
http://p2p.wrox.com

professional silverlight® 4

Introduction. . xxv

Chapter 1	 Introduction to Silverlight. . 1

Chapter 2	 Building Applications with Visual Studio . . 31

Chapter 3	 Building Applications with Expression Blend 4 . . 63

Chapter 4	 Working with the Navigation Framework . . 93

Chapter 5	 Controlling Layout with Panels . . 117

Chapter 6	 Working with Visual Controls. . 139

Chapter 7	 Accessing Data. . 205

Chapter 8	 WCF RIA Services . . 257

Chapter 9	 Out-of-Browser Experiences. . 281

Chapter 10	 Networking Applications . . 301

Chapter 11	 Building Line of Business Applications . . 337

Chapter 12	 Application Architecture. . 375

Chapter 13	 DOM Interaction. . 429

Chapter 14	 Securing Your Applications. . 449

Chapter 15	 Accessing Audio and Video Devices. . 479

Chapter 16	 Working with File I/O. . 497

Chapter 17	 Using Graphics and Visuals. . 541

Chapter 18	 Working with Animations in Silverlight. . 591

Chapter 19	 Working with Text . . 613

Chapter 20	 Making It Richer with Media. . 641

Chapter 21	 Styling and Themes. . 681

Appendix A	 XAML Primer. . 723

Appendix B	 Testing Silverlight Applications. . 741

Appendix C	 Building Facebook Applications with Silverlight 757

Appendix D	 Integrating Silverlight into SharePoint 2010. . 775

Appendix E	 Silverlight Control Assemblies. . 783

Index. . 787

Professional

Silverlight® 4

Jason Beres
Bill Evjen

Devin Rader

Professional Silverlight® 4

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-65092-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010930723

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Silverlight is a registered trademark of Microsoft Corporation
in the United States and/or other countries. All other trademarks are the property of their respective owners. Wiley
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions

To my beautiful wife Sheri and our amazing 4-year-old

daughter Siena for supporting me during the late nights and

weekends that it took to get this book completed.

— ​Jason Beres

To George ​— ​glad you made it to the developer ranks, brother!

— ​Bill Evjen

To Mom and Dad, thanks for everything!

— ​Devin Rader

About the Authors

Jason Beres  is the Vice President of Product Management, Community, and
Evangelism, and spearheads customer-driven, innovative features and functionality
throughout all of Infragistics’ products. Jason is a Microsoft .NET MVP for
8 years running, a member of the INETA Speakers Bureau, and is the author
of 7 books on various .NET technologies, the latest being this one, Professional

Silverlight 4 from Wrox Press.

Bill Evjen  is an active proponent of .NET technologies and community-based
learning initiatives for .NET. He has been actively involved with .NET since the
first bits were released in 2000. In the same year, Bill founded the St. Louis .NET
User Group (www.stlnet.org), one of the world’s first such groups. Bill is also
the founder and former executive director of the International .NET Association

(www.ineta.org), which represents more than 500,000 members worldwide. Based in St. Louis,
Missouri, Bill is an acclaimed author and speaker on ASP.NET and Services. He has authored or
coauthored more than 20 books including Professional C# 4 and .NET 4, Professional ASP.NET 4
in VB and C#, ASP.NET Professional Secrets, XML Web Services for ASP.NET, and Web Services
Enhancements: Understanding the WSE for Enterprise Applications (all published by Wiley). In addi-
tion to writing, Bill is a speaker at numerous conferences, including DevConnections, VSLive!, and
TechEd. Along with these items, Bill works closely with Microsoft as a Microsoft Regional Director
and an MVP. Bill is the Global Head of Platform Architecture for Thomson Reuters, Lipper, the
international news and financial services company (www.thomsonreuters.com). He graduated from
Western Washington University in Bellingham, Washington. When he isn’t tinkering on the computer,
he can usually be found in his summer house in Toivakka, Finland. You can reach Bill on Twitter
at @billevjen.

Devin Rader  works at Infragistics where he focuses on delivering great user experi-
ences to developers using their controls. He’s done work on all of the .NET platforms,
but most recently has been focused on ASP.NET and Silverlight. As a co-founder of
the St. Louis .NET User Group, a current board member of the Central New Jersey
.NET User Group, and a former INETA board member, he’s an active supporter of the

.NET developer community. He’s also the co-author or technical editor of numerous books on .NET
including Silverlight 3 Programmer’s Reference and Professional ASP.NET 4 in C# and VB from
Wrox. Follow Devin on Twitter @devinrader.

http://www.stlnet.org
http://www.ineta.org
http://www.thomsonreuters.com

About the Contributors

Shawn Anderson  is currently a senior solutions architect with Infragistics and spends much of his
time working on designing and developing business solutions and new product lines that utilize cut-
ting edge technology in combination with the latest Infragistics suites and tools. He has a passion
for all things technical and has been designing and developing large scale business systems across
multiple platforms for over 15 years.

Grant Hinkson  serves as a bridge between design and development in Microsoft’s Entertainment
Experience Group as an Experience Developer, focused on the Zune PC Client. Grant has a history of
uniting design and development and has pioneered integrated workflows across multi-discipline teams.
He is an advocate for iterative design and rapid prototyping and believes Silverlight is an enabling tech-
nology that supports those processes. Before joining Microsoft, Grant founded and grew the Experience
Design Group at Infragistics. He has been honored as a Microsoft Expression MVP and has spoken at
Microsoft Mix, Microsoft ReMix, Adobe MAX, and Devscovery. Grant is a contributing author on the
Wrox titles Silverlight 1.0, Silverlight 3 Programmer’s Reference, and the Friends of Ed title Foundation
Fireworks CS4. He has authored a number of utilities for the designer/developer community, notably
the Fireworks to XAML exporter. You can find Grant’s latest creations at www.granthinkson.com.

David Kelley  has been building targeted customer experiences primarily on the web and offline
for over 10 years. David’s main focus is on integrating technology into environments, ranging from
using sensors to touch screens and Silverlight. David is currently the Principal User eXperience
Architect for Wirestone and publishes a blog “Hacking Silverlight” as well as posts related to UX
for Interact Seattle. Currently his main focus is in the retail space with touch experiences such as
digital price tags and Silverlight-based kiosks. David’s other career highlights include the Silverlight
Bill Gates demo at TechEd ‘08, the Entertainment Tonight Emmy Award site for the Silverlight
launch, and achievement of a Silverlight MVP in 2009, as well as his work with Wirestone. In his
spare time David helps run Interact (Seattle’s Designer Developer Interaction Group and the Seattle
Silverlight User Group), travels, plays with his kids, Legos, and more.

Mihail Mateev  is a senior software development engineer with Infragistics, Inc. He worked as
a software developer and team lead on WPF and Silverlight Line of Business production lines of
the company and now works as a Technical Evangelist. Over the past 10 years, he has written
articles for Bulgarian ComputerWorld magazine as well as blogs about .NET technologies. Prior
to Infragistics, he worked at ESRI Bulgaria as a software developer and a trainer. For several years
Mihail has delivered lectures about geographic information systems for the Sofia University “St.
Kliment Ohridski” Faculty of Mathematics and Informatics. Mihail is also a lecturer on computer
systems for the University of the Architecture, Civil Engineering and Geodesy in Sofia, Bulgaria,
in the Computer Aided Engineering Department. Mihail holds master’s degrees in Structural
Engineering and Applied Mathematics and Informatics.

http://www.granthinkson.com

Todd Snyder  is a solution architect and developer with over 15 year of experience building enter-
prise and rich Internet (RIA) applications on the Microsoft platform. He currently is a principal
consultant on the Infragistics UI Service team specializing in RIA and Enterprise application archi-
tecture. He is the co-leader for the New Jersey .NET user group (www.njdotnet.net/) and is a
frequent speaker at trade shows, code camps, and Firestarters.

About the Technical Editors

Stephen Zaharuk  graduated with a B.S. in Computer Science from Susquehanna University in 2004.
Since then he’s been working at Infragistics, first working in their Developer Support department and
soon writing new UI controls for their ASP.NET product line. When Silverlight was announced, Steve
joined a new team for the Infragistics Silverlight Line of Business product line as Team Lead and soon
after as Product Architect.

Todd Snyder  See Todd Snyder’s bio in the preceding “About the Contributors” section.

Matthew Van Horn  specializes in rapid development focused on flexible and dynamic code to leverage
maximum results with minimal effort. His development tool of choice is Silverlight, which he has used
in projects ranging from a clone of Space Invaders for Facebook to back office accounting to a dynamic
business intelligence visualization system that turned heads at the Global Gaming (casino) Expo this
year in Las Vegas, Nevada.

Craig Selbert  currently works for Thomson Reuters, Lipper (www.lipperweb.com), as a Senior
Software Developer. His primary responsibilities are developing web frameworks and applications using
various rich Internet application toolsets like ASP.NET, jQuery, ASP.NET MVC, Silverlight, Unity, and
Prism. At Lipper, Craig works on a team that created a framework leveraging the Unity/Prism frame-
work in Silverlight and WPF that has allowed them to build true enterprise module-based applications.
He has always been an early adopter of technology that has growing pains, but through perseverance,
the software and Craig have always come out better in the end. Craig enjoys spending most of his work-
ing time dealing with Microsoft technologies, but keeps a watchful eye on other technologies to make
sure he stays well rounded. You can reach Craig on Twitter at @craigselbert.

http://www.njdotnet.net/
http://www.lipperweb.com

Contributors
Shawn Anderson
Grant Hinkson
David Kelley
Mihail Mateev
Todd Snyder

Executive Editor
Robert Elliott

Senior Project Editor
Kevin Kent

Development Editor
Jeff Riley

Technical Editors
Steve Zaharuk
Todd Snyder
Matthew Van Horn
Craig Selbert

Senior Production Editor
Debra Banninger

Copy Editors
Kim Cofer
Cate Caffrey

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Compositors
Jeff Lytle, Happenstance Type-O-Rama
Craig Woods, Happenstance Type-O-Rama

Proofreader
Nancy Carrasco

Indexer
Robert Swanson

Cover Designer
Michael E. Trent

Cover Image
© pederk/istockphoto

Credits

Acknowledgments

I would like to thank the entire team at Wrox,  especially Kevin Kent, our Senior Project
Editor, and Bob Elliott, our Executive Editor, who kept this book on schedule on a tight timeline.
You guys really pulled the team together to make this happen. Thank you. I would recommend
Kevin for Project Editor of the Year if there was such an award. I’d also like to thank my two awe-
some co-authors, Bill and Devin. It was a pleasure working with you on the book, and I hope we
can do more in the future. And last but not least, Todd Snyder, Matt Van Horn, Stephen Zaharuk,
Craig Selbert, Mihail Mateev, Shawn Anderson, David Kelley, and Grant Hinkson — ​you guys
wrote chapters and gave technical guidance, and without you, this book wouldn’t have the backbone
that it does. Thanks for the hard work in making this book a reality.

— ​Jason Beres

Thanks to Kevin Kent, Bob Elliott, and Jim Minatel  for the opportunity to work on such a
great book. I also want to thank my co-authors who have also been very longtime friends of mine
and guys that have been making this .NET journey with me since the first days. I would also like
to thank my family for putting up with another writing project (as this takes away many weekends
from their time with me). Thank you, Tuija, Sofia, Henri, and Kalle!

— ​Bill Evjen

Thanks to Jim Minatel, Bob Elliot, Kevin Kent, Paul Reese,  and everyone at Wrox for helping us
make this book happen. Thanks to Shawn Anderson, Grant Hinkson, David Kelley, Mihail Mateev,
and Todd Snyder for contributing to the book. Each one of you brought your unique talents to the
content of this book, and it’s better for that. Thanks to Steve, Todd, Matt, and Craig for your techni-
cal feedback and advice. A huge thanks to Jason and Bill. Jason, this is our second Wrox collaboration
and, Bill, this is our fifth, and it’s awesome working with you guys. Finally a special thanks to my wife,
Kathleen, who continues to support and tolerate my writing despite the late nights and long weekends.

— ​Devin Rader

Contents

Introduction	 xxv

Introduction to Silverlight	Chapter 1: 1

What Is Silverlight?	 2
Silverlight Versions Explained	 5
Application Development Scenarios	 6
Getting the Silverlight Plug-In	 8
Getting the Silverlight SDK	 11
Building Silverlight Applications	 12
Silverlight 4 Tour	 12

XAML	 13
.NET Framework Support	 14
Graphics and Animations	 15
Page Layout and Design	 18
User Interface Controls 	 20
Using Media in Silverlight	 21
Local Data Storage	 22
Out-of-Browser Experiences	 22
Local Filesystem Access	 23
Navigation Framework	 23
Annotation and Ink	 24
Accessing the Network 	 25
Data Binding	 26
Printing	 27
Drag-and-Drop	 27
Clipboard Access	 27
Deep Zoom Graphics	 28

Summary	 29

Building Applications with Visual Studio 	 3Chapter 2: 1

Creating a Basic Silverlight Application	 31
Using Silverlight Designer for Visual Studio	 35
Creating Silverlight Project and Web Application Project Files	 40
Using the Silverlight Design Surface	 41
Understanding the XAP File	 47

xiv

CONTENTS

Caching Assemblies	 50
Adding Class Definition and Partial Classes	 52

Understanding the Application Life Cycle	 55
Debugging Silverlight Applications	 57

Attaching to a Process to Debug	 57
Attaching to a Remote Macintosh Process	 59

Configuring Silverlight MIME Types	 61
Adding MIME Support to IIS	 61

Summary	 62

Building Applications with Expression Blend 4	 6Chapter 3: 3

Learning Expression Blend Basics	 64
IDE Tour	 64
Creating Your Own Silverlight Project	 77

Using Expression Blend Behaviors	 78
Implementing Behaviors	 78
Consuming Behaviors	 80

Using the Visual State Manager	 81
Creating a Control Template(s)	 81
Customizing Visual States	 83

Importing Design Assets	 83
Importing PhotoShop (PSD) Assets	 84
Importing Illustrator (AI) Files	 85
Importing Fonts and Images Assets	 85

Using the Expression Suite	 86
Expression Encoder	 87
Deep Zoom Composer	 87

Summary	 91

Working with the Navigation Framework	 9Chapter 4: 3

Using the Navigation Template	 93
Creating Parameterized Query Strings	 99

Using the Frame Class	 105
Using a Custom Menu Control	 111
Adding Navigation Animations	 113
Summary	 115

Controlling Layout with Panels	 11Chapter 5: 7

Measure, Then Arrange	 118
Element Sizing Characteristics	 120

Height and Width	 120

xv

CONTENTS

Alignment	 123
Margin and Padding	 123

Using Layout Panels	 125
Canvas	 126
StackPanel	 127
VirtualizingStackPanel	 128
Grid	 129
WrapPanel	 131
DockPanel	 132
Finding Third-Party Panels	 133

Creating Custom Panels	 133
Silverlight Plug-In Sizing	 137
Summary	 138

Working with Visual Controls	 13Chapter 6: 9

Where to Find Controls	 140
Using Text Display Controls	 142

TextBlock	 142
Label	 143

Using Input Editor Controls	 144
Text	 144
Using Numeric Editor Controls	 147
Dates and Time	 150

Using Lists and Items Controls	 154
DataGrid	 154
DataForm	 162
ListBox, ComboBox, and TabControl	 163
DataPager	 169
Accordion	 170
TreeView	 172

Using Button Controls	 175
Button	 175
HyperlinkButton	 177
ToggleButton	 177

Using the GridSplitter Control	 178
Using the Image Control	 179
Using Data Visualization Controls	 180

TreeMap	 180
Chart	 185

xvi

CONTENTS

Using Other Miscellaneous Controls	 189
ViewBox	 189
BusyIndicator	 190
Expander	 192
ValidationSummary	 192
Tooltip	 193
ScrollViewer	 194

Creating Custom Controls	 195
Template Parts	 200
Visual States	 201

Summary	 203

Accessing Data	 20Chapter 7: 5

Processing XML Data	 205
LINQ to XML	 206
Using an XmlReader	 208

Binding a User Interface to Data	 209
Establishing a Data-Binding Connection	 209
Handling Data Updates	 215
Converting Data Types	 222

Working with Services	 225
Building an ASP.NET Web Service	 227
Consuming a Simple XML Web Service	 234
Working with Windows Communication Foundation (WCF)	 238
Working with REST-Based Services	 247

Summary	 255

WCF RIA Services	 25Chapter 8: 7

Understanding WCF RIA Services	 258
Building a Simple RIA Services Application	 259

Reviewing the Business Application Solution	 260
Building an Entity Data Model	 261
Building a Domain Service	 264
Connecting the Silverlight Client to Your Domain Service	 268
Connecting to the Domain Service through XAML	 273
Filtering Results 	 277

Summary	 280

Out-of-Browser Experiences	 28Chapter 9: 1

Creating an Out-of-Browser Application	 281
Out-of-Browser Application Features	 282

xvii

CONTENTS

Configuring an Out-of-Browser Application in Visual Studio	 283
Installing an Out-of-Browser Application	 287
Uninstalling an Out-of-Browser Application	 290
Updating an Out-of-Browser Application	 290

Installing Trusted Applications 	 292
Accessing the File Systems	 295
Using COM Automation	 295
Support for Window Customization	 296
Adding Digital Signatures	 299

Installing a Local Silverlight Application	 300
Summary	 300

Networking Applications	 30Chapter 10: 1

The WebClient Class	 302
Using OpenReadAsync()	 302
Downloading Files Using WebClient	 304
Uploading Files Using WebClient	 307
Reusing a Single WebClient Object	 310
Cross-Domain Access	 311

Silverlight and WCF Duplex Communications	 314
Setting Up the Duplex Service	 314
Setting Up the Duplex Client	 320

Sockets	 323
Setting Up the Policy Server	 324
Setting Up the Application Sockets Server 	 328
Setting Up the Sockets Client	 332

Summary	 336

Building Line of Business Applications	 33Chapter 11: 7

Line of Business Basics	 337
Responding to Mouse Actions	 338
Enabling Right-Click Support	 340
Handling Multi-Touch	 342
Drawing with Ink 	 343
Enabling Clipboard Access	 345
Adding Printing Support	 347
Supporting Drag-and-Drop	 349
Using the Web Browser Control	 350

Advanced Scenarios	 351
Communicating between Silverlight Applications	 351
Integrating with Office	 364

xviii

CONTENTS

Globalization and Localization	 366
Localizing Your Application	 367
Using Resource Files	 367
Packing and Deploying 	 369
Supporting Bidirectional Right-to-Left (RTL) Text	 370
Deploying Best Practices	 371

Full-Screen Applications	 371
Summary	 373

Application Architecture	 37Chapter 12: 5

Understanding Design Patterns	 376
Exploring the Model View ViewModel (MVVM)	 377
Learning about Inversion of Control/Dependency Injection	 390
Exploring the Event Broker Pattern	 395

Using Silverlight Frameworks	 396
Exploring the Managed Extensibility Framework	 396
Exploring PRISM/Composite Application Library	 411

Defining Your Data Access Strategy	 424
Handling Performance	 427
Summary	 428

DOM Interaction	 42Chapter 13: 9

Configuring the Silverlight Plug-In	 429
windowless	 432
splashScreenSource	 433
initParams	 436
enablehtmlaccess	 437
enableAutoZoom	 437
enableGPUAcceleration	 437
enableNavigation	 437
allowHtmlPopupWindow	 437
Plug-In API	 438

Creating Interaction between Silverlight and JavaScript	 438
JavaScript API	 439
HTML Bridge	 441

Summary	 446

Securing Your Applications	 44Chapter 14: 9

Taking Advantage of ASP.NET	 450
Forms-Based Authentication	 450

xix

CONTENTS

Windows-Based Authentication	 455
Authenticating Specific Files and Folders	 460

Using ASP.NET Application Services	 461
Working with Membership on the Server	 461
Working with Membership on the Client	 468
Working with Role Management on the Server	 470

Summary	 477

Accessing Audio and Video Devices	 47Chapter 15: 9

Configuring Permissions	 479
Accessing Audio and Video Devices	 481
Capturing Images from a Video Feed	 488

Saving Images to the Filesystem	 492
Capturing an Audio Stream	 494
Summary	 495

Working with File I/O	 49Chapter 16: 7

The OpenFileDialog and SaveFileDialog Classes	 497
Classes for Managing the Filesystem	 500

.NET Classes That Represent Files and Folders	 501
Using the Path Class	 504
Using Basic File Objects from Silverlight	 504

Moving, Copying, and Deleting Files	 514
Extending on the FileProperties Solution	 514
Using the Move, Copy, and Delete Methods	 515

Reading and Writing Files	 517
Reading from a File	 518
Writing to a File	 521

Using Streams	 523
Using Buffered Streams	 525
Reading and Writing Binary Files Using FileStream	 525
Reading and Writing to Text Files	 528

Using Isolated Storage Options	 532
Reading and Writing from Isolated Storage	 532
Understanding Space Constraints	 536
Creating Directories in Isolated Storage	 537
Deleting Your Store	 538

Summary	 539

xx

CONTENTS

Using Graphics and Visuals	 54Chapter 17: 1

The Basics	 541
Working with Rectangles and Borders	 542
Applying Rounded Corners	 542
Using the Ellipse	 545
Using the Path	 545
Using Geometries	 548
Using Clipping/Masking Elements	 550

Expression Blend Shapes	 552
Binding to Shape Properties	 554

Images and Media	 554
Displaying Images	 554
Displaying Media	 559

Brushes	 560
Painting with Solids	 560
Painting with Linear Gradients	 560
Painting with Radial Gradients	 561
Painting with Images	 562
Painting with Video	 563
Editing Brushes in Expression Blend	 564
Creating ImageBrushes	 568

Fonts and Font Embedding	 570
Effects	 572

Applying Effects	 572
Using Native Effects	 573
Using Custom Effects	 575

Transforms	 581
Using 2D Transforms	 582
Using Perspective 3D	 587

Summary	 590

Working with Animations in Silverlight	 59Chapter 18: 1

Storyboard Animations	 592
Applying Easing Functions	 598
Controlling Storyboards Using Behaviors	 601
Nesting Storyboards	 601
Using Storyboards as Timers	 602

Keyframe Animation	 603
Rendering CompositionTargets	 607
Animating Visibility	 608
Animating Sprites	 610

Summary	 611

xxi

CONTENTS

Working with Text	 61Chapter 19: 3

Displaying and Inputting Text	 613
Using the TextBlock Element	 614
Using the RichTextBox Control	 621

Font Support and Rendering	 634
Using Embedded Fonts	 636
Creating Font Glyph Subsets	 638
Rendering Text	 639

Summary	 639

Making It Richer with Media	 64Chapter 20: 1

Supported Formats	 641
Unsupported Windows Media Formats	 643
H.264 and AAC Support	 643
Digital Rights Management	 644
Using the MediaElement Control	 644

Build Actions and Referencing Media	 645
Adding a MediaElement in Blend	 649
Sizing Video and Setting the Stretch Behavior	 649
Transforming Video	 651
Rotating Video in 3D	 652
Clipping Video	 653
Painting Elements with the VideoBrush	 655
Simulating Video Reflections	 656
Enabling GPU Hardware Acceleration	 657
Audio Settings	 658
Buffering	 658
Detecting Download Progress	 660
Detecting Playback Quality	 660
Controlling Playback	 661
Responding to Video Markers	 663
Handling Failed Media	 665
Responding to State Changes	 666

Media Playlists	 667
Server-Side Playlist (SSPL) Files	 667
Advanced Stream Redirector (ASX) Files	 669
Encoding Media with Expression Encoder	 671
Smooth Streaming and IIS 7	 678

Summary	 679

xxii

CONTENTS

Styling and Themes	 68Chapter 21: 1

Getting Started	 682
Defining a Core Terminology	 682
Defining the Working Environment: A XAML-Based Approach	 682

Defining Local Styling (Inline Styling)	 683
Styling with Resources	 684
Working with the Style Object	 688

Understanding Value Resolution	 689
Creating BasedOn Styles	 689
Changing the Look of a Control with a Custom ControlTemplate	 690

Defining and Using Implicit Styles	 706
Defining and Organizing Resources	 707

Defining Standalone ResourceDictionaries	 708
Loading ResourceDictionaries (via the Merged Dictionaries Collection)	 708
Understanding Resource Scope	 709
Organizing Resources	 710
Naming Resources	 711

Using Themes	 712
Using Silverlight Toolkit Themes	 712
Creating Custom Themes	 716
Distributing Your Theme	 716

Editing Styles and Templates in Expression Blend	 716
Editing the Default Button Style	 716
Creating a Custom Button	 719

Summary	 721

XAML Primer	 72Appendix A: 3

Introducing XAML	 723
Silverlight XAML Basics	 724
Declaring Objects in XAML	 726

Object or Content Element Syntax	 726
Attribute Element Syntax	 727
Property Element Syntax	 727
Setting a Property Using Implicit Collection Syntax	 728
Deciding When to Use Attribute or Property Element Syntax

to Set a Property	 729
XAML Hierarchy	 730
Events and the Silverlight Control	 731

Event Handlers and Partial Classes	 731
Event Bubbling	 734

xxiii

CONTENTS

Markup Extensions	 736
Binding Markup Extensions	 737
StaticResource Markup Extensions	 739

Summary	 739

Testing Silverlight Applications	 74Appendix B: 1

Creating the Sample Application	 741
Using the Silverlight Unit Test Framework	 743
Using the Selenium Test Framework	 748
Automated UI Testing Using White	 751
Mocking Frameworks	 755
Summary	 755

�Appendix C: Building Facebook Applications
with Silverlight	 757

Creating a New Application on Facebook	 757
Using the Facebook Developer Toolkit	 760

Adding the Facebook Connect Components	 760
Using an Asynchronous API Request	 764
Adding Features from the Facebook API	 767

Summary	 773

Integrating Silverlight into SharePoint 2010	 77Appendix D: 5

The Sample Application	 775
Using the SharePoint Foundation 2010 Silverlight Object Model	 776
Deploying a Silverlight Application into SharePoint	 780
Summary	 781

Silverlight Control Assemblies	 78Appendix E: 3

Index	 787

Introduction

To abuse an already abused cliché,  we are at a tipping point for the Web and application devel-
opment in general. The past several years have seen a notable shift away from basic full-page-based,
postback-intensive web applications that minimized the use of JavaScript in favor of server-side code
for maximum browser compatibility. Today, some amount of AJAX is assumed for any new web
application, and every day we see new “Web 2.0” applications and companies popping up.

At the same time, and in part because of this shift, the old “thin client” versus “rich client” dichot-
omy has increasingly faded. It is entirely possible, and, indeed, it is often the case, for a web-based
application using AJAX to truly have a richer experience than most desktop-based applications, be
they Windows Forms-, Java-, or MFC-based. In fact, one might say that web applications today set
the bar (excluding games, of course).

Enter Windows Presentation Foundation (WPF), the long-awaited, updated Microsoft desktop-
application user interface (UI) framework. WPF borrowed from what has been learned on the Web
(such as markup-based interface declaration and good separation of UI concerns), unified multiple
Windows graphics APIs, and introduced new capabilities to Windows-based applications and new
platform features (such as the enriched dependency property system, commanding, triggers, declara-
tive animations, and more). WPF reestablished the desktop as the new “rich client,” although not
without contest from fairly rich Internet applications (RIAs) that were based on AJAX.

But this book is not about AJAX. Nor is it about WPF, at least not directly. It’s about bringing
together these two worlds of RIAs and rich WPF-based desktop applications, and that’s where
Silverlight comes in.

Silverlight was originally codenamed WPF/e, meaning “WPF everywhere.” That’s a pretty good
tagline for Silverlight — ​bringing the good stuff from WPF to all the major platforms today, including
OS X and flavors of Linux (via the Linux “Moonlight” implementation).

Silverlight 1.0 was an initial salvo. It brought with it the rich media, the rich UI declarative model,
and a subset of WPF’s presentation layer capabilities. However, it still depended on JavaScript for
the development environment and browsers’ JavaScript execution engines. It did not have many of
the basic application development facilities that developers today have come to expect and rely on,
such as a control model (and controls), data-binding facilities, and a solid development environment
with reliable IntelliSense and debugging. Building a truly rich application for Silverlight 1.0 was only
marginally better than using AJAX — ​the key advantages were in the high-quality media player and,
of course, animation facilities.

2008 brought Silverlight 2 followed shortly by a respectable update with Silverlight 3. Silverlight 3
was, in a sense, the de facto Microsoft RIA development platform, and not just for the Internet but
also (in this author’s opinion) for Line of Business solutions, except in cases where the functional or
experiential demands call for the greater power of WPF. That said, although dramatically improved
over Silverlight 1.0 and light-years better than building on AJAX frameworks, in many ways, even
Silverlight 3 was still something of a fledgling RIA platform.

xxvi

introduction

Now in 2010, Microsoft has released a major and monumental release of Silverlight — ​version 4! This
release of Silverlight is so powerful and so well put together that it is drawing hoards of developers to
its ranks. When used in combination with ASP.NET, Silverlight 4 provides developers with the tools
and technology to build quick-to-market rich Internet applications.

Silverlight 4, in a broad sense, brings pretty much all the goodness of the .NET development plat-
form to the browser. Almost everything you need from the .NET Frameworks that would apply in
a browser environment is at your disposal. Oh, and did I mention that includes a CLR especially
crafted for RIAs?

Learning Silverlight 4 is taking your learning path in a new and exciting direction. RIAs in themselves
introduce a not-exactly-new but new-to-many-developers application model. You are essentially forced
into a three-tier model that many, perhaps most, Microsoft developers have only given lip service to.
You can no longer simply write ADO.NET code to directly access a database — ​you must go through
a network service, be that HTTP or TCP-based, and for many developers, this will no doubt be some-
thing new to learn. However, for those who have been developing true three-tier applications for some
time now, though it may not be a stumbling block, they will appreciate the added separation that this
model imposes. Silverlight 4 does introduce .NET RIA Services, which goes a long way toward amelio-
rating this extra complexity.

Silverlight 4 is, as noted, light-years ahead of developing RIAs on AJAX. In some ways, Silverlight
does not add much in the way of experiential capability over a rich AJAX framework (or a combina-
tion of them). A lot of the basic and not-so-basic animations and, of course, asynchronous capabilities
can be had without Silverlight, and certainly it is easier today to build rich AJAX-based applications
than in even very recent years past.

Nevertheless, it is still terribly difficult not only to build but also to maintain a truly rich
Internet application on AJAX. Although we developers might enjoy the immense technologi-
cal challenge; the exciting intellectual stimulation of dancing between CSS, HTML, XML, and
JavaScript; the sheer joy of screaming at the monitor when the beautiful set of functionality you
finally got working in Firefox totally falls apart in Internet Explorer; the exhilaration of deal-
ing with angry customers who have somehow disabled (or had disabled by corporate policy)
one of the several technical puzzle pieces your application relies on — ​we, in the end, could be
putting our collective intelligence and valuable time into far more valuable and rewarding — ​for
everybody — ​enterprises.

And this is one of the chief areas where Silverlight 4 rushes to the rescue. By giving you a
reliable CLR; .NET Frameworks; the WPF-based presentation core (including controls, data
binding, and much more); a better networking stack; local, isolated storage; a rich IDE with
rich debugging, IntelliSense, and LINQ (and even a Dynamic Language Runtime, DLR); and
WCF RIA Services; Silverlight makes developing rich interactive applications far more feasible
for everybody, especially our patrons (businesses), who are concerned with the total cost of
ownership, not just what’s technically feasible. And for developers, except for those few die-
hard JavaScripters, Silverlight will undoubtedly be a source of newfound joy in productivity
and empowerment.

xxvii

introduction

who this Book is for

This book was written to introduce you to the features and capabilities that Silverlight 4 offers, as
well as to give you an explanation of the foundation that Silverlight provides. We assume you have a
general understanding of the .NET Framework, C#, and the basics of web technologies.

In addition to these aforementioned items, we also assume that you understand basic programming
constructs, such as variables, for each loops, and the basics of object-oriented programming.

what this Book covers

This book embodies the Wrox philosophy of programmer to programmer. We are experienced
programmers writing for other programmers. We wrote the book with the average business appli-
cation developer in mind. Certainly, others can derive value — anyone trying to build on or even
to just understand the architectural concerns and realities of Silverlight — but this is at its heart a
true programmer’s companion.

The book explores the release of Silverlight 4. It covers each major new feature in detail. This book
consists of 21 chapters, each covering a separate functional area of the Silverlight platform. Additionally
fi ve appendixes provide additional ancillary information to the reader.

what you need to use this Book

To work through these examples, you will need to be using the .NET Framework 4. This version
of the framework will run on Windows XP, Windows 2003, Windows 7, and the latest Windows
Server 2008 R2. To write any of this code, you will need to have the .NET 4 SDK installed.

Though it is possible to do all this in a simple text editor, you are probably going to want to install
Visual Studio 2010. Installing Visual Studio will also install the .NET Framework 4 to your machine.
At the time of this writing, you are going to need to go to http://www.silverlight.net and install
the latest Silverlight 4 Tools for Visual Studio either using the Microsoft Web Platform Installer or the
executable provided on the site. Another install you are probably also going to need from the same
website is the WCF RIA Services install.

conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be-forgotten
information that is directly relevant to the surrounding text.

http://www.silverlight.net

xxviii

introduction

The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

As for styles in the text:

We ➤➤ highlight new terms and important words when we introduce them.

We show keyboard strokes like this: Ctrl+A.➤➤

We show fi lenames, URLs, and code within the text like so: ➤➤ persistence.properties.

We present code in two different ways:➤➤

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

source code

As you work through the examples in this book, you may choose either to type in all the code
manually, or to use the source code fi les that accompany the book. All the source code used in
this book is available for download at http://www.wrox.com. When at the site, simply locate
the book’s title (use the Search box or one of the title lists) and click the Download Code link
on the book’s detail page to obtain all the source code for the book. Code that is included on the
website is highlighted by the following icon:

In some cases (for example, when the code is just a snippet), you’ll fi nd the fi lename in a code note
such as this:

Code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-0-470-65092-9.

http://www.wrox.com

xxix

introduction

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e‑mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you, not
only as you read this book, but also as you develop your own applications. To join the forums,
just follow these steps:

	 1.	 Go to p2p.wrox.com and click the Register link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

	 4.	 You will receive an e‑mail with information describing how to verify your account and
complete the joining process.

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

xxx

introduction

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox booParks. To read the FAQs, click the FAQ link on any P2P page.

1
introduction to silverlight

what’s in this chapter?

Overviewing Silverlight➤➤

Getting the Silverlight Plug-In and SDK➤➤

Taking a Silverlight 4 Tour➤➤

Silverlight 4, the fourth iteration of the Silverlight platform, continues to deliver on the promise
of Adobe Flash–like and Flex-like rich Internet applications (RIAs) built using a standards-
based, open approach with HTML and XAML (eXtensible Application Markup Language)
using tools like Visual Studio 2010 and Microsoft Expression Blend. Silverlight 4 continues
to add excitement to RIA development with the expansion of the capabilities of the Base
Class Libraries (BCLs) from the .NET Framework, new user interface (UI) controls, and new
libraries for building line-of-business applications. The result is that not only do you have the
rich, XAML markup to describe expressive user interfaces, you have the power of the .NET
Framework and your language of choice (C#, VB, etc.) to build Silverlight applications. Even
with the .NET Framework libraries, Silverlight still retains the cross-browser and cross-plat-
form compatibility that it has had since the beginning. This includes Windows 2000, Windows
XP, Windows Vista, Windows 7, Macintosh, and, through the Mono Project, various Linux
distributions. To give you an idea of the fl exibility of the client and server scenarios, you can
build a Silverlight application and run it in a Safari web browser on an Apple Macintosh, while
being served up from an Apache web server running on Linux.

There is a lot to learn about Silverlight, and you’ll gain more and more insight with each chap-
ter in this book.

This chapter does two basic things:

It gives you an introduction to Silverlight.➤➤

By covering the essentials on creating Silverlight applications, it sets the groundwork ➤➤

that helps for the rest of the book.

2  ❘  Chapter 1   Introduction to Silverlight

What Is Silverlight?

Silverlight is a web-based platform for building and running RIAs. The web-based platform part
of that equation is essentially the plug-in that runs inside the web browser. Silverlight applica-
tions execute within an ActiveX browser plug-in that installs onto the local machine via the web
browser in the exact same manner that you install Adobe Flash to run Flash-based animations
on web pages. The Silverlight plug-in supports the entire wow factor that you’d expect from an
RIA, such as vector-based graphics and animations and full video integration, including Digital
Rights Management (DRM) secured audio/video and high-definition video, as well as the tools
for building rich line-of-business applications. You can boil down the coolness of Silverlight to
the following points:

Silverlight is a cross-platform, cross-browser platform for delivering rich, interactive ➤➤

applications.

Silverlight 4 applications can be built using Expression Blend, Visual Studio, or Eclipse on ➤➤

Windows, and with Eclipse on Apple Macintosh computers.

Silverlight supports playback of native Windows Media VC-1/WMA (with Digital Rights ➤➤

Management) as well as MPEG-4-based H.264 and AAC audio on PCs and Macs with no
dependency on Windows Media Player, as well as full online and offline DRM capability for
purchase and download, rental, and subscription capabilities.

Silverlight supports playback of 720p+ full-screen HD Video.➤➤

Using XAML, HTML, JavaScript, C#, or VB (or your managed language of choice, including ➤➤

dynamic languages like Ruby and Python), Silverlight delivers rich multimedia, vector graph-
ics, animations, and interactivity beyond what AJAX can deliver.

With the Base Class Libraries, you have access to common classes for generics, collections, ➤➤

and threading that you are accustomed to using in Windows client development.

There are more than 60 controls in the Toolbox, and probably five times that many from ➤➤

third-party vendors.

You can deliver out-of-browser experiences with elevated trust that can run any Silverlight 4 ➤➤

application just like a desktop application; including network access, COM interoperability,
and local filesystem access.

You can access video and audio resources, giving you the ability to record content that is ➤➤

streaming from an end user’s local computer.

There are multiple lines of business features, including a navigation framework, printing, drag-➤➤

and-drop support, clipboard access, right-click events, and multi-directional text rendering.

RIA Services, or the Business Application template, supply the framework, tools, and services ➤➤

that provide the server context of your application to the client, which simplifies the applica-
tion model when building Silverlight applications.

What is silverlight? ❘ 3

The installation package is less than 6MB on Windows and less than 12MB on Macintosh.➤➤

Almost all of the same XAML and application logic created for Silverlight applications can ➤➤

be used in Windows Presentation Foundation (WPF) applications with no changes.

The Silverlight player is also known as a plug-in, or control — these terms are used interchangeably
in the book, and you will see these variances when others talk about Silverlight as well. The player
is a completely stand-alone environment; there is no dependency version of the .NET Framework on
the client or the server to run Silverlight applications. When developing applications for Silverlight,
you use tools (like Visual Studio 2010 or Expression Blend) that require or are based on a version
of the Common Language Runtime (CLR), but the compiled Intermediate Language (IL) of your
Silverlight applications that is parsed by the Silverlight player is not using a specifi c client version of
the .NET Framework. The BCL for Silverlight is entirely self-contained within the player itself. The
XAML and BCL used by the Silverlight player are both subsets of their counterparts that are used
when building full desktop-based WPF applications. In Silverlight 4, the features in Silverlight and
the CLR 4 version of WPF are coming closer together, which gives you more fl exibility when design-
ing applications that you intend to target both run times.

You might ask why Microsoft is pushing out another web-based, client-side technology when there
is already ASP.NET, ASP.NET AJAX Extensions, and, with CLR 4 and Visual Studio 2010, specifi c
project types that target Dynamic Data, MVC, and the ASP.NET AJAX Framework. The simple
answer is that users are demanding an even richer experience on the Web. Even though AJAX does
a lot for improved user experience — the postback nightmare of Web 1.0 is fi nally going away — it
does not do enough. There is demand for a richer, more immersive experience on the Web. This
has been accomplished with WPF on the Windows client side. WPF provides a unifi ed approach to
media, documents, and graphics in a single run time. The problem with WPF is that it is a 30-MB
run time that runs only on the Windows OS. Microsoft needed to give the same type of experience
that WPF offers, only in a cross-platform, cross-browser delivery mechanism. So what Microsoft
did was take the concept of a plug-in model like Adobe Flash and mix it with the .NET Framework
and the WPF declarative language in XAML, and they came up with a way to develop highly rich,
immersive Web 2.0 applications.

For a good comparison of what is in WPF and not in Silverlight 4, check out
this link:

http://msdn.microsoft.com/en-us/library/cc903925(VS.96).aspx

The big picture of Silverlight from an architecture perspective is shown in Figure 1-1. Each area is
covered in more detail as you read along in the book.

http://msdn.microsoft.com/en-us/library/cc903925%28VS.96%29.aspx

4  ❘  Chapter 1   Introduction to Silverlight

As mentioned earlier, Silverlight can conceivably be fully supported across multiple browsers and
operating systems. The current status for browser and OS support is identified in Table 1-1.

UI Core

Vector
Animation

Text
Images

Inputs

Keyboard
Mouse

Ink

DRM

Media

Media

VC1
H.264
WMA
AAC
MP3

Deep Zoom

Images

Data

LINQ
XLINQ
XML

WPF

Controls
Data Binding

Layout
Editing

DLR

Iron Python
Iron Ruby

Jscript

BCL

Generics
Collections

Cryptography
Threading

WCF

CLR Execution Engine

XAML

REST
RSS/ATOM

SOAP

POX
JSON

.NET for SIlverlight

Presentation Core

MS AJAX
Library

JavaScript
Engine

Browser Host

Integrated
Networking Stack

DOM
Integration

Application
Services

Installer

Figure 1-1

Table 1-1

Operating System Browser Supported

Windows Vista
Windows Server 2008

Windows Internet Explorer 7, 8
Firefox 2, 3
Google Chrome

Silverlight Versions Explained  ❘  5

Operating System Browser Supported

Windows 7 Windows Internet Explorer 8
Firefox 2, 3
Google Chrome

Windows Server 2008 R2 Windows Internet Explorer 8
Google Chrome

Windows XP SP2, SP3 Windows Internet Explorer 6, 7, 8
Firefox 2, 3
Google Chrome

Windows Server 2003
(excluding IA-64)

Windows Internet Explorer 6, 7, 8
Firefox 2, 3
Google Chrome

Mac OS 10.4.8+ Firefox 2, 3
Safari 3
Safari 4

Silverlight Versions Explained

If you have been following Silverlight, you might be a little confused over the versions that are available:

Silverlight 1.0➤➤  — ​Released in September of 2007, this is the first version of Silverlight and
supports the JavaScript programming model. This means that your language choice is simple:
JavaScript. JavaScript is used to interact with Silverlight objects that are executing within the
Silverlight player in the browser. There is no managed language support in Silverlight 1.0,
which means no BCL for Silverlight 1.0.

Silverlight 2➤➤  — ​Released in late 2008, Silverlight 2 brought the ability to create RIA applica-
tions with the familiar code-behind programming model used in Windows Forms, ASP.NET,
and WPF development. Starting with Silverlight 2, you can use any CLR language to code
Silverlight applications, and you have the power of the .NET Framework to interact with
Silverlight objects. The ability to use the base class libraries and your .NET language of choice
to build Silverlight applications truly revolutionized the way developers and designers looked
at this new RIA platform.

Silverlight 3➤➤  — ​Released in mid-2009, Silverlight 3 included extensive enhancements to
Silverlight 2 for building line-of-business applications as well as richer support for graphics
and media.

6  ❘  Chapter 1   Introduction to Silverlight

Silverlight 4➤➤  — ​Released in April of 2010, Silverlight 4 continues with the focus on line-of-
business–focused applications, and a more feature-complete RIA Services implementation is
included, as well as a richer feature set for accessing local filesystem and COM resources in
richer, out-of-browser experiences.

Silverlight uses an auto-update model for the player. When a new version of Silverlight is released,
the player running in the browser is updated to the latest version automatically. There is also the
commitment of backward compatibility, so your applications will not break when the player moves
from version 1.0 to 2, or 2 to 3, and so on.

Application Development Scenarios

When building Silverlight applications, you are likely to use one of the following scenarios:

Your entire application is written in Silverlight, the player takes up 100 percent of the height ➤➤

and width of the browser, and all UI interaction is done through Silverlight.

You implement an “Islands of Richness” scenario, in which your application is an ASP.NET ➤➤

application (or any other type of HTML-rendered application), and you build islands of your
UI with Silverlight. Thus, you add richness to your web applications but you don’t build the
entire interaction using Silverlight.

You create an out-of-browser (OOB) experience, with the specific need to use elevated per-➤➤

missions on the client machine. This means that you create more of a desktop-like experience
and you can access the local filesystem, use COM interoperability, keyboard in full screen
mode, and other out-of-browser–only features.

You are building a mobile application that is targeting the Windows 7 Series Phone.➤➤

As the adoption of Silverlight grows, the type of application you decide to build most likely
depends on the features you need. If you are slowly introducing Silverlight into your applications,
the “Islands of Richness” scenario will be used. If you are going all out and need to access the My
Documents folder of the client machine, you’ll end up building an OOB application.

The area surrounded with the box in Figure 1-2 is an example of an “Islands of Richness” scenario
in which Silverlight has been added to an existing web application. In this case, the image strip
is a Silverlight control that plays a video in-page when an item is clicked. Silverlight enhances the
“Islands of Richness” scenarios by allowing multiple Silverlight plug-ins and an easy way to com-
municate with each other in the browser. This also works across browsers; for example, a Silverlight
application running in a Firefox browser can talk to a Silverlight application running in Internet
Explorer 8 on the same machine.

Figure 1-3 shows an OOB experience. Notice that there is no chrome around the browser shell, giv-
ing the application a desktop-like experience.

Figure 1-4 shows a typical Silverlight application that takes up 100 percent of the viewable browser
area, but is not running outside of the browser.

Application Development Scenarios  ❘  7

Figure 1-2

Figure 1-3

8  ❘  Chapter 1   Introduction to Silverlight

Figure 1-4

Getting the Silverlight Plug-In

The first time you navigate to a web page that contains a Silverlight application, the Silverlight
player is not installed automatically; installation is similar to the Adobe Flash experience. There is a
non-intrusive image on the page where the Silverlight content would have rendered that gives a link
to download the player. Silverlight has two different prompts for installation — ​the standard install
and the in-place install.

In a standard install, the Get Microsoft Silverlight image tells you that you need to install Silverlight
to complete the experience on the web page you have arrived at. Figure 1-5 illustrates a page with
the standard install images.

Once you click on the Get Microsoft Silverlight Installation image, one of two scenarios takes place.
You are taken to the Silverlight Installation page on the Microsoft site (see Figure 1-6).

Or you are prompted to install Silverlight in-place with a download prompt, as shown in Figure 1-7.

Getting the Silverlight Plug-In  ❘  9

Figure 1-5

Figure 1-6

10  ❘  Chapter 1   Introduction to Silverlight

Figure 1-7

After the Silverlight player is installed, you never have to install it again. Silverlight also has built-in
knowledge of updates, so once a new version of Silverlight is available, you are asked if you would
like to install the update to get the latest version of the player. Once you refresh the browser, the
Silverlight content is rendered correctly in the browser (see Figure 1-8).

Figure 1-8

Getting the Silverlight SDK  ❘  11

Getting the Silverlight SDK

To build Silverlight applications, you need more than the Silverlight player. If you have not
arrived at a page where you are prompted to install the Silverlight run time, you can easily get it
on the Silverlight SDK page. There are also supporting files, help files, samples, and quick starts
in the Silverlight Software Development Kit (SDK), which will give you the files you need to start
building Silverlight applications. To get the SDK, go to www.silverlight.net/getstarted/
default.aspx, as shown in Figure 1-9.

On the Get Started page, you can download all of the tools that you need to create Silverlight 4
applications:

Silverlight run times for Mac and Windows operating systems➤➤

Silverlight tools for Visual Studio 2010➤➤

The latest version of Microsoft Expression Blend➤➤

A trial version of Visual Studio 2010➤➤

More importantly, this page has links to dozens of videos, tutorials, and samples that will help you
learn Silverlight.

Figure 1-9

http://www.silverlight.net/getstarted/default.aspx
http://www.silverlight.net/getstarted/default.aspx

12  ❘  Chapter 1   Introduction to Silverlight

Building Silverlight Applications

Now that you have the Silverlight player installed and you know how to get the tools for Visual
Studio that will give you the project templates, you can start building Silverlight applications. There
are several ways to create Silverlight applications:

Visual Studio 2010 Silverlight Project Templates➤➤  — ​These include Silverlight Application,
Silverlight Navigation Application, and Silverlight Class Library, as well as Silverlight
Business Application.

Expression Blend 3 or Expression Blend 4 — ​➤➤ This a tool in the Expression suite of products
from Microsoft that provides project templates for creating Silverlight and WPF projects and
helps create vector-based graphics for your Silverlight user interface as well as aids in screen
prototyping with the Sketch Flow feature.

Eclipse using the Eclipse Plug-In➤➤  — ​There is an Eclipse plug-in for both Windows-based and
Apple Macintosh–based operating systems.

In the following chapters, you will get a better understanding of the details for how to build
applications using Visual Studio 2010 and Expression Blend.

