. They will also be the same, aside from minor variations,
in any other classes for rectangular objects.

This repetition can be eliminated with an enrichment trait. The trait will
have two abstract methods: one that returns the top-left coordinate of the ob-
ject, and another that returns the bottom-right coordinate. It can then supply

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=263&v=2010_12_13

Section 12.3 Chapter 12 - Traits 264

concrete implementations of all the other geometric queries. Listing 12.5
shows what it will look like:

trait Rectangular {
def topLeft: Point
def bottomRight: Point

def left = topLeft.x

def right = bottomRight.x

def width = right - left

// and many more geometric methods...

Listing 12.5 - Defining an enrichment trait.

Class Component can mix in this trait to get all the geometric methods
provided by Rectangular:

abstract class Component extends Rectangular {
// other methods...
}

Similarly, Rectangle itself can mix in the trait:
class Rectangle(val topLeft: Point, val bottomRight: Point)
extends Rectangular {
// other methods...
}

Given these definitions, you can create a Rectangle and call geometric
methods such as width and left on it:

scala> val rect = new Rectangle(new Point(1, 1),
new Point(10, 10))
rect: Rectangle = Rectangle@3536fd

scala> rect.left
res2: Int = 1

scala> rect.right
res3: Int = 10

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=264&v=2010_12_13

Section 12.4 Chapter 12 - Traits 265

scala> rect.width
res4: Int = 9

12.4 The Ordered trait

Comparison is another domain where a rich interface is convenient. When-
ever you compare two objects that are ordered, it is convenient if you use
a single method call to ask about the precise comparison you want. If you
want “is less than,” you would like to call <, and if you want “is less than
or equal,” you would like to call <=. With a thin comparison interface, you
might just have the < method, and you would sometimes have to write things
like “(x <y) || (x==y)”. A rich interface would provide you with all of
the usual comparison operators, thus allowing you to directly write things
like “x <=y”.

Before looking at Ordered, imagine what you might do without it. Sup-
pose you took the Rational class from Chapter 6 and added comparison
operations to it. You would end up with something like this:'

class Rational(n: Int, d: Int) {

// ...

def < (that: Rational) =

this.numer * that.denom > that.numer = this.denom

def > (that: Rational) = that < this

def <= (that: Rational) (this < that) || (this == that)

def >= (that: Rational) = (this > that) || (this == that)
}

This class defines four comparison operators (<, >, <=, and >=), and it’s a
classic demonstration of the costs of defining a rich interface. First, notice
that three of the comparison operators are defined in terms of the first one.
For example, > is defined as the reverse of <, and <= is defined as literally
“less than or equal.” Additionally, notice that all three of these methods
would be the same for any other class that is comparable. There is nothing
special about rational numbers regarding <=. In a comparison context, <= is
always used to mean “less than or equals.” Overall, there is quite a lot of

IThe full code for the Rational class on which this example is based is shown in List-
ing 6.5 on page 155.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=265&v=2010_12_13

Section 12.4 Chapter 12 - Traits 266

boilerplate code in this class which would be the same in any other class that
implements comparison operations.

This problem is so common that Scala provides a trait to help with it. The
trait is called Ordered. To use it, you replace all of the individual comparison
methods with a single compare method. The Ordered trait then defines <, >,
<=, and >= for you in terms of this one method. Thus, trait Ordered allows
you to enrich a class with comparison methods by implementing only one
method, compare.

Here is how it looks if you define comparison operations on Rational
by using the Ordered trait:

class Rational(n: Int, d: Int) extends Ordered[Rational] {
// ...
def compare(that: Rational) =
(this.numer * that.denom) - (that.numer % this.denom)

}

There are just two things to do. First, this version of Rational mixes in the
Ordered trait. Unlike the traits you have seen so far, Ordered requires you
to specify a type parameter when you mix it in. Type parameters are not
discussed in detail until Chapter 19, but for now all you need to know is that
when you mix in Ordered, you must actually mix in Ordered[C], where C
is the class whose elements you compare. In this case, Rational mixes in
Ordered[Rational].

The second thing you need to do is define a compare method for com-
paring two objects. This method should compare the receiver, this, with
the object passed as an argument to the method. It should return an integer
that is zero if the objects are the same, negative if receiver is less than the
argument, and positive if the receiver is greater than the argument. In this
case, the comparison method of Rational uses a formula based on convert-
ing the fractions to a common denominator and then subtracting the resulting
numerators. Given this mixin and the definition of compare, class Rational
now has all four comparison methods:

scala> val half = new Rational(l, 2)
half: Rational = 1/2

scala> val third = new Rational(l, 3)
third: Rational = 1/3

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=266&v=2010_12_13

Section 12.5 Chapter 12 - Traits 267

scala> half < third
res5: Boolean = false

scala> half > third
res6: Boolean = true

Any time you implement a class that is ordered by some comparison,
you should consider mixing in the Ordered trait. If you do, you will provide
the class’s users with a rich set of comparison methods.

Beware that the Ordered trait does not define equals for you, because
it is unable to do so. The problem is that implementing equals in terms of
compare requires checking the type of the passed object, and because of type
erasure, Ordered itself cannot do this test. Thus, you need to define equals
yourself, even if you inherit Ordered. You’ll find out how to go about this
in Chapter 30.

12.5 Traits as stackable modifications

You have now seen one major use of traits: turning a thin interface into a
rich one. Now we’ll turn to a second major use: providing stackable modifi-
cations to classes. Traits let you modify the methods of a class, and they do
so in a way that allows you to stack those modifications with each other.

As an example, consider stacking modifications to a queue of integers.
The queue will have two operations: put, which places integers in the queue,
and get, which takes them back out. Queues are first-in, first-out, so get
should return the integers in the same order they were put in the queue.

Given a class that implements such a queue, you could define traits to
perform modifications such as these:

* Doubling: double all integers that are put in the queue
* Incrementing: increment all integers that are put in the queue
* Filtering: filter out negative integers from a queue

These three traits represent modifications, because they modify the be-
havior of an underlying queue class rather than defining a full queue class
themselves. The three are also stackable. You can select any of the three
you like, mix them into a class, and obtain a new class that has all of the
modifications you chose.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=267&v=2010_12_13

Section 12.5 Chapter 12 - Traits

An abstract IntQueue class is shown in Listing 12.6. IntQueue has
a put method that adds new integers to the queue and a get method that
removes and returns them. A basic implementation of IntQueue that uses
an ArrayBuffer is shown in Listing 12.7.

abstract class IntQueue {
def get(): Int
def put(x: Int)

}

Listing 12.6 - Abstract class IntQueue.

import scala.collection.mutable.ArrayBuffer

class BasicIntQueue extends IntQueue {
private val buf = new ArrayBuffer[Int]
def get() = buf.remove(0)
def put(x: Int) { buf += x }

¥

Listing 12.7 - A BasicIntQueue implemented with an ArrayBuffer.

Class BasicIntQueue has a private field holding an array buffer. The
get method removes an entry from one end of the buffer, while the put
method adds elements to the other end. Here’s how this implementation
looks when you use it:

scala> val queue = new BasicIntQueue
queue: BasicIntQueue = BasicIntQueue@24655f
scala> queue.put(10)

scala> queue.put(20)

scala> queue.get()
res9: Int = 10

scala> queue.get()
resl0: Int = 20

So far so good. Now take a look at using traits to modify this behavior.
Listing 12.8 shows a trait that doubles integers as they are put in the queue.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

268

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=268&v=2010_12_13

Section 12.5 Chapter 12 - Traits 269

The Doubling trait has two funny things going on. The first is that it declares
a superclass, IntQueue. This declaration means that the trait can only be
mixed into a class that also extends IntQueue. Thus, you can mix Doubling
into BasicIntQueue, but not into Rational.

trait Doubling extends IntQueue {
abstract override def put(x: Int) { super.put(2 = x) }

Listing 12.8 - The Doubling stackable modification trait.

The second funny thing is that the trait has a super call on a method
declared abstract. Such calls are illegal for normal classes, because they
will certainly fail at run time. For a trait, however, such a call can actually
succeed. Since super calls in a trait are dynamically bound, the super call
in trait Doubling will work so long as the trait is mixed in after another trait
or class that gives a concrete definition to the method.

This arrangement is frequently needed with traits that implement stack-
able modifications. To tell the compiler you are doing this on purpose, you
must mark such methods as abstract override. This combination of mod-
ifiers is only allowed for members of traits, not classes, and it means that
the trait must be mixed into some class that has a concrete definition of the
method in question.

There is a lot going on with such a simple trait, isn’t there! Here’s how
it looks to use the trait:

scala> class MyQueue extends BasicIntQueue with Doubling
defined class MyQueue

scala> val queue = new MyQueue
queue: MyQueue = MyQueue@91f017

scala> queue.put(10)
scala> queue.get()

resl?2: Int = 20

In the first line in this interpreter session, we define class MyQueue, which
extends BasicIntQueue and mixes in Doubling. We then put a 10 in the
queue, but because Doubling has been mixed in, the 10 is doubled. When
we get an integer from the queue, it is a 20.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=269&v=2010_12_13

Section 12.5 Chapter 12 - Traits

Note that MyQueue defines no new code. It simply identifies a class and
mixes in a trait. In this situation, you could supply “BasicIntQueue with
Doubling” directly to new instead of defining a named class. It would look
as shown in Listing 12.9:

scala> val queue = new BasicIntQueue with Doubling
queue: BasicIntQueue with Doubling = $anon$l@5fal2d

scala> queue.put(10)

scala> queue.get()
resl4d: Int = 20

Listing 12.9 - Mixing in a trait when instantiating with new.

To see how to stack modifications, we need to define the other two mod-
ification traits, Incrementing and Filtering. Implementations of these
traits are shown in Listing 12.10:

trait Incrementing extends IntQueue {

abstract override def put(x: Int) { super.put(x + 1) }
¥
trait Filtering extends IntQueue {

abstract override def put(x: Int) {

if (x >= 0) super.put(x)

}

}

Listing 12.10: Stackable modification traits Incrementing and Filtering.

Given these modifications, you can now pick and choose which ones you
want for a particular queue. For example, here is a queue that both filters
negative numbers and adds one to all numbers that it keeps:

scala> val queue = (new BasicIntQueue
with Incrementing with Filtering)
queue: BasicIntQueue with Incrementing with Filtering...

scala> queue.put(-1); queue.put(0); queue.put(l)
scala> queue.get()

resl5: Int = 1

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

270

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=270&v=2010_12_13

Section 12.6 Chapter 12 - Traits 271

scala> queue.get()
resl6: Int = 2

The order of mixins is significant.> The precise rules are given in the
following section, but, roughly speaking, traits further to the right take effect
first. When you call a method on a class with mixins, the method in the
trait furthest to the right is called first. If that method calls super, it invokes
the method in the next trait to its left, and so on. In the previous example,
Filtering’s put is invoked first, so it removes integers that were negative to
begin with. Incrementing’s put is invoked second, so it adds one to those
integers that remain.

If you reverse the order, first integers will be incremented, and then the
integers that are still negative will be discarded:

scala> val queue = (new BasicIntQueue
with Filtering with Incrementing)
queue: BasicIntQueue with Filtering with Incrementing...

scala> queue.put(-1); queue.put(0); queue.put(l)

scala> queue.get()
resl7: Int = 0

scala> queue.get()
resl8: Int =1

scala> queue.get()
resl9: Int = 2

Overall, code written in this style gives you a great deal of flexibility. You
can define sixteen different classes by mixing in these three traits in different
combinations and orders. That’s a lot of flexibility for a small amount of
code, so you should keep your eyes open for opportunities to arrange code
as stackable modifications.

12.6 Why not multiple inheritance?

Traits are a way to inherit from multiple class-like constructs, but they differ
in important ways from the multiple inheritance present in many languages.
One difference is especially important: the interpretation of super. With

2Once a trait is mixed into a class, you can alternatively call it a mixin.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=271&v=2010_12_13

Section 12.6 Chapter 12 - Traits 272

multiple inheritance, the method called by a super call can be determined
right where the call appears. With traits, the method called is determined
by a linearization of the classes and traits that are mixed into a class. This
is the difference that enables the stacking of modifications described in the
previous section.

Before looking at linearization, take a moment to consider how to stack
modifications in a language with traditional multiple inheritance. Imagine
the following code, but this time interpreted as multiple inheritance instead
of trait mixin:

// Multiple inheritance thought experiment
val q = new BasicIntQueue with Incrementing with Doubling
q.put(42) // which put would be called?

The first question is, which put method would get invoked by this call? Per-
haps the rule would be that the last superclass wins, in which case Doubling
would get called. Doubling would double its argument and call super.put,
and that would be it. No incrementing would happen! Likewise, if the rule
were that the first superclass wins, the resulting queue would increment in-
tegers but not double them. Thus neither ordering would work.

You might also entertain the possibility of allowing programmers to iden-
tify exactly which superclass method they want when they say super. For
example, imagine the following Scala-like code, in which super appears to
be explicitly invoked on both Incrementing and Doubling:

// Multiple inheritance thought experiment
trait MyQueue extends BasicIntQueue
with Incrementing with Doubling {

def put(x: Int) {
Incrementing.super.put(x) // (Not real Scala)
Doubling.super.put(x)

¥

This approach would give us new problems. The verbosity of this attempt
is the least of its problems. What would happen is that the base class’s put
method would get called rwice—once with an incremented value and once
with a doubled value, but neither time with an incremented, doubled value.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=272&v=2010_12_13

Section 12.6 Chapter 12 - Traits 273

There is simply no good solution to this problem using multiple inher-
itance. You would have to back up in your design and factor the code dif-
ferently. By contrast, the traits solution in Scala is straightforward. You
simply mix in Incrementing and Doubling, and Scala’s special treatment
of super in traits makes it all work out. Something is clearly different here
from traditional multiple inheritance, but what?

As hinted previously, the answer is linearization. When you instantiate a
class with new, Scala takes the class and all of its inherited classes and traits
and puts them in a single, /inear order. Then, whenever you call super inside
one of those classes, the invoked method is the next one up the chain. If all
of the methods but the last call super, the net result is stackable behavior.

The precise order of the linearization is described in the language spec-
ification. It is a little bit complicated, but the main thing you need to know
is that, in any linearization, a class is always linearized before all of its su-
perclasses and mixed in traits. Thus, when you write a method that calls
super, that method is definitely modifying the behavior of the superclasses
and mixed in traits, not the other way around.

Note

The remainder of this section describes the details of linearization. You
can safely skip the rest of this section if you are not interested in
understanding those details right now.

The main properties of Scala’s linearization are illustrated by the follow-
ing example: Say you have a class Cat, which inherits from a superclass
Animal and two traits Furry and FourLegged. FourLegged extends in turn
another trait HasLegs:

class Animal

trait Furry extends Animal

trait HasLegs extends Animal

trait FourLegged extends HasLegs

class Cat extends Animal with Furry with FourLegged

Class Cat’s inheritance hierarchy and linearization are shown in Fig-
ure 12.1. Inheritance is indicated using traditional UML notation:> arrows
with white, triangular arrowheads indicate inheritance, with the arrowhead

3Rumbaugh, er. al., The Unified Modeling Language Reference Manual. [Rum04]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=273&v=2010_12_13

Section 12.6 Chapter 12 - Traits 274

A[rrw()

AnyRef

Animal”<— HasLegs

NYZAN

Furry _ FourLegged

Cat/q_/V/

Figure 12.1 - Inheritance hierarchy and linearization of class Cat.

pointing to the supertype. The arrows with darkened, non-triangular arrow-
heads depict linearization. The darkened arrowheads point in the direction
in which super calls will be resolved.

The linearization of Cat is computed from back to front as follows. The
last part of the linearization of Cat is the linearization of its superclass,
Animal. This linearization is copied over without any changes. (The lin-
earization of each of these types is shown in Table 12.1 on page 275.) Be-
cause Animal doesn’t explicitly extend a superclass or mix in any supertraits,
it by default extends AnyRef, which extends Any. Animal’s linearization,
therefore, looks like:

Animal =9 AnyRef =9 Any
The second to last part is the linearization of the first mixin, trait Furry, but

all classes that are already in the linearization of Animal are left out now, so
that each class appears only once in Cat’s linearization. The result is:

Furry =9 Animal =9 AnyRef = Any

This is preceded by the linearization of FourLegged, where again any classes
that have already been copied in the linearizations of the superclass or the
first mixin are left out:

FourLegged =9 HasLegs =9 Furry =9 Animal =9 AnyRef =9Any

Finally, the first class in the linearization of Cat is Cat itself:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=274&v=2010_12_13

Section 12.7 Chapter 12 - Traits 275

Table 12.1 - Linearization of types in Cat’s hierarchy

Type Linearization

Animal Animal, AnyRef, Any

Furry Furry, Animal, AnyRef, Any

FourLegged FourLegged, HasLegs, Animal, AnyRef, Any

HasLegs HasLegs, Animal, AnyRef, Any

Cat Cat, FourLegged, HasLegs, Furry, Animal, AnyRef, Any

Cat = FourLegged =9 HasLegs =9 Furry =9 Animal =9 AnyRef =9 Any

When any of these classes and traits invokes a method via super, the im-
plementation invoked will be the first implementation to its right in the lin-
earization.

12.7 To trait, or not to trait?

Whenever you implement a reusable collection of behavior, you will have to
decide whether you want to use a trait or an abstract class. There is no firm
rule, but this section contains a few guidelines to consider.

If the behavior will not be reused, then make it a concrete class. It is not
reusable behavior after all.

If it might be reused in multiple, unrelated classes, make it a trait. Only
traits can be mixed into different parts of the class hierarchy.

If you want to inherit from it in Java code, use an abstract class. Since
traits with code do not have a close Java analog, it tends to be awkward to
inherit from a trait in a Java class. Inheriting from a Scala class, meanwhile,
is exactly like inheriting from a Java class. As one exception, a Scala trait
with only abstract members translates directly to a Java interface, so you
should feel free to define such traits even if you expect Java code to inherit
from it. See Chapter 31 for more information on working with Java and
Scala together.

If you plan to distribute it in compiled form, and you expect outside
groups to write classes inheriting from it, you might lean towards using an
abstract class. The issue is that when a trait gains or loses a member, any
classes that inherit from it must be recompiled, even if they have not changed.
If outside clients will only call into the behavior, instead of inheriting from

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=275&v=2010_12_13

Section 12.8 Chapter 12 - Traits 276

it, then using a trait is fine.

If efficiency is very important, lean towards using a class. Most Java
runtimes make a virtual method invocation of a class member a faster oper-
ation than an interface method invocation. Traits get compiled to interfaces
and therefore may pay a slight performance overhead. However, you should
make this choice only if you know that the trait in question constitutes a per-
formance bottleneck and have evidence that using a class instead actually
solves the problem.

If you still do not know, after considering the above, then start by making
it as a trait. You can always change it later, and in general using a trait keeps
more options open.

12.8 Conclusion

This chapter has shown you how traits work and how to use them in several
common idioms. You saw that traits are similar to multiple inheritance, but
because they interpret super using linearization, they both avoid some of
the difficulties of traditional multiple inheritance, and allow you to stack
behaviors. You also saw the Ordered trait and learned how to write your
own enrichment traits.

Now that you have seen all of these facets, it is worth stepping back and
taking another look at traits as a whole. Traits do not merely support the
idioms described in this chapter. They are a fundamental unit of code that
is reusable through inheritance. Because of this nature, many experienced
Scala programmers start with traits when they are at the early stages of im-
plementation. Each trait can hold less than an entire concept, a mere frag-
ment of a concept. As the design solidifies, the fragments can be combined
into more complete concepts through trait mixin.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=276&v=2010_12_13

Chapter 13

Packages and Imports

When working on a program, especially a large one, it is important to min-
imize coupling—the extent to which the various parts of the program rely
on the other parts. Low coupling reduces the risk that a small, seemingly
innocuous change in one part of the program will have devastating conse-
quences in another part. One way to minimize coupling is to write in a
modular style. You divide the program into a number of smaller modules,
each of which has an inside and an outside. When working on the inside
of a module—its implementation—you need only coordinate with other pro-
grammers working on that very same module. Only when you must change
the outside of a module—its interface—is it necessary to coordinate with
developers working on other modules.

This chapter shows several constructs that help you program in a modular
style. It shows how to place things in packages, make names visible through
imports, and control the visibility of definitions through access modifiers.
The constructs are similar in spirit to constructs in Java, but there are some
differences—usually ways that are more consistent—so it’s worth reading
this chapter even if you already know Java.

13.1 Putting code in packages

Scala code resides in the Java platform’s global hierarchy of packages. The
example code you’ve seen so far in this book has been in the unnamed
package. You can place code into named packages in Scala in two ways.
First, you can place the contents of an entire file into a package by putting a
package clause at the top of the file, as shown in Listing 13.1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=277&v=2010_12_13

Section 13.2 Chapter 13 - Packages and Imports 278

package bobsrockets.navigation
class Navigator

Listing 13.1 - Placing the contents of an entire file into a package.

The package clause of Listing 13.1 places class Navigator into the
package named bobsrockets.navigation. Presumably, this is the navi-
gation software developed by Bob’s Rockets, Inc.

