Join the discussion @ p2p.wrox.com e Wrox Programmer to Programmer™

Professional

Silverlight 4

Jason Beres, Bill Evjen, Devin Rader

http://p2p.wrox.com

PROFESSIONAL SILVERLIGHT® 4

INTRODUCTION. ..ottt ittt ittt ittt ittt ttateinneeenneeeaneenns XXV
CHAPTER1 Introductionto Silverlight. 1
CHAPTER 2 Building Applications with Visual Studio 31
CHAPTER 3 Building Applications with ExpressionBlend 4 63
CHAPTER 4 Working with the Navigation Framework 93
CHAPTER5 Controlling Layout with Panels it 17
CHAPTER 6 Working with Visual Controls. 139
CHAPTER7 AccessingData..........cooiiiii i 205
CHAPTER 8 WCF RIA SEIVICES . .ttt e 257
CHAPTER 9 Out-of-Browser Experiences, 281
CHAPTER 10 Networking Applications 301
CHAPTER 11 Building Line of Business Applications 337
CHAPTER 12 Application Architecture. 375
CHAPTER 13 DOM Interaction.o e 429
CHAPTER 14 Securing Your Applications i 449
CHAPTER 15 Accessing Audio and Video Devices.......... 479
CHAPTER16 Working with File I/O. 497
CHAPTER 17 Using Graphicsand Visuals., 541
CHAPTER 18 Working with Animations in Silverlight. 591
CHAPTER 19 Workingwith Text e 613
CHAPTER 20 Making It RicherwithMedia...... i .. 641
CHAPTER 21 Stylingand Themes. e 681
APPENDIX A XAML Primer. . ..o 723
APPENDIX B Testing Silverlight Applications.......... 741
APPENDIX C Building Facebook Applications with Silverlight 757
APPENDIX D Integrating Silverlight into SharePoint2010 775
APPENDIX E Silverlight Control Assemblies. 783
1015 =) 787

PROFESSIONAL
Silverlight' 4

Jason Beres
Bill Evjen
Devin Rader

WILEY
Wiley Publishing, Inc.

Professional Silverlight® 4

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-65092-9

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010930723

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress

are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Silverlight is a registered trademark of Microsoft Corporation
in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To my beautiful wife Sheri and our amazing 4-year-old
daughter Siena for supporting me during the late nights and
weekends that it took to get this book completed.

— JASON BERES

To George — glad you made it to the developer ranks, brother!

— BiLL EvjEN

To Mom and Dad, thanks for everything!

— DEVIN RADER

ABOUT THE AUTHORS

JASON BERES is the Vice President of Product Management, Community, and
Evangelism, and spearheads customer-driven, innovative features and functionality
throughout all of Infragistics’ products. Jason is a Microsoft .NET MVP for

8 years running, a member of the INETA Speakers Bureau, and is the author

of 7 books on various .NET technologies, the latest being this one, Professional
Silverlight 4 from Wrox Press.

BILL EVJEN is an active proponent of .NET technologies and community-based
learning initiatives for .NET. He has been actively involved with .NET since the
first bits were released in 2000. In the same year, Bill founded the St. Louis .NET
User Group (www.stlnet.org), one of the world’s first such groups. Bill is also

the founder and former executive director of the International .NET Association
(www . ineta.org), which represents more than 500,000 members worldwide. Based in St. Louis,
Missouri, Bill is an acclaimed author and speaker on ASP.NET and Services. He has authored or
coauthored more than 20 books including Professional C# 4 and .NET 4, Professional ASP.NET 4

in VB and C#, ASP.NET Professional Secrets, XML Web Services for ASP.NET, and Web Services
Enhancements: Understanding the WSE for Enterprise Applications (all published by Wiley). In addi-
tion to writing, Bill is a speaker at numerous conferences, including DevConnections, VSLive!, and
TechEd. Along with these items, Bill works closely with Microsoft as a Microsoft Regional Director
and an MVP. Bill is the Global Head of Platform Architecture for Thomson Reuters, Lipper, the
international news and financial services company (www. thomsonreuters.com). He graduated from
Western Washington University in Bellingham, Washington. When he isn’t tinkering on the computer,
he can usually be found in his summer house in Toivakka, Finland. You can reach Bill on Twitter

at @billevjen.

DEVIN RADER works at Infragistics where he focuses on delivering great user experi-
ences to developers using their controls. He’s done work on all of the .NET platforms,
but most recently has been focused on ASP.NET and Silverlight. As a co-founder of
the St. Louis .NET User Group, a current board member of the Central New Jersey
.NET User Group, and a former INETA board member, he’s an active supporter of the
.NET developer community. He’s also the co-author or technical editor of numerous books on .NET
including Silverlight 3 Programmer’s Reference and Professional ASP.NET 4 in C# and VB from
Wrox. Follow Devin on Twitter @devinrader.

http://www.stlnet.org
http://www.ineta.org
http://www.thomsonreuters.com

ABOUT THE CONTRIBUTORS

SHAWN ANDERSON is currently a senior solutions architect with Infragistics and spends much of his
time working on designing and developing business solutions and new product lines that utilize cut-
ting edge technology in combination with the latest Infragistics suites and tools. He has a passion
for all things technical and has been designing and developing large scale business systems across
multiple platforms for over 15 years.

GRANT HINKSON serves as a bridge between design and development in Microsoft’s Entertainment
Experience Group as an Experience Developer, focused on the Zune PC Client. Grant has a history of
uniting design and development and has pioneered integrated workflows across multi-discipline teams.
He is an advocate for iterative design and rapid prototyping and believes Silverlight is an enabling tech-
nology that supports those processes. Before joining Microsoft, Grant founded and grew the Experience
Design Group at Infragistics. He has been honored as a Microsoft Expression MVP and has spoken at
Microsoft Mix, Microsoft ReMix, Adobe MAX, and Devscovery. Grant is a contributing author on the
Wrox titles Silverlight 1.0, Silverlight 3 Programmer’s Reference, and the Friends of Ed title Foundation
Fireworks CS4. He has authored a number of utilities for the designer/developer community, notably
the Fireworks to XAML exporter. You can find Grant’s latest creations at www.granthinkson.com.

DAVID KELLEY has been building targeted customer experiences primarily on the web and offline
for over 10 years. David’s main focus is on integrating technology into environments, ranging from
using sensors to touch screens and Silverlight. David is currently the Principal User eXperience
Architect for Wirestone and publishes a blog “Hacking Silverlight” as well as posts related to UX
for Interact Seattle. Currently his main focus is in the retail space with touch experiences such as
digital price tags and Silverlight-based kiosks. David’s other career highlights include the Silverlight
Bill Gates demo at TechEd ‘08, the Entertainment Tonight Emmy Award site for the Silverlight
launch, and achievement of a Silverlight MVP in 2009, as well as his work with Wirestone. In his
spare time David helps run Interact (Seattle’s Designer Developer Interaction Group and the Seattle
Silverlight User Group), travels, plays with his kids, Legos, and more.

MIHAIL MATEEV is a senior software development engineer with Infragistics, Inc. He worked as

a software developer and team lead on WPF and Silverlight Line of Business production lines of
the company and now works as a Technical Evangelist. Over the past 10 years, he has written
articles for Bulgarian ComputerWorld magazine as well as blogs about .NET technologies. Prior
to Infragistics, he worked at ESRI Bulgaria as a software developer and a trainer. For several years
Mihail has delivered lectures about geographic information systems for the Sofia University “St.
Kliment Ohridski” Faculty of Mathematics and Informatics. Mihail is also a lecturer on computer
systems for the University of the Architecture, Civil Engineering and Geodesy in Sofia, Bulgaria,
in the Computer Aided Engineering Department. Mihail holds master’s degrees in Structural
Engineering and Applied Mathematics and Informatics.

http://www.granthinkson.com

TODD SNYDER is a solution architect and developer with over 15 year of experience building enter-
prise and rich Internet (RIA) applications on the Microsoft platform. He currently is a principal
consultant on the Infragistics Ul Service team specializing in RIA and Enterprise application archi-
tecture. He is the co-leader for the New Jersey .NET user group (www.njdotnet.net/) and is a
frequent speaker at trade shows, code camps, and Firestarters.

ABOUT THE TECHNICAL EDITORS

STEPHEN ZAHARUK graduated with a B.S. in Computer Science from Susquehanna University in 2004.
Since then he’s been working at Infragistics, first working in their Developer Support department and
soon writing new Ul controls for their ASP.NET product line. When Silverlight was announced, Steve
joined a new team for the Infragistics Silverlight Line of Business product line as Team Lead and soon
after as Product Architect.

TODD SNYDER See Todd Snyder’s bio in the preceding “About the Contributors™ section.

MATTHEW VAN HORN specializes in rapid development focused on flexible and dynamic code to leverage
maximum results with minimal effort. His development tool of choice is Silverlight, which he has used
in projects ranging from a clone of Space Invaders for Facebook to back office accounting to a dynamic
business intelligence visualization system that turned heads at the Global Gaming (casino) Expo this
year in Las Vegas, Nevada.

CRAIG SELBERT currently works for Thomson Reuters, Lipper (www . 1ipperweb.com), as a Senior
Software Developer. His primary responsibilities are developing web frameworks and applications using
various rich Internet application toolsets like ASP.NET, jQuery, ASP.NET MVC, Silverlight, Unity, and
Prism. At Lipper, Craig works on a team that created a framework leveraging the Unity/Prism frame-
work in Silverlight and WPF that has allowed them to build true enterprise module-based applications.
He has always been an early adopter of technology that has growing pains, but through perseverance,
the software and Craig have always come out better in the end. Craig enjoys spending most of his work-
ing time dealing with Microsoft technologies, but keeps a watchful eye on other technologies to make
sure he stays well rounded. You can reach Craig on Twitter at @craigselbert.

http://www.njdotnet.net/
http://www.lipperweb.com

CREDITS

CONTRIBUTORS
Shawn Anderson
Grant Hinkson
David Kelley
Mihail Mateev
Todd Snyder

EXECUTIVE EDITOR
Robert Elliott

SENIOR PROJECT EDITOR
Kevin Kent

DEVELOPMENT EDITOR
Jeff Riley

TECHNICAL EDITORS
Steve Zaharuk

Todd Snyder
Matthew Van Horn
Craig Selbert

SENIOR PRODUCTION EDITOR
Debra Banninger

COPY EDITORS
Kim Cofer
Cate Caffrey

EDITORIAL DIRECTOR
Robyn B. Siesky

EDITORIAL MANAGER
Mary Beth Wakefield

MARKETING MANAGER
Ashley Zurcher

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Barry Pruett

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Lynsey Stanford

COMPOSITORS
Jeff Lytle, Happenstance Type-O-Rama
Craig Woods, Happenstance Type-O-Rama

PROOFREADER
Nancy Carrasco

INDEXER
Robert Swanson

COVER DESIGNER
Michael E. Trent

COVER IMAGE
© pederk/istockphoto

ACKNOWLEDGMENTS

I WOULD LIKE TO THANK THE ENTIRE TEAM AT WROX, especially Kevin Kent, our Senior Project
Editor, and Bob Elliott, our Executive Editor, who kept this book on schedule on a tight timeline.
You guys really pulled the team together to make this happen. Thank you. I would recommend
Kevin for Project Editor of the Year if there was such an award. I'd also like to thank my two awe-
some co-authors, Bill and Devin. It was a pleasure working with you on the book, and I hope we
can do more in the future. And last but not least, Todd Snyder, Matt Van Horn, Stephen Zaharuk,
Craig Selbert, Mihail Mateev, Shawn Anderson, David Kelley, and Grant Hinkson — you guys
wrote chapters and gave technical guidance, and without you, this book wouldn’t have the backbone
that it does. Thanks for the hard work in making this book a reality.

— JASON BERES

THANKS TO KEVIN KENT, BOB ELLIOTT, AND JIM MINATEL for the opportunity to work on such a
great book. I also want to thank my co-authors who have also been very longtime friends of mine
and guys that have been making this .NET journey with me since the first days. I would also like
to thank my family for putting up with another writing project (as this takes away many weekends
from their time with me). Thank you, Tuija, Sofia, Henri, and Kalle!

— BiLL EvjEN

THANKS TO JIM MINATEL, BOB ELLIOT, KEVIN KENT, PAUL REESE, and everyone at Wrox for helping us
make this book happen. Thanks to Shawn Anderson, Grant Hinkson, David Kelley, Mihail Mateev,
and Todd Snyder for contributing to the book. Each one of you brought your unique talents to the
content of this book, and it’s better for that. Thanks to Steve, Todd, Matt, and Craig for your techni-
cal feedback and advice. A huge thanks to Jason and Bill. Jason, this is our second Wrox collaboration
and, Bill, this is our fifth, and it’s awesome working with you guys. Finally a special thanks to my wife,
Kathleen, who continues to support and tolerate my writing despite the late nights and long weekends.

— DEVIN RADER

CONTENTS

INTRODUCTION XXV
CHAPTER 1: INTRODUCTION TO SILVERLIGHT 1
What Is Silverlight? 2
Silverlight Versions Explained 5
Application Development Scenarios 6
Getting the Silverlight Plug-In 8
Getting the Silverlight SDK 1"
Building Silverlight Applications 12
Silverlight 4 Tour 12
XAML 13
.NET Framework Support 14
Graphics and Animations 15
Page Layout and Design 18
User Interface Controls 20
Using Media in Silverlight 21
Local Data Storage 22
Out-of-Browser Experiences 22
Local Filesystem Access 23
Navigation Framework 23
Annotation and Ink 24
Accessing the Network 25
Data Binding 26
Printing 27
Drag-and-Drop 27
Clipboard Access 27
Deep Zoom Graphics 28
Summary 29
CHAPTER 2: BUILDING APPLICATIONS WITH VISUAL STUDIO 31
Creating a Basic Silverlight Application 31
Using Silverlight Designer for Visual Studio 35
Creating Silverlight Project and Web Application Project Files 40
Using the Silverlight Design Surface 41

Understanding the XAP File 47

CONTENTS

Caching Assemblies 50
Adding Class Definition and Partial Classes 52
Understanding the Application Life Cycle 55
Debugging Silverlight Applications 57
Attaching to a Process to Debug 57
Attaching to a Remote Macintosh Process 59
Configuring Silverlight MIME Types 61
Adding MIME Support to lIS 61
Summary 62

CHAPTER 3: BUILDING APPLICATIONS WITH EXPRESSION BLEND 4 63

Learning Expression Blend Basics 64
IDE Tour 64
Creating Your Own Silverlight Project 77

Using Expression Blend Behaviors 78
Implementing Behaviors 78
Consuming Behaviors 80

Using the Visual State Manager 81
Creating a Control Template(s) 81
Customizing Visual States 83

Importing Design Assets 83
Importing PhotoShop (PSD) Assets 84
Importing lllustrator (Al) Files 85
Importing Fonts and Images Assets 85

Using the Expression Suite 86
Expression Encoder 87
Deep Zoom Composer 87

Summary o1

CHAPTER 4: WORKING WITH THE NAVIGATION FRAMEWORK 93

Using the Navigation Template 93

Creating Parameterized Query Strings 99
Using the Frame Class 105

Using a Custom Menu Control M

Adding Navigation Animations 13

Summary 15

CHAPTER 5: CONTROLLING LAYOUT WITH PANELS 117

Measure, Then Arrange 18

Element Sizing Characteristics 120

Height and Width 120

xiv

CONTENTS

Alignment 123
Margin and Padding 123
Using Layout Panels 125
Canvas 126
StackPanel 127
VirtualizingStackPanel 128
Grid 129
WrapPanel 131
DockPanel 132
Finding Third-Party Panels 133
Creating Custom Panels 133
Silverlight Plug-In Sizing 137
Summary 138
CHAPTER 6: WORKING WITH VISUAL CONTROLS 139
Where to Find Controls 140
Using Text Display Controls 142
TextBlock 142
Label 143
Using Input Editor Controls 144
Text 144
Using Numeric Editor Controls 147
Dates and Time 150
Using Lists and Items Controls 154
DataGrid 154
DataForm 162
ListBox, ComboBox, and TabControl 163
DataPager 169
Accordion 170
TreeView 172
Using Button Controls 175
Button 175
HyperlinkButton 177
ToggleButton 177
Using the GridSplitter Control 178
Using the Image Control 179
Using Data Visualization Controls 180
TreeMap 180
Chart 185

XV

CONTENTS

Using Other Miscellaneous Controls 189
ViewBox 189
Busylndicator 190
Expander 192
ValidationSummary 192
Tooltip 193
ScrollViewer 194

Creating Custom Controls 195
Template Parts 200
Visual States 201

Summary 203

CHAPTER 7: ACCESSING DATA 205

Processing XML Data 205
LINQ to XML 206
Using an XmIReader 208

Binding a User Interface to Data 209
Establishing a Data-Binding Connection 209
Handling Data Updates 215
Converting Data Types 222

Working with Services 225
Building an ASP.NET Web Service 227
Consuming a Simple XML Web Service 234
Working with Windows Communication Foundation (WCF) 238
Working with REST-Based Services 247

Summary 255

CHAPTER 8: WCF RIA SERVICES 257

Understanding WCF RIA Services 258

Building a Simple RIA Services Application 259
Reviewing the Business Application Solution 260
Building an Entity Data Model 261
Building a Domain Service 264
Connecting the Silverlight Client to Your Domain Service 268
Connecting to the Domain Service through XAML 273
Filtering Results 277

Summary 280

CHAPTER 9: OUT-OF-BROWSER EXPERIENCES 281

Creating an Out-of-Browser Application 281

Out-of-Browser Application Features 282

XVi

CONTENTS

Configuring an Out-of-Browser Application in Visual Studio 283
Installing an Out-of-Browser Application 287
Uninstalling an Out-of-Browser Application 290
Updating an Out-of-Browser Application 290
Installing Trusted Applications 292
Accessing the File Systems 295
Using COM Automation 295
Support for Window Customization 296
Adding Digital Signatures 299
Installing a Local Silverlight Application 300
Summary 300
CHAPTER 10: NETWORKING APPLICATIONS 301
The WebClient Class 302
Using OpenReadAsync() 302
Downloading Files Using WebClient 304
Uploading Files Using WebClient 307
Reusing a Single WebClient Object 310
Cross-Domain Access 31
Silverlight and WCF Duplex Communications 314
Setting Up the Duplex Service 314
Setting Up the Duplex Client 320
Sockets 323
Setting Up the Policy Server 324
Setting Up the Application Sockets Server 328
Setting Up the Sockets Client 332
Summary 336
CHAPTER 11: BUILDING LINE OF BUSINESS APPLICATIONS 337
Line of Business Basics 337
Responding to Mouse Actions 338
Enabling Right-Click Support 340
Handling Multi-Touch 342
Drawing with Ink 343
Enabling Clipboard Access 345
Adding Printing Support 347
Supporting Drag-and-Drop 349
Using the Web Browser Control 350
Advanced Scenarios 351
Communicating between Silverlight Applications 351
Integrating with Office 364

xvii

CONTENTS

Globalization and Localization 366
Localizing Your Application 367
Using Resource Files 367
Packing and Deploying 369
Supporting Bidirectional Right-to-Left (RTL) Text 370
Deploying Best Practices 371

Full-Screen Applications 371

Summary 373

CHAPTER 12: APPLICATION ARCHITECTURE 375

Understanding Design Patterns 376
Exploring the Model View ViewModel (MVVM) 377
Learning about Inversion of Control/Dependency Injection 390
Exploring the Event Broker Pattern 395

Using Silverlight Frameworks 396
Exploring the Managed Extensibility Framework 396
Exploring PRISM/Composite Application Library 41

Defining Your Data Access Strategy 424

Handling Performance 427

Summary 428

CHAPTER 13: DOM INTERACTION 429

Configuring the Silverlight Plug-In 429
windowless 432
splashScreenSource 433
initParams 436
enablehtmlaccess 437
enableAutoZoom 437
enableGPUAcceleration 437
enableNavigation 437
allowHtmIPopupWindow 437
Plug-In API 438

Creating Interaction between Silverlight and JavaScript 438
JavaScript API 439
HTML Bridge 44

Summary 446

CHAPTER 14: SECURING YOUR APPLICATIONS 449

Taking Advantage of ASP.NET 450

Forms-Based Authentication 450

xviii

CONTENTS

Windows-Based Authentication 455
Authenticating Specific Files and Folders 460
Using ASP.NET Application Services 461
Working with Membership on the Server 461
Working with Membership on the Client 468
Working with Role Management on the Server 470
Summary 477
CHAPTER 15: ACCESSING AUDIO AND VIDEO DEVICES 479
Configuring Permissions 479
Accessing Audio and Video Devices 481
Capturing Images from a Video Feed 488
Saving Images to the Filesystem 492
Capturing an Audio Stream 494
Summary 495
CHAPTER 16: WORKING WITH FILE I/0 497
The OpenFileDialog and SaveFileDialog Classes 497
Classes for Managing the Filesystem 500
.NET Classes That Represent Files and Folders 501
Using the Path Class 504
Using Basic File Objects from Silverlight 504
Moving, Copying, and Deleting Files 514
Extending on the FileProperties Solution 514
Using the Move, Copy, and Delete Methods 515
Reading and Writing Files 517
Reading from a File 518
Writing to a File 521
Using Streams 523
Using Buffered Streams 525
Reading and Writing Binary Files Using FileStream 525
Reading and Writing to Text Files 528
Using Isolated Storage Options 532
Reading and Writing from Isolated Storage 532
Understanding Space Constraints 536
Creating Directories in Isolated Storage 537
Deleting Your Store 538
Summary 539

Xix

CONTENTS

CHAPTER 17: USING GRAPHICS AND VISUALS 541
The Basics 541
Working with Rectangles and Borders 542
Applying Rounded Corners 542
Using the Ellipse 545
Using the Path 545
Using Geometries 548
Using Clipping/Masking Elements 550
Expression Blend Shapes 552
Binding to Shape Properties 554
Images and Media 554
Displaying Images 554
Displaying Media 559
Brushes 560
Painting with Solids 560
Painting with Linear Gradients 560
Painting with Radial Gradients 561
Painting with Images 562
Painting with Video 563
Editing Brushes in Expression Blend 564
Creating ImageBrushes 568
Fonts and Font Embedding 570
Effects 572
Applying Effects 572
Using Native Effects 573
Using Custom Effects 575
Transforms 581
Using 2D Transforms 582
Using Perspective 3D 587
Summary 590
CHAPTER 18: WORKING WITH ANIMATIONS IN SILVERLIGHT 591
Storyboard Animations 592
Applying Easing Functions 598
Controlling Storyboards Using Behaviors 601
Nesting Storyboards 601
Using Storyboards as Timers 602
Keyframe Animation 603
Rendering CompositionTargets 607
Animating Visibility 608
Animating Sprites 610

Summary 611

XX

CONTENTS

CHAPTER 19: WORKING WITH TEXT 613
Displaying and Inputting Text 613
Using the TextBlock Element 614
Using the RichTextBox Control 621
Font Support and Rendering 634
Using Embedded Fonts 636
Creating Font Glyph Subsets 638
Rendering Text 639
Summary 639
CHAPTER 20: MAKING IT RICHER WITH MEDIA 641
Supported Formats 641
Unsupported Windows Media Formats 643
H.264 and AAC Support 643
Digital Rights Management 644
Using the MediaElement Control 644
Build Actions and Referencing Media 645
Adding a MediaElement in Blend 649
Sizing Video and Setting the Stretch Behavior 649
Transforming Video 651
Rotating Video in 3D 652
Clipping Video 653
Painting Elements with the VideoBrush 655
Simulating Video Reflections 656
Enabling GPU Hardware Acceleration 657
Audio Settings 658
Buffering 658
Detecting Download Progress 660
Detecting Playback Quality 660
Controlling Playback 661
Responding to Video Markers 663
Handling Failed Media 665
Responding to State Changes 666
Media Playlists 667
Server-Side Playlist (SSPL) Files 667
Advanced Stream Redirector (ASX) Files 669
Encoding Media with Expression Encoder 671
Smooth Streaming and IIS 7 678
Summary 679

XXi

CONTENTS

CHAPTER 21: STYLING AND THEMES 681
Getting Started 682
Defining a Core Terminology 682
Defining the Working Environment: A XAML-Based Approach 682
Defining Local Styling (Inline Styling) 683
Styling with Resources 684
Working with the Style Object 688
Understanding Value Resolution 689
Creating BasedOn Styles 689
Changing the Look of a Control with a Custom ControlTemplate 690
Defining and Using Implicit Styles 706
Defining and Organizing Resources 707
Defining Standalone ResourceDictionaries 708
Loading ResourceDictionaries (via the Merged Dictionaries Collection) 708
Understanding Resource Scope 709
Organizing Resources 710
Naming Resources Al
Using Themes 712
Using Silverlight Toolkit Themes 712
Creating Custom Themes 716
Distributing Your Theme 716
Editing Styles and Templates in Expression Blend 716
Editing the Default Button Style 716
Creating a Custom Button 719
Summary 721
APPENDIX A: XAML PRIMER 723
Introducing XAML 723
Silverlight XAML Basics 724
Declaring Objects in XAML 726
Object or Content Element Syntax 726
Attribute Element Syntax 727
Property Element Syntax 727
Setting a Property Using Implicit Collection Syntax 728
Deciding When to Use Attribute or Property Element Syntax
to Set a Property 729
XAML Hierarchy 730
Events and the Silverlight Control 731
Event Handlers and Partial Classes 731

Event Bubbling 734

xXii

CONTENTS

Markup Extensions 736
Binding Markup Extensions 737
StaticResource Markup Extensions 739

Summary 739

APPENDIX B: TESTING SILVERLIGHT APPLICATIONS 741

Creating the Sample Application 741

Using the Silverlight Unit Test Framework 743

Using the Selenium Test Framework 748

Automated Ul Testing Using White 751

Mocking Frameworks 755

Summary 755

APPENDIX C: BUILDING FACEBOOK APPLICATIONS
WITH SILVERLIGHT 757

Creating a New Application on Facebook 757

Using the Facebook Developer Toolkit 760
Adding the Facebook Connect Components 760
Using an Asynchronous API Request 764
Adding Features from the Facebook API 767

Summary 773

APPENDIX D: INTEGRATING SILVERLIGHT INTO SHAREPOINT 2010 775

The Sample Application 775

Using the SharePoint Foundation 2010 Silverlight Object Model 776

Deploying a Silverlight Application into SharePoint 780

Summary 781

APPENDIX E: SILVERLIGHT CONTROL ASSEMBLIES 783
INDEX 787

xxiii

INTRODUCTION

TO ABUSE AN ALREADY ABUSED CLICHE, we are at a tipping point for the Web and application devel-
opment in general. The past several years have seen a notable shift away from basic full-page-based,
postback-intensive web applications that minimized the use of JavaScript in favor of server-side code
for maximum browser compatibility. Today, some amount of AJAX is assumed for any new web
application, and every day we see new “Web 2.0” applications and companies popping up.

At the same time, and in part because of this shift, the old “thin client” versus “rich client” dichot-
omy has increasingly faded. It is entirely possible, and, indeed, it is often the case, for a web-based
application using AJAX to truly have a richer experience than most desktop-based applications, be
they Windows Forms-, Java-, or MFC-based. In fact, one might say that web applications today set
the bar (excluding games, of course).

Enter Windows Presentation Foundation (WPF), the long-awaited, updated Microsoft desktop-
application user interface (UI) framework. WPF borrowed from what has been learned on the Web
(such as markup-based interface declaration and good separation of UI concerns), unified multiple
Windows graphics APIs, and introduced new capabilities to Windows-based applications and new
platform features (such as the enriched dependency property system, commanding, triggers, declara-
tive animations, and more). WPF reestablished the desktop as the new “rich client,” although not
without contest from fairly rich Internet applications (RIAs) that were based on AJAX.

But this book is not about AJAX. Nor is it about WPF, at least not directly. It’s about bringing
together these two worlds of RIAs and rich WPF-based desktop applications, and that’s where
Silverlight comes in.

Silverlight was originally codenamed WPF/e, meaning “WPF everywhere.” That’s a pretty good
tagline for Silverlight — bringing the good stuff from WPF to all the major platforms today, including
OS X and flavors of Linux (via the Linux “Moonlight” implementation).

Silverlight 1.0 was an initial salvo. It brought with it the rich media, the rich UI declarative model,
and a subset of WPF’s presentation layer capabilities. However, it still depended on JavaScript for
the development environment and browsers’ JavaScript execution engines. It did not have many of
the basic application development facilities that developers today have come to expect and rely on,
such as a control model (and controls), data-binding facilities, and a solid development environment
with reliable IntelliSense and debugging. Building a truly rich application for Silverlight 1.0 was only
marginally better than using AJAX — the key advantages were in the high-quality media player and,
of course, animation facilities.

2008 brought Silverlight 2 followed shortly by a respectable update with Silverlight 3. Silverlight 3
was, in a sense, the de facto Microsoft RIA development platform, and not just for the Internet but
also (in this author’s opinion) for Line of Business solutions, except in cases where the functional or
experiential demands call for the greater power of WPF. That said, although dramatically improved
over Silverlight 1.0 and light-years better than building on AJAX frameworks, in many ways, even
Silverlight 3 was still something of a fledgling RIA platform.

INTRODUCTION

XXVi

Now in 2010, Microsoft has released a major and monumental release of Silverlight — version 4! This
release of Silverlight is so powerful and so well put together that it is drawing hoards of developers to
its ranks. When used in combination with ASP.NET, Silverlight 4 provides developers with the tools
and technology to build quick-to-market rich Internet applications.

Silverlight 4, in a broad sense, brings pretty much all the goodness of the .NET development plat-
form to the browser. Almost everything you need from the .NET Frameworks that would apply in
a browser environment is at your disposal. Oh, and did I mention that includes a CLR especially
crafted for RIAs?

Learning Silverlight 4 is taking your learning path in a new and exciting direction. RIAs in themselves
introduce a not-exactly-new but new-to-many-developers application model. You are essentially forced
into a three-tier model that many, perhaps most, Microsoft developers have only given lip service to.
You can no longer simply write ADO.NET code to directly access a database — you must go through
a network service, be that HTTP or TCP-based, and for many developers, this will no doubt be some-
thing new to learn. However, for those who have been developing true three-tier applications for some
time now, though it may not be a stumbling block, they will appreciate the added separation that this
model imposes. Silverlight 4 does introduce .NET RIA Services, which goes a long way toward amelio-
rating this extra complexity.

Silverlight 4 is, as noted, light-years ahead of developing RIAs on AJAX. In some ways, Silverlight
does not add much in the way of experiential capability over a rich AJAX framework (or a combina-
tion of them). A lot of the basic and not-so-basic animations and, of course, asynchronous capabilities
can be had without Silverlight, and certainly it is easier today to build rich AJAX-based applications
than in even very recent years past.

Nevertheless, it is still terribly difficult not only to build but also to maintain a truly rich
Internet application on AJAX. Although we developers might enjoy the immense technologi-

cal challenge; the exciting intellectual stimulation of dancing between CSS, HTML, XML, and
JavaScript; the sheer joy of screaming at the monitor when the beautiful set of functionality you
finally got working in Firefox totally falls apart in Internet Explorer; the exhilaration of deal-
ing with angry customers who have somehow disabled (or had disabled by corporate policy)
one of the several technical puzzle pieces your application relies on — we, in the end, could be
putting our collective intelligence and valuable time into far more valuable and rewarding — for
everybody — enterprises.

And this is one of the chief areas where Silverlight 4 rushes to the rescue. By giving you a
reliable CLR; .NET Frameworks; the WPF-based presentation core (including controls, data
binding, and much more); a better networking stack; local, isolated storage; a rich IDE with
rich debugging, IntelliSense, and LINQ (and even a Dynamic Language Runtime, DLR); and
WCF RIA Services; Silverlight makes developing rich interactive applications far more feasible
for everybody, especially our patrons (businesses), who are concerned with the total cost of
ownership, not just what’s technically feasible. And for developers, except for those few die-
hard JavaScripters, Silverlight will undoubtedly be a source of newfound joy in productivity
and empowerment.

INTRODUCTION

WHO THIS BOOK IS FOR

This book was written to introduce you to the features and capabilities that Silverlight 4 offers, as
well as to give you an explanation of the foundation that Silverlight provides. We assume you have a
general understanding of the .NET Framework, C#, and the basics of web technologies.

In addition to these aforementioned items, we also assume that you understand basic programming
constructs, such as variables, for each loops, and the basics of object-oriented programming.

WHAT THIS BOOK COVERS

This book embodies the Wrox philosophy of programmer to programmer. We are experienced
programmers writing for other programmers. We wrote the book with the average business appli-
cation developer in mind. Certainly, others can derive value — anyone trying to build on or even
to just understand the architectural concerns and realities of Silverlight — but this is at its heart a
true programmer’s companion.

The book explores the release of Silverlight 4. It covers each major new feature in detail. This book
consists of 21 chapters, each covering a separate functional area of the Silverlight platform. Additionally
five appendixes provide additional ancillary information to the reader.

WHAT YOU NEED TO USE THIS BOOK

To work through these examples, you will need to be using the NET Framework 4. This version
of the framework will run on Windows XP, Windows 2003, Windows 7, and the latest Windows
Server 2008 R2. To write any of this code, you will need to have the .NET 4 SDK installed.

Though it is possible to do all this in a simple text editor, you are probably going to want to install
Visual Studio 2010. Installing Visual Studio will also install the NET Framework 4 to your machine.
At the time of this writing, you are going to need to go to http://www.silverlight.net and install
the latest Silverlight 4 Tools for Visual Studio either using the Microsoft Web Platform Installer or the
executable provided on the site. Another install you are probably also going to need from the same
website is the WCF RIA Services install.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotien
information that is directly relevant to the surrounding text.

XXVii

http://www.silverlight.net

INTRODUCTION

The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

As for styles in the text:

> We highlight new terms and important words when we introduce them.

> We show keyboard strokes like this: Ctrl+A.

> We show filenames, URLs, and code within the text like so: persistence.properties.
>

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code files that accompany the book. All the source code used in
this book is available for download at http: //www.wrox.com. When at the site, simply locate
the book’s title (use the Search box or one of the title lists) and click the Download Code link

on the book’s detail page to obtain all the source code for the book. Code that is included on the
website is highlighted by the following icon:

J

Available for
download on
Wrox.com

In some cases (for example, when the code is just a snippet), you’ll find the filename in a code note
such as this:

Code snippet filename

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-65092-9.

Xxviii

http://www.wrox.com

INTRODUCTION

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox . com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not
only as you read this book, but also as you develop your own applications. To join the forums,
just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

XXiX

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

INTRODUCTION

You can read messages in the forums without joining P2P, but in order to post
YOour own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox booParks. To read the FAQs, click the FAQ link on any P2P page.

XXX

Introduction to Silverlight

WHAT’S IN THIS CHAPTER?

> Qverviewing Silverlight
> Getting the Silverlight Plug-In and SDK
> Taking a Silverlight 4 Tour

Silverlight 4, the fourth iteration of the Silverlight platform, continues to deliver on the promise
of Adobe Flash-like and Flex-like rich Internet applications (RIAs) built using a standards-
based, open approach with HTML and XAML (eXtensible Application Markup Language)
using tools like Visual Studio 2010 and Microsoft Expression Blend. Silverlight 4 continues

to add excitement to RIA development with the expansion of the capabilities of the Base

Class Libraries (BCLs) from the .NET Framework, new user interface (UI) controls, and new
libraries for building line-of-business applications. The result is that not only do you have the
rich, XAML markup to describe expressive user interfaces, you have the power of the NET
Framework and your language of choice (C#, VB, etc.) to build Silverlight applications. Even
with the .NET Framework libraries, Silverlight still retains the cross-browser and cross-plat-
form compatibility that it has had since the beginning. This includes Windows 2000, Windows
XP, Windows Vista, Windows 7, Macintosh, and, through the Mono Project, various Linux
distributions. To give you an idea of the flexibility of the client and server scenarios, you can
build a Silverlight application and run it in a Safari web browser on an Apple Macintosh, while
being served up from an Apache web server running on Linux.

There is a lot to learn about Silverlight, and you’ll gain more and more insight with each chap-
ter in this book.

This chapter does two basic things:
> It gives you an introduction to Silverlight.

> By covering the essentials on creating Silverlight applications, it sets the groundwork
that helps for the rest of the book.

2 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

WHAT IS SILVERLIGHT?

Silverlight is a web-based platform for building and running RIAs. The web-based platform part
of that equation is essentially the plug-in that runs inside the web browser. Silverlight applica-
tions execute within an ActiveX browser plug-in that installs onto the local machine via the web
browser in the exact same manner that you install Adobe Flash to run Flash-based animations
on web pages. The Silverlight plug-in supports the entire wow factor that you’d expect from an
RIA, such as vector-based graphics and animations and full video integration, including Digital
Rights Management (DRM) secured audio/video and high-definition video, as well as the tools
for building rich line-of-business applications. You can boil down the coolness of Silverlight to
the following points:

>

Silverlight is a cross-platform, cross-browser platform for delivering rich, interactive
applications.

Silverlight 4 applications can be built using Expression Blend, Visual Studio, or Eclipse on
Windows, and with Eclipse on Apple Macintosh computers.

Silverlight supports playback of native Windows Media VC-1/WMA (with Digital Rights
Management) as well as MPEG-4-based H.264 and AAC audio on PCs and Macs with no
dependency on Windows Media Player, as well as full online and offline DRM capability for
purchase and download, rental, and subscription capabilities.

Silverlight supports playback of 720p+ full-screen HD Video.

Using XAML, HTML, JavaScript, C#, or VB (or your managed language of choice, including
dynamic languages like Ruby and Python), Silverlight delivers rich multimedia, vector graph-
ics, animations, and interactivity beyond what AJAX can deliver.

With the Base Class Libraries, you have access to common classes for generics, collections,
and threading that you are accustomed to using in Windows client development.

There are more than 60 controls in the Toolbox, and probably five times that many from
third-party vendors.

You can deliver out-of-browser experiences with elevated trust that can run any Silverlight 4
application just like a desktop application; including network access, COM interoperability,
and local filesystem access.

You can access video and audio resources, giving you the ability to record content that is
streaming from an end user’s local computer.

There are multiple lines of business features, including a navigation framework, printing, drag-
and-drop support, clipboard access, right-click events, and multi-directional text rendering.

RIA Services, or the Business Application template, supply the framework, tools, and services
that provide the server context of your application to the client, which simplifies the applica-
tion model when building Silverlight applications.

What Is Silverlight? | 3

> The installation package is less than 6MB on Windows and less than 12MB on Macintosh.

> Almost all of the same XAML and application logic created for Silverlight applications can
be used in Windows Presentation Foundation (WPF) applications with no changes.

The Silverlight player is also known as a plug-in, or control — these terms are used interchangeably
in the book, and you will see these variances when others talk about Silverlight as well. The player
is a completely stand-alone environment; there is no dependency version of the .NET Framework on
the client or the server to run Silverlight applications. When developing applications for Silverlight,
you use tools (like Visual Studio 2010 or Expression Blend) that require or are based on a version

of the Common Language Runtime (CLR), but the compiled Intermediate Language (IL) of your
Silverlight applications that is parsed by the Silverlight player is not using a specific client version of
the .NET Framework. The BCL for Silverlight is entirely self-contained within the player itself. The
XAML and BCL used by the Silverlight player are both subsets of their counterparts that are used
when building full desktop-based WPF applications. In Silverlight 4, the features in Silverlight and
the CLR 4 version of WPF are coming closer together, which gives you more flexibility when design-
ing applications that you intend to target both run times.

You might ask why Microsoft is pushing out another web-based, client-side technology when there
is already ASP.NET, ASP.NET AJAX Extensions, and, with CLR 4 and Visual Studio 2010, specific
project types that target Dynamic Data, MVC, and the ASP.NET AJAX Framework. The simple
answer is that users are demanding an even richer experience on the Web. Even though AJAX does
a lot for improved user experience — the postback nightmare of Web 1.0 is finally going away — it
does not do enough. There is demand for a richer, more immersive experience on the Web. This
has been accomplished with WPF on the Windows client side. WPF provides a unified approach to
media, documents, and graphics in a single run time. The problem with WPF is that it is a 30-MB
run time that runs only on the Windows OS. Microsoft needed to give the same type of experience
that WPF offers, only in a cross-platform, cross-browser delivery mechanism. So what Microsoft
did was take the concept of a plug-in model like Adobe Flash and mix it with the .NET Framework
and the WPF declarative language in XAML, and they came up with a way to develop highly rich,
immersive Web 2.0 applications.

For a good comparison of what is in WPF and not in Silverlight 4, check out
this link:

http://msdn.microsoft.com/en-us/library/cc903925(VS.96) .aspx

The big picture of Silverlight from an architecture perspective is shown in Figure 1-1. Each area is
covered in more detail as you read along in the book.

http://msdn.microsoft.com/en-us/library/cc903925%28VS.96%29.aspx

4 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

As mentioned earlier, Silverlight can conceivably be fully supported across multiple browsers and
operating systems. The current status for browser and OS support is identified in Table 1-1.

e a\
.NET for SIIverIight MS AJAX
Data WPF WCF Library
LINQ Controls REST POX
XLINQ Data Binding RSS/ATOM | JSON
XML Layout SOAP
Editing
JavaScript
DLR BCL Engine
Iron Python Generics
Iron Ruby Collections
Jscript Cryptography
Threading
CLR Execution Engine
A L/
p XAML
Ul Core Inputs DRM
Vector Text Keyboard Media
Animation Images Mouse
Ink
Media Deep Zoom
VC1 Images
H.264
WMA
AAC
MP3
Presentation Core
N J
Browser Host
Integrated DOM Application Installer
Networking Stack Integration Services
FIGURE 11
TABLE 1-1
OPERATING SYSTEM BROWSER SUPPORTED
Windows Vista Windows Internet Explorer 7, 8
Windows Server 2008 Firefox 2, 3

Google Chrome

Silverlight Versions Explained | 5

OPERATING SYSTEM BROWSER SUPPORTED

Windows 7 Windows Internet Explorer 8
Firefox 2, 3
Google Chrome

Windows Server 2008 R2 Windows Internet Explorer 8
Google Chrome

Windows XP SP2, SP3 Windows Internet Explorer 6, 7, 8
Firefox 2, 3

Google Chrome

Windows Server 2003 Windows Internet Explorer 6, 7, 8
(excluding IA-64) Firefox 2, 3

Google Chrome
Mac OS 10.4.8+ Firefox 2, 3

Safari 3

Safari 4

SILVERLIGHT VERSIONS EXPLAINED

If you have been following Silverlight, you might be a little confused over the versions that are available:

>

Silverlight 1.0 — Released in September of 2007, this is the first version of Silverlight and
supports the JavaScript programming model. This means that your language choice is simple:
JavaScript. JavaScript is used to interact with Silverlight objects that are executing within the
Silverlight player in the browser. There is no managed language support in Silverlight 1.0,
which means no BCL for Silverlight 1.0.

Silverlight 2 — Released in late 2008, Silverlight 2 brought the ability to create RIA applica-
tions with the familiar code-behind programming model used in Windows Forms, ASP.NET,
and WPF development. Starting with Silverlight 2, you can use any CLR language to code
Silverlight applications, and you have the power of the .NET Framework to interact with
Silverlight objects. The ability to use the base class libraries and your .NET language of choice
to build Silverlight applications truly revolutionized the way developers and designers looked
at this new RIA platform.

Silverlight 3 — Released in mid-2009, Silverlight 3 included extensive enhancements to
Silverlight 2 for building line-of-business applications as well as richer support for graphics
and media.

6 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

> Silverlight 4 — Released in April of 2010, Silverlight 4 continues with the focus on line-of-
business—focused applications, and a more feature-complete RIA Services implementation is
included, as well as a richer feature set for accessing local filesystem and COM resources in
richer, out-of-browser experiences.

Silverlight uses an auto-update model for the player. When a new version of Silverlight is released,
the player running in the browser is updated to the latest version automatically. There is also the
commitment of backward compatibility, so your applications will not break when the player moves
from version 1.0 to 2, or 2 to 3, and so on.

APPLICATION DEVELOPMENT SCENARIOS

When building Silverlight applications, you are likely to use one of the following scenarios:

> Your entire application is written in Silverlight, the player takes up 100 percent of the height
and width of the browser, and all Ul interaction is done through Silverlight.

> You implement an “Islands of Richness” scenario, in which your application is an ASP.NET
application (or any other type of HTML-rendered application), and you build islands of your
UI with Silverlight. Thus, you add richness to your web applications but you don’t build the
entire interaction using Silverlight.

> You create an out-of-browser (OOB) experience, with the specific need to use elevated per-
missions on the client machine. This means that you create more of a desktop-like experience
and you can access the local filesystem, use COM interoperability, keyboard in full screen
mode, and other out-of-browser—only features.

> You are building a mobile application that is targeting the Windows 7 Series Phone.

As the adoption of Silverlight grows, the type of application you decide to build most likely
depends on the features you need. If you are slowly introducing Silverlight into your applications,
the “Islands of Richness” scenario will be used. If you are going all out and need to access the My
Documents folder of the client machine, you’ll end up building an OOB application.

The area surrounded with the box in Figure 1-2 is an example of an “Islands of Richness” scenario
in which Silverlight has been added to an existing web application. In this case, the image strip

is a Silverlight control that plays a video in-page when an item is clicked. Silverlight enhances the
“Islands of Richness” scenarios by allowing multiple Silverlight plug-ins and an easy way to com-
municate with each other in the browser. This also works across browsers; for example, a Silverlight
application running in a Firefox browser can talk to a Silverlight application running in Internet
Explorer 8 on the same machine.

Figure 1-3 shows an OOB experience. Notice that there is no chrome around the browser shell, giv-
ing the application a desktop-like experience.

Figure 1-4 shows a typical Silverlight application that takes up 100 percent of the viewable browser
area, but is not running outside of the browser.

Application Development Scenarios | 7

R T T
8, [Login) [P view cart S five chat <o .ol [Al Sites -]
|l Site ,

DOANIIFTE CEDUTCAFE CHDONDT DESAIIDCFES WHAT'E HAT BRIV My 16 Ahoutlle Careerc

1

FREE TRIAL ll

Download fully functional
trial versions of our
software

"
S

$23dS AVY-X

I -
- 1 =
NetAdvantage hogitics NetAcvartage for Siveriohe LEARN
| Data visualzation HIRTETH / et walization opens oo i ;
F Webrbased VOUF s to Video tutoriale, Quick =
— i) uasrmm.d,..d‘“,u i ““'Nlﬂhom and Starts and complete
Mcrosofy bmamigmmtm sample apgplications

BUY

& naw package

RENEW

Tha ana you have

& [sthdvantage'

i e Ao, We Bowtes,
As the world leader of user interface

I k tosls and User E i
exparts, Infragistics empowers
developers to cn Uls that are the
foundatian far ping killer apps—
applications with extrema functionality,

Education and Lagal [Quinc P&:%' Shvarigh

Leamn More

Developer Support C L& ate, O with Quince Fro A
Get help with sur UL tools complete usability and the “wowfactar!
L ‘Growing out of Quince, our free, interactive Ul patterns and practices catalog, comes
£n Mo ']
— Quince Pro to enable teract and UX pr to Mo JNET platform is off-limits—we have
fe lize and better collab and 0 with their impl ion teams. UI componant toolsats for Windows
e Watch the video... Forma, WPF, ASP.NET and Silverlight. Cur
Y h . superior support, Ul testing toals,
Accelerate your project! & Learn More training and censulting services ensure
Laam Mocs Salel —— your success like no others. Your ideas,
our powerful tools. great killer apps.

FIGURE 1-2

Home

Applicalion Name

Home

Home page contant

FIGURE 1-3

8 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

‘Q Quince

ABCDEFGHIJ LMHNOP RSTUYW

Action Links

link= inctead of buttane to minimize
visual noive, conserve sureen real
ta, or bo contrast with hattons to

EXPLO ATED

— .'5 Alphanumeric Filter Links
" T chowa lit of alphabetical links that
t n = o | filter the list with the words that start
o 4 1w v| With the selected character.

L] EXPLORE RELATED

Alternative Yiews

(Create multiple, altemative views of
the came interfsce that addrece

B competing design needs.

Active Filtering

Frahle penple to changs filbers on a
lasge sel of information and see Lhe
reailte activaly ipdate ae they do .

EXPLOWE BFLATED

Alternating Row Colors

i Alternate the background color of rows

to subtly differentiate each row from

SN surrounding rows.

EXPLORE RELATED

| Annotated Scrollbar
M| Provide an indicator of significant

sections in or near the scrollbar.

EXPLORE RELATED

filter by
Alignment
Analysis
Browse
Builders and Editors
Chart
Color
Commands

Consistency

FIGURE 1-4

GETTING THE SILVERLIGHT PLUG-IN

The first time you navigate to a web page that contains a Silverlight application, the Silverlight
player is not installed automatically; installation is similar to the Adobe Flash experience. There is a
non-intrusive image on the page where the Silverlight content would have rendered that gives a link
to download the player. Silverlight has two different prompts for installation — the standard install
and the in-place install.

In a standard install, the Get Microsoft Silverlight image tells you that you need to install Silverlight
to complete the experience on the web page you have arrived at. Figure 1-5 illustrates a page with
the standard install images.

Once you click on the Get Microsoft Silverlight Installation image, one of two scenarios takes place.
You are taken to the Silverlight Installation page on the Microsoft site (see Figure 1-6).

Or you are prompted to install Silverlight in-place with a download prompt, as shown in Figure 1-7.

Getting the Silverlight Plug-In | 9

'@ Infragistics Data Visualization forSi

ght - Yy indows Intemet Bxplorar

v |4 | x JEESEER

T

i Maps Hf Blogk =

= % Spaces
f v B v ® v [)Bage~ (§Tgoisv”

Install st
. Microsoft'Silverlight*
——

Done

& Intemet | Protected Mode Off H100% ~

FIGURE 1-5

2 o ot

—
@u # | it/ fwww microsoft.com/getsverlight/o

started/install/ defaultaspTv=4.0

{r Favortes | [T Get Siverlight | Microsoft Siverlight

w Siverlight

Install Microsoft Silverlight now
for a better Web experience

Click to sta

QUICK DOWNLDAD / 30 SECOND THETALL

Installation Instructions System Req)

=[] x |[= &g R

fd ~ B - L0 @ v Peocv Natetyv Tgokv @

1. Verity your system requirements

FIGURE 1-6

i Il Sliverlight

10 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

0% of Silverlight exe from download microsoftcom Co.. | = | B || E2
0 File Download - Security Warning 3
Getting File Infom)
Siveriight:exe fr Dw you wanl Lo run or save Lhis lile?
'Ei. time I iﬂ Name: Silverlight.exe
Downlozad to: Type: Application, 5.96MB
Ianster mle: Fom: download microsnft.com
[7] Cloae thia diald

potentially ham your computer. f you do not trust the source. do not

l@ 'While filea from the Intemet can be wachul, this filc type can
- fun or save this software. What's the risk?

FIGURE 1-7

After the Silverlight player is installed, you never have to install it again. Silverlight also has built-in
knowledge of updates, so once a new version of Silverlight is available, you are asked if you would
like to install the update to get the latest version of the player. Once you refresh the browser, the
Silverlight content is rendered correctly in the browser (see Figure 1-8).

1w Search web. Lol =) il 'i] v W v o heontes v '7 FiMaps v fHogr v 3 v omspwes & v
PR ﬁw:w-muwmmmw | 3 = B - b = ik Page (3 Taoh»

Inspiring Experiences

Historic Medal Counts: 2004 Olymples

NetAdvantage + Silverlig

rne i@ Intarnat | Protected Mode O H10% -

FIGURE 1-8

Getting the Silverlight SDK | 11

GETTING THE SILVERLIGHT SDK

To build Silverlight applications, you need more than the Silverlight player. If you have not
arrived at a page where you are prompted to install the Silverlight run time, you can easily get it
on the Silverlight SDK page. There are also supporting files, help files, samples, and quick starts
in the Silverlight Software Development Kit (SDK), which will give you the files you need to start
building Silverlight applications. To get the SDK, go to www.silverlight.net/getstarted/
default.aspx, as shown in Figure 1-9.

On the Get Started page, you can download all of the tools that you need to create Silverlight 4
applications:

> Silverlight run times for Mac and Windows operating systems
> Silverlight tools for Visual Studio 2010

> The latest version of Microsoft Expression Blend

> A trial version of Visual Studio 2010

More importantly, this page has links to dozens of videos, tutorials, and samples that will help you
learn Silverlight.

@—O' [& hitpe/ o sivertight.net |42] x |[= 8ing £ =

{r Favortes |55« | GetStarted : The Official _ | i Home: The Official M. X fi * B - L & v Pagew Satetyv locke @+

Home GeiStarted Leam Showcase Community Forums

Microsoft® Silverlight

Sitverlight is a powerful development platform for S - I I - h 4 I H l
ranting NOAQING, intaractive user i s

e ilverlight 4 Is Here!
nnline ne offline

Get started developing and designing

with Silverlight 4 today

@ vLearn why Sitvertight is right for you
£ Get Started with Silverlight

B silverliaht for Windows Phone

T e " Get Started Now

ﬁil Video Tutorials

W sitverlight Books

News [Blogs [

High Performance
i Sitverlight 4 Relaase Now - Windows Client Davelopar H ht Ul COI"ItI’O'S

avadabla! Roundup for 4/19/2010 T

FIGURE 1-9

http://www.silverlight.net/getstarted/default.aspx
http://www.silverlight.net/getstarted/default.aspx

12 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

BUILDING SILVERLIGHT APPLICATIONS

Now that you have the Silverlight player installed and you know how to get the tools for Visual
Studio that will give you the project templates, you can start building Silverlight applications. There
are several ways to create Silverlight applications:

>

Visual Studio 2010 Silverlight Project Templates — These include Silverlight Application,
Silverlight Navigation Application, and Silverlight Class Library, as well as Silverlight
Business Application.

Expression Blend 3 or Expression Blend 4 — This a tool in the Expression suite of products
from Microsoft that provides project templates for creating Silverlight and WPF projects and
helps create vector-based graphics for your Silverlight user interface as well as aids in screen
prototyping with the Sketch Flow feature.

Eclipse using the Eclipse Plug-In — There is an Eclipse plug-in for both Windows-based and
Apple Macintosh-based operating systems.

In the following chapters, you will get a better understanding of the details for how to build
applications using Visual Studio 2010 and Expression Blend.

SILVERLIGHT 4 TOUR

Silverlight 4 continues the improvements that Silverlight 3 delivered over Silverlight 2. In the next
sections, we’ll look at some of the more important features of Silverlight 4, including:

>

Y Y Y Y Y VY VY VY VY VY VY VYYy

XAML

.NET Framework support
Graphics and animations
Page layout and design
User interface controls
Audio and video, including capturing audio and video
Local data storage
Out-of-browser capability
Local filesystem access
Navigation Framework
Ink support

Network access

Data binding

Printing

Silverlight 4 Tour | 13

> Drag-and-drop
> Clipboard access

> Deep Zoom technology

Throughout the book, you learn about each of the items listed in much more detail. The follow-

ing sections are designed to set the stage for what’s to come as you explore the full capability of
Silverlight 4.

XAML

If you are not familiar with WPF, you are probably not familiar with XAML. Since the dawn of
Visual Studio, there has always been code and UI design separation. This means that a developer
can write code, while a designer just works on the design and layout aspects of an application.
This had never been realized, mostly because developers and designers were always using differ-
ent tools and different languages. With the introduction of XAML, however, there was finally a
unified markup that could not only describe what a control is and how it fits into a page, but also
how layout and, more importantly, the overall look and feel of the controls on a page are defined. A
designer can use XAML to create a mockup of a page or an application, and a developer can take
that XAML markup and use it directly in her project files. Because partial classes and code-behind
files in Visual Studio 2010 allow you to separate the code logic from the layout and control defini-
tions, using XAML gives you the opportunity to have this separation of the design from the code.

XAML elements are objects that map to classes in the Silverlight run time. So when you declare
a XAML TextBlock like this:

<TextBlock />

you are actually creating a new instance of the TextBlock class like this:

TextBlock t = new TextBlock() ;

The following code demonstrates a XAML snippet from a Silverlight application that shows Hello
World in a TextBlock:

<Canvas>
<TextBlock>Hello World</TextBlock>
</Canvas>

The next code listing shows how the XAML can get more complex, demonstrating adding ani-
mations to the TextBlock element. In this example, a RotateTransform is being applied to a
TextBlock control via a DoubleAnimation in a StoryBoard object. This action is triggered when
the Usercontrol loads, through the RoutedEvent canvas.Loaded. If you run the XAML, you will
see that the text Hello World rotates in a 360-degree circle.

In Chapter 18, you learn how animations work in Silverlight and how they are
used to bring your application to life in the Silverlight player.

14 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

<StackPanel Margin="4"
HorizontalAlignment="Center"
Orientation="Horizontal">
<TextBlock Width="200" Height="150"
FontSize="24">Hello World

<TextBlock.Triggers>
<EventTrigger RoutedEvent="Canvas.Loaded">
<EventTrigger.Actions>
<BeginStoryboard>
<Storyboard BeginTime="0"
RepeatBehavior="Forever">
<DoubleAnimation
Storyboard.TargetName="rotate"
Storyboard.TargetProperty="Angle"
To="360"
Duration="0:0:10"/>
</Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
</TextBlock.Triggers>

<TextBlock.RenderTransform>
<RotateTransform x:Name="rotate"

Angle="0"
Centerx="300"
CenterY="200"/>

</TextBlock.RenderTransform>

</TextBlock>
</StackPanel>

In Appendix A, you can gain more insight into XAML and how you can use it to define and cre-

ate your Silverlight applications. You will also get your fair share of XAML throughout the book,
because it is how you create most of the examples and applications that we have created. Tools like
Microsoft Expression Blend and Visual Studio 2010 are all Rapid Application Development (RAD)
tools that you can use to create your Silverlight applications. Besides using Expression Blend or
Visual Studio 2010, you can look to other XAML tools like XAMLPad or Kaxaml to help you learn
XAML. In Chapter 2, you will learn more of the specifics on building Silverlight applications using
Visual Studio.

.NET Framework Support

A key aspect of Silverlight, and probably the most exciting aspect of this technology, is its support
for the CLR and BCL of the .NET Framework. Although these are not the exact set of class libraries
you are familiar with using on the desktop, and the CLR might handle memory management and
optimizations slightly differently than it does on the desktop or server, they do provide the funda-
mental capabilities of the .NET Framework for your use in building rich Silverlight applications.

Execution of content targeting the Silverlight player is handled by the CoreCLR. The CoreCLR
is a smaller, refactored version of the CLR used in full .NET desktop applications. Although the

Silverlight 4 Tour | 15

Microsoft Intermediate Language (MSIL) is exactly the same between the CLRs, the CoreCLR
is stripped of the unnecessary scenarios that are not needed for Silverlight 3 development. The
CLR is still responsible for managing memory in Silverlight applications, as well as enforcing the
common type system (CTS). Some examples of the differences in the CoreCLR versus the full
CRL are:

> The JIT Compiler in the CoreCLR is enhanced for fast startup time, while the full CLR is
enhanced for more complex optimizations.

> In ASP.NET applications, the garbage collection mode is tuned for multiple worker threads,

whereas the CoreCLR is tuned for interactive applications.

Both the CoreCLR and CLR can run in the same process; therefore, for example, you can have an
embedded Silverlight player running in an Office Business application that also includes a full .NET
3.5 plug-in. The isolation of the CoreCLR is why you can run Silverlight applications on machines
that do not have any versions of the NET Framework installed; this is further highlighted by the
fact that Silverlight can run on Macintosh operating systems.

The namespaces that contain all of the classes that you interact with in your Code window are the
Base Class Libraries, as you have learned. The Silverlight BCL does not contain namespaces and
classes that do not make sense for client development, such as code-access security, ASP.NET Web
Server—specific classes, and many others.

Graphics and Animations

A big part of why Silverlight is an exciting technology is that it provides a rich, vector-based draw-
ing system as well as support for complex animations. Some key features include:

> Perspective three-dimensional (3D) graphics
Pixel-Shader effects, including Blur and DropShadow
Bitmap Caching to increase the rendering performance

Animation effects like Spring and Bounce

Y Y VY

Local font usage for rendering text

For vector-based drawing, Silverlight supports Geometry and Shape objects that include support for
rendering shapes, such as ellipse, line, path, polygon, polyline, and rectangle. These classes give you
the ability to render any type of visual display. For example, the following XAML displays an image
in its normal, square shape:

<Canvas>
<Image
Source="Images/elk.jpg"
Width="200" Height="150">
</Image>
</Canvas>

16 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

Using the E11ipseGeometry class, you can clip the image into whatever shape you desire. This
XAML clips the image into an oval:

<Canvas>
<Image
Source="Images/elk.jpg"
Width="200" Height="150">
<Image.Clip>
<EllipseGeometry
RadiusX="100"
Radiusy="75"
Center="100,75"/>
</Image.Clip>
</Image>
</Canvas>

The results are shown in Figure 1-10.

8] |

g Beped
)| Search web ,Cl-+ B - ?. - a; v v o Fovertes v / HMaps w {Blogh = [v fSpxes & 0 7
£ 40 | 48 Test Page For SilverlightApplication? [} fo v B v d v [:rBage v {FTools v

& Local inrenet | Protected Mode: Off T Ri0% -

FIGURE 1-10

Once you render your geometries or shapes into something meaningful, you can use Brushes,
VideoBrushes, or Transforms to further give life to your Ul rendering. The following XAML takes
a basic TextBlock and adds a LinearGradientBrush for some nice special effects:

<TextBlock
Canvas.Top="100"
FontFamily="Verdana"
FontSize="32"
FontWeight="Bold">
Linear Gradient Brush
<TextBlock.RenderTransform>
<ScaleTransform Scalevy="4.0" />
</TextBlock.RenderTransform>
<TextBlock.Foreground>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<GradientStop Color="Red" Offset="0.0" />
<GradientStop Color="Blue" Offset="0.2" />
<GradientStop Color="Green" Offset="0.4" />
<GradientStop Color="Olive" Offset="0.6" />
<GradientStop Color="DodgerBlue" Offset="0.8" />
<GradientStop Color="OrangeRed" Offset="1.0" />

Silverlight 4 Tour | 17

</LinearGradientBrush>
</TextBlock.Foreground>
</TextBlock>

You can also use an TmageBrush to paint an image on your TextBlock, as the following code

demonstrates:

<StackPanel>
<!--TextBlock without an ImageBrush -->
<TextBlock
FontSize="72"
FontFamily="Verdana"
FontStyle="Italic"
FontWeight="Bold">
Rhino Image
</TextBlock>

<!--TextBlock with an ImageBrush -->
<TextBlock
FontSize="72"
FontFamily="Verdana"
FontStyle="Italic"
FontWeight="Bold">
Rhino Image
<!-- Add an Image as the foreground -->
<TextBlock.Foreground>
<ImageBrush ImageSource="Images/rhino.jpg"
Stretch="Fill"/>
</TextBlock.Foreground>
</TextBlock>
</StackPanel>

The results are shown in Figure 1-11.

Later in this section, you will see a videoBrush applied to text. In Chapter 18, we’ll cover graphics

and animations in full detail.

el geazpE | oy |) Live Search £ -

——
Erow | Seachwet Ry) vl @ S W v Favaites o [@ Meps m (Bleal v S S Smes v @
22| 8 Test Page Fos Sitvehghiapphcation | = B = & = [rPage~ GiTock=

Rhino Image
Rhino Image

Dane €L Local intranet | Protected Mode: OFf Hik -

FIGURE 1-11

18 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

Page Layout and Design

Silverlight includes several options for doing rich, resolution-independent layout using a canvas,
DockPanel, Grid, StackpPanel, and WrapPanel element. These five major layout panels can be
described as:

>

canvas — An absolute positioning panel that gives you an area within which you can posi-
tion child elements by coordinates relative to the canvas area. A Canvas can parent any
number of child canvas objects.

DockPanel — Used to arrange a set of objects around the edges of a panel. You specify
where a child element is located in the DockPanel with the Dock property.

Grid — Similar to an HTML table, it’s a set of columns and rows that can contain child
elements.

StackPanel — A panel that automatically arranges its child elements into horizontal or ver-
tical rows

WrapPanel — Allows the arrangement of elements in a vertical or horizontal list and has ele-
ments automatically wrap to the next row or column when the height or width limit of the
panel is reached.

Once you decide how you are going to lay out your page using one of the layout types, you can

use other means of positioning individual elements as well. For example, you can change margins,
set the zorder or Border of an object, or perform RotateTranforms to change the position of an
object. Chapter 5 covers all layout options in greater detail. Here we’ll look at the canvas object and
how it behaves.

The canvas essentially becomes the container for other child elements, and all objects are positioned
using their X- and Y-coordinates relative to their location in the parent canvas. This is done with the
Canvas.Top and Canvas.Left attached properties, which provide the resolution-independent pixel
value of a control’s X- and Y-coordinates. The following code shows a canvas object with several
child elements absolutely positioned within the canvas:

<Canvas>

<Rectangle

Canvas.Top ="30"
Canvas.Left="30"
Fill="Blue"

Height="100" Width="100"/>

<Rectangle

Canvas.Top ="75"
Canvas.Left="130"
Fill="Red"

Height="100" wWidth="100"/>

<Ellipse

Canvas.Top ="100"
Canvas.Left="30"
Fill="Green"

Height="100" Width="100"/>

</Canvas>

Silverlight 4 Tour | 19

Figure 1-12, demonstrates the location of the objects in the canvas.

®® Bz 4834/SibvelightApplication3TestPage aspx | 43] x) tive Secrch £~
= — —
D) wo | Search web. .Cl_vl+) » @ ~@] % * M v kFawveites v / [T HMaps v fBlogh v [v MSpaces &8 O 7

2 & |8 TestPage For Sierlightapplcation3) B » @ v [yrage~ (iTools v ”

______________ e a-

a

Done € Local intrenet | Protected Mode Off R10% ~

FIGURE 1-12

In the following example from the SDK, you can see how a DockPanel can be configured to return
the results shown in Figure 1-13:

<StackPanel x:Name="LayoutRoot" Background="White">
<TextBlock Margin="5" Text="Dock Panel" />
<Border BorderBrush="Red" BorderThickness="2" >
<controls:DockPanel LastChildFill="true"
Height="265">
<Button Content="Dock: Left"
controls:DockPanel .Dock ="Left" />
<Button Content="Dock: Right"
controls:DockPanel.Dock ="Right" />
<Button Content="Dock: Top"
controls:DockPanel.Dock ="Top" />
<Button Content="Dock: Bottom"
controls:DockPanel .Dock ="Bottom" />
<Button Content="Last Child" />
</controls:DockPanel>
</Border>
</StackPanel>

To test out the above code using the DockPanel, you need to install the
Silverlight Control Toolkit. You can get this on the same page that you down-
load the Silverlight Tools for Visual Studio at http: //silverlight.codeplex
.com/Release/ProjectReleases.aspx?ReleaseId=36060.

http://silverlight.codeplex
http://silverlight.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=36060

20 | CHAPTER1

INTRODUCTION TO SILVERLIGHT

- ® £ C\Users\j o Studio 2008\Projec ghtApplice v|"y # BF? Live Search DL
w F | 8 Sitvedig fi 5 £~ B ~ [0 d v Pagew Safety~ Took~w @~ ~
Dock Panel
Dock: Top
Dock: Laft Last Child Dack: Right
Dock: Bottom
Done @ Internet | Protested Mode: On R100% -
FIGURE 1-13

In Figure 1-13, notice the position of the elements based on the TextBlock and Border controls that
wrap the DockPanel in the XAML.

User Interface Controls

Silverlight adds an even greater number of controls to the Toolbox for creating user interfaces. The
Toolbox in Visual Studio 2010 is now filled with controls that can be dragged onto forms to build
the user interface. The following controls are included for use by the core Silverlight 4 player:

AutoCompleteBox

Border
Button
Calendar
Canvas
CheckBox

ComboBox

ContentControl

DataGrid
DataPager
DatePicker

DockPanel

Ellipse

Frame

Grid
GridSplitter
HyperlinkButton
Image

Label

ListBox
MediaElement
MultiScaleImage
Password

ProgressBar

RadioButton
Rectangle
ScrollBar
ScrollViewer
Slider
StackPanel
TabControl
TextBlock
TextBox

TreeView

Silverlight 4 Tour | 21

In addition to the aforementioned controls, the Silverlight Toolkit, which is a separate download
from CodePlex, contains several very useful additions to the core list.

When working with any of the controls, remember that they are just like any other control model:
The XAML controls in Silverlight can be instantiated in code, and properties can be retrieved or
set on them. Over the next several chapters, you learn about the controls and how they can be used
with Visual Studio 2010 or Expression Blend.

Using Media in Silverlight

One could argue that the entire reason for Silverlight was to provide rich, multimedia experiences on
web pages, which essentially means audio and video on web pages. If you take a look at the top 100
trafficked websites on the Internet, almost all of them have video playing on the home page or use
video prevalently throughout. Silverlight 4 continues to add first-class media capability to the player.

Adding Video to Web Pages

To add video or audio to a web page, set the Source property on the MediaElement object. The fol-
lowing code demonstrates playing the video file car.wmv automatically when the canvas is loaded:

<Grid x:Name="LayoutRoot" Background="White">
<MediaElement Source="Images/videol.wmv" />
</Grid>

The source property is the URI of a valid video or audio file. In the preceding code example, the
source file is located in the deployment directory of your Silverlight application. Your media files
can be located in various locations, including the website folder structure you are running the page
from, or from a remote site. In either case, in order to maintain cross-platform support, you must
use “/” in place of “\” in your URIs. For example:

<MediaElement Source="..\..\car.wnv"></MediaElement>
should read:
<MediaElement Source="../../car.wnv"></MediaElement>

If the source property points to a file on a Windows Media Server using the MMS protocol, the player
automatically attempts to stream the video down to the client. The default behavior is a progressive
download, which means that the audio or video begins playing immediately and background-loads as
you are playing the media. The drawback to progressive downloads is that even if you pause the video,
it still downloads the media file, even if you never intended to continue playing it. With streaming
media, the only data that is downloaded is the data that you actually play, which is a more efficient use
of network resources.

Supported Audio and Video Formats

The MediaElement supports the Advanced Stream Redirector (ASX) playlist file format, as well as
the audio and video formats listed in Table 1-2.

22 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

TABLE 1-2

VIDEO FORMATS

WMV1: Windows Media Video 7
WMV2: Windows Media Video 8
WMV3: Windows Media Video 9

WMVA: Windows Media Video
Advanced Profile, non-VC-1

WMVC1: Windows Media Video
Advanced Profile, VC-1

H.264 — Can only be used for

AUDIO FORMATS

WMA 7: Windows Media Audio 7
WMA 8: Windows Media Audio 8
WMA 9: Windows Media Audio 9
WMA 10: Windows Media Audio 10

AAC: Advanced Audio Coding — Can only be used for progressive
download, smooth streaming, and adaptive streaming. AAC is the
LC variety and supports sampling frequencies up to 48 kHz.

MP3: ISO/MPEG Layer-3 with the following features:

progressive download, smooth
streaming, and adaptive stream-
ing. Supports Base, Main, and
High Profiles.

—Input — ISO/MPEG Layer-3 data stream
—Channel Configurations — Mono, stereo

—Sampling Frequencies — 8, 11.025, 12, 16, 22.05, 24, 32, 44.1,
and 48 kHz

—Bitrates — 8—320 Kbps, variable bitrate

—Limitations — “Free format mode” (ISO/IEC 11172-3, subclause
2.4.2.3) is not supported.

Local Data Storage

Using the isolated storage concept, which behaves the same as it does in the full NET Framework,
you can use a client-side cache location to store data. This means that you can take commonly
needed data, and, instead of always having to go back to the server to retrieve it, you can store

it locally and access it locally. Examples might be a list of states or countries, or Buddy Lists for
instant messenger clients. This data is commonly needed for fast access but does not change often
enough to warrant constant round-trips back to the server to retrieve it.

By default, Silverlight gives you 1MB of local storage. This can be increased by prompting the user
to allow for more local storage or can be accessed via the Silverlight Configuration screen. As its
name implies, this is isolated storage, so you cannot access the end user’s filesystem or do anything
that would break the partial trust sandbox that Silverlight runs in. Storage is granted per applica-
tion, so, for example, you might have www.someapp . com, which is using 10MB of storage, and
another application running on the same client computer from a different domain that has its own
20MB of isolated storage. The storage areas are independent of each other; there is no limit to the
number of applications that can have isolated storage on a client machine.

Out-of-Browser Experiences

With the enhanced OOB capability in Silverlight, an end user can install your application to the
desktop on his or her Windows-based or Apple Macintosh computer. There is no need to install any
special assemblies or controls to make this work — it is part of the native Silverlight experience.
Using APIs that detect whether an application is running outside of the browser, and that check for
the network connected state, an OOB application can react intelligently based on its current state. If

http://www.someapp.com

Silverlight 4 Tour | 23

you build an OOB application, you can also use elevated permissions on the client machine, which
gives you the following features:

> Keyboard support in full screen mode
Offline DRM

HTML hosting

Notification window

Local filesystem access

Y VYV Y Y Y

Cross-domain access

In Chapter 9, you learn how easy it is to actually create this out-of-browser
experience and use the features I have mentioned above.

Local Filesystem Access

When running an application with elevated privileges in OOB mode, you can access the client
machine’s local filesystem. This is limited to the GetSpecialFolder enumeration of the My fold-
ers, such as My Documents, My Music, and the like. This enumeration does include folders like
Desktop. However, you cannot access the files on the desktop; you can access only the My folders.
In Chapter 9, you learn how to access the local filesystem in an out-of-browser application.

Navigation Framework

Silverlight includes two controls that enable complete browser-journal back/forward integration
with your application. Using the new Frame and Page controls, you can partition your views into
separate XAML files (instead of separate UserControl objects as you did in Silverlight 2) and navi-
gate to each view as simply as you previously navigated to a web page. The Navigation Framework
also allows you to implement deep linking support in your Silverlight application, which builds on
the SEO (Search Engine Optimization) enhancements added in Silverlight 3.

The following XAML shows the navigation control added to a UserControl:

<navigation:Frame x:Name="Frame"
Source="/Views/HomePage.xaml"
HorizontalContentAlignment="Stretch"
VerticalContentAlignment="Stretch"
Padding="15,10,15,10"
Background="White" />

And the following code demonstrates the Navigate method of the Frame class, which is how you
move from Page to Page:

private void NavButton_Click(object sender, RoutedEventArgs e)
{

Button navigationButton = sender as Button;

24 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

String goToPage = navigationButton.Tag.ToString() ;
this.Frame.Navigate (new Uri (goToPage, UriKind.Relative));

As well as Navigate, the Frame class includes other useful methods such as Navigated,
NavigationFailed, and NavigationStopped that give you complete control over the navigation life
cycle of your Page object. Chapter 4 talks more about the Navigation and Frame classes.

Annotation and Ink

Like WPF, Silverlight has full support for ink input in the player. Using the InkPresenter object,
you can give users an input area where they can use the mouse or an input device to handwrite.
Using the application interface for the InkPresenter object, the application developer collects the
Stroke objects that are written and persists them to a location on the server for later use. An exam-
ple of where ink might be cool on a web page is a simple blog, where text and ink can combine to
create a great visual output for whatever the blog is about. The XAML in the following code shows
how to create an InkPresenter object:

<InkPresenter x:Name="inkInput" Cursor="Stylus"
MouseLeftButtonDown="inkInput_MouseLeftButtonDown"
MouseMove="inkInput_MouseMove"
MouseLeftButtonUp="inkInput_MouseLeftButtonUp"/>

Notice that events are wired up for the various mouse behaviors. Each action of the mouse — the
Move, LeftButtonUp, and LeftButtonDown — has a method in the code-behind that acts on the

strokes of the input device. The following code provides an example of how to collect the strokes
from the InkPresenter:

private Stroke MyStroke = null;

private void inkInput_MouseLeftButtonDown
(object sender, MouseButtonEventArgs e)

inkInput.CaptureMouse() ;
StylusPointCollection
MyStylusPointCollection = new StylusPointCollection();
MyStylusPointCollection.Add
(e.StylusDevice.GetStylusPoints (inkInput)) ;
MyStroke = new Stroke (MyStylusPointCollection) ;
inkInput.Strokes.Add (MyStroke) ;

private void inkInput_MouseMove
(object sender, MouseEventArgs e)

if (MyStroke != null)
{
MyStroke.StylusPoints.Add
(e.StylusDevice.GetStylusPoints (inkInput)) ;
txtBlock.Text =
"" + e.StylusDevice.GetStylusPoints (inkInput) [0].X;
txtBlock.Text =
"" + e.StylusDevice.GetStylusPoints (inkInput) [0].Y;

Silverlight 4 Tour | 25

}

private void inkInput_MouseLeftButtonUp
(object sender, MouseButtonEventArgs e)
{
MyStroke = null;

Once you have the ink data collected, you can store it locally on the client machine, put it into a
database, or even save the ink as an image.

Accessing the Network

To access network resources in Silverlight, use the classes in the System.Net namespaces and the
System.Net .Sockets namespace. The namespace you choose depends on the type of network access
you are trying to achieve. For basic HTTP or HTTPS access to URI-based resources, you can use the
WebClient class in the System.Net namespace. Some examples of this type of network access are:

> Retrieving XML, JSON, RSS, or Atom data formats from a URI then parsing it on the client

> Downloading resources such as media or data to the browser cache

Using WwebClient, you can perform the types of asynchronous operations that are common in
browser-based applications. The following code demonstrates a simple method that grabs an image
file from a network resource and downloads it to the browser cache:

void DownloadFile(string imgPart)
{
WebClient wc = new WebClient();
wc .OpenReadCompleted +=
new OpenReadCompletedEventHandler
(wc_OpenReadCompleted) ;
wc.OpenReadAsync (new Uri("imgs.zip",
UriKind.Relative), imgPart);

If you need more flexibility in how you access HTTP or HTTPS resources, use the Ht tpWiebRequest
and HttpWebResponse classes.

If you need more direct and constant access to network resources or if you are working in a situa-
tion in which multiple clients are “listening” for the same server data, use the classes in the System.
Net.Sockets namespace. Although both sockets and webclient allow asynchronous communica-
tion using the TCP protocol, sockets gives you the ability to write push-style applications, where
the server can communicate with the client in a more client—server manner. Imagine the unnecessary
overhead when using basic AJAX timers (polling) to look for updated data on the server. If you were
using sockets instead of this type of timer-based polling, you would reduce the amount of wasted
bandwidth and would achieve tighter control of the data passing between the client and the server.

No matter how you choose to work with the network, both the system.Net and System.Net
.Sockets namespaces support the ability to access network resources from other URIs than the

26 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

originating domain. By default, a Silverlight application can always access resources from its origi-
nating domain. Using a policy file, an application can access resources from different domains from
the one containing its original URL. This cross-domain access is controlled by policy files that dic-
tate the type of network domain access an application has. For webClient requests, the same format
used by Adobe Flash is supported. The following code is an example of a crossdomain.xml file:

<?xml version="1.0"?>
<! DOCTYPE cross-domain-policy
SYSTEM "http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
<allow-access-from domain="*" />
</cross-domain-policy>

In Chapter 10, you are fully exposed to various ways of accessing network resources.

Data Binding

Similarly to the data-binding features in WPEF, Silverlight supports data-bound controls, XAML
markup extensions, and support for data context binding. Most of the time, your bindings are set
up in XAML, which is where the markup extensions come into play. In the following XAML, the
Text property of the TextBlock element uses the Binding markup extension to bind the Tit1le field
from the data source:

<TextBlock x:Name="Title"
Text="{Binding Title, Mode=OneWay}" />

The field Title from the original data source is retrieved from the data content of the control’s par-
ent element; in this case, the TextBlock could be contained in a canvas or Grid object. Once you
set the Datacontext property for the parent element, the data contained in that object is available
for binding to anything it contains. A more complete example of this data binding looks like this:

<Canvas x:Name="rootCanvas" Background="White" >
<TextBlock x:Name="Title"
Text="{Binding Title, Mode=OneWay }" />

<TextBlock x:Name="Name"
Text="{Binding Title, Mode=OneWay }" />
</Canvas>

You would then set the context in the code as follows:

LayoutRoot.DataContext = datalList;

The dataList object is an object that contains the data you are binding to the controls. In the case
of simple TextBlock objects, you must handle the navigation between elements yourself. If you
want a richer, tabular data display, use the Grid that is included with Silverlight. The XAML for the
DataGrid control is as follows:

<data:DataGrid x:Name="dataGridl"
Height="120" Width="450"
AutoGenerateColumns="True" />

http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd%E2%80%9D

Silverlight 4 Tour | 27

The same dataList object can be bound to the grid in code such as this:

dataGridl.ItemsSource = datalist;

All of the binding could be accomplished in code, but using the combination of XAML and code
gives you greater flexibility when you build Silverlight applications. An interesting area of data bind-
ing in Silverlight is where the data actually comes from. Since the Silverlight player is a complete
client-side solution, you are not creating connections to SQL Server or other data sources and then
dumping that data into a data set in your code-behind. You will use technologies like WCF to access
services on the Internet and then put the data you retrieve into objects that are bound to controls in
Silverlight. In Chapter 7, you learn about the various types of data access, how to interact with dif-
ferent data formats, and how the data-binding mechanism works in Silverlight.

Printing

One of the most requested features is the ability to print the contents of the Silverlight control. Using
the PrintDocument class’s Print method, you can print whatever content is in the Pagevisual
property. By setting the Pagevisual property to the root visual element, you can print the entire
Silverlight control. Or by setting Pagevisual to the named UTElement in the XAML of your page,
you can print a portion of the Silverlight control.

Drag-and-Drop

Another highly anticipated feature of Silverlight 4 is its ability to handle a Drop event on a control.
Using the DragEventArgs class, you can handle the following events when A11owDrop is set to True
on any UIElement:

» DragEnter
» DragLeave
» DragOver
> Drop
This means that you can enable scenarios like allowing users to drag multiple files from their My

Documents folder onto a Silverlight upload application or allowing users to drag-and-drop pictures
from My Pictures onto a photo-editing application built in Silverlight.

Clipboard Access

You can now programmatically access the shared Clipboard object to Get or Set Unicode text infor-
mation. It is important to note that in Silverlight, you are going to encounter a few differences from
the Clipboard access that you might be used to in WPF and Windows Forms:

> You can access only Unicode text. You cannot access bitmap objects or streams.

> The end user is prompted one time per session to allow for access in partial trust mode,
which is the default experience of a Silverlight application.

> Clipboard access is not valid from a Loaded event handler or from a constructor and access
attempts throw exceptions.

28 | CHAPTER1 INTRODUCTION TO SILVERLIGHT

Deep Zoom Graphics

Deep Zoom is a multi-scale image-rendering technology that partitions a very large image, or set
of images, into smaller tiles that are rendered on demand to the Silverlight player. When an image
is first loaded, it is in the lowest-resolution tiles. As the user zooms into the image using the mouse
wheel or keyboard, higher-resolution images are loaded based on the area that is being zoomed
into. To check this out yourself, take a look at the “CMA Be This Close” web site at yourself at
http://www.cmafest.com/silverlight/bethisclose/. Firefly Logic, a design consultancy,
built this application which lets users explore high-resolution images of their favorite country
music artists at the annual Country Music Festival held in Nashville, Tennessee. The wow factor
of Deep Zoom was shown off at Mix *08 in April 2008. In Figure 1-14, you can see the initial page
loaded into the browser.

@ 2009 CMA Music Festival | BE THIS CLOSE Scavenger Hunt - Windows Intemet Explorer bl s

@\)' |‘* hitpe/iv

Wi |9 2009 CMA Music Festival | BE THIS CLOSE Scaven...

w.cmafest.com/silverlight/bethisclose/ '| + | X | > Bing 2~

N2 3
&

i

Mon. Aug. 3ist 8/7c*

Done & Intemet | Protected Mode: On o~ R10% -

L

FIGURE 1-14

http://www.cmafest.com/silverlight/bethisclose/

Summary | 29

Once you start zooming in with the mouse wheel, you move to the higher-resolution images.
Figure 1-15 shows the detail of a portion of the larger image seen in Figure 1-14.

@ 2009 CMA Music Festival | BE THIS CLOSE Scavenger Hunt - Windows Intemet Explorer bl s

Je [* hittpe/ fwww.cmafest.com/silveriight/bethisclose/ v|4s| X [in: o ov|
) g [5ing

Wi | 2009 CMA Music Festival | BE THIS CLOSE Scaven...

. WATCH

Music !"l;;ﬁ\.rm.II|L 4 S
abc =k

2 Mon. Aug. 3ist 8/7c ¥

Done & Intemnet | Protected Mode: On o~ RI0% -

L -]

FIGURE 1-15

SUMMARY

Silverlight brings a lot to the table for RIA development. It has progressed from its original release
into much more than just a simple media player. Silverlight is a platform for developing rich line-of-
business applications that have the data and input capability of ASP.NET with the media and inter-
active capabilities usually reserved for Adobe Flex applications.

Building Applications
with Visual Studio

WHAT'’S IN THIS CHAPTER?

» Creating a Silverlight application in Visual Studio 2010

» Using the various tools and property editors available for
Silverlight projects

» Learning how the project structure and deployment works
with Silverlight

> How to attach a Silverlight application to an existing Silverlight
application

» Learning how partial classes and event handlers work
> Debugging a Silverlight application, including the steps for remote

debugging on an Apple Macintosh computer

Now that you have a grasp on what Silverlight is, and what it can offer you as an RIA devel-
oper, it’s time to get into the details of building Silverlight applications.

CREATING A BASIC SILVERLIGHT APPLICATION

The best way to understand how Silverlight works in Visual Studio is by building an applica-
tion, so go ahead and open up Visual Studio 2010.

32 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

y You’ll notice that Visual Studio 2008 and earlier versions are not mentioned
when discussing an IDE for building Silverlight 4 applications. Microsoft made
a decision to support only Silverlight 4 in Visual Studio 2010, so you cannot
use an earlier version of Visual Studio to design or compile Silverlight 4 appli-
cations. Note that you can multi-target with Visual Studio 2010 — you can
choose to target a Silverlight 3 or Silverlight 4 application. You see where that
comes in a little later in this chapter.

Once you’ve started Visual Studio, go ahead and start a new project. You can create a new project
in one of several ways, highlighted in Figure 2-1:

> Select File &> New Project from the main menu.
> Hit Ctrl+Shift+N on your keyboard.

> Click New Project from the newly redesigned Start Page.

o Stant Page - Micrasoh Vil Studss
[#ue &dn View Debug Teasm Data Tock dschaectwe Test Anshge Window Heip

Hew * | &) Projes PR - e— e NS REnEE s .
Open * 9 Webtae. TRt AR
) Team Project... 2
Q File. oM
d e dior 2010 Uttimate

. o this test 1o add i ko the
@ Seen ClilShaft+§ .

Get Started Guidance and Resources | Latest News

Build

Organize Your Project
Create s b e
coganize your tesm's plans,
code, tests, documents, and
reporty.

Eit Alt-F4 Recent Projects

Foead about: Creating a team
propect

" Create Your Product Backlog

Plan an lteration of Development

F) Close page after praject load =
] Show page an startup (1L

FIGURE 2-1

Once you perform one of those actions, you’re prompted with the New Project dialog. In the Installed
Templates pane (the left of the dialog), you should see Silverlight listed along with the other major
template categories under the default language that you have chosen. Once you select Silverlight,
you’ll see five project templates, as shown in Figure 2-2.

Table 2-1 describes each project type and its purpose.

Creating a Basic Silverlight Application | 33

FIGURE 2-2

TABLE 2-1
PROJECT TYPE

Silverlight Application

Silverlight Class Library

Silverlight Business Application

Silverlight Navigation Application

WCEF RIA Services Class Library

Silverlight Unit Test Application

| Recent Templates [el 4 = | Sart byz | Detauit Search Installed Templates
Installed Templates i Vg E
A] Sitvelight Application Visual C# P& T
4 Visual L= | | & hlank project far creating a rich internet
Windows I application using Sitverlight
. Cﬁ Sibverlight Class Libra Visual L=
Web i3 9 £l
Office
Cloud | sitveright Rusiness Application Visual C#
¥
Reporting
SharePuint = cfl Sitverdight Navigation Application Visual C#
Sitverlight ¥
Test mc WCF RIA Services Ulass Library Visual L2
WCF e
Workflow
Other Languages
Uther Project [ypes L
Databace
Modelina Proiects -
Online Templates
Hame HelluSilverlight
Luocation: huser s\.}munh\dutunn:uls\.visu;il studiv ZOID\ij.tL.b . Browse...
Sulution name: HelluSilverlight [¥| Creale direclory for solution
|| Add to source control

DESCRIPTION

Basic Silverlight application with a default MainPage . xaml
starting page that has no default content or navigation scheme

Standard class library project

Feature-rich Silverlight application that includes the WCF RIA
Services features as well as a default MainPage .xaml with a
built-in navigation

Basic Silverlight application that includes a MainPage . xaml
with built-in navigation as well as several navigation views

Standard class library project that includes additional refer-
ences to WCF RIA Services—specific functionality

Basic unit test stub project

For this very first application, do the following:

1. Select Silverlight Application from the New Project dialog.
2. Change the Name to HelloSilverlight.

3. Click OK.

34 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Once you click OK, you are prompted with the New Silverlight Application dialog, which has some
additional questions about the type of Silverlight application you want Visual Studio to create, as
shown in Figure 2-3.

Mew Sikverlight Application

Click the checkbox below to host this Silverlight application in a Web cite. Otherwise, a
test page will be generated dunng build.

[#] Hust the Silverlight application in a new Web site

New Web project pame:
HelloSitverlight. Web

New Web project type:

[ASP.NET Web Application Project -

Options
Silverlight Version:

[Sitverlight 4 -

[] Enable WCF RIA Services

[ok][coneel

FIGURE 2-3

Because Silverlight is a client technology that runs inside of a web browser, the initial question this
dialog is asking, Host the Silverlight application in a new Web site, lets Visual Studio know if you
want to create a Silverlight application plus an ASP.NET project that will host the Silverlight appli-
cation. If you uncheck this option, a stand-alone Silverlight project is created with no accompanying
web application.

@ If you create a stand-alone Silverlight application, or someone e-mails a
Silverlight project to you and you want to associate it with a new or existing
ASP.NET application, follow these steps:

1. Create a new ASP.NET project or open an existing one.

2. Add the Silverlight project to the solution by right-clicking on the solution
name and selecting Add = Existing Project from the context menu.

3. View the ASP.NET project’s properties by right-clicking the project name
and selecting Properties from the menu, by hitting Alt+Enter, or by selecting
the Project = Properties.

Once the Properties window is open, you'll notice a Silverlight tab on the left
side. If you select this tab, you’ll see various options for adding a new or existing
Silverlight project to the existing ASP.NET application.

In this case, make sure you leave the default values checked, and then click OK to create the solution
and projects.

Creating a Basic Silverlight Application | 35

In Chapter 8, you learn about the details of WCF RIA Services, which is also an
option in the New Silverlight Application dialog.

Once Visual Studio churns for a second to create the solution, based on your settings, you will see
something similar to Figure 2-4.

oo HelloSilverlight - Microzoft Vizual Studio o B
File Edit View Project Build Debug Team Data Tools Architecture Test Apalyze Window Help
e = - N REE . § BT IR R e R S [T

+ Solution Explorer

@ SEA]

Teolbox * 0 x
Common Sitverlight Controls

Rk Pointer - 5 [5d Solution HelloSitveslight' (2 projects)

O Border 2 (3 HelloSilverlight

(@) Button » [3d| Properties

CheckBox il “al References

g CombuBux = 4] App.xaml

85 [DataGirid f— & |d] MainPagexaml

= ’ L2 4 B HelloSitverlight Weh

Grid -

m 1 Edl Properties

Ed Image b = References

A Label Ba ClientBin

EE¥ ListBox g | ,E] HelloSitverdightTestPage.aspx
- B c e #] HelloSitverightTestPage.html
Al llilloy s Server Explorer 3] Silverlightjs
Data Sources :% Web.config

d @ s m 3

EXAML | el

=<UserControl x:Class="HelloSilverlight. MainPage'*
xmins="http://schemas.microsoft.com/winfx/20 -
xmins:x="http://schemas.microsoft.com/winfx/c
xmins:d="http://schemas.microsoft.com/expres

xmins:mc="http://schemas.openxmiformats.orc =
1% =« ¢ m »
[H | UserControl Lserlontrol b

[Design 11

Your project currently has no data

svurces associated with il Add a new
data source, then data bind items by

Add New Dale Suurce..

E Document Qutline cﬁ Sulution Explorer [gInT=ii=y

.:n Dala Svurces

I ErrorList B Output
Ready

FIGURE 2-4

Using Silverlight Designer for Visual Studio

At this point, you have created a basic Silverlight application. It doesn’t do anything yet; you will
add functionality later. This section looks at what Visual Studio offers for Silverlight developers,

as well as some of the details on how projects run inside of Visual Studio. As you have probably
noticed, Visual Studio 2010 has the same feel as previous versions and the same basic layout. I
have my Visual Studio set up with the default C# Developer settings, so on the right side, I see
my Solution Explorer and Properties pane, and in the main area of the screen I have the default
MainPage.xaml in a split view. Figure 2-5 highlights the various areas of Visual Studio as it per-
tains to Silverlight development.

36 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Toolbox Design Surface Zoom Silverlight Design Surface Split View Solution Explorer
\ |
ru HelloSilverlight - Microsoft \ﬁsun\%tudin LL“:" m

Dk Gt Moy, Broject; Qoild Debug Teom Dgto Jools Achitective, Test Aol Wondow lolp
i fol NG = 0= ST B [Debug | -8
=2 &3 (3 5l L 4 5 ' < i Publish | Creote Publish Setting:

Solution Explorer v4x

4 Common Silverlight Controls = 7 = | i

R ety i : 2 Solution ‘HelloSilverlight (2 prbjects)| ~

@ Burder 4 8 HelloSilverhight |

[3) Button 4 Properties P

¥l CheckBox ‘ » [References |2

=8 ComboBox 3] Appaaml |

£8 DataGrid 2] MainPagexaml

s R 4 B HelloSilverfight Web

o Gid p [Propertics =

K4 Image p =3 References

A Label » "7 bin

:; ListBox I\ J ChentHin e
Document Outline * 31X d L HelluSilverlight Sulutivn Properties -
a-UserControl = =

LGrid (LayoutRoot) i~ |

(Name) HelloSiverlight

3 = i Active config Debug|Any CPU
xmins="http://schemas.microsoft. com/winfx/2006/xamV/ = Description

ymins:x="hitp://schemas microsoft. com/winfu2006/xan =) Path C\Users\jasonb\dpcum
¥mins:d="http://schemas.microsoft. com/expressionble Startup project HelloSilverlight.
xinlnes me="hilp Mschemas opemnmifommals orgfmarkuog:

mclonorable=

WO w4 I
Grid (LayoutRoot) UserControl/Grid | 5 \

| (Name)

The name uf the solution file.

ﬂ Errorlist @ Output

Ready

Document Outline Data Sources Window Tag Navigator XAML Editor Properties Pane

FIGURE 2-5

Table 2-2 looks at these key areas and describes what purpose they serve.

TABLE 2-2

VISUAL STUDIO FEATURE DESCRIPTION

Silverlight Design Surface The Design Surface is the visual surface where you design the layout
for your application as well as drag controls or user controls from the
Toolbox to create the user interface for your application. Everything
displayed on the Design Surface is reflected in the XAML view.

Solution Explorer The Solution Explorer contains the Silverlight project(s) and the
ASP.NET web application projects.

Properties Pane Using the Properties pane you set property values on controls that

are selected on the Design Surface or in the XAML editor. Figure 2-6
highlights some of the key features of the Properties pane.

Creating a Basic Silverlight Application | 37

VISUAL STUDIO FEATURE DESCRIPTION

XAML Editor The XAML Editor is a synchronized XML view of the Design
Surface. The XAML Editor includes IntelliSense, auto-formatting,
syntax highlighting, and tag navigation.