Silverlight 4 Tour

Silverlight 4 continues the improvements that Silverlight 3 delivered over Silverlight 2. In the next
sections, we’ll look at some of the more important features of Silverlight 4, including:

XAML➤➤

.NET Framework support➤➤

Graphics and animations➤➤

Page layout and design➤➤

User interface controls➤➤

Audio and video, including capturing audio and video➤➤

Local data storage➤➤

Out-of-browser capability➤➤

Local filesystem access➤➤

Navigation Framework➤➤

Ink support➤➤

Network access➤➤

Data binding➤➤

Printing➤➤

silverlight 4 Tour ❘ 13

Drag-and-drop➤➤

Clipboard access➤➤

Deep Zoom technology➤➤

Throughout the book, you learn about each of the items listed in much more detail. The follow-
ing sections are designed to set the stage for what’s to come as you explore the full capability of
Silverlight 4.

xaMl
If you are not familiar with WPF, you are probably not familiar with XAML. Since the dawn of
Visual Studio, there has always been code and UI design separation. This means that a developer
can write code, while a designer just works on the design and layout aspects of an application.
This had never been realized, mostly because developers and designers were always using differ-
ent tools and different languages. With the introduction of XAML, however, there was fi nally a
unifi ed markup that could not only describe what a control is and how it fi ts into a page, but also
how layout and, more importantly, the overall look and feel of the controls on a page are defi ned. A
designer can use XAML to create a mockup of a page or an application, and a developer can take
that XAML markup and use it directly in her project fi les. Because partial classes and code-behind
fi les in Visual Studio 2010 allow you to separate the code logic from the layout and control defi ni-
tions, using XAML gives you the opportunity to have this separation of the design from the code.

XAML elements are objects that map to classes in the Silverlight run time. So when you declare
a XAML TextBlock like this:

<TextBlock />

you are actually creating a new instance of the TextBlock class like this:

TextBlock t = new TextBlock();

The following code demonstrates a XAML snippet from a Silverlight application that shows Hello
World in a TextBlock:

<Canvas>
 <TextBlock>Hello World</TextBlock>
</Canvas>

The next code listing shows how the XAML can get more complex, demonstrating adding ani-
mations to the TextBlock element. In this example, a RotateTransform is being applied to a
TextBlock control via a DoubleAnimation in a StoryBoard object. This action is triggered when
the UserControl loads, through the RoutedEvent Canvas.Loaded. If you run the XAML, you will
see that the text Hello World rotates in a 360-degree circle.

In Chapter 18, you learn how animations work in Silverlight and how they are
used to bring your application to life in the Silverlight player.

14  ❘  Chapter 1   Introduction to Silverlight

<StackPanel Margin=”4”
 HorizontalAlignment=”Center”
 Orientation=”Horizontal”>
 <TextBlock Width=”200” Height=”150”
 FontSize=”24”>Hello World

 <TextBlock.Triggers>
 <EventTrigger RoutedEvent=”Canvas.Loaded”>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard BeginTime=”0”
 RepeatBehavior=”Forever”>
 <DoubleAnimation
 Storyboard.TargetName=”rotate”
 Storyboard.TargetProperty=”Angle”
 To=”360”
 Duration=”0:0:10”/>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </TextBlock.Triggers>

 <TextBlock.RenderTransform>
 <RotateTransform x:Name=”rotate”
 Angle=”0”
 CenterX=”300”
 CenterY=”200”/>
 </TextBlock.RenderTransform>
 </TextBlock>
</StackPanel>

In Appendix A, you can gain more insight into XAML and how you can use it to define and cre-
ate your Silverlight applications. You will also get your fair share of XAML throughout the book,
because it is how you create most of the examples and applications that we have created. Tools like
Microsoft Expression Blend and Visual Studio 2010 are all Rapid Application Development (RAD)
tools that you can use to create your Silverlight applications. Besides using Expression Blend or
Visual Studio 2010, you can look to other XAML tools like XAMLPad or Kaxaml to help you learn
XAML. In Chapter 2, you will learn more of the specifics on building Silverlight applications using
Visual Studio.

.NET Framework Support
A key aspect of Silverlight, and probably the most exciting aspect of this technology, is its support
for the CLR and BCL of the .NET Framework. Although these are not the exact set of class libraries
you are familiar with using on the desktop, and the CLR might handle memory management and
optimizations slightly differently than it does on the desktop or server, they do provide the funda-
mental capabilities of the .NET Framework for your use in building rich Silverlight applications.

Execution of content targeting the Silverlight player is handled by the CoreCLR. The CoreCLR
is a smaller, refactored version of the CLR used in full .NET desktop applications. Although the

Silverlight 4 Tour  ❘  15

Microsoft Intermediate Language (MSIL) is exactly the same between the CLRs, the CoreCLR
is stripped of the unnecessary scenarios that are not needed for Silverlight 3 development. The
CLR is still responsible for managing memory in Silverlight applications, as well as enforcing the
common type system (CTS). Some examples of the differences in the CoreCLR versus the full
CRL are:

The JIT Compiler in the CoreCLR is enhanced for fast startup time, while the full CLR is ➤➤

enhanced for more complex optimizations.

In ASP.NET applications, the garbage collection mode is tuned for multiple worker threads, ➤➤

whereas the CoreCLR is tuned for interactive applications.

Both the CoreCLR and CLR can run in the same process; therefore, for example, you can have an
embedded Silverlight player running in an Office Business application that also includes a full .NET
3.5 plug-in. The isolation of the CoreCLR is why you can run Silverlight applications on machines
that do not have any versions of the .NET Framework installed; this is further highlighted by the
fact that Silverlight can run on Macintosh operating systems.

The namespaces that contain all of the classes that you interact with in your Code window are the
Base Class Libraries, as you have learned. The Silverlight BCL does not contain namespaces and
classes that do not make sense for client development, such as code-access security, ASP.NET Web
Server–specific classes, and many others.

Graphics and Animations
A big part of why Silverlight is an exciting technology is that it provides a rich, vector-based draw-
ing system as well as support for complex animations. Some key features include:

Perspective three-dimensional (3D) graphics➤➤

Pixel-Shader effects, including ➤➤ Blur and DropShadow

Bitmap Caching to increase the rendering performance➤➤

Animation effects like ➤➤ Spring and Bounce

Local font usage for rendering text➤➤

For vector-based drawing, Silverlight supports Geometry and Shape objects that include support for
rendering shapes, such as ellipse, line, path, polygon, polyline, and rectangle. These classes give you
the ability to render any type of visual display. For example, the following XAML displays an image
in its normal, square shape:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 </Image>
 </Canvas>

16  ❘  Chapter 1   Introduction to Silverlight

Using the EllipseGeometry class, you can clip the image into whatever shape you desire. This
XAML clips the image into an oval:

<Canvas>
 <Image
 Source=”Images/elk.jpg”
 Width=”200” Height=”150”>
 <Image.Clip>
 <EllipseGeometry
 RadiusX=”100”
 RadiusY=”75”
 Center=”100,75”/>
 </Image.Clip>
 </Image>
</Canvas>

The results are shown in Figure 1-10.

Figure 1-10

Once you render your geometries or shapes into something meaningful, you can use Brushes,
VideoBrushes, or Transforms to further give life to your UI rendering. The following XAML takes
a basic TextBlock and adds a LinearGradientBrush for some nice special effects:

<TextBlock
 Canvas.Top=”100”
 FontFamily=”Verdana”
 FontSize=”32”
 FontWeight=”Bold”>
 Linear Gradient Brush
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleY=”4.0” />
 </TextBlock.RenderTransform>
 <TextBlock.Foreground>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”1,1”>
 <GradientStop Color=”Red” Offset=”0.0” />
 <GradientStop Color=”Blue” Offset=”0.2” />
 <GradientStop Color=”Green” Offset=”0.4” />
 <GradientStop Color=”Olive” Offset=”0.6” />
 <GradientStop Color=”DodgerBlue” Offset=”0.8” />
 <GradientStop Color=”OrangeRed” Offset=”1.0” />

Silverlight 4 Tour  ❘  17

 </LinearGradientBrush>
 </TextBlock.Foreground>
</TextBlock>

You can also use an ImageBrush to paint an image on your TextBlock, as the following code
demonstrates:

<StackPanel>
 <!--TextBlock without an ImageBrush -->
 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 </TextBlock>

 <!--TextBlock with an ImageBrush -->
 <TextBlock
 FontSize=”72”
 FontFamily=”Verdana”
 FontStyle=”Italic”
 FontWeight=”Bold”>
 Rhino Image
 <!-- Add an Image as the foreground -->
 <TextBlock.Foreground>
 <ImageBrush ImageSource=”Images/rhino.jpg”
 Stretch=”Fill”/>
 </TextBlock.Foreground>
 </TextBlock>
</StackPanel>

The results are shown in Figure 1-11.

Later in this section, you will see a VideoBrush applied to text. In Chapter 18, we’ll cover graphics
and animations in full detail.

Figure 1-11

18  ❘  Chapter 1   Introduction to Silverlight

Page Layout and Design
Silverlight includes several options for doing rich, resolution-independent layout using a Canvas,
DockPanel, Grid, StackPanel, and WrapPanel element. These five major layout panels can be
described as:

Canvas➤➤  — ​An absolute positioning panel that gives you an area within which you can posi-
tion child elements by coordinates relative to the Canvas area. A Canvas can parent any
number of child Canvas objects.

DockPanel➤➤  — ​Used to arrange a set of objects around the edges of a panel. You specify
where a child element is located in the DockPanel with the Dock property.

Grid➤➤  — ​Similar to an HTML table, it’s a set of columns and rows that can contain child
elements.

StackPanel➤➤  — ​A panel that automatically arranges its child elements into horizontal or ver-
tical rows

WrapPanel➤➤  — ​Allows the arrangement of elements in a vertical or horizontal list and has ele-
ments automatically wrap to the next row or column when the height or width limit of the
panel is reached.

Once you decide how you are going to lay out your page using one of the layout types, you can
use other means of positioning individual elements as well. For example, you can change margins,
set the ZOrder or Border of an object, or perform RotateTranforms to change the position of an
object. Chapter 5 covers all layout options in greater detail. Here we’ll look at the Canvas object and
how it behaves.

The Canvas essentially becomes the container for other child elements, and all objects are positioned
using their X- and Y-coordinates relative to their location in the parent canvas. This is done with the
Canvas.Top and Canvas.Left attached properties, which provide the resolution-independent pixel
value of a control’s X- and Y-coordinates. The following code shows a Canvas object with several
child elements absolutely positioned within the Canvas:

<Canvas>
 <Rectangle
 Canvas.Top =”30”
 Canvas.Left=”30”
 Fill=”Blue”
 Height=”100” Width=”100”/>

 <Rectangle
 Canvas.Top =”75”
 Canvas.Left=”130”
 Fill=”Red”
 Height=”100” Width=”100”/>

 <Ellipse
 Canvas.Top =”100”
 Canvas.Left=”30”
 Fill=”Green”
 Height=”100” Width=”100”/>
</Canvas>

silverlight 4 Tour ❘ 19

Figure 1-12, demonstrates the location of the objects in the canvas.

figure 1-12

In the following example from the SDK, you can see how a DockPanel can be confi gured to return
the results shown in Figure 1-13:

<StackPanel x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Margin=”5” Text=”Dock Panel” />
 <Border BorderBrush=”Red” BorderThickness=”2” >
 <controls:DockPanel LastChildFill=”true”
 Height=”265”>
 <Button Content=”Dock: Left”
 controls:DockPanel.Dock =”Left” />
 <Button Content=”Dock: Right”
 controls:DockPanel.Dock =”Right” />
 <Button Content=”Dock: Top”
 controls:DockPanel.Dock =”Top” />
 <Button Content=”Dock: Bottom”
 controls:DockPanel.Dock =”Bottom” />
 <Button Content=”Last Child” />
 </controls:DockPanel>
 </Border>
</StackPanel>

To test out the above code using the DockPanel, you need to install the
Silverlight Control Toolkit. You can get this on the same page that you down-
load the Silverlight Tools for Visual Studio at http://silverlight.codeplex
.com/Release/ProjectReleases.aspx?ReleaseId=36060.

http://silverlight.codeplex
http://silverlight.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=36060

20  ❘  Chapter 1   Introduction to Silverlight

Figure 1-13

In Figure 1-13, notice the position of the elements based on the TextBlock and Border controls that
wrap the DockPanel in the XAML.

User Interface Controls
Silverlight adds an even greater number of controls to the Toolbox for creating user interfaces. The
Toolbox in Visual Studio 2010 is now filled with controls that can be dragged onto forms to build
the user interface. The following controls are included for use by the core Silverlight 4 player:

AutoCompleteBox

Border

Button

Calendar

Canvas

CheckBox

ComboBox

ContentControl

DataGrid

DataPager

DatePicker

DockPanel

Ellipse

Frame

Grid

GridSplitter

HyperlinkButton

Image

Label

ListBox

MediaElement

MultiScaleImage

Password

ProgressBar

RadioButton

Rectangle

ScrollBar

ScrollViewer

Slider

StackPanel

TabControl

TextBlock

TextBox

TreeView

Silverlight 4 Tour  ❘  21

In addition to the aforementioned controls, the Silverlight Toolkit, which is a separate download
from CodePlex, contains several very useful additions to the core list.

When working with any of the controls, remember that they are just like any other control model:
The XAML controls in Silverlight can be instantiated in code, and properties can be retrieved or
set on them. Over the next several chapters, you learn about the controls and how they can be used
with Visual Studio 2010 or Expression Blend.

Using Media in Silverlight
One could argue that the entire reason for Silverlight was to provide rich, multimedia experiences on
web pages, which essentially means audio and video on web pages. If you take a look at the top 100
trafficked websites on the Internet, almost all of them have video playing on the home page or use
video prevalently throughout. Silverlight 4 continues to add first-class media capability to the player.

Adding Video to Web Pages
To add video or audio to a web page, set the Source property on the MediaElement object. The fol-
lowing code demonstrates playing the video file car.wmv automatically when the canvas is loaded:

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <MediaElement Source=”Images/video1.wmv” />
 </Grid>

The Source property is the URI of a valid video or audio file. In the preceding code example, the
source file is located in the deployment directory of your Silverlight application. Your media files
can be located in various locations, including the website folder structure you are running the page
from, or from a remote site. In either case, in order to maintain cross-platform support, you must
use “/” in place of “\” in your URIs. For example:

 <MediaElement Source=”..\..\car.wmv”></MediaElement>

should read:

 <MediaElement Source=”../../car.wmv”></MediaElement>

If the Source property points to a file on a Windows Media Server using the MMS protocol, the player
automatically attempts to stream the video down to the client. The default behavior is a progressive
download, which means that the audio or video begins playing immediately and background-loads as
you are playing the media. The drawback to progressive downloads is that even if you pause the video,
it still downloads the media file, even if you never intended to continue playing it. With streaming
media, the only data that is downloaded is the data that you actually play, which is a more efficient use
of network resources.

Supported Audio and Video Formats
The MediaElement supports the Advanced Stream Redirector (ASX) playlist file format, as well as
the audio and video formats listed in Table 1-2.

22  ❘  Chapter 1   Introduction to Silverlight

Table 1-2

Video Formats Audio formats

WMV1: Windows Media Video 7

WMV2: Windows Media Video 8

WMV3: Windows Media Video 9

WMVA: Windows Media Video
Advanced Profile, non-VC-1

WMVC1: Windows Media Video
Advanced Profile, VC-1

H.264 — ​Can only be used for
progressive download, smooth
streaming, and adaptive stream-
ing. Supports Base, Main, and
High Profiles.

WMA 7: Windows Media Audio 7

WMA 8: Windows Media Audio 8

WMA 9: Windows Media Audio 9

WMA 10: Windows Media Audio 10

AAC: Advanced Audio Coding — ​Can only be used for progressive
download, smooth streaming, and adaptive streaming. AAC is the
LC variety and supports sampling frequencies up to 48 kHz.

MP3: ISO/MPEG Layer-3 with the following features:

—Input — ​ISO/MPEG Layer-3 data stream

—Channel Configurations — ​Mono, stereo

—�Sampling Frequencies — ​8, 11.025, 12, 16, 22.05, 24, 32, 44.1,
and 48 kHz

—Bitrates — ​8–320 Kbps, variable bitrate

—�Limitations — ​“Free format mode” (ISO/IEC 11172-3, subclause
2.4.2.3) is not supported.

Local Data Storage
Using the isolated storage concept, which behaves the same as it does in the full .NET Framework,
you can use a client-side cache location to store data. This means that you can take commonly
needed data, and, instead of always having to go back to the server to retrieve it, you can store
it locally and access it locally. Examples might be a list of states or countries, or Buddy Lists for
instant messenger clients. This data is commonly needed for fast access but does not change often
enough to warrant constant round-trips back to the server to retrieve it.

By default, Silverlight gives you 1MB of local storage. This can be increased by prompting the user
to allow for more local storage or can be accessed via the Silverlight Configuration screen. As its
name implies, this is isolated storage, so you cannot access the end user’s filesystem or do anything
that would break the partial trust sandbox that Silverlight runs in. Storage is granted per applica-
tion, so, for example, you might have www.someapp.com, which is using 10MB of storage, and
another application running on the same client computer from a different domain that has its own
20MB of isolated storage. The storage areas are independent of each other; there is no limit to the
number of applications that can have isolated storage on a client machine.

Out-of-Browser Experiences
With the enhanced OOB capability in Silverlight, an end user can install your application to the
desktop on his or her Windows-based or Apple Macintosh computer. There is no need to install any
special assemblies or controls to make this work — ​it is part of the native Silverlight experience.
Using APIs that detect whether an application is running outside of the browser, and that check for
the network connected state, an OOB application can react intelligently based on its current state. If

http://www.someapp.com

silverlight 4 Tour ❘ 23

you build an OOB application, you can also use elevated permissions on the client machine, which
gives you the following features:

Keyboard support in full screen mode➤➤

Offl ine DRM➤➤

HTML hosting➤➤

Notifi cation window➤➤

Local fi lesystem access➤➤

Cross-domain access ➤➤

In Chapter 9, you learn how easy it is to actually create this out-of-browser
experience and use the features I have mentioned above.

local filesystem access
When running an application with elevated privileges in OOB mode, you can access the client
machine’s local fi lesystem. This is limited to the GetSpecialFolder enumeration of the My fold-
ers, such as My Documents, My Music, and the like. This enumeration does include folders like
Desktop. However, you cannot access the fi les on the desktop; you can access only the My folders.
In Chapter 9, you learn how to access the local fi lesystem in an out-of-browser application.

navigation framework
Silverlight includes two controls that enable complete browser-journal back/forward integration
with your application. Using the new Frame and Page controls, you can partition your views into
separate XAML fi les (instead of separate UserControl objects as you did in Silverlight 2) and navi-
gate to each view as simply as you previously navigated to a web page. The Navigation Framework
also allows you to implement deep linking support in your Silverlight application, which builds on
the SEO (Search Engine Optimization) enhancements added in Silverlight 3.

The following XAML shows the navigation control added to a UserControl:

<navigation:Frame x:Name=”Frame”
 Source=”/Views/HomePage.xaml”
 HorizontalContentAlignment=”Stretch”
 VerticalContentAlignment=”Stretch”
 Padding=”15,10,15,10”
 Background=”White”/>

And the following code demonstrates the Navigate method of the Frame class, which is how you
move from Page to Page:

private void NavButton_Click(object sender, RoutedEventArgs e)
{
 Button navigationButton = sender as Button;

24  ❘  Chapter 1   Introduction to Silverlight

 String goToPage = navigationButton.Tag.ToString();
 this.Frame.Navigate(new Uri(goToPage, UriKind.Relative));
}

As well as Navigate, the Frame class includes other useful methods such as Navigated,
NavigationFailed, and NavigationStopped that give you complete control over the navigation life
cycle of your Page object. Chapter 4 talks more about the Navigation and Frame classes.

Annotation and Ink
Like WPF, Silverlight has full support for ink input in the player. Using the InkPresenter object,
you can give users an input area where they can use the mouse or an input device to handwrite.
Using the application interface for the InkPresenter object, the application developer collects the
Stroke objects that are written and persists them to a location on the server for later use. An exam-
ple of where ink might be cool on a web page is a simple blog, where text and ink can combine to
create a great visual output for whatever the blog is about. The XAML in the following code shows
how to create an InkPresenter object:

<InkPresenter x:Name=”inkInput” Cursor=”Stylus”
 MouseLeftButtonDown=”inkInput_MouseLeftButtonDown”
 MouseMove=”inkInput_MouseMove”
 MouseLeftButtonUp=”inkInput_MouseLeftButtonUp”/>

Notice that events are wired up for the various mouse behaviors. Each action of the mouse — ​the
Move, LeftButtonUp, and LeftButtonDown — ​has a method in the code-behind that acts on the
strokes of the input device. The following code provides an example of how to collect the strokes
from the InkPresenter:

private Stroke MyStroke = null;

private void inkInput_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 inkInput.CaptureMouse();
 StylusPointCollection
 MyStylusPointCollection = new StylusPointCollection();
 MyStylusPointCollection.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 MyStroke = new Stroke(MyStylusPointCollection);
 inkInput.Strokes.Add(MyStroke);
}

private void inkInput_MouseMove
 (object sender, MouseEventArgs e)
{
 if (MyStroke != null)
 {
 MyStroke.StylusPoints.Add
 (e.StylusDevice.GetStylusPoints(inkInput));
 txtBlock.Text =
 ““ + e.StylusDevice.GetStylusPoints(inkInput)[0].X;
 txtBlock.Text =
 ““ + e.StylusDevice.GetStylusPoints(inkInput)[0].Y;

Silverlight 4 Tour  ❘  25

 }

}

private void inkInput_MouseLeftButtonUp
 (object sender, MouseButtonEventArgs e)
{
 MyStroke = null;
}

Once you have the ink data collected, you can store it locally on the client machine, put it into a
database, or even save the ink as an image.

Accessing the Network
To access network resources in Silverlight, use the classes in the System.Net namespaces and the
System.Net.Sockets namespace. The namespace you choose depends on the type of network access
you are trying to achieve. For basic HTTP or HTTPS access to URI-based resources, you can use the
WebClient class in the System.Net namespace. Some examples of this type of network access are:

Retrieving XML, JSON, RSS, or Atom data formats from a URI then parsing it on the client➤➤

Downloading resources such as media or data to the browser cache➤➤

Using WebClient, you can perform the types of asynchronous operations that are common in
browser-based applications. The following code demonstrates a simple method that grabs an image
file from a network resource and downloads it to the browser cache:

void DownloadFile(string imgPart)
{
 WebClient wc = new WebClient();
 wc.OpenReadCompleted +=
 new OpenReadCompletedEventHandler
 (wc_OpenReadCompleted);
 wc.OpenReadAsync(new Uri(“imgs.zip”,
 UriKind.Relative), imgPart);
}

If you need more flexibility in how you access HTTP or HTTPS resources, use the HttpWebRequest
and HttpWebResponse classes.

If you need more direct and constant access to network resources or if you are working in a situa-
tion in which multiple clients are “listening” for the same server data, use the classes in the System.
Net.Sockets namespace. Although both Sockets and WebClient allow asynchronous communica-
tion using the TCP protocol, Sockets gives you the ability to write push-style applications, where
the server can communicate with the client in a more client–server manner. Imagine the unnecessary
overhead when using basic AJAX timers (polling) to look for updated data on the server. If you were
using sockets instead of this type of timer-based polling, you would reduce the amount of wasted
bandwidth and would achieve tighter control of the data passing between the client and the server.

No matter how you choose to work with the network, both the System.Net and System.Net
.Sockets namespaces support the ability to access network resources from other URIs than the

26  ❘  Chapter 1   Introduction to Silverlight

originating domain. By default, a Silverlight application can always access resources from its origi-
nating domain. Using a policy file, an application can access resources from different domains from
the one containing its original URL. This cross-domain access is controlled by policy files that dic-
tate the type of network domain access an application has. For WebClient requests, the same format
used by Adobe Flash is supported. The following code is an example of a crossdomain.xml file:

<?xml version=”1.0”?>
<! DOCTYPE cross-domain-policy
 SYSTEM “http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <allow-access-from domain=”*” />
</cross-domain-policy>

In Chapter 10, you are fully exposed to various ways of accessing network resources.

Data Binding
Similarly to the data-binding features in WPF, Silverlight supports data-bound controls, XAML
markup extensions, and support for data context binding. Most of the time, your bindings are set
up in XAML, which is where the markup extensions come into play. In the following XAML, the
Text property of the TextBlock element uses the Binding markup extension to bind the Title field
from the data source:

<TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay}” />

The field Title from the original data source is retrieved from the data content of the control’s par-
ent element; in this case, the TextBlock could be contained in a Canvas or Grid object. Once you
set the DataContext property for the parent element, the data contained in that object is available
for binding to anything it contains. A more complete example of this data binding looks like this:

<Canvas x:Name=”rootCanvas” Background=”White” >
 <TextBlock x:Name=”Title”
 Text=”{Binding Title, Mode=OneWay }” />

 <TextBlock x:Name=”Name”
 Text=”{Binding Title, Mode=OneWay }” />
</Canvas>

You would then set the context in the code as follows:

LayoutRoot.DataContext = dataList;

The dataList object is an object that contains the data you are binding to the controls. In the case
of simple TextBlock objects, you must handle the navigation between elements yourself. If you
want a richer, tabular data display, use the Grid that is included with Silverlight. The XAML for the
DataGrid control is as follows:

<data:DataGrid x:Name=”dataGrid1”
 Height=”120” Width=”450”
 AutoGenerateColumns=”True” />

http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd%E2%80%9D

Silverlight 4 Tour  ❘  27

The same dataList object can be bound to the grid in code such as this:

dataGrid1.ItemsSource = dataList;

All of the binding could be accomplished in code, but using the combination of XAML and code
gives you greater flexibility when you build Silverlight applications. An interesting area of data bind-
ing in Silverlight is where the data actually comes from. Since the Silverlight player is a complete
client-side solution, you are not creating connections to SQL Server or other data sources and then
dumping that data into a data set in your code-behind. You will use technologies like WCF to access
services on the Internet and then put the data you retrieve into objects that are bound to controls in
Silverlight. In Chapter 7, you learn about the various types of data access, how to interact with dif-
ferent data formats, and how the data-binding mechanism works in Silverlight.

Printing
One of the most requested features is the ability to print the contents of the Silverlight control. Using
the PrintDocument class’s Print method, you can print whatever content is in the PageVisual
property. By setting the PageVisual property to the root visual element, you can print the entire
Silverlight control. Or by setting PageVisual to the named UIElement in the XAML of your page,
you can print a portion of the Silverlight control.

Drag-and-Drop
Another highly anticipated feature of Silverlight 4 is its ability to handle a Drop event on a control.
Using the DragEventArgs class, you can handle the following events when AllowDrop is set to True
on any UIElement:

DragEnter ➤➤

DragLeave ➤➤

DragOver ➤➤

Drop➤➤

This means that you can enable scenarios like allowing users to drag multiple files from their My
Documents folder onto a Silverlight upload application or allowing users to drag-and-drop pictures
from My Pictures onto a photo-editing application built in Silverlight.

Clipboard Access
You can now programmatically access the shared Clipboard object to Get or Set Unicode text infor-
mation. It is important to note that in Silverlight, you are going to encounter a few differences from
the Clipboard access that you might be used to in WPF and Windows Forms:

You can access only Unicode text. You cannot access bitmap objects or streams.➤➤

The end user is prompted one time per session to allow for access in partial trust mode, ➤➤

which is the default experience of a Silverlight application.

Clipboard access is not valid from a Loaded event handler or from a constructor and access ➤➤

attempts throw exceptions.

28  ❘  Chapter 1   Introduction to Silverlight

Deep Zoom Graphics
Deep Zoom is a multi-scale image-rendering technology that partitions a very large image, or set
of images, into smaller tiles that are rendered on demand to the Silverlight player. When an image
is first loaded, it is in the lowest-resolution tiles. As the user zooms into the image using the mouse
wheel or keyboard, higher-resolution images are loaded based on the area that is being zoomed
into. To check this out yourself, take a look at the “CMA Be This Close” web site at yourself at
http://www.cmafest.com/silverlight/bethisclose/. Firefly Logic , a design consultancy,
built this application which lets users explore high-resolution images of their favorite country
music artists at the annual Country Music Festival held in Nashville, Tennessee. The wow factor
of Deep Zoom was shown off at Mix ’08 in April 2008. In Figure 1-14, you can see the initial page
loaded into the browser.

Figure 1-14

http://www.cmafest.com/silverlight/bethisclose/

Summary  ❘  29

Once you start zooming in with the mouse wheel, you move to the higher-resolution images.
Figure 1-15 shows the detail of a portion of the larger image seen in Figure 1-14.

Figure 1-15

Summary

Silverlight brings a lot to the table for RIA development. It has progressed from its original release
into much more than just a simple media player. Silverlight is a platform for developing rich line-of-
business applications that have the data and input capability of ASP.NET with the media and inter-
active capabilities usually reserved for Adobe Flex applications.

2
Building applications
with Visual studio

what’s in this chapter?

Creating a Silverlight application in Visual Studio 2010➤➤

Using the various tools and property editors available for ➤➤

Silverlight projects

Learning how the project structure and deployment works ➤➤

with Silverlight

How to attach a Silverlight application to an existing Silverlight ➤➤

application

Learning how partial classes and event handlers work➤➤

Debugging a Silverlight application, including the steps for remote ➤➤

debugging on an Apple Macintosh computer

Now that you have a grasp on what Silverlight is, and what it can offer you as an RIA devel-
oper, it’s time to get into the details of building Silverlight applications.

creating a Basic silverlight application

The best way to understand how Silverlight works in Visual Studio is by building an applica-
tion, so go ahead and open up Visual Studio 2010.

32 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

You’ll notice that Visual Studio 2008 and earlier versions are not mentioned
when discussing an IDE for building Silverlight 4 applications. Microsoft made
a decision to support only Silverlight 4 in Visual Studio 2010, so you cannot
use an earlier version of Visual Studio to design or compile Silverlight 4 appli-
cations. Note that you can multi-target with Visual Studio 2010 — you can
choose to target a Silverlight 3 or Silverlight 4 application. You see where that
comes in a little later in this chapter.

Once you’ve started Visual Studio, go ahead and start a new project. You can create a new project
in one of several ways, highlighted in Figure 2-1:

Select File ➤➤ ➪ New Project from the main menu.

Hit Ctrl+Shift+N on your keyboard.➤➤

Click New Project from the newly redesigned Start Page.➤➤

figure 2-1

Once you perform one of those actions, you’re prompted with the New Project dialog. In the Installed
Templates pane (the left of the dialog), you should see Silverlight listed along with the other major
template categories under the default language that you have chosen. Once you select Silverlight,
you’ll see fi ve project templates, as shown in Figure 2-2.

Table 2-1 describes each project type and its purpose.

Creating a Basic Silverlight Application  ❘  33

Figure 2-2

Table 2-1

Project Type Description

Silverlight Application Basic Silverlight application with a default MainPage.xaml
starting page that has no default content or navigation scheme

Silverlight Class Library Standard class library project

Silverlight Business Application Feature-rich Silverlight application that includes the WCF RIA
Services features as well as a default MainPage.xaml with a
built-in navigation

Silverlight Navigation Application Basic Silverlight application that includes a MainPage.xaml
with built-in navigation as well as several navigation views

WCF RIA Services Class Library Standard class library project that includes additional refer-
ences to WCF RIA Services–specific functionality

Silverlight Unit Test Application Basic unit test stub project

For this very first application, do the following:

	 1.	 Select Silverlight Application from the New Project dialog.

	 2.	 Change the Name to HelloSilverlight.

	 3.	 Click OK.

34 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

Once you click OK, you are prompted with the New Silverlight Application dialog, which has some
additional questions about the type of Silverlight application you want Visual Studio to create, as
shown in Figure 2-3.

figure 2-3

Because Silverlight is a client technology that runs inside of a web browser, the initial question this
dialog is asking, Host the Silverlight application in a new Web site, lets Visual Studio know if you
want to create a Silverlight application plus an ASP.NET project that will host the Silverlight appli-
cation. If you uncheck this option, a stand-alone Silverlight project is created with no accompanying
web application.

If you create a stand-alone Silverlight application, or someone e-mails a
Silverlight project to you and you want to associate it with a new or existing
ASP.NET application, follow these steps:

 1 . Create a new ASP.NET project or open an existing one.

 2 . Add the Silverlight project to the solution by right-clicking on the solution
name and selecting Add ➪ Existing Project from the context menu.

 3 . View the ASP.NET project’s properties by right-clicking the project name
and selecting Properties from the menu, by hitting Alt+Enter, or by selecting
the Project ➪ Properties.

Once the Properties window is open, you’ll notice a Silverlight tab on the left
side. If you select this tab, you’ll see various options for adding a new or existing
Silverlight project to the existing ASP.NET application.

In this case, make sure you leave the default values checked, and then click OK to create the solution
and projects.

Creating a Basic silverlight application ❘ 35

In Chapter 8, you learn about the details of WCF RIA Services, which is also an
option in the New Silverlight Application dialog.

Once Visual Studio churns for a second to create the solution, based on your settings, you will see
something similar to Figure 2-4.

figure 2-4

using silverlight designer for visual studio
At this point, you have created a basic Silverlight application. It doesn’t do anything yet; you will
add functionality later. This section looks at what Visual Studio offers for Silverlight developers,
as well as some of the details on how projects run inside of Visual Studio. As you have probably
noticed, Visual Studio 2010 has the same feel as previous versions and the same basic layout. I
have my Visual Studio set up with the default C# Developer settings, so on the right side, I see
my Solution Explorer and Properties pane, and in the main area of the screen I have the default
MainPage.xaml in a split view. Figure 2-5 highlights the various areas of Visual Studio as it per-
tains to Silverlight development.

36  ❘  Chapter 2   Building Applications with Visual Studio

Toolbox Design Surface Zoom Silverlight Design Surface Split View Solution Explorer

XAML Editor Properties PaneTag NavigatorData Sources WindowDocument Outline

Figure 2-5

Table 2-2 looks at these key areas and describes what purpose they serve.

Table 2-2

Visual Studio Feature Description

Silverlight Design Surface The Design Surface is the visual surface where you design the layout
for your application as well as drag controls or user controls from the
Toolbox to create the user interface for your application. Everything
displayed on the Design Surface is reflected in the XAML view.

Solution Explorer The Solution Explorer contains the Silverlight project(s) and the
ASP.NET web application projects.

Properties Pane Using the Properties pane you set property values on controls that
are selected on the Design Surface or in the XAML editor. Figure 2-6
highlights some of the key features of the Properties pane.

Creating a Basic silverlight application ❘ 37

visual studio feature description

XAML Editor The XAML Editor is a synchronized XML view of the Design
Surface . The XAML Editor includes IntelliSense, auto-formatting,
syntax highlighting, and tag navigation .

Split View bar The Split View bar lets you control the relative sizes of Design view
and XAML view . You can also swap views, specify whether split
view is horizontal or vertical, and collapse either view .

Tag Navigator The Tag Navigator appears below the XAML view and lets you
move to any parent tag of the currently selected tag in XAML view .
When you move the mouse pointer over a tag in the Tag Navigator,
a thumbnail preview is displayed for that element .

Data Sources Window The Data Sources window allows you to drag any Entity Data Model
tables onto the design surface . This process creates the business
logic and data bindings automatically .

Document Outline The Document Outline window provides a hierarchical view of the
currently opened Design Surface .

Toolbox The Toolbox contains Silverlight controls and components that can
be dragged on the Design Surface or XAML Editor .

Design Surface Zoom The Design Surface Zoom control gives you the ability to zoom the
design surface down to 10% of its original size up to 20X its original
size . If the design surface is zoomed in, and horizontal or vertical scroll-
bars appear, you can pan to view parts of the design surface that are
off -screen by pressing the spacebar and dragging the Design Surface .
Note that in the lower left of the XAML Editor you can access the XAML
Editor Zoom control . The XAML Editor will zoom from 20 percent of the
original size to 400 percent of the original size of the displayed text .

Several interesting tools are available (all free, which is even better) that can
either help you be more productive with XAML or help you learn/test out
XAML snippets:

http://xamlcodesnippets.codeplex.com/➤➤ — This tool helps you create
XAML snippets as well as gives you a nice integration with Visual Studio to
insert XAML snippets into the XAML Editor.

http://blog.nerdplusart.com/archives/➤➤

silverlight-code-snippets — This website has several really useful
XAML snippets, plus it is a great resource for learning various aspects
of Silverlight.

http://kaxaml.com/➤➤ — This is a great tool that gives you a XAML Editor,
complete with IntelliSense, to write and test XAML.

http://xamlcodesnippets.codeplex.com/
http://blog.nerdplusart.com/archives/
http://kaxaml.com/
http://blog.nerdplusart.com/archives/silverlight-code-snippets

38  ❘  Chapter 2   Building Applications with Visual Studio

Using the Properties Pane
As Figure 2-6 demonstrates, several features on the Properties pane help you modify, find, and navi-
gate to control properties.

Display and
Add Control
Events

Change
Control
Name

Preview
of Selected
Control

Search
Control
Properties

Property Value

Sort by Property Name

Sort by Property Source

Display by Property Category

Property Marker

Property Name

Figure 2-6

New to the Silverlight Designer for Visual Studio 2010 are enhanced tools on the Properties pane that
make it easier to work with the richer visual features of Silverlight controls. As Figure 2-6 demonstrates,
the first column displays the property name, the right column is the property value, and new to Visual
Studio 2010 is the middle column, which contains the property marker. The property marker indicates
whether there is a data binding or a resource applied to the property. When you click the property
marker, you can open the Data Binding Builder or the Resource Picker. Figure 2-7 shows what the
property marker context menu looks like.

Table 2-3 shows each type of custom Property Editor and their description.

Creating a Basic Silverlight Application  ❘  39

Table 2-3

Property Editor Description

Data Binding Builder The Data Binding Builder lets you create data bindings without typ-
ing any XAML. You can create bindings to resources, data contexts,
and element properties as well as apply value converters (see
Figure 2-8).

Resource Picker The Resource Picker lets you find and assign resources to proper-
ties in the Properties pane (see Figure 2-9).

Brush Editor The Brush Editor gives you a UI similar to Expression Blend to set
colors and create gradients for objects (see Figure 2-10).

Figure 2-7 Figure 2-8

Before you go any further, take a look at the files in the projects that were created.

40  ❘  Chapter 2   Building Applications with Visual Studio

Figure 2-9 Figure 2-10

Creating Silverlight Project and Web Application Project Files
When you create a new Silverlight solution, and you choose the default option of creating a Silverlight
project and a web application project to host the Silverlight project, Visual Studio generates a series of
different files in each project.

Table 2-4 describes the Silverlight project files that are created by Visual Studio.

Table 2-4

FileName Description

AppManifest.xml This is the application manifest file that is required to generate the .xap file.

AssemblyInfo.cs or
AssemblyInfo.vb

This file contains the name and version metadata that is embedded into the
generated assembly.

References mscorlib.dll
System.dll
System.Core.dll
System.Net.dll
System.Windows.dll
System.Windows.Browser.dll
System.Xml.dll

App.xaml The App class is required by a Silverlight application to display the appli-
cation user interface. The App class is implemented by using App.xaml
and App.xaml.cs or App.xaml.vb. The App class is instantiated by the
Silverlight plug-in after the application package (.xap file) is created.

MainPage.xaml The MainPage class is used to create the user interface for the Silverlight
application. The MainPage class derives from UserControl.

Creating a Basic silverlight application ❘ 41

Expression Blend and Visual Studio share the same project and solution fi le
structure, so any Silverlight project that is created in Visual Studio can be
opened in Expression Blend, and vice versa.

Table 2-5 describes the web application project fi les that are created by Visual Studio.

taBle 2-5

filenaMe description

AssemblyInfo .cs or
AssemblyInfo .vb

This fi le contains the name and version metadata that is embed-
ded into the generated assembly .

Client Bin folder This is the deployment folder for the XAP fi le, which is created
when you build the application . The details of a XAP fi le are cov-
ered later in this chapter .

HelloSilverlightTestPage .aspx An .aspx fi le that is the default startup web page . The name of
this fi le is a concatenation of the name of the Silverlight applica-
tion project and the text “TestPage .aspx” .

HelloSilverlightTestPage .html An HTML fi le that is used to confi gure and instantiate the
Silverlight plug-in, which downloads and runs the Silverlight appli-
cation . The name of this fi le is a concatenation of the name of the
Silverlight application project and the text “TestPage .html” .

Silverlight .js A JavaScript helper fi le that contains functions to initialize
Silverlight plug-in instances and functions for determining the
client’s installed version of the plug-in .

Web .confi g A website confi guration fi le .

using the silverlight design surface
The split view by default will have the screen you are working with on the top half of the win-
dow, and the XAML for that screen on the lower half of the window. If you are coming from
Windows Forms or ASP.NET development, the spilt screen exists, but you may not be used
to a split screen by default. The main reason the split screen exists is that in previous versions
of Visual Studio, there was no WYSIWYG designer for Silverlight. When you created the UI
for your application, it was all done by typing XAML. The design surface was considered a
Previewer rather than a drag-and-drop surface. Visual Studio 2010 is the fi rst version of Visual
Studio that brings this RAD capability to building Silverlight applications. As you learned in
Chapter 1 and can further examine in Appendix A, XAML is a declarative markup language

42  ❘  Chapter 2   Building Applications with Visual Studio

that defines the user interface and binds the user interface to the code that drives the interactions
with the user. When designing screens, you can:

Drag controls from the Toolbox onto the design surface➤➤

Drag controls from the Toolbox onto the XAML Editor➤➤

Write the XAML in the editor to create the user interface➤➤

Because this chapter is focused on Visual Studio, I want to get across the RAD features of the tool.
Drag some controls from the Toolbox onto the design surface to create the Hello Silverlight application.
To make this happen:

	 1.	 If the Toolbox is not showing, click the Toolbox tab on the left side of Visual Studio to
open it. For convenience, click the pushpin to pin the Toolbox open. Your IDE should
look something like Figure 2-11.

Figure 2-11

	 2.	 From the Toolbox, drag-and-drop a Button onto the design surface.

	 3.	 Using the mouse, drag the button to the upper left of the screen using the snap lines as a
guide. Figure 2-12 demonstrates what you should see.

Creating a Basic Silverlight Application  ❘  43

	 4.	 Review the XAML in the split window. Note the Button element was added inside of the
Grid layout element. As you drop controls onto the design surface, the XAML is simultane-
ously updated.

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Button” Height=”23”
 HorizontalAlignment=”Left” Margin=”12,12,0,0” Name=”button1”
 VerticalAlignment=”Top” Width=”75” />
</Grid>

Figure 2-12

	 5.	 From the Toolbox, drag-and-drop a TextBlock onto the design surface and line it up under
the Button control using the snap lines.

	 6.	 Select the Button control with the mouse and press the F4 key on your keyboard. This brings
up the Properties pane for the Button control.

	 7.	 Change the Content property to Click Me! and press the Enter key as Figure 2-13 shows.
Note that this isn’t the Text or Caption property. Because XAML is based on the concept
of composable controls, you can embed almost any control inside of another control. The
“content” in this example is a string value. It could have also been a MediaElement control
or a ListBox control. You are not limited to strings as the content for controls.

44  ❘  Chapter 2   Building Applications with Visual Studio

Figure 2-13

	 8.	 Now add some code the Button’s click event. You have several ways to do this in Silverlight.
Here is a brief list (later in the chapter, you see examples of how to add event handlers in
Silverlight):

Click the Events tab on the Properties pane, find the corresponding event you want to ➤➤

write code for, and double-click the event name.

Double-click the control on the design surface to get to its default event.➤➤

Type the event name in the XAML element and add a new event handler, as Figure 2-14 ➤➤

demonstrates. Selecting New Event Handler from the IntelliSense creates a default event
handler name. To get to the event handler, you can either hit the F7 key to jump to
code-behind, or right-click the event handler name and select Navigate to Event Handler
from the context menu. Use one of these methods to get to the event handler.

	 9.	 You should now be looking at the code-behind for this form. Add the following code to the
button1_Click event handler:

textBlock1.Text = “Hello Silverlight World”;

	10.	 The next step is to build the application. Before doing a build, note the ClientBin folder in the
HelloSilverlight.Web project as shown in Figure 2-15. Now press the F6 key to build the solu-
tion. If you look in the ClientBin folder now, you’ll see something similar to Figure 2-16 — ​there
is a file named HelloSilverlight.xap in the folder. You learn what the XAP (pronounced
ZAP) file is a little later in this chapter.

Creating a Basic Silverlight Application  ❘  45

Figure 2-14

Figure 2-15 Figure 2-16

	 11.	 Right-click HelloSilverlightTestPage.html and select View in Browser as demonstrated
in Figure 2-17.

46  ❘  Chapter 2   Building Applications with Visual Studio

	12.	 Once the browser window opens, click the Click Me! button, and you should see something
like Figure 2-18.

Figure 2-17 Figure 2-18

Congratulations! You just completed your first,
albeit simple, Silverlight application. But what
just happened? Remember that Silverlight is a
client technology; there is no server-side piece to
Silverlight. So when you built the solution, the
HelloSilverlight project, the Silverlight project
code and XAML, was compiled down to IL
(intermediate language) and packaged in a XAP
file, which was then deployed to a website. In
this case, the website is the web application that you linked to the Silverlight project when you
first created the HelloSilverlight solution. Visual Studio links these projects together, so every time
you build, the XAP that is created from the Silverlight project is automatically deployed to the
ASP.NET project. Figure 2-19 describes this visually.

The next obvious question is: How did HelloSiverlightTestPage.html show the Silverlight
form you just worked with? As you learned in Chapter 1, Silverlight is a browser plug-in, so
HelloSilverlightTestPage.html has an object tag that loads the plug-in onto the HTML
page. The following HTML snippet is the object tag for HelloSilverlightTestPage.html:

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/HelloSilverlight.xap”/>
 <param name=”onError” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50331.0” />
 <param name=”autoUpgrade” value=”true” />

Silverlight Application XAP File

Web Server

Builds to

Deploys to

Figure 2-19

Creating a Basic Silverlight Application  ❘  47

 <a href=”http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0”
 style=”text-decoration:none”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight” style=”border-style:none”/>

</object

Like any other plug-in, there is an object that describes the type of plug-in and there are one or
more param elements, which are key-value pair property settings for the object that is being loaded.
Notice the bold line of code:

<param name=”source” value=”ClientBin/HelloSilverlight.xap”/>

This is where the XAP file comes into play. The content that this plug-in needs to run is in the
ClientBin folder and is named HelloSilverlight.xap.

Understanding the XAP File
A XAP file is a unit of deployment for a Silverlight application. The XAP file is essentially a ZIP
file format using a XAP file extension, which means that multiple files can be contained within a
XAP file. When a browser navigates to a page that has a Silverlight object tag on it, the Silverlight
plug-in is activated, and the XAP file specified in the source parameter in the HTML page begins to
download. Once the XAP file is downloaded to the browser cache, the Silverlight plug-in reads the
AppManifest.xaml file in the XAP container and gleans some key pieces of information:

The assembly name that the Silverlight plug-in should load➤➤

The entry point of the application class to load➤➤

The minimum version of Silverlight that this application is targeting➤➤

If you locate the HelloSilverlight.xap file on your filesystem (hint: find the ClientBin folder
for your web project), rename it to HelloSilverlight.zip, and extract the contents, you’ll see
something like Figure 2-20.

Figure 2-20

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D

48  ❘  Chapter 2   Building Applications with Visual Studio

Go ahead and open up the AppManifest.xaml file, and you’ll see this:

<Deployment xmlns=”http://schemas.microsoft.com/client/2007/deployment”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 EntryPointAssembly=”HelloSilverlight”
 EntryPointType=”HelloSilverlight.App”
 RuntimeVersion=”4.0.50331.0”>
 <Deployment.Parts>
 <AssemblyPart x:Name=”HelloSilverlight” Source=”HelloSilverlight.dll” />
 </Deployment.Parts>
</Deployment>

Note the Deployment.Parts section in AppManifest.xaml. Each assembly that is compiled as a
Resource in your project will be listed as an AssemblyPart in the manifest. For example, if I right-click
the References folder in my HelloSilverlight project and add an assembly that is not part of the core
assemblies, it will be added to my XAP file when I build, and AppManifest.xaml will be updated to
include the additional AssemblyPart elements. In the following example, I added the Microsoft
.Expression.Interactions.dll and its dependent assembly System.Windows.Interactivity.dll:

<Deployment xmlns=”http://schemas.microsoft.com/client/2007/deployment”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 EntryPointAssembly=”HelloSilverlight”
 EntryPointType=”HelloSilverlight.App”
 RuntimeVersion=”4.0.50331.0”>
 <Deployment.Parts>
 <AssemblyPart x:Name=”HelloSilverlight” Source=”HelloSilverlight.dll” />
 <AssemblyPart x:Name=”Microsoft.Expression.Interactions”
 Source=”Microsoft.Expression.Interactions.dll” />
 <AssemblyPart x:Name=”System.Windows.Interactivity”
 Source=”System.Windows.Interactivity.dll” />
 </Deployment.Parts>
</Deployment>

Note the two additional AssemblyPart elements for each of the assemblies added.