Note

Because Scala code is part of the Java ecosystem, it is recommended to
follow Java’s reverse-domain-name convention for Scala packages that
you release to the public. Thus, a better name for Navigator’s package
might be com.bobsrockets.navigation. In this chapter, however, we’ll
leave off the “com.” to make the examples easier to understand.

The other way you can place code into packages in Scala is more like
C# namespaces. You follow a package clause by a section in curly braces
that contains the definitions that go into the package. This syntax is called a
packaging. The packaging shown in Listing 13.2 has the same effect as the
code in Listing 13.1:

package bobsrockets.navigation {
class Navigator

}

Listing 13.2 - Long form of a simple package declaration.

For such simple examples, you might as well use the syntactic sugar
shown in Listing 13.1. However, one use of the more general notation is to
have different parts of a file in different packages. For example, you might
include a class’s tests in the same file as the original code, but put the tests
in a different package, as shown in Listing 13.3.

13.2 Concise access to related code

When code is divided into a package hierarchy, it doesn’t just help people
browse through the code. It also tells the compiler that code in the same

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=278&v=2010_12_13

Section 13.2 Chapter 13 - Packages and Imports

package bobsrockets {
package navigation {

// In package bobsrockets.navigation
class Navigator

package tests {

// In package bobsrockets.navigation.tests
class NavigatorSuite

}

Listing 13.3 - Multiple packages in the same file.

package bobsrockets {
package navigation {
class Navigator {
// No need to say bobsrockets.navigation.StarMap
val map = new StarMap
}
class StarMap
}
class Ship {
// No need to say bobsrockets.navigation.Navigator
val nav = new navigation.Navigator
3
package fleets {
class Fleet {
// No need to say bobsrockets.Ship
def addShip() { new Ship }

}

Listing 13.4 - Concise access to classes and packages.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

279

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=279&v=2010_12_13

Section 13.2 Chapter 13 - Packages and Imports 280

package bobsrockets {
class Ship
}

package bobsrockets.fleets {
class Fleet {
// Doesn’t compile! Ship is not in scope.
def addShip() { new Ship }
}
¥

Listing 13.5 - Symbols in enclosing packages not automatically available.

// In file launch.scala
package launch {
class Booster3

¥

// In file bobsrockets.scala
package bobsrockets {
package navigation {
package launch {
class Boosterl
}
class MissionControl {
val boosterl = new launch.Boosterl
val booster2 = new bobsrockets.launch.Booster2
val booster3 = new _root_.launch.Booster3

}
package launch {
class Booster?2

Listing 13.6 - Accessing hidden package names.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=280&v=2010_12_13

Section 13.2 Chapter 13 - Packages and Imports 281

package is related in some way to each other. Scala takes advantage of this
relatedness by allowing short, unqualified names when accessing code that
is in the same package.

Listing 13.4 gives three simple examples. First, as you would expect, a
class can be accessed from within its own package without needing a prefix.
That’s why new StarMap compiles. Class StarMap is in the same package,
bobsrockets.navigation, as the new expression that accesses it, so the
package name doesn’t need to be prefixed.

Second, a package itself can be accessed from its containing package
without needing a prefix. In Listing 13.4, look at how class Navigator is
instantiated. The new expression appears in package bobsrockets, which is
the containing package of bobsrockets.navigation. Thus, it can access
package bobsrockets.navigation as simply navigation.

Third, when using the curly-braces packaging syntax, all names accessi-
ble in scopes outside the packaging are also available inside it. An example
in Listing 13.4 is the way addShip() creates a new Ship. The method is
defined within two packagings: an outer one for bobsrockets, and an in-
ner one for bobsrockets.fleets. Since Ship is accessible in the outer
packaging, it can be referenced from within addShip().

Note that this kind of access is only available if you explicitly nest the
packagings. If you stick to one package per file, then—like in Java—the
only names available will be the ones defined in the current package. In List-
ing 13.5, the packaging of bobsrockets.fleets has been moved to the top
level. Since it is no longer enclosed in a packaging for bobsrockets, names
from bobsrockets are not immediately in scope. As aresult, new Ship gives
a compile error. If nesting packages with braces shifts your code uncom-
fortably to the right, you can also use multiple package clauses without the
braces.! For instance, the code below also defines class Fleet in two nested
packages bobrockets and fleets, just like you saw it in Listing 13.4:

package bobsrockets

package fleets

class Fleet {
// Doesn’t compile! Ship is not in scope.
def addShip() { new Ship }

}

I'This style of multiple package clauses without braces is called chained package clauses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=281&v=2010_12_13

Section 13.3 Chapter 13 - Packages and Imports 282

One final trick is important to know. Sometimes, you end up coding in a
heavily crowded scope where package names are hiding each other. In List-
ing 13.6, the scope of class MissionControl includes three separate pack-
ages named launch! There’s one launch in bobsrockets.navigation,
one in bobsrockets, and one at the top level. How would you reference
each of Boosterl, Booster2, and Booster3?

Accessing the first one is easiest. A reference to launch by itself will
get you to package bobsrockets.navigation.launch, because that is the
launch package defined in the closest enclosing scope. Thus, you can refer
to the first booster class as simply launch.Boosterl. Referring to the sec-
ond one also is not tricky. You can write bobrockets.launch.Booster?2
and be clear about which one you are referencing. That leaves the question of
the third booster class, however. How can you access Booster3, considering
that a nested launch package shadows the top-level one?

To help in this situation, Scala provides a package named _root_ that
is outside any package a user can write. Put another way, every top-level
package you can write is treated as a member of package _root_. For exam-
ple, both 1aunch and bobsrockets of Listing 13.6 are members of package
root. As aresult, _root_.launch gives you the top-level launch pack-
age, and _root_.launch.Booster3 designates the outermost booster class.

13.3 Imports

In Scala, packages and their members can be imported using import clauses.
Imported items can then be accessed by a simple name like File, as opposed
to requiring a qualified name like java.io.File. For example, consider the
code shown in Listing 13.7.

An import clause makes members of a package or object available by
their names alone without needing to prefix them by the package or object
name. Here are some simple examples:

// easy access to Fruit
import bobsdelights.Fruit

// easy access to all members of bobsdelights
import bobsdelights._

// easy access to all members of Fruits
import bobsdelights.Fruits._

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=282&v=2010_12_13

Section 13.3 Chapter 13 - Packages and Imports 283

package bobsdelights

abstract class Fruit(
val name: String,
val color: String

)

object Fruits {
object Apple extends Fruit('apple", "red")

object Orange extends Fruit('orange", "orange')
object Pear extends Fruit('pear", "yellowish")
val menu = List(Apple, Orange, Pear)

}

Listing 13.7 - Bob’s delightful fruits, ready for import.

The first of these corresponds to Java’s single type import, the second to
Java’s on-demand import. The only difference is that Scala’s on-demand
imports are written with a trailing underscore (_) instead of an asterisk ()
(after all, * is a valid identifier in Scala!). The third import clause above
corresponds to Java’s import of static class fields.

These three imports give you a taste of what imports can do, but Scala
imports are actually much more general. For one, imports in Scala can ap-
pear anywhere, not just at the beginning of a compilation unit. Also, they
can refer to arbitrary values. For instance, the import shown in Listing 13.8
is possible:

def showFruit(fruit: Fruit) {
import fruit._
println(name +"s are "+ color)

¥

Listing 13.8 - Importing the members of a regular (not singleton) object.

Method showFruit imports all members of its parameter fruit, which
is of type Fruit. The subsequent println statement can refer to name and
color directly. These two references are equivalent to fruit.name and
fruit.color. This syntax is particularly useful when you use objects as
modules, which will be described in Chapter 29.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=283&v=2010_12_13

Section 13.3 Chapter 13 - Packages and Imports

Scala’s flexible imports

Scala’s import clauses are quite a bit more flexible than Java’s. There
are three principal differences. In Scala, imports:

* may appear anywhere
* may refer to objects (singleton or regular) in addition to packages

* let you rename and hide some of the imported members

Another way Scala’s imports are flexible is that they can import packages
themselves, not just their non-package members. This is only natural if you
think of nested packages being contained in their surrounding package. For
example, in Listing 13.9, the package java.util.regex is imported. This
makes regex usable as a simple name. To access the Pattern singleton ob-
ject from the java.util.regex package, you can just say, regex.Pattern,
as shown in Listing 13.9:

import java.util.regex

class AStarB {
// Accesses java.util.regex.Pattern
val pat = regex.Pattern.compile("a+b")

}

Listing 13.9 - Importing a package name.

Imports in Scala can also rename or hide members. This is done with
an import selector clause enclosed in braces, which follows the object from
which members are imported. Here are some examples:

import Fruits.{Apple, Orange}

This imports just members Apple and Orange from object Fruits.

import Fruits.{Apple => McIntosh, Orange}

This imports the two members Apple and Orange from object Fruits.
However, the Apple object is renamed to McIntosh. So this object can be

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

284

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=284&v=2010_12_13

Section 13.3 Chapter 13 - Packages and Imports 285

accessed with either Fruits.Apple or McIntosh. A renaming clause is
always of the form “<original-name> => <new-name>”.
import java.sql.{Date => SDate}

This imports the SQL date class as SDate, so that you can simultaneously
import the normal Java date class as simply Date.
import java.{sql => S}

This imports the java.sql package as S, so that you can write things
like S.Date.
import Fruits.{_}

This imports all members from object Fruits. It means the same thing
as import Fruits._.
import Fruits.{Apple => McIntosh, _}

This imports all members from object Fruits but renames Apple to
McIntosh.
import Fruits.{Pear=>_, _}

This imports all members of Fruits except Pear. A clause of the form
“<original-name> => _” excludes <original-name> from the names that
are imported. In a sense, renaming something to ‘_’ means hiding it alto-
gether. This is useful to avoid ambiguities. Say you have two packages,
Fruits and Notebooks, which both define a class Apple. If you want to
get just the notebook named Apple, and not the fruit, you could still use two

imports on demand like this:

import Notebooks._
import Fruits.{Apple => _, _}

This would import all Notebooks and all Fruits except for Apple.

These examples demonstrate the great flexibility Scala offers when it
comes to importing members selectively and possibly under different names.
In summary, an import selector can consist of the following:

* A simple name x. This includes x in the set of imported names.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=285&v=2010_12_13

Section 13.4 Chapter 13 - Packages and Imports 286

* A renaming clause x => y. This makes the member named x visible
under the name vy.

* A hiding clause x => _. This excludes x from the set of imported
names.

* A catch-all *_’. This imports all members except those members men-
tioned in a preceding clause. If a catch-all is given, it must come last
in the list of import selectors.

The simpler import clauses shown at the beginning of this section can be
seen as special abbreviations of import clauses with a selector clause. For
example, “import p._" is equivalent to “import p.{_}" and “import p.n”
is equivalent to “import p.{n}”.

13.4 TImplicit imports

Scala adds some imports implicitly to every program. In essence, it is as if
the following three import clauses had been added to the top of every source
file with extension “.scala’:

import java.lang._ // everything in the java.lang package
import scala._ // everything in the scala package
import Predef._ // everything in the Predef object

The java.lang package contains standard Java classes. It is always im-
plicitly imported on the JVM implementation of Scala. The .NET implemen-
tation would import package system instead, which is the .NET analogue
of java.lang. Because java.lang is imported implicitly, you can write
Thread instead of java.lang.Thread, for instance.

As you have no doubt realized by now, the scala package contains the
standard Scala library, with many common classes and objects. Because
scala is imported implicitly, you can write List instead of scala.List,
for instance.

The Predef object contains many definitions of types, methods, and im-
plicit conversions that are commonly used on Scala programs. For exam-
ple, because Predef is imported implicitly, you can write assert instead of
Predef.assert.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=286&v=2010_12_13

Section 13.5 Chapter 13 - Packages and Imports 287

The three import clauses above are treated a bit specially in that later
imports overshadow earlier ones. For instance, the StringBuilder class is
defined both in package scala and, from Java version 1.5 on, also in package
java.lang. Because the scala import overshadows the java.lang import,
the simple name StringBuilder will refer to scala.StringBuilder, not
java.lang.StringBuilder.

13.5 Access modifiers

Members of packages, classes, or objects can be labeled with the access
modifiers private and protected. These modifiers restrict accesses to the
members to certain regions of code. Scala’s treatment of access modifiers
roughly follows Java’s but there are some important differences which are
explained in this section.

Private members

Private members are treated similarly to Java. A member labeled private
is visible only inside the class or object that contains the member definition.
In Scala, this rule applies also for inner classes. This treatment is more con-
sistent, but differs from Java. Consider the example shown in Listing 13.10:

class Outer {
class Inner {
private def f() { println("f") }
class InnerMost {

£ // OK

}

(new Inner).f() // error: f is not accessible

Listing 13.10 - How private access differs in Scala and Java.

In Scala, the access (new Inner).f() is illegal because f is declared
private in Inner and the access is not from within class Inner. By con-
trast, the first access to f in class InnerMost is OK, because that access

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=287&v=2010_12_13

Section 13.5 Chapter 13 - Packages and Imports 288

is contained in the body of class Inner. Java would permit both accesses
because it lets an outer class access private members of its inner classes.

Protected members

Access to protected members is also a bit more restrictive than in Java. In
Scala, a protected member is only accessible from subclasses of the class
in which the member is defined. In Java such accesses are also possible from
other classes in the same package. In Scala, there is another way to achieve
this effect, as described below, so protected is free to be left as is. The
example shown in Listing 13.11 illustrates protected accesses:

package p {
class Super {
protected def f() { println("f") }
}
class Sub extends Super {
O
}
class Other {
(new Super).f() // error: f is not accessible

Listing 13.11 - How protected access differs in Scala and Java.

In Listing 13.11, the access to f in class Sub is OK because f is declared
protected in Super and Sub is a subclass of Super. By contrast the access
to f in Other is not permitted, because Other does not inherit from Super.
In Java, the latter access would be still permitted because Other is in the
same package as Sub.

Public members

Every member not labeled private or protected is public. There is no
explicit modifier for public members. Such members can be accessed from
anywhere.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=288&v=2010_12_13

Section 13.5 Chapter 13 - Packages and Imports 289

package bobsrockets

package navigation {
private[bobsrockets] class Navigator {
protected[navigation] def useStarChart() {}
class LegOfJourney {
private[Navigator] val distance = 100
}
private[this] var speed = 200
b
}
package launch {
import navigation._
object Vehicle {
private[launch] val guide = new Navigator

}

Listing 13.12 - Flexible scope of protection with access qualifiers.

Scope of protection

Access modifiers in Scala can be augmented with qualifiers. A modifier
of the form private[X] or protected[X] means that access is private or
protected “up to” X, where X designates some enclosing package, class or
singleton object.

Qualified access modifiers give you very fine-grained control over vis-
ibility. In particular they enable you to express Java’s accessibility notions
such as package private, package protected, or private up to outermost class,
which are not directly expressible with simple modifiers in Scala. But they
also let you express accessibility rules that cannot be expressed in Java. List-
ing 13.12 presents an example with many access qualifiers being used. In this
listing, class Navigator is labeled private[bobsrockets]. This means
that this class is visible in all classes and objects that are contained in pack-
age bobsrockets. In particular, the access to Navigator in object Vehicle
is permitted, because Vehicle is contained in package launch, which is
contained in bobsrockets. On the other hand, all code outside the package
bobsrockets cannot access class Navigator.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=289&v=2010_12_13

Section 13.5 Chapter 13 - Packages and Imports 290

This technique is quite useful in large projects that span several packages.
It allows you to define things that are visible in several sub-packages of your
project but that remain hidden from clients external to your project. The
same technique is not possible in Java. There, once a definition escapes its
immediate package boundary, it is visible to the world at large.

Of course, the qualifier of a private may also be the directly enclosing
package. An example is the access modifier of guide in object Vehicle
in Listing 13.12. Such an access modifier is equivalent to Java’s package-
private access.

Table 13.1 - Effects of private qualifiers on LegOfJourney.distance

no access modifier public access
private[bobsrockets] access within outer package
private[navigation] same as package visibility in Java
private[Navigator] same as private in Java
private[LegOfJourney] same as private in Scala
private[this] access only from same object

All qualifiers can also be applied to protected, with the same meaning
as private. That is, a modifier protected[X] in a class C allows access
to the labeled definition in all subclasses of C and also within the enclosing
package, class, or object X. For instance, the useStarChart method in List-
ing 13.12 is accessible in all subclasses of Navigator and also in all code
contained in the enclosing package navigation. It thus corresponds exactly
to the meaning of protected in Java.

The qualifiers of private can also refer to an enclosing class or object.
For instance the distance variable in class LegOfJourney in Listing 13.12
is labeled private[Navigator], so it is visible from everywhere in class
Navigator. This gives the same access capabilities as for private members
of inner classes in Java. A private[C] where C is the outermost enclosing
class is the same as just private in Java.

Finally, Scala also has an access modifier that is even more restrictive
than private. A definition labeled private[this] is accessible only from
within the same object that contains the definition. Such a definition is called
object-private. For instance, the definition of speed in class Navigator in
Listing 13.12 is object-private. This means that any access must not only be
within class Navigator, but it must also be made from the very same in-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=290&v=2010_12_13

Section 13.5 Chapter 13 - Packages and Imports 291

stance of Navigator. Thus the accesses “speed” and “this.speed” would
be legal from within Navigator. The following access, though, would not
be allowed, even if it appeared inside class Navigator:

val other = new Navigator
other.speed // this line would not compile

Marking a member private[this] is a guarantee that it will not be seen
from other objects of the same class. This can be useful for documenta-
tion. It also sometimes lets you write more general variance annotations (see
Section 19.7 for details).

To summarize, Table 13.1 on page 290 lists the effects of private qual-
ifiers. Each line shows a qualified private modifier and what it would mean
if such a modifier were attached to the distance variable declared in class
LegOfJourney in Listing 13.12.

Visibility and companion objects

In Java, static members and instance members belong to the same class, so
access modifiers apply uniformly to them. You have already seen that in
Scala there are no static members; instead you can have a companion object
that contains members that exist only once. For instance, in Listing 13.13
object Rocket is a companion of class Rocket.

Scala’s access rules privilege companion objects and classes when it
comes to private or protected accesses. A class shares all its access rights
with its companion object and vice versa. In particular, an object can ac-
cess all private members of its companion class, just as a class can access all
private members of its companion object.

For instance, the Rocket class above can access method fuel, which is
declared private in object Rocket. Analogously, the Rocket object can
access the private method canGoHomeAgain in class Rocket.

One exception where the similarity between Scala and Java breaks down
concerns protected static members. A protected static member of a Java
class C can be accessed in all subclasses of C. By contrast, a protected
member in a companion object makes no sense, as singleton objects don’t
have any subclasses.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=291&v=2010_12_13

Section 13.6 Chapter 13 - Packages and Imports 292

class Rocket {
import Rocket.fuel
private def canGoHomeAgain = fuel > 20

}

object Rocket {
private def fuel = 10
def chooseStrategy(rocket: Rocket) {
if (rocket.canGoHomeAgain)
goHome ()
else
pickAStar()
}
def goHome() {}
def pickAStar() {3}
}

Listing 13.13: Accessing private members of companion classes and objects.

13.6 Package objects

So far, the only code you have seen added to packages are classes, traits, and
standalone objects. These are by far the most common definitions that are
placed at the top level of a package, but Scala doesn’t limit you to just those.
Any kind of definition that you can put inside a class, you can also put at the
top level of a package. If you have some helper method you’d like to be in
scope for an entire package, go ahead and put it right at the top level of the
package

To do so, put the definitions in a package object. Each package is allowed
to have one package object. Any definitions placed in a package object are
considered members of the package itself.

An example is shown in Listing 13.14. File package.scala holds a
package object for package bobsdelights. Syntactically, a package ob-
ject looks much like one of the curly-braces packagings shown earlier in the
chapter. The only difference is that it includes the object keyword. It’s
a package object, not a package. The contents of the curly braces can in-
clude any definitions you like. In this case, the package object includes the
showFruit utility method from Listing 13.8.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=292&v=2010_12_13

Section 13.6 Chapter 13 - Packages and Imports 293

Given that definition, any other code in any package can import the
method just like it would import a class. For example, Listing 13.14 also
shows the standalone object PrintMenu, which is located in a different pack-
age. PrintMenu can import the utility method showFruit in the same way
it would import the class Fruit.

// In file bobsdelights/package.scala
package object bobsdelights {
def showFruit(fruit: Fruit) {
import fruit._
println(name +"s are "+ color)
}
}

// In file PrintMenu.scala
package printmenu

import bobsdelights.Fruits
import bobsdelights.showFruit

object PrintMenu {
def main(args: Array[String]) {
for (fruit <- Fruits.menu) {
showFruit(fruit)

Listing 13.14 - A package object.

Looking ahead, there are other uses of package objects for kinds of
definitions you haven’t seen yet. Package objects are frequently used to
hold package-wide type aliases (Chapter 20) and implicit conversions (Chap-
ter 21). The top-level scala package has a package object, and its definitions
are available to all Scala code.