Split View bar The Split View bar lets you control the relative sizes of Design view
and XAML view. You can also swap views, specify whether split
view is horizontal or vertical, and collapse either view.

Tag Navigator The Tag Navigator appears below the XAML view and lets you
move to any parent tag of the currently selected tag in XAML view.
When you move the mouse pointer over a tag in the Tag Navigator,
a thumbnail preview is displayed for that element.

Data Sources Window The Data Sources window allows you to drag any Entity Data Model
tables onto the design surface. This process creates the business
logic and data bindings automatically.

Document Outline The Document Outline window provides a hierarchical view of the
currently opened Design Surface.

Toolbox The Toolbox contains Silverlight controls and components that can
be dragged on the Design Surface or XAML Editor.

Design Surface Zoom The Design Surface Zoom control gives you the ability to zoom the
design surface down to 10% of its original size up to 20X its original
size. If the design surface is zoomed in, and horizontal or vertical scroll-
bars appear, you can pan to view parts of the design surface that are
off-screen by pressing the spacebar and dragging the Design Surface.
Note that in the lower left of the XAML Editor you can access the XAML
Editor Zoom control. The XAML Editor will zoom from 20 percent of the
original size to 400 percent of the original size of the displayed text.

@ Several interesting tools are available (all free, which is even better) that can
either belp you be more productive with XAML or help you learn/test out
XAML snippets:

> http://xamlcodesnippets.codeplex.com/ — This tool helps you create
XAML snippets as well as gives you a nice integration with Visual Studio to
insert XAML snippets into the XAML Editor.

> http://blog.nerdplusart.com/archives/
silverlight-code-snippets — This website has several really useful
XAML snippets, plus it is a great resource for learning various aspects
of Silverlight.

> http://kaxaml.com/ — This is a great tool that gives you a XAML Editor,
complete with IntelliSense, to write and test XAML.

http://xamlcodesnippets.codeplex.com/
http://blog.nerdplusart.com/archives/
http://kaxaml.com/
http://blog.nerdplusart.com/archives/silverlight-code-snippets

38 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Using the Properties Pane

As Figure 2-6 demonstrates, several features on the Properties pane help you modify, find, and navi-
gate to control properties.

Change Display and Search Preview
Control Add Control ~ Control of Selected
Name Events Properties Control
|
Pmppa?s v¢I‘| X
ﬂiﬂlbnlhnﬂnnl |
Sort by Property Source —

" Propprties ¥ Events

Display by Property Category == 4| U] | search x|

AlluF{Dmp] 2
Sort by PrOperty Name Rackground 1 [=FFIF3653 Eil
B System WindowsMedia Line |T|
1
Release <€ — Property Value

= g

BorderDrush
Borderlhickness
ClickMude

Clip

Command

aoa

Property Marker

a8aa0a
A

CommandFarameter

Content <€

Bt Property Name

. o+

=
B
m

Content [emplate
Cursur
DataContext
Effect
FlowDirection | eftTaRight
FontFamily Portable User Interface
1

Mormal

FontSize
Fontstretch
FontStyle
FontWeight

Mormal

MNormal

B oisck -]
o

1

0

Fureground

Grid. Column
Grid.CulurmnSpan
Grid Row

= [= I [s R = [w [= s [= (R = = |

FIGURE 2-6

New to the Silverlight Designer for Visual Studio 2010 are enhanced tools on the Properties pane that
make it easier to work with the richer visual features of Silverlight controls. As Figure 2-6 demonstrates,
the first column displays the property name, the right column is the property value, and new to Visual
Studio 2010 is the middle column, which contains the property marker. The property marker indicates
whether there is a data binding or a resource applied to the property. When you click the property
marker, you can open the Data Binding Builder or the Resource Picker. Figure 2-7 shows what the
property marker context menu looks like.

Table 2-3 shows each type of custom Property Editor and their description.

Creating a Basic Silverlight Application | 39

TABLE 2-3
PROPERTY EDITOR

Data Binding Builder

Resource Picker

Brush Editor

DESCRIPTION

The Data Binding Builder lets you create data bindings without typ-
ing any XAML. You can create bindings to resources, data contexts,
and element properties as well as apply value converters (see

Figure 2-8).

The Resource Picker lets you find and assign resources to proper-
ties in the Properties pane (see Figure 2-9).

The Brush Editor gives you a Ul similar to Expression Blend to set
colors and create gradients for objects (see Figure 2-10).

Propertiec * I x
Rutton puttonl
"5 Properties | # Events
%%Lm |Hsarrh :K|
AllowDrop a 1:‘ _'
Background 01 [l #FFIFRSY =]
BorderBrush B SystemWindows.M(- |
Resct Value 1
Release
0 Apply Data Hinding....
¥ Apply Resource...
Ddract Value to Resource... Dutton
Contentlem.. L[Resource.. ‘
Cursor =]
DataContext € Binding... d
FIGURE 2-7

Properties > 8.5
Button buttonl
[Properties | - Events
&%El D¢ Search *
Clip 12)
Command a
CommandPa.. O T
Content 4 FRutton
ContentTem.. 0 Resvurce.. -
Curzor o
¢ Source [ElernentMame) -
i Path
¢ Converlen
4 Options: [OneWay rrars)
Striny Furmat: [T NotifyOnValidationError
» [] ValidatesOnDataCrrors =
[7] ValidatesOnExceptions
Mode: [¥] ValidatesOnNotifyDataErrors
[(]M\Nay '| [T Include TargetMullValue
UpdateSourceTrigger [BindsUirectly 1 oSource
[D!fault - |
TTeight # 63
Horzontaldl.. # Left
HurizontalCo,.. 0 Center
nablad =1 i
tion Explorer [l
FIGURE 2-8

Before you go any further, take a look at the files in the projects that were created.

40 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

| Properties * 1 x
Button puttonl o Properties > R x
“f Properties 4 Events Button buttonl
gi 3l e/l | Search x | “f Properties £ Events
AllowDrop g B 4 copdliell |‘_\earch x|
Background L1 [=FF1F3853 (=] Alowbrop —— .
L Resource... =l
Background 11 I =FFLE3ES3 (]
Scarch p =5 [Tl Systern WindowsM:[2 |
Local — - A omDo @

Il BlackBrushKey ™ R EE— 07
G S u7
B N 132
A S 155

B #FHel/5u4 ”
Mo S s |
Key:]

im . A - - onToni I ’ .

FIGURE 2-9 FIGURE 2-10

Creating Silverlight Project and Web Application Project Files

When you create a new Silverlight solution, and you choose the default option of creating a Silverlight
project and a web application project to host the Silverlight project, Visual Studio generates a series of
different files in each project.

Table 2-4 describes the Silverlight project files that are created by Visual Studio.

TABLE 2-4
FILENAME DESCRIPTION
AppManifest.xml This is the application manifest file that is required to generate the . xap file.
Assemblylnfo.cs or This file contains the name and version metadata that is embedded into the
Assemblylnfo.vb generated assembly.
References mscorlib.dll
System.dll
System.Core.dll
System.Net.dll
System.Windows.dll
System.Windows.Browser.dl|
System.Xml.dll
App.xaml The App class is required by a Silverlight application to display the appli-
cation user interface. The App class is implemented by using App . xaml
and App.xaml.cs or App.xaml.vb. The App class is instantiated by the
Silverlight plug-in after the application package (.xap file) is created.
MainPage.xaml The MainPage class is used to create the user interface for the Silverlight

application. The MainPage class derives from UserControl.

Creating a Basic Silverlight Application | 41

Expression Blend and Visual Studio share the same project and solution file
structure, so any Silverlight project that is created in Visual Studio can be
opened in Expression Blend, and vice versa.

Table 2-5 describes the web application project files that are created by Visual Studio.

TABLE 2-5
FILENAME

AssemblyInfo.cs or
Assemblylnfo.vb

Client Bin folder

HelloSilverlightTestPage.aspx

HelloSilverlightTestPage.html

Silverlight.js

Web.config

DESCRIPTION

This file contains the name and version metadata that is embed-
ded into the generated assembly.

This is the deployment folder for the XAP file, which is created
when you build the application. The details of a XAP file are cov-
ered later in this chapter.

An .aspx file that is the default startup web page. The name of
this file is a concatenation of the name of the Silverlight applica-
tion project and the text “TestPage.aspx”.

An HTML file that is used to configure and instantiate the
Silverlight plug-in, which downloads and runs the Silverlight appli-
cation. The name of this file is a concatenation of the name of the
Silverlight application project and the text “TestPage.html”.

A JavaScript helper file that contains functions to initialize
Silverlight plug-in instances and functions for determining the
client’s installed version of the plug-in.

A website configuration file.

Using the Silverlight Design Surface

The split view by default will have the screen you are working with on the top half of the win-
dow, and the XAML for that screen on the lower half of the window. If you are coming from
Windows Forms or ASP.NET development, the spilt screen exists, but you may not be used

to a split screen by default. The main reason the split screen exists is that in previous versions
of Visual Studio, there was no WYSIWYG designer for Silverlight. When you created the Ul
for your application, it was all done by typing XAML. The design surface was considered a
Previewer rather than a drag-and-drop surface. Visual Studio 2010 is the first version of Visual
Studio that brings this RAD capability to building Silverlight applications. As you learned in
Chapter 1 and can further examine in Appendix A, XAML is a declarative markup language

42

CHAPTER 2 BUILDING APPLICATIONS WITH VISUAL STUDIO

that defines the user interface and binds the user interface to the code that drives the interactions

with the user. When designing screens, you can:

>

>

>

Drag controls from the Toolbox onto the design surface

Drag controls from the Toolbox onto the XAML Editor

Write the XAML in the editor to create the user interface

Because this chapter is focused on Visual Studio, I want to get across the RAD features of the tool.

Drag some controls from the Toolbox onto the design surface to create the Hello Silverlight application.

To make this happen:

1.

If the Toolbox is not showing, click the Toolbox tab on the left side of Visual Studio to
open it. For convenience, click the pushpin to pin the Toolbox open. Your IDE should
look something like Figure 2-11.

St

Fle Bt Vieu Pojet Buld Diwg Tem Osta ook Tt Apalyze Window Help

:E—arﬁﬁ_ﬂla SS9 = o L B 0ebug

E=in

iOakefFlEeslz2|00QuBa 3R :I? Publishe | Create Publish Settings = iah & =

Toolbox

& Commun Silverlight Conliols
Pointer
Border
Button
CheckBox
ComboBox
DataGrid
Grid
Image
Label
ListBox
RadicDutton

|
2
]
o
=
z
o
%
5
i

Rectangle
StackPanel
labLontrol
TedBlock

sl TextBox

Al Sitverfight Controls
Puinter

glel>EEuuUEEa>

I

.

Autol nmpleteHoy
Dorder
Button

Calendar

HEpom

FIGURE 2-11

MainPagexaml®
1

4] G

1Q Design 1 “myamL |—— DEM®
mc:Ignorable="d" +
d:Designieight="386" Jd:Designl =

<Grid x:Mamc=-"LayoutRoot" E.:EE
_(!User‘(entr‘olh

100% = ¢ mn

- B Grid (LayoutRoot) UserControl/Grid

Solution Explorer

Sl aEIEES
j Solution "HelluSilverlight' {2 projects)
4 3 HelloSitverlight
» [Zd Properties
» [=3 References
|| Appaaml
¢ 3] MainPagexaml
4 8 HelloSiverlight. Web
t [Propertics
» [z References
Ca ClientBin
= HelloSilverlightTestPage.aspx
|#] HelloSilverlightTestPage.html
.\;J Silverhightys
| Weh.config

£ sahhan baplorer [l

From the Toolbox, drag-and-drop a Button onto the design surface.

Using the mouse, drag the button to the upper left of the screen using the snap lines as a
guide. Figure 2-12 demonstrates what you should see.

Creating a Basic Silverlight Application | 43

4. Review the XAML in the split window. Note the Button element was added inside of the
Grid layout element. As you drop controls onto the design surface, the XAML is simultane-
ously updated.

<Grid x:Name="LayoutRoot" Background="White">
<Button Content="Button" Height="23"
HorizontalAlignment="Left" Margin="12,12,0,0" Name="buttonl"
VerticalAlignment="Top" Width="75" />
</Grid>
ew Project Buld Debug Tearm Data Fommet Tooks Archtecture Test Help
L e o)
I M Toolbox Solution Explorer
=« Common Silverlight Controls 1) e I e EI 5 E I =
5 Rk Poter "7 Salution ‘HelloSilverlight' (2 projects)
N O Border 4 {3 Hellosilverlight
:3, Button » [54 Properties
5 CheckBox » [References
= 1| Appxaml
=¥ ComboB =l
? 3 D::G(',dm ¢ |4] MainPagesami
8 ol 4 (A HelloSilverfight.Web
@ U Grid ¢ [Propertics
? Ed Image » [z References
Ll A Lobel £ ClientBin
EN ListBox = HelloSilverlightTestPage.aspx
® Rodiobutton |#) HelloSilverlightTestPage.html
.\;J Silverhight,s
] Rectangle i | Weh.config
B StackPanel
[T 1abControl L . n = i |‘ -
(Al TodBlock 18 0ssion_“# “gxamt [—— OBEE
ol mc :Ignorable="d"
el TedBox d;DesignHeight="30@" d:Designl -
Al Sitverlight Controls
k Pointer ¢Grid x:Mamc="LayoutRoot™ Bac(g]
B eCersistai £Button Content="Button" I—]
ol P | </Grids
Dorder <fUserControl>
Button 100% - 4 [Lm.| b
Calendar - 3 Button (buttonl) UserControl/Grid/Button |] solution beplorer [k
Ready
FIGURE 2-12
5. From the Toolbox, drag-and-drop a TextBlock onto the design surface and line it up under

the Button control using the snap lines.

6. Select the Button control with the mouse and press the F4 key on your keyboard. This brings
up the Properties pane for the Button control.

7. Change the Content property to Click Me! and press the Enter key as Figure 2-13 shows.
Note that this isn’t the Text or Caption property. Because XAML is based on the concept
of composable controls, you can embed almost any control inside of another control. The
“content” in this example is a string value. It could have also been a MediaElement control
or a ListBox control. You are not limited to strings as the content for controls.

a4 |

CHAPTER 2 BUILDING APPLICATIONS WITH VISUAL STUDIO

10.

(File Edt View Project Build Dehug Team Data Tools Architecture Test Analyze Window Help
JLJBﬂﬁuuuM o= L= P Debug - [
s =2 |08 "33 J Piiblish: | Create Publich Settings -

Sl P roperties

4 Commen Silverlight Controls :
k Puinler 0 =
Beicdar % Properties | ¢ Events

Poan TextBlock “EE 23 | Sedrch
]

CherkR ” [r—

LomboBex
" ContentTemplate Resnuree..
DataGrid

Grid

Image

Labsel
ListBox
RadicButton
Rectangle

) uILINIeq

Curser
DataContext
Effect
FlowDirection
FontFamily

FontSize

Rinding

B
n
|
o
&
g
&

»rEQuEEER

LeftToRight
Portable User |
1 |
L
StackManel = FontStretch Mormal e
. | i s

imleHE

Mormal

|__ r T FontStyle
esign —
it gn .~ EXAML OEEY rorweight
W TedB me : Ignorable="d" '}
o TertBo d:DesignHeight-"3¢8" d:Designl +
o All Silverlight Contrals Grid.Column
k Puinler [1¢Grid x:Namc=" anoutl‘{uﬂt Baclfgroi' Grid.ColumnSpan
= lick Mel™ He
E] AutoCompleteBox SHEIER) Contenta"c Grd K
i P <TextDlock leight="46" lio e
[E Dorder ¢/Grid> - Grid. RuwSpan

Rutton wo% - 4 [Lng] » Height
| Lalendar -|= sutton B % soiution Explorer BRla]

TabControl

_|
A,

Mormal

| R

5 &
.

§]

Fereground

[I w [R i = = [w (R = R g = R w A =

*

FIGURE 2-13

Now add some code the Button’s click event. You have several ways to do this in Silverlight.
Here is a brief list (later in the chapter, you see examples of how to add event handlers in
Silverlight):

> Click the Events tab on the Properties pane, find the corresponding event you want to
write code for, and double-click the event name.

> Double-click the control on the design surface to get to its default event.

> Type the event name in the XAML element and add a new event handler, as Figure 2-14
demonstrates. Selecting New Event Handler from the IntelliSense creates a default event
handler name. To get to the event handler, you can either hit the F7 key to jump to
code-behind, or right-click the event handler name and select Navigate to Event Handler
from the context menu. Use one of these methods to get to the event handler.

You should now be looking at the code-behind for this form. Add the following code to the
buttonl Click event handler:

textBlockl.Text = "Hello Silverlight World";

The next step is to build the application. Before doing a build, note the ClientBin folder in the
HelloSilverlight.Web project as shown in Figure 2-15. Now press the F6 key to build the solu-
tion. If you look in the ClientBin folder now, you’ll see something similar to Figure 2-16 — there
is a file named HelloSilverlight.xap in the folder. You learn what the XAP (pronounced
ZAP) file is a little later in this chapter.

Creating a Basic Silverlight Application | 45

1.

s=ainog eeq @ 200 wAwWnog G

| File Edit View Project Build Debug Tesm Data Tools Aschitecture Test Anshyze Window Help

D [mi=ie=ir paiee

MainPagexaml.cs*

'Bﬂﬂlxualq =0 - Q3o E| b [nehug

on Silverlight Conliols
Pointer
Border
Button
CheckBox
ComboBox
DataGrid
Grid
Image
Label
LictBox
RadicDutton
Rectangle
StackPanel
IabLontrol
TedBlock
TexBox

Al Sibverfight Controls
Puinter

Autol nmpleteHox

-]

Design 1

[l¢Grid x:Namc=

i Publish: |

MainPagexaml® 3

Textblock

Create Publish Settings

[=

EXAML |
mc:Ignorable="d"

d:DesignHeipght="388" J:DesignWidilh="408">

<Button Content="Click Me!" Clic

"LayoutRoot"” Background="

hite">
"" Height="23" HorizontalAlignme

o Bind event to a newly created method called ‘hutton]_Chick'. Lise ‘Navigate to Fvent Handler to &P =MNew Event Handler>

h="12,5¢

to the newly created method.

B

Calendar

FIGURE 2-14

| B

Button (buttonl) UscrControl/Gnd/Button |

Col 40 Ch 40

Solution Fyplorer

e
3 Solution 'H:IIoSlIw:rIlght' (2 projects)
a ‘..ﬂ ||c|lo_nhrel||ght
[=dl Properties
5 References
] Appaxaml
(4] MainPagexamil
ﬂ Hﬂln\nupmgm Weh
|24 Properties
|3l References
[d ClientBin
] HelloSilverlightTestPage.aspx
=] HelluSilverlight TestPage.html
3 Silverlight.js
|59 Web.config

* X

Solution Fyplorer

= (A
-3 Solution 'H ||oS|Iw:r||ght' @ pm}::d.i]
a ‘..ﬂ ||c|lo;‘1hrel||ght
(= Properties
5 References
4] Appaxaml
(4] MainPagexami
ﬂ Hﬂln\num.gm Weh
[=d Properties
b =3 References
4 [ClientBin
o HelloSitverlightxap
5| HelloSilverlight TestPage.aspx
] HelloSilverlightTestPage.html
3] Silverlightjs
{5 Web.conhg

*AX

FIGURE 2-15

Right-click HelloSilverlightTestPage.html and select View in Browser as demonstrated

in Figure 2-17.

FIGURE 2-16

3 uaty

saipadod M sauopd

46 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

12. Once the browser window opens, click the Click Me! button, and you should see something
like Figure 2-18.

g Open

Open With...
B3 Open Command Prompt
&% Open Containing Falder

Copy Path
[E] ViewCode (7]
g] Vigw Designier Shift«FT
Solution Explorer View Martup _
G
F;I:I:m:r Browse With... 8] hap:, HelloSiveriightTestPagertml v | 49 | x [l Bing B v

> [l Prog Set As Start Page
5 [l Refe @ Check Accessibility...

o @A
> (@ ;,E:l Exchoe i Friect Cligk Mat_|
o B Hetosa & Cut CirieX
» & Prop 43 Copy CrisC
ol Rebd 50 Delete el
4+ [Clig Fename
= |
=] Hetl B3 Properties At Enter
[5) HelloSTerightTestPage Firml|
2] Siverhights
% b Web.config

W | €8 HelioSiveright

Hello Sitverhght World

FIGURE 2-17 FIGURE 2-18

Congratulations! You just completed your first, Builds to
N Silverlight Application XAP File
albeit simple, Silverlight application. But what

just happened? Remember that Silverlight is a

client technology; there is no server-side piece to Deploys to
Silverlight. So when you built the solution, the Y
HelloSilverlight project, the Silverlight project Web Server

code and XAML, was compiled down to IL
(intermediate language) and packaged in a XAP
file, which was then deployed to a website. In
this case, the website is the web application that you linked to the Silverlight project when you
first created the HelloSilverlight solution. Visual Studio links these projects together, so every time
you build, the X AP that is created from the Silverlight project is automatically deployed to the
ASP.NET project. Figure 2-19 describes this visually.

FIGURE 2-19

The next obvious question is: How did HelloSiverlightTestPage.html show the Silverlight
form you just worked with? As you learned in Chapter 1, Silverlight is a browser plug-in, so
HelloSilverlightTestPage.html has an object tag that loads the plug-in onto the HTML
page. The following HTML snippet is the object tag for HellosilverlightTestPage.html:

<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="ClientBin/HelloSilverlight.xap"/>
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="4.0.50331.0" />
<param name="autoUpgrade" value="true" />

Creating a Basic Silverlight Application |

a7

<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0"
style="text-decoration:none">
<img src="http://go.microsoft.com/fwlink/?LinkId=161376"
alt="Get Microsoft Silverlight" style="border-style:none"/>

</object

Like any other plug-in, there is an object that describes the type of plug-in and there are one or
more param elements, which are key-value pair property settings for the object that is being loaded.
Notice the bold line of code:

<param name="source" value="ClientBin/HelloSilverlight.xap"/>

This is where the X AP file comes into play. The content that this plug-in needs to run is in the
ClientBin folder and is named HelloSilverlight .xap.

Understanding the XAP File

A XAP file is a unit of deployment for a Silverlight application. The XAP file is essentially a ZIP

file format using a X AP file extension, which means that multiple files can be contained within a
XAP file. When a browser navigates to a page that has a Silverlight object tag on it, the Silverlight
plug-in is activated, and the X AP file specified in the source parameter in the HTML page begins to
download. Once the XAP file is downloaded to the browser cache, the Silverlight plug-in reads the
AppManifest.xanl file in the XAP container and gleans some key pieces of information:

> The assembly name that the Silverlight plug-in should load
> The entry point of the application class to load

> The minimum version of Silverlight that this application is targeting

If you locate the HelloSilverlight.xap file on your filesystem (hint: find the ClientBin folder
for your web project), rename it to HelloSilverlight.zip, and extract the contents, you’ll see
something like Figure 2-20.

(| HelloSitverlight.dll
4] AppManifest

11 PM Application extension EKB
4/7/2010 6:11 PM XAML File 1KB

Organize = Share with » MNew folder =+ Al e
ir Favorites — Documents library o B

Bl Decktop ‘ HelloSilverhight - Copy %

i Docs IE Name Date modified Type s Size

8 Downloads ‘

x
iy Recent Places

A Librarics
_-| Documents
o' Music
=| Pictures

B videos

2 items

FIGURE 2-20

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D

48 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Go ahead and open up the appManifest .xaml file, and you’ll see this:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
EntryPointAssembly="HelloSilverlight"
EntryPointType="HelloSilverlight.App"
RuntimeVersion="4.0.50331.0">
<Deployment .Parts>
<AssemblyPart x:Name="HelloSilverlight" Source="HelloSilverlight.dll" />
</Deployment.Parts>
</Deployment>

Note the Deployment . Parts section in AppMani fest .xaml. Each assembly that is compiled as a
Resource in your project will be listed as an AssemblyPart in the manifest. For example, if I right-click
the References folder in my HelloSilverlight project and add an assembly that is not part of the core
assemblies, it will be added to my X AP file when I build, and AppMani fest . xaml will be updated to
include the additional AssemblyPart elements. In the following example, I added the Microsoft
.Expression.Interactions.dll and its dependent assembly System.windows.Interactivity.dll

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
EntryPointAssembly="HelloSilverlight"
EntryPointType="HelloSilverlight.App"
RuntimeVersion="4.0.50331.0">
<Deployment.Parts>
<AssemblyPart x:Name="HelloSilverlight" Source="HelloSilverlight.dll" />
<AssemblyPart x:Name="Microsoft.Expression.Interactions"
Source="Microsoft.Expression.Interactions.dll" />
<AssemblyPart x:Name="System.Windows.Interactivity"
Source="System.Windows.Interactivity.dll" />
</Deployment.Parts>
</Deployment>

Note the two additional AssemblyPart elements for each of the assemblies added.

You’ll also notice that HelloSilverlight.dll is a fairly small 8kb file. So far, this only contains a
very small amount of IL: the XAML and code for this simple Silverlight application. If you were to
add additional artifacts to your Silverlight project (like images, for example), they would be compiled
as a Resource by default, so you can dramatically increase the size of your DLL, and thus your XAP
file, by adding artifacts like images or video as Resources, as well as third-party assemblies from
component vendors. Silverlight supports several Resource types:

> XAML resources, such as resource dictionaries, which contain styles or templates that could
be shared or applied to user interface elements at run time

> Resource files, such as images and videos that you can refer to by URIL You have the option of
embedding resource files in assemblies, including them separately in the application package,
or retrieving them from a network resource.

> Resource strings, such as those provided through localized satellite assemblies

When dealing with Resources, it’s important to think about performance of your application. The
larger your XAP file, the longer it will take to download. Your goal should be the smallest XAP file

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Creating a Basic Silverlight Application | 49

possible, giving your application a fast startup time. This does not mean you can’t have rich, interac-
tive applications that use various media artifacts and third-party components. You just need to be
smart about how you get those application pieces down to the client. If you have images or video
files, you may want to deploy them to the web server’s ClientBin folder, and reference them in your
code using the fully qualified URI, or you can asynchronously download files or assemblies as they
are needed on the client. Either way, you have multiple good options for keeping a small X AP file
and a responsive application.

To make it easier to unzip the XAP file of your application, you can associate
the XAP extension with the Shell Zip application. To do this, follow these steps:

1. Open a Command Prompt with Administrative permissions as
Figure 2-21 shows.

% Windows Live ID |

 windows Media Center
Ld| Windows Media Player Jason Beres
1 Windows Update
<4 XPS Viewer Documents
Accessorics
0 DBluetooth File Transfer Pictures
| Calculator
&8 Command Prompt
@2 Connect to Open
& Connectta &

Music

¥ FRun as administrator
| Getting Stan

Math Input
_ MNotepad
al Paint
% Remote Des -
5 Run)
3(, Snipping Te @& Add file to Live Mesh folder...
L Sound Recg
Sticky Mote]
@ Sync Centeq
w8 Windows Ex
B Windows M
F wordPad Send to

Open file location

Add Lo archive...

Add to “cmd.rar

Compress and email...

Compress to "cmd.rar” and email

Pin to Taskbar
Fin to Start Menu

Rectore previous versions

Faze of Acef
System Too
Tablet PC Copy
Windows Pq Delete

Cut

Back Rename

FIGURE 2-21

2. Type cmd /c assoc .xap=CompressedFolder
3. Press the Enter key.

continues

50 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

(continued)
Now if you right-click a .xap extension, you can extract the contents to a folder
as shown in Figure 2-22.
S
e" rojects) HelloSiverght »_HelloSiveright Web b Clenttin b~ | 1)
Organize ~ A Open ~ Share with ~ E-mail New folder = - i @
i Favorites — Documents library et Folder =
Ml Desklop ChentBin
aj Docs Name Date modified Type . Size
B Downloads S -
i Recent Places I HelloSiy Open e
Open in new window
< ST Edtract All..
& Documents
D ” B Add o archive..
L, RS B Add to "HelloSilverlight.rar”
. Public Ducuments B Compress and email..
@' Music B Compress to "HelloSilverlight.rar” and email
=] Pictures Open with...
H Videns =
bl <! | Share with 3 [
He[loSlherIlght) Dnlcmudi[:.x:d @ Add file Lo Live Mesh folder...
Compressed (zipped) Folder Size
Restore previous versions —_—
Send to 3
Cut
Copy
Create shortcut
Delete
Rename
Open folder location
Properties
FIGURE 2-22

Caching Assemblies

Since we are on the topic of performance, one feature that can dramatically improve the perfor-
mance of an application is by using application library caching. This means that when a user revisits
your website running a Silverlight application that has application library caching enabled, the over-
all startup time increases, because the assemblies are already on the client.

When this feature is enabled, certain assemblies are packaged outside of the project’s XAP file when
it’s built. For example, the Infragistics.Silverlight.Excel library uses the System.Windows.Data assem-
bly. For my application to use application library caching to cache the System.Windows.Data assembly
down to the client for subsequent uses without needing to be downloaded, I would follow these steps:

1. Right-click the HelloSilverlight project in the Solution Explorer and select Properties to open
the Properties window.

2. On the Silverlight tab, click Reduce XAP size by using application library caching, as demon-
strated in Figure 2-23.

Creating a Basic Silverlight Application | 51

Silverlight*
MN/A N/A

Debug
Build Application

Assembly name: Default namespace:
Build Event:

o HelloSilverlight HelloSitverlight

Reference Paths +

Startup object:
Signing HelloSilverlight App - [Ascembly Information...

Silverlight huild ophons

Code Analysis Target Silverlight Version:

| Silverlight 4 -

Xap file name:

HelloSilverlight.xap

[¥] Reduce XAP size by using application library caching |

[F] Enable running application out of the browser

[¥] Generate Silverlight manifest file

Manitest file template:
Properties\AppManifest.xml|
FIGURE 2-23

3. Add a reference to a third-party assembly, such as the Infragistics.Silverlight.Excel assembly
or an assembly that ships with Silverlight but is not part of the core run time, such as the
System.Windows.Controls.Data assembly.

4. Build the application.

When the project is built, the build packages the System.Windows.Data assembly into a separate zip
file as Figure 2-24 shows.

|« Projects » HelloSilverlight » HelloSilveriight:Web » Clientgin » v |43)| search Ciie.. 2]

Crganize » Share with New folder =~ Al 6
/¢ Favorites — Documents library Ararigebsi . Poliet o+

] Desktop LhentBin

i Docs E Name Date modified Type £ Size

8 Downloads

8% Recent Flaces g HelloSitverlight 4/7/201010:02 PM WinRAR ZIP archive 1.036 KB

= g Systemn Windows Data 4/7/2010 10:02 PM WinRAR ZIP archive 27 kB
4 Librarics

i’l Documents

o' Music

=| Pictures

B videos

) 2 items

FIGURE 2-24

52 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

The AppManifest.xaml in the HelloSilverlight.xap now looks like this:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
EntryPointAssembly="HelloSilverlight"
EntryPointType="HelloSilverlight.App"
RuntimeVersion="4.0.50331.0">
<Deployment .Parts>
<AssemblyPart x:Name="HelloSilverlight" Source="HelloSilverlight.dll" />
<AssemblyPart x:Name="Infragistics.Silverlight.Excel.v10.1"
Source="Infragistics.Silverlight.Excel.v10.1.d411" />
<AssemblyPart x:Name="Microsoft.Expression.Interactions"
Source="Microsoft.Expression.Interactions.dll" />
<AssemblyPart x:Name="Infragistics.Silverlight.v10.1"
Source="Infragistics.Silverlight.v10.1.d11" />
<AssemblyPart x:Name="Infragistics.Silverlight.Compression.v10.1"
Source="Infragistics.Silverlight.Compression.v10.1.d11l" />
<AssemblyPart x:Name="System.Windows.Interactivity"
Source="System.Windows.Interactivity.dll" />
</Deployment.Parts>
<Deployment .ExternalParts>
<ExtensionPart Source="System.Windows.Data.zip" />
</Deployment .ExternalParts>
</Deployment>

You cannot use application library caching and out-of-browser support in the
same application. In Chapter 9 you learn about out-of-browser applications,
and the requirement that its startup assemblies are all contained in its XAP file.

When a user first visits your web page, the XAP and all of the ZIP files indicated in the ExternalParts
section are added to the browser cache so that they can be reused on subsequent visits. Keep in mind
that Silverlight caching is subject to the caching configuration settings on the server and in the browser.
Files are typically downloaded only if they are not in the cache or if they are newer than the cached ver-
sions. Application library caching is beneficial for libraries that do not change that often, such as third-
party tools or non-core System assemblies. Overall, you want to cache as much as you can; performance
or perceived performance of your application can make a significant impact on return visitors.

Adding Class Definition and Partial Classes

A Silverlight User Control, Silverlight Page, Silverlight Child Window, or Silverlight Templated Control
is no different than any visual form that you are used to using in Windows Forms, ASP.NET, or WPF.
There is a “design surface” or page that you work with to design the form’s layout and interactions,
and there is a code-behind class file that is associated with the file. In XAML, the class name that
glues the form to the code-behind is declared in XAML in the Root element of the page, which by
default is set to a Build Action as Page. For example, in the MainPage.xaml file, the x:Class modifier
indicates the namespace and class for the file. In Figure 2-25, you can see the highlighted area, which
shows the namespace is HelloSilverlight and the class is MainPage.

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Creating a Basic Silverlight Application | 53

03 Design 14 B YAML mFLWI
= =UserControl x:Class—"HelloSilerlight MainPage" s
RIS = ; T 5 T aml/presentation” i)
xmlns x="hilp fischemas. microsolLcomiwiniy2006/xaml™
xmins:d="http://schemas.microsoft. com/expression/blend/2008" 2
xmins:mc="http://schemas.openxmiformats. org/markup-compatibility/2006"
mc:lanorable="d" —
d'DesignHeighi="300" d-DesignWidih="400">
<Grid x:Name="LayoutRoot" Background="White">
= <Button Contert-"Button" Height-"46" HorizontalAlignment-"Left"
Margin="81,71,0,0" Name="button1" VerticalAlignment="Top" Width="140" /> v
100 o% - m | 3
[E UserControl UserContral b e
FIGURE 2-25
The partial class file for this page, as indicated Solution Explorer ~Ox
by the hierarchical structure in Visual Studio SR
. . Salution "HellnSilverlight' (7
(see Figure 2-26) derives from the type of the ,Bé‘ﬁﬁfogi.f.;[i,fﬁf”“ ey
class used to define the root element of the page. 5 Properties
+ [z References
So for example, if you added a new “ 8 ij ”;::;'nml_“
UserControl, the derived type is Usercontrol, |3 MainPagexaml XAML File
as ShOWIl 11‘1 Figure 2 27 | M""”"“‘J""“"”'"—*\
&/ 4 F HelluSilverlightWeb ~ .
3 . “dl Properties gof.elBCﬁhmd
If you added a new Child Window or Page, the 1 References artial Class
. . . . __i bin
corresponding type derived in the partial class o il
is going to match Childwindow or Page. As > obj
. . . =] HelloSilverlightTestPage. aspx
with any partial class, it must be declared as 8] HelloSiiverTight TestPage htmi
public so the partial class and the XAML page g et
) . £} Web.config
are aware of each other and can build properly.

You'll also notice in Figure 2-27 the FIGURE 2-26

call to InitializeComponent in the

constructor. Similar to other platforms,

InitializeComponent points to a generated code file that is created when the page associated with the
code-behind is markup-compiled, which is responsible for rendering the UI as well as connecting the
objects declared with an x:Name modifier in the XAML page with the object definitions in the partial
class. The code generated file is normally in the obj folder of your project after your project is compiled.
If you look in the obj folder, you’ll see a file that has a .g between the filename and the extension.

Adding Events to a Partial Class

This section is a review if you are a seasoned Visual Studio developer, and a must read if you are
new to using Visual Studio. In any event-driven programming model, you write code that responds
to interactions on the screen. So how do you link up the action with re-action of the code? You have
several ways to do this in Visual Studio when creating Silverlight applications:

> From the design surface, double-click the object. This takes you to the code-behind file and
the default event handler for the object. For example, if you double-click a button, you are
taken to the Button’s Click event.

54 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Partial Class Derived Type

MainPagexaml.cs *Ox
| % HelloSilveright.MainPage - | [# MainPage) -||
-1ising System; ko

using System.Collections.Generic;
using System.Ling;

using Syslem Nel,

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input; L
using System Windows Media;

using System.Windows.Media Animation;
using System.Windows.Shapes;

=namespace |lelloSilverlight

E | public partial class MainPage : UserControl

{
public MainPage()

InitializeComponent();
}
}
}

00% = « .

FIGURE 2-27

> From the Properties pane, click the Events tab and find the event you want to write code for.
Once you find it in the list, you can double-click the name of the event to get to the code-behind,
or you can choose an event that already exists from the drop-down control to the right of the
event name.

> From the partial class, you can add an event handler manually by typing object.eventname
+= and then pressing the Tab key twice to add the event and event handler as shown in
Figure 2-28.

Fnamespace HelloSilverlight
=] public partisl class MainPage : UserCuntrul
Cl public MainPage()

InitializeComponent();

buttonl.Click +
) | new RoutedEventHandler(buttonl Click); (Press TAB to incert)

¥

L]

FIGURE 2-28

> From the XAML page, use the IntelliSense feature to add the event on the object. For example,
in the But ton markup, type Click= and let IntelliSense take over to add the event declaration in
XAML and the code-behind. This IntelliSense interaction is show in Figure 2-29.

Understanding the Application Life Cycle | 55

LButton (huttan) El<UsercControl x:Class="Hellosilverlight.MainPage™
wmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
smlns :x="http://schemas.microsoft. com/winfx/2006/xaml"
smlns :d="http://schemas microsoft.com/expression/blend/2008"
smlns:mc="http://schemas.openxmltormats.org/markup-compatibility/2006"
mc:Lgnorable="d"
d:DesignHeighl="388" dJ:DesignWidih="488">
<UscrControl.Resources?

<SolidColorBrush x:Key-"BlackBrushKey" Color-"Black" />
L ¢/llserContral .Resources>
—i <brid x:Name="LayoutRoot” Hackground="white" Datalontext="{x:Null}">
| <Button Content="Button™ Click="" Height="63" HorizontalAlignment="

Larid (LayoutRoot) |RBDesign -t @ xamL —_—

| Bind event to a newly created method called 'buttonl_Click’. Use ‘Navigate to Dvent Handler' to s <Mew Event Handler~
i navigate to the newly created method.

FIGURE 2-29

By default, when you add an event handler, the scope is private to the partial class. You can modify
the scope to non-public, but for events that are specific to an object this is not recommended. If you
need to repeat the same code block multiple times, you should create a public or static class with
events that have public modifiers and call those events from the private event.

UNDERSTANDING THE APPLICATION LIFE CYCLE

As mentioned earlier, the AppManifest.xaml file contains the key information needed by the
Silverlight plug-in to load your application. The EntryPointType property contains the namespace
and type name of the class that contains the application entry point for your application. This
Application class contains the following key elements:

> Application startup and Exit events
> Interaction with the Silverlight plug-in and the host web page
> Resource management
> Centralized exception handling
All Silverlight applications contain one class, which is derived from Application. By default, this

code is in the App.xaml .cs code file. So for example, if you want to write custom code for when
your application is initialized or is exiting, you would write code in the Startup and Exit events:

public App()

{
this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException
+= this.Application_UnhandledException;
InitializeComponent () ;
}

private void Application_Startup (object sender, StartupEventArgs e)

{
this.RootVisual = new MainPage() ;

56 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

private void Application_Exit (object sender, EventArgs e)

{

Note this line of code in the Application_startup event of your App.xaml.cs file:

this.RootVisual = new MainPage() ;

Now look at the first line of XAML in the MainPage.xaml file:

<UserControl x:Class="HelloSilverlight.MainPage"

The class name for this object is MainPage, which is the RootVisual, or startup visual class, for this
application. If you add a new UserControl to your Silverlight project, named NewPage for example,
and change the application_startup to this:

this.RootVisual = new NewPage() ;

the NewPage . xaml file will be loaded when the application starts. So as you are experimenting with
Silverlight, you may use various pages for startup, and can easily swap out the startup file in the
app class. To better understand the life cycle of this process, examine Figure 2-30.

Web
Browser

<

Load the Silverlight
Plug-In

<

Loads the CoreCLR
Services

<

Creates an
AppDomain

&

Loads the Application
into the AppDomain

<

Loads the RootVisual
Startup Class

FIGURE 2-30

Debugging Silverlight Applications | 57

DEBUGGING SILVERLIGHT APPLICATIONS

Because the application is now built, you should understand some of the debugging techniques
available to you. I won’t go into general debugging features that are available in Visual Studio,
such as the Locals, Watch, Immediate, Call Stack, or Intellitrace features, but rather look at how
to attach to a running instance of your application in a browser and how to remote debug from an
Apple Mac computer.

Attaching to a Process to Debug

Using the Attach to Process dialog in Visual Studio, you can attach to the instance of your browser
that has a Silverlight application running from IIS.

To attach to a process, either:

» Select Attach to Process from the Tools menu

> Or press and hold Ctrl+Alt+P

This menu is shown in Figure 2-31.

o Hellobiiverlight - Microsoft Visual Studia

Hile Edit View Project Build Debug leam Uata | lools |Architecture lest Analyze Window Help

I G Altach to Process.., Cul+AlL+P Debug -2 -i
T T Tonnect o Dolobase.. z-;; = i Publish: | Cicale Publish Seltings _":;, = ;IL_.

3 Connect to Server...
?:i Add SharePuoint Connection...
'_:-5 Code Snippets Manager... Crd+K Ctrl+D o W

Choose Toolbox ltems...
Add-in Manager...

Macros 3 |‘
B Extension Manager...

Create GUID
Dotfuscator Software Services

Error Lookup

A
-
by
S
g
H
w
w
%
H
m
S
g
3
o
o
e
3
a
L
o
g
g
H
=
o
@
g
c
('}

ATL/MFC Trace Tool

Spy 1 1 L —
Q:» WCF Senvice Conhiguration Editor : |I|;E|_|E'|

External Tools... Page =2

) t2006/xamlipresentation” =

Import and Export Scttings... 2006/ xam"

Sisbomoe.. pression/blend/2008"

Dpiceis.. .org/markup-compatibility/2006" E

mc:lgnorable="d"
d:DesignHeight-"300" d:DesignWidth-"400"z

FIGURE 2-31

Once the dialog is shown, you will see multiple instances of Internet Explorer in the list, based

on how many browser instances and tabs you have open. To attach to the right process, find the
instance that has Silverlight as the type. This is the parent instance of the browser, not the tab that
has Silverlight running.

58 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

Figure 2-32 shows the Attach to Process dialog with the Silverlight process and the instance tab

displayed.
Attach to Process B I1
Transpoits ; Default =]
Qualifier: EVANG-JBERESL " R

Transport Infurmiation

Monitor (MSVSMON.EXE).

Altach Lo Automatic: Silverlight code

Myailable Processes

The default ransport lets you select processes on Lhis compuler or a remole computer running the Microsolt Visual Studio Remole Debugging

Process D Title Type User Name Session =
ArroRdd] exe a1y wHb INFRAGISTICS Jason 1
agcp.exe 3540 «B6 INFRAGISTICS\JasonB 1
conhost.cxe 2800 w4 INFRAGISTICS\JasonB 1 —
dwrr.exe 25380 04 INFRAGISTICS\asunB 1
explorer.exe 2636 Start w54 INFRAGISTICS\JasonB 1
ielowartil eve SERR «Bh INFRAGISTICS\Jacon... 1
iexplore.exe 1516 Sibverlight INFRAGISTICS\JasonB 1
icxplore.cxe 7056 HelloSibverlight - Windows Internct Explorer w36 INFRAGISTICS\JasonB 1
InpulPersunalization... 5224 =34 INFRAGISTICS\asonB 1
IntelliTrace.exe T344 Managed (vd.... INFRAGISTICS\JasonB 1 =
sacnrub e rur LT £ AN ACTETIEC oD 4

[”] Showw processes from all users] Show processes in all sessinns

L

FIGURE 2-32

The debugger automatically tries to figure out
what type of process you are trying to attach to.
You should see Automatic:Silverlight Code in
the Attach To box, which is just above the list of
processes. If you don’t see Silverlight Code

in that box, click the Select button to show the
Select Code Type dialog and select Silverlight

as shown in Figure 2-33.

() Automatically determine the type of code to debug

1@ Debug these code types:

[Native
B Script
71 1-saL
[Workflow

m

oK J [Cancel

FIGURE 2-33

You can debug JavaScript code in the host web page by using an Attach To value
of Script. However, you cannot debug your Silverlight code and your JavaScript

code at the same time.

Debugging Silverlight Applications | 59

Attaching to a Remote Macintosh Process

You can also attach the debugger to a remote Macintosh browser process running a Silverlight-based
application. This requires some additional configuration steps on both computers, and is supported
only between a computer running Windows and a Macintosh computer.

When debugging a remote process, the Disassembly and Registers windows are
not available.

All of the tools to remote debug an application running on an Apple Mac computer are installed with
Visual Studio and when you install Silverlight on the Apple Mac, you’ll need to go through just a few
configuration steps to get it set up. The process of remote debugging occurs over an SSL-encrypted
TCP channel between the debugger (the Windows computer running the Visual Studio instance) and
the target computer (the Mac running your Silverlight application). The initial configuration is setting
up the correct TCP port as well as a private/public key pair so the machines can communicate.

Follow these steps to set up the remote debugging:

1. From Apple Mac, run the Silverlight Debugging Configuration application located in the
/Applications directory.

2. Click the Generate New Configuration button, which does three things:

> Populates the Network Port (TCP IPv4) field with a randomly generated port number
between 49152 and 65535.

> Creates a per-user configuration directory, ~/Library/Application Support/
SilverlightDebuggingConfigl. 0/, which contains the Certificate.dat,
PrivateKey.dat, and Settings.dat.

> Creates a per-user launch agent at ~/Library/Launchagents/com.microsoft
.silverlight.debugproxy.plist.

3. In the Encryption Password text box, specify an 8- to 25-character password and then
duplicate it in the Verify Password text box.

4. In the Replicator Path text box, specify a path and . exe filename for the PC configuration,
or accept the default value.

5. Click the Generate PC Configuration button.

A dialog box will confirm the creation of the PC configuration .exe file at the location you speci-
fied in Step 4. You can use this file with any computer running Windows that you want to use

to debug Silverlight on the Macintosh computer. Your Apple Mac is now configured for remote
debugging. The next step is to configure the Windows computer with the configuration informa-
tion you just created.

60 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

To configure the computer running Windows, follow these steps:

1.
2.

3.
4.

Close any open instances of Visual Studio.

Copy the . exe file you just created on the Apple Mac to your Windows computer and run
the .exe.

Enter the password you specified in the previous procedure.

Click OK in the dialog box that indicates that the Windows configuration has completed
successfully.

Now both computers are configured for remote debugging. You can now establish the connection
between the computers to start debugging:

1.
2.

On your Macintosh computer, start the Silverlight-based application that you want to debug.

On your computer running Windows, use Visual Studio to open the Silverlight project that
corresponds to the application that is running on your Macintosh computer.

On the Debug menu, select Attach to Process.
In the Transport drop-down list, select Silverlight Remote Cross-Platform Debugging.

In the Qualifier combo box, specify the fully qualified domain name or IP address of your
Macintosh computer.

The Available Processes window displays a list of processes running on your Macintosh.

Select your Silverlight-based application process. You can use the Type column to identify the
Silverlight processes.

Click Attach.

To remove the Macintosh debugging configuration, you can do the following
from the Command Prompt:

> On Windows Vista and Windows 7:

rmdir /s /g %$LOCALAPPDATA%\Microsoft\SilverlightDebuggingConfigl.O0

> On Windows XP:

rmdir /s /g "$USERPROFILE%\Local Settings\Application
Data\Microsoft\SilverlightDebuggingConfigl.0"

> On the Macintosh computer, open a terminal window and then run the
following commands:

rm -rf ~/Library/Application\
Support/SilverlightdebuggingConfigl.0

cd ~/Library/LaunchAgents

launchctl unload
~/Library/LaunchAgents/com.microsoft.silverlight.debugproxy.plist
rm
~/Library/LaunchAgents/com.microsoft.silverlight.debugproxy.plist

Configuring Silverlight MIME Types | 61

The Visual Studio debugger is now attached to the target process on the Macintosh. At this point,
you can use Visual Studio to perform normal debugger tasks, such as setting breakpoints, stepping
through code, and examining the call stack.

CONFIGURING SILVERLIGHT MIME TYPES

Now that your application is written and debugged, and you have a pretty good idea about what

you can do in the IDE with Visual Studio and Silverlight, you should know how to get the server
properly configured to serve up your Silverlight application. MIME, or Multipurpose Internet Mail
Extensions, is an Internet standard that describes content for browsers to consume. In general, MIME
types include audio, video, text, HTML, and of course, Silverlight. The way MIME handling works is
when a browser downloads a file, it goes through steps to validate that the type of the file matches the
MIME type declared by the HTTP server. Based on your web server, you may need to add support for
the Silverlight MIME type.

Adding MIME Support to IIS

If you are using IIS 7 in Windows Server 2008, Windows 7, or Windows Vista SP1, the MIME
types needed to support Silverlight are already added by default. If you are running Windows Vista
or Windows Server 2003 1IS 6.0, follow these steps to add the Silverlight MIME type:

1. Open IIS Manager.
2. Click MIME Types.
3. Click Add.

At this point, add the following MIME types (repeat steps 1 through 3 to add each MIMI type):
> .xap — application/x-silverlight-app
> .xaml — application/xaml+xml

> .xbap — application/x-ms-xbap

Figure 2-34 shows this dialog.

In addition to adding MIME types via the IIS Manager, you can add MIME types to the
<staticConent> section of the applicationHost.config file located at $windir%\system32\
inetsrv\config\applicationHost.config.

Add these mappings in the <staticContent> section for Silverlight:
> <mimeMap fileExtension=".xaml" mimeType="application/xaml+xml" />
> <mimeMap fileExtension=".xap" mimeType="application/x-silverlight-app" />

> <mimeMap fileExtension=".xbap" mimeType="application/x-ms-xbap" />

It’s that easy to set up MIME types to ensure your Silverlight content is served up correctly.

62 | CHAPTER2 BUILDING APPLICATIONS WITH VISUAL STUDIO

"ﬁmmwomms:mums]w =@ =B
G_@ [€] » EvanG-Jgerest » |6l sl -
File View Help
o QH MIME Types e
5 3‘:’:‘;&12:‘“@“\"” | Use this feature to manage the st of file name extensions and @ Hep
, E— - nline Help
b -] Sites Add MIME Type
File name extension:
xap
application/x-silverfight-app
Lo [comu]
acx apphication/intemet-prope... Local
e apphcation/actet-stream Lacal
a applicstion/postscnpt Lacal
at audwn/x-adf Local =
Ll IR, d '
7R = ~ Equls\ﬁew 1% Content View
Configurstion: localhost’ applicationHost config 6.
FIGURE 2-34

SUMMARY

In this chapter you learned the basics of creating a Silverlight application with Visual Studio and the life
cycle of a Silverlight application. You learned how to add controls to the design surface, how to change
properties on controls, how to add code to events, and how to build an application. You were also
introduced to concepts such as application library caching, which can improve the performance of your
application, as well as debugging and configuring your server to handle the Silverlight MIME types.

Building Applications with
Expression Blend 4

WHAT'’S IN THIS CHAPTER?

> Understanding the key Expression Blend IDE elements

> Creating a project in Silverlight using Expression Blend

» Creating and using Behaviors in Expression Blend

> Visual states, the Visual State Manager, and custom control
templates in Expression Blend

>

Importing and working with Design Elements not created in
Expression Blend

> Understanding other elements of the Expression Suite as they relate
to Expression Blend

This chapter gets you (the Silverlight Developer) up-and-working with Expression Blend; it helps
you understand what Expression Blend does and doesn’t do and how it works in conjunction
with Visual Studio.

If you have done any Silverlight work lately, you most likely have heard of Expression Blend.
Expression Blend is the premier WYSIWYG (What You See Is What You Get) tool for work-

ing with XAML (eXtensible Application Markup Language)-based design elements in Windows
Presentation Foundation (WPF) and Silverlight. Designed specifically for designers or those
developers that tend to work more in the Ul rather than the backend, Expression Blend has been
built out so well as to be a crucial tool for all developers, and in some cases, when used with
SketchFlow, it can also be a valuable tool for other types of workers such as information archi-
tects (IAs) and project managers. Part of what makes Expression Blend crucial in your develop-
ment process is that both Visual Studio and Expression Blend can work against the same solution

64 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

at the same time. This allows your developers and designers to work together in ways never before pos-
sible. If you are one of those developers that span both the front-end and back-end worlds of application
development, you will find that when provided with dual monitors, you will have Expression Blend in
one while you are working on the same solution in Visual Studio in the other. Next, this chapter will
help you get started by getting you introduced to the basics of Expression Blend.

LEARNING EXPRESSION BLEND BASICS

Since you are most likely a developer reading this book, it is important to note that Expression Blend is
a dedicated integrated development environment (IDE) for designing WPF and Silverlight applications.
However, keep in mind that it has been designed specifically as a designer-friendly tool for working
with XAML assets. Designers will not be calling it an IDE, but as a developer, it might be easier for you
to understand it as an IDE. With that in mind, Expression Blend has evolved to the point of doing this
better than Visual Studio, not just from a WYSIWYG standpoint but in functionality — for example,
doing key frame animations using Expression Blend’s Timeline tools is a natural task, but in Visual
Studio, it’s not so easy.

IDE Tour

When you have created or otherwise started an Expression Blend project for the first time, your
screen looks something like what is presented here in Figure 3-1 after the splash screen and the start
up dialog which you will read about later.

If you look closely, you can see that Expression Blend is divided into five key areas, namely, four
columns and the top Menu bar. The Menu bar is great for finding help or drilling into things —
much like Visual Studio — but for the sake of this discussion, focus on the four columns first. The
columns, from left to right, are:

> The toolbar

> The Objects timeline plus the Project, Assets, and States views

> The design surface

> The Properties pane
Each section might have additional tabs and functionality, but this should be what you see before
you customize Expression Blend. You can also disconnect each section and rearrange the Ul to

fit just about any way you might want to lay out the application; but assume you are using this
default screen.

To dive a bit deeper into the Ul, consider each section separately, starting on the far left with
the toolbar.

Toolbar

Figure 3-2 shows the toolbar up close with all 13 icons, each with its own function(s); some of the
icons can also change behavior or change to icons that are not visible when initially launched.

Learning Expression Blend Basics | 65

Object Timeline/Projects/Assets
Toolbar and States View Design Surface Properties Pane Menu Bar

Brojest Wingow Help

s [iete Stales < MainPageaml " Vropesties Resources Data

i Calen ¢
T Chaat

& eckE m

v Appearance

Visibiiity

Eifect

* Layout
wimh
Height
HorizontalAlignm...
VerticalAlignaent |1 |1
Margin & 0
fwini x/ 2886/ nanl/present. o

o fwinf/ 2006/ xnml ®

+ Commen Properties
Toallip
<Grid x:Namea"LayoutRoot™ Usckgrounds"White" /s
B «/userControls

Cussor

DataContert

ol

FIGURE 3-1

Selection Tool

If you click-and-hold many of the icons — for example, the magnifying Direct Selection Tool
glass icon in the figure — it opens up an additional selection of tools to
replace the default icon, and the selected tool is shown with a lighter box
around it. Icons that have a small triangle in the lower-right corner are the
ones that contain different icons or tools, other than the default, that can
be selected. Another way to show the additional options is to right-click the

icon and select from the menu that comes up.

Pan Tool

Zoom Tool

Eye Dropper Tool
Paint Bucket Tool
Gradient Tool

> Selection Tool — The first icon at the top of the list is the Selection Pen Tool
tool, which is used to select objects and groups of objects. A typical

operation using this tool would be to click-and-drag over the UL

&
(4
()
|

Rectangle Tool

Grid Tool

> Direct Selection Tool — Often you might be looking at a group of
objects that make up part of a complex Ul so that selecting a spe-
cific grouped item can be difficult at best. But using this tool, you
can select discretely so that a typical operation is a standard left-
click on the target. FIGURE 3-2

TextBlock Tool

2 NG

Button Tool

Asset Explorer

66 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

> Pan Tool — The Pan tool, or third icon down, is used for picking up the Ul and moving it;
for example, if you have a large, complicated Ul and you are zoomed into one section of very
fine details, you might need to move to another section of the UL This tool allows you to do
that. Along with moving the UI Design view around, if you double-click the Pan tool, the UI
will be centered.

> Zoom Tool — If you need to zoom in and out, you can use the next icon down, called the Zoom
tool. When the Zoom tool is selected, the design surface zooms in if you click anywhere on it.
If you hold down the Alt key while you click the Design Surface, the Ul zooms out. Double-
clicking the Zoom tool, then, zooms the Ul to the actual size. You can also zoom in and out
using the mouse wheel.

> Eye Dropper Tool — The Eye Dropper tool is used to select colors from the Design view.
This allows you to copy color information and apply it to other elements in your design.

> Paint Bucket Tool — Use the Paint Bucket tool to add a selected color to an element on the
design surface. After selecting a color with the Eyedropper tool, you then can use the Paint
Bucket tool by clicking on the element on the design surface to which you want to apply the
selected color.

» Gradient Tool — The Gradient tool is the first tool that can be swapped out. The Gradient
tool itself is used to apply or create gradients as a part of elements on the design surface.
(Once applied, discrete control over the gradients is done in the Properties pane, discussed
later on.) By clicking on the Gradient icon and holding, you will get a small pop-up menu
that holds another Gradient Tool icon. You will also get a Brush Transform tool, which
allows you to apply a brush transform to an element.

> Pen Tool — The Pen tool is used to draw line paths with Bezier curves and is not free-form,
like the Pencil tool; but if you click-and-hold it, you get to the Pencil tool, which allows free-
form drawing.

> Rectangle Tool — The Rectangle tool creates rectangular objects on the design surface. If
you right-click and hold it, you can also get a Line tool or an Ellipse tool. The Line tool lets
you draw straight lines, and the last object you can select in this set is the Ellipse tool to draw
ellipses. In all three cases, detailed properties can be edited from the Properties pane.

> Grid Tool — When you click-and-hold the Grid tool, you can select from six different layout
controls that can be clicked and added to the design surface. The default is the Grid, but there
is also Canvas, StackPanel, ScrollViewer, Border, and ViewBox. All of these have the same
functionality as described.

> TextBlock Tool — The TextBlock tool allows you to add text by selecting this tool and then
clicking on the Ul Also, if you click-and-hold on this icon, you can select from TextBlock,
Textbox, and the Password box. All the icons have the same basic behavior for adding
text controls.

> Button Tool — When you select the Button tool, you can add a button by clicking anywhere
in the design surface. If you double-click on this icon, the default size button is added to the
UI design surface. As a designer, you can find additional tools by clicking on the Button icon
and holding it to get a list, which includes the Check box, Combo box, List box, Radio but-
ton, Scrollbar, and Slider. Each control typically has events or behaviors tied to it.

Learning Expression Blend Basics | 67

> Asset Explorer — When you click-and-hold the Asset Explorer tool, it opens a library of
assets (such as controls, behaviors, and other objects) that you may want to add to the design
surface. The default assets that Expression Blend provides are significant. Figure 3-3 shows
the pop-up Asset Explorer.

Grid Mode List Mode
Asset Tree Search Box Search Icon Icon Icon

|earch

freject E Arcordion 3- AudnCompleteBov
iLontrols

styles BusyIndicator WD putton

Behaviors

| [chart %/ CheckBox E° comboBax
FHeds ad L] =]

ed =
i Contentresenter T EDatakiela = Datarorm
» Categories 2

» |ncations 148 BB DataPager Y DatePicker

11 DockPanel |& pomainupDown @ Elipse
@ Expander u Frame) GlubalCalendar

o Graspitter m Label B wsteon

=l
.IH Numericl IpDown =m PacowordBow ': Popup

o ProaressBar O RadioRutton * &4 Rating

FIGURE 3-3

You’ll note that Asset Explorer has a Search box at the top, and just to the right of it are
two icons. The Grid Mode icon is selected, and the other changes the results to a List view.
Once you type in the Search field, you can click the Search icon or hit Enter to get results
laid out according to the layout selected. You will note that on the left of the results is the
Asset Tree. Feel free to explore all the additional controls from data grids and grid splitters
to pop-ups and rating controls. All you do is select one and click on the design surface.

To the right of the toolbar is the next section — the Project Explorer.

Project Explorer

The Project Explorer is just to the right of the toolbar, or left of the design surface. This area can be
split into top and bottom by default such that the top section is the Project Explorer and the bottom
section is Objects and Timelines. At the top of the Project Explorer area are several tabs. The first
tab is Projects, the second Assets, and then the next one States. See Figure 3-4.

The Assets tab is the Asset Explorer discussed earlier, and the States tab is for working with the
Visual State Manager in Visual Studio.

Project Explorer itself (see Figure 3-3) is basically the same tool as Visual Studio’s Solution Explorer.
The control is a tree control that at the top level is a solution and as a tree is broken out according
to the project file structure. Although not all the files are editable in Expression Blend, you can see
them. These are XAML files that you can click on and edit; you can also right-click and get a full

68 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

menu, including start and edit in Visual Studio if you have Visual Studio installed. If you have both
Expression Blend and Visual Studio installed, this also works in Visual Studio when you right-click
a XAML file or project.

Project Explorer Assets Tab States Tab

Projects Ascefs ¥ States

— - File Edit Vi Object Project Too
Froject = Acvordion

i e 12 = AutoCompleteR... Projects =~ Asscts States

Styles = Dorder

R. B solutio rlightA
B SiverlightAppl

‘w » TEN:

W Properties

Dehaviors 3 Busylndicator
n
Fifects ¥ Button

g Calendar

Ta Chart

Media .
» Categories >

= CheckBox
= Lowalions

& ComboRox

[E ContentPresenter

= 4 Opjeds and limeline
.1
[UserContral]
a
|I| v %% [UserControl]

d Toona @]
-y @

a

4
Objects and Timeline
1]

[UserControi]

FIGURE 3-4 FIGURE 3-5

One of the newest features in Expression Blend is a basic code editor. It is not as robust as Visual
Studio in that it’s not designed to be a rich editor, but it does allow you to be dangerous to yourself
and others, enabling you to do basic code editing, program event handlers, and the like. You can
also integrate Expression Blend with Team Foundation Server (TFS) for source control similar to
Visual Studio. Having source control integration also means that you can check stuff in and out of
source control from Project Explorer.

Object Explorer

The bottom half of the Project Explorer section in Figure 3-6 is called Objects and Timeline in the
tab. Besides being an object explorer, at the time of this writing, this is also the place to see timeline
information. Object Explorer is a representation of the current Visual Tree in the form of an object
hierarchy. This representation of what can be in your Visual Tree lets you turn elements on and off
(i.e. add or remove from Visual Tree) and helps you identify the elements you are looking for. Look
at the simple tree in Figure 3-6.

In the object tree, objects are nested based on their parent and have an icon based on their type. Names
are based on type, such as canvas or path, but if they are named elements — meaning that they specifi-
cally have the x:Name property set — then that name is what will show as opposed to their type value in
the tree. You can tell which elements are “named” elements by the lack of square brackets that contain
types used in the tree. In Figure 3-6, you can see the top-level element is [UserControl], which is not
named and thus is in brackets. [UserControl] has one child called LayoutRoot, which is named and so
does not have brackets around it. The same applies to all elements in the visual tree represented here.

Learning Expression Blend Basics | 69

Object Tree Visual Tree Elements

= . Refei ences
* [Properies

Ubjects and luneline

[UserContre]

)

¥ & [UserConirol]

¢)

+ [l LayoulRoot
v E_[Eamfai]

[c] 2

h & Rs o
a By
@ g5
2
@ ps2
@ [Path]

(<]

n
-

FIGURE 3-6

Another key aspect of the object tree tool is that it can make any element of the tree visible or not. This
is done by clicking the eye icon, or the spot where the eye icon should be, to cause an element to switch
its visible state. In this way, you can better focus on the elements you are working with currently.

The next section focuses on the design surface.

Design Surface

The design surface is where you see our XAML rendered, or at least, rendered in as much as Expression
Blend can render it without it running. You can draw here, animate things here — everything is here for
the current XAML page or view. The design surface can actually be shown in one of three ways: Design
view, Split view (which includes the Design view and Code view), and Code view.

You will find many developers who work in Expression Blend use the Split
view because it gives you the design surface but also allows you to tweak
the XAML without messing with the design surface in Design view. If you
know XAML, this can be really belpful.

Figure 3-7 shows the Split view with some simple content.

This figure gives you a good idea of what to expect in Expression Blend. Along the top, you see two
tabs, but there can be any number of tabs for each open document. Right above the VerticalScrollbar
to the right of the design surface are the mode icons. The Design mode icon is on top, the middle icon
is for XAML only, and the bottom one is for Split mode. You may find it easier to work in Split mode,
and the code section is very small. For the most part, if you know XAML, this allows you to tweak
the XAML. Another great feature in Expression Blend is that it color-codes the XAML the same way
Visual Studio does so you know what is what. Keep in mind that this book is not in color so some
elements such as color-coding do not show as well as in Expression Blend.

70 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

Design View Only XAML View Only

MainFagexami.cs* MainFagexami® =

RS

-+ Split View Icon

Show Annotations
Icon

Zoom Level

Turn On/Off : } "9.5,8.5">
Effect Rendering | e

Snapping to
Snap Lines
Show Snap
Grid Icon

Snapping
to Grid Lines

FIGURE 3-7

Looking closely, you can also see some icons to the left of the horizontal scrollbar below the Design
view. The first icon on the left is actually a drop-down arrow you can use to size. (In this figure, the
sizing is set at 100 percent. You can change this level of zoom much like using the Zoom tool but with
this drop down.) The next icon is the Render Effect icon. Sometimes render effects (for example, pixel
shaders) interfere with design work; this allows you to turn items off.

The next three icons are grid-related. One is to turn the snap grid overlay on and off. The second

is to turn the snapping to grid lines button on and off, and the third one is to turn the snap-to-snap
lines functionality on and off. After these icons is one more button used to turn annotations on and
off, which is great for design review notes right in the assets.

Properties Pane

The Properties pane, to the far right of Expression Blend (see Figure 3-8), can be broken into three
tabs — the Properties, the Resources, and the Data tabs. One of the cool features in Expression Blend
is that it supports the idea of design time data that can be managed from the Data tab. The Resources
tab is much like the Object Explorer. Nevertheless, the most important item is the Properties tab.

Learning Expression Blend Basics | 71

Whenever you select an object on the design surface, all the possible properties of that object that can
be tweaked appear in the Properties tab. Keep in mind that each “type” of UIElement object you select
in the Design view of the currently selected XAML page can have different properties and the chapter
will cover them here generically. Starting at the top, you have the Name, the Type, and the Search field
for when you cannot find the property you are interested in using. Just to the right of the Search field
are two icons that let you change the Properties tab into the Events tab so that you can see all the events
associated with the selected item; this also allows you to create event handlers and other items with this
particular item.

Propertics * Resources

MName LayoutRoot

—_— No Brush Tab

.lﬂ
La

v Bruches Solid Color Brush Tab
[| dhogrounal_— o

O parityMa —

(=

Color resources Brush Resources Tab

' l — Tile Brush Tab

Gradient Brush Tab

v
v Appearance
Opacity 100%

Visibility Visible
Effect
Width Auto b40)
Helght Autc
HorizontalAlignm...
VeirlivalAlignmenl

Margin

* Common Propertics
looilip
Cursor

DataContext

ol

FIGURE 3-8

72 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

The Properties tab is broken down into Brushes, Appearance, Layout, Common Properties,
Transform, and Miscellaneous sections, all of which are all collapsible, and Expression Blend
automatically collapses the default view elements until you customize any of the properties for a
given element. As for most of the Expression Blend UI, there is bubble help, so for most if not all
of the items, if you hover the mouse over them, a small description will come up.

This part of the chapter discusses each of these sections in turn, with the exception of trans-
forms, which merits its own discussion later in the chapter after I have covered the other
sections here.

Brushes

Taking a closer look at the top section labeled Brushes, you can start applying brushes to the
selected item from the Design view. The top shows the three types of brushes because you clicked a
path element in the Design view that can be applied, namely, Fill, Stroke, and OpacityMask; each
can have a value, and here you see the state of each. Just under this are the Brush tabs, which display
the details of each of the three types and also are used to remove a brush or look at brush resources.
For example, if the Fill brush is selected, then the tab lets you set that to Empty or “No brush,” a
solid color brush, a gradient brush, or a tile brush; you can also see that brush’s specific resources.
Each one of these has its own set of tools.

Click the No brush tab to set the brush type to No brush. The next element is the solid color brush
with an Editor showing the color palette, matching RGB and Alpha settings, and the color code
with the current selection. Left clicking on the RGBA area of the color palette will actually allow
you to switch between different color algorithms (for example, HLS, HSB, and CMYK). At the bot-
tom of the color palette, a bar shows the current selected color with a “last color” button. Just to the
right of that is a color eyedropper, which can be used to select another color from anywhere on your
screen. Right below that is a small arrow bar that opens the opacity setting. There is also a Color
resources tab that you can use as well.

The next Brush tool is the brush gradient color editor. The top part of this is similar to the solid color
brush editor. There are two tabs at the top of this section that work the same as the last section. The tab
on the right is the Color resources tab with the color editor selected. On the right side of the color editor
are the RGB and Alpha values of the current selected color. Below that is the hex value of the RGB and
Alpha. Along the left is the color palette/picker, and at the bottom of that are Select Color, Last Color,
and the Color Eyedropper tool. Below the color editor is the gradient selector with two gradient stops
set at both ends. You can set additional stops or remove them to manipulate the gradient shown by the
brush selected. Last, below this, is the Gradient Type button for linear or radio gradients, the gradient
Stop Switch button, and the Stop selector and offset values.

Appearance

The next section of the Properties pane is the Appearance section (Figure 3-9). When open by
default, you will see five values that you can set including Opacity, Visibility, Data, Effect, and
Stroke Thickness. However, at the bottom in the middle is a collapsed section that contains an addi-
tional set of more obscure items dealing with stroke. Normally you would leave these settings to

Learning Expression Blend Basics | 73

their default values. The top values are the ones that people usually

v Appearance

edit, and some properties are different depending on the type. For Opacity 100%
example, a rectangle doesn’t have Data but does have RadiusX and visibnty. visiote
RadiusY instead. fiist
Radiusx 0
Starting back at the top of the section, Opacity is how much another item i
can show through the element or object selected, whereas Visibility basi- il -
cally lets something be in the Visual Tree altogether. If you are turning e
something on or off entirely, then Visibility is the better setting. Effect StrokeEndinecap Fat

Slrelch Fill

allows you to pick bitmap effects to be applied to the item by clicking the
New button to find the effect to apply. Built-in you have the BlurEffect

StrokeDashAmay 10
StrokeDashCap Flat

and DropShadowEffect but other pixel shaders can be used if included ik Duiniit o

in the project. The BlurEffect does just that, it “blurs” whatever it is Strokelineloin Miter

applied to and DropShadowEffect creates an object drop shadow on ZEEEE

the applied element. FIGURE 3-9

Layout

The next section is the Layout section (Figure 3-10), which, as implied, |[ES

is used to manipulate layout settings such as height, width, grid-related .

settings, margins, and ZIndex. The Layout section is a bit less visual) T"""' i p—
. . . . iow U lowapan

than the earlier ones, with lots of settings, but mostly they are straight- - .

forward to understand. The top two (Width and Height) are just e

that. These can be set to doubles (a “double” precision floating-point Horzontalalignm.. = = =[]

number) like 700.5 and can be set to Auto using the icon to the right. verticalalignment i 11 1 10

Below these are the four standard grid settings for Row, Column, gugRy - 17

RowSpan, and ColumnSpan; these can be set to int values only, which il

means that you can’t have something like column 1.5. Under the grid Minwidth 0
settings is ZIndex. Mintleight 0

MawWidth Infinity

F-3

ZlIndex is basically the location in the Visual Tree. If you have two

MaxHeight Infinity
rectangles, and Rectangle A is set to ZIndex 5 and Rectangle B is set to | mmmm

ZIndex 10, and both have click events and are in the same spot, then — [EEECT T
Rectangle B is the only one that will get the c1ick event. But if you UselayoutRoundi... ¥
change the ZIndex around, then you also change which rectangle gets FigURE 3-10

the event.

Below the ZIndex are two sets of Alignment icons — one for Horizontal Alignment and the other for
VerticalAlignment. Both of these values are used to set alignment in the context of their container.
After the Alignment icons are the four margins. Each Margin setting has an arrow showing which
Margin it is; these can be set to values of type double.

The Layout section of the Properties pane also has an arrow for extended layout settings, including
values such as MinWidth, MinHeight, MaxWidth, and MaxHeight as well as scroll-related settings
and layout rounding. UseLayoutRounding, which is set to true, is good to know about when ani-
mating image motion, especially as this value can affect smoothness by ignoring sub pixel rendering.
By default, this value is set to true, which means animations will not move at a resolution of less
than 1 pixel. This can make images look especially choppy when you animate them or otherwise
place it in motion.

74 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

Common Properties

Next on the Properties pane could be (depending on the type of UlElement selected on the design
surface) the Common Properties section. This normally includes features or properties such as:

> ToolTip — A pop-up like the tooltips in Expression Blend
» Cursor — Defines a standard cursor other then the default.

> DataContext — You use this for binding.

This section might also feature the following:
> Text — Appears only for controls that have properties like a text box.

> IsHitTestVisible — Appears if you are using drag-and-drop and need to ensure that something
is not going to interact with the cursor on a drag.

> Tag— Sets an undefined text value of anything to any UlElement so that it can be used in
any way you like.

The next section you could see is the text formatting property box if the [FER
selected control supports text (Figure 3-11). Otherwise, this area doesn’t
appear. The section contains three tabs — one for the text’s regular text

m =

Purlable User Iijs 8.25 pl

and font properties, one for paragraph properties, and the last one for A L3°E e
text alignment. All the standard settings are there, including font, font —

manager, font weight, point size, and so on. Under the Paragraph tab is Fontstretch Mormal

Line Height, Paragraph Spacing, and Paragraph Alignment. The last tab FontStyle. Hormal

has Right, Left, and Centered justification settings. Past this tabbed sec- R Horma!

tion at the bottom are the additional text settings including FontStretch, aakcial

FontStyle, FontWeight, LineHeight, TextAlignment, TextTrimming, FIGURE 3-11

TextWrapping, and LineStackingStrategy.

Some settings are duplicated primarily to make them easy for designers to use.
For example, the tabbed area features icons for Bold, Italic, and Underlined,
where these values will be reflected in FontWeight and the like.

In general, it is best to leave settings in their default states. Notice that settings, not only here but
also everywhere, only appear if you change the default. Manipulating typography using this box is
great but you need to consider design practices when you deal with text.

Depending on the selected UTElement on the design surface, the next possible section of the Properties
pane, is the Transform property box. This box is sufficiently complicated that it is covered in greater
detail in the next section.

Miscellaneous Settings

The last element of the Properties pane is the Miscellaneous settings box. This is for all the settings that
do not fit anywhere else. Here you will find settings like AllowDrop, CacheMode, Clip, FontSource,
Inlines, RenderTransformOrigin, and Style.

Learning Expression Blend Basics | 75

AllowDrop is a true or false setting that is used for drag-and-drop operations. Clip is a popular
setting that is used to add a geometric shape defined by a path or other shape object that clips the
contents of a given control. RenderTransformOrigin is used to set the center point of any transforms
you might use (see the next section to learn more about transforms). Style is the last value you typi-
cally see in this section, which is used to apply predefined styles to a given control.

Now that you have taken a look at all those sections of the Properties pane, it is time to take a closer
look at the Transform section.

Transform(s)

The topic of transforms could probably be Translate Scale Skew

a book in itself, especially if you want to Transform Transform Transform Flip
. . Tab Tab Tab Tab

get into matrix transforms; but for the most

part, Expression Blend hides this complexity s nioun

. . . . RevderTransform
with a nice Transform tool in the Properties

Rotate Center

pane. Start by looking at the Transform tool Transform Point
shown in Figure 3-12. Tab Tab
You can see that the Transform section Projection

is broken down into two subsections — i

RenderTransform and Projection, sometimes EB G

referred to as 2.5D or Fake 3D. Let’s start R’

with the RenderTransform section.

Right above the RenderTransform tabs is the title FIGURE 3-12

RenderTransform, and there is a small box to

the right of the text. If a RenderTransform of any

kind is applied, this little box will be a white box. (The same is true of the Projection section below
it.) Sticking to the RenderTransform section, it is good to note that under the covers (that is, from

a compiler rendering engine standpoint) these are all Matrix Transforms — for all the super math
geeks. Expression Blend has broken this down, and, in fact, XAML generally hides this. You can
still do Matrix transforms, but that is abstracted from us by XAML language constructs and
Expression Blend. What you have here is the set of tabs that correspond to all the kinds of things
you would normally do using transforms.

Use relative values

The tabs each have their own set of properties or tools related to the specific kind of transform you
might want to do to the selected element on the design surface. The tabs are in the following order:
Translate, Rotate, Scale, Skew, Center Point, and Flip transforms. Center Point is not so much a
transform but an element of a transform that manipulates how a given transform is applied.

The Translate transform is used to effectively move a selected object based on x/y values and

a given center point. To the very left of the area is a 9-point map that represents the key points
on the object; based on that center point, an object is moved the set x and y values. If you use
relative values and click that checkbox, then your x and y values are lost. Anytime you are
manipulating these values and you click Apply, then the current values are thus applied to the
selected object.

76 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

The second tab is the Rotate transform tab, which has an Renderfranstorm =
angle tool that is a circle along the left side (see Figure 3-13). = <
You can click the line in the middle that goes from the inner Q@ o »=

circle to the edge of the angle indicator and move that line
around the circle to get the angle you want. If you try this in
Expression Blend, you will also see that the bar next to this
angle tool shows the angle in degrees, and you can move the
slider in this box to adjust it as well. Here also, if you use relative values, your degree/angle setting
will be lost. If you do not see changes on the design surface immediately, you can click the Apply
button here as well after “Use relative values™ is clicked.

Use relative values

FIGURE 3-13

The Scale transform is used to change the size from what would normally be the size of the selected
object. The resize is calculated for you by an x and y value applied by the Scale transform. What this
means is that if x and y are set to 1 (a double type in this case), nothing changes; but if you change
both values to 2, the object will be rendered twice as big. This can be used also to only render the
transform on one axis by changing only one of the values, but this will skew the object on either

the x or the y axis. You can set relative values here as well and apply them using the Apply button.

The Skew transform works like the Scale transform but moves the opposite sides of the object
on the axis on diametrically opposed vectors on that axis — meaning if you have a square and
set the x value to 2 of the skew, then the rectangle looks slightly like a parallelogram with the
bottom moved slightly to the right and the top moved slightly to the left. You can use negative
numbers to do the opposite. You can use relative values and apply them with the Apply button
as with the other transforms.

The Transform Center Point is for setting the center point of all transforms. This is done using an x

and y value that is a double, where 0.5 represents the center point of the given object on the selected axis.
For example, if you set the x and y values to 0, then the center point would be the upper-left corner, and
if you applied the Skew transform, then the difference would be that the top face of the rectangle would
stay where it is and only the bottom would move.

The Flip transform is really just a Scale transform using one axis with a negative number. A designer
does not care to know how it happened — they just want to flip something and not think about it.

A good activity to really get your head around what these Transform tools do is to open
Expression Blend in Split view and play with these; see what happens in XAML and visually
on the design surface.

One of the big things that many Silverlight Developers like Projection =
to do is three-dimensional (3D) effects, but because the
Silverlight run time needed to be small and there is just so
much space in the binary, 3D (as in WPF) was left out.
Owing to a need or want for the look of 3D, however, you
have the ability to do PlaneProjection, which allows us to do FIGURE 3-14
things that look 3D without all the heavy lifting built into

WPEF. Look at the projection in Figure 3-14.

Use relatve values

Learning Expression Blend Basics | 77

The Projection section next to the title Projection also has a small box that is white if you have a
Projection Transform applied. The first Projection tab is the one that actually sets the 2.5D transform
based on a set of x, y, and z points. You also get a small 3D-looking line globe next to the three point
values that allows you to manipulate the PlaneProjection settings using your mouse to figure out the
angle you want. This can have relative values applied like the regular transforms as well.

The last three tabs of the Projection area are used to set the center of rotation, global offset, and
local offset. These values are all used to change how the PlaneProjection transform is applied.

The States Tab

Lastly, when you select the States tab, you can see that it is mostly blank. This section is actually
part of a feature in Expression Blend that allows you to manipulate the control template of a given
selected element. This section is used to manipulate and customize the look and feel of controls via
control templates and the VSM (Visual State Manager), where the VSM is used to manage transitions
between visual states that are listed in the States tab. You will learn more about the States tab later
when the chapter talks about Templates and Customizing Visual States.

Now you are ready to create your first project in Expression Blend.

Creating Your Own Silverlight Project

Now that you have gone through Expression Blend, it is time to
walk through the process of building out a Silverlight project in
Expression Blend. In principle, building out a Silverlight project in
Expression Blend is similar to doing so in Visual Studio. You start
with the Startup screen, as seen in Figure 3-15, and then you have

the File menu. For the most part, the differences are not so much in Projeits Help Smsipies
creating your project but in the design interaction once you get the
project loaded. SilverlightApplication3

SilverlightApplication2
SilverlightApplicationl

Expression Blend Startup Dialog

Figure 3-15 shows the Startup screen’s three tabs with the Projects B New Project..
tab selected. The selected Project tab shows a list of the most B -
recent projects as well as the “New Project” and “Open Project” e
icons. Selecting one of these projects opens that project if the
project is still where the project was when you last opened it. The
“New Project” and “Open Project” icons are straightforward i S T
as well: New Project opens the “New Project” dialog and Open
Project opens a file dialog so you can navigate to an existing proj-
ect and open it in Expression Blend. Keep in mind that you can
open any Silverlight project in Expression Blend by finding the project and clicking on the solution
file or by right-clicking and selecting the “Open with” menu item and selecting Expression Blend.

FIGURE 3-15

This gets you into a project, but there are also two items at the bottom that you should know about,
namely, the “Run at startup” checkbox and the Close button. The Close button closes this dialog,

78 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

and the “Run at startup” checkbox lets you not have this dialog show up at all when you start
Expression Blend.

The Help tab includes User Guide, Online Tutorials, and Online Community. Each is designed to
access helpful resources. User Guide opens a CHM or local help file that you can use to explore all
the details of working in Expression Blend.

The Samples tab is particularly interesting because it features samples that came with Expression
Blend. They were installed on your machine so you can check out some of the great Expression Blend
project samples that help you see most of the key Expression Blend features used in the real world.

Now let’s get back to building our first project in Expression Blend.

New Project in Expression Blend

When you click the New Project button in the Startup dialog, you get the “New Project” dialog.
One thing that should be quickly pointed out is that Expression Blend does, in fact, also support
other types of projects than those specific to Silverlight (namely WPF, which is for Windows-based
desktop applications). For the context of this book, the chapter will refer specifically to Silverlight,
but you need to be aware that Expression Blend goes beyond Silverlight.

With Silverlight selected, you have several project types that you can build in Expression Blend.
The three main ones you will probably care about are “Silverlight (v.X) Application + Website,”
“Silverlight (v.X) Application,” and “Silverlight (v.X) Control Library.”

The first one builds a Silverlight project but also creates a website project, binds the Silverlight
application to it, and creates base pages that load the Silverlight application. If you create just a
“Silverlight Application,” you are not getting the prebuilt web project; when you run it, you get an
auto-generated one. With “Silverlight (v.X) Control Library, this project can’t really be run as such
but it can contain assets that can be consumed in the Silverlight UL If you create this kind of project,
you will not be running it unless you consume it to some other Silverlight application.

USING EXPRESSION BLEND BEHAVIORS

Behaviors are a cool way of adding functionality to objects in Expression Blend. The idea is that
some rich programmatically implemented functionality that would be hard for a designer to do can
be wrapped in a control that can then be used as a drag-and-drop feature to add the functionality
like magic to an element in Expression Blend. A Behavior is just a class that implements a certain
base class and member so that it can be easily consumed in Expression Blend as a drag-and-drop
behavior. Therefore, in this case, to build one you need to start in or get to Visual Studio.

Implementing Behaviors

Implementing a Behavior is straightforward but can be as complicated as you like. To start with, you
will need Expression Blend installed so that you have the Expression Blend assets needed to make a
Behavior work within Expression Blend. If you are already in Expression Blend (from following along
in this chapter), right-click the project and click “Open in Visual Studio,” which implies correctly that
you need both Expression Blend and Visual Studio installed to create a Behavior. Once the project

Using Expression Blend Behaviors | 79

is opened in Visual Studio, right-click and select “Add New.” Then in the “Add New” dialog, select
Class. Give the class a name, and then you need to get the Expression Blend Library into your project.

To get the library, you must add a reference to the System.Windows.Interactivity.dll that comes
with Expression Blend. This will not show with the other libraries in Visual Studio, so when
you right-click and select “Add Reference,” you need then to click the Browse tab. You will find
the DLL in the Programs folder normally on your C drive under Microsoft SDKs, then under
the Expression folder, the Blend folder, then ../Interactivity/Libraries/Silverlight/. Once the DLL
is included, you are ready to build out the class you created into a Blend Behavior. You need to
start by adding the namespace at the top like this:

using System.Windows.Interactivity;

This gets the base library you need so you can inherit from the behavior class which is the base class
that you need. Next, of course, you need to set up the base class and make your class look like this:

public class SomeBehavior : TargetedTriggerAction<FrameworkElement>
{
}

TargetedTriggerAction is our base class, where you will be able to apply it to a class of type
FrameworkElement For the purposes of this example, the Behavior will also be targeted specifically
at shape objects. The next step is to implement Invoke, which is what is fired when the Behavior is
applied to the target. Tnvoke needs to look like this block:

Protected override void Invoke (object parameter)
{
}

From this point, you need to get a reference to the object that you need and do to the object whatever is
necessary to make the object do what you want it to do. In this case, you typically would add a member
to be the reference to the associated object, like this:

Shape TargetElementIteml;

Now when Invoke is called, you would get your reference, cast it to a Shape and place it into the
member reference:

TargetElementIteml = (Shape) (this.AssociatedObject);

This code then needs to be in the Invoke member. At this point, the implementation for each
Behavior will be increasingly different for each Behavior that you build. This example changes the
color back and forth between two colors when a user clicks on the shape. Next, you need to add
these members to the Behavior class like this:

Brush Colorl;

Brush Color2 = new SolidColorBrush(Color.FromArgb(0,0,0,0));

This gives you a color to switch to and the reference to the base color of the class. To populate
Colorl with the base or start color of the object, add this second line to the Tnvoke method:

Colorl = (Brush) (TargetElementIteml.Fill);

80 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

Now that the Behavior has a reference to the colors and the Shape is typed and referenced, you can
add our behavior logic. In this example, add two event bindings to the Shape reference like this:

TargetElementIteml.MouseLeftButtonDown += new
MouseButtonEventHandler (TargetElementIteml_MouseLeftButtonDown) ;

TargetElementIteml.MouseLeftButtonUp += new
MouseButtonEventHandler (TargetElementIteml_MouseLeftButtonUp) ;

These lines actually work until you add the two methods, which should look like this:

void TargetElementIteml_MouseLeftButtonUp (object sender, MouseButtonEventArgs e)

{ TargetElementIteml.Fill = Colorl;

ioid TargetElementIteml_ MouseLeftButtonDown (object sender, MouseButtonEventArgs e)
{ TargetElementIteml.Fill = Color2;

This completes the Behavior. You should now be able to use it in Expression Blend.

Consuming Behaviors

Besides visual behaviors, you can also add nonvisual functionality as you might in a command.
Therefore, if you are familiar with commanding, a good way to look at Behaviors is as “commands
for designers in Expression Blend.” Using Expression Blend to work on an element, you need to be
able to see the element that you want a Behavior to be applied to. For example, in the last section,
you built out a simple behavior. Now you need a Shape to apply the Behavior to. You can start by
dragging a rectangle from the toolbar onto the design surface. Then you need to set the fill to a solid
color brush using the Properties pane. The XAML code might look like this:

<Rectangle Fill="Green" />

Now you should open the Asset Explorer from the toolbar. On the left side of the Asset Explorer,
select Behavior, and you will see that your behavior is one of the Behaviors listed, as well as other
built-in Behaviors. Select the Behavior you want and drag it onto the object, in this case Rectangle,
and you are finished. The XAMUL code will appear like this:

<Rectangle Fill="Green" >
<i:Interaction.Triggers>
<i:EventTrigger>
<local:SomeBehavior/>
</i:EventTrigger>
</i:Interaction.Triggers>
</Rectangle>

If you look at this closely, you will note that there are a couple of namespaces referenced here.
You will find these referenced at the top of the XAML document that were inserted by Expression
Blend dynamically. A designer is not going to care, but as a developer, it is important for you to
realize this.

Using the Visual State Manager | 81

Behaviors, as you can see, are a way to provide rich functionality that is bound to controls in
XAML that also, and more importantly, are easy for designers and developers to use in building,
maintaining, and customizing the UX/Design of views in Silverlight applications.

Now that you can use Behaviors and build custom behaviors, you can review Visual States in
Expression Blend and the Visual State Manager.

USING THE VISUAL STATE MANAGER

Part of the job of the designer that you typically see being done in Expression Blend is skinning
and templating controls, views, and other objects. For the most part, all controls have built-in
templates, and in Visual Studio it is very difficult to get at these as they are part of the framework
and not exposed. Expression Blend has a great tool to help you get at the templates by creating cop-
ies of templates for any control, putting them into your code and allowing you to edit them in the
Designer using the Visual State Manager area labeled States that was mentioned earlier.

This States tab, and moreover the entire Visual State Manager infrastructure, was built as part of
Expression Blend but has been added to the underlying framework as of Silverlight 4. You can tweak
the code in Visual Studio, but the VSM was designed for use in Expression Blend or specifically to
make it easier for designers to work with visual states of objects. Here, you will use the VSM to create
a custom skin or template and then use the VSM to help build or change the default animations and
transitions between states.

Start by creating your custom control template.

Creating a Control Template(s)

Since control templates are baked-in, sometimes creating a control template can be very difficult to
extrapolate independently without Expression Blend. In Expression Blend it’s really simple.

1. Start by selecting the control. At the top of the design surface, you see a breadcrumb that
shows the control in question as the root item. If you select the breadcrumb, you will get a
drop-down menu that lets you select either Edit Template or Edit Additional Template.

2. Normally you select Edit Template, which displays an additional menu consisting of Edit
Current, which will be disabled; Add Resource, which will also be disabled; as well as Edit a
Copy or Create Empty. You will also generally want to select Edit a Copy, at least until you
understand the templates enough to build them from scratch and know what “states” are
available. For most people, it is easier to just edit a copy of the default template.

3. When you select Edit a Copy, the Control Template dialog appears (see Figure 3-16). Because a
control template is a style resource, a box comes up so you can give the resource a proper name.

All the correct settings are there by default. You do have the option to have the new control
template put into the application or you can also create a new resource dictionary and have
the control template go there.

82 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

4. Once you select the settings you want, click the OK button. All of the underlying code
required to support this new custom template (that is a copy of the one baked in) is added to
your project; in addition, the control is bound to this new custom template. Now you click
the States tab and you will see something like Figure 3-17.

Projects Ascetc States

Commonstates
Drefault transition
Normal
MouseOwver
Pressed
Disabled
CheckStates
Detault transition
Unchecked
Checked
Indcterminate
ForusStates

Lreate Style Resource bt Crefault transition
Unfocused

Name (Key) Fowsed
o] Aty

ValidationStates
Apply to all Default transition

Define in Valid
Application InvalidUntocused

* This document UserConbrok <nu name=> | Invalidl ocused

New...

Cancel

FIGURE 3-16 FIGURE 3-17

In Figure 3-17, all the states and transitions to each state are divided into what is a tree. When
you select any of these, that state is applied visually in the design surface. In addition, the state
properties show in the Properties pane so that they can be customized as needed visually without
going into code. However, you can open the project in Visual Studio and edit the template if

you want to. You will also note that the Visual Tree shows all the elements of the template

for you to select as well, and you can remove any element you do not need to complete your
custom control template.

The Visual Tree is a representation of your Ul and how it is rendered visually —
how the underlying engine renders elements to the screen. Some things might
not be in the Visual Tree because they are in a collapsed state. In other words,
Visibilty="'Collapsed' rather than Opacity="'0" where the Opacity="'0" is
considered to still be in the Visual Tree.

Importing Design Assets | 83

Customizing Visual States

When customizing elements of your control template, you generally are going to use the VSM
States tab and the Visual Tree in the Objects and Timeline viewer, as well as the design surface
and Properties pane. (You can also edit it in the raw XAML if you are comfortable with that but,
keep in mind that some default templates can be very complex.) Often when you are customizing
the control, the entire look and feel needs to change. When you select your control, you can go to
the Visual Tree and delete anything you do not want or entirely replace it by pasting in whatever it
is you want or editing it on the design surface.

To change the state, select the correct state in the VSM State tab, which turns on the State
Recorder, and change the control however you like. For example, if you select the state of a but-
ton, that state is shown on the control on the design surface. You then can select the element of
the control in the object tree of the control that you want customized and edit it — say, change
the color or add a transform.

There is also in the VSM tab on each element, a Transitions drop-down that you can select to add spe-
cific transitions to one state or the other as needed. Right on the transition, you can set the timing of
the transition as well; however, the transition details are edited elsewhere. The last important element
of working with transitions that you will need to know is that when you select a transition, you get the
Timeline view next to the object tree. This allows you to do custom keyframe animations, which are
covered in the Chapter 18.

In the next section, you will import design assets.

IMPORTING DESIGN ASSETS

One of the great features of Expression Blend is that it allows better integration with other tools in
Team Foundation Server for Source control, Visual Studio, Adobe Illustrator, and Photoshop. Blend
allows closer integration of teams, design assets, and tools. Many design shops have designers who
work with other tools so outside the realm of Microsoft application development that even the idea of
using a Microsoft tool is offensive. Expression Blend allows those design assets to be easily imported
into Expression Blend and used to build Silverlight applications. This allows stronger development
(lower to market development costs) by Expression Blend’s ability to integrate with Visual Studio as
well from a tooling standpoint with regard to other tools.

The two most popular tools that designers and developers concerned with design use outside of
Expression Design are Adobe Photoshop and Adobe Illustrator. Though these applications are from
the same company, both tools are radically different under the covers. However, both Illustrator and
Photoshop are the best in their respective areas. Photoshop is about pixel manipulation. It’s about
the pixel. [llustrator, on the other hand, is about paths and vectors, which is the same kind of thing
as XAML.

Let’s start with Photoshop.

84 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

Importing PhotoShop (PSD) Assets

Photoshop, then, is about pixels. Expression Blend is about blending design assets such as PSD into
XAML that can be used in Silverlight and WPF application development. When importing PSDs, it
is important to note that because Photoshop is pixel-based, it does not import into Expression Blend
as smoothly. Frequently what you will find is that what is imported into Expression Blend comprises
graphics and images and less scalable Path information. This means that the imported PSD is going
to be larger in memory than all-Path-based XAML and also isn’t scalable. So resizing the imported
assets from Expression Blend will not be as easy, straightforward, or performant.

All of that detail aside, you can now get started importing some assets into Expression Blend.

1.

2.

The Photoshop import tool is under the File menu, so to start, open the File menu and choose
Import Adobe Photoshop File.

This brings up the Select File dialog box; select a Photoshop or PSD file. Once you have
selected the file, click Open.