You’ll also notice that HelloSilverlight.dll is a fairly small 8kb file. So far, this only contains a
very small amount of IL: the XAML and code for this simple Silverlight application. If you were to
add additional artifacts to your Silverlight project (like images, for example), they would be compiled
as a Resource by default, so you can dramatically increase the size of your DLL, and thus your XAP
file, by adding artifacts like images or video as Resources, as well as third-party assemblies from
component vendors. Silverlight supports several Resource types:

XAML resources, such as resource dictionaries, which contain styles or templates that could ➤➤

be shared or applied to user interface elements at run time

Resource files, such as images and videos that you can refer to by URI. You have the option of ➤➤

embedding resource files in assemblies, including them separately in the application package,
or retrieving them from a network resource.

Resource strings, such as those provided through localized satellite assemblies➤➤

When dealing with Resources, it’s important to think about performance of your application. The
larger your XAP file, the longer it will take to download. Your goal should be the smallest XAP file

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Creating a Basic silverlight application ❘ 49

possible, giving your application a fast startup time. This does not mean you can’t have rich, interac-
tive applications that use various media artifacts and third-party components. You just need to be
smart about how you get those application pieces down to the client. If you have images or video
fi les, you may want to deploy them to the web server’s ClientBin folder, and reference them in your
code using the fully qualifi ed URI, or you can asynchronously download fi les or assemblies as they
are needed on the client. Either way, you have multiple good options for keeping a small XAP fi le
and a responsive application.

To make it easier to unzip the XAP fi le of your application, you can associate
the XAP extension with the Shell Zip application. To do this, follow these steps:

 1 . Open a Command Prompt with Administrative permissions as
Figure 2-21 shows.

figure 2-21

 2 . Type cmd /c assoc .xap=CompressedFolder

 3 . Press the Enter key.

continues

50 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

Now if you right-click a .xap extension, you can extract the contents to a folder
as shown in Figure 2-22.

figure 2-22

caching assemblies
Since we are on the topic of performance, one feature that can dramatically improve the perfor-
mance of an application is by using application library caching. This means that when a user revisits
your website running a Silverlight application that has application library caching enabled, the over-
all startup time increases, because the assemblies are already on the client.

When this feature is enabled, certain assemblies are packaged outside of the project’s XAP fi le when
it’s built. For example, the Infragistics.Silverlight.Excel library uses the System.Windows.Data assem-
bly. For my application to use application library caching to cache the System.Windows.Data assembly
down to the client for subsequent uses without needing to be downloaded, I would follow these steps:

 1 . Right-click the HelloSilverlight project in the Solution Explorer and select Properties to open
the Properties window.

 2 . On the Silverlight tab, click Reduce XAP size by using application library caching, as demon-
strated in Figure 2-23.

(continued)

Creating a Basic Silverlight Application  ❘  51

Figure 2-23

	 3.	 Add a reference to a third-party assembly, such as the Infragistics.Silverlight.Excel assembly
or an assembly that ships with Silverlight but is not part of the core run time, such as the
System.Windows.Controls.Data assembly.

	 4.	 Build the application.

When the project is built, the build packages the System.Windows.Data assembly into a separate zip
file as Figure 2-24 shows.

Figure 2-24

52 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

The AppManifest.xaml in the HelloSilverlight.xap now looks like this:

<Deployment xmlns=”http://schemas.microsoft.com/client/2007/deployment”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 EntryPointAssembly=”HelloSilverlight”
 EntryPointType=”HelloSilverlight.App”
 RuntimeVersion=”4.0.50331.0”>
 <Deployment.Parts>
 <AssemblyPart x:Name=”HelloSilverlight” Source=”HelloSilverlight.dll” />
 <AssemblyPart x:Name=”Infragistics.Silverlight.Excel.v10.1”
 Source=”Infragistics.Silverlight.Excel.v10.1.dll” />
 <AssemblyPart x:Name=”Microsoft.Expression.Interactions”
 Source=”Microsoft.Expression.Interactions.dll” />
 <AssemblyPart x:Name=”Infragistics.Silverlight.v10.1”
 Source=”Infragistics.Silverlight.v10.1.dll” />
 <AssemblyPart x:Name=”Infragistics.Silverlight.Compression.v10.1”
 Source=”Infragistics.Silverlight.Compression.v10.1.dll” />
 <AssemblyPart x:Name=”System.Windows.Interactivity”
 Source=”System.Windows.Interactivity.dll” />
 </Deployment.Parts>
 <Deployment.ExternalParts>
 <ExtensionPart Source=”System.Windows.Data.zip” />
 </Deployment.ExternalParts>
</Deployment>

You cannot use application library caching and out-of-browser support in the
same application. In Chapter 9 you learn about out-of-browser applications,
and the requirement that its startup assemblies are all contained in its XAP fi le.

When a user fi rst visits your web page, the XAP and all of the ZIP fi les indicated in the ExternalParts
section are added to the browser cache so that they can be reused on subsequent visits. Keep in mind
that Silverlight caching is subject to the caching confi guration settings on the server and in the browser.
Files are typically downloaded only if they are not in the cache or if they are newer than the cached ver-
sions. Application library caching is benefi cial for libraries that do not change that often, such as third-
party tools or non-core System assemblies. Overall, you want to cache as much as you can; performance
or perceived performance of your application can make a signifi cant impact on return visitors.

adding class defi nition and partial classes
A Silverlight User Control, Silverlight Page, Silverlight Child Window, or Silverlight Templated Control
is no different than any visual form that you are used to using in Windows Forms, ASP.NET, or WPF.
There is a “design surface” or page that you work with to design the form’s layout and interactions,
and there is a code-behind class fi le that is associated with the fi le. In XAML, the class name that
glues the form to the code-behind is declared in XAML in the Root element of the page, which by
default is set to a Build Action as Page. For example, in the MainPage.xaml fi le, the x:Class modifi er
indicates the namespace and class for the fi le. In Figure 2-25, you can see the highlighted area, which
shows the namespace is HelloSilverlight and the class is MainPage.

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Creating a Basic Silverlight Application  ❘  53

Figure 2-25

The partial class file for this page, as indicated
by the hierarchical structure in Visual Studio
(see Figure 2-26) derives from the type of the
class used to define the root element of the page.

So for example, if you added a new
UserControl, the derived type is UserControl,
as shown in Figure 2-27.

If you added a new Child Window or Page, the
corresponding type derived in the partial class
is going to match ChildWindow or Page. As
with any partial class, it must be declared as
public so the partial class and the XAML page
are aware of each other and can build properly.

You’ll also notice in Figure 2-27 the
call to InitializeComponent in the
constructor. Similar to other platforms,
InitializeComponent points to a generated code file that is created when the page associated with the
code-behind is markup-compiled, which is responsible for rendering the UI as well as connecting the
objects declared with an x:Name modifier in the XAML page with the object definitions in the partial
class. The code generated file is normally in the obj folder of your project after your project is compiled.
If you look in the obj folder, you’ll see a file that has a .g between the filename and the extension.

Adding Events to a Partial Class
This section is a review if you are a seasoned Visual Studio developer, and a must read if you are
new to using Visual Studio. In any event-driven programming model, you write code that responds
to interactions on the screen. So how do you link up the action with re-action of the code? You have
several ways to do this in Visual Studio when creating Silverlight applications:

From the design surface, double-click the object. This takes you to the code-behind file and ➤➤

the default event handler for the object. For example, if you double-click a button, you are
taken to the Button’s Click event.

Figure 2-26

XAML File

Code-Behind
Partial Class

54  ❘  Chapter 2   Building Applications with Visual Studio

Partial Class Derived Type

Figure 2-27

From the Properties pane, click the Events tab and find the event you want to write code for. ➤➤

Once you find it in the list, you can double-click the name of the event to get to the code-behind,
or you can choose an event that already exists from the drop-down control to the right of the
event name.

From the partial class, you can add an event handler manually by typing ➤➤ object.eventname
+= and then pressing the Tab key twice to add the event and event handler as shown in
Figure 2-28.

Figure 2-28

From the XAML page, use the IntelliSense feature to add the event on the object. For example, ➤➤

in the Button markup, type Click= and let IntelliSense take over to add the event declaration in
XAML and the code-behind. This IntelliSense interaction is show in Figure 2-29.

Understanding the Application Life Cycle  ❘  55

Figure 2-29

By default, when you add an event handler, the scope is private to the partial class. You can modify
the scope to non-public, but for events that are specific to an object this is not recommended. If you
need to repeat the same code block multiple times, you should create a public or static class with
events that have public modifiers and call those events from the private event.

Understanding the Application Life Cycle

As mentioned earlier, the AppManifest.xaml file contains the key information needed by the
Silverlight plug-in to load your application. The EntryPointType property contains the namespace
and type name of the class that contains the Application entry point for your application. This
Application class contains the following key elements:

Application ➤➤ Startup and Exit events

Interaction with the Silverlight plug-in and the host web page➤➤

Resource management➤➤

Centralized exception handling➤➤

All Silverlight applications contain one class, which is derived from Application. By default, this
code is in the App.xaml.cs code file. So for example, if you want to write custom code for when
your application is initialized or is exiting, you would write code in the Startup and Exit events:

public App()
{
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException
 += this.Application_UnhandledException;

 InitializeComponent();
}

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new MainPage();

56  ❘  Chapter 2   Building Applications with Visual Studio

}

private void Application_Exit(object sender, EventArgs e)
{

}

Note this line of code in the Application_Startup event of your App.xaml.cs file:

this.RootVisual = new MainPage();

Now look at the first line of XAML in the MainPage.xaml file:

<UserControl x:Class=”HelloSilverlight.MainPage”

The class name for this object is MainPage, which is the RootVisual, or startup visual class, for this
application. If you add a new UserControl to your Silverlight project, named NewPage for example,
and change the Application_Startup to this:

this.RootVisual = new NewPage();

the NewPage.xaml file will be loaded when the application starts. So as you are experimenting with
Silverlight, you may use various pages for startup, and can easily swap out the startup file in the
App class. To better understand the life cycle of this process, examine Figure 2-30.

Web
Browser

Load the Silverlight
Plug-In

Loads the CoreCLR
Services

Creates an
AppDomain

Loads the Application
into the AppDomain

Loads the RootVisual
Startup Class

Figure 2-30

Debugging Silverlight Applications  ❘  57

Debugging Silverlight Applications

Because the application is now built, you should understand some of the debugging techniques
available to you. I won’t go into general debugging features that are available in Visual Studio,
such as the Locals, Watch, Immediate, Call Stack, or Intellitrace features, but rather look at how
to attach to a running instance of your application in a browser and how to remote debug from an
Apple Mac computer.

Attaching to a Process to Debug
Using the Attach to Process dialog in Visual Studio, you can attach to the instance of your browser
that has a Silverlight application running from IIS.

To attach to a process, either:

Select Attach to Process from the Tools menu➤➤

Or press and hold Ctrl+Alt+P➤➤

This menu is shown in Figure 2-31.

Figure 2-31

Once the dialog is shown, you will see multiple instances of Internet Explorer in the list, based
on how many browser instances and tabs you have open. To attach to the right process, find the
instance that has Silverlight as the type. This is the parent instance of the browser, not the tab that
has Silverlight running.

58 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

Figure 2-32 shows the Attach to Process dialog with the Silverlight process and the instance tab
displayed.

figure 2-32

The debugger automatically tries to fi gure out
what type of process you are trying to attach to.
You should see Automatic:Silverlight Code in
the Attach To box, which is just above the list of
processes. If you don’t see Silverlight Code
in that box, click the Select button to show the
Select Code Type dialog and select Silverlight
as shown in Figure 2-33.

You can debug JavaScript code in the host web page by using an Attach To value
of Script. However, you cannot debug your Silverlight code and your JavaScript
code at the same time.

figure 2-33

Debugging silverlight applications ❘ 59

attaching to a remote Macintosh process
You can also attach the debugger to a remote Macintosh browser process running a Silverlight-based
application. This requires some additional confi guration steps on both computers, and is supported
only between a computer running Windows and a Macintosh computer.

When debugging a remote process, the Disassembly and Registers windows are
not available.

All of the tools to remote debug an application running on an Apple Mac computer are installed with
Visual Studio and when you install Silverlight on the Apple Mac, you’ll need to go through just a few
confi guration steps to get it set up. The process of remote debugging occurs over an SSL-encrypted
TCP channel between the debugger (the Windows computer running the Visual Studio instance) and
the target computer (the Mac running your Silverlight application). The initial confi guration is setting
up the correct TCP port as well as a private/public key pair so the machines can communicate.

Follow these steps to set up the remote debugging:

 1 . From Apple Mac, run the Silverlight Debugging Confi guration application located in the
/Applications directory.

 2 . Click the Generate New Confi guration button, which does three things:

Populates the Network Port (TCP IPv4) fi eld with a randomly generated port number ➤➤

between 49152 and 65535.

Creates a per-user confi guration directory, ➤➤ ~/Library/Application Support/

SilverlightDebuggingConfig1.0/, which contains the Certificate.dat,
PrivateKey.dat, and Settings.dat.

Creates a per-user launch agent at ➤➤ ~/Library/LaunchAgents/com.microsoft

.silverlight.debugproxy.plist.

 3 . In the Encryption Password text box, specify an 8- to 25-character password and then
duplicate it in the Verify Password text box.

 4 . In the Replicator Path text box, specify a path and .exe fi lename for the PC confi guration,
or accept the default value.

 5 . Click the Generate PC Confi guration button.

A dialog box will confi rm the creation of the PC confi guration .exe fi le at the location you speci-
fi ed in Step 4. You can use this fi le with any computer running Windows that you want to use
to debug Silverlight on the Macintosh computer. Your Apple Mac is now confi gured for remote
debugging. The next step is to confi gure the Windows computer with the confi guration informa-
tion you just created.

60 ❘ chapter 2 BuIldIng ApplIcAtIonS wIth vISuAl StudIo

To confi gure the computer running Windows, follow these steps:

 1 . Close any open instances of Visual Studio.

 2 . Copy the .exe fi le you just created on the Apple Mac to your Windows computer and run
the .exe.

 3 . Enter the password you specifi ed in the previous procedure.

 4 . Click OK in the dialog box that indicates that the Windows confi guration has completed
successfully.

Now both computers are confi gured for remote debugging. You can now establish the connection
between the computers to start debugging:

 1 . On your Macintosh computer, start the Silverlight-based application that you want to debug.

 2 . On your computer running Windows, use Visual Studio to open the Silverlight project that
corresponds to the application that is running on your Macintosh computer.

 3 . On the Debug menu, select Attach to Process.

 4 . In the Transport drop-down list, select Silverlight Remote Cross-Platform Debugging.

 5 . In the Qualifi er combo box, specify the fully qualifi ed domain name or IP address of your
Macintosh computer.

 6 . The Available Processes window displays a list of processes running on your Macintosh.

 7 . Select your Silverlight-based application process. You can use the Type column to identify the
Silverlight processes.

 8 . Click Attach.

To remove the Macintosh debugging confi guration, you can do the following
from the Command Prompt:

On Windows Vista and Windows 7:➤➤

rmdir /s /q %LOCALAPPDATA%\Microsoft\SilverlightDebuggingConfig1.0

On Windows XP:➤➤

rmdir /s /q “%USERPROFILE%\Local Settings\Application
 Data\Microsoft\SilverlightDebuggingConfig1.0”

On the Macintosh computer, open a terminal window and then run the ➤➤

following commands:

rm –rf ~/Library/Application\
 Support/SilverlightdebuggingConfig1.0
cd ~/Library/LaunchAgents
launchctl unload
 ~/Library/LaunchAgents/com.microsoft.silverlight.debugproxy.plist
rm
 ~/Library/LaunchAgents/com.microsoft.silverlight.debugproxy.plist

Configuring Silverlight MIME Types  ❘  61

The Visual Studio debugger is now attached to the target process on the Macintosh. At this point,
you can use Visual Studio to perform normal debugger tasks, such as setting breakpoints, stepping
through code, and examining the call stack.

Configuring Silverlight MIME Types

Now that your application is written and debugged, and you have a pretty good idea about what
you can do in the IDE with Visual Studio and Silverlight, you should know how to get the server
properly configured to serve up your Silverlight application. MIME, or Multipurpose Internet Mail
Extensions, is an Internet standard that describes content for browsers to consume. In general, MIME
types include audio, video, text, HTML, and of course, Silverlight. The way MIME handling works is
when a browser downloads a file, it goes through steps to validate that the type of the file matches the
MIME type declared by the HTTP server. Based on your web server, you may need to add support for
the Silverlight MIME type.

Adding MIME Support to IIS
If you are using IIS 7 in Windows Server 2008, Windows 7, or Windows Vista SP1, the MIME
types needed to support Silverlight are already added by default. If you are running Windows Vista
or Windows Server 2003 IIS 6.0, follow these steps to add the Silverlight MIME type:

	 1.	 Open IIS Manager.

	 2.	 Click MIME Types.

	 3.	 Click Add.

At this point, add the following MIME types (repeat steps 1 through 3 to add each MIMI type):

.xap➤➤  — ​application/x-silverlight-app

.xaml➤➤  — ​application/xaml+xml

.xbap➤➤  — ​application/x-ms-xbap

Figure 2-34 shows this dialog.

In addition to adding MIME types via the IIS Manager, you can add MIME types to the
<staticConent> section of the applicationHost.config file located at %windir%\system32\
inetsrv\config\applicationHost.config.

Add these mappings in the <staticContent> section for Silverlight:

<mimeMap fileExtension=”.xaml” mimeType=”application/xaml+xml” />➤➤

<mimeMap fileExtension=”.xap” mimeType=”application/x-silverlight-app” />➤➤

<mimeMap fileExtension=”.xbap” mimeType=”application/x-ms-xbap” />➤➤

It’s that easy to set up MIME types to ensure your Silverlight content is served up correctly.

62  ❘  Chapter 2   Building Applications with Visual Studio

Figure 2-34

Summary

In this chapter you learned the basics of creating a Silverlight application with Visual Studio and the life
cycle of a Silverlight application. You learned how to add controls to the design surface, how to change
properties on controls, how to add code to events, and how to build an application. You were also
introduced to concepts such as application library caching, which can improve the performance of your
application, as well as debugging and configuring your server to handle the Silverlight MIME types.

3
Building applications with
expression Blend 4

what’s in this chapter?

Understanding the key Expression Blend IDE elements➤➤

Creating a project in Silverlight using Expression Blend➤➤

Creating and using Behaviors in Expression Blend➤➤

Visual states, the Visual State Manager, and custom control ➤➤

templates in Expression Blend

Importing and working with Design Elements not created in ➤➤

Expression Blend

Understanding other elements of the Expression Suite as they relate ➤➤

to Expression Blend

This chapter gets you (the Silverlight Developer) up-and-working with Expression Blend; it helps
you understand what Expression Blend does and doesn’t do and how it works in conjunction
with Visual Studio.

If you have done any Silverlight work lately, you most likely have heard of Expression Blend.
Expression Blend is the premier WYSIWYG (What You See Is What You Get) tool for work-
ing with XAML (eXtensible Application Markup Language)–based design elements in Windows
Presentation Foundation (WPF) and Silverlight. Designed specifi cally for designers or those
developers that tend to work more in the UI rather than the backend, Expression Blend has been
built out so well as to be a crucial tool for all developers, and in some cases, when used with
SketchFlow, it can also be a valuable tool for other types of workers such as information archi-
tects (IAs) and project managers. Part of what makes Expression Blend crucial in your develop-
ment process is that both Visual Studio and Expression Blend can work against the same solution

64  ❘  Chapter 3   Building Applications with Expression Blend 4

at the same time. This allows your developers and designers to work together in ways never before pos-
sible. If you are one of those developers that span both the front-end and back-end worlds of application
development, you will find that when provided with dual monitors, you will have Expression Blend in
one while you are working on the same solution in Visual Studio in the other. Next, this chapter will
help you get started by getting you introduced to the basics of Expression Blend.

Learning Expression Blend Basics

Since you are most likely a developer reading this book, it is important to note that Expression Blend is
a dedicated integrated development environment (IDE) for designing WPF and Silverlight applications.
However, keep in mind that it has been designed specifically as a designer-friendly tool for working
with XAML assets. Designers will not be calling it an IDE, but as a developer, it might be easier for you
to understand it as an IDE. With that in mind, Expression Blend has evolved to the point of doing this
better than Visual Studio, not just from a WYSIWYG standpoint but in functionality — ​for example,
doing key frame animations using Expression Blend’s Timeline tools is a natural task, but in Visual
Studio, it’s not so easy.

IDE Tour
When you have created or otherwise started an Expression Blend project for the first time, your
screen looks something like what is presented here in Figure 3-1 after the splash screen and the start
up dialog which you will read about later.

If you look closely, you can see that Expression Blend is divided into five key areas, namely, four
columns and the top Menu bar. The Menu bar is great for finding help or drilling into things — ​
much like Visual Studio — ​but for the sake of this discussion, focus on the four columns first. The
columns, from left to right, are:

The toolbar➤➤

The Objects timeline plus the Project, Assets, and States views➤➤

The design surface➤➤

The Properties pane➤➤

Each section might have additional tabs and functionality, but this should be what you see before
you customize Expression Blend. You can also disconnect each section and rearrange the UI to
fit just about any way you might want to lay out the application; but assume you are using this
default screen.

To dive a bit deeper into the UI, consider each section separately, starting on the far left with
the toolbar.

Toolbar
Figure 3-2 shows the toolbar up close with all 13 icons, each with its own function(s); some of the
icons can also change behavior or change to icons that are not visible when initially launched.

Learning Expression Blend Basics  ❘  65

Toolbar
Object Timeline/Projects/Assets
and States View Design Surface Properties Pane Menu Bar

Figure 3-1

If you click-and-hold many of the icons — ​for example, the magnifying
glass icon in the figure — ​it opens up an additional selection of tools to
replace the default icon, and the selected tool is shown with a lighter box
around it. Icons that have a small triangle in the lower-right corner are the
ones that contain different icons or tools, other than the default, that can
be selected. Another way to show the additional options is to right-click the
icon and select from the menu that comes up.

Selection Tool➤➤  — ​The first icon at the top of the list is the Selection
tool, which is used to select objects and groups of objects. A typical
operation using this tool would be to click-and-drag over the UI.

Direct Selection Tool➤➤  — ​Often you might be looking at a group of
objects that make up part of a complex UI so that selecting a spe-
cific grouped item can be difficult at best. But using this tool, you
can select discretely so that a typical operation is a standard left-
click on the target. Figure 3-2

Selection Tool

Direct Selection Tool

Pan Tool

Zoom Tool

Eye Dropper Tool

Paint Bucket Tool

Gradient Tool

Pen Tool

Rectangle Tool

Grid Tool

TextBlock Tool

Button Tool

Asset Explorer

66  ❘  Chapter 3   Building Applications with Expression Blend 4

Pan Tool➤➤  — ​The Pan tool, or third icon down, is used for picking up the UI and moving it;
for example, if you have a large, complicated UI and you are zoomed into one section of very
fine details, you might need to move to another section of the UI. This tool allows you to do
that. Along with moving the UI Design view around, if you double-click the Pan tool, the UI
will be centered.

Zoom Tool➤➤  — ​If you need to zoom in and out, you can use the next icon down, called the Zoom
tool. When the Zoom tool is selected, the design surface zooms in if you click anywhere on it.
If you hold down the Alt key while you click the Design Surface, the UI zooms out. Double-
clicking the Zoom tool, then, zooms the UI to the actual size. You can also zoom in and out
using the mouse wheel.

Eye Dropper Tool➤➤  — ​The Eye Dropper tool is used to select colors from the Design view.
This allows you to copy color information and apply it to other elements in your design.

Paint Bucket Tool➤➤  — ​Use the Paint Bucket tool to add a selected color to an element on the
design surface. After selecting a color with the Eyedropper tool, you then can use the Paint
Bucket tool by clicking on the element on the design surface to which you want to apply the
selected color.

Gradient Tool➤➤  — ​The Gradient tool is the first tool that can be swapped out. The Gradient
tool itself is used to apply or create gradients as a part of elements on the design surface.
(Once applied, discrete control over the gradients is done in the Properties pane, discussed
later on.) By clicking on the Gradient icon and holding, you will get a small pop-up menu
that holds another Gradient Tool icon. You will also get a Brush Transform tool, which
allows you to apply a brush transform to an element.

Pen Tool➤➤  — ​The Pen tool is used to draw line paths with Bezier curves and is not free-form,
like the Pencil tool; but if you click-and-hold it, you get to the Pencil tool, which allows free-
form drawing.

Rectangle Tool➤➤  — ​The Rectangle tool creates rectangular objects on the design surface. If
you right-click and hold it, you can also get a Line tool or an Ellipse tool. The Line tool lets
you draw straight lines, and the last object you can select in this set is the Ellipse tool to draw
ellipses. In all three cases, detailed properties can be edited from the Properties pane.

Grid Tool➤➤  — ​When you click-and-hold the Grid tool, you can select from six different layout
controls that can be clicked and added to the design surface. The default is the Grid, but there
is also Canvas, StackPanel, ScrollViewer, Border, and ViewBox. All of these have the same
functionality as described.

TextBlock Tool➤➤  — ​The TextBlock tool allows you to add text by selecting this tool and then
clicking on the UI. Also, if you click-and-hold on this icon, you can select from TextBlock,
Textbox, and the Password box. All the icons have the same basic behavior for adding
text controls.

Button Tool➤➤  — ​When you select the Button tool, you can add a button by clicking anywhere
in the design surface. If you double-click on this icon, the default size button is added to the
UI design surface. As a designer, you can find additional tools by clicking on the Button icon
and holding it to get a list, which includes the Check box, Combo box, List box, Radio but-
ton, Scrollbar, and Slider. Each control typically has events or behaviors tied to it.

Learning Expression Blend Basics  ❘  67

Asset Explorer➤➤  — ​When you click-and-hold the Asset Explorer tool, it opens a library of
assets (such as controls, behaviors, and other objects) that you may want to add to the design
surface. The default assets that Expression Blend provides are significant. Figure 3-3 shows
the pop-up Asset Explorer.

Asset Tree Search Box Search Icon
Grid Mode
Icon

List Mode
Icon

Figure 3-3

You’ll note that Asset Explorer has a Search box at the top, and just to the right of it are
two icons. The Grid Mode icon is selected, and the other changes the results to a List view.
Once you type in the Search field, you can click the Search icon or hit Enter to get results
laid out according to the layout selected. You will note that on the left of the results is the
Asset Tree. Feel free to explore all the additional controls from data grids and grid splitters
to pop-ups and rating controls. All you do is select one and click on the design surface.

To the right of the toolbar is the next section — ​the Project Explorer.

Project Explorer
The Project Explorer is just to the right of the toolbar, or left of the design surface. This area can be
split into top and bottom by default such that the top section is the Project Explorer and the bottom
section is Objects and Timelines. At the top of the Project Explorer area are several tabs. The first
tab is Projects, the second Assets, and then the next one States. See Figure 3-4.

The Assets tab is the Asset Explorer discussed earlier, and the States tab is for working with the
Visual State Manager in Visual Studio.

Project Explorer itself (see Figure 3-5) is basically the same tool as Visual Studio’s Solution Explorer.
The control is a tree control that at the top level is a solution and as a tree is broken out according
to the project file structure. Although not all the files are editable in Expression Blend, you can see
them. These are XAML files that you can click on and edit; you can also right-click and get a full

68  ❘  Chapter 3   Building Applications with Expression Blend 4

menu, including start and edit in Visual Studio if you have Visual Studio installed. If you have both
Expression Blend and Visual Studio installed, this also works in Visual Studio when you right-click
a XAML file or project.

Project Explorer Assets Tab States Tab

Figure 3-4 Figure 3-5

One of the newest features in Expression Blend is a basic code editor. It is not as robust as Visual
Studio in that it’s not designed to be a rich editor, but it does allow you to be dangerous to yourself
and others, enabling you to do basic code editing, program event handlers, and the like. You can
also integrate Expression Blend with Team Foundation Server (TFS) for source control similar to
Visual Studio. Having source control integration also means that you can check stuff in and out of
source control from Project Explorer.

Object Explorer
The bottom half of the Project Explorer section in Figure 3-6 is called Objects and Timeline in the
tab. Besides being an object explorer, at the time of this writing, this is also the place to see timeline
information. Object Explorer is a representation of the current Visual Tree in the form of an object
hierarchy. This representation of what can be in your Visual Tree lets you turn elements on and off
(i.e. add or remove from Visual Tree) and helps you identify the elements you are looking for. Look
at the simple tree in Figure 3-6.

In the object tree, objects are nested based on their parent and have an icon based on their type. Names
are based on type, such as canvas or path, but if they are named elements — ​meaning that they specifi-
cally have the x:Name property set — ​then that name is what will show as opposed to their type value in
the tree. You can tell which elements are “named” elements by the lack of square brackets that contain
types used in the tree. In Figure 3-6, you can see the top-level element is [UserControl], which is not
named and thus is in brackets. [UserControl] has one child called LayoutRoot, which is named and so
does not have brackets around it. The same applies to all elements in the visual tree represented here.

learning expression Blend Basics ❘ 69

Object Tree Visual Tree Elements

figure 3-6

Another key aspect of the object tree tool is that it can make any element of the tree visible or not. This
is done by clicking the eye icon, or the spot where the eye icon should be, to cause an element to switch
its visible state. In this way, you can better focus on the elements you are working with currently.

The next section focuses on the design surface.

Design surface
The design surface is where you see our XAML rendered, or at least, rendered in as much as Expression
Blend can render it without it running. You can draw here, animate things here — everything is here for
the current XAML page or view. The design surface can actually be shown in one of three ways: Design
view, Split view (which includes the Design view and Code view), and Code view.

You will fi nd many developers who work in Expression Blend use the Split
view because it gives you the design surface but also allows you to tweak
the XAML without messing with the design surface in Design view. If you
know XAML, this can be really helpful.

Figure 3-7 shows the Split view with some simple content.

This fi gure gives you a good idea of what to expect in Expression Blend. Along the top, you see two
tabs, but there can be any number of tabs for each open document. Right above the VerticalScrollbar
to the right of the design surface are the mode icons. The Design mode icon is on top, the middle icon
is for XAML only, and the bottom one is for Split mode. You may fi nd it easier to work in Split mode,
and the code section is very small. For the most part, if you know XAML, this allows you to tweak
the XAML. Another great feature in Expression Blend is that it color-codes the XAML the same way
Visual Studio does so you know what is what. Keep in mind that this book is not in color so some
elements such as color-coding do not show as well as in Expression Blend.

70  ❘  Chapter 3   Building Applications with Expression Blend 4

XAML View Only

Split View Icon

Design View Only

Show Annotations
Icon

Snapping to
Snap Lines

Zoom Level

Turn On/O�
E�ect Rendering

Show Snap
Grid Icon

Snapping
to Grid Lines

Figure 3-7

Looking closely, you can also see some icons to the left of the horizontal scrollbar below the Design
view. The first icon on the left is actually a drop-down arrow you can use to size. (In this figure, the
sizing is set at 100 percent. You can change this level of zoom much like using the Zoom tool but with
this drop down.) The next icon is the Render Effect icon. Sometimes render effects (for example, pixel
shaders) interfere with design work; this allows you to turn items off.

The next three icons are grid-related. One is to turn the snap grid overlay on and off. The second
is to turn the snapping to grid lines button on and off, and the third one is to turn the snap-to-snap
lines functionality on and off. After these icons is one more button used to turn annotations on and
off, which is great for design review notes right in the assets.

Properties Pane
The Properties pane, to the far right of Expression Blend (see Figure 3-8), can be broken into three
tabs — ​the Properties, the Resources, and the Data tabs. One of the cool features in Expression Blend
is that it supports the idea of design time data that can be managed from the Data tab. The Resources
tab is much like the Object Explorer. Nevertheless, the most important item is the Properties tab.

Learning Expression Blend Basics  ❘  71

Whenever you select an object on the design surface, all the possible properties of that object that can
be tweaked appear in the Properties tab. Keep in mind that each “type” of UIElement object you select
in the Design view of the currently selected XAML page can have different properties and the chapter
will cover them here generically. Starting at the top, you have the Name, the Type, and the Search field
for when you cannot find the property you are interested in using. Just to the right of the Search field
are two icons that let you change the Properties tab into the Events tab so that you can see all the events
associated with the selected item; this also allows you to create event handlers and other items with this
particular item.

No Brush Tab

Properties Icon
Events
Icon

Solid Color Brush Tab

Gradient Brush Tab

Brush Resources Tab

Tile Brush Tab

Figure 3-8

72  ❘  Chapter 3   Building Applications with Expression Blend 4

The Properties tab is broken down into Brushes, Appearance, Layout, Common Properties,
Transform, and Miscellaneous sections, all of which are all collapsible, and Expression Blend
automatically collapses the default view elements until you customize any of the properties for a
given element. As for most of the Expression Blend UI, there is bubble help, so for most if not all
of the items, if you hover the mouse over them, a small description will come up.

This part of the chapter discusses each of these sections in turn, with the exception of trans-
forms, which merits its own discussion later in the chapter after I have covered the other
sections here.

Brushes
Taking a closer look at the top section labeled Brushes, you can start applying brushes to the
selected item from the Design view. The top shows the three types of brushes because you clicked a
path element in the Design view that can be applied, namely, Fill, Stroke, and OpacityMask; each
can have a value, and here you see the state of each. Just under this are the Brush tabs, which display
the details of each of the three types and also are used to remove a brush or look at brush resources.
For example, if the Fill brush is selected, then the tab lets you set that to Empty or “No brush,” a
solid color brush, a gradient brush, or a tile brush; you can also see that brush’s specific resources.
Each one of these has its own set of tools.

Click the No brush tab to set the brush type to No brush. The next element is the solid color brush
with an Editor showing the color palette, matching RGB and Alpha settings, and the color code
with the current selection. Left clicking on the RGBA area of the color palette will actually allow
you to switch between different color algorithms (for example, HLS, HSB, and CMYK). At the bot-
tom of the color palette, a bar shows the current selected color with a “last color” button. Just to the
right of that is a color eyedropper, which can be used to select another color from anywhere on your
screen. Right below that is a small arrow bar that opens the opacity setting. There is also a Color
resources tab that you can use as well.

The next Brush tool is the brush gradient color editor. The top part of this is similar to the solid color
brush editor. There are two tabs at the top of this section that work the same as the last section. The tab
on the right is the Color resources tab with the color editor selected. On the right side of the color editor
are the RGB and Alpha values of the current selected color. Below that is the hex value of the RGB and
Alpha. Along the left is the color palette/picker, and at the bottom of that are Select Color, Last Color,
and the Color Eyedropper tool. Below the color editor is the gradient selector with two gradient stops
set at both ends. You can set additional stops or remove them to manipulate the gradient shown by the
brush selected. Last, below this, is the Gradient Type button for linear or radio gradients, the gradient
Stop Switch button, and the Stop selector and offset values.

Appearance
The next section of the Properties pane is the Appearance section (Figure 3-9). When open by
default, you will see five values that you can set including Opacity, Visibility, Data, Effect, and
Stroke Thickness. However, at the bottom in the middle is a collapsed section that contains an addi-
tional set of more obscure items dealing with stroke. Normally you would leave these settings to

Learning Expression Blend Basics  ❘  73

their default values. The top values are the ones that people usually
edit, and some properties are different depending on the type. For
example, a rectangle doesn’t have Data but does have RadiusX and
RadiusY instead.

Starting back at the top of the section, Opacity is how much another item
can show through the element or object selected, whereas Visibility basi-
cally lets something be in the Visual Tree altogether. If you are turning
something on or off entirely, then Visibility is the better setting. Effect
allows you to pick bitmap effects to be applied to the item by clicking the
New button to find the effect to apply. Built-in you have the BlurEffect
and DropShadowEffect but other pixel shaders can be used if included
in the project. The BlurEffect does just that, it “blurs” whatever it is
applied to and DropShadowEffect creates an object drop shadow on
the applied element.

Layout
The next section is the Layout section (Figure 3-10), which, as implied,
is used to manipulate layout settings such as height, width, grid-related
settings, margins, and ZIndex. The Layout section is a bit less visual
than the earlier ones, with lots of settings, but mostly they are straight-
forward to understand. The top two (Width and Height) are just
that. These can be set to doubles (a “double” precision floating-point
number) like 100.5 and can be set to Auto using the icon to the right.
Below these are the four standard grid settings for Row, Column,
RowSpan, and ColumnSpan; these can be set to int values only, which
means that you can’t have something like column 1.5. Under the grid
settings is ZIndex.

ZIndex is basically the location in the Visual Tree. If you have two
rectangles, and Rectangle A is set to ZIndex 5 and Rectangle B is set to
ZIndex 10, and both have click events and are in the same spot, then
Rectangle B is the only one that will get the click event. But if you
change the ZIndex around, then you also change which rectangle gets
the event.

Below the ZIndex are two sets of Alignment icons — ​one for HorizontalAlignment and the other for
VerticalAlignment. Both of these values are used to set alignment in the context of their container.
After the Alignment icons are the four margins. Each Margin setting has an arrow showing which
Margin it is; these can be set to values of type double.

The Layout section of the Properties pane also has an arrow for extended layout settings, including
values such as MinWidth, MinHeight, MaxWidth, and MaxHeight as well as scroll-related settings
and layout rounding. UseLayoutRounding, which is set to true, is good to know about when ani-
mating image motion, especially as this value can affect smoothness by ignoring sub pixel rendering.
By default, this value is set to true, which means animations will not move at a resolution of less
than 1 pixel. This can make images look especially choppy when you animate them or otherwise
place it in motion.

Figure 3-9

Figure 3-10

74 ❘ chapter 3 BuIldIng ApplIcAtIonS wIth expreSSIon Blend 4

Common Properties
Next on the Properties pane could be (depending on the type of UIElement selected on the design
surface) the Common Properties section. This normally includes features or properties such as:

ToolTip — ➤➤ A pop-up like the tooltips in Expression Blend

Cursor — ➤➤ Defi nes a standard cursor other then the default.

DataContext — ➤➤ You use this for binding.

This section might also feature the following:

Text — ➤➤ Appears only for controls that have properties like a text box.

IsHitTestVisible — ➤➤ Appears if you are using drag-and-drop and need to ensure that something
is not going to interact with the cursor on a drag.

Tag — ➤➤ Sets an undefi ned text value of anything to any UIElement so that it can be used in
any way you like.

The next section you could see is the text formatting property box if the
selected control supports text (Figure 3-11). Otherwise, this area doesn’t
appear. The section contains three tabs — one for the text’s regular text
and font properties, one for paragraph properties, and the last one for
text alignment. All the standard settings are there, including font, font
manager, font weight, point size, and so on. Under the Paragraph tab is
Line Height, Paragraph Spacing, and Paragraph Alignment. The last tab
has Right, Left, and Centered justifi cation settings. Past this tabbed sec-
tion at the bottom are the additional text settings including FontStretch,
FontStyle, FontWeight, LineHeight, TextAlignment, TextTrimming,
TextWrapping, and LineStackingStrategy.

Some settings are duplicated primarily to make them easy for designers to use.
For example, the tabbed area features icons for Bold, Italic, and Underlined,
where these values will be refl ected in FontWeight and the like.

In general, it is best to leave settings in their default states. Notice that settings, not only here but
also everywhere, only appear if you change the default. Manipulating typography using this box is
great but you need to consider design practices when you deal with text.

Depending on the selected UIElement on the design surface, the next possible section of the Properties
pane, is the Transform property box. This box is suffi ciently complicated that it is covered in greater
detail in the next section.

Miscellaneous Settings
The last element of the Properties pane is the Miscellaneous settings box. This is for all the settings that
do not fi t anywhere else. Here you will fi nd settings like AllowDrop, CacheMode, Clip, FontSource,
Inlines, RenderTransformOrigin, and Style.

figure 3-11

Learning Expression Blend Basics  ❘  75

AllowDrop is a true or false setting that is used for drag-and-drop operations. Clip is a popular
setting that is used to add a geometric shape defined by a path or other shape object that clips the
contents of a given control. RenderTransformOrigin is used to set the center point of any transforms
you might use (see the next section to learn more about transforms). Style is the last value you typi-
cally see in this section, which is used to apply predefined styles to a given control.

Now that you have taken a look at all those sections of the Properties pane, it is time to take a closer
look at the Transform section.

Transform(s)
The topic of transforms could probably be
a book in itself, especially if you want to
get into matrix transforms; but for the most
part, Expression Blend hides this complexity
with a nice Transform tool in the Properties
pane. Start by looking at the Transform tool
shown in Figure 3-12.

You can see that the Transform section
is broken down into two subsections — ​
RenderTransform and Projection, sometimes
referred to as 2.5D or Fake 3D. Let’s start
with the RenderTransform section.

Right above the RenderTransform tabs is the title
RenderTransform, and there is a small box to
the right of the text. If a RenderTransform of any
kind is applied, this little box will be a white box. (The same is true of the Projection section below
it.) Sticking to the RenderTransform section, it is good to note that under the covers (that is, from
a compiler rendering engine standpoint) these are all Matrix Transforms — ​for all the super math
geeks. Expression Blend has broken this down, and, in fact, XAML generally hides this. You can
still do Matrix transforms, but that is abstracted from us by XAML language constructs and
Expression Blend. What you have here is the set of tabs that correspond to all the kinds of things
you would normally do using transforms.

The tabs each have their own set of properties or tools related to the specific kind of transform you
might want to do to the selected element on the design surface. The tabs are in the following order:
Translate, Rotate, Scale, Skew, Center Point, and Flip transforms. Center Point is not so much a
transform but an element of a transform that manipulates how a given transform is applied.

The Translate transform is used to effectively move a selected object based on x/y values and
a given center point. To the very left of the area is a 9-point map that represents the key points
on the object; based on that center point, an object is moved the set x and y values. If you use
relative values and click that checkbox, then your x and y values are lost. Anytime you are
manipulating these values and you click Apply, then the current values are thus applied to the
selected object.

Figure 3-12

Flip
Tab

Skew
Transform
Tab

Scale
Transform
Tab

Rotate
Transform
Tab

Translate
Transform
Tab

Center
Point
Tab

76  ❘  Chapter 3   Building Applications with Expression Blend 4

The second tab is the Rotate transform tab, which has an
angle tool that is a circle along the left side (see Figure 3-13).
You can click the line in the middle that goes from the inner
circle to the edge of the angle indicator and move that line
around the circle to get the angle you want. If you try this in
Expression Blend, you will also see that the bar next to this
angle tool shows the angle in degrees, and you can move the
slider in this box to adjust it as well. Here also, if you use relative values, your degree/angle setting
will be lost. If you do not see changes on the design surface immediately, you can click the Apply
button here as well after “Use relative values” is clicked.

The Scale transform is used to change the size from what would normally be the size of the selected
object. The resize is calculated for you by an x and y value applied by the Scale transform. What this
means is that if x and y are set to 1 (a double type in this case), nothing changes; but if you change
both values to 2, the object will be rendered twice as big. This can be used also to only render the
transform on one axis by changing only one of the values, but this will skew the object on either
the x or the y axis. You can set relative values here as well and apply them using the Apply button.

The Skew transform works like the Scale transform but moves the opposite sides of the object
on the axis on diametrically opposed vectors on that axis — ​meaning if you have a square and
set the x value to 2 of the skew, then the rectangle looks slightly like a parallelogram with the
bottom moved slightly to the right and the top moved slightly to the left. You can use negative
numbers to do the opposite. You can use relative values and apply them with the Apply button
as with the other transforms.

The Transform Center Point is for setting the center point of all transforms. This is done using an x
and y value that is a double, where 0.5 represents the center point of the given object on the selected axis.
For example, if you set the x and y values to 0, then the center point would be the upper-left corner, and
if you applied the Skew transform, then the difference would be that the top face of the rectangle would
stay where it is and only the bottom would move.

The Flip transform is really just a Scale transform using one axis with a negative number. A designer
does not care to know how it happened — ​they just want to flip something and not think about it.

A good activity to really get your head around what these Transform tools do is to open
Expression Blend in Split view and play with these; see what happens in XAML and visually
on the design surface.

One of the big things that many Silverlight Developers like
to do is three-dimensional (3D) effects, but because the
Silverlight run time needed to be small and there is just so
much space in the binary, 3D (as in WPF) was left out.
Owing to a need or want for the look of 3D, however, you
have the ability to do PlaneProjection, which allows us to do
things that look 3D without all the heavy lifting built into
WPF. Look at the projection in Figure 3-14.

Figure 3-13

Figure 3-14

Learning Expression Blend Basics  ❘  77

The Projection section next to the title Projection also has a small box that is white if you have a
Projection Transform applied. The first Projection tab is the one that actually sets the 2.5D transform
based on a set of x, y, and z points. You also get a small 3D-looking line globe next to the three point
values that allows you to manipulate the PlaneProjection settings using your mouse to figure out the
angle you want. This can have relative values applied like the regular transforms as well.

The last three tabs of the Projection area are used to set the center of rotation, global offset, and
local offset. These values are all used to change how the PlaneProjection transform is applied.

The States Tab
Lastly, when you select the States tab, you can see that it is mostly blank. This section is actually
part of a feature in Expression Blend that allows you to manipulate the control template of a given
selected element. This section is used to manipulate and customize the look and feel of controls via
control templates and the VSM (Visual State Manager), where the VSM is used to manage transitions
between visual states that are listed in the States tab. You will learn more about the States tab later
when the chapter talks about Templates and Customizing Visual States.

Now you are ready to create your first project in Expression Blend.

Creating Your Own Silverlight Project
Now that you have gone through Expression Blend, it is time to
walk through the process of building out a Silverlight project in
Expression Blend. In principle, building out a Silverlight project in
Expression Blend is similar to doing so in Visual Studio. You start
with the Startup screen, as seen in Figure 3-15, and then you have
the File menu. For the most part, the differences are not so much in
creating your project but in the design interaction once you get the
project loaded.

Expression Blend Startup Dialog
Figure 3-15 shows the Startup screen’s three tabs with the Projects
tab selected. The selected Project tab shows a list of the most
recent projects as well as the “New Project” and “Open Project”
icons. Selecting one of these projects opens that project if the
project is still where the project was when you last opened it. The
“New Project” and “Open Project” icons are straightforward
as well: New Project opens the “New Project” dialog and Open
Project opens a file dialog so you can navigate to an existing proj-
ect and open it in Expression Blend. Keep in mind that you can
open any Silverlight project in Expression Blend by finding the project and clicking on the solution
file or by right-clicking and selecting the “Open with” menu item and selecting Expression Blend.

This gets you into a project, but there are also two items at the bottom that you should know about,
namely, the “Run at startup” checkbox and the Close button. The Close button closes this dialog,

Figure 3-15

78  ❘  Chapter 3   Building Applications with Expression Blend 4

and the “Run at startup” checkbox lets you not have this dialog show up at all when you start
Expression Blend.

The Help tab includes User Guide, Online Tutorials, and Online Community. Each is designed to
access helpful resources. User Guide opens a CHM or local help file that you can use to explore all
the details of working in Expression Blend.

The Samples tab is particularly interesting because it features samples that came with Expression
Blend. They were installed on your machine so you can check out some of the great Expression Blend
project samples that help you see most of the key Expression Blend features used in the real world.

Now let’s get back to building our first project in Expression Blend.

New Project in Expression Blend
When you click the New Project button in the Startup dialog, you get the “New Project” dialog.
One thing that should be quickly pointed out is that Expression Blend does, in fact, also support
other types of projects than those specific to Silverlight (namely WPF, which is for Windows-based
desktop applications). For the context of this book, the chapter will refer specifically to Silverlight,
but you need to be aware that Expression Blend goes beyond Silverlight.

With Silverlight selected, you have several project types that you can build in Expression Blend.
The three main ones you will probably care about are “Silverlight (v.X) Application + Website,”
“Silverlight (v.X) Application,” and “Silverlight (v.X) Control Library.”

The first one builds a Silverlight project but also creates a website project, binds the Silverlight
application to it, and creates base pages that load the Silverlight application. If you create just a
“Silverlight Application,” you are not getting the prebuilt web project; when you run it, you get an
auto-generated one. With “Silverlight (v.X) Control Library, this project can’t really be run as such
but it can contain assets that can be consumed in the Silverlight UI. If you create this kind of project,
you will not be running it unless you consume it to some other Silverlight application.

Using Expression Blend Behaviors

Behaviors are a cool way of adding functionality to objects in Expression Blend. The idea is that
some rich programmatically implemented functionality that would be hard for a designer to do can
be wrapped in a control that can then be used as a drag-and-drop feature to add the functionality
like magic to an element in Expression Blend. A Behavior is just a class that implements a certain
base class and member so that it can be easily consumed in Expression Blend as a drag-and-drop
behavior. Therefore, in this case, to build one you need to start in or get to Visual Studio.

Implementing Behaviors
Implementing a Behavior is straightforward but can be as complicated as you like. To start with, you
will need Expression Blend installed so that you have the Expression Blend assets needed to make a
Behavior work within Expression Blend. If you are already in Expression Blend (from following along
in this chapter), right-click the project and click “Open in Visual Studio,” which implies correctly that
you need both Expression Blend and Visual Studio installed to create a Behavior. Once the project

Using Expression Blend Behaviors  ❘  79

is opened in Visual Studio, right-click and select “Add New.” Then in the “Add New” dialog, select
Class. Give the class a name, and then you need to get the Expression Blend Library into your project.