Package objects are compiled to class files named package.class that
are the located in the directory of the package that they augment. It’s useful
to keep the same convention for source files. So you would typically put the
source file of the package object bobsdelights of Listing 13.14 into a file
named package.scala that resides in the bobsdelights directory.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=293&v=2010_12_13

Section 13.7 Chapter 13 - Packages and Imports 294
13.7 Conclusion

In this chapter, you saw the basic constructs for dividing a program into
packages. This gives you a simple and useful kind of modularity, so that you
can work with very large bodies of code without different parts of the code
trampling on each other. This system is the same in spirit as Java’s packages,
but there are some differences where Scala chooses to be more consistent or
more general.

Looking ahead, Chapter 29 describes a more flexible module system than
division into packages. In addition to letting you separate code into several
namespaces, that approach allows modules to be parameterized and to inherit
from each other. In the next chapter, we’ll turn our attention to assertions and
unit testing.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=294&v=2010_12_13

Chapter 14

Assertions and Unit Testing

Two important ways to check that the behavior of the software you write is
as you expect are assertions and unit tests. In this chapter, we’ll show you
several options you have in Scala to write and run them.

14.1 Assertions

Assertions in Scala are written as calls of a predefined method assert.' The
expression assert(condition) throws an AssertionError if condition
does not hold. There’s also a two-argument version of assert. The expres-
sion assert(condition, explanation) tests condition, and, if it does
not hold, throws an AssertionError that contains the given explanation.
The type of explanation is Any, so you can pass any object as the explana-
tion. The assert method will call toString on it to get a string explanation
to place inside the AssertionError.

For example, in the method named “above” of class Element, shown in
Listing 10.13 on page 247, you might place an assert after the calls to widen
to make sure that the widened elements have equal widths. This is shown in
Listing 14.1.

Another way you might choose to do this is to check the widths at the end
of the widen method, right before you return the value. You can accomplish
this by storing the result in a val, performing an assertion on the result, then
mentioning the val last so the result is returned if the assertion succeeds. You

The assert method is defined in the Predef singleton object, whose members are
automatically imported into every Scala source file.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=295&v=2010_12_13

Section 14.1 Chapter 14 - Assertions and Unit Testing 296

def above(that: Element): Element = {
val thisl = this widen that.width
val thatl = that widen this.width
assert(thisl.width == thatl.width)
elem(thisl.contents ++ thatl.contents)

Listing 14.1 - Using an assertion.

can do this more concisely, however, with a convenience method in Predef
named ensuring, as shown in Listing 14.2.

The ensuring method can be used with any result type because of an
implicit conversion. Although it looks in this code as if we’re invoking
ensuring on widen’s result, which is type Element, we’re actually invok-
ing ensuring on a type to which Element is implicitly converted. The
ensuring method takes one argument, a predicate function that takes a result
type and returns Boolean. ensuring will pass the result to the predicate.
If the predicate returns true, ensuring will return the result. Otherwise,
ensuring will throw an AssertionError.

In this example, the predicate is “w <= _.width”. The underscore is a
placeholder for the one argument passed to the predicate, the Element result
of the widen method. If the width passed as w to widen is less than or equal
to the width of the result Element, the predicate will result in true, and
ensuring will result in the Element on which it was invoked. Because this
is the last expression of the widen method, widen itself will then result in
the Element.

private def widen(w: Int): Element =
if (w <= width)

this
else {
val left = elem(' ', (w - width) / 2, height)
var right = elem(' ', w - width - left.width, height)
left beside this beside right
} ensuring (w <= _.width)

Listing 14.2 - Using ensuring to assert a function’s result.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=296&v=2010_12_13

Section 14.2 Chapter 14 - Assertions and Unit Testing 297

Assertions (and ensuring checks) can be enabled and disabled using
the JVM’s -ea and -da command-line flags. When enabled, each assertion
serves as a little test that uses the actual data encountered as the software
runs. In the remainder of this chapter, we’ll focus on the writing of external
unit tests, which provide their own test data and run independently from the
application.

14.2 Unit testing in Scala

You have many options for unit testing in Scala, from established Java tools,
such as JUnit and TestNG, to new tools written in Scala, such as ScalaTest,
specs, and ScalaCheck. In the remainder of this chapter, we’ll give you a
quick tour of these tools. We’ll start with ScalaTest.

ScalaTest provides several ways to write tests, the simplest of which is
to create classes that extend org.scalatest.Suite and define test methods
in those classes. A Suite represents a suite of tests. Test methods start with
"test". Listing 14.3 shows an example:

import org.scalatest.Suite
import Element.elem

class ElementSuite extends Suite {

def testUniformElement() {
val ele = elem('x', 2, 3)
assert(ele.width == 2)

Listing 14.3 - Writing a test method with Suite.

Although ScalaTest includes a Runner application, you can also run a
Suite directly from the Scala interpreter by invoking execute on it. Trait
Suite’s execute method uses reflection to discover its test methods and
invokes them. Here’s an example:

scala> (new ElementSuite).execute()
Test Starting - ElementSuite.testUniformElement
Test Succeeded - ElementSuite.testUniformElement

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=297&v=2010_12_13

Section 14.3 Chapter 14 - Assertions and Unit Testing 298

ScalaTest facilitates different styles of testing, because execute can be
overridden in Suite subtypes. For example, ScalaTest offers a trait called
FunSuite, which overrides execute so that you can define tests as function
values rather than methods. Listing 14.4 shows an example:

import org.scalatest.FunSuite
import Element.elem

class ElementSuite extends FunSuite {

test("elem result should have passed width") {
val ele = elem('x', 2, 3)
assert(ele.width == 2)

Listing 14.4 - Writing a test function with FunSuite.

The “Fun” in FunSuite stands for function. “test” is a method de-
fined in FunSuite, which will be invoked by the primary constructor of
ElementSuite. You specify the name of the test as a string between the
parentheses, and the test code itself between curly braces. The test code is a
function passed as a by-name parameter to test, which registers it for later
execution. One benefit of FunSuite is you need not name all your tests start-
ing with “test”. In addition, you can more easily give long names to your
tests, because you need not encode them in camel case, as you must do with
test methods.”

14.3 Informative failure reports

The tests in the previous two examples attempt to create an element of width
2 and assert that the width of the resulting element is indeed 2. Were this
assertion to fail, you would see a message that indicated an assertion failed.
You’d be given a line number, but wouldn’t know the two values that were
unequal. You could find out by placing a string message in the assertion that
includes both values, but a more concise approach is to use the triple-equals
operator, which ScalaTest provides for this purpose:

2You can download ScalaTest from http://www.scalatest.org/.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=298&v=2010_12_13

Section 14.3 Chapter 14 - Assertions and Unit Testing 299

assert(ele.width === 2)

Were this assertion to fail, you would see a message such as “3 did not equal
2” in the failure report. This would tell you that ele.width wrongly returned
3. The triple-equals operator does not differentiate between the actual and
expected result. It just indicates that the left operand did not equal the right
operand. If you wish to emphasize this distinction, you could alternatively
use ScalaTest’s expect method, like this:

expect(2) {
ele.width
}

With this expression you indicate that you expect the code between the curly
braces to result in 2. Were the code between the braces to result in 3, you’d
see the message, “Expected 2, but got 3” in the test failure report.

If you want to check that a method throws an expected exception, you
can use ScalaTest’s intercept method, like this:

intercept[IllegalArgumentException] {
elem('x', -2, 3)
}

If the code between the curly braces completes abruptly with an instance of
the passed exception class, intercept will return the caught exception, in
case you want to inspect it further. Most often, you’ll probably only care
that the expected exception was thrown, and ignore the result of intercept,
as is done in this example. On the other hand, if the code does not throw
an exception, or throws a different exception, the intercept method will
throw a TestFailedException, and you’ll get a helpful error message in
the failure report, such as:

Expected IllegalArgumentException to be thrown,
but NegativeArraySizeException was thrown.

The goal of ScalaTest’s === operator and its expect and intercept
methods is to help you write assertion-based tests that are clear and con-
cise. In the next section, we’ll show you how to use this syntax in JUnit and
TestNG tests written in Scala.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=299&v=2010_12_13

Section 14.4 Chapter 14 - Assertions and Unit Testing 300
14.4 Using JUnit and TestNG

The most popular unit testing framework on the Java platform is JUnit, an
open source tool written by Kent Beck and Erich Gamma. You can write
JUnit tests in Scala quite easily. Here’s an example using JUnit 3.8.1:

import junit.framework.TestCase

import junit.framework.Assert.assertEquals
import junit.framework.Assert.fail

import Element.elem

class ElementTestCase extends TestCase {
def testUniformElement() {
val ele = elem('x', 2, 3)
assertEquals(2, ele.width)
assertEquals(3, ele.height)

try {
elem('x', -2, 3)
fail()
}
catch {
case e: IllegalArgumentException => // expected
}
}
}

Once you compile this class, JUnit will run it like any other TestCase. JU-
nit doesn’t care that it was written in Scala. If you wish to use ScalaTest’s
assertion syntax in your JUnit 3 test, however, you can instead subclass
JUnit3Suite, as shown Listing 14.5.

Trait JUnit3Suite extends TestCase, so once you compile this class,
JUnit will run it just fine, even though it uses ScalaTest’s more concise as-
sertion syntax. Moreover, because JUnit3Suite mixes in ScalaTest’s trait
Suite, you can alternatively run this test class with ScalaTest’s runner. The
goal is to provide a gentle migration path to enable JUnit users to start writ-
ing JUnit tests in Scala that take advantage of the conciseness afforded by
Scala. ScalaTest also has a JUnitWrapperSuite, which enables you to run
existing JUnit tests written in Java with ScalaTest’s runner.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=300&v=2010_12_13

Section 14.4 Chapter 14 - Assertions and Unit Testing 301

import org.scalatest.junit.JUnit3Suite
import Element.elem

class ElementSuite extends JUnit3Suite {

def testUniformElement() {
val ele = elem('x"', 2, 3)
assert(ele.width === 2)
expect(3) { ele.height }
intercept[IllegalArgumentException] {
elem('x', -2, 3)

Listing 14.5 - Writing a JUnit test with JUnit3Suite.

ScalaTest offers similar integration classes for JUnit 4 and TestNG, both
of which make heavy use of annotations. We’ll show an example using
TestNG, an open source framework written by Cédric Beust and Alexan-
dru Popescu. As with JUnit, you can simply write TestNG tests in Scala,
compile them, and run them with TestNG’s runner. Here’s an example:

import org.testng.annotations.Test
import org.testng.Assert.assertEquals
import Element.elem

class ElementTests {

@Test def verifyUniformElement() {
val ele = elem('x", 2, 3)
assertEquals(ele.width, 2)
assertEquals(ele.height, 3)

}
@Test(
expectedExceptions =
Array(classOf[I1legalArgumentException])
)
def elemShouldThrowIAE() { elem('x', -2, 3) }

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=301&v=2010_12_13

Section 14.5 Chapter 14 - Assertions and Unit Testing 302

If you prefer to use ScalaTest’s assertion syntax in your TestNG tests, how-
ever, you can extend trait TestNGSuite, as shown in Listing 14.6:

import org.scalatest.testng.TestNGSuite
import org.testng.annotations.Test
import Element.elem

class ElementSuite extends TestNGSuite {

@Test def verifyUniformElement() {
val ele = elem('x', 2, 3)
assert(ele.width === 2)
expect(3) { ele.height }
intercept[IllegalArgumentException] {
elem('x', -2, 3)

Listing 14.6 - Writing a TestNG test with TestNGSuite.

As with JUnit3Suite, you can run a TestNGSuite with either TestNG
or ScalaTest, and ScalaTest also provides a TestNGWrapperSuite that en-
ables you to run existing TestNG tests written in Java with ScalaTest. To see
an example of JUnit 4 tests written in Scala, see Section 31.2.

14.5 Tests as specifications

In the behavior-driven development (BDD) testing style, the emphasis is on
writing human-readable specifications of the expected behavior of code, and
accompanying tests that verify the code has the specified behavior. ScalaTest
includes several traits—Spec, WordSpec, FlatSpec, and FeatureSpec—
which facilitate this style of testing. An example of a FlatSpec is shown in
Listing 14.7.

In a FlatSpec, you write tests as specifier clauses. You start by writing
a name for the subject under test as a string ("A UniformElement" in List-
ing 14.7), then should (or must or can), then a string that specifies a bit of
behavior required of the subject, then in. In the curly braces following in,
you write code that tests the specified behavior. In subsequent clauses you

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=302&v=2010_12_13

Section 14.5 Chapter 14 - Assertions and Unit Testing 303

import org.scalatest.FlatSpec
import org.scalatest.matchers.ShouldMatchers
import Element.elem

class ElementSpec extends FlatSpec with ShouldMatchers {

"A UniformElement" should
"have a width equal to the passed value" in {
val ele = elem('x", 2, 3)
ele.width should be (2)
}

it should "have a height equal to the passed value" in {
val ele = elem('x', 2, 3)
ele.height should be (3)

}

it should "throw an TAE if passed a negative width" in {
evaluating {
elem('x', -2, 3)
} should produce [IllegalArgumentException]
}
¥

Listing 14.7 - Specifying and testing behavior with a ScalaTest FlatSpec.

can write it to refer to the most recently given subject. When a FlatSpec is
executed, it will run each specifier clause as a ScalaTest test. FlatSpec (and
ScalaTest’s other specification traits) generate output that reads more like a
specification when run. For example, here’s what the output will look like if
you run ElementSpec from Listing 14.7 in the interpreter:

scala> (new ElementSpec).execute()

A UniformElement

- should have a width equal to the passed value
- should have a height equal to the passed value
should throw an IAE if passed a negative width

Listing 14.7 also illustrates ScalaTest’s matchers DSL. By mixing in
trait ShouldMatchers, you can write assertions that read more like natu-
ral language and generate more descriptive failure messages. ScalaTest pro-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=303&v=2010_12_13

Section 14.5 Chapter 14 - Assertions and Unit Testing 304

vides many matchers in its DSL, and also enables you to create your own
matchers. The matchers shown in Listing 14.7 include the “should be” and
“evaluating { ...} should produce” syntax. You can alternatively mix
in MustMatchers if you prefer must to should. For example, mixing in
MustMatchers would allow you to write expressions such as:

result must be >= 0
array must have length 3

[P]

map must contain key 'c

If the last assertion failed, you’d see an error message similar to:

Map('a' -=> 1, 'b' -=> 2) did not contain key 'c’
The specs testing framework, an open source tool written in Scala by Eric
Torreborre, also supports the BDD style of testing but with a different syntax.
For example, you could use specs to write the test shown in Listing 14.8:

import org.specs._
import Element.elem

object ElementSpecification extends Specification {
"A UniformElement" should {
"have a width equal to the passed value" in {
val ele = elem('x', 2, 3)
ele.width must be_==(2)
}
"have a height equal to the passed value" in {
val ele = elem('x', 2, 3)
ele.height must be_==(3)
}
"throw an IAE if passed a negative width" in {
elem('x", -2, 3) must
throwA[IllegalArgumentException]

¥

Listing 14.8 - Specifying and testing behavior with the specs framework.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=304&v=2010_12_13

Section 14.6 Chapter 14 - Assertions and Unit Testing 305

Like ScalaTest, specs provides a matchers DSL. You can see some ex-
amples of specs matchers in action in Listing 14.8 in the lines that contain
“must be_==" and “must throwA”. You can use specs standalone, but it is
also integrated with ScalaTest and JUnit, so you can run specs tests with
those tools as well.?

14.6 Property-based testing

Another useful testing tool for Scala is ScalaCheck, an open source frame-
work written by Rickard Nilsson. ScalaCheck enables you to specify prop-
erties that the code under test must obey. For each property, ScalaCheck will
generate test data and run tests that check whether the property holds. List-
ing 14.9 show an example of using ScalaCheck from a ScalaTest WordSpec
that mixes in trait Checkers:

import org.scalatest.WordSpec
import org.scalatest.prop.Checkers
import org.scalacheck.Prop._
import Element.elem

class ElementSpec extends WordSpec with Checkers {

"elem result" must {
"have passed width" in {
check((w: Int) =>w > 0 ==> (elem('x', w, 3).width == w))
}
"have passed height" in {
check((h: Int) => h > 0 ==> (elem('x"', 2, h).height == h))

Listing 14.9 - Writing property-based tests with ScalaCheck.

WordSpec is a ScalaTest trait that provides syntax similar to a specs
Specification. The Checkers trait provides several check methods that
allow you to mix ScalaCheck property-based tests with traditional assertion-

3You can download specs from http://code.google.com/p/specs/.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=305&v=2010_12_13

Section 14.7 Chapter 14 - Assertions and Unit Testing 306

or matcher-based tests. In this example, we check two properties that the
elem factory should obey. ScalaCheck properties are expressed as function
values that take as parameters the required test data, which will be generated
by ScalaCheck. In the first property shown in Listing 14.9, the test data is an
integer named w that represents a width. Inside the body of the function, you
see this code:

w> 0 ==> (elem('x"', w, 3).width == w)

The ==> symbol is a ScalaCheck implication operator. It implies that when-
ever the left hand expression is true, the expression on the right must hold
true. Thus in this case, the expression on the right of ==> must hold true
whenever w is greater than 0. The right-hand expression in this case will
yield true if the width passed to the elem factory is the same as the width of
the Element returned by the factory.

With this small amount of code, ScalaCheck will generate possibly hun-
dreds of values for w and test each one, looking for a value for which the
property doesn’t hold. If the property holds true for every value ScalaCheck
tries, the test will pass. Otherwise, the test will complete abruptly with an
AssertionError that contains information including the value that caused
the failure.

14.7 Organizing and running tests

Each framework mentioned in this chapter provides some mechanism for
organizing and running tests. In this section, we’ll give a quick overview
of ScalaTest’s approach. To get the full story on any of these frameworks,
however, you’ll need to consult their documentation.

In ScalaTest, you organize large test suites by nesting Suites inside
Suites. When a Suite is executed, it will execute its nested Suites as
well as its tests. The nested Suites will in turn execute their nested Suites,
and so on. A large test suite, therefore, is represented as a tree of Suite
objects. When you execute the root Suite in the tree, all Suites in the tree
will be executed.

You can nest suites manually or automatically. To nest manually, you ei-
ther override the nestedSuites method on your Suites, or pass the Suites
you want to nest to the constructor of class SuperSuite, which ScalaTest
provides for this purpose. To nest automatically, you provide package names

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=306&v=2010_12_13

Section 14.7 Chapter 14 - Assertions and Unit Testing 307

600 ScalaTest

ScalaTest View

Tests Run: 16 Expected: 16 Failed: 0
| _ Run

Reports:

« Run Starting m
« Suite Starting - SuiteSuite

« Test Starting - SuiteSuite.testDecorate ToStringValue

« Test Starting - SuiteSuite.testDiffStrings .
@ Test Succeeded - SuiteSuite.testDiffStrings v

(&] 4>

Details: T
Test Succeeded

Name: SuiteSuite.testDecorateToStringValue

Message:

Date: Sat Jul 05 15:40:03 PDT 2008
Thread: Thread-2
Throwable: None

Figure 14.1 - ScalaTest’s graphical reporter.

to ScalaTest’s Runner, which will discover Suites automatically, nest them
under a root Suite, and execute the root Suite.

You can invoke ScalaTest’s Runner application from the command line
or an ant task. You must specify which suites you want to run, either by
naming the suites explicitly or indicating name prefixes with which you want
Runner to perform automatic discovery. You can optionally specify a run-
path, a list of directories and JAR files from which to load class files for the
tests and the code they exercise.* You can also specify one or more reporters,
which will determine how test results will be presented.

For example, the ScalaTest distribution includes the suites that test Scala-
Test itself. You can run one of these suites, SuiteSuite,’ with the following
command:

$ scala -cp scalatest-1.2.jar org.scalatest.tools.Runner
-p "scalatest-1.2-tests.jar" -s org.scalatest.SuiteSuite

With -cp you place ScalaTest’s JAR file on the class path. The next token,
org.scalatest.tools.Runner, is the fully qualified name of the Runner

4Tests can be anywhere on the runpath or classpath, but typically you would keep your
tests separate from your production code, in a separate directory hierarchy that mirrors your
source tree’s directory hierarchy.

SSuiteSuite is so-named because it is a suite of tests that test trait Suite itself.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=307&v=2010_12_13

Section 14.8 Chapter 14 - Assertions and Unit Testing 308

application. Scala will run this application and pass the remaining tokens as
command line arguments. The -p specifies the runpath, which in this case
is a JAR file that contains the suite classes: scalatest-1.2-tests.jar.
The -s indicates SuiteSuite is the suite to execute. Because you don’t
explicitly specify a reporter, you will by default get the graphical reporter.
The result is shown in Figure 14.1.

14.8 Conclusion

In this chapter you saw examples of mixing assertions directly in production
code as well as writing them externally in unit tests. You saw that as a Scala
programmer, you can take advantage of popular testing tools from the Java
community, such as JUnit and TestNG, as well as newer tools designed ex-
plicitly for Scala, such as ScalaTest, ScalaCheck, and specs. Both in-code
assertions and unit testing can help you achieve your software quality goals.
We felt that these techniques are important enough to justify the short de-
tour from the Scala tutorial that this chapter represented. In the next chapter,
however, we’ll return to the language tutorial and cover a very useful aspect
of Scala: pattern matching.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=308&v=2010_12_13

Chapter 15

Case Classes and Pattern Matching

This chapter introduces case classes and pattern matching, twin constructs
that support you when writing regular, non-encapsulated data structures.
These two constructs are particularly helpful for tree-like recursive data.