You will now have the Import dialog come up, which shows the PSD image on one side with
a Zoom icon and a Zoom Level drop-down box (Figure 3-18). The important part is on the
right side: a tree of the layers that the image contains. Uncheck elements you don’t want to
import; drill down and select even single items to import or not to import. By default, all

the elements in the layers are imported, except a special element at the bottom called the
compatibility image, which shows you what the complete view of the PSD file looks like
rendered up front. If you select this, it is included in the import.

Import Adobe Photoshop Fle - sample.psd D

Check all kayers to impart Reset all

* 5 Home
AV glements
My Selections
L Wall Fapers
Apps
fop Hight Nav copy
Apps Latalog
Apps Latalog

Al Apps 151
[T]

Select Apps
]

@ Httoscreen [

FIGURE 3-18

Importing Design Assets | 85

4. Itisa good idea to create a separate user control or view in Expression Blend and import a
different layer or element into each view so that these elements are broken out and easier to
work with in XAML. Otherwise the generated XAML will contain all of the elements from
the imported file and can thus be overly complicated and difficult to work with. Lastly, when
selecting and unselecting elements in the layers, you can reselect the “Check all layers to
import” checkbox to get all the elements checked or unchecked again. You can also use the
“Reset all” button to do the same thing.

Now it’s time to talk about vectors.

Importing lllustrator (Al) Files

Importing Illustrator (Al) files is much the same process as importing Photoshop files. Unlike
Photoshop, however, Illustrator imports almost entirely as Path- or vector-based data, which
really improves the design integration process when working with teams, building apps, and
making the Ul scalable. Using Illustrator to build design assets is almost as good as building
them straight up in Expression Blend.

1. The Illustrator import tool is under the File menu. So to start, open the File menu and choose
Import Adobe Illustrator File.

2. This brings up the Select File dialog box; select an Illustrator (.Al) file. Once you have
selected the file, click Open.

3. You should now have the Import dialog come up, which shows the PSD image on one
side with a Zoom icon and a Zoom Level drop-down box. The important part is on the
right side: a tree of the layers that the image contains. Uncheck elements you don’t want
to import; drill down and select even single items to import or not to import. By default,
all the elements in the layers are imported, except a special element at the bottom called
the compatibility image, which shows you what the complete view of the Al file looks like
rendered up front. If you select this, it is included in the import.

4. Like with the PSD files you should create a separate user control or view in Expression Blend
and import a different layer or element into each view so that these are broken out and easier to
work with in XAML. An Al file that is a complete UI will normally be extremely complicated
XAML if entirely decomposed into a single XAML file. Lastly, when selecting and unselecting
elements in the layers, you can reselect the Check all layers to import checkbox to get all the ele-
ments checked or unchecked again. You can also use the Reset all button to do the same thing.

Once imported, all the Paths will now be great XAML assets that allow you to scale them really
well. What of other design assets?

Importing Fonts and Images Assets

In addition to Al and PSD assets, fonts and images are the only assets that are typically pulled into
Expression Blend. Images in Silverlight can be PNGs or JPGs and can be dragged onto the design
surface, where Expression Blend copies them into the project and adds them to the current view that
is on the design surface. You can then manipulate the images any way you like.

86 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

The other common import is fonts that you will want to include in your projects for any custom font
and typography you are doing. Fonts don’t require a special tool. You can drag a font TFF into your
Project Explorer. To use the font you might include a TextBlock control from the toolbar and go to

the Text section of the Properties pane, where you’ll find the Font Manager button. Click this button
to find the font you added to the project (see Figure 3-19). Select it and then select that font from the
Font drop-down list to the upper left of the Font Manager button.

Font Manager

Choose fonts to embed in the application

= ke

Agency FB

Aharoni
Albertus

Choose subsets of the selected font to embed

¥ All glyphs
¥ Aulo fill
¥ Uppercas
LA e
¥ Numbers
¥ Pundlualion

Include glyphs

Cancel

FIGURE 3-19

The XAML code that is generated will look something like this:

<TextBlock Margin="155,175,237,237" TextWrapping="Wrap" Text="TextBlock"
FontFamily="Fonts.zip#Digital Readout"/>

This code shows the FontFamily property, where Expression Blend has added a reference to a zip
file that it generates with your project fonts and references the included font. This works in Visual
Studio well enough but only because Expression Blend has the resources required to make this work.
In Visual Studio, this is usually done differently unless it has been worked with in Expression Blend,
which adds the additional resources.

Without getting into the more esoteric topic of designing in Expression Blend, you next learn about
the rest of the Expression Suite of tools.

USING THE EXPRESSION SUITE

Expression Blend is the most important tool of a suite of tools from Microsoft for working
with Silverlight and WPF. That being the case, there are three common situations when other

Using the Expression Suite | 87

parts of the Expression Suite are more effective at creating or preparing elements for your
Silverlight applications:

> The first is graphics generation, which most designers and developers who do design work do
when referring to the Expression Suite in Expression Design (a rich Photoshop-like tool that
is used for the same).

> The second scenario is when you need to transcode media to get it into a format that can be
consumed easily in Silverlight. This tool is called the Expression Encoder.

> The third typical scenario is when you need to build multi-scale images that can be generated
from images using Expression Deep Zoom.

Expression Design is a topic for its own book, and just a basic walk-through
would fill a chapter; but it is important to note that Expression Design doesn’t
use native XAML but exports to XAML. Then you can dive into a basic scenario
using Expression Encoder.

Expression Encoder

Expression Encoder as part of the Expression Suite is specifically designed to take media content
and either transcode or encode that media or produce it in a form that can be consumed online
by a Silverlight media player and Windows Media Video (WMV) to integrate it into your existing
Silverlight application. Expression Encoder has several built-in templates you can select as part of
the output of Expression Encoder and that you can use to quickly build Silverlight media players.

Once you get Expression Encoder running, you need to import your media file. To do so, go to

the File menu and select Import, navigate to the video file you want, select it, and then click Open.
Next, you need to select a template, which you can do by clicking the Output tab at the top and
then, under the section “Job Output,” selecting one of the templates. It should look like Figure 3-20.

Click the button in the middle on the bottom labeled ‘Encode’, and Expression Encoder will “go to
town.” Now this is all good and Expression Encoder has a variety of other features regarding set-
ting up markers, but the key thing is that it gets video content into a nice format, one that Silverlight
can consume easily.

Deep Zoom Composer

Expression Deep Zoom is the key tool for building out MultiScaleImages that you will use in
Silverlight. Deep Zoom is a simple tool like Encoder, for example, that allows you to import images
and produce the multi-layer image collections; it auto-generates the underlying tile structure used by
Deep Zoom (MultiScalelmages) that thus can be used in Silverlight to produce the effect of efficiently
having an infinite ability to zoom in and out without performance issues. When you open Deep Zoom
Composer for the first time, you will get a dialog like that of Expression Blend that lets you create a
new project or select an old one. Since this is your first time, you need to create a new one.

88 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

rasatt Expresmon Encoder

Hie EAR Wiew Py lmelne ook Widow Help

+ Leader DOAN00.000 < 4 > > Py DOD0:56.867 + Trailer

Media File Name {Original file name] {Defaull exten_
Disectory CALhers\dhavid kefleyh.. -
Open job Hesst

Mritia Cantent

o Proview in v
e b e
¥ Sub-fokier by Jab ID

FIGURE 3-20

Deep Zoom Composer then creates a new Deep Zoom Project in which you import all the high-
resolution images you want to use. Then you can compose your collection of images, and it will
export and build all of your multi-layer image collections, tiles, and other bits as configured so
you can use them in your Silverlight applications.

Now you need to get familiar with the user interface. Initially there is just going to be a File menu at
the top and then three buttons centered below that — Import, Compose, and Export (Figure 3-21).
Import is selected by default. To the right, just below that level, is the Add Image button — the

only other item that is important on the UL” When you click “Add Image,” you can select as many
images as you want to add to the collection. Once they are added, you will see a list of the images as
thumb names below the button; you can select one at a time, and the selected image is shown in the
larger gray area to the left in high resolution, with the image details at the bottom.

Next, click Compose and the view shown in Figure 3-22 displays.

Here the user interface still has the Menu bar and the three buttons. However, you can also see a
toolbar to the left, the images laid out in the center, the image collection at the bottom, and the
Layers and Properties to the far right, along with the small button menu between the design surface

in the center and the Layers and Properties box.

Using the Expression Suite | 89

L@ UntitledProject! - Deep Zoon Carmpposer [l [= []

File Edil View Took Help

v

P e i :
% “__‘:;-—-":’-" an::n:n..-.u::ru“.._n.._

FIGURE 3-21

Images can be dragged into the center and laid out as you like. The toolbar to the left can be used
to manipulate the design surface with Zoom, Pan, and Selection tools as well as various alignment
tools. The bottom-left corner of the design surface features a higher-level view that allows you to
move the viewable area around the design surface. This is helpful when you are zoomed in and there
are lots of images.

The buttons to the right are for creating specialized elements in the Deep Zoom project, including
creating a slide show out of your images, creating a menu navigator for your images, and creating
internal links or external links within the Deep Zoom design surface. Once you are done and your
images are laid out as you want the multi-scaled image to work, click the Export button at the top.

The Export section (Figure 3-23) shows a preview area as well as a dual-tabbed section for either creat-
ing a DeepZoomPix account or Custom. Select Custom and you can set the output type, which should
be “Silverlight Deep Zoom.” Then you have an area to give it a name and location with a Browse but-
ton that opens a Folder dialog box. Below that are the “Deep Zoom Settings.” The settings include

the Export type, which can be a composition or image, and a Collection. If you select Collection —
which is the most typical selection — a template drop-down includes the default template as well as an
Expression Blend Behavior-based template, a classic with source template, an empty project template,
and a tag browser template. Below this area are the Image settings for setting the fidelity of the images
in the generated project.

90 | CHAPTER3 BUILDING APPLICATIONS WITH EXPRESSION BLEND 4

Images that can be added to the Design surface for composing images
design surface for composition into a deep zoom composite Export Button
\ |

Yeep Zoom Composer o

A3 UntitledProject1

File Lot View Tools Melp

Selection Tool
Pan Tool -

Zoom -

Fit To Screen Tool -

Alignment Tools —

PUNRUSI SN] TR WCYTPYS

Arrange Icons~[

Size Matching -
Icons LU

FIGURE 3-23

Summary | 91

When you click Export, the Export in Progress dialog displays. When the export process is com-
plete, the Completed dialog displays, where you can preview the project in a browser, open the
image folder, view the project folder, and learn more or just close it. If you open the Folder view in
Expression Encoder, you can then open your project in Expression Blend to do further customiza-
tion or in Visual Studio.

SUMMARY

In this chapter, you reviewed the Expression Blend IDE including all the key sections and how those
sections behave with regard to your Silverlight view when it is selected on the design surface. You
should now be able to find and change properties, including complex transitions, as well as navigate
the Visual Tree using the Objects and Timeline tab and find and drag controls off the toolbar.

You learned the process of creating a new project in Expression Blend and how to transition from
Visual Studio to Expression Blend. You also learned the process of building custom Behaviors in Visual
Studio and how those custom Behaviors are consumed and used in the Expression Blend IDE. You also
learned how to import Photoshop (PSD) files and Adobe Illustrator (Al) files, as well as how to include
images and fonts in your project.

You also learned how to use the Visual State Manager in the Expression Blend IDE, including how to
use the State tab and how to customize elements. You learned how Expression Blend provides custom
control templates for you to edit based on the existing built-in template used by the framework (as
opposed to Visual Studio, which has no concept of getting at the base control templates that are part
of the framework).

Even if you do not have the skill and eye of a designer, you should be able to work with the Expression
Blend — the main design tool for Silverlight — to help you build better application Uls.

Working with the Navigation
Framework

WHAT'’S IN THIS CHAPTER?

> Understanding the Navigation Framework

» Using the Navigation Application template

» Using a custom menu control

» Caching navigation pages
Silverlight 3 introduced the Navigation Framework, which is an API used in conjunction
with the Frame control in the System.Windows.Controls.Frame class in the System.Windows
.Controls.Navigation assembly, which enables you to add an ASP.NET-like navigation scheme

to your applications. Silverlight 4 further enhances the Navigation Framework with additional
extensibility points. Some of the key concepts in the Navigation Framework in Silverlight are:

> You can implement URI routing.
> You can achieve navigation declaratively or via code.
> You can link page navigation into the browser’s journal history.

The Frame control is at the center of the navigation capability, which works in conjunction
with the Page class to give you navigation features.

USING THE NAVIGATION TEMPLATE

To get started quickly with navigation, open Visual Studio and from the New Project dialog
select the Navigation Application template for Silverlight as shown in Figure 4-1.

94 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

New Proget IR
T 4 ~|Sortby | Uctault Search Installed Templates 2 |
Installed emplates = Viual GE
) o) Lch] Sitvedight Application Visual C# YR Yo

4 Visual C# F A project for creating a rich internet
Windows . c . application ucing Sitverlight
Wels i;}r; Sitverlight Class Library Visual C#

¥
| Uttice
Clound cH| sitverlight Business Application Visual G2
v
Heporting =
SharePnint (=i Sitverlight Navigation Application Visual C#
Silverlight =
Test mﬂa WILF RIA Services Class Library Visual CF
WCr g
Workflow =
Other Languages
Other Project Types

Name: NavigationApplication

Location: \users\j d isual studio 20104Projects -

Snlution name: NavigationApplication Create directory fior snlution

|| Add to source control
o
L -
FIGURE 4-1

Once you click OK and accept the default options on the New Project dialog, you should see something
like Figure 4-2, which is the default MainPage . xaml for a new project based on the Navigation template.

80 NowigationApplication - Mierostt Vistml Shicko o] =

v||]]_L?ownloudbtnn_gAsync_ _v | Sl EQ_:\Q

Publishe | Cirale Pubilish Setting, - | o o] 8

v Solution Frploses
AP EIEE
A Solution ‘NavigationApplication’ (2 proj|
a ﬁ NavigationApplication
 Properties
{/Heme) | References
3 Assets
3 Views
|2 Appxaml
3} MainPage-sam
4 A MavigationApplication.Web
54 Propertiec
ol References
3 Chentbin
B 3] MavigationfpplicationTectPage.
8] NeviggationAgplic atianTed Page.
3] Sitverlight,js
i3 Web.config

q @ o9

sasuncg eieq iy auing JuFna

ign 1L EXAML | = oE®
=<UserControl +
x:Class="NavigationApplication MainPage" =
x¥mins="http://schemas microsoft com/winfi/2006/xamlipresents
xmins:x="http:/fachemas microsoft.com/winfx/2006/xaml"
xmins:navigation="clr-namespace:System Windows.Controls;as
yvmina uriMannar="rlr-namesnare:Svatam Windnwse Navinatinn:: ™

| E— _m b n] b
&5 Salution Fxplarer

B ErrorList B Output

FIGURE 4-2

Using the Navigation Template | 95

You’ll notice that, different from a standard Silverlight application template, the Navigation template
has a decent looking style on the MainPage.xaml, and two additional folders named Assets and Views
in the Solution Explorer for the Silverlight project:

» Assets — Contains the default Resourcebictionary named Styles.xaml, which contains
the visual styles used in this application.

> Views — Contains the About, ErrorWindow, and Home XAML pages derived from the Page
class that consist of the stock pages set up in the default navigation scheme for this template.

If you expand the References folder, you will see two additional assembly references that are not
included in the default Silverlight template:

> gystem.Windows.Controls — Contains the Frame control, which is used to navigate to
Silverlight Page controls, either programmatically or through a user action, via a valid URL.

> System.Windows.Controls.Navigation——-COHIMnStheUriMappeerws,Wﬁﬂchsuﬂesa
collection of UriMapping objects to use for converting a requested URI to another URI. You
define the UriMapper object and its collection of UriMapping objects for a Frame control by
assigning the UriMapper object to the UriMapper property of the Frame control.

To see this in action, examine the XAML in the MainPage.xaml page. It contains two namespace
references to the aforementioned assemblies:

xmlns:navigation="clr-namespace:System.Windows.Controls;assembly=
System.Windows.Controls.Navigation"
xmlns:uriMapper="clr-namespace:System.Windows.Navigation;assembly=
System.Windows.Controls.Navigation"

In the XAML for the page itself, the Frame and UriMapping objects are defined with various
properties set:

<navigation:Frame x:Name="ContentFrame"
Style="{StaticResource ContentFrameStyle}"
Source="/Home"
Navigated="ContentFrame_Navigated"
NavigationFailed="ContentFrame_NavigationFailed">
<navigation:Frame.UriMapper>
<uriMapper:UriMapper>
<uriMapper:UriMapping
Uri=""
MappedUri="/Views/Home.xaml" />
<uriMapper:UriMapping
Uri="/{pageName}"
MappedUri="/Views/{pageName} .xaml" />
</uriMapper :UriMapper>
</navigation:Frame.UriMapper>
</navigation:Frame>

In the Frame, three key properties are set in this default template (ignoring the style property):

> source — The default page to navigate to when loaded

| CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

> Navigated — The event that is fired when the Frame is navigated to

> NavigationFailed — The event that is fired when a navigation failure occurs

In the Frame.UriMapper object, there is a collection of UriMappings. Each mapping contains
two properties:

> uri— Gets or sets the pattern to match when determining whether the requested URI is
converted to a mapped URI. This is typically set to a user-friendly value, such as Home, and
you set the Mappeduri property to the actual file to use for the request, such as /views/
HomePage.xaml.

> MappedUri — Gets or sets the URI that is navigated to instead of the originally requested URI.

To set up navigation declaratively, you are adding as many UriMapping objects that contain the Uri
and MappedUri as pages you need to navigate to in your application. You may have multiple folders
that contain Page controls, or many subfolders that contain pages that you need to navigate to. Using
the UriMapping objects, you can define the navigation scheme for your application. In this default
template, the UriMapping is simple:

> 1If the Uri is empty (uri=""), navigate to the Views folder and load the Home .xaml page
(MappedUri="/Views/Home.xaml"/).

> If the Uri contains a forward slash and then a Page name variable (uri="/{pageName} "),
navigate to the Views folder and replace the Page name variable, add the .xam1 file extension
(MappedUri="/Views/{pageName} .xaml"), and navigate to that page.

To trigger the navigation, the default Navigation template adds two HyperlinkButton controls to
the top right of the page as shown here:

<HyperlinkButton x:Name="Linkl"
Style="{StaticResource LinkStyle}"
NavigateUri="/Home"
TargetName="ContentFrame"
Content="home" />

<HyperlinkButton x:Name="Link2"
Style="{StaticResource LinkStyle}"
NavigateUri="/About"
TargetName="ContentFrame"
Content="about"/>

Using the NavigateUri property and the TargetName property, you can declaratively set the content
of the defined Frame control with the Uri in the Navigateuri property. Note that the TargetName
is set to ContentFrame, which is the unique x:Name identifier for the Frame control on this page. If
you run the application, you’ll see that the default Page loads in the Home . xam1, which is located in
the Views folder as shown in Figure 4-3.

If you click the About HyperlinkButton, the Frame is replaced with the new NavigateUuri target,
the /about page. The UriMapping’s Uri property sees the /{pageName} as /About and points to the
MappedUri of /Views/{pageName} .xaml, which in this case, is /Views/About .xaml. Figure 4-4
shows the About page content once the About HyperlinkButton is clicked.

Using the Navigation Template | 97

Q Home - Windows Internet Explorer
@Ov [8] hitpe/ftocalhost1424/NavigationApplicationTestPags = | 43 | X [l Bing 2 ~|

W I?Hﬂmr

Application Name

Home

Hume paue conlent

€L Local intranct | Protected Mode: OFf - B100% -

Done

L

FIGURE 4-3

.
Q About - Windows Internet Explorer
@Qv [8] hitpe/ftocalhost 1424/ NavigationApplicationTestPags = | 43 | X [l Bing 2 ~|

W | @ about

home

Application Name

Abuoul

Abuut paue wontent

€L Local intranct | Protected Mode: OFf o~ B10% -

Done

L

FIGURE 4-4

You can also navigate to URIs that are not Page classes in your application. If you set the uri
property to a valid URL, and the TargetName to _new, clicking the HyperlinkButton opens a new

browser window to the URL specified (Listing 4-1).

98

CHAPTER 4 WORKING WITH THE NAVIGATION FRAMEWORK

‘) LISTING 4-1: Navigating to a valid URL

Available for

“mg;"gsn‘:“ <HyperlinkButton NavigateUri="http://www.infragistics.com"

Content="Infragistics Home"
TargetName="_new" />

What’s even cooler is that when you click the Home and About HyperlinkButtons a few times and
then click the browser’s Back button, you’ll notice that the Mappeduris show up in the browser’s
journal history as shown in Figure 4-5.

-
@ Mbout - Windows Internet Explorer i]

@m [8] hitpe/ftocalhost 1424/ NavigationApplicationTestPag: v | 4 | X |l #ing R
v Current Page [

Home
Abuul
4 Home
About
Home

MNawigatienApplication

£ History Ctrl+ShittsH

Done € Local intranct | Protected Mode: Off - H10% -

L “

FIGURE 4-5

The name that shows up in the browser’s journal history is the Tit1le property that you set for the
Page that loads. For example, Figure 4-6 shows the Title property for the About page. If you want
to display a friendlier name in the journal history, simply be as descriptive as you’d like to be in the
Title property of your Page.

To make this work, the Frame class includes a Journalownership property that is set to Automatic
by default, which means the frame integrates with the browser’s journal history if it is a top-level
frame. If you are building an application that should not integrate in with the browser’s journal, set
the Journalownership property to OwnsJournal and the browser history will not include the jour-
nal history from the Silverlight application.

To support navigation history, the web page that contains the Silverlight object must include
an iframe named _s1_historyFrame. By default, this iframe is included in the web page when
you create a new Silverlight application. If you want to add journaling to an existing Silverlight

http://www.infragistics.com%E2%80%9D

Creating Parameterized Query Strings | 99

application that does not include it, simply add the following HTML snippet to the page that
hosts your Silverlight plug-in:

<iframe id="_sl_historyFrame"
style="visibility:hidden;height:0px;width:0px;border:0px">
</iframe>

LLLIMEEIL S MainPage xaml

About
fihnut page content

m | .
QDesign 4 "k xAML | nEs|
==<navigation:Page x:Class="NavigationApplication.About" *
xmins="http://schemas.microsoft.com/winfx/2006/xaml/presentation” [
xmins:x=“http‘.i/schemas.microsoft.com;‘winf)dzﬂﬂshdaml“ =
xmins:d="http://schemas.microsoft.com/expression/blend/2008" xmins:n--
xmins:navigation="clr-namespace:System.Windows.Controls;assembly=

mc:lgnorable="d" d:DesignWidth="640" d:DesignHeight="480"
Title="About"

Style="{StaticResource PageStyle}"~

<Grid x:Name="LayoutRoot"> v
0% - 4 I] v

[E | Page Page b

FIGURE 4-6

@ Browser-integrated navigation is not possible for an out-of-browser applica-
tion. When integrated with the browser, the forward and back buttons of the
web browser navigate to requests within the navigation history for the top-level
frame. Through the forward and back buttons of the web browser, the user can
navigate to a different Silverlight page. With browser-integrated navigation, the
user can type a URI directly into the browser window and the page representing
that URI is displayed in the Silverlight application. Therefore, a user can book-
mark a URI or share a byperlink that corresponds to not just the Silverlight
application, but the application in a specific state.

CREATING PARAMETERIZED QUERY STRINGS

Most applications that you build have common user interface patterns where there is a list of objects,
and when a user clicks an item in the list, you either navigate to a details page or pop up a details
page. This scenario can be easily accomplished with the same pattern that you use in an ASP.NET

100 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

application: You pass a parameter to a new page, that page checks the query string for an ID of some
sort, and your application code does the database lookup based on the parameter in the query string.
Using the UriMapper, you could do something like what is shown in Listing 4-2.

‘) LISTING 4-2: Passing a custom query string to a MappedUri
Available for
“megg“ <uriMapper:UriMapping Uri="Customer/{customerId}"
MappedUri="/Views/CustomerDetails.xaml?customerId={customerId}" />

In the specified customerDetails page, you grab the parameter in the onNavigatedTo event han-
dler using the NavigationContext of the page like this (Listing 4-3).

‘) LISTING 4-3: Retrieving the query string using NavigationContext

Available for

ﬂwmyggﬂ var id = this.NavigationContext.QueryString["customerId"];

To implement this scenario, in this section you update the Home .xaml page to list a collection of
objects, and when one of those objects is clicked, you navigate to a details page and pass the tag of
the clicked object so you can retrieve the query string. To get started, add a new class file to your
project named Customers and add the code in Listing 4-4 to create the class.

‘) LISTING 4-4: Customer class and GetCustomer method
dI\\lailellbllie'mr .
mgx‘fgon‘:“ us;ng System; . .
using System.Collections.Generic;
using System.Ling;

namespace CustomerUriApp
{
public class Customers
{
public List<Customer> GetAllCustomers ()
{
List<Customer> ¢ = new List<Customer>();
c.Add (new Customer ()
{ CustomerId = 1,
CompanyName = "Microsoft" });
c.Add (new Customer ()
{ CustomerId = 2,
CompanyName = "Infragistics" });
c.Add (new Customer ()
{ CustomerId = 3,
CompanyName = "Apple" });
return c;

}

public Customer GetCustomer (int customerId)
{

var customer =

Creating Parameterized Query Strings | 101

from ¢ in GetAllCustomers ()
where c.CustomerId == customerId
select c;

return customer.First();

public class Customer

{
public int CustomerId { get; set; }
public string CompanyName { get; set; }

The customers class has two fields, customer1d and CompanyName, which are populated
with a few data records in the Getallcustomers method. The GetCustomer method takes the
customerId parameter and does a simple LINQ statement to get the Customer object based
on the customerId parameter.

In MainPage.xaml, add the following UriMapping (Listing 4-5) to the existing UriMapper
collection. This mapping takes the nice and readable customer/customertd URI and maps it
to the CustomerDetails page in the Views folder, with the appended query string of
customerId={passed variable customerId}.

‘) LISTING 4-5: Setting up a custom Uri and MappedUri
Available for
“wmfg;n <uriMapper:UriMapping Uri="Customer/{customerId}"
MappedUri="/Views/CustomerDetails.xaml?customerId={customerId}" />

In the Home . xaml page, add the following XAML (Listing 4-6) for a TextBlock and an
ItemsControl inside the StackPanel that is inside of the scrollviewer

J LISTING 4-6: ItemsControl and TextBlock for Home.xaml
Available for
dwmfﬂgﬂ <TextBlock FontSize="24">Customers List</TextBlock>
<!-- add an ItemsControl that will hold the Customers -->
<ItemsControl x:Name="CustomersList">
<ItemsControl.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<HyperlinkButton FontSize="24"
Content="{Binding CompanyName}"
Tag="{Binding CustomerId}"
Click="HyperlinkButton_Click" />
</StackPanel>
</DataTemplate>
</ItemsControl.ItemTemplate>
</ItemsControl>

102 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

In the code-behind for the Home . xam1 page, register a Loaded event handler in the
IntializeComponent for the Loaded event (Listing 4-7).

‘) LISTING 4-7: Registering the Loaded event in the Home class file

Available for

download on i
o public Home ()

InitializeComponent () ;
Loaded += new RoutedEventHandler (Home_Loaded) ;

Then add the code in the Home_Toaded event handler (Listing 4-8) that creates a new instance of
customer and sets the return collection of Customers to the CustomerList ItemsControl on
the page.

‘) LISTING 4-8: The Home_Loaded event handler

Available for

ds\"':gioggn‘:“ void Home_Loaded (object sender, RoutedEventArgs e)
’ {

Customers c¢ = new Customers() ;
CustomersList.ItemsSource = c.GetAllCustomers () ;

Once the TtemsSource of the customersList is set, the XAML that you added earlier for the
TtemsControls adds the HyperlinkButton for each of the Customer objects returned from
GetallCustomers. The CompanyName is rendered, the Customer1d is data bound to the Tag prop-
erty of the HyperlinkButton control, and on the click event, the HyperlinkButton_Click will
execute. See Listing 4-9.

‘) LISTING 4-9: Setting the Click event on the HyperlinkButton
Available for
dw::!g:gl:“ <HyperlinkButton FontSize="24"
Content="{Binding CompanyName}"
Tag="{Binding CustomerId}"
Click="HyperlinkButton_Click" />

Add the following to the HyperlinkButton_Click event (Listing 4-10). This code casts the sender,
or the actual button that was clicked, to the type HyperlinkButton. The reason for this is so you
can correctly extract the Tag property from the button that was clicked.

‘) LISTING 4-10: Using NavigationService in the Click event handler
Available for
“a‘,’:g;“:g;“ private void HyperlinkButton_Click
(object sender, RoutedEventArgs e)

{
HyperlinkButton hyperlink = sender as HyperlinkButton;

Creating Parameterized Query Strings | 103

string customerId = hyperlink.Tag.ToString() ;

this.NavigationService.Navigate
(new Uri
(string.Format ("Customer/{0}", customerId), UriKind.Relative));

Once you have the Tag, which represents the bound customer1d, you navigate to the Customer

page passing the customer1d variable. To navigate, you call NavigationService.Navigate.

The NavigationService class enables you to access the navigation service used by the hosting
frame and launch new navigation requests. You can retrieve the navigation service through the
NavigationService property of the Page class. In this case, you are telling the NavigationService
to navigate to the customer/ {0} page, which will map to the CustomerDetails.xaml page. To

add the customerDetails.xaml page, right-click the Views folder and add a new page named
CustomerDetails.

In the customerDetails.xaml page, add the code in Listing 4-11 to XAML in the Grid element:

‘) LISTING 4-11: XAML for the CustomerDetails.xaml Page

Available for
download on <StackPanel>

Wrox.com
<TextBlock x:Name="CustomerId" FontSize="24"></TextBlock>
</StackPanel>

In the code-behind in Customerbetails.xaml, in the OnNavigatedTo event handler, add the code
in Listing 4-12 to retrieve the ID that is passed in the query string.

‘) LISTING 4-12: CustomerDetails OnNavigateTo event handler

Available for
downloadon // Eyecutes when the user navigates to this page.

Wrox.com
protected override void OnNavigatedTo (NavigationEventArgs e)
{

CustomerId.Text = this.NavigationContext.QueryString["customerId"];

This looks at the NavigationContext of the page and extracts out the customerId parameter in
the query sting. If you are building an application that has some all-purpose or generic pages that
should behave in a certain way based on the action passed in the query string, you can do some-
thing slightly more interesting based on the Querystring.ContainsKey variable, as shown in
Listing 4-13.

‘) LISTING 4-13: Richer example using OnNavigatedTo event handler

Available for

“DW":ELDggrg" protected override void OnNavigatedTo (NavigationEventArgs e)
{

if (this.NavigationContext.QueryString.ContainsKey ("action"))

continues

104 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

LISTING 4-13 (continued)

switch (this.NavigationContext.QueryString["action"])
{
case "getCustomerDetails":
// do something for customer details
break;
case "getCompanyDetails":
// do something for company details
break;
case "getOrders":
// do something for orders list
break;
case "getOrderDetails":

// do something for order details
break;

In the sample you are building here, once the customer1d variable is retrieved, you set the Text
property of the TextBlock that you added to the page. If this were a database-driven application,
you would have a method named GetCustomerDetails, which takes the customer1d parameter

and returns an object with more fields pertaining to this customer. If you run the application, you
see something like Figure 4-7.

. _
& Home - Windows Intenet Explorer fshio S
- I
@ (& | 8] nitp//localhosts153/CustombiniAppTestPage htmis/Home v| 4 | x || ging o~

% | Home T |

Application Name

horne

Home

Hurne page content
Customers List
Microsoft
Infragistics
Apple

Dane

€ Local intranet | Protected Mode: OFf v B10% v

L

FIGURE 4-7

Creating Parameterized Query Strings | 105

Once you click one of the company name links, the HyperlinkButton_click code executes and
navigates to the CustomerDetails page as shown in Figure 4-8.

" -
& CustomerDetails Page - Windows Internet Explorer [
7~ 1
@ i~ | 8] nttp//localhosts153/ CustombiriAppTestPage htmisCustomen2 | 4 | x ||l &ing P -

i . 8 CustomerDetails Page [|

Application Name hurme
Done € Local intranet | Protected Mode: OFf i v R0% -
I
FIGURE 4-8

These URD’s also behave very nicely with browser-integrated navigation for deep linking on a website.
If you navigate directly to a page in the website, like this:

http://localhost:9153/CustomUriAppTestPage.html#Customer/2

you are taken directly to the correct CustomerDetails page. You do not have to remember long

URLs like this:

http://localhost:9153/CustomUriAppTestPage/Views/CustomerDetails.xaml?customerId=2

You can test this easily by simply copying the user-friendly browser URL after you navigate to a
CustomerDetails page and pasting the URL into another browser session or a different browser.

Using the Frame Class

Now that you have seen the various ways to handle navigation, this section looks at the Frame class
and its members. You should already be somewhat familiar with the Frame class; this is the main object
you will use whenever you are building applications that have anything beyond basic navigation. The
following key methods, properties, and events help you determine what you can do to traverse Page
objects in a Silverlight application.

http://localhost:9153/CustomUriAppTestPage.html#Customer/2
http://localhost:9153/CustomUriAppTestPage/Views/CustomerDetails.xaml?customerId=2

106 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

Frame Class Methods
This section covers the methods in the Frame class.

> GoBack — Navigates to the most recent entry in the back navigation history, or throws an
exception if no entry exists in back navigation (Listing 4-14).

‘) LISTING 4-14: The GoBack method

Available for
downleadon private void GoBackLink_Click

Wrox.com .
(object sender, RoutedEventArgs e)

{
if (ContentFrame.CanGoBack)

{
ContentFrame.GoBack() ;

> GoForward — Navigates to the most recent entry in the forward navigation history, or throws
an exception if no entry exists in forward navigation. Use the canGoForward property to
check whether there is an entry in the navigation history to go forward to (Listing 4-15).

‘) LISTING 4-15: The GoForward method

Available for
downloadon priyate void GoForwardLink_ Click

Wrox.com X
(object sender, RoutedEventArgs e)
{

if (ContentFrame.CanGoForward)

{

ContentFrame.GoForward() ;

> Navigate — Navigates to the content specified by the uniform resource identifier (URI)
(Listing 4-16).

‘) LISTING 4-16: The Navigate method

Available for
“mg;‘fggng“ private void NavigateLink_Click
(object sender, RoutedEventArgs e)
{
ContentFrame.Navigate
(new Uri("/views/about.xaml", UriKind.Relative));

> Refresh — Reloads the current page (Listing 4-17). By default, navigation to the page that is
currently loaded will not reload the content.

Creating Parameterized Query Strings | 107

‘) LISTING 4-17: The Refresh method

Available for
downloadon private void RefreshLink Click

Wrox.com .
(object sender, RoutedEventArgs e)

{

ContentFrame.Refresh() ;

> StopLoading — Stops asynchronous navigations that have not yet been processed by raising
the NavigationStopped event (Listing 4-18).

‘) LISTING 4-18: The StopLoading method

Available for
downloadon private void CancelNavigationLink_ Click

Wrox.com .
(object sender, RoutedEventArgs e)

{
ContentFrame.StopLoading () ;

Frame Class Properties
The following key properties are in the Frame class:

> CacheSize — Specifies how many pages can be retained in a cache. When a page is cached, an
instance of the page is reused for each navigation request rather than re-creating the page for
each request. The cachesize property is used only when you set the NavigationCacheMode
property of the Page class to Enabled. If you set the NavigationCacheMode property to
Required, the page is cached regardless of the number of cached pages specified in the
CacheSize property. Pages marked as Required do not count against the cachesize total.
See Listing 4-19.

‘) LISTING 4-19: Setting the CacheSize property

Available for

dwmggﬁn <navigation:Frame x:Name="ContentFrame"
CacheSize="10"
Style="{StaticResource ContentFrameStyle}"
Source="/Home"
Navigated="ContentFrame_Navigated"
NavigationFailed="ContentFrame_NavigationFailed">

In the in the Page class, set the NavigationCacheMode to Enabled, Required, or Disabled
(Listing 4-20).

‘) LISTING 4-20: Setting the NavigationCacheMode property

Available for

dwm?ggn <navigation:Page x:Class="NavigationApplication.About"

Title="About"
NavigationCacheMode="Required" >

108 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

> canGoBack — Gets a value that indicates whether there is at least one entry in the back naviga-
tion history (Listing 4-21). If true is returned, there is at least one entry in the back navigation
history; otherwise, false is returned.

‘) LISTING 4-21: Checking the CanGoBack property

Available for
downloadon priyate void GoBackLink_Click

Wrox.com .
(object sender, RoutedEventArgs e)
{

if (ContentFrame.CanGoBack)

{
ContentFrame.GoBack () ;

> CcanGoForward — Gets a value that indicates whether there is at least one entry in the forward
navigation history (Listing 4-22). If there are no entries in the forward navigation history, the-
GoForward method throws an InvalidOperationException. Use the CanGoForward property
to determine whether there is at least one entry in the forward navigation history.

‘) LISTING 4-22: Checking the CanGoForward property

Available for
downloadon private void GoForwardLink Click

Wrox.com X
(object sender, RoutedEventArgs e)

{

if (ContentFrame.CanGoForward)

{
ContentFrame.GoForward() ;

> ContentLoader — Gets or sets the object responsible for providing the content that corre-
sponds to a requested URI. The default is a PageResourceContentLoader instance. To get
a complete example of using the advanced ContentLoader property, review the article at
http://www.davidpoll.com/tag/contentloader/.

> currentSource — Gets or sets the URI of the content that is currently displayed (Listing 4-23).

‘) LISTING 4-23: Using the CurrentSource property
Available for
"s\"':g;f':gm"“ private void ContentFrame_Navigated
(object sender, NavigationEventArgs e)
{
ApplicationNameTextBlock.Text =
ContentFrame.CurrentSource.ToString () ;

}

http://www.davidpoll.com/tag/contentloader/

Creating Parameterized Query Strings | 109

> JournalOwnership — Gets or sets whether a frame is responsible for managing its
own navigation history, or whether it integrates with the web browser Journal. Use the
JournalOwnership enumeration when setting the Journalownership property of the Frame
class to specify whether the frame integrates with the browser Journal. When a frame is inte-
grating with the browser Journal, the browser’s navigation history includes navigation that has
occurred within the frame. Only top-level frames can integrate with the browser Journal.

> source — Gets or sets the URI of the current content or the content that is being navigated
to (Listing 4-24). When the source property is set to a value that is different from the content
being displayed, the frame navigates to the new content.

‘) LISTING 4-24: Setting the Source property

Available for
downloadon priyate void SetSource_Click

Wrox.com .
(object sender, RoutedEventArgs e)

ContentFrame.Source = new Uri("/About", UriKind.Relative);

> UriMapper — Gets or sets the object to manage converting a URI to another URI for this frame.

Frame Class Events

This section covers the events in the Frame class.
> FrameNavigation — Occurs when navigation to a content fragment begins.

> Navigated — Occurs when the content that is being navigated to has been found and is
available (Listing 4-25).

‘) LISTING 4-25: Auto-generated Navigated event code from the Home.cs class
Available for
dwm?ﬂgn private void ContentFrame_Navigated
(object sender, NavigationEventArgs e)

CurrentNavigatedSource.Text =
ContentFrame.CurrentSource.ToString () ;

// After the Frame navigates, ensure the
// HyperlinkButton representing the current page is selected
foreach (UIElement child in LinksStackPanel.Children)
{
HyperlinkButton hb = child as HyperlinkButton;
if (hb != null && hb.NavigateUri != null)
{
if (hb.NavigateUri.ToString().Equals(e.Uri.ToString()))
{
VisualStateManager.GoToState (hb, "ActiveLink", true);

continues

10 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

LISTING 4-25 (continued)

else
{

VisualStateManager.GoToState (hb, "InactiveLink", true);

> Navigating — Occurs when a new navigation is requested (Listing 4-26).

‘) LISTING 4-26: Using the Navigating event

Available for
downloadon 533 ContentFrame_Navigating

Wrox.com K . -
(object sender, NavigatingCancelEventArgs e)

MessageBox.Show ("you have navigating using mode "
+ e.NavigationMode) ;

// cancel the navigation
e.Cancel = true;

> NavigationFailed — Occurs when an error is encountered while navigating to the
requested content (Listing 4-27).

J LISTING 4-27: Using the NavigationFailed event

Available for
download on private void ContentFrame_NavigationFailed

Wrox.com . . . K
(object sender, NavigationFailedEventArgs e)

e.Handled = true;
ChildWindow errorWin = new ErrorWindow(e.Uri) ;
errorWin.Show () ;

> NavigationStopped — Occurs when a navigation is terminated by calling the stopLoading
method or when a new navigation is requested while the current navigation is in progress
(Listing 4-28).

‘) LISTING 4-28: Using the NavigationStopped event

Available for
downloadon v o3id ContentFrame_NavigationStopped

Wrox.com K . .
(object sender, NavigationEventArgs e)

MessageBox.Show ("navigation was cancelled or stopped");

Using a Custom Menu Control | 111

USING A CUSTOM MENU CONTROL

In the previous examples, navigation was triggered by clicking a HyperlinkButton control. In some
cases, you will use other types of controls to trigger navigation. The basic concept is the same no mat-
ter what type of control you use. In this example, you see how to implement navigation using a third-
party menu control, the xamwebMenu from the Infragistics Silverlight controls toolset. The xamwebMenu
easily integrates into the Navigation Framework by simply setting a few properties on the control and
its menu items. Listing 4-29 is an example where I have taken the default MainpPage.xaml template
that is created when you start a Silverlight Navigation Application and I have added the xamebMenu
control to the page.

‘) LISTING 4-29: Adding the Infragistics XamWebMenu for navigation
Available for
dwm?%gﬂ <!-- Default controls for navigation, this section would be removed
(everything inside the Border control if you replace
navigation with a custom menu control -->

<Border
x:Name="LinksBorder"
Style="{StaticResource LinksBorderStyle}">
<StackPanel
x:Name="LinksStackPanel"
Style="{StaticResource LinksStackPanelStyle}">
<HyperlinkButton x:Name="Linkl"
Style="{StaticResource LinkStyle}"
NavigateUri="/Home"
TargetName="ContentFrame"
Content="home" />
<Rectangle
x:Name="Dividerl"
Style="{StaticResource DividerStyle}"/>
<HyperlinkButton
x:Name="Link2"
Style="{StaticResource LinkStyle}"
NavigateUri="/About"
TargetName="ContentFrame"
Content="about"/>
</StackPanel>
</Border>
<!-- This is the custom menu control - note the NavigationElement

is bound to the ContentFrame control, and the XamWebMenultems

use the NavigationUri to navigate to the Uri in the

UriMapping collection -->

<ig:XamWebMenu
NavigationElement="{Binding ElementName=ContentFrame}"
Height="27"
HorizontalAlignment="Left"
Margin="214,6,0,0" Name="xamWebMenul"
VerticalAlignment="Top"
Width="232" >

<ig:XamWebMenultem

continues

12 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

LISTING 4-29 (continued)

Header="Select a Nav Target">
<ig:XamWebMenultem
NavigationOnClick="True"
NavigationUri="/Home"
Header="Home">
</ig:XamWebMenultem>

<ig:XamWebMenultem
NavigationOnClick="True"
NavigationUri="/About"
Header="About" />
</1ig:XamWebMenuItem>
</ig:XamWebMenu>

You can see that on the main XamWebMenu control I use the NavigationElement property to tell

the menu which element it should target when a menu item is clicked. In this case, I am binding

to the Frame element on the page. Then, on each XamWebMenuItem, I have set two properties: the
NavigationOnClick property and the NavigationUri property. The NavigationonClick property,
when set to True, tells the menu that I want to use the Silverlight Navigation framework when a
menu item is clicked. The NavigationUri property tells the menu what URI I want the target Frame
to navigate to when I click the menu item. When you run the project, you can see that as expected,
clicking the menu items causes the content in the Frame to change. Figure 4-9 shows what the menu
should look like based on the XAML added to the preceding page.

Q Home - Windows Internet Explorer
@O' IE httpe//localhost 25824/ CustomMavigahonControlles » E ""] x l |b Hing 2 -

Seete e T m

Home

W ﬁHnme

Application Name

About

Home

Heme page content

Done € Local intranct | Protected Mode: Off L~ B -

L

FIGURE 4-9

Adding Navigation Animations | 113

To get the xamwebMenu, download the Infragistics Silverlight controls at this link: nttp: / /www
.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#0verview.

ADDING NAVIGATION ANIMATIONS

One of the compelling features of Silverlight is its animations capabilities. You can flip, rotate, skew,
bounce, shrink, grow, and a lot more on any object that is rendered on the screen. The same goes for
the pages that you are navigating to via the Navigation Framework. This could be done in several ways,
but the simplest is to use a control in the Silverlight Control Toolkit that you can download here:

http://silverlight.codeplex.com/

Once you download and install the Toolkit, you can run the samples that demonstrate its various
features. One of the controls in the Toolkit is the TransitioningContentControl.

The Silverlight Control Toolkit is licensed under MS-PL, or the Microsoft
Permissive License. This means you are free to use the controls and source code
for anything that you choose to, as long as the license reference is included in what
you are redistributing. Note that these controls are not supported by Microsoft,

so the only available support is via the various public forums on CodePlex and
Silverlight.net.

The TransitioningContentControl is a ContentControl that provides four transition animations
that are triggered when the Content property of the control is changed. The following four transitions
are available:

> DefaultTransition
> Normal
> UpTransition
> DownTransition
To use the TransitioningContentControl to animate the content changes of the Frame control, you

need to update the ContentFrameStyle in the Styles.xaml Resource Dictionary of a Navigation
Application template, which is located in the Assets folder as shown in Figure 4-10.

To get this going, add a reference to the System.windows.Controls.Layout.Toolkit assembly
as shown in Figure 4-11. I chose to download the . zip file of the Silverlight Control Toolkit, so I
browsed to the Bin folder on my machine where I unzipped the file. If you chose to install the MSI of
the Silverlight Control Toolkit, look in the \Program Files\Microsoft SDKs\Silverlight folder.

Once this reference is added, add the following namespace reference to the styles.xaml Resource
Dictionary:

xmlns:layout="http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit"

http://www.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#Overview
http://silverlight.codeplex.com/
http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit%E2%80%9D
http://www.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#Overview

114 | CHAPTER4 WORKING WITH THE NAVIGATION FRAMEWORK

Salution Bxplarer > A X et 0] efererce .
l 3 ial E|E-5:| : | NET | Projeets | Browse | Recent|
| el Selution ‘SilverlightApplicationd’ jecte; .
g ol .|on .| erligl 4 p_p icationd” (2 projects) T @8 m
4 3 SilverlightApplicationd .
. [Propertics Hame Date modified Type Size
, Bl References) Design 4/30/2010826PM File folder
B Assets %) System Windows. Controls. Dete DeteForm. Toolkit dil 4713/2010 818 PM Apphcation extens. . 1
.« = e I % Systern. Windews.Cantrals Data Toolkit.dil 4132MO814PM Applicatian extens... E
: 17] Stylesxaml| %) Systern.Windows.Control Toulkst.dil ! FM Apphcation extens.. an
v 3 Views 1% Systern Windows. Cantrals Input. Toalkit.dll 4/13/20108:14 PM Application edens. . ko
[._l, Appxaml| | % Systern.Windows. Controls.Layout. Toalkit.dil 4132010 814 PM Application extens... 13
b 3 MainPagexaml {4 Systeen Windlowrs.Controls. Theming. Toolkit.dil 473/MRISPM Application extens.. 2
4 (R SilverightApplication9. Weh (% System.Windews.Controls.Teelkit.dll 47132010 8:15PM Application exens... 35
‘31 Properti pr [System Windows. Controls. Teolkit Internals.dil A71/2010 139 PM Application exens._. 7
P | roperies
b = References
3 ClientBin
&) Sitverlight js
] SitverlightApplication9TestPage.aspx
iﬂ SilverlightApplicationdTestPage.html T = = ‘
p [E Web.config -
Fle pame: Systam Windaws Cortmls Layoet Tooke -
Flecitoe: | Eneculable Fles -
G
£ sahhon Explorer [_conos]

FIGURE 4-10 FIGURE 4-11

In the styles.xaml file, locate the contentFramestyle (it is near the top of the file, or you can
hit Ctrl+F to launch the Find dialog). Once you have located the contentFrameStyle, update the
Setter value for the ControlTemplate as shown in Listing 4-30.

J LISTING 4-30: Updating the ContentFrameStyle in the Styles.xaml file
Available for
download on <!-- Content Frame Style -->
Wrox.com
<Style x:Key="ContentFrameStyle"
TargetType="navigation:Frame">
<Setter Property="Background"
Value="Transparent"/>
<Setter Property="BorderBrush"
Value="Transparent"/>
<Setter Property="Padding"
Value="58,15,58,15"/>
<Setter
Property="VerticalContentAlignment"
Value="Stretch"/>
<Setter
Property="HorizontalContentAlignment"
Value="Stretch"/>
<Setter Property="Template">
<Setter.vValue>
<ControlTemplate
TargetType="navigation:Frame">
<Border>
<layout:TransitioningContentControl
<!-- The control supports the following
Transition values
DefaultTransition

Summary | 115

Normal
UpTransition
DownTransition
-—>
Transition="DownTransition"
Content="{TemplateBinding Content}" />
</Border>
</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>

If you look at the Frame control in the MainPage.xaml, you will see the style property is set to
ContentFrameStyle, which you have just modified:

<navigation:Frame x:Name="ContentFrame"
Style="{StaticResource ContentFrameStyle}"

The Frame control contains a ContentPresenter, which is replaced with the
TransitioningContentControl when the ContentFramesStyle is merged with the page. Once
the content of the Frame changes when a user triggers a navigation event, the specified transition
executes based on the Transition property that you set in the style. You can experiment with
the various Transition options to determine what works best for your application.

SUMMARY

This chapter gave you the information you need for fundamental navigation scenarios in Silverlight.
You learned how to use and manipulate the Navigation Application template, how to create param-
eterized queries for real work Line of Business applications, and how to extend your application to use
a richer, third party menu like the Infragistics xamwebMenu control. Finally, you learned how to add
finishing touches to your navigation application, using a TransitioningContentControl to animate
the transitions of the Frame control.

Controlling Layout with Panels

WHAT’S IN THIS CHAPTER?

> Measuring and arranging
> Sizing elements

> Using and making layout panels

Controlling the layout of an application’s user interface (UI) is a problem that has long plagued
developers. Over the years, rich-client developers have written thousands of lines of code solely
devoted to reposition Ul elements in the application as its window size changes. Web develop-
ers have long struggled with the multitude of positioning schemes available to them, starting
with HTML tables and progressing to CSS layout, and — adding insult to injury — dealing
with different browser interpretations of these layout schemes.

Microsoft looked to address many of the basic problems in application user interface layout
with Windows Presentation Foundation (WPF) by creating a powerful, flexible, and highly
extensible new layout system. Thankfully, they have brought most of those layout concepts
into the world of Silverlight. Through the use of layout containers and panels, the Silverlight
layout system gives you a level of layout control that was previously difficult, if not impossible,
to achieve.

In this chapter, you first learn the basics of the Silverlight layout system and how it works to
create flexible application user interfaces, and ways that you can influence how individual

UI elements are sized and positioned. Next, you will learn about the different layout panels
included in Silverlight that implement these layout concepts. You also learn how simple it is to
take advantage of the layout system by building your own custom layout panel that includes
your own layout logic. Finally, you learn how external influences such as browser rendering
can influence the layout of your Silverlight application.

118 | CHAPTER5 CONTROLLING LAYOUT WITH PANELS

MEASURE, THEN ARRANGE

The basis of the Silverlight layout system is a two-pass measure and arrangement concept. While all
UI elements participate in this system, most of the work is done by layout panels, so in this section,
we talk about the layout system in the context of a panel.

When a layout panel in the application changes size or location, this invalidates the layout of the
panel and triggers one or more passes of the Silverlight layout system. Panels can also be manually
invalidated using the ITnvalidateMeasure and InvalidateArrange methods.

@ In order for an element to participate in the layout system, it must be added to the
Visual Tree. The Visual Tree is the internal hierarchy of Ul elements that Silverlight
maintains. When a Silverlight application executes, the Visual Tree is constructed
based on the XAML elements defined in the user interface. Elements can be added
or removed from the tree at run time by manipulating a panel’s Children collec-
tion. If you are creating Ul elements at run time, make sure you add them to some
panel’s children collection so that it is added to the Visual Tree.

Once a panel becomes invalid, Silverlight initiates the Measure pass, which is shown in Figure 5-1.

I I [

Determine Measure Determine
Available Size Child Elements Desired Size
FIGURE 5-1

In the Measure pass, the invalid panel is told how much size it has available to it. The panel then
has all of its child elements measure themselves, calculating how much space they would like to
take based on the panel’s available size. The size an element would like to be is called the element’s
DesiredSize and is usually based on the size of its content or a hard-coded Height or width value.

@ Note that if a panel is the child of certain elements, such as the Scrollviewer,
it can be told in the Measure pass that it has infinite height and/or width. This
can affect how a panel renders its children, allowing them to take infinite
height or width.

The term desired size is used because although an element may desire a specific size, other factors in
the user interface may cause the Silverlight layout system to force the element to be rendered with a

Measure, Then Arrange | 119

different size. When all of the panel’s children have completed measuring themselves, the panel can
determine how much of the available size it would like to use and returns that value to the Silverlight
layout system.

Once the Measure pass completes, Silverlight calculates the final size available to the panel and the
second pass of the layout system, the Arrange pass (see Figure 5-2) is executed.

1. Determine Pre-Arrangement Final Size

‘\/

2. Arrange Child Elements Based on Panel Logic

[e———]
3. Determine Post-Arrangement Final Size
FIGURE 5-2

During the Arrange pass, the panel has the opportunity to arrange each of its children based on its
panel-specific logic and by asking the child elements for their final size. Based on the arrangement of
the children, the panel returns its final size to the layout system before being rendered.

The final height and width of the panel is called its Actualwidth and ActualHeight.

When querying an element for its current size, you should always use the
ActualHeight and ActualWidth properties since the element’s parent can alter
the element’s height and width regardless of any explicit height and width values
that might be set. Also note that the ActualHeight and ActualwWidth proper-
ties can return a value of zero. This can happen if the element is either not in the
Visual Tree or has not gone through a layout pass.

Later in this chapter you will look at the different Panels available in Silverlight, and the arrange-
ment logic used by each, as well as how you can create panels with your own custom measure and
arrangement logic.

120 | CHAPTER5 CONTROLLING LAYOUT WITH PANELS

y Each time a Ul element changes size or position, it has the potential to trigger a
new pass of the layout system, which can cascade down the Visual Tree invalidat-
ing children of the original invalid element. If the Visual Tree is large, this can be
an expensive process. To help reduce the amount of work performed by the layout
system, Silverlight will cache arranged versions of the Visual Tree. As the invali-
dation of elements cascades down, if Silverlight determines that a specific child
element’s size and position have not changed, it will use the cached version of the
elements, rather than triggering the measure and arrange passes for it.

As mentioned earlier, during the Arrange pass of the layout system, a panel has the opportunity to
arrange its children based on its arrangement logic. When positioning elements, the panel is in real-
ity positioning a rectangle called a layout slot, which contains the element. Silverlight surrounds
every Ul element with this rectangle to simplify the arrangement process.

The size of the layout slot is determined by the layout system, giving consideration to the amount of
available screen space, constraints like margin and padding, and the unique behavior of the parent
panel. It is up to the parent container to determine the size of the layout for each of its children.
You can get the Rectangle, and through that the size of the layout slot, by using the static System
.Windows.Controls.LayoutInformation.GetLayoutSlot method.

If an element extends outside of its allocated layout slot, the layout system will begin to clip the ele-
ment. You can get the dimensions of the visible portion of the element by calling the system
.Windows.Controls.LayoutInformation.GetLayoutClip method.

ELEMENT SIZING CHARACTERISTICS

Every FrameworkElement includes several properties that can help the element influence its size and
position within the layout container. These properties are:

> Height and width
» Alignment
> Margin

> padding

This section looks at these different properties and how you can use them to control how elements
of your user interface are arranged.

Height and Width

The most direct way to control a FrameworkElement’s size is to use its Height and width proper-
ties. These properties allow you to set specific pixel values for the element’s height and width, and
depending on the FrameworkElement’s layout container, these values will usually override any other
size properties set on the element.

Element Sizing Characteristics | 121

@ For users who have set their OS DPI to a value other than the default 96 DPI,
browsing the Web can be difficult. This is because most browsers are not
DPI-aware and cannot take advantage of Windows DPI Scaling features to
improve the readability of their content. Internet Explorer 8 (IE 8) helps off-
set this issue by automatically increasing its zoom level based on the OS DPI
setting, but Silverlight itself is not DPI-aware (pixels are always rendered at a
fixed 1/96th of an inch), and therefore it will not automatically scale its own
content. To work around this problem, you can use a scale transform based
on the actual size of the Silverlight plug-in object, which will be scaled by IE.
Or if you are targeting only Internet Explorer to host your application, you
can detect the OS DPI using the Silverlight DOM Bridge to get the value of
the devicexDPI property of the Internet Explorer DOM.

By default, FrameworkElements have their width and Height properties set to Double.NaN, which is
interpreted by the layout system as “Auto.” Auto layout generally means that the layout system will size
the element to fill whatever space is available in the layout, rather than sizing to any specific pixel value.
This is shown in Figure 5-3, where a button with no height or width set has been added to a cria.

& Auto Layout - Windows Intemet Explorer
@U »] nip//locahostsosz3/cha ~ | 43 | X |[ging P -
i Favorites | @ Auto Layout [
chapter 5
Button 1
Done € Local intranet | Protected Mode: Off 43~ H100% v
FIGURE 5-3

You can clearly see that the Button consumes all the available space in the crid.

122

| CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

Although not necessary, you can explicitly set the width and Height properties to
Auto in XAML. It is also possible to reset a FrameworkElement’s height and width
value back to Auto by assigning the property a value of bouble.NaN in code.

Note that in Figure 5-3, neither the Grid nor its container, the UserControl, have width and
Height properties set; therefore, they too default to Auto size. This explains why the Grid is con-
suming all available space of its layout container, the Usercontrol, and the UserControl is con-
suming all available space of its container, the Silverlight plug-in.

Setting an explicit width or height on the Button will constrain its size within the crid, as shown in
Figure 5-4, where the Button now has its width property set to 150.

€ Explicit Width - Windows Internet Explorer
@U » |E] nip//locahosts0623/cha ~ | 43 | X |[ging P -
i Favorites | @ Explicit Width [
chapter 5
Button 1
Done &L Local intranet | Protected Mode: OFf 3 - Hio0x v
FIGURE 5-4

Also, by default the button has its Horizontalalignment and VerticalAlignment properties set to
stretch. This means that the Button is going to stretch to fill its parent container. Setting these prop-
erties to a different value, such as center, changes the layout behavior of the Button so that it sizes
itself based on the size of its content.

Leaving a control’s Height or width as Auto allows its containing pPanel to influence how the con-
trol is ultimately rendered. For example, if you take the code from the previous listing and substitute
a Stackpanel for the Grid as the Button’s layout container, you will see that the Button’s height

is rendered differently. This is because of the different arrangement logic used by the stackpanel
compared to the Grid, which will be explained in greater detail when we examine the StackPanel
layout container later in this chapter.

Element Sizing Characteristics | 123

In addition to setting explicit height and width values, every FrameworkElement can also have
height and width thresholds set on it. Using the FrameworkElement’s Minwidth, MinHeight,
MaxWidth, and MaxHeight properties, you can dictate to the layout system that the element

should never exceed certain height or width values. Setting these values will even override the
FrameworkElement’s Width or Height properties if they are explicitly set to values outside the mini-
mum or maximum ranges.

In cases in which the size given to the FrameworkElement’s layout container is less than the
MinWidth or MinHeight of the FrameworkElement, the container will begin to clip the element
rather than reduce the element’s size.

Alignment

FrameworkElements can have a horizontal or vertical alignment set on them. The alignment proper-
ties include the standard alignment values — Left, Right, and Center for horizontal alignment and
Top, Center, and Bottom for vertical alignment — but by default, an element’s alignment is set to

a fourth option, called stretch. stretch tells the element that it should attempt to fill its parent’s
entire layout slot.

Margin and Padding

Finally, there are two additional properties you can use to influence the size and position of Ul ele-
ments in your application, FrameworkElement’s Margin property and Control’s Padding property.

Margin

The Margin property allows you to add space to the outside of the element, between it and any other
elements that surround it. You can set an element’s margin as a single uniform value:

<Button Margin="10" />

You can also control the margin for each side of the element individually. In XAML, you can set the
margin for each side of the element by specifying a comma-delimited list. The order of the Margin
values is Left, Top, Right, Bottom:

<Button Margin="10,5,10,5" />

When a FrameworkElement’s container has no size constraints, the margins will push the Layout Slot
boundaries outward. Figure 5-5 demonstrates this by placing a Button with explicitly set Height and
wWidth properties and a margin size of 40 into a Grid that has no explicit height or width set.

By setting the Grid’s Background to LightGray and its HorizontalAlignment and
VerticalAlignment to Center, you can see that the button’s margin pushes the grid outward
beyond the boundaries of the button.

If the Silverlight layout system determines that space is not available to add the margin to the
FrameworkElement, the system attempts to constrain, or even clip, the element’s content in order to
display the full margins. If the FrameworkElement has an explicit height or width set, the content
of the element will be clipped. This is shown in Figure 5-6, where an explicit width and height has
been set on the grid and the content of the button is now clipped when a margin is added.

124 | CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

@@v [] nip:snoamostsoszs/cha ~ |42 | % ||l gina P -
1 Favorites .éuargin N
Chapter 5
Button 1
Done Qmulinlmnet[['rmmd Mode: Off &5 - F10% v
FIGURE 5-5

@@v [] nipinoamostsoszs/cna ~ |42 | x || gina P -
74 Favorites eHargin =
Chapter 5
Button 1
Done €L Local intranet | Protected Mode: OFf G~ Hiw0x -

FIGURE 5-6

Using Layout Panels | 125

It is also possible to set margin values to negative values. Doing this allows you
to position elements outside of their normal position.

If the FrameworkElement does not have an explicit size set, Silverlight attempts to constrain the ele-
ment content in order to display the full margins.

Padding

The padding property allows you to add space around the inside of an element. Figure 5-7 dem-
onstrates this by showing two Border controls inside of a two-column grid. Both Border controls
contain a rectangle. The Border control on the left has no Padding set, while the one on the right
has had its Padding property set to increase the buffer between it and the child rectangle.

‘€ Padding - Windows Internet Explorer
@O » |] nitp/toahostsos23/chapt = | 47 | % | [sing » -
i Favorites | & Padding [
Chapter 5
Done ‘& Local intranet | Protected Mode: OFf A~ Hwox -
FIGURE 5-7

As with the Margin properties, if the parent element has no explicit size set, the element increases in
size in order to accommodate the padding.

Margin and Padding are cumulative, meaning that if the parent element has Padding defined and
the inner element has Margin defined, Silverlight displays both.

Finally, unlike Margin, Padding cannot be set to negative values.

USING LAYOUT PANELS

Now that you have a basic understanding of how the Silverlight layout system works, you can
begin to use some of the layout panels that are native to Silverlight or are available in the Silverlight
Toolkit that leverage this system. Each of these panels provides a unique layout mechanism you can
leverage in your application.

126 | CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

Additionally, there are numerous third-party and open source layout panels available that you can
leverage in your application.

Canvas

The canvas layout panel provides you with a way to position elements using an explicit coordinate
system. Elements contained in the Canvas are positioned relative to the top-left corner of the panel,
which is considered position 0,0.

y While this layout panel may feel the most familiar to developers who are com-
ing from the Windows Forms world, for the most part, you should avoid using
Canvas in your applications (or at least use it sparingly) because it forces you
to do most of the work to control the position of your Ul elements, rather than
allowing the layout system to do this for you. An excellent explanation of why
the use of canvas should be avoided can be found here: http: //blogs .msdn
.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx.

To position elements on the canvas, you use the Canvas’s Top and Left attached properties on its
child elements. Listing 5-1 demonstrates how you can use the canvas to absolutely position buttons.

‘) LISTING 5-1: Using the Canvas panel to arrange elements

Available for
download on <Canvas>

Mirox.com <Button Canvas.Left="0" Canvas.Top="0" Content="Buttonl" />
<Button Canvas.Left="50" Canvas.Top="25" Content="Buttonl" />
<Button Canvas.Left="100" Canvas.Top="50" Content="Buttonl" />
<Button Canvas.Left="150" Canvas.Top="75" Content="Buttonl" />
<Button Canvas.Left="200" Canvas.Top="100" Content="Buttonl" />
<Button Canvas.Left="250" Canvas.Top="125" Content="Buttonl" />

</Canvas>

Figure 5-8 shows how the buttons are absolutely positioned within the canvas when the application
is run.

While canvas is useful when you need to explicitly position elements in your user interface — for
example, if your application performs some type of physics-based rendering or drawing — it does
mean that your user interface becomes less dynamic and will not be able to scale properly as the
available space in the UI changes. canvas does not consider some of the basic element characteristics
like Horizontalalignment and VerticalAlignment when positioning children because canvas is
based on absolute positioning.

http://blogs.msdn.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx
http://blogs.msdn.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx

Using Layout Panels | 127

@Ov ’p_' it/ Mocaltwsl: 50623/ Chap! v] 4 | X | |b Bing yel -
o Favorites | 4 Canvas [
Chapter 5
|Buttond |
|Bul‘|:nni|
|Buttond |
| Bullonl |
| Button1 |
|Buttonl
Done €L Local intranet | Protected Mode: Off £y~ Hi0x -
FIGURE 5-8
StackPanel

As the name implies, the stackpanel simply stacks elements vertically or horizontally. Listing 5-2
demonstrates using the StackPanel to create a vertical stack of elements.

‘) LISTING 5-2: Using StackPanel to stack elements

Available for
download on <StackPanel>

Wrox.com
<Button Content="Button" />
<TextBlock>Lorum Ipsum</TextBlock>
<Slider></Slider>
<HyperlinkButton Content="HyperlinkButton" />
<CheckBox />
</StackPanel>

As you can see in Figure 5-9, when child elements are added to the stackPanel, the panel simply
stacks them in a vertical orientation by default. Using the StackPanel’s Orientation property, you
can change the panel to stack elements horizontally.

When the stackPanel’s orientation is set to Vertical, the control sets its available height to
Infinity, allowing its children to take an infinite amount of vertical space if they have no explicit
size set. If the orientation is horizontal, then the panel’s width is set to Infinity.

128 | CHAPTER5 CONTROLLING LAYOUT WITH PANELS

€ stackPanel - Windows Internet Explorer
@U »] nitp//loahostso623/chapt = | 47 | % | [sing A -]
.q Favorites &8 StackPanel [

Chapter 5

| Button |

Lorum Ipsum

5

8]
Done €L Local intranet | Protected Mode: Off v Hwox v

FIGURE 5-9

This is one reason why the stackpanel works well in conjunction with the scrol1viewer control. As a
StackPanel’s children begin to exceed the amount of vertical or horizontal space available to the panel,
the Scrollviewer allows you to start scrolling them into view, rather than adjusting their own size.

Additionally, as with every other element, StackPanel can have its height and width set. If no width
is set, the stackPanel will make itself as wide as its widest child. If no height is set, it takes enough
height to display all of its children.

VirtualizingStackPanel

The virtualizingStackPanel offers the same basic element stacking arrangement as the
StackPanel, but because it is derived from the virtualizingStackPanel, it leverages
virtualization to help reduce the number of Ul elements created in your application.

Working with an ItemsControl like ListBox, the VirtualingStackPanel can determine which
items in the list are currently visible on screen, and generates only the Ul elements needed for those
items that can help you increase the performance of your application.

y Starting in Silverlight 3, the 1istBox default items panel is the
VirtualizingStackPanel, so if you are using this control, you will auto-
matically see the benefits of the virtualization. In order for the ListBox

to determine the number of items visible, the control needs to be able to
calculate some height value. If your ListBox is inside of a ScrollViewer,
you will need to either set an explicit height on the ListBox or turn off the
VerticalScrollBarVisibility.

Using Layout Panels | 129

In addition to ListBox, you can use the VirtualizingStackPanel to increase the performance of the
ComboBox. Listing 5-3 demonstrates using the VirtualizingStackPanel with the ComboBox control.

‘) LISTING 5-3: Using the VirtualizingStackPanel with the ComboBox
Available for
dwmf%gﬂ <ComboBox x:Name="comboBox1">
<ComboBox.ItemsPanel>
<ItemsPanelTemplate>
<VirtualizingStackPanel />
</ItemsPanelTemplate>
</ComboBox.ItemsPanel>
</ComboBox>

As you can see, to use the VirtualizingStackPanel, you simply assign it to the ComboBox’s
ItemsPanel property.

Grid

Perhaps the most powerful layout container in Silverlight is the Grid layout panel. As the name
implies, the Grid allows you to define a grid of rows and columns in which you can position child
elements.

Listing 5-4 demonstrates a simple Grid layout container.

‘) LISTING 5-4: Defining rows and columns in a Grid layout panel
Available for
dwmrggn <Grid Background="White" ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<TextBlock Text="Grid Cell 1" Grid.Row="0" Grid.Column="0" />

<TextBlock Text="Grid Cell 1" Grid.Row="0" Grid.Column="1" />

<TextBlock Text="Grid Cell 1" Grid.Row="1" Grid.Column="0" />

<TextBlock Text="Grid Cell 1" Grid.Row="1" Grid.Column="1" />
</Grid>

In the previous sample, a grid structure consisting of two rows and two columns is created using the
grid’s RowDefinitions and ColumnDefinitions collections. Once the structure is defined, several
TextBlocks are added to the grid. Using the grid’s Row and column attached properties, you can
dictate which grid cell each TextBlock element should be positioned in.

If you add children to the Grid, but do not explicitly set a Row or Column value, the grid automati-
cally assumes they will be in row zero, column zero.

130

CHAPTER5 CONTROLLING LAYOUT WITH PANELS

The crid also exposes RowSpan and ColumnSpan attached properties that you can use to alter how
an element is positioned in the crid. Listing 5-5 demonstrates using these attached properties to
allow a TextBlock to span two grid columns.

‘) LISTING 5-5: Using a ColumnSpan with a TextBlock

Available for

dwmrggﬂ <Grid Background="White" ShowGridLines="True">

<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<TextBlock Grid.Row="0" Grid.Column="0"
Grid.ColumnSpan="2" TextWrapping="Wrap">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Sed ultricies lectus et dui. Quisque vulputate facilisis nisl.
Nulla sed turpis. Pellentesque ultricies mi ac velit. Praesent
id turpis. Nunc mattis pharetra enim. In leo eros, sollicitudin
vitae, ultricies accumsan, luctus quis, justo.
</TextBlock>
<TextBlock Text="Grid Cell 1/0" Grid.Row="1" Grid.Column="0" />
<TextBlock Text="Grid Cell 1/1" Grid.Row="1" Grid.Column="1" />
</Grid>

The crid also allows you to set properties on the individual rows and columns that affect their
layout. The RowDefinition and ColumnDefinition classes expose properties that allow you to set
their Height or Width.

Unlike a standard element’s width and Height properties, which only accept pixel measurements or
the Auto keyword, Grid Row and Column size properties accept a special measurement type called
Gridrength. This type not only offers the standard size units (Pixels or Auto), but also includes an
additional measurement type call star. The star unit allows you to provide a value that expresses
a size as a weighted proportion of available space. To specify a star value, you simply provide the
literal * character as the value for the width property. You can also specify a factor by placing an
integer preceding the *, for example, 3*.

Listing 5-6 demonstrates the use of the star sizing in a Grid.

‘) LISTING 5-6: Using Star sizing with the Grid

Available for

dwmrg£" <Grid Background="White" ShowGridLines="True">

<Grid.RowDefinitions>

<RowDefinition />

<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition Width="100" />

Using Layout Panels | 131

<ColumnDefinition Width="*" />
<ColumnDefinition Width="2*" />
<ColumnDefinition wWidth="*" />
</Grid.ColumnDefinitions>
</Grid>

In this sample, the first columnDefinition has an explicit pixel width set, while the rest use star
size values. The third columnpDefinition includes a factorial value that specifies that the width
given to this column should be two times that given to the other columns. Figure 5-10 shows the
resulting grid rendered.

‘€ star Sizes - Windows In Explorer
G_O' 'p_‘ It focalbost: 50623/ Chap! v] ty | ~ | |b Bing P ~|
5 Favorites | @& Star Sizes [=
Chapter 5
Done €L Local intranet | Protected Mode: Off £y~ Hi0x -
FIGURE 5-10

In this case, the Grid has had its ShowGridLines property set to True in order to show the column
widths.

WrapPanel

The wrappPanel, included in the Silverlight Toolkit, allows you to create a layout that wraps Ul ele-
ments when they begin to exceed the width of the wrap panel. Listing 5-7 demonstrates the use of
the WrapPanel.

‘) LISTING 5-7: Using the Silverlight Toolkit’s WrapPanel
Available for
dgfrgg(ﬂggnl:n <my :WrapPanel>
<Button Content="Button" />
<TextBlock>Lorum Ipsum</TextBlock>
<Slider></Slider>
<HyperlinkButton Content="HyperlinkButton" />
<CheckBox />
</my:WrapPanel>

132 | CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

You can see that using the wrappPanel is virtually identical to using the StackPanel. As the width of
the panel changes, the elements within it will wrap to new lines, as shown in Figure 5-11.

‘€ WrapPanel - Windows Internet Explorer I]Es)
@Ov [£] nip:/noamostsoszs/cnapt |42 | % || ging P~
i Favorites e.mePanm (=
Chapter 5

[Button 01|Button 02[Button 03 [Button 04 Button 05Button 06| Button 07 [Button 08|
|Button 03 |Button 10|Button 11 |Button 12| Button 13 |Button 14| Gutton 15|Button 16|

|Button 17| Button 18| Button m[numm 20

Done (“q. Local intranct | Protected Mode: Off - F100% v

FIGURE 5-11

If there are enough elements to begin to exceed the height of the panel, it will begin to show a verti-

cal scrollbar.

DockPanel

The Dockpanel, also included in the Silverlight Toolkit, allows you to dock elements to the edge of
the panel. If you are familiar with Windows Forms, the DockPanel provides a layout behavior simi-
lar to the Dock property of Windows Forms controls.

Listing 5-8 shows how you can use the DockPanel, using the panel’s attached properties on its child
elements to control their dock behavior.

J LISTING 5-8: Using the Silverlight Toolkit’s DockPanel

Available for

dmg;ﬁ::{:" <controlsToolkit:DockPanel>
<Button Content="Left" controlsToolkit:DockPanel.Dock="Left" />
<Button Content="Top" controlsToolkit:DockPanel.Dock="Top" />
<Button Content="Right" controlsToolkit:DockPanel.Dock="Right" />
<Button Content="Bottom" controlsToolkit:DockPanel.Dock="Bottom" />
<Button Content="Center" />

</controlsToolkit:DockPanel>

You can see that in this listing, the DockPanel contains four Buttons. Each Button has the
DockPanel’s Dock property set on it, dictating the side of the panel the Button is docked to.

Creating Custom Panels | 133

Finding Third-Party Panels

In addition to the layout panels available as native Silverlight panels or as part of the Silverlight
Toolkit, there are many other places to find layout panels. Third-party component vendors offer a
variety of layout panels with different panels, and a quick Bing search demonstrates that there are
many other sources of layout panels, from developers posting panels in a blog to open source proj-
ects hosted on CodePlex.

One of the more interesting open source projects is Blacklight, which is hosted on CodePlex
(www.codeplex.com/blacklight). This project contains two interesting layout panels: the Drag
Dock Panel and the Animated Layout Panel. The Drag Dock Panel allows you to create a series
of content panels that the end user can reorder through drag-and-drop gestures. The Animated
Layout Panel allows you to define an animation that is used when new elements are shown or
hidden in the panel.

Listing 5-9 demonstrates how you can use the Drag Dock Panel.

‘) LISTING 5-9: Using the Blacklight Drag Dock Panel
Available for
dsfrgiﬂggr:" <Grid x:Name="LayoutRoot">
<blacklight:DragDockPanelHost Margin="50">

<blacklight:DragDockPanel>

<Button Content="Button 1" />
</blacklight:DragDockPanel>
<blacklight:DragDockPanel>

<Button Content="Button 2" />
</blacklight:DragDockPanel>
<blacklight:DragDockPanel>

<Button Content="Button 3" />
</blacklight:DragDockPanel>
<blacklight:DragDockPanel>

<Button Content="Button 4" />
</blacklight:DragDockPanel>
<blacklight:DragDockPanel>

<Button Content="Button 5" />
</blacklight:DragDockPanel>
</blacklight:DragDockPanelHost>

</Grid>

As the listing shows, to use the panel, simply create a DragDockpPanelHost and then add as many
DragDockPanels as you want. Each DragDockPanel contains the unique elements you want to show
in that panel.

CREATING CUSTOM PANELS

As stated earlier in the chapter, the layout system included in Silverlight is not only highly flexible
but very extensible. It is quite easy to leverage the layout system to create your own custom layout
panels that contain your own unique arrangement logic. In order to show this, this section demon-
strates how to create a version of the WrapPanel control shown earlier called SimplewrapPanel.

http://www.codeplex.com/blacklight

134 | CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

The layout logic for the panel will stack its child elements from left to right, starting in the upper-
left corner of the panel. When the child elements begin to exceed the width of the panel, the panel
will automatically begin to wrap the elements to a new row.

To get started creating a custom panel, simply create a new Silverlight Class Library in your project.
Once the class file has been created, change the class so that it derives from the base Panel object.
This is shown in Listing 5-10.

‘) LISTING 5-10: Deriving from the base Panel
lI’\\Iailellblt:llor .
W:gx‘fgon':“ us;ng System; .
using System.Windows;
using System.Windows.Controls;

namespace SimpleWrapPanelSample

{
public class SimpleWrapPanel : Panel
{
}

Next, you must override two methods from the base Panel — Measureoverride and
ArrangeOverride. This is shown in Listing 5-11.

‘) LISTING 5-11: Overriding the MeasureOverride and ArrangeOverride methods

Available for
download on

o public class SimpleWrapPanel : Panel

protected override Size MeasureOverride(Size availableSize)
{
}

protected override Size ArrangeOverride(Size finalSize)
{
}

Now all that is left to do is for you to implement your own layout logic in the Measure and Arrange
methods. The logic for the SimpleWrapPanel’s MeasureOverride method is shown in Listing 5-12.

‘) LISTING 5-12: MeasureOverride logic for SimpleWrapPanel

Available for

ﬂmgioggm"“ protected override Size MeasureOverride (Size availableSize)

{

Size size = new Size();

foreach (UIElement element in this.Children)
{

if (element != null)

Creating Custom Panels | 135

element .Measure (availableSize) ;
Size desiredSize = element.DesiredSize;

size.Width = Math.Max(size.Width, desiredSize.Width);
size.Height += desiredSize.Height;

}

return size;

The first step in the method is to loop through all of the panel’s child elements and call Measure on
each one of them, passing in the availablesize parameter. This causes the child elements to calcu-
late their own desired sizes.

Next, in the same loop, the Panel control attempts to identify the amount of space needed by the
panel for the layout. This is calculated by finding the width of the widest element in the panel and
by calculating the sum height of all elements in the panel. Once the size is determined, it is returned
as the result of the method. The value returned from this method is the panel’s Desired Size, as dis-
cussed earlier in the chapter.

Once the layout system has completed the Measure pass, it then executes its Arrange. The Arrange
pass is when the panel actually positions its child elements in the final space allocated to the panel
by the layout system. The positioning of the child elements is done by calling the Arrange method
on each child of the panel, passing the child its final desired size and position by using a Rectangle
object.

Listing 5-13 shows the panel’s aArrangeoverride method, which includes the positioning logic for
the panel.

‘) LISTING 5-13: ArrangeOverride logic for SimpleWrapPanel

Available for

dwmfggn protected override Size ArrangeOverride(Size finalSize)

{

Point point = new Point (0, 0);

double top = 0.0;
double left = 0.0;

o o

double maxheight =
double rowheight =
double width = 0.

o
o O

foreach (UIElement element in this.Children)

{
if (element != null)

{

left += width;

continues

136 | CHAPTERS5 CONTROLLING LAYOUT WITH PANELS

LISTING 5-13 (continued)
width = element.DesiredSize.Width;

//Check to see if this element will be rendered outside of
//the panels width and if so, create a new row in the panel
if ((left + element.DesiredSize.Width) >

finalSize.Width)

left = 0.0;

maxheight += rowheight;
top = maxheight;
rowheight = 0.0;

}

//Find the tallest element in this row
if (element.DesiredSize.Height > rowheight)
rowheight = element.DesiredSize.Height;

element.Arrange (
new Rect (left, top,
element .DesiredSize.Width,
element .DesiredSize.Height)

}

return finalSize;

The logic in the Arrange method for this panel is relatively simple. First, several internal members
are defined which help the Panel track information about the positioned elements. The panel needs
to track three things: the cumulative width of all elements it has positioned in the current row, the
height of the tallest element in the current row, and the cumulative height of all rows in the panel.

The cumulative width is used to correctly position the next element in the row. The tallest element
in the current row is used to determine the overall row height. As each element is positioned, the
panel checks to see if its height is greater than any other element that has been positioned in the
row before it. The cumulative row height of all rows in the panel is used to determine the position of
the next row.

Next, the method begins to enumerate each child element of the panel, calculating the position for
each child element and calling its Arrange method. As the Panel enumerates each element, it sets

the width and Height and x and v properties of the positioning rectangle using the data from the

internal members.

The panel also checks to determine if the element, when positioned, will exceed the width of the
P

panel. If this is found to be true, the Panel resets the Rectangle’s x and Y properties to reposition

the element onto a new row.

Silverlight Plug-In Sizing | 137

Finally, the child elements’ arrange method is called. A new Rectangle object is created, which is used
to provide the panel’s children with the information they need to position themselves within the panel.

Note that in the ArrangeOverride method, if you try to make the height or
width of a child element smaller than its desired size, the size passed into the
child’s arrange method is ignored, and the element continues to render at its
desired size. If you want to keep the smaller size, then you may need to apply a
clip to that element so that it won’t overspill its layout slot. Or earlier during the
panel’s Measure phase you can pass in the size that you actually want it to be.

Figure 5-12 shows the results of the panel once it is rendered.

& simpleWrapPanel - Windows Internet Explorer ==)Es
@U v [E) ntp/Nocaltost:50623/Chapt ~ | ¢ | x | ina P -
54 Favorites | (@ SimpleWrapPanel [

Chapter 5

|Button 01|Button 02|Button 03 | Button 04| Button 05 |Button 06| Button 07 |Button 08|
|putton 03| Button 10|Button 11 |Button 12| Button 13 |Button 14| Button 15|Button 16|
|Button 17|Button 18 |Button 19Rutton 20

Done &% Local intranet | Protected Mode: OFf 3 - Hi0x v

FIGURE 5-12

While the Wrap Panel is a simple example of a custom panel, every panel that you create will follow
the same basic Measure and Arrange principles.

SILVERLIGHT PLUG-IN SIZING

As described earlier, at its core, Silverlight is a browser plug-in, which is added to the page using

a standard HTML <object> tag. This means that when mixed into a page that contains other
HTML, CSS, and JavaScript, the specific way the browser renders this content can have significant
influence over how the Silverlight plug-in is sized and positioned.

To control the size of the browser plug-in, you can set a Height and a width attribute on the object
tag in HTML, as shown in Listing 5-14.

138

CHAPTER5 CONTROLLING LAYOUT WITH PANELS

LISTING 5-14: Setting the Silverlight plug-in’s Height and Width

<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="ClientBin/Chapter5.xap"/>
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="3.0.40818.0" />
<param name="autoUpgrade" value="true" />
<a href="http://go.microsoft.com/fwlink/?LinkID=
149156&v=3.0.40818.0" style="text-decoration:none">
<img src="http://go.microsoft.com/fwlink/?LinkId=161376"
alt="Get Microsoft Silverlight" style="border-style:none"/>

</object>

As with other HTML Height and width attributes, you can provide either percent values, like those
shown in the sample, or fixed pixel values.

SUMMARY

Silverlight provides a new and innovating user interface layout system that allows you to create
highly flexible user interfaces that easily adjust to and accommodate changes in application and con-
tent size. This chapter introduced you to the basics of this new layout system, starting with an over-
view of the new Measure, Arrange, and Render pattern used by Silverlight to intelligently render Ul
elements. This two-pass system allows Silverlight first to evaluate the amount of space that each Ul
element needs, and then to arrange each of these elements in the actual amount of space available.

The layout system allows you to influence this process by setting various sizing characteristics such
as the height, width, alignment, and margin on Ul elements.

The chapter then introduced you to the available panel control, which is responsible for most of the
element arrangement that happens in Silverlight. You can choose a panel that uses a layout scheme
that meets your layout needs, be it Grid, StackpPanel, or Canvas; or as the chapter showed, you can
create your own custom panel with your own custom layout scheme.

Finally, the chapter looked briefly at how the browser itself can influence how Silverlight renders its
content and how you can use the object tag to configure the Silverlight object size.

http://go.microsoft.com/fwlink/?LinkID=
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D

Working with Visual Controls

WHAT’S IN THIS CHAPTER?

> Finding Silverlight controls
> Using Ul controls

» Creating custom controls

Like most other Microsoft platforms, Silverlight allows developers to use controls to define an
application’s user interface (UI). Controls allow developers to be more productive by encapsu-
lating reusable chunks of behavior and a Ul into a single package that makes it easy to add the
user interface to your application. Rather than being responsible for drawing every detail and
coding every behavior, controls allow you to focus more on the specific requirements of your
application and less on developing those lower-level capabilities.

Silverlight provides a rich set of native controls as part of the platform. Additionally, there

are many other sources of controls including the Silverlight SDK, Silverlight Toolkit, third-
party vendors, and open source projects. This chapter will introduce you to many of the
controls across all of these resources. The chapter is not intended to be an in-depth guide to
every single control included in Silverlight, however, because many of the controls are fairly
self-explanatory. Additionally, although this chapter will touch on certain controls such as
MediaElement and TextBlock, they are discussed in much greater detail in other, more appli-
cable chapters of the book.

Because of the large number of Silverlight controls that are available from a
variety of sources, it can be difficult to know what assembly a specific control is
contained in. To make navigating this information easier, Appendix E contains
a table that maps the controls discussed in this chapter with the assemblies they
are found in.

140 | CHAPTER6 WORKING WITH VISUAL CONTROLS

Finally, this chapter focuses primarily on the visual user interface controls you can use in Silverlight.
Another set of items that appears in Visual Studio and Blend is layout panels like the grid and
StackPanel. Those are discussed in greater detail in Chapter 3.

WHERE TO FIND CONTROLS

As stated in the introduction to this chapter, there are many places where you can look to find a wide
variety of useful controls. Before beginning to dive into the specific controls, it’s useful to understand
where you can find different controls and the consequences of choosing controls from different sources.

Controls for Silverlight can be found in the following general sources:
> Native Silverlight Platform

Silverlight SDK

Silverlight Controls Toolkit

Third-party vendors

Open source projects

Y VYV Y Y Y

Custom controls

Each of these sources has different strengths and weaknesses. Obviously, controls that are included
in the native platform are the easiest to leverage, but the number of controls in that set is limited.
Controls included in the Silverlight SDK are also convenient to use, but because they are not part of
the native platform, using them requires you to add additional assemblies to your application, which
will increase the size of the application X AP.

In addition to the controls that Microsoft includes in the native platform and Silverlight SDK, an
additional set of controls is available through the Silverlight Controls Toolkit. These controls are
made available outside the Silverlight release cycle and are made available with full source code via
the Microsoft CodePlex website: www.codeplex.com/Silverlight.

Having a separate set of controls outside of Silverlight allows Microsoft to release new controls more
frequently and at differing levels of quality than are required for controls in the SDK. The Toolkit uses
three quality bands to describe the status of the controls. The quality bands are explained in Table 6-1.

TABLE 6-1
BAND DESCRIPTION
Mature Mature components are ready for full release, meeting the highest levels of quality and

stability. Future releases of mature components will maintain a high-quality bar with
no breaking changes except when such changes are necessary to make them more
secure or guarantee future compatibility. Customers should be confident using mature
components, knowing that when they upgrade from one version of the Silverlight
Toolkit to a newer version, it will be a quick and easy process. Owing to the heavy
focus on backward compatibility between versions, the bar for fixing bugs found in
mature components is also considerably higher than for any other quality band.

http://www.codeplex.com/Silverlight

Where to Find Controls | 141

BAND DESCRIPTION

Stable Stable components are suitable for the vast majority of usage scenarios and will have
incorporated most major design and functionality feedback. They are designed to
address more than 90 percent of customer scenarios and will continue evolving via
limited bug fixes and fit-and-finish work. Stable is similar to Beta in other projects. Stable
components will have a very small number of breaking APIs or behavior changes when
feedback demands it.

Preview Preview components are intended to meet most basic usage scenarios. While in the
Preview Quality Band, these components may have a moderate number of breaking
APIs or behavior changes in response to customer feedback and as we learn more
about how they will be used. Customers are likely to encounter bugs and functional-
ity issues for non-mainline scenarios. Preview is similar to Alpha quality in many tradi-
tional projects.

Experimental Experimental components are intended for evaluation purposes. The main goal
of these components is to provide an opportunity for feedback during the earliest
stages of development. This feedback will help decide the future of these compo-
nents. Development of an experimental component may end at any point, so it may
not be included in future releases.

Before you choose to use a control from the Silverlight Toolkit, you should carefully consider the cur-
rent quality band of the control. You can find which quality band a Toolkit control is currently assigned
to by visiting the Toolkit website on CodePlex (http://silverlight.codeplex.com/Wikipage).

Beyond the Microsoft-developed set of controls, the Silverlight ecosystem includes many options for
commercial and open source controls. The controls cover a wide range of user interface patterns,
from data grids to maps.

Purchasing controls from a third-party vendor often has the advantage of providing you with some
level of developer support for using the controls and some level of assurance that bugs in the controls
will be fixed in a timely manner.

Open source controls are a great alternative to commercial controls. Many open source control
projects exist, with a large number hosted on Microsoft’s CodePlex website. Table 6-2 lists some
of the open source control projects that can be found on CodePlex.

TABLE 6-2
PROJECT URL
Silverlight Contrib — Various Controls http://silverlightcontrib.codeplex.com

DeepEarth — Multi-provider Mapping Control www . codeplex.com/deepearth
Silverlight SDK for Bing http://silverbing.codeplex.com/

Interactive Timeline Control http://timeline.codeplex.com/

continues

http://silverlight.codeplex.com/Wikipage
http://silverlightcontrib.codeplex.com
http://www.codeplex.com/deepearth
http://silverbing.codeplex.com/
http://timeline.codeplex.com/

142 | CHAPTER6 WORKING WITH VISUAL CONTROLS

TABLE 6-2 (continued)

PROJECT URL

Cover Flow Control http://silverlightcoverflow.codeplex.com/
Silverlight Media Player http://silverlight30.codeplex.com/
Advance Tooltip Service http://tooltipservice.codeplex.com/

Although this chapter highlights open source Silverlight control projects that you can use in your
application, be aware that the quality of open source projects can vary widely. Simply because an
open source control or project is included in this chapter, that does not guarantee the quality of the
control or project. You should make sure to perform adequate quality testing on the controls just as
you would on any other part of your application.

Additionally, when choosing an open source control, you should make sure you understand how the
specific license the control is released under can affect your application. There are a variety of open
source licenses that controls can be licensed under, and each has specific rules and provisions that
may affect how your application can be distributed or licensed.

USING TEXT DISPLAY CONTROLS

Silverlight includes several controls that you can use to display text. The text capabilities of Silverlight
are discussed in detail in Chapter 19, but two controls you can use to display text are introduced in
this chapter: TextBlock and Label.

TextBlock

The TextBlock is the basic control used to display read-only text. You can use the Text property to
provide the control a value, or simply add text as the control content:

<TextBlock Text="Lorum Ipsum" />

The TextBlock also allows you to specify Runs and LineBreaks as its content. Runs and LineBreaks
give you more control over formatting of individual sections of the text. Listing 6-1 shows how you
can use Runs and LineBreaks within a TextBlock.

‘) LISTING 6-1: Using Runs and LineBreaks on a TextBlock

Available for

download on <TextBlock>

Wrox.com X
<Run Foreground="Green">Line 1: Lorum</Run>
<LineBreak />
<Run FontFamily="Courier New">Line 2: Ipsum</Run>

</TextBlock>

In this listing, the foreground color of the first run of text is changed to green, a line break is
inserted, and the font face of the second line is changed to Courier.

http://silverlightcoverflow.codeplex.com/
http://silverlight30.codeplex.com/
http://tooltipservice.codeplex.com/

Using Text Display Controls | 143

Label

The Label control can be used in more targeted text display scenarios. It is typically used in con-
junction with a form field when you need to display a field caption, required field indication, or a
validation error.

A simple use of the caption is shown in Listing 6-2 as a caption of a form field.

‘) LISTING 6-2: Using the Label control with a TextBox

Available for
download on <StackPanel>

Wrox.com
<sdk:Label Content="First Name:" IsRequired="True" />
<TextBox x:Name="TextBoxl" Text="John" />
</StackPanel>

To indicate to the end user that the TextBox is a required field, the Label has had its IsRequired
property set to True. This causes the Label to display its content in a bold font.

The Label control can also be bound to another control in the form, allowing the Label to automat-
ically configure itself based on the value of that control. Listing 6-3 demonstrates binding the Label
to a TextBox that has had its Text property bound to an object.

J LISTING 6-3: Binding the Label to a TextBox
Available for
"3}”,2;”2.‘,’,3“ <StackPanel>
<sdk:Label Target="{Binding ElementName=TextBoxl}" />
<TextBox x:Name="TextBoxl" Text="{Binding FirstName, Mode=TwoWay,
ValidatesOnExceptions=true, NotifyOnValidationError=true}" />
</StackPanel>

If the target control has multiple bind-

ings, you can specify the specific property e o g et ey
the Label should be bound to by using its O » (&) ntovocaoston. +[4] x [i 7

PropertyPath property.

i ravortes | @ | iating0503 Page

Notice that the binding set on the Text prop- Application Name
erty’s ValidatesOnException attribute is
. . Mirsthame
set to True. If the binding attempts to set the e o e e e i

property to a new value and the property
returns an exception, the Label automatically
detects the exception and shows its content

in red, indicating a data validation error, as
shown in Figure 6-1.

The Label also automatically detects data

attributes on the object bound to the TextBox
like the DisplayAttribute’s Name property |1
and the Requiredattribute. FIGURE 6-1

ll Local intranel | Protecbed Mode: OIT LR H100%

144 | CHAPTER6 WORKING WITH VISUAL CONTROLS

If the Name property is set, the Label automatically uses that value as its content. If the
RequiredAttribute is true, the content will be displayed in a bold font.

USING INPUT EDITOR CONTROLS

Most applications at some point require some type of input from the end user. While you could simply
use a simple Text Box editor, this does not provide an optimal experience for the end user and also
requires you to validate his or her input to make sure it meets your application requirements. Silverlight
includes a variety of controls that make editing input, including text, numbers, dates, and times, easy.

Text

The most basic input control is the TextBox. The PasswordBox and AutoCompleteBox extend the basic
TextBox features, adding password masking and Google-style auto-complete behavior, respectively.

For more advanced text entry capabilities, Silverlight 4 adds a new RichTextBox control.

For displaying text, Silverlight includes the TextBlock element. For a more basic text display option,
the Silverlight Toolkit includes a basic Label control.

TextBox

Silverlight includes a TextBox control, which provides the same basic text input capabilities you
are used to receiving from the HTML <input> element. The control offers single-format, multi-
line input capabilities with automatic text wrapping, as well as integration with the clipboard. An
undo/redo stack is also included. The following code demonstrates using the TextBox:

<TextBox Text="Lorum Ipsum" />

For those creating applications for international audiences, the control supports IME Level 3 when
run on Windows and Level 1 when run on a Mac. It also includes international keyboard support.