To get the library, you must add a reference to the System.Windows.Interactivity.dll that comes
with Expression Blend. This will not show with the other libraries in Visual Studio, so when
you right-click and select “Add Reference,” you need then to click the Browse tab. You will find
the DLL in the Programs folder normally on your C drive under Microsoft SDKs, then under
the Expression folder, the Blend folder, then ../Interactivity/Libraries/Silverlight/. Once the DLL
is included, you are ready to build out the class you created into a Blend Behavior. You need to
start by adding the namespace at the top like this:

using System.Windows.Interactivity;

This gets the base library you need so you can inherit from the behavior class which is the base class
that you need. Next, of course, you need to set up the base class and make your class look like this:

public class SomeBehavior : TargetedTriggerAction<FrameworkElement>
{
}

TargetedTriggerAction is our base class, where you will be able to apply it to a class of type
FrameworkElement For the purposes of this example, the Behavior will also be targeted specifically
at Shape objects. The next step is to implement Invoke, which is what is fired when the Behavior is
applied to the target. Invoke needs to look like this block:

Protected override void Invoke(object parameter)
{
}

From this point, you need to get a reference to the object that you need and do to the object whatever is
necessary to make the object do what you want it to do. In this case, you typically would add a member
to be the reference to the associated object, like this:

Shape TargetElementItem1;

Now when Invoke is called, you would get your reference, cast it to a Shape and place it into the
member reference:

TargetElementItem1 = (Shape)(this.AssociatedObject);

This code then needs to be in the Invoke member. At this point, the implementation for each
Behavior will be increasingly different for each Behavior that you build. This example changes the
color back and forth between two colors when a user clicks on the shape. Next, you need to add
these members to the Behavior class like this:

Brush Color1;
Brush Color2 = new SolidColorBrush(Color.FromArgb(0,0,0,0));

This gives you a color to switch to and the reference to the base color of the class. To populate
Color1 with the base or start color of the object, add this second line to the Invoke method:

Color1 = (Brush)(TargetElementItem1.Fill);

80  ❘  Chapter 3   Building Applications with Expression Blend 4

Now that the Behavior has a reference to the colors and the Shape is typed and referenced, you can
add our behavior logic. In this example, add two event bindings to the Shape reference like this:

TargetElementItem1.MouseLeftButtonDown += new
 MouseButtonEventHandler(TargetElementItem1_MouseLeftButtonDown);
TargetElementItem1.MouseLeftButtonUp += new
 MouseButtonEventHandler(TargetElementItem1_MouseLeftButtonUp);

These lines actually work until you add the two methods, which should look like this:

void TargetElementItem1_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
{
 TargetElementItem1.Fill = Color1;
}
void TargetElementItem1_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 TargetElementItem1.Fill = Color2;
}

This completes the Behavior. You should now be able to use it in Expression Blend.

Consuming Behaviors
Besides visual behaviors, you can also add nonvisual functionality as you might in a command.
Therefore, if you are familiar with commanding, a good way to look at Behaviors is as “commands
for designers in Expression Blend.” Using Expression Blend to work on an element, you need to be
able to see the element that you want a Behavior to be applied to. For example, in the last section,
you built out a simple behavior. Now you need a Shape to apply the Behavior to. You can start by
dragging a rectangle from the toolbar onto the design surface. Then you need to set the fill to a solid
color brush using the Properties pane. The XAML code might look like this:

<Rectangle Fill=”Green” />

Now you should open the Asset Explorer from the toolbar. On the left side of the Asset Explorer,
select Behavior, and you will see that your behavior is one of the Behaviors listed, as well as other
built-in Behaviors. Select the Behavior you want and drag it onto the object, in this case Rectangle,
and you are finished. The XAML code will appear like this:

<Rectangle Fill=”Green” >
 <i:Interaction.Triggers>
 <i:EventTrigger>
 <local:SomeBehavior/>
 </i:EventTrigger>
 </i:Interaction.Triggers>
</Rectangle>

If you look at this closely, you will note that there are a couple of namespaces referenced here.
You will find these referenced at the top of the XAML document that were inserted by Expression
Blend dynamically. A designer is not going to care, but as a developer, it is important for you to
realize this.

Using the Visual State Manager  ❘  81

Behaviors, as you can see, are a way to provide rich functionality that is bound to controls in
XAML that also, and more importantly, are easy for designers and developers to use in building,
maintaining, and customizing the UX/Design of views in Silverlight applications.

Now that you can use Behaviors and build custom behaviors, you can review Visual States in
Expression Blend and the Visual State Manager.

Using the Visual State Manager

Part of the job of the designer that you typically see being done in Expression Blend is skinning
and templating controls, views, and other objects. For the most part, all controls have built-in
templates, and in Visual Studio it is very difficult to get at these as they are part of the framework
and not exposed. Expression Blend has a great tool to help you get at the templates by creating cop-
ies of templates for any control, putting them into your code and allowing you to edit them in the
Designer using the Visual State Manager area labeled States that was mentioned earlier.

This States tab, and moreover the entire Visual State Manager infrastructure, was built as part of
Expression Blend but has been added to the underlying framework as of Silverlight 4. You can tweak
the code in Visual Studio, but the VSM was designed for use in Expression Blend or specifically to
make it easier for designers to work with visual states of objects. Here, you will use the VSM to create
a custom skin or template and then use the VSM to help build or change the default animations and
transitions between states.

Start by creating your custom control template.

Creating a Control Template(s)
Since control templates are baked-in, sometimes creating a control template can be very difficult to
extrapolate independently without Expression Blend. In Expression Blend it’s really simple.

	 1.	 Start by selecting the control. At the top of the design surface, you see a breadcrumb that
shows the control in question as the root item. If you select the breadcrumb, you will get a
drop-down menu that lets you select either Edit Template or Edit Additional Template.

	 2.	 Normally you select Edit Template, which displays an additional menu consisting of Edit
Current, which will be disabled; Add Resource, which will also be disabled; as well as Edit a
Copy or Create Empty. You will also generally want to select Edit a Copy, at least until you
understand the templates enough to build them from scratch and know what “states” are
available. For most people, it is easier to just edit a copy of the default template.

	 3.	 When you select Edit a Copy, the Control Template dialog appears (see Figure 3-16). Because a
control template is a style resource, a box comes up so you can give the resource a proper name.

All the correct settings are there by default. You do have the option to have the new control
template put into the application or you can also create a new resource dictionary and have
the control template go there.

82 ❘ chapter 3 BuIldIng ApplIcAtIonS wIth expreSSIon Blend 4

 4 . Once you select the settings you want, click the OK button. All of the underlying code
required to support this new custom template (that is a copy of the one baked in) is added to
your project; in addition, the control is bound to this new custom template. Now you click
the States tab and you will see something like Figure 3-17.

figure 3-16 figure 3-17

In Figure 3-17, all the states and transitions to each state are divided into what is a tree. When
you select any of these, that state is applied visually in the design surface. In addition, the state
properties show in the Properties pane so that they can be customized as needed visually without
going into code. However, you can open the project in Visual Studio and edit the template if
you want to. You will also note that the Visual Tree shows all the elements of the template
for you to select as well, and you can remove any element you do not need to complete your
custom control template.

The Visual Tree is a representation of your UI and how it is rendered visually —
how the underlying engine renders elements to the screen. Some things might
not be in the Visual Tree because they are in a collapsed state. In other words,
Visibilty=’Collapsed’ rather than Opacity=’0’ where the Opacity=’0’ is
considered to still be in the Visual Tree.

Importing Design Assets  ❘  83

Customizing Visual States
When customizing elements of your control template, you generally are going to use the VSM
States tab and the Visual Tree in the Objects and Timeline viewer, as well as the design surface
and Properties pane. (You can also edit it in the raw XAML if you are comfortable with that but,
keep in mind that some default templates can be very complex.) Often when you are customizing
the control, the entire look and feel needs to change. When you select your control, you can go to
the Visual Tree and delete anything you do not want or entirely replace it by pasting in whatever it
is you want or editing it on the design surface.

To change the state, select the correct state in the VSM State tab, which turns on the State
Recorder, and change the control however you like. For example, if you select the state of a but-
ton, that state is shown on the control on the design surface. You then can select the element of
the control in the object tree of the control that you want customized and edit it — ​say, change
the color or add a transform.

There is also in the VSM tab on each element, a Transitions drop-down that you can select to add spe-
cific transitions to one state or the other as needed. Right on the transition, you can set the timing of
the transition as well; however, the transition details are edited elsewhere. The last important element
of working with transitions that you will need to know is that when you select a transition, you get the
Timeline view next to the object tree. This allows you to do custom keyframe animations, which are
covered in the Chapter 18.

In the next section, you will import design assets.

Importing Design Assets

One of the great features of Expression Blend is that it allows better integration with other tools in
Team Foundation Server for Source control, Visual Studio, Adobe Illustrator, and Photoshop. Blend
allows closer integration of teams, design assets, and tools. Many design shops have designers who
work with other tools so outside the realm of Microsoft application development that ​even the idea of
using a Microsoft tool is offensive. Expression Blend allows those design assets to be easily imported
into Expression Blend and used to build Silverlight applications. This allows stronger development
(lower to market development costs) by Expression Blend’s ability to integrate with Visual Studio as
well from a tooling standpoint with regard to other tools.

The two most popular tools that designers and developers concerned with design use outside of
Expression Design are Adobe Photoshop and Adobe Illustrator. Though these applications are from
the same company, both tools are radically different under the covers. However, both Illustrator and
Photoshop are the best in their respective areas. Photoshop is about pixel manipulation. It’s about
the pixel. Illustrator, on the other hand, is about paths and vectors, which is the same kind of thing
as XAML.

Let’s start with Photoshop.

84  ❘  Chapter 3   Building Applications with Expression Blend 4

Importing PhotoShop (PSD) Assets
Photoshop, then, is about pixels. Expression Blend is about blending design assets such as PSD into
XAML that can be used in Silverlight and WPF application development. When importing PSDs, it
is important to note that because Photoshop is pixel-based, it does not import into Expression Blend
as smoothly. Frequently what you will find is that what is imported into Expression Blend comprises
graphics and images and less scalable Path information. This means that the imported PSD is going
to be larger in memory than all-Path-based XAML and also isn’t scalable. So resizing the imported
assets from Expression Blend will not be as easy, straightforward, or performant.

All of that detail aside, you can now get started importing some assets into Expression Blend.

	 1.	 The Photoshop import tool is under the File menu, so to start, open the File menu and choose
Import Adobe Photoshop File.

	 2.	 This brings up the Select File dialog box; select a Photoshop or PSD file. Once you have
selected the file, click Open.

	 3.	 You will now have the Import dialog come up, which shows the PSD image on one side with
a Zoom icon and a Zoom Level drop-down box (Figure 3-18). The important part is on the
right side: a tree of the layers that the image contains. Uncheck elements you don’t want to
import; drill down and select even single items to import or not to import. By default, all
the elements in the layers are imported, except a special element at the bottom called the
compatibility image, which shows you what the complete view of the PSD file looks like
rendered up front. If you select this, it is included in the import.

Figure 3-18

Importing Design Assets  ❘  85

	 4.	 It is a good idea to create a separate user control or view in Expression Blend and import a
different layer or element into each view so that these elements are broken out and easier to
work with in XAML. Otherwise the generated XAML will contain all of the elements from
the imported file and can thus be overly complicated and difficult to work with. Lastly, when
selecting and unselecting elements in the layers, you can reselect the “Check all layers to
import” checkbox to get all the elements checked or unchecked again. You can also use the
“Reset all” button to do the same thing.

Now it’s time to talk about vectors.

Importing Illustrator (AI) Files
Importing Illustrator (AI) files is much the same process as importing Photoshop files. Unlike
Photoshop, however, Illustrator imports almost entirely as Path- or vector-based data, which
really improves the design integration process when working with teams, building apps, and
making the UI scalable. Using Illustrator to build design assets is almost as good as building
them straight up in Expression Blend.

	 1.	 The Illustrator import tool is under the File menu. So to start, open the File menu and choose
Import Adobe Illustrator File.

	 2.	 This brings up the Select File dialog box; select an Illustrator (.AI) file. Once you have
selected the file, click Open.

	 3.	 You should now have the Import dialog come up, which shows the PSD image on one
side with a Zoom icon and a Zoom Level drop-down box. The important part is on the
right side: a tree of the layers that the image contains. Uncheck elements you don’t want
to import; drill down and select even single items to import or not to import. By default,
all the elements in the layers are imported, except a special element at the bottom called
the compatibility image, which shows you what the complete view of the AI file looks like
rendered up front. If you select this, it is included in the import.

	 4.	 Like with the PSD files you should create a separate user control or view in Expression Blend
and import a different layer or element into each view so that these are broken out and easier to
work with in XAML. An AI file that is a complete UI will normally be extremely complicated
XAML if entirely decomposed into a single XAML file. Lastly, when selecting and unselecting
elements in the layers, you can reselect the Check all layers to import checkbox to get all the ele-
ments checked or unchecked again. You can also use the Reset all button to do the same thing.

Once imported, all the Paths will now be great XAML assets that allow you to scale them really
well. What of other design assets?

Importing Fonts and Images Assets
In addition to AI and PSD assets, fonts and images are the only assets that are typically pulled into
Expression Blend. Images in Silverlight can be PNGs or JPGs and can be dragged onto the design
surface, where Expression Blend copies them into the project and adds them to the current view that
is on the design surface. You can then manipulate the images any way you like.

86  ❘  Chapter 3   Building Applications with Expression Blend 4

The other common import is fonts that you will want to include in your projects for any custom font
and typography you are doing. Fonts don’t require a special tool. You can drag a font TFF into your
Project Explorer. To use the font you might include a TextBlock control from the toolbar and go to
the Text section of the Properties pane, where you’ll find the Font Manager button. Click this button
to find the font you added to the project (see Figure 3-19). Select it and then select that font from the
Font drop-down list to the upper left of the Font Manager button.

Figure 3-19

The XAML code that is generated will look something like this:

<TextBlock Margin=”155,175,237,237” TextWrapping=”Wrap” Text=”TextBlock”
 FontFamily=”Fonts.zip#Digital Readout”/>

This code shows the FontFamily property, where Expression Blend has added a reference to a zip
file that it generates with your project fonts and references the included font. This works in Visual
Studio well enough but only because Expression Blend has the resources required to make this work.
In Visual Studio, this is usually done differently unless it has been worked with in Expression Blend,
which adds the additional resources.

Without getting into the more esoteric topic of designing in Expression Blend, you next learn about
the rest of the Expression Suite of tools.

Using the Expression Suite

Expression Blend is the most important tool of a suite of tools from Microsoft for working
with Silverlight and WPF. That being the case, there are three common situations when other

Using the expression suite ❘ 87

parts of the Expression Suite are more effective at creating or preparing elements for your
Silverlight applications:

The fi rst is graphics generation, which most designers and developers who do design work do ➤➤

when referring to the Expression Suite in Expression Design (a rich Photoshop-like tool that
is used for the same).

The second scenario is when you need to transcode media to get it into a format that can be ➤➤

consumed easily in Silverlight. This tool is called the Expression Encoder.

The third typical scenario is when you need to build multi-scale images that can be generated ➤➤

from images using Expression Deep Zoom.

Expression Design is a topic for its own book, and just a basic walk-through
would fi ll a chapter; but it is important to note that Expression Design doesn’t
use native XAML but exports to XAML. Then you can dive into a basic scenario
using Expression Encoder.

expression encoder
Expression Encoder as part of the Expression Suite is specifi cally designed to take media content
and either transcode or encode that media or produce it in a form that can be consumed online
by a Silverlight media player and Windows Media Video (WMV) to integrate it into your existing
Silverlight application. Expression Encoder has several built-in templates you can select as part of
the output of Expression Encoder and that you can use to quickly build Silverlight media players.

Once you get Expression Encoder running, you need to import your media fi le. To do so, go to
the File menu and select Import, navigate to the video fi le you want, select it, and then click Open.
Next, you need to select a template, which you can do by clicking the Output tab at the top and
then, under the section “Job Output,” selecting one of the templates. It should look like Figure 3-20.

Click the button in the middle on the bottom labeled ‘Encode’, and Expression Encoder will “go to
town.” Now this is all good and Expression Encoder has a variety of other features regarding set-
ting up markers, but the key thing is that it gets video content into a nice format, one that Silverlight
can consume easily.

deep Zoom composer
Expression Deep Zoom is the key tool for building out MultiScaleImages that you will use in
Silverlight. Deep Zoom is a simple tool like Encoder, for example, that allows you to import images
and produce the multi-layer image collections; it auto-generates the underlying tile structure used by
Deep Zoom (MultiScaleImages) that thus can be used in Silverlight to produce the effect of effi ciently
having an infi nite ability to zoom in and out without performance issues. When you open Deep Zoom
Composer for the fi rst time, you will get a dialog like that of Expression Blend that lets you create a
new project or select an old one. Since this is your fi rst time, you need to create a new one.

88  ❘  Chapter 3   Building Applications with Expression Blend 4

Figure 3-20

Deep Zoom Composer then creates a new Deep Zoom Project in which you import all the high-
resolution images you want to use. Then you can compose your collection of images, and it will
export and build all of your multi-layer image collections, tiles, and other bits as configured so
you can use them in your Silverlight applications.

Now you need to get familiar with the user interface. Initially there is just going to be a File menu at
the top and then three buttons centered below that — ​Import, Compose, and Export (Figure 3-21).
Import is selected by default. To the right, just below that level, is the Add Image button — ​the
only other item that is important on the UI.” When you click “Add Image,” you can select as many
images as you want to add to the collection. Once they are added, you will see a list of the images as
thumb names below the button; you can select one at a time, and the selected image is shown in the
larger gray area to the left in high resolution, with the image details at the bottom.

Next, click Compose and the view shown in Figure 3-22 displays.

Here the user interface still has the Menu bar and the three buttons. However, you can also see a
toolbar to the left, the images laid out in the center, the image collection at the bottom, and the
Layers and Properties to the far right, along with the small button menu between the design surface
in the center and the Layers and Properties box.

Using the Expression Suite  ❘  89

Figure 3-21

Images can be dragged into the center and laid out as you like. The toolbar to the left can be used
to manipulate the design surface with Zoom, Pan, and Selection tools as well as various alignment
tools. The bottom-left corner of the design surface features a higher-level view that allows you to
move the viewable area around the design surface. This is helpful when you are zoomed in and there
are lots of images.

The buttons to the right are for creating specialized elements in the Deep Zoom project, including
creating a slide show out of your images, creating a menu navigator for your images, and creating
internal links or external links within the Deep Zoom design surface. Once you are done and your
images are laid out as you want the multi-scaled image to work, click the Export button at the top.

The Export section (Figure 3-23) shows a preview area as well as a dual-tabbed section for either creat-
ing a DeepZoomPix account or Custom. Select Custom and you can set the output type, which should
be “Silverlight Deep Zoom.” Then you have an area to give it a name and location with a Browse but-
ton that opens a Folder dialog box. Below that are the “Deep Zoom Settings.” The settings include
the Export type, which can be a composition or image, and a Collection. If you select Collection — ​
which is the most typical selection — ​a template drop-down includes the default template as well as an
Expression Blend Behavior-based template, a classic with source template, an empty project template,
and a tag browser template. Below this area are the Image settings for setting the fidelity of the images
in the generated project.

90  ❘  Chapter 3   Building Applications with Expression Blend 4

Export Button
Design surface for composing images
into a deep zoom composite

Images that can be added to the
design surface for composition

Selection Tool
Pan Tool

Zoom
Fit To Screen Tool

Alignment Tools

Arrange Icons

Size Matching
 Icons

Figure 3-22

Figure 3-23

Summary  ❘  91

When you click Export, the Export in Progress dialog displays. When the export process is com-
plete, the Completed dialog displays, where you can preview the project in a browser, open the
image folder, view the project folder, and learn more or just close it. If you open the Folder view in
Expression Encoder, you can then open your project in Expression Blend to do further customiza-
tion or in Visual Studio.

Summary

In this chapter, you reviewed the Expression Blend IDE including all the key sections and how those
sections behave with regard to your Silverlight view when it is selected on the design surface. You
should now be able to find and change properties, including complex transitions, as well as navigate
the Visual Tree using the Objects and Timeline tab and find and drag controls off the toolbar.

You learned the process of creating a new project in Expression Blend and how to transition from
Visual Studio to Expression Blend. You also learned the process of building custom Behaviors in Visual
Studio and how those custom Behaviors are consumed and used in the Expression Blend IDE. You also
learned how to import Photoshop (PSD) files and Adobe Illustrator (AI) files, as well as how to include
images and fonts in your project.

You also learned how to use the Visual State Manager in the Expression Blend IDE, including how to
use the State tab and how to customize elements. You learned how Expression Blend provides custom
control templates for you to edit based on the existing built-in template used by the framework (as
opposed to Visual Studio, which has no concept of getting at the base control templates that are part
of the framework).

Even if you do not have the skill and eye of a designer, you should be able to work with the Expression
Blend — ​the main design tool for Silverlight — ​to help you build better application UIs.

4
Working with the navigation
framework

what’s in this chapter?

Understanding the Navigation Framework➤➤

Using the Navigation Application template➤➤

Using a custom menu control➤➤

Caching navigation pages➤➤

Silverlight 3 introduced the Navigation Framework, which is an API used in conjunction
with the Frame control in the System.Windows.Controls.Frame class in the System.Windows
.Controls.Navigation assembly, which enables you to add an ASP.NET-like navigation scheme
to your applications. Silverlight 4 further enhances the Navigation Framework with additional
extensibility points. Some of the key concepts in the Navigation Framework in Silverlight are:

You can implement URI routing.➤➤

You can achieve navigation declaratively or via code.➤➤

You can link page navigation into the browser’s journal history.➤➤

The Frame control is at the center of the navigation capability, which works in conjunction
with the Page class to give you navigation features.

using the navigation teMplate

To get started quickly with navigation, open Visual Studio and from the New Project dialog
select the Navigation Application template for Silverlight as shown in Figure 4-1.

94  ❘  Chapter 4   Working with the Navigation Framework

Figure 4-1

Once you click OK and accept the default options on the New Project dialog, you should see something
like Figure 4-2, which is the default MainPage.xaml for a new project based on the Navigation template.

Figure 4-2

Using the Navigation Template  ❘  95

You’ll notice that, different from a standard Silverlight application template, the Navigation template
has a decent looking style on the MainPage.xaml, and two additional folders named Assets and Views
in the Solution Explorer for the Silverlight project:

Assets➤➤  — ​Contains the default ResourceDictionary named Styles.xaml, which contains
the visual styles used in this application.

Views➤➤  — ​Contains the About, ErrorWindow, and Home XAML pages derived from the Page
class that consist of the stock pages set up in the default navigation scheme for this template.

If you expand the References folder, you will see two additional assembly references that are not
included in the default Silverlight template:

System.Windows.Controls➤➤  — ​Contains the Frame control, which is used to navigate to
Silverlight Page controls, either programmatically or through a user action, via a valid URI.

System.Windows.Controls.Navigation➤➤  — ​Contains the UriMapper class, which stores a
collection of UriMapping objects to use for converting a requested URI to another URI. You
define the UriMapper object and its collection of UriMapping objects for a Frame control by
assigning the UriMapper object to the UriMapper property of the Frame control.

To see this in action, examine the XAML in the MainPage.xaml page. It contains two namespace
references to the aforementioned assemblies:

xmlns:navigation=”clr-namespace:System.Windows.Controls;assembly=
System.Windows.Controls.Navigation”
xmlns:uriMapper=”clr-namespace:System.Windows.Navigation;assembly=
System.Windows.Controls.Navigation”

In the XAML for the page itself, the Frame and UriMapping objects are defined with various
properties set:

<navigation:Frame x:Name=”ContentFrame”
 Style=”{StaticResource ContentFrameStyle}“
 Source=”/Home”
 Navigated=”ContentFrame_Navigated”
 NavigationFailed=”ContentFrame_NavigationFailed”>
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping
 Uri=”“
 MappedUri=”/Views/Home.xaml”/>
 <uriMapper:UriMapping
 Uri=”/{pageName}“
 MappedUri=”/Views/{pageName}.xaml”/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
</navigation:Frame>

In the Frame, three key properties are set in this default template (ignoring the Style property):

Source➤➤  — ​The default page to navigate to when loaded

96  ❘  Chapter 4   Working with the Navigation Framework

Navigated➤➤  — ​The event that is fired when the Frame is navigated to

NavigationFailed➤➤  — ​The event that is fired when a navigation failure occurs

In the Frame.UriMapper object, there is a collection of UriMappings. Each mapping contains
two properties:

Uri➤➤  — ​Gets or sets the pattern to match when determining whether the requested URI is
converted to a mapped URI. This is typically set to a user-friendly value, such as Home, and
you set the MappedUri property to the actual file to use for the request, such as /Views/
HomePage.xaml.

MappedUri➤➤  — ​Gets or sets the URI that is navigated to instead of the originally requested URI.

To set up navigation declaratively, you are adding as many UriMapping objects that contain the Uri
and MappedUri as pages you need to navigate to in your application. You may have multiple folders
that contain Page controls, or many subfolders that contain pages that you need to navigate to. Using
the UriMapping objects, you can define the navigation scheme for your application. In this default
template, the UriMapping is simple:

If the Uri is empty (➤➤ Uri=”“), navigate to the Views folder and load the Home.xaml page
(MappedUri=”/Views/Home.xaml”/).

If the Uri contains a forward slash and then a Page name variable (➤➤ Uri=”/{pageName}“),
navigate to the Views folder and replace the Page name variable, add the .xaml file extension
(MappedUri=”/Views/{pageName}.xaml”), and navigate to that page.

To trigger the navigation, the default Navigation template adds two HyperlinkButton controls to
the top right of the page as shown here:

<HyperlinkButton x:Name=”Link1”
 Style=”{StaticResource LinkStyle}“
 NavigateUri=”/Home”
 TargetName=”ContentFrame”
 Content=”home”/>

<HyperlinkButton x:Name=”Link2”
 Style=”{StaticResource LinkStyle}“
 NavigateUri=”/About”
 TargetName=”ContentFrame”
 Content=”about”/>

Using the NavigateUri property and the TargetName property, you can declaratively set the content
of the defined Frame control with the Uri in the NavigateUri property. Note that the TargetName
is set to ContentFrame, which is the unique x:Name identifier for the Frame control on this page. If
you run the application, you’ll see that the default Page loads in the Home.xaml, which is located in
the Views folder as shown in Figure 4-3.

If you click the About HyperlinkButton, the Frame is replaced with the new NavigateUri target,
the /About page. The UriMapping’s Uri property sees the /{pageName} as /About and points to the
MappedUri of /Views/{pageName}.xaml, which in this case, is /Views/About.xaml. Figure 4-4
shows the About page content once the About HyperlinkButton is clicked.

Using the Navigation Template  ❘  97

Figure 4-3

Figure 4-4

You can also navigate to URIs that are not Page classes in your application. If you set the Uri
property to a valid URL, and the TargetName to _new, clicking the HyperlinkButton opens a new
browser window to the URL specified (Listing 4-1).

98  ❘  Chapter 4   Working with the Navigation Framework

Listing 4-1:  ​Navigating to a valid URL

<HyperlinkButton NavigateUri=”http://www.infragistics.com”
 Content=”Infragistics Home”
 TargetName=”_new” />

What’s even cooler is that when you click the Home and About HyperlinkButtons a few times and
then click the browser’s Back button, you’ll notice that the MappedUris show up in the browser’s
journal history as shown in Figure 4-5.

Figure 4-5

The name that shows up in the browser’s journal history is the Title property that you set for the
Page that loads. For example, Figure 4-6 shows the Title property for the About page. If you want
to display a friendlier name in the journal history, simply be as descriptive as you’d like to be in the
Title property of your Page.

To make this work, the Frame class includes a JournalOwnership property that is set to Automatic
by default, which means the frame integrates with the browser’s journal history if it is a top-level
frame. If you are building an application that should not integrate in with the browser’s journal, set
the JournalOwnership property to OwnsJournal and the browser history will not include the jour-
nal history from the Silverlight application.

To support navigation history, the web page that contains the Silverlight object must include
an iframe named _sl_historyFrame. By default, this iframe is included in the web page when
you create a new Silverlight application. If you want to add journaling to an existing Silverlight

http://www.infragistics.com%E2%80%9D

Creating Parameterized Query strings ❘ 99

application that does not include it, simply add the following HTML snippet to the page that
hosts your Silverlight plug-in:

<iframe id=”_sl_historyFrame”
 style=”visibility:hidden;height:0px;width:0px;border:0px”>
</iframe>

figure 4-6

Browser-integrated navigation is not possible for an out-of-browser applica-
tion. When integrated with the browser, the forward and back buttons of the
web browser navigate to requests within the navigation history for the top-level
frame. Through the forward and back buttons of the web browser, the user can
navigate to a different Silverlight page. With browser-integrated navigation, the
user can type a URI directly into the browser window and the page representing
that URI is displayed in the Silverlight application. Therefore, a user can book-
mark a URI or share a hyperlink that corresponds to not just the Silverlight
application, but the application in a specifi c state.

creating paraMeteriZed Query strings

Most applications that you build have common user interface patterns where there is a list of objects,
and when a user clicks an item in the list, you either navigate to a details page or pop up a details
page. This scenario can be easily accomplished with the same pattern that you use in an ASP.NET

100  ❘  Chapter 4   Working with the Navigation Framework

application: You pass a parameter to a new page, that page checks the query string for an ID of some
sort, and your application code does the database lookup based on the parameter in the query string.
Using the UriMapper, you could do something like what is shown in Listing 4-2.

Listing 4-2:  ​Passing a custom query string to a MappedUri

<uriMapper:UriMapping Uri=”Customer/{customerId}“
 MappedUri=”/Views/CustomerDetails.xaml?customerId={customerId}“ />

In the specified CustomerDetails page, you grab the parameter in the onNavigatedTo event han-
dler using the NavigationContext of the page like this (Listing 4-3).

Listing 4-3:  ​Retrieving the query string using NavigationContext

var id = this.NavigationContext.QueryString[“customerId”];

To implement this scenario, in this section you update the Home.xaml page to list a collection of
objects, and when one of those objects is clicked, you navigate to a details page and pass the tag of
the clicked object so you can retrieve the query string. To get started, add a new class file to your
project named Customers and add the code in Listing 4-4 to create the class.

Listing 4-4:  ​Customer class and GetCustomer method

using System;
using System.Collections.Generic;
using System.Linq;

namespace CustomerUriApp
{
 public class Customers
 {
 public List<Customer> GetAllCustomers()
 {
 List<Customer> c = new List<Customer>();
 c.Add(new Customer()
 { CustomerId = 1,
 CompanyName = “Microsoft” });
 c.Add(new Customer()
 { CustomerId = 2,
 CompanyName = “Infragistics” });
 c.Add(new Customer()
 { CustomerId = 3,
 CompanyName = “Apple” });
 return c;
 }

 public Customer GetCustomer(int customerId)
 {
 var customer =

Creating Parameterized Query Strings  ❘  101

 from c in GetAllCustomers()
 where c.CustomerId == customerId
 select c;

 return customer.First();
 }
 }

 public class Customer
 {
 public int CustomerId { get; set; }
 public string CompanyName { get; set; }
 }
}

The Customers class has two fields, CustomerId and CompanyName, which are populated
with a few data records in the GetAllCustomers method. The GetCustomer method takes the
customerId parameter and does a simple LINQ statement to get the Customer object based
on the customerId parameter.

In MainPage.xaml, add the following UriMapping (Listing 4-5) to the existing UriMapper
collection. This mapping takes the nice and readable Customer/customerId URI and maps it
to the CustomerDetails page in the Views folder, with the appended query string of
customerId={passed variable customerId}.

Listing 4-5:  ​Setting up a custom Uri and MappedUri

<uriMapper:UriMapping Uri=”Customer/{customerId}“
 MappedUri=”/Views/CustomerDetails.xaml?customerId={customerId}“ />

In the Home.xaml page, add the following XAML (Listing 4-6) for a TextBlock and an
ItemsControl inside the StackPanel that is inside of the ScrollViewer.

Listing 4-6:  ​ItemsControl and TextBlock for Home.xaml

<TextBlock FontSize=”24”>Customers List</TextBlock>
<!-- add an ItemsControl that will hold the Customers -->
<ItemsControl x:Name=”CustomersList”>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <HyperlinkButton FontSize=”24”
 Content=”{Binding CompanyName}“
 Tag=”{Binding CustomerId}“
 Click=”HyperlinkButton_Click” />
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

102  ❘  Chapter 4   Working with the Navigation Framework

In the code-behind for the Home.xaml page, register a Loaded event handler in the
IntializeComponent for the Loaded event (Listing 4-7).

Listing 4-7:  ​Registering the Loaded event in the Home class file

public Home()
{
 InitializeComponent();
 Loaded += new RoutedEventHandler(Home_Loaded);
}

Then add the code in the Home_Loaded event handler (Listing 4-8) that creates a new instance of
Customer and sets the return collection of Customers to the CustomerList ItemsControl on
the page.

Listing 4-8:  ​The Home_Loaded event handler

void Home_Loaded(object sender, RoutedEventArgs e)
{
 Customers c = new Customers();
 CustomersList.ItemsSource = c.GetAllCustomers();
}

Once the ItemsSource of the CustomersList is set, the XAML that you added earlier for the
ItemsControls adds the HyperlinkButton for each of the Customer objects returned from
GetAllCustomers. The CompanyName is rendered, the CustomerId is data bound to the Tag prop-
erty of the HyperlinkButton control, and on the Click event, the HyperlinkButton_Click will
execute. See Listing 4-9.

Listing 4-9:  ​Setting the Click event on the HyperlinkButton

<HyperlinkButton FontSize=”24”
 Content=”{Binding CompanyName}“
 Tag=”{Binding CustomerId}“
 Click=”HyperlinkButton_Click” />

Add the following to the HyperlinkButton_Click event (Listing 4-10). This code casts the sender,
or the actual button that was clicked, to the type HyperlinkButton. The reason for this is so you
can correctly extract the Tag property from the button that was clicked.

Listing 4-10:  ​Using NavigationService in the Click event handler

private void HyperlinkButton_Click
 (object sender, RoutedEventArgs e)
{
 HyperlinkButton hyperlink = sender as HyperlinkButton;

Creating Parameterized Query Strings  ❘  103

 string customerId = hyperlink.Tag.ToString();

 this.NavigationService.Navigate
 (new Uri
 (string.Format(“Customer/{0}“, customerId), UriKind.Relative));
}

Once you have the Tag, which represents the bound CustomerId, you navigate to the Customer
page passing the customerId variable. To navigate, you call NavigationService.Navigate.
The NavigationService class enables you to access the navigation service used by the hosting
frame and launch new navigation requests. You can retrieve the navigation service through the
NavigationService property of the Page class. In this case, you are telling the NavigationService
to navigate to the Customer/{0} page, which will map to the CustomerDetails.xaml page. To
add the CustomerDetails.xaml page, right-click the Views folder and add a new Page named
CustomerDetails.

In the CustomerDetails.xaml page, add the code in Listing 4-11 to XAML in the Grid element:

Listing 4-11:  ​XAML for the CustomerDetails.xaml Page

<StackPanel>
 <TextBlock x:Name=”CustomerId” FontSize=”24”></TextBlock>
</StackPanel>

In the code-behind in CustomerDetails.xaml, in the OnNavigatedTo event handler, add the code
in Listing 4-12 to retrieve the ID that is passed in the query string.

Listing 4-12:  ​CustomerDetails OnNavigateTo event handler

// Executes when the user navigates to this page.
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 CustomerId.Text = this.NavigationContext.QueryString[“customerId”];
}

This looks at the NavigationContext of the page and extracts out the customerId parameter in
the query sting. If you are building an application that has some all-purpose or generic pages that
should behave in a certain way based on the action passed in the query string, you can do some-
thing slightly more interesting based on the QueryString.ContainsKey variable, as shown in
Listing 4-13.

Listing 4-13:  ​Richer example using OnNavigatedTo event handler

protected override void OnNavigatedTo(NavigationEventArgs e)
{

 if (this.NavigationContext.QueryString.ContainsKey(“action”))

continues

104  ❘  Chapter 4   Working with the Navigation Framework

 {
 switch (this.NavigationContext.QueryString[“action”])
 {
 case “getCustomerDetails”:
 // do something for customer details
 break;
 case “getCompanyDetails”:
 // do something for company details
 break;
 case “getOrders”:
 // do something for orders list
 break;
 case “getOrderDetails”:
 // do something for order details
 break;
 }
 }
}

In the sample you are building here, once the customerId variable is retrieved, you set the Text
property of the TextBlock that you added to the page. If this were a database-driven application,
you would have a method named GetCustomerDetails, which takes the customerId parameter
and returns an object with more fields pertaining to this customer. If you run the application, you
see something like Figure 4-7.

Figure 4-7

Listing 4-13  (continued)

Creating Parameterized Query Strings  ❘  105

Once you click one of the company name links, the HyperlinkButton_Click code executes and
navigates to the CustomerDetails page as shown in Figure 4-8.

Figure 4-8

These URI’s also behave very nicely with browser-integrated navigation for deep linking on a website.
If you navigate directly to a page in the website, like this:

http://localhost:9153/CustomUriAppTestPage.html#Customer/2

you are taken directly to the correct CustomerDetails page. You do not have to remember long
URLs like this:

http://localhost:9153/CustomUriAppTestPage/Views/CustomerDetails.xaml?customerId=2

You can test this easily by simply copying the user-friendly browser URL after you navigate to a
CustomerDetails page and pasting the URL into another browser session or a different browser.

Using the Frame Class
Now that you have seen the various ways to handle navigation, this section looks at the Frame class
and its members. You should already be somewhat familiar with the Frame class; this is the main object
you will use whenever you are building applications that have anything beyond basic navigation. The
following key methods, properties, and events help you determine what you can do to traverse Page
objects in a Silverlight application.

http://localhost:9153/CustomUriAppTestPage.html#Customer/2
http://localhost:9153/CustomUriAppTestPage/Views/CustomerDetails.xaml?customerId=2

106  ❘  Chapter 4   Working with the Navigation Framework

Frame Class Methods
This section covers the methods in the Frame class.

GoBack➤➤  — ​Navigates to the most recent entry in the back navigation history, or throws an
exception if no entry exists in back navigation (Listing 4-14).

Listing 4-14:  ​The GoBack method

private void GoBackLink_Click
 (object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoBack)
 {
 ContentFrame.GoBack();
 }
}

GoForward➤➤  — ​Navigates to the most recent entry in the forward navigation history, or throws
an exception if no entry exists in forward navigation. Use the CanGoForward property to
check whether there is an entry in the navigation history to go forward to (Listing 4-15).

Listing 4-15:  ​The GoForward method

private void GoForwardLink_Click
 (object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoForward)
 {
 ContentFrame.GoForward();
 }
}

Navigate➤➤  — ​Navigates to the content specified by the uniform resource identifier (URI)
(Listing 4-16).

Listing 4-16:  ​The Navigate method

private void NavigateLink_Click
 (object sender, RoutedEventArgs e)
{
 ContentFrame.Navigate
 (new Uri(“/views/about.xaml”, UriKind.Relative));
}

Refresh➤➤  — ​Reloads the current page (Listing 4-17). By default, navigation to the page that is
currently loaded will not reload the content.

Creating Parameterized Query Strings  ❘  107

Listing 4-17:  ​The Refresh method

private void RefreshLink_Click
 (object sender, RoutedEventArgs e)
{
 ContentFrame.Refresh();
}

StopLoading➤➤  — ​Stops asynchronous navigations that have not yet been processed by raising
the NavigationStopped event (Listing 4-18).

Listing 4-18:  ​The StopLoading method

private void CancelNavigationLink_Click
 (object sender, RoutedEventArgs e)
{
 ContentFrame.StopLoading();
}

Frame Class Properties
The following key properties are in the Frame class:

CacheSize➤➤  — ​Specifies how many pages can be retained in a cache. When a page is cached, an
instance of the page is reused for each navigation request rather than re-creating the page for
each request. The CacheSize property is used only when you set the NavigationCacheMode
property of the Page class to Enabled. If you set the NavigationCacheMode property to
Required, the page is cached regardless of the number of cached pages specified in the
CacheSize property. Pages marked as Required do not count against the CacheSize total.
See Listing 4-19.

Listing 4-19:  ​Setting the CacheSize property

<navigation:Frame x:Name=”ContentFrame”
 CacheSize=”10”
 Style=”{StaticResource ContentFrameStyle}“
 Source=”/Home”
 Navigated=”ContentFrame_Navigated”
 NavigationFailed=”ContentFrame_NavigationFailed”>

In the in the Page class, set the NavigationCacheMode to Enabled, Required, or Disabled
(Listing 4-20).

Listing 4-20:  ​Setting the NavigationCacheMode property

<navigation:Page x:Class=”NavigationApplication.About”
 ...
 Title=”About”
 NavigationCacheMode=”Required” >

108  ❘  Chapter 4   Working with the Navigation Framework

CanGoBack➤➤  — ​Gets a value that indicates whether there is at least one entry in the back naviga-
tion history (Listing 4-21). If true is returned, there is at least one entry in the back navigation
history; otherwise, false is returned.

Listing 4-21:  ​Checking the CanGoBack property

private void GoBackLink_Click
 (object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoBack)
 {
 ContentFrame.GoBack();
 }
}

CanGoForward➤➤  — ​Gets a value that indicates whether there is at least one entry in the forward
navigation history (Listing 4-22). If there are no entries in the forward navigation history, the-
GoForward method throws an InvalidOperationException. Use the CanGoForward property
to determine whether there is at least one entry in the forward navigation history.

Listing 4-22:  ​Checking the CanGoForward property

private void GoForwardLink_Click
 (object sender, RoutedEventArgs e)
{
 if (ContentFrame.CanGoForward)
 {
 ContentFrame.GoForward();
 }
}

ContentLoader➤➤  — ​Gets or sets the object responsible for providing the content that corre-
sponds to a requested URI. The default is a PageResourceContentLoader instance. To get
a complete example of using the advanced ContentLoader property, review the article at
http://www.davidpoll.com/tag/contentloader/.

CurrentSource➤➤  — ​Gets or sets the URI of the content that is currently displayed (Listing 4-23).

Listing 4-23:  ​Using the CurrentSource property

private void ContentFrame_Navigated
 (object sender, NavigationEventArgs e)
{
 ApplicationNameTextBlock.Text =
 ContentFrame.CurrentSource.ToString();
 }
}

http://www.davidpoll.com/tag/contentloader/

Creating Parameterized Query Strings  ❘  109

JournalOwnership➤➤  — ​Gets or sets whether a frame is responsible for managing its
own navigation history, or whether it integrates with the web browser Journal. Use the
JournalOwnership enumeration when setting the JournalOwnership property of the Frame
class to specify whether the frame integrates with the browser Journal. When a frame is inte-
grating with the browser Journal, the browser’s navigation history includes navigation that has
occurred within the frame. Only top-level frames can integrate with the browser Journal.

Source➤➤  — ​Gets or sets the URI of the current content or the content that is being navigated
to (Listing 4-24). When the Source property is set to a value that is different from the content
being displayed, the frame navigates to the new content.

Listing 4-24:  ​Setting the Source property

private void SetSource_Click
 (object sender, RoutedEventArgs e)
{
 ContentFrame.Source = new Uri(“/About”, UriKind.Relative);
}

UriMapper➤➤  — ​Gets or sets the object to manage converting a URI to another URI for this frame.

Frame Class Events
This section covers the events in the Frame class.

FrameNavigation➤➤  — ​Occurs when navigation to a content fragment begins.

Navigated➤➤  — ​Occurs when the content that is being navigated to has been found and is
available (Listing 4-25).

Listing 4-25:  ​Auto-generated Navigated event code from the Home.cs class

private void ContentFrame_Navigated
 (object sender, NavigationEventArgs e)
{

 CurrentNavigatedSource.Text =
 ContentFrame.CurrentSource.ToString();

 // After the Frame navigates, ensure the
 // HyperlinkButton representing the current page is selected
 foreach (UIElement child in LinksStackPanel.Children)
 {
 HyperlinkButton hb = child as HyperlinkButton;
 if (hb != null && hb.NavigateUri != null)
 {
 if (hb.NavigateUri.ToString().Equals(e.Uri.ToString()))
 {
 VisualStateManager.GoToState(hb, “ActiveLink”, true);
 }

continues

110  ❘  Chapter 4   Working with the Navigation Framework

 else
 {
 VisualStateManager.GoToState(hb, “InactiveLink”, true);
 }
 }
 }
}

Navigating➤➤  — ​Occurs when a new navigation is requested (Listing 4-26).

Listing 4-26:  ​Using the Navigating event

void ContentFrame_Navigating
 (object sender, NavigatingCancelEventArgs e)
{

 MessageBox.Show(“you have navigating using mode “
 + e.NavigationMode);

 // cancel the navigation
 e.Cancel = true;
}

NavigationFailed➤➤  — ​Occurs when an error is encountered while navigating to the
requested content (Listing 4-27).

Listing 4-27:  ​Using the NavigationFailed event

private void ContentFrame_NavigationFailed
 (object sender, NavigationFailedEventArgs e)
{
 e.Handled = true;
 ChildWindow errorWin = new ErrorWindow(e.Uri);
 errorWin.Show();
}

NavigationStopped➤➤  — ​Occurs when a navigation is terminated by calling the StopLoading
method or when a new navigation is requested while the current navigation is in progress
(Listing 4-28).

Listing 4-28:  ​Using the NavigationStopped event

void ContentFrame_NavigationStopped
 (object sender, NavigationEventArgs e)
{
 MessageBox.Show(“navigation was cancelled or stopped”);
}

Listing 4-25  (continued)

Using a Custom Menu Control  ❘  111

Using a Custom Menu Control

In the previous examples, navigation was triggered by clicking a HyperlinkButton control. In some
cases, you will use other types of controls to trigger navigation. The basic concept is the same no mat-
ter what type of control you use. In this example, you see how to implement navigation using a third-
party menu control, the xamWebMenu from the Infragistics Silverlight controls toolset. The XamWebMenu
easily integrates into the Navigation Framework by simply setting a few properties on the control and
its menu items. Listing 4-29 is an example where I have taken the default MainPage.xaml template
that is created when you start a Silverlight Navigation Application and I have added the XamWebMenu
control to the page.

Listing 4-29:  ​Adding the Infragistics XamWebMenu for navigation

<!-- Default controls for navigation, this section would be removed
(everything inside the Border control if you replace
navigation with a custom menu control -->
<Border
 x:Name=”LinksBorder”
 Style=”{StaticResource LinksBorderStyle}“>
 <StackPanel
 x:Name=”LinksStackPanel”
 Style=”{StaticResource LinksStackPanelStyle}“>
 <HyperlinkButton x:Name=”Link1”
 Style=”{StaticResource LinkStyle}“
 NavigateUri=”/Home”
 TargetName=”ContentFrame”
 Content=”home”/>
 <Rectangle
 x:Name=”Divider1”
 Style=”{StaticResource DividerStyle}“/>
 <HyperlinkButton
 x:Name=”Link2”
 Style=”{StaticResource LinkStyle}“
 NavigateUri=”/About”
 TargetName=”ContentFrame”
 Content=”about”/>
 </StackPanel>
</Border>
<!-- This is the custom menu control – note the NavigationElement
is bound to the ContentFrame control, and the XamWebMenuItems
use the NavigationUri to navigate to the Uri in the
UriMapping collection -->
<ig:XamWebMenu
 NavigationElement=”{Binding ElementName=ContentFrame}“
 Height=”27”
 HorizontalAlignment=”Left”
 Margin=”214,6,0,0” Name=”xamWebMenu1”
 VerticalAlignment=”Top”
 Width=”232” >

 <ig:XamWebMenuItem

continues

112  ❘  Chapter 4   Working with the Navigation Framework

 Header=”Select a Nav Target”>
 <ig:XamWebMenuItem
 NavigationOnClick=”True”
 NavigationUri=”/Home”
 Header=”Home”>
 </ig:XamWebMenuItem>

 <ig:XamWebMenuItem
 NavigationOnClick=”True”
 NavigationUri=”/About”
 Header=”About” />
 </ig:XamWebMenuItem>
</ig:XamWebMenu>

You can see that on the main XamWebMenu control I use the NavigationElement property to tell
the menu which element it should target when a menu item is clicked. In this case, I am binding
to the Frame element on the page. Then, on each XamWebMenuItem, I have set two properties: the
NavigationOnClick property and the NavigationUri property. The NavigationOnClick property,
when set to True, tells the menu that I want to use the Silverlight Navigation framework when a
menu item is clicked. The NavigationUri property tells the menu what URI I want the target Frame
to navigate to when I click the menu item. When you run the project, you can see that as expected,
clicking the menu items causes the content in the Frame to change. Figure 4-9 shows what the menu
should look like based on the XAML added to the preceding page.