If you have programmed in a functional language before, then you will
probably recognize pattern matching. Case classes will be new to you,
though. Case classes are Scala’s way to allow pattern matching on objects
without requiring a large amount of boilerplate. In the common case, all you
need to do is add a single case keyword to each class that you want to be
pattern matchable.

This chapter starts with a simple example of case classes and pattern
matching. It then goes through all of the kinds of patterns that are supported,
talks about the role of sealed classes, discusses the Option type, and shows
some non-obvious places in the language where pattern matching is used.
Finally, a larger, more realistic example of pattern matching is shown.

15.1 A simple example

Before delving into all the rules and nuances of pattern matching, it is worth
looking at a simple example to get the general idea. Let’s say you need to
write a library that manipulates arithmetic expressions, perhaps as part of a
domain-specific language you are designing.

A first step to tackle this problem is the definition of the input data. To
keep things simple, we’ll concentrate on arithmetic expressions consisting
of variables, numbers, and unary and binary operations. This is expressed by
the hierarchy of Scala classes shown in Listing 15.1.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=309&v=2010_12_13

Section 15.1 Chapter 15 - Case Classes and Pattern Matching 310

abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String,
left: Expr, right: Expr) extends Expr

Listing 15.1 - Defining case classes.

The hierarchy includes an abstract base class Expr with four subclasses,
one for each kind of expression being considered.! The bodies of all five
classes are empty. As mentioned previously, in Scala you can leave out the
braces around an empty class body if you wish, so class C is the same as
class C {}.

Case classes

The other noteworthy thing about the declarations of Listing 15.1 is that each
subclass has a case modifier. Classes with such a modifier are called case
classes. Using the modifier makes the Scala compiler add some syntactic
conveniences to your class.

First, it adds a factory method with the name of the class. This means
you can write say, Var("x") to construct a Var object instead of the slightly
longer new Var("x"):

scala> val v = Var('"x")
v: Var = Var(x)

The factory methods are particularly nice when you nest them. Because there
are no noisy new keywords sprinkled throughout the code, you can take in
the expression’s structure at a glance:

scala> val op = BinOp("+", Number(1l), v)
op: BinOp = BinOp(+,Number(1.0),Var(x))

The second syntactic convenience is that all arguments in the parameter list
of a case class implicitly get a val prefix, so they are maintained as fields:

!nstead of an abstract class, we could have equally well chosen to model the root of that
class hierarchy as a trait. Modeling it as an abstract class may be slightly more efficient.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=310&v=2010_12_13

Section 15.1 Chapter 15 - Case Classes and Pattern Matching 311

scala> v.name
resO: String = x

scala> op.left
resl: Expr = Number(1.0)

Third, the compiler adds “natural” implementations of methods toString,
hashCode, and equals to your class. They will print, hash, and compare a
whole tree consisting of the class and (recursively) all its arguments. Since
== in Scala always delegates to equals, this means that elements of case
classes are always compared structurally:

scala> println(op)
BinOp (+,Number(1.0),Var(x))

scala> op.right == Var("x")
res3: Boolean = true

Finally, the compiler adds a copy method to your class for making modified
copies. This method is useful for making a new instance of the class that is
the same as another one except that one or two attributes are different. The
method works by using named and default parameters (Section 8.8). You
specify the changes you’d like to make by using named parameters. For any
parameter you don’t specify, the value from the old object is used. As an
example, here is how you can make an operation just like op except that the
operator has changed:

scala> op.copy(operator = "-")
res4: BinOp = BinOp(-,Number(1.0),Var(x))

All these conventions add a lot of convenience, at a small price. The
price is that you have to write the case modifier and that your classes and
objects become a bit larger. They are larger because additional methods
are generated and an implicit field is added for each constructor parameter.
However, the biggest advantage of case classes is that they support pattern
matching.

Pattern matching

Say you want to simplify arithmetic expressions of the kinds just presented.
There is a multitude of possible simplification rules. The following three
rules just serve as an illustration:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=311&v=2010_12_13

Section 15.1 Chapter 15 - Case Classes and Pattern Matching 312

UnOp("-", UnOp("-", e)) => e // Double negation
BinOp("+", e, Number(0)) => e // Adding zero
BinOp("+", e, Number(l)) => e // Multiplying by one

Using pattern matching, these rules can be taken almost as they are to form
the core of a simplification function in Scala, as shown in Listing 15.2. The
function, simplifyTop, can be used like this:

scala> simplifyTop(UnOp("-", UnOp("-", Var("x"))))
res4: Expr = Var(x)

def simplifyTop(expr: Expr): Expr = expr match {

case UnOp("-", UnOp("-", e)) => e // Double negation
case BinOp("+", e, Number(0)) => e // Adding zero
case BinOp("+", e, Number(l)) => e // Multiplying by one
case _ => expr

¥

Listing 15.2 - The simplifyTop function, which does a pattern match.

The right-hand side of simplifyTop consists of a match expression.
match corresponds to switch in Java, but it’s written after the selector ex-
pression. Le., it’s:

selector match { alternatives }
instead of:
switch (selector) { alternatives }

A pattern match includes a sequence of alternatives, each starting with the
keyword case. Each alternative includes a pattern and one or more expres-
sions, which will be evaluated if the pattern matches. An arrow symbol =>
separates the pattern from the expressions.

A match expression is evaluated by trying each of the patterns in the
order they are written. The first pattern that matches is selected, and the part
following the arrow is selected and executed.

A constant pattern like "+" or 1 matches values that are equal to the
constant with respect to ==. A variable pattern like e matches every value.

The variable then refers to that value in the right hand side of the case clause.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=312&v=2010_12_13

Section 15.1 Chapter 15 - Case Classes and Pattern Matching 313

In this example, note that the first three examples evaluate to e, a variable
that is bound within the associated pattern. The wildcard pattern (_) also
matches every value, but it does not introduce a variable name to refer to that
value. In Listing 15.2, notice how the match ends with a default case that
does nothing to the expression. Instead, it just results in expr, the expression
matched upon.

A constructor pattern looks like UnOp (,). This pattern matches
all values of type UnOp whose first argument matches "-" and whose sec-
ond argument matches e. Note that the arguments to the constructor are
themselves patterns. This allows you to write deep patterns using a concise
notation. Here’s an example:

Unop("~", Un0p("-", e))

Imagine trying to implement this same functionality using the visitor design
pattern!” Almost as awkward, imagine implementing it as a long sequence
of if statements, type tests, and type casts.

match compared to switch

Match expressions can be seen as a generalization of Java-style switches. A
Java-style switch can be naturally expressed as a match expression where
each pattern is a constant and the last pattern may be a wildcard (which rep-
resents the default case of the switch). There are three differences to keep
in mind, however. First, match is an expression in Scala, i.e., it always re-
sults in a value. Second, Scala’s alternative expressions never “fall through”
into the next case. Third, if none of the patterns match, an exception named
MatchError is thrown. This means you always have to make sure that all
cases are covered, even if it means adding a default case where there’s noth-
ing to do. Listing 15.3 shows an example.

The second case is necessary in Listing 15.3, because otherwise the
match expression would throw a MatchError for every expr argument that
is not a BinOp. In this example, no code is specified for that second case, so
if that case runs it does nothing. The result of either case is the unit value
‘()’, which is also, therefore, the result of the entire match expression.

2Gamma, et. al., Design Patterns [Gam95]

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=313&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 314

expr match {
case BinOp(op, left, right) =>
println(expr +" is a binary operation")
case _ =>

Listing 15.3 - A pattern match with an empty “default” case.

15.2 Kinds of patterns

The previous example showed several kinds of patterns in quick succession.
Now take a minute to look at each.

The syntax of patterns is easy, so do not worry about that too much.
All patterns look exactly like the corresponding expression. For instance,
given the hierarchy of Listing 15.1, the pattern Var (x) matches any variable
expression, binding x to the name of the variable. Used as an expression,
Var (x)—exactly the same syntax—recreates an equivalent object, assuming
x is already bound to the variable’s name. Since the syntax of patterns is so
transparent, the main thing to pay attention to is just what kinds of patterns
are possible.

Wildcard patterns

The wildcard pattern (_) matches any object whatsoever. You have already
seen it used as a default, catch-all alternative, like this:

expr match {
case BinOp(op, left, right) =>
println(expr +" is a binary operation")
case _ =>
}
Wildcards can also be used to ignore parts of an object that you do not care
about. For example, the previous example does not actually care what the
elements of a binary operation are. It just checks whether it is a binary
operation at all. Thus the code can just as well use the wildcard pattern for
the elements of the BinOp, as shown in Listing 15.4:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=314&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 315

expr match {
case BinOp(_, _, _) => println(expr +" is a binary operation")
case _ => println("It's something else")

Listing 15.4 - A pattern match with wildcard patterns.

Constant patterns

A constant pattern matches only itself. Any literal may be used as a constant.
For example, 5, true, and "hello" are all constant patterns. Also, any val
or singleton object can be used as a constant. For example, Nil, a singleton
object, is a pattern that matches only the empty list. Listing 15.5 shows some
examples of constant patterns:

def describe(x: Any) = x match {
case 5 => "five"
case true => "truth"
case "hello" => "hi!"
case Nil => "the empty list"

case _ => "something else"

Listing 15.5 - A pattern match with constant patterns.

Here is how the pattern match shown in Listing 15.5 looks in action:

scala> describe(5)

res6: java.lang.String = five
scala> describe(true)

res7: java.lang.String = truth
scala> describe("hello™)

res8: java.lang.String = hi!

scala> describe(Nil)
res9: java.lang.String

the empty list

scala> describe(List(1,2,3))
resl0: java.lang.String = something else

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=315&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 316

Variable patterns

A variable pattern matches any object, just like a wildcard. Unlike a wild-
card, Scala binds the variable to whatever the object is. You can then use
this variable to act on the object further. For example, Listing 15.6 shows a
pattern match that has a special case for zero, and a default case for all other
values. The default case uses a variable pattern so that it has a name for the
value, no matter what it is.

expr match {
case 0 => "zero"
case somethingElse => "not zero: "+ somethingElse

Listing 15.6 - A pattern match with a variable pattern.

Variable or constant?

Constant patterns can have symbolic names. You saw this already when we
used Nil as a pattern. Here is a related example, where a pattern match
involves the constants E (2.71828...) and Pi (3.14159...):

scala> import math.{E, Pi}
import math.{E, Pi}

scala> E match {
case Pi => "strange math? Pi = "+ Pi
case _ => "OK"
¥
resll: java.lang.String = OK
As expected, E does not match Pi, so the “strange math” case is not used.
How does the Scala compiler know that Pi is a constant imported from
scala.math, and not a variable that stands for the selector value itself? Scala
uses a simple lexical rule for disambiguation: a simple name starting with
a lowercase letter is taken to be a pattern variable; all other references are
taken to be constants. To see the difference, create a lowercase alias for pi
and try with that:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=316&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 317

scala> val pi = math.Pi
pi: Double = 3.141592653589793

scala> E match {
case pi => "strange math? Pi = "+ pi
¥
resl2: java.lang.String = strange math? Pi =
2.718281828459045

Here the compiler will not even let you add a default case at all. Since
pi is a variable pattern, it will match all inputs, and so no cases following it
can be reached:

scala> E match {

case pi => "strange math? Pi = "+ pi
case _ => "OK"
}
<console>:9: error: unreachable code
case _ => "OK"

If you need to, you can still use a lowercase name for a pattern constant,
using one of two tricks. First, if the constant is a field of some object, you can
prefix it with a qualifier. For instance, pi is a variable pattern, but this.pi
or obj.pi are constants even though they start with lowercase letters. If that
does not work (because pi is a local variable, say), you can alternatively
enclose the variable name in back ticks. For instance, "pi” would again be
interpreted as a constant, not as a variable:

scala> E match {
case 'pi’ => "strange math? Pi = "+ pi
case _ => "OK"
3
resl4: java.lang.String = OK

As you can see, the back-tick syntax for identifiers is used for two different
purposes in Scala to help you code your way out of unusual circumstances.
Here you see that it can be used to treat a lowercase identifier as a constant in
a pattern match. Earlier on, in Section 6.10, you saw that it can also be used
to treat a keyword as an ordinary identifier, e.g., writing Thread. "yield ()
treats yield as an identifier rather than a keyword.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=317&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 318

Constructor patterns

Constructors are where pattern matching becomes really powerful. A con-
structor pattern looks like “BinOp("+", e, Number(0))”. It consists of a
name (BinOp) and then a number of patterns within parentheses: "+", e,
and Number (0). Assuming the name designates a case class, such a pattern
means to first check that the object is a member of the named case class, and
then to check that the constructor parameters of the object match the extra
patterns supplied.

These extra patterns mean that Scala patterns support deep matches.
Such patterns not only check the top-level object supplied, but also check
the contents of the object against further patterns. Since the extra patterns
can themselves be constructor patterns, you can use them to check arbitrarily
deep into an object. For example, the pattern shown in Listing 15.7 checks
that the top-level object is a BinOp, that its third constructor parameter is a
Number, and that the value field of that number is 0. This pattern is one line
long yet checks three levels deep.

expr match {
case BinOp("+", e, Number(0)) => println("a deep match™)
case _ =>

Listing 15.7 - A pattern match with a constructor pattern.

Sequence patterns

You can match against sequence types like List or Array just like you match
against case classes. Use the same syntax, but now you can specify any
number of elements within the pattern. For example, Listing 15.8 shows a
pattern that checks for a three-element list starting with zero:

expr match {
case List(0
case _ =>

) => println("found it")

Listing 15.8 - A sequence pattern with a fixed length.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=318&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 319

If you want to match against a sequence without specifying how long it
can be, you can specify _# as the last element of the pattern. This funny-
looking pattern matches any number of elements within a sequence, includ-
ing zero elements. Listing 15.9 shows an example that matches any list that
starts with zero, regardless of how long the list is.

expr match {
case List(0, _*) => println("found it")
case _ =>

Listing 15.9 - A sequence pattern with an arbitrary length.

Tuple patterns

You can match against tuples, too. A pattern like (a, b, c¢) matches an
arbitrary 3-tuple. An example is shown in Listing 15.10:

def tupleDemo(expr: Any) =
expr match {
case (a, b, ¢) => println("matched "+ a + b + ¢)
case _ =>

Listing 15.10 - A pattern match with a tuple pattern.

If you load the tupleDemo method shown in Listing 15.10 into the inter-
preter, and pass to it a tuple with three elements, you’ll see:

scala> tupleDemo(("a ", 3, "-tuple"™))
matched a 3-tuple

Typed patterns

You can use a typed pattern as a convenient replacement for type tests and
type casts. Listing 15.11 shows an example:

Here are a few examples of using the generalSize method in the Scala
interpreter:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=319&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 320

def generalSize(x: Any) = x match {
case s: String => s.length
case m: Map[_, _] => m.size
case _ => -1

Listing 15.11 - A pattern match with typed patterns.

scala> generalSize("abc")
resl6: Int = 3

scala> generalSize(Map(1l -> 'a', 2 -=> 'b"'))
resl7: Int = 2

scala> generalSize(math.Pi)
resl8: Int = -1

The generalSize method returns the size or length of objects of various
types. Its argument is of type Any, so it could be any value. If the argument is
a String, the method returns the string’s length. The pattern “s: String” is
a typed pattern; it matches every (non-null) instance of String. The pattern
variable s then refers to that string.

Note that, even though s and x refer to the same value, the type of x
is Any, but the type of s is String. So you can write s.length in the
alternative expression that corresponds to the pattern, but you could not write
x.length, because the type Any does not have a 1ength member.

An equivalent but more long-winded way that achieves the effect of a
match against a typed pattern employs a type test followed by a type cast.
Scala uses a different syntax than Java for these. To test whether an expres-
sion expr has type String, say, you write:

expr.isInstanceOf[String]
To cast the same expression to type String, you use:
expr.asInstanceOf[String]

Using a type test and cast, you could rewrite the first case of the previous
match expression as shown in Listing 15.12.

The operators isInstanceOf and asInstanceOf are treated as prede-
fined methods of class Any which take a type parameter in square brackets.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=320&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 321

if (x.isInstanceOf[String]) {
val s = x.asInstanceOf[String]
s.length

} else ...

Listing 15.12 - Using isInstanceOf and asInstanceOf (poor style).

In fact, x.asInstanceOf[String] is a special case of a method invocation
with an explicit type parameter String.

As you will have noted by now, writing type tests and casts is rather
verbose in Scala. That’s intentional, because it is not encouraged practice.
You are usually better off using a pattern match with a typed pattern. That’s
particularly true if you need to do both a type test and a type cast, because
both operations are then rolled into a single pattern match.

The second case of the previous match expression contains the type pat-
tern “m: Map[_, _]1”. This pattern matches any value that is a Map of some
arbitrary key and value types and lets m refer to that value. Therefore, m.size
is well typed and returns the size of the map. The underscores in the type
pattern are like wildcards in other patterns. You could have also used (low-
ercase) type variables instead.

Type erasure

Can you also test for a map with specific element types? This would be
handy, say for testing whether a given value is a map from type Int to type
Int. Let’s try:

scala> def isIntIntMap(x: Any) = x match {
case m: Map[Int, Int] => true
case _ => false
¥
warning: there were unchecked warnings; re-run with
-unchecked for details
isIntIntMap: (x: Any)Boolean

The interpreter emitted an “unchecked warning.” You can find out details by
starting the interpreter again with the -unchecked command-line option:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=321&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 322

scala> :quit

$ scala -unchecked

Welcome to Scala version 2.8.1

(Java HotSpot(TM) Client VM, Java 1.5.0_13).
Type in expressions to have them evaluated.
Type :help for more information.

scala> def isIntIntMap(x: Any) = x match {
case m: Map[Int, Int] => true
case _ => false
}
<console>:5: warning: non variable type-argument Int in
type pattern is unchecked since it is eliminated by erasure
case m: Map[Int, Int] => true

Scala uses the erasure model of generics, just like Java does. This means
that no information about type arguments is maintained at runtime. Conse-
quently, there is no way to determine at runtime whether a given Map object
has been created with two Int arguments, rather than with arguments of dif-
ferent types. All the system can do is determine that a value is a Map of
some arbitrary type parameters. You can verify this behavior by applying
isIntIntMap to arguments of different instances of class Map:

scala> isIntIntMap(Map(l -> 1))
resl9: Boolean = true

scala> isIntIntMap(Map("abc" -> "abc"))
res20: Boolean = true

The first application returns true, which looks correct, but the second ap-
plication also returns true, which might be a surprise. To alert you to the
possibly non-intuitive runtime behavior, the compiler emits unchecked warn-
ings like the one shown above.

The only exception to the erasure rule is arrays, because they are handled
specially in Java as well as in Scala. The element type of an array is stored
with the array value, so you can pattern match on it. Here’s an example:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=322&v=2010_12_13

Section 15.2 Chapter 15 - Case Classes and Pattern Matching 323

scala> def isStringArray(x: Any) = x match {
case a: Array[String] => "yes"
case _ => "no"
}
isStringArray: (x: Any)java.lang.String
scala> val as = Array('"abc")
as: Array[java.lang.String] = Array(abc)

scala> isStringArray(as)
res2l: java.lang.String = yes

scala> val ai = Array(l, 2, 3)
ai: Array[Int] = Array(1l, 2, 3)

scala> isStringArray(ai)
res22: java.lang.String = no

Variable binding

In addition to the standalone variable patterns, you can also add a variable
to any other pattern. You simply write the variable name, an at sign (@), and
then the pattern. This gives you a variable-binding pattern. The meaning of
such a pattern is to perform the pattern match as normal, and if the pattern
succeeds, set the variable to the matched object just as with a simple variable
pattern.

As an example, Listing 15.13 shows a pattern match that looks for the
absolute value operation being applied twice in a row. Such an expression
can be simplified to only take the absolute value one time.

expr match {
case UnOp("abs", e @ UnOp("abs", _)) => e
case _ =>

Listing 15.13 - A pattern with a variable binding (via the @ sign).

In Listing 15.13, there is a variable-binding pattern with e as the variable
and UnOp("abs", _) as the pattern. If the entire pattern match succeeds,
then the portion that matched the UnOp ("abs", _) part is made available as
variable e. As the code is written, e then gets returned as is.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=323&v=2010_12_13

Section 15.3 Chapter 15 - Case Classes and Pattern Matching

15.3 Pattern guards

Sometimes, syntactic pattern matching is not precise enough. For instance,
say you are given the task of formulating a simplification rule that replaces
sum expressions with two identical operands such as e + e by multiplications
of two, e.g., e * 2. In the language of Expr trees, an expression like:

BinOp("+", Var("x"), Var('"x"))
would be transformed by this rule to:

BinOp("+", Var("x"), Number(2))
You might try to define this rule as follows:

scala> def simplifyAdd(e: Expr) = e match {

case BinOp("+", x, x) => BinOp("*", x, Number(2))
case _ => e
}
<console>:11: error: x is already defined as value x
case BinOp("+", x, x) => BinOp("*", x, Number(2))

This fails, because Scala restricts patterns to be linear: a pattern variable
may only appear once in a pattern. However, you can re-formulate the match
with a pattern guard, as shown in Listing 15.14:

scala> def simplifyAdd(e: Expr) = e match {
case BinOp("+", x, y) if x ==y =
BinOp("+", x, Number(2))
case _ => e
}
simplifyAdd: (e: Expr)Expr

Listing 15.14 - A match expression with a pattern guard.