As you might expect, the TextBox exposes a TextChanged event that you can use to be notified
when the user changes the TextBox’s text.

An interesting property on the TextBox is the Watermark property, though you
may have to search to find it. That is because it has been hidden from Visual
Studio’s property grid and from IntelliSense. Unfortunately, the Microsoft doc-
umentation for the property explicitly states you should not use this property
in Silverlight 4.

PasswordBox

Also included in Silverlight is the PasswordBox. Related to the TextBox, the PasswordBox gives you
a convenient way to allow users to enter a password into your application:

<PasswordBox PasswordChar="#" Password="password" />

Using Input Editor Controls | 145

As shown in the previous code snippet, you can get or set the value of the control by using the Password
property. You can change the character used to mask the password using the Passwordchar property.

Unlike the TextBox, the PasswordBox accepts only a single line of text, but like the TextBox, it

includes an event, the PasswordChanged event, that you can use to be notified when the end user
changes the control’s value.

AutoCompleteBox

Originating from the Silverlight Toolkit and added to the SDK for Silverlight 4, the AutoCcompleteBox

control allows you to add Google-suggest style auto-complete capabilities to your application, as shown
in Figure 6-2.

e e
@ v |] nitp/toabont297: + | 42| % | [l 8ing
i Favorites | /@ Listing0604 Page [
== |
Application Name
|
Nanry
Andrew
Janst
Marygaret
Michael
Laura
Anne
€L Local intranet | Protected Mode: OFf fh - Hi0x -
FIGURE 6-2

Listing 6-4 shows how you can configure the AutoCompleteBox by assigning an TtemsSource that
contains the values that the control will search as the end user enters text into the control.

\) LISTING 6-4: Configuring the AutoCompleteBox

Available for
“wmfggn <my:AutoCompleteBox ItemsSource="{Binding}"
ValueMemberPath="FirstName"
FilterMode="Contains"
IsTextCompletionEnabled="True">
<my:AutoCompleteBox.ItemTemplate>
<DataTemplate>
<TextBlock Text="{Binding FirstName}" />
</DataTemplate>
</my:AutoCompleteBox.ItemTemplate>
</my:AutoCompleteBox>

146 | CHAPTER6 WORKING WITH VISUAL CONTROLS

The AutoCompleteBox also includes several properties that allow you to configure the Filter mode

used by the control. The FilterModes property supports several derivations of a contains filter, a
Startswith filter, and an Equals filter.

Finally, the control also allows you to enable text completion. Setting the TextCompletion property

to True directs the control to automatically complete the currently entered text with the first match
found in the auto-complete list.

RichTextBox

Silverlight 4 introduces a new RichTextBox control that allows you to display and edit richly
formatted text in your application. While an in-depth look at the RichTextBox is included in
Chapter 19, Listing 6-5 demonstrates a simple use of the RichTextBox.

\) LISTING 6-5: Display and edit rich text
Available for
download on <RichTextBox>
Wrox.com
<Paragraph>
<Run>The quick brown </Run>
<InlineUIContainer>
<Image
Source="/Chapter6;component/Assets/fox.png" Width="100" />
</InlineUIContainer>
<Run> jumped over the lazy </Run>
<InlineUIContainer>
<Image
Source="/Chapter6;component/Assets/dog.png" Width="100"/>
</InlineUIContainer>
<Run>.</Run>
</Paragraph>
</RichTextBox>

In this sample, several text Runs are shown in the RichTextBox, as well as several inline Ul elements
containing Image elements. You can see the RichTextBox content in Figure 6-3.

%" R e R w
@Do | 2] nttp/ocatast 297 ~ | +,| X ||b Bing P~
i Taworites 8 Listing0805 Page
G Localintranet| Protected Mode: O 4 v R10m% v

FIGURE 6-3

Using Input Editor Controls | 147

Using Numeric Editor Controls

Silverlight and the Silverlight Toolkit offer several controls designed to make adding numeric-
editable capabilities to your application easier, including the s1ider control, NumericUpDown
control, and Rating control.

Slider

The s1ider control allows you to add the familiar slider UI pattern to your application. Sliders provide
a simple way for end users to edit numerical values and allow you to ensure that those values remain
constrained in a range. Listing 6-6 shows how you can configure the s1ider’s value range by using the
Minimum and Maximum properties.

‘) LISTING 6-6: Displaying Slider property values in TextBlocks
Available for
download on <StackPanel>
Wrox.com
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />
<ColumnDefinition Width="Auto" />
</Grid.ColumnDefinitions>
<TextBlock
Text="{Binding ElementName=Sliderl, Path=Minimum}"
Grid.Column="0" />

<Slider x:Name="Sliderl" Minimum="0" Maximum="100"
Value="50" Grid.Column="1" />

<TextBlock
Text="{Binding ElementName=Sliderl, Path=Maximum}"
Grid.Column="2" />
</Grid>
<TextBlock
Text="{Binding ElementName=Sliderl, Path=Value}"
HorizontalAlignment="Center" />
</StackPanel>

The s1ider also includes properties that allow you to change the LargeChange and Smallchange
values, as well as a ValueChanged event to notify you when the control’s value changes. Figure 6-4
shows the Slider.

Notice that even though the s1ider’s range has been defined using Integers, the value is returned
as a Double, so you may need to round or cast the value.

NumericUpDown

Part of the Silverlight Toolkit, the NumericUpDown control allows end users to easily increment
numerical values by set steps using Spin buttons. This can be especially useful when users need to
adjust existing values or you want to simplify adjusting values by certain steps.

<my : NumericUpDown Increment="3"
DecimalPlaces="4"

148 | CHAPTER6 WORKING WITH VISUAL CONTROLS

Maximum="1000"
Minimum="-1000"
Value="3.3333" />

@@v 'p_' Iillp/ locallwoskZ57. = | ¢7| * | [b Bing P -
¢ Favorites | @ Listing0606 Page [
Application Name
0] 100
61.5577669447236
"-'“._.Lmlintrancil[‘mlecled Mode: Off 5 - H100% v
FIGURE 6-4

The control allows you to set minimum and maximum value limits, as well as configure the number

of decimal places shown.

Additionally, users can continuously increase or decrease the control’s value by clicking and holding
the spin buttons. This causes the control to continue to change its value until the click is released.

Rating
Finally, as applications introduce more social network integration and personal preference tracking,
the ability to rate content in your application becomes more important. The Silverlight Toolkit con-
tains a Rating control, which allows you to add a simple rating IU to your application. Listing 6-7
shows how you can use the Rating control to show a simple five-star rating.

‘) LISTING 6-7: Using the Rating control

Available for
downloadon <jinputToolkit:Rating x:Name="Ratingl" Value="0.6" ItemCount="5" />

Wrox.com i
<Slider
Minimum="0" Maximum="1"

SmallChange="0.1"
Value="{Binding Path=Value, ElementName=Ratingl, Mode=TwoWay}" />

By default, the Rating control shows its value using stars, as shown in Figure 6-5.

Using Input Editor Controls | 149

€ Listing0607 Page - Windows Internet Explorer
——
@Uv [£] nupsnoamostzsr: + [42 | % | [sing R~
Ls Favorites | @ Listing0607 Page . i
Application Name
0
€L Local intranet | Protected Mode: OFf fa > Hi100% v
FIGURE 6-5

In its most simple configuration, to use the Rating control you provide a value for the Ttemcount
property, which indicates the number of stars to show.

You can change the default star display by restyling the RatingTtem control. Once you restyle the
control, you can use the TtemContainerStyle property to assign the style to all RatingTtem con-
trols displayed in the Rating control or assign the style individually to RatingTtem controls in the
Rating control.

Listing 6-8 shows how you can define individual Rat ingTtem controls in the Rating control and
assign each of them a separate custom style.

‘) LISTING 6-8: Assigning custom styles to Ratingltems
Available for
dWﬂtﬂﬁn <inputToolkit:Rating x:Name="Ratingl" Value="0.6">
<inputToolkit:RatingItem
Style="{StaticResource myThumbDownRatingItemStyle}" />
<inputToolkit:RatingItem
Style="{StaticResource myThumbAngleLowRatingItemStyle}" />
<inputToolkit:RatingItem
Style="{StaticResource myThumbSidewaysRatingItemStyle}" />
<inputToolkit:RatingItem
Style="{StaticResource myThumbAngleUpRatingItemStyle}" />
<inputToolkit:RatingItem
Style="{StaticResource myThumbUpRatingItemStyle}" />
</inputToolkit:Rating>

Note that if you define the RatingTtems explicitly, you do not need to provide a value for the
ItemCount property.

150

CHAPTER 6 WORKING WITH VISUAL CONTROLS

Dates and Time

Silverlight and the Silverlight Toolkit include various controls that simply edit date and time values,
including the calendar, DatePicker, TimePicker, and GlobalCalendar.

Calendar and GlobalCalendar

The calendar control, as the name implies, renders a calendar, which by default shows a Month view.

<sdk:Calendar SelectedDate="{Binding StartDate}" />

The control supports both Year and Decade calendar views, which can be set using the control’s
DisplayMode property. You can also control the selection behavior of the control by setting the
SelectionMode property, which supports No Selection, Single Date Selection, Single Date Range
Selection, and Multiple Date Range Selection modes. Also, as with other controls, the control
exposes a variety of events that allow you to be notified when the currently displayed date changes,
a selected date changes, or the display mode changes.

Figure 6-6 shows the calendar control in each of its display modes.

D
@O - 'p_ It/ Mocalhost:29739/Chapler6TesPage.aspa v| ‘;rl 5] |b Bing P -]

o Favorites E Calendar Snippet (Snippet0&05)

Application Name /Snippet0605 v
4 April, 2010 » 4 2010 3 4 2010-2019 3
Su Mo Tu We Th I'r Sa
Jan Feb Mar Apr 2009 2010 2011 2012

8 29 30 31 1 Z

4 b ' g 9 W

11 12 13 14 15 16 17 May Jun Jul Aug 2012 2014 2015 2016

18 19 20 21 22 23 24

23 26 27 28 23 30 1 Sep Ot Mow Der 2017 2018 2019 2020

4 3 5 3 6 7 8
Done €L Local intranct | Protected Mode: Off 4~ H10x -
FIGURE 6-6

The control will automatically detect the culture of the host operating system and will display the
calendar with appropriate localized text and date arrangement. Figure 6-7 shows the calendar with
the Japanese culture.

The Globalcalendar control extends the calendar by providing additional APIs for styling indi-
vidual days and displaying modified customer Gregorian calendar systems.

Listing 6-9 shows how you can assign your own CultureInfo object to the GlobalCalendar using
the calendarInfo property.

Using Input Editor Controls | 151

{2 Calendar Snippet (Snippet0606) — Windows Internct Explo... [= |[E][]

@@' B htto/od-demos/Gt M || #4 || K| | Live Searct |
7L FRO W BRANW oD AT

w e |‘@Oalerm8ﬂbpel®1bpe_ | -5 &- f
Application Name | - |

=5 HigeT & n-hib Aotk B1008 -

FIGURE 6-7

\) LISTING 6-9: Assigning a Culturelnfo object to the GlobalCalendar

Available for
downleadon CyltureInfo culture = new CultureInfo ("Fr-fr");

Wrox.com
CulturedCalendar.CalendarInfo = new CultureCalendarInfo(culture);

The control also includes a CalendarDayButtonSelectorStyle, which allows you to style specific
days in the control, such as holidays or events.

DatePicker and TimePicker

The DatePicker control displays a simple text input field with an attached calendar pop-up, as
shown in Figure 6-8.

———————————————————————————————
G’@v [2] http://iocathost297: '|"r| X]|b Ring P~

r Favortes # DatePicker Snippet (Snippet0608)

tion Name

4 April, 2010 4

Su Mo Tu We Th Fr Sa
2R 29 30 3 1 2 &
&
13
20

7

!1‘ Local inlranel | Prolected Mode: O v H100% ~

FIGURE 6-8

152

| CHAPTER6 WORKING WITH VISUAL CONTROLS

Unlike the calendar control, which allows date ranges to be selected, the patePicker control allows
for only a single date to be selected at one time. As with calendar, there are events you can use to be
notified when the selected date changes.

<sdk:DatePicker SelectedDateFormat="Short" />

The control allows you to configure the format you want the selected date to be returned as. The
SelectedDateFormat property allows you to choose to receive the selected date in Long or
Short format.

The patePicker also supports the validation using the validatesonException binding attribute;
however, by default the control does not include the validation visual states needed to show the result
of an invalid value. If you want to use validation with the patePicker, you will need to change the
control’s default template to include these additional states.

Like the DatePicker control, the TimePicker provides a simplified way for end users to select
times. The TimePicker functions much like the DatePicker, associating a text entry field with a
pop-up. The TimePicker offers two different pop-up experiences, the RangeTimePickerPopup Or
the ListTimePickerPopup, which you assign to the TimerPicker using its Popup property.

Listing 6-10 demonstrates using the TimePicker control with both Popup options.

‘) LISTING 6-10: Using the TimePicker control

Available for

“Wm?ﬂ;“ <StackPanel Orientation="Horizontal">

<inputToolkit:TimePicker x:Name="TimePickerl"
PopupButtonMode="Press" Format="hh:mm:ss"
PopupTimeSelectionMode="AllowSecondsSelection"
PopupMinutesInterval="5"
PopupSecondsInterval="15">
<inputToolkit:TimePicker.Popup>
<inputToolkit:RangeTimePickerPopup />
</inputToolkit:TimePicker.Popup>
</inputToolkit:TimePicker>

<inputToolkit:TimePicker x:Name="TimePicker2" PopupButtonMode="Press"
PopupTimeSelectionMode="AllowSecondsSelection"
PopupMinutesInterval="5"
PopupSecondsInterval="15">
<inputToolkit:TimePicker.Popup>
<inputToolkit:ListTimePickerPopup />
</inputToolkit:TimePicker.Popup>
</inputToolkit:TimePicker>
</StackPanel>

Figure 6-9 shows the result of running Listing 6-10.

The TimePicker control also includes options that allow you to configure whether the control
allows only hours and minutes to be selected, or hours, minutes, and seconds. Additionally, you
can configure the minute and second intervals that the end user can select using the pop-up.

Using Input Editor Controls | 153

Application Name

08:40:30 2 |Q |

i Favorites @ | isting0G10 Page

@_O v [B) nitp/ocaltnnt297: ~ ‘ ‘y| ® | [b Bing p -

JUsting0610 +
Slgs)

10
o8
06

02
12
10
= o8
06
ua
0z
12

04 L

55
50
45

| 40

35
30
25
20

55
50
45
40
35

5 30

25
20
15

s
oo

[x

EE_. Local intranct | Protected Mode: Off 5 - #100%

FIGURE 6-9

Finally, like the DatePicker, the TimePicker automatically uses the appropriate culture, but you can
assign customized culture information to the control through its TimeGlobalizationInfo property.
Additionally, although the control uses a robust time parser by default, you can also supply your own
parser by deriving from the TimeParser class and adding the derived class to the control’s TimeParsers

collection.

TimeUpDown

Like the NumericUpDown control described earlier, the TimeUpDown control allows users to increment
or decrement time values using the familiar spin button metaphor.

Listing 6-11 demonstrates the use of the TimeUpDown control.

‘) LISTING 6-11: Using the TimeUpDown control

Available for

downloadon <inputToolkit:TimeUpDown x:Name="TimeUpDownl"

Wrox.com

Format="hh:mm:ss"
IsCyclic="False"
Value="8:00:00"
Minimum="8:00:00"
Maximum="17:00:00" />

As you can see, the control includes a variety of configuration properties, including the Format
property, which allows you to dictate the time format shown by the control, the minimum and max-
imum values allowed, and whether the control should allow the end user to roll from the maximum
value to the minimum using the TsCyclic property.

154 | CHAPTER6 WORKING WITH VISUAL CONTROLS

USING LISTS AND ITEMS CONTROLS

Silverlight includes a wide array of controls designed to show lists of data. From the ListBox to the
DataGrid, these controls are designed to give you a powerful and flexible means of showing data.

DataGrid

Perhaps the most important control for application developers building Line-of-Business controls is
the Silverlight DataGrid control. This control allows you to easily bind a collection of data to it and
have it automatically display the data and allow the end user to edit the data and manipulate the
data display.

When running the bataGrid even in the simplest configuration, you will notice that it provides you
with a lot of capabilities right out-of-the-box. For example, clicking on a column header sorts the
column data; dragging a column header allows you to change the column display order; hovering
over the edge of a column header allows you to resize the column width; and double-clicking a cell
places that cell into Edit mode, allowing you to change the cell data. As you learn later in this sec-
tion, the DataGrid exposes properties that allow you to control all of these behaviors both at the
control level and on a per-column level.

Data Binding

To get started using the DataGrid, you simply need to provide it with some data by setting its
TtemsSource property to some type of enumerable object, either in XAML or in code. The fol-
lowing code snippet shows how you can bind the DataGrid to data that has been assigned to the
DataContext in XAML:

<my:DataGrid ItemsSource="{Binding}" />

Once you set the TtemsSource property, the DataGrid control automatically interrogates the data
source and generates the appropriate column structure based on public members exposed by the
objects on the data source. Figure 6-10 shows an example of a basic DataGrid with automatically
generated columns.

(o - — - - - - - — - = —y
o gptimian) 2y
= r 1
(€ S age.5p 5 +[4] x|l sing A=
i Favorites | 8 DutaGrid Snippel (Snippetd80T)
Application Name
EmployeslD TiestName | LastName | Title THeOiCourtesy DirthDate HareDiate Ishctive | Add
| 1 | Mancy Cavolio Sales Representative | Ms. 12/8/1948 12:00:00 AM 5/1/1992 12:00:00 AM v 507
2 Andrew Fuller Vice President, Sales | Dr. 2/19/1952 12:00:00 AM /14/1882 12:00:00 AM 908
3 lanet Leverfing Sales Representative M= B/30/1963 12:00:00 AM | 4/1/1992 12:00:00 AM o e
|4 Margaret Peacock Sales Representative Mre, S/19/1937 12:00:00 AM | 5/3/1993 12:00:00 AM 4 41
s Steven Buchsnan Sales Manager Mr. 3/4/1955 12:00:00 AM | 10/17/1993 12:00:00 AM | | 14
| & Michasl Suyama Sales Representative Mr. 721963 12:00:00 AM | 10/17/1993 12:00:00 AM o Cn
7 Robert King Sales Representative M. 5/29/1960 12:00:00 AM | 1/2/1994 12:00:00 AM v Ed
|8 Leura Callshan | Inside Sales Coordinator Ms. 1/9/1950 12:00:00 AM 3/5/1594 12:00:00 AM ” 7.
9 Anne Dodsworth | Sales Representative | Ms. 1/27/1986 12:00:00 AM 11/15/1994 12:00:00 AM | 7H
4 *
Dene i Local intranet | Protected Mode: O e Mok -

FIGURE 6-10

Using Lists and Items Controls | 155

You can control whether or not the control automatically generates columns for you by using the
AutoGenerateColumns property. If you choose to set this property to False, you need to manually
define a set of columns for the DataGrid to display, using the control’s Columns collection. The dif-
ferent types of columns you can add are described later in this section.

It is also possible to use the Visual Studio Data Sources window to Data Sousces v o
add a pataGrid to your application. The Data Sources window allows d @5

ou to easily manage the sources of data available in your application 3 KRR
Y Y Be the 59 . . your application.
Once a data source is identified, the window displays all of the attri-
butes of the data source and allows you to create UI elements based on
those attributes. Figure 6-11 shows the Data Sources window, which is
showing a single data source.

ol CompanyName
ContactName
ContactTitle

{sbl| Country

[anl] Cuctomern

(] EntityKey
If the active document in Visual Studio is a XAML document,) 3;‘3 ™
the Data Sources window allows you to drag enumerable properties] Phone
. [abl] PostalCode
directly onto the design surface. Visual Studio will automatically cre-] Region

ate a CollectionViewSource representing the data and configure the
appropriate XAML bindings to connect the CollectionviewSource
to the DataGrid. Additionally, a template of code is dropped into the
code-behind, which allows you to connect the CollectionviewSource
to your data.

FIGURE 6-11

The pataGrid also automatically honors data annotation attributes that may be on the objects in
the TtemsSource. This allows the grid to automatically mark certain columns as hidden, or read
only, or provide a friendlier column header label. Data annotations are typically used when you are
using WCF RIA Services as the source of grid data.

If you want to insert your own logic into the column generation process, you can use the grid’s
AutoGeneratingColumn event. Using this event, you can access the column currently being created
and alter its properties.

Another entry point into the binding process is the Grid’s LoadingRow event. This event allows you
to access each row as it is being created in the grid and alter the data ultimately shown by the grid.
If you choose to use this event, it’s important to understand how the grid’s internal Ul virtualization
affects it.

In order to maintain an acceptable level of performance the grid uses Ul virtualization to only create
the UI elements that are needed to display information on the screen. If a row moves out of the visible
area of the control, its resources are recycled to show new rows entering the visible area of the control.

Because of this Ul virtualization, the LoadingRow event will not fire for each object in the TtemsSource
when the control loads. Instead the event fires as rows move in and out of the visible area of the control.
If you use the LoadingRow event to customize a row, you will have to use the UnloadingRow event to
undo your changes. This is event is fired when a DataGridRrow is freed for reuse.

The crid also supports the selection of rows in the grid, supporting Single and Extended Selection
modes. Single Selection mode allows end users to select only a single row at any given time. Extended
Selection mode allows them to select multiple rows by holding down the Ctrl or Shift keys while click-
ing rows. You can change the current selection mode by setting the control’s SelectionMode property,
as well as access the currently selected item(s) by using the SelectedItem or SelectedItems properties.

156 | CHAPTER6 WORKING WITH VISUAL CONTROLS

Grid Columns

The pataGrid control includes three different column types that you can add to the Columns collec-
tion: Text, CheckBox, and Template. Each column allows you to bind a field from the data source
to it, using the column’s Binding property.

If you configure the grid to automatically generate columns, the grid tries to choose the correct
column type to use based on the structure of the data. For example, if the bound data contains a
Boolean property, the grid automatically uses a DataGridCheckBoxColumn to show that data.

Of course, if you have disabled auto-generation of columns, then you need to define them yourself.
Listing 6-12 shows how you can use the Columns collection to display data in the DataGrid.

‘) LISTING 6-12: Using the Columns collection to display data

Available for
downloadon <my:DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">

Wrox.com

<my:DataGrid.Columns>
<my:DataGridTextColumn Binding="{Binding FirstName}" />
<my:DataGridTextColumn Binding="{Binding LastName}" />
<my:DataGridTextColumn Binding="{Binding Address}" />
<my:DataGridTextColumn Binding="{Binding City}" />

</my:DataGrid.Columns>

</my:DataGrid>

Notice that when defining columns you use standard Silverlight binding syntax in each column’s
Binding property to indicate which property of the TtemsSource the column is bound to. Because
the columns use this syntax, you can take advantage of any of its features, such as value converters
and formatting. The columns will also use standard two-way binding to allow data in column cells
to be edited.

To control the order in which the columns are displayed, you can use the column’s DisplayIndex.

When rendered, grid columns also include a header. To provide text for the header, columns expose
a string Header property. If the grid is automatically generating the columns, the control will by
default use the property names of the item source as the columns’ header text, which you can over-
ride using the Header property. If you manually define columns, then you need to explicitly define
the text that should be used for the column header.

Unfortunately, the DataGrid does not provide a DataTemplate for the header, but if you do want to
change the default style of a column header, you can create your own DataGridColumnHeader style
and assign it to the column’s Headerstyle property.

If you are defining your own columns, in addition to the DatasGridTextBoxColumn shown in
Listing 6-12, you can also include the DataGridCheckBoxColumn or DataGridTemplateColumn
in your Columns collection. Listing 6-13 shows how to add a pDataGridcheckBoxColumn and
bind it to a Boolean property in the TtemsSource.

Using Lists and Items Controls | 157

‘) LISTING 6-13: Adding a DataGridCheckBoxColumn
Available for
“Wﬂfﬂﬁ“ <sdk:DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False" >
<sdk:DataGrid.Columns>
<sdk:DataGridCheckBoxColumn Binding="{Binding IsActive}" />
<sdk:DataGridTextColumn Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn Binding="{Binding LastName}" />
<gdk:DataGridTextColumn Binding="{Binding Address}" />
<gdk:DataGridTextColumn Binding="{Binding City}" />
</sdk:DataGrid.Columns>
</sdk:DataGrid>

Figure 6-12 shows the checkbox column in the patagrid.

/€ Listing0613 Page - Windows Internet
@@v | &) hpocaitnrst:297: .|¢,.| ® ||b Bing P "|
o Favorites | 4 Listing0613 Page [
Application Name
— |
i!fi | Nancy Davuliv 507 - 20th Ave. E. Apl. 2A Seallle
I
/| Andrew Fuller 208 W. Capital Way Tacoma
</ Janet Leverling 722 Moss Bay Blud. Kirkland
/| | Margaret Peacock 4110 Old Redmond Rd. Redmond
| Steven Buchanan 14 Garrett Hil London
/| Michasl Suyama Coventry HouseMiner Rd. Londan
< PRobert King Edgeham HollowWinchester Way | London
< laura Callahan 4776 - 11th Ave. N.F. Seattle
| | Anne Dodsworth | / Houndstooth Rd. London
€L Local intranet | Protected Mode: OFf i~ Hiwox -
FIGURE 6-12

The pataGridCheckBoxColumn not only allows you to use a standard two-state checkbox, but by
setting the IsThreeState property, you also can have the checkbox behave like a tri-state checkbox.
This allows you to set the TsChecked property to True, False, or Null.

As the name suggests, the DataGridTemplateColumn allows you to take control of the contents of cells

in a column. The cel1Template property accepts a DataTemplate, which is used to define the contents
of the column while not being edited. Listing 6-14 demonstrates using the DataGridTemplateColumn to
show an Image in a column.

‘) LISTING 6-14: Using the DataGridTemplateColumn to show an image

Available for
dwm?ggn <Grid x:Name="LayoutRoot" Background="White">
<Grid.Resources>
<DataTemplate x:Key="myEmployeeImageTemplate">

continues

158 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-14 (continued)

<Grid>
<Image Source="{Binding PhotoPath}" />
</Grid>
</DataTemplate>
</Grid.Resources>
<sdk:DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False" >
<sdk:DataGrid.Columns>
<sdk:DataGridCheckBoxColumn Binding="{Binding IsActive}" />
<sdk:DataGridTextColumn Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn Binding="{Binding LastName}" />
<sdk:DataGridTextColumn Binding="{Binding Address}" />
<sdk:DataGridTextColumn Binding="{Binding City}" />
<sdk:DataGridTemplateColumn
CellTemplate="{StaticResource myEmployeeImageTemplate}" />
</sdk:DataGrid.Columns>
</sdk:DataGrid>
</Grid>

The pDataGridTemplateColumn also includes a Ce11EditingTemplate property, which allows you
to specify a DataTemplate that the column should display when a cell enters Edit mode. Listing 6-15
shows how you can use the cel1EditingTemplate to change the value of the column.

‘) LISTING 6-15: Using the CellEditingTemplate to change the value of a column
Available for
dwmtggﬂ <Grid x:Name="LayoutRoot" Background="White">
<Grid.Resources>
<DataTemplate x:Key="myEmployeeImageTemplate">
<Grid>
<Image Source="{Binding PhotoPath}" />
</Grid>
</DataTemplate>
<DataTemplate x:Key="myEditableEmployeeImageTemplate">
<Grid>
<TextBox Text="{Binding PhotoPath}" />
</Grid>
</DataTemplate>
</Grid.Resources>
<sdk:DataGrid ItemsSource="{Binding}" AutoGenerateColumns="False">
<sdk:DataGrid.Columns>
<sdk:DataGridCheckBoxColumn Binding="{Binding IsActive}" />
<sdk:DataGridTextColumn Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn Binding="{Binding LastName}" />
<sdk:DataGridTextColumn Binding="{Binding Address}" />
<sdk:DataGridTextColumn Binding="{Binding City}" />
<sdk:DataGridTemplateColumn
CellTemplate="{StaticResource myEmployeeImageTemplate}"
CellEditingTemplate=
"{StaticResource myEditableEmployeeImageTemplate}"/>
</sdk:DataGrid.Columns>
</sdk:DataGrid>
</Grid>

Using Lists and Items Controls | 159

As you can see in the listing, the ce11EditingTemplate property is used to provide a custom
template that contains completely different content from the standard cel1Template, and content
that is appropriate for allowing the end user to edit the object’s Photopath property.

Sorting

As shown previously, in its default state the grid automatically enables column sorting. Users can
sort individual columns by clicking on the column header or by holding down the Ctrl or Shift keys
while clicking on successive columns, sorting each.

various Grid properties give you control of the Grid’s sorting behavior. At the control level, you can
change whether or not you want to enable sorting in the entire grid by using the canUsersortcolumns
property. Using the column’s CanUserSort property, you can control the sorting behavior for an indi-
vidual column.

By overriding the DataGridcolumnHeader style as described earlier, you can also control the sort
indicator shown in the column header.

Finally, using SortMemberPath, you can configure a column to sort itself based on a different field
from the one configured in the column’s Binding property.

Data Grouping

A common task users want to perform in DataGrids is to group data together based on the values of
a specific property of the data source. While the patacrid itself does not have grouping built in, you
can group data using the PagedCollectionView object and then display this in the DataGrid.

Listing 6-16 show how you can add a PropertyGroupDescription to the PagedCollectionView,
then set that as the DataGrid’s TtemsSource.

‘) LISTING 6-16: Grouping data using PagedCollectionView

Available for
downloadon pgzgedCollectionView myView =

Wrox.com
new PagedCollectionView (Assets.DemoData.Employees) ;
myView.GroupDescriptions.Add (new PropertyGroupDescription("Title"));

this.gridl.ItemsSource = myView;

Column Resizing

DataGrid includes properties that allow you to set column widths on each column and heights on
rows. Like the standard Grid panel included in Silverlight, DataGrid gives you various options for
specifying size units by using a special object called DataGridrLength. When setting size properties
on the DataGrid, you set its Height and width properties as a value of this object.

The pDataGridLength includes five sizing options:
> auto — This option sizes the column or row to the size of the largest visible header or cell.

> sizeToHeader — This option sizes the column or row to the size of the header, ignoring the
size of the cell contents.

160

| CHAPTER6 WORKING WITH VISUAL CONTROLS

Because the DataGrid virtualizes its Ul, it cannot know abead of time what the
largest cell contents in the grid will be. This means that as you scroll rows, if
the grid encounters a cell with content that is larger than the current cell width,
it expands that cell’s column width. Once the column’s size has increased, the
grid won’t revert back to a smaller size if that row scrolls out of view.

> sizeToCells — This option sizes the column or row to the size of the largest visible cell. It
also behaves like the auto option, meaning that the column or row size may change as rows
are scrolled.

pixel — This option allows you to set a specific pixel base value.

star — New to Silverlight 4, the star sizing option allows you to use the same proportional
sizing behavior as is available in the Grid layout panel.

By default, end users can also resize columns at run time. Like other grid behaviors, you can control
this behavior for the entire grid by setting the canUserResizeColumns property on the DataGrid.
You can also control this on a per-column basis by setting the CanUserResize property on an indi-
vidual column.

The pataGrid also allows you to set minimum and maximum column width values, again both at the
grid level — using the DataGrid’s MinColumnwidth and MaxColumnwidth properties — and on the col-
umn level — using the Minwidth and Maxwidth properties.

Column Freezing

The Freezing column feature of the grid replicates the Excel Frozen column behavior, which allows
you to freeze (or fix) a certain number of columns to the left side of the pataGrid. This means that
if the grid is displaying a horizontal scrollbar, the frozen columns will remain fixed to the left side
of the grid, while the remaining columns are free to scroll horizontally.

You can set the number of columns you want to be included in the freeze using the crid’s
FrozenColumnCount property. The Grid will then freeze that number of columns, starting
from the left side of the grid.

Column Moving

As described earlier, DataGrid allows you to set the order in which columns are displayed by using the
DisplayIndex property. The control, also by default, allows users to reorder columns in the grid at run
time. To do this, the user simply clicks on and drags a column header to a new position in the headers.
Users are given visual cues to help them determine where the column will be inserted when dropped.

If the user reorders columns at run time, this will reset the DisplayIndex property of all other
grid columns.

You can control this behavior for the entire grid by using the control’s canuUserrReordercolumns
property on the root control or individually on a column, using its CanUserRender property. You

Using Lists and Items Controls | 161

can also use the series of events exposed by the DataGrid to be notified when the end user initiates

and completes a column move.

Row Details

As discussed in previous sections, the DataGrid control includes three column types that you can
use to control how data is shown, including a template column that allows you to add custom

content to cells in a column.

Often, though, you may need to customize the layout of an entire row, or show additional
detail information in each row. The DataGrid includes a built-in mechanism for this, called

the RowDetailsTemplate. This feature allows you to specify a DataTemplate in which you can
define a custom layout attached to each row that includes additional details for the currently

selected row.

Listing 6-17 demonstrates how you can use the RowDetailsTemplate.

‘) LISTING 6-17: Using the RowDetailsTemplate

Available for
download on
Wrox.com :
<Grid.Resources>

<Grid x:Name="LayoutRoot" Background="White">

<DataTemplate x:Key="myRowDetailsTemplate">

<StackPanel>

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding EmployeeID}" />
<TextBlock Text=" - " />
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding LastName}" />
<TextBlock Text=", " />
<TextBlock Text="{Binding Title}" />

</StackPanel>

<TextBlock Text="{Binding Address}" />

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding City}" />
<TextBlock Text=",6 " />
<TextBlock Text="{Binding State}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding PostalCode}" />

</StackPanel>

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding HomePhone}" />
<TextBlock Text=" x" />
<TextBlock Text="{Binding Extension}" />

</StackPanel>

<TextBlock Text="{Binding Notes}" />

</StackPanel>
</DataTemplate>

continues

162 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-17 (continued)

</Grid.Resources>
<sdk:DataGrid ItemsSource="{Binding}"
RowDetailsTemplate="{StaticResource myRowDetailsTemplate}"
RowDetailsVisibilityMode="VisibleWhenSelected"
AutoGenerateColumns="False">
<sdk:DataGrid.Columns>
<sdk:DataGridTextColumn Binding="{Binding FirstName}" />
<sdk:DataGridTextColumn Binding="{Binding LastName}" />
</sdk:DataGrid.Columns>
</sdk:DataGrid>
</Grid>

ﬂ It’s interesting to note that when you are using a StackPanel inside of a template
used with the RowDetailsTemplate, the panel’s Verticalalignment property
defaults to Top. This will cause problems if you try to add space above the panel
using a top margin. Instead of expanding the template, this situation causes the
StackPanel’s content to simply be clipped. You can work around this problem
by placing the stackPanel inside of a Border and setting the Border’s Margin
property.

To configure when the template is shown by the DataGrid, use the RowDetailsvisibilityMode
property. This property allows you to configure the RowDetailsTemplate to always be collapsed for
every row, always be visible for every row, or only be visible for the currently selected row. Use the
RowDetailsVisibilityChanged event to be notified when the RowbDetailsTemplate is changed.

DataForm

While the patacrid is perfect for viewing and editing tabular data, often users prefer viewing and
editing data as a form, rather than in a tabular grid. The pataForm control is the perfect control for
these scenarios.

The DataForm shares a lot of the same capabilities as the DataGrid. Just as with the DataGrid, you
can start using the DataForm control simply by binding a collection of data to the control:

<my:DataForm ItemsSource="{Binding}" />

The DataForm shares the same auto-generation capabilities as the Grid, but instead of generating
columns, the control generates DataFields. Also notice that rather than column headers, the con-
trol automatically adds Labels to each field. You can control the position of the Labels using the
LabelPosition property. You can also have the control add a description to each field. The position
of the description can be controlled using the DescriptionviewerPosition property.

As with the pataGrid, you can disable auto-generation of DataFields and manually define the
fields you need to display for your application. This is shown in Listing 6-18.

Using Lists and Items Controls

163

‘) LISTING 6-18: Disabling auto-generation of DataFields and manually defining fields

Available for
download on <dataFormToolkit:DataForm

Wrox.com
<dataFormToolkit:DataF
<DataTemplate>
<Grid>

ItemsSource="{Binding}"
AutoGenerateFields="False">
orm.ReadOnlyTemplate>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

<RowDe

finition />

</Grid.RowDefinitions>

<TextBlock
<TextBlock
<TextBlock
<TextBlock
<TextBlock
<TextBlock
</Grid>

</DataTemplate>
</dataFormToolkit:Data

Text="First Name:"
Grid.Row="0" Grid.Column="0"
Text="Last Name:"
Grid.Row="1" Grid.Column="0"
Text="Title:"

Grid.Row="2" Grid.Column="0"
Text="{Binding FirstName}"
Grid.Row="0" Grid.Column="1"
Text="{Binding LastName}"
Grid.Row="1" Grid.Column="1"
Text="{Binding Title}"
Grid.Row="2" Grid.Column="1"

Form.ReadOnlyTemplate>

</dataFormToolkit:DataForm>

You can see in Listing 6-18 that the ReadonlyTemplate is used to define the pataFields
included in the pataForm. The control also includes the EditTemplate, which allows you to
define the content shown when a record enters Edit mode; a NewItemTemplate, which allows
you to define the content shown when a new data object is added to the TtemsSource via the
DataForm; and the HeaderTemplate, which defines the content shown in the control’s header.

/>

/>

/>

/>

/>

/>

The DataForm can be configured to place records in Edit mode automatically by setting the AutoEdit
property to True. If records are not automatically in Edit mode, end users can place them in Edit mode
by clicking the Edit command button.

The pataForm includes a variety of built-in command buttons, including Add, Edit, Delete, Commit,

Cancel, and Navigation. Use the CommandButtonsVisibility property to control which of these

buttons are shown by the control.

ListBox, ComboBox, and

Despite their different user interfaces, the ListBox, ComboBox, and TabControl controls are all
derived from the same base class (System.Windows.Controls.ItemsControl) and allow you to

TabControl

164

| CHAPTER6 WORKING WITH VISUAL CONTROLS

display a list of items and select items in that list. Because they all share the same base class, the con-
trols share many of the same properties and basic behaviors.

The ListBox control allows you to display items in a single flat list, specifying the list items either
manually or bound from a data source, using the control’s TtemsSource property. The number of
items visible is dictated by the size of the control.

By default, when items are bound using TtemsSource, the control will simply output the objects

in that list as strings. You can, however, create a DataTemplate and provide a far more complex
layout for each list item using the TtemTemplate property. Listing 6-19 demonstrates the use of the
ListBox, including the use of a DataTemplate to define the list items display.

\) LISTING 6-19: Using the ListBox

Available for

dwmrggﬂ <Grid x:Name="LayoutRoot" Background="White">

<Grid.Resources>
<DataTemplate x:Key="myTemplate">
<Grid>
<TextBlock Text="{Binding FirstName}" />
</Grid>
</DataTemplate>
</Grid.Resources>
<ListBox
ItemTemplate="{StaticResource myTemplate}"
ItemsSource="{Binding}" />
</Grid>

Figure 6-13 shows the 1.istBox from Listing 6-19.

o 619 er =T
@Ov [&) nupznoam.. +| R [4] x |[© 8ing P~
i Favorites | 4 Listing0019 Page T B-O9R-= 7

Application Name

| Nancy

||Andrew

Janel

Margaret

Steven

Michael

Robert

Laura

Anne

Q.Lucaiinﬁanc"l’mlcc!ed Mode: Off ‘(i - H100% ¥

FIGURE 6-13

Using Lists and Items Controls | 165

Another interesting feature of the ListBox is the TtemsPanel property. This property allows you
to specify the layout panel you want the ListBox to use when arranging its children. By default,
the ListBox uses a simple StackPanel, but you can create your own layout panel and provide it
to the ListBox. Listing 6-20 demonstrates this by providing the ListBox with a new StackpPanel
with its orientation property changed.

‘) LISTING 6-20: ListBox with Orientation changed
Available for
dwmf%gﬂ <Grid x:Name="LayoutRoot" Background="White">
<Grid.Resources>
<DataTemplate x:Key="myTemplate">
<Grid>
<TextBlock Text="{Binding FirstName}" />
</Grid>
</DataTemplate>
</Grid.Resources>
<ListBox
ItemTemplate="{StaticResource myTemplate}"
ItemsSource="{Binding}">
<ListBox.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Horizontal" />
</ItemsPanelTemplate>
</ListBox.ItemsPanel>
</ListBox>
</Grid>

The comboBox works much in the same way as the ListBox, although rather than displaying items
in a flat list, the comboBox displays them in a pop-up display.

Listing 6-21 demonstrates the use of the comboBox control using the same data source as Listing 6-20.

‘) LISTING 6-21: Using the ComboBox control

Available for
download on <ComboBox x:Name="ComboBox1"

Wrox.com . .
ItemsSource="{Binding}"
DisplayMemberPath="FirstName">

</ComboBox>

Figure 6-14 shows the comboBox from Listing 6-21.

You can access the currently selected item of either control by using the selectedItem
property. Both controls can also notify you when the current selected item changes, using
the selectionChanged event.

Silverlight 4 adds two new properties to the base selector class from which both comboBox
and ListBox are derived that make it easier to set and get the current selected item — the
Selectedvalue and SelectedvaluePath properties. Listing 6-22 shows how you can use
theSelectedValuePathpropmiy

166 | CHAPTER6 WORKING WITH VISUAL CONTROLS

&)~ (& npsmoan. [2[4 %] sine P~
i Favorites | @ Listing0021 Page R eV - =
Application Name
[Michael =
| nancy =
Andrew
lanat
Margarel
Steven
Michael —
Robert
QLucaiim:anulll’mlccled Mode: Off fg - H100%
FIGURE 6-14

\) LISTING 6-22: Using the SelectedValuePath property

Available for
download on <StackPanel>

Wrox.com
<ComboBox x:Name="ComboBox1"
ItemsSource="{Binding}"
DisplayMemberPath="FirstName"
SelectedvValuePath="LastName" />
<TextBox Text="{Binding ElementName=ComboBoxl, Path=Selectedvalue}" />
</StackPanel>

The TabControl again works much the same way as the comboBox and 1.istBox controls. By using
the TtemsSource property, you can assign a list of objects as the control’s tabs. However, unlike
ListBox and ComboBox, TabControl does require a bit of extra work. By default, Tabcontrol
does not know how to convert the objects in your list into tabs. To help it out, you can create a
ValueConverter, which is shown in Listing 6-23.

‘) LISTING 6-23: Creating a ValueConverter

Available for

“a‘,’:g;"ggn‘:“ public class TabConverter : IValueConverter

public object Convert (object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)

List<Employee> source = value as List<Employee>;

FrameworkElement root

Using Lists and Items Controls | 167

(FrameworkElement)Application.Current.RootVisual;

if (root!=null)
{
DataTemplate template =
(DataTemplate)root.Resources ["myTemplate"];

if (source != null)
{
List<TabItem> result = new List<TabItem>();
foreach (Employee e in source)
{
result.Add (new TabItem()
{
Header = string.Format ("{0} {1}"
e.FirstName, e.LastName),
ContentTemplate = template,
DataContext = e
)
}

return result;

}

return null;

public object ConvertBack (object value, Type targetType,
object parameter,
System.Globalization.CultureInfo culture)

throw new NotImplementedException();

The valueConverter converts each object in the TabControl’s item source into a tab and assigns
the header text, the DataTemplate, and a DataContext to each tab.

Once you have created the TabConverter, you can use it to bind your data to the Tabcontrol. This
is shown in Listing 6-24.

‘) LISTING 6-24: Using the TabConverter to bind data
Available for
dmgiﬂggr:" <Grid x:Name="LayoutRoot">
<Grid.Resources>
<local:TabConverter x:Key="myTabConverter" />
<DataTemplate x:Key="myTabTemplate">
<StackPanel>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding EmployeeID}" />
<TextBlock Text=" - " />
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding LastName}" />

continues

168 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-24 (continued)

<TextBlock Text=",6 " />
<TextBlock Text="{Binding Title}" />
</StackPanel>

<TextBlock Text="{Binding Address}" />

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding City}" />
<TextBlock Text=", " />
<TextBlock Text="{Binding State}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding PostalCode}" />
</StackPanel>

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding HomePhone}" />
<TextBlock Text=" x" />
<TextBlock Text="{Binding Extension}" />
</StackPanel>

<TextBlock Text="{Binding Notes}" />
</StackPanel>
</DataTemplate>
</Grid.Resources>

<sdk:TabControl
ItemsSource="{Binding Converter={StaticResource myTabConverter}}"
ItemTemplate="{StaticResource myTabTemplate}">
</sdk:TabControl>
</Grid>

Of course, as with the ListBox and ComboBox controls, you can also create tabs manually. The
Listing 6-25 code demonstrates creating tabs directly in XAML using the TabItem object.

‘) LISTING 6-25: Creating tabs directly in XAML
Available for
“mg;"ggrﬁ" <sdk:TabControl>
<sdk:TabControl.Items>
<sdk:TabItem Header="See a Button Here">
<Button Content="I am a Button!" Margin="10" />
</sdk:TabItem>
<gsdk:TabItem Header="See an Image Here">
<Image
Source="/Chapter6;component/Assets/dog.png" Margin="10" />
</sdk:TabItem>
</sdk:TabControl.Items>
</sdk:TabControl>

Using Lists and Items Controls | 169

As with comboBox and ListBox, the TabControl exposes a SelectedItem property that allows
you to determine which tab is selected, as well as an event that allows you to be notified when the
selected tab changes.

Also note that unlike comboBox and ListBox, because the TabCcontrol does not derive from the
Selector class, it does not include the selectedvaluepath and Selectedvalue properties.

DataPager

If you are using List controls in your application, like the DataGcrid or the ListBox, then it is
likely that you are displaying a lot of data. To help users navigate that data, a common pattern

is to enable paging in the grid. Silverlight includes a special control called DataPager that you can
use to enable paging in List controls.

Listings 6-26 and 6-27 show how you can use the DataPager and ListBox with the
PagedCollectionView to allow users to page through the list data.

‘) LISTING 6-26: Creating the PagedCollection

Available for
download on // Executes when the user navigates to this page.

tirox.com protected override void OnNavigatedTo (NavigationEventArgs e)
{
PagedCollectionView itemListView =
new PagedCollectionView (Assets.DemoData.Employees) ;

this.DataContext = itemListView;

Listing 6-26 demonstrates how in the page’s onNavigated event, the PagedCollectionview
is created using an existing collection of Employees. The view is then assigned as the page’s
DataContext.

‘) LISTING 6-27: Binding a ListBox and DataPager to a PagedCollection

Available for
ds}”n'm‘m <ListBox x:Name="ListBoxl"
rox.com . .
ItemsSource="{Binding}"
DisplayMemberPath="FirstName" />
<sdk:DataPager
DisplayMode="FirstLastNumeric"
Source="{Binding}" PageSize="5" />

Once the PagedcollectionView is created, as Listing 6-27 shows, you can simply bind the view as
the ItemsSource of both the Listview and the DataPager.

If you run the sample, Figure 6-15 shows how the pataPager can now be used to page data in
the Listview.

170 | CHAPTER6 WORKING WITH VISUAL CONTROLS

e = —
@@v (&) nupynoam.. »| R [4| x |[© aing P~

iy Favorites | (@ Listing0627 Page | - -3

Application Name

Nancy
Andrew
Janel
Margaret
Steven

1|3 2|m

€L Local intranct | Protected Mode: OFf fa v Wiox v

FIGURE 6-15

Accordion

The Accordion control is an additional TtemsControl that is available as part of the Silverlight
Toolkit. The control allows you to replicate the familiar Closable Panels UI pattern seen in many
popular applications. Like other item controls, the Accordion supports both a Data-Bound mode
and a manually defined Content mode.

Listing 6-28 demonstrates binding an TtemsSource to the Accordion control.

\) LISTING 6-28: Binding an ltemsSource to the Accordion control

Available for
download on <layoutToolkit:Accordion ItemsSource="{Binding}">

Wrox.com
<layoutToolkit:Accordion.ItemTemplate>
<DataTemplate>
<sdk:Label Content="{Binding FirstName}"/>
</DataTemplate>

</layoutToolkit:Accordion.ItemTemplate>
<layoutToolkit:Accordion.ContentTemplate>
<DataTemplate>
<StackPanel>
<StackPanel Orientation="Horizontal">

<TextBlock Text="{Binding EmployeeID}" />
<TextBlock Text=" - " />
<TextBlock Text="{Binding FirstName}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding LastName}" />
<TextBlock Text=",6 " />
<TextBlock Text="{Binding Title}" />

Using Lists and Items Controls | 171

</StackPanel>
<TextBlock Text="{Binding Address}" />

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding City}" />
<TextBlock Text=",b " />
<TextBlock Text="{Binding State}" />
<TextBlock Text=" " />
<TextBlock Text="{Binding PostalCode}" />
</StackPanel>

<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding HomePhone}" />
<TextBlock Text=" x" />
<TextBlock Text="{Binding Extension}" />
</StackPanel>

<TextBlock Width="300" Text="{Binding Notes}" />
</StackPanel>
</DataTemplate>
</layoutToolkit:Accordion.ContentTemplate>
</layoutToolkit:Accordion>

In the listing, DataTemplates are used to define the content that will be shown in the control at
run time. The TtemTemplate is used to define the content shown in each Accordion header, and
the contentTemplate to define the content in each content section.

Figure 6-16 shows the result of running Listing 6-28.

v 13‘_ I/ focath., ~ | |

s Favorites | (& Listing0628 Page | -9 R-=

Application Name

¥ Nancy

1 - Nancy Davuliv, Sales Representative

507 - 20th Ave, L. Apt. 24

Scattle, 98122

(206) 555-9857 x5467

Education includes a BA in psychelogy from Colorado !

? Andrew
* Janet

¥ Margarel
> Steven

¥ Michael
? Rohert

7 Laura

€L Localintranet | Protected Mode: Off 4~ M0k -

FIGURE 6-16

172 | CHAPTER6 WORKING WITH VISUAL CONTROLS

You can change the default style of the Accordion headers by re-templating the AccordionTtem
control. This control contains the AccordionButton control and ExpandableContentControl as
its two primary UI elements.

TreeView

The Treeview control is, as it sounds, a control that allows you to add tree Uls to your applica-
tion. As with all other List and Ttem controls, it allows you to define items explicitly or bind data
to the control.

Listing 6-29 shows how you can create a set of explicitly defined nodes in a Treeview.

‘) LISTING 6-29: Creating a set of explicitly defined TreeView nodes
Available for
“Wm&ﬁ;" <sdk:TreeView x:Name="TreeViewl">

<sdk:TreeViewItem Header="Books">
<sdk:TreeViewItem Header="Books" />
<sdk:TreeViewItem Header="Textbooks"/>
<sdk:TreeViewItem Header="Magazines"/>

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Music, Movies & Games">
<sdk:TreeViewItem Header="Movies & TV"/>
<sdk:TreeViewItem Header="Blu-Ray"/>
<sdk:TreeViewItem Header="Video On Demand"/>

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Music">
<sdk:TreeViewItem Header="MP3 Downloads"/>
<sdk:TreeViewItem Header="Musical Instruments"/>

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Digital Downloads">
<sdk:TreeViewItem Header="Video On Demand"/>
<sdk:TreeViewItem Header="MP3 Downloads"/>
<sdk:TreeViewItem Header="Game Downloads"/>

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Computers & Office">
<sdk:TreeViewItem Header="Laptops & Notebooks" />
<sdk:TreeViewItem Header="Desktops & Servers" />
<sdk:TreeViewItem Header="Computer Components" />
<sdk:TreeViewItem Header="Computer Accessories" />

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Electronics">
<sdk:TreeViewItem Header="TV & Video" />
<sdk:TreeViewItem Header="Home Audio & Theater" />
<sdk:TreeViewItem Header="Camara, Phone & Video" />
<sdk:TreeViewItem Header="Cell Phones & Accessories" />

</sdk:TreeViewItem>

<sdk:TreeViewItem Header="Home & Garden">
<sdk:TreeViewItem Header="Kitchen & Dining" />
<sdk:TreeViewItem Header="Bedding & Bath" />
<sdk:TreeViewItem Header="Home Appliances" />
<sdk:TreeViewItem Header="Vacuums & Storage" />

Using Lists and Items Controls | 173

</sdk:TreeViewItem>
</sdk:TreeView>

As you can see in Listing 6-29, to create tree nodes, you use the TreeviewTItem element. The
TreeViewItem element exposes a variety of properties that allow you to control how it is shown by
the tree including setting the node’s text using the Header property and setting its expanded state
by using the TsExpanded property. Or, if you want to add more complex content to a node, you
can use the HeaderTemplate property to provide a DataTemplate. This is shown in Listing 6-30.

\) LISTING 6-30: Using the HeaderTemplate property
Available for
“wmfg;n <sdk:TreeViewItem Header="Books">
<sdk:TreeViewItem.HeaderTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<CheckBox />
<Image Source="/Chapter6;component/Assets/Book.png" />
<TextBlock Text="Books"/>
</StackPanel>
</DataTemplate>
</sdk:TreeViewlItem.HeaderTemplate>
</sdk:TreeViewltem>

Figure 6-17 shows the Treeview from Listing 6-30.

e e
@_O v |2 nipyiogan... v ‘r| X “b Bing P

i Favorites | g Lisling0830 Page | BB - & Pager

Application Name

ol

4 Books B
|| " Dooks
Textbooks
Magazines

4 Music, Muvies & Games
Movies & TV
Blu-Ray
Video On Demand

> Music

& Digital Downloads

P Computers & Uffice

€ Local intranet | Protected Mode: OFf v HW100% v

FIGURE 6-17

If you have data that you want to bind to the Treeview, you can use the HierachicalDataTemplate.
Listing 6-31 demonstrates the most basic way to use the HierarchicalDataTemplate.

174 | CHAPTER6 WORKING WITH VISUAL CONTROLS

‘) LISTING 6-31: Using the HierarchicalDataTemplate
Available for
ﬂWMM“W <Grid.Resources>
rox.com - .
<common:HierarchicalDataTemplate
x:Key="myTreeViewHierarchicalTemplateLevel"
ItemsSource="{Binding Children}" >

<TextBlock Text="{Binding Name}" />
</common:HierarchicalDataTemplate>
</Grid.Resources>
<sdk:TreeView x:Name="TreeViewl" ItemsSource="{Binding}"
ItemTemplate="{StaticResource myTreeViewHierarchicalTemplate}" />

In the listing, you can see that a new HierachicalDataTemplate has been created as a grid
resource. The template’s TtemsSource is set to the name of the property on the objects in the
TreeView’s ItemsSource that returns the collection. The HierachicalDataTemplate uses this to
walk the nested object structure in the TtemsSource and create a TreeviewItenm for each object.
The content used to show each node is contained within the HierachicalDataTemplate.

The HierachicalDataTemplate resource is assigned to the Treeview’s TtemTemplate property.

You can define different layouts for each level of the tree by defining a series of
HierachicalDataTemplates and setting the TtemTemplate property of each. This is shown
in Listing 6-32, where a HierarchicalDataTemplate has been defined for each level of the
ItemsSource.

‘) LISTING 6-32: Defining different layouts for each level of a tree
Available for
downloadon <Grid.Resources>
Wrox.com K X
<common:HierarchicalDataTemplate
x:Key="myTreeViewHierarchicalTemplateLevelO"
ItemsSource="{Binding Children}"
ItemTemplate="{StaticResource myTreeViewHierarchicalTemplateLevell}">
<TextBlock Text="{Binding Name}" Foreground="Blue" />
</common:HierarchicalDataTemplate>

<common:HierarchicalDataTemplate
x:Key="myTreeViewHierarchicalTemplateLevell"
ItemsSource="{Binding Children}"
ItemTemplate="{StaticResource myTreeViewHierarchicalTemplateLevel2}">
<TextBlock Text="{Binding Name}" Foreground="Red" />
</common:HierarchicalDataTemplate>

<common:HierarchicalDataTemplate
x:Key="myTreeViewHierarchicalTemplateLevel2"
ItemsSource="{Binding Children}" >
<TextBlock Text="{Binding Name}" Foreground="Green" />
</common:HierarchicalDataTemplate>
</Grid.Resources>
<sdk:TreeView x:Name="TreeViewl" ItemsSource="{Binding}"
ItemTemplate="{StaticResource myTreeViewHierarchicalTemplateO}" />

Using Button Controls | 175

Once you’ve added nodes to the tree, you can use the control API to programmatically interact with
nodes of the tree. The control includes a selectedItemChanged event that allows you to access the
currently selected Treeview item.

It is also possible to walk the tree nodes by using the Ttemscontrol’s ContainerFromIndex method
(Treeview is derived from TtemsControl). Listing 6-33 shows how you can recursively walk through
all of the nodes included in a Treeview control.

‘) LISTING 6-33: Walking the Items included in a TreeView control

Available for

dwm?%gn public void WalkTreeViewItems (TreeView treeView)

for (int 1 = 0; 1 < treeView.Items.Count; i++)

{
WalkAllTreeViewItems ((TreeViewItem)
treeView.ItemContainerGenerator.ContainerFromIndex (1)) ;

}

private void WalkAllTreeViewItems (TreeViewItem currentTreeViewItem)

{

for (int 1 = 0; 1 < currentTreeViewItem.Items.Count; i++)

{
TreeViewItem child =
(TreeViewItem)currentTreeViewItem.ItemContainerGenerator.
ContainerFromIndex (i) ;
WalkAllTreeViewItems (child) ;

You can see that the listing includes two methods, the first of which loops the root methods and the
second which recursively walks all of the child tree items. Each method uses the containerFromIndex
method to retrieve the TreeviewItem object, which wraps each item included in the Treeview.

You could expand these methods to perform actions like expanding or collapsing all nodes
programmatically.

USING BUTTON CONTROLS

Next to the TextBlock and CheckBox, Button controls are probably one of the most basic con-
trols used in applications. Silverlight includes a standard Button control, as well as two additional
Button controls that extend the basic capabilities of the Button — the HyperlinkButton and the
ToggleButton.

Button

The basic Button control included in Silverlight offers the basic behaviors that you would expect a
button to, such as Normal, MouseOver, and Pressed states, and a Click event, but unlike buttons
on other platforms like Windows Forms, the Silverlight Button control uses the power of XAML to
allow you to transform the normal gray button into something completely different.

176 | CHAPTER6 WORKING WITH VISUAL CONTROLS

You can first see this if you try to find a Text property on the Button, which you would expect to
be there in order to allow you to set the button’s text. This is where the power of Silverlight begins
to kick in. Rather than a basic Text property, the Button control offers a Content property that —
unlike Text, which only accepts a string — accepts a more generic Object. Using this, you can set
the content property to very complex elements such as a checkbox or even another button.

A more realistic example might be placing an image as the Button’s content rather than text. In plat-
forms like Windows Forms, you would need to draw this yourself, or in HTML, you would have to use
an Image button, both of which have significant drawbacks. But in Silverlight, this is simple to achieve.
Listing 6-34 demonstrates using the Content property to use an image as the Button’s content.

‘) LISTING 6-34: Using an image as a Button’s content
Available for
dwm?ggﬂ <Button x:Name="Buttonl" Click="Buttonl_ Click">
<Button.Content>
<Border Margin="20" BorderBrush="Black" BorderThickness="3" >
<Image Source="/Chapter6;component/Assets/dog.png" />
</Border>
</Button.Content>
</Button>

Figure 6-18 shows the button with an image as its content.

@_Dv] mup/noain.. ~ | =] | ‘-,r|] | [ging 3
4 Favorites _ELisﬁngOG:".dPage i i] -3 ”

Application Name

E“@ Local intranct | Protected Mode: Off {ﬁ - H100% -

FIGURE 6-18

This example only replaces the content area of the Button, but you can replace the entire default user
interface for the Button if you want to. When you run the code in Listing 6-34, you will see that even
though the content is different, the control still fires its normal events, like the c1ick event.

Using Button Controls | 177

Another interesting feature of the Button control is the c1ickMode property. Using this property,
you can set when the Button’s C1ick event should fire: when the mouse is hovered, when the mouse
is pressed, or when the mouse is released.

HyperlinkButton

The HyperlinkButton extends the basic Button to allow you to provide the button with a URI

value using the NavigateUri property. You can provide either absolute or relative URIs, although
the behavior of the control will depend on the value of the Silverlight object’s EnableNavigation
property. If the property is set to None, then the HyperlinkButton will permit only relative links.

The control also includes a TargetName property that allows you to specify the window or frame
the URI should open in. If you have specified a relative URI, then the TargetName property should
be given the x:Name of the Silverlight Navigation Frame element you want to target.

Chapter 4 includes more information on using the Frame element with the
Silverlight Navigation framework.

If you have provided an absolute URL, then you can provide the standard HTML Target
attribute values such as _blank or _top. The code in Listing 6-35 demonstrates the use of the
HyperlinkButton with an absolute URI.

‘) LISTING 6-35: Using the HyperlinkButton

Available for

dw’rgiﬂggnl:n <HyperlinkButton
ClickMode="Release"
TargetName="_blank"
NavigateUri="http://www.silverlight.net">
<HyperlinkButton.Content>

<TextBlock Text="Click Me!" TextDecorations="Underline" />
</HyperlinkButton.Content>
</HyperlinkButton>

ToggleButton

Silverlight 4 also contains a new ToggleButton control. This control combines the basic behaviors
of a button with the behavior of a checkbox, allowing your Button control to have a checked state.

Listing 6-36 demonstrates the use of the ToggleButton.

‘) LISTING 6-36: Using the ToggleButton
Available for
dw’rgiﬂggr:" <ToggleButton x:Name="ToggleButtonl"
Content="Toggle Me!" IsChecked="true"
Height="100" width="100" />

http://www.silverlight.net%E2%80%9D

178 | CHAPTER6 WORKING WITH VISUAL CONTROLS

The ToggleButton control serves as the base for other controls that have a checked state such as
CheckBox and RadioButton and therefore supports the same capabilities, including supporting a
three-state checked option.

USING THE GRIDSPLITTER CONTROL

The Grid panel, which is discussed in detail in Chapter 3, is a great way to lay out your applica-
tion’s user interface. A common pattern when using a grid is to allow the user to resize grid col-
umns or rows. While the grid panel itself does not have this capability, Silverlight includes the
Gridsplitter control, which allows you to add this capability to it.

Listing 6-37 demonstrates the use of the Gridsplitter control, splitting a column containing
two columns.

‘) LISTING 6-37: Using the GridSplitter to split a two-column Grid
Available for
HWNM“W <Grid x:Name="LayoutRoot">
rox.com ., . . .
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<sdk:GridSplitter />
</Grid>

To control the orientation of the Gridsplitter control, use its Horizontal and vVertical align-
ment properties. If HorizontalAlignment is set to Stretch, then the grid splits between rows; if
VerticalAlignment is set to Stretch, then the control splits columns. Listing 6-38 demonstrates
using the Gridsplitter control in two different configurations — one splitting a grid vertically,
and one splitting a grid horizontally.

‘) LISTING 6-38: Using the GridSplitter in horizontal and vertical orientation
Available for
downloadon <Grid x:Name="LayoutRoot">
Wrox.com X L
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<Grid x:Name="HorizontalOrientation" Background="Gray"
Grid.Column="0" Margin="10" ShowGridLines="True">
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition Height="Auto" />
<RowDefinition />
</Grid.RowDefinitions>

<sdk:GridSplitter
HorizontalAlignment="Stretch"

Using the Image Control | 179

VerticalAlignment="Center" Grid.Row="1" />

<Button Grid.Row="0" Content="Top" Margin="5" />
<Button Grid.Row="2" Content="Bottom" Margin="5" />
</Grid>

<Grid x:Name="VerticalOrientation" Background="Gray"
Grid.Column="1" Margin="10" ShowGridLines="True">
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition width="10" />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<sdk:GridSplitter
HorizontalAlignment="Center"
VerticalAlignment="Stretch" Grid.Column="1" />

<Button Grid.Column="0" Content="Left" Margin="5" />
<Button Grid.Column="2" Content="Right" Margin="5" />

</Grid>
</Grid>

If both are set to Stretch and Gridsplitter has an actual height less than its actual width, then it
splits rows. If the actual height is greater than the width, then columns are split.

Setting the alignment properties to Left, Right, Top, or Bottom, you can control the direction in which
the splitter resizes its column or row. Setting a property to Center means to resize in both directions.

Gridsplitter always drags the entire Column or Row, even if it only visually appears in one cell.
You can use the Grid’s RowSpan and ColumnSpan properties on the Gridsplitter to make it appear
in multiple cells.

Also, by default, when the Gridsplitter is repositioned, the content of the grid is resized in real
time. You can use the GridSplitter’s ShowsPreview property to configure the control to show a
preview first of the new Gridsplitter position, and then resize it when the user releases the splitter.

USING THE IMAGE CONTROL

The Image element is a simple control that allows you to show images in your applications.
Listing 6-39 shows the basic usage of the Tmage control.

‘) LISTING 6-39: Using the Image control
Available for
dwmtggn <Image Source="/Chapter6;component/Assets/fox.png"
Stretch="Uniform"
ImageFailed="Image_ImageFailed"
ImageOpened="Image_ImageOpened" />

180 | CHAPTER6 WORKING WITH VISUAL CONTROLS

The listing loads a PNG image that has been included as a Resource in the applications XAP. The
Tmage element can load images in PNG and JPEG formats from a variety of locations including
relative (as shown above), absolute URIs, or a stream.

When setting the Tmage’s source in XAML, as shown in Listing 6-39, you can provide a URI directly
as a property value. Silverlight automatically converts the value to a uri object that is used to create
a new TmageSource object. When loading from an absolute URI, cross-domain URIs are permitted.
Relative URLs are relative to the XAP, not the hosting page location.

When setting the Tmage’s source property in code, you need to create a new instance of a
BitmapSource object and assign that to the property. You can use the setSource method of
the BitmapSource to create an image from a stream.

The Tmage control exposes two events that can help you determine if an image was loaded success-
fully or not. The TmageOpened event is fired when the image file has been successfully downloaded
and decoded. The TmageFailed event is fired if either of those two processes fails.

USING DATA VISUALIZATION CONTROLS

The Silverlight Toolkit includes two controls that are designed to make visualizing data easy. The
TreeMap, which is similar to a Heatmap, is designed to visually display hierarchical data structures.
The chart control allows you to render data visually as one of seven different common chart types.

TreeMap

Tree maps are a relatively recent visualization technique that is specifically designed for showing hier-
archical data. Points in the tree map are sized based on their value, relative to all the other values in the
bound items source. Additionally, a second dimension of data can be shown by using a gradient color
within each node rendered in the map.

Listing 6-40 shows a basic usage of the TreeMap control to visualize the number of wins for each
team in the 2009 season of Major League Baseball’s American League teams.

‘) LISTING 6-40: Using the TreeMap control to visualize baseball game wins
Available for
ﬂwmygﬁﬂ <my:TreeMap ItemsSource="{Binding}">
<my:TreeMap.ItemDefinition>
<my:TreeMapIltemDefinition ValuePath="Wins">
<DataTemplate>
<Border x:Name="Borderl" Background="AliceBlue"
BorderBrush="Black" BorderThickness="1">
<TextBlock Text="{Binding Name}"
VerticalAlignment="Center"
TextAlignment="Center"
TextWrapping="Wrap"/>
</Border>
</DataTemplate>
</my:TreeMapIltemDefinition>

Using Data Visualization Controls | 181

</my:TreeMap.ItemDefinition>
</my:TreeMap>

As you can see from Listing 6-40, using the control is fairly straightforward. You create a
DataTemplate within the TreeMapItemDefinition that defines the contents of each node in the
TreeMap. You use the ValuePath property to identify the property in the control’s TtemsSource
that should be used as the node value.

Running Listing 6-40 results in the tree map shown in Figure 6-19.

r T
Listing0640 Page - Winduws Internet Explurer (=]]
— :
@u: [] ntptocainostas: «| & ‘r| x| |b Bing 2 i
vy Favoriles | @ |izfing0640 Page B | mm v Page~ Safely
Application Name /Listing0640 =
New York Yankees Minnesota Twing Seallle Mariners Tampa Bay Rays
Chicago White
,g i Cakland A's Clefv.e!and
Los Angeles Angels Texas Soc Indians

Kancae City | Balbmore

5 it i Teronto Jays +
Hoston Hed Sncks Detroit Tigers ! Reryals Girioles

Done €4 Local intranet | Protected Mode: Off fa~ Hiox -~

L =

FIGURE 6-19

As you can see, a node has been created for each team, and the nodes have been sized according to
their values.

As mentioned previously, a second dimension can be added to the tree map by creating a gradient
color to fill each node. To do this, you can use the TreeMap control’s Interpolators collection,
which accepts either a SolidcolorBrushInterpolator or a DoubleInterpolator. Listing 6-41
demonstrates how to use the SolidColorBrushInterpolator to add an additional dimension
showing the streak for each team.

‘) LISTING 6-41: Using the SolidColorBrushinterpolator
Available for
ﬂwm?ggﬂ <my:TreeMap.Interpolators>
<my:SolidColorBrushInterpolator
TargetName="Borderl"
TargetProperty="Background"
DataRangeBinding="{Binding Streak}"
From="White"
To="DarkRed" />
</my:TreeMap.Interpolators>

182

| CHAPTER6 WORKING WITH VISUAL CONTROLS

In this case, the SolidColorBrushInterpolator colors each tile a shade from white

to DarkrRed depending on the value of the streak. To tell the TreeMap which element in

the TreeMapItemDefinition’s DataTemplate to assign the color to, use the Target and
TargetProperty properties, in this case, telling the control to assign the color to the Border’s
Background property. The result of adding the solidcolorBrushInterpolator is shown in

Figure 6-20.

[@ Listing0641 Page - Windows Internet Explorer [F=REET
O~ [e) mpsanentzs ~[5[4 x| [l gine P~

i - B - = & - Page= Safety =

g Favorites | @ Listing0041 Page

Application Name /Listing0641 =

Cleveland
Indians

Done €L Local i I Mode: OFf 45 - Hiox v

L

FIGURE 6-20

It is also possible to have more than one segment of data defined in the TreeMap. For example, the
listings so far have shown the 2009 season statistics for only the American League teams. What if
you wanted to add in the National League teams and color them from blue to white? You can do
that by creating a custom TreeMapItemDefinitionSelector, which allows you to define multiple
TreeMapItemDefinitions within the control and tells the control how to divide up the data.

Listing 6-42 shows how to derive a custom class from the TreeMapItembDefinitionSegment.

\) LISTING 6-42: Using the TreeMapltemDefinitionSelector

Available for
download on [ContentProperty ("Children")]

Wrox.com

public class LeagueltemDefinitionSelector : TreeMapItemDefinitionSelector

{

public Collection<TreeMapItemDefinition> Children { get; private set; }

public LeagueItemDefinitionSelector () {
Children = new Collection<TreeMapItemDefinition>(); }

public override TreeMapItemDefinition

Using Data Visualization Controls | 183

SelectItemDefinition (TreeMap treeMap, object item, int level)

if (item is Chapter6.Views.Listing0643.League)

{
return Children[0];

if (item is Chapter6.Views.Listing0643.TeamStats)
{
Chapter6.Views.Listing0643.TeamStats node =
item as Chapter6.Views.Listing0643.TeamStats;

if (Children.Count > 0 &&
node != null &&
node.League.Length > 0)

switch (node.League)
{
case "American":
return Children[1];
case "National":
return Children[2];

return null;

return null;

The code for creating a custom selector class is fairly straightforward. First, you create a collection to
hold the TreeMapTtemsDefinitions. You need to create a separate definition for each segment you
want to show. Next, you simply override the SelectTtembefinition method and insert the logic
that determines how this selector should select the TreeMapItemDefinition for each node in the
control. In the previous listing, the logic first checks to see what type of object is being passed in. If
the type is a League object, the first template is returned. If the type is a TeamStats object, then the
League property is checked and a template returned based on its value.

Once your selector is created, add this to the TreeMap control by assigning it to the
ItemTemplateSelector property. You can also create additional interpolators to color
the different segments. Listing 6-43 shows how the TreeMap is modified to leverage the
selector and interpolators.

‘) LISTING 6-43: Modifying the TreeMap
Available for
dwmtﬂgﬂ <my:TreeMap ItemsSource="{Binding}">
<my:TreeMap.Interpolators>
<my:SolidColorBrushInterpolator
TargetName="Borderl"

continues

184 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-43 (continued)

TargetProperty="Background"
DataRangeBinding="{Binding Streak}"
From="White"
To="DarkRed" />
<my:SolidColorBrushInterpolator
TargetName="Border2"
TargetProperty="Background"
DataRangeBinding="{Binding Streak}"
From="White"
To="DarkBlue" />
</my:TreeMap.Interpolators>
<my:TreeMap.ItemDefinitionSelector>
<local:LeagueltemDefinitionSelector>
<my:TreeMapIltemDefinition ItemsSource="{Binding Teams}"
ValueBinding="{Binding Value}">
<DataTemplate>
<Border x:Name="Border(0" Background="AliceBlue"
BorderBrush="Black" BorderThickness="1">
</Border>
</DataTemplate>
</my:TreeMapItemDefinition>

<my:TreeMapIltemDefinition ItemsSource="{Binding Children}"
ValueBinding="{Binding Wins}">
<DataTemplate>
<Border x:Name="Borderl" Background="AliceBlue"
BorderBrush="Black" BorderThickness="1">
<TextBlock Text="{Binding Name}"
VerticalAlignment="Center"
TextAlignment="Center"
TextWrapping="Wrap"/>
</Border>
</DataTemplate>
</my:TreeMapIltemDefinition>

<my:TreeMapItemDefinition ItemsSource="{Binding Children}"
ValueBinding="{Binding Wins}">
<DataTemplate>
<Border x:Name="Border2" Background="AliceBlue"
BorderBrush="Black" BorderThickness="1">
<TextBlock Text="{Binding Name}"
VerticalAlignment="Center"
TextAlignment="Center"
TextWrapping="Wrap"/>
</Border>
</DataTemplate>
</my:TreeMapItemDefinition>
</local:LeagueltemDefinitionSelector>
</my:TreeMap.ItemDefinitionSelector>
</my:TreeMap>

Figure 6-21 shows the result of adding the selector and interpolators to the TreeMap.

Using Data Visualization Controls | 185

[@ Ustnquss3 Page - Windows Internet Explorer [P
OO e e ~[5]5]x [o 5 -
i Favortes | @ Listing0643 Page) B D & age sty T

Application Name

Done i Local intranet | Protected Mode: OIT g v Riew -

L w

FIGURE 6-21

Chart

The chart control is the second data visualization control included in the Silverlight Toolkit. It
supports seven chart types:

> Area
Bar
Column
Line
Scatter
Pie
Bubble

Y Y VY Y Y Y

Listing 6-44 demonstrates using the Chart control to show a simple Line chart.

\) LISTING 6-44: Using the Chart control
Available for
dsfrgiﬂggr:" <chartingToolkit:Chart>
<chartingToolkit:Chart.Series>
<chartingToolkit:LineSeries
ItemsSource="{Binding}"
DependentValueBinding="{Binding Y}"
IndependentValueBinding="{Binding X}" />
</chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

186

CHAPTER 6 WORKING WITH VISUAL CONTROLS

As shown in Listing 6-44, to create the chart you simply add a LineSeries to the charts series
collection. On the LineSeries you provide an TtemsSource and configure the Dependent

and Independent values. You can think of the Dependent value as the chart’s X-axis and the
Independent value as the Y-axis.

Running Listing 6-44 results in the Chart shown in Figure 6-22.

[Lisunaus4s Page - windows intemet Explorer o) o
@C)v] nttonocainostas ~ | 2[4 x | [fina » |
| i ravontes | @Listing0544Page | | fn v) B v [0 o- vagew satety~ |

Application Name

10
* /
" [\ .

W Series 1
r

AW

E BT SR
| Done ¥R Local intranet | Protecied Mode: OfF g v R -
L

FIGURE 6-22

Notice that the chart automatically adds the appropriate axes and a legend.

You can show multiple sets of data in the chart simply by adding additional series objects to the Chart’s
Series collection. Listing 6-45 shows how you can create a column chart with multiple series.

‘) LISTING 6-45: Creating a column chart with multiple series

Available for

ﬂwmrggﬂ <chartingToolkit:Chart Title="Automobile Manufacturer Annual Sales">

<chartingToolkit:Chart.Series>
<chartingToolkit:ColumnSeries
Title="Ford"
DataContext="{Binding PointsA}"
ItemsSource="{Binding}"
DependentValueBinding="{Binding Y} "
IndependentValueBinding="{Binding X}" />
<chartingToolkit:ColumnSeries
Title="Toyota"
DataContext="{Binding PointsB}"
ItemsSource="{Binding}"
DependentValueBinding="{Binding Y}"
IndependentValueBinding="{Binding X}" />
</chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

Using Data Visualization Controls | 187

Figure 6-23 shows the results of adding multiple column series to the chart.

[@ Listing0645 Page - Windows Internet Explorer [E=E
@Ov [) nupinoamostzs « [5242 | x | 5ing 2]
74 Favorites -él_islinglm;ﬁ;age _l & - - [% v Pagew Safetyw

Application Name /Ligting0645 =

Automobile Manufacturer Annual Sales

& Ford
H Toyota

Done € Local i I Mode: Off 5~ Hw0% -

L

FIGURE 6-23

By default each series in the chart adds an item to the legend. You can change the text shown in the
legend for the series by setting the Title property.

Additionally, as you add each series, the chart automatically selects a new unique series color
and adds the series to the legend. You can control the collection of colors the chart can use
to color series using the chart’s Palette collection. Listing 6-46 shows how you can create a
ResourceDictionaryCollection that contains the different colors you want the chart to use

to color the series.

\) LISTING 6-46: Creating a ResourceDictionaryCollection
Available for
dwmrggn <chartingToolkit:Chart.Palette>
<visualizationToolkit:ResourceDictionaryCollection>
<ResourceDictionary>
<Style x:Key="DataPointStyle" TargetType="Control">
<Setter Property="Background" Value="Red" />
</Style>
</ResourceDictionary>
<ResourceDictionary>
<Style x:Key="DataPointStyle" TargetType="Control">
<Setter Property="Background" Value="Green" />
</Style>
</ResourceDictionary>
</visualizationToolkit:ResourceDictionaryCollection>
</chartingToolkit:Chart.Palette>

188 | CHAPTER6 WORKING WITH VISUAL CONTROLS

Series objects expose a variety of other properties that let you configure features like the animation
sequence used to initially display the series and the easing function used to transition data points as
values in the TtemsSource change. Listing 6-47 demonstrates the use of these properties.

‘) LISTING 6-47: Using properties to configure series features

Available for

dwm?ggﬂ <chartingToolkit:ColumnSeries
Title="Ford"
DataContext="{Binding PointsA}"
ItemsSource="{Binding}"
DependentValueBinding="{Binding Y}"
IndependentValueBinding="{Binding X}"
AnimationSequence="FirstToLast"
TransitionDuration="5000">
<chartingToolkit:ColumnSeries.TransitionEasingFunction>

<ElasticEase EasingMode="EaseIn" />
</chartingToolkit:ColumnSeries.TransitionEasingFunction>
</chartingToolkit:ColumnSeries>

Series also support the notion of selecting a data point. By setting the TsSelectionEnabed property

to True, users can click data points in the chart. The chart will show the selected data point using a
different style, which you can change by restyling the data point, and expose the currently selected
data point through the selectedrtem property. Additionally, you can listen to the SelectionChanged
event to get notified when the selected data point changes.

As mentioned earlier, by default, the chart automatically selects the appropriate axes to use based

on the series included in the chart. You can, however, manually add and configure axes to the chart’s
Axes collection. The chart includes three axis types — Linearaxis for numeric data, Categoryaxis
for string data, and a DateTimeAxis for DateTime data. Listing 6-48 shows how to use the axes col-
lection to add linear and category axes for a LineSeries.

‘) LISTING 6-48: Using Axes to add linear and category axes
Available for
dmwggn‘:" <chartingToolkit:Chart>
<chartingToolkit:Chart.Axes>
<chartingToolkit:LinearAxis x:Name="yaxis" Orientation="Y"
ShowGridLines="False" Title="Y Axis Values"
Minimum="-100" Maximum="100" Interval="50"/>
<chartingToolkit:CategoryAxis x:Name="xaxis" Orientation="X"
Title="X Axis Values" />
</chartingToolkit:Chart.Axes>
<chartingToolkit:Chart.Series>
<chartingToolkit:LineSeries
DataContext="{Binding PointsB}"
ItemsSource="{Binding}"
DependentValuePath="Y"
DependentRangeAxis="{Binding ElementName=yaxis}"
IndependentValuePath="X"
IndependentAxis="{Binding ElementName=xaxis}" />
</chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

Using Other Miscellaneous Controls | 189

Finally, one of the great aspects of the chart control is that Microsoft has unsealed the primary chart-
ing classes in the control. This means that it is now much easier to extend the control to add additional
functionality, such as additional series to support different chart types, or more complex axes, like a
logarithmic axis. An example of creating a custom series can be found at the following URL:

www .codeproject.com/KB/silverlight/SLTCandlestickChart2.aspx

USING OTHER MISCELLANEOUS CONTROLS

This section covers a few other miscellaneous controls you will find useful as you develop your
Silverlight applications.

ViewBox

The viewBox control, previously included in the Silverlight Toolkit, has been promoted to the
Silverlight 4 SDK. The viewBox is designed to scale XAML content appropriately based on the size
of the viewbox. Figure 6-24 demonstrates an ellipse shown inside four viewBox controls.

[4+]x |[© gina P -

6@-» 11‘. hittp://localhost29 ~ | [

»

¢ Favoriles | @ Listing0sda Page _.. - B - & o+ Papev Salely -

Application Name

400€¢

Done €& Local intranet | Protected Mode; Off fa ~ Hio0% -

FIGURE 6-24

In the figure, the ellipse has its size fixed at 300 x 300. The viewBox property scales the ellipse based
on the value of the stretch property. Listing 6-49 shows the code used to generate Figure 6-24.

\) LISTING 6-49: Using the ViewBox control to show an ellipse in four segments

Available for

“mg;“ggrg" <Border BorderBrush="Black" BorderThickness="1"

HorizontalAlignment="Left" VerticalAlignment="Top">

continues

http://www.codeproject.com/KB/silverlight/SLTCandlestickChart2.aspx

190 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-49 (continued)

<Viewbox x:Name="ViewBox6" Width="100" Height="150"
StretchDirection="Both" Stretch="None">
<Ellipse Fill="Red" Width="300" Height="300" />
</Viewbox>
</Border>
<Border BorderBrush="Black" BorderThickness="1"
HorizontalAlignment="Left" VerticalAlignment="Top"
Margin="120,0,0,0">
<Viewbox x:Name="ViewBoxl" Width="100" Height="150"
StretchDirection="Both" Stretch="Fill">
<Ellipse Fill="Red" Width="300" Height="300" />
</Viewbox>
</Border>
<Border BorderBrush="Black" BorderThickness="1"
HorizontalAlignment="Left" VerticalAlignment="Top"
Margin="240,0,0,0">
<Viewbox x:Name="ViewBox4" Width="100" Height="150"
StretchDirection="Both" Stretch="Uniform" >
<Ellipse Fill="Red" Width="300" Height="300" />
</Viewbox>
</Border>
<Border BorderBrush="Black" BorderThickness="1"
HorizontalAlignment="Left" VerticalAlignment="Top"
Margin="360,0,0,0">
<Viewbox x:Name="ViewBox5" Width="100" Height="150"
StretchDirection="Both" Stretch="UniformToFill">
<Ellipse Fill="Red" Width="300" Height="300" />
</Viewbox>
</Border>

The stretch property allows four values — Uni form, UniformToFill, Fill, and None. The
default is Uniform. You can also control the direction in which the stretch is applied using
the StretchDirection property.

Busylindicator

The BusyIndicator, which is included in the Silverlight Toolkit, provides you with an easy way to
add an effect to your application notifying users that the application is working. This is useful if your
application executes long-running tasks, such as remote server calls, or complex calculation routines.
Listing 6-50 shows how you can use the BusyIndicator while the application attempts to validate
user credentials.

‘) LISTING 6-50: Using the Busylndicator
Available for
“W:';';’;‘,.‘},ﬁ" <Grid x:Name="LayoutRoot"
VerticalAlignment="Center" HorizontalAlignment="Center">
<Grid>
<Grid.RowDefinitions>
<RowDefinition />

Using Other Miscellaneous Controls | 191

<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

<sdk:Label Content="Username: " Margin="5"
Grid.Column="0" Grid.Row="0"/>
<TextBox x:Name="txtUsername" Width="150" Margin="5"
Grid.Column="1" Grid.Row="0"/>

<sdk:Label Content="Password: " Margin="5"
Grid.Column="0" Grid.Row="1" />

<TextBox x:Name="txtPassword" Width="150" Margin="5"
Grid.Column="1" Grid.Row="1"/>

<Button Content="Login" Click="Button_Click"
Grid.Row="2" Grid.ColumnSpan="2"
HorizontalAlignment="Center" Margin="5" />
</Grid>
<controlsToolkit:BusyIndicator
x:Name="BusyIndicatorl"
BusyContent="Validating credentials..."
VerticalAlignment="Stretch"
HorizontalAlignment="Stretch" />
</Grid>

Listing 6-50 sets up a simple login form with two input fields and a button inside a Grid panel. At
the bottom, you can see that the BusyTIndicator control has also been added. The control has been
given some content, and its alignment properties have been set to Stretch. Setting the alignment
properties to Stretch allows it to overlay the login form while shown.

Figure 6-25 shows the form with its BusyIndicator showing.

2 o S R
Gv [nupsnown.. - &[4[x|[o sin £
g Favorites | @@ | isting0650 Page] =4 -~ 3 ”
Application Name
Usemame: |John .
Validating credenhals... |
Passw
e
—‘Ec.g:r..-—.
€L Local intranct | Protected Mode: OFf G- H10x -

FIGURE 6-25

192 | CHAPTER6 WORKING WITH VISUAL CONTROLS

To show the BusyIndicator, simply set the TsBusy property to True. Normally, you would do this
before you start your long-running process. Once the process completes, simply set the property
back to False to hide the indicator.

Expander

The Expander control is a simple control that allows end users to expand or collapse a section of
content. Listing 6-51 shows how you can use the Expander.

‘) LISTING 6-51: Using the Expander control

Available for
download on <StackPanel>

Virox.com <controlsToolkit:Expander ExpandDirection="Down"
Header="Expand Content Down">
<Button Content="Expand Content Down" />
</controlsToolkit :Expander>
<controlsToolkit:Expander ExpandDirection="Up"
Header="Expand Content Up">
<Button Content="Expand Content Up" />
</controlsToolkit:Expander>
<controlsToolkit:Expander ExpandDirection="Left"
Header="Expand Content Left">
<Button Content="Expand Content Left" />
</controlsToolkit:Expander>
<controlsToolkit:Expander ExpandDirection="Right"
Header="Expand Content Right">
<Button Content="Expand Content Right" />
</controlsToolkit:Expander>
</StackPanel>

Listing 6-51 shows four Expanders, each with a single Button as content. Each Expander has its
ExpandDirection property set to one of the four possible values.

ValidationSummary

The validationSummary control, which is included in the Silverlight SDK, provides a simple way
to display a summary of data input errors to your application. The control uses the Silverlight data
binding validation properties to receive notification of data input errors that happen. Listing 6-52
shows how to use the valudationSummary control to show validation errors that may occur when
entering data into the TextBox controls.

‘) LISTING 6-52: Using the ValidationSummary control to display validation errors
Available for
downloadon <Grid x:Name="LayoutRoot">
Wrox.com X L.
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

<StackPanel>

Using Other Miscellaneous Controls | 193

<TextBox x:Name="txtFirstName" Text="{Binding FirstName,
Mode=TwoWay, NotifyOnValidationError=True,
ValidatesOnExceptions=True}" />
<TextBox x:Name="txtLastName" Text="{Binding LastName,
Mode=TwoWay, NotifyOnValidationError=True,
ValidatesOnExceptions=True}"/>
</StackPanel>

<sdk:ValidationSummary Grid.Row="1" />
</Grid>

It is also possible to restyle the look of the errors shown by the validationSummary control by
creating a new Style and assigning it to the control’s Errorstyle property.

Tooltip

As its name implies, the Tooltip control allows you to add tooltips to Ul elements in your application.
The control is exposed through the TooltipService attached property, which allows you to add a
tooltip to any UI Element.

To add content to the control you use the TooltipService’s ToolTip property. You can set content
directly in the property, or you can create a new Tooltip object explicitly and place content within
it. Listing 6-53 shows how you can add a tooltip to a button by setting content directly on the
TooltipService’s ToolTip property.

‘) LISTING 6-53: Adding a ToolTip to a Button
Available for
dwmfgﬁn <Button Content="This is a button" Height="100" Width="100"
ToolTipService.Placement="Mouse"
<ToolTipService.ToolTip>
<Grid>
<TextBlock Text="This is the buttons tooltip" />
</Grid>
</ToolTipService.ToolTip>
</Button>

Note that the content of the tooltip cannot be interacted with or receive focus, so while you can
place elements like Buttons in the tooltip, users will not be able to click them.

It is also possible to completely control the look of the tooltip by retemplating the control. Listing 6-54
shows how to retemplate the tooltip from Listing 6-53.

) LISTING 6-54: Retemplating the ToolTip control

Available for

downloadon <Grid x:Name="LayoutRoot">

Wrox.com X

<Grid.Resources>
<ControlTemplate TargetType="ToolTip" x:Key="MyToolTipTemplate">
<Border BorderBrush="Black" BorderThickness="4"
CornerRadius="8">

continues

194 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-54 (continued)

<Grid>
<ContentPresenter Content="{TemplateBinding Content}"
ContentTemplate="{TemplateBinding ContentTemplate}"
Margin="{TemplateBinding Padding}" />
</Grid>
</Border>
</ControlTemplate>
</Grid.Resources>
<Button Content="This is a button" Height="100" Width="100"
ToolTipService.Placement="Mouse">
<ToolTipService.ToolTip>
<ToolTip Template="{StaticResource MyToolTipTemplate}">
<ToolTip.Content>
<TextBlock Text="This is the buttons tooltip" />
</ToolTip.Content>
</ToolTip>
</ToolTipService.ToolTip>
</Button>
</Grid>

ScrollViewer

The scrollviewer control is a very simple control that allows you to add scrollbars to content ele-
ments in your application. The control will add both horizontal and vertical scrollbars as an element’s
content begins to exceed its available space.

Listing 6-55 demonstrates how you can use the scrol1viewer with a StackPanel to allow content
that exceeds the height given to the stackpPanel to be scrolled into view.

‘) LISTING 6-55: Using a ScrollViewer to scroll content in a StackPanel

Available for
dwmrggﬂ <Grid x:Name="LayoutRoot" Height="100" VerticalAlignment="Top">
<Scrollviewer>
<StackPanel>

<TextBlock Text="A" />
<TextBlock Text="B" />
<TextBlock Text="C" />
<TextBlock Text="D" />
<TextBlock Text="E" />
<TextBlock Text="F" />
<TextBlock Text="G" />
<TextBlock Text="H" />
<TextBlock Text="I" />
<TextBlock Text="K" />
<TextBlock Text="L" />
<TextBlock Text="M" />
<TextBlock Text="N" />
<TextBlock Text="0" />
<TextBlock Text="P" />

Creating Custom Controls | 195

<TextBlock Text="Q" />
<TextBlock Text="R" />
<TextBlock Text="S" />
<TextBlock Text="T" />
<TextBlock Text="U" />
<TextBlock Text="V" />
<TextBlock Text="W" />
<TextBlock Text="X" />
<TextBlock Text="Y" />
<TextBlock Text="Z" />
</StackPanel>
</ScrollViewer>
</Grid>

The scrollviewer control includes properties that allow you to control the visibility of the horizontal
and vertical scrollbar. By default the control makes the horizontal scrollbar disabled and the vertical
scrollbar visible.

Keep in mind that when you are wrapping elements inside of a Scrol1viewer, the Scrollviewer
will tell those controls that they have infinite height and width. This can cause controls that virtual-
ize their Ul based on their size, like the DataGrid, to fail to utilize their virtualization logic since
they no longer have a fixed height.

For controls like 1.istBox that automatically leverage the scrol1viewer control, Scroll1viewer
is also an attached property that you can add to these controls to control how the scrollbars are
displayed (Listing 6-56).

‘) LISTING 6-56: Using the ScrollViewer attached property with ListBox

Available for
downleadon <7,i stBox ScrollViewer.VerticalScrollBarVisibility="Hidden">

Wrox.com
<TextBlock Text="A" />
<TextBlock Text="B" />
<TextBlock Text="C" />
<TextBlock Text="D" />
<TextBlock Text="E" />
</ListBox>

CREATING CUSTOM CONTROLS

So far in this chapter, we have looked at the wide variety of controls that are available from Silverlight,
the Silverlight SDK, and the Silverlight Toolkit; but there will certainly be times when none of these
controls provides the UI you need for your application. In those cases, you may choose to build your
own custom controls. In this section you will walk though creating a custom login form control to
learn how you can use Silverlight’s control API’s to build custom controls.

Getting started building custom controls in Silverlight is a fairly simple process. Visual Studio includes
a file template named Silverlight Templated Control that can get you started quickly creating a new
control. Figure 6-26 shows the template selected in the Add New Item dialog.

196 | CHAPTER6 WORKING WITH VISUAL CONTROLS

Add New ltem - ChapterG 7S
jastafied fomeites Sortby: [Name ascenaing ~] i1 [] Search Installed Tempiates]
4 Visual C#
[Type: Visual C#
Code .9"(Silverlight Application Class Visual C# L s
Nata T Custom control with ControlTemplate
support
Seneral Lj Silverlight Child Window Visual C#
Weh el
[Expression Blend
Silverlight 1L Silverlight Resource ictionary Visual C#
. d Silverlight Templated Control Visual C#
v Silverlight Test Class Visual C#
_F(‘ Silverlight Llser Control Visual C#
MName: TemplatedControll.cs
FIGURE 6-26
When you add the Silverlight Templated Control to your application, P
. 4 o8 MyCustomControl
Visual Studio creates several new assets. First, the basic class file derived &4 Properties
. . 3 Ref
from control is created. Second, a new XAML file called Generic.xaml . B Themer
is added to a Themes folder that is created in your project. Generic.xaml is f=] Genericxam!
4 LoginForm.cs

where the XAML used to create the control’s Ul is stored. Figure 6-27 shows

. FIGURE 6-27
the application structure once you’ve added the Templated Control. GURES

The names of the folder and XAML file created when adding a new Templated
Control are very important. Silverlight is hard coded to look for the default style
of your custom control in a file called Generic.xaml in folder called Themes.
Changing the names of either of these will cause Silverlight to fail to find your
control’s default style.

The control class and XAML file are connected by setting the DefaultStyleKey property in the
class constructor. This is done for you automatically when the class is created by Visual Studio. This
also enables controls to follow the States and Parts model, which dictates that there is a strict sepa-
ration between the visual elements of a control and the logical behavior of a control. Later in this
chapter you will see how designing controls in this manner makes it easy to change their appearance
without affecting their behavior.

By default, the Templated Control file template creates a control derived from the Silverlight
control base class, but there are several other useful base classes you might choose to derive
from. See Table 6-3.

Creating Custom Controls | 197

TABLE 6-3
BASE CLASS DESCRIPTION
ItemsControl Represents a control that can be used to present a collection
of items.
HeaderedItemsControl Represents a control that contains multiple items and has a header.
ContentControl Represents a control with a single piece of content.
HeaderedContentControl Provides the base implementation for all controls that contain

single content and have a header.

Once Visual Studio completes its setup of the control’s class and XAML file, you can start adding
some style and functionality to the new control. Start by creating the base UI for your control by
adding content to Style’s ControlTemplate in Generic.xaml. Listing 6-57 shows the base control

template used for the login form control.