Figure 4-9

Listing 4-29  (continued)

adding navigation animations ❘ 113

To get the XamWebMenu, download the Infragistics Silverlight controls at this link: http://www
.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#Overview.

adding navigation aniMations

One of the compelling features of Silverlight is its animations capabilities. You can fl ip, rotate, skew,
bounce, shrink, grow, and a lot more on any object that is rendered on the screen. The same goes for
the pages that you are navigating to via the Navigation Framework. This could be done in several ways,
but the simplest is to use a control in the Silverlight Control Toolkit that you can download here:

http://silverlight.codeplex.com/

Once you download and install the Toolkit, you can run the samples that demonstrate its various
features. One of the controls in the Toolkit is the TransitioningContentControl.

The Silverlight Control Toolkit is licensed under MS-PL, or the Microsoft
Permissive License. This means you are free to use the controls and source code
for anything that you choose to, as long as the license reference is included in what
you are redistributing. Note that these controls are not supported by Microsoft,
so the only available support is via the various public forums on CodePlex and
Silverlight.net.

The TransitioningContentControl is a ContentControl that provides four transition animations
that are triggered when the Content property of the control is changed. The following four transitions
are available:

DefaultTransition➤➤

Normal➤➤

UpTransition➤➤

DownTransition➤➤

To use the TransitioningContentControl to animate the content changes of the Frame control, you
need to update the ContentFrameStyle in the Styles.xaml Resource Dictionary of a Navigation
Application template, which is located in the Assets folder as shown in Figure 4-10.

To get this going, add a reference to the System.Windows.Controls.Layout.Toolkit assembly
as shown in Figure 4-11. I chose to download the .zip fi le of the Silverlight Control Toolkit, so I
browsed to the Bin folder on my machine where I unzipped the fi le. If you chose to install the MSI of
the Silverlight Control Toolkit, look in the \Program Files\Microsoft SDKs\Silverlight folder.

Once this reference is added, add the following namespace reference to the Styles.xaml Resource
Dictionary:

xmlns:layout=”http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit”

http://www.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#Overview
http://silverlight.codeplex.com/
http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit%E2%80%9D
http://www.infragistics.com/dotnet/netadvantage/silverlight/line-of-business.aspx#Overview

114  ❘  Chapter 4   Working with the Navigation Framework

Figure 4-10 Figure 4-11

In the Styles.xaml file, locate the ContentFrameStyle (it is near the top of the file, or you can
hit Ctrl+F to launch the Find dialog). Once you have located the ContentFrameStyle, update the
Setter value for the ControlTemplate as shown in Listing 4-30.

Listing 4-30:  ​Updating the ContentFrameStyle in the Styles.xaml file

<!-- Content Frame Style -->
<Style x:Key=”ContentFrameStyle”
 TargetType=”navigation:Frame”>
 <Setter Property=”Background”
 Value=”Transparent”/>
 <Setter Property=”BorderBrush”
 Value=”Transparent”/>
 <Setter Property=”Padding”
 Value=”58,15,58,15”/>
 <Setter
 Property=”VerticalContentAlignment”
 Value=”Stretch”/>
 <Setter
 Property=”HorizontalContentAlignment”
 Value=”Stretch”/>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate
 TargetType=”navigation:Frame”>
 <Border>
 <layout:TransitioningContentControl
 <!-- The control supports the following
 Transition values
 DefaultTransition

Summary  ❘  115

 Normal
 UpTransition
 DownTransition
 -->
 Transition=”DownTransition”
 Content=”{TemplateBinding Content}“ />
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

If you look at the Frame control in the MainPage.xaml, you will see the Style property is set to
ContentFrameStyle, which you have just modified:

<navigation:Frame x:Name=”ContentFrame”
 Style=”{StaticResource ContentFrameStyle}“

The Frame control contains a ContentPresenter, which is replaced with the
TransitioningContentControl when the ContentFrameStyle is merged with the page. Once
the content of the Frame changes when a user triggers a navigation event, the specified transition
executes based on the Transition property that you set in the style. You can experiment with
the various Transition options to determine what works best for your application.

Summary

This chapter gave you the information you need for fundamental navigation scenarios in Silverlight.
You learned how to use and manipulate the Navigation Application template, how to create param-
eterized queries for real work Line of Business applications, and how to extend your application to use
a richer, third party menu like the Infragistics XamWebMenu control. Finally, you learned how to add
finishing touches to your navigation application, using a TransitioningContentControl to animate
the transitions of the Frame control.

5
Controlling layout with Panels

what’s in this chapter?

Measuring and arranging➤➤

Sizing elements➤➤

Using and making layout panels➤➤

Controlling the layout of an application’s user interface (UI) is a problem that has long plagued
developers. Over the years, rich-client developers have written thousands of lines of code solely
devoted to reposition UI elements in the application as its window size changes. Web develop-
ers have long struggled with the multitude of positioning schemes available to them, starting
with HTML tables and progressing to CSS layout, and — adding insult to injury — dealing
with different browser interpretations of these layout schemes.

Microsoft looked to address many of the basic problems in application user interface layout
with Windows Presentation Foundation (WPF) by creating a powerful, fl exible, and highly
extensible new layout system. Thankfully, they have brought most of those layout concepts
into the world of Silverlight. Through the use of layout containers and panels, the Silverlight
layout system gives you a level of layout control that was previously diffi cult, if not impossible,
to achieve.

In this chapter, you fi rst learn the basics of the Silverlight layout system and how it works to
create fl exible application user interfaces, and ways that you can infl uence how individual
UI elements are sized and positioned. Next, you will learn about the different layout panels
included in Silverlight that implement these layout concepts. You also learn how simple it is to
take advantage of the layout system by building your own custom layout panel that includes
your own layout logic. Finally, you learn how external infl uences such as browser rendering
can infl uence the layout of your Silverlight application.

118 ❘ chapter 5 controllIng lAyout wIth pAnelS

Measure, then arrange

The basis of the Silverlight layout system is a two-pass measure and arrangement concept. While all
UI elements participate in this system, most of the work is done by layout panels, so in this section,
we talk about the layout system in the context of a panel.

When a layout panel in the application changes size or location, this invalidates the layout of the
panel and triggers one or more passes of the Silverlight layout system. Panels can also be manually
invalidated using the InvalidateMeasure and InvalidateArrange methods.

In order for an element to participate in the layout system, it must be added to the
Visual Tree. The Visual Tree is the internal hierarchy of UI elements that Silverlight
maintains. When a Silverlight application executes, the Visual Tree is constructed
based on the XAML elements defi ned in the user interface. Elements can be added
or removed from the tree at run time by manipulating a panel’s Children collec-
tion. If you are creating UI elements at run time, make sure you add them to some
panel’s Children collection so that it is added to the Visual Tree.

Once a panel becomes invalid, Silverlight initiates the Measure pass, which is shown in Figure 5-1.

Determine
Available Size

Measure
Child Elements

Determine
Desired Size

figure 5-1

In the Measure pass, the invalid panel is told how much size it has available to it. The panel then
has all of its child elements measure themselves, calculating how much space they would like to
take based on the panel’s available size. The size an element would like to be is called the element’s
DesiredSize and is usually based on the size of its content or a hard-coded Height or Width value.

Note that if a panel is the child of certain elements, such as the ScrollViewer,
it can be told in the Measure pass that it has infi nite height and/or width. This
can affect how a panel renders its children, allowing them to take infi nite
height or width.

The term desired size is used because although an element may desire a specifi c size, other factors in
the user interface may cause the Silverlight layout system to force the element to be rendered with a

Measure, Then arrange ❘ 119

different size. When all of the panel’s children have completed measuring themselves, the panel can
determine how much of the available size it would like to use and returns that value to the Silverlight
layout system.

Once the Measure pass completes, Silverlight calculates the fi nal size available to the panel and the
second pass of the layout system, the Arrange pass (see Figure 5-2) is executed.

1. Determine Pre-Arrangement Final Size

2. Arrange Child Elements Based on Panel Logic

3. Determine Post-Arrangement Final Size

figure 5-2

During the Arrange pass, the panel has the opportunity to arrange each of its children based on its
panel-specifi c logic and by asking the child elements for their fi nal size. Based on the arrangement of
the children, the panel returns its fi nal size to the layout system before being rendered.

The fi nal height and width of the panel is called its ActualWidth and ActualHeight.

When querying an element for its current size, you should always use the
ActualHeight and ActualWidth properties since the element’s parent can alter
the element’s height and width regardless of any explicit height and width values
that might be set. Also note that the ActualHeight and ActualWidth proper-
ties can return a value of zero. This can happen if the element is either not in the
Visual Tree or has not gone through a layout pass.

Later in this chapter you will look at the different Panels available in Silverlight, and the arrange-
ment logic used by each, as well as how you can create panels with your own custom measure and
arrangement logic.

120 ❘ chapter 5 controllIng lAyout wIth pAnelS

Each time a UI element changes size or position, it has the potential to trigger a
new pass of the layout system, which can cascade down the Visual Tree invalidat-
ing children of the original invalid element. If the Visual Tree is large, this can be
an expensive process. To help reduce the amount of work performed by the layout
system, Silverlight will cache arranged versions of the Visual Tree. As the invali-
dation of elements cascades down, if Silverlight determines that a specifi c child
element’s size and position have not changed, it will use the cached version of the
elements, rather than triggering the measure and arrange passes for it.

As mentioned earlier, during the Arrange pass of the layout system, a panel has the opportunity to
arrange its children based on its arrangement logic. When positioning elements, the panel is in real-
ity positioning a rectangle called a layout slot, which contains the element. Silverlight surrounds
every UI element with this rectangle to simplify the arrangement process.

The size of the layout slot is determined by the layout system, giving consideration to the amount of
available screen space, constraints like margin and padding, and the unique behavior of the parent
Panel. It is up to the parent container to determine the size of the layout for each of its children.
You can get the Rectangle, and through that the size of the layout slot, by using the static System
.Windows.Controls.LayoutInformation.GetLayoutSlot method.

If an element extends outside of its allocated layout slot, the layout system will begin to clip the ele-
ment. You can get the dimensions of the visible portion of the element by calling the System
.Windows.Controls.LayoutInformation.GetLayoutClip method.

eleMent siZing characteristics

Every FrameworkElement includes several properties that can help the element infl uence its size and
position within the layout container. These properties are:

Height➤➤ and Width

Alignment➤➤

Margin➤➤

Padding➤➤

This section looks at these different properties and how you can use them to control how elements
of your user interface are arranged.

height and width
The most direct way to control a FrameworkElement’s size is to use its Height and Width proper-
ties. These properties allow you to set specifi c pixel values for the element’s height and width, and
depending on the FrameworkElement’s layout container, these values will usually override any other
size properties set on the element.

element sizing Characteristics ❘ 121

For users who have set their OS DPI to a value other than the default 96 DPI,
browsing the Web can be diffi cult. This is because most browsers are not
DPI-aware and cannot take advantage of Windows DPI Scaling features to
improve the readability of their content. Internet Explorer 8 (IE 8) helps off-
set this issue by automatically increasing its zoom level based on the OS DPI
setting, but Silverlight itself is not DPI-aware (pixels are always rendered at a
fi xed 1/96th of an inch), and therefore it will not automatically scale its own
content. To work around this problem, you can use a scale transform based
on the actual size of the Silverlight plug-in object, which will be scaled by IE.
Or if you are targeting only Internet Explorer to host your application, you
can detect the OS DPI using the Silverlight DOM Bridge to get the value of
the deviceXDPI property of the Internet Explorer DOM.

By default, FrameworkElements have their Width and Height properties set to Double.NaN, which is
interpreted by the layout system as “Auto.” Auto layout generally means that the layout system will size
the element to fi ll whatever space is available in the layout, rather than sizing to any specifi c pixel value.
This is shown in Figure 5-3, where a button with no height or width set has been added to a Grid.

figure 5-3

You can clearly see that the Button consumes all the available space in the Grid.

122 ❘ chapter 5 controllIng lAyout wIth pAnelS

Although not necessary, you can explicitly set the Width and Height properties to
Auto in XAML. It is also possible to reset a FrameworkElement’s height and width
value back to Auto by assigning the property a value of Double.NaN in code.

Note that in Figure 5-3, neither the Grid nor its container, the UserControl, have Width and
Height properties set; therefore, they too default to Auto size. This explains why the Grid is con-
suming all available space of its layout container, the UserControl, and the UserControl is con-
suming all available space of its container, the Silverlight plug-in.

Setting an explicit width or height on the Button will constrain its size within the Grid, as shown in
Figure 5-4, where the Button now has its Width property set to 150.

figure 5-4

Also, by default the button has its HorizontalAlignment and VerticalAlignment properties set to
stretch. This means that the Button is going to stretch to fi ll its parent container. Setting these prop-
erties to a different value, such as center, changes the layout behavior of the Button so that it sizes
itself based on the size of its content.

Leaving a control’s Height or Width as Auto allows its containing Panel to infl uence how the con-
trol is ultimately rendered. For example, if you take the code from the previous listing and substitute
a StackPanel for the Grid as the Button’s layout container, you will see that the Button’s height
is rendered differently. This is because of the different arrangement logic used by the StackPanel
compared to the Grid, which will be explained in greater detail when we examine the StackPanel
layout container later in this chapter.

Element Sizing Characteristics  ❘  123

In addition to setting explicit height and width values, every FrameworkElement can also have
height and width thresholds set on it. Using the FrameworkElement’s MinWidth, MinHeight,
MaxWidth, and MaxHeight properties, you can dictate to the layout system that the element
should never exceed certain height or width values. Setting these values will even override the
FrameworkElement’s Width or Height properties if they are explicitly set to values outside the mini-
mum or maximum ranges.

In cases in which the size given to the FrameworkElement’s layout container is less than the
MinWidth or MinHeight of the FrameworkElement, the container will begin to clip the element
rather than reduce the element’s size.

Alignment
FrameworkElements can have a horizontal or vertical alignment set on them. The alignment proper-
ties include the standard alignment values — ​Left, Right, and Center for horizontal alignment and
Top, Center, and Bottom for vertical alignment — ​but by default, an element’s alignment is set to
a fourth option, called Stretch. Stretch tells the element that it should attempt to fill its parent’s
entire layout slot.

Margin and Padding
Finally, there are two additional properties you can use to influence the size and position of UI ele-
ments in your application, FrameworkElement’s Margin property and Control’s Padding property.

Margin
The Margin property allows you to add space to the outside of the element, between it and any other
elements that surround it. You can set an element’s margin as a single uniform value:

<Button Margin=”10” />

You can also control the margin for each side of the element individually. In XAML, you can set the
margin for each side of the element by specifying a comma-delimited list. The order of the Margin
values is Left, Top, Right, Bottom:

<Button Margin=”10,5,10,5” />

When a FrameworkElement’s container has no size constraints, the margins will push the Layout Slot
boundaries outward. Figure 5-5 demonstrates this by placing a Button with explicitly set Height and
Width properties and a margin size of 40 into a Grid that has no explicit height or width set.

By setting the Grid’s Background to LightGray and its HorizontalAlignment and
VerticalAlignment to Center, you can see that the button’s margin pushes the grid outward
beyond the boundaries of the button.

If the Silverlight layout system determines that space is not available to add the margin to the
FrameworkElement, the system attempts to constrain, or even clip, the element’s content in order to
display the full margins. If the FrameworkElement has an explicit height or width set, the content
of the element will be clipped. This is shown in Figure 5-6, where an explicit width and height has
been set on the grid and the content of the button is now clipped when a margin is added.

124  ❘  Chapter 5   Controlling Layout with Panels

Figure 5-5

Figure 5-6

Using layout Panels ❘ 125

It is also possible to set margin values to negative values. Doing this allows you
to position elements outside of their normal position.

If the FrameworkElement does not have an explicit size set, Silverlight attempts to constrain the ele-
ment content in order to display the full margins.

Padding
The Padding property allows you to add space around the inside of an element. Figure 5-7 dem-
onstrates this by showing two Border controls inside of a two-column grid. Both Border controls
contain a rectangle. The Border control on the left has no Padding set, while the one on the right
has had its Padding property set to increase the buffer between it and the child rectangle.

figure 5-7

As with the Margin properties, if the parent element has no explicit size set, the element increases in
size in order to accommodate the padding.

Margin and Padding are cumulative, meaning that if the parent element has Padding defi ned and
the inner element has Margin defi ned, Silverlight displays both.

Finally, unlike Margin, Padding cannot be set to negative values.

using layout panels

Now that you have a basic understanding of how the Silverlight layout system works, you can
begin to use some of the layout panels that are native to Silverlight or are available in the Silverlight
Toolkit that leverage this system. Each of these panels provides a unique layout mechanism you can
leverage in your application.

126 ❘ chapter 5 controllIng lAyout wIth pAnelS

Additionally, there are numerous third-party and open source layout panels available that you can
leverage in your application.

canvas
The Canvas layout panel provides you with a way to position elements using an explicit coordinate
system. Elements contained in the Canvas are positioned relative to the top-left corner of the panel,
which is considered position 0,0.

While this layout panel may feel the most familiar to developers who are com-
ing from the Windows Forms world, for the most part, you should avoid using
Canvas in your applications (or at least use it sparingly) because it forces you
to do most of the work to control the position of your UI elements, rather than
allowing the layout system to do this for you. An excellent explanation of why
the use of Canvas should be avoided can be found here: http://blogs.msdn
.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx.

To position elements on the Canvas, you use the Canvas’s Top and Left attached properties on its
child elements. Listing 5-1 demonstrates how you can use the Canvas to absolutely position buttons.

listing 5-1: Using the Canvas panel to arrange elements

<Canvas>
 <Button Canvas.Left=”0” Canvas.Top=”0” Content=”Button1” />
 <Button Canvas.Left=”50” Canvas.Top=”25” Content=”Button1” />
 <Button Canvas.Left=”100” Canvas.Top=”50” Content=”Button1” />
 <Button Canvas.Left=”150” Canvas.Top=”75” Content=”Button1” />
 <Button Canvas.Left=”200” Canvas.Top=”100” Content=”Button1” />
 <Button Canvas.Left=”250” Canvas.Top=”125” Content=”Button1” />
</Canvas>

Figure 5-8 shows how the buttons are absolutely positioned within the Canvas when the application
is run.

While Canvas is useful when you need to explicitly position elements in your user interface — for
example, if your application performs some type of physics-based rendering or drawing — it does
mean that your user interface becomes less dynamic and will not be able to scale properly as the
available space in the UI changes. Canvas does not consider some of the basic element characteristics
like HorizontalAlignment and VerticalAlignment when positioning children because Canvas is
based on absolute positioning.

http://blogs.msdn.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx
http://blogs.msdn.com/devdave/archive/2008/05/21/why-i-don-t-like-canvas.aspx

Using Layout Panels  ❘  127

Figure 5-8

StackPanel
As the name implies, the StackPanel simply stacks elements vertically or horizontally. Listing 5-2
demonstrates using the StackPanel to create a vertical stack of elements.

Listing 5-2:  ​Using StackPanel to stack elements

<StackPanel>
 <Button Content=”Button” />
 <TextBlock>Lorum Ipsum</TextBlock>
 <Slider></Slider>
 <HyperlinkButton Content=”HyperlinkButton” />
 <CheckBox />
</StackPanel>

As you can see in Figure 5-9, when child elements are added to the StackPanel, the panel simply
stacks them in a vertical orientation by default. Using the StackPanel’s Orientation property, you
can change the panel to stack elements horizontally.

When the StackPanel’s orientation is set to Vertical, the control sets its available height to
Infinity, allowing its children to take an infinite amount of vertical space if they have no explicit
size set. If the orientation is horizontal, then the panel’s width is set to Infinity.

128 ❘ chapter 5 controllIng lAyout wIth pAnelS

figure 5-9

This is one reason why the StackPanel works well in conjunction with the ScrollViewer control. As a
StackPanel’s children begin to exceed the amount of vertical or horizontal space available to the panel,
the ScrollViewer allows you to start scrolling them into view, rather than adjusting their own size.

Additionally, as with every other element, StackPanel can have its height and width set. If no width
is set, the StackPanel will make itself as wide as its widest child. If no height is set, it takes enough
height to display all of its children.

virtualizingstackpanel
The VirtualizingStackPanel offers the same basic element stacking arrangement as the
StackPanel, but because it is derived from the VirtualizingStackPanel, it leverages
virtualization to help reduce the number of UI elements created in your application.

Working with an ItemsControl like ListBox, the VirtualingStackPanel can determine which
items in the list are currently visible on screen, and generates only the UI elements needed for those
items that can help you increase the performance of your application.

Starting in Silverlight 3, the ListBox default items panel is the
VirtualizingStackPanel, so if you are using this control, you will auto-
matically see the benefi ts of the virtualization. In order for the ListBox
to determine the number of items visible, the control needs to be able to
calculate some height value. If your ListBox is inside of a ScrollViewer,
you will need to either set an explicit height on the ListBox or turn off the
VerticalScrollBarVisibility.

Using Layout Panels  ❘  129

In addition to ListBox, you can use the VirtualizingStackPanel to increase the performance of the
ComboBox. Listing 5-3 demonstrates using the VirtualizingStackPanel with the ComboBox control.

Listing 5-3:  ​Using the VirtualizingStackPanel with the ComboBox

<ComboBox x:Name=”comboBox1”>
 <ComboBox.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ComboBox.ItemsPanel>
</ComboBox>

As you can see, to use the VirtualizingStackPanel, you simply assign it to the ComboBox’s
ItemsPanel property.

Grid
Perhaps the most powerful layout container in Silverlight is the Grid layout panel. As the name
implies, the Grid allows you to define a grid of rows and columns in which you can position child
elements.

Listing 5-4 demonstrates a simple Grid layout container.

Listing 5-4:  ​Defining rows and columns in a Grid layout panel

<Grid Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Text=”Grid Cell 1” Grid.Row=”0” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”0” Grid.Column=”1” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1” Grid.Row=”1” Grid.Column=”1” />
</Grid>

In the previous sample, a grid structure consisting of two rows and two columns is created using the
grid’s RowDefinitions and ColumnDefinitions collections. Once the structure is defined, several
TextBlocks are added to the grid. Using the grid’s Row and Column attached properties, you can
dictate which grid cell each TextBlock element should be positioned in.

If you add children to the Grid, but do not explicitly set a Row or Column value, the grid automati-
cally assumes they will be in row zero, column zero.

130  ❘  Chapter 5   Controlling Layout with Panels

The Grid also exposes RowSpan and ColumnSpan attached properties that you can use to alter how
an element is positioned in the Grid. Listing 5-5 demonstrates using these attached properties to
allow a TextBlock to span two grid columns.

Listing 5-5:  ​Using a ColumnSpan with a TextBlock

<Grid Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <TextBlock Grid.Row=”0” Grid.Column=”0”
 Grid.ColumnSpan=”2” TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Sed ultricies lectus et dui. Quisque vulputate facilisis nisl.
 Nulla sed turpis. Pellentesque ultricies mi ac velit. Praesent
 id turpis. Nunc mattis pharetra enim. In leo eros, sollicitudin
 vitae, ultricies accumsan, luctus quis, justo.
 </TextBlock>
 <TextBlock Text=”Grid Cell 1/0” Grid.Row=”1” Grid.Column=”0” />
 <TextBlock Text=”Grid Cell 1/1” Grid.Row=”1” Grid.Column=”1” />
</Grid>

The Grid also allows you to set properties on the individual rows and columns that affect their
layout. The RowDefinition and ColumnDefinition classes expose properties that allow you to set
their Height or Width.

Unlike a standard element’s Width and Height properties, which only accept pixel measurements or
the Auto keyword, Grid Row and Column size properties accept a special measurement type called
GridLength. This type not only offers the standard size units (Pixels or Auto), but also includes an
additional measurement type call Star. The Star unit allows you to provide a value that expresses
a size as a weighted proportion of available space. To specify a Star value, you simply provide the
literal * character as the value for the Width property. You can also specify a factor by placing an
integer preceding the *, for example, 3*.

Listing 5-6 demonstrates the use of the Star sizing in a Grid.

Listing 5-6:  ​Using Star sizing with the Grid

<Grid Background=”White” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”100” />

Using Layout Panels  ❘  131

 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”2*” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
</Grid>

In this sample, the first ColumnDefinition has an explicit pixel width set, while the rest use Star
size values. The third ColumnDefinition includes a factorial value that specifies that the width
given to this column should be two times that given to the other columns. Figure 5-10 shows the
resulting grid rendered.

Figure 5-10

In this case, the Grid has had its ShowGridLines property set to True in order to show the column
widths.

WrapPanel
The WrapPanel, included in the Silverlight Toolkit, allows you to create a layout that wraps UI ele-
ments when they begin to exceed the width of the wrap panel. Listing 5-7 demonstrates the use of
the WrapPanel.

Listing 5-7:  ​Using the Silverlight Toolkit’s WrapPanel

<my:WrapPanel>
 <Button Content=”Button” />
 <TextBlock>Lorum Ipsum</TextBlock>
 <Slider></Slider>
 <HyperlinkButton Content=”HyperlinkButton” />
 <CheckBox />
</my:WrapPanel>

132  ❘  Chapter 5   Controlling Layout with Panels

You can see that using the WrapPanel is virtually identical to using the StackPanel. As the width of
the panel changes, the elements within it will wrap to new lines, as shown in Figure 5-11.

Figure 5-11

If there are enough elements to begin to exceed the height of the panel, it will begin to show a verti-
cal scrollbar.

DockPanel
The DockPanel, also included in the Silverlight Toolkit, allows you to dock elements to the edge of
the panel. If you are familiar with Windows Forms, the DockPanel provides a layout behavior simi-
lar to the Dock property of Windows Forms controls.

Listing 5-8 shows how you can use the DockPanel, using the panel’s attached properties on its child
elements to control their dock behavior.

Listing 5-8:  ​Using the Silverlight Toolkit’s DockPanel

<controlsToolkit:DockPanel>
 <Button Content=”Left” controlsToolkit:DockPanel.Dock=”Left” />
 <Button Content=”Top” controlsToolkit:DockPanel.Dock=”Top” />
 <Button Content=”Right” controlsToolkit:DockPanel.Dock=”Right” />
 <Button Content=”Bottom” controlsToolkit:DockPanel.Dock=”Bottom” />
 <Button Content=”Center” />
</controlsToolkit:DockPanel>

You can see that in this listing, the DockPanel contains four Buttons. Each Button has the
DockPanel’s Dock property set on it, dictating the side of the panel the Button is docked to.

Creating Custom Panels  ❘  133

Finding Third-Party Panels
In addition to the layout panels available as native Silverlight panels or as part of the Silverlight
Toolkit, there are many other places to find layout panels. Third-party component vendors offer a
variety of layout panels with different panels, and a quick Bing search demonstrates that there are
many other sources of layout panels, from developers posting panels in a blog to open source proj-
ects hosted on CodePlex.

One of the more interesting open source projects is Blacklight, which is hosted on CodePlex
(www.codeplex.com/blacklight). This project contains two interesting layout panels: the Drag
Dock Panel and the Animated Layout Panel. The Drag Dock Panel allows you to create a series
of content panels that the end user can reorder through drag-and-drop gestures. The Animated
Layout Panel allows you to define an animation that is used when new elements are shown or
hidden in the panel.

Listing 5-9 demonstrates how you can use the Drag Dock Panel.

Listing 5-9:  ​Using the Blacklight Drag Dock Panel

<Grid x:Name=”LayoutRoot”>
 <blacklight:DragDockPanelHost Margin=”50”>
 <blacklight:DragDockPanel>
 <Button Content=”Button 1” />
 </blacklight:DragDockPanel>
 <blacklight:DragDockPanel>
 <Button Content=”Button 2” />
 </blacklight:DragDockPanel>
 <blacklight:DragDockPanel>
 <Button Content=”Button 3” />
 </blacklight:DragDockPanel>
 <blacklight:DragDockPanel>
 <Button Content=”Button 4” />
 </blacklight:DragDockPanel>
 <blacklight:DragDockPanel>
 <Button Content=”Button 5” />
 </blacklight:DragDockPanel>
 </blacklight:DragDockPanelHost>
</Grid>

As the listing shows, to use the panel, simply create a DragDockPanelHost and then add as many
DragDockPanels as you want. Each DragDockPanel contains the unique elements you want to show
in that panel.

Creating Custom Panels

As stated earlier in the chapter, the layout system included in Silverlight is not only highly flexible
but very extensible. It is quite easy to leverage the layout system to create your own custom layout
panels that contain your own unique arrangement logic. In order to show this, this section demon-
strates how to create a version of the WrapPanel control shown earlier called SimpleWrapPanel.

http://www.codeplex.com/blacklight

134  ❘  Chapter 5   Controlling Layout with Panels

The layout logic for the panel will stack its child elements from left to right, starting in the upper-
left corner of the panel. When the child elements begin to exceed the width of the panel, the panel
will automatically begin to wrap the elements to a new row.

To get started creating a custom panel, simply create a new Silverlight Class Library in your project.
Once the class file has been created, change the class so that it derives from the base Panel object.
This is shown in Listing 5-10.

Listing 5-10:  ​Deriving from the base Panel

using System;
using System.Windows;
using System.Windows.Controls;

namespace SimpleWrapPanelSample
{
 public class SimpleWrapPanel : Panel
 {
 }
}

Next, you must override two methods from the base Panel — ​MeasureOverride and
ArrangeOverride. This is shown in Listing 5-11.

Listing 5-11:  ​Overriding the MeasureOverride and ArrangeOverride methods

public class SimpleWrapPanel : Panel
{
 protected override Size MeasureOverride(Size availableSize)
 {
 }

 protected override Size ArrangeOverride(Size finalSize)
 {
 }
}

Now all that is left to do is for you to implement your own layout logic in the Measure and Arrange
methods. The logic for the SimpleWrapPanel’s MeasureOverride method is shown in Listing 5-12.

Listing 5-12:  ​MeasureOverride logic for SimpleWrapPanel

protected override Size MeasureOverride(Size availableSize)
{
 Size size = new Size();

 foreach (UIElement element in this.Children)
 {
 if (element != null)

Creating Custom Panels  ❘  135

 {
 element.Measure(availableSize);
 Size desiredSize = element.DesiredSize;

 size.Width = Math.Max(size.Width, desiredSize.Width);
 size.Height += desiredSize.Height;
 }
 }

 return size;
}

The first step in the method is to loop through all of the panel’s child elements and call Measure on
each one of them, passing in the availableSize parameter. This causes the child elements to calcu-
late their own desired sizes.

Next, in the same loop, the Panel control attempts to identify the amount of space needed by the
panel for the layout. This is calculated by finding the width of the widest element in the panel and
by calculating the sum height of all elements in the panel. Once the size is determined, it is returned
as the result of the method. The value returned from this method is the panel’s Desired Size, as dis-
cussed earlier in the chapter.

Once the layout system has completed the Measure pass, it then executes its Arrange. The Arrange
pass is when the panel actually positions its child elements in the final space allocated to the panel
by the layout system. The positioning of the child elements is done by calling the Arrange method
on each child of the Panel, passing the child its final desired size and position by using a Rectangle
object.

Listing 5-13 shows the panel’s ArrangeOverride method, which includes the positioning logic for
the panel.

Listing 5-13:  ​ArrangeOverride logic for SimpleWrapPanel

protected override Size ArrangeOverride(Size finalSize)
{
 Point point = new Point(0, 0);

 double top = 0.0;
 double left = 0.0;

 double maxheight = 0.0;
 double rowheight = 0.0;
 double width = 0.0;

 foreach (UIElement element in this.Children)
 {
 if (element != null)
 {

 left += width;

continues

136  ❘  Chapter 5   Controlling Layout with Panels

 width = element.DesiredSize.Width;

 //Check to see if this element will be rendered outside of
 //the panels width and if so, create a new row in the panel
 if ((left + element.DesiredSize.Width) >
 finalSize.Width)
 {
 left = 0.0;

 maxheight += rowheight;
 top = maxheight;
 rowheight = 0.0;
 }

 //Find the tallest element in this row
 if (element.DesiredSize.Height > rowheight)
 rowheight = element.DesiredSize.Height;

 element.Arrange(
 new Rect(left, top,
 element.DesiredSize.Width,
 element.DesiredSize.Height)
);
 }
 }

 return finalSize;
}

The logic in the Arrange method for this panel is relatively simple. First, several internal members
are defined which help the Panel track information about the positioned elements. The Panel needs
to track three things: the cumulative width of all elements it has positioned in the current row, the
height of the tallest element in the current row, and the cumulative height of all rows in the panel.

The cumulative width is used to correctly position the next element in the row. The tallest element
in the current row is used to determine the overall row height. As each element is positioned, the
Panel checks to see if its height is greater than any other element that has been positioned in the
row before it. The cumulative row height of all rows in the panel is used to determine the position of
the next row.

Next, the method begins to enumerate each child element of the panel, calculating the position for
each child element and calling its Arrange method. As the Panel enumerates each element, it sets
the Width and Height and X and Y properties of the positioning rectangle using the data from the
internal members.

The Panel also checks to determine if the element, when positioned, will exceed the width of the
panel. If this is found to be true, the Panel resets the Rectangle’s X and Y properties to reposition
the element onto a new row.

Listing 5-13  (continued)

silverlight Plug-in sizing ❘ 137

Finally, the child elements’ Arrange method is called. A new Rectangle object is created, which is used
to provide the panel’s children with the information they need to position themselves within the panel.

Note that in the ArrangeOverride method, if you try to make the height or
width of a child element smaller than its desired size, the size passed into the
child’s Arrange method is ignored, and the element continues to render at its
desired size. If you want to keep the smaller size, then you may need to apply a
clip to that element so that it won’t overspill its layout slot. Or earlier during the
panel’s Measure phase you can pass in the size that you actually want it to be.

Figure 5-12 shows the results of the panel once it is rendered.

figure 5-12

While the Wrap Panel is a simple example of a custom panel, every panel that you create will follow
the same basic Measure and Arrange principles.

silverlight plug-in siZing

As described earlier, at its core, Silverlight is a browser plug-in, which is added to the page using
a standard HTML <object> tag. This means that when mixed into a page that contains other
HTML, CSS, and JavaScript, the specifi c way the browser renders this content can have signifi cant
infl uence over how the Silverlight plug-in is sized and positioned.

To control the size of the browser plug-in, you can set a Height and a Width attribute on the object
tag in HTML, as shown in Listing 5-14.

138  ❘  Chapter 5   Controlling Layout with Panels

Listing 5-14:  ​Setting the Silverlight plug-in’s Height and Width

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/Chapter5.xap”/>
 <param name=”onError” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”3.0.40818.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/?LinkID=
 149156&v=3.0.40818.0” style=”text-decoration:none”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight” style=”border-style:none”/>

</object>

As with other HTML Height and Width attributes, you can provide either percent values, like those
shown in the sample, or fixed pixel values.

Summary

Silverlight provides a new and innovating user interface layout system that allows you to create
highly flexible user interfaces that easily adjust to and accommodate changes in application and con-
tent size. This chapter introduced you to the basics of this new layout system, starting with an over-
view of the new Measure, Arrange, and Render pattern used by Silverlight to intelligently render UI
elements. This two-pass system allows Silverlight first to evaluate the amount of space that each UI
element needs, and then to arrange each of these elements in the actual amount of space available.

The layout system allows you to influence this process by setting various sizing characteristics such
as the height, width, alignment, and margin on UI elements.

The chapter then introduced you to the available Panel control, which is responsible for most of the
element arrangement that happens in Silverlight. You can choose a panel that uses a layout scheme
that meets your layout needs, be it Grid, StackPanel, or Canvas; or as the chapter showed, you can
create your own custom panel with your own custom layout scheme.

Finally, the chapter looked briefly at how the browser itself can influence how Silverlight renders its
content and how you can use the object tag to configure the Silverlight object size.

http://go.microsoft.com/fwlink/?LinkID=
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D

6
Working with Visual Controls

what’s in this chapter?

Finding Silverlight controls➤➤

Using UI controls➤➤

Creating custom controls➤➤

Like most other Microsoft platforms, Silverlight allows developers to use controls to defi ne an
application’s user interface (UI). Controls allow developers to be more productive by encapsu-
lating reusable chunks of behavior and a UI into a single package that makes it easy to add the
user interface to your application. Rather than being responsible for drawing every detail and
coding every behavior, controls allow you to focus more on the specifi c requirements of your
application and less on developing those lower-level capabilities.

Silverlight provides a rich set of native controls as part of the platform. Additionally, there
are many other sources of controls including the Silverlight SDK, Silverlight Toolkit, third-
party vendors, and open source projects. This chapter will introduce you to many of the
controls across all of these resources. The chapter is not intended to be an in-depth guide to
every single control included in Silverlight, however, because many of the controls are fairly
self-explanatory. Additionally, although this chapter will touch on certain controls such as
MediaElement and TextBlock, they are discussed in much greater detail in other, more appli-
cable chapters of the book.

Because of the large number of Silverlight controls that are available from a
variety of sources, it can be diffi cult to know what assembly a specifi c control is
contained in. To make navigating this information easier, Appendix E contains
a table that maps the controls discussed in this chapter with the assemblies they
are found in.

140  ❘  Chapter 6   Working with Visual Controls

Finally, this chapter focuses primarily on the visual user interface controls you can use in Silverlight.
Another set of items that appears in Visual Studio and Blend is layout panels like the Grid and
StackPanel. Those are discussed in greater detail in Chapter 5.

Where to Find Controls

As stated in the introduction to this chapter, there are many places where you can look to find a wide
variety of useful controls. Before beginning to dive into the specific controls, it’s useful to understand
where you can find different controls and the consequences of choosing controls from different sources.

Controls for Silverlight can be found in the following general sources:

Native Silverlight Platform➤➤

Silverlight SDK➤➤

Silverlight Controls Toolkit➤➤

Third-party vendors➤➤

Open source projects➤➤

Custom controls➤➤

Each of these sources has different strengths and weaknesses. Obviously, controls that are included
in the native platform are the easiest to leverage, but the number of controls in that set is limited.
Controls included in the Silverlight SDK are also convenient to use, but because they are not part of
the native platform, using them requires you to add additional assemblies to your application, which
will increase the size of the application XAP.

In addition to the controls that Microsoft includes in the native platform and Silverlight SDK, an
additional set of controls is available through the Silverlight Controls Toolkit. These controls are
made available outside the Silverlight release cycle and are made available with full source code via
the Microsoft CodePlex website: www.codeplex.com/Silverlight.

Having a separate set of controls outside of Silverlight allows Microsoft to release new controls more
frequently and at differing levels of quality than are required for controls in the SDK. The Toolkit uses
three quality bands to describe the status of the controls. The quality bands are explained in Table 6-1.

Table 6-1

Band Description

Mature Mature components are ready for full release, meeting the highest levels of quality and
stability. Future releases of mature components will maintain a high-quality bar with
no breaking changes except when such changes are necessary to make them more
secure or guarantee future compatibility. Customers should be confident using mature
components, knowing that when they upgrade from one version of the Silverlight
Toolkit to a newer version, it will be a quick and easy process. Owing to the heavy
focus on backward compatibility between versions, the bar for fixing bugs found in
mature components is also considerably higher than for any other quality band.

http://www.codeplex.com/Silverlight

Where to Find Controls  ❘  141

Band Description

Stable Stable components are suitable for the vast majority of usage scenarios and will have
incorporated most major design and functionality feedback. They are designed to
address more than 90 percent of customer scenarios and will continue evolving via
limited bug fixes and fit-and-finish work. Stable is similar to Beta in other projects. Stable
components will have a very small number of breaking APIs or behavior changes when
feedback demands it.

Preview Preview components are intended to meet most basic usage scenarios. While in the
Preview Quality Band, these components may have a moderate number of breaking
APIs or behavior changes in response to customer feedback and as we learn more
about how they will be used. Customers are likely to encounter bugs and functional-
ity issues for non-mainline scenarios. Preview is similar to Alpha quality in many tradi-
tional projects.

Experimental Experimental components are intended for evaluation purposes. The main goal
of these components is to provide an opportunity for feedback during the earliest
stages of development. This feedback will help decide the future of these compo-
nents. Development of an experimental component may end at any point, so it may
not be included in future releases.

Before you choose to use a control from the Silverlight Toolkit, you should carefully consider the cur-
rent quality band of the control. You can find which quality band a Toolkit control is currently assigned
to by visiting the Toolkit website on CodePlex (http://silverlight.codeplex.com/Wikipage).

Beyond the Microsoft-developed set of controls, the Silverlight ecosystem includes many options for
commercial and open source controls. The controls cover a wide range of user interface patterns,
from data grids to maps.

Purchasing controls from a third-party vendor often has the advantage of providing you with some
level of developer support for using the controls and some level of assurance that bugs in the controls
will be fixed in a timely manner.

Open source controls are a great alternative to commercial controls. Many open source control
projects exist, with a large number hosted on Microsoft’s CodePlex website. Table 6-2 lists some
of the open source control projects that can be found on CodePlex.

Table 6-2

Project URL

Silverlight Contrib — ​Various Controls http://silverlightcontrib.codeplex.com

DeepEarth — ​Multi-provider Mapping Control www.codeplex.com/deepearth

Silverlight SDK for Bing http://silverbing.codeplex.com/

Interactive Timeline Control http://timeline.codeplex.com/

continues

http://silverlight.codeplex.com/Wikipage
http://silverlightcontrib.codeplex.com
http://www.codeplex.com/deepearth
http://silverbing.codeplex.com/
http://timeline.codeplex.com/

142  ❘  Chapter 6   Working with Visual Controls

Project URL

Cover Flow Control http://silverlightcoverflow.codeplex.com/

Silverlight Media Player http://silverlight30.codeplex.com/

Advance Tooltip Service http://tooltipservice.codeplex.com/

Although this chapter highlights open source Silverlight control projects that you can use in your
application, be aware that the quality of open source projects can vary widely. Simply because an
open source control or project is included in this chapter, that does not guarantee the quality of the
control or project. You should make sure to perform adequate quality testing on the controls just as
you would on any other part of your application.

Additionally, when choosing an open source control, you should make sure you understand how the
specific license the control is released under can affect your application. There are a variety of open
source licenses that controls can be licensed under, and each has specific rules and provisions that
may affect how your application can be distributed or licensed.

Using Text Display Controls

Silverlight includes several controls that you can use to display text. The text capabilities of Silverlight
are discussed in detail in Chapter 19, but two controls you can use to display text are introduced in
this chapter: TextBlock and Label.

TextBlock
The TextBlock is the basic control used to display read-only text. You can use the Text property to
provide the control a value, or simply add text as the control content:

<TextBlock Text=”Lorum Ipsum” />

The TextBlock also allows you to specify Runs and LineBreaks as its content. Runs and LineBreaks
give you more control over formatting of individual sections of the text. Listing 6-1 shows how you
can use Runs and LineBreaks within a TextBlock.

Listing 6-1:  ​Using Runs and LineBreaks on a TextBlock

<TextBlock>
 <Run Foreground=”Green”>Line 1: Lorum</Run>
 <LineBreak />
 <Run FontFamily=”Courier New”>Line 2: Ipsum</Run>
</TextBlock>

In this listing, the foreground color of the first run of text is changed to green, a line break is
inserted, and the font face of the second line is changed to Courier.

Table 6-2  (continued)

http://silverlightcoverflow.codeplex.com/
http://silverlight30.codeplex.com/
http://tooltipservice.codeplex.com/

Using Text Display Controls  ❘  143

Label
The Label control can be used in more targeted text display scenarios. It is typically used in con-
junction with a form field when you need to display a field caption, required field indication, or a
validation error.

A simple use of the caption is shown in Listing 6-2 as a caption of a form field.

Listing 6-2:  ​Using the Label control with a TextBox

<StackPanel>
 <sdk:Label Content=”First Name:” IsRequired=”True” />
 <TextBox x:Name=”TextBox1” Text=”John” />
</StackPanel>

To indicate to the end user that the TextBox is a required field, the Label has had its IsRequired
property set to True. This causes the Label to display its content in a bold font.

The Label control can also be bound to another control in the form, allowing the Label to automat-
ically configure itself based on the value of that control. Listing 6-3 demonstrates binding the Label
to a TextBox that has had its Text property bound to an object.

Listing 6-3:  ​Binding the Label to a TextBox

<StackPanel>
 <sdk:Label Target=”{Binding ElementName=TextBox1}“ />
 <TextBox x:Name=”TextBox1” Text=”{Binding FirstName, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}“ />
</StackPanel>

If the target control has multiple bind-
ings, you can specify the specific property
the Label should be bound to by using its
PropertyPath property.

Notice that the binding set on the Text prop-
erty’s ValidatesOnException attribute is
set to True. If the binding attempts to set the
property to a new value and the property
returns an exception, the Label automatically
detects the exception and shows its content
in red, indicating a data validation error, as
shown in Figure 6-1.

The Label also automatically detects data
attributes on the object bound to the TextBox
like the DisplayAttribute’s Name property
and the RequiredAttribute. Figure 6-1

144 ❘ chapter 6 workIng wIth vISuAl controlS

If the Name property is set, the Label automatically uses that value as its content. If the
RequiredAttribute is true, the content will be displayed in a bold font.

using input editor controls

Most applications at some point require some type of input from the end user. While you could simply
use a simple Text Box editor, this does not provide an optimal experience for the end user and also
requires you to validate his or her input to make sure it meets your application requirements. Silverlight
includes a variety of controls that make editing input, including text, numbers, dates, and times, easy.

text
The most basic input control is the TextBox. The PasswordBox and AutoCompleteBox extend the basic
TextBox features, adding password masking and Google-style auto-complete behavior, respectively.

For more advanced text entry capabilities, Silverlight 4 adds a new RichTextBox control.

For displaying text, Silverlight includes the TextBlock element. For a more basic text display option,
the Silverlight Toolkit includes a basic Label control.

TextBox
Silverlight includes a TextBox control, which provides the same basic text input capabilities you
are used to receiving from the HTML <input> element. The control offers single-format, multi-
line input capabilities with automatic text wrapping, as well as integration with the clipboard. An
undo/redo stack is also included. The following code demonstrates using the TextBox:

<TextBox Text=”Lorum Ipsum” />

For those creating applications for international audiences, the control supports IME Level 3 when
run on Windows and Level 1 when run on a Mac. It also includes international keyboard support.

As you might expect, the TextBox exposes a TextChanged event that you can use to be notifi ed
when the user changes the TextBox’s text.

An interesting property on the TextBox is the Watermark property, though you
may have to search to fi nd it. That is because it has been hidden from Visual
Studio’s property grid and from IntelliSense. Unfortunately, the Microsoft doc-
umentation for the property explicitly states you should not use this property
in Silverlight 4.

PasswordBox
Also included in Silverlight is the PasswordBox. Related to the TextBox, the PasswordBox gives you
a convenient way to allow users to enter a password into your application:

<PasswordBox PasswordChar=“#“ Password=“password“ />

Using Input Editor Controls  ❘  145

As shown in the previous code snippet, you can get or set the value of the control by using the Password
property. You can change the character used to mask the password using the PasswordChar property.

Unlike the TextBox, the PasswordBox accepts only a single line of text, but like the TextBox, it
includes an event, the PasswordChanged event, that you can use to be notified when the end user
changes the control’s value.

AutoCompleteBox
Originating from the Silverlight Toolkit and added to the SDK for Silverlight 4, the AutoCompleteBox
control allows you to add Google-suggest style auto-complete capabilities to your application, as shown
in Figure 6-2.

Figure 6-2

Listing 6-4 shows how you can configure the AutoCompleteBox by assigning an ItemsSource that
contains the values that the control will search as the end user enters text into the control.

Listing 6-4:  ​Configuring the AutoCompleteBox

<my:AutoCompleteBox ItemsSource=”{Binding}“
 ValueMemberPath=”FirstName”
 FilterMode=”Contains”
 IsTextCompletionEnabled=”True”>
 <my:AutoCompleteBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding FirstName}“ />
 </DataTemplate>
 </my:AutoCompleteBox.ItemTemplate>
</my:AutoCompleteBox>

146  ❘  Chapter 6   Working with Visual Controls

The AutoCompleteBox also includes several properties that allow you to configure the Filter mode
used by the control. The FilterModes property supports several derivations of a Contains filter, a
StartsWith filter, and an Equals filter.

Finally, the control also allows you to enable text completion. Setting the TextCompletion property
to True directs the control to automatically complete the currently entered text with the first match
found in the auto-complete list.

RichTextBox
Silverlight 4 introduces a new RichTextBox control that allows you to display and edit richly
formatted text in your application. While an in-depth look at the RichTextBox is included in
Chapter 19, Listing 6-5 demonstrates a simple use of the RichTextBox.

Listing 6-5:  ​Display and edit rich text

<RichTextBox>
 <Paragraph>
 <Run>The quick brown </Run>
 <InlineUIContainer>
 <Image
 Source=”/Chapter6;component/Assets/fox.png” Width=”100” />
 </InlineUIContainer>
 <Run> jumped over the lazy </Run>
 <InlineUIContainer>
 <Image
 Source=”/Chapter6;component/Assets/dog.png” Width=”100”/>
 </InlineUIContainer>
 <Run>.</Run>
 </Paragraph>
</RichTextBox>

In this sample, several text Runs are shown in the RichTextBox, as well as several inline UI elements
containing Image elements. You can see the RichTextBox content in Figure 6-3.

Figure 6-3

Using Input Editor Controls  ❘  147

Using Numeric Editor Controls
Silverlight and the Silverlight Toolkit offer several controls designed to make adding numeric-
editable capabilities to your application easier, including the Slider control, NumericUpDown
control, and Rating control.