A pattern guard comes after a pattern and starts with an if. The guard
can be an arbitrary boolean expression, which typically refers to variables
in the pattern. If a pattern guard is present, the match succeeds only if the
guard evaluates to true. Hence, the first case above would only match binary
operations with two equal operands.

Some other examples of guarded patterns are:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

324

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=324&v=2010_12_13

Section 15.4 Chapter 15 - Case Classes and Pattern Matching 325

// match only positive integers
case n: Int if 0 < n = ...

// match only strings starting with the letter
case s: String if s(0) == 'a' => ...

a

15.4 Pattern overlaps

Patterns are tried in the order in which they are written. The version of
simplify shown in Listing 15.15 presents an example where the order of
the cases matters:

def simplifyAll(expr: Expr): Expr = expr match {
case UnOp("-", UnOp("-", €)) =>
simplifyAll(e) // ‘=’ is its own inverse
case BinOp("+", e, Number(0)) =>
simplifyAll(e) // ‘0’ is a neutral element for ‘+’
case BinOp("+", e, Number(1l)) =>
simplifyAll(e) // ‘1’ is a neutral element for ‘=’
case UnOp(op, e) =>
UnOp(op, simplifyAll(e))
case BinOp(op, 1, r) =>
BinOp(op, simplifyAll(1l), simplifyAll(r))
case _ => expr

Listing 15.15 - Match expression in which case order matters.

The version of simplify shown in Listing 15.15 will apply simplification
rules everywhere in an expression, not just at the top, as simplifyTop did.
It can be derived from simplifyTop by adding two more cases for general
unary and binary expressions (cases four and five in Listing 15.15).

The fourth case has the pattern UnOp (op, e); i.e., it matches every unary
operation. The operator and operand of the unary operation can be arbitrary.
They are bound to the pattern variables op and e, respectively. The alterna-
tive in this case applies simplifyAll recursively to the operand e and then
rebuilds the same unary operation with the (possibly) simplified operand.
The fifth case for BinOp is analogous: it is a “catch-all” case for arbitrary

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=325&v=2010_12_13

Section 15.5 Chapter 15 - Case Classes and Pattern Matching 326

binary operations, which recursively applies the simplification method to its
two operands.

In this example, it is important that the catch-all cases come after the
more specific simplification rules. If you wrote them in the other order, then
the catch-all case would be run in favor of the more specific rules. In many
cases, the compiler will even complain if you try.

For example, here’s a match expression that won’t compile because the
first case will match anything that would be matched by the second case:

scala> def simplifyBad(expr: Expr): Expr = expr match {
case UnOp(op, e) => UnOp(op, simplifyBad(e))

case UnOp("-", UnOp("-", e)) => e
}
<console>:18: error: unreachable code
case UnOp("-", UnOp("-", e)) => e

15.5 Sealed classes

Whenever you write a pattern match, you need to make sure you have cov-
ered all of the possible cases. Sometimes you can do this by adding a default
case at the end of the match, but that only applies if there is a sensible default
behavior. What do you do if there is no default? How can you ever feel safe
that you covered all the cases?

In fact, you can enlist the help of the Scala compiler in detecting missing
combinations of patterns in a match expression. To be able to do this, the
compiler needs to be able to tell which are the possible cases. In general,
this is impossible in Scala, because new case classes can be defined at any
time and in arbitrary compilation units. For instance, nothing would prevent
you from adding a fifth case class to the Expr class hierarchy in a different
compilation unit from the one where the other four cases are defined.

The alternative is to make the superclass of your case classes sealed.
A sealed class cannot have any new subclasses added except the ones in the
same file. This is very useful for pattern matching, because it means you only
need to worry about the subclasses you already know about. What’s more,
you get better compiler support as well. If you match against case classes
that inherit from a sealed class, the compiler will flag missing combinations
of patterns with a warning message.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=326&v=2010_12_13

Section 15.5 Chapter 15 - Case Classes and Pattern Matching 327

Therefore, if you write a hierarchy of classes intended to be pattern
matched, you should consider sealing them. Simply put the sealed keyword
in front of the class at the top of the hierarchy. Programmers using your class
hierarchy will then feel confident in pattern matching against it. The sealed
keyword, therefore, is often a license to pattern match. Listing 15.16 shows
an example in which Expr is turned into a sealed class.

sealed abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String,
left: Expr, right: Expr) extends Expr

Listing 15.16 - A sealed hierarchy of case classes.

Now define a pattern match where some of the possible cases are left out:

def describe(e: Expr): String = e match {
case Number(_) => "a number"
case Var() => "a variable"

b
You will get a compiler warning like the following:

warning: match is not exhaustive!
missing combination UnOp
missing combination BinOp

Such a warning tells you that there’s a risk your code might produce a
MatchError exception because some possible patterns (UnOp, BinOp) are
not handled. The warning points to a potential source of runtime faults, so it
is usually a welcome help in getting your program right.

However, at times you might encounter a situation where the compiler
is too picky in emitting the warning. For instance, you might know from
the context that you will only ever apply the describe method above to
expressions that are either Numbers or Vars. So you know that in fact no
MatchError will be produced. To make the warning go away, you could add
a third catch-all case to the method, like this:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=327&v=2010_12_13

Section 15.6 Chapter 15 - Case Classes and Pattern Matching 328

def describe(e: Expr): String = e match {
case Number(_) => "a number"
case Var(_) => "a variable"
case _ => throw new RuntimeException // Should not happen

}

That works, but it is not ideal. You will probably not be very happy that you
were forced to add code that will never be executed (or so you think), just to
make the compiler shut up.

A more lightweight alternative is to add an @unchecked annotation to
the selector expression of the match. This is done as follows:

def describe(e: Expr): String = (e: @unchecked) match {
case Number(_) => "a number"
case Var(L) => "a variable"

}

Annotations are described in Chapter 27. In general, you can add an annota-
tion to an expression in the same way you add a type: follow the expression
with a colon and the name of the annotation (preceded by an at sign). For
example, in this case you add an @unchecked annotation to the variable e,
with “e: @unchecked”. The @unchecked annotation has a special meaning
for pattern matching. If amatch’s selector expression carries this annotation,
exhaustivity checking for the patterns that follow will be suppressed.

15.6 The Option type

Scala has a standard type named Option for optional values. Such a value
can be of two forms. It can be of the form Some(x) where x is the actual
value. Or it can be the None object, which represents a missing value.

Optional values are produced by some of the standard operations on
Scala’s collections. For instance, the get method of Scala’s Map produces
Some(value) if a value corresponding to a given key has been found, or
None if the given key is not defined in the Map. Here’s an example:

scala> val capitals =

Map("France" -> "Paris", "Japan" -> "Tokyo")
capitals: scala.collection.immutable.Map[java.lang.String,
java.lang.String] = Map(France -> Paris, Japan -> Tokyo)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=328&v=2010_12_13

Section 15.6 Chapter 15 - Case Classes and Pattern Matching 329

scala> capitals get "France"
res23: Option[java.lang.String] = Some(Paris)

scala> capitals get "North Pole"
res24: Option[java.lang.String] = None

The most common way to take optional values apart is through a pattern
match. For instance:

scala> def show(x: Option[String]) = x match {
case Some(s) => s
case None => "7?"

}
show: (x: Option[String])String

scala> show(capitals get "Japan')
res25: String = Tokyo

scala> show(capitals get "France")
res26: String = Paris

scala> show(capitals get "North Pole™)
res27: String = ?

The Option type is used frequently in Scala programs. Compare this to the
dominant idiom in Java of using null to indicate no value. For example,
the get method of java.util.HashMap returns either a value stored in the
HashMap, or null if no value was found. This approach works for Java, but is
error prone, because it is difficult in practice to keep track of which variables
in a program are allowed to be null. If a variable is allowed to be null,
then you must remember to check it for null every time you use it. When
you forget to check, you open the possibility that a Nul1PointerException
may result at runtime. Because such exceptions may not happen very often,
it can be difficult to discover the bug during testing. For Scala, the approach
would not work at all, because it is possible to store value types in hash
maps, and null is not a legal element for a value type. For instance, a
HashMap[Int, Int] cannot return null to signify “no element.”

By contrast, Scala encourages the use of Option to indicate an optional
value. This approach to optional values has several advantages over Java’s.
First, it is far more obvious to readers of code that a variable whose type
is Option[String] is an optional String than a variable of type String,
which may sometimes be null. But most importantly, that programming

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=329&v=2010_12_13

Section 15.7 Chapter 15 - Case Classes and Pattern Matching 330

error described earlier of using a variable that may be null without first
checking it for null becomes in Scala a type error. If a variable is of type
Option[String] and you try to use it as a String, your Scala program will
not compile.

15.7 Patterns everywhere

Patterns are allowed in many parts of Scala, not just in standalone match
expressions. Take a look at some other places you can use patterns.

Patterns in variable definitions

Any time you define a val or a var, you can use a pattern instead of a simple
identifier. For example, you can use this to take apart a tuple and assign each
of its parts to its own variable, as shown in Listing 15.17:

scala> val myTuple = (123, "abc")
myTuple: (Int, java.lang.String) = (123,abc)

scala> val (number, string) = myTuple
number: Int = 123
string: java.lang.String = abc

Listing 15.17 - Defining multiple variables with one assignment.

This construct is quite useful when working with case classes. If you
know the precise case class you are working with, then you can deconstruct
it with a pattern. Here’s an example:

scala> val exp = new BinOp("+", Number(5), Number(l))
exp: BinOp = BinOp(*,Number(5.0),Number(1.0))

scala> val BinOp(op, left, right) = exp

op: String = =

left: Expr = Number(5.0)

right: Expr = Number(1.0)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=330&v=2010_12_13

Section 15.7 Chapter 15 - Case Classes and Pattern Matching 331

Case sequences as partial functions

A sequence of cases (i.e., alternatives) in curly braces can be used anywhere
a function literal can be used. Essentially, a case sequence is a function
literal, only more general. Instead of having a single entry point and list
of parameters, a case sequence has multiple entry points, each with their
own list of parameters. Each case is an entry point to the function, and the
parameters are specified with the pattern. The body of each entry point is the
right-hand side of the case.
Here is a simple example:

val withDefault: Option[Int] => Int = {
case Some(x) => X
case None => 0

}

The body of this function has two cases. The first case matches a Some, and
returns the number inside the Some. The second case matches a None, and
returns a default value of zero. Here is this function in use:

scala> withDefault(Some(10))
res28: Int = 10

scala> withDefault(None)
res29: Int = 0

This facility is quite useful for the actors library, described in Chapter 32.
Here is some typical actors code. It passes a pattern match directly to the
react method:

react {

case (name: String, actor: Actor) => {
actor ! getip(name)
act()

¥

case msg => {
println("Unhandled message: "+ msg)
act()

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=331&v=2010_12_13

Section 15.7 Chapter 15 - Case Classes and Pattern Matching 332

One other generalization is worth noting: a sequence of cases gives you a
partial function. If you apply such a function on a value it does not support,
it will generate a run-time exception. For example, here is a partial function
that returns the second element of a list of integers:

val second: List[Int] => Int = {
case X ::V i _ =Y

}

When you compile this, the compiler will correctly complain that the match
is not exhaustive:

<console>:17: warning: match is not exhaustive!
missing combination Nil

This function will succeed if you pass it a three-element list, but not if you
pass it an empty list:

scala> second(List(5, 6, 7))
res24: Int = 6

scala> second(List())

scala.MatchError: List()
at $anonfun$l.apply(<console>:17)
at $anonfun$l.apply(<console>:17)

If you want to check whether a partial function is defined, you must
first tell the compiler that you know you are working with partial func-
tions. The type List[Int] => Int includes all functions from lists of in-
tegers to integers, whether or not the functions are partial. The type that
only includes partial functions from lists of integers to integers is written
PartialFunction[List[Int],Int]. Here is the second function again,
this time written with a partial function type:

val second: PartialFunction[List[Int],Int] = {
case X 1V :: _ =Y

}

Partial functions have a method isDefinedAt, which can be used to test
whether the function is defined at a particular value. In this case, the function
is defined for any list that has at least two elements:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=332&v=2010_12_13

Section 15.7 Chapter 15 - Case Classes and Pattern Matching 333

scala> second.isDefinedAt(List(5,6,7))
res30: Boolean = true

scala> second.isDefinedAt(List())
res31: Boolean = false

The typical example of a partial function is a pattern matching function lit-
eral like the one in the previous example. In fact, such an expression gets
translated by the Scala compiler to a partial function by translating the pat-
terns twice—once for the implementation of the real function, and once to
test whether the function is defined or not. For instance, the function literal
{casex ::y:: _=>y } above gets translated to the following partial
function value:

new PartialFunction[List[Int], Int] {
def apply(xs: List[Int]) = xs match {

case X :: V :: _ =Y
¥
def isDefinedAt(xs: List[Int]) = xs match {
case X :: Vy :: _ => true
case _ => false
}
}

This translation takes effect whenever the declared type of a function literal
is PartialFunction. If the declared type is just Functionl, or is missing,
the function literal is instead translated to a complete function.

In general, you should try to work with complete functions whenever
possible, because using partial functions allows for runtime errors that the
compiler cannot help you with. Sometimes partial functions are really help-
ful, though. You might be sure that an unhandled value will never be sup-
plied. Alternatively, you might be using a framework that expects partial
functions and so will always check isDefinedAt before calling the func-
tion. An example of the latter is the react example given above, where the
argument is a partially defined function, defined precisely for those messages
that the caller wants to handle.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=333&v=2010_12_13

Section 15.7 Chapter 15 - Case Classes and Pattern Matching 334

Patterns in for expressions

You can also use a pattern in a for expression, as shown in Listing 15.18.
This for expression retrieves all key/value pairs from the capitals map.
Each pair is matched against the pattern (country, city), which defines
the two variables country and city.

scala> for ((country, city) <- capitals)

println("The capital of "+ country +" is "+ city)
The capital of France is Paris
The capital of Japan is Tokyo

Listing 15.18 - A for expression with a tuple pattern.

The pair pattern shown in Listing 15.18 was special because the match
against it can never fail. Indeed, capitals yields a sequence of pairs, so you
can be sure that every generated pair can be matched against a pair pattern.
But it is equally possible that a pattern might not match a generated value.
Listing 15.19 shows an example where that is the case:

scala> val results = List(Some("apple"), None,
Some("orange'))

results: List[Option[java.lang.String]] = List(Some(apple),

None, Some(orange))

scala> for (Some(fruit) <- results) println(fruit)

apple
orange

Listing 15.19 - Picking elements of a list that match a pattern.

As you can see from this example, generated values that do not match the
pattern are discarded. For instance, the second element None in the results
list does not match the pattern Some (fruit); therefore it does not show up
in the output.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=334&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 335
15.8 A larger example

After having learned the different forms of patterns, you might be interested
in seeing them applied in a larger example. The proposed task is to write an
expression formatter class that displays an arithmetic expression in a two-
dimensional layout. Divisions such as “x / (x + 1)” should be printed verti-
cally, by placing the numerator on top of the denominator, like this:

As another example, here’s the expression ((a / (b*c) +1 /n) / 3) in
two dimensional layout:

From these examples it looks like the class (we’ll call it ExprFormatter)
will have to do a fair bit of layout juggling, so it makes sense to use the
layout library developed in Chapter 10. We’ll also use the Expr family of
case classes you saw previously in this chapter, and place both Chapter 10’s
layout library and this chapter’s expression formatter into named packages.
The full code for the example will be shown in Listings 15.20 and 15.21.

A useful first step is to concentrate on horizontal layout. A structured
expression like:

BinOp("+",
BinOp("=",
BinOp("+", Var("x"), Var("v")),
Var("z")),
Number (1))

should print (x + y) * z + 1. Note that parentheses are mandatory around
x + y, but would be optional around (x + y) * z. To keep the layout as
legible as possible, your goal should be to omit parentheses wherever they
are redundant, while ensuring that all necessary parentheses are present.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=335&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 336

To know where to put parentheses, the code needs to know about the
relative precedence of each operator, so it’s a good idea to tackle this first.
You could express the relative precedence directly as a map literal of the
following form:

Map (
" s 0, "[|" => 0,
g o> 1, "&&" —> 1,
)

However, this would involve some amount of pre-computation of prece-
dences on your part. A more convenient approach is to just define groups
of operators of increasing precedence and then calculate the precedence of
each operator from that. Listing 15.20 shows the code.

The precedence variable is a map from operators to their precedences,
which are integers starting with 0. It is calculated using a for expres-
sion with two generators. The first generator produces every index i of
the opGroups array. The second generator produces every operator op in
opGroups(i). For each such operator the for expression yields an associ-
ation from the operator op to its index i. Hence, the relative position of an
operator in the array is taken to be its precedence. Associations are written
with an infix arrow, e.g., op —> i. So far you have seen associations only as
part of map constructions, but they are also values in their own right. In fact,
the association op -> i is nothing else but the pair (op, i).

Now that you have fixed the precedence of all binary operators except /,
it makes sense to generalize this concept to also cover unary operators. The
precedence of a unary operator is higher than the precedence of every binary
operator. Thus we can set unaryPrecedence (shown in Listing 15.20) to the
length of the opGroups array, which is one more than the precedence of the
and % operators.

The precedence of a fraction is treated differently from the other opera-
tors because fractions use vertical layout. However, it will prove convenient
to assign to the division operator the special precedence value -1, so we’ll
initialize fractionPrecedence to -1 (shown in Listing 15.20).

After these preparations, you are ready to write the main format method.
This method takes two arguments: an expression e, of type Expr, and the
precedence enclPrec of the operator directly enclosing the expression e (if
there’s no enclosing operator, enc1Prec should be zero). The method yields
a layout element that represents a two-dimensional array of characters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=336&v=2010_12_13

Section 15.8

Chapter 15 - Case Classes and Pattern Matching

package org.stairwaybook.expr
import org.stairwaybook.layout.Element.elem

sealed abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String,
left: Expr, right: Expr) extends Expr

class ExprFormatter {

// Contains operators in groups of increasing precedence
private val opGroups =
Array(

337

Set("|",
Set("&",
Set("""),
Set("==",
Set("<",
Set("+",
Set("=",

T,
n&&t),

=y,
<=", T, "),
-,

n%u)

)

// A mapping from operators to their precedence
private val precedence = {
val assocs =
for {
i <- 0 until opGroups.length
op <- opGroups(i)
} vield op -> i
assocs.toMap

}
private val unaryPrecedence = opGroups.length
private val fractionPrecedence = -1

// continued in Listing 15.21...

Listing 15.20 - The top half of the expression formatter.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=337&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 338

// ...continued from Listing 15.20
private def format(e: Expr, enclPrec: Int): Element =
e match {

case Var(name) =>
elem(name)

case Number (num) =>
def stripDot(s: String) =
if (s endsWith ".0") s.substring(0, s.length - 2)
else s
elem(stripDot(num.toString))

case UnOp(op, arg) =>
elem(op) beside format(arg, unaryPrecedence)

case BinOp("/", left, right) =>

val top = format(left, fractionPrecedence)
val bot = format(right, fractionPrecedence)

val line = elem('-', top.width max bot.width, 1)
val frac = top above line above bot

if (enclPrec != fractionPrecedence) frac

else elem(" ") beside frac beside elem(" ")

case BinOp(op, left, right) =>
val opPrec = precedence(op)
val 1 = format(left, opPrec)
val r = format(right, opPrec + 1)
val oper = 1 beside elem(" "+ op +
if (enclPrec <= opPrec) oper
else elem("(") beside oper beside elem(")")

won

) beside r

}

def format(e: Expr): Element = format(e, 0)
}

Listing 15.21 - The bottom half of the expression formatter.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=338&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 339

Listing 15.21 shows the remainder of class ExprFormatter, which in-
cludes three methods. The first method, stripDot, is a helper method.The
next method, the private format method, does most of the work to format
expressions. The last method, also named format, is the lone public method
in the library, which takes an expression to format.

The private format method does its work by performing a pattern match
on the kind of expression. The match expression has five cases. We’ll dis-
cuss each case individually. The first case is:

case Var(name) =>
elem(name)

If the expression is a variable, the result is an element formed from the vari-
able’s name.

The second case is:

case Number(num) =>
def stripDot(s: String) =
if (s endsWith ".0") s.substring(0, s.length - 2)
else s
elem(stripDot (num.toString))

If the expression is a number, the result is an element formed from the num-
ber’s value. The stripDot function cleans up the display of a floating-point
number by stripping any ".0" suffix from a string.

The third case is:

case UnOp(op, arg) =>
elem(op) beside format(arg, unaryPrecedence)

If the expression is a unary operation UnOp(op, arg) the result is formed
from the operation op and the result of formatting the argument arg with the
highest-possible environment precedence.? This means that if arg is a binary
operation (but not a fraction) it will always be displayed in parentheses.