‘) LISTING 6-57: Defining the default ControlTemplate of a custom control

Available for

downloadon <ResourceDictionary
Wrox.com

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"

xmlns:local="clr-namespace:MyCustomSilverlightControl">

<Style TargetType="local:LoginForm">
<Setter Property="Template">
<Setter.Value>

<ControlTemplate TargetType="local:LoginForm">

<Border Background="{TemplateBinding Background}"
BorderBrush="{TemplateBinding BorderBrush}"
BorderThickness="{TemplateBinding BorderThickness}">

<Grid>

<Grid.RowDefinitions>

<RowDefinition
<RowDefinition
<RowDefinition
<RowDefinition
<RowDefinition

Height="Auto"
Height="Auto"
Height="Auto"
Height="Auto"
Height="Auto"

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto"
<ColumnDefinition Width="Auto"

</Grid.ColumnDefinitions>

<TextBlock x:Name="1blTitle"

/>
/>
/>
/>
/>

/>
/>

continues

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

198 | CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-57 (continued)
Grid.ColumnSpan="2"/>

<TextBlock x:Name="1lblUsername"
Text="Username:" Margin="5" Grid.Column="0"
Grid.Row="1" VerticalAlignment="Center"/>

<TextBox x:Name="txtUsername" Width="150"
Margin="5" Grid.Column="1" Grid.Row="1"/>

<TextBlock x:Name="lblPassword"
Text="Password:" Margin="5" Grid.Column="0"
Grid.Row="2" VerticalAlignment="Center" />

<PasswordBox x:Name="txtPassword" Width="150"
Margin="5" Grid.Column="1" Grid.Row="2"/>

<StackPanel Grid.Row="3" Grid.ColumnSpan="2"
HorizontalAlignment="Center" Margin="5"
Orientation="Horizontal">
<Button x:Name="btnClear" Content="Clear"
Margin="0,0,2,0"/>
<Button x:Name="btnSubmit" Content="Login"
Margin="2,0,0,0" />
</StackPanel>

<TextBlock x:Name="1lblError"
Visibility="Collapsed" Grid.Row="4"
Grid.ColumnSpan="2"
Text="{TemplateBinding ErrorMessage}"
HorizontalAlignment="Center"
FontWeight="Bold" Foreground="Red" />
</Grid>
</Border>
</ControlTemplate>
</Setter.vValue>
</Setter>
</Style>
</ResourceDictionary>

You can see that within the style, which has its TargetType set to LoginForm (the name of the
custom control class), the ControlTemplate property is defined that contains the default visual
appearance of the control. In the control template TemplateBindings are used to bind elements of
the Template to properties of the control.

Once the control’s default Ul is created, you can begin to write the logic that manipulates the
controls content. Start by getting references to the control defined in the XAML by overriding

the control’s onapplyTemplate method and using the GetTemplatechild method. This method
accepts as an input parameter the name of the control in the control template that you want to
reference. Listing 6-58 shows how you can get references to the controls from the control template
shown in Listing 6-57.

Creating Custom Controls | 199

‘) LISTING 6-58: Referencing default control template Ul elements in code

Available for

“Wm”dm public class LoginForm : Control
rox.com

TextBox _username = null;
PasswordBox _password = null;
Button _submit = null;

Button _clear = null;

public LoginForm()
{

this.DefaultStyleKey = typeof (LoginForm) ;
}

public bool IsLoggedIn { get; set; }
public string ErrorMessage { get; set; }

public override void OnApplyTemplate()
{
base.OnApplyTemplate() ;

if (_clear != null) { _clear.Click -= _clear_Click; }
if (_submit != null) { _submit.Click -= _submit_Click; }

_username = GetTemplateChild("txtUsername") as TextBox;
_password = GetTemplateChild("txtPassword") as PasswordBox;
_submit = GetTemplateChild("btnSubmit") as Button;

_clear = GetTemplateChild("btnClear") as Button;

if (_submit != null)
{

_submit.Click += new RoutedEventHandler (_submit_Click);

if (_clear !'= null)
{
_clear.Click += new RoutedEventHandler (_clear_Click);

As you can see in Listing 6-58, the onapplyTemplate method is also a good place to attach event
handlers to the control’s UI elements. Note that the onapplyTemplate method can be called multiple
times, so it is very important to check to see if you need to do some cleanup work before you call
GetTemplateChild. You should check to see if the local element variable is already assigned, and if it
is, make sure to remove any existing control event handlers before attaching new handlers.

Also note that before you attach an event, you should check to make sure that the element you are
attaching the event to is not null. This is because there is no guarantee that the element actually
exists in the default template, and if it does not exist, the GetTemplatechild method will simple
return null.

200 | CHAPTER6 WORKING WITH VISUAL CONTROLS

At this point you have a basic custom control that you can add to your application. Figure 6-28
shows the simple control built in this section running in an application.

(& mye -antrol - Internct Explorer [ESE =
v~ - S
)=] nttonocatnostsn ~ | 2[4 x | [#ina » |
| i Favornes _@Mvﬁuslom[‘riherlium(}o...- Niv) B v m - pagew saeyw T

Usernnarme: | Mike

Possword: | ees

(oer o

Invalid Uscrname or "assword

| Done ¥R Local intranet | Protected Mode: OfF g v R0 -
L

FIGURE 6-28

Template Parts

Once you have the default UI of your control XAML, you can identify elements in the template
that you want to designate as control Parts. Parts are generally the UI elements of your control
that are critical to the experience your control provides, and therefore have significant amounts
of logic tied to them.

While designating Ul elements as Parts is not required to run the control, it is generally a good prac-
tice for developing custom controls. By designating a control in your template as a Part, you are creat-
ing a contract between your control and a developer who wants to change the default style of your
control. The contract states that the control will allow the developer to change its default template as
long as they ensure that the control designated as a Part is present and named a well-known name.
Additionally, tools like Expression Blend have been designed to look for and expose elements marked
with the attribute and will inform developers and designers that they are required by the controls.

To mark elements as Parts you use the TemplatePart attribute on your custom control’s class.
The TemplatePart attributes allow you to communicate the type of Ul elements that your control
expects to be in its template and the name that should be given to that element. Listing 6-59 shows
how you can add a TemplatePart attribute to the class.

‘) LISTING 6-59: Adding TemplatePart attributes

Available for
download on [TemplatePart (Name = "txtUsername", Type = typeof (TextBox))]

Wrox.com
[TemplatePart (Name = "txtPassword", Type = typeof (PasswordBox))]

Creating Custom Controls | 201

[TemplatePart (Name = "btnSubmit", Type = typeof (Button))]
[TemplatePart (Name = "lblError", Type = typeof (TextBlock))]
public class LoginForm : Control

Note that using TemplatePart attributes simply allows you to expose your intentions to other
designers and developers. It remains their prerogative to actually provide those elements in the con-
trols template. As mentioned earlier, you should always make sure that you check for the existence
of template controls before trying to access them in your control.

Visual States

Another key part of building custom controls that use the States and Parts model is using Visual
States to allow the control to change its appearance based on its current state. Visual States are
managed in your control using the Visual State Manager (VMS). Using Visual States also makes
your control Expression Blend friendly because Expression Blend can expose the states in its Ul,
allowing designers to easily change the look of a control for a given state without needed to under-
stand or change its behavior, or dig into code.

To demonstrate using Visual States, you can add a Normal and an Invalid state to the custom con-
trol shown in the previous section. The Tnvalid state will be shown by the control when an invalid
login attempt occurs. Listing 6-60 shows how you add the states to the default control template.

‘) LISTING 6-60: Creating Visual States using VisualStateManager
Available for
“wmfﬂg" <vsm:VisualStateManager.VisualStateGroups>
<vsm:VisualStateGroup x:Name="CommonStates">
<vsm:VisualState x:Name="Normal">
<Storyboard x:Name="NormalStoryboard">
<ColorAnimation Duration="0:0:0.5" To="#FFFFD7D7"
Storyboard.TargetProperty=" (Control.Background) .
(SolidColorBrush.Color)"
Storyboard.TargetName="txtUsername" />
<ColorAnimation Duration="0:0:0.5" To="#FFFFD7D7"
Storyboard.TargetProperty=" (Control.Background) .
(SolidColorBrush.Color)"
Storyboard.TargetName="txtPassword" />
<ObjectAnimationUsingKeyFrames
Storyboard.TargetProperty=" (UIElement.Visibility)"
Storyboard.TargetName="1blError">
<DiscreteObjectKeyFrame KeyTime="0:0:0.5">
<DiscreteObjectKeyFrame.Value>
<Visibility>Collapsed</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<DoubleAnimation Duration="0:0:0.5" To="0"
Storyboard.TargetProperty=" (UIElement.Opacity)"
Storyboard.TargetName="1blError" />
</Storyboard>

continues

| CHAPTER6 WORKING WITH VISUAL CONTROLS

LISTING 6-60 (continued)

</vsm:VisualState>
<vsm:VisualState x:Name="Invalid">
<Storyboard x:Name="InvalidStoryboard">
<ColorAnimation Duration="0:0:0.5" To="#FFFFD7D7"
Storyboard.TargetProperty=" (Control.Background) .
(SolidColorBrush.Color)"
Storyboard.TargetName="txtUsername" />
<ColorAnimation Duration="0:0:0.5" To="#FFFFD7D7"
Storyboard.TargetProperty=" (Control.Background) .
(SolidColorBrush.Color)"
Storyboard.TargetName="txtPassword" />
<ObjectAnimationUsingKeyFrames
Storyboard.TargetProperty=" (UIElement.Visibility)"
Storyboard.TargetName="1blError">
<DiscreteObjectKeyFrame KeyTime="0:0:0.5">
<DiscreteObjectKeyFrame.Value>
<Visibility>Visible</Visibility>
</DiscreteObjectKeyFrame.Value>
</DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<DoubleAnimation Duration="0:0:0.5" To="100"
Storyboard.TargetProperty=" (UIElement.Opacity)"
Storyboard.TargetName="1blError" />
</Storyboard>
</vsm:VisualState>
</vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

As you can see in Listing 6-60 the VisualStateManager exposes a VisualStateGroups prop-
erty. This allows you to define several related states as a group. The native controls often contain
a VisualStateGroup called CommonStates, which can contain states such as Normal, MouseOver,
Focused, and Disabled.

For the LoginForm control, a single VisualStateGroup called commonStates is created. Within that
group, two states are defined, Normal and Invalid. Each state contains a storyboard with multiple
animations that target different controls in the controls default template.

If you are going to use Visual States in your control’s default template, you must set the
VisualStateManager attached property on the root element of the ControlTemplate. In
the case of the LoginForm control that means attaching it to the Border control.

To trigger a change in the state of your control, you can use the GoToState method. The best way
to do this is to create a method in your control that is responsible for determining the current state
of your application and then calls the GoTostate method with the appropriate state name. In the
LoginForm, Boolean properties are used to indicate the current state of the control. Listing 6-61
shows how you can create a method called Ensurecurrentstate in your control. Using the Boolean
flags, the method checks the current state and calls the GoToState method.

Summary | 203

‘) LISTING 6-61: EnsureCurrentState method

Available for
downloadon pHyyblic void EnsureCurrentState()

Wrox.com
if (_isNormal)
{
VisualStateManager.GoToState(this, "Normal", false);
return;

if (_isInvalid)

{
VisualStateManager.GoToState(this, "Invalid", false);
return;

SUMMARY

This chapter introduced you to many of the most important and complex controls that are available
in Silverlight, the Silverlight SDK, and the Silverlight Toolkit, as well as introducing you to a variety
of different open source control projects. From the Silverlight TextBox, which makes it easy to begin
to take data input from end users, to perhaps the most complex control, the bataGrid, you learned
how you can take advantage of all of these controls to make your applications more useful and make
you more productive in your development. Finally, you learned how to create your own custom

Silverlight controls.

Accessing Data

WHAT’S IN THIS CHAPTER?

Working with XML using LINQ and the XmIReader object
Working with data binding and user interfaces

Dealing with data when it changes

Y Y VY Y

Communicating with services (REST, WCF)

One of the most prominent and compelling aspects of rich Internet applications is unfettered
access to data. Therefore, it should be no surprise that Silverlight provides a rich, pervasive model
that allows you to create dynamic data-driven applications. Silverlight provides a host of facilities
for retrieving, displaying, manipulating, and storing data from a variety of data sources.

If you are accustomed to using classes within System.Data to query databases directly, you
are in for a rude surprise with Silverlight, because none of these services are available. This
chapter looks at how you can use Silverlight to deal with services, both ASP.NET Web Services
and the newer Windows Communication Foundation services.

This chapter also looks at dealing with XML, data binding, and RESTful-based services —
starting with working with XML.

@ WCEF RIA Services is covered in Chapter 8.

PROCESSING XML DATA

Although a developer might actually enjoy seeing XML presented directly in an application,
it is far more likely that you will need to massage the XML data into some strongly typed

206 | CHAPTER7 ACCESSING DATA

objects that will be presented to the user. For instance, you would probably not want to expose the
end user to the raw XML presented in Listing 7-1.

LISTING 7-1: Raw XML

<?xml version="1.0" encoding="utf-8" ?>
<destinations>
<destination name="St. Croix" population="70000"
averageAirfare="300" averageHotel="300"
bestKnownFor="Beaches" />
<destination name="St. Barths" population="8450"
averageAirfare="600" averageHotel="800"
bestKnownFor="Shopping" />
<destination name="St. Lucia" population="160765"
averageAirfare="400" averageHotel="400"
bestKnownFor="Rainforests" />
</destinations>

Silverlight provides both the low-level xM1.Reader class and LINQ to XML for working with raw
XML. Either framework can be used to transform XML into a strongly typed class that represents
the data. This example has a Destination class (shown in Listing 7-2), which exposes some of the
important factors you might consider when deciding where to spend your next vacation. This class
should be placed within the Silverlight client project of your solution.

\) LISTING 7-2: The Destination class

Available for

download on public class Destination
Wrox.com

public string Name { get; set; }

public int Population { get; set; }

public double AverageAirfare { get; set; }
public double AverageHotel { get; set; }
public string BestKnownFor { get; set; }

Next, this chapter takes a look at how you can use both LINQ to XML and the xM1.Reader classes
to grab the information found in XML and create a set of Destination objects.

LINQ to XML

LINQ to XML provides a clean, consistent syntax for accessing XML data. Begin by adding refer-
ences to System.xml and System.Xml.Ling. Once the webClient object completes downloading
the data, you will need to construct a new xDocument for LINQ to query.

@ The webClient object is covered in more detail in Chapter 10.

Processing XML Data | 207

When the new xDocument object is created and you make use of LINQ to query this object, you
can map the XML file to a list of strongly typed objects. The code to do this is demonstrated in
Listing 7-3.

‘) LISTING 7-3: Using the XDocument to work with the Destinations XML document
Available for
dmg;“gg[g" using System;
using System.Collections.Generic;
using System.Ling;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Xml.Ling;

namespace SilverlightXML

{
public partial class MainPage : UserControl
{

private IEnumerable<Destination> _destinationsList;

public MainPage ()

{
InitializeComponent () ;
this.Loaded += Page_Loaded;

private void Page_Loaded(object sender, RoutedEventArgs e)
{

// Construct a new WebClient object

WebClient client = new WebClient () ;

// Configure an event handler for when the Download is complete
client.DownloadStringCompleted += client_DownloadCompleted;

// Request an XML document located adjacent to the XAP
Uri xmlUri = new Uri("Destinations.xml", UriKind.Relative);
client.DownloadStringAsync (xmlUri) ;

private void client_DownloadCompleted (object sender,
DownloadStringCompletedEventArgs e)

// If no error, sends results to a ListBox
if (e.Error == null)
{
parseDestinationsXml (e.Result) ;
}

else

{

MessageBox.Show(e.Error.Message) ;

continues

208 | CHAPTER7 ACCESSING DATA

LISTING 7-3 (continued)

private void parseDestinationsXml (string xmlContent)

{
// Create an xml document from the content
XDocument doc = XDocument.Parse (xmlContent) ;
// Create a Ling query which maps the document to Destination objects
_destinationsList =
from destination in doc.Descendants ("destination")
select new Destination
{
Name = (string) destination.Attribute("name"),
Population = (int) destination.Attribute("population"),
AverageAirfare =
(double) destination.Attribute("averageAirfare"),
AverageHotel =
(double) destination.Attribute("averageHotel"),
BestKnownFor =
(string) destination.Attribute ("bestKnownFor")
Y
DestinationsListBox.ItemsSource = _destinationsList;
}

To make this work, you need to make a reference to the System.xml .Ling namespace within your
Silverlight client project. The only thing that you need on the MainPage.xaml page is a simple ListBox
control with the name of DestinationsListBox. In the ListBox control, you will also want to add
the DisplayMemberPath property and give it a value of "Name".

Using an XmIReader

You are also free to parse the data through the xm1Reader API; just do not expect all the bells and
whistles of LINQ. An example of using the xm1Reader object is demonstrated in Listing 7-4.

‘) LISTING 7-4: Using the XmIReader object

Available for

ﬂwmrgﬁﬂ private void parseDestinationXml (StringReader xmlContent)
’ {

// Create a list to hold our destinations
_destinationsList = new List<Destination>();

// Create a new XmlReader to walk through the document
XmlReader reader = XmlReader.Create (xmlContent) ;

while (reader.Read())

{
if (reader.NodeType == XmlNodeType.Element)

{

Binding a User Interface to Data | 209

if (reader.Name == "destination")

{

Destination d = new Destination

{
Name = reader["name"],
Population = int.Parse(reader|["population"]),
AverageAirfare = double.Parse(reader["averageAirfare"]),
AverageHotel = double.Parse(reader|["averageHotel"]),
BestKnownFor = reader|["bestKnownFor"]

}i

_destinationsList.Add(d) ;

}
}
}

DestinationsListBox.ItemsSource = _destinationsList;

BINDING A USER INTERFACE TO DATA

Silverlight provides a flexible data-binding model for connecting a user interface to data objects.
Built around the Binding object, it facilitates both presenting and processing updates to data. The
binding model is not tied to a specific data provider; instead, it is centered around connecting a
property from a source object to a property on a target object. Silverlight’s architecture enables
and encourages a high degree of separation between the presentation and business layers of an
application.

Establishing a Data-Binding Connection

To establish a binding, you need to specify both the object that will communicate via the binding
and the properties on those objects that should be connected. Bindings can be established at run
time through code or can be specified statically in XAML markup.

Before diving into the details, consider a simple scenario of binding a few TextBlock elements to

a single object. You will continue to use the Destination object discussed earlier in this chapter.
You can begin by adding binding statements to the properties on the target object that map to select
properties on the source object. This is shown in Listing 7-5.

‘) LISTING 7-5: Binding to the Destination object
Available for
dwmtggn <Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<TextBlock Text="{Binding Name}"></TextBlock>
<TextBlock Text="{Binding Population}"></TextBlock>
</StackPanel>
</Grid>

Next, provide the source object for both TextBlocks by specifying the Datacontext for the Grid as
illustrated in Listing 7-6.

210 | CHAPTER7 ACCESSING DATA

‘) LISTING 7-6: Creating and assigning the Destination object in MainPage.xaml.cs

Available for

“WMW“W public partial class Page : UserControl
rox.com {

public Page()
{

InitializeComponent () ;

this.Loaded += new RoutedEventHandler (Page_Loaded) ;
}

void Page_lLoaded(object sender, RoutedEventArgs e)

{
Destination d = new Destination { Name = "St. Croix", Population = 70000 };
LayoutRoot.DataContext = d;

}

In the preceding case, each TextBlock is the target of a binding, and a single Destination object
acts as the source.

Valid Binding Target Types

Silverlight’s binding model is able to establish communication among a wide variety of objects.
Whereas the binding source can be of any type for one-way and one-time binding, the target must
be both a member of a FrameworkElement object and a dependency property. This restriction is of
greater concern when building custom controls because it is essential for supporting data binding.

Specifying the Source Object

Because a binding’s target must be a FrameworkElement, you can take advantage of the DataContext
property to specify the source object for a binding. DataContext is inherited from parents in the object
tree, which eliminates the need to specify the source for a group of UI elements that present information
for the same data object. This is why, in the first example, you only needed to specify the Datacontext
for the stackPanel instead of on each TextBlock element.

If you do not want the binding source to be inherited by children, you can specify the source property
on the binding object itself. In this example, you establish the binding in code. Listing 7-7 first shows
the required XAML code.

‘) LISTING 7-7: The XAML code from MainPage.xaml

Available for
downleadon <Grid x:Name="LayoutRoot" Background="White">

Wrox.com
<StackPanel>
<TextBlock x:Name="NameTextBlock"></TextBlock>
<TextBlock x:Name="PopulationTextBlock"></TextBlock>
</StackPanel>
</Grid>

Binding a User Interface to Data | 211

With that in place, the next step is to databind to this from the code-behind of the page as illustrated
in Listing 7-8.

‘) LISTING 7-8: The code-behind for MainPage.xaml.cs

Available for

dwm?%gn public partial class MainPage : UserControl

public MainPage ()

{
InitializeComponent () ;
this.Loaded += new RoutedEventHandler (Page_Loaded) ;

void Page_Loaded(object sender, RoutedEventArgs e)

{
// The object which will be used as the source
Destination d = new Destination { Name = "St. Croix", Population = 70000 };

// Create a Binding in code for the Name

System.Windows.Data.Binding nameBinding =
new System.Windows.Data.Binding ("Name") ;

nameBinding.Source = d;

nameBinding.Mode = BindingMode.OneTime;

// Connect the binding to the TextBox's Text property
NameTextBlock.SetBinding (TextBlock.TextProperty, nameBinding) ;

// Create a Binding in code for the Population
System.Windows.Data.Binding popBinding = new Binding ("Population");
popBinding.Source = d;

popBinding.Mode = BindingMode.OneTime;
PopulationTextBlock.SetBinding (TextBlock.TextProperty, popBinding) ;

Selecting a Property from the Source Object

The binding object’s Path property allows you to specify the property from the source object. For
members on the source object, you can simply specify the name of the property:

<Binding Path="SourceProperty" />

Because Path is of type PropertyPath, it also allows for specifying properties of sub-objects on the
source as well as collections. In Silverlight, you can traverse sub-objects using a period in between
the property names:

<Binding Path="SourceProperty.SubObjectProperty" />

If your source object offers collection properties that have additional collections nested beneath
them, you can use a forward slash to traverse the relationship:

<Binding Path="SourceCollectionProperty/SubCollectionProperty" />

212

| CHAPTER7 ACCESSING DATA

Binding to Collections with IltemsControl

Up to this point, you have looked at bindings in the context of a single source data object. An equally
common, and more interesting, use case is binding to collections of data. Any TtemsControl can be
used to apply a DataTemplate for presenting each item in a Source object’s collection. TEnumerable
is all that is required on the source object for basic collection-binding behavior.

The TtemsSource property on TtemsControl is used to specify the Collection to which the control
is bound. This can be specified programmatically or set through a binding. If no TtemTemplate is
provided for the control, you can take advantage of the DisplayMemberPath property to select which
source property will be rendered. The following Ttemscontrol will be bound to a collection found in
the effective Datacontext and will render the Name property of each item in that collection. Listing 7-9
shows this in action.

‘) LISTING 7-9: Using the DisplayMemberPath property

Available for

“wmygg" <Grid x:Name="LayoutRoot" Background="White">

<ItemsControl ItemsSource="{Binding}" DisplayMemberPath="Name" />
</Grid>

Accessing the source collection through the Ttemssource will give you only read access. If you want
to modify the source collection, make sure to do so through a direct reference.

Because you have created a binding for the TtemsSource, the TtemsControl will honor the effective
DataContext, so creating the binding is straightforward. Listing 7-10 illustrates this in action.

‘) LISTING 7-10: Using DataContext

Available for

download on i i 3 .
Wrox.com public partial class MainPage : UserControl

{
public MainPage ()
{
InitializeComponent () ;
this.Loaded += new RoutedEventHandler (Page_Loaded) ;
}

void Page_lLoaded(object sender, RoutedEventArgs e)
{

List<Destination> destinations = new List<Destination>();

destinations.Add (new Destination { Name = "St. Croix" });
destinations.Add (new Destination { Name = "St. John" });
destinations.Add (new Destination { Name = "St. Thomas" });

LayoutRoot.DataContext = destinations;

Binding a User Interface to Data | 213

Specifying an ItemTemplate

If you want to override the default rendering for each item, you can create a DataTemplate and set it
as the TtemsTemplate for the ItemsControl. Note that the source of each Binding defined within
the Template will be an item in the Collection to which the Itemscontrol is bound as illustrated
in Listing 7-11.

‘) LISTING 7-11: Using a DataTemplate
Available for
dwmfﬂgﬂ <Grid x:Name="LayoutRoot" Background="White">
<ItemsControl ItemsSource="{Binding}" >
<ItemsControl.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Name}" ></TextBlock>
<TextBlock Text="{Binding Population}" ></TextBlock>
</StackPanel>
</DataTemplate>
</ItemsControl.ItemTemplate>
</ItemsControl>
</Grid>

With the XAML in place, Listing 7-12 shows the code-behind to set the patacontext.

‘) LISTING 7-12: Setting the DataContext to the DataTemplate

Available for

“Wm“dm public partial class Page : UserControl
rox.com

public Page()
{
InitializeComponent () ;
this.Loaded += new RoutedEventHandler (Page_lLoaded) ;

void Page_Loaded(object sender, RoutedEventArgs e)

{

List<Destination> destinations = new List<Destination>();

destinations.Add (new Destination { Name = "St. Croix", Population = 70000 });
destinations.Add(new Destination { Name = "St. John", Population = 5000 });
destinations.Add(new Destination { Name = "St. Thomas", Population = 50000 });

LayoutRoot.DataContext = destinations;

Providing a Custom ItemsPanel

By default, TtemsControl uses a StackPanel with an orientation set to Vertical to arrange the
elements rendered for each item. Continuing to highlight the Silverlight pattern of flexibility, you
can adjust this by setting the TtemsPanel to a custom TtemsPanelTemplate as demonstrated in
Listing 7-13.

214 | CHAPTER7 ACCESSING DATA

‘) LISTING 7-13: Changing the ltemsPanel
Available for
ﬂwmtgéﬂ <Grid x:Name="LayoutRoot" Background="White">
<ItemsControl ItemsSource="{Binding}" >
<ItemsControl.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding Name}" ></TextBlock>
<TextBlock Text="{Binding Population}" ></TextBlock>
</StackPanel>
</DataTemplate>
</ItemsControl.ItemTemplate>
<ItemsControl.ItemsPanel>
<ItemsPanelTemplate>
<StackPanel Orientation="Horizontal"></StackPanel>
</ItemsPanelTemplate>
</ItemsControl.ItemsPanel>
</ItemsControl>
</Grid>

Using a Relative Source Binding

Silverlight includes the ability to specify the source of a Binding relative to the target. For instance,
you can create a Binding with the source specified as the target’s Templatedparent. Listing 7-14
demonstrates using a RelativeSource binding to bind the Text property of a TextBlock to the

content of the parent Button element.

‘) LISTING 7-14: Using the RelativeSource binding
Available for
“ngg#" <Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<Button Content="SampleContent">
<Button.Template>
<ControlTemplate>
<StackPanel>
<TextBlock Text="{Binding RelativeSource=
{RelativeSource TemplatedParent},
Path=Content}" />
</StackPanel>
</ControlTemplate>
</Button.Template>
</Button>
</StackPanel>
</Grid>

Element-to-Element Binding

Silverlight also includes the ability to specify an element as the source for a Binding through the
ElementName property. This easily used feature can come in handy when building interactive inter-
faces where one Element should reflect changes to another. Currently, the target of such binding
must be a FrameworkElement. The example in Listing 7-15 demonstrates binding the Text property

of a TextBlock to the current value of a slider.

Binding a User Interface to Data | 215

‘) LISTING 7-15: Using ElementName property

Available for
download on <Grid x:Name="LayoutRoot" Background="White">

Wrox.com
<StackPanel>
<Slider x:Name="Sliderl" Minimum="0" Maximum="100" />
<TextBlock Text="{Binding ElementName=Sliderl, Path=Value}" />
</StackPanel>
</Grid>

Handling Data Updates

Silverlight’s binding object provides three distinct binding modes, which determine the way that
data flows between the source and target objects:

> oneWay — Changes to the source are reflected on the Target as they occur.
> oneTime — The Target property is only set when the binding is initialized.
> twoway — Changes to the source are reflected on the Target, and updates to the Target are

propagated to the Source.

Both oneway and Twoway functionality come at the cost of restricting the types of object that can
participate in the binding. Silverlight relies on the DependencyObject infrastructure and several
Notification-based interfaces to support the processing of bataBinding updates.

Working with the INotifyPropertyChanged Interface

The INotifyPropertyChanged interface offers a single event to broadcast when a property has been
modified on the object. The expectation is that this will be triggered any time a property is adjusted.

The code in Listing 7-16 has an IslandTimer class, which reflects a slower pace of life. Note that it fires
PropertyChanged events both from within the Name property and from the read-only ElapsedTime
property, a value that is managed internally.

This example that the DispatcherTimer object is used rather than System
.Timers.Timer as the DispatcherTimer object is not run on the Ul thread.

‘) LISTING 7-16: Using INotifyPropertyChanged

dAvaililahI(:ifor

jownload on il .

Wrox.com uSJ..ng System;
using System.ComponentModel;
using System.Windows.Threading;

namespace Wrox.Silverlight.Data.NotifyChanges

{
public class IslandTimer : INotifyPropertyChanged

continues

216 | CHAPTER7 ACCESSING DATA

LISTING 7-16 (continued)

private readonly DispatcherTimer _timer;
private TimeSpan _elapsedTime;
private string _name;

public IslandTimer ()

{
_elapsedTime = new TimeSpan() ;
// Create a timer which fires every few seconds
_timer = new DispatcherTimer () ;
_timer.Interval = TimeSpan.FromSeconds(2);
_timer.Tick += timer_Tick;
}
public TimeSpan ElapsedTime
{
get { return _elapsedTime; }
}
public string Name
{
get { return _name; }
set
{
_name = value;
OnPropertyChanged ("Name") ;
}
}

#region INotifyPropertyChanged Members
public event PropertyChangedEventHandler PropertyChanged;
#endregion

public void StartTimer ()

{
if (!_timer.IsEnabled)
{
_timer.Start();
}
}
public void StopTimer ()
{
_timer.Stop();
}

private void timer_Tick (object sender, EventArgs e)
{

_elapsedTime += TimeSpan.FromSeconds (1) ;

Binding a User Interface to Data | 217

OnPropertyChanged ("ElapsedTime") ;
}

// Helper method to fire PropertyChanged Events
private void OnPropertyChanged(string propName)
{
if (PropertyChanged != null)
PropertyChanged (this, new PropertyChangedEventArgs (propName)) ;

Using Collection Update Notifications

The TNotifyCollectionChanged interface is implemented on interfaces that want to participate
in full data binding. Similarly to TNotifyPropertyChanged, it exposes one event for when the
collection is modified, collectionChanged.

Thankfully, Silverlight includes observableCollection<T>, which is a generic collection that
implements this interface. If you have a collection that you expect to be updated during the life
of your application, it is highly recommended that you use this type.

Using OneTime Bindings

The simplest and best performing binding mode, oneTime, specifies that the binding should be applied
only when the application starts or when the effective Datacontext is adjusted. This is most appropri-
ate when the source object is not manipulated during the life of the application and when the target
object does not accept user input.

Using OneWay Bindings

If you anticipate that the source object may change during the life of the application, you can rely on
Silverlight data binding to automatically update target object properties when in the oneway mode.
The oneWay mode is the default action if you do not specify a mode.

Now that you have an object capable of letting Silverlight know that its properties are changing, you
can attach it as the source for a oneway binding as demonstrated in Listing 7-17 and Listing 7-18.

‘) LISTING 7-17: The XAML for MainPage.xaml
Available for
dwmfggn <@Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<Button x:Name="StartButton" HorizontalAlignment="Center">
<TextBlock>Start Timer</TextBlock>
</Button>
<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<TextBlock>Elapsed Island Time: </TextBlock>
<TextBlock Text="{Binding ElapsedTime, Mode=OneWay}" />
</StackPanel>
</StackPanel>
</Grid>

218 | CHAPTER7 ACCESSING DATA

The code-behind for this is shown in Listing 7-18.

‘) LISTING 7-18: Using one-way binding
Available for
“W”““W using System.Windows;
rox.com . .
using System.Windows.Controls;

namespace Wrox.Silverlight.Data.NotifyChanges
{

public partial class MainPage : UserControl

{
private readonly IslandTimer _timer;
public MainPage ()
{
InitializeComponent () ;
this.Loaded += Page_Loaded;
// Remember that there will be a pause here ... Island Time.
_timer = new IslandTimer {Name = "MyTimer"};
StartButton.Click += StartButton_Click;
}
private void Page_Loaded(object sender, RoutedEventArgs e)
{
LayoutRoot.DataContext = _timer;
}
private void StartButton_Click(object sender, RoutedEventArgs e)
{
_timer.StartTimer () ;
}
}

Using TwoWay Bindings

TwoWay bindings are the most powerful mode and offer bidirectional update support for property
value changes. They make sense in scenarios in which you use controls that accept users’ inputs and
are bound to dynamic data objects.

Here, you allow the user to adjust the name of the Timer. Note the use of static bindings to configure
the bindings completely in XAML. The code for this is presented in Listing 7-19.

‘) LISTING 7-19: Using two-way binding
Available for
dwmtgéﬂ <Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<Button x:Name="StartButton" HorizontalAlignment="Center">
<TextBlock>Start Timer</TextBlock>
</Button>

Binding a User Interface to Data | 219

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<TextBlock>Elapsed Island Time:</TextBlock>
<TextBlock Text="{Binding ElapsedTime, Mode=OneWay}"></TextBlock>

</StackPanel>

<StackPanel Orientation="Horizontal" HorizontalAlignment="Center">
<TextBlock>Timer Name:</TextBlock>
<TextBox Text="{Binding Name, Mode=TwoWay}" Width="100" />

</StackPanel>

</StackPanel>
</Grid>

Validating Data

Data validation is driven by the binding framework’s capability to capture exceptions that take place
while a binding is in process. Silverlight provides a set of controls with distinct visualStates that
visually indicate that a validation error has occurred.

Handling Binding Exceptions

In a Twoway binding, exceptions can occur as data flows from the Target back to the source
property. The Binding object provides two properties that allow you to adjust the way these
exceptions are handled:

> ValidatesOnExceptions

> NotifyOnValidationError

If validatesOnExceptions is set to true, any exceptions thrown by the setter of the source property
or by a converter will be handled by the Binding object.

If NotifyonvalidationError is also true, the Binding will raise the BindingvalidationError as
exceptions are encountered. Somewhat counterintuitive, the BindingvalidationError event will also
fire once the binding is able to successfully send the data to the source property. You can therefore use
this event to determine both when a validation error has occurred and when it has been resolved.

The Action property of the validationEventargs indicates the state of the validation

error. As a binding encounters exceptions when applying the data updates, the Action will be
VaidationErrorEventAction.added. Once the binding is able to successfully update the source
object, the event will be raised with vaidationErrorEventAction.Removed.

In the example shown in Listing 7-20, you adjust the foreground color of the target object based on
the Action of the validationError. Because the validationErrorEvent is routed up the chain of
parent elements, you are able to catch it from the LayoutRoot.

‘) LISTING 7-20: Using validation
Available for
dsfrgiﬂzgrgn <Grid x:Name="LayoutRoot"
BindingValidationError="LayoutRoot_BindingValidationError" Background="White" >
<Grid.RowDefinitions>
<RowDefinition Height="0.113*"/>
<RowDefinition Height="0.887*"/>

continues

220 |

CHAPTER 7 ACCESSING DATA

LISTING 7-20 (continued)

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="0.462*"/>
<ColumnDefinition Width="0.538*"/>
</Grid.ColumnDefinitions>
<TextBlock Text="Destination Name"/>
<TextBlock Grid.Column="1" Text="Population" />
<TextBlock Text="{Binding Name, Mode=OneWay}" Grid.Row="1" />
<TextBox Text="{Binding Population, Mode=TwoWay,
ValidatesOnExceptions=true, NotifyOnValidationError=true}"
VerticalAlignment="Top" Grid.Column="1" Grid.Row="1" Width="200"
</Grid>

/>

When executed, the application adjusts the color of the TextBox when an error is encountered, con-
verting the text value to the integer value expected by the destination’s Population property. This is
shown in Listing 7-21.

J

Available for
download on
Wrox.com

LISTING 7-21: The code-behind for dealing with validation

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;

namespace Wrox.Silverlight.Data.Validation

{
public partial class MainPage : UserControl

{
public MainPage ()
{
InitializeComponent () ;
this.Loaded += Page_Loaded;
}
private void Page_Loaded (object sender, RoutedEventArgs e)
{
Destination d = new Destination {Name = "St. Croix",
Population = 70000};

LayoutRoot.DataContext = d;

private void LayoutRoot_BindingValidationError (object sender,
ValidationErrorEventArgs e)

{
// Adjust the foreground color base on the Action
if (e.Action == ValidationErrorEventAction.Added)
{
TextBox tb = (TextBox) e.OriginalSource;

tb.Foreground = new SolidColorBrush (Colors.Red);
}

else

Binding a User Interface to Data | 221

TextBox tb = (TextBox) e.OriginalSource;
tb.Foreground = new SolidColorBrush(Colors.Black);

Using Visual States That Reflect Validation Errors

Silverlight provides a variety of core controls so that they can indicate when a binding validation
exception has occurred. This is enabled through the validation class, which offers attached prop-
erties for data validation that are then used to determine the appropriate visual state of the control.

A common scenario for offering a visual indicator when a validation error occurs is on a data entry
form. Because the Silverlight TextBox contains visual states that respond to validation errors, all
that is required is establishing the binding with validatesOnExceptions set to true as shown in
Listing 7-22.

‘) LISTING 7-22: Using ValidatesOnExceptions

Available for
download on
Wrox.com
XAML
<Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<TextBlock x:Name="DestinationName" Text="{Binding Name}" />
<TextBox x:Name="PopulationTextBox"
Text="{Binding Population, Mode=TwoWay, ValidatesOnExceptions=true}"
/>
<Button Content="0k" />
</StackPanel>
</Grid>
CODE-BEHIND

public partial class MainPage : UserControl
{
public MainPage ()
{
InitializeComponent () ;
this.Loaded += Page_Loaded;

private void Page_Loaded (object sender, RoutedEventArgs e)
{
Destination d =
new Destination { Name = "St. Croix", Population = 70000 };
LayoutRoot.DataContext = d;

222 | CHAPTER7 ACCESSING DATA

Converting Data Types

In many instances the source and destination property types will not align. In these cases, the binding
attempts to perform a data conversion that may result in a format that is less than ideal. Fortunately,
Silverlight provides a baked-in mechanism for converting data as it passes through a binding.

DateTime objects often call for some conversion to display them in a meaningful way to the user.

To demonstrate this, add the PeakseasonStart property to the Destination object and bind it to a
TextBlock. Without a converter, this results in a string such as 12/1/2010 12:00:00 AM as shown
in Listing 7-23. The first step for this example is to have the following class file.

‘) LISTING 7-23: The Destination class

Available for
download on public class Destination

Wrox.com
{

public string Name { get; set; }
public int Population { get; set; }
public double AverageAirfare { get; set; }
public double AverageHotel { get; set; }
public string BestKnownFor { get; set; }
public DateTime PeakSeasonStart { get; set; }

Then for your Silverlight page, use the XAML shown in Listing 7-24.

‘) LISTING 7-24: The XAML for MainPage.xaml
Available for
ﬂwm?ggﬂ <Grid x:Name="LayoutRoot" Background="White">
<TextBlock Text="{Binding PeakSeasonStart}" />
</Grid>

Finally, the code-behind for this page is presented in Listing 7-25.

‘) LISTING 7-25: The code-behind for MainPage.xaml.cs

Available for
downloadon pyblic partial class MainPage : UserControl

Wrox.com (
public MainPage ()
{
InitializeComponent () ;
this.Loaded += Page_Loaded;
}

private void Page_Loaded(object sender, RoutedEventArgs e)
{
Destination d = new Destination() { Name = "St. Croix",
PeakSeasonStart = new DateTime (2009, 12, 1) };
LayoutRoot.DataContext = d;
}

Binding a User Interface to Data | 223

To adjust this behavior with the string value coming out incorrect, follow these steps:
1. Create a class that implements TvalueConverter.
2. Include an instance of that class in a Resource.

3. Specify a converter in the binding.

Using the IValueConverter Interface

The TvalueConverter interface defines two straightforward methods to enable conversion:
Cconvert () and ConvertBack (). As their names suggest, they allow conversion back and forth
between two types. If you need only to support oneway binding, the ConvertBack () method is
not invoked.

In Listing 7-26 you see a basic implementation of TvalueConverter that adjusts the way that a
DateTime object is converted to a string. You will find IValueConverter in the System.Windows
.Data namespace.

‘) LISTING 7-26: Using the IValueConverter interface
Available for
downloadon // Class for converting between DateTime and string objects
public class DateConverter : IValueConverter
{
// Convert DateTime to a string without time info
public object Convert (object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
{
DateTime date = (DateTime)value;
return (date.ToShortDateString());
}

public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
{
string s = (string)value;
return (DateTime.Parse(s));

Adding the Converter to a Binding

The Binding object provides a converter property for specifying the object that should serve as
the intermediary between the source and target. Here, you include the converter as a resource and
reference it from the binding for the binding between a DateTime source and String target object.
The code in Listing 7-27 provides a slightly more pleasing representation of your date, which omits
the time information.

224 | CHAPTER7 ACCESSING DATA

‘) LISTING 7-27: Using the Converter property
Available for
ﬂwmtgéﬂ <UserControl x:Class="Wrox.Silverlight.Data.Convertion.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:data="clr-namespace:Wrox.Silverlight.Data.Convertion"
Width="400" Height="300">
<UserControl .Resources>
<data:DateConverter x:Key="DateConverter" />
</UserControl.Resources>
<Grid x:Name="LayoutRoot" Background="White">
<TextBlock Text="{Binding PeakSeasonStart,
Converter={StaticResource DateConverter}}" />
</Grid>
</UserControl>

Using the ConverterParameter Property

The Binding object provides an additional property, which allows you to feed a parameter to the
IValueConverter. This can be useful if you want to employ a converter in several related scenarios
that are slightly different. Those familiar with formatting strings in .NET should be no stranger to
the variety of FormatStrings available for built-in data types. The following example leverages the
ConverterParameter‘K)providea FormatString.

Listing 7-28 passes in the .NET short date format string ' {0:d} ' for display of the destination’s
start of peak season.

J LISTING 7-28: Using ConverterParameter to provide a FormatString

Available for
download on
Wrox.com

XAML

<UserControl x:Class="Wrox.Silverlight.Data.Convertion.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:data="clr-namespace:Wrox.Silverlight.Data.Convertion"
Width="400" Height="300">
<UserControl .Resources>

<data:FormatStringConverter x:Key="FormatStringConverter" />
</UserControl.Resources>
<Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<TextBlock Text="{Binding PeakSeasonStart,
Converter={StaticResource FormatStringConverter},
ConverterParameter="'{0:d}"'}" />
</StackPanel>
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Working with Services | 225

CODE-BEHIND

// Class for converting to a string based on the provided FormatString
public class FormatStringConverter : IValueConverter
{
public object Convert (object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
{
string formatString = (string)parameter;
return String.Format (formatString, value);

}

public object ConvertBack (object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
{

throw new NotImplementedException();

}

WORKING WITH SERVICES

It is a diverse world. In a major enterprise, very rarely do you find that the entire organization and its
data repositories reside on a single vendor’s platform. In most instances, organizations are made up

of a patchwork of systems — some based on UNIX, some on Microsoft, and some on other systems.
There probably will not be a day when everything resides on a single platform where all the data moves
seamlessly from one server to another. For that reason, these various systems must be able to talk to one
another. If disparate systems can communicate easily, moving unique data sets around the enterprise
becomes a simple process — alleviating the need for replication systems and data stores.

When XML (eXtensible Markup Language) was introduced, it became clear that the markup language
would be the structure to bring the necessary integration into the enterprise. XML’s power comes from
the fact that it can be used regardless of the platform, language, or data store of the system using it to
expose DataSets.

XML has its roots in the Standard Generalized Markup Language (SGML), which was created in
1986. Because SGML was so complex, something a bit simpler was needed — thus the birth of XML.

XML is considered ideal for data representation purposes because it enables developers to
structure XML documents as they see fit. For this reason, it is also a bit chaotic. Sending
self-structured XML documents between dissimilar systems does not make a lot of sense — you
would have to custom build the exposure and consumption models for each communication pair.

Vendors and the industry as a whole soon realized that XML needed a specific structure that put some
rules in place to clarify communication. The rules defining XML structure make the communication
between the disparate systems just that much easier. Tool vendors can now automate the communica-
tion process, as well as provide for the automation of the possible creation of all the components of
applications using the communication protocol.

The industry settled on using SOAP (Simple Object Access Protocol) to make the standard XML
structure work. Previous attempts to solve the communication problem that arose included com-
ponent technologies such as Distributed Component Object Model (DCOM), Remote Method

226

| CHAPTER7 ACCESSING DATA

Invocation (RMI), Common Object Request Broker Architecture (CORBA), and Internet Inter-ORB
Protocol (IIOP). These first efforts failed because each of these technologies was either driven by a
single vendor or (worse yet) very vendor-specific. Implementing them across the entire industry was,
therefore, impossible.

SOAP enables you to expose and consume complex data structures, which can include items such
as DataSets, or just tables of data that have all their relations in place. SOAP is relatively simple and
easy to understand. Like ASP.NET, XML Web Services are also primarily engineered to work over
HTTP. The DataSets you send or consume can flow over the same Internet wires (HTTP), thereby
bypassing many firewalls (as they move through port 80).

So what is actually going across the wire? ASP.NET Web Services generally use SOAP over HTTP
using the HTTP Post protocol. An example SOAP request (from the client to the web service residing
on a web server) takes the structure shown in Listing 7-29.

LISTING 7-29: A SOAP request

POST /MyWebService/Service.asmx HTTP/1.1
Host: www.wrox.com

Content-Type: text/xml; charset=utf-8
Content-Length: 19

SOAPAction: "http://tempuri.org/HelloWorld"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<HelloWorld xmlns="http://tempuri.org/" />

</soap:Body>

</soap:Envelope>

The request is sent to the web service to invoke the HelloWorld webMethod. Listing 7-30 shows the
SOAP response from the web service.

LISTING 7-30: A SOAP response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 14

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<HelloWorldResponse xmlns="http://tempuri.org/">
<HelloWorldResult>Hello World</HelloWorldResult>
</HelloWorldResponse>
</soap:Body>
</soap:Envelope>

http://www.wrox.com
http://tempuri.org/HelloWorld%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D
http://www.w3.org/2001/XMLSchema%E2%80%9D
http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D
http://tempuri.org/%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D
http://www.w3.org/2001/XMLSchema%E2%80%9D
http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D
http://tempuri.org/%E2%80%9D

Working with Services | 227

In the examples from Listings 7-29 and 7-30, you can see that what is contained in this message is
an XML file. In addition to the normal XML declaration of the <xm1> node, you see a structure of
XML that is the SOAP message. A SOAP message uses a root node of <soap: Envelope> that con-
tains the <soap:Body> or the body of the SOAP message. Other elements that can be contained in
the SOAP message include a SOAP header, <soap:Header>, and a SOAP fault, <soap:Faults>.

For more information about the structure of a SOAP message, be sure to
check out the SOAP specifications. You can find them at the W3 C website,

www.w3 .0org/tr/soap.

Building an ASP.NET Web Service

The next thing that this chapter looks at is how to build an ASP.NET Web Service that can then

be later consumed by your Silverlight application. The .NET Framework provides you two major
options for building services: ASP.NET Web Services and the newer Windows Communication
Foundation (WCF) services. WCF services are covered later in this chapter. Before looking at WCF,
you will build a simple ASP.NET Web Service.

Building an XML Web Service means that you are interested in exposing some information or
logic to another entity either within your organization, to a partner, or to your customers. In a
more granular sense, building a web service means that you, as a developer, simply enable for
SOAP communication one or more methods from a class.

You can use Visual Studio 2010 to build an XML Web Service. The first step is to actually create

a new website by selecting File &> New = Web Site from the IDE menu. The New Web Site dialog
opens. You will want to create a typical ASP.NET application (ASP.NET Empty Web Site). Then you
will be able to add an ASP.NET Web Service file to the solution as shown in Figure 7-1.

Add New tem - C Studio 20 [5 i
Lo P A — | 2|
e “ | Type: Visualc®
Visual J SO Server Database Visual C#
L A wisually desgned (s or creating a
r—— aom
1}. Style Sheet Visual £
=| Terie Visual C#
; Text Template Visual C#
i g WCT Data Service Visual C#
CHah WCF Service Visual C#
‘_; Web Configuration File Visual C#
| web Service Visual C
Iﬂ XML File Visualcr [T
21 et schema Visual CF
T
i P
Mame: WebService.asmx 4 Pace code in separate file

FIGURE 7-1

http://www.w3.org/tr/soap

228 | CHAPTER7 ACCESSING DATA

Adding the file webservice.asmx creates a single XML Web Service to your solution. You will find
its code-behind file, webservice.cs, in the App_Code folder (see Figure 7-2).

Solution Explorer

=l a8 = ol T
'; Solution "AspnetWebService' (1 project)
4 [CA\AspnetWebService\,
4 | App_Code
8] webservice.cs
_-; web.config
ﬂ WebService.asmx

FIGURE 7-2

Looking at the Base Web Service Class File

Now look at the webservice.cs file — the code-behind file for the XML Web Service. By default, a
structure of code is already in place in the webservice.cs file, as shown in Listing 7-31.

LISTING 7-31: Default code structure provided by Visual Studio for your web service

using System;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.Services;

[WebService (Namespace = "http://tempuri.org/")]
[WebServiceBinding (ConformsTo = WsiProfiles.BasicProfilel_1)]
// To allow this Web Service to be called from script, using ASP.NET AJAX,
// uncomment the following line.
// [System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService
{
public WebService () {

//Uncomment the following line if using designed components
//InitializeComponent () ;

[WebMethod]
public string HelloWorld() {
return "Hello World";

}

http://tempuri.org/%E2%80%9C

Working with Services | 229

Some minor changes to the structure have been made since the release of the .NET Framework 3.5.
You will notice that the System.Ling namespace is now included in the C# solution. In addition,
the other change in this version is the inclusion of the commented System.wWeb.Script.Services
.ScriptService object to work with ASP.NET AJAX scripts.

The other addition is the <webServiceBinding> attribute. It builds the XML Web Service

responses that conform to the WS-I Basic Profile 1.0 release (found at www.ws-1.org/Profiles/
BasicProfile-1.0-2004-04-16.html).

Exposing Data as SOAP

To build your own web service example, delete the webService.asmx file and create a new file

called contacts.asmx. This web service will expose parts of the Person.Contact table from the
Adventure Works SQL Server database file.

You can find the Adventure Works sample database at
http://msftdbprodsamples.codeplex.com/.

The idea here is that you will write a service that connects to the Person.cContact table and exposes
some of the contents of the database as a List<string> object, which in turn is converted to an array
of strings. The code for this is presented in Listing 7-32.

‘) LISTING 7-32: An XML Web Service that exposes the Contact table from AdventureWorks
Available for
“wmfgﬁ" using System.Collections.Generic;
using System.Data;
using System.Data.SglClient;

using System.Web.Services;

[WebService (Namespace = "http://www.wrox.com/contacts")]
[WebServiceBinding (ConformsTo = WsiProfiles.BasicProfilel_1)]
public class Contacts : System.Web.Services.WebService

{
[WebMethod]
public List<string> GetContacts()
{

const string cmdString = "Select FirstName, LastName from Person.Contact";

SglConnection conn =
new SglConnection (
@"Data Source=.\SQLEXPRESS;AttachDbFilename=
| DataDirectory|Adventureliorks_Data.mdf; Integrated
Security=True;User Instance=True");
SglCommand cmd = new SglCommand(cmdString, conn);

continues

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://msftdbprodsamples.codeplex.com/
http://www.wrox.com/contacts%E2%80%9D
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

230 | CHAPTER7 ACCESSING DATA

LISTING 7-32 (continued)
conn.Open () ;

SalDataReader sglDataReader;
List<string> myContacts = new List<string>();

sglDataReader = cmd.ExecuteReader (CommandBehavior.CloseConnection) ;

while (sglDataReader.Read())
{
myContacts.Add (sglDataReader["FirstName"] + " " +
sglDataReader ["LastName"]) ;

return myContacts;

Using the WebService Attribute

All web services are encapsulated within a class. The class is defined as a web service by the
WebService attribute placed before the class declaration. Here is an example:

[WebService (Namespace = "http://www.wrox.com/contacts")]

The webservice attribute can take a few properties. By default, the webservice attribute is

used in your web service along with the Namespace property, which has an initial value of http://
tempuri.org/. This is meant to be a temporary namespace and you should replace it with a more
meaningful and original name, such as the URL where you are hosting the XML Web Service. In
the example, the Namespace value was changed to www.wrox.com/contacts. Remember that the
value does not have to be an actual URL; it can be any string value you want. The idea is that it
should be unique. Using a URL is common practice because a URL is always unique.

Other possible webservice properties include Name and Description. Name enables you to change
how the name of the web service is presented to the developer via the ASP.NET test page. Description
allows you to provide a textual description of the web service. The description is also presented on the
ASP.NET Web Service test page. If your websService attribute contains more than a single property,
separate the properties using a comma. Here is an example:

[WebService (Namespace="http://www.wrox.com/contacts", Name="GetContacts")]

Using the WebMethod Attribute

In Listing 7-32, the class called contacts has only a single webMethod. A WebsService class can
contain any number of WebMethods, or a mixture of standard methods along with methods that
are enabled to be webMethods via the use of the attribute preceding the method declaration. The
only methods that are accessible across the HTTP wire are the ones to which you have applied the
WebMethod attribute.

http://www.wrox.com/contacts%E2%80%9D
http://tempuri.org/
http://tempuri.org/
http://www.wrox.com/contacts
http://www.wrox.com/contacts%E2%80%9D

Working with Services | 231

As with the webService attribute, WwebMethod can also contain some properties, which are described
in the following list:

> BufferResponse — When BufferResponse is set to true, the response from the XML Web
Service is held in memory and sent as a complete package. If it is set to false, the default set-
ting, the response is sent to the client as it is constructed on the server.

> cacheDuration — Specifies the number of seconds that the response should be held in the
system’s cache. The default setting is 0, which means that caching is disabled. Putting an
XML Web Service’s response in the cache increases the web service’s performance.

> Description— Applies a text description to the WwebMethod that appears on the .aspx test
page of the XML Web Service.

> EnableSession — Setting EnableSession to true enables session state for a particular
WebMethod. The default setting is false.

> MessageName — Applies a unique name to the webMethod. This step is required if you are
working with overloaded webMethods.

> TransactionOption — Specifies the transactional support for the webMethod. The default
setting is Disabled. If the WwebMethod is the root object that initiated the transaction, the web
service can participate in a transaction with another WwebMethod that requires a transaction.
Other possible values include Not Supported, Supported, Required, and RequiresNew.

Working with the XML Web Service Interface

The Contacts web service from Listing 7-32 has only a single webMethod that returns an array
of strings containing the names of everyone in the Person.contacts table from the SQL Server
AdventureWorks database.

Running contacts.asmx in the browser pulls up the ASP.NET Web Service test page. This visual
interface to your web service is really meant either for testing purposes or as a reference page for
developers interested in consuming the web services you expose. Figure 7-3 shows the page gener-
ated for the Contacts Web Service.

-
Contacts Web Service - Windows Internet Explorer [F=E)
uu 'g It/ /ocalbwst:27781/ AsprictWebService/Conlats.asmx - | ';uj| ‘;?_ x =] ging P -

i Favorites | 4@ Conlacts Web Senvice & - - (1 g - Pagew Safety~ Took= @@~ =

The following cperations are supported. For a tormal definition, please review the Service Description.

Ll i ’

Done Q. Local intranet | Protected Mode: Off fa = Hiox ~

L]

FIGURE 7-3

232

| CHAPTER7 ACCESSING DATA

The interface shows the name of the web service in the blue bar (the dark bar in this black-and-white
image) at the top of the page. By default, the name of the class is used unless you changed the value
through the Description property of the webService attribute, as defined earlier. A bulleted list

of links to all of the web service’s webMethods is displayed. This example has only one webMethod:
GetContacts ().

A link to the web service’s Web Services Description Language (WSDL) document is also available

(the link is titled “Service Description” in the figure). The WSDL file is the actual interface with the
Contacts web service. The XML document (shown in Figure 7-4) is not really meant for human con-
sumption; it is designed to work with tools such as Visual Studio, informing the tool what the web
service requires to be consumed. Each web service requires a request that must have parameters of a
specific type. When the request is made, the web service response comes back with a specific set of data
defined using specific data types. Everything you need for the request and a listing of exactly what you
are getting back in a response (if you are the consumer) is described in the WSDL document.

g http:Mocalhost:27721/AspnetWebService/Contacts.asmx?WSDL Windows Internet Explorar |M
@Ov |g‘ e, JT7R1/Asp ice/Contacts asmy?WSDI vJ_E| &,J_x | |3§ Bing R '|
5 ravontes | @ nitp:ocalnost27781/AspnetWebSenice/Conta.. | P v B v @ > pagev satetyv lgoisv @

<?xml version="1.0" encoding="utf-8" 7> i
- <wsdl:definitions xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins: tm="http:/ / microsoft.com/wsdl/ mime /textMatching /"
xmins:soapenc-"http:/ /schemas.xmlsoap.orq/soap/encoding/" xmins:mime-"http:/ /schemas.xmlsoap.orq/wsdl/mime/"
xmins: tns—"http:/ /www.wrox.com/contacts" xmins:s—"http:/ /www.w3.0rg/ 2001 /XMLSchema"
xmins:soap12="http:/ /schemas.xmlsoap.org/wsdl/soap12/" xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http:/ /www.wrox.com/contacts" xmins: wsdl="http:/ / schemas.xmlsoap.org/wsdl/">
<wsdl: types:
- =s:schema elementFormDefault—"qualified" targetNamespace—"http://www.wrox.com/contacts":
- asielement name="GelConlacls”>
<5:complexType />
</s:element>
- <g:element name="GetContactskasponsa’>
- «s:complexType>
- <s:isequence>
<sielement minCccurs="0" maxCccurs="1" name="GetContactsResult” typc="tns:ArrayOfString" />
</s:sequence:
<fs:complexType:z
<fsielement >
- es;complexType name="ArrayOlString” >
- <5lsequence>
<s:element minGccurs="0" maxtccurs="unbounded” name="string" nilable="rrue" rype="s:string" />
«/s:sequences
<fs:complexType>
</s:schema>
</wsdl:types>
- <wsdl:message name="GetContactsSoapIn"=
<wsdl:part name —"parameters” element-"tns:GetContacts" /=
<fwsdl:messaye >
- <wsdl:message name="GetContactsSoapOut">
<wsdl:part name="parameters” clemenr="Ns:GerfContactskesponse” /=
«/wedl:message>
~ ewedl:portType name="ContactsSoap"= -
Done €L Local intranet | Protected Mode: Off S5 v Hioox -

L -

FIGURE 7-4

Clicking the Getcontacts link gives you a new page, shown in Figure 7-5, that not only describes
the WebMethod in more detail but also allows you to test the webMethod directly in the browser.

Working with Services | 233

.
2 Contacts Web Service Windows Internat Explorer [F=mE=
@'&)' |& httpe/, FTTR1 /Ay ice/Contacts. n=GetContacts v| B3| 42 | x | |'\ Bing o -

¢ ravomtes | @ Contacts Web Senvice [Py v B~ @ v pagev satetyv Igoisv @

Click here for a complete list of operations.

{0

GetContacts

Test
To test the operation using the HTTP POST protocel, click the 'Invoke' button.

Tnvnke

S0aP 1.1

The following is @ sample SUAF 1.1 request and response. |he placeholders shown need to be replaced with actual values.

BOST /AspnetWebService/Contacts.asmx HITE/1.1

Host: localhost

Content-Type: text/xml; charset=utf-g8

Content-Length: length

SOAPAction: "http://www. wrox.com/contacts/GetContacts"

«7xml version="1.0" encoding="utf-8"7>
<spap:Fnvelope smlnsg:xsi="http://www_ w2 org/2001/¥MLSchema-instance” ymlns:xad="hrtp://uww. w2 org/2001/XMLSchema™ x
<goap:Body>
<GetContacts xmlns="http://www.wrox.com/contacta” />
</anap:Body>
</anap:Envelope>

HITP/1.1 200 OK
Content-Type: text/xml; charset=utf-g2
Content-Length: langth

!‘i'_. Local intranet | Protected Mode: Off fn v H00% v

L

FIGURE 7-5

At the top of the page is the name of the XML Web Service (Contacts); below that is the name
of this particular webMethod (GetContacts). The page shows you the structure of the SOAP mes-
sages that are required to consume the WwebMethod, as well as the structure the SOAP message
takes for the response. Below the SOAP examples is an example of consuming the XML Web
Service using HTTP Post (with name/value pairs). Using this method of consumption instead of
using SOAP is possible.

You can test the webMethod directly from the page. In the Test section, you find a form. If the
WebMethod you are calling requires an input of some parameters to get a response, you see some
text boxes included so you can provide the parameters before clicking the Invoke button. If the
WebMethod you are calling does not require any parameters, you see only the Invoke button and
nothing more.

Clicking Invoke actually sends a SOAP request to the web service, causing a new browser instance
with the result to appear, as illustrated in Figure 7-6.

Now that everything is in place to expose the XML Web Service, you can consume it in a Silverlight
application.

234 | CHAPTER7 ACCESSING DATA

2 nttp:iocalhost:27784/As patiWh ica/Contacts, ontacts Windows Internat Explorer i i [l
L)L) |g, http:/, 2TTR1/Asp ice/Contacts asmx/GetContacts vl E| &,| X | |lf“:_"_ Bing o
5 ravontes | @ niip:ocalhost27781/AspnetWebSenice/Conta... | tp o~ v [@@ v papev Satety~v Igolsv @v

<?xml version="1.0" encoding="utf-8" 7> =
- <ArrayOfString xmins:xsi="http:/ /www.w3.org/2001/XMLSchema instance"
xmins:xsd-"http:/ /www.w3.0rq/ 2001 /XMLSchema" xmins-"http:/ /www.wrox.com/contacts"
<string=Gustavo Achong</string=
<slring >Calherine Abel</suiny>
<sliny >Kim Abercrombie</suing >
<string=Humberto Acevedo</string>
<string =Pilar Ackerman</string>
<string=Frances Adams </stning>
<string=Margaret Smith</string>
<string=Carla Adams </string>
<string=Jay Adams </string>
<string=Ronald Adina</string>
<string=Samuel Agcaoili=/string:»
<sling >James Aguilar</slbingy>
<5tring>=Robert Ahlering</string>
<string>krancois Ferrier</srring>
stning=Kim Akers</string>
<string=Lili Alameda «/string=
<string=Amy Alberts </string>
<string=Anna Albright </string
<string=Milton Albury-/string:
<string=Paul Alcorn=/string:»
<sliing >Gregory Alderson</sling >
<string=1. Phillip Alexander</string>
<string=Michelle aAlexander</string>
<string>%ean lacohson</string >
<string=Phyllis Allen</ctnng=
<string=Marvin Allen</string>
<string=Michael Allen </string>
<string=Cecil Allison</string>
<string=0scar Alpuerto</string>
<string=Sandra Altamirano</string= =
Done €L Local intranet | Protected Mode: Off i ov Hi00% v

L -

FIGURE 7-6

Consuming a Simple XML Web Service

So far, you have seen only half of the XML Web Service story. Exposing data and logic as SOAP to

disparate systems across the enterprise or across the world is a simple task using .NET and particu-

larly ASP.NET. The other half of the story is the actual consumption of an XML Web Service into a
Silverlight application.

You are not limited to consuming XML Web Services only into Silverlight applications; but because
this is a Silverlight book, it focuses on that aspect of the consumption process. Consuming XML
Web Services into other types of applications is not that difficult and, in fact, is rather similar to
how you would consume them using Silverlight. Remember that the web services you come across
can be consumed in Windows Forms, ASP.NET applications, mobile applications, databases, and
more. You can even consume XML Web Services with other web services so you can have a single
web service made up of what is basically an aggregate of other web services.

Adding a Web Reference

To consume the Contacts web service that you just created in this chapter, create a new Silverlight
application called silverlightConsumer. The first step in consuming an XML Web Service in a

Working with Services | 235

Silverlight application is to make a reference to the remote object — the web service. You do so by
right-clicking the root node of your project from within the Visual Studio Solution Explorer and
selecting Add Service Reference. The Add Service Reference dialog box appears, shown in Figure 7-7.

';O ContactsSeap
O @ AspnetWebSenvice/WebService.asmx

r =
Add Service Referance (% e

o see a hist of available sernvices on a spectic server, enter a service UKL and click Go. 1o browse
for available services, dlick Discover.
Address:

p:/localhost: 27781 /AspnetWebService/Contacts. asma - | Gu Diseover |+
Services: Operations:

@‘: AspnelWebSewvice/Conlacls.asmx

#] Contacts

1 service(s) found at address 'hitpe/Mocalhost: 77781 fAspnetWebService/Contacts. asmy’.

Hamespace:

WroxContacts

Po— e
L
FIGURE 7-7

The Add Service Reference dialog box enables you to point to a particular .asmx file to make a refer-
ence to it. Understand that the Add Service Reference dialog box is really looking for WSDL files.
Microsoft’s XML Web Services automatically generate WSDL files based on the .asmx files them-
selves. To pull up the WSDL file in the browser, simply type the URL of your web service’s .asmx file
and add a ?wsprL at the end of the string. For example, you might have the following construction

(this is not an actual web service, but simply an example):

http://www.wrox.com/MyWebService/Contacts.asmx?WSDL

Because the Add Service Reference dialog box automatically finds where the WSDL file is for any
Microsoft-based XML Web Service, you should simply type the URL of the actual WSDL file for

any non—-Microsoft-based XML Web Service.

If you are using Microsoft’s Visual Studio and its built-in web server instead
of 118, you will be required to also interject the port number the web server
is using into the URL. In this case, your URL would be structured similar to
http://localhost:5444 /MyWebService/Contacts.asmx?WSDL.

In the Add Service Reference dialog box, change the reference from the default name to something
a little more meaningful. If you are working on a single machine, the web reference might have the
name of localhost; if you are actually working with a remote web service, the name is the inverse

http://www.wrox.com/MyWebService/Contacts.asmx?WSDL
http://localhost:5444/MyWebService/Contacts.asmx?WSDL

236

| CHAPTER7 ACCESSING DATA

of the URL, such as com.wrox.www. In either case, renaming it so

that the name makes a little more sense and is easy to use within

your application is best. In the example here, the web reference is Solution Explorcr =f. %
renamed WroxContacts. SIS

2 Solution ‘AspnetWebSenvice' (2 projects)
+ [P CA.)\AspretWebService\

Clicking OK causes Visual Studio to make an actual reference 4 |3 SiverlighiConsumer

to the web service and create a new configuration file in e

your Silverlight application (shown in Figure 7-8) called g iy
ServiceReferences.ClientConfig. You might find some b o] Appsami
additional files under the App_WebReferences folder — such G~ iR

as a copy of the web service’s WSDL file.

Your consuming application’s ServiceReferences.ClientConfig

file contains the reference to the web service. Listing 7-33 shows the
created file. FIGURE 7-8

‘) LISTING 7-33: The config file after making a reference to the web service

Available for

download on <configuration>
Wrox.com X
<system.serviceModel>
<bindings>
<basicHttpBinding>

<binding name="ContactsSoap" maxBufferSize="2147483647"
maxReceivedMessageSize="2147483647">
<security mode="None" />
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint
address="http://localhost:27781/AspnetWebService/Contacts.asmx"
binding="basicHttpBinding" bindingConfiguration="ContactsSoap"
contract="WroxContacts.ContactsSoap" name="ContactsSoap" />
</client>
</system.serviceModel>
</configuration>

You can see that the contract and the binding have been defined. Once this is in place, you are ready
to code to this interface.

Invoking the Web Service from the Client Application

Now that a reference has been made to the XML Web Service, you can use it in your Silverlight
application. Using MainPage.xaml in your project, you can consume the query made against the
Contacts table from the remote AdventureWorks database directly into your application. The data
is placed in a ListBox control.

On the design part of the page, place a simple ListBox control. The idea is that when the Silverlight
view is loaded, the application sends a SOAP request to the Contacts web service and gets back a
SOAP response containing the contact’s names, which is then bound to the ListBox control on the
view. Listing 7-34 shows the code for this simple application.

http://localhost:27781/AspnetWebService/Contacts.asmx%E2%80%9D

Working with Services | 237

‘) LISTING 7-34: Consuming the Contacts web service in your Silverlight application

Available for
download on using System.Windows;

Wrox.com K K
using System.Windows.Controls;
using SilverlightConsumer.WroxContacts;

namespace SilverlightConsumer

{

public partial class MainPage : UserControl

{
public MainPage ()

{
InitializeComponent () ;

ContactsSoapClient ws = new ContactsSoapClient () ;
ws.GetContactsCompleted += ws_GetContactsCompleted;
ws.GetContactsAsync () ;

private void ws_GetContactsCompleted(object sender,
GetContactsCompletedEventArgs e)

if (e.Error != null)
{
MessageBox.Show (e.Error.ToString()) ;

}

else

{

listBoxl.ItemsSource = e.Result;

The view being loaded causes the Silverlight application to send a SOAP request to the remote XML
Web Service. The returned array of strings is bound to the ListBox control, and the page is created,
as shown in Figure 7-9.

The Contacts web service is invoked by the instantiation of the ContactsSoapClient proxy object:
ContactsSoapClient ws = new ContactsSoapClient();
Then you can use the ws object like any other object within your project. In the code example from

Listing 7-34, the results of the ws.GetContactsasync () method call results in the array of strings
being bound to the 1.istBox control:

listBoxl.ItemsSource = e.Result;

As you develop or consume more web services within your applications, you will see more of their
power and utility.

238 | CHAPTER7 ACCESSING DATA

2 silveri _ Windows Expl ==
QQ - [e hillps/Mocallost2T751/ Asp ive/Silverli TestPage.aspx v| h| 4y | F e | | Bing P -
7 Favorites féaihenighléonsumer . B - - [# - Page~ Safety~ Tools— @h-

Gustavo Achong
Catherine Abel —|
Kim Abercrombie

Humberto Accvedo

F"llar‘ﬂrkl’.lln;lan

Frances Adams

Margaret Smith

Caria Adams

Jay Adams

Konald Adina

Samuel Agcacili

lames Aguilar

Robert Ahleting

Frangoie Ferrier

Kim Akers

Lili Alameda

Amy Alberts

Anna Albright

Milton Albury

Paul Alcorn

Gregory Alderson

€L Local | Protected Mode: Off £y~ Hi0% -

L <

FIGURE 7-9

Working with Windows Communication Foundation (WCF)

Since the introduction of the .NET Framework 3.0, Microsoft has made available a new way to
build web services beyond the ASP.NET-based Web Services presented in this chapter.

Until the .NET Framework 3.0 came out, building components that were required to communicate
a message from one point to another was not a simple task because Microsoft offered more than one
technology that you could use for such an action.

For instance, you could have used ASP.NET Web Services (as just discussed), Web Service
Enhancements 3.0 (WSE), MSMQ, Enterprise Services, .NET Remoting, and even the system
.Messaging namespace. Each technology has its own pros and cons. ASP.NET Web Services
(also known by some as ASMX Web Services) provided the capability to easily build interoper-
able web services. The WSE enabled you to easily build services that took advantage of some of
the WS-* message protocols. MSMQ enabled the queuing of messages, which made working with
solutions that were only intermittently connected easy. Enterprise Services, provided as a suc-
cessor to COM+, offered an easy means to build distributed applications. .NET Remoting was a
fast way to move messages from one .NET application to another. Moreover, these are Microsoft
options only. These options do not include all the ones available in other environments, such as
the Java world.

Working with Services | 239

With so many options available to a Microsoft developer, deciding which path to take with the appli-
cations you are trying to build can be tough. With this in mind, Microsoft has created the Windows
Communication Foundation (WCF).

WCF is a relatively new framework for building service-oriented applications. Microsoft wanted to
provide its developers with a framework to quickly get a proper service-oriented architecture up-and-
running. Using the WCF, you can take advantage of all the items that make distribution technologies
powerful. WCF is the answer and the successor to all these other message distribution technologies.

Understanding the Larger Move to SOA

Upon examining WCF, you will find that it is part of a larger movement that organizations are
making toward the much-talked-about service-oriented architecture, or SOA. An SOA is a message-
based service architecture that is vendor-agnostic. As a result, you have the ability to distribute mes-
sages across a system, and the messages are interoperable with other systems that would otherwise
be considered incompatible with the provider system.

Looking back, you can see the gradual progression to the service-oriented architecture model. In the
1980s, the revolution arrived with the concept of everything being an object. When object-oriented
programming came on the scene, it was enthusiastically accepted as the proper means to represent
entities within a programming model. The 1990s took that idea one step further, and the compo-
nent-oriented model was born. This model enabled objects to be encapsulated in a tightly coupled
manner. It was only recently that the industry turned to a service-oriented architecture because
developers and architects needed to take components and have them distributed to other points in
an organization, to their partners, or to their customers. This distribution system needed to have the
means to transfer messages between machines that were generally incompatible with one another. In
addition, the messages had to include the ability to express the metadata about how a system should
handle a message.

If you ask 10 people what an SOA is, you’ll probably get 11 different answers, but some common
principles are considered to be foundations of a service-oriented architecture:

> Boundaries are explicit — Any data store, logic, or entity uses an interface to expose its data
or capabilities. The interface provides the means to hide the behaviors within the service, and
the interface front-end enables you to change this behavior as required without affecting down-
stream consumers.

> Services are autonomous — All the services are updated or versioned independently of one
another. Thus, you do not upgrade a system in its entirety; instead, each component of these
systems is an individual entity within itself and can move forward without waiting for other
components to progress forward. Note that with this type of model, after you publish an
interface, that interface must remain unchanged. Interface changes require new interfaces
(versioned, of course).

> Services are based on contracts, schemas, and policies — All services developed require a con-
tract regarding what is required to consume items from the interface (usually done through a
WSDL document). Along with a contract, schemas are required to define the items passed in
as parameters or delivered through the service (using XSD schemas). Finally, policies define
any capabilities or requirements of the service.

240 | CHAPTER7 ACCESSING DATA

> Service compatibility that is based upon policy — The final principle enables services to
define policies (decided at run time) that are required to consume the service. These policies
are usually expressed through WS-Policy.

If your own organization is considering establishing an SOA, the WCF is a framework that works
on these principles and makes implementing it relatively simple. The next section looks at what the
WCEF offers. Then you can dive into building your first WCF service.

Understanding WCF

As previously stated, WCF is a means to build distributed applications in a Microsoft environment.
Although the distributed application is built upon that environment, this does not mean that con-
sumers are required to be Microsoft clients or to take any Microsoft component or technology to
accomplish the task of consumption. On the other hand, building WCF services means you are also
building services that abide by the principles set forth in the aforementioned SOA discussion and
that these services are vendor-agnostic — thus, they can be consumed by almost anyone.

You can build WCF services using Visual Studio 2010. Note that because this is a .NET Framework
3.0 or greater component, you are actually limited to the operating systems in which you can run a
WCF service. Whereas the other Microsoft distribution technologies mentioned in this chapter do
not have too many limitations on running on Microsoft operating systems, an application built with
WCEF can run only on Windows XP SP2, Windows Vista, Windows 7, or Windows Server 2008.

If you are already familiar with WCEF, it is interesting to note that some improvements have been
made to WCF within the NET Framework 4 release. A lot of focus was put on increasing the pro-
ductivity of developers and providing quick options for common tasks such as creating syndicated
services, as well as better debugging and serialization options. You will find that the performance

for WCF has increased, especially when hosted in IIS7. Other new features include new support for
working with the ADO.NET Entity Framework, improvements to the configuration editor, and more.

Building a WCF Service

Building a WCEF service is not hard to accomplish. The assumption here is that you have installed
the .NET Framework 4 for the purpose of these examples. If you are using Visual Studio 2010, the
view of the project from the New Project dialog box is as shown in Figure 7-10.

Name the project WcfServicel. The example you run through here demonstrates how to build the
WCEF service by building the interface, followed by the service itself.

Creating the Services Framework

The first step is to create the services framework in the project. To do this, right-click the project
and select Add New Item from the provided menu. From the Add New Item dialog box, select WCF
Service, and name the service Servicel.svc, as illustrated in Figure 7-11.

This step creates a Servicel.svc file, a servicel.cs file, and an IServicel.cs file. The servicel
.svec file is a simple file that includes only the page directive, whereas the servicel.cs file does all the
heavy lifting. The servicel.cs file is an implementation of the IServicel.cs interface.

Working with Services | 241

New Project

Recent Templates 1_un Framework 4
| Instalied 1empiates
m‘ WCF Service Library

CQ WCF Service Application

~ | Sort by: | Defaull

| 4 il 2 Visual C2

Windows
Weh
Uthce

Closud E
| Cl WOF Workflow Service Application Visual €8

Keporting
Ak

SharePoint
suverlight ™
Test *
WCF
Workflow
Other Languages
Other Project Types
Database
Modeling Projects
Test Projects

Visual C#

Syndication Senvice Library Visual L

WctServicel
i il i studio 2010\Projects
{cmm new solution

-]

Solution name: WcrServicel

L

FIGURE 7-10

Type: Visual €4

A project for creating WCF services

Drowse...

[] Create girectory for soiution
1| Al 1o sowmree combrnl

Add Now Item - Wetserviced
| Installed Templates Sort by: | Detaull =
“ Visual C# =
Code g DomainService Class Visual C2
Data
General = .
P ljj{ Dynamic Data Field Visual C#
Windows Forms
| WPF ﬁ Genesic Handles Visual €2
Reporting ==
et = | wiobal Apphication Class Visual L
| Workflow
TN) s Visual Cr
i
-={ Skin File Visual C2
L g WL Uata Service Visual Lf
LQ WCT Service Visual C#
Q Web Configuration File Visual Cx
iﬁ Web Service Visual C#
Name: Servicel swe
L
FIGURE 7-11

Working with the Interface

|
|

Type: Viusal CI

A class Tor mu"g a WCF service

To create your service, you need a service contract. The service contract is the interface of the
service. This consists of all the methods exposed as well as the input and output parameters that

242 | CHAPTER7 ACCESSING DATA

are required to invoke the methods. To accomplish this task, turn to the TServicel.cs file.
You are going to want to refactor this name and rename it to ITTslands.cs. Listing 7-35 presents
the interface you need to create.

‘) LISTING 7-35: Creating the interface

Available for
downloadon ;5ing System.Collections.Generic;

Wrox.com . K X . ;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace WcfServicel
{
[ServiceContract]
public interface IIslands
{
[OperationContract]
List<Destination> GetIslands();

[DataContract]
public class Destination
{
[DataMember]
public string Name { get; set; }

[DataMember]
public int Population { get; set; }

[DataMember]
public double AverageAirfare { get; set; }

[DataMember]
public double AverageHotel { get; set; }

[DataMember]
public string BestKnownFor { get; set; }

This is pretty much the normal interface definition you would expect, but with a couple of new
attributes included. To gain access to these required attributes, you must make a reference to
the system. ServiceModel namespace. This gives you access to the [ServiceContract] and
[OperationContract] attributes.

Use the [ServiceContract] attribute to define the class or interface as the service class, and it
needs to precede the opening declaration of the class or interface. In this case, the example in the
preceding code is based on an interface:

[ServiceContract]
public interface IIslands
{

// Code removed for clarity

Working with Services | 243

Within the interface, four methods are defined. Each method will be exposed through the
WCEF service as part of the service contract. For this reason, each method is required to have
the [OperationContract] attribute applied:

[OperationContract]
List<Destination> GetIslands();

Utilizing the Interface

The next step is to create a class that implements the interface. Not only is the new class implementing
the defined interface, but it is also implementing the service contract. For this example, add this class to
the same servicel.cs file. The code in Listing 7-36 shows the implementation of this interface.

‘) LISTING 7-36: Implementing the interface

Available for

downloadon ;5ing System.Collections.Generic;
Wrox.com

namespace WcfServicel
{
public class Servicel : IIslands
{
#region IIslands Members

public List<Destination> GetIslands ()
{

List<Destination> destinations = new List<Destination>();

destinations.Add (new Destination {Name = "St. Croix"});
destinations.Add(new Destination {Name = "St. John"});
destinations.Add (new Destination {Name = "St. Thomas"});

return destinations;

}

#endregion

From these new additions, you can see that you don’t have to do anything different to the servicel
class. It is a simple class that implements the TIslands interface and provides an implementation of
the GetIslands () method.

Reviewing the Service

Now that the service is in place, you can right-click the .svc file and select the View in Browser
option from the provided menu. You will then be presented with what is shown in Figure 7-12.

The page presented in Figure 7-12 is the information page about the service. In the image, notice
the link to the WSDL file of the service. As with ASP.NET Web Services, a WCF service can also
auto-generate the WSDL file. Clicking the WSDL link shows the WSDL in the browser, as illus-
trated in Figure 7-13.

244 | CHAPTER7 ACCESSING DATA

service! Service - Windows Internet Explorer ===y
OO T —— 3 |-&,| X = fina P~
¢ Favorites | 4 Senveed Sendce | [IR = [0 M v Pagev Satetyw Took~ @v

Servicel Service

‘You have created a service.
To test this service, you will need to creste a client and use it to call the service. You can do this using the sveutil.exe Lool from the cormmand live with the
following syntax:

sveutil exe hitp://localhost:28856/Servicel . svefusdl
This will generate a canfiguration file and a code file that contains the dient class. Add the twa files ta your chient application and use the generated chent
class o call the Service. For example:

cr

class Test
{
atatic void Main()
1
IslandaClient ¢lient = new IslandsClient():

// Use the 'clienc' variable to call operations on the service.

// Mways close the client.
client.Close();

Visual Basic

Class Test
Shared Sub Main()
Dim client As IslandsClient = Mew IslandsClienc()
* Use the 'clienc' variable to call cperationsz on the service.

Done & Local intranet | Protected Mode: Off v m10% -

FIGURE 7-12

8 i - dows knternel Explorer
@Ov |8 nttpuocainost zssstisenvicer svcwsal —l_g|"r| % [{[[3] fing
iz bavortes | @ hiip Macalnost20856/Senice svePwsdl L=l fow B » 0 mh v pagew satetyw Took~ @~

<Txml version="1,0" encoding="utf-8" 7>
- awsdl:definitivns name="Servicel” LargetN. ce~"http:/ /) i.org /"
sdi="http:/ /schemas.xmisoap.org/wsdl/" xmins:soap="http:/ /schemas.xmisoap.org/wsdl/soap/*
oapenc="http:/ /schemas.xmlsoap.org/scap/encoding /" xmins: wsu="http:/ /docs.oasls-
«org/wss /2004701 foasis- 200401-wss-wesecurily- utility- 1.0.xsd”
sd="http:/ fwww.w3.org/ 2001 /XMLSchema® xmins:soapl2="hitp:/ /schemas. xmlscap.org f wsdl /soapl 2 /*
w="http:/ ftempuri.ong /® xminsiwsa="http:/ /schemas.xmlsvap.org /ws /2004 /08 / addressing”
sp="http:/ fschemas.xmlsoap.orq/ws /2004 09/ policy®
sap="http:/ /schemas.xmlsoap.orq/ws/ 2004/ 08/ addressing/ policy"
saw="http:/ /www.w3_ org/2006/05/addressing fwsdl"
wmins:msc="http:/ / schemas.microsoft.com/ws/ 2005/ 12 /wsdl/ contract”
wmina:waall="htrp:/ /www wi org/ 2005/ 08/ addressing”
“http:/ /schemas.xmisoap.org fws/ 20048 /09 mex®
sam="http:/ /www.w3.org/ 2007 /05/addressing/metadata™
<wsdl:types>
- <xad:schema targethamespace="http:/ ftempuri.org/Imports"=
<xsdumpart schemal acahan="http:/ flocalhost: 28856/ Service 1 . svc?xsd=xsd0”
namespace—"http:/ ftempuri.org/" /=
«xsdumport schemalacation="http:/ /localhost: 28856/ Servicel.svc?xsd=xsd1"
namespace-"http:/ /schemas_microsoft.com/2003/10/Serialization/" /= L
«xsdampart schemalocation="http:/ /localhost: 28856/ Servicel.svc?xsd=xsd2"
e="hitp:/ /sch Jat org /200407 /WolServicel” />
«fxsd:schemaz
<fwsdl: types>

nam lands_G p >
di:part name="p ® clement="tns:G "
<fwsdl:message>
- wwsdl: qe name="TIslands_Get _Outp -
<wsdl:part name="p ters” element—"tns:GetIsland: o

<fwsdlimessage>
ewsdl:portType name="IIslands">
di:operation name="Get >
<wsdlzinput wsaw:Action="http:/ / orgf JGer

| Dome i Local intranet | Protected Mode: 0T 43 v B10% -

FIGURE 7-13

Working with Services | 245

Building a Silverlight Consumer

Now that an HTTP service is out there, which you built using the WCF framework, the next step is
to build a consumer application in Silverlight that uses the simple servicel service. The consumer
sends its request via HTTP using SOAP. This section describes how to consume this service. From
the same solution, add a new Silverlight project called SilverlightWcfConsumer. You will also have
the customary silverlightWcfConsumer.Web project contained within the same solution.

After you have laid out your Silverlight view with a ListBox control, make a reference to the new
WCEF service. You do this in a manner quite similar to how you do it with XML Web Service ref-
erences. Right-click the solution name from the Visual Studio Solution Explorer and select Add
Service Reference from the dialog box that appears.

The Add Service Reference dialog box (see Figure 7-14) asks you for two things: the Service URI or
Address (basically a pointer to the WSDL file) and the name you want to give to the reference. The
name you provide the reference is the name that will be used for the instantiated object that enables
you to interact with the service.

This adds to your project a Service Reference folder containing some proxy files, as shown in
Figure 7-15.

[Add Service Reference |6 o]

o see a hist of available services on a spectic server, enter a senvice UKL and click Go. [o browse
for available services, dlick Discover.

Address:

http.';‘.-'loﬂ;lhnitZ&BM:nicél.sw - | Go Disvaver '
Services: Operations:
@‘1 Servicelave Solution Explorer » 0 %
=l
[od Solution "WetServicel' @ projects) .
a3 siverlightWdConsumer 1
b [=dl Properties ‘

=3 Reterences
4 [Sewvice References |
‘E DestinationsService
= App.xaml
va| MainPage.xaml
; ServiceReferences.ClientConfig
4 |5 siverightwetConsumer.Web

i service(s) found in the solition.

MHamespace: I+ [l Properlies
DestinationsService [+ [References
3 ClientBin Al
| Adyanced.. UK Lancel vl (]] v
L =
FIGURE 7-14 FIGURE 7-15

Changing Configuration Files

Looking at the serviceReference.ClientConfig file, you can see that Visual Studio has placed
information about the service inside the document, as illustrated in Listing 7-37.

‘) LISTING 7-37: The created ServiceReference.ClientConfig file

Available for
downleadon <configuration>

Wrox.com .
<gsystem.serviceModel>

continues

246 | CHAPTER7 ACCESSING DATA

LISTING 7-37 (continued)

<bindings>
<basicHttpBinding>
<binding name="BasicHttpBinding_IIslands"
maxBufferSize="2147483647"
maxReceivedMessageSize="2147483647">
<security mode="None" />
</binding>
</basicHttpBinding>
</bindings>
<client>
<endpoint address="http://localhost:28856/Servicel.svc"
binding="basicHttpBinding"
bindingConfiguration="BasicHttpBinding IIslands"
contract="DestinationsService.IIslands"
name="BasicHttpBinding IIslands" />
</client>
</system.serviceModel>
</configuration>

The important part of this configuration document is the <client> element. This element contains a
child element called <endpoint> that defines the where and how of the service consumption process.

The <endpoint> element provides the address of the service — http://localhost:28856/Servicel
.sve — and it specifies which binding of the available WCF bindings should be used. In this case, the
BasicHttpBinding is the required binding. Even though you are using an established binding from
the WCF framework, from the client side you can customize how this binding behaves. The settings
that define the behavior of the binding are specified using the bindingConfiguration attribute of
the <endpoint> element. In this case, the value provided to the bindingConfiguration attribute is
BasicHttpBinding IIslands, which is a reference to the <binding> element contained within the
<basicHttpBinding> element.

As demonstrated, Visual Studio 2010 makes the consumption of these services fairly trivial. The
next step is to code the consumption of the service interface into the GUI that you created as one of
the first steps of this section.

Consuming the Service Interface

Now that everything is in place, the next step is to interact with this proxy in your Silverlight proj-
ect. The idea here is that when the view is loaded, the service will be invoked and the result will be
populated into the ListBox control. This action is demonstrated in Listing 7-38.

‘) LISTING 7-38: Calling the Servicel web service
Available for
“Wmtgg“ using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using SilverlightWcfConsumer.DestinationsService;

namespace SilverlightWcfConsumer

http://localhost:28856/Service1.svc%E2%80%9D
http://localhost:28856/Service1

Working with Services | 247

public partial class MainPage : UserControl
{

public MainPage ()

{

InitializeComponent () ;
IslandsClient client = new IslandsClient();

client.GetIslandsCompleted += client_GetIslandsCompleted;
client.GetIslandsAsync () ;
}

private void client_GetIslandsCompleted(object sender,
GetIslandsCompletedEventArgs e)
{
if (e.Error != null)
{

MessageBox.Show(e.Error.Message) ;

}

else

{
ICollection<Destination> result = e.Result;

foreach (var destination in result)

{
listBoxl.Items.Add (destination.Name) ;

This code is quite similar to what is done when working with web references from the XML Web
Services world. First is an instantiation of the proxy class, as shown with the creation of the svc object:

IslandsClient client = new IslandsClient();

Working with the c1ient object now, the IntelliSense options provide you with the appropriate
GetTIslandsAsync () and GetTslandsCompleted () methods. Remember that with Silverlight, you
are not allowed to invoke services synchronously.

Working with REST-Based Services

It is very easy to build REST-based services using .NET. Using WCF Data Services, you can
quickly expose interactions with the application’s underlying data source as RESTful-based ser-
vices. The current version of WCF Data Services allows you to work with the data stores using
JSON or Atom-based XML.

WCF Data Services works to create a services layer to your back-end data source. Doing so yourself,
especially if you are working with a full CRUD model, means a lot of work. WCF Data Services allow
you to get a service layer that is URI-driven.

248 | CHAPTER7 ACCESSING DATA

To work through the creation and consumption of a REST-based service, create a typical Silverlight
application called SilverlightRest. This will also create the standard SilverlightRest.Web project
within the same solution. This is where you will put the WCF Data Service.

Creating a WCF Data Service

Figuring out how to build a complete services layer to your database for all create, read, update, and
delete functions would take some serious time and thought. However, WCF Data Services makes
this task much more feasible, as you will see as you work through this example.

Because this example of a WCF Data Service works from an underlying database, you will need to
add one. For this example, add the adventureworks_bData.mdf database as you previously used in
this chapter. Place this database within the App_Data folder of your project.

Adding Your Entity Data Model

After you have the database in place, you next create an Entity Data Model that WCF Data Services
will work with. To do this, right-click your project and select Add = New Item from the list of
options in the provided menu.

The Add New Item dialog appears. Add an ADO.NET Entity Data Model to your project.
Name your ADO.NET Entity Data Model file aAdventurewWorks . edmx. When you create the
AdventureWorks . edmx file by clicking Add, the Entity Data Model Wizard appears, offering
you the option of creating an empty EDM or creating one from a pre-existing database (shown
in Figure 7-16).

Entity Data Model Wizard 15]

! Choose Model Contents

What should the model contain?
(LTI Empty model

from
database

Generates the model from a database. Classes are generated from the model when the project
15 compiled. This wizard also lets you specity the database connection and database objects to
include in the medel.

L =

FIGURE 7-16

For this example, choose the option to create one from the pre-existing (AdventureWorks_Data)
database (shown in Figure 7-17). Then click Next.

Working with Services | 249

Entity Data Model Wizard [N

E_ Choose Your Data Connection
L

Which data connection should your application use to connect to the database?

[- Data,mdf vf [Mew L

Entity connedtion string:

85/

Jcsdijres:/r ssali| a
resyf*, e System.Data.SqlCli i i

string="Data Source=\SQLEXPRES5: AttachDbFilename=|DataDirectoryl
A _Data.mdf;Int ted Security=True;User Instance=True®

| Save entity connection settings in Web.Config as:

AdventureWorks_DataEntities

L

FIGURE 7-17

In Figure 7-17, notice that the connection string and the locations of the mapping details will be
stored within the web.config file. You can also see on this screen that you are naming the instance
of the model AdventureWorks_DataEntities in the text box at the bottom of the wizard. This name

is important to note because you will use it later in this example.

The next screen allows you to select the tables, views, or stored procedures that will be part of the
model (Figure 7-18). For this example, select the checkbox next to the Table item in the tree view to

select all the tables in the database.

" Entity Data Model Wizard [N

- Choose Your Database Objects
K %]

Which database objects do you want to include in your model?

p [7l4& stored Procedures

[¥] Pluralize or singularize generated ohject names
Z‘ Indude foreign key columns in the model
Madel Namespare:

;av:rnUrthrks_DntaMo dell

L

FIGURE 7-18

250

| CHAPTER7 ACCESSING DATA

After selecting the Tables checkbox, click Finish to have Visual Studio create the EDM for you. You
will notice that Visual Studio creates a visual representation of the model for you in the O/R Designer.

Creating the Service

Now that the EDM is in place along with the database, the next step is to add your WCF Data
Service. To accomplish this, right-click your project within the Visual Studio Solution Explorer and
select Add & New Item from the provided menu. The Add New Item dialog appears again; select
WCF Data Service as shown in Figure 7-19.

Add New Item - SilverightHestWeb [
Nrssbatiact Tavmpiaton. Sort by: | Detaull = P — p”
1
oy T Type: Vinal ©8 |
Code Li) Browser File Visual C2
pata [A class to provide an WCF Data Service.
General uﬂ = -
Web e Dromain Service Class Visual C#
Windows Forms 'ﬂ':
WPF I_f_f Diysamic Dala Field Visual CF
Reporting -
e % Generic Handler Visual L
Workflow
TR | ovutoviatonces Viusice
Iﬁl Site Map Visual C2
'.__=:|' Skin Hie Visual U7
)
5} g WCT Data Senvice Visual C#
E
CE} WCF Service Visual Cz
|j Web Configuration File Visual C#
g i
I@ Wb Service Vinual €8 =
Name: Contacts.sv
v -
FIGURE 7-19

As shown in the figure, name your WCF Data Service Contacts.svc. Click the Add button and Visual
Studio generates a WCF service for you. Listing 7-39 shows the code of the default service file.

J LISTING 7-39: The default .svc file for a WCF Data Service

Available for

download on in m:
Wrox.com using System;

using System.Collections.Generic;
using System.Data.Services;

using System.Data.Services.Common;
using System.Ling;

using System.ServiceModel .Web;
using System.Web;

namespace SilverlightRest.Web
{
public class Contacts : DataService< /* TODO: put your data source class
name here */ >

{

Working with Services | 251

// This method is called only once to initialize service-wide policies.
public static void InitializeService(DataServiceConfiguration config)
{

// TODO: set rules to indicate which entity sets and service

// operations are visible, updatable, etc.