Slider
The Slider control allows you to add the familiar slider UI pattern to your application. Sliders provide
a simple way for end users to edit numerical values and allow you to ensure that those values remain
constrained in a range. Listing 6-6 shows how you can configure the Slider’s value range by using the
Minimum and Maximum properties.

Listing 6-6:  ​Displaying Slider property values in TextBlocks

<StackPanel>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <TextBlock
 Text=”{Binding ElementName=Slider1, Path=Minimum}“
 Grid.Column=”0” />

 <Slider x:Name=”Slider1” Minimum=”0” Maximum=”100”
 Value=”50” Grid.Column=”1” />

 <TextBlock
 Text=”{Binding ElementName=Slider1, Path=Maximum}“
 Grid.Column=”2” />
 </Grid>
 <TextBlock
 Text=”{Binding ElementName=Slider1, Path=Value}“
 HorizontalAlignment=”Center” />
</StackPanel>

The Slider also includes properties that allow you to change the LargeChange and SmallChange
values, as well as a ValueChanged event to notify you when the control’s value changes. Figure 6-4
shows the Slider.

Notice that even though the Slider’s range has been defined using Integers, the Value is returned
as a Double, so you may need to round or cast the value.

NumericUpDown
Part of the Silverlight Toolkit, the NumericUpDown control allows end users to easily increment
numerical values by set steps using Spin buttons. This can be especially useful when users need to
adjust existing values or you want to simplify adjusting values by certain steps.

<my:NumericUpDown Increment=”3”
 DecimalPlaces=”4”

148  ❘  Chapter 6   Working with Visual Controls

 Maximum=”1000”
 Minimum=”-1000”
 Value=”3.3333” />

Figure 6-4

The control allows you to set minimum and maximum value limits, as well as configure the number
of decimal places shown.

Additionally, users can continuously increase or decrease the control’s value by clicking and holding
the spin buttons. This causes the control to continue to change its value until the click is released.

Rating
Finally, as applications introduce more social network integration and personal preference tracking,
the ability to rate content in your application becomes more important. The Silverlight Toolkit con-
tains a Rating control, which allows you to add a simple rating IU to your application. Listing 6-7
shows how you can use the Rating control to show a simple five-star rating.

Listing 6-7:  ​Using the Rating control

<inputToolkit:Rating x:Name=”Rating1” Value=”0.6” ItemCount=”5” />
<Slider
 Minimum=”0” Maximum=”1”
 SmallChange=”0.1”
 Value=”{Binding Path=Value, ElementName=Rating1, Mode=TwoWay}“ />

By default, the Rating control shows its value using stars, as shown in Figure 6-5.

Using Input Editor Controls  ❘  149

Figure 6-5

In its most simple configuration, to use the Rating control you provide a value for the ItemCount
property, which indicates the number of stars to show.

You can change the default star display by restyling the RatingItem control. Once you restyle the
control, you can use the ItemContainerStyle property to assign the style to all RatingItem con-
trols displayed in the Rating control or assign the style individually to RatingItem controls in the
Rating control.

Listing 6-8 shows how you can define individual RatingItem controls in the Rating control and
assign each of them a separate custom style.

Listing 6-8:  ​Assigning custom styles to RatingItems

<inputToolkit:Rating x:Name=”Rating1” Value=”0.6”>
 <inputToolkit:RatingItem
 Style=”{StaticResource myThumbDownRatingItemStyle}“ />
 <inputToolkit:RatingItem
 Style=”{StaticResource myThumbAngleLowRatingItemStyle}“ />
 <inputToolkit:RatingItem
 Style=”{StaticResource myThumbSidewaysRatingItemStyle}“ />
 <inputToolkit:RatingItem
 Style=”{StaticResource myThumbAngleUpRatingItemStyle}“ />
 <inputToolkit:RatingItem
 Style=”{StaticResource myThumbUpRatingItemStyle}“ />
</inputToolkit:Rating>

Note that if you define the RatingItems explicitly, you do not need to provide a value for the
ItemCount property.

150  ❘  Chapter 6   Working with Visual Controls

Dates and Time
Silverlight and the Silverlight Toolkit include various controls that simply edit date and time values,
including the Calendar, DatePicker, TimePicker, and GlobalCalendar.

Calendar and GlobalCalendar
The Calendar control, as the name implies, renders a calendar, which by default shows a Month view.

<sdk:Calendar SelectedDate=”{Binding StartDate}“ />

The control supports both Year and Decade calendar views, which can be set using the control’s
DisplayMode property. You can also control the selection behavior of the control by setting the
SelectionMode property, which supports No Selection, Single Date Selection, Single Date Range
Selection, and Multiple Date Range Selection modes. Also, as with other controls, the control
exposes a variety of events that allow you to be notified when the currently displayed date changes,
a selected date changes, or the display mode changes.

Figure 6-6 shows the Calendar control in each of its display modes.

Figure 6-6

The control will automatically detect the culture of the host operating system and will display the
calendar with appropriate localized text and date arrangement. Figure 6-7 shows the calendar with
the Japanese culture.

The GlobalCalendar control extends the calendar by providing additional APIs for styling indi-
vidual days and displaying modified customer Gregorian calendar systems.

Listing 6-9 shows how you can assign your own CultureInfo object to the GlobalCalendar using
the CalendarInfo property.

Using Input Editor Controls  ❘  151

Figure 6-7

Listing 6-9:  ​Assigning a CultureInfo object to the GlobalCalendar

CultureInfo culture = new CultureInfo(“Fr-fr”);
CulturedCalendar.CalendarInfo = new CultureCalendarInfo(culture);

The control also includes a CalendarDayButtonSelectorStyle, which allows you to style specific
days in the control, such as holidays or events.

DatePicker and TimePicker
The DatePicker control displays a simple text input field with an attached calendar pop-up, as
shown in Figure 6-8.

Figure 6-8

152  ❘  Chapter 6   Working with Visual Controls

Unlike the Calendar control, which allows date ranges to be selected, the DatePicker control allows
for only a single date to be selected at one time. As with Calendar, there are events you can use to be
notified when the selected date changes.

<sdk:DatePicker SelectedDateFormat=”Short” />

The control allows you to configure the format you want the selected date to be returned as. The
SelectedDateFormat property allows you to choose to receive the selected date in Long or
Short format.

The DatePicker also supports the validation using the ValidatesOnException binding attribute;
however, by default the control does not include the validation visual states needed to show the result
of an invalid value. If you want to use validation with the DatePicker, you will need to change the
control’s default template to include these additional states.

Like the DatePicker control, the TimePicker provides a simplified way for end users to select
times. The TimePicker functions much like the DatePicker, associating a text entry field with a
pop-up. The TimePicker offers two different pop-up experiences, the RangeTimePickerPopup or
the ListTimePickerPopup, which you assign to the TimerPicker using its Popup property.

Listing 6-10 demonstrates using the TimePicker control with both Popup options.

Listing 6-10:  ​Using the TimePicker control

<StackPanel Orientation=”Horizontal”>
 <inputToolkit:TimePicker x:Name=”TimePicker1”
 PopupButtonMode=”Press” Format=”hh:mm:ss”
 PopupTimeSelectionMode=”AllowSecondsSelection”
 PopupMinutesInterval=”5”
 PopupSecondsInterval=”15”>
 <inputToolkit:TimePicker.Popup>
 <inputToolkit:RangeTimePickerPopup />
 </inputToolkit:TimePicker.Popup>
 </inputToolkit:TimePicker>

 <inputToolkit:TimePicker x:Name=”TimePicker2” PopupButtonMode=”Press”
 PopupTimeSelectionMode=”AllowSecondsSelection”
 PopupMinutesInterval=”5”
 PopupSecondsInterval=”15”>
 <inputToolkit:TimePicker.Popup>
 <inputToolkit:ListTimePickerPopup />
 </inputToolkit:TimePicker.Popup>
 </inputToolkit:TimePicker>
</StackPanel>

Figure 6-9 shows the result of running Listing 6-10.

The TimePicker control also includes options that allow you to configure whether the control
allows only hours and minutes to be selected, or hours, minutes, and seconds. Additionally, you
can configure the minute and second intervals that the end user can select using the pop-up.

Using Input Editor Controls  ❘  153

Figure 6-9

Finally, like the DatePicker, the TimePicker automatically uses the appropriate culture, but you can
assign customized culture information to the control through its TimeGlobalizationInfo property.
Additionally, although the control uses a robust time parser by default, you can also supply your own
parser by deriving from the TimeParser class and adding the derived class to the control’s TimeParsers
collection.

TimeUpDown
Like the NumericUpDown control described earlier, the TimeUpDown control allows users to increment
or decrement time values using the familiar spin button metaphor.

Listing 6-11 demonstrates the use of the TimeUpDown control.

Listing 6-11:  ​Using the TimeUpDown control

<inputToolkit:TimeUpDown x:Name=”TimeUpDown1”
 Format=”hh:mm:ss”
 IsCyclic=”False”
 Value=”8:00:00”
 Minimum=”8:00:00”
 Maximum=”17:00:00” />

As you can see, the control includes a variety of configuration properties, including the Format
property, which allows you to dictate the time format shown by the control, the minimum and max-
imum values allowed, and whether the control should allow the end user to roll from the maximum
value to the minimum using the IsCyclic property.

154  ❘  Chapter 6   Working with Visual Controls

Using Lists and Items Controls

Silverlight includes a wide array of controls designed to show lists of data. From the ListBox to the
DataGrid, these controls are designed to give you a powerful and flexible means of showing data.

DataGrid
Perhaps the most important control for application developers building Line-of-Business controls is
the Silverlight DataGrid control. This control allows you to easily bind a collection of data to it and
have it automatically display the data and allow the end user to edit the data and manipulate the
data display.

When running the DataGrid even in the simplest configuration, you will notice that it provides you
with a lot of capabilities right out-of-the-box. For example, clicking on a column header sorts the
column data; dragging a column header allows you to change the column display order; hovering
over the edge of a column header allows you to resize the column width; and double-clicking a cell
places that cell into Edit mode, allowing you to change the cell data. As you learn later in this sec-
tion, the DataGrid exposes properties that allow you to control all of these behaviors both at the
control level and on a per-column level.

Data Binding
To get started using the DataGrid, you simply need to provide it with some data by setting its
ItemsSource property to some type of enumerable object, either in XAML or in code. The fol-
lowing code snippet shows how you can bind the DataGrid to data that has been assigned to the
DataContext in XAML:

<my:DataGrid ItemsSource=”{Binding}“ />

Once you set the ItemsSource property, the DataGrid control automatically interrogates the data
source and generates the appropriate column structure based on public members exposed by the
objects on the data source. Figure 6-10 shows an example of a basic DataGrid with automatically
generated columns.

Figure 6-10

Using Lists and Items Controls  ❘  155

You can control whether or not the control automatically generates columns for you by using the
AutoGenerateColumns property. If you choose to set this property to False, you need to manually
define a set of columns for the DataGrid to display, using the control’s Columns collection. The dif-
ferent types of columns you can add are described later in this section.

It is also possible to use the Visual Studio Data Sources window to
add a DataGrid to your application. The Data Sources window allows
you to easily manage the sources of data available in your application.
Once a data source is identified, the window displays all of the attri-
butes of the data source and allows you to create UI elements based on
those attributes. Figure 6-11 shows the Data Sources window, which is
showing a single data source.

If the active document in Visual Studio is a XAML document,
the Data Sources window allows you to drag enumerable properties
directly onto the design surface. Visual Studio will automatically cre-
ate a CollectionViewSource representing the data and configure the
appropriate XAML bindings to connect the CollectionViewSource
to the DataGrid. Additionally, a template of code is dropped into the
code-behind, which allows you to connect the CollectionViewSource
to your data.

The DataGrid also automatically honors data annotation attributes that may be on the objects in
the ItemsSource. This allows the grid to automatically mark certain columns as hidden, or read
only, or provide a friendlier column header label. Data annotations are typically used when you are
using WCF RIA Services as the source of grid data.

If you want to insert your own logic into the column generation process, you can use the grid’s
AutoGeneratingColumn event. Using this event, you can access the column currently being created
and alter its properties.

Another entry point into the binding process is the Grid’s LoadingRow event. This event allows you
to access each row as it is being created in the grid and alter the data ultimately shown by the grid.
If you choose to use this event, it’s important to understand how the grid’s internal UI virtualization
affects it.

In order to maintain an acceptable level of performance the grid uses UI virtualization to only create
the UI elements that are needed to display information on the screen. If a row moves out of the visible
area of the control, its resources are recycled to show new rows entering the visible area of the control.

Because of this UI virtualization, the LoadingRow event will not fire for each object in the ItemsSource
when the control loads. Instead the event fires as rows move in and out of the visible area of the control.
If you use the LoadingRow event to customize a row, you will have to use the UnloadingRow event to
undo your changes. This is event is fired when a DataGridRow is freed for reuse.

The Grid also supports the selection of rows in the grid, supporting Single and Extended Selection
modes. Single Selection mode allows end users to select only a single row at any given time. Extended
Selection mode allows them to select multiple rows by holding down the Ctrl or Shift keys while click-
ing rows. You can change the current selection mode by setting the control’s SelectionMode property,
as well as access the currently selected item(s) by using the SelectedItem or SelectedItems properties.

Figure 6-11

156  ❘  Chapter 6   Working with Visual Controls

Grid Columns
The DataGrid control includes three different column types that you can add to the Columns collec-
tion: Text, CheckBox, and Template. Each column allows you to bind a field from the data source
to it, using the column’s Binding property.

If you configure the grid to automatically generate columns, the grid tries to choose the correct
column type to use based on the structure of the data. For example, if the bound data contains a
Boolean property, the grid automatically uses a DataGridCheckBoxColumn to show that data.

Of course, if you have disabled auto-generation of columns, then you need to define them yourself.
Listing 6-12 shows how you can use the Columns collection to display data in the DataGrid.

Listing 6-12:  ​Using the Columns collection to display data

<my:DataGrid ItemsSource=”{Binding}“ AutoGenerateColumns=”False”>
 <my:DataGrid.Columns>
 <my:DataGridTextColumn Binding=”{Binding FirstName}“ />
 <my:DataGridTextColumn Binding=”{Binding LastName}“ />
 <my:DataGridTextColumn Binding=”{Binding Address}“ />
 <my:DataGridTextColumn Binding=”{Binding City}“ />
 </my:DataGrid.Columns>
</my:DataGrid>

Notice that when defining columns you use standard Silverlight binding syntax in each column’s
Binding property to indicate which property of the ItemsSource the column is bound to. Because
the columns use this syntax, you can take advantage of any of its features, such as value converters
and formatting. The columns will also use standard two-way binding to allow data in column cells
to be edited.

To control the order in which the columns are displayed, you can use the column’s DisplayIndex.

When rendered, grid columns also include a header. To provide text for the header, columns expose
a string Header property. If the grid is automatically generating the columns, the control will by
default use the property names of the item source as the columns’ header text, which you can over-
ride using the Header property. If you manually define columns, then you need to explicitly define
the text that should be used for the column header.

Unfortunately, the DataGrid does not provide a DataTemplate for the header, but if you do want to
change the default style of a column header, you can create your own DataGridColumnHeader style
and assign it to the column’s HeaderStyle property.

If you are defining your own columns, in addition to the DatasGridTextBoxColumn shown in
Listing 6-12, you can also include the DataGridCheckBoxColumn or DataGridTemplateColumn
in your Columns collection. Listing 6-13 shows how to add a DataGridCheckBoxColumn and
bind it to a Boolean property in the ItemsSource.

Using Lists and Items Controls  ❘  157

Listing 6-13:  ​Adding a DataGridCheckBoxColumn

<sdk:DataGrid ItemsSource=”{Binding}“ AutoGenerateColumns=”False” >
 <sdk:DataGrid.Columns>
 <sdk:DataGridCheckBoxColumn Binding=”{Binding IsActive}“ />
 <sdk:DataGridTextColumn Binding=”{Binding FirstName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding LastName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding Address}“ />
 <sdk:DataGridTextColumn Binding=”{Binding City}“ />
 </sdk:DataGrid.Columns>
</sdk:DataGrid>

Figure 6-12 shows the checkbox column in the DataGrid.

Figure 6-12

The DataGridCheckBoxColumn not only allows you to use a standard two-state checkbox, but by
setting the IsThreeState property, you also can have the checkbox behave like a tri-state checkbox.
This allows you to set the IsChecked property to True, False, or Null.

As the name suggests, the DataGridTemplateColumn allows you to take control of the contents of cells
in a column. The CellTemplate property accepts a DataTemplate, which is used to define the contents
of the column while not being edited. Listing 6-14 demonstrates using the DataGridTemplateColumn to
show an Image in a column.

Listing 6-14:  ​Using the DataGridTemplateColumn to show an image

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <DataTemplate x:Key=”myEmployeeImageTemplate”>

continues

158  ❘  Chapter 6   Working with Visual Controls

 <Grid>
 <Image Source=”{Binding PhotoPath}“ />
 </Grid>
 </DataTemplate>
 </Grid.Resources>
 <sdk:DataGrid ItemsSource=”{Binding}“ AutoGenerateColumns=”False” >
 <sdk:DataGrid.Columns>
 <sdk:DataGridCheckBoxColumn Binding=”{Binding IsActive}“ />
 <sdk:DataGridTextColumn Binding=”{Binding FirstName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding LastName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding Address}“ />
 <sdk:DataGridTextColumn Binding=”{Binding City}“ />
 <sdk:DataGridTemplateColumn
 CellTemplate=”{StaticResource myEmployeeImageTemplate}“ />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
</Grid>

The DataGridTemplateColumn also includes a CellEditingTemplate property, which allows you
to specify a DataTemplate that the column should display when a cell enters Edit mode. Listing 6-15
shows how you can use the CellEditingTemplate to change the value of the column.

Listing 6-15:  ​Using the CellEditingTemplate to change the value of a column

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <DataTemplate x:Key=”myEmployeeImageTemplate”>
 <Grid>
 <Image Source=”{Binding PhotoPath}“ />
 </Grid>
 </DataTemplate>
 <DataTemplate x:Key=”myEditableEmployeeImageTemplate”>
 <Grid>
 <TextBox Text=”{Binding PhotoPath}“ />
 </Grid>
 </DataTemplate>
 </Grid.Resources>
 <sdk:DataGrid ItemsSource=”{Binding}“ AutoGenerateColumns=”False”>
 <sdk:DataGrid.Columns>
 <sdk:DataGridCheckBoxColumn Binding=”{Binding IsActive}“ />
 <sdk:DataGridTextColumn Binding=”{Binding FirstName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding LastName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding Address}“ />
 <sdk:DataGridTextColumn Binding=”{Binding City}“ />
 <sdk:DataGridTemplateColumn
 CellTemplate=”{StaticResource myEmployeeImageTemplate}“
 CellEditingTemplate=
 “{StaticResource myEditableEmployeeImageTemplate}“/>
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
</Grid>

Listing 6-14  (continued)

Using Lists and Items Controls  ❘  159

As you can see in the listing, the CellEditingTemplate property is used to provide a custom
template that contains completely different content from the standard CellTemplate, and content
that is appropriate for allowing the end user to edit the object’s PhotoPath property.

Sorting
As shown previously, in its default state the grid automatically enables column sorting. Users can
sort individual columns by clicking on the column header or by holding down the Ctrl or Shift keys
while clicking on successive columns, sorting each.

Various Grid properties give you control of the Grid’s sorting behavior. At the control level, you can
change whether or not you want to enable sorting in the entire grid by using the CanUserSortColumns
property. Using the column’s CanUserSort property, you can control the sorting behavior for an indi-
vidual column.

By overriding the DataGridColumnHeader style as described earlier, you can also control the sort
indicator shown in the column header.

Finally, using SortMemberPath, you can configure a column to sort itself based on a different field
from the one configured in the column’s Binding property.

Data Grouping
A common task users want to perform in DataGrids is to group data together based on the values of
a specific property of the data source. While the DataGrid itself does not have grouping built in, you
can group data using the PagedCollectionView object and then display this in the DataGrid.

Listing 6-16 show how you can add a PropertyGroupDescription to the PagedCollectionView,
then set that as the DataGrid’s ItemsSource.

Listing 6-16:  ​Grouping data using PagedCollectionView

PagedCollectionView myView =
 new PagedCollectionView(Assets.DemoData.Employees);

myView.GroupDescriptions.Add(new PropertyGroupDescription(“Title”));

this.grid1.ItemsSource = myView;

Column Resizing
DataGrid includes properties that allow you to set column widths on each column and heights on
rows. Like the standard Grid panel included in Silverlight, DataGrid gives you various options for
specifying size units by using a special object called DataGridLength. When setting size properties
on the DataGrid, you set its Height and Width properties as a value of this object.

The DataGridLength includes five sizing options:

Auto➤➤  — ​This option sizes the column or row to the size of the largest visible header or cell.

SizeToHeader➤➤  — ​This option sizes the column or row to the size of the header, ignoring the
size of the cell contents.

160 ❘ chapter 6 workIng wIth vISuAl controlS

Because the DataGrid virtualizes its UI, it cannot know ahead of time what the
largest cell contents in the grid will be. This means that as you scroll rows, if
the grid encounters a cell with content that is larger than the current cell width,
it expands that cell’s column width. Once the column’s size has increased, the
grid won’t revert back to a smaller size if that row scrolls out of view.

SizeToCells➤➤ — This option sizes the column or row to the size of the largest visible cell. It
also behaves like the Auto option, meaning that the column or row size may change as rows
are scrolled.

Pixel➤➤ — This option allows you to set a specifi c pixel base value.

Star➤➤ — New to Silverlight 4, the Star sizing option allows you to use the same proportional
sizing behavior as is available in the Grid layout panel.

By default, end users can also resize columns at run time. Like other grid behaviors, you can control
this behavior for the entire grid by setting the CanUserResizeColumns property on the DataGrid.
You can also control this on a per-column basis by setting the CanUserResize property on an indi-
vidual column.

The DataGrid also allows you to set minimum and maximum column width values, again both at the
grid level — using the DataGrid’s MinColumnWidth and MaxColumnWidth properties — and on the col-
umn level — using the MinWidth and MaxWidth properties.

Column freezing
The Freezing column feature of the grid replicates the Excel Frozen column behavior, which allows
you to freeze (or fi x) a certain number of columns to the left side of the DataGrid. This means that
if the grid is displaying a horizontal scrollbar, the frozen columns will remain fi xed to the left side
of the grid, while the remaining columns are free to scroll horizontally.

You can set the number of columns you want to be included in the freeze using the Grid’s
FrozenColumnCount property. The Grid will then freeze that number of columns, starting
from the left side of the grid.

Column Moving
As described earlier, DataGrid allows you to set the order in which columns are displayed by using the
DisplayIndex property. The control, also by default, allows users to reorder columns in the grid at run
time. To do this, the user simply clicks on and drags a column header to a new position in the headers.
Users are given visual cues to help them determine where the column will be inserted when dropped.

If the user reorders columns at run time, this will reset the DisplayIndex property of all other
grid columns.

You can control this behavior for the entire grid by using the control’s CanUserReorderColumns
property on the root control or individually on a column, using its CanUserRender property. You

Using Lists and Items Controls  ❘  161

can also use the series of events exposed by the DataGrid to be notified when the end user initiates
and completes a column move.

Row Details
As discussed in previous sections, the DataGrid control includes three column types that you can
use to control how data is shown, including a template column that allows you to add custom
content to cells in a column.

Often, though, you may need to customize the layout of an entire row, or show additional
detail information in each row. The DataGrid includes a built-in mechanism for this, called
the RowDetailsTemplate. This feature allows you to specify a DataTemplate in which you can
define a custom layout attached to each row that includes additional details for the currently
selected row.

Listing 6-17 demonstrates how you can use the RowDetailsTemplate.

Listing 6-17:  ​Using the RowDetailsTemplate

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <DataTemplate x:Key=”myRowDetailsTemplate”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding EmployeeID}“ />
 <TextBlock Text=” - ” />
 <TextBlock Text=”{Binding FirstName}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding LastName}“ />
 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding Title}“ />
 </StackPanel>

 <TextBlock Text=”{Binding Address}“ />

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding City}“ />
 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding State}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding PostalCode}“ />
 </StackPanel>

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding HomePhone}“ />
 <TextBlock Text=” x” />
 <TextBlock Text=”{Binding Extension}“ />
 </StackPanel>

 <TextBlock Text=”{Binding Notes}“ />
 </StackPanel>
 </DataTemplate>

continues

162 ❘ chapter 6 workIng wIth vISuAl controlS

 </Grid.Resources>
 <sdk:DataGrid ItemsSource=”{Binding}“
 RowDetailsTemplate=”{StaticResource myRowDetailsTemplate}“
 RowDetailsVisibilityMode=”VisibleWhenSelected”
 AutoGenerateColumns=”False”>
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn Binding=”{Binding FirstName}“ />
 <sdk:DataGridTextColumn Binding=”{Binding LastName}“ />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
</Grid>

It’s interesting to note that when you are using a StackPanel inside of a template
used with the RowDetailsTemplate, the panel’s VerticalAlignment property
defaults to Top. This will cause problems if you try to add space above the panel
using a top margin. Instead of expanding the template, this situation causes the
StackPanel’s content to simply be clipped. You can work around this problem
by placing the StackPanel inside of a Border and setting the Border’s Margin
property.

To confi gure when the template is shown by the DataGrid, use the RowDetailsVisibilityMode
property. This property allows you to confi gure the RowDetailsTemplate to always be collapsed for
every row, always be visible for every row, or only be visible for the currently selected row. Use the
RowDetailsVisibilityChanged event to be notifi ed when the RowDetailsTemplate is changed.

dataform
While the DataGrid is perfect for viewing and editing tabular data, often users prefer viewing and
editing data as a form, rather than in a tabular grid. The DataForm control is the perfect control for
these scenarios.

The DataForm shares a lot of the same capabilities as the DataGrid. Just as with the DataGrid, you
can start using the DataForm control simply by binding a collection of data to the control:

<my:DataForm ItemsSource=”{Binding}“ />

The DataForm shares the same auto-generation capabilities as the Grid, but instead of generating
columns, the control generates DataFields. Also notice that rather than column headers, the con-
trol automatically adds Labels to each fi eld. You can control the position of the Labels using the
LabelPosition property. You can also have the control add a description to each fi eld. The position
of the description can be controlled using the DescriptionViewerPosition property.

As with the DataGrid, you can disable auto-generation of DataFields and manually defi ne the
fi elds you need to display for your application. This is shown in Listing 6-18.

listing 6-17 (continued)

Using Lists and Items Controls  ❘  163

Listing 6-18:  ​Disabling auto-generation of DataFields and manually defining fields

<dataFormToolkit:DataForm ItemsSource=”{Binding}“
 AutoGenerateFields=”False”>
 <dataFormToolkit:DataForm.ReadOnlyTemplate>
 <DataTemplate>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text=”First Name:”
 Grid.Row=”0” Grid.Column=”0” />
 <TextBlock Text=”Last Name:”
 Grid.Row=”1” Grid.Column=”0” />
 <TextBlock Text=”Title:”
 Grid.Row=”2” Grid.Column=”0” />
 <TextBlock Text=”{Binding FirstName}“
 Grid.Row=”0” Grid.Column=”1” />
 <TextBlock Text=”{Binding LastName}“
 Grid.Row=”1” Grid.Column=”1” />
 <TextBlock Text=”{Binding Title}“
 Grid.Row=”2” Grid.Column=”1” />
 </Grid>
 </DataTemplate>
 </dataFormToolkit:DataForm.ReadOnlyTemplate>
</dataFormToolkit:DataForm>

You can see in Listing 6-18 that the ReadOnlyTemplate is used to define the DataFields
included in the DataForm. The control also includes the EditTemplate, which allows you to
define the content shown when a record enters Edit mode; a NewItemTemplate, which allows
you to define the content shown when a new data object is added to the ItemsSource via the
DataForm; and the HeaderTemplate, which defines the content shown in the control’s header.

The DataForm can be configured to place records in Edit mode automatically by setting the AutoEdit
property to True. If records are not automatically in Edit mode, end users can place them in Edit mode
by clicking the Edit command button.

The DataForm includes a variety of built-in command buttons, including Add, Edit, Delete, Commit,
Cancel, and Navigation. Use the CommandButtonsVisibility property to control which of these
buttons are shown by the control.

ListBox, ComboBox, and TabControl
Despite their different user interfaces, the ListBox, ComboBox, and TabControl controls are all
derived from the same base class (System.Windows.Controls.ItemsControl) and allow you to

164  ❘  Chapter 6   Working with Visual Controls

display a list of items and select items in that list. Because they all share the same base class, the con-
trols share many of the same properties and basic behaviors.

The ListBox control allows you to display items in a single flat list, specifying the list items either
manually or bound from a data source, using the control’s ItemsSource property. The number of
items visible is dictated by the size of the control.

By default, when items are bound using ItemsSource, the control will simply output the objects
in that list as strings. You can, however, create a DataTemplate and provide a far more complex
layout for each list item using the ItemTemplate property. Listing 6-19 demonstrates the use of the
ListBox, including the use of a DataTemplate to define the list items display.

Listing 6-19:  ​Using the ListBox

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <DataTemplate x:Key=”myTemplate”>
 <Grid>
 <TextBlock Text=”{Binding FirstName}“ />
 </Grid>
 </DataTemplate>
 </Grid.Resources>
 <ListBox
 ItemTemplate=”{StaticResource myTemplate}“
 ItemsSource=”{Binding}“ />
</Grid>

Figure 6-13 shows the ListBox from Listing 6-19.

Figure 6-13

Using Lists and Items Controls  ❘  165

Another interesting feature of the ListBox is the ItemsPanel property. This property allows you
to specify the layout panel you want the ListBox to use when arranging its children. By default,
the ListBox uses a simple StackPanel, but you can create your own layout panel and provide it
to the ListBox. Listing 6-20 demonstrates this by providing the ListBox with a new StackPanel
with its Orientation property changed.

Listing 6-20:  ​ListBox with Orientation changed

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <DataTemplate x:Key=”myTemplate”>
 <Grid>
 <TextBlock Text=”{Binding FirstName}“ />
 </Grid>
 </DataTemplate>
 </Grid.Resources>
 <ListBox
 ItemTemplate=”{StaticResource myTemplate}“
 ItemsSource=”{Binding}“>
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation=”Horizontal” />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 </ListBox>
</Grid>

The ComboBox works much in the same way as the ListBox, although rather than displaying items
in a flat list, the ComboBox displays them in a pop-up display.

Listing 6-21 demonstrates the use of the ComboBox control using the same data source as Listing 6-20.

Listing 6-21:  ​Using the ComboBox control

<ComboBox x:Name=”ComboBox1”
 ItemsSource=”{Binding}“
 DisplayMemberPath=”FirstName”>
</ComboBox>

Figure 6-14 shows the ComboBox from Listing 6-21.

You can access the currently selected item of either control by using the SelectedItem
property. Both controls can also notify you when the current selected item changes, using
the SelectionChanged event.

Silverlight 4 adds two new properties to the base Selector class from which both ComboBox
and ListBox are derived that make it easier to set and get the current selected item — ​the
SelectedValue and SelectedValuePath properties. Listing 6-22 shows how you can use
the SelectedValuePath property.

166  ❘  Chapter 6   Working with Visual Controls

Figure 6-14

Listing 6-22:  ​Using the SelectedValuePath property

<StackPanel>
 <ComboBox x:Name=”ComboBox1”
 ItemsSource=”{Binding}“
 DisplayMemberPath=”FirstName”
 SelectedValuePath=”LastName” />
 <TextBox Text=”{Binding ElementName=ComboBox1, Path=SelectedValue}“ />
</StackPanel>

The TabControl again works much the same way as the ComboBox and ListBox controls. By using
the ItemsSource property, you can assign a list of objects as the control’s tabs. However, unlike
ListBox and ComboBox, TabControl does require a bit of extra work. By default, TabControl
does not know how to convert the objects in your list into tabs. To help it out, you can create a
ValueConverter, which is shown in Listing 6-23.

Listing 6-23:  ​Creating a ValueConverter

public class TabConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 List<Employee> source = value as List<Employee>;

 FrameworkElement root =

Using Lists and Items Controls  ❘  167

 (FrameworkElement)Application.Current.RootVisual;

 if (root!=null)
 {
 DataTemplate template =
 (DataTemplate)root.Resources[“myTemplate”];

 if (source != null)
 {
 List<TabItem> result = new List<TabItem>();
 foreach (Employee e in source)
 {
 result.Add(new TabItem()
 {
 Header = string.Format(“{0} {1}“,
 e.FirstName, e.LastName),
 ContentTemplate = template,
 DataContext = e
 });
 }
 return result;
 }
 }
 return null;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

The ValueConverter converts each object in the TabControl’s item source into a tab and assigns
the header text, the DataTemplate, and a DataContext to each tab.

Once you have created the TabConverter, you can use it to bind your data to the TabControl. This
is shown in Listing 6-24.

Listing 6-24:  ​Using the TabConverter to bind data

<Grid x:Name=”LayoutRoot”>
 <Grid.Resources>
 <local:TabConverter x:Key=”myTabConverter” />
 <DataTemplate x:Key=”myTabTemplate”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding EmployeeID}“ />
 <TextBlock Text=” - ” />
 <TextBlock Text=”{Binding FirstName}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding LastName}“ />

continues

168  ❘  Chapter 6   Working with Visual Controls

 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding Title}“ />
 </StackPanel>

 <TextBlock Text=”{Binding Address}“ />

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding City}“ />
 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding State}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding PostalCode}“ />
 </StackPanel>

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding HomePhone}“ />
 <TextBlock Text=” x” />
 <TextBlock Text=”{Binding Extension}“ />
 </StackPanel>

 <TextBlock Text=”{Binding Notes}“ />
 </StackPanel>
 </DataTemplate>
 </Grid.Resources>

 <sdk:TabControl
 ItemsSource=”{Binding Converter={StaticResource myTabConverter}}“
 ItemTemplate=”{StaticResource myTabTemplate}“>
 </sdk:TabControl>
</Grid>

Of course, as with the ListBox and ComboBox controls, you can also create tabs manually. The
Listing 6-25 code demonstrates creating tabs directly in XAML using the TabItem object.

Listing 6-25:  ​Creating tabs directly in XAML

<sdk:TabControl>
 <sdk:TabControl.Items>
 <sdk:TabItem Header=”See a Button Here”>
 <Button Content=”I am a Button!” Margin=”10” />
 </sdk:TabItem>
 <sdk:TabItem Header=”See an Image Here”>
 <Image
 Source=”/Chapter6;component/Assets/dog.png” Margin=”10” />
 </sdk:TabItem>
 </sdk:TabControl.Items>
</sdk:TabControl>

Listing 6-24  (continued)

Using Lists and Items Controls  ❘  169

As with ComboBox and ListBox, the TabControl exposes a SelectedItem property that allows
you to determine which tab is selected, as well as an event that allows you to be notified when the
selected tab changes.

Also note that unlike ComboBox and ListBox, because the TabControl does not derive from the
Selector class, it does not include the SelectedValuePath and SelectedValue properties.

DataPager
If you are using List controls in your application, like the DataGrid or the ListBox, then it is
likely that you are displaying a lot of data. To help users navigate that data, a common pattern
is to enable paging in the grid. Silverlight includes a special control called DataPager that you can
use to enable paging in List controls.

Listings 6-26 and 6-27 show how you can use the DataPager and ListBox with the
PagedCollectionView to allow users to page through the list data.

Listing 6-26:  ​Creating the PagedCollection

// Executes when the user navigates to this page.
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 PagedCollectionView itemListView =
 new PagedCollectionView(Assets.DemoData.Employees);

 this.DataContext = itemListView;
}

Listing 6-26 demonstrates how in the page’s OnNavigated event, the PagedCollectionView
is created using an existing collection of Employees. The view is then assigned as the page’s
DataContext.

Listing 6-27:  ​Binding a ListBox and DataPager to a PagedCollection

<ListBox x:Name=”ListBox1”
 ItemsSource=”{Binding}“
 DisplayMemberPath=”FirstName” />
<sdk:DataPager
 DisplayMode=”FirstLastNumeric”
 Source=”{Binding}“ PageSize=”5” />

Once the PagedCollectionView is created, as Listing 6-27 shows, you can simply bind the view as
the ItemsSource of both the ListView and the DataPager.

If you run the sample, Figure 6-15 shows how the DataPager can now be used to page data in
the ListView.

170  ❘  Chapter 6   Working with Visual Controls

Figure 6-15

Accordion
The Accordion control is an additional ItemsControl that is available as part of the Silverlight
Toolkit. The control allows you to replicate the familiar Closable Panels UI pattern seen in many
popular applications. Like other item controls, the Accordion supports both a Data-Bound mode
and a manually defined Content mode.

Listing 6-28 demonstrates binding an ItemsSource to the Accordion control.

Listing 6-28:  ​Binding an ItemsSource to the Accordion control

<layoutToolkit:Accordion ItemsSource=”{Binding}“>
 <layoutToolkit:Accordion.ItemTemplate>
 <DataTemplate>
 <sdk:Label Content=”{Binding FirstName}“/>
 </DataTemplate>
 </layoutToolkit:Accordion.ItemTemplate>
 <layoutToolkit:Accordion.ContentTemplate>
 <DataTemplate>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding EmployeeID}“ />
 <TextBlock Text=” - ” />
 <TextBlock Text=”{Binding FirstName}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding LastName}“ />
 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding Title}“ />

Using Lists and Items Controls  ❘  171

 </StackPanel>

 <TextBlock Text=”{Binding Address}“ />

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding City}“ />
 <TextBlock Text=”, ” />
 <TextBlock Text=”{Binding State}“ />
 <TextBlock Text=” ” />
 <TextBlock Text=”{Binding PostalCode}“ />
 </StackPanel>

 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding HomePhone}“ />
 <TextBlock Text=” x” />
 <TextBlock Text=”{Binding Extension}“ />
 </StackPanel>

 <TextBlock Width=”300” Text=”{Binding Notes}“ />
 </StackPanel>
 </DataTemplate>
 </layoutToolkit:Accordion.ContentTemplate>
</layoutToolkit:Accordion>

In the listing, DataTemplates are used to define the content that will be shown in the control at
run time. The ItemTemplate is used to define the content shown in each Accordion header, and
the ContentTemplate to define the content in each content section.

Figure 6-16 shows the result of running Listing 6-28.

Figure 6-16

172  ❘  Chapter 6   Working with Visual Controls

You can change the default style of the Accordion headers by re-templating the AccordionItem
control. This control contains the AccordionButton control and ExpandableContentControl as
its two primary UI elements.

TreeView
The TreeView control is, as it sounds, a control that allows you to add tree UIs to your applica-
tion. As with all other List and Item controls, it allows you to define items explicitly or bind data
to the control.

Listing 6-29 shows how you can create a set of explicitly defined nodes in a TreeView.

Listing 6-29:  ​Creating a set of explicitly defined TreeView nodes

<sdk:TreeView x:Name=”TreeView1”>
 <sdk:TreeViewItem Header=”Books”>
 <sdk:TreeViewItem Header=”Books” />
 <sdk:TreeViewItem Header=”Textbooks”/>
 <sdk:TreeViewItem Header=”Magazines”/>
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Music, Movies & Games”>
 <sdk:TreeViewItem Header=”Movies & TV”/>
 <sdk:TreeViewItem Header=”Blu-Ray”/>
 <sdk:TreeViewItem Header=”Video On Demand”/>
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Music”>
 <sdk:TreeViewItem Header=”MP3 Downloads”/>
 <sdk:TreeViewItem Header=”Musical Instruments”/>
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Digital Downloads”>
 <sdk:TreeViewItem Header=”Video On Demand”/>
 <sdk:TreeViewItem Header=”MP3 Downloads”/>
 <sdk:TreeViewItem Header=”Game Downloads”/>
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Computers & Office”>
 <sdk:TreeViewItem Header=”Laptops & Notebooks” />
 <sdk:TreeViewItem Header=”Desktops & Servers” />
 <sdk:TreeViewItem Header=”Computer Components” />
 <sdk:TreeViewItem Header=”Computer Accessories” />
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Electronics”>
 <sdk:TreeViewItem Header=”TV & Video” />
 <sdk:TreeViewItem Header=”Home Audio & Theater” />
 <sdk:TreeViewItem Header=”Camara, Phone & Video” />
 <sdk:TreeViewItem Header=”Cell Phones & Accessories” />
 </sdk:TreeViewItem>
 <sdk:TreeViewItem Header=”Home & Garden”>
 <sdk:TreeViewItem Header=”Kitchen & Dining” />
 <sdk:TreeViewItem Header=”Bedding & Bath” />
 <sdk:TreeViewItem Header=”Home Appliances” />
 <sdk:TreeViewItem Header=”Vacuums & Storage” />

Using Lists and Items Controls  ❘  173

 </sdk:TreeViewItem>
</sdk:TreeView>

As you can see in Listing 6-29, to create tree nodes, you use the TreeViewItem element. The
TreeViewItem element exposes a variety of properties that allow you to control how it is shown by
the tree including setting the node’s text using the Header property and setting its expanded state
by using the IsExpanded property. Or, if you want to add more complex content to a node, you
can use the HeaderTemplate property to provide a DataTemplate. This is shown in Listing 6-30.

Listing 6-30:  ​Using the HeaderTemplate property

<sdk:TreeViewItem Header=”Books”>
 <sdk:TreeViewItem.HeaderTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <CheckBox />
 <Image Source=”/Chapter6;component/Assets/Book.png” />
 <TextBlock Text=”Books”/>
 </StackPanel>
 </DataTemplate>
 </sdk:TreeViewItem.HeaderTemplate>
</sdk:TreeViewItem>

Figure 6-17 shows the TreeView from Listing 6-30.

Figure 6-17

If you have data that you want to bind to the TreeView, you can use the HierachicalDataTemplate.
Listing 6-31 demonstrates the most basic way to use the HierarchicalDataTemplate.

174  ❘  Chapter 6   Working with Visual Controls

Listing 6-31:  ​Using the HierarchicalDataTemplate

<Grid.Resources>
 <common:HierarchicalDataTemplate
 x:Key=”myTreeViewHierarchicalTemplateLevel”
 ItemsSource=”{Binding Children}“ >

 <TextBlock Text=”{Binding Name}“ />
 </common:HierarchicalDataTemplate>
</Grid.Resources>
<sdk:TreeView x:Name=”TreeView1” ItemsSource=”{Binding}“
 ItemTemplate=”{StaticResource myTreeViewHierarchicalTemplate}“ />

In the listing, you can see that a new HierachicalDataTemplate has been created as a Grid
resource. The template’s ItemsSource is set to the name of the property on the objects in the
TreeView’s ItemsSource that returns the collection. The HierachicalDataTemplate uses this to
walk the nested object structure in the ItemsSource and create a TreeViewItem for each object.
The content used to show each node is contained within the HierachicalDataTemplate.

The HierachicalDataTemplate resource is assigned to the TreeView’s ItemTemplate property.

You can define different layouts for each level of the tree by defining a series of
HierachicalDataTemplates and setting the ItemTemplate property of each. This is shown
in Listing 6-32, where a HierarchicalDataTemplate has been defined for each level of the
ItemsSource.

Listing 6-32:  ​Defining different layouts for each level of a tree

<Grid.Resources>
 <common:HierarchicalDataTemplate
 x:Key=”myTreeViewHierarchicalTemplateLevel0”
 ItemsSource=”{Binding Children}“
 ItemTemplate=”{StaticResource myTreeViewHierarchicalTemplateLevel1}“>
 <TextBlock Text=”{Binding Name}“ Foreground=”Blue” />
 </common:HierarchicalDataTemplate>

 <common:HierarchicalDataTemplate
 x:Key=”myTreeViewHierarchicalTemplateLevel1”
 ItemsSource=”{Binding Children}“
 ItemTemplate=”{StaticResource myTreeViewHierarchicalTemplateLevel2}“>
 <TextBlock Text=”{Binding Name}“ Foreground=”Red” />
 </common:HierarchicalDataTemplate>

 <common:HierarchicalDataTemplate
 x:Key=”myTreeViewHierarchicalTemplateLevel2”
 ItemsSource=”{Binding Children}“ >
 <TextBlock Text=”{Binding Name}“ Foreground=”Green” />
 </common:HierarchicalDataTemplate>
</Grid.Resources>
<sdk:TreeView x:Name=”TreeView1” ItemsSource=”{Binding}“
 ItemTemplate=”{StaticResource myTreeViewHierarchicalTemplate0}“ />

Using Button Controls  ❘  175

Once you’ve added nodes to the tree, you can use the control API to programmatically interact with
nodes of the tree. The control includes a SelectedItemChanged event that allows you to access the
currently selected TreeView item.

It is also possible to walk the tree nodes by using the ItemsControl’s ContainerFromIndex method
(TreeView is derived from ItemsControl). Listing 6-33 shows how you can recursively walk through
all of the nodes included in a TreeView control.

Listing 6-33:  ​Walking the Items included in a TreeView control

public void WalkTreeViewItems(TreeView treeView)
{
 for (int i = 0; i < treeView.Items.Count; i++)
 {
 WalkAllTreeViewItems((TreeViewItem)
 treeView.ItemContainerGenerator.ContainerFromIndex(i));
 }
}

private void WalkAllTreeViewItems(TreeViewItem currentTreeViewItem)
{
 for (int i = 0; i < currentTreeViewItem.Items.Count; i++)
 {
 TreeViewItem child =
 (TreeViewItem)currentTreeViewItem.ItemContainerGenerator.
 ContainerFromIndex(i);
 WalkAllTreeViewItems(child);
 }
}

You can see that the listing includes two methods, the first of which loops the root methods and the
second which recursively walks all of the child tree items. Each method uses the ContainerFromIndex
method to retrieve the TreeViewItem object, which wraps each item included in the TreeView.

You could expand these methods to perform actions like expanding or collapsing all nodes
programmatically.

Using Button Controls

Next to the TextBlock and CheckBox, Button controls are probably one of the most basic con-
trols used in applications. Silverlight includes a standard Button control, as well as two additional
Button controls that extend the basic capabilities of the Button — ​the HyperlinkButton and the
ToggleButton.

Button
The basic Button control included in Silverlight offers the basic behaviors that you would expect a
button to, such as Normal, MouseOver, and Pressed states, and a Click event, but unlike buttons
on other platforms like Windows Forms, the Silverlight Button control uses the power of XAML to
allow you to transform the normal gray button into something completely different.

176  ❘  Chapter 6   Working with Visual Controls

You can first see this if you try to find a Text property on the Button, which you would expect to
be there in order to allow you to set the button’s text. This is where the power of Silverlight begins
to kick in. Rather than a basic Text property, the Button control offers a Content property that — ​
unlike Text, which only accepts a String — ​accepts a more generic Object. Using this, you can set
the Content property to very complex elements such as a checkbox or even another button.

A more realistic example might be placing an image as the Button’s content rather than text. In plat-
forms like Windows Forms, you would need to draw this yourself, or in HTML, you would have to use
an Image button, both of which have significant drawbacks. But in Silverlight, this is simple to achieve.
Listing 6-34 demonstrates using the Content property to use an image as the Button’s content.

Listing 6-34:  ​Using an image as a Button’s content

<Button x:Name=”Button1” Click=”Button1_Click”>
 <Button.Content>
 <Border Margin=”20” BorderBrush=”Black” BorderThickness=”3” >
 <Image Source=”/Chapter6;component/Assets/dog.png” />
 </Border>
 </Button.Content>
</Button>

Figure 6-18 shows the button with an image as its content.

Figure 6-18

This example only replaces the content area of the Button, but you can replace the entire default user
interface for the Button if you want to. When you run the code in Listing 6-34, you will see that even
though the content is different, the control still fires its normal events, like the Click event.

Using Button Controls ❘ 177

Another interesting feature of the Button control is the ClickMode property. Using this property,
you can set when the Button’s Click event should fi re: when the mouse is hovered, when the mouse
is pressed, or when the mouse is released.

hyperlinkButton
The HyperlinkButton extends the basic Button to allow you to provide the button with a URI
value using the NavigateUri property. You can provide either absolute or relative URIs, although
the behavior of the control will depend on the value of the Silverlight object’s EnableNavigation
property. If the property is set to None, then the HyperlinkButton will permit only relative links.

The control also includes a TargetName property that allows you to specify the window or frame
the URI should open in. If you have specifi ed a relative URI, then the TargetName property should
be given the x:Name of the Silverlight Navigation Frame element you want to target.

Chapter 4 includes more information on using the Frame element with the
Silverlight Navigation framework.

If you have provided an absolute URL, then you can provide the standard HTML Target
attribute values such as _blank or _top. The code in Listing 6-35 demonstrates the use of the
HyperlinkButton with an absolute URI.

listing 6-35: Using the HyperlinkButton

<HyperlinkButton
 ClickMode=”Release”
 TargetName=”_blank”
 NavigateUri=”http://www.silverlight.net”>
 <HyperlinkButton.Content>
 <TextBlock Text=”Click Me!” TextDecorations=”Underline” />
 </HyperlinkButton.Content>
</HyperlinkButton>

toggleButton
Silverlight 4 also contains a new ToggleButton control. This control combines the basic behaviors
of a button with the behavior of a checkbox, allowing your Button control to have a checked state.