The fourth case is:

3The value of unaryPrecedence is the highest possible precedence, because it was ini-
tialized to one more than the precedence of the * and % operators.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=339&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 340

case BinOp("/", left, right) =>
val top = format(left, fractionPrecedence)
val bot = format(right, fractionPrecedence)

val line = elem('-', top.width max bot.width, 1)
val frac = top above line above bot
if (enclPrec != fractionPrecedence) frac

else elem(" ") beside frac beside elem(" ")

If the expression is a fraction, an intermediate result frac is formed by plac-
ing the formatted operands left and right on top of each other, separated
by an horizontal line element. The width of the horizontal line is the max-
imum of the widths of the formatted operands. This intermediate result is
also the final result unless the fraction appears itself as an argument of an-
other fraction. In the latter case, a space is added on each side of frac.
To see the reason why, consider the expression “(a / b) / ¢”. Without the
widening correction, formatting this expression would give:

The problem with this layout is evident—it’s not clear where the top-level
fractional bar is. The expression above could mean either “(a / b) / c” or
“a/ (b / c)”. To disambiguate, a space should be added on each side to the
layout of the nested fraction “a / b”. Then the layout becomes unambiguous:

The fifth and last case is:

case BinOp(op, left, right) =>
val opPrec = precedence(op)
val 1 = format(left, opPrec)
val r = format(right, opPrec + 1)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=340&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 341

non

val oper = 1 beside elem(" "+ op +) beside r
if (enclPrec <= opPrec) oper

else elem("(") beside oper beside elem(")")

This case applies for all other binary operations. Since it comes after the
case starting with:

case BinOp("/", left, right) => ...

you know that the operator op in the pattern BinOp (op, left, right) can-
not be a division. To format such a binary operation, one needs to format
first its operands left and right. The precedence parameter for formatting
the left operand is the precedence opPrec of the operator op, while for the
right operand it is one more than that. This scheme ensures that parentheses
also reflect the correct associativity. For instance, the operation:

BinOp("-", Var("a"), BinOp("-", Var("b"), Var('c")))

would be correctly parenthesized as “a - (b - ¢)”. The intermediate result
oper is then formed by placing the formatted left and right operands side-
by-side, separated by the operator. If the precedence of the current operator
is smaller than the precedence of the enclosing operator, r is placed between
parentheses, otherwise it is returned as is.

import org.stairwaybook.expr._
object Express extends Application {

val f = new ExprFormatter

val el = BinOp("+", BinOp("/", Number(1l), Number(2)),
BinOp("+", Var("x"), Number(1)))
val e2 = BinOp("+", BinOp("/", Var("x"), Number(2)),

BinOp("/", Number(1l.5), Var("x")))
val e3 = BinOp("/", el, e2)

def show(e: Expr) = println(f.format(e)+ "\n\n'")
for (e <- Array(el, e2, e3)) show(e)

Listing 15.22 - An application that prints formatted expressions.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=341&v=2010_12_13

Section 15.8 Chapter 15 - Case Classes and Pattern Matching 342

This finishes the design of the private format function. The only re-
maining method is the public format method, which allows client program-
mers to format a top-level expression without passing a precedence argu-
ment. Listing 15.22 shows a demo program that exercises ExprFormatter.

Note that, even though this program does not define a main method, it is
still a runnable application because it inherits from the Application trait.
As mentioned in Section 4.5, trait Application simply defines an empty
main method that gets inherited by the Express object. The actual work in
the Express object gets done as part of the object’s initialization, before the
main method is run. That’s why you can apply this trick only if your program
does not take any command-line arguments. Once there are arguments, you
need to write the main method explicitly. You can run the Express program
with the command:

scala Express

This will give the following output:

1
- % (x + 1)
2

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=342&v=2010_12_13

Section 15.9 Chapter 15 - Case Classes and Pattern Matching 343
15.9 Conclusion

In this chapter, you learned about Scala’s case classes and pattern matching
in detail. Using them, you can take advantage of several concise idioms not
normally available in object-oriented languages. Scala’s pattern matching
goes further than this chapter describes, however. If you want to use pattern
matching on one of your classes, but you do not want to open access to your
classes the way case classes do, then you can use the extractors described in
Chapter 26. In the next chapter, however, we’ll turn our attention to lists.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=343&v=2010_12_13

Chapter 16

Working with Lists

Lists are probably the most commonly used data structure in Scala programs.
This chapter explains lists in detail. It presents many common operations that
can be performed on lists. It also teaches some important design principles
for programs working on lists.

16.1 List literals

You saw lists already in the preceding chapters, so you know that a list con-
taining the elements 'a', 'b', and 'c' is written List('a', 'b', 'c').
Here are some other examples:

val fruit = List("apples", "oranges'", "pears")
val nums = List(1l, 2, 3, 4)
val diag3 =

List(

List(1, 0, 0),
List(0, 1, 0),
List(0, 0, 1)
)
val empty = List()

Lists are quite similar to arrays, but there are two important differences.
First, lists are immutable. That is, elements of a list cannot be changed
by assignment. Second, lists have a recursive structure (i.e., a linked list),!
whereas arrays are flat.

IFor a graphical depiction of the structure of a List, see Figure 22.2 on page 508.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=344&v=2010_12_13

Section 16.2 Chapter 16 - Working with Lists 345
16.2 The List type

Like arrays, lists are homogeneous: the elements of a list all have the same
type. The type of a list that has elements of type T is written List[T]. For
instance, here are the same four lists with explicit types added:

val fruit: List[String] = List("apples", "oranges", "pears")
val nums: List[Int] = List(l, 2, 3, 4)
val diag3: List[List[Int]] =
List(
List(1, 0, 0),
List(0, 1, 0),
List(0, 0, 1)
)
val empty: List[Nothing] = List()

The list type in Scala is covariant. This means that for each pair of
types S and T, if S is a subtype of T, then List[S] is a subtype of List[T].
For instance, List[String] is a subtype of List[Object]. This is natural
because every list of strings can also be seen as a list of objects.?

Note that the empty list has type List[Nothing]. You saw in Sec-
tion 11.3 that Nothing is the bottom type in Scala’s class hierarchy. It is
a subtype of every other Scala type. Because lists are covariant, it follows
that List[Nothing] is a subtype of List[T], for any type T. So the empty
list object, which has type List[Nothing], can also be seen as an object
of every other list type of the form List[T]. That’s why it is permissible to
write code like:

// List() is also of type List[String]!
val xs: List[String] = List()

16.3 Constructing lists

All lists are built from two fundamental building blocks, Nil and :: (pro-
nounced “cons”). Nil represents the empty list. The infix operator, ::,
expresses list extension at the front. That is, x : : xs represents a list whose

2Chapter 19 gives more details on covariance and other kinds of variance.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=345&v=2010_12_13

Section 16.4 Chapter 16 - Working with Lists 346

first element is x, followed by (the elements of) list xs. Hence, the previous
list values could also have been defined as follows:

val fruit = "apples" :: ("oranges" :: ("pears” :: Nil))
val nums =1 :: (2 :: (3 :: (4 :: Nil)))
val diag3 = (1 :: (0 :: (0 :: Nil)))

(0 :: (L :: (0 :: NiD)))
(0 :: (0 =: (L :: Nil))) :: Nil
val empty = Nil

In fact the previous definitions of fruit, nums, diag3, and empty in terms of
List(...) are just wrappers that expand to these definitions. For instance,
List(1, 2, 3) createsthe list1 :: (2 :: (3 :: Nil)).

Because it ends in a colon, the :: operation associates to the right:
A :: B :: Cisinterpreted as A :: (B :: C). Therefore, you can drop the
parentheses in the previous definitions. For instance:

val nums = 1 :: 2 :: 3 :: 4 :: Nil

is equivalent to the previous definition of nums.

16.4 Basic operations on lists
All operations on lists can be expressed in terms of the following three:

head returns the first element of a list
tail returns a list consisting of all elements except the first
isEmpty returns true if the list is empty

These operations are defined as methods of class List. Some examples are
shown in Table 16.1.

The head and tail methods are defined only for non-empty lists. When
selected from an empty list, they throw an exception. For instance:

scala> Nil.head
java.util.NoSuchElementException: head of empty list

As an example of how lists can be processed, consider sorting the elements of
a list of numbers into ascending order. One simple way to do so is insertion
sort, which works as follows: To sort a non-empty list x :: xs, sort the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=346&v=2010_12_13

Section 16.5 Chapter 16 - Working with Lists 347

Table 16.1 - Basic list operations

What it is What it does
empty.isEmpty returns true
fruit.isEmpty returns false
fruit.head returns "apples”
fruit.tail.head returns "oranges"
diag3.head returns List (1, 0, 0)

remainder xs and insert the first element x at the right position in the result.
Sorting an empty list yields the empty list. Expressed as Scala code, the
insertion sort algorithm looks like:

def isort(xs: List[Int]): List[Int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

def insert(x: Int, xs: List[Int]): List[Int] =
if (xs.isEmpty || x <= xs.head) x :: xs
else xs.head :: insert(x, xs.tail)

16.5 List patterns

Lists can also be taken apart using pattern matching. List patterns correspond
one-by-one to list expressions. You can either match on all elements of a list
using a pattern of the form List(. . .), or you take lists apart bit by bit using
patterns composed from the : : operator and the Nil constant.

Here’s an example of the first kind of pattern:

scala> val List(a, b, c¢) = fruit
a: String = apples

b: String = oranges

c: String = pears

The pattern List(a, b, c) matches lists of length 3, and binds the three
elements to the pattern variables a, b, and c. If you don’t know the number
of list elements beforehand, it’s better to match with : : instead. For instance,
the pattern a : : b :: rest matches lists of length 2 or greater:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=347&v=2010_12_13

Section 16.5 Chapter 16 - Working with Lists 348

About pattern matching on Lists

If you review the possible forms of patterns explained in Chapter 15,
you might find that neither List(...) nor :: looks like it fits one of
the kinds of patterns defined there. In fact, List(...) is an instance
of a library-defined extractor pattern. Such patterns will be treated in
Chapter 26. The “cons” pattern x : : xs is a special case of an infix
operation pattern. You know already that, when seen as an expression,
an infix operation is equivalent to a method call. For patterns, the rules
are different: When seen as a pattern, an infix operation such as p op q
is equivalent to op(p, q). That is, the infix operator op is treated as

a constructor pattern. In particular, a cons pattern such as x :: xs is
treated as : : (x, xs). This hints that there should be a class named

:: that corresponds to the pattern constructor. Indeed there is such as
class. Itis named scala.:: and is exactly the class that builds non-
empty lists. So :: exists twice in Scala, once as a name of a class in
package scala, and again as a method in class List. The effect of the
method :: is to produce an instance of the class scala.::. You’ll find
out more details about how the List class is implemented in Chapter 22.

scala> val a :: b :: rest = fruit
a: String = apples

b: String = oranges

rest: List[String] = List(pears)

Taking lists apart with patterns is an alternative to taking them apart with the
basic methods head, tail, and isEmpty. For instance, here’s insertion sort
again, this time written with pattern matching:

def isort(xs: List[Int]): List[Int] = xs match {
case List() => List()
case X :: xsl => insert(x, isort(xsl))

}
def insert(x: Int, xs: List[Int]): List[Int] = xs match {
case List() => List(x)
case y :: ys = if (x <=y) x :: xs
else y :: insert(x, ys)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=348&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 349

Often, pattern matching over lists is clearer than decomposing them with
methods, so pattern matching should be a part of your list processing toolbox.

This is all you need to know about lists in Scala to be able to use them
correctly. However, there are also a large number of methods that capture
common patterns of operations over lists. These methods make list process-
ing programs more concise and often clearer. The next two sections present
the most important methods defined in the List class.

16.6 First-order methods on class List

This section explains most first-order methods defined in the List class. A
method is first-order if it does not take any functions as arguments. The
section also introduces by means of two examples some recommended tech-
niques to structure programs that operate on lists.

Concatenating two lists

An operation similar to :: is list concatenation, written ‘:::’. Unlike : :,

:: takes two lists as operands. The result of xs ::: ys is a new list that
contains all the elements of xs, followed by all the elements of ys. Here are
some examples:

scala> List(l, 2) ::: List(3, 4, 5)
resO: List[Int] = List(1, 2, 3, 4, 5)

scala> List() ::: List(l, 2, 3)
resl: List[Int] = List(1, 2, 3)

scala> List(l, 2, 3) ::: List(4)
res2: List[Int] = List(1, 2, 3, 4)

Like cons, list concatenation associates to the right. An expression like this:
XS 11 ySsS i Zs
is interpreted like this:

xs ::: (ys ::: z8)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=349&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 350

The Divide and Conquer principle

Concatenation (: : :) is implemented as a method in class List. It would also
be possible to implement concatenation “by hand,” using pattern matching
on lists. It’s instructive to try to do that yourself, because it shows a common
way to implement algorithms using lists. First, we’ll settle on a signature
for the concatenation method, which we’ll call append. In order not to mix
things up too much, assume that append is defined outside the List class.
So it will take the two lists to be concatenated as parameters. These two
lists must agree on their element type, but that element type can be arbitrary.
This can be expressed by giving append a type parameter’ that represents
the element type of the two input lists:

def append[T](xs: List[T], ys: List[T]): List[T]

To design the implementation of append, it pays to remember the “divide
and conquer” design principle for programs over recursive data structures
such as lists. Many algorithms over lists first split an input list into simpler
cases using a pattern match. That’s the divide part of the principle. They
then construct a result for each case. If the result is a non-empty list, some of
its parts may be constructed by recursive invocations of the same algorithm.
That’s the conquer part of the principle.

To apply this principle to the implementation of the append method, the
first question to ask is on which list to match. This is less trivial in the case of
append than for many other methods because there are two choices. How-
ever, the subsequent “conquer” phase tells you that you need to construct a
list consisting of all elements of both input lists. Since lists are constructed
from the back towards the front, ys can remain intact whereas xs will need
to be taken apart and prepended to ys. Thus, it makes sense to concentrate
on xs as a source for a pattern match. The most common pattern match over
lists simply distinguishes an empty from a non-empty list. So this gives the
following outline of an append method:

def append[T](xs: List[T], ys: List[T]): List[T] =
xs match {
case List() => // ??
case X :: xsl1l => // ??

¥

3Type parameters will be explained in more detail in Chapter 19.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=350&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 351

All that remains is to fill in the two places marked with “??”. The first
such place is the alternative where the input list xs is empty. In this case
concatenation yields the second list:

case List() => ys

The second place left open is the alternative where the input list xs consists
of some head x followed by a tail xs1. In this case the result is also a non-
empty list. To construct a non-empty list you need to know what the head
and the tail of that list should be. You know that the first element of the result
list is x. As for the remaining elements, these can be computed by appending
the rest of the first list, xs1, to the second list ys. This completes the design
and gives:

def append[T](xs: List[T], ys: List[T]): List[T] =

xs match {

case List() => ys

case x :: xsl => x :: append(xsl, ys)
}

The computation of the second alternative illustrated the “conquer” part of
the divide and conquer principle: Think first what the shape of the desired
output should be, then compute the individual parts of that shape, using re-
cursive invocations of the algorithm where appropriate. Finally, construct
the output from these parts.

Taking the length of a list: length

The 1ength method computes the length of a list.

scala> List(1l, 2, 3).length
res3: Int = 3

On lists, unlike arrays, length is a relatively expensive operation. It needs to
traverse the whole list to find its end and therefore takes time proportional to
the number of elements in the list. That’s why it’s not a good idea to replace
a test such as xs.isEmpty by xs.length == 0. The result of the two tests
are equivalent, but the second one is slower, in particular if the list xs is long.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=351&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 352

Accessing the end of a list: init and last

You know already the basic operations head and tail, which respectively
take the first element of a list, and the rest of the list except the first element.
They each have a dual operation: last returns the last element of a (non-
empty) list, whereas init returns a list consisting of all elements except the
last one:

scala> val abcde = List('a', 'b"', 'c', 'd', 'e")
abcde: List[Char] = List(a, b, c, d, e)

scala> abcde.last

res4: Char = e

scala> abcde.init
res5: List[Char] = List(a, b, c, d)

Like head and tail, these methods throw an exception when applied to an
empty list:

scala> List().init
java.lang.UnsupportedOperationException: Nil.init
at scala.list.init(List.scala:544)
at ...

scala> List().last

java.util.NoSuchElementException: Nil.last
at scala.lList.last(List.scala:563)
at ...

Unlike head and tail, which both run in constant time, init and last need
to traverse the whole list to compute their result. They therefore take time
proportional to the length of the list.

It’s a good idea to organize your data so that most accesses
are at the head of a list, rather than the last element.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=352&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 353

Reversing lists: reverse

If at some point in the computation an algorithm demands frequent accesses
to the end of a list, it’s sometimes better to reverse the list first and work with
the result instead. Here’s how to do the reversal:

scala> abcde.reverse
res6: List[Char] = List(e, d, c, b, a)

Note that, like all other list operations, reverse creates a new list rather than
changing the one it operates on. Since lists are immutable, such a change
would not be possible, anyway. To verify this, check that the original value
of abcde is unchanged after the reverse operation:

scala> abcde
res7: List[Char] = List(a, b, c, d, e)

The reverse, init, and 1ast operations satisfy some laws that can be used
for reasoning about computations and for simplifying programs.

1. reverse is its own inverse:

XS.reverse.reverse equals XS

2. reverse turns init to tail and last to head, except that the ele-
ments are reversed:

xs.reverse.init equals xs.tail.reverse
xs.reverse.tail equals xs.init.reverse
xs.reverse.head equals xs.last
xs.reverse.last equals xs.head

Reverse could be implemented using concatenation (: : :), like in the follow-
ing method, rev:

def rev[T](xs: List[T]): List[T] = xs match {
case List() => xs
case X :: xSl => rev(xsl) ::: List(x)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=353&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 354

However, this method is less efficient than one would hope for. To study
the complexity of rev, assume that the list xs has length n. Notice that
there are n recursive calls to rev. Each call except the last involves a list
concatenation. List concatenation xs : :: ys takes time proportional to the
length of its first argument xs. Hence, the total complexity of rev is:

n+(n—1)+..+1=(1+n)xn/2

In other words, rev’s complexity is quadratic in the length of its input ar-
gument. This is disappointing when compared to the standard reversal of a
mutable, linked list, which has linear complexity. However, the current im-
plementation of rev is not the best implementation possible. You will see in
Section 4 how to speed it up.

Prefixes and suffixes: drop, take, and splitAt

The drop and take operations generalize tail and init in that they return
arbitrary prefixes or suffixes of a list. The expression “xs take n” returns
the first n elements of the list xs. If n is greater than xs.length, the whole
list xs is returned. The operation “xs drop n” returns all elements of the list
xs except the first n ones. If n is greater than xs.length, the empty list is
returned.