// Examples:

// config.SetEntitySetAccessRule ("MyEntityset",

// EntitySetRights.AllRead) ;
// config.SetServiceOperationAccessRule ("MyServiceOperation",
// ServiceOperationRights.All) ;

config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;

The code generated here is the base framework for what you are going to expose through WCF Data
Services. It will not work, however, until you accomplish the big Topo that the code specifies. The
first step is to put in the name of the EDM instance using the code presented in Listing 7-40.

LISTING 7-40: Changing the WCF Data Service to work with your EDM

namespace SilverlightRest.Web
{
public class Contacts : DataService<AdventureWorks_DataEntities>

{

// Code removed for clarity

Now your application is at a state in which the database, the EDM, and the service to work with
the EDM are in place. Upon compiling and pulling up the NorthwindpatasService.svc file in the
browser, you are presented with the following bit of XML:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service xml:base="http://localhost:14057/Contacts.svc/"
xmlns:atom="http://www.w3.0rg/2005/Atom"
xmlns:app="http://www.w3.0rg/2007/app"
xmlns="http://www.w3.0rg/2007/app">

<workspace>

<atom:title>Default</atom:title>

</workspace>

</service>

If you don’t see this XML, you need to turn off the feed-reading capabilities of your IE browser by
selecting Tools = Internet Options. From the provided dialog, select the Content tab and within the
Feeds section, click the Select button. From there, uncheck the Turn on Feed Reading checkbox.

The result of the earlier XML is supposed to be a list of all the available sets that are present in the
model, but by default, WCF Data Services locks everything down. To unlock these sets from the model,
go back to the Tnitializeservice () function and add the following bolded code as illustrated in
Listing 7-41.

http://localhost:14057/Contacts.svc/%E2%80%9D
http://www.w3.org/2005/Atom%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D

252 | CHAPTER7 ACCESSING DATA

‘) LISTING 7-41: Opening up the service for reading from the available tables

Available for
download on using System.Data.Services;

Wrox.com . K
using System.Data.Services.Common;

namespace SilverlightRest.Web
{

public class Contacts : DataService<AdventureWorks_DataEntities>

{
public static void InitializeService(DataServiceConfiguration config)
{
config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);
config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;
}
}

In this case, every table is opened up to access. Everyone who accesses the tables can read from
them but they can’t write or delete them. All tables are specified through the use of the asterisk (*)
and the right to the underlying data is set to read-only through the EntitySetRights enum being
set to Al1Read.

Now when you compile and run this service in the browser, you see the following bit of XML:

<?xml version="1.0" encoding="utf-8" standalone="yes" ?>
<service xml:base="http://localhost:14057/Contacts.svc/"
xmlns:atom="http://www.w3.0rg/2005/Atom"
xmlns:app="http://www.w3.0rg/2007/app" xmlns="http://www.w3.org/2007/app">
<workspace>
<atom:title>Default</atom:title>
<collection href="Addresses">
<atom:title>Addresses</atom:title>
</collection>
<collection href="AddressTypes">
<atom:title>AddressTypes</atom:title>
</collection>
<collection href="Contacts">
<atom:title>Contacts</atom:title>
</collection>
<collection href="ContactTypes">
<atom:title>ContactTypes</atom:title>
</collection>
<collection href="CountryRegions">
<atom:title>CountryRegions</atom:title>
</collection>
<collection href="StateProvinces">
<atom:title>StateProvinces</atom:title>
</collection>
</workspace>
</service>

http://localhost:14057/Contacts.svc/%E2%80%9C
http://www.w3.org/2005/Atom%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D

Working with Services | 253

Consuming the WCF Data Service in Silverlight

The next step is to consume this REST-based service. Keep in mind that consuming a WCF Data

Service in all types of .NET applications is obviously possible, but this chapter focuses on using this
technology within Silverlight itself.

To start, change the UT of the MainPage.xaml page so that it is similar to Listing 7-42.

\) LISTING 7-42: The XAML from MainPage.xaml

Available for

dwmtﬂgﬂ <UserControl x:Class="SilverlightRest.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"

d:DesignHeight="300" d:DesignWidth="400">

<Grid x:Name="LayoutRoot" Background="White">
<ListBox Height="276" HorizontalAlignment="Left" Margin="12,12,0,0"
Name="1listBoxl" VerticalAlignment="Top" Width="376">
<ListBox.ItemTemplate>
<DataTemplate>
<StackPanel Orientation="Horizontal">
<TextBlock Text="{Binding FirstName}" Margin="3" />
<TextBlock Text="{Binding LastName}" Margin="3" />
</StackPanel>
</DataTemplate>
</ListBox.ItemTemplate>
</ListBox>
</Grid>
</UserControl>

With this in place, you then want to make a standard Service reference to the service. Figure 7-20
shows the Add Service Reference dialog.

Add Service Heterence [
To see a list of avallable services on a specific server, enter a service URL and click Go. To browse
o available services, dhick Diveover
Address:
hitp:/flocalhost14057/Contacts.sve vl Go Diiscowes i-l
Senvices: QOperations:

(®) @ Contacts.sve
[T vervicefs) Found in The solulion
Hamespare:
ContactsRest
L

FIGURE 7-20

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

254 | CHAPTER7 ACCESSING DATA

Once added, the code-behind of the MainPage.xaml page is presented in Listing 7-43.

‘) LISTING 7-43: The code-behind for MainPage.xaml
Available for
“a‘,’:g;‘fgsnﬂ“ using System;
using System.Data.Services.Client;
using System.Ling;
using System.Windows.Controls;
using SilverlightRest.ContactsRest;

namespace SilverlightRest
{
public partial class MainPage : UserControl
{
private readonly DataServiceCollection<Contact> _contacts;

public MainPage ()
{

InitializeComponent () ;

AdventureWorks_DataEntities svc =
new AdventureWorks_DataEntities (new
Uri("http://localhost:14057/Contacts.svc"));
_contacts = new DataServiceCollection<Contact>();
_contacts.LoadCompleted += contacts_LoadCompleted;

var query = from c¢ in svc.Contacts
orderby c.LastName
select c;

_contacts.LoadAsync (query) ;

private void contacts_LoadCompleted (object sender,
LoadCompletedEventArgs e)

if (_contacts.Continuation != null)
{
_contacts.LoadNextPartialSetAsync () ;
}
else

{
listBoxl.ItemsSource = _contacts;
listBoxl.UpdateLayout () ;

When you run this page, you are presented with an alphabetical list of the contacts in the database.

http://localhost:14057/Contacts.svc%E2%80%9D

Summary | 255

SUMMARY

Silverlight truly provides the core infrastructure needed to allow pervasive data in your applications.
Silverlight makes few assumptions about where your data lives and the format it takes, which opens up
exciting opportunities to work with data across a variety of platforms and from disparate providers.

You should now be able to retrieve data from Silverlight, provide compelling data-bound interfaces
with bindings, and work with a wide variety of different service layer types. The core options for
accessing and manipulating data presented in this chapter are a great foundation for exploring the
wealth of options available to all Silverlight developers.

WCF RIA Services

WHAT’S IN THIS CHAPTER?

Working with entity data models
Using domain services

Paging content

Y Y VY Y

Filtering content

If you are building a business application that needs to move content from servers down to your
Silverlight application, WCF RIA Services is going to be one of the most important resources in
your arsenal. WCF RIA Services provides your presentation tier with quick and easy access to
the services and data that are made available from the middle tier of your larger application.

Many of the developers that are making their way into the Silverlight ranks are from the
ASP.NET world, where dealing with logic and data between the tiers was quite a bit simpler.
In the ASP.NET world, it was simpler because the presentation tier and the middle tier were
usually on the same server, or even in the same co-location. The generated presentation tier,
once completed, and after working with the middle tier for any type of logic or data, was
then shot down to the client as HTML, JavaScript, and the like. Any further interactions
between the client and the middle tier could then be done with a complete page refresh, or
using AJAX to make connections to the middle tier in the cloud.

Silverlight brings a more stark separation between the presentation and middle tiers of your
application. The code for the application is actually residing on the client. The client then will
need to have a means to communicate back to the middle tier for the logic and data that are
required. WCF RIA Services is a means to make the process of n-tier communications between
what is on the client and what is back on your server just that much easier. Specifically designed
for rich Internet applications, this new approach is something that will make it easier for you to
bring these two tiers closer together.

258

| CHAPTER8 WCF RIA SERVICES

UNDERSTANDING WCF RIA SERVICES

Again, most people are quite used to working in
various web technologies where you will find
the close proximity of the presentation tier

and the middle tier is quite advantageous. An
example of this is shown in Figure 8-1.

From this figure, you can see that traditional
applications created and manipulated the presen-
tation within the presentation tier and then, in
effect, shipped down the finalized UI to the client
to be displayed (for example, in the browser).

Silverlight changes all of this. Now the client is
running the application code on the client and,
for the most part, the entire presentation tier is
residing on the client as well. This means that
the client will need to somehow interact over the
Internet to deal with the middle tier and, in turn,
gain access to the data tier. This model is shown
in Figure 8-2.

From this figure, you can see that the presentation
tier is now on the client and WCF RIA Services is
the glue between the middle tier and this presenta-
tion tier. Really, there is still a gap between the

Traditional Application

Data
Tier

The Presentation Tier on

the server generates the

Middle Tier
(Business Tier)

final Ul (HTML) that is then
pushed to the Client.

Presentation

<
Tier

Client

HTML <
The Client receives
the final presentation
from the server.

FIGURE 8-1

middle tier and the presentation tier, but RIA Application
now with WCF RIA Services, you have a
programmatic view that they are still in the ?_iaetf
same place.
WCF RIA Services is exactly what the name Middle Tier | _ |
states. It is a technology, like WCF Data (Business Tier)
Services, that is built upon the Windows
Communication Foundation stack. Though
WCF RIA Services works to simplify your
life as a developer and make it easy to work
with your data and capabilities up and
down the application stack, it still does

. . e . Client
provide you with the capabilities you might
need to dig deep into WCF and take full Presentation | _|
advantage of everything that WCF brings v
to the table. Using WCF RIA Services does
not limit you in your abilities in working
with WCF overall. The nice thing, though,
is that if you have usually found that WCF

FIGURE 8-2

was complex to begin with and you are not

The Middle Tier now
communicates with the
Presentation Tier directly
over the Internet.

The Client interacts with the remote
Middle Tier as if it is co-located and
the Client can still take complete
control over the Ul logic.

Building a Simple RIA Services Application | 259

too interested in digging in the weeds of this technology, you will still like working with WCF RIA
Services because it works to obfuscate this complexity from you as best as possible.

BUILDING A SIMPLE RIA SERVICES APPLICATION

At the time of this writing, WCF RIA Services is a separate download that you can find at
www.silverlight.net/getstarted/riaservices. On this page, you will find the Visual Studio
additions that you need to install to work through the examples in this chapter.

Once installed, you will find some new WCF RIA Service capabilities contained within Visual Studio.
The example in this chapter uses Visual Studio 2010. For the first step in creating a project that works
with this new technology, open up Visual Studio and create a new Silverlight project that is going to
work with WCF RIA Services. To do this, select File &> New = Project from the Visual Studio menu.
The New Project dialog appears. Select Silverlight from the list of installed templates and you will see
a list of your Silverlight project options, as shown in Figure 8-3.

New Project ==
o [Fr——r— o 9) S

Instalied 1emplates

Type: Visual C#
cﬁl Silverfight Applicatio Visual C#
4 “r""‘::ﬁ ¥ €2 St e Sample WCF RIA Services line of business
indows application
Web ,_,Ca- I Silverlight Class Library Visual C#
Cloud "] = e 2
sipoftie vc Silverlight Business Application Visual C#
SharePoint
Silverfight cﬂi Silverlight Navigation Application Visual C#
Test *
xc;rﬂ J‘Qfai WCF RIA Services Class Library Visual C#
O oW 4
Other Languages ct
Other Project Types Lﬁ; ASP.NET Dynamic Dala Dumain... Visual C#
Database
Modeling Projects
Test Projects

Online Templates

MName: BusinessApplicationl
YT -
Solution name: BusinessApplicativnl Creale divectory for solulion
|| Add to source control
FIGURE 8-3

If you just installed the WCF RIA Services, you will notice some new options. One new project

option is the Silverlight Business Application. This is a sample WCF RIA Services business application.
Another option is the WCF RIA Services Class Library. This option allows you to create a project that
is a WCF RIA Services class library that can then be utilized by any of your Silverlight applications.

Select the option Silverlight Business Application project. By default, the name of the project is
BusinessApplicationl. For this example, you can keep this in place.

http://www.silverlight.net/getstarted/riaservices

260 | CHAPTER8 WCF RIA SERVICES

Reviewing the Business Application Solution

Once you have created the BusinessApplication1 solution, you will Solustion Bxploes v R X
find two projects for this. The two projects and the entire output of -

this project, as shown in the Visual Studio Solution Explorer, are ‘3 :—;f,'—'f;“’"'B;'if;'};,’iﬁ?,ﬂ:?"""rm’"’jm’!:
shown in Figure 8-4. S
BusinessApplication1 is the Silverlight application, > B8 con

and BusinessApplication1.Web is the server-side solution that ; E ok

will contain your WCF RIA Services. At this point, there is not : g e

a WCF RIA Service in place to work with, because you will have b

to construct that portion yourself. @) siovaisuppressions.cs

I fwi MainPage.xaml
. . . . P 4 /% DusinessApplicationl.Web
However, you will notice that a stub of an application is in place @

[Properties
for you. Microsoft built out a sample application in a structure g g
that it deems appropriate for working with WCF RIA Services. , E v
This is an approach Microsoft likes to call a “prescriptive > 3 Resources
architecture” — or an architecture that it prescribes to g o iontTestPage.sp
developers building applications using its technologies. You B S e)
2] silverlight js

as the developer can follow this prescription, but you can also
rip it apart and set things up exactly as you see fit.

» B Web.config

FIGURE 8-4

If you compile and run the BusinessApplication1 as it is now, you
will notice (shown in Figure 8-5) that you are presented with a
basic Silverlight application with some basic navigation. At this
point, no WCF RIA Services are being utilized. The next step is to
change that and build a WCF RIA Service within this solution.

Home - Windows Internet Explorer e & e

r— = T =
@u - IB' I/ Mocalbwost: 52878/ BusinessApplication1 TeslPage.aspa# Home "l &f ‘1" A l A= Bina P -

- B -2 @ - Pagew Safety~ Toos~ @@~

7 Favorites & Home

Application Name

Home

Home page content

Done €L Local i T d Modc: Off -~ Hi0x -

L “

FIGURE 8-5

Building a Simple RIA Services Application | 261

Building an Entity Data Model

The first step is to build an entity data model and expose that model out from the server-side solution.
You are not always required to use entity data models to work with WCF RIA Services. You are also
able to use LINQ to SQL, plain old XML (POX) objects, and standard-based web services. For this
example, you build a WCF RIA Service that makes use of the entity framework.

To accomplish this task, you first need to add a data store to work 4 (A BusinessApplication1.Web
with. The one used in a few places within this book is the Microsoft —~ ol
AdventureWorks sample database located at msftdbprodsamples 4 M 2op. e

» d AdventureWorks_Data.mdf

.codeplex.com. Add the AdventureWorks database to the App_Data
FIGURE 8-6

folder within the project, as shown in Figure 8-6.

Once you have the database in place, add an ADO.NET Entity Data Model to your project. You will
find this in the Data section of installed templates within Visual Studio 2010. Name your ADO.NET
Entity Data Model AdventureWorks.edmx as shown in Figure 8-7.

Al Neewe lem - RusinessApplication] Web [
Installed Templates Sotby:[pemat] i1]
4 Visual C#t
- ;ﬁ Type: Visual C#
Code @= Database Unit Test Visual C#
Data =1 & project item Tor creating an ADO.NFT
Entity Data Model.
General
ADO.NFT Fntity Data Model Visual C2
Web
Windows Forms T
WPF ﬁ"‘ DataSct Visual C#
Reporting :
Sitverfight [L% LINQ to SQL Classes Visual C#
Waorkfiow
Online Templates Lﬂ SQL Server Database Visual C#
“‘4 XML File Visual C#
"__gﬂ__!] XML Schema Visual C¥
jﬂﬂ XSLT File Visual C#
Mame: AdventurcWorks.edmx
L__
FIGURE 8-7

Click the Add button in the Add New Item dialog and the Entity Data Model Wizard appears
(shown in Figure 8-8).

You can create your entity models directly from code or from reading and understanding the contents
of a database. In this case, make sure that you choose the database option. Clicking the Next button
in the dialog presents you with the second step of the wizard, as shown in Figure 8-9.

In this screen, select the underlying data store that you are using. You will notice that the connec-
tion string is defined for you and you can choose to name the connection string within the project’s
Web.config file. Click Next.

http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/

262 | CHAPTER8 WCF RIA SERVICES

Entity Data Model Wizard (5 e

| b Choose Model Contents
L4

What should the model contain?

g &

(LTI Empty model
from
database

Generates the model from a database. Classes are generated from the model when the project
15 compiled. This wizard also lets you specity the and objects to
include in the medel.

[« Previous || Heal > I | Finish Cancel

L — — =

FIGURE 8-8

Entity Data Model Wizard [N

p—
k b Choose Your Data Connection

Which data connection should your application use to connect to the database?

Entity connection string:

L csdlires:/f s5al| i
resy/ i System.Data.SqlCli i cti
string="Data Source=\SQLEXPRESS; AttachDbFilename=|DataDirectoryl
. _Data.mdfIntegrated Security=True;User Inst True™

| Save entity connection settings in Web_Config as:

AdventureWorks_DataEntitiec

= Previvuy | Head = I__f_- Cancel

L — =

FIGURE 8-9

On the next screen of the wizard, select the database objects that you want to be a part of the model
that you are creating. In this case, select all the tables associated with the Human Resources section
of the database. This is shown in Figure 8-10.

Building a Simple RIA Services Application | 263

Entity Data Model Wizard RN

b Choose Your Database Objects
L4

Which database objects do you want to include in your model?

=] Databaselog (dbg) i
V]2 Department [HumanResources)

7171 vocument [Froduction]

V1] employee (HumanResources) | 7
e

Empd Addi

1] Employ Jistory [t es)
(V1] EmployeePayHistory (HumanR &)

[TE] ErrorLog (dbo)

[TIE] mustration (Praduction)

17 inamaual sates)

] Jobcandidate (HumanResources)

EIE Lucalion [F i -

[¥] Pluralize or singularize generated nhject names

E‘ Indude foreign key columns in the model
Madel Namespare:

AdventureWorks_DataModel

L =

FIGURE 8-10

In addition, you can see from this figure that you also need to provide a model namespace. In this
case, it is named AdventureWorks_DataModel.

Click Finish. You are presented with a visual view of your model directly in Visual Studio. This view
is shown in Figure 8-11.

o0 BusinessApplication? - Mcrosolt Visual Stdia b [E=Stof *]

4 Entity Framewnre -JalaEle
K Foe - o Ol cvimeiapmiont q
L assoriation Ll Propertier
45 Lty S References
3 Assets
Ly innentance 15 empioyeein v [Contick
« Genenal A T addresin » Ca Mepen
5 reaguia =T
There are no usable contraly —_— = = sdinedDate » [Modeh
in thit growp, Drag an dem 7y Employee =] | = .
it this tet to 090 it 10 the B T i e vw*:‘
cilice = 1 R empryee =
S Properties ¥ = Appasml
¥ Emplayeein) GIObAISLDDIESHONI.CE
e T ——] 5 MaunPage vaml
= cantsclDy # [BusinewApplicationl. Web
=F loginD v [Properties
» Reterences
;'Mnn-gﬂlﬂ p—— - : App_Data
e 7 Depament (%] o [l aoventureworks Datamat
F mitnDate » [Chenifin
- — » Henth
.."‘G-‘"'“W-'M = Properties v O Modeti
T Genger ’
L Depamentin » [Resources
S HireOate gmm » [Serces
T Salariedfiag = Grovphisme 1 4 [k AdvertureWorkiedma
= vacationtsours P ModedDate %) Acventureworks Designer i
o sickLeavetious = (5] Busimessappiication] TestPage sy
P Curentiiag = Mamagation Froperties |#] BusinessAnplication] TestPage. k|
- (4] emplopretenanm. 4] Globalsuppaestiond.c1
T rowgua
Siteeright 5
MoadeaDate g
- = L Web.conlig -
= havgation Propenties |y
| employees
1] Emgloyeed
[, Employeerddrenien)
4, Employeeleparim..
4| EmployeePayisto_
LT S — W)
Pl R server Lxpt ,

FIGURE 8-11

264 | CHAPTER8 WCF RIA SERVICES

You will also notice that the connection string for the database has been added to the web.config
file as was stated in the wizard. Now that the entity model is in place, compile the application. Now
you are ready to build the Domain Service.

Building a Domain Service

Now that you have the entity model in place, it’s time to build your first domain service. A domain
service allows you to expose the pieces of the entity models that you want as well as the operations
over those models that you need for your client application.

Adding the Domain Service Class

Working in the BusinessApplication1.Web project, add a Domain Service Class. Right-click on the
project and choose the option to add a new item to the project. You will find the option to add a
Domain Service Class within the Add New Item dialog, as illustrated in Figure 8-12.

Add New tem - BUSIncsSADICAlion.weD)
Isbatiact Tomyraios. Sort by: | Detaull m P pll
L}
Ay — Type: Visaal C2 |
Code ﬁ ASP.NET Server Contral Visual Cz
ek Domain service class for WCF RIA Services
Coniad = applications
P g Avthentication Domain Service Visual C#
Windows Forms s
WPF W | Beoweser File Visual €5
Reporting
¥ lg"t 1 Domain Service Ulass Visual L7
Workflow
TN - onocosanios Visual 2
g Generlc Handler Visual C2
L= wioba nppication Crass Visual L7
"
lﬂ Site Map Visual C#
2 % Skin File Visual Cz
I i WCF Data Service Visual C#
'@ WOF Servicr: Vil €8
Name: AdventureWorksDomalnService.cs
- -
FIGURE 8-12

In this case, name the data service class AdventureWorksDomainService.cs as shown in Figure 8-12.
Click the Add button to display the Add New Domain Service Class dialog, as shown in Figure 8-13.

Here you are constructing a new class based on what you want to get at from the entity model.
From the dialog, you can see that the adventureWorksDomainService class is making use of the
AdventureWorks_DataEntities entity model that you created earlier in this chapter. Visual Studio
reads all the entity models from AdventureWorks_DataEntities and provides you with a list of
what is available. In this case, select all of them, but you will notice that the Employee entity model
is also enabled for editing. This means that you are exposing the ability to insert, update, or delete
items for this model.

Building a Simple RIA Services Application

265

Add New Domain Service Class

Domain service class name:

| AdventureWorksDomain Service

[¥] Enable client access
|| Fxpose ONata endpoint

Available DalaConlexlObjeciConlexl classes:

[Aaventureworks DataEntities (Entliy Framework)

=)

Entities
[¥] Department
[Employee
[¥ FmployesAddress
|¥] CmployeeDepartmentilistory
[¥ EmployeaPayHistory
[¥] JubCandidate

[#] Generate associated classes for metadata

Enable editing

1 i 5

(o[emen

Fl

GURE 8-13

The other important item to pay attention to in this dialog is the checkbox to enable client access to

the domain service. Make sure that this is checked in order for your Silverlight client to get access

to what is being constructed here.

Click the OK button in this dialog to produce a new class file within your project,
AdventureWorksDomainService.cs. This new class file is presented in Listing 8-1.

‘) LISTING 8-1: The new domain service class — AdventureWorksDomainService.cs

Available for
download on
Wrox.com

namespace BusinessApplicationl.Web

{
using System;

using System.Collections.Generic;

using System.ComponentModel;
using System.ComponentModel.DataAnnotations;

using System.Data;
using System.Ling;

using System.ServiceModel.DomainServices.EntityFramework;
using System.ServiceModel.DomainServices.Hosting;
using System.ServiceModel.DomainServices.Server;

// Also consider adding roles to restrict access as appropriate.
// [RequiresAuthentication]
[EnableClientAccess ()]

public class AdventureWorksDomainService

continues

266 | CHAPTERS8 WCF RIA SERVICES

LISTING 81 (continued)

LingToEntitiesDomainService<AdventureWorks_DataEntities>

{
public IQueryable<Department> GetDepartments ()
{
return this.ObjectContext.Departments;
}

public IQueryable<Employee> GetEmployees ()

{
return this.ObjectContext.Employees;

public void InsertEmployee (Employee employee)

{
if ((employee.EntityState != EntityState.Detached))

{
this.ObjectContext.ObjectStateManager.ChangeObjectState
(employee, EntityState.Added);
}
else
{
this.ObjectContext.Employees.AddObject (employee) ;
}
}
public void UpdateEmployee (Employee currentEmployee)
{
this.ObjectContext.Employees.AttachAsModified (currentEmployee,
this.ChangeSet.GetOriginal (currentEmployee)) ;
}
public void DeleteEmployee (Employee employee)
{
if ((employee.EntityState == EntityState.Detached))
{
this.ObjectContext.Employees.Attach (employee) ;
}
this.ObjectContext.Employees.DeleteObject (employee) ;
}

public IQueryable<EmployeeAddress> GetEmployeeAddresses ()

{
return this.ObjectContext.EmployeeAddresses;

public IQueryable<EmployeeDepartmentHistory>
GetEmployeeDepartmentHistories ()

return this.ObjectContext.EmployeeDepartmentHistories;

Building a Simple RIA Services Application | 267

public IQueryable<EmployeePayHistory> GetEmployeePayHistories()

{
return this.ObjectContext.EmployeePayHistories;

public IQueryable<JobCandidate> GetJobCandidates ()

{
return this.ObjectContext.JobCandidates;

Many of the code comments were removed from this code, but this is a class file generated for you
that exposes out the objects you chose from your entity model. You can see that this class file makes
use of the underlying RIA Services framework using the System.ServiceModel .DomainServices
namespace.

While looking at what is presented in the class structure, you should make note of some impor-
tant items.

[EnableClientAccess ()]
public class AdventureWorksDomainService
LingToEntitiesDomainService<AdventureWorks_DataEntities>

// Code removed for clarity

First, the class that is created for you is called AdventureworksDomainService and it

inherits from an abstract base class called LingToEntitiesDomainService<T>. The
LingToEntitiesDomainService<T> is part of the RIA Services framework and will expose

the entity model you want. You put the entity model in place of <T> and in this case, it becomes
LianoEntitiesDomainService<AdventureWorks_DataEntities>.Rﬁnunnber

that AdventureWorks_DataEntities was something that you built earlier in this chapter.

The other important aspect of this is that this class has been enabled for client access (from checking
the checkbox earlier from the Add New Domain Service Class dialog). This is accomplished by adding
the class attribute [EnableClientaAccess ()] to the class.

Looking into the class, you can see that a series of methods have been created for you that
expose the entities from the model. The first one (the one that you work with in this example),
is the GetEmployees () method as shown here:

public IQueryable<Employee> GetEmployees ()
{

return this.ObjectContext.Employees;

268

| CHAPTER8 WCF RIA SERVICES

You can see from this code snippet that the GetEmployees () method call returns an TQueryable<T>
interface of TQueryable<Employee>, which is a list of employees. TQueryable<T> is from the
System.Ling namespace. From this bit of code, you can see it returned all the employees found in the
table. You could, if you wanted, change the output to provide any filtering or sorting to what is output
directly in this method.

Reviewing the Operations

In addition to the GetEmployees () method call, because you have checked the edit option when
setting up the class you are provided with Insert, Update, and Delete options for the Employees
object as well:

public void InsertEmployee (Employee employee)
{

// Code removed for clarity
}

public void UpdateEmployee (Employee currentEmployee)
{

// Code removed for clarity
}

public void DeleteEmployee (Employee employee)
{

// Code removed for clarity

Once you have the domain service in place, compile your solution. Now that this is in place, it is
time to turn your attention to the client application.

Connecting the Silverlight Client to Your Domain Service

At this point, everything is in place on the server-side project. This project now includes an entity model
and the model is exposed to the client through a domain service. Working with BusinessApplication1
now, you can make the connection to this domain service.

Start by displaying a full list of the employees from the Employee table using the GetEmployees ()
method call. To do this, create a new Silverlight page called Employees.xaml. Place this view within
the Views folder along with the About .xaml and the Home.xam1 files.

You can open both the about .xaml and the Home . xam1 files to look at how you want to set up the
Employees.xaml page to make it fit in with the rest of the application. At the end of the day, you
want the Employees.xaml page to show a grid of all the employees that are provided via the domain
service. The Employees.xaml page is presented in Listing 8-2.

Building a Simple RIA Services Application |

269

‘) LISTING 8-2: The page to present a list of employees
Available for
dsfrgiﬂggr:n <navigation:Page

xmlns:my="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data"

xmlns:sdk="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.Input"

x:Class="BusinessApplicationl.Employees"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
xmlns:navigation="clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Navigation"
d:DesignWidth="640" d:DesignHeight="480"
Title="Employees Page">
<Grid x:Name="LayoutRoot">
<ScrollViewer x:Name="PageScrollViewer"
Style="{StaticResource PageScrollViewerStyle}">

<StackPanel x:Name="ContentStackPanel"
Style="{StaticResource ContentStackPanelStyle}">

<TextBlock x:Name="HeaderText"
Style="{StaticResource HeaderTextStyle}"
Text="Employees" />

<my:DataGrid x:Name="gridEmployees" />
</StackPanel>

</ScrollViewer>
</Grid>
</navigation:Page>

From this, you can see that there is not much to this page besides some header text and a pataGrid
control. The DataGrid control’s name is gridEmployees.

Connecting the Two Solutions

With this in place, now you can turn your attention to the code-behind for this page. The first step
is to add a new using statement to the top of the code-behind file. At the bottom of the list of usin
statements, add a reference to the other project as illustrated in Listing 8-3.

‘) LISTING 8-3: Adding a using statement to BusinessApplication1.Web
Available for
“s}"rg;“ggr:" using System;
using System.Collections.Generic;
using System.Ling;
using System.Net;

g

continues

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

270

| CHAPTER8 WCF RIA SERVICES

LISTING 8-3 (continued)

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using System.Windows.Navigation;
using BusinessApplicationl.Web;

Once you have this in place, compile the entire solution.
Then you have made the tie between the client and the
server applications in regard to the domain service.

You probably are looking now to see what changed in
your client project. It appears as if nothing changed when
looking at the project directly in Visual Studio. However,
you can see the changes that were made directly to the
BusinessApplication1 project by clicking the Show All
Files button from the toolbar of the Visual Studio Solution
Explorer. You are then presented with what is shown in
Figure 8-14.

Looking over this image from Figure 8-14, you can see that
there is a new folder now called Generated_Code. Contained
within this folder is a file called Businessapplicationl
.Web.g.cs. This file contains all the methods that interact
with the methods from the domain service. It also contains
the entity models that were defined.

| Solution Explorer - 0 x
=Bl
g Solution 'BusinessApplicationl’ (2 projects) -
4 & Businesshpplicationl
I+ Zdl Properties
I+ (sl Referenres
» [Assets
I | Bin
» 3 Controls
4 7y Generated_Code
b __| Models
__“__Businessi_pgt_izaiionl.Web.g_,c; |8
i+ [Helpers
t+ 3 libs
> [Models
14 | ob)
e
+ [Web
je| App.aml
fﬂ GlobalSuppressions.cs
= MainPage.xaml

m

-‘-3 Solution Explorer

FIGURE 8-14

You will see a lot in this class — too much to show here (it is more than 3,000 lines of code). Some
interesting parts, though, are that you can see some overloaded DomainContext instances:

public AdventureWorksDomainContext ()

this (new WebDomainClient<IAdventureWorksDomainServiceContract>

(new

Uri ("BusinessApplicationl-Web-AdventureWorksDomainService.svc",

UriKind.Relative)))

Also, within the TAdventureWorksDomainServiceContract, you can see the asynchronous service

calls such as BeginGetEmployees () and EndGetEmployees():

/// <summary>

/// Asynchronously invokes the 'GetEmployees' operation.

/// </summary>

/// <param name="callback">Callback to invoke on completion.</param>
/// <param name="asyncState">Optional state object.</param>

Building a Simple RIA Services Application | 271

/// <returns>An IAsyncResult that can be used to monitor the request.</returns>
[FaultContract (typeof (DomainServiceFault),
Action="http://tempuri.org/AdventureWorksDomainService/
GetEmployeesDomainServiceFault", Name="DomainServiceFault",
Namespace="DomainServices")]
[OperationContract (AsyncPattern=true,
Action="http://tempuri.org/AdventureWorksDomainService/GetEmployees",
ReplyAction=
"http://tempuri.org/AdventureWorksDomainService/GetEmployeesResponse")]
[WebGet ()]
IAsyncResult BeginGetEmployees (AsyncCallback callback, object asyncState);

/// <summary>

/// Completes the asynchronous operation begun by 'BeginGetEmployees'.

/// </summary>

///<param name="result">The IAsyncResult returned from 'BeginGetEmployees'.</param>
///<returns>The 'QueryResult' returned from the 'GetEmployees' operation.</returns>
QueryResult<Employee> EndGetEmployees (IAsyncResult result);

Working with the Domain Context

You will find a lot more in the BusinessaApplicationl.Web.g.cs class. Now, you can make use of
this in the code-behind of your Employees.xaml file. This is accomplished in Listing 8-4.

‘) LISTING 8-4: Employess.xaml.cs
Available for
“Wmmdm using System.Windows;
rox.com . .
using System.Windows.Controls;
using System.Windows.Navigation;
using BusinessApplicationl.Web;

namespace BusinessApplicationl
{
public partial class Employees : Page
{
public Employees ()
{
InitializeComponent () ;
Loaded += Employees_Loaded;

private void Employees_Loaded(object sender, RoutedEventArgs e)
{
AdventureWorksDomainContext context = new
AdventureWorksDomainContext () ;
gridEmployees.ItemsSource = context.Employees;
context.Load (context.GetEmployeesQuery ()) ;

http://tempuri.org/AdventureWorksDomainService/
http://tempuri.org/AdventureWorksDomainService/GetEmployees%E2%80%9D
http://tempuri.org/AdventureWorksDomainService/GetEmployeesResponse%E2%80%9D

272

| CHAPTER8 WCF RIA SERVICES

In this case, create an instance of the AdventureWorksDomainContext and assign the DataGrid
control’s TtemsSource property to the value of context . Employees. From there, load the context
object with a query to GetEmployeesQuery (). This will load everything in the entity model based
on what was defined earlier in this chapter.

As you work with the code in the Employees_TLoaded () method, you will notice that from the con-
text object, you have everything you would expect via IntelliSense as illustrated in Figure 8-15.

void employees_Loaded(object sender, HoutedtventArgs e)

{
AdventureWorksDomainContext context = new AdventureWorksDomainContext();
gridémployces.ItemsSource = context.cm

=] EmployceDepartmentHistorics
// Executes when the user navigates l:| EmployeePayHistories
protected override void OnNavigatedTo—

{ - GetEmployeeAddressesQuery
} @ GelEmployeeDepar timentHistoriesQuery
% GetLmployeePayllistoriesQuery
@ GetEmployeesQuery
FIGURE 8-15

When you run this code, you will notice the pause as the content gets loaded into the view, but once
loaded, you are presented with something similar to what is presented in Figure 8-16.

WCF RIA Services allowed the client to make a service call to a remote service location and get at con-
tent and capabilities that resided on the server. The nice thing about this was that in working in code
within the client project, it was as if you were working with local objects rather than through a service
layer. You can see from this example just how simple WCF RIA Services makes the entire process.

[@ Employees Page - Windows Intemet Explorer T [
OO = o) revine e — T 42| X |[o 5 -]
¢ Favortes | @ Employses Page - v [0 @8 v pagev satety~ Tooisw v

Application Name 2ol Fmplayees
Employees _|
BirthDate ContactiD Currentflag) Empk
Isias/1s72 12.00:00 A | 1208 v : doyee 16 Employesddress Encloyesd oy 1 et
6/3/1977 12:00:00 AM | 1030 " ' lovee : 6 tmentHistory 2 Emph
12/13/1964 12:00:00 AM 1002 ' ployee - 12 I 4d ployeeDep ! Emph
1/23/1965 12:00:00 AM | 1290 i Employee Emplayee : 3 Ei Ei listory 4 Cmgh
8/29/1949 12:00:00 AM 1009 " ploy ployes : 263 ployeeDep Y |5 Emph
4/19/1965 12:00:00 AM | 1028 o Emplayes Emplayes : 109 F EmplayeeDer tory 6 Emph
2/16/1946 12:00:00 AM | 1070 " 131 istory 7 Empk
7/6/1946 12:00:00 AM | 1071 o Crmployes | Emplayes : 185 EmployssAddres EmplayesDer tory 8 Emph
10/29/1942 12:00:00 AM | 1005 o i lovee : 3 fistory 9 Empk
4/27/1946 12:00:00 AM | 1076 ' ploy ployee - 185 ! Ad pl pa ¥ 10 Emph
4/11/1949 12:00:00 AM | 1006 o 2 lovee : 3 fistory 1 Emph
8/1/1061 12:00:00 AM 1001 ' ik ploy 109 oy dul; ph P 12 Emph
10/1/1946 12:00:00 AM 1072 o : 185 fasbory 12 Empt
5/3/1946 12:00:00 AM | 1067 v ploy p 121 ployesDep: ¥ 14 Emph
B/12/1546 12:00:00 AM | 1073 o Emplayes Employes : 185 E EmplayesDep ¥ 15 Emph
4 | 3

Done € Local intranet | Protected Mode: ON 4~ R -

1L =

FIGURE 8-16

Building a Simple RIA Services Application | 273

Connecting to the Domain Service through XAML

So far, you have seen what it is to connect with the domain service through code and work with

the underlying data that is retrieved. The next step is to look at solving much of the same problem,

except this time you will be doing it using declarative coding using XAML.

Creating Your Entity Data Model

For this example, create a new entity data model within the same
BusinessApplication1.Web project. Call this model Customers.edmx. Attach only
the Customer table from the Adventure Works database. This gives you a simple
data model as presented in Figure 8-17.

Creating the Domain Service

When you have created this entity data model, be sure to compile the solution first
before proceeding with any additional steps. With this data model in place and
available throughout the application, it’s time to create your domain service. Create
a new domain service and give it the name of CustomerDomainService.cs. When

| = properties

|| = Mavigation Properties

é‘-j CwslomerlD

= TeritorylD

f AccountMumber
f CustomerType
f rowguid

=5 ModifiedDate

FIGURE 8-17

you are presented with the dialog of the entities that you are going to want to work with in creating this
domain service, you will notice that there are now two options contained within the drop-down. Select
y P P

the one that contains the Customer table and check the Edit box to enable it for editing.

From there, open the CustomerDomainService.cs class file and make a small change. Listing 8-5

shows you in bold the change you must make to the generated file.

‘) LISTING 8-5: Having the customers come out of the database ordered by their account number

Available for
download on namespace BusinessApplicationl.Web

Wrox.com
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Data;
using System.Ling;
using System.ServiceModel.DomainServices.EntityFramework;
using System.ServiceModel.DomainServices.Hosting;
using System.ServiceModel.DomainServices.Server;

[EnableClientAccess ()]
public class CustomerDomainService
LingToEntitiesDomainService<AdventureWorks_DataEntitiesl>
{
public IQueryable<Customer> GetCustomers ()

{

return this.ObjectContext.Customers.OrderBy(c => c.AccountNumber);

}

public void InsertCustomer (Customer customer)

continues

274 | CHAPTER8 WCF RIA SERVICES

LISTING 8-5 (continued)

if ((customer.EntityState != EntityState.Detached))
{
this.ObjectContext.ObjectStateManager.ChangeObjectState (customer,
EntityState.Added) ;
}
else

{
this.ObjectContext.Customers.AddObject (customer) ;

public void UpdateCustomer (Customer currentCustomer)
{
this.ObjectContext.Customers.AttachAsModified (currentCustomer,
this.ChangeSet.GetOriginal (currentCustomer)) ;

public void DeleteCustomer (Customer customer)

{
if ((customer.EntityState == EntityState.Detached))
{

this.ObjectContext.Customers.Attach (customer) ;

}

this.ObjectContext.Customers.DeleteObject (customer) ;

In this small change of code, you are returning the customers in the GetCustomers () call so that
they are ordered by their account numbers simply by adding orderBy (c => c.AccountNumber).
You need this type of ordering in place when you start paging results as they come out of the service.
This is demonstrated shortly.

When you have finished creating the domain service, compile the application one more time.

Creating Customers.xaml

If you have made it this far, the server-side of the solution to work with your customers is accomplished.
The next step is to create a new Silverlight page called customers.xaml. For the purposes of working
with this example, place this page with the other pages within the Views folder of the project.

The first step is to get the page to a point where it is like the other pages you have been working
with so far. Listing 8-6 provides you with the XAML code to place within this file.

‘) LISTING 8-6: The start of the Customers.xaml page
Available for
ﬂwmrgﬁﬂ <navigation:Page x:Class="BusinessApplicationl.Views.Customers"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Building a Simple RIA Services Application |

275

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
xmlns:navigation="clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Navigation"
d:DesignWidth="640" d:DesignHeight="480"
Title="Customers Page"
xmlns:sdk="http://schemas.microsoft.com/
winfx/2006/xaml/presentation/sdk" >
<Grid x:Name="LayoutRoot">
<ScrollViewer x:Name="PageScrollViewer"
Style="{StaticResource PageScrollViewerStyle}">

<StackPanel x:Name="ContentStackPanel"
Style="{StaticResource ContentStackPanelStyle}">

<TextBlock x:Name="HeaderText"

Style="{StaticResource HeaderTextStyle}"
Text="Customers"/>

<sdk:DataGrid Name="dataGridl" />

</StackPanel>
</ScrollViewer>

</Grid>
</navigation:Page>

You will notice that this page is not much different from the other pages you have seen so far. There is
a TextBlock control on the page and pataGrid control that will later contain your list of customers.

When you add the WCF RIA Services to Visual Studio, you will also notice that there is a new control
available to you via the Visual Studio Toolbox. Here you will find a control called bomainbataSource.
For this example, you want to make use of this. To do this, just drag-and-drop the control onto the
design surface of your Silverlight page. You will notice that a few changes happened to your XAML
code. First, a new namespace was added to deal with the control. Second, you will see the new control

on the page:

<riaControls:DomainDataSource />

The idea here is that you are going to declaratively define the details of the domain service that you
are going to work with and tie the pataGrid control to this new control on the page. Listing 8-7

shows you the changes you need to make to the customers.xaml page.

‘) LISTING 8-7: Adding a DomainDataSource control to the page

Available for

dwm?%gn <navigation:Page x:Class="BusinessApplicationl.Views.Customers"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d"

continues

http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

276 | CHAPTER8 WCF RIA SERVICES

LISTING 8-7 (continued)

xmlns:navigation="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Navigation"
d:DesignWidth="640" d:DesignHeight="480"
Title="Customers Page" xmlns:sdk="http://schemas.microsoft.com/
winfx/2006/xaml/presentation/sdk"
xmlns:riaControls="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.DomainServices"
xmlns:domain="clr-namespace:BusinessApplicationl.Web"
xmlns:Views="clr-namespace:BusinessApplicationl.Views">
<Grid x:Name="LayoutRoot">
<ScrollViewer x:Name="PageScrollViewer"
Style="{StaticResource PageScrollViewerStyle}">

<StackPanel x:Name="ContentStackPanel"
Style="{StaticResource ContentStackPanelStyle}">

<TextBlock x:Name="HeaderText"
Style="{StaticResource HeaderTextStyle}"
Text="Customers"/>
<sdk:DataGrid Name="dataGridl"
ItemsSource="{Binding Data, ElementName=domainDataSourcel}" />
<riaControls:DomainDataSource Name="domainDataSourcel"
LoadSize="10" QueryName="GetCustomers" AutoLoad="True">
<riaControls:DomainDataSource.DomainContext>
<domain:CustomerDomainContext />
</riaControls:DomainDataSource.DomainContext>
</riaControls:DomainDataSource>
</StackPanel>

</ScrollvViewer>
</Grid>
</navigation:Page>

Here, the DomainDataSource control is placed on the page and is set to query the GetCustomers ()
method using the property QueryName. The LoadSize property is set to 10, meaning that the Silverlight
page will make calls 10 at a time to the service rather than calling for everything at once.

The domain context to use is defined using <riaControls:DomainDataSource.DomainContext />
and assigning the context to the CustomerDomainContext.

From there, the DataGrid is bound to this data source control through the Ttemssource property.

Reviewing the Behavior of the Results

When you compile and run this page, you are presented with a grid of 10 results, as you would expect.
This is demonstrated in Figure 8-18.

As stated, when this page is pulled up, 10 results are quickly displayed. However, after a slight pause,
another 10 results are called for and bound to the grid. The grid continues to do this until all the
results are bound to it.

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk

Building a Simple RIA Services Application | 277

Customers Page Windows Internet Explorar [F=EE
@Q' |E- P ITestPage aspxs/Customers 71 =] | "r_| x [|,§--f Bing p -~
S Favorites | & Gustomers Page I i - * [im v Pagev Satetyv Tooks~ g+ "|
1
Application Name Ahout Fmployess | Customers
Customers
AccounthNumber | Customeril) | Customeriype ModifiedDate rowguid Territoryl
AW00000001 ' A § 5 10/13/2004 11:15:07 AM JfSae95e-b87d-4ned-95b4-c3797afcb74f 1
AWDUUGUOUZ 2 5 IO0/13/2004 11:15:07 AM | ebbfed/-avaf-1a/d-ab15-c129dbeliavl 1 |
AW00000003 3 S5 10/13/2004 11:15:07 AM | 130774b1-db21-4el3-98c8-c104budbedsd 4
AW00000004 4 4 10/12/2004 11:15:07 AM | H862851-1daa-1044-beFc-3e85583c054d | 4
AWDDOONNNS 5 s 10/13/2004 11:15:07 AM | A3905hc-Al5e-4171-b167-:98da06938 4
AW00000006 [g 10/12/2004 11:15:07 AM | 1202dt88 bta2 467d bd54 fcbJc647Hdd7 4
AWDDOO0O0T 7 5 10/13/7004 11:15:07 &M 03897738-h193-d4Rr-9873-felicddaned7s |
AW00000008 8 g 10/13/2004 11:15:07 AM | B01368b1 4323 4bfa 8bea SbSbicdbd4al 5
AWD0000009% 9 s 10/13/2004 11:15:07 AM 23c3-481d-80d f77z2 |5
AW00000010 10 5 10/13/2004 11:15:07 AM | cdbGG90d-2ff1-4fba-0f22-G0ad1d11dabd G
AWDUODDU11 11 5 10/13/2004 11:15:07 AM | /50F3495-54cd-a8a0-E0el-e3 /ackle//dd &
AW00000012 12 5 10/13/2004 11:15:07 AM | 947bcaf1-1f12-44f3-b59c2-0011f95fbe54 [}
AWLUODUU1S 13 5 10/13/2004 11:15:07 AM | bufa. 2511-135b-3/: b1/s | 7
AWDNOONN14 14 5 10/13/2004 11:15:07 AM | 2M96helc-723d-d681-R3db-b7hBarTooRds &
AWO0000015 15 g 10/13/2004 11:15:07 AM | 0240737b-d4ta-4795-03aa-caebB371bctd O
awnnnnnniA 1A = 1A/13/9004 11-15-N7 &M | +93R1 SRA-I31 r-dele-RO7R-Ae | 2ddBubhi AT in | o
Done €& Local Intranet | Protectad Mode: Off 4 v Hiooxw v

L]

FIGURE 8-18

This is actually the correct behavior and, in some cases, something you might want to achieve if you
wanted to display the entire dataset in one view. You can modify this behavior by simply adding a
DataPager control to your XAML page. This small control is presented in Listing 8-8.

LISTING 8-8: Adding a DataPager control

<sdk:DataPager Height="26" Name="dataPagerl" PageSize="10"
Source="{Binding Data, ElementName=domainDataSourcel}" />

Now with this Datapager control in place, when you run the page you are presented with a grid
containing a page of only 10 items. This is illustrated in Figure 8-19.

Now the page size is set to 10 and the load size through the DomainbataSource control is also set

to 10. This means that for each new page called, a new call is made to the underlying service. If the
DomainDataSource’s LoadSize property was set to 20, there would only be a new call made for each
odd page in the grid because the client application would already contain the first 20 in memory.

Filtering Results

There is a lot you can do with WCF RIA Services — more than can be covered in this single chapter.
One interesting item, in addition to pulling pages of content, is filtering the items that are coming
back from the service.

278 | CHAPTER8 WCF RIA SERVICES

Customers Page - Windows Internet Explorer [E=EE=
B0 = e v o o ~hied 4] % || tne 5 *]
- P »
r Favorites | 4 Customers Page - = [mh = Pagew Satety~ Tooks~ g~
Application Name mpio Customers
login
Customers
Accounthumber CustomerlD CustomerType ModifiedDate rowguid TerritorylD
AWD0000O0L |1 5 10/13/2004 11:15:07 AM 3f5ae95e-b87d-4acd-95b4-e3797afch74f 1
AW00000002 2 s 10/13/2004 11:15:07 AM | e552f657-a0af-4a7d-2645-0429d6802491 | 1
AWD0000003 3 5 10/13/2004 11:15:07 AM | 130774b1-db21-4ef3-90c8-c104bcdGedbd | 4
AWD0000004 4 s 10/13/2004 11:15:07 AM ff862851-1daa-4044-beTc-3e85583c054d 4
AWD0000005 5 5 10/13/2004 11:15:07 AM BI305bdc-65e-471-b162-c38da065138a 4
AWO0000006 6 s 10/13/2004 11:15:07 AM | 1a92df88-bfa2-167d-bds4-fcbvesd7idd? 4
AWD0000007 7 5 10/13/2004 11:15:07 AM | 03e3273e-b193-4486-3023-felcadaced70 1
AWO0000008 8 s 10/13/2004 11:15:07 AM | 801368b1-4323-4bfa-Sbea-5bSbledbd4a0 5
AWD0000009 5 s 10/13/2004 11:15:07 AM bS00bBTF-2363-4814-B0da-c43a5bd6TT2 | 5
AWO0000010 10 s 10/13/2004 11:15:07 AM | cdb6698d-2fF1-4fba-8f22-60ad1d11dabd | 6
M 4|Pege|r |of1919|» M|
Done L Local intranet | Protected Mode: O v Hiex v
& =
FIGURE 8-19

You can apply filtering options to the Customers.xaml page by adding some new controls and
changing how the DomainDataSource control works. This is illustrated in Listing 8-9.

\) LISTING 8-9: Adding filtering to the DomainDataSource control
Available for
“Wm?ﬂ;“ <navigation:Page x:Class="BusinessApplicationl.Views.Customers"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

mc:Ignorable="d"

xmlns:navigation="clr-namespace:System.Windows.Controls;

assembly=System.Windows.Controls.Navigation"

d:DesignWidth="640" d:DesignHeight="480"

Title="Customers Page"

xmlns:sdk="http://schemas.microsoft.com/

winfx/2006/xaml/presentation/sdk"
xmlns:riaControls="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.DomainServices"
xmlns:domain="clr-namespace:BusinessApplicationl.Web"
xmlns:Views="clr-namespace:BusinessApplicationl.Views">
<Grid x:Name="LayoutRoot">
<ScrollvViewer x:Name="PageScrollViewer"
Style="{StaticResource PageScrollViewerStyle}">

<StackPanel x:Name="ContentStackPanel"

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/

Building a Simple RIA Services Application

| 279

Style="{StaticResource ContentStackPanelStyle}">

<TextBlock x:Name="HeaderText"
Style="{StaticResource HeaderTextStyle}"
Text="Customers" />

<StackPanel x:Name="filterStackPanel"
Orientation="Horizontal"” Height="40">
<sdk:Label Name="1lblFilter"
Content="Filter by Territory ID " />
<ComboBox Height="23" Name="comboBoxl" Width="120">
<ComboBoxItem Content="1" />
<ComboBoxItem Content="2" />
<ComboBoxItem Content="3" />
</ComboBox>
</StackPanel>

<sdk:DataGrid Name="dataGridl" ItemsSource="{Binding Data,
ElementName=domainDataSourcel}" />
<riaControls:DomainDataSource Name="domainDataSourcel"
LoadSize="10" QueryName="GetCustomers" AutoLoad="True">
<riaControls:DomainDataSource.DomainContext>
<domain:CustomerDomainContext />
</riaControls:DomainDataSource.DomainContext>
<riaControls:DomainDataSource.FilterDescriptors>
<riaControls:FilterDescriptor
PropertyPath="TerritoryID"
Operator="IsEqualTo"
Value="{Binding ElementName=comboBoxl,
Path=SelectedItem.Content}" />
</riaControls:DomainDataSource.FilterDescriptors>
</riaControls:DomainDataSource>
<sdk:DataPager Height="26" Name="dataPagerl" PageSize="10"
Source="{Binding Data, ElementName=domainDataSourcel}" />

</StackPanel>

</ScrollViewer>

</Grid>

</navigation:Page>

In this case, a ComboBox control was added and this will be the control that the end user makes use

of to filter the contents found in the DataGrid control. With this simple control in place, the only

additional change required is to provide a <riaControls:DomainDataSource.FilterDescriptors>

section to the DomainDataSource control. Here you provide a PropertyPath property, which points

to the item in the entity model that you are looking to filter by. From there, you will need to provide
an operator to utilize. The operator property in this sample is set to IsEqualTo, but it can be set to
several other things, such as:

>

>
>
>

Contains

EndsWith

IsContainedIn

IsEqualTo

280 | CHAPTER8 WCF RIA SERVICES

IsGreaterThan
IsGreaterThanOrEqualTo
IsLessThan
IsLessThanOrEqualTo

IsNotEqualTo

Y Y Y VY Y Y

StartswWith

From there, you need only to set the binding to what is presented in the comboBox control and then
compile and run the page. You are then presented with the results as shown in Figure 8-20.

@ Customers Page - Windows Intermet Explorer [E .
@Q - e Testr #/Customers "| ﬁ_i“?] A ||‘: Bing p -
dy Favorites | @ Cuslomers Page o~ Bl -~ % v Pager Safetyr Took~ @+
Application Name About Employess [CUStomers

Customers

rite by Termvory 10 (2]

TerritorylD | AccountNumber | Customer!D CustomerType ModifiedDate rowguid

2 i.qwuouwu'sa a5 s 10/13/2004 11:15:07 AM 8d74b6b9-6c96-34a5- becs-0e9736d191be

2 AWO0D0D036 36 s 10/13/2004 11:15:07 AM 53c0491d-Soe8-db16-2830-2078ddid6ad

2 AWO00000052 53 5 10/13/2004 11:15:07 AM 81d3b740-dct1-423-25¢3-dB1353280016

2 AW0D0000SE s4 s 10/13/2004 11:15:07 AM | 123b3ebf-deh0-4423-8452-34800 1 cocfBg

2 AW00000071 71 5 10/13/2004 11:15:07 AM 91ccBac?-27e5-427c-b040-db4 769275443

2 AW00000072 72 s 10/13/2004 11:15:07 AM | 0da3081d-fdc7-4005-b77d-eSafdac1Sdes

2 AW0000008% 83 5 10/13/2004 11:15:07 AM 534fe5594-1098-425t-0042-2e670bi 2220

|2 AWO0000107 107 s 10/13/2004 11:15:07 AM | 9522ca57-0246-4968-3849-d9821cd67617

2 AWODOO0108 108 s 10/13/2004 11:15:07 &AM d1675660-a0d1-43d6-A7ch-acSchefd0de7

|2 AWOD000125 125 s 10/13/2004 11:15:07 AM 69af6e37-ead1-4fbd-6210-61ce3b35ioq3 |

4| Page |1 of 7| » M|
Done &L Local intranet | Protected Mode: Off - Hox -
FIGURE 8-20

SUMMARY

This chapter looked at working with WCF RIA Services within your Silverlight applications. Most
developers coming from the ASP.NET world will be wondering how to bring the data and logic from
the middle tier of their application stacks down to the presentation tier if the entire presentation tier is
residing on the client. WCF Data Services makes this task quite simple in that it provides you with the
means to code your client applications as if the middle tier resides directly on the client itself. Instead,
behind the scenes, calls are being made up to a WCF service layer.

WCF RIA Services is a new feature available to Silverlight developers, and you will find that it is a
useful tool in your tool belt when building business applications.

Out-of-Browser Experiences

WHAT’S IN THIS CHAPTER?

Configuring and installing an out-of-browser application
Detecting network connectivity
Creating a trusted application

Implementing COM automation

Y Y Y Y Y

Customizing windows

An out-of-browser application, or OOB for simplicity, is a Silverlight-based application that
can be installed from the host browser from which it is running onto a user’s local computer.
Once installed locally, it can be launched from a local, application-specific icon located on the
desktop or Start menu. From a user’s perspective, the installed application is launched just like
any other application: there is an application-specific icon, and double-clicking that icon opens
up the application for execution.

CREATING AN OUT-OF-BROWSER APPLICATION

An OOB application is really no different than an application that is hosted within a browser.
You use Visual Studio to build out a user interface, you write code that responds to events,
and you use features like isolated storage and printing to deliver expected Line of Business or
rich Internet applications (RIA) features. From a security perspective, an OOB is subject to
the same security sandbox restrictions as ordinary in-browser applications. To increase the
features that Silverlight has available, such as COM automation support and local filesystem
access, you can remove some sandbox restrictions by configuring your application to require
elevated trust. Elevated trust is a new feature to Silverlight 4, and its implications are covered
later in the chapter.

282 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

To enable an in-browser application to run outside of the browser, you can do either one of the
following;:

> Set OOB-specific properties in the Properties window in Visual Studio.
> Edit the application’s manifest to set OOB properties.
Once you perform one of the aforementioned operations, there is an additional menu option when

you right-click your Silverlight application that enables you to install the application locally to run
outside of the browser as Figure 9-1 shows.

('@ 00BApp - Windows Intermet Explarer oo =
e PP ol
_) _:} IE' http://localhost:937 '| "f| A | !b Bing oo
| | @ ooBApe ' B-UR-Ce-EB Y-8
Silveslight

Install OUEApp Application onto this computer...

L -

FIGURE 9-1

When an application is installed outside of the browser, it is still accessing the Internet for its net-
work resources. If you are accessing data from a service, or doing some sort of authentication, you
need to make sure you handle any network connection issues gracefully. Using the network detec-
tion API built into Silverlight, you can deal with these issues effectively. This also allows you to
create applications that can run successfully without a network connection. You can use local files
or isolated storage to read and write data, and when a connection is available, you can allow your
application to sync with a server. Later in this chapter you learn how you can detect network con-
nectivity and deal with situations in which the network is not available.

Out-of-Browser Application Features

You may decide to create an OOB application just to have a more interesting experience for your
application; for example, you may be after a desktop-like look and feel, which the OOB application
gives you. You have other good reasons to choose an OOB application. The following features are
available to your Silverlight application only if it is running outside of the browser.

> Window Manipulation — At run time, you can change the window size, set it as the topmost
window, and minimize or maximize the window programmatically. You also have the abil-
ity to handle the window_cClosing event, which you can cancel except when the computer is
shutting down or the user is logging off. The closing event enables you to perform actions
such as displaying a warning if the user has unsaved changes in the application data.

Creating an Out-of-Browser Application | 283

> Window Customization — Trusted applications can hide the title bar and border of the
out-of-browser application window to provide a completely customized user interface. The
wWindow class provides APIs that trusted applications can use to replace the title bar buttons
and enable mouse dragging to move or resize the window.

> HTML Hosting — You can display HTML content within your out-of-browser application
to replace functionality provided by a host web page.

> Notification Windows — Out-of-browser applications can display a toaster (or pop-up)
notification similar to what displays when a new e-mail arrives in Outlook. The notification
window displays in the lower right of the screen.

Digital Rights Management (DRM) — DRM support is available for offline media files.

Elevated Trust — Trusted applications can integrate with native functionality, such as cross-
domain access, and are not subject to the same security restrictions as normal Silverlight-
based applications.

> Filesystem Access — Trusted applications can use the System. 10 types and related types to
enable read and write access to files in user folders on the local computer.

@ OOB applications can access network resources over HT TPS when a connec-
tion is available, but OOB applications are no more secure than their host web-
sites. Therefore, users must rely on the security of the host site when installing
or updating an out-of-browser application. If your application handles sensitive
information, you should use HTTPS for the application URI and for secure
communications. Note that the URI (including protocol) of the original applica-
tion is always used when the application checks for updates.

Now that you have a basis for what an OOB application is and why you might create one, the next
step is to learn how to create an OOB application.

Configuring an Out-of-Browser Application in Visual Studio
You can enable your existing Silverlight application to run outside of the browser in two ways:

> Modify the properties on the Out-of-Browser Settings dialog, which is launched from the
Properties window of your Silverlight project.

> Modify the Out-of-Browser settings in the AppMani fest .xaml file.

To configure OOB support via the Out-of-Browser Settings dialog, follow these steps:
1. In Solution Explorer, select the Silverlight project for which you want to enable OOB support.
2. On the Project menu, select project name Properties.

3. On the Silverlight tab, select Enable running application out of the browser as demonstrated in
Figure 9-2.

284 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

4. Click Out-of-Browser Settings to launch the Out-of-Browser Settings dialog box, as shown in

Figure 9-3.
Siveright
L N/A -
Debug
Build Application B
Assembly name: Default namespace:
Ll ‘WindowlessApp WindowlessApp
Reference Paths Startup abject
s isionson 7]
Concle Analysis iaht build ogti
Target Sitveright Version:

Sitveriight 4 -

Xap file name:

WindowlescAppaap

[] Reduce XAP size by using application hbrary caching

[¥] Enable runnir ion out of the b

7] Generate Sitverlight manifest file

Manifest file template:

Properties\AppManifestxml Seoie]
WCF RIA Services link

FIGURE 9-2

e)
Window Title

Iww i
width o Height 500

7] set wandow location manually

L s T e—

Shortcut name

000App Apglication

Mdkﬂﬁnnduﬁm

'00BApp Applcation on your desktop; at home, at work or on the oo,

16x 16 Icon

32x32 Icon

418 x 18 Icon

128 x 128 Icon

[¥] Use GPU Acceleration

|} Show install menu

|| Require elevated trust when running outside the browser
Window Style

FIGURE 9-3

Creating an Out-of-Browser Application | 285

Table 9-1 describes each property of the outofBrowsersSettings or windowSettings class that are
available in the Out-of-Browser Settings dialog.

TABLE 9-1
FIELD PROPERTY DESCRIPTION
Window Title (required) Title Appears in the title bar of the OOB appli-

Width and Height

Set Window Location
Manually

Top and Left (not sup-
ported in Silverlight 3)

Shortcut Name (required)

Application Description
(required)

Icon fields

Width and Height

WindowsStartupLocation

Top and Left

ShortName

Blurb

Icons

cation window.

Indicates the initial dimensions of the
OOB application window. If you do not
specify this property, the window defaults
to 800x600.

Indicates whether the initial position

of the OOB application window will be
centered or positioned according to the
specified Top and Left values.

Indicates the initial location of the OOB
application window. These fields are
disabled if you do not select Set Window
Location Manually.

Appears in the OOB installation dialog
box and on the installed application short-
cut or shortcuts.

Appears as a tooltip on the installed appli-
cation shortcuts.

The operating system chooses the most
appropriate icon to display in the follow-
ing locations:

« The installation dialog box
« The application window

» Windows Explorer

» Windows taskbar

« Macintosh dock bar

Icons must be of type PNG and have their
Build Action property set to Content.

If you do not specify an icon, a default
will be used. If you do specify an icon,
you should include an icon for each size
(16x16, 32x32, 48x48, and 128x128).

continues

| CHAPTER9 OUT-OF-BROWSER EXPERIENCES

TABLE 9-1 (continued)
FIELD

Use GPU Acceleration

Show Install Menu

Require Elevated Trust
When Running Outside
the Browser (not sup-
ported in Silverlight 3)

Window Style (not sup-
ported in Silverlight 3)

PROPERTY

EnableGPUAcceleration

ShowlnstallMenultem

SecuritySettings

WindowsStyle

DESCRIPTION

Indicates whether graphics perfor-
mance is enhanced by using hardware
acceleration.

Indicates whether the install option
should appear on the application right-
click menu.

Indicates whether the application runs
with relaxed security restrictions.

Indicates the appearance of the title
bar and border for the OOB application
window.

Once you set the property values in the Out-of-Browser Settings dialog, the values are reflected in
the outofBrowserSettings.xaml file as demonstrated in Figure 9-4.

PR EE =YY
[liFERN OutOfDrowserSettingsaml® X
—1<0utOtBrowserSettings ShortName="00BApp Application” EnanleG?Ll.-'a.c__x_:%-
{UutUfirowsersettings.8lurb>00BApp Application on your desktor «
B <outofBrowsersettings.Windowsettings> F
B <WindowSellings Tille="00BApp Applicalion®
| Height="5008" Width-"580"
pindowstyle-"BorderlessRoundCornersiindow”
| ¢/OutOfBrowserSettings WindowSettings>
- <NutOfRrowserSettings SeruritySettingss
<SecuritySettings ElevatedPermissions="Required™ />
<fOutUfirowsersettings. Securitysettings>
<0utofBrowserSettings.Icons />
</0utOlBrowserSellings>

NG RLnseq G *OGI00]

I Error List
Ready

FIGURE 9-4

a2 | (I E=m eSS B EPV JE-Se | : Publish: | Create Publish Settings
+ Solution Explorer

=EE

9‘3 Solution Dxplorer [l

raﬂ QO0BApp - Microzoft Visual Studio cnilEl
Eile Edit View glqect Build Debug Team XML Data Jools Architecture Test Apalyze Window Help
it fasni g = - I RN R = =1l I -| | 2 | DownloadstringAsync -SSR G

2 Sulution "00BApp' (2 prujects)
4 3 00BApp
4 |7 Properties
%] AppManitestxmi
&) Assemhlyinfo.cs
4] OutOfBrowserSettingseml
|=3| References
|| Appaaml
+ |3 MainPagesaml
4 (# 00BApp.Web
@i Properties
|=21 References
4 [ClientBin
. OOBApp.xap
[Z] 0OBAppTestPage.aspx
|¢] 0OBAppTestPagehtm!
2 Sitverlightjs
i Web.config

Creating an Out-of-Browser Application | 287

As mentioned earlier, the other option for enabling OOB in an application is to modify the
AppManifest.xml file, which is created by default when you create a Silverlight application.
The appManifest.xml file has a DeploymentParts section, where you can insert the property
settings for the OOB configuration. The following code demonstrates an AppMani fest.xml file
set up for an OOB experience:

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Deployment .Parts>
</Deployment.Parts>
<Deployment .OutOfBrowserSettings>
<OutOfBrowserSettings
ShortName="Out of Browser Sample Application"
EnableGPUAcceleration="True"
ShowInstallMenultem="True">
<OutOfBrowserSettings.Blurb>
This is the description of an OOB Application
</OutOfBrowserSettings.Blurb>
<OutOfBrowserSettings.Icons>
<Icon Size="16,16">icons/16x16.png</Icon>
<Icon Size="32,32">icons/32x32.png</Icon>
<Icon Size="48,48">icons/48x48.png</Icon>
<Icon Size="128,128">icons/128x128.png</Icon>
</0OutOfBrowserSettings.Icons>
<OutOfBrowserSettings.WindowSettings>
<WindowSettings
Title="Out of Browser Sample Application"
Height="500" wWwidth="500"
Left="0" Top="0" WindowStartupLocation="Manual"
WindowStyle="SingleBorderWindow" />
</OutOfBrowserSettings.WindowSettings>
<OutOfBrowserSettings.SecuritySettings>
<SecuritySettings ElevatedPermissions="Required" />
</OutOfBrowserSettings.SecuritySettings>
</0OutOfBrowserSettings>
</Deployment.OutOfBrowserSettings>
</Deployment>

If you use the Out-of-Browser Settings dialog box, you cannot specify out-of-
browser settings in the appManifest .xml file. This creates duplicate informa-
tion in the manifest, which raises an exception when your application runs.

Installing an Out-of-Browser Application

As shown in Figure 9-1, the default installation experience of an OOB application is that you right-
click the application that is running in the web browser and select the Install <application name>
menu option to initiate the install process. Clicking this menu item launches the Install application
dialog shown in Figure 9-5.

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

288 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

This is a fairly simple process. The user is [retall appication S|
prompted to install, and once he or she clicks
the OK button on the Install application dia-
log, the application is deployed locally to an
out-of-browser cache located in the user’s (D] Start menss
local profile folder. The process that occurs [EIDeskiop

is as follows: Mare Information o) Coma)

L

You are nstaling VUBApPD Apphication from
http:/ [localhast

Pleace confirm the locations for the shortouts.

1. The user clicks Install <application FIGURE 9-5
name> from the right-click menu.

2. The Install application dialog launches.
3. The user clicks OK.

4. A new HTTP request is made to the originating domain and the XAP is downloaded to the
user’s local profile folder.

5. The application is launched locally using s1launcher.exe (passing it a unique ID assigned
to the OOB application) using the width, height, and title bar text specified when the OOB
application was configured.

If you close the OOB application that is running, you can launch it from the desktop shortcut or the
Start menu shortcut, which then launches the application again using the s11auncher.exe applica-
tion. If you are giving your user an additional UI to install your application, such as a button or custom
menu item, you can use the following code to install your application out-of-browser:

App.Current.Install();

Once this code is executed, it initiates the same confirmation dialog as the install option from the
right-click menu. Before you actually run any code to install the application, you should check
the Tnstallstate of the application:

if (App.Current.InstallState == InstallState.Installed)
{

// do not show an install button, or indicate app is installed

}

Once you have determined whether the application is installed, you can check whether it’s running
outside of the browser with the IsRunningoutofBrowser property check (see Listing 9-1).

‘) LISTING 9-1: Checking if an application is running outside of the browser

Available for

download : :
Wiﬂx‘fin,ﬂ“ if (!App.Current.IsRunningOutOfBrowser)

// let user know they need to install your app 0OB
}

else

{

// Not running outside of browser, let user know

}

Creating an Out-of-Browser Application | 289

No matter which technique you use to install your application out-of-browser, users are always
prompted with the confirmation dialog to ensure that they actually want to install your application.
You are prohibited from installing an application without the user initiating the process.

Once the application is installed, various techniques are available to enable a complete client application,
which caches data locally to the local filesystem or to isolated storage, and accesses network resources
only as needed. If you do need to access the network, you can call the Get TsNetworkAvailable method
before attempting to access a network resource. Listing 9-2 demonstrates how to call
GetIsNetworkAvailable.

‘) LISTING 9-2: Determining if a network connection is available

Available for

dwm?%gn if (NetworkInterface.GetIsNetworkAvailable())

// Access the network resource

}

else

{
// Notify user that Internet connection is not available
MessageBox.Show ("This application requires an Internet connection");

During the execution of your application, you may want to let the user know if the network is
available, or the application may need to know if there is a connection dropped once a connection
is open. To do this, you handle the NetworkChange .NetworkAddressChanged event in the System
.Net.NetworkInformation namespace (see Listing 9-3).

‘) LISTING 9-3: Using the NetworkAddressChanged event

Available for

download on : .
Wrox.com public MainPage ()

InitializeComponent () ;

// Add event handler to check the network status
NetworkChange.NetworkAddressChanged +=
new NetworkAddressChangedEventHandler (NetworkChange_ NetworkAddressChanged) ;
}

void NetworkChange_NetworkAddressChanged (object sender, EventArgs e)
{

1f (NetworkInterface.GetIsNetworkAvailable())

{

MessageBox.Show ("Network is available");

}

else

{

MessageBox.Show ("Network is not available");

290 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

In the following sections, you learn how to uninstall your application and update your OOB
application.

Uninstalling an Out-of-Browser Application

You remove an OOB application the same way you install one — by right-clicking the application that
is running in the web browser and selecting the Remove This Application menu option to initiate the
uninstall process. This menu option is shown in Figure 9-6.

Once the menu option is selected, the dialog shown in Figure 9-7 is launched.

S DOBApp Application - localhost (=NEC Bl 00BApp Application - lncalhast =68 =

Sihverlight

Remove this application...

Remuve this application.. |

Aure you sure you want to parmanently remove this application?

—= Ef

FIGURE 9-6 FIGURE 9-7

By default, an OOB application will not be listed in the list of programs to unin-
stall in the Programs and Features dialog in the Control Panel. If you suppressed
the right-click application menu by handling the MouseRightButtonDown event in
your OOB application, you need to uninstall the application from the Programs
and Features page in the Control Panel (Windows 7).

Updating an Out-of-Browser Application

If you consider that your OOB application is just like any other web application, you’ve cho-
sen this platform not only for the RIA experiences it offers, but for the ease of deployment and
ease of updating it provides. Because the OOB application is running from a XAP stored in
the local cache, there will be times when you update your application and the client will need
to download the update to refresh the application with any new features or bug fixes you have
added. To check for and retrieve updates, you call checkandDownloadUpdateAsync and then

Creating an Out-of-Browser Application | 291

handletheApplication.CheckAndDownloadUpdateCompletedevent.Intheeventhandki,the
UpdateAvailable property is true if a newer version of your application was discovered and
successfully downloaded. The purpose of this is to let the end users know that a new update has
been downloaded and is available once they restart the application. Listing 9-4 shows how to
implement the event handler and check for available updates.

\) LISTING 9-4: Checking for and downloading updates to an application

Available for

download on : .
Wrox.com public MainPage ()

InitializeComponent () ;

App.Current.CheckAndDownloadUpdateCompleted +=
new CheckAndDownloadUpdateCompletedEventHandler
(Current_CheckAndDownloadUpdateCompleted) ;
}

void Current_CheckAndDownloadUpdateCompleted (object sender,
CheckAndDownloadUpdateCompletedEventArgs e)
{
if (e.UpdateAvailable)
{
MessageBox.Show ("An application update has been downloaded. " +
"Restart the application to run the new version.");
}
else if (e.Error != null &&
e.Error is PlatformNotSupportedException)

MessageBox.Show ("An application update is available, " +
"but it requires a new version of Silverlight. " +
"Visit the application home page to upgrade.");

}
else

{

MessageBox.Show ("There is no update available.");

When you check whether there is an available update with the Updateavailable property, you should
also check for the Plat formNotSupportedException exception. This occurs when an update is avail-
able but uses a newer version of Silverlight than the version that is installed on the local computer.

Silverlight 4 provides support for running OOB applications with elevated
trust. Trusted applications cannot use the update mechanism described in this
section unless the application and the update have both been signed with the
same valid, code-signing certificate. To update a trusted application that does
not have a valid signature, users must uninstall the old version and install the
new version manually.

292 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

INSTALLING TRUSTED APPLICATIONS

A Silverlight application runs in the safety of the partial trust browser sandbox. However, an OOB
application can be installed with elevated trust, which gives the application access to local computer
resources that you might expect only in a full desktop application. These features include local file-
system access, COM automation support, full-screen keyboard support, and cross-domain access,
all without getting the user’s permission beyond the initial application install.

To enable elevated trust, you can update the SsecuritySettings in the AppManifest.xml file

if you are manually configuring your OOB application. Or you can simply check the Require
elevated trust when running outside the browser checkbox on the Out-of-Browser Settings dialog
as shown back in Figure 9-3.

If your application is configured for elevated et Wormins =
trust, a Se'curlty Warn.ln.g 'cl'lalog box. appears @ o T T T —
when the installation is initiated. This dialog want to install this application?
warns users that they should not install applica-
. . . MName: UUBApp Application
tions they do not trust, as shown in Figure 9-8. B ikl
(Note that I clicked in the More Options expan- Publicher. Unverified
sion indicator on the dialog to show the dialog
in its entirety.) &) Hide optians sl | [_cancel |
Create shortcuts on:
Once the application is installed, it behaves E;’:;t::"”
the same as a default OOB application, except
you have those additional application options This zppication does not have a vald dital signature that verfies the
. || publisher. You should only run software from publishers you trust,
available to you mentioned earlier in this sec- More Information |
tion, such as local filesystem access. Before you . —— - —
FIGURE 9-8

execute any code that requires elevated trust,
you should check whether your application is
installed with elevated permission by checking
the HasElevatedPermissions property:

if (Application.Current.HasElevatedPermissions)
{
// perform operation that requires elevated permissions

Listing 9-5 can be considered a reusable “stub” that you can use for your OOB application. It encap-
sulates several features that every trusted OOB application needs:

> Checking if the application is running outside of the browser
> Checking for updates

> Checking for elevated permissions

>

Checking if the network is available

Installing Trusted Applications | 293

I have bolded the lines of code that you should become familiar with when writing OOB
applications:

‘) LISTING 9-5: Checking for elevated permissions and an available network

Available for

download on : .
Wrox.com public MainPage ()

InitializeComponent () ;

if (Application.Current.IsRunningOutOfBrowser)

{
// If running out-of-browser, find out whether a newer version is available
Application.Current.CheckAndDownloadUpdateCompleted
+= new
CheckAndDownloadUpdateCompletedEventHandler
(OnCheckAndDownloadUpdateCompleted) ;
Application.Current.CheckAndDownloadUpdateAsync();
if (Application.Current.HasElevatedPermissions)
{
if (NetworkInterface.GetIsNetworkAvailable())
{
// Perform a trusted feature
}
else
{
// Let user know there is no Internet connection
MessageBox.Show ("This application requires an Internet connection");
}
}
else
{
// Display warning if running without elevated permissions
MessageBox.Show ("This application requires elevated permissions");
}
}
else
{

// Display warning if not running OOB
MessageBox.Show ("This application must be run outside
the browser with elevated permissions");

private void OnCheckAndDownloadUpdateCompleted (object sender,
CheckAndDownloadUpdateCompletedEventArgs e)

if (e.UpdateAvailable)
{
MessageBox.Show ("An updated version of this application is available.
Close the application and restart it to run the new version.",
"Update Available", MessageBoxButton.OK) ;

294 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

In the preceding code, a MessageBox is used to prompt the user with information. An additional
feature available to OOB applications is the ability to show a notification window, or toaster pop-up
to notify the user of useful information. A notification window should be familiar to yous; it is the
pop-up in the lower-right portion of the screen when new mail arrives in Microsoft Outlook. To
duplicate this feature in an OOB application, create an instance of a NotificatoinWindow class and
assign a control or user control to its content control. This is demonstrated in the Listing 9-6.

‘) LISTING 9-6: Displaying a notification window

Available for

download on i i 1
o private void AlertDone (string Message)

NotificationWindow notify = new NotificationWindow() ;
notify.Width = 329;
notify.Height = 74;

TextBlock tb = new TextBlock();
tb.Text = Message ;
tb.FontSize = 24;

notify.Content = tb;
notify.Show(3000) ;

When the show method is called for 3000 milliseconds, the pop-up window appears on the lower
right of the screen for 3 seconds.

Note that system administrators can disable the ability to install trusted applications. If this capability
is disabled, attempting to install has no effect, and the Tnstall method returns false. Some additional
considerations for elevated trust applications include:

> Keyboard support in full-screen mode is available only in a trusted application.

> The webClient and HTTP classes in the System.Net namespace can be used without policy
checks. An application installed from one domain using the HTTP protocol can access media
files from a cross-domain site using the HTTPS protocol.

> Networking and socket communication can be performed without being subject to cross-
domain and cross-scheme access restrictions. An application installed from one subdomain
using the HTTP protocol can access media files from a separate subdomain using the HTTPS
protocol.

> Networking UdpAnySourceMulticastClient and UdpSingleSourceMulticastClient
classes in the system.Net.Sockets namespace can be used with relaxed policy checks.

> A TCP connection can be made to any port on any host without the need for a cross-domain
policy file.

A TCP destination port is no longer required to be within the range of 4502-4534.

The UdpaAnySourceMulticastClient and UdpSingleSourceMulticastClient classes can
join any multicast group on any port greater than or equal to 1024 without the need for a
policy responder to authorize the connection.

Installing Trusted Applications | 295

> User consent is only required for the AudioSink (microphone) and VideoSink (camera)
functionality.

Full-screen mode applications will not display the message “Press ESC to exit full-screen mode.”

ESC will not exit full-screen mode in trusted applications because trusted applications
do not automatically intercept keystrokes and do not have any keyboard restrictions in
full-screen mode.

The following sections look at specific elevated trust operations and how to code them.

Accessing the Filesystems

In a non-trusted Silverlight application, filesystem access is allowed only through the openFileDialog
and saveFileDialog classes. In a trusted OOB application, you can access the MyDocuments,
MyMusic, MyPictures, and MyVideos user folders using the System. 10 classes. To obtain the path of
these folders and to access their contents, you use the System.Environment.SpecialFolder enumer-
ation to construct paths. In the following example (Listing 9-7), the MyDocuments folder is accessed
and the files in the folder are added to a L.istBox control. To make this code work, you should add the
System. IO namespace to your class.

‘) LISTING 9-7: Enumerating the filesystem

Available for
download on if (Application.Current.HasElevatedPermissions)

Wrox.com
List<string> folderFilers = new List<string>();
var files = Directory.EnumerateFiles (Environment .GetFolderPath
(Environment.SpecialFolder.MyDocuments)) ;

foreach (var item in files)
{

folderFilers.Add(item) ;
}

listBoxl.ItemsSource = folderFilers;

Windows 7 Libraries named Documents, Music, Pictures, and Videos combine
the contents of the user folders with other folders, such as shared media folders.
However, trusted applications cannot access non-user folders except through
the OpenFileDialog and SaveFileDialog classes.

Using COM Automation

Using the AutomationFactory class in the System.Runtime. InteropServices.Automation
namespace, OOB trusted applications can integrate with some native functionality of the host

296 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

operating system, including the ability to access Automation APIs on Windows operating systems.
The types of automation servers include but are not limited to Microsoft Office applications like
Outlook and Excel; system objects like Scripting.FileSystemObject; WScript.Shell; and
ShellApplication.

In Listing 9-8, the AutomationFactory.IsAvailable property is checked to verify the applica-
tion is running outside of the browser with elevated permissions before creating the COM Outlook
object to send an e-mail using Outlook on the client machine. To get this code to work, add the
System.Runtime.InteropServices.Automation namespace to your class.

\) LISTING 9-8: Using COM automation

Available for

downloadon private void sendEmail (string fileName)

Wrox.com

{

// Check if application has elevated privileges outside of browser
if (AutomationFactory.IsAvailable)

{

// Send an email
dynamic outlook =

AutomationFactory.CreateObject ("Outlook.Application") ;
dynamic mail = outlook.CreateItem(O0);

mail.
mail.
mail.
mail.
mail.

Recipients.Add("webmaster@contoso.com") ;

Subject = "Hello, Silverlight";

Body = "This message was sent from Silverlight 4";
Save() ;

Send () ;

IntelliSense is not available when using COM automation, so be sure to keep
your API reference handy for the automation server you are using.

Support for Window Customization

When you create a trusted OOB application, you have the option to change from a normal border
around your window to a borderless window or a borderless window with rounded corners. Figure 9-9
shows the lower portion of the Out-of-Browser Settings dialog, which has the drop-down with your

window options.

Window Style

Mo Dorder
Borderless Round Corners

bl ol o LS EEEE—

biorderiess Hound Lormers "I
|

0K Cancel

FIGURE 9-9

mailto:mail.Recipients.Add(%E2%80%9Cwebmaster@contoso.com%E2%80%9D

Installing Trusted Applications | 297

Behind the scenes, when you hide the title bar and border, Silverlight displays your application
content over a white background, which means you cannot create irregularly shaped applications,
because the white background is not transparent. To replace the functionality provided by the title
bar and border, you can use the window class members to perform actions like dragging the window
or window borders using the bragMove and DragResize methods. You can adjust the window posi-
tion and size by using the Left, Top, Wwidth, and Height properties. Use the windowState property
to minimize or maximize the window. Listing 9-9 demonstrates some of the code that you would
use from the window class.

‘) LISTING 9-9: Using the Window class

Available for

dwmfﬁgn private void MoveWindow (object sender, MouseButtonEventArgs e)

if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)

{
App.Current.MainWindow.DragMove () ;

private void ResizeWindowFromBottom(object sender, MouseButtonEventArgs e)
{
if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
{
App.Current.MainWindow.DragResize (WindowResizeEdge.BottomRight) ;

private void MinimizeWindow (object sender, MouseButtonEventArgs e)

{
if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
{

App.Current.MainWindow.WindowState = WindowState.Minimized;

private void RestoreWindow (object sender, MouseButtonEventArgs e)
{
if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)

{

App.Current.MainWindow.WindowState = WindowState.Normal;

private void MaximizeWindow (object sender, MouseButtonEventArgs e)
{
if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)

{
App.Current.MainWindow.WindowState = WindowState.Maximized;

298 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

To create a simple application that has no border and a custom close button, as well as the ability

to move the window around the screen, create a new application based on the Silverlight Navigation
Application template. In the Out-of-Browser Settings, change the Window Style to Borderless Round
Corners as shown in Figure 9-10.

r
Out-of-Browzer Settings w

Window litle

windowlessApp Application|

Width i Height

|| Set window location manually
Top. Left
Sharteut name
Application description
WindowhessApp Application on your desktop; at home, at work or on the go.

1g x 16 lcon
22 %32 Ieon
48 % 48 Icon

128 x 128 Iwon

[000

[7] use GPU Acceleration

[¥] Show install menu

[¥] Require glevated trust when running outside the browser
Window Style
|Borderless Round Cornes -

(ot [cams

L <

FIGURE 9-10

In the MainPage.xaml file, add the MouseLeftButtonDown, MouseLeftButtonUp, and MouseMove
events (Listing 9-10).

J LISTING 9-10: Adding mouse events to the UserControl in MainPage.xaml

Available for

download on <UserControl

Wrox.com . .
x:Class="WindowlessApp.MainPage"
MouseLeftButtonDown="UserControl_MouseLeftButtonDown"
MouseLeftButtonUp="UserControl_MouseLeftButtonUp"
MouseMove="UserControl_MouseMove"

From the Toolbox, drag a button to the page, and name it closeButton and add an event handler
for the closeButton_click event. Next, add the code in Listing 9-11 in the code-behind to the
event handlers for each of the events you added.

Installing Trusted Applications | 299

‘) LISTING 9-11: Interacting with a Window object

Available for

download on . _ .
Wrox.com bool dragging = false;

private void UserControl_MouseLeftButtonDown
(object sender, MouseButtonEventArgs e)
{
if (Application.Current.IsRunningOutOfBrowser && !dragging)
dragging = true;

}

private void UserControl_MouseLeftButtonUp
(object sender, MouseButtonEventArgs e)
{
if (Application.Current.IsRunningOutOfBrowser && dragging)
dragging = false;
}

private void UserControl_MouseMove
(object sender, MouseEventArgs e)

{
if (dragging)
Application.Current.MainWindow.DragMove () ;

When you run the application, you can drag it around the screen by clicking anywhere on the user
control, and you can close the application by clicking the button you added.

Adding Digital Signatures

Adding a digital signature to your trusted application is an important step to help secure the appli-
cation and increase customer confidence during installation. Additionally, only trusted applications
with valid digital signatures can use the out-of-browser update mechanism. To update a trusted
application that does not have a valid signature, users must uninstall the old version and install the
new version manually.

To add a digital signature to a trusted application, use the SignTool.exe utility with an Authenticode
X.509 code-signing certificate. For example, you could use the following command line:

signtool sign /v /f certificateFile.pfxfileToSign

Code signing is relevant only for trusted applications.

Silverlight verifies the signature and certificate whenever a user installs or updates the application.
Users can install a trusted application without a valid signature. However, Silverlight prevents
trusted applications from updating unless both the original application and the update are signed
with the same valid, verified, code-signing certificate. Additionally, the certificate must not be
expired at the time of update. Be sure to take the certificate expiration date into consideration in
your deployment and update planning.

300 | CHAPTER9 OUT-OF-BROWSER EXPERIENCES

INSTALLING A LOCAL SILVERLIGHT APPLICATION

In the same manner that an OOB application is launched using s11auncher.exe, you can install an
OOB application from a network resource, USB device, or CD-ROM as long as Silverlight is already
installed on the local computer. The s11auncher.exe application is located in the \program files
(x86)\Microsoft Silverlight folder. Note that on a 64-bit machine, Silverlight is installed in the x86
32-bit Program Files folder. The following installs an application locally by running s11auncher
.exe from the location of your XAP file:

"$ProgramFiles (x86)%\Microsoft Silverlight\sllauncher.exe" /overwrite /

install:"xapfilename.xap" /origin:http://www.original web_location/clientbin/
xapfilename.xap /shortcut:desktop

The original_web_location is the originating URI and path to the XAP file where the application
should look for automatic updates. Even though the application is installed locally, it still needs
to get new updates at a URI origin. If you want to run the application after it’s installed, use the
emulate switch:

"$ProgramFiles (x86)%\Microsoft Silverlight\sllauncher.exe" /overwrite /

emulate: "xapfilename.xap" /origin:http://www.original web_location/clientbin/
xapfilename.xap /overwrite

To uninstall it use the following command:

"$ProgramFiles (x86)%\Microsoft Silverlight\sllauncher.exe" /overwrite /
uninstall:"xapfilename.xap" /origin:http://www.original_web_location/clientbin/
xapfilename.xap /shortcut:desktop

The following options can be passed to s1launcher.exe:
> /install:"path-toxAP-File" — Required. Points to the XAP file that you are installing.
> /origin:"URI-to-origin" — Required. The originating URI of the XAP file.

> /shortcut:desktop+startmenu — Optional. Indicate desktop, startmenu, or
desktop+startmenu for the shortcut location. If you omit this, the user will not be able to
launch the application from a shortcut.

> Joverwrite — Optional. Overwrites an existing installation.

SUMMARY

In this chapter, you learned about the experiences you can create in an out-of-browser applica-
tion. You learned how to configure the application using Visual Studio, or manually by editing
the AppManifest.xml file. You also learned how trusted applications behave and how to install
and uninstall an OOB application. Finally, you learned how to sign your application for an even
better UX.

http://www.original_web_location/clientbin/
http://www.original_web_location/clientbin/
http://www.original_web_location/clientbin/

Networking Applications

WHAT’S IN THIS CHAPTER?

Using WebClient to call for remote content
Dealing with cross-domain access

Using WCF duplex communications with Silverlight

Y Y VY Y

Working with sockets

Because Silverlight applications are on the client side, this chapter focuses on the communica-
tion capabilities these types of applications provide. This chapter is not a guide to computer
networking, but an introduction to using the .NET Framework along with Silverlight for net-
work communication.

This chapter covers facilities provided through the .NET base classes for using various net-
work protocols, particularly HTTP and TCP, to access networks and the Internet as a cli-
ent. It covers some of the lower-level means of getting at these protocols through the .NET
Framework. You will also find other means of communicating via these items using tech-
nologies such as the Windows Communication Foundation (WCF) or using REST-based ser-
vices to get at remote capabilities. The two namespaces of most interest for networking are
System.Net and System.Net.Sockets. The System.Net namespace is generally concerned
with higher-level operations, for example, downloading and uploading files, and making web
requests using HTTP and other protocols, whereas System.Net . Sockets contains classes

to perform lower-level operations. You will find these classes useful when you want to work
directly with sockets or protocols, such as TCP/IP. The methods in these classes closely mimic
the Windows Socket (Winsock) API functions derived from the Berkeley sockets interface.

Utilizing these namespaces provides you with the access you will need from Silverlight. With
the use of System.Net, you are able to use the simplified webclient object as well as the more

302 | CHAPTER10 NETWORKING APPLICATIONS

generic but more powerful Ht tpWebRequest/Response objects. Now with these objects, you have
libraries that allow for such activities as dealing with RSS/syndication, duplex communications, and
downloading.

You also have the ability to access capabilities or underlying data using some kind of a web service
from Silverlight. You might have a formal service with an accompanying Web Services Description
Language (WSDL) file. If that is the case, you will be able to generate a client proxy for that service
and access it remotely using the proxy. Another very common scenario is to access services that

are just a Plain-Old XML (POX) and Representational State Transfer (REST) services. For both

of these, you can use just the aforementioned webClient or HttpWebRequest/Response classes,
although Silverlight does provide additional means to access REST services, particularly for WCF
Data Services.

THE WEBCLIENT CLASS

If you only want to request a file from a particular URI (Uniform Resource Identifier), you will find
that the easiest NET class to use is System.Net.WebClient. This is an extremely high-level class
designed to perform basic operations with only one or two commands. You can use the webClient
class to retrieve data from a wide variety of endpoints including POX-, JSON-, RSS-, and REST-
based services. All requests using WwebClient are performed asynchronously in Silverlight, which
enables your application to still respond even while it is loading data under the covers.

It is worth noting that the term URL (Uniform Resource Locator) is no longer
in use in new technical specifications, and URI (Uniform Resource ldentifier)
is now preferred. URI has roughly the same meaning as URL, but is a bit more
general because URI does not imply you are using one of the familiar protocols,
such as HT'TP or FTP.

Depending on the format of the data returned by the server, you can choose the appropriate class
to parse it into a format for your application to consume. For example, the xm1Reader class can be
used to quickly access data returned from the server in POX.

Using OpenReadAsync()

This first example demonstrates the webClient .OpenReadasync () method. You will use this to dis-
play the contents of a downloaded XML file in a TextBlock control on the page. To begin, create a
new project as a standard C# Silverlight application called WebClientSolution and add a TextBlock
control called textBlockl. Another possibility would be to use Downloadstringasyc () rather than
OpenReadAsync (), as this is an XML file. It is interesting to note that OpenReadAsync () can work
with not only string data, but images, videos, and anything else you can plug into a stream.

The WebClient Class | 303

Before working with the default MainpPage.xaml page in detail, create an XML file that you will
work with from this application. In the ClientBin folder next to the X AP being accessed, create an
XML file called Persons.xm1. The content of this file is presented in Listing 10-1.

‘) LISTING 10-1: The contents of Persons.xml

Available for
dwm?%gﬂ <?xml version="1.0" encoding="utf-8" ?>
<People>
<Person>

<FirstName>Bill</FirstName>
<LastName>Evjen</LastName>

</Person>

<Person>
<FirstName>Devin</FirstName>
<LastName>Rader</LastName>

</Person>

<Person>
<FirstName>Jason</FirstName>
<LastName>Beres</LastName>

</Person>

</People>

With this is place, you can now turn your attention to MainPage.xaml .cs. At the beginning of this
file, you need to add the system.Net and System.I0 namespace references to your list of using
directives. The code for this page is presented in Listing 10-2.

‘) LISTING 10-2: Calling the server-side XML file using WebClient
Available for
“W’rg;“ggn‘:" us::Lng System;
using System.IO;
using System.Net;
using System.Windows.Controls;

namespace WebClientSolution
{
public partial class MainPage : UserControl
{
public MainPage ()
{

InitializeComponent () ;

WebClient client = new WebClient () ;
Uri uri = new Uri("Persons.xml", UriKind.Relative);
client.OpenReadCompleted +=
new OpenReadCompletedEventHandler (client_OpenReadCompleted) ;

client.OpenReadAsync (uri) ;

void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

continues

304 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-2 (continued)

{
if (e.Error == null)
{
Stream strm = e.Result;
StreamReader sr = new StreamReader (strm) ;
textBlockl.Text = sr.ReadToEnd() ;
strm.Close() ;
}
else
{
textBlockl.Text = e.Error.Message;
}
}

In this example, you connect a StreamReader class from the System. 10 namespace to the network
stream. This lets you obtain data from the stream as text through the use of higher-level methods,
such as ReadToEnd () or ReadLine (). In addition, it is important to note that like all other .NET
applications, all paths in Silverlight applications are relative to the location of the .xap file. Running
this example produces a simple page as illustrated in Figure 10-1.