Listing 6-36 demonstrates the use of the ToggleButton.

listing 6-36: Using the ToggleButton

<ToggleButton x:Name=”ToggleButton1”
 Content=”Toggle Me!” IsChecked=”true”
 Height=”100” Width=”100” />

http://www.silverlight.net%E2%80%9D

178  ❘  Chapter 6   Working with Visual Controls

The ToggleButton control serves as the base for other controls that have a checked state such as
CheckBox and RadioButton and therefore supports the same capabilities, including supporting a
three-state checked option.

Using the GridSplitter Control

The Grid panel, which is discussed in detail in Chapter 5, is a great way to lay out your applica-
tion’s user interface. A common pattern when using a grid is to allow the user to resize grid col-
umns or rows. While the Grid panel itself does not have this capability, Silverlight includes the
GridSplitter control, which allows you to add this capability to it.

Listing 6-37 demonstrates the use of the GridSplitter control, splitting a column containing
two columns.

Listing 6-37:  ​Using the GridSplitter to split a two-column Grid

<Grid x:Name=”LayoutRoot”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <sdk:GridSplitter />
</Grid>

To control the orientation of the GridSplitter control, use its Horizontal and Vertical align-
ment properties. If HorizontalAlignment is set to Stretch, then the grid splits between rows; if
VerticalAlignment is set to Stretch, then the control splits columns. Listing 6-38 demonstrates
using the GridSplitter control in two different configurations — ​one splitting a grid vertically,
and one splitting a grid horizontally.

Listing 6-38:  ​Using the GridSplitter in horizontal and vertical orientation

<Grid x:Name=”LayoutRoot”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <Grid x:Name=”HorizontalOrientation” Background=”Gray”
 Grid.Column=”0” Margin=”10” ShowGridLines=”True”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition Height=”Auto” />
 <RowDefinition />
 </Grid.RowDefinitions>

 <sdk:GridSplitter
 HorizontalAlignment=”Stretch”

Using the Image Control  ❘  179

 VerticalAlignment=”Center” Grid.Row=”1” />

 <Button Grid.Row=”0” Content=”Top” Margin=”5” />
 <Button Grid.Row=”2” Content=”Bottom” Margin=”5” />
 </Grid>

 <Grid x:Name=”VerticalOrientation” Background=”Gray”
 Grid.Column=”1” Margin=”10” ShowGridLines=”True”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition Width=”10” />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <sdk:GridSplitter
 HorizontalAlignment=”Center”
 VerticalAlignment=”Stretch” Grid.Column=”1” />

 <Button Grid.Column=”0” Content=”Left” Margin=”5” />
 <Button Grid.Column=”2” Content=”Right” Margin=”5” />

 </Grid>
</Grid>

If both are set to Stretch and GridSplitter has an actual height less than its actual width, then it
splits rows. If the actual height is greater than the width, then columns are split.

Setting the alignment properties to Left, Right, Top, or Bottom, you can control the direction in which
the splitter resizes its column or row. Setting a property to Center means to resize in both directions.

GridSplitter always drags the entire Column or Row, even if it only visually appears in one cell.
You can use the Grid’s RowSpan and ColumnSpan properties on the GridSplitter to make it appear
in multiple cells.

Also, by default, when the GridSplitter is repositioned, the content of the grid is resized in real
time. You can use the GridSplitter’s ShowsPreview property to configure the control to show a
preview first of the new GridSplitter position, and then resize it when the user releases the splitter.

Using the Image Control

The Image element is a simple control that allows you to show images in your applications.
Listing 6-39 shows the basic usage of the Image control.

Listing 6-39:  ​Using the Image control

<Image Source=”/Chapter6;component/Assets/fox.png”
 Stretch=”Uniform”
 ImageFailed=”Image_ImageFailed”
 ImageOpened=”Image_ImageOpened” />

180  ❘  Chapter 6   Working with Visual Controls

The listing loads a PNG image that has been included as a Resource in the applications XAP. The
Image element can load images in PNG and JPEG formats from a variety of locations including
relative (as shown above), absolute URIs, or a stream.

When setting the Image’s source in XAML, as shown in Listing 6-39, you can provide a URI directly
as a property value. Silverlight automatically converts the value to a Uri object that is used to create
a new ImageSource object. When loading from an absolute URI, cross-domain URIs are permitted.
Relative URLs are relative to the XAP, not the hosting page location.

When setting the Image’s source property in code, you need to create a new instance of a
BitmapSource object and assign that to the property. You can use the SetSource method of
the BitmapSource to create an image from a stream.

The Image control exposes two events that can help you determine if an image was loaded success-
fully or not. The ImageOpened event is fired when the image file has been successfully downloaded
and decoded. The ImageFailed event is fired if either of those two processes fails.

Using Data Visualization Controls

The Silverlight Toolkit includes two controls that are designed to make visualizing data easy. The
TreeMap, which is similar to a Heatmap, is designed to visually display hierarchical data structures.
The Chart control allows you to render data visually as one of seven different common chart types.

TreeMap
Tree maps are a relatively recent visualization technique that is specifically designed for showing hier-
archical data. Points in the tree map are sized based on their value, relative to all the other values in the
bound items source. Additionally, a second dimension of data can be shown by using a gradient color
within each node rendered in the map.

Listing 6-40 shows a basic usage of the TreeMap control to visualize the number of wins for each
team in the 2009 season of Major League Baseball’s American League teams.

Listing 6-40:  ​Using the TreeMap control to visualize baseball game wins

<my:TreeMap ItemsSource=”{Binding}“>
 <my:TreeMap.ItemDefinition>
 <my:TreeMapItemDefinition ValuePath=”Wins”>
 <DataTemplate>
 <Border x:Name=”Border1” Background=”AliceBlue”
 BorderBrush=”Black” BorderThickness=”1”>
 <TextBlock Text=”{Binding Name}“
 VerticalAlignment=”Center”
 TextAlignment=”Center”
 TextWrapping=”Wrap”/>
 </Border>
 </DataTemplate>
 </my:TreeMapItemDefinition>

Using Data Visualization Controls  ❘  181

 </my:TreeMap.ItemDefinition>
</my:TreeMap>

As you can see from Listing 6-40, using the control is fairly straightforward. You create a
DataTemplate within the TreeMapItemDefinition that defines the contents of each node in the
TreeMap. You use the ValuePath property to identify the property in the control’s ItemsSource
that should be used as the node value.

Running Listing 6-40 results in the tree map shown in Figure 6-19.

Figure 6-19

As you can see, a node has been created for each team, and the nodes have been sized according to
their values.

As mentioned previously, a second dimension can be added to the tree map by creating a gradient
color to fill each node. To do this, you can use the TreeMap control’s Interpolators collection,
which accepts either a SolidColorBrushInterpolator or a DoubleInterpolator. Listing 6-41
demonstrates how to use the SolidColorBrushInterpolator to add an additional dimension
showing the streak for each team.

Listing 6-41:  ​Using the SolidColorBrushInterpolator

<my:TreeMap.Interpolators>
 <my:SolidColorBrushInterpolator
 TargetName=”Border1”
 TargetProperty=”Background”
 DataRangeBinding=”{Binding Streak}“
 From=”White”
 To=”DarkRed” />
</my:TreeMap.Interpolators>

182  ❘  Chapter 6   Working with Visual Controls

In this case, the SolidColorBrushInterpolator colors each tile a shade from White
to DarkRed depending on the value of the streak. To tell the TreeMap which element in
the TreeMapItemDefinition’s DataTemplate to assign the color to, use the Target and
TargetProperty properties, in this case, telling the control to assign the color to the Border’s
Background property. The result of adding the SolidColorBrushInterpolator is shown in
Figure 6-20.

Figure 6-20

It is also possible to have more than one segment of data defined in the TreeMap. For example, the
listings so far have shown the 2009 season statistics for only the American League teams. What if
you wanted to add in the National League teams and color them from blue to white? You can do
that by creating a custom TreeMapItemDefinitionSelector, which allows you to define multiple
TreeMapItemDefinitions within the control and tells the control how to divide up the data.

Listing 6-42 shows how to derive a custom class from the TreeMapItemDefinitionSegment.

Listing 6-42:  ​Using the TreeMapItemDefinitionSelector

[ContentProperty(“Children”)]
public class LeagueItemDefinitionSelector : TreeMapItemDefinitionSelector
{
 public Collection<TreeMapItemDefinition> Children { get; private set; }

 public LeagueItemDefinitionSelector() {
 Children = new Collection<TreeMapItemDefinition>(); }

 public override TreeMapItemDefinition

Using Data Visualization Controls  ❘  183

 SelectItemDefinition(TreeMap treeMap, object item, int level)
 {
 if (item is Chapter6.Views.Listing0643.League)
 {
 return Children[0];
 }

 if (item is Chapter6.Views.Listing0643.TeamStats)
 {
 Chapter6.Views.Listing0643.TeamStats node =
 item as Chapter6.Views.Listing0643.TeamStats;

 if (Children.Count > 0 &&
 node != null &&
 node.League.Length > 0)
 {
 switch (node.League)
 {
 case “American”:
 return Children[1];
 case “National”:
 return Children[2];
 }

 return null;
 }
 }

 return null;
 }
}

The code for creating a custom selector class is fairly straightforward. First, you create a collection to
hold the TreeMapItemsDefinitions. You need to create a separate definition for each segment you
want to show. Next, you simply override the SelectItemDefinition method and insert the logic
that determines how this selector should select the TreeMapItemDefinition for each node in the
control. In the previous listing, the logic first checks to see what type of object is being passed in. If
the type is a League object, the first template is returned. If the type is a TeamStats object, then the
League property is checked and a template returned based on its value.

Once your selector is created, add this to the TreeMap control by assigning it to the
ItemTemplateSelector property. You can also create additional interpolators to color
the different segments. Listing 6-43 shows how the TreeMap is modified to leverage the
selector and interpolators.

Listing 6-43:  ​Modifying the TreeMap

<my:TreeMap ItemsSource=”{Binding}“>
 <my:TreeMap.Interpolators>
 <my:SolidColorBrushInterpolator
 TargetName=”Border1”

continues

184  ❘  Chapter 6   Working with Visual Controls

 TargetProperty=”Background”
 DataRangeBinding=”{Binding Streak}“
 From=”White”
 To=”DarkRed” />
 <my:SolidColorBrushInterpolator
 TargetName=”Border2”
 TargetProperty=”Background”
 DataRangeBinding=”{Binding Streak}“
 From=”White”
 To=”DarkBlue” />
 </my:TreeMap.Interpolators>
 <my:TreeMap.ItemDefinitionSelector>
 <local:LeagueItemDefinitionSelector>
 <my:TreeMapItemDefinition ItemsSource=”{Binding Teams}“
 ValueBinding=”{Binding Value}“>
 <DataTemplate>
 <Border x:Name=”Border0” Background=”AliceBlue”
 BorderBrush=”Black” BorderThickness=”1”>
 </Border>
 </DataTemplate>
 </my:TreeMapItemDefinition>

 <my:TreeMapItemDefinition ItemsSource=”{Binding Children}“
 ValueBinding=”{Binding Wins}“>
 <DataTemplate>
 <Border x:Name=”Border1” Background=”AliceBlue”
 BorderBrush=”Black” BorderThickness=”1”>
 <TextBlock Text=”{Binding Name}“
 VerticalAlignment=”Center”
 TextAlignment=”Center”
 TextWrapping=”Wrap”/>
 </Border>
 </DataTemplate>
 </my:TreeMapItemDefinition>

 <my:TreeMapItemDefinition ItemsSource=”{Binding Children}“
 ValueBinding=”{Binding Wins}“>
 <DataTemplate>
 <Border x:Name=”Border2” Background=”AliceBlue”
 BorderBrush=”Black” BorderThickness=”1”>
 <TextBlock Text=”{Binding Name}“
 VerticalAlignment=”Center”
 TextAlignment=”Center”
 TextWrapping=”Wrap”/>
 </Border>
 </DataTemplate>
 </my:TreeMapItemDefinition>
 </local:LeagueItemDefinitionSelector>
 </my:TreeMap.ItemDefinitionSelector>
</my:TreeMap>

Figure 6-21 shows the result of adding the selector and interpolators to the TreeMap.

Listing 6-43  (continued)

Using Data Visualization Controls  ❘  185

Figure 6-21

Chart
The Chart control is the second data visualization control included in the Silverlight Toolkit. It
supports seven chart types:

Area➤➤

Bar➤➤

Column➤➤

Line➤➤

Scatter➤➤

Pie➤➤

Bubble➤➤

Listing 6-44 demonstrates using the Chart control to show a simple Line chart.

Listing 6-44:  ​Using the Chart control

<chartingToolkit:Chart>
 <chartingToolkit:Chart.Series>
 <chartingToolkit:LineSeries
 ItemsSource=”{Binding}“
 DependentValueBinding=”{Binding Y}“
 IndependentValueBinding=”{Binding X}“ />
 </chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

186  ❘  Chapter 6   Working with Visual Controls

As shown in Listing 6-44, to create the chart you simply add a LineSeries to the charts series
collection. On the LineSeries you provide an ItemsSource and configure the Dependent
and Independent values. You can think of the Dependent value as the chart’s X-axis and the
Independent value as the Y-axis.

Running Listing 6-44 results in the Chart shown in Figure 6-22.

Figure 6-22

Notice that the chart automatically adds the appropriate axes and a legend.

You can show multiple sets of data in the chart simply by adding additional series objects to the Chart’s
Series collection. Listing 6-45 shows how you can create a column chart with multiple series.

Listing 6-45:  ​Creating a column chart with multiple series

<chartingToolkit:Chart Title=”Automobile Manufacturer Annual Sales”>
 <chartingToolkit:Chart.Series>
 <chartingToolkit:ColumnSeries
 Title=”Ford”
 DataContext=”{Binding PointsA}“
 ItemsSource=”{Binding}“
 DependentValueBinding=”{Binding Y}“
 IndependentValueBinding=”{Binding X}“ />
 <chartingToolkit:ColumnSeries
 Title=”Toyota”
 DataContext=”{Binding PointsB}“
 ItemsSource=”{Binding}“
 DependentValueBinding=”{Binding Y}“
 IndependentValueBinding=”{Binding X}“ />
 </chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

Using Data Visualization Controls  ❘  187

Figure 6-23 shows the results of adding multiple column series to the Chart.

Figure 6-23

By default each series in the chart adds an item to the legend. You can change the text shown in the
legend for the series by setting the Title property.

Additionally, as you add each series, the chart automatically selects a new unique series color
and adds the series to the legend. You can control the collection of colors the chart can use
to color series using the chart’s Palette collection. Listing 6-46 shows how you can create a
ResourceDictionaryCollection that contains the different colors you want the chart to use
to color the series.

Listing 6-46:  ​Creating a ResourceDictionaryCollection

<chartingToolkit:Chart.Palette>
 <visualizationToolkit:ResourceDictionaryCollection>
 <ResourceDictionary>
 <Style x:Key=”DataPointStyle” TargetType=”Control”>
 <Setter Property=”Background” Value=”Red” />
 </Style>
 </ResourceDictionary>
 <ResourceDictionary>
 <Style x:Key=”DataPointStyle” TargetType=”Control”>
 <Setter Property=”Background” Value=”Green” />
 </Style>
 </ResourceDictionary>
 </visualizationToolkit:ResourceDictionaryCollection>
</chartingToolkit:Chart.Palette>

188  ❘  Chapter 6   Working with Visual Controls

Series objects expose a variety of other properties that let you configure features like the animation
sequence used to initially display the series and the easing function used to transition data points as
values in the ItemsSource change. Listing 6-47 demonstrates the use of these properties.

Listing 6-47:  ​Using properties to configure series features

<chartingToolkit:ColumnSeries
 Title=”Ford”
 DataContext=”{Binding PointsA}“
 ItemsSource=”{Binding}“
 DependentValueBinding=”{Binding Y}“
 IndependentValueBinding=”{Binding X}“
 AnimationSequence=”FirstToLast”
 TransitionDuration=”5000”>
 <chartingToolkit:ColumnSeries.TransitionEasingFunction>
 <ElasticEase EasingMode=”EaseIn” />
 </chartingToolkit:ColumnSeries.TransitionEasingFunction>
</chartingToolkit:ColumnSeries>

Series also support the notion of selecting a data point. By setting the IsSelectionEnabed property
to True, users can click data points in the chart. The chart will show the selected data point using a
different style, which you can change by restyling the data point, and expose the currently selected
data point through the SelectedItem property. Additionally, you can listen to the SelectionChanged
event to get notified when the selected data point changes.

As mentioned earlier, by default, the chart automatically selects the appropriate axes to use based
on the series included in the chart. You can, however, manually add and configure axes to the chart’s
Axes collection. The chart includes three axis types — ​LinearAxis for numeric data, CategoryAxis
for string data, and a DateTimeAxis for DateTime data. Listing 6-48 shows how to use the Axes col-
lection to add linear and category axes for a LineSeries.

Listing 6-48:  ​Using Axes to add linear and category axes

<chartingToolkit:Chart>
 <chartingToolkit:Chart.Axes>
 <chartingToolkit:LinearAxis x:Name=”yaxis” Orientation=”Y”
 ShowGridLines=”False” Title=”Y Axis Values”
 Minimum=”-100” Maximum=”100” Interval=”50”/>
 <chartingToolkit:CategoryAxis x:Name=”xaxis” Orientation=”X”
 Title=”X Axis Values” />
 </chartingToolkit:Chart.Axes>
 <chartingToolkit:Chart.Series>
 <chartingToolkit:LineSeries
 DataContext=”{Binding PointsB}“
 ItemsSource=”{Binding}“
 DependentValuePath=”Y”
 DependentRangeAxis=”{Binding ElementName=yaxis}“
 IndependentValuePath=”X”
 IndependentAxis=”{Binding ElementName=xaxis}“ />
 </chartingToolkit:Chart.Series>
</chartingToolkit:Chart>

Using Other Miscellaneous Controls  ❘  189

Finally, one of the great aspects of the Chart control is that Microsoft has unsealed the primary chart-
ing classes in the control. This means that it is now much easier to extend the control to add additional
functionality, such as additional series to support different chart types, or more complex axes, like a
logarithmic axis. An example of creating a custom series can be found at the following URL:

www.codeproject.com/KB/silverlight/SLTCandlestickChart2.aspx

Using Other Miscellaneous Controls

This section covers a few other miscellaneous controls you will find useful as you develop your
Silverlight applications.

ViewBox
The ViewBox control, previously included in the Silverlight Toolkit, has been promoted to the
Silverlight 4 SDK. The ViewBox is designed to scale XAML content appropriately based on the size
of the viewbox. Figure 6-24 demonstrates an ellipse shown inside four ViewBox controls.

Figure 6-24

In the figure, the ellipse has its size fixed at 300 × 300. The ViewBox property scales the ellipse based
on the value of the Stretch property. Listing 6-49 shows the code used to generate Figure 6-24.

Listing 6-49:  ​Using the ViewBox control to show an ellipse in four segments

<Border BorderBrush=”Black” BorderThickness=”1”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”>

continues

http://www.codeproject.com/KB/silverlight/SLTCandlestickChart2.aspx

190  ❘  Chapter 6   Working with Visual Controls

 <Viewbox x:Name=”ViewBox6” Width=”100” Height=”150”
 StretchDirection=”Both” Stretch=”None”>
 <Ellipse Fill=”Red” Width=”300” Height=”300” />
 </Viewbox>
</Border>
<Border BorderBrush=”Black” BorderThickness=”1”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Margin=”120,0,0,0”>
 <Viewbox x:Name=”ViewBox1” Width=”100” Height=”150”
 StretchDirection=”Both” Stretch=”Fill”>
 <Ellipse Fill=”Red” Width=”300” Height=”300” />
 </Viewbox>
</Border>
<Border BorderBrush=”Black” BorderThickness=”1”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Margin=”240,0,0,0”>
 <Viewbox x:Name=”ViewBox4” Width=”100” Height=”150”
 StretchDirection=”Both” Stretch=”Uniform” >
 <Ellipse Fill=”Red” Width=”300” Height=”300” />
 </Viewbox>
</Border>
<Border BorderBrush=”Black” BorderThickness=”1”
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Margin=”360,0,0,0”>
 <Viewbox x:Name=”ViewBox5” Width=”100” Height=”150”
 StretchDirection=”Both” Stretch=”UniformToFill”>
 <Ellipse Fill=”Red” Width=”300” Height=”300” />
 </Viewbox>
</Border>

The Stretch property allows four values — ​Uniform, UniformToFill, Fill, and None. The
default is Uniform. You can also control the direction in which the stretch is applied using
the StretchDirection property.

BusyIndicator
The BusyIndicator, which is included in the Silverlight Toolkit, provides you with an easy way to
add an effect to your application notifying users that the application is working. This is useful if your
application executes long-running tasks, such as remote server calls, or complex calculation routines.
Listing 6-50 shows how you can use the BusyIndicator while the application attempts to validate
user credentials.

Listing 6-50:  ​Using the BusyIndicator

<Grid x:Name=”LayoutRoot”
 VerticalAlignment=”Center” HorizontalAlignment=”Center”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />

Listing 6-49  (continued)

Using Other Miscellaneous Controls  ❘  191

 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>

 <sdk:Label Content=”Username: “ Margin=”5”
 Grid.Column=”0” Grid.Row=”0”/>
 <TextBox x:Name=”txtUsername” Width=”150” Margin=”5”
 Grid.Column=”1” Grid.Row=”0”/>

 <sdk:Label Content=”Password: “ Margin=”5”
 Grid.Column=”0” Grid.Row=”1” />
 <TextBox x:Name=”txtPassword” Width=”150” Margin=”5”
 Grid.Column=”1” Grid.Row=”1”/>

 <Button Content=”Login” Click=”Button_Click”
 Grid.Row=”2” Grid.ColumnSpan=”2”
 HorizontalAlignment=”Center” Margin=”5” />
 </Grid>
 <controlsToolkit:BusyIndicator
 x:Name=”BusyIndicator1”
 BusyContent=”Validating credentials...”
 VerticalAlignment=”Stretch”
 HorizontalAlignment=”Stretch” />
</Grid>

Listing 6-50 sets up a simple login form with two input fields and a button inside a Grid panel. At
the bottom, you can see that the BusyIndicator control has also been added. The control has been
given some content, and its alignment properties have been set to Stretch. Setting the alignment
properties to Stretch allows it to overlay the login form while shown.

Figure 6-25 shows the form with its BusyIndicator showing.

Figure 6-25

192  ❘  Chapter 6   Working with Visual Controls

To show the BusyIndicator, simply set the IsBusy property to True. Normally, you would do this
before you start your long-running process. Once the process completes, simply set the property
back to False to hide the indicator.

Expander
The Expander control is a simple control that allows end users to expand or collapse a section of
content. Listing 6-51 shows how you can use the Expander.

Listing 6-51:  ​Using the Expander control

<StackPanel>
 <controlsToolkit:Expander ExpandDirection=”Down”
 Header=”Expand Content Down”>
 <Button Content=”Expand Content Down” />
 </controlsToolkit:Expander>
 <controlsToolkit:Expander ExpandDirection=”Up”
 Header=”Expand Content Up”>
 <Button Content=”Expand Content Up” />
 </controlsToolkit:Expander>
 <controlsToolkit:Expander ExpandDirection=”Left”
 Header=”Expand Content Left”>
 <Button Content=”Expand Content Left” />
 </controlsToolkit:Expander>
 <controlsToolkit:Expander ExpandDirection=”Right”
 Header=”Expand Content Right”>
 <Button Content=”Expand Content Right” />
 </controlsToolkit:Expander>
</StackPanel>

Listing 6-51 shows four Expanders, each with a single Button as content. Each Expander has its
ExpandDirection property set to one of the four possible values.

ValidationSummary
The ValidationSummary control, which is included in the Silverlight SDK, provides a simple way
to display a summary of data input errors to your application. The control uses the Silverlight data
binding validation properties to receive notification of data input errors that happen. Listing 6-52
shows how to use the ValudationSummary control to show validation errors that may occur when
entering data into the TextBox controls.

Listing 6-52:  ​Using the ValidationSummary control to display validation errors

<Grid x:Name=”LayoutRoot”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>

 <StackPanel>

Using Other Miscellaneous Controls  ❘  193

 <TextBox x:Name=”txtFirstName” Text=”{Binding FirstName,
 Mode=TwoWay, NotifyOnValidationError=True,
 ValidatesOnExceptions=True}“/>
 <TextBox x:Name=”txtLastName” Text=”{Binding LastName,
 Mode=TwoWay, NotifyOnValidationError=True,
 ValidatesOnExceptions=True}“/>
 </StackPanel>

 <sdk:ValidationSummary Grid.Row=”1” />
</Grid>

It is also possible to restyle the look of the errors shown by the ValidationSummary control by
creating a new Style and assigning it to the control’s ErrorStyle property.

Tooltip
As its name implies, the Tooltip control allows you to add tooltips to UI elements in your application.
The control is exposed through the TooltipService attached property, which allows you to add a
tooltip to any UI Element.

To add content to the control you use the TooltipService’s ToolTip property. You can set content
directly in the property, or you can create a new Tooltip object explicitly and place content within
it. Listing 6-53 shows how you can add a tooltip to a button by setting content directly on the
TooltipService’s ToolTip property.

Listing 6-53:  ​Adding a ToolTip to a Button

<Button Content=”This is a button” Height=”100” Width=”100”
 ToolTipService.Placement=”Mouse”
 <ToolTipService.ToolTip>
 <Grid>
 <TextBlock Text=”This is the buttons tooltip” />
 </Grid>
 </ToolTipService.ToolTip>
</Button>

Note that the content of the tooltip cannot be interacted with or receive focus, so while you can
place elements like Buttons in the tooltip, users will not be able to click them.

It is also possible to completely control the look of the tooltip by retemplating the control. Listing 6-54
shows how to retemplate the tooltip from Listing 6-53.

Listing 6-54:  ​Retemplating the ToolTip control

<Grid x:Name=”LayoutRoot”>
 <Grid.Resources>
 <ControlTemplate TargetType=”ToolTip” x:Key=”MyToolTipTemplate”>
 <Border BorderBrush=”Black” BorderThickness=”4”
 CornerRadius=”8”>

continues

194  ❘  Chapter 6   Working with Visual Controls

 <Grid>
 <ContentPresenter Content=”{TemplateBinding Content}“
 ContentTemplate=”{TemplateBinding ContentTemplate}“
 Margin=”{TemplateBinding Padding}“ />
 </Grid>
 </Border>
 </ControlTemplate>
 </Grid.Resources>
 <Button Content=”This is a button” Height=”100” Width=”100”
 ToolTipService.Placement=”Mouse”>
 <ToolTipService.ToolTip>
 <ToolTip Template=”{StaticResource MyToolTipTemplate}“>
 <ToolTip.Content>
 <TextBlock Text=”This is the buttons tooltip” />
 </ToolTip.Content>
 </ToolTip>
 </ToolTipService.ToolTip>
 </Button>
</Grid>

ScrollViewer
The ScrollViewer control is a very simple control that allows you to add scrollbars to content ele-
ments in your application. The control will add both horizontal and vertical scrollbars as an element’s
content begins to exceed its available space.

Listing 6-55 demonstrates how you can use the ScrollViewer with a StackPanel to allow content
that exceeds the height given to the StackPanel to be scrolled into view.

Listing 6-55:  ​Using a ScrollViewer to scroll content in a StackPanel

<Grid x:Name=”LayoutRoot” Height=”100” VerticalAlignment=”Top”>
 <ScrollViewer>
 <StackPanel>
 <TextBlock Text=”A” />
 <TextBlock Text=”B” />
 <TextBlock Text=”C” />
 <TextBlock Text=”D” />
 <TextBlock Text=”E” />
 <TextBlock Text=”F” />
 <TextBlock Text=”G” />
 <TextBlock Text=”H” />
 <TextBlock Text=”I” />
 <TextBlock Text=”K” />
 <TextBlock Text=”L” />
 <TextBlock Text=”M” />
 <TextBlock Text=”N” />
 <TextBlock Text=”O” />
 <TextBlock Text=”P” />

Listing 6-54  (continued)

Creating Custom Controls  ❘  195

 <TextBlock Text=”Q” />
 <TextBlock Text=”R” />
 <TextBlock Text=”S” />
 <TextBlock Text=”T” />
 <TextBlock Text=”U” />
 <TextBlock Text=”V” />
 <TextBlock Text=”W” />
 <TextBlock Text=”X” />
 <TextBlock Text=”Y” />
 <TextBlock Text=”Z” />
 </StackPanel>
 </ScrollViewer>
</Grid>

The ScrollViewer control includes properties that allow you to control the visibility of the horizontal
and vertical scrollbar. By default the control makes the horizontal scrollbar disabled and the vertical
scrollbar visible.

Keep in mind that when you are wrapping elements inside of a ScrollViewer, the ScrollViewer
will tell those controls that they have infinite height and width. This can cause controls that virtual-
ize their UI based on their size, like the DataGrid, to fail to utilize their virtualization logic since
they no longer have a fixed height.

For controls like ListBox that automatically leverage the ScrollViewer control, ScrollViewer
is also an attached property that you can add to these controls to control how the scrollbars are
displayed (Listing 6-56).

Listing 6-56:  ​Using the ScrollViewer attached property with ListBox

<ListBox ScrollViewer.VerticalScrollBarVisibility=”Hidden”>
 <TextBlock Text=”A” />
 <TextBlock Text=”B” />
 <TextBlock Text=”C” />
 <TextBlock Text=”D” />
 <TextBlock Text=”E” />
</ListBox>

Creating Custom Controls

So far in this chapter, we have looked at the wide variety of controls that are available from Silverlight,
the Silverlight SDK, and the Silverlight Toolkit; but there will certainly be times when none of these
controls provides the UI you need for your application. In those cases, you may choose to build your
own custom controls. In this section you will walk though creating a custom login form control to
learn how you can use Silverlight’s control API’s to build custom controls.

Getting started building custom controls in Silverlight is a fairly simple process. Visual Studio includes
a file template named Silverlight Templated Control that can get you started quickly creating a new
control. Figure 6-26 shows the template selected in the Add New Item dialog.

196 ❘ chapter 6 workIng wIth vISuAl controlS

figure 6-26

When you add the Silverlight Templated Control to your application,
Visual Studio creates several new assets. First, the basic class fi le derived
from Control is created. Second, a new XAML fi le called Generic.xaml
is added to a Themes folder that is created in your project. Generic.xaml is
where the XAML used to create the control’s UI is stored. Figure 6-27 shows
the application structure once you’ve added the Templated Control.

The names of the folder and XAML fi le created when adding a new Templated
Control are very important. Silverlight is hard coded to look for the default style
of your custom control in a fi le called Generic.xaml in folder called Themes.
Changing the names of either of these will cause Silverlight to fail to fi nd your
control’s default style.

The control class and XAML fi le are connected by setting the DefaultStyleKey property in the
class constructor. This is done for you automatically when the class is created by Visual Studio. This
also enables controls to follow the States and Parts model, which dictates that there is a strict sepa-
ration between the visual elements of a control and the logical behavior of a control. Later in this
chapter you will see how designing controls in this manner makes it easy to change their appearance
without affecting their behavior.

By default, the Templated Control fi le template creates a control derived from the Silverlight
Control base class, but there are several other useful base classes you might choose to derive
from. See Table 6-3.

figure 6-27

Creating Custom Controls  ❘  197

Table 6-3

Base Class Description

ItemsControl Represents a control that can be used to present a collection
of items.

HeaderedItemsControl Represents a control that contains multiple items and has a header.

ContentControl Represents a control with a single piece of content.

HeaderedContentControl Provides the base implementation for all controls that contain
single content and have a header.

Once Visual Studio completes its setup of the control’s class and XAML file, you can start adding
some style and functionality to the new control. Start by creating the base UI for your control by
adding content to Style’s ControlTemplate in Generic.xaml. Listing 6-57 shows the base control
template used for the login form control.

Listing 6-57:  ​Defining the default ControlTemplate of a custom control

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”
 xmlns:local=”clr-namespace:MyCustomSilverlightControl”>

 <Style TargetType=”local:LoginForm”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”local:LoginForm”>

 <Border Background=”{TemplateBinding Background}“
 BorderBrush=”{TemplateBinding BorderBrush}“
 BorderThickness=”{TemplateBinding BorderThickness}“>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>

 <TextBlock x:Name=”lblTitle”

continues

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

198  ❘  Chapter 6   Working with Visual Controls

 Grid.ColumnSpan=”2”/>

 <TextBlock x:Name=”lblUsername”
 Text=”Username:” Margin=”5” Grid.Column=”0”
 Grid.Row=”1” VerticalAlignment=”Center”/>
 <TextBox x:Name=”txtUsername” Width=”150”
 Margin=”5” Grid.Column=”1” Grid.Row=”1”/>

 <TextBlock x:Name=”lblPassword”
 Text=”Password:” Margin=”5” Grid.Column=”0”
 Grid.Row=”2” VerticalAlignment=”Center” />
 <PasswordBox x:Name=”txtPassword” Width=”150”
 Margin=”5” Grid.Column=”1” Grid.Row=”2”/>

 <StackPanel Grid.Row=”3” Grid.ColumnSpan=”2”
 HorizontalAlignment=”Center” Margin=”5”
 Orientation=”Horizontal”>
 <Button x:Name=”btnClear” Content=”Clear”
 Margin=”0,0,2,0”/>
 <Button x:Name=”btnSubmit” Content=”Login”
 Margin=”2,0,0,0” />
 </StackPanel>

 <TextBlock x:Name=”lblError”
 Visibility=”Collapsed” Grid.Row=”4”
 Grid.ColumnSpan=”2”
 Text=”{TemplateBinding ErrorMessage}“
 HorizontalAlignment=”Center”
 FontWeight=”Bold” Foreground=”Red” />
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</ResourceDictionary>

You can see that within the Style, which has its TargetType set to LoginForm (the name of the
custom control class), the ControlTemplate property is defined that contains the default visual
appearance of the control. In the control template TemplateBindings are used to bind elements of
the Template to properties of the control.

Once the control’s default UI is created, you can begin to write the logic that manipulates the
controls content. Start by getting references to the control defined in the XAML by overriding
the control’s OnApplyTemplate method and using the GetTemplateChild method. This method
accepts as an input parameter the name of the control in the control template that you want to
reference. Listing 6-58 shows how you can get references to the controls from the control template
shown in Listing 6-57.

Listing 6-57  (continued)

Creating Custom Controls  ❘  199

Listing 6-58:  ​Referencing default control template UI elements in code

public class LoginForm : Control
{
 TextBox _username = null;
 PasswordBox _password = null;
 Button _submit = null;
 Button _clear = null;

 public LoginForm()
 {
 this.DefaultStyleKey = typeof(LoginForm);
 }

 public bool IsLoggedIn { get; set; }
 public string ErrorMessage { get; set; }

 public override void OnApplyTemplate()
 {
 base.OnApplyTemplate();

 if (_clear != null) { _clear.Click -= _clear_Click; }
 if (_submit != null) { _submit.Click -= _submit_Click; }

 _username = GetTemplateChild(“txtUsername”) as TextBox;
 _password = GetTemplateChild(“txtPassword”) as PasswordBox;
 _submit = GetTemplateChild(“btnSubmit”) as Button;
 _clear = GetTemplateChild(“btnClear”) as Button;

 if (_submit != null)
 {
 _submit.Click += new RoutedEventHandler(_submit_Click);
 }

 if (_clear != null)
 {
 _clear.Click += new RoutedEventHandler(_clear_Click);
 }

 }
}

As you can see in Listing 6-58, the OnApplyTemplate method is also a good place to attach event
handlers to the control’s UI elements. Note that the OnApplyTemplate method can be called multiple
times, so it is very important to check to see if you need to do some cleanup work before you call
GetTemplateChild. You should check to see if the local element variable is already assigned, and if it
is, make sure to remove any existing control event handlers before attaching new handlers.

Also note that before you attach an event, you should check to make sure that the element you are
attaching the event to is not null. This is because there is no guarantee that the element actually
exists in the default template, and if it does not exist, the GetTemplateChild method will simple
return null.

200  ❘  Chapter 6   Working with Visual Controls

At this point you have a basic custom control that you can add to your application. Figure 6-28
shows the simple control built in this section running in an application.

Figure 6-28

Template Parts
Once you have the default UI of your control XAML, you can identify elements in the template
that you want to designate as control Parts. Parts are generally the UI elements of your control
that are critical to the experience your control provides, and therefore have significant amounts
of logic tied to them.

While designating UI elements as Parts is not required to run the control, it is generally a good prac-
tice for developing custom controls. By designating a control in your template as a Part, you are creat-
ing a contract between your control and a developer who wants to change the default style of your
control. The contract states that the control will allow the developer to change its default template as
long as they ensure that the control designated as a Part is present and named a well-known name.
Additionally, tools like Expression Blend have been designed to look for and expose elements marked
with the attribute and will inform developers and designers that they are required by the controls.

To mark elements as Parts you use the TemplatePart attribute on your custom control’s class.
The TemplatePart attributes allow you to communicate the type of UI elements that your control
expects to be in its template and the name that should be given to that element. Listing 6-59 shows
how you can add a TemplatePart attribute to the class.

Listing 6-59:  ​Adding TemplatePart attributes

[TemplatePart(Name = “txtUsername”, Type = typeof(TextBox))]
[TemplatePart(Name = “txtPassword”, Type = typeof(PasswordBox))]

Creating Custom Controls  ❘  201

[TemplatePart(Name = “btnSubmit”, Type = typeof(Button))]
[TemplatePart(Name = “lblError”, Type = typeof(TextBlock))]
public class LoginForm : Control

Note that using TemplatePart attributes simply allows you to expose your intentions to other
designers and developers. It remains their prerogative to actually provide those elements in the con-
trols template. As mentioned earlier, you should always make sure that you check for the existence
of template controls before trying to access them in your control.

Visual States
Another key part of building custom controls that use the States and Parts model is using Visual
States to allow the control to change its appearance based on its current state. Visual States are
managed in your control using the Visual State Manager (VMS). Using Visual States also makes
your control Expression Blend friendly because Expression Blend can expose the states in its UI,
allowing designers to easily change the look of a control for a given state without needed to under-
stand or change its behavior, or dig into code.

To demonstrate using Visual States, you can add a Normal and an Invalid state to the custom con-
trol shown in the previous section. The Invalid state will be shown by the control when an invalid
login attempt occurs. Listing 6-60 shows how you add the states to the default control template.

Listing 6-60:  ​Creating Visual States using VisualStateManager

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”>
 <Storyboard x:Name=”NormalStoryboard”>
 <ColorAnimation Duration=”0:0:0.5” To=”#FFFFD7D7”
 Storyboard.TargetProperty=”(Control.Background).
 (SolidColorBrush.Color)“
 Storyboard.TargetName=”txtUsername”/>
 <ColorAnimation Duration=”0:0:0.5” To=”#FFFFD7D7”
 Storyboard.TargetProperty=”(Control.Background).
 (SolidColorBrush.Color)“
 Storyboard.TargetName=”txtPassword”/>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”lblError”>
 <DiscreteObjectKeyFrame KeyTime=”0:0:0.5”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <DoubleAnimation Duration=”0:0:0.5” To=”0”
 Storyboard.TargetProperty=”(UIElement.Opacity)“
 Storyboard.TargetName=”lblError”/>
 </Storyboard>

continues

202  ❘  Chapter 6   Working with Visual Controls

 </vsm:VisualState>
 <vsm:VisualState x:Name=”Invalid”>
 <Storyboard x:Name=”InvalidStoryboard”>
 <ColorAnimation Duration=”0:0:0.5” To=”#FFFFD7D7”
 Storyboard.TargetProperty=”(Control.Background).
 (SolidColorBrush.Color)“
 Storyboard.TargetName=”txtUsername”/>
 <ColorAnimation Duration=”0:0:0.5” To=”#FFFFD7D7”
 Storyboard.TargetProperty=”(Control.Background).
 (SolidColorBrush.Color)“
 Storyboard.TargetName=”txtPassword”/>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”lblError”>
 <DiscreteObjectKeyFrame KeyTime=”0:0:0.5”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 <DoubleAnimation Duration=”0:0:0.5” To=”100”
 Storyboard.TargetProperty=”(UIElement.Opacity)“
 Storyboard.TargetName=”lblError”/>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

As you can see in Listing 6-60 the VisualStateManager exposes a VisualStateGroups prop-
erty. This allows you to define several related states as a group. The native controls often contain
a VisualStateGroup called CommonStates, which can contain states such as Normal, MouseOver,
Focused, and Disabled.

For the LoginForm control, a single VisualStateGroup called CommonStates is created. Within that
group, two states are defined, Normal and Invalid. Each state contains a storyboard with multiple
animations that target different controls in the controls default template.

If you are going to use Visual States in your control’s default template, you must set the
VisualStateManager attached property on the root element of the ControlTemplate. In
the case of the LoginForm control that means attaching it to the Border control.

To trigger a change in the state of your control, you can use the GoToState method. The best way
to do this is to create a method in your control that is responsible for determining the current state
of your application and then calls the GoToState method with the appropriate state name. In the
LoginForm, Boolean properties are used to indicate the current state of the control. Listing 6-61
shows how you can create a method called EnsureCurrentState in your control. Using the Boolean
flags, the method checks the current state and calls the GoToState method.

Listing 6-60  (continued)

Summary  ❘  203

Listing 6-61:  ​EnsureCurrentState method

public void EnsureCurrentState()
{
 if (_isNormal)
 {
 VisualStateManager.GoToState(this, “Normal”, false);
 return;
 }

 if (_isInvalid)
 {
 VisualStateManager.GoToState(this, “Invalid”, false);
 return;
 }
}

Summary

This chapter introduced you to many of the most important and complex controls that are available
in Silverlight, the Silverlight SDK, and the Silverlight Toolkit, as well as introducing you to a variety
of different open source control projects. From the Silverlight TextBox, which makes it easy to begin
to take data input from end users, to perhaps the most complex control, the DataGrid, you learned
how you can take advantage of all of these controls to make your applications more useful and make
you more productive in your development. Finally, you learned how to create your own custom
Silverlight controls.

7
accessing Data

what’s in this chapter?

Working with XML using LINQ and the XmlReader object➤➤

Working with data binding and user interfaces➤➤

Dealing with data when it changes➤➤

Communicating with services (REST, WCF)➤➤

One of the most prominent and compelling aspects of rich Internet applications is unfettered
access to data. Therefore, it should be no surprise that Silverlight provides a rich, pervasive model
that allows you to create dynamic data-driven applications. Silverlight provides a host of facilities
for retrieving, displaying, manipulating, and storing data from a variety of data sources.

If you are accustomed to using classes within System.Data to query databases directly, you
are in for a rude surprise with Silverlight, because none of these services are available. This
chapter looks at how you can use Silverlight to deal with services, both ASP.NET Web Services
and the newer Windows Communication Foundation services.

This chapter also looks at dealing with XML, data binding, and RESTful-based services —
starting with working with XML.

WCF RIA Services is covered in Chapter 8.

processing xMl data

Although a developer might actually enjoy seeing XML presented directly in an application,
it is far more likely that you will need to massage the XML data into some strongly typed

206 ❘ chapter 7 AcceSSIng dAtA

objects that will be presented to the user. For instance, you would probably not want to expose the
end user to the raw XML presented in Listing 7-1.

listing 7-1: raw XMl

<?xml version=”1.0” encoding=”utf-8” ?>
<destinations>
 <destination name=”St. Croix” population=”70000”
 averageAirfare=”300” averageHotel=”300”
 bestKnownFor=”Beaches” />
 <destination name=”St. Barths” population=”8450”
 averageAirfare=”600” averageHotel=”800”
 bestKnownFor=”Shopping” />
 <destination name=”St. Lucia” population=”160765”
 averageAirfare=”400” averageHotel=”400”
 bestKnownFor=”Rainforests” />
</destinations>

Silverlight provides both the low-level XMLReader class and LINQ to XML for working with raw
XML. Either framework can be used to transform XML into a strongly typed class that represents
the data. This example has a Destination class (shown in Listing 7-2), which exposes some of the
important factors you might consider when deciding where to spend your next vacation. This class
should be placed within the Silverlight client project of your solution.

listing 7-2: The Destination class

public class Destination
{
 public string Name { get; set; }
 public int Population { get; set; }
 public double AverageAirfare { get; set; }
 public double AverageHotel { get; set; }
 public string BestKnownFor { get; set; }
}

Next, this chapter takes a look at how you can use both LINQ to XML and the XMLReader classes
to grab the information found in XML and create a set of Destination objects.

linQ to xMl
LINQ to XML provides a clean, consistent syntax for accessing XML data. Begin by adding refer-
ences to System.Xml and System.Xml.Linq. Once the WebClient object completes downloading
the data, you will need to construct a new XDocument for LINQ to query.

The WebClient object is covered in more detail in Chapter 10.

Processing XML Data  ❘  207

When the new XDocument object is created and you make use of LINQ to query this object, you
can map the XML file to a list of strongly typed objects. The code to do this is demonstrated in
Listing 7-3.

Listing 7-3:  ​Using the XDocument to work with the Destinations XML document

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Xml.Linq;

namespace SilverlightXML
{
 public partial class MainPage : UserControl
 {
 private IEnumerable<Destination> _destinationsList;

 public MainPage()
 {
 InitializeComponent();
 this.Loaded += Page_Loaded;
 }

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Construct a new WebClient object
 WebClient client = new WebClient();

 // Configure an event handler for when the Download is complete
 client.DownloadStringCompleted += client_DownloadCompleted;

 // Request an XML document located adjacent to the XAP
 Uri xmlUri = new Uri(“Destinations.xml”, UriKind.Relative);
 client.DownloadStringAsync(xmlUri);
 }

 private void client_DownloadCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 // If no error, sends results to a ListBox
 if (e.Error == null)
 {
 parseDestinationsXml(e.Result);
 }
 else
 {
 MessageBox.Show(e.Error.Message);
 }
 }

continues

208  ❘  Chapter 7   Accessing Data

 private void parseDestinationsXml(string xmlContent)
 {
 // Create an xml document from the content
 XDocument doc = XDocument.Parse(xmlContent);

 // Create a Linq query which maps the document to Destination objects
 _destinationsList =
 from destination in doc.Descendants(“destination”)
 select new Destination
 {
 Name = (string) destination.Attribute(“name”),
 Population = (int) destination.Attribute(“population”),
 AverageAirfare =
 (double) destination.Attribute(“averageAirfare”),
 AverageHotel =
 (double) destination.Attribute(“averageHotel”),
 BestKnownFor =
 (string) destination.Attribute(“bestKnownFor”)
 };

 DestinationsListBox.ItemsSource = _destinationsList;
 }
 }
}

To make this work, you need to make a reference to the System.Xml.Linq namespace within your
Silverlight client project. The only thing that you need on the MainPage.xaml page is a simple ListBox
control with the name of DestinationsListBox. In the ListBox control, you will also want to add
the DisplayMemberPath property and give it a value of “Name”.

Using an XmlReader
You are also free to parse the data through the XmlReader API; just do not expect all the bells and
whistles of LINQ. An example of using the XmlReader object is demonstrated in Listing 7-4.

Listing 7-4:  ​Using the XmlReader object

 private void parseDestinationXml(StringReader xmlContent)
 {
 // Create a list to hold our destinations
 _destinationsList = new List<Destination>();

 // Create a new XmlReader to walk through the document
 XmlReader reader = XmlReader.Create(xmlContent);

 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {

Listing 7-3  (continued)

Binding a User Interface to Data  ❘  209

 if (reader.Name == “destination”)
 {
 Destination d = new Destination
 {
 Name = reader[“name”],
 Population = int.Parse(reader[“population”]),
 AverageAirfare = double.Parse(reader[“averageAirfare”]),
 AverageHotel = double.Parse(reader[“averageHotel”]),
 BestKnownFor = reader[“bestKnownFor”]
 };
 _destinationsList.Add(d);
 }
 }
 }
 DestinationsListBox.ItemsSource = _destinationsList;
 }

Binding a User Interface to Data

Silverlight provides a flexible data-binding model for connecting a user interface to data objects.
Built around the Binding object, it facilitates both presenting and processing updates to data. The
binding model is not tied to a specific data provider; instead, it is centered around connecting a
property from a source object to a property on a target object. Silverlight’s architecture enables
and encourages a high degree of separation between the presentation and business layers of an
application.

Establishing a Data-Binding Connection
To establish a binding, you need to specify both the object that will communicate via the binding
and the properties on those objects that should be connected. Bindings can be established at run
time through code or can be specified statically in XAML markup.

Before diving into the details, consider a simple scenario of binding a few TextBlock elements to
a single object. You will continue to use the Destination object discussed earlier in this chapter.
You can begin by adding binding statements to the properties on the target object that map to select
properties on the source object. This is shown in Listing 7-5.

Listing 7-5:  ​Binding to the Destination object

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock Text=”{Binding Name}“></TextBlock>
 <TextBlock Text=”{Binding Population}“></TextBlock>
 </StackPanel>
</Grid>

Next, provide the source object for both TextBlocks by specifying the DataContext for the Grid as
illustrated in Listing 7-6.