The splitAt operation splits the list at a given index, returning a pair of
two lists.* It is defined by the equality:

xs splitAt n equals (xs taken, xs drop n)

However, splitAt avoids traversing the list xs twice. Here are some exam-
ples of these three methods:

scala> abcde take 2
res8: List[Char] = List(a, b)

scala> abcde drop 2
res9: List[Char] = List(c, d, e)

scala> abcde splitAt 2
resl0: (List[Char], List[Char]) = (List(a, b),List(c, d, e))

4As mentioned in Section 10.12, the term pair is an informal name for Tuple2.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=354&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 355

Element selection: apply and indices

Random element selection is supported through the apply method; however
it is a less common operation for lists than it is for arrays.

scala> abcde apply 2 // rare in Scala
resll: Char = c

As for all other types, apply is implicitly inserted when an object appears in
the function position in a method call, so the line above can be shortened to:

scala> abcde(2) // rare in Scala
resl?2: Char = c

One reason why random element selection is less popular for lists than for
arrays is that xs(n) takes time proportional to the index n. In fact, apply is
simply defined by a combination of drop and head:

xs applyn equals (xs dropn).head

This definition also makes clear that list indices range from O up to the length
of the list minus one, the same as for arrays. The indices method returns a
list consisting of all valid indices of a given list:

scala> abcde.indices
resl3: scala.collection.immutable.Range =
Range(0, 1, 2, 3, 4)

Flattening a list of lists: flatten

The flatten method takes a list of lists and flattens it out to a single list:

scala> List(List(1l, 2), List(3), List(), List(4, 5)).flatten
resl4: List[Int] = List(1, 2, 3, 4, 5)

scala> fruit.map(_.toCharArray).flatten

resl5: List[Char] = List(a, p, p, 1, e, s, o, r, a, n, g, e,
s, p, e, a, r, s)

It can only be applied to lists whose elements are all lists. Trying to
flatten any other list will give a compilation error:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=355&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 356

scala> List(1l, 2, 3).flatten

<console>:5: error: could not find implicit value for

parameter asTraversable: (Int) => Traversable[B]
List(1, 2, 3).flatten

Zipping lists: zip and unzip
The zip operation takes two lists and forms a list of pairs:

scala> abcde.indices zip abcde
resl?7: scala.collection.immutable.IndexedSeq[(Int, Char)] =
IndexedSeq((0,a), (1,b), (2,c), (3,d), (4,e))

If the two lists are of different length, any unmatched elements are dropped:

scala> val zipped = abcde zip List(1l, 2, 3)
zipped: List[(Char, Int)] = List((a,l), (b,2), (c,3))

A useful special case is to zip a list with its index. This is done most effi-
ciently with the zipWithIndex method, which pairs every element of a list
with the position where it appears in the list.

scala> abcde.zipWithIndex
resl8: List[(Char, Int)] = List((a,0), (b,1), (c,2), (d,3),
(e,4))

Any list of tuples can also be changed back to a tuple of lists by using the
unzip method:

scala> zipped.unzip
resl9: (List[Char], List[Int]) =
(List(a, b, c),List(1, 2, 3))

The zip and unzip methods provide one way to operate on multiple lists
together. See Section 16.9, later in the chapter, for a way that is sometimes
more concise.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=356&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 357

Displaying lists: toString and mkString
The toString operation returns the canonical string representation of a list:

scala> abcde.toString
res20: String = List(a, b, c, d, e)

If you want a different representation you can use the mkString method. The
operation xs mkString (pre, sep, post) involves four operands: the list
xs to be displayed, a prefix string pre to be displayed in front of all elements,
a separator string sep to be displayed between successive elements, and a
postfix string post to be displayed at the end. The result of the operation is
the string:

pre + xs(0) + sep +...+ sep + xs(xs.length - 1) + post

The mkString method has two overloaded variants that let you drop some
or all of its arguments. The first variant only takes a separator string:

xs mkString sep equals xsmkString ("", sep, "")

The second variant lets you omit all arguments:

xs.mkString equals xs mkString
Here are some examples:

scala> abcde mkString ("[", ",", "1")
res2l: String = [a,b,c,d,e]

scala> abcde mkString
res22: String = abcde

scala> abcde.mkString
res23: String = abcde

scala> abcde mkString ("List(", ", ", "))
res24: String = List(a, b, c, d, e)

There are also variants of the mkString methods called addString which
append the constructed string to a StringBuilder object,’ rather than re-
turning them as a result:

SThis is class scala.StringBuilder, not java.lang.StringBuilder.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=357&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 358

scala> val buf = new StringBuilder
buf: StringBuilder =

scala> abcde addString (buf, "(", ";", ")
res25: StringBuilder = (a;b;c;d;e)

The mkString and addString methods are inherited from List’s super trait
Traversable, so they are applicable to all other collections, as well.

Converting lists: iterator, toArray, copyToArray

To convert data between the flat world of arrays and the recursive world of
lists, you can use method toArray in class List and toList in class Array:

scala> val arr = abcde.toArray
arr: Array[Char] = Array(a, b, c, d, e)
scala> arr.tolist

res26: List[Char] = List(a, b, c, d, e)

There’s also a method copyToArray, which copies list elements to succes-
sive array positions within some destination array. The operation:

Xs copyToArray (arr, start)

copies all elements of the list xs to the array arr, beginning with position
start. You must ensure that the destination array arr is large enough to
hold the list in full. Here’s an example:

scala> val arr2 = new Array[Int](10)

arr2: Array[Int] = Array(O0, O, O, O, O, O, O, O, 0, 0)
scala> List(l, 2, 3) copyToArray (arr2, 3)

scala> arr2

res28: Array[Int] = Array(0, O, O, 1, 2, 3, 0, 0, 0, 0)

Finally, if you need to access list elements via an iterator, you can use the
iterator method:

scala> val it = abcde.iterator
it: Iterator[Char] = non-empty iterator

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=358&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists 359

scala> it.next
res29: Char = a

scala> it.next
res30: Char = b

Example: Merge sort

The insertion sort presented earlier is concise to write, but it is not very
efficient. Its average complexity is proportional to the square of the length
of the input list. A more efficient algorithm is merge sort.

The fast track

This example provides another illustration of the divide and conquer
principle and currying, as well as a useful discussion of algorithmic
complexity. If you prefer to move a bit faster on your first pass through
this book, however, you can safely skip to Section 16.7.

Merge sort works as follows: First, if the list has zero or one elements, it
is already sorted, so the list can be returned unchanged. Longer lists are split
into two sub-lists, each containing about half the elements of the original
list. Each sub-list is sorted by a recursive call to the sort function, and the
resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, you want to leave open the
type of list elements to be sorted, and also want to leave open the function
to be used for the comparison of elements. You obtain a function of maxi-
mal generality by passing these two items as parameters. This leads to the
implementation shown in Listing 16.1.

The complexity of msort is order (n log(n)), where n is the length of
the input list. To see why, note that splitting a list in two and merging two
sorted lists each take time proportional to the length of the argument list(s).
Each recursive call of msort halves the number of elements in its input, so
there are about /og(n) consecutive recursive calls until the base case of lists
of length 1 is reached. However, for longer lists each call spawns off two
further calls. Adding everything up we obtain that at each of the log(n) call
levels, every element of the original lists takes part in one split operation and
in one merge operation. Hence, every call level has a total cost proportional
to n. Since there are log(n) call levels, we obtain an overall cost proportional
to n log(n). That cost does not depend on the initial distribution of elements

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=359&v=2010_12_13

Section 16.6 Chapter 16 - Working with Lists

def msort[T](less: (T, T) => Boolean)
(xs: List[T]): List[T] = {

def merge(xs: List[T], ys: List[T]): List[T] =
(xs, ys) match {
case (Nil, _) => ys
case (_, Nil) => xs

case (x :: xsl, y :: ysl) =>
if (less(x, v)) x :: merge(xsl, ys)
else y :: merge(xs, ysl)
}

val n = xs.length / 2

if (n == 0) xs

else {
val (ys, zs) = xs splitAt n
merge(msort(less)(ys), msort(less)(zs))

}

Listing 16.1 - A merge sort function for Lists.

in the list, so the worst case cost is the same as the average case cost. This

property makes merge sort an attractive algorithm for sorting lists.
Here is an example of how msort is used:

scala> msort((x: Int, y: Int) => x < y)(List(5, 7, 1, 3))

res31l: List[Int] = List(1, 3, 5, 7)

The msort function is a classical example of the currying concept dis-
cussed in Section 9.3. Currying makes it easy to specialize the function for

particular comparison functions. Here’s an example:

scala> val intSort = msort((x: Int, y: Int) => x <vy) _
intSort: (List[Int]) => List[Int] = <functionl>

The intSort variable refers to a function that takes a list of integers and
sorts them in numerical order. As described in Section 8.6, an underscore
stands for a missing argument list. In this case, the missing argument is the

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

360

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=360&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 361

list that should be sorted. As another example, here’s how you could define
a function that sorts a list of integers in reverse numerical order:

scala> val reverseIntSort = msort((x: Int, y: Int) => x > vy) _
reverseIntSort: (List[Int]) => List[Int] = <function>

Because you provided the comparison function already via currying, you
now need only provide the list to sort when you invoke the intSort or
reverseIntSort functions. Here are some examples:

scala> val mixedInts = List(4, 1, 9, 0, 5, 8, 3, 6, 2, 7)
mixedInts: List[Int] = List(4, 1, 9, 0, 5, 8, 3, 6, 2, 7)

scala> intSort(mixedInts)
resO: List[Int] = List(O0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> reverselIntSort(mixedInts)
resl: List[Int] = List(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

16.7 Higher-order methods on class List

Many operations over lists have a similar structure. Several patterns appear
time and time again. Some examples are: transforming every element of a
list in some way, verifying whether a property holds for all elements of a list,
extracting from a list elements satisfying a certain criterion, or combining
the elements of a list using some operator. In Java, such patterns would
usually be expressed by idiomatic combinations of for or while loops. In
Scala, they can be expressed more concisely and directly using higher-order
operators,® which are implemented as methods in class List. These higher-
order operators are discussed in this section.

Mapping over lists: map, f1latMap and foreach

The operation xs map f takes as operands a list xs of type List[T] and
a function f of type T => U. It returns the list resulting from applying the
function £ to each list element in xs. For instance:

5By higher-order operators, we mean higher-order functions used in operator notation.
As mentioned in Section 9.1, higher-order functions are functions that take other functions as
parameters.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=361&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 362

scala> List(l, 2, 3) map (_ + 1)
res32: List[Int] = List(2, 3, 4)

scala> val words = List("the", "quick", "brown", "fox")
words: List[java.lang.String] = List(the, quick, brown, fox)

scala> words map (_.length)
res33: List[Int] = List(3, 5, 5, 3)

scala> words map (_.tolList.reverse.mkString)
res34: List[String] = List(eht, kciug, nworb, xof)

The flatMap operator is similar to map, but it takes a function returning a list
of elements as its right operand. It applies the function to each list element
and returns the concatenation of all function results. The difference between
map and flatMap is illustrated in the following example:

scala> words map (_.toList)
res35: List[List[Char]] = List(List(t, h, e), List(q, u, i,
c, k), List(b, r, o, w, n), List(f, o, x))

scala> words flatMap (_.toList)
res36: List[Char] = List(t, h, e, q, u, i, c, k, b, r, o, w,
n, £, o, x)

You see that where map returns a list of lists, flatMap returns a single list in
which all element lists are concatenated.

The differences and interplay between map and flatMap are also demon-
strated by the following expression, which constructs a list of all pairs (i, j)
suchthat 1 < j <i<5:

scala> List.range(1l, 5) flatMap (
i => List.range(1l, i) map (j => (i, Jj))

)
res37: List[(Int, Int)] = List((2,1), (3,1), (3,2), (4,1),
(4,2), (4,3))

List.range is a utility method that creates a list of all integers in some
range. It is used twice in this example: once to generate a list of integers
from 1 (including) until 5 (excluding), and in a second time to generate a list
of integers from 1 until , for each value of i taken from the first list. The
map in this expression generates a list of tuples (i, j) where j < i. The outer

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=362&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 363

flatMap in this example generates this list for each i between 1 and 5, and
then concatenates all the results.

Note that the same list can alternatively be constructed with a for ex-
pression:

for (i <- List.range(l, 5); j <- List.range(l, i)) vield (i, jJ)

You’ll learn more about the interplay of for expressions and list operations
in Chapter 23.

The third map-like operation is foreach. Unlike map and flatMap, how-
ever, foreach takes a procedure (a function with result type Unit) as right
operand. It simply applies the procedure to each list element. The result
of the operation itself is again Unit; no list of results is assembled. As an
example, here is a concise way of summing up all numbers in a list:

scala> var sum = 0
sum: Int = 0
scala> List(1l, 2, 3, 4, 5) foreach (sum += _)

scala> sum
res39: Int = 15

Filtering lists: filter, partition, find, takeWhile, dropWhile, and
span

The operation “xs filter p” takes as operands a list xs of type List[T] and
a predicate function p of type T => Boolean. It yields the list of all elements
x in xs for which p(x) is true. For instance:

scala> List(1, 2, 3, 4, 5) filter (_ % 2 == 0)
res40: List[Int] = List(2, 4)

scala> words filter (_.length == 3)

res4l: List[java.lang.String] = List(the, fox)

The partition method is like filter, but it returns a pair of lists. One list
contains all elements for which the predicate is true, while the other list
contains all elements for which the predicate is false. It is defined by the
equality:

xs partitionp equals (xs filter p, xs filter (!p(L)))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=363&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 364

Here’s an example:

scala> List(1l, 2, 3, 4, 5) partition (_ % 2 == 0)
resd42: (List[Int], List[Int]) = (List(2, 4),List(1, 3, 5))

The find method is also similar to filter but it returns the first element
satisfying a given predicate, rather than all such elements. The operation
xs find p takes a list xs and a predicate p as operands. It returns an optional
value. If there is an element x in xs for which p(x) is true, Some(x) is
returned. Otherwise, p is false for all elements, and None is returned. Here
are some examples:

scala> List(l, 2, 3, 4, 5) find (_ % 2 == 0)
res43: Option[Int] = Some(2)

scala> List(l, 2, 3, 4, 5) find (_ <= 0)
res44: Option[Int] = None

The takeWhile and dropWhile operators also take a predicate as their right
operand. The operation xs takeWhile p takes the longest prefix of list xs
such that every element in the prefix satisfies p. Analogously, the operation
xs dropWhile p removes the longest prefix from list xs such that every
element in the prefix satisfies p. Here are some examples:

scala> List(1l, 2, 3, -4, 5) takeWhile (_ > 0)
res45: List[Int] = List(1, 2, 3)

scala> words dropWhile (_ startsWith "t")
res46: List[java.lang.String] = List(quick, brown, fox)

The span method combines takeWhile and dropWhile in one operation,
just like splitAt combines take and drop. It returns a pair of two lists,
defined by the equality:

xs spanp equals (xs takeWhile p, xs dropWhile p)

Like splitAt, span avoids traversing the list xs twice:

scala> List(1l, 2, 3, -4, 5) span (_ > 0)
res47: (List[Int], List[Int]) = (List(1, 2, 3),List(-4, 5))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=364&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 365

Predicates over lists: forall and exists

The operation xs forall p takes as arguments a list xs and a predicate p. Its
result is true if all elements in the list satisfy p. Conversely, the operation
xs exists p returns true if there is an element in xs that satisfies the predi-
cate p. For instance, to find out whether a matrix represented as a list of lists
has a row with only zeroes as elements:

scala> def hasZeroRow(m: List[List[Int]]) =
m exists (row => row forall (_ == 0))
hasZeroRow: (m: List[List[Int]])Boolean

scala> hasZeroRow(diag3)
res48: Boolean = false

Folding lists: /: and :\

Another common kind of operation combines the elements of a list with
some operator. For instance:

sum(List(a, b, ¢)) equals O+a+b+c
This is a special instance of a fold operation:

scala> def sum(xs: List[Int]): Int = (0 /: xs) (_ + _)
sum: (xs: List[Int])Int

Similarly:
product(List(a, b, c)) equals 1l=xa=*b=c
is a special instance of this fold operation:

scala> def product(xs: List[Int]): Int = (1 /: xs) (_ * _)
product: (xs: List[Int])Int

A fold left operation “(z /: xs) (op)” involves three objects: a start value
z, a list xs, and a binary operation op. The result of the fold is op applied
between successive elements of the list prefixed by z. For instance:

(z /: List(a, b, ¢)) (op) equals op(op(op(z, a), b), c)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=365&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 366

Or, graphically:
op
/ N\
op
7\
op b
7\
z a

C

Here’s another example that illustrates how /: is used. To concatenate
all words in a list of strings with spaces between them and in front, you can
write this:

scala> ("" /: words) (_ +" "+ _)
res49: java.lang.String = the quick brown fox

This gives an extra space at the beginning. To remove the space, you can use
this slight variation:

scala> (words.head /: words.tail) (_ +" "+ _)
res50: java.lang.String = the quick brown fox

The /: operator produces left-leaning operation trees (its syntax with the
slash rising forward is intended to be a reflection of that). The operator has
:\ as an analog that produces right-leaning trees. For instance:

(List(a, b, ¢) :\ 2z) (op) equals op(a, op(b, op(c, z)))
Or, graphically:
op
7N\
a op
7N\
b op
7\
c z
The :\ operator is pronounced fold right. It involves the same three
operands as fold left, but the first two appear in reversed order: The first
operand is the list to fold, the second is the start value.
For associative operations, fold left and fold right are equivalent, but
there might be a difference in efficiency. Consider for instance an operation

corresponding to the flatten method, which concatenates all elements in a
list of lists. This could be implemented with either fold left or fold right:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=366&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 367

def flattenLeft[T](xss: List[List[T]]) =

(List[T](Q) /: xss) (_ :::)
def flattenRight[T](xss: List[List[T]]) =
(xss :\ List[T]1Q)) (_ :::)
Because list concatenation, xs ::: ys, takes time proportional to its first

argument xs, the implementation in terms of fold right in flattenRight
is more efficient than the fold left implementation in flattenLeft. The
problem is that flattenLeft (xss) copies the first element list xss.head
n— 1 times, where n is the length of the list xss.

Note that both versions of flatten require a type annotation on the
empty list that is the start value of the fold. This is due to a limitation in
Scala’s type inferencer, which fails to infer the correct type of the list auto-
matically. If you try to leave out the annotation, you get the following:

scala> def flattenRight[T](xss: List[List[T]]) =

(xss :\ List()) (_ :::)
<console>:5: error: type mismatch;
found : scala.List[T]
required: List[Nothing]

(xss :\ List()) (_ :::)

To find out why the type inferencer goes wrong, you’ll need to know about
the types of the fold methods and how they are implemented. More on this
in Chapter 22.

Lastly, although the /: and :\ operators have the advantage that the
direction of the slash resembles the graphical depiction of their respective
left or right-leaning trees, and the associativity of the colon character places
the start value in the same position in the expression as it is in the tree,
some may find the resulting code less than intuitive. If you prefer, you can
alternatively use the methods named foldLeft and foldRight, which are
also defined on class List.

Example: List reversal using fold

Earlier in the chapter you saw an implementation of method reverse, named
rev, whose running time was quadratic in the length of the list to be reversed.
Here is now a different implementation of reverse that has linear cost. The
idea is to use a fold left operation based on the following scheme:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=367&v=2010_12_13

Section 16.7 Chapter 16 - Working with Lists 368

def reverseLeft[T](xs: List[T]) = (startvalue /: xs) (operation)

It only remains to fill in the startvalue and operation parts. In fact, you can
try to deduce these parts from some simple examples. To deduce the correct
value of startvalue, you can start with the smallest possible list, List(), and
calculate as follows:

List()
equals (by the properties of reverseLeft)

reverseLeft(List())
equals (by the template for reverseLeft)

(startvalue /: List()) (operation)
equals (by the definition of /:)

startvalue

Hence, startvalue must be List(). To deduce the second operand, you
can pick the next smallest list as an example case. You know already that
startvalue is List (), so you can calculate as follows:

List(x)
equals (by the properties of reverseLeft)

reverseLeft (List(x))
equals (by the template for reverseLeft, with startvalue = List())

(List() /: List(x)) (operation)
equals (by the definition of /:)

operation(List(), x)

Hence, operation(List(), x) equals List(x), which can also be written
as x :: List(). This suggests taking as operation the :: operator with its
operands exchanged. (This operation is sometimes called “snoc,” in refer-
ence to : :, which is called cons.) We arrive then at the following implemen-
tation for reverseLeft:

def reverseleft[T](xs: List[T]) =
(List[T]1() /: xs) {(ys, y) => vy :: ys}

(Again, the type annotation in List[T]() is necessary to make the type
inferencer work.) If you analyze the complexity of reverselLeft, you’ll

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=368&v=2010_12_13

Section 16.8 Chapter 16 - Working with Lists 369

find that it applies a constant-time operation (“‘snoc”) n times, where 7 is the
length of the argument list. Hence, the complexity of reverseLeft is linear,
as hoped for.

Sorting lists: sortWith

The operation xs sortWith before, where “xs” is a list and “before” is a
function that can be used to compare two elements, sorts the elements of list
xs. The expression x before y should return true if x should come before
y in the intended ordering for the sort. For instance:

scala> List(1, -3, 4, 2, 6) sortWith (_ < _)
res51: List[Int] = List(-3, 1, 2, 4, 6)

scala> words sortWith (_.length > _.length)
res52: List[java.lang.String] = List(quick, brown, the, fox)

Note that sortWith performs a merge sort similar to the msort algorithm
shown in the last section, but sortWith is a method of class List whereas
msort was defined outside lists.

16.8 Methods of the List object

So far, all operations you have seen in this chapter are implemented as meth-
ods of class List, so you invoke them on individual list objects. There are
also a number of methods in the globally accessible object scala.List,
which is the companion object of class List. Some of these operations are
factory methods that create lists. Others are operations that work on lists of
some specific shape. Both kinds of methods will be presented in this section.

Creating lists from their elements: List.apply

You’ve already seen on several occasions list literals such as List (1, 2, 3).
There’s nothing special about their syntax. A literal like List(1, 2, 3) is
simply the application of the object List to the elements 1, 2, 3. That is, it
is equivalent to List.apply(1, 2, 3):

scala> List.apply(1l, 2, 3)
res53: List[Int] = List(1, 2, 3)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=369&v=2010_12_13

Section 16.8 Chapter 16 - Working with Lists 370

Creating a range of numbers: List.range

The range method, which you saw briefly earlier in the chapter in the dis-
cussion of map and flatmap, creates a list consisting of a range of numbers.
Its simplest form is List.range(from, until), which creates a list of all
numbers starting at from and going up to until minus one. So the end value,
until, does not form part of the range.