& WebClientSolution - Windows Intarnet Explorer =E

QQ = |) np/ocaibust:z967/WebClientSolutionTestPage.aspx - l g[‘;l % = ging P -

i Favorites | @ WebClient3olution | 5 - B - = @ - Page= Safety= Tools~ @@~

<%¥ml versinn="1.0" encoding="utf-8" ?>
<People>
<Person>
<FirstName>Bill</FirstName=>
=LastName>Evjen=/LastName >
</Person>
=Person=>
<FirstName>Devin« /FirstName>
<l astName=Rader</l astName>
</Person>
<Person>
<FirstName »Jason</FistName >
<LastName=Deres</LastName:-
</Person>
«/People=

Done €L Locali T d Mode: Off iy~ Wo0% v

L

FIGURE 10-1

Downloading Files Using WebClient

In Silverlight 1.0, there was a special Downloader service that simplified downloading items with
HTTP GET. Since Silverlight 2.0, the Downloader has been replaced with the webclient class,
which is a more general-purpose web client (as its name implies). You can actually use webClient to

The WebClient Class 305

download all sorts of things including XAML, XML, media, fonts, packages, additional assemblies,
and more. This is also done asynchronously over HTTP.

In addition to starting and receiving the down-
load process, you can also use this to moni- ’ 5
tor the overall progress of the download. The L start ing .. |
DownloadProgressChangedEventArgs Obkcthas | |
various members such as bytes and total bytes to e

receive as well as a progress percentage member that Label

you can use to display meaningful progress to the

end user.

To see the progress aspect in action, create a new
project called Downloading in Visual Studio. Put
a large file in the host solution’s ClientBin folder

and create a simple XAML page as shown in 3

Figure 10-2. FIGURE 10-2
The XAML code for this is presented in Listing 10-3.

‘) LISTING 10-3: XAML code for the Downloading solution

Available for

dwmrggn <UserControl x:Class="Downloading.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400"
xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk">

<Grid x:Name="LayoutRoot" Background="White">
<Button Content="Start downloading ..." Height="23"
HorizontalAlignment="Left" Margin="12,12,0,0" Name="buttonl"
VerticalAlignment="Top" Width="376" Click="buttonl_Click" />
<ProgressBar Height="20" HorizontalAlignment="Left"
Margin="12,41,0,0" Name="progressBarl"
VerticalAlignment="Top" Width="376" />
<sdk:Label Height="28" HorizontalAlignment="Left" Margin="12,67,0,0"
Name="1blPercentComplete" VerticalAlignment="Top" Width="376" />
<sdk:Label Height="28" HorizontalAlignment="Left" Margin="12,87,0,0"
Name="1blBytesReceived" VerticalAlignment="Top" Width="376" />
<gsdk:Label Height="28" HorizontalAlignment="Left" Margin="12,107,0,0"
Name="1blBytesToReceive" VerticalAlignment="Top" Width="376" />

</Grid>

</UserControl>

The idea here is that when the user clicks the only button, the download process starts and the end
user is provided with a series of stats on the download that is occurring. The code-behind for this
file is presented in Listing 10-4.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

306 | CHAPTER10 NETWORKING APPLICATIONS

‘) LISTING 10-4: Monitoring the download progress
Available for
download on us%ng System;
using System.Net;
using System.Windows;
using System.Windows.Controls;

namespace Downloading
{

public partial class MainPage : UserControl

{
public MainPage ()
{
InitializeComponent () ;
}
private void buttonl_Click(object sender, RoutedEventArgs e)
{
WebClient client = new WebClient () ;
Uri uri = new Uri("Big Movie.wmv", UriKind.Relative);
client.OpenReadCompleted +=
new OpenReadCompletedEventHandler (client_OpenReadCompleted) ;
client.DownloadProgressChanged +=
new DownloadProgressChangedEventHandler
(client_DownloadProgressChanged) ;
client.OpenReadAsync (uri) ;
}
void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
MessageBox.Show ("Download completed!");
}
void client_DownloadProgressChanged (object sender,
DownloadProgressChangedEventArgs e)
{
progressBarl.Value = e.ProgressPercentage;
1blPercentComplete.Content = e.ProgressPercentage + "% done";
1blBytesReceived.Content = e.BytesReceived + " bytes received";
1blBytesToReceive.Content = e.TotalBytesToReceive + " bytes needed";
}
}

Once the download starts, the ProgressBar control is provided with a value of the progress
percentage from the DownloadProgressChangedEventArgs object. In addition, three Label con-
trols are updated with the progress percentage, the total bytes received, and the total number of
bytes of the entire file. When you run this solution, you will see results similar to those shown in
Figure 10-3.

The WebClient Class | 307

[@ Downloading - Windows Internet Explorer ==
& Favorites | @ Downloading I B - B -0 @ - Page~ Safely= Tools~ @~ "

i Start downloading ...

| |
91% done

30015488 bytes received

32814421 bytes needed

Done i'ﬁux:al' | Protected Mode: Off &G - #100% v

L

FIGURE 10-3

Uploading Files Using WebClient

In addition to downloading files, you can also allow the end user to upload files to the server. There
is a bit of extra work for this, because you are required to create a generic handler on the server for
the Silverlight client to interact with in the upload process.

To accomplish this, create a new solution called UploadFiles and the associated UploadFiles.Web.
First, this section focuses on the UploadFiles.Web solution. To start, create a generic handler
called FileUpload.ashx in the root of the solution. Listing 10-5 provides you with the code

for the FileUpload.ashx.cs file.

‘) LISTING 10-5: A generic handler file for uploading files to the server

Available for
download on using System.IO;

Wrox.com R
using System.Web;

namespace UploadFiles.Web
{
public class FileUpload : IHttpHandler
{
#region IHttpHandler Members

public void ProcessRequest (HttpContext context)
{
string fileuploaded = context.Request.QueryString["uploadedfile"];

using (FileStream fileStream =

continues

308 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-5 (continued)

}

publ
{

File.Create(context.Server.MapPath("~/Uploads/" + fileuploaded)))

bytel[] bytes = new byte[4096];

int totalBytesRead;

while ((totalBytesRead =
context.Request.InputStream.Read (bytes, 0, bytes.Length)) != 0)

fileStream.Write (bytes, 0, totalBytesRead);

ic bool IsReusable

get { return false; }

#endregion

From this handler, you can see that it is looking for a querystring object called uploadedfile

and will take that as the name of the file being uploaded. The upload is occurring in a folder called
Uploads that should be created within the UploadFiles.Web solution. You should make sure that
there are write privileges to this folder.

Now that you have the handler and the folder ready, the next step is to focus on the Silverlight client
and create an application that will make use of this handler.

The actual Silverlight form that you are using is rather simple; it contains a simple button and noth-
ing more. The idea is that when users click the button, they are presented with a file dialog. The file
selected will then be the file that is uploaded to the server. Listing 10-6 shows the code-behind file

for MainPage.xaml.

‘) LISTING 10-6: Uploading a file from a Silverlight client application

Available for .

Smstion using
using
using
using
using

System

System.

System
System
System

I10;

.Net;

.Windows;
.Windows.Controls;

namespace UploadFiles

{

public partial class MainPage

{

publ
{

ic MainPage()

InitializeComponent () ;

: UserControl

The WebClient Class | 309

private void buttonl_Click(object sender, RoutedEventArgs e)

{
OpenFileDialog openFileDialog = new OpenFileDialog() ;
openFileDialog.Multiselect = false;

bool? userAccepts = openFileDialog.ShowDialog() ;

if (userAccepts == true)
{
// Start the upload process
// Change the port on the localhost to what
// yours is when running in Visual Studio
UriBuilder uriBuilder = new
UriBuilder ("http://localhost:63906/FileUpload.ashx");
uriBuilder.Query =
string.Format ("uploadedfile={0}", openFileDialog.File.Name) ;

WebClient client = new WebClient () ;

client.OpenWriteCompleted += (innerSender, innerE) =>
{
Stream inputStream = openFileDialog.File.OpenRead() ;
Stream outputStream = innerE.Result;
byte[] bytes = new byte[4096];
int totalBytesRead;

while ((totalBytesRead =
inputStream.Read (bytes, 0, bytes.Length)) !=0)

outputStream.Write(bytes, 0, totalBytesRead);

inputStream.Close() ;
outputStream.Close() ;

MessageBox.Show("File Uploaded!");
Y

client.OpenWriteAsync (uriBuilder.Uri) ;

For this application, the openFileDialog object is used to bring forth the file dialog that
allows the end users to select the file that they are interested in uploading. Notice that using
openFileDialog.Multiselect = false; forces only one selection in this process.

A URTI is built using the generic handler in conjunction with the querystring uploadedfile. Then
the webclient object’s Openwriteasync () method is called to upload the file. In the end, a message

http://localhost:63906/FileUpload.ashx%E2%80%9D

310 | CHAPTER10 NETWORKING APPLICATIONS

box is presented saying that the file upload process is complete. When you run this application, you
can select a file on the client and then, running through the process, you will notice that the selected
file, at the end of it all, is contained within the Uploads folder.

Reusing a Single WebClient Object

If you want to build an application that allows the end user to download a set of files, but you do
not want to instantiate different instances of the webClient object and a separate event handler

for each one, you can choose to reuse a single webClient object to do this instead. Although each
download request is made asynchronously, the webclient class does not support simultaneous
requests. You can, however, make additional calls to DownloadstringAsync once the previous calls
have completed.

Because each webClient instance has a single DownloadstringCompleted event, you need a way to
distinguish exactly what request has completed in your event handler. You can achieve this by speci-
fying some state with each call to bownloadstringasync through the userToken parameter. An
example of this in action is presented in Listing 10-7.

‘) LISTING 10-7: Allowing for multiple downloads

Available for
downloadon pyupblic partial class MainPage : UserControl

Wrox.com (
// Construct a new WebRequest object as a private member
WebClient _client = new WebClient();

public MainPage ()
{

InitializeComponent () ;

this.Loaded += new RoutedEventHandler (Page_Loaded) ;
}

void Page_Loaded(object sender, RoutedEventArgs e)
{
// Configure an event handler for when the download is complete
_client.DownloadStringCompleted += new
DownloadStringCompletedEventHandler (client_DownloadCompleted) ;

// Construct a URI based on files with an indexed naming scheme
Uri targetUri = new Uri("Destination.xml", UriKind.Relative);

// Initiate the download passing an integer as the userToken
_client.DownloadStringAsync (targetUri, 1);

void client_DownloadCompleted(object sender, DownloadStringCompletedEventArgs e)
{

// If no error, process the result

if (e.Error == null)

The WebClient Class | 311

// Retrieve the state originally specified
int count = (int)e.UserState;

// Set the text of the appropriate textbox based on the integer userToken
switch (count)
{
case 1:
ResultsTextBlockl.Text = e.Result;
break;
case 2:
ResultsTextBlock2.Text = e.Result;
break;
case 3:
ResultsTextBlockl.Text = e.Result;
break;
}

// Fire off requests until you have retrieved three files
if (count ++ < 3)
{
Uri targetUri = new Uri("Destinations" + count + ".xml",
UriKind.Relative) ;

// Initiate the download passing an integer as the userToken
_client.DownloadStringAsync (targetUri, count);

Cross-Domain Access

Silverlight has a few URL access restrictions. For the most part, they are what you would expect
from a browser-based technology, but they are worth discussing briefly. They apply to both HTTP-
based classes and to other facilities in the .NET Framework that internally use HTTP, such as
images, media, font files, XAML source files, and streaming media.

At a high level, three kinds of restrictions exist: those that are based on schemes (HTTP, HTTPS,
and FILE), those based on domains (for which Silverlight loosens the standard browser restrictions
to enable cross-domain access), and those that are based on zone access (as in Internet Explorer).

For zone-based access, the rule is that you cannot access resources in a zone that is more trusted.
For example, you cannot get a resource in Trusted Sites if your application is running in the Internet
zone. This zone-based security will override cross-domain policies, so keep this in mind if you find
yourself trying to access a site that you know has the correct cross-domain policy. In this case, it
does good to ensure that the site you are trying to access is not in a more trusted zone.

Table 10-1 gives a good outline of how the restrictions affect the various kinds of access in
Silverlight.

ON

OAI10l1Sal
SS9| 10 sWwes

SdllH
‘d1l1H1ON

SdllH
WwoJy 10N

dllH

VIa3an
ONINVIILS

ON

OAI10l1Sal
SS9| 10 sWwes

ON

ON

314
‘Sd11H ‘dLllH

S371d LNO4

ON

OAI0l1Sal
SS9| 10 sWes

SdllH
‘d1l1H 10N

ON

314
‘Sd11H ‘dllH

EERIE]
32dNOS TNV X

9WOYIS-SSOID ON

OAI10l1Sal
SS9| 10 sWes

SdLllH ‘dl1H 10N

ON

3114 ‘SdLLH ‘dLl1H

(ONIWVIYLS
-NON) LN3IW313
VIAQ3anW ‘IOVINI

Aoljod e yum
UleWOP-SS0ID 10
swayds/alis swes

OAIol1Sal
SS9| 10 sWes

Sd1llH
‘dL1H 10N ‘“Ad1j0d
Aundas yum AluQ

ON

Sd1IH ‘dllH

S3ISSVID dllH
ANV LN3ITO83IM

pamoj|y uonoalig-ay

(31 uo) sse3dy suoZ-ss01D

S$S920Y ulewoq-ssoid

SS920Y SWAYIS-SS0ID)

SaWIaYdS pamo||y

1-0l 3718VvL

The WebClient Class | 313

Silverlight enables access to any services that are contained in the same domain as the applica-
tion. If you want to access services that are located on a different domain, a policy file is required.
Assuming that you have root access to your deployment server, adding a Silverlight policy file is
actually simple.

Many domains have already been configured to allow cross-domain access from Flash clients via a
crossdomain.xml policy file. Thankfully, Silverlight supports the Silverlight (c1ientaccesspolicy
.xm1) policy format and the subset of Flash (crossdomain.xm1) policy formats. First Silverlight checks
to see if the Silverlight policy file, crossaccesspolicy.xml, exists on the server. If it does, Silverlight
uses this. However, if not, Silverlight looks for the Flash version of this, crossdomain.xml. In effect,
Silverlight supports both. Silverlight doesn’t check for crossdomain.xml if crossaccesspolicy.xml
exists on the server.

The clientaccesspolicy.xml Silverlight policy file enables classes in the System.Net namespace,
such as the webClient object. It also allows for classes in the System.Net.Sockets namespace

to access all the available resources located in the domain. An example of this is presented in
Listing 10-8.

‘) LISTING 10-8: The clientaccesspolicy.xml file
Available for
dwmf%gﬂ <?xml version="1.0" encoding="utf-8" ?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="*">
<domain uri="*" />
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true" />
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

The * for the domain URI means that the clients can come from anywhere, whereas using
<domain uri="http://www.thomsonreuters.com" /> means that for the client domain, only
www . thomsonreuters . com is allowed along with all of its Subpaths.

The crossdomain.xml file is the Flash-based one and is presented in Listing 10-9.

LISTING 10-9: The crossdomain.xml file

<?xml version="1.0"7?>
<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">
<cross-domain-policy>
<allow-http-request-headers-from domain="*" headers="*" />
</cross-domain-policy>

http://www.thomsonreuters.com%E2%80%9D
http://www.thomsonreuters.com
http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd%E2%80%9D

314 | CHAPTER10 NETWORKING APPLICATIONS

SILVERLIGHT AND WCF DUPLEX COMMUNICATIONS

Duplex communication is a special facility that enables Silverlight clients to connect to a server and
effectively keep a channel of communication open so that the server can send updates (sometimes
called push) to clients without their having to repeatedly poll for updates. This is especially helpful
in cases such as instant communication clients (instant messaging/chat services) as well as server-
based monitoring.

Note that under the covers, there is intermittent polling going on, but it is
effectively two-way, because the server keeps the poll connection open until it
responds.

The following sample demonstrated next illustrates the basics of setting up duplex (two-way) com-
munications. Be prepared to be mystified if this sort of thing is new to you. It requires jumping
through many hoops and does not provide most of the WCF service niceties (like client generation)
that you might be used to. First, you set up your Silverlight application as usual and add a website
(or link to an existing one). For this example, name your Silverlight application SilverlightDuplex.
This also means that the associated web application Visual Studio helps you create will be called
SilverlightDuplex.Web. Now that this is set up, instead of first concentrating on the client, you first
turn your attention to building the service within the same solution.

Setting Up the Duplex Service

With your Silverlight client in place, you first build the duplex service. To do this, right-click the
solution from the Solution Explorer within Visual Studio and select the option to add a new project
to the solution. You are presented with the Add New Project dialog. Select the option to add a WCF
Service Application as presented in Figure 10-4.

Name the service WCFDuplexServer as is presented in the figure. Once in place, you need to add
a reference to System.ServiceModel.PollingDuplex.dll, which you will find in a server-side
folder within the Silverlight SDK (C:\Program Files\Microsoft SDKs\Silverlight\v4.0\
Libraries\Server). To do this, right-click the References folder and choose the option to add a
reference. The Add Reference dialog displays. Click the Browse tab and use the file dialog to select
the appropriate DLL. Once selected, you will see reference to the PollingbDuplex.dl1l in your
References folder.

From there, create the interface that will be utilized on the server. This interface,
IServerTimeService.cs, is defined in Listing 10-10.

‘) LISTING 10-10: The server-side interface IServerTimeService.cs

Available for

downloadon ;15ing System.ServiceModel;
Wrox.com

namespace WCFDuplexServer

Silverlight and WCF Duplex Communications | 315

{
[ServiceContract (Namespace = "Silverlight",
CallbackContract = typeof (IServerTimeClient))]
public interface IServerTimeService
{
[OperationContract (IsOneWay = true)]
void GetServerTime () ;
}
}
Add New Project [
. oo - 5) P
Instalied Templates
ﬁq WCT Service Lib Visual C# Frpe: Vil C
4 Yiul C§ =3 i e A project Tor wealing WCF services
Windows
Web FE'L 'WCF Service Application Visual C#
Uthce a2
::I::‘ﬂml CF& WCF Workflow Service Application Visual C#
SharePoint [
Silverlight C;; Syndicabion Service Library Visual L&
lest
WCF
Workfiow
' Other Languages
Other Project Types
Database
Modeling Projects
Test Projects
Name: WCFDuplexSarver

L

FIGURE 10-4

This code shows that IServerTimeService is the server-side contract and IServerTimeClient

is the client-side contract. What is important here is the servicecontract attribute, because that
is how WCF maps the messages sent back and forth to the corresponding code operations. On the
server, you just define a Subscribe that clients can call to subscribe to server notifications; the client
defines a Notify that the server uses to send notifications to clients. Note the callbackContract
on IServerTimeService; this indicates the client-side contract that WCF expects for duplex

communication.
Now that the server-side interface implementation is in place, add the client-side implementa-

tion. This is also done within the WCF service right next to the server-side interface definition.
Listing 10-11 provides the code for this interface.

316 | CHAPTER10 NETWORKING APPLICATIONS

‘) LISTING 10-11: The client-side interface implementation IServerTimeClient

Available for

download on using System.ServiceModel;
Wrox.com

namespace WCFDuplexServer
{
[ServiceContract]
public interface IServerTimeClient
{
[OperationContract (IsOneWay = true)]
void Receive (ServerDateTime serverDateTime) ;

Here, you also make use of the SserviceContract attribute on the interface, and for the method def-
inition, you make use of the operationContract, setting the Tsoneway property to a value of true.
From this bit of code in Listing 10-11, you can see that the client receives a ServerDateTime object
back. The next step is to define this complex type as shown in Listing 10-12.

‘) LISTING 10-12: Defining ServerDateTime

Available for

download on i .
Wi oo using System;

namespace WCFDuplexServer
{
public class ServerDateTime
{
public DateTime ServerDateTimeValue { get; set; }
public ServerDateTimeStatus Status { get; set; }

}

public enum ServerDateTimeStatus
{

Working,

Completed

Here, the class serverDateTime is a simple definition of a DateTime object called
ServerDateTimevValue along with the status of the service, ServerDateTimeStatus. Looking at
ServerDateTimeStatus, you can see that it is actually an enum value that tells the clients that the
request that they made is either being worked on or it has been completed. This is not really needed for
this example, but is put here to make a point that if you had some long-running server-side operations,
you might want to consider such an approach on how you would communicate that down to the client.

Now that the interfaces and the type being returned to the client have been created, the next step is
to create the actual WCF service that will make use of all of this. For this step, create a new service
or use the default servicel.svc implementation (though you are going to have to change the code
for this). Listing 10-13 shows the code for the Servicel. svc file that you are going to need to put

into place. If you are using the pre-existing servicel.svc file, pull up this file by right-clicking the

Silverlight and WCF Duplex Communications | 317

.svc file (not the .svc.cs file) and selecting Open With. In the Open With dialog, select HTML
Editor to view the actual file; otherwise, you will be consistently presented with the code-behind file
if you are just double-clicking the . svc file.

‘) LISTING 10-13: The Servicel.svc file
Available for
dwm?%g" <%@ ServiceHost Language="C#" Debug="true"
Service="WCFDuplexServer.ServerTimeService" CodeBehind="Servicel.svc.cs" %>

Here, make sure that the service value is actually wcFDuplexServer.ServerTimeService if you
have been following along with this example exactly.

With this all in place, it is now time to turn your attention to the code-behind page for this file.
This is presented in Listing 10-14.

‘) LISTING 10-14: The code-behind for the service Servicel.svc.cs
dI\vail?lﬂ(:i for
jownload on il .
mmmm‘ uS}ng System;
using System.ServiceModel;
using System.Threading;

namespace WCFDuplexServer
{
public class ServerTimeService : IServerTimeService
{
private IServerTimeClient _client;
private bool _working;

public void GetServerTime ()
{
// Grab the client callback channel.
_client =
OperationContext.Current.GetCallbackChannel<IServerTimeClient> () ;

// Pretend service is processing and will call client back
// in 5 seconds.
using (new Timer(CallClient, null, 5000, 5000))
{
Thread.Sleep(11000) ;

private void CallClient (object o)
{

ServerDateTime sdt = new ServerDateTime();
if (_working)
{

sdt.ServerDateTimeValue = DateTime.Now;

continues

318 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-14 (continued)

sdt.Status = ServerDateTimeStatus.Completed;
}
else

{
// Turn the status to working.
sdt.Status = ServerDateTimeStatus.Working;
_working = true;

}

// Call client back.
_client.Receive (sdt);

This service, ServerTimeService, implements the TServerTimeService interface. This is the
server-side implementation. All this code simply sets up a service that sends delayed updates to sub-
scribed clients, telling them what the current server time is. The timer is just there to facilitate the
updates; normally you would not do this — you would have something more meaningful to send
back to the client that would more likely be event-based than timer-based.

Looking over the example in Listing 10-14, you can see that an instance of the ServerDateTime
object is returned though the client interface’s Receive () method.

The next step to take with the WCF service is to configure the web. config file. If you are working
with the Visual Studio-generated servicel.svc file and web.config file, you most likely want to
delete the previous contents of the web.config file and replace it with the contents illustrated in
Listing 10-15.

‘) LISTING 10-15: The Web.config file for Servicel.svc

Available for

download on <?xml version="1.0"?>
Wrox.com

<configuration>

<system.web>
<compilation debug="true" targetFramework="4.0" />
</system.web>

<system.serviceModel>
<extensions>
<bindingExtensions>
<add name="pollingDuplexHttpBinding"
type="System. ServiceModel.Configuration
.PollingDuplexHttpBindingCollectionElement,
System. ServiceModel.PollingDuplex, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
</bindingExtensions>

Silverlight and WCF Duplex Communications | 319

</extensions>

<!-- Create the polling duplex binding. -->
<bindings>

<pollingDuplexHttpBinding />
</bindings>

<services>
<service name="WCFDuplexServer.ServerTimeService"
behaviorConfiguration="WCFDuplexServer.ServerTimeServiceBehavior">

<!-- Specify the service endpoints. -->
<endpoint address=""
binding="pollingDuplexHttpBinding"
contract="WCFDuplexServer.IServerTimeService">
</endpoint>
<endpoint address="mex"
binding="mexHttpBinding"
contract="IMetadataExchange"/>
</service>
</services>

<behaviors>
<serviceBehaviors>
<behavior name="WCFDuplexServer.ServerTimeServiceBehavior">
<!-- To avoid disclosing metadata information,
set the value below to false and remove the metadata
endpoint above before deployment -->
<serviceMetadata httpGetEnabled="true"/>
<!-- To receive exception details in faults for debugging purposes,
set the value below to true. Set to false before deployment to
avoid disclosing exception information -->
<serviceDebug includeExceptionDetailInFaults="false"/>
</behavior>
</serviceBehaviors>
</behaviors>

<serviceHostingEnvironment multipleSiteBindingsEnabled="true" />
</system.serviceModel>

<gsystem.webServer>
<modules runAllManagedModulesForAllRequests="true" />
</system.webServer>

</configuration>

Some of the main points of this configuration file are that you are declaring a binding of
PollingDuplexHttpBinding. Your version of Visual Studio might not recognize this option,
but it will still work when compiled and run, so don’t worry too much about that.
<bindings>
<pollingDuplexHttpBinding />
</bindings>

320 | CHAPTER10 NETWORKING APPLICATIONS

You are also declaring a binding extension pointing to the provided and referenced
System. ServiceModel.PollingDuplex.dll from earlier:

<extensions>
<bindingExtensions>
<add name="pollingDuplexHttpBinding"
type="System. ServiceModel.Configuration.
PollingDuplexHttpBindingCollectionElement,
System.ServiceModel.PollingDuplex, Version=4.0.0.0,
Culture=neutral,
PublicKeyToken=31bf3856ad364e35" />
</bindingExtensions>
</extensions>

One of the final points is in creating the endpoint for the service:

<endpoint address=""
binding="pollingDuplexHttpBinding"
contract="WCFDuplexServer.IServerTimeService">

Now that the configuration file is in place, the final step is to create a policy file in the root of the
WCF solution so that your Silverlight application has the appropriate permissioning to make the
call to the service. To accomplish this task, create a new XML file called clientaccesspolicy.xml
within the root of the solution. The code for this file is presented in Listing 10-16.

‘) LISTING 10-16: The clientaccesspolicy.xml file
Available for
ﬂwmygﬁﬂ <?xml version="1.0" encoding="utf-8" ?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="*">
<domain uri="*" />
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true" />
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

With this all in place, you are now ready to turn your attention to the client portion of this example.
Therefore, expand the SilverlightDuplex Silverlight project within this solution.

Setting Up the Duplex Client

Now that the server-side capabilities for duplex communication are established, the next step is to create
the client. If you remember, you had to make a server-side reference to the Po11ingDuplex.d11 for this
all to work within the WCF project. On the client, you are also going to have to make a similar refer-
ence. However, in this case, you will reference the System. ServiceModel.PollingDuplex.dll found
at C:\Program Files\Microsoft SDKS\Silverlight\v4.0\Libraries\client.]Tﬁsisobviouﬂy

Silverlight and WCF Duplex Communications | 321

the one that is specifically designed for the client. On another note, you are also going to have to make a
reference to the System.Runtime.Serialization.dll as well.

After you have the appropriate DLLs referenced, make a service reference to the WCF service
that you created earlier in this chapter. To accomplish this, right-click the References folder and
select Add Service Reference. The Add Service Reference dialog appears. Click the arrow next
to the Discover button to search for services that are contained within the same solution. You
are presented with the option to reference the service that you just built. This is demonstrated in
Figure 10-5.

[Add Service Reference 15

o see a hist of available services on a spectic server, enter a senvice UKL and click Go. [o browse
for available services, dlick Discover.

Address:

.http:moﬂ;lﬁ ost37I7/Senvicel.sve v | Gu Distover | —
Services: Operations:
@‘: Semvicelave |

i senvire(s) found in the sahition.

MHamespace:

ServiceReferencel

Adyanced.., " cancel |
L =
FIGURE 10-5

In creating the client, the user interface for this is pretty straightforward. Listing 10-17 shows the
XAML that is used for the MainPage.xaml file.

‘) LISTING 10-17: The MainPage.xaml file

Available for

downloadon <yserControl x:Class="SilverlightDuplex.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">

<Grid x:Name="LayoutRoot" Background="White">
<TextBlock Height="276" HorizontalAlignment="Left" Margin="12,12,0,0"
Name="textBlockl" Text="" VerticalAlignment="Top" Width="376" />
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

322 | CHAPTER10 NETWORKING APPLICATIONS

As you can see from this bit of code, there isn’t much to this view. The only thing on the page is

a TextBlock control. Here you will publish the text that is pushed out of the WCF service using
duplex communications. With that small bit of UT in place, the next step is to work with the
MainPage.xaml .cs file. The code-behind to the MainPage.xami file is represented in Listing 10-18.

‘) LISTING 10-18: The MainPage.xaml.cs file
Available for
“mg;‘fgs;“ using System;
using System.Windows.Controls;
using System.ServiceModel;
using SilverlightDuplex.ServiceReferencel;

namespace SilverlightDuplex
{
public partial class MainPage : UserControl
{
public MainPage ()
{

InitializeComponent () ;

EndpointAddress endpointAddress = new

EndpointAddress ("http://localhost:3737/Servicel.svc");
PollingDuplexHttpBinding pollingDuplexHttpBinding =

new PollingDuplexHttpBinding() ;

ServiceReferencel.ServerTimeServiceClient svc =
new ServerTimeServiceClient
(pollingDuplexHttpBinding, endpointAddress) ;
svc.ReceiveReceived += new
EventHandler<ReceiveReceivedEventArgs> (svc_ReceiveReceived) ;
svc.GetServerTimeAsync () ;

textBlockl.Text += Environment.NewLine +
"Request made for the server's time";

void svc_ReceiveReceived (object sender, ReceiveReceivedEventArgs e)
{
if (e.Error == null)
{
textBlockl.Text += Environment.NewLine +
"Request status: " + e.serverDateTime.Status;

if (e.serverDateTime.Status == ServerDateTimeStatus.Completed)
{
textBlockl.Text += Environment.NewLine +
"Server time: " + e.serverDateTime.ServerDateTimeValue;

http://localhost:3737/Service1.svc%E2%80%9D

Sockets | 323

This client application creates an instance of the WCF proxy and then applies the endpoint as well
as the binding that will be utilized — the Po11ingDuplexHttpBinding. The next bit of important
code is in setting the callback for the ReceiveReceived event:

svc.ReceiveReceived +=
new EventHandler<ReceiveReceivedEventArgs> (svc_ReceiveReceived) ;

Whenever the server sends a message back to the client, this method is invoked. Through this event
handler, you are instructing that the svc_ReceiveReceived () method should be invoked. This
method deals with the result that comes back from the server. In this case, the TextBlock control is
populated with status and finally, with the server DateTime value.

Once you have this part of the client application in place and considering the fact that you already
set up the WCEF service as was described earlier in the chapter, you are basically done with this
example. You actually don’t have to make any changes to the web application that is hosting the
Silverlight application. When you compile and run the application, you end up with something simi-
lar to what is presented in Figure 10-6.

silverlightDuplex - Windows Internet Explorer ==
QQ - |g' " 3627/ Silverli pleaTestP, '| E|‘1!K ||L-.7.'B|'.r|a P -
4r Favorites | 4@ SilverlightDuplex 0 B - B - & ~ Page~ Safety~ Tools~ @~

Request made tor the server’s ime
Request status: Working

Request status: Completed

Server lime: 4/13/2010 7:16:16 PM

Done € Local i | Protected Mode: OFf £y -~ H100% v

L <

FIGURE 10-6

SOCKETS

Like HTTP-based duplex communication, sockets are likely going to appeal to a limited audi-

ence, but they are very useful for those who need them. Silverlight’s sockets implementation uses
Windows Sockets (Winsock) on Windows and BSD UNIX’s sockets on OS X to provide a standard,
managed interface. If you need true, real-time duplex communication and can use TCP, this is your
solution in Silverlight. The challenge of course is that it uses ports (4502-4532 and 943 for policy)
that are less likely to be open in firewalls, so the application of a sockets solution may be limited due
to that.

324 | CHAPTER10 NETWORKING APPLICATIONS

The example that follows is a simple implementation of essentially the same scenario covered in the
duplex HTTP section, that is, server notifications. The first thing you’ll need to do is create a server;
probably the easiest way to do this is via a console application, so you can just add a console appli-

cation to your solution and call it SocketsServer to get started.

Setting Up the Policy Server

Because sockets require a call access security file (even for site-of-origin calls), you first need to set
up a policy server listener. To do this, add a new class file to your console application, calling it
PolicyServer.cs. You must use a few namespaces to make things more manageable. The entire set

of code for this class is presented in Listing 10-19.

J

Available for
download on
Wrox.com

LISTING 10-19: Building PolicyServer.cs

using System;

using System.IO;

using System.Net;

using System.Net.Sockets;

namespace SocketsServer

{

internal class PolicyServer

{

private readonly byte[] _policyData;
private Socket _listener;

public PolicyServer (string policyFile)
{
using (FileStream policyStream =
new FileStream(policyFile, FileMode.Open))

_policyData = new byte[policyStream.Length];

policyStream.Read(_policyData, 0, _policyData.Length);

public void Start()

{
Console.WriteLine("Starting policy server...");
_listener = new Socket (AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp) ;

_listener.Bind(new IPEndPoint (IPAddress.Any, 943));
_listener.Listen(10);
_listener.BeginAccept (OnConnection, null);

Console.WriteLine("Policy server waiting for connections...

private void OnConnection (IAsyncResult res)

Sockets | 325

Socket client;

try
{

client = _listener.EndAccept (res);

}
catch (SocketException)

{
return;

}
Console.WriteLine("Policy client connected.");

PolicyConnection policyConnection =
new PolicyConnection(client, _policyData);
policyConnection.NegotiatePolicy() ;

_listener.BeginAccept (OnConnection, null);

}

public void Close()
{

_listener.Close();

Looking at this code, most of the socket’s functionality you’ll need is, of course, in System.Net
.Sockets. The namespace System. 10 is included because you want to read the policy XML file
from the local filesystem, as you will see shortly. Ssystem.Net has the network endpoint classes
you will be using.

The socket object created, _listener, of course is the listener socket you will set up; the policy
data will be an in-memory byte buffer of your policy file data to be shared across connections. The
next part of the code, the Policyserver () method, defines a constructor that takes a file path to
the location of your policy file. As you can see, this simply reads the policy file data into the afore-
mentioned byte buffer. The policy file you will use can be added to your project and called whatever
you like; because you will allow all access, you can call it allow-all.xml. You could create differ-
ent policies in different files then and just use some mechanism to specify which policy should apply
at any particular time.

The start () method here creates the socket listener and starts listening for requests. Silverlight lim-
its the kinds of sockets you can create — pretty much streams over TCP. Because this is the policy
server, you need to bind to the well-known port 943. The Listen method starts it listening on that
port, allowing up to 10 connections in the queue, which is more than enough in this sample. Finally,
attach a handler to the BeginAccept () event, such as the onConnection () method.

This handler first gets a reference to the client socket, which is used to send the policy file. To facili-
tate this, create a PolicyConnection class as illustrated in Listing 10-20.

326 | CHAPTER10 NETWORKING APPLICATIONS

‘) LISTING 10-20: The PolicyConnection class
Qvailellblilor .
mgx‘fgon‘:“ uS}ng System;
using System.Net.Sockets;
using System.Text;

namespace SocketsServer
{
internal class PolicyConnection
{
private const string PolicyRequest = "<policy-file-request/>";
private readonly byte[] _policyData;
private readonly byte[] _policyRequestBuffer;
private readonly Socket _connection;
private int _numBytesReceived;

public PolicyConnection (Socket client, byte[] policy)

{
_connection = client;
_policyData = policy;
_policyRequestBuffer = new byte[PolicyRequest.Length];
_numBytesReceived = 0;
}
public void NegotiatePolicy ()
{
Console.WriteLine ("Negotiating policy.");
try
{
_connection.BeginReceive (_policyRequestBuffer, 0,
PolicyRequest.Length,
SocketFlags.None, OnReceive, null);
}
catch (SocketException)
{
_connection.Close();
}
}
private void OnReceive (IAsyncResult res)
{
try
{

_numBytesReceived += _connection.EndReceive (res) ;

if (_numBytesReceived < PolicyRequest.Length)

{

_connection.BeginReceive (_policyRequestBuffer,

_numBytesReceived,
PolicyRequest.Length -
_numBytesReceived,
SocketFlags.None, OnReceive,
null);

Sockets | 327

return;
}
string request =
Encoding.UTF8.GetString (_policyRequestBuffer, 0,
_numBytesReceived) ;
if (StringComparer.InvariantCultureIgnoreCase.Compare (request,
PolicyRequest) != 0)

_connection.Close();
return;
}
Console.WriteLine("Policy successfully requested.");
_connection.BeginSend(_policyData, 0, _policyData.Length,
SocketFlags.None, OnSend, null);
}

catch (SocketException)

{

_connection.Close();

}

public void OnSend(IAsyncResult res)
{
try
{
_connection.EndSend(res) ;
}
finally
{
_connection.Close();
}

Console.WriteLine("Policy sent.");

The system.Net.Sockets namespace is of course for the sockets work, and the System.Text
namespace facilitates using the text encoding to read a string from a byte array.

In the case of the fields defined in this file, the Socket object will be the connection to the client.
_policyRequestBuffer will be used to compare the connection request with the expected request,
identified in the shared policy request string — this is what Silverlight clients send when looking for
a policy file. The number of bytes received is just used to track that the full request is received, as
you will see, and the policy data byte array will be a reference to the given policy file data.

The NegotiatePolicy () method you called from the PolicyServer’s onConnection () handler is
used to negotiate the policy for the current connection. It simply starts receiving the request from
the client into your buffer, using the onReceive () method as the completion event handler.

Okay, so this is where dealing with sockets can be a little more archaic than what the average NET
developer is probably used to. Because there is no guarantee that the entire request that you are
expecting was sent in the first go, you may want to take this approach. Calling Endreceive () tells

328

| CHAPTER10 NETWORKING APPLICATIONS

you how many bytes were received. You can then compare that with what you are expecting to see
if you are done. In the preceding code, you are expecting to receive a request with the length of the
policy request Length property; if it is not there yet, call BeginReceive () again to (hopefully) get
the rest of what you are looking for.

Once you have something that is at least the right length, the next step is to compare that to what
you are expecting; however, you first need to read the received bytes into a UTFS string. You can
then compare the actual request contents with the well-known policy request string. If it does not
match, just close the connection — this server only handles negotiating server policy according to
the Silverlight policy negotiation protocol. If, on the other hand, it is the expected request, just send
the server policy data down to the client.

The last thing to do for the policy server is set it up when the console application starts. So go
into your Main () method (in the Program class file, assuming you used the standard Visual Studio
Console Application template) and create a policy server instance and start it up as illustrated in
Listing 10-21.

‘) LISTING 10-21: The Main() method of the console application

Available for

download on namespace SocketsServer
Wrox.com

internal class Program

{
private static void Main(string[] args)
{

PolicyServer ps = new PolicyServer ("allow-all.xml");
ps.Start () ;

Looking over this code, you can see that you are passing in the path to your policy file. This is hard-
coded in this example for simplicity; you would probably want to let the policy file be passed in

via command-line arguments or some other fancier mechanism in real-world code. Also, note that
you can simply add that file as a text file to your project and set its Build Action to Content and the
Copy to Output Directory to “Copy if newer” so that you can manage the file in your project and
have it be in the output location to be consumed while running and debugging.

Unfortunately, that’s a lot of boilerplate code that you have to deal with just to enable Silverlight
clients to connect to your “real” sockets server; that is, the one that is doing your domain work. On
the positive side, your policy server should be the same (code) for all sockets apps, so you can reuse
it across them and just tweak your policy files as needed.

Setting Up the Application Sockets Server

In this sample case, the real sockets server just sends notifications, so set that up next by adding a
SocketsServer class file to your project. The code for this class is presented in Listing 10-22.

Sockets | 329

‘) LISTING 10-22: The SocketsServer class
Available for
“m;“:gn‘:“ using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Timers;
using t = System.Timers;
using Timer = System.Timers.Timer;

namespace SocketsServer
{
internal class SocketsServer
{
private readonly object _syncRoot = new object();
private readonly ManualResetEvent _threadCoordinator =
new ManualResetEvent (false) ;
private List<Socket> _clients =
private Socket _listener;
private Timer _serverTimer;

new List<Socket>();

public void Start()

{
_serverTimer = new Timer (1000);
_serverTimer.Enabled = false;
_serverTimer.Elapsed += ServerTimer_Elapsed;

_listener = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

IPEndPoint serverEndpoint = new IPEndPoint (IPAddress.Any, 4502);

_listener.Bind(serverEndpoint) ;

_listener.Listen(2);

while (true)

{
_threadCoordinator.Reset () ;
_listener.BeginAccept (AcceptClient, null);
Console.WriteLine("Waiting for clients...");
_threadCoordinator.WaitOne () ;

private void AcceptClient (IAsyncResult result)
{

try

{

_threadCoordinator.Set () ;

Socket clientSocket = _listener.EndAccept (result);
lock (_syncRoot)
_clients.Add(clientSocket) ;

continues

330 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-22 (continued)

Console.WriteLine("Client connected.");

if (!_serverTimer.Enabled)
_serverTimer.Enabled = true;
}
catch (ObjectDisposedException ex)
{
Trace.WriteLine ("Socket closed: " + ex);
}
catch (SocketException ex)
{
Console.WriteLine (ex.Message) ;
}
}
private void ServerTimer_Elapsed(object sender, ElapsedEventArgs e)
{
byte[] serverTimeBytes = Encoding.UTF8.GetBytes (
DateTimeOffset.Now.ToString());
Console.WriteLine ("Sending server time.");
lock (_syncRoot)
{
List<Socket> refreshedList = new List<Socket>(_clients.Count);
foreach (Socket client in _clients)
{
if (client.Connected)
{
try
{
client.Send (serverTimeBytes) ;
}
catch (Exception ex)
{
if (!(ex is SocketException) ||
((SocketException) ex) .SocketErrorCode !=
SocketError.ConnectionReset)
Console.WriteLine("Client Send Error: " + ex);
else
Console.WriteLine("Client disconnected.");
client.Close();
return;
}
refreshedlList.Add(client) ;
}
}
_clients = refreshedList;
if (_clients.Count == 0)
_serverTimer.Enabled = false;
}
}

Sockets | 331

Because there is a System. Threading timer and a System. Timers timer, it is helpful to clarify using
the namespace alias setup in the using statements, that is, “t.” The thread coordinator, sync root, and
clients list are all there to facilitate tracking multiple connections and coordinating between them.

In the start () method, the first thing here is the creation of the timer. Note that it is disabled ini-
tially — no need for it to be running while no clients are connected. Also, keep in mind that this is
just used for simulation purposes; it is safe to assume that you would have more meaningful events
and notifications to send to real-world clients than timer-based ones.

The next block of code should look familiar; it is setting up the server socket listener. One thing that
is different is that it is listening on port 4502 — one of the ports allowed by Silverlight and not the
policy negotiation port of 943. In addition, the code is (arbitrarily) limiting queued connections to
two; you need to adjust this to what makes sense for your expected usage and capacity.

The last block here sets up the listener loop. The ManualResetEvent () that here is called
_threadCoordinator is used as a simple way for threads to signal that they are doing or not doing
something. Reset tells all the threads to hold on while the current thread does its thing. waitone ()
tells the current thread to chill until it gets a signal that says go ahead.

In between there, you set up the acceptclient () method to take the next connection that comes
in. In this method, the first thing is to let the waiting threads that were previously blocked pre-
cede. Then it goes on to get a reference to the connected client socket, synchronizes access to the
current list of clients, and adds this one to the list of subscribed clients. Next, enable the server
timer now that clients are connected and waiting for notifications. If you recall, you attached the
ServerTimer_ Elapsed () method to the timer’s Elapsed () method back in the start () method.

This method does the actual sending of notifications to clients, but remember that this is completely
arbitrary — you could send updates to clients based on any number of server-side events. Because
this sample is timer-based, it makes sense to just send the server time, so that first bit is grabbing the
current server time into a byte buffer to be sent to the clients.

The next block goes ahead and synchronizes access to your client list by locking on your sync root
object. It then creates a new list of clients that are used to refresh the list of currently connected
clients — this way, when clients fall off or unsubscribe, you let go of them on the server side and let
their resources get cleaned up. Then for every client still connected, add them to the new list and try
to send them the message (the server time).

The last bit of code in this method updates the _c1ients reference with the new, refreshed list of clients
and then checks if any clients are still connected. If not, it disables the timer until new clients connect.

The final thing you need to do on the server is create an instance of this class and start it up, so go
back to your Main () method and add it as is presented in Listing 10-23.

‘) LISTING 10-23: Adding more to the Main() method

Available for

download on namespace SocketsServer
Wrox.com

internal class Program
{
private static void Main(string[] args)

continues

332 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-23 (continued)

{
PolicyServer ps = new PolicyServer ("allow-all.xml");
ps.Start () ;
SocketsServer s = new SocketsServer();
s.Start();
}

Setting Up the Sockets Client

Now that your server is all set, you need to create a client. To do this, you can create a new
Sockets.xaml user control within a new Silverlight solution. In the code-behind, you need to
set up very little. This is where you will find that sockets are easier than duplex HTTP communi-

cations. You can accomplish the same scenario with far fewer methods and trouble.

MainPage.xaml is a simple construction and is provided in Listing 10-24.

‘) LISTING 10-24: The XAML code for MainPage.xaml
Available for
dwmygg“ <UserControl x:Class="SilverlightSockets.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"

mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">

<Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<Button Content="Subscribe" x:Name="SubscriptionButton"
Click="SubscriptionButton_Click" />
<Button Content="Unsubscribe" x:Name="UnsubscriptionButton"
Click="UnsubscriptionButton_Click" />
<TextBlock x:Name="SusbscriptionInfo" TextWrapping="Wrap" />
</StackPanel>
</Grid>
</UserControl>

The code-behind for this simple view is presented in Listing 10-25.

‘) LISTING 10-25: MainPage.xaml.cs
dAvaiIthI?‘!or
lownload on 1 .
#Mxm‘ us%ng System;
using System.Net;
using System.Net.Sockets;

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Sockets | 333

using System.Text;

using System.Threading;

using System.Windows;

using System.Windows.Controls;

namespace SilverlightSockets
{
public partial class MainPage : UserControl
{
public MainPage ()
{

InitializeComponent () ;

SynchronizationContext _uiThread;

Socket _channel;

DnsEndPoint _remoteEndPoint;

bool Connected { get { return _channel != null && _channel.Connected; } }

void AppendServerMessage (object messagePayload)
{
string message = messagePayload as string;
if (!string.IsNullOrEmpty (message))
this.SusbscriptionInfo.Text += message + Environment.NewLine;

void SubscriptionButton_Click(object sender, RoutedEventArgs e)
{
if (Connected)
{
AppendServerMessage ("Already subscribed.");
return;

AppendServerMessage ("Subscribing to server notifications...");
_uiThread = SynchronizationContext.Current;

_channel = new Socket (AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp) ;
_remoteEndPoint =
new DnsEndPoint (Application.Current.Host.Source.DnsSafeHost, 4502);

SocketAsyncEventArgs args = new SocketAsyncEventArgs();
args.RemoteEndPoint = _remoteEndPoint;

args.Completed += SocketConnectCompleted;
_channel.ConnectAsync (args) ;

void SocketConnectCompleted(object sender, SocketAsyncEventArgs args)
{
if (!_channel.Connected)
{
_uiThread.Post (AppendServerMessage,
"Could not connect to server.");

continues

334 | CHAPTER10 NETWORKING APPLICATIONS

LISTING 10-25 (continued)

_channel .Dispose() ;
_channel = null;
return;

args.Completed -= SocketConnectCompleted;

args.Completed += ReceiveData;

args.SetBuffer (new byte[2048], 0, 2048);

_channel .ReceiveAsync (args) ;

_uiThread.Post (AppendServerMessage, "Waiting for notifications...");

void ReceiveData (object sender, SocketAsyncEventArgs e)
{
if (Connected)
{
string notification = Encoding.UTF8.GetString(
e.Buffer, e.Offset, e.BytesTransferred);
_uiThread.Post (AppendServerMessage, notification);
_channel .ReceiveAsync (e) ;

}

void UnsubscriptionButton_ Click(object sender, RoutedEventArgs e)

{
if (Connected)

{

_channel .Dispose() ;

_channel = null;

AppendServerMessage ("Unsubscribed. ") ;
}

else
AppendServerMessage ("Not subscribed.");

The first part of this should look familiar from the duplex HTTP, just ensuring only one subscrip-
tion for this client at a time and grabbing a reference to the Ul thread context. Assuming it is not
already connected, this creates a new socket and set up a bnsEndPoint to the site of origin (that is
the Application.Current.Host.Source bit) on port 4502. The important thing here is, of course,
to connect on the port that the server is listening on. So if this were a real-world app, you would
have to somehow publish that information to your clients. Here we are hard coding for simplicity.

Now Silverlight uses the SocketasyncEventArgs class as a sort of general socket communication
facility, so go ahead and create an instance, set the remote endpoint to the one just created, attach to
theCompleted()eventwdﬂltheSocketConnectCompleted()handkr,andcaHConnectAsync()On
the socket. When the connection completes, it calls SocketConnectCompleted().

Sockets | 335

If the result of the connection attempt is not successful, dispose of the socket and send a mes-
sage to the users letting them know that. If it does succeed, move on to the next step — receiv-
ing data. Again, the SocketAsyncEventArgs class is used; in fact, you can reuse it to conserve
resources as done here. First, remove the SocketConnectCompleted () event handler and attach
instead the ReceiveData () handler. Set up a buffer to specify how much to receive at a time; in
this case, 2048 is rather arbitrary and actually way more than you need because you know the
server is just sending the server time. Set it up to something reasonable that would handle most
messages but not so large that it ties up too many resources. Then it puts itself into a state to
receive data from the server.

Remember that once this client is connected, the server enables its timer (if no other clients were
already connected) and starts sending server-time updates every second, so the ReceiveData ()
method should be called almost immediately.

The ReceiveData () method just grabs the bytes sent as a UTFS8 string, posts those to the Ul thread,
and tells the socket to receive again (using the same SocketAsyncEventArgs instance). This loop
continues as long as the server keeps sending data and, of course, as long as the socket remains
open, which leads us to the UnsubscriptionButton_click() handler.

If connected, this disposes of the socket, clears out your reference to it, and notifies the user
accordingly.

To see this in action, right-click the silverlightSocketsTestPage.html page from Visual Studio’s
Solution Explorer and choose the option to view the page in a browser.

Once that page is open in the browser, right-click the SocketsServer project and select this as the
startup project. Compiling and running this gives you what is presented in Figure 10-7.

5 file:HIC:/Users/BilliD y ional Silverlight 4/0ld Chap Thin... b | B]

connections...

m| s

L =

FIGURE 10-7

Once the SocketsServer project is running and waiting, click the Subscribe button back in the view.
You are then presented with something similar to what is shown in Figure 10-8.

336 | CHAPTER10 NETWORKING APPLICATIONS

'9 SilverlightSockets - Windows Internet Explorer [[G e
OQ = [ntigsnocainest:1143/Sivert skelsTestPage.hm -l@[‘;l x] (=1 Bing E . P -l
i Favorites | £ SilverlightSockets = Bi - B - & ~ Page~ Safety~ Took~ @~

Subscribe |
Unsubsuribe |

(subscribing to server notifications...
waiting for notifications...
14/13/2010 5:05:53 PM -05:00
14/13/2010 9:05:54 PM 05:00
1/13/2010 9:05:55 PM -05:00
14/13/2010 9:05:56 PM -05:00
14/13/2010 9:05:57 PM -05:00
14/13/2010 9:05:58 PM -05:00
149/13/ 2010 9:05:59 PM -U5:00
14/13/2010 5:06:00 PM -05:00
[4,/13/2010 5:06:01 PM -05:00
14/13/2010 9:06:02 PM 05:00
(4/13/2010 9:06:03 PM -05:00
iUnsubscribed.

Done €L Locali IT d Modc: Off 45 = W10k v

L -

FIGURE 10-8

That about wraps it up for the communications services. As noted, you will see a lot of samples in
this book using the standard HTTP- and WCF-style communications, so those were omitted here.
But you did learn about the duplex HTTP and sockets in enough depth to give you a good under-
standing of what is involved in using them. If you have a need for duplex, real-time communication,
those are your two best options in Silverlight. If the application is meant to run over the Web, your
best bet is duplex HTTP; however, if you can require your clients to open up the right ports, sockets
may be a more dependable, perhaps even simpler, solution.

SUMMARY

This chapter covered various services that Silverlight provides to make application development and
maintenance easier and, in some cases, possible user scenarios. This chapter looked at communica-
tions services such as HTTP-based services, including duplex communication over HTTP, and at
sockets communications.

11

Building Line of Business
Applications

WHAT'’S IN THIS CHAPTER?

> Working with the mouse

Printing from a Silverlight application
Drag-and-drop support

Communicating between Silverlight players

Integrating with Microsoft Office applications

Y Y Y VY Y

Making full-screen applications

It’s an exciting new age for software development. Rich Internet applications (RIAs) are
quickly becoming the standard architecture chosen by a number of developers. In the past
building RIA-based Line of Business (LOB) applications has been very challenging, especially
when you to need handle the following key scenarios: printing, localizing, and integrating
with Microsoft Office applications.

Silverlight 4 includes several new components and API(s) to address the challenges of building
LOB applications to add context-sensitive menus, build a printer-friendly version of your applica-
tion, integrate with Microsoft Excel or Word, and more. The Silverlight platform makes these and
many other typical LOB scenarios easy to implement.

LINE OF BUSINESS BASICS

Silverlight includes several key features for easily building Line of Business applications. You
can respond to mouse actions to display context menus, drag-and-drag items, and add Multi-
Touch support to your application. The printing support introduced in Silverlight 4 allows you

338 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

to print the contents of an entire screen, part of the screen or to build a printer friendly version of
your screen. With each new release, Silverlight makes it easier to build Line of Business applications
that will impress your users.

Responding to Mouse Actions

Silverlight provides a rich set of events for responding to mouse actions such as clicking a button
or moving the location of the mouse. In addition, Silverlight 4 supports responding to right-click
behaviors and turning stylus input/Multi-Touch input into equivalent mouse actions.

Table 11-1 shows the mouse events you can respond to in your application.

TABLE 11-1
EVENT DESCRIPTION
LostMouseCapture Occurs when the Ul element loses mouse capture.
MouseMove Occurs when the coordinate position of the mouse (or stylus) pointer
changes.
MouseEnter Occurs when the mouse (or stylus) enters the bounding area of an object.
MouseLeave Occurs when the mouse (or stylus) leaves the bounding area of an object.

MouseLeftButtonDown Occurs when the left mouse button is down or when the tip of the stylus
touches the screen.

MouseLeftButtonUp Occurs when the left mouse button is up or when the tip of the stylus
leaves the screen, typically following a MouseLeftButtonDown event.

MouseRightButtonDown Occurs when the right mouse button is pressed.
MouseRightButtonUp Occurs when the mouse (or stylus) leaves the bounding area of an object.

MouseWheel Occurs when the mouse wheel is spun or clicked.

Listing 11-1 shows an example of subscribing to the MouseLeftButtonUp and MouseMove events of
a tree view control. The left button event allows you to retrieve the data context of the item clicked,
and the MouselMove events expose the current X and Y coordinates of the mouse.

‘) LISTING 11-1: Subscribing to the mouse events
Available for
“W"'“a“ o ysing System.Windows;
rox.com . A
using System.Windows.Controls;
using System.Windows.Input;

namespace Chapterll.Views

{
public partial class Listingll101 : UserControl

Line of Business Basics

339

Listing 11-2 shows an example of subscribing to the Mousewheel events for a slider and image. The

public Listingl101()
{

InitializeComponent () ;

this.Loaded += new RoutedEventHandler (Sample_Loaded) ;

void Sample_Loaded(object sender, RoutedEventArgs e)
{
this.DataTree.MouseLeftButtonUp +=
new MouseButtonEventHandler (DataTree_MouseLeftButtonUp) ;
this.DataTree.MouseMove += new
MouseEventHandler (DataTree_MouseMove) ;

void DataTree_MouseMove (object sender, MouseEventArgs e)

{
// When you pass null to GetPosition you get the
// absolute positon of the mouse on the screen
// 1f you pass a UIElement you will get a relative offset
Point point = e.GetPosition(null);
this.MousePositionX.Text = point.X.ToString();
this.MousePositionY.Text = point.Y.ToString();

void DataTree_MouseLeftButtonUp (object sender, MouseButtonEventArgs e)
{
FrameworkElement element = (FrameworkElement)e.OriginalSource;
this.MouseButton.Text = "Left Button Up: " + element.DataContext;

MouseWheel event argument includes a Delta property that tracks the factor of the mouse wheel, based

on its previous value. In the sample, the image scale is increased or decreased based on when the pelta
value is positive or negative. The same condition is used to adjust the value of the slider control.

‘) LISTING 11-2: Subscribing to MouseWheel events

Available for
download on
Wrox.com

using System.Windows.Controls;
using System.Windows.Input;

namespace Chapterll.Views

public partial class Listingl102 : UserControl

public Listingl102 ()
{

InitializeComponent () ;

continues

340 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11-2 (continued)

private void slImage_MouseWheel (object sender, MouseWheelEventArgs e)

{
if (e.Delta > 0)

{

imageScale.ScaleX *= 1.1;
imageScale.ScaleY *= 1.1;
}
else
{
imageScale.ScaleX *= 0.9;
imageScale.ScaleY *= 0.9;

e.Handled = true;

}

private void sliderValue_MouseWheel (object sender, MouseWheelEventArgs e)
{
if (e.Delta > 0)
slider.value += 1;
else
slider.vValue -= 1;

e.Handled = true;

Enabling Right-Click Support

Many LOB applications require support for context style menus. Typically developers add this
feature by enabling right-click support for one or more UI elements. The menu displayed would

be context sensitive to its related Ul element. In previous versions of Silverlight, you faced many
challenges when enabling right-click support. But now, in addition to events for LeftButtonDown
and LeftButtonUp, you have RightButtonDown and RightButtonUp events you can use to display
context-sensitive menus.

Listing 11-3 shows how to subscribe to the right-click events for a tree view control. In order for the
event not to be bubbled up to the default Silverlight context menu, you have to mark it as handled in
the MouseRightButtonDown event handler. If this is not done, the MouseRightButtonUp event will
not be fired. When the right-click event fires, this code displays a context menu for expanding or
collapsing the nodes of the tree view.

‘) LISTING 11-3: Subscribing to right-click events
Available for
dwm“““ using System.Windows;
rox.com K K
using System.Windows.Controls;
using System.Windows.Controls.Primitives;

Line of Business Basics

| 341

using System.Windows.Input;
using Chapterll.Common;

namespace Chapterll.Views

{

public partial class Listingl103 : UserControl

{

public Listingl103()
{

InitializeComponent () ;

private void DataTree_MouseRightButtonDown (object sender,
MouseButtonEventArgs e)

e.Handled = true;

private void DataTree_MouseRightButtonUp (object sender,
MouseButtonEventArgs e)

FrameworkElement element = (FrameworkElement)e.OriginalSource;

if (element.DataContext != null)
{
this.DisplayContextMenu () ;

private Popup contextMenu = new Popup();
private void DisplayContextMenu ()
{
if (!this.contextMenu.IsOpen)
{
ContextMenu menu = new ContextMenu() ;
menu.TreeView = this.DataTree;
menu.ActionClick += (s, e) =>
{
this.contextMenu.IsOpen = false;

}i

this.contextMenu = new Popup();
this.contextMenu.Child = menu;
this.contextMenu.VerticalOffset = 150;
this.contextMenu.HorizontalOffset = 100;

this.contextMenu.IsOpen = true;

342 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

Handling Multi-Touch

The Silverlight platform includes Multi-Touch support, which enables a wide range of gestures and
touch interactions that can be integrated into your application’s user experience. However, it’s possible
to add Multi-Touch features to your application by tracking mouse movements and clicks. Silverlight
provides a better mechanism using the Multi-Touch API’s FrameReported event. This event will be
called when the underling Multi-Touch hardware sends the touch events at run time to your application.

The argument for the FrameReported event includes methods to get the primary touch point plus a list
of current touch points. Using either method you get access to the TouchPoint class. The class returns
a relative or absolute position based on the offset you passed to the GetTouchPoint method. If you
pass in null, the absolute position of the touch point will be returned. The TouchPoint class includes
an action property that tells the state of the TouchPoint: Down, Move, or Up. The same sequence will
always be followed: first down, then move until the user removes the touch, and then the up action will
be fired. The move action is the key piece. It will be fired even if the user is no longer moving any ele-
ments. During this state is when you should respond to the gesture by updating the UI element position
or size.

To utilize Multi-Touch features in your application you are going to need to run your application
on supported Multi-Touch hardware that properly handles sending the w_ToucH message to the
Windows operating system.

Listing 11-4 shows how to use the FrameReported event to add Multi-Touch features to your
application.

‘) LISTING 11-4: Using Multi-Touch support
Available for
“Wmtgg“ using System.Collections.ObjectModel;
using System.Ling;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Input;

namespace MultiTouchTest

{
public partial class MainPage : UserControl

{

ObservableCollection<TouchPoint> currentPoints
= new ObservableCollection<TouchPoint> () ;
TouchPoint primary = new TouchPoint () ;

public MainPage ()
{

InitializeComponent () ;

Touch.FrameReported +=
new TouchFrameEventHandler (Touch_FrameReported) ;

Line of Business Basics | 343

this.Loaded += new RoutedEventHandler (Sample_Loaded) ;

void Sample_lLoaded(object sender, RoutedEventArgs e)

{
PagedCollectionView data = new PagedCollectionView(currentPoints);
data.GroupDescriptions.Add (new PropertyGroupDescription("Action"));
this.TouchPointData.ItemsSource = data;

void Touch_FrameReported(object sender, TouchFrameEventArgs e)
{

TouchPointCollection touchPoints = e.GetTouchPoints(this.Host);

foreach (TouchPoint item in touchPoints)
{
switch(item.Action)
{
case TouchAction.Down:
this.currentPoints.Add (item) ;
break;
case TouchAction.Move:
var p = from pts in currentPoints
where pts.TouchDevice.Id == item.TouchDevice.Id
select pts;

this.currentPoints.Remove (p.First());
this.currentPoints.Add (item) ;

break;
case TouchAction.Up:
var ¢ = from pts in this.currentPoints
where pts.TouchDevice.Id == item.TouchDevice.Id
select pts;

this.currentPoints.Remove (c.First());
break;

Drawing with Ink

An exciting feature that the Silverlight platform supports out-of-the-box is the ability to add
Tablet PC Ink features to your application. The InkPresenter control provides a drawing surface
that enables an end user to use ink to enter input. The InkPresenter control supports display-
ing one or more Ul elements and a stroke collection. The control supports ink input from stylus
devices, touch, and mouse input. Input from a mouse has a lower resolution than what can be
gathered from a digitizer style input.

<InkPresenter x:Name="InkContainer" Background="Transparent" Cursor="Stylus" />

344 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

The stroke collection supported by the InkPresenter is a collection that contains one or more stroke
objects. Each stroke corresponds to a stylus -down, stylus-move, and stylus -up sequence. A stroke can
be a dot, a straight line, or a curving line. Each stroke object contains a StylusPointCollection,
which contains one or more StylusPoints and their height, width, color, and outline color.

Listing 11-5 shows how to use the ITnkPresenter control to add ink support to your Silverlight
application.

‘) LISTING 11-5: Drawing with ink
Available for
“mg;‘fgs;“ using System.Windows.Controls;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;

namespace Chapterll.Views
{
public partial class Listingll05 : UserControl
{
public Listingl105()
{

InitializeComponent () ;

private Stroke _stroke = null;
private StylusPointCollection eraserPoints;
private InkMode _mode = InkMode.Draw;

public enum InkMode
{

Draw,

Erase

private void InkContainer_ MouseLeftButtonDown (object sender,
MouseButtonEventArgs e)

InkContainer.CaptureMouse () ;
if (_mode == InkMode.Draw)
{
_stroke = new Stroke();
_stroke.DrawingAttributes.Color = Colors.White;
_stroke.StylusPoints.Add (
e.StylusDevice.GetStylusPoints (InkContainer)) ;

InkContainer.Strokes.Add(_stroke) ;
}
if (_mode == InkMode.Erase)
{
eraserPoints = new StylusPointCollection();
eraserPoints = e.StylusDevice.GetStylusPoints (InkContainer) ;

Line of Business Basics | 345

}

private void InkContainer_MouseLeftButtonUp (object sender,
MouseButtonEventArgs e)

{
_stroke = null;
eraserPoints = null;
InkContainer.ReleaseMouseCapture() ;

}

private void InkContainer_MouseMove (object sender, MouseEventArgs e)

{
if (_mode == InkMode.Draw)

{
if (null !'= _stroke)

{
_stroke.StylusPoints.Add (
e.StylusDevice.GetStylusPoints (InkContainer)) ;

if (_mode == InkMode.Erase)

{

if (null != eraserPoints)
{
eraserPoints.Add (
e.StylusDevice.GetStylusPoints (InkContainer)) ;
StrokeCollection hits =
InkContainer.Strokes.HitTest (eraserPoints) ;

for (int cnt = 0; cnt < hits.Count; cnt++)

{

InkContainer.Strokes.Remove (hits[cnt]);

Enabling Clipboard Access

Prior to Silverlight 4 you had to jump through many hoops to get limited Clipboard access support
added to your application. Silverlight 4 introduces a cross-browser Clipboard API that allows you to
get and send text to and from the user’s Clipboard. Using this feature, it’s possible to paste the con-
tents of a Word document or other application into your Silverlight application or copy your appli-
cation contents into Word.

Some limitations are put on the Clipboard API because of security restrictions. You can get Clipboard
access only through a user-initiated action (via a keyboard or mouse). Once per session, the user will
be prompted to acknowledge that your application wants to access the Clipboard.

346 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

Figure 11-1 displays the warning dialog that the end user must accept before your application can access
their Clipboard. The user will only be prompted once per session to allow access to their Clipboard.

-
Microsoft Silverlight [=®]

Do you want to alow this applcation to access your
cipboard?

If you allow this, the application can copy data to and from the Clipboard
,v as lnng A= the application i running.
§IF€EI‘|IQ ht Wehsite: httpe/ flocalhost:2882
[Remember my answer
More information -] l N

L]

FIGURE 11-1

The Clipboard API supports only the copying and pasting of text. If the Clipboard contains any
other type of data (for example, contents of an image), the call to GetText returns nothing. You
can use the ContainsText method to verify whether the Clipboard contains text data.

Listing 11-6 shows an example of using the Clipboard API to copy and paste the contents of one
text box into another. While running this sample you should open Notepad or your preferred text
editor. First, click the copy button in the application. Then make Notepad the active application,
and press Ctrl+P. The text you entered into the text box will appear in Notepad. Change the text in
Notepad and copy it (Ctrl+C). Make your Silverlight application active and click the Paste button.
The text you typed in Notepad now appears.

Listing 11-6 shows an example of using the Clipboard API to copy and paste text to and from a
Silverlight application and external application (for example, Notepad).

‘) LISTING 11-6: Using the Clipboard API
Available for
"3\""“'03" o ysing System.Windows;
rox.com , K
using System.Windows.Controls;

namespace Chapterll.Views
{
public partial class Listingll06 : UserControl
{
public Listingl106 ()
{
InitializeComponent () ;

}

private void CopyAction_Click(object sender, RoutedEventArgs e)

{
Clipboard.SetText (this.Source.Text) ;
}

private void PasteAction_Click(object sender, RoutedEventArgs e)
{

Line of Business Basics | 347

if (Clipboard.ContainsText ())

{
this.Destination.Text = Clipboard.GetText () ;

Adding Printing Support

Sooner or later almost all LOB applications have to deal with printing. Whether you have a need
to build a sophisticated sales report or just want to provide a printer-friendly view of the current
screen, the printing API included in Silverlight 4 provides you with the framework to successfully
add print capabilities to your Silverlight application.

The printing API allows you to address simple and complex printing requirements. You can do
WYSIWYG printing of the whole or portions of the UI, custom “printer friendly” views, or produce
multiple page reports.

To use the printing API, follow these steps:
1. Create a PrintDocument object.

2. Attach an event handler for the printpage event (you can do the same for BeginpPrint
and EndPrint).

3. Call the print method. You can optionally pass in the text that will appear in the print queue.

4. Inthe PrintPage event, create one or more visual components you want to print and assign
the root element to the Pagevisual property of the PrintPageEventargs object.

5. You can toggle whether you want to print more than one page by setting the HasMorepages
property.

As long as there are more pages to print, the PrintPage event will be called. Once the HasMorePages
flag is set to false, the event will no longer be called.

Listing 11-7 shows an example of using the printing API to print the contents of the current screen.
When the PrintPage event fires, the Pagevisual property is set to the root UI element of the current
page. To print only part of the Ul set the Pagevisual property to the UI element you want to print.

‘) LISTING 11-7: Printing the contents of the current page
Available for
dmg;”ggnﬂ" using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Printing;

namespace Chapterll.Views

{
public partial class Listingl107 : UserControl

continues

348 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11-7 (continued)

{
public Listingl107()
{
InitializeComponent () ;
}
private void PrintAction_Click(object sender, RoutedEventArgs e)
{
PrintDocument printHandler = new PrintDocument () ;
printHandler.PrintPage +=
new EventHandler<PrintPageEventArgs> (printDoc_PrintPage) ;
printHandler.Print ("Printing Example");
}
void printDoc_PrintPage (object sender, PrintPageEventArgs e)
{
e.PageVisual = this.LayoutRoot;
}
}

Listing 11-8 shows an example of using the printing API to create a printer-friendly version of the
current screen. Because the Pagevisual property can be set to any Ul element it’s possible to use a
tool like Microsoft Expression Blend to build multiple views for the same data.

‘) LISTING 11-8: Building a printer-friendly version of the page
Available for
downloadon ysing System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Printing;

namespace Chapterll.Views
{
public partial class Listingll08 : UserControl
{
public Listingl108()
{

InitializeComponent () ;

private void PrintAction_Click(object sender, RoutedEventArgs e)
{
PrintDocument printHandler = new PrintDocument () ;
printHandler.PrintPage +=
new EventHandler<PrintPageEventArgs> (printDoc_PrintPage) ;
printHandler.EndPrint +=

Line of Business Basics | 349

new EventHandler<EndPrintEventArgs> (printHandler_ EndPrint);

printHandler.Print ("Printing Friendly Example");

void printHandler_EndPrint (object sender, EndPrintEventArgs e)

{
this.Normal.Visibility = Visibility.Visible;
this.PrinterFriendly.Visibility = Visibility.Collapsed;
}

void printDoc_PrintPage (object sender, PrintPageEventArgs e)

{
this.Normal.Visibility = Visibility.Collapsed;
this.PrinterFriendly.Visibility = Visibility.Visible;

e.PageVisual = this.PrinterFriendly;

Supporting Drag-and-Drop

For years the Windows operating system has supported the concept of being able to drag-and-drop
content from one application to another. In previous versions of Silverlight it was not possible for your
application to be a drop target. Silverlight 4 introduces support for drag-and-drop by enabling the
AllowDrop property on any Ul element. If you use an external application such as Windows Explorer
it is now possible to drag one or more selected files into your Silverlight application. By handling the
drop event of a particular target element you can access the list of files using the FileInfo class and a
stream reader to access the contents of the dropped files.

Currently there are some limitations you need to understand before using the drag-and-drop API.
The events for drag-and-drop will not fire if you are in full-screen or windowless mode. In addition,
you have to use a JavaScript workaround in the Silverlight player’s hosted page to get this feature to
work on a Macintosh platform.

Listing 11-9 shows how to respond to the drop event being fired on a ListBox control that has
AllowDrop enabled. Using the Data property of DragEventArgs you can get a list of files being
dropped. This sample iterates through the list of files and adds them to the ListBox control.

‘) LISTING 11-9: Dragging from an external application
dAvaililahI(:ifor .
Wrgx‘fgm‘:" uS}ng System. I(.);
using System.Windows;
using System.Windows.Controls;

namespace Chapterll.Views

{
public partial class Listingl109 : UserControl

{
continues

350 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11-9 (continued)

public Listingl109()
{
InitializeComponent () ;

}

private void ListBox_Drop (object sender, DragEventArgs e)

{

IDataObject dataObject = e.Data as IDataObject;

FileInfo[] files =

dataObject.GetData (DataFormats.FileDrop)

as FileInfol[];

this.FileList.Items.Clear();

foreach (FileInfo item in files)

{
this.FileList.Items.Add (

new ListBoxItem { Content = item.Name });

Using the Web Browser Control

The Web is built around the concept of using HTML
to render content. The typical scenario will be to
enhance an existing web application by adding an
island of richness using Silverlight. Sooner or later,
however, you are going to run into a scenario of
having to display HTML content from within your
Silverlight application.

Silverlight 4 introduces the webBrowser control

to make it easier to render HTML content. The
control supports displaying string-based HTML
content or navigating to a website URL. To use the
web browser control, your application needs to be
configured for out-of-browser (OOB) mode. If you
try to use the control in a normal browser-hosted
Silverlight application, the message shown

in Figure 11-2 will be displayed.

"—|°HTML is enabled only in Out-of-Browser mode.

FIGURE 11-2

Listing 11-10 shows how to use the Navigate and NavigateTosString methods of the webBrowser
control to tell it to display a specific page or set of HTML content.

Advanced Scenarios | 351

‘) LISTING 11-10: Using the WebBrowser control

Available for
download on us j_ng System;

Wrox.com K
using System.Text;
using System.Windows;
using System.Windows.Controls;
namespace Chapterll.Views
{
public partial class Listingl110 : UserControl
{
public Listingl110()
{
InitializeComponent () ;
}
private void OptionURL_Checked (object sender, RoutedEventArgs e)
{
browserControl.Navigate (
new Uri("http://www.micrsoft.com"));
}
private void OptionsHTML_Checked (object sender, RoutedEventArgs e)
{
StringBuilder html = new StringBuilder () ;
html.Append("<div style='color:blue;width:100;height:100'>");
html.Append ("Silverlight Rocks</div>");
browserControl .NavigateToString (html.ToString()) ;
}
}
}

When building Line of Business applications, it’s very common to integrate your application with an
external application or product. The most common product you will integrate is Microsoft Office,
which offers a rich set of feature that a lot of users are accustomed to using. Silverlight now offers
the ability to use COM automation to communicate with Microsoft Office. Another scenario you
might run into is the need to communicate between multiple Silverlight players running in the same
or even different browsers. As the Silverlight platform continues to mature, it’s becoming easier and
easier to deal with advanced Line of Business applications.

Communicating between Silverlight Applications

While building a Line of Business application, you may need to use multiple Silverlight players.
For example, you may be enhancing an existing web application instead of migrating the entire
application to Silverlight all at once. You can add multiple islands of richness to the same page.
Then using the Silverlight messaging API you can send and receive asynchronous messages. In

http://www.micrsoft.com%E2%80%9D

352

| CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

addition to communicating between multiple Silverlight players on the same page, the messaging
API supports communicating between different Silverlight players across multiple web browser
instances.

The following sample walks you through the steps to set up a web application that contains two
Silverlight applications that will communicate to each other using the messaging API.

Figure 11-3 displays the Ul of the Customer Search and Customer Detail applications. These
applications — which you build later in this section — use the Silverlight messaging API to send
and receive messages between each other.

Customer Search

Company Address Line 1 City State PostalCode Country
Allveds Fullerkisle Obere Slr. 57 Berlin 12209 Germnany
And Truiillo Emparedadus v heladus | Avda. de la Conslitudion 2222 - Méxiw DWF. 05021 Mexicu
Antonio Moreno Tagueria Mdladerus 2312 Méxivo D.F. 05023 Mexivu
Argund the Hom 120 Hanover 5q. London WAL 1DP UK
Berglunds snabbkap Derguvsvagen 8 Luled 5-958 22 Sweden
Blauer Sce Delikatessen Forsterstr. 57 Mannhcim 68306 Germany
Blondel pére et fils 24, place Kléber Strasbourg 67000 France
Bélido Comidas preparadas C/ Araquil, 67 Madnd 28022 Spain
Bon app' 12, rue des Bouchars Marzaille 13008 France
Bottom-Daollar Markets 23 Teawassen Blvd. Tsawassen BC T2F 8M4 Canada

Customer Darail

Company NMame |

Address Line One |

City |

State |

Postal Code |

Country |

FIGURE 11-3

The application you are going to build includes two separate Silverlight projects called Customer
Search and Customer Detail. Make sure to download the samples for this chapter from www.wrox.com
to see the working version of the solution.

To build the solution, you need to understand a couple of concepts. First, you need to understand how
the messaging API uses senders and receivers to communicate between different running instances

of the Silverlight player. Then you need to understand how to serialize and desterilize data using the
JSON API provided by the Silverlight Framework.

To set up communication between different instances of the Silverlight player you use the
LocalMessageSender to send messages and a LocalMessageReceiver to receive messages.

http://www.wrox.com

Advanced Scenarios | 353

The constructors for both objects accept a string that must identify the name of the receiver/

sender the other instance is using. To send a message use the SendAsync (string value) method

of the sender and to receive a message set up a delegate for the receiver’s MessageReceived

event. The event argument for this delegate contains a property to receive the message sent.
string message = "Hello World";

this.sender = new LocalMessageSender ("CustomerDetail") ;
this.sender.SendAsync (message) ;

this.receiver = new LocalMessageReceiver ("CustomerSearch") ;
this.receiver.MessageReceived
+= new EventHandler<MessageReceivedEventArgs> (Receiver_MessageReceived) ;

this.receiver.Listen();

void Receiver_MessageReceived (object sender, MessageReceivedEventArgs e)
{
string message = e.Message;

As you may have noticed the message API senders and receivers only allow you to send string mes-
sages. At first this may seem to limit what you can do with it, but the Silverlight Framework includes
a powerful JSON API for serializing and deserializing objects to and from strings. Though this is
possible, it’s best to limit to the size of the message and try to only pass simple objects and not com-
plex hierarchical object graphs that contain references to multiple children objects.

To use the JSON API you need to make sure your project has references to the System. SeviceModel
.Web and System.Runtime.Serialization assemblies. The JSON API includes methods to read and
write data to a stream so you will need to add a using statement to System.I0. The object you want to
serialize/deserialize must be annotated with the [DataContact] and [DataMember] attributes. If there
are attributes of the class you do not want to serialize, just skip adding the [DataMember] attribute.

Listing 11-11 shows the structure of the customer class that will be serialized and sent between the
Search and Detail applications.

‘) LISTING 11-11: Customer class
Available for
“s}"rg;“ggn‘:" using System.ComponentModel;
using System.Runtime.Serialization;

namespace CustomerViewer.Search

{
[DataContract]

public class Customer : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

private void NotifyPropertyChanged(string info)
{
if (this.PropertyChanged != null)

continues

354 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11-11 (continued)

this.PropertyChanged (this,
new PropertyChangedEventArgs (info));

public Customer ()
{
}

[DataMember]
public string CustomerId { get; set; }

private string companyName;

[DataMember]
public string CompanyName
{
get { return this.companyName; }
set
{
if (this.companyName != value)
{
this.companyName = value;
this.NotifyPropertyChanged ("CompanyName") ;
}
}
}
private string addressLineOne;
[DataMember]
public string AddressLineOne
{
get { return this.addressLineOne; }
set
{
if (this.addressLineOne != value)
{
this.addressLineOne = value;
this.NotifyPropertyChanged ("AddressLineOne") ;
}
}

private string city;
[DataMember]
public string City
{
get { return this.city; }
set {
if (this.city != value)
{
this.city = value;

Advanced Scenarios | 355

this.NotifyPropertyChanged("City") ;

private string state;
[DataMember]
public string State
{
get { return this.state; }

set
{
if (this.state != value)
{
this.state = value;
this.NotifyPropertyChanged("State") ;
}

private string postalCode;
[DataMember]
public string PostalCode
{
get { return this.postalCode; }
set
{
if (this.postalCode != value)
{
this.postalCode = value;

this.NotifyPropertyChanged ("PostalCode") ;

private string country;
[DataMember]

public string Country

{

get { return this.country; }

set
{
if (this.country != value)
{
this.country = value;
this.NotifyPropertyChanged ("Country") ;
}
}

356 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

Listing 11-12 shows how to use the DataContractIsonSerializer class to serialize and deserialize
a customer object converted into JSON data.

‘) LISTING 11-12: Using the JSON Data Contract Serializer

Available for

download on : : _ . .
Wrox.com string jsonData = string.Empty;

Customer selectedCustomer = new Customer
{

CustomerId = "TESTO001",

CompanyName = "Test"

Y

using (MemoryStream ms = new MemoryStream())
{
DataContractdsonSerializer json = new
DataContractJsonSerializer (typeof (Customer)) ;
json.WriteObject (ms, selectedCustomer) ;
ms.Position = 0;

StreamReader reader = new StreamReader (ms) ;
jsonData = reader.ReadToEnd() ;
reader.Close();

Customer customer = null;
using (MemoryStream ms =
new MemoryStream(Encoding.Unicode.GetBytes (e.Message)))
{
DataContractJsonSerializer serializer = new
DataContractJsonSerializer (typeof (Customer)) ;
customer = (Customer)serializer.ReadObject (ms) ;

Now that you understand the key concept for sending and receiving messages using the messaging
API, you are ready to build out the sample solution. The solution will include a web application and
two Silverlight projects (Search and Detail). The following steps walk you through building both
the Search and Detail applications. The messaging API is used to synchronize changes made in the
detail application back to the search application.

Here are the steps to create the sample solution:

1. Create a new web application and add two Silverlight projects (Search and Detail) to the
same solution.

2. Add a new page to the web project called default.aspx.
3. Set up the object tags for both Silverlight projects.
Listing 11-13 shows the default.aspx page for the Customer application with two Silverlight

players configured: one running the Customer Search application and one running the Customer
Detail application.

Advanced Scenarios | 357

‘) LISTING 11-13: Setting up multiple Silverlight players
Available for
dsfrgiﬂzgnl:n <div id="SearchHost">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="ClientBin/CustomerViewer.Search.xap"/>
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="4.0.50331.0" />
<param name="autoUpgrade" value="true" />
<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=
4.0.50331.0" style="text-decoration:none">
<img src="http://go.microsoft.com/fwlink/?LinkId=161376"
alt="Get Microsoft Silverlight" style="border-style:none"/>

</object>
</div>
<div id="DetailHost">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="ClientBin/CustomerViewer.Details.xap"/>
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="4.0.50331.0" />
<param name="autoUpgrade" value="true" />
<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=
4.0.50331.0" style="text-decoration:none">
<img src="http://go.microsoft.com/fwlink/?LinkId=161376"
alt="Get Microsoft Silverlight" style="border-style:none"/>

</object>
</div>

Listing 11-14 shows the XML structure for the customer data used in this sample. The customers.xml
file must be located in the clientBin folder of the web project. The download for this chapter includes
a complete set of data for running the sample.

‘) LISTING 11-14: XML structure for customer data
Available for
download on <Customers>
Wrox.com
<CustomerID>ALFKI</CustomerID>
<CompanyName>Alfreds Futterkiste</CompanyName>
<ContactName>Maria Anders</ContactName>
<ContactTitle>Sales Representative</ContactTitle>
<Address>Obere Str. 57</Address>
<City>Berlin</City>
<PostalCode>12209</PostalCode>
<Country>Germany</Country>
<Phone>030-0074321</Phone>
<Fax>030-0076545</Fax>
</Customers>

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D%20style=%E2%80%9Dtext-decoration:none
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D%20style=%E2%80%9Dtext-decoration:none

358 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

Add a class called searchviewModel to the Search project. This class will contain the logic to
download the customers.xml file from the web project’s ClientBin Folder and to synchronize the
changes sent back from the CustomerDetail class.

Listing 11-15 shows the contents of the searchviewModel class.

‘) LISTING 11-15: Building the view model for the Search application
Available for
“mg;‘fgs;“ using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.IO;
using System.Ling;
using System.Net;
using System.Xml.Ling;

namespace CustomerViewer.Search
{
public class SearchViewModel : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;

private ObservableCollection<Customer> customers;

public SearchviewModel ()
{
WebClient client = new WebClient () ;
client.DownloadStringCompleted +=
new
DownloadStringCompletedEventHandler (
client_DownloadStringCompleted) ;
client.DownloadStringAsync (new Uri ("Customers.xml",
UriKind.RelativeOrAbsolute)) ;

void client_DownloadStringCompleted (object sender,
DownloadStringCompletedEventArgs e)

using (TextReader reader = new StringReader (e.Result))
{
XDocument doc = XDocument.Load (reader) ;
var dataSource = (from d in doc.Descendants("Customers")
select new Customer
{
CustomerId = d.Element ("CustomerID") .Value,
CompanyName = d.Element ("CompanyName") .Value,
AddressLineOne = d.Element ("Address") .Value,
City = d.Element("City").Value,
State = d.Element ("Region") != null
? d.Element ("Region") .Value : string.Empty,
PostalCode = d.Element ("PostalCode") != null

Advanced Scenarios | 359

? d.Element ("PostalCode") .Value : string.Empty,
Country = d.Element ("Country") .Value,
1)

this.customers =
new ObservableCollection<Customer> (
dataSource.ToList<Customer>()) ;

this.NotifyPropertyChanged ("Customers") ;

private void NotifyPropertyChanged(String info)
{
if (this.PropertyChanged != null)
{
this.PropertyChanged(this,
new PropertyChangedEventArgs (info));

public ObservableCollection<Customer> Customers
{

get

{

return this.customers;

public void SyncCustomer (Customer selectedCustomer)

{
Customer customer = this.customers.Where (
g => g.CustomerId == selectedCustomer.CustomerId).Single();

customer = selectedCustomer;

this.NotifyPropertyChanged ("Customers") ;

Add a class called customer to the Search project. This class will contain the attributes for a
customer. The same class will need to be created in the Detail project so the data can be properly
serialized and deserialized between the two projects.

Open the MainPage.xaml in the Search project and add a pataGrid control. The data grid will be
used to display the list of customers. The code-behind file for MainPage.xaml will contain the code
for using the messaging API and the SearchviewModel class.

Listing 11-16 shows the XAML used to define the Ul of the customer Search application.

360 | CHAPTERM

BUILDING LINE OF BUSINESS APPLICATIONS

‘) LISTING 11-16: XAML for the Search application

Available for
download on
Wrox.com

<UserControl x:Class="CustomerViewer.Search.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
mc:Ignorable="d" d:DesignHeight="352" d:DesignWidth="485"
xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk">
<Grid x:Name="LayoutRoot" Background="White" Width="750">

<StackPanel Margin="0,0,0,0">
<TextBlock Text="Customer Search" Margin="29, 5" Foreground="Red" />
<sdk:DataGrid AutoGenerateColumns="False"

Height="308" HorizontalAlignment="Left"
Margin="29,2,0,0" Name="customerView"
VerticalAlignment="Top"

ItemsSource="{Binding Customers}" IsReadOnly="true">
<sdk:DataGrid.Columns>

<sdk:DataGridTextColumn Header="Company"
Binding="{Binding CompanyName}" />
<sdk:DataGridTextColumn Header="Address Line 1"
Binding="{Binding AddressLineOne}" />
<sdk:DataGridTextColumn Header="City"
Binding="{Binding City}" />
<sdk:DataGridTextColumn Header="State"
Binding="{Binding State}" />
<sdk:DataGridTextColumn Header="PostalCode"
Binding="{Binding PostalCode}" />
<sdk:DataGridTextColumn Header="Country"
Binding="{Binding Country}" />

</sdk:DataGrid.Columns>

</sdk:DataGrid>
</StackPanel>

</Grid>
</UserControl>

Listing 11-17 shows the code behind the Customer Search MainPage.xaml .cs file.

‘) LISTING 11-17: Search application MainPage.cs

Available for
download on
Wrox.com

using
using
using
using
using
using
using

System;
System.IO;

System.Runtime.Serialization.Json;

System.Text;

System.Windows;
System.Windows.Controls;
System.Windows.Messaging;

namespace CustomerViewer.Search

{

public partial class MainPage : UserControl

{

private LocalMessageSender sender { get; set; }

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

Advanced Scenarios | 361

private LocalMessageReceiver receiver { get; set; }

public MainPage ()
{

InitializeComponent () ;

this.sender = new LocalMessageSender ("CustomerDetail");

this.receiver = new LocalMessageReceiver ("CustomerSearch") ;

this.receiver.MessageReceived += new
EventHandler<MessageReceivedEventArgs> (Receiver_MessageReceived) ;

this.receiver.Listen();

this.viewModel = new SearchViewModel () ;
this.DataContext = this.viewModel;
this.customerView.SelectionChanged +=
new SelectionChangedEventHandler (customerView_SelectionChanged) ;
}
private SearchvViewModel viewModel;
void customerView_SelectionChanged (object sender,
SelectionChangedEventArgs e)

string jsonData = string.Empty;
Customer selectedCustomer = e.AddedItems[0] as Customer;

using (MemoryStream ms = new MemoryStream())
{
DataContractJsonSerializer json =
new DataContractJdsonSerializer (typeof (Customer)) ;
json.WriteObject (ms, selectedCustomer) ;
ms.Position = 0;

StreamReader reader = new StreamReader (ms) ;
jsonData = reader.ReadToEnd() ;
reader.Close() ;

this.sender.SendAsync (jsonData) ;

void Receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
using (MemoryStream ms =
new MemoryStream(Encoding.Unicode.GetBytes (e.Message)))

DataContractJsonSerializer serializer =
new DataContractJdsonSerializer (typeof (Customer)) ;

Customer customer = (Customer)serializer.ReadObject (ms);

this.viewModel.SyncCustomer (customer) ;

362 |

CHAPTER 11 BUILDING LINE OF BUSINESS APPLICATIONS

At this point you should have everything to run the Search application. The first step for setting up
the Detail application is to add the same customer class that the search application uses. For com-
munication to work between applications, you must make sure the same properties are annotated
with [DataMember] attributes in both customer classes.

Then add a set of TextBlocks and TextBoxes to the Detail application. These will be used to dis-
play and change the selected customer sent from the Search application. In the code behind the
MainPage.xaml, add the necessary code to sync changes back to the Search application.

Listing 11-18 shows the XAML used to define the Ul of the Customer Detail application.

‘) LISTING 11-18: XAML for the Customer Detail application

Available for
download on

Wrox.com

<UserControl x:Class="CustomerViewer.Details.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="316" d:DesignWidth="444">
<Grid x:Name="LayoutRoot" Background="White" Height="400" Width="370">
<StackPanel HorizontalAlignment="Left">
<TextBlock Text="Customer Detail" Margin="29, 5" Foreground="Red" />
<Grid Height="300">

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,5,0,0" Name="CompanyNameCaption" Text="Company Name"
VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left" Margin="138,5,0,0"
Name="CompanyName" VerticalAlignment="Top" Width="212"
Text="{Binding CompanyName, Mode=TwoWay}" />

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,35,0,0" Name="AddressLineOneCaption"
Text="Address Line One" VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left" Margin="138,35,0,0"
Name="AddressLineOne" VerticalAlignment="Top" Width="212"
Text="{Binding AddressLineOne, Mode=TwoWay}" />

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,65,0,0" Name="CityCaption" Text="City"
VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left" Margin="138,65,0,0"
Name="City" VerticalAlignment="Top" Width="212" Text="{Binding
City, Mode=TwoWay}" />

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,95,0,0" Name="StateCaption" Text="State"
VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left" Margin="138,95,0,0"
Name="State" VerticalAlignment="Top" Width="212" Text="{Binding
State, Mode=TwoWay}" />

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,125,0,0" Name="PostalCodeCaption" Text="Postal Code"
VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left"
Margin="138,125,0,0" Name="PostalCode" VerticalAlignment="Top"

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Advanced Scenarios | 363

Width="212" Text="{Binding PostalCode, Mode=TwoWay}" />

<TextBlock Height="23" HorizontalAlignment="Left"
Margin="29,155,0,0" Name="CountryCaption" Text="Country"
VerticalAlignment="Top" />

<TextBox Height="23" HorizontalAlignment="Left"
Margin="138,155,0,0" Name="Country" VerticalAlignment="Top"
Width="212" Text="{Binding Country, Mode=TwoWay}" />

<Button Content="Save" Height="30" HorizontalAlignment="Left"
Margin="275,205,0,0"
Name="SaveButton" VerticalAlignment="Top" Width="75"
Click="SaveButton_Click" />

</Grid>
</StackPanel>
</Grid>
</UserControl>

Listing 11-19 shows the code behind the Customer Detail MainPage.xaml .cs file.

‘) LISTING 11-19: Detail application MainPage.cs
Available for
“mg;{"ggrﬂ" using System;
using System.IO;
using System.Runtime.Serialization.Json;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Messaging;

namespace CustomerViewer.Details
{
public partial class MainPage : UserControl
{
public MainPage ()
{

InitializeComponent () ;

this.sender = new LocalMessageSender ("CustomerSearch") ;
this.receiver = new LocalMessageReceiver ("CustomerDetail") ;
this.receiver.MessageReceived +=
new EventHandler<MessageReceivedEventArgs>
(Receiver_MessageReceived) ;
this.receiver.Listen();

private LocalMessageSender sender { get; set; }
private LocalMessageReceiver receiver { get; set; }
private Customer selectedCustomer;

private void SaveButton_Click(object sender, RoutedEventArgs e)

{
string jsonData = string.Empty;

using (MemoryStream ms = new MemoryStream())

continues

364 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11119 (continued)

DataContractJsonSerializer json =

new DataContractJsonSerializer (typeof (Customer)) ;
json.WriteObject (ms, this.selectedCustomer) ;
ms.Position = 0;

StreamReader reader = new StreamReader (ms) ;
jsonData = reader.ReadToEnd() ;
reader.Close() ;

}

this.sender.SendAsync (jsonData) ;

}

void Receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
using (MemoryStream ms =
new MemoryStream(Encoding.Unicode.GetBytes (e.Message)))
{
DataContractJdsonSerializer serializer =
new DataContractJsonSerializer (typeof (Customer)) ;
this.selectedCustomer = (Customer)serializer.ReadObject (ms);

}

this.DataContext = this.selectedCustomer;

Integrating with Office

It’s a very typical scenario in a LOB application to have to interact with one or more of the applica-
tions included in the Microsoft Office suite. For example, you may need to import/export data from
Excel, generate a report using a Word template, or interface with the object model in Outlook.

Silverlight 4 adds supports for these types of scenarios by using the new COM interop features sup-
port in the ComAutomationFactory APIL. This component allows you to use Office Automation to
load data into an Excel spreadsheet and display it to the user. The following code snippet demon-
strates the basic steps to making this work:

dynamic excel = ComAutomationFactory.CreateObject ("Excel.Application");
excel.Visible = true; // make it visible to the user.

dynamic workbook = excel.workbooks;

workbook.Add () ;

dynamic sheet = excel.ActiveSheet;

To utilize this feature you must build a trusted application with elevated permissions. See Chapter 9
for details on how to build an out-of-browser Silverlight application.

Advanced Scenarios | 365

Listing 11-20 shows how to export data stored in a Silverlight batacrid control to Excel using the
Office automation API. Make sure to download the source code for this chapter to see the complete
working version of the Excel exported application.

‘) LISTING 11-20: Exporting data to Excel
Available for
dmg;“gg[g" using System.Collections;
using System.Runtime.InteropServices.Automation;
using System.Windows;
using System.Windows.Controls;
using ExcelExporter.ViewModel;

namespace ExcelExporter
{
public partial class MainPage : UserControl
{
private ExporterViewModel viewModel;
public MainPage ()
{
InitializeComponent () ;

this.viewModel = new ExporterViewModel () ;
this.DataContext = this.viewModel;

this.Loaded += new RoutedEventHandler (MainPage_Loaded) ;

void MainPage_Loaded (object sender, RoutedEventArgs e)

{
this.viewModel.LoadData() ;
this.dataView.ItemsSource = this.viewModel.Customers;

private void ExportToExcel_Click(object sender, RoutedEventArgs e)
{

this.ExportDataGrid(this.dataView.ItemsSource) ;

private void ExportDataGrid(IEnumerable dataSource)

{

// Create Reference to Excel API
dynamic excel
= AutomationFactory.CreateObject ("Excel.Application");

excel.Visible = true; // make it visible to the user.

// Create Workbook and Sheet to export data
dynamic workbook = excel.workbooks;
workbook.Add () ;

dynamic sheet = excel.ActiveSheet;

// Add Header Row

continues

366 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

LISTING 11-20 (continued)
this.AddHeader (sheet) ;

// Export Data from data source to excel

int row = 2;

foreach (Customer item in dataSource)

{
this.AddCell (sheet, row, 1, item.CustomerId, 15);
this.AddCell (sheet, row, 2, item.CompanyName, 40);
this.AddCell (sheet, row, 3, item.AddressLineOne, 40);
this.AddCell (sheet, row, 4, item.City, 20);
this.AddCell (sheet, row, 5, item.State, 10);
this.AddCell (sheet, row, 6, item.PostalCode, 10);
this.AddCell (sheet, row, 7, item.Country, 20);

row++;

}

private void AddHeader (dynamic sheet)

{

this.AddCell (sheet,
this.AddCell (sheet,

"Postal Code", 10);
, "Country", 20);

this.AddCell (sheet, 1, 1, "Customer Id", 15);
this.AddCell (sheet, 1, 2, "Company Name", 40);
this.AddCell (sheet, 1, 3, "Address Line One", 40);
this.AddCell (sheet, 1, 4, "City", 20);
this.AddCell (sheet, 1, 5, "State", 10);

(1, 6

(1, 7

}

private void AddCell (dynamic sheet, int row, int col,
string value, int width)
{
dynamic cell = sheet.Cells[row, col];
cell.value = value;
cell.ColumnWidth = width;

GLOBALIZATION AND LOCALIZATION

When you build a LOB application, adding support for globalization and localization can be one of
the most challenging tasks. It’s important to understand the needs of your application up front so
you can properly handle the localization of your application.

You need to understand which cultures and locales your application must support, how to properly
set up a default (fallback) culture, what impact localization will have on how you package and deploy
your application, and how to support cultures that require right-to-left reading.

Globalization and Localization | 367

Localizing Your Application

Localization is the process of customizing your application to handle a given culture or locale.
This is done by translating the UI elements of your application to display a specific culture or
locale, handling complex scripts that must be displayed right to left, and the formatting of data
(Numbers, Currency, and DateTime) using the rules for a specific culture or locale.

The approach a developer uses to localize a Silverlight application is very similar to how he would han-
dle localizing an ASP.NET or WinForm application. A developer will create one or more string or image
resource files for each culture/language his application needs to support. A hub and spoke model is used
to package and deploy localized resources. At run time Silverlight will use the currenturculture of the
UI thread to dynamically load culture-specific satellite assemblies. If a satellite assembly is missing for a
given culture, the Silverlight run time will default back to the generic region-natural resource files.

Figure 11-4 displays the contents of a Resource file displayed in Visual [« 2 Chepteni

. . . = Properties
Studio. To support specific culture or locales, add different Resource i
files that start with the same name followed by a period and the cul- o
. . . |4 Common
ture code. It is recommended that you define an invariant resource file 03 Images
. : 4 [Resnurces
for each language plus any culture-specific ones. For example, if you boigiclon PN
have a strings.resx file you should add a strings.de.resx and a 4 3 Damourest
%] Demo.Designer.cs

strings.de-DE.resx file. This way if a culture-specific assembly can o

be found for de-DE, it will fall back to the language invariant version |+ e
v &) MainPagexaml

strings.de.resx. A
FIGURE 11-4

Using Resource Files

To use resource files to localize your Silverlight Ul, you need to add a static resource to your XAML
and set up your controls to use data binding to retrieve the strings defined in the resource file. At
run time, Silverlight will use the Ul threads currentuIculture to load the corresponding localized
resource strings. By default currentuTculture is based on the culture of the end user’s machine.
For testing you can override this by setting the current thread culture and currentuIculture to a
specific culture code.

Thread.CurrentThread.CurrentCulture
= new System.Globalization.CultureInfo("de-DE");

Thread.CurrentThread.CurrentUICulture
= new System.Globalization.CultureInfo("de-DE");

When you are done setting up the data binding for resource strings, you need to update your Silverlight
project to set the <Supportedcultures> attribute. The easiest way to do this is to right-click your proj-
ect in Visual Studio and click Unload Project. Then right-click the project name and click Edit. This
opens the metadata for your project. Find the <supportedcultures> attribute and add all the cultures
your application needs to support. The culture/language codes should be separated by a semicolon. The
list should not include the default generic fallback culture.

Listing 11-21 shows how to use static resources and data binding to use localized resource strings. To
set up your XAML to use localized strings you need to add the namespace (xmlns: res) that points

368 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

to the local namespace for the resource file, add a static resource to the resources section of the con-
trol, and then update all text and content properties of your control to data-bind to the static resource
&Orexanuﬂe:Text:“{Binding Path=CompanyName, Source={StaticResource Strings}}").

Before trying to run this sample, make sure the resource class and all its methods are marked as
public instead of internal. The class and all its methods must be marked as public for data binding
to work. It’s annoying but if you modify the resource file, you will need to reset the class and its
methods to public again.

‘) LISTING 11-21: Setting up a Silverlight Ul to use resource strings
Available for
dwm?ggﬂ <UserControl x:Class="Chapterll.Views.Listingll121"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
xmlns:res="clr-namespace:Chapterll.Resources"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidh="400">
<UserControl.Resources>
<res:Demo x:Key="Strings" />
</UserControl.Resources>
<Grid x:Name="LayoutRoot" Background="White">
<TextBlock Height="23" HorizontalAlignment="Left" Margin="10,10,0,0"
Name="CompanyNameCaption" VerticalAlignment="Top"
Text="{Binding Path=CompanyName, Source={StaticResource Strings}}" />
<TextBox Height="21" HorizontalAlignment="Left" Margin="104,12,0,0"
Name="CompanyName" VerticalAlignment="Top"
TextWrapping="Wrap" Width="147" />
<TextBlock Height="23" HorizontalAlignment="Left" Margin="12,39,0,0"
Name="ContactNameCaption" VerticalAlignment="Top"
Text="{Binding Path=ContactName, Source={StaticResource Strings}}" />
<TextBox Height="25" HorizontalAlignment="Left" Margin="104,37,0,0"
Name="ContactName" TextWrapping="Wrap"
VerticalAlignment="Top" Width="147" />
<TextBlock Height="23" HorizontalAlignment="Left" Margin="12,69,0,0"
Name="PhoneCaption" VerticalAlignment="Top"
Text="{Binding Path=Phone, Source={StaticResource Strings}}" />
<TextBox Height="25" HorizontalAlignment="Left" Margin="104,69,0,0"
Name="Phone" TextWrapping="Wrap" VerticalAlignment="Top" Width="147" />
<TextBlock Height="23" HorizontalAlignment="Left" Margin="15,100,0,0"
Name="EmailCaption" VerticalAlignment="Top"
Text="{Binding Path=Email, Source={StaticResource Strings}}" />
<TextBox Height="25" HorizontalAlignment="Left" Margin="104,100,0,0"
Name="Caption" TextWrapping="Wrap"
VerticalAlignment="Top" Width="147" />
<Button Height="23" HorizontalAlignment="Left"
Margin="176,145,0,0" Name="SaveAction"
VerticalAlignment="Top" Width="75"
Content="{Binding Path=Save, Source={StaticResource Strings}}" />
</Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Globalization and Localization | 369

Packing and Deploying

At run time the Silverlight platform will handle loading the necessary satellite assembly based on
the currentuIculture. Depending on whether you are running a Silverlight web application or an
out-of-browser application, the satellite assemblies will be packaged differently.

For a Silverlight web application the main assemblies and all the culture-specific satellite assemblies
will be included in the application’s XAP file.

Figure 11-5 uses the contents of the Silverlight web application X AP file. Note that each satellite
assembly is stored in a culture-specific subfolder, such as de-DE.

Name Date modified Type Size
.. de-DE 5/26/2010 7:10 PM File Folder
T AppManifestaaml 5/21/2010 8:42 AM XAML File 1KB
[%] Chapterl1.dil 5/21/2010 842 AM Application Extens... 144 KB
) System.Windows.Controls.dll 4/1/2010 12:46 AM Application Extens... 362 KB
[, System Windows_ Controle Navigation.dll 40/017:46 AM Application Frtens_. T4KR
FIGURE 11-5

For out-of-browser (OOB) Silverlight applications you have to create separate XAP files for each
localized culture or locale your application needs to support. You create separate XAP files by
creating new build configurations in Visual Studio. If you want to localize your OOB application
window title, shortcut name, and description, you need to create culture-specific versions of the
OutofBrowserSettings.xml configuration file.

After you create each culture’s outofBrowserSettings.xml setting file, unload your project file
and edit the metadata for the project. Below the <PropertyGroup> attribute add the following code
for each culture setting file you created. The culture code should match the name of the culture you
used to define the browser setting config file.

<OutOfBrowserSettingsFile>

Properties\OutOfBrowserSettings.culture-code.xml
</OutOfBrowserSettingsFile>

After reloading the project in Visual Studio open the outofBrowsersettings.xml file for each
culture and modify the following settings:

> ShortName attribute of the <OutOfBrowserSettings> tag, which provides the shortcut
name for the application

> <OutOfBrowserSettings.Blurb> content, which provides the application description that
appears as a tooltip on the installed application shortcuts

Title attribute of the <windowSettings> tag, which provides the window title

> Filenames of icons listed in the <outofBrowserSettings.Icons> section, for icons to
display in the installation dialog box, Windows Explorer, taskbar, and so on

370 | CHAPTER11 BUILDING LINE OF BUSINESS APPLICATIONS

Supporting Bidirectional Right-to-Left (RTL) Text

Silverlight 4 includes enhancements for localizing your application to support bidirectional text,
right-to-left layouts, and complex scripts such as Arabic, Hebrew, Thai, and so on.

To enable right-to-left (RTL), set the Flowbirection property on one or more Ul elements of your
application. Children elements will honor their parent’s FlowDirection setting. To minimize the
impact to your XAML just set your root element’s FlowDirection property.

When working in RTL mode it’s important to understand that the location of the 0 (x) and 0 (y)
coordinate is now changed to the upper-right corner. So any settings you defined for margins or
padding will be based on the upper-right corner.

Figure 11-6 shows how a Silverlight application will render when FlowbDirection is set right-to-left.

chapter 11

Company Name
Contact Name
Fhone

Cmail

FIGURE 11-6

Listing 11-22 shows an example of changing the FlowDirection property of a control’s root
element to be RightToLeft.

J LISTING 11-22: Setting FlowDirection in XAML
Available for
dwmygﬁ“ <UserControl x:Class="Chapterll.Views.Listingll22"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxml formats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">
<Grid x:Name="LayoutRoot" Background="White" FlowDirection="RightToLeft">
<TextBlock Height="23" HorizontalAlignment="Left" Margin="10,10,0,0"
Name="CompanyNameCaption" Text="Company Name"
VerticalAlignment="Top" />
<TextBox Height="21" HorizontalAlignment="Left" Margin="104,12,0,0"
Name="CompanyName" TextWrapping="Wrap"
VerticalAlignment="Top" Width="147" />
<TextBlock Height="23" HorizontalAlignment="Left" Margin="12,39,0,0"
Name="ContactNameCaption" Text="Contact Name"
VerticalAlignment="Top" />
<TextBox Height="25" HorizontalAlignment="Left" Margin="104,37,0,0"
Name="ContactName" TextWrapping="Wrap"

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Full-Screen Applications | 371

VerticalAlignment="Top" Width="147" />

<TextBlock Height="23" HorizontalAlignment="Left" Margin="12,69,0,0"
Name="PhoneCaption" Text="Phone"
VerticalAlignment="Top" />

<TextBox Height="25" HorizontalAlignment="Left" Margin="104,69,0,0"
Name="Phone" TextWrapping="Wrap"
VerticalAlignment="Top" Width="147" />

<TextBlock Height="23" HorizontalAlignment="Left" Margin="15,100,0,0"
Name="EmailCaption" Text="Email"
VerticalAlignment="Top" />

<TextBox Height="25" HorizontalAlignment="Left" Margin="104,100,0,0"
Name="Email" TextWrapping="Wrap"
VerticalAlignment="Top" Width="147" />

<Button Content="Save" Height="23" HorizontalAlignment="Left"
Margin="176,145,0,0" Name="SaveAction"
VerticalAlignment="Top" Width="75" />

</Grid>
</UserControl>

Deploying Best Practices

In addition to deciding to enable RightToLeft flow direction, you should consider a few things
when localizing your application. If your default language is English you need to consider the
impact to your Ul layout when you need to support multiple languages. Some languages can take
up to 40 percent more space to render the same text displayed in English. The following list is
just a small subset of the best practices you should follow when localizing an application:

> Avoid the canvas control because it requires hard-coded sizes and positions. Instead use the
grid or StackPanel that support automatic layouts.

Use TextBlocks or TextBox controls instead of Glyphs.
Avoid setting the width and Height properties of the control.

Make sure Textwrapping="wrap" is set for content that may wrap

FULL-SCREEN APPLICATIONS

In some cases, applications benefit from offering an enhanced experience by being shown as a full-
screen application. Silverlight allows applications to be made full-screen using the TsFullscreen
property. Setting this property to true resizes the application to the current screen size and makes
the application the topmost application. Listing 11-23 shows how you can use a button’s click event
to toggle an application between normal and full-screen modes.

‘) LISTING 11-23: Toggling an application between normal and full-screen modes

Available for

dwmfﬂﬁn private void btnFullScreen_Click(object sender, RoutedEventArgs e)

App.Current.Host.Content.IsFullScreen = !App.Current.Host.Content.IsFullScreen;

372

| CHAPTER 11 BUILDING LINE OF BUSINESS APPLICATIONS

Because placing an application into full-screen mode has certain security risks, Silverlight places a
number of restrictions around putting and keeping an application in full-screen mode, and disables
certain features while you’re in full-screen mode.

First, placing an application in full-screen mode is only allowed using a user-initiated action like the
button click shown in the previous listing. Attempting to set the TsFullScreen property to true in
any other way will result in an exception being thrown. When an application is in full-screen mode,
the end user can always use the Escape key (Esc) to exit full-screen mode. There is no way to override
the function of this key while in full-screen mode.

Also, as an application enters full-screen mode, Silverlight automatically displays a notice to the end
user, reminding them they can use the Escape key to exit. The notice is shown in Figure 11-7.

o]

wit full sereen mode.

[Extt Full Sereen]

FIGURE 11-7

The message shown is hard-coded into Silverlight and cannot be changed.
While in full-screen mode, again for security reasons, certain features of Silverlight are restricted:

> Attempting to access the OpenFileDialog and SaveFileDialog while in full-screen mode
causes Silverlight to revert to its normal embedded mode.

> Keyboard input is greatly restricted. Silverlight allows input from only the arrow keys, space-
bar, Tab, Page Up, Page Down, Home, Enter, and End keys. However, Silverlight 4 allows full
keyboard input for full-screen applications running as out-of-browser applications with elevated
privileges. You can learn more about out-of-browser applications in Chapter 9.

Summary | 373

> Multi-Touch capabilities of Silverlight are disabled while in full-screen mode. Basic single-
touch events remain available.

> When running in Safari on Mac, hardware acceleration is not available in full-screen mode
because of limitations of the Safari browser.

If you are enabling a full-screen experience in your application, you may want this experience to
be different than the application’s normal experience. This is especially true for applications that
are not already using the full browser frame, but are embedded as an “island of richness” within a
larger web page experience.

In this case you need to know when the full-screen state of the application has changed. You can
use the FullScreenChanged event to add logic to your application to change the experience. An
example of this is shown in Listing 11-24.

‘) LISTING 11-24: Using the FullScreenChanged event

Available for

“Wm?ﬂﬁ" void Content_FullScreenChanged (object sender, EventArgs e)

if (App.Current.Host.Content.IsFullScreen)
btnFullScreen.Content = "Exit Full Screen";
else
btnFullScreen.Content = "Make Full Screen";

In the listing you can see that the application is using the FullScreenChanged event to change the text
of the button, although it would be just as simple to make more complex changes to the application Ul.

Finally, if you include a full-screen experience in your application, you should consider setting
the new FullscreenOptions object to the StaysFullScreenwhenUnfocused value available in
Silverlight 4. This allows the application to remain in full-screen mode, even if it loses focus.

App.Current.Host.Content.FullScreenOptions =
System.Windows.Interop.FullScreenOptions.StaysFullScreenWhenUnfocused;

Prior to Silverlight 4, if a full-screen application lost focus, it would revert to its embedded mode.
Having the ability to keep full-screen mode for the application is especially important for your
users with multiple monitors. Setting the FullScreenoptions property allows those users to pin
the Silverlight application in full-screen mode on one monitor while continuing to use applications
on another monitor.

SUMMARY

In this chapter, you examined several typical Line of Business (LOB) application scenarios from how
to build context-sensitive menus, printer-friendly views, integrating with Microsoft Excel or Word,
and how to support localizing your application. As more and more developers adopt RIA-based
architectures, the Silverlight platform will continue to grow to support additional LOB scenarios.

12

Application Architecture

WHAT’S IN THIS CHAPTER?

Understanding design patterns and principles
Working with the Model View ViewModel pattern
Exploring Silverlight frameworks (MEF and PRISM)

Defining a data access strategy

Y Y Y Y Y

Designing with performance in mind

When architecting your Silverlight application you need to keep in mind the functional and
non-functional requirements.

> Functional requirements include navigation, workflow, and security.

> Non-functional requirements include number of concurrent users, performance,
scalability, maintainability, and reliability.

Whether your application is configured to run as a web browser plug-in or installed on an end-
user machine (out-of-browser application), you need to understand the tradeoffs involved in and
best practices for designing an n-tier application. Addressing these functional and non-functional
requirements is no small task. A solution that increases performance may impact scalability or
the maintainability of your application. Fortunately, n-tier application design is not new and sev-
eral well-documented approaches exist to address functional and non-functional requirements.

The most proven approach for architecting n-tier application is to focus on building loosely
coupled components. Each component is focused on a single or small set of responsibilities
(features). This approach increases the maintainability of your application and allows you to
easily address performance/scalability issues that might come up. For example, if your appli-
cation has a long-running process, such as creating a report, you can easily set it up to run
asynchronously if it’s loosely coupled from the rest of your application. Another key principle

376 | CHAPTER12 APPLICATION ARCHITECTURE

related to using loosely coupled components is separation of concerns. This principle promotes
separating responsibility for a feature into several classes that are loosely coupled.

This chapter will introduce you to the common patterns (MVVM) and frameworks (MEF and
PRISM) for developing loosely coupled Silverlight applications. The Model View ViewModel
(MVVM) pattern has become almost the de facto standard way of building Silverlight applications
because of the rich data-binding capabilities built into the platform. The Managed Extensibility
Framework (MEF) and the PRISM Composite Application Library (PRISM/CAL) are frameworks
you can use to build loosely coupled applications. Both frameworks use the concept of dependency
injection that allows classes to have their dependencies injected at run time instead of having direct
references to concrete classes. One of the most critical design decisions that impacts the performance
and scalability of your application is the data access strategy you use. You could choose to build cus-
tom Windows Communication Foundation (WCF) services or use one of the data access frameworks
(WCF Data Services or WCF RIA Services) available from Microsoft. In some scenarios your data
source may be one or more external services to which you subscribe.

The most important thing to remember when architecting a Silverlight or any other n-tier applica-
tion is that there are no silver bullets. Every choice you make has pros and cons. The golden rule
of architecture is “It depends.” A well-informed software architect/developer will research the best
options for his requirements and focus on building loosely coupled components that can be easily
replaced as requirements change.

The download for this chapter includes a Northwind sample application built using the PRISM/CAL
Framework and RIA Services. You should download the code ahead of time as you review this chap-
ter. The code listings included in the chapter are simplified to illustrate the topic being discussed with-
out needing the infrastructure of a full-fledged sample. You will need the following items installed to
run the Northwind sample.

SQL Server Express 2008 — http: //www.microsoft.com/express/database/
RIA Services — http://www.silverlight.net/getstarted/riaservices/

PRISM/CAL — http://compositewpf.codeplex.com/

Y Y Y VY

Unity Application Block — http://unity.codeplex.com/

If you installed the Silverlight 4 tools you will already have RIA Services
installed and the download for PRISM includes the Unity Application Block.

UNDERSTANDING DESIGN PATTERNS

A design pattern is a common solution for dealing with a problem within a specific context. Several
well-known design patterns exist but some are more appropriate for data access, whereas others are
designed to address separating concerns of a user interface. Before you dive into the inner workings
of the MVVM pattern, it is important to get a grasp of what a design pattern is and the design prin-
ciples applied when using the pattern.

http://www.microsoft.com/express/database/
http://www.silverlight.net/getstarted/riaservices/
http://compositewpf.codeplex.com/
http://unity.codeplex.com/

Understanding Design Patterns | 377

As design patterns have become more popular, developers have adopted a set of design principles
called SOLID. SOLID is an acronym for a set of best practices developers use to design loosely coupled
applications. When you read the rest of the chapter keep these principles in mind. They are the key to
understanding how to properly utilize the MVVM pattern and the frameworks available for building
Silverlight applications.

Table 12-1 lists out the SOLID design principles.

TABLE 12-1
ACRONYM DESCRIPTION

(S) SRP The single responsibility principle is the notion that a class should have only one
reason to change. For example, instead of creating a class that has data access
code for several different items you should instead separate the data access for
items into a single class.

(O) OCP The open/closed principle is the notion that a class should be open for extensions
but closed to modification. For example, you should be able to add a new behavior
to a class without affecting the rest of the code. Instead of adding a new case to a
switch statement, you should consider re-factoring the code to use separate classes
for each case.

(L) LSP The Liskov substitution principle is the notion that a derived class must be sub-
stitutable for its base class. A good example of this is the .NET stream classes
FileStream and MemoryStream. Both inherit from the Stream class but are
accessing different types of streams. When you call Read () on either class you
get the same expected result. If you were to create your own MyStream class
and override the Read () method to write data instead of reading data you would
break this principle.

Iy ISP The interface segregation principle is the notion that it’s better to have many
specific behavior-related interfaces than one giant monolithic interface. For
example, by having IEnumerable and IDisposable interfaces separate, it’s
possible for client code to only care about dealing with enumerating a collection
or disposing of it and not clutter up either operation by mixing two totally differ-
ent kinds of behaviors.

(D) DIP The dependency inversion principle is the notion that you should depend on
abstractions and not concretions. For example, when dealing with streams you
should be able to read and write data to a file stream or memory stream without
having to create or know the underlying stream source.

Exploring the Model View ViewModel (MVVM)

The Model View ViewModel (MVVM) pattern is a User Interface (UI)/Architectural design pattern
based on the popular Model View Controller (MVC) and Model View Presenter (MVP) patterns. The
MVVM pattern is well-suited for building Silverlight applications because of the rich data binding

378 | CHAPTER12 APPLICATION ARCHITECTURE

and commanding abilities built into the Silverlight Platform. All of these patterns promote the same
core approach of isolating domain/business logic from the user interface. This approach allows you
to change either the Ul or the domain logic without affecting the other. For example, in Silverlight it’s
possible for you to build an application using the out-of-the-box look and feel for buttons and lists.
Then later, you can allow a designer to customize the application look and feel without touching the
domain logic you wrote.

Figure 12-1 shows the differences between implementing the MVC, MVP, and MVVM patterns.
Although each pattern uses a slightly different approach to handle user input, they all share the same
core approach of separating concerns across multiple classes. In some advanced scenarios, you may
use a combination of these patterns. The most important thing to remember is to build loosely coupled
classes that have specific responsibilities.

Model View Controller Model View Presenter Model View ViewModel
Passes Fires Passes View Change
Calls to View Events Calls to View (XAML/Codebind) Notification
Updates Data
Binding
Controller Model Presenter Fires Commands
4—\Events \ 4
ViewModel > Model
Manipulates
Model
Manipulates

FIGURE 12-1

Now that you have an understanding of what the MVVM pattern is and how it relates to the other
popular Ul/Architectural patterns, it is time to examine the components of the MVVM pattern and
steps for using it in a Silverlight application.

MVVM and Separation of Concerns

Understanding what separation of concerns means is the key to successfully using the MVVM, MVC,
or MVP patterns. All three patterns focus on separating the concern of a use case or feature across
multiple classes, In MVVM there are three main components that are assigned responsibilities (the
Model, View, and ViewModel). In advances scenarios you may use additional controller or service
layer classes to limit the responsibility of ViewModel. Using a separation of concern approach has the
following advantages over putting all your code in code-behind files.

> FEach component has a small set of responsibilities.

> ltis easier to test each component independently.

> Isolated code can be replaced without affecting your other code.
> It is easier to eliminate duplicate code.
>

Different developers or teams can work on each component.

Understanding Design Patterns | 379

Earlier in the chapter, we talked about the SOLID principles. As you use MVVM, it is important to
keep these principles in mind and to remember each component is really a layer in your application
that has a set of responsibilities assigned to it.

The Responsibility of the Model
A model represents the domain/business logic of your application. Several different approaches exist

to structure the model. The two most popular approaches are data-centric and domain-driven.

> 1If you use a data-centric approach the model is made up of classes that contain only attributes
(data points), and your business logic is handled by the ViewModel or another set of classes
outside of the model.

> In a domain-driven design, the model contains behavior and attributes spread across multiple
classes that are based on real-world business (domain) concepts.

Both approaches (data-centric and domain-driven) Pastomer ® (o &
. . . . cl ch
have pros and cons to implementing them, and it is =3 iy
up to you to decide which approach works best for = Properties = Properties
] 1 3’ CompanyName "_‘? MName

your apphcatlon. = ContactName 2 NumberinStock

. . . " Customerld ™ OnBackOrder
Figure 12-2 shows a class diagram for a typical P Email M Drice
customer/order model. In this example, a domain- g rged B Productid

. . T Phune & Methods

driven approach was used and the classes contain BT s
attributes and behaviors for calculating total sales @ Customer e

: 9 GetCurentyearSales T Product
history and current year sales. 9 ChB RO

W GetTotalSalecHictory

The Responsibility of the View

A view represents the screens and controls of your

application. The view should focus only on render- T Orders |

ing the user interface of your application and have i ®) _
little or no code. In Silverlight a view is made up of OrderDetail B
the XAML for your screens/controls and their code- = Propates - |
behinds. Its main responsibility should be displaying g ,ii:?s:;dm) Home ¢ :;’r’; '::bcrcmm
and formatting data for the end user. In a properly g S & Methods
designed MVVM application, there is little or no B PendingPayment @ Colculoterice
code in your code-behind. Instead, you should rely g :::;E:;mmm =
on the rich data-binding capabilities in Silverlight to = Methods

set up the binding between Ul elements (TextBoxes, @ CalculatePrice

Lists, and so on) and your ViewModel. Silverlight 4 v Oroer

introduces support for ICommands so now it is possi- FIGURE 12-2

ble to link up commands defined in your ViewModel

to button clicks just using XAML. In cases where

you need to rely on code-behind (for example, for

subscribing to events) you should use the minimal amount of code necessary to communicate with
your ViewModel. If you need to handle the selected event of a list or DataGrid event, you should
pass the data item returned to the ViewModel. The ViewModel would then be responsible for using
the data passed from the code bind to trigger any changes to the view or persisting model to your
data store.

380 | CHAPTER12 APPLICATION ARCHITECTURE

Listing 12-1 shows how to set up the XAML for a view to data bind to the properties and commands
defined in a ViewModel.

‘) LISTING 12-1: Data binding to a ViewModel
Available for
dwm?ggﬂ <Grid x:Name="LayoutRoot" Background="White">

<TextBlock Margin="14,30,0,0" Text="First Name:"
Style="{StaticResource Label}" />

<TextBox Margin="120,30,0,0" Name="FirstName"
Text="{Binding Mode=TwoWay, Path=FirstName}"
Style="{StaticResource Data}" />

<TextBlock Margin="14,60,0,0" Text="Last Name:"
Style="{StaticResource Label}" />

<TextBox Margin="120,60,0,0" Name="LastName"
Text="{Binding Mode=TwoWay, Path=LastName}"
Style="{StaticResource Data}" />

<TextBlock Margin="14,90,0,0" Text="Email:"
Style="{StaticResource Label}" />

<TextBox Margin="120,90,0,0" Name="EmailAddress"
Text="{Binding Mode=TwoWay, Path=EmailAddress}"
Style="{StaticResource Data}" />

<TextBlock Margin="14,120,0,0" Text="Password:"
Style="{StaticResource Label}" />

<PasswordBox Margin="120,120,0,0" Name="Password"
Password="{Binding Mode=TwoWay, Path=Password}"
Style="{StaticResource Password}" />

<TextBlock Margin="14,150,0,0" Text="Repeat Password:"
Style="{StaticResource Label}" />

<PasswordBox Margin="120,150,0,0" Name="PasswordRepeated"
Password="{Binding Mode=TwoWay, Path=PasswordRepeated}"
Style="{StaticResource Password}" />

<Button Content="Button" Visibility="{Binding DisplaySave}"
Margin="119,189,0,0" Name="SaveButton"
Command="{Binding Save}"
Style="{StaticResource Button}" />

</Grid>

There are two approaches to linking a view to its ViewModel

> View First — The view is responsible for creating an instance of a ViewModel, via data
binding to a static resource or setting the data context in the code-behind file.

» ViewModel First — The ViewModel creates an instance of the view and sets its data context.
This is usually done using an Inversion of Control Container.

The code snippet that follows shows the View First approach of using data binding or code-behind
to set the view’s data context to its ViewModel.

<UserControl.Resources>
<local:SampleViewModel x:Key="ViewModel" />
</UserControl .Resources>

<Grid DataContext="{Binding Path=User,

Understanding Design Patterns | 381

Source={StaticResource ViewModel}}">
</Grid>

this.DataContext = new SampleViewModel () ;

The code snippet that follows next shows the ViewModel First approach of using dependency injection
to create an instance of the view and the ViewModel, setting the data context of the view inside the
ViewModel. Later on in the chapter you will learn more about inversion of control and dependency
injection and how to use them in your Silverlight application.

public interface IMyView
{

object DataContext { get; set; }
}

public class SampleViewModel

{
public SampleViewModel (IMyView view)
{

view.DataContext = this;

The Responsibilities of the ViewModel

A ViewModel has three main responsibilities:
> Abstracting the model from the view
> Tracking UI state

> Handling user input

You can use several different approaches to design your ViewModel. For simple scenarios, it is okay to
have a single ViewModel per screen that exposes each binding type as properties in the ViewModel. For
more advanced scenarios you can decide to wrap each model type with a corresponding ViewModel
(for example, CustomerviewModel will wrap a Customer class) or create separate ViewModels for each
key component of your Ul For example, if you have a shared search user control it might makes sense
to have a searchviewModel that abstracts away the different searchable types. The ViewModel should
be responsible for tracking all Ul states such as what’s selected, hidden, and so on and handling all user
input either through TCcommands or when necessary via methods the view calls.

When you create a ViewModel class, it must implement the INotifyPropertyChanged interface.
The interface requires you to create an event called PropertyChanged. This event is used by the
ViewModel to communicate changes to the view via data binding. For example, you have cre-
ated a property in your ViewModel called pisplaysave. In the view’s XAML you have bound
the visibility property of the Save button to the DisplaySave property in the ViewModel. In
your ViewModel you change the value of the DisplaySave property after a user enters in all the
required data. When changing the value you send a notification to the Save button by firing off
the PropertyChanged event, passing in a parameter equal to "DisplaySave". Silverlight handles

382 | CHAPTER12 APPLICATION ARCHITECTURE

the operation of notifying the view about the property changed and changing the visibility
of the Save button.

<Button Content="Button" Visibility="{Binding DisplaySave}" />
Visibility displaySave = Visibility.Collapsed;

public Visibility DisplaySave
{
get
{
return this.displaySave;

}

set
{
if (this.displaySave != value)
{
this.displaySave = value;
this.OnPropertyChanged ("DisplaySave") ;

In real-world scenarios, you should create a base ViewModel class that implements the
INotifyPropertyChanged interface. This way you can minimize repeating the same notification
code in each ViewModel. Silverlight 4 adds support for the I1Command interface, which allows you
to bind commands exposed by the ViewModel to any Ul element that inherits from ButtonBase.
This new feature allows you to use XAML to bind to a command and pass in parameters to it
instead of relying on code-behind events. Using this new feature and having a base ViewModel
class will allow you to minimize unnecessary duplicate code.

Listing 12-2 shows a ViewModel class that includes properties and commands. By using the
PropertyChanged event, the ViewModel can notify any view bound to it that a property has
changed. The view will invoke the ViewModel’s command when an end user performs an action.

‘) LISTING 12-2: Sample ViewModel
ﬂAvailalhlt;!or
lownload on 1 .
#Mxm‘ us%ng System.C?mponentModel,
using System.Windows;
using Chapterl2.Commands;

namespace Chapterl2.ViewModel

{
public class SampleViewModel : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

protected void OnPropertyChanged(string name)

{
if (this.PropertyChanged != null)
{

Understanding Design Patterns | 383

this.PropertyChanged(this, new PropertyChangedEventArgs (name)) ;

public SampleViewModel ()
{

this.firstName = "John";
this.lastName = "Doe";
this.emailAddress = "jdoe@company.com";

this.password = "12345";
this.passwordRepeated = "12345";

this.DisplaySave = Visibility.Visible;

private string firstName;
public string FirstName
{

get

{

return this.firstName;

set
{
if (this.firstName != value)
{
this.firstName = value;
this.OnPropertyChanged ("FirstName") ;
}

private string lastName;
public string LastName
{

get

{

return this.lastName;

set
{
if (this.lastName != value)
{
this.lastName = value;
this.OnPropertyChanged ("LastName") ;
}

private string emailAddress;
public string EmailAddress
{
get
{
continues

mailto:jdoe@company.com%E2%80%9D

384 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-2 (continued)

return this.emailAddress;

if (this.emailAddress != value)

this.emailAddress = value;
this.OnPropertyChanged ("EmailAddress") ;

private string password;
public string Password

{
get
{
return this.password;
}
set
{
if (this.password != value)
{
this.password = value;
this.OnPropertyChanged ("Password") ;
}
}
}

private string passwordRepeated;
public string PasswordRepeated

{
get
{
return this.passwordRepeated;
}
set
{
if (this.passwordRepeated != value)
{
this.passwordRepeated = value;
this.OnPropertyChanged ("PasswordRepeated") ;
}
}
}

Visibility displaySave = Visibility.Collapsed;
public Visibility DisplaySave
{

get

{

return this.displaySave;

Understanding Design Patterns | 385

if (this.displaySave != value)

this.displaySave = value;
this.OnPropertyChanged ("DisplaySave") ;

}

private SaveCommand saveCommand;
public SaveCommand Save
{
get
{
if (this.saveCommand == null)
this.saveCommand = new SaveCommand (this) ;

return this.saveCommand;

Using MVVM Best Practices

As your Silverlight application gets more complex you should keep the following best practices in mind.
Always keep separation of concerns and testability in mind. In more complex scenarios, it might make
sense to introduce controller or service layer classes to handle interactions with the model or external
data access services. Loading the model each time a new screen is displayed can be very costly if you
have to call an external data source. This can affect the performance and scalability of your applica-
tion because you are making multiple run trips to a data source and keep instantiating the same model
or, worse yet, keep loading multiple instances of the model. This can lead to a harder to maintain code
base. A good solution to this problem is to have a root (shell) ViewModel that keeps a reference to the
model and manages properties for the other ViewModel in your application.

More than likely, your Silverlight application will use services to access your data store, so it is
important to keep in mind that all service calls are asynchronous and will be executed in a thread
outside the UT thread. When the service call is complete, the MVVM pattern is a good way for noti-
fying your user interface that data is ready to be displayed. For example, say your application allows
users to search for products. By defining a visibility property in your ViewModel you can control the
display of a loading status message. When the service call is kicked off, you would toggle the visibil-
ity property to show the message. When the call is complete, you would set the ViewModel property
for product search results and set the visibility property to hide the status message.

Listing 12-3 shows an advanced MVVM scenario where the ViewModel displays product search
results based on filters the user entered in. It relies on a service layer for calling the search service
and loading the model. Once the service call is complete, the service class notifies the ViewModel,
which fires off property notification events to the view.

386 |

CHAPTER 12 APPLICATION ARCHITECTURE

J

Available for
download on
Wrox.com

LISTING 12-3: Advanced ViewModel

using System.Collections.ObjectModel;
using System.Windows;

using Chapterl2.Model;

using Chapterl2.Services;

namespace Chapterl2.ViewModel
{
public class ProductSearchViewModel : BaseViewModel

{
public ProductSearchViewModel ()
{
}
public void LoadData ()
{
new MockProductService() .Execute(Display) ;
}
private void Display (ProductResult result)
{
this.Categories = result.Categories;
}

private ObservableCollection<Product> products;
public ObservableCollection<Product> Products

{
get
{
return this.products;
}
set
{
if (this.products != value)
{
this.products = value;
this.OnPropertyChanged ("Products") ;
}
}
}

private Product selectedProduct;
public Product SelectedProduct
{

get

{

return this.selectedProduct;
set

if (this.selectedProduct != value)

{

Understanding Design Patterns | 387

this.selectedProduct = value;
this.OnPropertyChanged ("SelectedProduct") ;

if (this.selectedProduct != null)

{
this.IsProductSelected = Visibility.Visible;

}
else

{
this.IsProductSelected = Visibility.Collapsed;

private Visibility isProductSelected = Visibility.Collapsed;
public Visibility IsProductSelected
{

get

{

return this.isProductSelected;

set
{
if (this.isProductSelected != value)
{
this.isProductSelected = value;
this.OnPropertyChanged ("IsProductSelected") ;
}
}

private ObservableCollection<Category> categories;
public ObservableCollection<Category> Categories
{

get

{

return this.categories;

}
set
{
if (this.categories != value)
{
this.categories = value;
this.OnPropertyChanged ("Categories") ;
}
}

private Category selectedCategory;
public Category SelectedCategory
{

get

{

return this.selectedCategory;

continues

388 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-3 (continued)

}
set
{
if (this.selectedCategory != value)
{
this.selectedCategory = value;
this.OnPropertyChanged ("SelectedCategory") ;
this.DisplayProducts (this.selectedCategory) ;
}
}
}
private void DisplayProducts (Category selectedCategory)
{
this.Products = selectedCategory.Products;
}

Listing 12-4 shows the view (XAML) for the product search view. This is a more complex UI than
the previous sample. It shows how to bind a ViewModel to a ListBox, DataGrid, and multiple
TextBoxes. When a category is selected, its corresponding products will be displayed.

‘) LISTING 12-4: XAML data bound to ViewModel
Available for
ﬂwm?ggﬂ <UserControl x:Class="Chapterl2.Views.Listingl204"
xmlns:data="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data"
xmlns:sdk="clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls"
xmlns:common="clr-namespace: System.Windows;assembly=System.Windows.Controls"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d"
d:DesignHeight="300" d:DesignWidth="400">
<UserControl.Resources>
<Style x:Key="Label" TargetType="TextBlock">
<Setter Property="HorizontalAlignment" Value="Left" />
<Setter Property="VerticalAlignment" Value="Top" />
</Style>
<Style x:Key="Data" TargetType="Control">
<Setter Property="HorizontalAlignment" Value="Left" />
<Setter Property="VerticalAlignment" Value="Top" />
<Setter Property="Width" Value="250" />
<Setter Property="Height" Value="25" />
</Style>
<Style x:Key="Button" TargetType="Button">

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Understanding Design Patterns | 389

<Setter Property="HorizontalAlignment" Value="Left" />
<Setter Property="VerticalAlignment" Value="Top" />
<Setter Property="Width" Value="75" />
<Setter Property="Height" Value="25" />
</Style>
</UserControl.Resources>

<Grid x:Name="LayoutRoot" Background="White">
<StackPanel Orientation="Horizontal">
<ListBox Grid.Column="0"

Margin="5"
Height="200"
VerticalAlignment="Top"
ItemsSource="{Binding Categories}"
DisplayMemberPath="Name"
SelectedItem="{Binding SelectedCategory, Mode=TwoWay}"
/>

<StackPanel>
<data:DataGrid AutoGenerateColumns="False"
ItemsSource="{Binding Products}"
SelectedItem="{Binding SelectedProduct, Mode=TwoWay}">
<data:DataGrid.Columns>
<data:DataGridTextColumn Header="Name"
Binding="{Binding Name}" Width="200" />
<data:DataGridTextColumn Header="Price"
Binding="{Binding Price}" Width="120" />
<data:DataGridTextColumn Header="Number In Stock"
Binding="{Binding NumberInStock}" Width="120" />
<data:DataGridCheckBoxColumn Header="On Back Order"
Binding="{Binding OnBackOrder}" Width="100" />
</data:DataGrid.Columns>
</data:DataGrid>
<StackPanel VerticalAlignment="Top" Margin="0,10,0,0"
Visibility="{Binding IsProductSelected}">
<Grid>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="150" />
<ColumnDefinition />
</Grid.ColumnDefinitions>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition />
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>
<TextBlock Text="Name:" Grid.Column="0" Grid.Row="0"
Style="{StaticResource Label}" />
<TextBox Name="Name" Grid.Column="1" Grid.Row="0"
Text="{Binding Mode=TwoWay,
Path=SelectedProduct.Name}"
Style="{StaticResource Data}" />
<TextBlock Text="Amount:" Grid.Column="0" Grid.Row="1"
Style="{StaticResource Label}" />
<TextBox Name="Price" Grid.Column="1" Grid.Row="1"

continues

390

| CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-4 (continued)

Text="{Binding Mode=TwoWay,
Path=SelectedProduct.Price}"
Style="{StaticResource Data}" />

<TextBlock Text="Number In Stock:"
Grid.Column="0" Grid.Row="2"
Style="{StaticResource Label}" />

<TextBox Name="NumberInStock"
Grid.Column="1" Grid.Row="2"
Text="{Binding Mode=TwoWay,
Path=SelectedProduct.NumberInStock}"
Style="{StaticResource Datal}" />

<TextBlock Text="On Back Ordered:"
Grid.Column="0" Grid.Row="3"
Style="{StaticResource Label}" />

<CheckBox Name="IsBackOrder"
Grid.Column="1" Grid.Row="3"
IsChecked="{Binding Mode=TwoWay,
Path=SelectedProduct.OnBackOrder}"
Style="{StaticResource Datal}" />

</Grid>
</StackPanel>
</StackPanel>
</StackPanel>
</Grid>
</UserControl>

Learning about Inversion of Control/Dependency Injection

When designing the architecture for applications, it is important to understand how different com-
ponents, layers, and classes depend on each other. To truly achieve separation of concern you must
consider how to best isolate different classes. Using the dependency inversion principle is a good
place to start. The principle states that you should depend upon abstractions and not concretions.

A related principle to this is the inversion of control (IoC)/dependency injection. This principle
allows you to achieve loosely coupled components by relying on third-party containers to create
and manage the lifetime of dependencies and at run time inject dependencies into each other. For
example, you would use IoC to inject a view into a ViewModel as we previously talked about when
you use a ViewModel First approach.

There are several IoC containers available for the Silverlight platform. For the purpose of this book,
you will learn about how to use the Managed Extensibility Framework (MEF) and Unity Application
Block from the Microsoft Pattern and Practices group. Unity is currently the IoC container used by the
PRISM (CAL) framework. Future versions of PRISM will include more integration with MEF. Later
on in the chapter, you will learn about each of these frameworks. For now, we are going to focus on
the core concepts of IoC.

Listing 12-5 shows the basic implementation of the dependency inversion principle. The
GameViewModel creates an instance of the GameService. Instead of referencing the GameService
directly, it uses the interface (abstraction) the service implements.

Understanding Design Patterns | 391

‘) LISTING 12-5: Using abstraction

Available for
downloadon ;5ing System.Collections.Generic;

Wrox.com K
using Chapterl2.Model;
using Chapterl2.Services;

namespace Chapterl2.ViewModel
{
public class GameViewModel

{

public GameViewModel ()
{
}

public void LoadData ()
{

IGameService service = new GameService();

Game game = service.GetGameById(1l);
IList<Game> game = service.SearchForGames () ;

This example is a good starting point. However, there still exists a tight coupling between the
ViewModel and its service because the ViewModel is still responsible for creating the service directly.
A better approach is to use an IoC Container to inject the dependency at run time. Two popular
approaches exist for implementing loC: dependency injection and service locator.

> When you use a service locator, you must specifically ask the container for a dependency.

> When you use dependency injection, the container will inject the dependency.

If you use constructor injection, the dependency is injected when the container creates an instance
of your class; property injection allows you to have a dependency injected the first time you try to
use it. Both approaches require you to register any dependency prior to using them. An exception

is raised if a type is not registered. The combination of dependency inversion and the inversion of
control principles allows you to design better architected Silverlight applications by loosely coupling
classes (components) using abstraction and dependency injection.

Now that you have a basic understanding of IoC, you can examine a few samples of implementing a
service locator and dependency injection using the Unity Application Block.

Listing 12-6 shows how to set up a service locator using Unity. When the GameviewModel wants
to call the GameService to search for games, it asks the IoC container to locate the class that
implements the IGameService interface.

392 | CHAPTER12 APPLICATION ARCHITECTURE

\) LISTING 12-6: Using Unity as a service locator
Available for
“Wmtgé“ using System.Collections.Generic;
using Chapterl2.Model;
using Chapterl2.Services;
using Microsoft.Practices.Unity;

namespace Chapterl2.ViewModel
{
public class GameViewModel

{
public GameViewModel ()
{
}
private UnityContainer container;
public GameViewModel (UnityContainer container)
{
this.container = container;
}
public void UseServiceLocator ()
{
IGameService service = this.container.Resolve<IGameService>();
Game game = service.GetGameById(1l);
IList<Game> gameList = service.SearchForGames () ;
}
}

using System.Windows;

using System.Windows.Controls;
using Chapterl2.Services;

using Chapterl2.ViewModel;

using Microsoft.Practices.Unity;

namespace Chapterl2.Views
{
public partial class Listingl206 : UserControl
{
private GameViewModel viewModel;
UnityContainer container;

public Listingl1206 ()
{

InitializeComponent () ;

this.container = new UnityContainer() ;
this.container.RegisterType<IGameService, GameService> () ;

this.viewModel = new GameViewModel (this.container) ;

Understanding Design Patterns | 393

this.DataContext = this.viewModel;

private void buttonl_Click(object sender, RoutedEventArgs e)
{

this.viewModel .UseServiceLocator () ;

Listing 12-7 shows how to do constructor dependency injection using Unity. The
SportsGameViewModel constructor requires a reference to a class that implements the TGameService.
To have the reference injected into the ViewModel the TGameService must be registered with Unity and
your ViewModel must be created by calling Resolve on the IoC container.

‘) LISTING 12-7: Constructor dependency injection
Available for
“Wmmdm using System.Windows;
rox.com . .
using System.Windows.Controls;
using Chapterl2.Services;
using Chapterl2.ViewModel;
using Microsoft.Practices.Unity;

namespace Chapterl2.Views
{
public partial class Listingl207 : UserControl
{
private SportsGameViewModel viewModel;
UnityContainer container;

public Listingl207()
{

InitializeComponent () ;

this.container = new UnityContainer();
this.container.RegisterType<IGameService, GameService>();

this.viewModel = container.Resolve<SportsGameViewModel> () ;
this.DataContext = this.viewModel;

private void buttonl_Click(object sender, RoutedEventArgs e)
{
this.viewModel.LoadData () ;

using Chapterl2.Model;
using Chapterl2.Services;

namespace Chapterl2.ViewModel

continues

394 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-7 (continued)

public class SportsGameViewModel

{
private IGameService service;
public SportsGameViewModel (IGameService service)
{

this.service = service;

public void LoadData ()
{

Game game = this.service.GetGameById (1) ;

Listing 12-8 shows how to do property (setter) dependency injection using Unity. The
ActionGameViewModel contains a property GameService that has been annotated with the
[Dependency] attribute. This allows you to simplify your code instead of adding many dependen-
cies to your constructor, and it delays the loading of a dependency until the first time you use it. You
are still required to register the TGameService with Unity and create your ViewModel using the
Resolve method on the IoC container.

‘) LISTING 12-8: Property Dependency Injection
Available for
dwm“““ using System.Windows;
rox.com K K
using System.Windows.Controls;
using Chapterl2.Services;
using Chapterl2.ViewModel;
using Microsoft.Practices.Unity;

namespace Chapterl2.Views
{
public partial class Listingl208 : UserControl
{
private ActionGameViewModel viewModel;
UnityContainer container;

public Listingl1208()

{
InitializeComponent () ;
this.container = new UnityContainer();
this.container.RegisterType<IGameService, GameService>();
this.viewModel = container.Resolve<ActionGameViewModel> () ;
this.DataContext = this.viewModel;

}

private void buttonl_Click(object sender, RoutedEventArgs e)

Understanding Design Patterns | 395

bool isServiceLoaded = this.viewModel.GameService != null;
this.viewModel.LoadData/() ;

}

using Chapterl2.Model;
using Chapterl2.Services;
using Microsoft.Practices.Unity;

namespace Chapterl2.ViewModel
{
public class ActionGameViewModel

{

public ActionGameViewModel ()
{
}

private IGameService service;

[Dependency]
public IGameService GameService
{
get{return this.service;}
set{this.service = value;}

}

public void LoadbData ()
{

Game game = this.GameService.GetGameById (1) ;

Inversion of Control (IoC) and Dependency Injection (DI) are powerful tools to help you build better
architected applications. By using an IoC container to manage dependencies, you create a better sepa-
ration of concerns between the different classes (or components) of your application. It is important to
understand that all dependency injection happens at run time so there is some performance cost that
you should consider when using IoC/DI. Later in the chapter, you examine the inner workings of the
MEF and PRISM frameworks. Both rely heavily on the concept of IoC/DI so you might want to refer
to this section as you read how to use the frameworks.

Exploring the Event Broker Pattern

A key concept to building a Silverlight application is using events. Events allow one class to communi-
cate to one or more other classes that a specific thing happened (for example, a button was clicked or
data had been retrieved from a service). The normal way to use an event is for one class to subscribe to
the events of another class. This approach works great when each class has direct access to the other
and only one class can trigger an event. However, in more advanced scenarios one or more classes may
need to send the same event or be notified by events without subscribing directly to the caller event.

396 | CHAPTER12 APPLICATION ARCHITECTURE

As discussed in the previous section on [oC/DI, it is a good idea to use a container for managing
dependencies instead of classes having direct access to each other. Events can be treated as another
type of dependency and instead of subscribing directly to an event, a container (Event Broker) could
be used to manage the subscribers and publishers of an event. When an event occurs, the Event
Broker would be responsible for notifying all subscribers that an event occurred. A good example of
this is handling the closing of an application. Instead of looping through each control on the screen
to check to see if its needs to be saved before your applications closes, an Event Broker could handle
notifying each control to save itself. Another example of where an Event Broker would greatly sim-
plify your code is when you need to display a retrieving data status message. The user control for
the status message could subscribe to events that a ViewModel publishes: one for when the async
call starts and one when it ends. This approach allows the status control to be totally independent
of the ViewModel. In fact, the status control and ViewModel do not even know the other one exists.
Briefly, an Event Broker allows components to be loosely coupled from the events they need to pub-
lish or subscribe to.

USING SILVERLIGHT FRAMEWORKS

When architecting an application it’s important to understand how frameworks can help you better
design your application. For a simple project, a framework might be overkill. However, for advanced
scenarios where you may have several or even dozens of developers it is critical to use or build a frame-
work for your application. By using a framework, you can centralize the plumbing and common ser-
vices all developers need to use in one place. Even when using an existing framework such as PRISM
(Composite Application Library) or the Managed Extensibility Framework (MEF) you should consider
building your own application-specific framework on top to increase code reuse and simplify the devel-
oper’s experience.

Exploring the Managed Extensibility Framework

The Managed Extensibility Framework (MEF) is a new component included in the Silverlight 4
Platform for simplifying the design of extensible applications and components. MEF offers discovery
and composition capabilities that you can leverage to load application extensions. MEF now ships
with the Silverlight 4 run time. However, there is a version available for Silverlight 3 as a separate
download on CodePlex (http://mef.codeplex.com). MEF is a key component of the .NET 4.0
platform as well. Therefore, you can now use the same extensibility framework whether you are
building a Silverlight, WPF, or ASP.NET application.

It is important to note that there is some overlap between MEF and the PRISM (CAL) Framework.
MEF focuses on building extensible applications by providing support for automatic component
discovery and compositions. Though PRISM (CAL) is an application framework that is used for
building modular composite applications that use Ul patterns such as MVVM, MEF will be more
integrated into a future version of the PRISM (CAL) Framework.

What Problem Does MEF Solve?

MEF presents a simple solution for addressing run time extensibility. Prior to MEF, any application
that wanted to support the plug-in model needed to create its own infrastructure. In many cases, the
approaches that developers used were application-specific and could not be easily reused across multiple

http://mef.codeplex.com

Using Silverlight Frameworks | 397

implementations. Because the MEF model does not require any hard dependencies on a particular
application assembly, you can design your extension to be application-specific or generic. This makes
it easy to develop a test harness for testing your extension independently of any application. MEF will
handle any dependencies between extensions by insuring that they are loaded in the proper order.

How Does MEF Work?

MEF includes a catalog and a composition container. The catalog is responsible for discovering
extensions and the composition container is responsible for managing the creation, lifetime, and
dependencies for an extension.

ComposablePart is a first-class citizen in MEF and offers up one or more exports, and may depend on
one or more externally provided services or imports. The default implementation of ComposablePart
manages an object instance of a given type. However, MEF has built-in extensibility to support addi-
tional custom implementations of Composableparts as long as they adhere to import/export contracts.

You define a composablepart by defining an export contract and then import the ComposableParts
you want to use in your application. Contracts are the bridge shared between exports and imports.
An export contract consists of metadata that can be used to filter the discoverability of the export. A
container interacts with a catalog to load the Composableparts your application uses. The container
will handle loading any dependencies the composableParts require. If you want, you can manu-
ally add composable part instances directly to a container. By default, MEF uses attribute-based
metadata to declare exports and imports. This allows MEF to determine which parts, imports, and
exports are available completely through discovery.

Figure 12-3 shows the relationship between the MEF catalog, composition container, and multiple
extensions (plug-ins). Each composable part can define export and import contracts and the catalog
export provider is extensible enough to support custom export providers. This gives you the ability
to build custom providers to better manage extensions if you have custom requirements that do not
fit in the default export provider.

-

[CustomExportProvider] [CatalogExportProvider] [MutableExportProvider]
A

Compostition Container

(evpon) (imoon) [Bwon) (mwert) (Bport) [meor)

FIGURE 12-3

398 | CHAPTER12 APPLICATION ARCHITECTURE

Using MEF in Your Application

Now that you have a basic understanding of what MEF is and how it works, you can dive into using
MEEF in your Silverlight application to add extensibility. To use MEF in your application you need to
understand how to set up a ComposablePart and the import/export contracts for the part.

A composablePart is a unit within MEF. It exports services that other parts need and imports
&ivkesfﬂnn(nherparw.Ybulmethe[System.ComponentModel.Composition.Import]and
[System.ComponentModel .Composition.Export] attributes to declare the imports/exports for a
ComposablePart. A part must contain at least one export. The default MEF catalog will automati-
cally load composableparts that have export attributes defined. It is possible to use the catalog to
add a composablePart at run time also.

composableParts do not depend on each other directly. Instead, they depend on a contract.
When defining a contract it’s a good idea to use a fully qualified namespace. This will allow
ComposableParts to be more uniquely defined. The MEF container will handle matching up
export and import contracts when a ComposablePart is loaded.

The following code snippet shows the different approaches to exporting a contract. If a contract name
is not specified, MEF will implicitly use the fully qualified name of the type as the contract.
[Export]
public class TextExporter
{
public TextExporter ()
{
}

[Export (typeof (TextExporterOne))]
public class TextExporterOne

{

}

[Export ("Chapterl2.MEF.Services.TextExporterTwo")]
public class TextExporterTwo

{

}

When defining your export contract you should consider using an interface or abstract class type
rather than a concrete class. This allows the importer to be completely decoupled from a specific
implementation of an export contract. You should consider deploying a contract assembly that con-
tains the contract types that extenders can use for extending your applications. Additionally, the
contract assembly can contain metadata or custom MEF export attributes needed by importers.

The following code snippet shows multiple log source implementations that export the TLogService
interface. The LogService class imports a collection of TLogService implementations, which it
invokes in the writeToLog method. This approach makes it easy to add new log sources to your
application.

public interface ILogService
{
void Write(string value);

Using Silverlight Frameworks | 399

[Export (typeof (ILogService))]
public class DatabaseLogService : ILogService
{
public void Write(string value)
{
}
}

[Export (typeof (ILogService))]
public class FileLogService : ILogService
{
public void Write(string value)
{
}
}

public class LogService
{
[ImportMany]
public IEnumerable<ILogService> Services { get; set; }

public void WriteToLog (string value)

{
foreach (ILogService service in this.Services)

service.Write(value) ;

Declaring Exports

ComposablePartsdedareexpoﬂsthroughthe[System.ComponentModel.Composition.Export]
attribute. In MEF you can use several different approaches to declare exports, including at the class
level and through properties and methods.

To export a ComposablePart you simply decorate the part with the Export attribute as shown in
the following code snippet:
[Export]

public class TextExporter

{
public TextExporter ()

{
}

In addition to exporting itself, a part can export properties or methods. Property exports have
several advantages. They allow the exporting of sealed types (such as core CLR types). They allow
decoupling the export from how it is created, for example, exporting the existing Html . Document
the run time creates for you. Moreover, they allow having a family of related exports in the same
ComposablePart,SudﬂaStheDefaultSendersRegisteryComposablePartthatexporm:iddﬁuk
set of senders as properties.

400 | CHAPTER12 APPLICATION ARCHITECTURE

To export a property, just decorate it with the Export attribute as the configurationService class
does in the following code snippet:

public class ConfigurationService
{
private int timeout = 60;
private string serverUri = @"http://www.myserver.com";

[Export ("TimeoutAmount")]
public int TimeoutAmount
{

get { return this.timeout; }

[Export ("ServerUri")]
public string ServerUri
{

get { return this.ServerUri; }

Methods are exported as delegates. They have several benefits, including allowing finer grained
control as to what is exported. For example, a rules engine might import a set of pluggable methods
that shield the caller from any knowledge of the type and that can be generated through simple code
generation. Method exports are limited to four arguments because of limitation built into the NET
Framework. They must be defined using a type or string contract name.

The following code snippet shows you how to define a contract for a method export and how a
delegate is used for importing the contract:

[Export (typeof (Action<Customer>))]
public void Send(Customer data)
{
// Call Service to save dats
}
[Import (typeof (Action<Customer>))]
public Action<Customer> CallService { get; set; }

public void Save()
{
CallService(new Customer { ContactName = "John Doe" });

MEF includes support for base classes/interfaces to define exports that are automatically inherited
by subclasses. This is ideal for integration with legacy frameworks that want to take advantage

of MEF without requiring modification to existing code. To use this capability you must deco-
rateyourckwsﬁntﬂface1mingthe [System.ComponentModel .Composition.InheritedExport]
attribute. In the standard .NET version of MEF, it is possible to discover public and non-public

parts, but this behavior is not supported by medium/partial trust environments including the
Silverlight 4 Platform.

http://www.myserver.com%E2%80%9D

Using Silverlight Frameworks | 401

Declaring Imports
ComposablePartSdedarehnpoﬂ$throughthe[System.ComponentModel.Composition.Import]
attribute. MEF supports Field, Property, and Constructor importing. Property imports are done by
decorating the property using the [Tmport] attribute:

[Import]
public IMessageSender MessageSender { get; set; }

Instead of listing out multiple imports using properties you can define a constructor that accepts one or
more parameters. You have two approaches to define a constructor import. By default, the types for of
each parameter will be used when you decorate the constructor using the [ImportingConstructor]
attribute. It is also possible to explicitly define the import for each parameter using the [Tmport] attri-
bute. An import can be marked as optional by setting the A11owbefault import parameter to true. If
an optional import is not available it will be set to default (T) for its type.

The following code snippet shows how to mark one of the import parameters as optional by setting
the AllowDefault parameter to true:

private IProductService service;

[ImportingConstructor]
public ProductViewModel ([Import (AllowDefault = true)] IProductService

service)

{

this.service = service;

Member variables (fields) can be defined as imports also using the [Import] attribute. Importing
private fields, properties, and methods is fully supported in a full trust environment, but will be
problematic in a medium/partial trust environment like Silverlight because reflection in Silverlight
cannot access private or internal members.

[Import]
private ILogService service;

In addition to single imports, you can import collections using the [ImportMany] attribute. This means
that all instances of a specific contract will be imported from the container. MEF parts can support
recomposition, which means as new exports become available in the container; collections are auto-
matically updated with any new items. You can implement the TPart TmportsSatisfiedNotification
interface to be notified when all imports that could be satisfied are loaded.

public class LogManager : IPartImportsSatisfiedNotification
{

[ImportMany (AllowRecomposition = true)]
public IEnumerable<ILogService> Services { get; set; }

public void WriteToLog(string value)
{

foreach (ILogService service in this.Services)
service.Write(value) ;

402 | CHAPTER12 APPLICATION ARCHITECTURE

public void OnImportsSatisfied()
{

// Called when all imports are satisfied

Using Catalogs

One of the key value propositions of the MEF attribute-based programming model is the ability
to dynamically discover parts via catalogs. Catalogs allow applications to easily consume self-
registered exports. Out-of-the-box MEF includes several catalogs that make it easy to consume
MEF parts. To use a catalog inside of a container, simply pass an instance of a catalog to the con-
tainer’s constructor:

var container = new CompositionContainer (catalog) ;

AssemblyCatalog allows you to access all the exports available within a specific assembly. For
example, use AssemblyCatalog to access the parts available in the currently executing assembly:

Assembly currentAssembly = Assembly.GetExecutingAssembly () ;
var catalog = new AssemblyCatalog(currentAssembly) ;

DirectoryCatalog allows you to discover all the exports in all assemblies for a given directory:

var catalog = new DirectoryCatalog("Plugins");

AggregateCatalog can be used to combine multiple catalogs into a single catalog. Its constructor
can accept a collection of catalogs or you can add catalogs individually to the catalog collection. A
common approach is to load the currently executing AssemblyCatalog and DirectoryCatalog for
third-party extensions:

Assembly currentAssembly = Assembly.GetExecutingAssembly () ;

var catalog = new AggregateCatalog/(
new AssemblyCatalog(currentAssembly),
new DirectoryCatalog("Plugins")

In addition to the previous catalog, there is a TypeCatalog that discovers all the exports in a specific
set of types. Silverlight includes a Deploymentcatalog that allows you to design your application
using multiple X AP files. The peploymentCatalog is discussed later in the chapter.

Managing a Part’s Lifetime

One of the most important aspects of MEF is understanding how a container manages the lifetime of a
part. Because MEF focuses on making your application extensible, you have no control on how many
third-party extensions will be created. Lifetime can be explained as being the desired “shareability” of
a part, which translates to the policy that a container will use for when a new part is created as well as
when the part will be closed or disposed.

Using Silverlight Frameworks | 403

The “shareability” of a MEF part is defined using the creationpPolicy attribute available only at
the class level. The following values are supported:

> Shared — The part author is telling MEF that only one instance of the part can exist per
container.

> NonShared — The part author is telling MEF that a new instance should be used for each
request for the export.

> Any or not supplied — The part author allows the part to be used in either a Shared or
NonShared way.

[PartCreationPolicy(CreationPolicy.NonShared)]
[Export (typeof (IProductService))]
public class ProductService : IProductService
{

public ProductService()

{

}

The container is always responsible for the ownership of the parts it has created. The ownership will
never be transferred to a class that requested it by using the container instance (directly) or through
an import (indirectly). An import contract can define or constrain the creation policy used by the con-
tainer, by your setting the RequiredCreationPolicy parameter of the Import attribute. By default,
this value is set to Import.Any, but it can be marked as Import.Shared or Import.NonShared. You
would use this in scenarios where the shareability of a part is relevant to an importer.

Table 12-2 defines the behavior used. If both the part and the importer define “Any,” the container
will treat the part as shared.

TABLE 12-2
PART.ANY PART.SHARED PART.NONSHARED
Import.Any Shared Shared Non Shared
Import.Shared Shared Shared No Match
Import.NonShared Non Shared No Match Non Shared

An instance of a container is normally the lifetime holder of parts. A part instance created by the
container will have its lifetime conditioned to the container’s lifetime. You dispose of a container to
signal the end of the container’s lifetime. Disposal ordering is not guaranteed in any way and you
should avoid using imports from within a dispose method.

The implications of disposing a container are:
> Parts that implement TDisposable will have the Dispose method called.

> References to parts held on the container will be cleaned up.

404 | CHAPTER12 APPLICATION ARCHITECTURE

> Shared parts will be disposed of and cleaned up.
> Lazy exports won’t work after the container is disposed.

> CnxmadonsnﬁghtthHNNtheSystem.ObjectDisposedException.

The .NET garbage collector is the best thing to rely on for proper clean up of your container and
parts. However, there are times when you need deterministic behavior and a container will not hold
references to parts it creates unless one of the following conditions is true:

> The part is marked as shared.
> The part implements IDisposable.

> One or more imports are configured to allow recomposition.

For those cases when a part reference is kept or when you have many non-shared parts requests
that cause memory demand to quickly become an issue, you need to consider one of the following
approaches for mitigating the issue.

Some applications like web applications and Windows services vary greatly from desktop applications.
They are more likely to rely on short-lived or batched operations. For these types of scenarios, you
should either use child containers or release the object graph for your parts early. Releasing early allows
the container to clean up non-shared part references. To trigger this operation call the ReleaseExport
method on the container:

var container = new CompositionContainer (catalog);

var logExport = container.GetExport<ILogService>();
var service = logExport.Value;

service.Write("Test Message");
container.ReleaseExport (logExport) ;

Another approach for dealing with this issue is to use container hierarchies. You create child containers
by connecting one container to another one. It is important that a child container does not access the
same catalog as its parent container. This is necessary so the part references can be properly managed.
You should consider filtering a catalog so you can load different filtered catalogs into parent and child
containers. A common approach is to have Shared parts created in the parent container and NonShared
ones created in child containers. If a Shared part depends on exports in a NonShared part, the parent
catalog will have to contain the whole set of parts while the child container can still be filtered to only
contain NonShared parts.

Not all parts are created directly by a container. You have the ability to add and remove parts to a con-
tainer. When this happens, the container will create any additional parts to satisfy the dependencies for
the parts you added. When a part is removed, MEF will handle reclaiming the resources and disposing
of any non-shared parts that the part you added used. MEF will never take ownership of an instance
you supply, but it does retain ownership of any parts created to satisfy your instance’s imports.

Listing 12-9 shows how to add/remove parts to a container. When the MEFViewModel part is added
to the container, the container will automatically handle importing in the dependencies needed by
the MEFViewModel instance.

Using Silverlight Frameworks | 405

‘) LISTING 12-9: Adding/removing parts to a container

Available for

“m;“:gn‘:“ using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Windows;
using System.Windows.Controls;

namespace Chapterl2.MEF.Views
{
public partial class Listingl209 : UserControl
{
private ComposablePartCatalog catalog;
private CompositionContainer container;
private MEFViewModel root;
private ComposablePart key;

public Listingl2009 ()
{

InitializeComponent () ;

private void CreateButton_Click(object sender, RoutedEventArgs e)
{
this.catalog = new AssemblyCatalog(
typeof (Listingl1209) .Assembly) ;

this.container = new CompositionContainer (catalog);
this.root = new MEFViewModel () ;

this.Status.Text = "Object Created";

private void LoadButton_Click(object sender, RoutedEventArgs e)
{
CompositionBatch batch = new CompositionBatch() ;
batch.AddPart (this.root) ;
this.key = batch.AddExportedvValue<DataService> ("DataService",
new DataService());
container.Compose (batch) ;

this.Status.Text = root.GetMessage();
private void UnloadButton_Click(object sender, RoutedEventArgs e)
{
CompositionBatch batch = new CompositionBatch() ;
batch.RemovePart (this.key) ;

container.Compose (batch) ;

this.Status.Text = root.GetMessage();

continues

406 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-9 (continued)

[Export]
public class MEFViewModel
{
public MEFViewModel ()
{
}

public string GetMessage()
{

string result = "Dependency Not Loaded";
if (this.Dep != null)
{

result = this.Dep.GetMessage();

return result;

[Import ("DataService", AllowDefault = true,
AllowRecomposition = true,

RequiredCreationPolicy = CreationPolicy.NonShared)]
public DataService Dep { get; set; 1}

[Export, PartCreationPolicy(CreationPolicy.NonShared)]
public class DataService : IDisposable
{

public DataService()

{

}

public string GetMessage()
{

return "Dependency Loaded";

}

public void Dispose()
{
Console.WriteLine ("Disposed") ;

Hosting MEF in Silverlight

The previous sections focused on the key components of the MEF framework. You learned how to
set up export and import contracts and how MEF uses containers and catalogs to manage the life-
time of parts. So now, it is time to examine how to use MEF in your Silverlight application.

Using Silverlight Frameworks | 407

For desktop applications, you are required to manually configure the composition container and cata-
logs in order for your application to discover parts. The container often needs to be passed around to
all the components of your application that may need it for dynamically composing parts.

In Silverlight, a compositionTnitializer class allows parts to be composed by MEF without having
to do a manual bootstrapping. When using the compositionInitializer MEF will be set up to run
on demand when any class that has been created contains imports. This means you can use MEF any-
where within your Silverlight application including XAML markup.

Listing 12-10 shows how to use the compositionTnitializer SatisfyTImports method to import
the ViewModel for the Mainview screen. When the application startup method is called, an instance
of the Listing1210 class is passed to the compositionTnitializer to have is imports created.
This causes the MainviewModel to be discovered by MEF and inject it with an TProductService.
Then the application loads the view and sets its data context to the imported ViewModel.

Notice that the Listing1210 class does not have any exports. SatisfyTmports only works with
parts that cannot be discovered by the catalog. The method throws an exception if you pass it a
class that has an [Export] attribute.

‘) LISTING 12-10: Using Compositioninitializer
Available for
dwmf%gn using System.ComponentModel.Composition;
using System.Windows;
using System.Windows.Controls;
using Chapterl2.MEF.ViewModel;

namespace Chapterl2.MEF.Views

{
public partial class Listingl210 : UserControl
{

[Import]
public MainViewModel ViewModel { get; set; }

public Listingl1210 ()
{

InitializeComponent () ;

CompositionInitializer.SatisfyImports(this);
this.DataContext = this.ViewModel;

private void button_Click(object sender, RoutedEventArgs e)

{
this.ViewModel.LoadData() ;

using System.ComponentModel.Composition;
using Chapterl2.MEF.Services;

continues

408 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-10 (continued)
using Chapterl2.MEF.Model;

namespace Chapterl2.MEF.ViewModel
{
[Export]
public class MainViewModel : BaseViewModel

{

public MainViewModel ()
{
}

[Import]
public IProductService ProductService { get; set; }

private Product selectedProduct;
public Product SelectedProduct

{
get
{
return this.selectedProduct;
}
set
{
if (this.selectedProduct != value)
{
this.selectedProduct = value;
this.OnPropertyChanged ("SelectedProduct") ;
}
}

}

public void LoadData ()
{
this.SelectedProduct = this.ProductService.GetProduct () ;

CompositionInitializer is designed to be called multiple times, which makes it ideal to not only
be used within the root application class, but also on elements created in XAML.

Listing 12-11 shows how to use the CompositionInitializer from within XAML-created ele-
ments. OrderHeader and OrderDetail are nested controls within the orderview. Both have their
own respective ViewModels imported. The orderHeader is directly importing its ViewModel versus
having it externally wired by its parent view. This is done to allow the orderHeader control to be
dropped within XAML without its containing control having any knowledge of how to wire the
OrderHeader ViewModel.

Using Silverlight Frameworks | 409

‘) LISTING 12-11: Activating Compositionlnitializer from XAML

Available for
downloadon y35ing System.ComponentModel.Composition;

Wrox.com K K
using System.Windows.Controls;
using Chapterl2.MEF.ViewModel;

namespace Chapterl2.MEF.Controls
{
public partial class OrderHeader : UserControl
{
[Import]
public HeaderViewModel ViewModel { get; set; }

public OrderHeader ()
{
InitializeComponent () ;

CompositionInitializer.SatisfyImports(this);
this.DataContext = this.ViewModel;

There are a few caveats to keep in mind when using the satisfyImports method of the
CompositionInitializer. By default, only assemblies in the current X AP are discoverable. The next
section explores how to override this behavior. All parts created with this method are held around by
MEEF until the application shuts down. This is not ideal when composing transient multiple-instance
parts. In those cases, you should look into using an Export Factory. Classes passed to the method can-
not have any exports defined.

MEF creates a default host configuration for CompositionInitializer the first time SatisfyTmports
is called. This is ideal for simple applications or ones where all the parts are contained in the current

X AP. For more complex scenarios like composite applications, there is a CompositionHost class.

You have to add a reference to the System.ComponentModel .Composition.Initialization.dll

to use the CompositionHost class. The class allows you to override the default configuration by

calling the Tnitialize method of the host class and passing in your own configuration. The
CompositionHost Initialize method can be called only once when your application is being loaded.

The easiest way to override the default configuration is to call the overload of the Tnitialize
method, which accepts one or more catalogs. When you override the host configuration, you take
full control, and MEF does not automatically load the parts in the current XAP. To make the current
XAP discoverable you create an instance of the Deploymentcatalog using its default constructor.
This tells MEF to find all the parts in the current XAP.

var aggregateCatalog = new AggregateCatalog();
CompositionHost.Initialize (new DeploymentCatalog(), aggregateCatalog) ;
CompositionInitializer.SatisfyImports(this);

410

| CHAPTER12 APPLICATION ARCHITECTURE

In most cases, overriding with catalogs should be fine. For more advanced scenarios such as provid-
ing a scoped container strategy, you may need to override the container itself. To do this you create
an instance of a CompositionContainer and pass it to the Tnitialize method:

AggregateCatalog aggregateCatalog = new AggregateCatalog() ;
aggregateCatalog.Catalogs.Add (new DeploymentCatalog()) ;

CompositionContainer container = new CompositionContainer (
aggregateCatalog) ;

CompositionHost.Initialize (container) ;
CompositionInitializer.SatisfyImports(this);

Partitioning Applications across Multiple XAPs

The default programming model for Silverlight requires all MEF parts to be stored in the current
XAP file. This is fine for simple Silverlight applications, but poses severe problems for large applica-
tions. The default XAP can get bloated and increase the initial download time for your application.
It prevents Silverlight from supporting an extensibility experience similar to what you can have in

a desktop application. It can hamper development when multiple teams want to work on the same
large application.

The DeploymentCatalog was created to address these issues. It supports separating your applica-
tion into multiple XAP(s) that are hosted on the server. The DeploymentCatalog asynchronously
downloads X AP files and fires events so you can monitor the download and handle errors. Even
though the Deploymentcatalog is recomposable, you should override the default configuration for
CompositionInitializer so the download parts in each XAP can be discoverable.

Listing 12-12 shows the most common approach for using the beploymentcatalog to reduce your
application startup footprint and immediately start downloading the other X APs for your applica-
tion in the background.

‘) LISTING 12-12: Using the DeploymentCatalog

Available for
download on }
Wrox.com

private void Application_Startup(object sender,
StartupEventArgs e)
{
var catalog = new AggregateCatalog();
catalog.Catalogs.Add(CreateCatalog (
"Chapterl2.ModuleOne.xap")) ;
catalog.Catalogs.Add(CreateCatalog (
"Chapterl2.ModuleTwo.xap")) ;

CompositionHost.Initialize (new DeploymentCatalog(), catalog);
CompositionInitializer.SatisfyImports (this);

this.RootVisual = new MainPage() ;

Using Silverlight Frameworks | 411

}

private DeploymentCatalog CreateCatalog(string uri)
{
var catalog = new DeploymentCatalog (uri) ;
catalog.DownloadCompleted +=
new System.EventHandler<AsyncCompletedEventArgs> (
catalog_DownloadCompleted) ;
catalog.DownloadAsync () ;
return catalog;

}

void catalog_DownloadCompleted (object sender,
AsyncCompletedEventArgs e)

{

if (e.Error != null)

{

MessageBox.Show(e.Error.Message) ;

}

There are some caveats to consider when using the DeploymentcCatalog. Cached assemblies are not
supported out-of-the-box. Localization is not supported; the beploymentCatalog only downloads
assemblies that are defined in the manifest. Loose resources/files outside of the assembly cannot be
accessed and downloaded catalogs are not copied to the filesystem.

Exploring PRISM/Composite Application Library

PRISM/Composite Application Library (CAL) is a framework for building modular Windows
Presentation Foundation (WPF) or Silverlight applications. PRISM is designed for applications
that need to be loosely coupled and evolve over several iterations to adapt to changing require-
ments. This book focuses on the components and features available in the Silverlight version of
the Composite Application Library.

As you review the components available in PRISM, you will start to notice the many similar concepts

it shares with MEF. Though similarities exist, it’s important to remember that PRISM is an application
framework for building composite applications, whereas MEF is an extensibility framework. The tech-
nologies complement each other and future versions of PRISM will include more integration with MEF.
Currently, PRISM uses the Microsoft Pattern and Practices Unity application framework DI Container.
In addition, the PRISM framework includes a set of guidance documentation, quick starts, and videos
for building composite Silverlight and WPF applications.

The samples and content for this section are based on earlier versions of the PRISM framework for
Silverlight 4. Check the PRISM website — http: //compositewpf.codeplex.com — for the latest
builds. The October 2009 release is the latest version available for Silverlight 3.

Table 12-3 lists the important terms and definitions for the components used in a PRISM
application.

http://compositewpf.codeplex.com

412 | CHAPTER12 APPLICATION ARCHITECTURE

TABLE 12-3
CLASS/TERM

Shell

View

Regions

Modules

CompositeCommand

EventAggregator

Bootstrapper

DESCRIPTION

The shell is the main window of the application where the pri-

mary user interface (Ul) content is contained. The shell may be
composed of multiple windows if desired, but most commonly
it is just a single main window that contains multiple views.

View is an ordinary .NET Framework user control that is
responsible for presenting a part of or the whole model to the
user and allowing the user to modify its contents through user
interface controls. Typically, the view implements only Ul logic,
whereas the related client-business logic is implemented in
the presenter/controller/ViewModel.

These are placeholders for content and host visual elements
in the shell. These can be located by other components
through the RegionManager to add content to those regions.
Regions can also be hosted in individual views to create dis-
coverable content placeholders.

These are separate sets of views and services, frequently
logically related, that can be independently developed,
tested, and optionally deployed. In many situations, these can
be developed and maintained by separate teams. In a com-
posite application, modules must be discovered and loaded.
In the Composite Application Library, this process consists of
populating the module catalog, retrieving the modules if they
are remote, loading assemblies into the application domain,
and initializing the modules

The CompositeCommand is a strategy to combine the execution
of commands. This allows the command invoker to interact with
a single command that affects multiple commands.

The EventAggregator service is primarily a container for
events that allow decoupling of publishers and subscribers
so they can evolve independently. This decoupling is useful
in modularized applications because new modules can be
added that respond to events defined by the shell or, more
likely, other modules.

The Bootstrapper is responsible for the initialization of an
application built using the Composite Application Library.
By using a Bootstrapper, you have more control of how the
Composite Application Library components are wired up to
your application.

Using Silverlight Frameworks | 413

CLASS/TERM DESCRIPTION

IModule Each module consists of a class that implements the IModule
interface. This interface contains a single Initialize method
that is called during the module’s initialization process.

DelegateCommand<T> The DelegateCommand allows delegating the commanding
logic instead of requiring a handler in the code-behind. It uses a
delegate as the method of invoking a target handling method.

IServicelLocator The Composite Application Library provides support for
the Unity Application Block (Unity) container, but it is not
container-specific. Because the library accesses the container
through the IServiceLocator interface, the container can
be replaced. To do this, your container must implement the
IServiceLocator interface.

UnityServiceLocatorAdapter The UnityServiceLocatorAdapter is an
IUnityContainer adapter for the IServiceLocator inter-
face. The UnityServiceLocatorAdapter is mapped to the
IServiceLocator interface and the mapping is registered
in the UnityBootstrapper class.

When designing an application that uses the PRISM framework, you will create a shell and one
or more modules. The shell contains the main UI elements of your application plus one or more
regions. You use XAML to define the regions of your application that modules use to load their
views into at run time. A module is set of views and services that can be developed, tested, and
deployed independently. A shell uses a catalog to define what modules to load.

Figure 12-4 shows the high-level design of an application built with the PRISM Framework. The left
side shows the custom shell and modules you will create for your application. The right side shows
the core components and services that the framework provides for building composite applications.

LOADING SERVICES
HOST APPLICATION

—

[Region Manger

Saas Shell
View
REGION Model

A 4

[Region Manger]

CORE SERVICES

N\

[View]S[ViewModel]

4

—

Region Manger

—

Logging]

[Event Aggregator]
A

Model

Module Proffered Services

[SERVICE/DEPENDENCY INJECTION CONTAINER]

FIGURE 12-4

414 | CHAPTER12 APPLICATION ARCHITECTURE

Using PRISM to Build an Application

When designing an application using PRISM, you need to define a couple of key items up front: how
many modules you want to create and what regions your shell will expose for hosting module views.
You can take several approaches to define how to partition your application. It might make sense to
separate your application into related functionality or to separate it by the different teams that will
work on it.

It is always a good idea to start simple and let the shell evolve independently outside the rest of your
application. Initially you should create a single region and two modules. You should create a com-
mon infrastructure assembly that can be shared across the shell and modules. The shared assembly
should include anything that needs to be shared between the different components of your applica-
tion: model, services, or other shared code. It is a good idea to add a region names class that uses
constants to define all your regions. You should avoid adding any unnecessary features to the shell
or having modules referencing each other. Instead, always use the dependency injection container
included with PRISM for accessing regions, services, and shared events.

Building the Shell and Modules

Once you define the regions and separate your application into modules, it is time to set up the
Bootstrapper for your shell. A Bootstrapper is used to load the module catalog and services
exposed by the shel1 application. In your application startup event, instead of setting the root ele-
ment to your main Ul, create an instance of your custom Bootstrapper and call its Run method.

var bootstrapper = new ShellBootstrapper();
bootstrapper.Run() ;

Listing 12-13 shows how to create a custom Bootstrapper by inheriting from the UnityBootstrapper
base class and overriding the GetModuleCatalog, ConfigureContainer, and CreateShell methods.
The GetModuleCatalog method is used for loading your modules into the shell’s catalog. Each module
added to the catalog will be loaded by the PRISM framework. When you add a module, you can specify
whether it depends on any other modules. The configureContainer method handles registering the
shell so it can be dependency injected into the shell ViewModel. The createshell method uses Unity
to resolve the dependencies from the shell presenter and display the shell view.

‘) LISTING 12-13: Creating a PRISM Bootstrapper

Available for

dmgl{‘fgsn‘:“ using System.Windows;
using Microsoft.Practices.Composite.Modularity;
using Microsoft.Practices.Composite.UnityExtensions;
using Microsoft.Practices.Unity;
using NorthWndCal.Model.Customer;
using NorthWndCal.Model.Order;

namespace NorthWndCal

{

public partial class ShellBootstrapper : UnityBootstrapper
{
protected override IModuleCatalog GetModuleCatalog ()

Using Silverlight Frameworks | 415

var catalog = new ModuleCatalog();
catalog.AddModule (typeof (CustomerModule))

.AddModule (typeof (OrderModule)) ;
return catalog;

protected override void ConfigureContainer ()

{
Container.RegisterType<IShellView, Shell>();
base.ConfigureContainer () ;

protected override DependencyObject CreateShell ()
{

ShellPresenter presenter = Container.Resolve<ShellPresenter>();
IShellView view = presenter.View;

view.ShowView() ;

return view as DependencyObject;

Defining Region Adapters

Region adapters are used by the shell to define shared UI elements in which module views can

be displayed. The region manager is used to define the region adapters your application supports.
For Silverlight, PRISM includes the following region adapters: ContentControlRegionaAdapter,
SelectorRegionAdapter,ItemsControlRegionAdapter,and’TabContro1RegionAdapter.The
TabControlRegionAdapter is available only in the Silverlight version of PRISM because the
Silverlight tab control does not derive from the selector class.

The RegionManager includes the attached properties you can use to define a region using XAML.
You can use the RegionManager class to define regions via code, too. The following code snippet
shows how to use the RegionName attached property to define a region in your shell:

<Border x:Name="ContentBorder" Style="{StaticResource ContentBorderStyle}">
<StackPanel Orientation="Horizontal">
<StackPanel>
<ContentControl
Regions:RegionManager .RegionName="FilterRegion"
x:Name="ActionControl" >
<ContentControl.Template>
<ControlTemplate>
<Grid>
<ContentPresenter Margin="10,0,10,0" />
</Grid>
</ControlTemplate>
</ContentControl.Template>
</ContentControl>
</StackPanel>

416 | CHAPTER12 APPLICATION ARCHITECTURE

<StackPanel>
<ContentControl
Regions:RegionManager .RegionName="MainRegion"
x:Name="MainContent" >
<ContentControl.Template>

<ControlTemplate>
<Grid>
<ContentPresenter Margin="10,0,10,0" />
</Grid>
</ControlTemplate>
</ContentControl.Template>
</ContentControl>
</StackPanel>
</StackPanel>
</Border>

To share context between multiple views the RegionManager includes a RegionContext attached

property. The RegionContext can be any simple or complex object and can be a data-bound value
defined to a ViewModel.

cal:RegionManager.RegionContext="{Binding Path=SelectedEmployee.EmployeeId}"

To override the default behavior or add your own custom region adapters, override the
ConfigureRegionAdapterMappinglnethodinyOurCuﬁDnJBootstrapperCkws

protected override RegionAdapterMappings
ConfigureRegionAdapterMappings ()

RegionAdapterMappings regionAdapterMappings =
Container.TryResolve<RegionAdapterMappings> () ;

if (regionAdapterMappings != null)

{

regionAdapterMappings.RegisterMapping (typeof (TabControl),
this.Container.Resolve
<CustomTabControlRegionAdapter>()) ;

return regionAdapterMappings;

Adding Views to a Region

To use the regions defined in your shell you have to register your view with a region. Views can be cre-
ated and displayed either automatically using view discovery or programmatically using view injection.

> When you use view discovery, you set up a relationship between a view and its region using

the RegionviewRegistry. When a region is created, it looks for all the viewTypes associ-
ated with the region and it automatically instantiates and loads the corresponding views.
This approach is simpler than view injection but limits your ability to control when views
are loaded and displayed.

Using Silverlight Frameworks | 417

> When you use view injection you programmatically add a view to a region. Typically, this
is done when a module is initialized or the result of a user action. In code, you will query
the RegionManager or a specific region by name and then inject your view into it. This
approach gives you the most control over when views are loaded and displayed. You also
have the ability remove views from a region, but it is not possible to add a view to a region
that has not been created yet.

this.regionViewRegistry.RegisterViewWithRegion (RegionNames.SelectionRegion
, typeof (EmployeesView)) ;

Using Commands

When a user interacts with your Silverlight application, you typically use commands or events to
handle user input and modify your application Ul accordingly. For example, when a row in a grid

is selected, the showCustomer command will be fired in your ViewModel to load the details for the
selected customer. Although using the basic Tcommand and events available in Silverlight works great
for simple applications, in more advanced applications such as composite applications you need a
more loosely coupled approach. PRISM includes the pelegateCommand<T> and CompositeCommand
classes for supporting these scenarios.

Using DelegateCommand<T>

A DelegateCommand<T> is a generic command that is used instead of an event. It uses a delegate as the
method of invoking a target method. Its constructor takes in a custom action for execution (Execute)
and as an optional parameter a custom action for its CanExecute implementation. Because the class is
generic, it enforces compile-time checking on command parameters, which normal WPF and Silverlight
commands do not support. In addition, because it uses a generic type, it removes the need for creating
new command types for every specific type your application needs.

Listing 12-14 shows how to use the DelegateCommand<T> to load customers into a ViewModel after
the view is loaded.

‘) LISTING 12-14: Using DelegateCommand<T>

Available for

dDW":g;"ggrg" using System.ComponentModel;
using System.Windows.Input;
using Microsoft.Practices.Composite.Events;
using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model .Models;
using NorthwndCal.Model.Service;

namespace NorthWndCal.Model.CustomerModule.Views

{
public class CustomerViewModel : BaseViewModel, ICustomerViewModel

{
private readonly ICustomerView view;
private readonly IEventAggregator eventAggregator;
private readonly ICustomerService service;

public CustomerViewModel (ICustomerView view,

continues

418 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-14 (continued)

ICustomerService service,
IEventAggregator eventAggregator)

{
this.view = view;
this.view.Model = this;
this.service = service;
this.eventAggregator = eventAggregator;
this.LoadCustomersCommand =
new DelegateCommand<object> (LoadCustomers) ;
}
public ICustomerView View
{
get { return this.view; }
}

public ICommand LoadCustomersCommand { get; set; }

private ICollectionView customers;
public ICollectionView Customers

{

get
{
return this.customers;
}
set
{
if (this.customers != value)
{
this.customers = value;
this.OnPropertyChanged ("Customers") ;
}
}
}
protected void LoadCustomers (object parameter)
{
this.service.GetCustomers (this.DisplayCustomers) ;
}
protected void DisplayCustomers(ICollectionView dataSource)
{
this.Customers = dataSource;
}

Using Silverlight Frameworks | 419

Using CompositeCommands

The compositeCommand allows you to register and unregister child commands so that when the
composite command is invoked all registered commands will be invoked. This is useful when your
application has a shared common command that multiple subscribers want their command execu-
tion to participate in, such as a Save All command.

Listing 12-15 shows how to use the compositeCommand to execute multiple commands when the
close button is clicked by the end user.

‘) LISTING 12-15: Using CompositeCommand

Available for

dwm?ﬂg" using Microsoft.Practices.Composite.Presentation.Commands;

namespace NorthWndCal.Model.Events
{
public class SharedCommands

{
public static readonly CompositeCommand
ApplicationClosingCommand = new CompositeCommand() ;

using NorthwWndCal.Model.Events;

namespace NorthWndCal
{
public class ShellPresenter
{
public ShellPresenter (IShellView view)
{
View = view;
this.View.Model = this;

public IShellView View { get; private set; }

public void CloseApplication/()
{

SharedCommands.ApplicationClosingCommand.Execute (null) ;

}

using System.Windows.Input;

using Microsoft.Practices.Composite.Events;

using Microsoft.Practices.Composite.Presentation.Commands;
using NorthwWndCal.Model.Events;

using NorthWndCal.Model .Models;

using NorthwndCal.Model.Service;

namespace NorthWndCal.Model.CustomerModule.Views

continues

420 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-15 (continued)

public class CustomerViewModel : BaseViewModel, ICustomerViewModel

{
private readonly ICustomerView view;
private readonly IEventAggregator eventAggregator;
private readonly ICustomerService service;
public CustomerViewModel (ICustomerView view,
ICustomerService service,
IEventAggregator eventAggregator)
{
this.view = view;
this.view.Model = this;
this.service = service;
this.eventAggregator = eventAggregator;
this.ApplicationClosing =
new DelegateCommand<object>(0OnClosing) ;
SharedCommands .ApplicationClosingCommand.RegisterCommand (
ApplicationClosing) ;
}
public ICustomerView View
{
get { return this.view; }
}
public ICommand ApplicationClosing { get; set; }
public void OnClosing(object e)
{
// Handle closing event
}
}

Using the Event Aggregator

When building a composite application you may run into scenarios that involve multiple compo-
nents: ViewModels, services, and controllers that exist in different modules need to communicate
with one another when some state changes occur or application logic is executed. For example,
when data is returned from your application data access service, you may need to notify multiple
ViewModels in several different modules that data returned is ready to be displayed.

Because of the loosely coupled design of a composite application you need to use the EventBroker
pattern to handle the lack of direct connection between publishers and subscribers and any possible
threading issues because the publisher is on a different thread than its subscriber.

Using Silverlight Frameworks | 421

The PRISM framework includes the event aggregation (broker) service, which is an implementation
of the EventBroker pattern. The service uses a repository to track event objects. An event object

uses delegates instead of standard .NET Framework events. One advantage of this approach is that
delegates can be created at the time of publishing and immediately released, which does not prevent
the subscriber from being garbage collected. Each event object contains a collection of subscribers to
publish to. This way, new events can be added to the system without modifying the service and can
automatically handle marshaling to the correct thread.

Listing 12-16 shows how the event aggregation service is used to notify multiple ViewModels that
data has been retrieved from a data service.

‘) LISTING 12-16: Using the event aggregation service
Available for
ds}"rg;(“ggn':" using System.ComponentModel;
using Microsoft.Practices.Composite.Presentation.Events;

namespace NorthWndCal.Model.Events
{
public class ChangeCustomerEvent
CompositePresentationEvent<ICollectionView>

public ChangeCustomerEvent ()
{
}

}

using System.ComponentModel;

using System.Windows.Input;

using Microsoft.Practices.Composite.Events;

using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model.Events;

using NorthwndCal.Model.Models;

using NorthwWndCal.Model.Service;

using NorthWndCal.Web;

namespace NorthWndCal.Model.CustomerModule.Views
{
public class CustomerViewModel : BaseViewModel, ICustomerViewModel
{
private readonly ICustomerView view;
private readonly IEventAggregator eventAggregator;
private readonly ICustomerService service;

public CustomerViewModel (ICustomerView view,
ICustomerService service,
IEventAggregator eventAggregator)

this.view = view;

this.view.Model = this;

this.service = service;
this.eventAggregator = eventAggregator;

continues

422 | CHAPTER12 APPLICATION ARCHITECTURE

LISTING 12-16 (continued)

this.LoadCustomersCommand =
new DelegateCommand<object> (LoadCustomers) ;

this.ApplicationClosing =
new DelegateCommand<object>(0OnClosing) ;

SharedCommands.ApplicationClosingCommand.RegisterCommand (

ApplicationClosing) ;
}
public ICustomerView View
{
get { return this.view; }
}

public ICommand LoadCustomersCommand { get; set; }
public ICommand ApplicationClosing { get; set; }

private ICollectionView customers;
public ICollectionView Customers

{
get
{
return this.customers;
}
set
{
if (this.customers != value)
{
this.customers = value;
this.OnPropertyChanged("Customers") ;
}
}
}
protected void LoadCustomers (object parameter)
{
this.service.GetCustomers (this.DisplayCustomers) ;
}
protected void DisplayCustomers (ICollectionView dataSource)
{
this.Customers = dataSource;
}

protected void DisplayOrders (ICollectionView dataSource)

{
this.eventAggregator.GetEvent
<ChangeCustomerEvent> () .Publish (dataSource) ;

public void LoadSelectedCustomer (Customer customer)

Using Silverlight Frameworks | 423

this.service.GetOrdersForCustomer (
this.DisplayOrders, customer) ;

public void OnClosing(object e)

{
// Handle closing event

}

using System.ComponentModel;

using System.Windows. Input;

using Microsoft.Practices.Composite.Events;

using Microsoft.Practices.Composite.Presentation.Commands;
using NorthwndCal.Model.Events;

using NorthWndCal.Model .Models;

namespace NorthWndCal.Model.OrderModule.Views

{
public class OrderViewModel : BaseViewModel, IOrderViewModel

{
private readonly IOrderView view;
private readonly IEventAggregator eventAggregator;

public OrderViewModel (IOrderView view,
IEventAggregator eventAggregator)

this.view = view;
this.view.Model = this;

this.eventAggregator = eventAggregator;

this.eventAggregator.GetEvent
<ChangeCustomerEvent> () . Subscribe (
CustomerChanged, true);

this.ApplicationClosing =
new DelegateCommand<object>(OnClosing) ;

SharedCommands .ApplicationClosingCommand.RegisterCommand (
ApplicationClosing) ;

public IOrderView View
{

get { return this.view; }

public ICommand ApplicationClosing { get; set; }

private ICollectionView orders;
public ICo