There’s also a version of range that takes a step value as third parame-
ter. This operation will yield list elements that are step values apart, starting
at from. The step can be positive or negative:

scala> List.range(1l, 5)
res54: List[Int] = List(1, 2, 3, 4)

scala> List.range(1, 9, 2)
res55: List[Int] = List(1, 3, 5, 7)

scala> List.range(9, 1, -3)
res56: List[Int] = List(9, 6, 3)

Creating uniform lists: List.fill

The £i11 method creates a list consisting of zero or more copies of the same
element. It takes two parameters: the length of the list to be created, and the
element to be repeated. Each parameter is given in a separate list:

scala> List.fill(5)('a")
res57: List[Char] = List(a, a, a, a, a)

scala> List.fill(3)("hello")
res58: List[java.lang.String] = List(hello, hello, hello)

If £i11 is given more than two arguments, then it will make multi-
dimensional lists. That is, it will make lists of lists, lists of lists of lists,
etc. The additional arguments go in the first argument list.

scala> List.fill(2, 3)('b")
res59: List[List[Char]] = List(List(b, b, b), List(b, b, b))

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=370&v=2010_12_13

Section 16.9 Chapter 16 - Working with Lists 371

Tabulating a function: List.tabulate

The tabulate method creates a list whose elements are computed according
to a supplied function. Its arguments are just like those of List.fill: the
first argument list gives the dimensions of the list to create, and the second
describes the elements of the list. The only difference is that instead of the
elements being fixed, they are computed from a function:

scala> val squares = List.tabulate(5)(n => n * n)
squares: List[Int] = List(0, 1, 4, 9, 16)
scala> val multiplication = List.tabulate(5,5)(_ * _)
multiplication: List[List[Int]] = List(List(0, 0, 0, 0, 0),
List(0, 1, 2, 3, 4), List(0, 2, 4, 6, 8),
List(0, 3, 6, 9, 12), List(0, 4, 8, 12, 16))

Concatenating multiple lists: List.concat

The concat method concatenates a number of element lists. The lists to be
concatenated are supplied as direct arguments to concat:

scala> List.concat(List('a', 'b'), List('c'))
res60: List[Char] = List(a, b, c)

scala> List.concat(List(), List('b"), List('c"))
res6l: List[Char] = List(b, c)

scala> List.concat()
res62: List[Nothing] = List()

16.9 Processing multiple lists together

The zipped method on tuples generalizes several common operations to
work on multiple lists instead of just one. One such operation is map. The
map method for two zipped lists maps pairs of elements rather than individ-
ual elements. One pair is for the first element of each list, another pair is
for the second element of each list, and so on—as many pairs as the lists are
long. Here is an example of its use:

scala> (List(10, 20), List(3, 4, 5)).zipped.map(_ * _)
res63: List[Int] = List(30, 80)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=371&v=2010_12_13

Section 16.10 Chapter 16 - Working with Lists 372

Notice that the third element of the second list is discarded. The zipped
method zips up only as many elements as appear in all the lists together.
Any extra elements on the end are discarded.

There are also zipped analogs to exists and forall. They are just like
the single-list versions of those methods except they operate on elements
from multiple lists instead of just one:

scala> (List("abc", "de"), List(3, 2)).zipped.
| forall(_.length == _)
res64: Boolean = true

scala> (List("abc", "de"), List(3, 2)).zipped.
| exists(_.length != _)
res65: Boolean = false

The fast track

In the next (and final) section of this chapter, we provide insight into
Scala’s type inference algorithm. You can safely skip the entire section if
you’re not interested in such details right now, and instead go straight to
the conclusion on page 376.

16.10 Understanding Scala’s type inference algorithm

One difference between the previous uses of sortWith and msort concerns
the admissible syntactic forms of the comparison function. Compare:

scala> msort((x: Char, y: Char) => x > y)(abcde)
res66: List[Char] = List(e, d, c, b, a)

with:
scala> abcde sortWith (_ > _)

res67: List[Char] = List(e, d, c, b, a)

The two expressions are equivalent, but the first uses a longer form of com-
parison function with named parameters and explicit types whereas the sec-
ond uses the concise form, (_> _), where named parameters are replaced by
underscores. Of course, you could also use the first, longer form of compar-
ison with sortWith. However, the short form cannot be used with msort:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=372&v=2010_12_13

Section 16.10 Chapter 16 - Working with Lists 373

scala> msort(_ > _)(abcde)

<console>:12: error: missing parameter type for expanded

function ((x$1, x$2) => x$1.$greater(x$2))

msort(_ > _)(abcde)

To understand why, you need to know some details of Scala’s type inference
algorithm. Type inference in Scala is flow based. In a method application
m(args), the inferencer first checks whether the method m has a known type.
If it has, that type is used to infer the expected type of the arguments. For
instance, in abcde.sortWith(_ > _), the type of abcde is List[Char],
hence sortWith is known to be a method that takes an argument of type
(Char, Char) =>Boolean and produces a result of type List[Char]. Since
the parameter types of the function arguments are thus known, they need not
be written explicitly. With what it knows about sortWith, the inferencer can
deduce that (_> _) should expand to ((x: Char, y: Char) => x> y) where
x and y are some arbitrary fresh names.

Now consider the second case, msort(_ > _)(abcde). The type of
msort is a curried, polymorphic method type that takes an argument of type
(T, T) => Boolean to a function from List[T] to List[T] where T is some
as-yet unknown type. The msort method needs to be instantiated with a type
parameter before it can be applied to its arguments. Because the precise in-
stance type of msort in the application is not yet known, it cannot be used to
infer the type of its first argument. The type inferencer changes its strategy
in this case; it first type checks method arguments to determine the proper
instance type of the method. However, when tasked to type check the short-
hand function literal, (_> _), it fails because it has no information about the
types of the implicit function parameters that are indicated by underscores.

One way to resolve the problem is to pass an explicit type parameter to
msort, as in:

scala> msort[Char](_ > _)(abcde)
res68: List[Char] = List(e, d, c, b, a)

Because the correct instance type of msort is now known, it can be used to
infer the type of the arguments.

Another possible solution is to rewrite the msort method so that its pa-
rameters are swapped:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=373&v=2010_12_13

Section 16.10 Chapter 16 - Working with Lists 374

def msortSwapped[T](xs: List[T])(less:
(T, T) => Boolean): List[T] = {

// same implementation as msort,
// but with arguments swapped
}

Now type inference would succeed:

scala> msortSwapped(abcde) (_ > _)
res69: List[Char] = List(e, d, c, b, a)

What has happened is that the inferencer used the known type of the first
parameter abcde to determine the type parameter of msortSwapped. Once
the precise type of msortSwapped was known, it could be used in turn to
infer the type of the second parameter, (_ > _).

Generally, when tasked to infer the type parameters of a polymorphic
method, the type inferencer consults the types of all value arguments in the
first parameter list but no arguments beyond that. Since msortSwapped is
a curried method with two parameter lists, the second argument (i.e., the
function value) did not need to be consulted to determine the type parameter
of the method.

This inference scheme suggests the following library design principle:
When designing a polymorphic method that takes some non-function argu-
ments and a function argument, place the function argument last in a curried
parameter list by its own. That way, the method’s correct instance type can
be inferred from the non-function arguments, and that type can in turn be
used to type check the function argument. The net effect is that users of the
method will be able to give less type information and write function literals
in more compact ways.

Now to the more complicated case of a fold operation. Why is there
the need for an explicit type parameter in an expression like the body of the
flattenRight method shown on page 3677

(xss :\ List[T]1()) (_ :::)

The type of the fold-right operation is polymorphic in two type variables.
Given an expression:

(xs :\ z) (op)

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=374&v=2010_12_13

Section 16.10 Chapter 16 - Working with Lists 375

The type of xs must be a list of some arbitrary type A, say xs: List[A].
The start value z can be of some other type B. The operation op must then
take two arguments of type A and B and must return a result of type B, i.e.,
op: (A, B) => B. Because the type of z is not related to the type of the list xs,
type inference has no context information for z. Now consider the expression
in the erroneous version of flattenRight, also shown on page 367:

(xss :\ List()) (_ ::: _) // this won’t compile

The start value z in this fold is an empty list, List (), so without additional
type information its type is inferred to be a List[Nothing]. Hence, the
inferencer will infer that the B type of the fold is List[Nothing]. Therefore,
the operation (_ ::: _) of the fold is expected to be of the following type:

(List[T], List[Nothing]) => List[Nothing]

This is indeed a possible type for the operation in that fold but it is not a
very useful one! It says that the operation always takes an empty list as
second argument and always produces an empty list as result. In other words,
the type inference settled too early on a type for List(), it should have
waited until it had seen the type of the operation op. So the (otherwise very
useful) rule to only consider the first argument section in a curried method
application for determining the method’s type is at the root of the problem
here. On the other hand, even if that rule were relaxed, the inferencer still
could not come up with a type for op because its parameter types are not
given. Hence, there is a Catch-22 situation that can only be resolved by an
explicit type annotation from the programmer.

This example highlights some limitations of the local, flow-based type
inference scheme of Scala. It is not present in the more global Hindley-
Milner style of type inference used in functional languages such as ML or
Haskell. However, Scala’s local type inference deals much more gracefully
with object-oriented subtyping than the Hindley-Milner style does. Fortu-
nately, the limitations show up only in some corner cases, and are usually
easily fixed by adding an explicit type annotation.

Adding type annotations is also a useful debugging technique when you
get confused by type error messages related to polymorphic methods. If you
are unsure what caused a particular type error, just add some type arguments
or other type annotations, which you think are correct. Then you should be
able to quickly see where the real problem is.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=375&v=2010_12_13

Section 16.11 Chapter 16 - Working with Lists 376
16.11 Conclusion

Now you have seen many ways to work with lists. You have seen the basic
operations like head and tail, the first-order operations like reverse, the
higher-order operations like map, and the utility methods in the List object.
Along the way, you learned a bit about how Scala’s type inference works.

Lists are a real work horse in Scala, so you will benefit from knowing
how to use them. For that reason, this chapter has delved deeply into how to
use lists. Lists are just one kind of collection that Scala supports, however.
The next chapter is broad, rather than deep, and shows you how to use a
variety of Scala’s collection types.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=376&v=2010_12_13

Chapter 17

Collections

Scala has a rich collection library. This chapter gives a tour of the most
commonly used collection types and operations, showing just the parts you
will use most frequently. Chapter 24 will give a more comprehensive tour
of what’s available, and Chapter 25 will show how Scala’s composition con-
structs are used to provide such a rich API.

17.1 Sequences

Sequences types let you work with groups of data lined up in order. Because
the elements are ordered, you can ask for the first element, second element,
103rd element, and so on. In this section, we’ll give you a quick tour of the
most important sequences.

Lists

Perhaps the most important sequence type to know about is class List, the
immutable linked-list described in detail in the previous chapter. Lists sup-
port fast addition and removal of items to the beginning of the list, but they
do not provide fast access to arbitrary indexes because the implementation
must iterate through the list linearly.

This combination of features might sound odd, but they hit a sweet spot
that works well for many algorithms. The fast addition and removal of initial
elements means that pattern matching works well, as described in Chap-
ter 15. The immutability of lists helps you develop correct, efficient al-

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=377&v=2010_12_13

Section 17.1 Chapter 17 - Collections 378

gorithms because you never need to make copies of a list. Here’s a short
example showing how to initialize a list and access its head and tail:

scala> val colors = List("red", "blue", "green")
colors: List[java.lang.String] = List(red, blue, green)

scala> colors.head
resO: java.lang.String = red

scala> colors.tail
resl: List[java.lang.String] = List(blue, green)

For an introduction to lists see Step 8 in Chapter 3, and for the details on
using lists, see Chapter 16. Lists will also be discussed in Chapter 22, which
provides insight into how lists are implemented in Scala.

Arrays

Arrays allow you to hold a sequence of elements and efficiently access an
element at an arbitrary position, both to get or update the element, with a
zero-based index. Here’s how you create an array whose size you know, but
for which you don’t yet know the element values:

scala> val fivelInts = new Array[Int](5)
fivelnts: Array[Int] = Array(0, 0, 0, 0, 0)

Here’s how you initialize an array when you do know the element values:

scala> val fiveToOne = Array(5, 4, 3, 2, 1)
fiveToOne: Array[Int] = Array(5, 4, 3, 2, 1)

As mentioned previously, arrays are accessed in Scala by placing an index
in parentheses, not square brackets as in Java. Here’s an example of both
accessing and updating an array element:

scala> fiveInts(0) = fiveToOne(4)
scala> fivelnts

res3: Array[Int] = Array(l, 0, 0, 0, 0)

Scala arrays are represented in the same way as Java arrays. So, you can
seamlessly use existing Java methods that return arrays.!

IThe difference in variance of Scala and Java’s arrays—i.e., whether Array[String] is
a subtype of Array[AnyRef]—will be discussed in Section 19.3.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=378&v=2010_12_13

Section 17.1 Chapter 17 - Collections 379

You have seen arrays in action many times in previous chapters. The
basics are in Step 7 in Chapter 3. Several examples of iterating through the
elements of an array with a for expression are shown in Section 7.3. Arrays
also figure prominently in the two-dimensional layout library of Chapter 10.

List buffers

Class List provides fast access to the head of the list, but not the end. Thus,
when you need to build a list by appending to the end, you should consider
building the list backwards by prepending elements to the front, then when
you’re done, calling reverse to get the elements in the order you need.
Another alternative, which avoids the reverse operation, is to use a
ListBuffer. A ListBuffer is a mutable object (contained in package
scala.collection.mutable), which can help you build lists more effi-
ciently when you need to append. ListBuffer provides constant time ap-
pend and prepend operations. You append elements with the += operator, and
prepend them with the +=: operator. When you’re done building, you can
obtain a List by invoking toList on the ListBuffer. Here’s an example:

scala> import scala.collection.mutable.lListBuffer
import scala.collection.mutable.ListBuffer

scala> val buf = new ListBuffer[Int]
buf: scala.collection.mutable.ListBuffer[Int] = ListBuffer()

scala> buf += 1
res4: buf.type = ListBuffer(1)

scala> buf += 2
res5: buf.type = ListBuffer(l, 2)

scala> buf
res6: scala.collection.mutable.lListBuffer[Int]
= ListBuffer(1l, 2)

scala> 3 +=: buf
res7: buf.type = ListBuffer(3, 1, 2)

scala> buf.tolList
res8: List[Int] = List(3, 1, 2)

Another reason to use ListBuffer instead of List is to prevent the po-
tential for stack overflow. If you can build a list in the desired order by

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=379&v=2010_12_13

Section 17.1 Chapter 17 - Collections 380

prepending, but the recursive algorithm that would be required is not tail
recursive, you can use a for expression or while loop and a ListBuffer
instead. You’ll see ListBuffer being used in this way in Section 22.2.

Array buffers

An ArrayBuffer is like an array, except that you can additionally add and
remove elements from the beginning and end of the sequence. All Array
operations are available, though they are a little slower due to a layer of
wrapping in the implementation. The new addition and removal operations
are constant time on average, but occasionally require linear time due to the
implementation needing to allocate a new array to hold the buffer’s contents.

To use an ArrayBuffer, you must first import it from the mutable col-
lections package:

scala> import scala.collection.mutable.ArrayBuffer
import scala.collection.mutable.ArrayBuffer

When you create an ArrayBuffer, you must specify a type parameter, but
need not specify a length. The ArrayBuffer will adjust the allocated space
automatically as needed:

scala> val buf = new ArrayBuffer[Int]()
buf: scala.collection.mutable.ArrayBuffer[Int] =
ArrayBuffer()

You can append to an ArrayBuffer using the += method:
scala> buf += 12
res9: buf.type = ArrayBuffer(12)

scala> buf += 15
resl0: buf.type = ArrayBuffer(12, 15)

scala> buf
resll: scala.collection.mutable.ArrayBuffer[Int] =
ArrayBuffer(12, 15)

All the normal array methods are available. For example, you can ask an
ArrayBuffer its length, or you can retrieve an element by its index:

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=380&v=2010_12_13

Section 17.2 Chapter 17 - Collections 381

scala> buf.length
resl2: Int = 2

scala> buf(0)
resl3: Int = 12

Strings (via StringOps)

One other sequence to be aware of is StringOps, which implements many
sequence methods. Because Predef has an implicit conversion from String
to StringOps, you can treat any string like a sequence. Here’s an example:

scala> def hasUpperCase(s: String) = s.exists(_.isUpper)
hasUpperCase: (s: String)Boolean

scala> hasUpperCase("Robert Frost")
resl4: Boolean = true

scala> hasUpperCase('e e cummings')
resl5: Boolean = false

In this example, the exists method is invoked on the string named s in
the hasUpperCase method body. Because no method named “exists” is
declared in class String itself, the Scala compiler will implicitly convert s
to StringOps, which has the method. The exists method treats the string
as a sequence of characters, and will return true if any of the characters are

upper case.’

17.2 Sets and maps

You have already seen the basics of sets and maps in previous chapters, start-
ing with Step 10 in Chapter 3. In this section, we’ll give more insight into
their use and show you a few more examples.

As mentioned previously, the Scala collections library offers both muta-
ble and immutable versions of sets and maps. The hierarchy for sets is shown
in Figure 3.2 on page 92, and the hierarchy for maps is shown in Figure 3.3
on page 94. As these diagrams show, the simple names Set and Map are used
by three traits each, residing in different packages.

2The code given on page 61 of Chapter 1 presents a similar example.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=381&v=2010_12_13

Section 17.2 Chapter 17 - Collections 382

By default when you write “Set” or “Map” you get an immutable object.
If you want the mutable variant, you need to do an explicit import. Scala
gives you easier access to the immutable variants, as a gentle encouragement
to prefer them over their mutable counterparts. The easy access is provided
via the Predef object, which is implicitly imported into every Scala source
file. Listing 17.1 shows the relevant definitions:

object Predef {
type Map[A, +B] = collection.immutable.Map[A, B]
type Set[A] = collection.immutable.Set[A]
val Map = collection.immutable.Map
val Set = collection.immutable.Set

// ...

Listing 17.1 - Default map and set definitions in Predef.

The “type” keyword is used in Predef to define Set and Map as aliases
for the longer fully qualified names of the immutable set and map traits.’
The vals named Set and Map are initialized to refer to the singleton objects
for the immutable Set and Map. So Map is the same as Predef .Map, which is
defined to be the same as scala.collection.immutable.Map. This holds
both for the Map type and Map object.

If you want to use both mutable and immutable sets or maps in the same
source file, one approach is to import the name of the package that contains
the mutable variants:

scala> import scala.collection.mutable
import scala.collection.mutable

You can continue to refer to the immutable set as Set, as before, but can now
refer to the mutable set as mutable.Set. Here’s an example:

scala> val mutaSet = mutable.Set(1, 2, 3)
mutaSet: scala.collection.mutable.Set[Int] = Set(3, 1, 2)

3The type keyword will be explained in more detail in Section 20.6.

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=382&v=2010_12_13

Section 17.2 Chapter 17 - Collections 383

Using sets

The key characteristic of sets is that they will ensure that at most one of each
object, as determined by ==, will be contained in the set at any one time. As
an example, we’ll use a set to count the number of different words in a string.

The split method on String can separate a string into words, if you
specify spaces and punctuation as word separators. The regular expression
“[1,.1+” will suffice: it indicates the string should be split at each place
that one or more space and/or punctuation characters exist:

scala> val text = "See Spot run. Run, Spot. Run!"
text: java.lang.String = See Spot run. Run, Spot. Run!

scala> val wordsArray = text.split("[!,.]+")
wordsArray: Array[java.lang.String]
= Array(See, Spot, run, Run, Spot, Run)

To count the distinct words, you can convert them to the same case and then
add them to a set. Because sets exclude duplicates, each distinct word will
appear exactly one time in the set. First, you can create an empty set using
the empty method provided on the Set companion objects:

scala> val words = mutable.Set.empty[String]
words: scala.collection.mutable.Set[String] = Set()

Then, just iterate through the words with a for expression, convert each
word to lower case, and add it to the mutable set with the += operator:

scala> for (word <- wordsArray)
words += word.toLowerCase

scala> words
resl7: scala.collection.mutable.Set[String]
= Set(spot, run, see)

Thus, the text contained exactly three distinct words: spot, run, and see.
The most commonly used methods on both mutable and immutable sets are
shown in Table 17.1.

Using maps

Maps let you associate a value with each element of the collection. Using
a map looks similar to using an array, except that instead of indexing with

Cover - Overview - Contents - Discuss - Suggest - Glossary - Index

http://www.artima.com/forums/forum.jsp?forum=282
http://www.artima.com/backtalk/talkback?b=programming_in_scala_2ed&n=383&v=2010_12_13

Section 17.2 Chapter 17 - Collections 384

integers counting from 0, you can use any kind of key. If you import the
scala.collection.mutable package, you can create an empty mutable
map like this:

scala> val map = mutable.Map.empty[String, Int]
map: scala.collection.mutable.Map[String,Int] = Map()

Table 17.1 - Common operations for sets

What it is

What it does

val nums = Set(1, 2, 3)

nums + 5

nums - 3

nums ++ List (5, 6)

nums -- List (1, 2)

nums & Set(1, 3, 5, 7)

nums.size
nums.contains(3)
import scala.collection.mutable
val words =
mutable.Set.empty[String]

words += "the"

words -= "the"

Creates an immutable set
(nums. toString returns Set(1, 2, 3))

Adds an element (returns
Set(1, 2, 3, 5))

Removes an element (returns Set (1, 2))

Adds multiple elements (returns
Set(1, 2, 3, 5, 6))

Removes multiple elements (returns
Set(3))

Takes the intersection of two sets (returns
Set(1, 3))

Returns the size of the set (returns 3)
Checks for inclusion (returns true)

Makes the mutable collections easy to
access

Creates an empty, mutable set
(words.toString returns Set())

Adds an element (words.toStr