210  ❘  Chapter 7   Accessing Data

Listing 7-6:  ​Creating and assigning the Destination object in MainPage.xaml.cs

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination { Name = “St. Croix”, Population = 70000 };
 LayoutRoot.DataContext = d;
 }
}

In the preceding case, each TextBlock is the target of a binding, and a single Destination object
acts as the source.

Valid Binding Target Types
Silverlight’s binding model is able to establish communication among a wide variety of objects.
Whereas the binding source can be of any type for one-way and one-time binding, the target must
be both a member of a FrameworkElement object and a dependency property. This restriction is of
greater concern when building custom controls because it is essential for supporting data binding.

Specifying the Source Object
Because a binding’s target must be a FrameworkElement, you can take advantage of the DataContext
property to specify the source object for a binding. DataContext is inherited from parents in the object
tree, which eliminates the need to specify the source for a group of UI elements that present information
for the same data object. This is why, in the first example, you only needed to specify the DataContext
for the StackPanel instead of on each TextBlock element.

If you do not want the binding source to be inherited by children, you can specify the source property
on the binding object itself. In this example, you establish the binding in code. Listing 7-7 first shows
the required XAML code.

Listing 7-7:  ​The XAML code from MainPage.xaml

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock x:Name=”NameTextBlock”></TextBlock>
 <TextBlock x:Name=”PopulationTextBlock”></TextBlock>
 </StackPanel>
</Grid>

Binding a User Interface to Data  ❘  211

With that in place, the next step is to databind to this from the code-behind of the page as illustrated
in Listing 7-8.

Listing 7-8:  ​The code-behind for MainPage.xaml.cs

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // The object which will be used as the source
 Destination d = new Destination { Name = “St. Croix”, Population = 70000 };

 // Create a Binding in code for the Name
 System.Windows.Data.Binding nameBinding =
 new System.Windows.Data.Binding(“Name”);
 nameBinding.Source = d;
 nameBinding.Mode = BindingMode.OneTime;

 // Connect the binding to the TextBox’s Text property
 NameTextBlock.SetBinding(TextBlock.TextProperty, nameBinding);

 // Create a Binding in code for the Population
 System.Windows.Data.Binding popBinding = new Binding(“Population”);
 popBinding.Source = d;
 popBinding.Mode = BindingMode.OneTime;
 PopulationTextBlock.SetBinding(TextBlock.TextProperty, popBinding);
 }
}

Selecting a Property from the Source Object
The binding object’s Path property allows you to specify the property from the Source object. For
members on the Source object, you can simply specify the name of the property:

<Binding Path=”SourceProperty” />

Because Path is of type PropertyPath, it also allows for specifying properties of sub-objects on the
source as well as collections. In Silverlight, you can traverse sub-objects using a period in between
the property names:

<Binding Path=”SourceProperty.SubObjectProperty” />

If your Source object offers collection properties that have additional collections nested beneath
them, you can use a forward slash to traverse the relationship:

<Binding Path=”SourceCollectionProperty/SubCollectionProperty” />

212  ❘  Chapter 7   Accessing Data

Binding to Collections with ItemsControl
Up to this point, you have looked at bindings in the context of a single source data object. An equally
common, and more interesting, use case is binding to collections of data. Any ItemsControl can be
used to apply a DataTemplate for presenting each item in a Source object’s collection. IEnumerable
is all that is required on the Source object for basic collection-binding behavior.

The ItemsSource property on ItemsControl is used to specify the Collection to which the control
is bound. This can be specified programmatically or set through a binding. If no ItemTemplate is
provided for the control, you can take advantage of the DisplayMemberPath property to select which
source property will be rendered. The following ItemsControl will be bound to a collection found in
the effective DataContext and will render the Name property of each item in that collection. Listing 7-9
shows this in action.

Listing 7-9:  ​Using the DisplayMemberPath property

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}“ DisplayMemberPath=”Name” />
</Grid>

Accessing the source collection through the ItemsSource will give you only read access. If you want
to modify the source collection, make sure to do so through a direct reference.

Because you have created a binding for the ItemsSource, the ItemsControl will honor the effective
DataContext, so creating the binding is straightforward. Listing 7-10 illustrates this in action.

Listing 7-10:  ​Using DataContext

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix” });
 destinations.Add(new Destination { Name = “St. John” });
 destinations.Add(new Destination { Name = “St. Thomas” });

 LayoutRoot.DataContext = destinations;
 }
}

Binding a User Interface to Data  ❘  213

Specifying an ItemTemplate
If you want to override the default rendering for each item, you can create a DataTemplate and set it
as the ItemsTemplate for the ItemsControl. Note that the source of each Binding defined within
the Template will be an item in the Collection to which the ItemsControl is bound as illustrated
in Listing 7-11.

Listing 7-11:  ​Using a DataTemplate

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}“ >
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Name}“ ></TextBlock>
 <TextBlock Text=”{Binding Population}“ ></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 </ItemsControl>
</Grid>

With the XAML in place, Listing 7-12 shows the code-behind to set the DataContext.

Listing 7-12:  ​Setting the DataContext to the DataTemplate

public partial class Page : UserControl
{
 public Page()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination { Name = “St. Croix”, Population = 70000 });
 destinations.Add(new Destination { Name = “St. John”, Population = 5000 });
 destinations.Add(new Destination { Name = “St. Thomas”, Population = 50000 });

 LayoutRoot.DataContext = destinations;
 }
}

Providing a Custom ItemsPanel
By default, ItemsControl uses a StackPanel with an orientation set to Vertical to arrange the
elements rendered for each item. Continuing to highlight the Silverlight pattern of flexibility, you
can adjust this by setting the ItemsPanel to a custom ItemsPanelTemplate as demonstrated in
Listing 7-13.

214  ❘  Chapter 7   Accessing Data

Listing 7-13:  ​Changing the ItemsPanel

<Grid x:Name=”LayoutRoot” Background=”White”>
 <ItemsControl ItemsSource=”{Binding}“ >
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Name}“ ></TextBlock>
 <TextBlock Text=”{Binding Population}“ ></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Orientation=”Horizontal”></StackPanel>
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
</Grid>

Using a Relative Source Binding
Silverlight includes the ability to specify the source of a Binding relative to the target. For instance,
you can create a Binding with the source specified as the target’s TemplatedParent. Listing 7-14
demonstrates using a RelativeSource binding to bind the Text property of a TextBlock to the
content of the parent Button element.

Listing 7-14:  ​Using the RelativeSource binding

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button Content=”SampleContent”>
 <Button.Template>
 <ControlTemplate>
 <StackPanel>
 <TextBlock Text=”{Binding RelativeSource=
 {RelativeSource TemplatedParent},
 Path=Content}“ />
 </StackPanel>
 </ControlTemplate>
 </Button.Template>
 </Button>
 </StackPanel>
</Grid>

Element-to-Element Binding
Silverlight also includes the ability to specify an element as the source for a Binding through the
ElementName property. This easily used feature can come in handy when building interactive inter-
faces where one Element should reflect changes to another. Currently, the target of such binding
must be a FrameworkElement. The example in Listing 7-15 demonstrates binding the Text property
of a TextBlock to the current value of a Slider.

Binding a User interface to Data ❘ 215

listing 7-15: Using elementname property

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Slider x:Name=”Slider1” Minimum=”0” Maximum=”100” />
 <TextBlock Text=”{Binding ElementName=Slider1, Path=Value}“ />
 </StackPanel>
</Grid>

handling data updates
Silverlight’s binding object provides three distinct binding modes, which determine the way that
data fl ows between the source and target objects:

OneWay➤ — Changes to the Source are refl ected on the Target as they occur.

OneTime➤➤ — The Target property is only set when the binding is initialized.

TwoWay➤ — Changes to the Source are refl ected on the Target, and updates to the Target are
propagated to the Source.

Both OneWay and TwoWay functionality come at the cost of restricting the types of object that can
participate in the binding. Silverlight relies on the DependencyObject infrastructure and several
Notifi cation-based interfaces to support the processing of DataBinding updates.

Working with the inotifyPropertyChanged interface
The INotifyPropertyChanged interface offers a single event to broadcast when a property has been
modifi ed on the object. The expectation is that this will be triggered any time a property is adjusted.

The code in Listing 7-16 has an IslandTimer class, which refl ects a slower pace of life. Note that it fi res
PropertyChanged events both from within the Name property and from the read-only ElapsedTime
property, a value that is managed internally.

This example that the DispatcherTimer object is used rather than System
.Timers.Timer as the DispatcherTimer object is not run on the UI thread.

listing 7-16: Using inotifyPropertyChanged

using System;
using System.ComponentModel;
using System.Windows.Threading;

namespace Wrox.Silverlight.Data.NotifyChanges
{
 public class IslandTimer : INotifyPropertyChanged

continues

216  ❘  Chapter 7   Accessing Data

 {
 private readonly DispatcherTimer _timer;
 private TimeSpan _elapsedTime;
 private string _name;

 public IslandTimer()
 {
 _elapsedTime = new TimeSpan();

 // Create a timer which fires every few seconds
 _timer = new DispatcherTimer();
 _timer.Interval = TimeSpan.FromSeconds(2);
 _timer.Tick += timer_Tick;
 }

 public TimeSpan ElapsedTime
 {
 get { return _elapsedTime; }
 }

 public string Name
 {
 get { return _name; }
 set
 {
 _name = value;
 OnPropertyChanged(“Name”);
 }
 }

 #region INotifyPropertyChanged Members

 public event PropertyChangedEventHandler PropertyChanged;

 #endregion

 public void StartTimer()
 {
 if (!_timer.IsEnabled)
 {
 _timer.Start();
 }
 }

 public void StopTimer()
 {
 _timer.Stop();
 }

 private void timer_Tick(object sender, EventArgs e)
 {
 _elapsedTime += TimeSpan.FromSeconds(1);

Listing 7-16  (continued)

Binding a User Interface to Data  ❘  217

 OnPropertyChanged(“ElapsedTime”);
 }

 // Helper method to fire PropertyChanged Events
 private void OnPropertyChanged(string propName)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(propName));
 }
 }
}

Using Collection Update Notifications
The INotifyCollectionChanged interface is implemented on interfaces that want to participate
in full data binding. Similarly to INotifyPropertyChanged, it exposes one event for when the
collection is modified, CollectionChanged.

Thankfully, Silverlight includes ObservableCollection<T>, which is a generic collection that
implements this interface. If you have a collection that you expect to be updated during the life
of your application, it is highly recommended that you use this type.

Using OneTime Bindings
The simplest and best performing binding mode, OneTime, specifies that the binding should be applied
only when the application starts or when the effective DataContext is adjusted. This is most appropri-
ate when the source object is not manipulated during the life of the application and when the target
object does not accept user input.

Using OneWay Bindings
If you anticipate that the source object may change during the life of the application, you can rely on
Silverlight data binding to automatically update target object properties when in the OneWay mode.
The OneWay mode is the default action if you do not specify a mode.

Now that you have an object capable of letting Silverlight know that its properties are changing, you
can attach it as the source for a OneWay binding as demonstrated in Listing 7-17 and Listing 7-18.

Listing 7-17:  ​The XAML for MainPage.xaml

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button x:Name=”StartButton” HorizontalAlignment=”Center”>
 <TextBlock>Start Timer</TextBlock>
 </Button>
 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Elapsed Island Time: </TextBlock>
 <TextBlock Text=”{Binding ElapsedTime, Mode=OneWay}“ />
 </StackPanel>
 </StackPanel>
</Grid>

218  ❘  Chapter 7   Accessing Data

The code-behind for this is shown in Listing 7-18.

Listing 7-18:  ​Using one-way binding

using System.Windows;
using System.Windows.Controls;

namespace Wrox.Silverlight.Data.NotifyChanges
{
 public partial class MainPage : UserControl
 {
 private readonly IslandTimer _timer;

 public MainPage()
 {
 InitializeComponent();
 this.Loaded += Page_Loaded;
 // Remember that there will be a pause here ... Island Time.
 _timer = new IslandTimer {Name = “MyTimer”};

 StartButton.Click += StartButton_Click;
 }

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 LayoutRoot.DataContext = _timer;
 }

 private void StartButton_Click(object sender, RoutedEventArgs e)
 {
 _timer.StartTimer();
 }
 }
}

Using TwoWay Bindings
TwoWay bindings are the most powerful mode and offer bidirectional update support for property
value changes. They make sense in scenarios in which you use controls that accept users’ inputs and
are bound to dynamic data objects.

Here, you allow the user to adjust the name of the Timer. Note the use of static bindings to configure
the bindings completely in XAML. The code for this is presented in Listing 7-19.

Listing 7-19:  ​Using two-way binding

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button x:Name=”StartButton” HorizontalAlignment=”Center”>
 <TextBlock>Start Timer</TextBlock>
 </Button>

Binding a User Interface to Data  ❘  219

 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Elapsed Island Time:</TextBlock>
 <TextBlock Text=”{Binding ElapsedTime, Mode=OneWay}“></TextBlock>
 </StackPanel>
 <StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <TextBlock>Timer Name:</TextBlock>
 <TextBox Text=”{Binding Name, Mode=TwoWay}“ Width=”100” />
 </StackPanel>
 </StackPanel>
</Grid>

Validating Data
Data validation is driven by the binding framework’s capability to capture exceptions that take place
while a binding is in process. Silverlight provides a set of controls with distinct VisualStates that
visually indicate that a validation error has occurred.

Handling Binding Exceptions
In a TwoWay binding, exceptions can occur as data flows from the Target back to the Source
property. The Binding object provides two properties that allow you to adjust the way these
exceptions are handled:

ValidatesOnExceptions➤➤

NotifyOnValidationError➤➤

If ValidatesOnExceptions is set to true, any exceptions thrown by the setter of the source property
or by a converter will be handled by the Binding object.

If NotifyOnValidationError is also true, the Binding will raise the BindingValidationError as
exceptions are encountered. Somewhat counterintuitive, the BindingValidationError event will also
fire once the binding is able to successfully send the data to the source property. You can therefore use
this event to determine both when a validation error has occurred and when it has been resolved.

The Action property of the ValidationEventArgs indicates the state of the Validation
error. As a binding encounters exceptions when applying the data updates, the Action will be
VaidationErrorEventAction.Added. Once the binding is able to successfully update the source
object, the event will be raised with VaidationErrorEventAction.Removed.

In the example shown in Listing 7-20, you adjust the foreground color of the target object based on
the Action of the ValidationError. Because the ValidationErrorEvent is routed up the chain of
parent elements, you are able to catch it from the LayoutRoot.

Listing 7-20:  ​Using validation

<Grid x:Name=”LayoutRoot”
 BindingValidationError=”LayoutRoot_BindingValidationError” Background=”White” >
 <Grid.RowDefinitions>
 <RowDefinition Height=”0.113*“/>
 <RowDefinition Height=”0.887*“/>

continues

220  ❘  Chapter 7   Accessing Data

 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”0.462*“/>
 <ColumnDefinition Width=”0.538*“/>
 </Grid.ColumnDefinitions>
 <TextBlock Text=”Destination Name”/>
 <TextBlock Grid.Column=”1” Text=”Population” />
 <TextBlock Text=”{Binding Name, Mode=OneWay}“ Grid.Row=”1” />
 <TextBox Text=”{Binding Population, Mode=TwoWay,
 ValidatesOnExceptions=true, NotifyOnValidationError=true}“
 VerticalAlignment=”Top” Grid.Column=”1” Grid.Row=”1” Width=”200” />
</Grid>

When executed, the application adjusts the color of the TextBox when an error is encountered, con-
verting the text value to the integer value expected by the destination’s Population property. This is
shown in Listing 7-21.

Listing 7-21:  ​The code-behind for dealing with validation

using System.Windows;
using System.Windows.Controls;
using System.Windows.Media;

namespace Wrox.Silverlight.Data.Validation
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += Page_Loaded;
 }

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination {Name = “St. Croix”,
 Population = 70000};
 LayoutRoot.DataContext = d;
 }

 private void LayoutRoot_BindingValidationError(object sender,
 ValidationErrorEventArgs e)
 {
 // Adjust the foreground color base on the Action
 if (e.Action == ValidationErrorEventAction.Added)
 {
 TextBox tb = (TextBox) e.OriginalSource;
 tb.Foreground = new SolidColorBrush(Colors.Red);
 }
 else

Listing 7-20  (continued)

Binding a User Interface to Data  ❘  221

 {
 TextBox tb = (TextBox) e.OriginalSource;
 tb.Foreground = new SolidColorBrush(Colors.Black);
 }
 }
 }
}

Using Visual States That Reflect Validation Errors
Silverlight provides a variety of core controls so that they can indicate when a binding validation
exception has occurred. This is enabled through the Validation class, which offers attached prop-
erties for data validation that are then used to determine the appropriate visual state of the control.

A common scenario for offering a visual indicator when a validation error occurs is on a data entry
form. Because the Silverlight TextBox contains visual states that respond to validation errors, all
that is required is establishing the binding with ValidatesOnExceptions set to true as shown in
Listing 7-22.

Listing 7-22:  ​Using ValidatesOnExceptions

XAML

<Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock x:Name=”DestinationName” Text=”{Binding Name}“ />
 <TextBox x:Name=”PopulationTextBox”
 Text=”{Binding Population, Mode=TwoWay, ValidatesOnExceptions=true}“
 />
 <Button Content=”Ok” />
 </StackPanel>
</Grid>

Code-Behind

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += Page_Loaded;
 }

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d =
 new Destination { Name = “St. Croix”, Population = 70000 };
 LayoutRoot.DataContext = d;
 }
}

222  ❘  Chapter 7   Accessing Data

Converting Data Types
In many instances the source and destination property types will not align. In these cases, the binding
attempts to perform a data conversion that may result in a format that is less than ideal. Fortunately,
Silverlight provides a baked-in mechanism for converting data as it passes through a binding.

DateTime objects often call for some conversion to display them in a meaningful way to the user.
To demonstrate this, add the PeakSeasonStart property to the Destination object and bind it to a
TextBlock. Without a converter, this results in a string such as 12/1/2010 12:00:00 AM as shown
in Listing 7-23. The first step for this example is to have the following class file.

Listing 7-23:  ​The Destination class

public class Destination
{
 public string Name { get; set; }
 public int Population { get; set; }
 public double AverageAirfare { get; set; }
 public double AverageHotel { get; set; }
 public string BestKnownFor { get; set; }
 public DateTime PeakSeasonStart { get; set; }
}

Then for your Silverlight page, use the XAML shown in Listing 7-24.

Listing 7-24:  ​The XAML for MainPage.xaml

<Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”{Binding PeakSeasonStart}“ />
</Grid>

Finally, the code-behind for this page is presented in Listing 7-25.

Listing 7-25:  ​The code-behind for MainPage.xaml.cs

public partial class MainPage : UserControl
{
 public MainPage()
 {
 InitializeComponent();
 this.Loaded += Page_Loaded;
 }

 private void Page_Loaded(object sender, RoutedEventArgs e)
 {
 Destination d = new Destination() { Name = “St. Croix”,
 PeakSeasonStart = new DateTime(2009, 12, 1) };
 LayoutRoot.DataContext = d;
 }
}

Binding a User Interface to Data  ❘  223

To adjust this behavior with the string value coming out incorrect, follow these steps:

	 1.	 Create a class that implements IValueConverter.

	 2.	 Include an instance of that class in a Resource.

	 3.	 Specify a Converter in the binding.

Using the IValueConverter Interface
The IValueConverter interface defines two straightforward methods to enable conversion:
Convert() and ConvertBack(). As their names suggest, they allow conversion back and forth
between two types. If you need only to support OneWay binding, the ConvertBack() method is
not invoked.

In Listing 7-26 you see a basic implementation of IValueConverter that adjusts the way that a
DateTime object is converted to a String. You will find IValueConverter in the System.Windows
.Data namespace.

Listing 7-26:  ​Using the IValueConverter interface

// Class for converting between DateTime and string objects
public class DateConverter : IValueConverter
{
 // Convert DateTime to a string without time info
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 DateTime date = (DateTime)value;
 return (date.ToShortDateString());
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string s = (string)value;
 return (DateTime.Parse(s));
 }
}

Adding the Converter to a Binding
The Binding object provides a Converter property for specifying the object that should serve as
the intermediary between the source and target. Here, you include the Converter as a resource and
reference it from the binding for the binding between a DateTime source and String target object.
The code in Listing 7-27 provides a slightly more pleasing representation of your date, which omits
the time information.

224  ❘  Chapter 7   Accessing Data

Listing 7-27:  ​Using the Converter property

<UserControl x:Class=”Wrox.Silverlight.Data.Convertion.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-namespace:Wrox.Silverlight.Data.Convertion”
 Width=”400” Height=”300”>
 <UserControl.Resources>
 <data:DateConverter x:Key=”DateConverter” />
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”{Binding PeakSeasonStart,
 Converter={StaticResource DateConverter}}“ />
 </Grid>
</UserControl>

Using the ConverterParameter Property
The Binding object provides an additional property, which allows you to feed a parameter to the
IValueConverter. This can be useful if you want to employ a converter in several related scenarios
that are slightly different. Those familiar with formatting strings in .NET should be no stranger to
the variety of FormatStrings available for built-in data types. The following example leverages the
ConverterParameter to provide a FormatString.

Listing 7-28 passes in the .NET short date format string ‘{0:d}’ for display of the destination’s
start of peak season.

Listing 7-28:  ​Using ConverterParameter to provide a FormatString

XAML

<UserControl x:Class=”Wrox.Silverlight.Data.Convertion.Page”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-namespace:Wrox.Silverlight.Data.Convertion”
 Width=”400” Height=”300”>
 <UserControl.Resources>

 <data:FormatStringConverter x:Key=”FormatStringConverter” />
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <TextBlock Text=”{Binding PeakSeasonStart,
 Converter={StaticResource FormatStringConverter},
 ConverterParameter=’{0:d}’}“ />
 </StackPanel>
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Working with Services  ❘  225

Code-Behind

// Class for converting to a string based on the provided FormatString
public class FormatStringConverter : IValueConverter
{
 public object Convert(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 string formatString = (string)parameter;
 return String.Format(formatString, value);
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

Working with Services

It is a diverse world. In a major enterprise, very rarely do you find that the entire organization and its
data repositories reside on a single vendor’s platform. In most instances, organizations are made up
of a patchwork of systems — ​some based on UNIX, some on Microsoft, and some on other systems.
There probably will not be a day when everything resides on a single platform where all the data moves
seamlessly from one server to another. For that reason, these various systems must be able to talk to one
another. If disparate systems can communicate easily, moving unique data sets around the enterprise
becomes a simple process — ​alleviating the need for replication systems and data stores.

When XML (eXtensible Markup Language) was introduced, it became clear that the markup language
would be the structure to bring the necessary integration into the enterprise. XML’s power comes from
the fact that it can be used regardless of the platform, language, or data store of the system using it to
expose DataSets.

XML has its roots in the Standard Generalized Markup Language (SGML), which was created in
1986. Because SGML was so complex, something a bit simpler was needed — ​thus the birth of XML.

XML is considered ideal for data representation purposes because it enables developers to
structure XML documents as they see fit. For this reason, it is also a bit chaotic. Sending
self-structured XML documents between dissimilar systems does not make a lot of sense — ​you
would have to custom build the exposure and consumption models for each communication pair.

Vendors and the industry as a whole soon realized that XML needed a specific structure that put some
rules in place to clarify communication. The rules defining XML structure make the communication
between the disparate systems just that much easier. Tool vendors can now automate the communica-
tion process, as well as provide for the automation of the possible creation of all the components of
applications using the communication protocol.

The industry settled on using SOAP (Simple Object Access Protocol) to make the standard XML
structure work. Previous attempts to solve the communication problem that arose included com-
ponent technologies such as Distributed Component Object Model (DCOM), Remote Method

226  ❘  Chapter 7   Accessing Data

Invocation (RMI), Common Object Request Broker Architecture (CORBA), and Internet Inter-ORB
Protocol (IIOP). These first efforts failed because each of these technologies was either driven by a
single vendor or (worse yet) very vendor-specific. Implementing them across the entire industry was,
therefore, impossible.

SOAP enables you to expose and consume complex data structures, which can include items such
as DataSets, or just tables of data that have all their relations in place. SOAP is relatively simple and
easy to understand. Like ASP.NET, XML Web Services are also primarily engineered to work over
HTTP. The DataSets you send or consume can flow over the same Internet wires (HTTP), thereby
bypassing many firewalls (as they move through port 80).

So what is actually going across the wire? ASP.NET Web Services generally use SOAP over HTTP
using the HTTP Post protocol. An example SOAP request (from the client to the web service residing
on a web server) takes the structure shown in Listing 7-29.

Listing 7-29:  ​A SOAP request

POST /MyWebService/Service.asmx HTTP/1.1
Host: www.wrox.com
Content-Type: text/xml; charset=utf-8
Content-Length: 19
SOAPAction: “http://tempuri.org/HelloWorld”

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
 <soap:Body>
 <HelloWorld xmlns=”http://tempuri.org/” />
 </soap:Body>
</soap:Envelope>

The request is sent to the web service to invoke the HelloWorld WebMethod. Listing 7-30 shows the
SOAP response from the web service.

Listing 7-30:  ​A SOAP response

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 14

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
 <soap:Body>
 <HelloWorldResponse xmlns=”http://tempuri.org/”>
 <HelloWorldResult>Hello World</HelloWorldResult>
 </HelloWorldResponse>
 </soap:Body>
</soap:Envelope>

http://www.wrox.com
http://tempuri.org/HelloWorld%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D
http://www.w3.org/2001/XMLSchema%E2%80%9D
http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D
http://tempuri.org/%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D
http://www.w3.org/2001/XMLSchema%E2%80%9D
http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D
http://tempuri.org/%E2%80%9D

Working with services ❘ 227

In the examples from Listings 7-29 and 7-30, you can see that what is contained in this message is
an XML fi le. In addition to the normal XML declaration of the <xml> node, you see a structure of
XML that is the SOAP message. A SOAP message uses a root node of <soap:Envelope> that con-
tains the <soap:Body> or the body of the SOAP message. Other elements that can be contained in
the SOAP message include a SOAP header, <soap:Header>, and a SOAP fault, <soap:Fault>.

For more information about the structure of a SOAP message, be sure to
check out the SOAP specifi cations. You can fi nd them at the W3C website,
www.w3.org/tr/soap.

Building an asp .net web service
The next thing that this chapter looks at is how to build an ASP.NET Web Service that can then
be later consumed by your Silverlight application. The .NET Framework provides you two major
options for building services: ASP.NET Web Services and the newer Windows Communication
Foundation (WCF) services. WCF services are covered later in this chapter. Before looking at WCF,
you will build a simple ASP.NET Web Service.

Building an XML Web Service means that you are interested in exposing some information or
logic to another entity either within your organization, to a partner, or to your customers. In a
more granular sense, building a web service means that you, as a developer, simply enable for
SOAP communication one or more methods from a class.

You can use Visual Studio 2010 to build an XML Web Service. The fi rst step is to actually create
a new website by selecting File ➪ New ➪ Web Site from the IDE menu. The New Web Site dialog
opens. You will want to create a typical ASP.NET application (ASP.NET Empty Web Site). Then you
will be able to add an ASP.NET Web Service fi le to the solution as shown in Figure 7-1.

figure 7-1

http://www.w3.org/tr/soap

228  ❘  Chapter 7   Accessing Data

Adding the file WebService.asmx creates a single XML Web Service to your solution. You will find
its code-behind file, WebService.cs, in the App_Code folder (see Figure 7-2).

Figure 7-2

Looking at the Base Web Service Class File
Now look at the WebService.cs file — ​the code-behind file for the XML Web Service. By default, a
structure of code is already in place in the WebService.cs file, as shown in Listing 7-31.

Listing 7-31:  ​Default code structure provided by Visual Studio for your web service

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

[WebService(Namespace = “http://tempuri.org/“)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
// To allow this Web Service to be called from script, using ASP.NET AJAX,
// uncomment the following line.
// [System.Web.Script.Services.ScriptService]
public class WebService : System.Web.Services.WebService
{
 public WebService () {

 //Uncomment the following line if using designed components
 //InitializeComponent();
 }

 [WebMethod]
 public string HelloWorld() {
 return “Hello World”;
 }

}

http://tempuri.org/%E2%80%9C

Working with services ❘ 229

Some minor changes to the structure have been made since the release of the .NET Framework 3.5.
You will notice that the System.Linq namespace is now included in the C# solution. In addition,
the other change in this version is the inclusion of the commented System.Web.Script.Services
.ScriptService object to work with ASP.NET AJAX scripts.

The other addition is the <WebServiceBinding> attribute. It builds the XML Web Service
responses that conform to the WS-I Basic Profi le 1.0 release (found at www.ws-i.org/Profiles/
BasicProfile-1.0-2004-04-16.html).

exposing Data as soaP
To build your own web service example, delete the WebService.asmx fi le and create a new fi le
called Contacts.asmx. This web service will expose parts of the Person.Contact table from the
Adventure Works SQL Server database fi le.

You can fi nd the Adventure Works sample database at
http://msftdbprodsamples.codeplex.com/.

The idea here is that you will write a service that connects to the Person.Contact table and exposes
some of the contents of the database as a List<string> object, which in turn is converted to an array
of strings. The code for this is presented in Listing 7-32.

listing 7-32: an XMl Web service that exposes the Contact table from adventureWorks

using System.Collections.Generic;
using System.Data;
using System.Data.SqlClient;
using System.Web.Services;

[WebService(Namespace = “http://www.wrox.com/contacts”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Contacts : System.Web.Services.WebService
{
 [WebMethod]
 public List<string> GetContacts()
 {
 const string cmdString = “Select FirstName, LastName from Person.Contact”;

 SqlConnection conn =
 new SqlConnection(
 @“Data Source=.\SQLEXPRESS;AttachDbFilename=
 |DataDirectory|AdventureWorks_Data.mdf;Integrated
 Security=True;User Instance=True”);
 SqlCommand cmd = new SqlCommand(cmdString, conn);

continues

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://msftdbprodsamples.codeplex.com/
http://www.wrox.com/contacts%E2%80%9D
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

230  ❘  Chapter 7   Accessing Data

 conn.Open();

 SqlDataReader sqlDataReader;
 List<string> myContacts = new List<string>();

 sqlDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 while (sqlDataReader.Read())
 {
 myContacts.Add(sqlDataReader[“FirstName”] + “ “ +
 sqlDataReader[“LastName”]);
 }

 return myContacts;
 }
}

Using the WebService Attribute
All web services are encapsulated within a class. The class is defined as a web service by the
WebService attribute placed before the class declaration. Here is an example:

[WebService(Namespace = “http://www.wrox.com/contacts”)]

The WebService attribute can take a few properties. By default, the WebService attribute is
used in your web service along with the Namespace property, which has an initial value of http://
tempuri.org/. This is meant to be a temporary namespace and you should replace it with a more
meaningful and original name, such as the URL where you are hosting the XML Web Service. In
the example, the Namespace value was changed to www.wrox.com/contacts. Remember that the
value does not have to be an actual URL; it can be any string value you want. The idea is that it
should be unique. Using a URL is common practice because a URL is always unique.

Other possible WebService properties include Name and Description. Name enables you to change
how the name of the web service is presented to the developer via the ASP.NET test page. Description
allows you to provide a textual description of the web service. The description is also presented on the
ASP.NET Web Service test page. If your WebService attribute contains more than a single property,
separate the properties using a comma. Here is an example:

[WebService(Namespace=”http://www.wrox.com/contacts”, Name=”GetContacts”)]

Using the WebMethod Attribute
In Listing 7-32, the class called Contacts has only a single WebMethod. A WebService class can
contain any number of WebMethods, or a mixture of standard methods along with methods that
are enabled to be WebMethods via the use of the attribute preceding the method declaration. The
only methods that are accessible across the HTTP wire are the ones to which you have applied the
WebMethod attribute.

Listing 7-32  (continued)

http://www.wrox.com/contacts%E2%80%9D
http://tempuri.org/
http://tempuri.org/
http://www.wrox.com/contacts
http://www.wrox.com/contacts%E2%80%9D

Working with Services  ❘  231

As with the WebService attribute, WebMethod can also contain some properties, which are described
in the following list:

BufferResponse➤➤  — ​When BufferResponse is set to true, the response from the XML Web
Service is held in memory and sent as a complete package. If it is set to false, the default set-
ting, the response is sent to the client as it is constructed on the server.

CacheDuration➤➤  — ​Specifies the number of seconds that the response should be held in the
system’s cache. The default setting is 0, which means that caching is disabled. Putting an
XML Web Service’s response in the cache increases the web service’s performance.

Description➤➤  — ​Applies a text description to the WebMethod that appears on the .aspx test
page of the XML Web Service.

EnableSession➤➤  — ​Setting EnableSession to true enables session state for a particular
WebMethod. The default setting is false.

MessageName➤➤  — ​Applies a unique name to the WebMethod. This step is required if you are
working with overloaded WebMethods.

TransactionOption➤➤  — ​Specifies the transactional support for the WebMethod. The default
setting is Disabled. If the WebMethod is the root object that initiated the transaction, the web
service can participate in a transaction with another WebMethod that requires a transaction.
Other possible values include NotSupported, Supported, Required, and RequiresNew.

Working with the XML Web Service Interface
The Contacts web service from Listing 7-32 has only a single WebMethod that returns an array
of strings containing the names of everyone in the Person.Contacts table from the SQL Server
AdventureWorks database.

Running Contacts.asmx in the browser pulls up the ASP.NET Web Service test page. This visual
interface to your web service is really meant either for testing purposes or as a reference page for
developers interested in consuming the web services you expose. Figure 7-3 shows the page gener-
ated for the Contacts Web Service.

Figure 7-3

232  ❘  Chapter 7   Accessing Data

The interface shows the name of the web service in the blue bar (the dark bar in this black-and-white
image) at the top of the page. By default, the name of the class is used unless you changed the value
through the Description property of the WebService attribute, as defined earlier. A bulleted list
of links to all of the web service’s WebMethods is displayed. This example has only one WebMethod:
GetContacts().

A link to the web service’s Web Services Description Language (WSDL) document is also available
(the link is titled “Service Description” in the figure). The WSDL file is the actual interface with the
Contacts web service. The XML document (shown in Figure 7-4) is not really meant for human con-
sumption; it is designed to work with tools such as Visual Studio, informing the tool what the web
service requires to be consumed. Each web service requires a request that must have parameters of a
specific type. When the request is made, the web service response comes back with a specific set of data
defined using specific data types. Everything you need for the request and a listing of exactly what you
are getting back in a response (if you are the consumer) is described in the WSDL document.

Figure 7-4

Clicking the GetContacts link gives you a new page, shown in Figure 7-5, that not only describes
the WebMethod in more detail but also allows you to test the WebMethod directly in the browser.

Working with Services  ❘  233

Figure 7-5

At the top of the page is the name of the XML Web Service (Contacts); below that is the name
of this particular WebMethod (GetContacts). The page shows you the structure of the SOAP mes-
sages that are required to consume the WebMethod, as well as the structure the SOAP message
takes for the response. Below the SOAP examples is an example of consuming the XML Web
Service using HTTP Post (with name/value pairs). Using this method of consumption instead of
using SOAP is possible.

You can test the WebMethod directly from the page. In the Test section, you find a form. If the
WebMethod you are calling requires an input of some parameters to get a response, you see some
text boxes included so you can provide the parameters before clicking the Invoke button. If the
WebMethod you are calling does not require any parameters, you see only the Invoke button and
nothing more.

Clicking Invoke actually sends a SOAP request to the web service, causing a new browser instance
with the result to appear, as illustrated in Figure 7-6.

Now that everything is in place to expose the XML Web Service, you can consume it in a Silverlight
application.

234  ❘  Chapter 7   Accessing Data

Figure 7-6

Consuming a Simple XML Web Service
So far, you have seen only half of the XML Web Service story. Exposing data and logic as SOAP to
disparate systems across the enterprise or across the world is a simple task using .NET and particu-
larly ASP.NET. The other half of the story is the actual consumption of an XML Web Service into a
Silverlight application.

You are not limited to consuming XML Web Services only into Silverlight applications; but because
this is a Silverlight book, it focuses on that aspect of the consumption process. Consuming XML
Web Services into other types of applications is not that difficult and, in fact, is rather similar to
how you would consume them using Silverlight. Remember that the web services you come across
can be consumed in Windows Forms, ASP.NET applications, mobile applications, databases, and
more. You can even consume XML Web Services with other web services so you can have a single
web service made up of what is basically an aggregate of other web services.

Adding a Web Reference
To consume the Contacts web service that you just created in this chapter, create a new Silverlight
application called SilverlightConsumer. The first step in consuming an XML Web Service in a

Working with services ❘ 235

Silverlight application is to make a reference to the remote object — the web service. You do so by
right-clicking the root node of your project from within the Visual Studio Solution Explorer and
selecting Add Service Reference. The Add Service Reference dialog box appears, shown in Figure 7-7.

figure 7-7

The Add Service Reference dialog box enables you to point to a particular .asmx fi le to make a refer-
ence to it. Understand that the Add Service Reference dialog box is really looking for WSDL fi les.
Microsoft’s XML Web Services automatically generate WSDL fi les based on the .asmx fi les them-
selves. To pull up the WSDL fi le in the browser, simply type the URL of your web service’s .asmx fi le
and add a ?WSDL at the end of the string. For example, you might have the following construction
(this is not an actual web service, but simply an example):

http://www.wrox.com/MyWebService/Contacts.asmx?WSDL

Because the Add Service Reference dialog box automatically fi nds where the WSDL fi le is for any
Microsoft-based XML Web Service, you should simply type the URL of the actual WSDL fi le for
any non–Microsoft-based XML Web Service.

If you are using Microsoft’s Visual Studio and its built-in web server instead
of IIS, you will be required to also interject the port number the web server
is using into the URL. In this case, your URL would be structured similar to
http://localhost:5444/MyWebService/Contacts.asmx?WSDL.

In the Add Service Reference dialog box, change the reference from the default name to something
a little more meaningful. If you are working on a single machine, the web reference might have the
name of localhost; if you are actually working with a remote web service, the name is the inverse

http://www.wrox.com/MyWebService/Contacts.asmx?WSDL
http://localhost:5444/MyWebService/Contacts.asmx?WSDL

236  ❘  Chapter 7   Accessing Data

of the URL, such as com.wrox.www. In either case, renaming it so
that the name makes a little more sense and is easy to use within
your application is best. In the example here, the web reference is
renamed WroxContacts.

Clicking OK causes Visual Studio to make an actual reference
to the web service and create a new configuration file in
your Silverlight application (shown in Figure 7-8) called
ServiceReferences.ClientConfig. You might find some
additional files under the App_WebReferences folder — ​such
as a copy of the web service’s WSDL file.

Your consuming application’s ServiceReferences.ClientConfig
file contains the reference to the web service. Listing 7-33 shows the
created file.

Listing 7-33:  ​The config file after making a reference to the web service

<configuration>
 <system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name=”ContactsSoap” maxBufferSize=”2147483647”
 maxReceivedMessageSize=”2147483647”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint
 address=”http://localhost:27781/AspnetWebService/Contacts.asmx”
 binding=”basicHttpBinding” bindingConfiguration=”ContactsSoap”
 contract=”WroxContacts.ContactsSoap” name=”ContactsSoap” />
 </client>
 </system.serviceModel>
</configuration>

You can see that the contract and the binding have been defined. Once this is in place, you are ready
to code to this interface.

Invoking the Web Service from the Client Application
Now that a reference has been made to the XML Web Service, you can use it in your Silverlight
application. Using MainPage.xaml in your project, you can consume the query made against the
Contacts table from the remote AdventureWorks database directly into your application. The data
is placed in a ListBox control.

On the design part of the page, place a simple ListBox control. The idea is that when the Silverlight
view is loaded, the application sends a SOAP request to the Contacts web service and gets back a
SOAP response containing the contact’s names, which is then bound to the ListBox control on the
view. Listing 7-34 shows the code for this simple application.

Figure 7-8

http://localhost:27781/AspnetWebService/Contacts.asmx%E2%80%9D

Working with Services  ❘  237

Listing 7-34:  ​Consuming the Contacts web service in your Silverlight application

using System.Windows;
using System.Windows.Controls;
using SilverlightConsumer.WroxContacts;

namespace SilverlightConsumer
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 ContactsSoapClient ws = new ContactsSoapClient();
 ws.GetContactsCompleted += ws_GetContactsCompleted;
 ws.GetContactsAsync();
 }

 private void ws_GetContactsCompleted(object sender,
 GetContactsCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.ToString());
 }
 else
 {
 listBox1.ItemsSource = e.Result;
 }
 }
 }
}

The view being loaded causes the Silverlight application to send a SOAP request to the remote XML
Web Service. The returned array of strings is bound to the ListBox control, and the page is created,
as shown in Figure 7-9.

The Contacts web service is invoked by the instantiation of the ContactsSoapClient proxy object:

ContactsSoapClient ws = new ContactsSoapClient();

Then you can use the ws object like any other object within your project. In the code example from
Listing 7-34, the results of the ws.GetContactsAsync() method call results in the array of strings
being bound to the ListBox control:

listBox1.ItemsSource = e.Result;

As you develop or consume more web services within your applications, you will see more of their
power and utility.

238  ❘  Chapter 7   Accessing Data

Figure 7-9

Working with Windows Communication Foundation (WCF)
Since the introduction of the .NET Framework 3.0, Microsoft has made available a new way to
build web services beyond the ASP.NET-based Web Services presented in this chapter.

Until the .NET Framework 3.0 came out, building components that were required to communicate
a message from one point to another was not a simple task because Microsoft offered more than one
technology that you could use for such an action.

For instance, you could have used ASP.NET Web Services (as just discussed), Web Service
Enhancements 3.0 (WSE), MSMQ, Enterprise Services, .NET Remoting, and even the System
.Messaging namespace. Each technology has its own pros and cons. ASP.NET Web Services
(also known by some as ASMX Web Services) provided the capability to easily build interoper-
able web services. The WSE enabled you to easily build services that took advantage of some of
the WS-* message protocols. MSMQ enabled the queuing of messages, which made working with
solutions that were only intermittently connected easy. Enterprise Services, provided as a suc-
cessor to COM+, offered an easy means to build distributed applications. .NET Remoting was a
fast way to move messages from one .NET application to another. Moreover, these are Microsoft
options only. These options do not include all the ones available in other environments, such as
the Java world.

Working with Services  ❘  239

With so many options available to a Microsoft developer, deciding which path to take with the appli-
cations you are trying to build can be tough. With this in mind, Microsoft has created the Windows
Communication Foundation (WCF).

WCF is a relatively new framework for building service-oriented applications. Microsoft wanted to
provide its developers with a framework to quickly get a proper service-oriented architecture up-and-
running. Using the WCF, you can take advantage of all the items that make distribution technologies
powerful. WCF is the answer and the successor to all these other message distribution technologies.

Understanding the Larger Move to SOA
Upon examining WCF, you will find that it is part of a larger movement that organizations are
making toward the much-talked-about service-oriented architecture, or SOA. An SOA is a message-
based service architecture that is vendor-agnostic. As a result, you have the ability to distribute mes-
sages across a system, and the messages are interoperable with other systems that would otherwise
be considered incompatible with the provider system.

Looking back, you can see the gradual progression to the service-oriented architecture model. In the
1980s, the revolution arrived with the concept of everything being an object. When object-oriented
programming came on the scene, it was enthusiastically accepted as the proper means to represent
entities within a programming model. The 1990s took that idea one step further, and the compo-
nent-oriented model was born. This model enabled objects to be encapsulated in a tightly coupled
manner. It was only recently that the industry turned to a service-oriented architecture because
developers and architects needed to take components and have them distributed to other points in
an organization, to their partners, or to their customers. This distribution system needed to have the
means to transfer messages between machines that were generally incompatible with one another. In
addition, the messages had to include the ability to express the metadata about how a system should
handle a message.

If you ask 10 people what an SOA is, you’ll probably get 11 different answers, but some common
principles are considered to be foundations of a service-oriented architecture:

Boundaries are explicit➤➤  — ​Any data store, logic, or entity uses an interface to expose its data
or capabilities. The interface provides the means to hide the behaviors within the service, and
the interface front-end enables you to change this behavior as required without affecting down-
stream consumers.

Services are autonomous➤➤  — ​All the services are updated or versioned independently of one
another. Thus, you do not upgrade a system in its entirety; instead, each component of these
systems is an individual entity within itself and can move forward without waiting for other
components to progress forward. Note that with this type of model, after you publish an
interface, that interface must remain unchanged. Interface changes require new interfaces
(versioned, of course).

Services are based on contracts, schemas, and policies➤➤  — ​All services developed require a con-
tract regarding what is required to consume items from the interface (usually done through a
WSDL document). Along with a contract, schemas are required to define the items passed in
as parameters or delivered through the service (using XSD schemas). Finally, policies define
any capabilities or requirements of the service.

240  ❘  Chapter 7   Accessing Data

Service compatibility that is based upon policy➤➤  — ​The final principle enables services to
define policies (decided at run time) that are required to consume the service. These policies
are usually expressed through WS-Policy.

If your own organization is considering establishing an SOA, the WCF is a framework that works
on these principles and makes implementing it relatively simple. The next section looks at what the
WCF offers. Then you can dive into building your first WCF service.

Understanding WCF
As previously stated, WCF is a means to build distributed applications in a Microsoft environment.
Although the distributed application is built upon that environment, this does not mean that con-
sumers are required to be Microsoft clients or to take any Microsoft component or technology to
accomplish the task of consumption. On the other hand, building WCF services means you are also
building services that abide by the principles set forth in the aforementioned SOA discussion and
that these services are vendor-agnostic — ​thus, they can be consumed by almost anyone.

You can build WCF services using Visual Studio 2010. Note that because this is a .NET Framework
3.0 or greater component, you are actually limited to the operating systems in which you can run a
WCF service. Whereas the other Microsoft distribution technologies mentioned in this chapter do
not have too many limitations on running on Microsoft operating systems, an application built with
WCF can run only on Windows XP SP2, Windows Vista, Windows 7, or Windows Server 2008.

If you are already familiar with WCF, it is interesting to note that some improvements have been
made to WCF within the .NET Framework 4 release. A lot of focus was put on increasing the pro-
ductivity of developers and providing quick options for common tasks such as creating syndicated
services, as well as better debugging and serialization options. You will find that the performance
for WCF has increased, especially when hosted in IIS7. Other new features include new support for
working with the ADO.NET Entity Framework, improvements to the configuration editor, and more.

Building a WCF Service
Building a WCF service is not hard to accomplish. The assumption here is that you have installed
the .NET Framework 4 for the purpose of these examples. If you are using Visual Studio 2010, the
view of the project from the New Project dialog box is as shown in Figure 7-10.

Name the project WcfService1. The example you run through here demonstrates how to build the
WCF service by building the interface, followed by the service itself.

Creating the Services Framework
The first step is to create the services framework in the project. To do this, right-click the project
and select Add New Item from the provided menu. From the Add New Item dialog box, select WCF
Service, and name the service Service1.svc, as illustrated in Figure 7-11.

This step creates a Service1.svc file, a Service1.cs file, and an IService1.cs file. The Service1
.svc file is a simple file that includes only the page directive, whereas the Service1.cs file does all the
heavy lifting. The Service1.cs file is an implementation of the IService1.cs interface.

Working with Services  ❘  241

Figure 7-10

Figure 7-11

Working with the Interface
To create your service, you need a service contract. The service contract is the interface of the
service. This consists of all the methods exposed as well as the input and output parameters that

242  ❘  Chapter 7   Accessing Data

are required to invoke the methods. To accomplish this task, turn to the IService1.cs file.
You are going to want to refactor this name and rename it to IIslands.cs. Listing 7-35 presents
the interface you need to create.

Listing 7-35:  ​Creating the interface

using System.Collections.Generic;
using System.Runtime.Serialization;
using System.ServiceModel;

namespace WcfService1
{
 [ServiceContract]
 public interface IIslands
 {
 [OperationContract]
 List<Destination> GetIslands();
 }

 [DataContract]
 public class Destination
 {
 [DataMember]
 public string Name { get; set; }

 [DataMember]
 public int Population { get; set; }

 [DataMember]
 public double AverageAirfare { get; set; }

 [DataMember]
 public double AverageHotel { get; set; }

 [DataMember]
 public string BestKnownFor { get; set; }
 }
}

This is pretty much the normal interface definition you would expect, but with a couple of new
attributes included. To gain access to these required attributes, you must make a reference to
the System.ServiceModel namespace. This gives you access to the [ServiceContract] and
[OperationContract] attributes.

Use the [ServiceContract] attribute to define the class or interface as the service class, and it
needs to precede the opening declaration of the class or interface. In this case, the example in the
preceding code is based on an interface:

[ServiceContract]
public interface IIslands
{
 // Code removed for clarity
}

Working with Services  ❘  243

Within the interface, four methods are defined. Each method will be exposed through the
WCF service as part of the service contract. For this reason, each method is required to have
the [OperationContract] attribute applied:

[OperationContract]
List<Destination> GetIslands();

Utilizing the Interface
The next step is to create a class that implements the interface. Not only is the new class implementing
the defined interface, but it is also implementing the service contract. For this example, add this class to
the same Service1.cs file. The code in Listing 7-36 shows the implementation of this interface.

Listing 7-36:  ​Implementing the interface

using System.Collections.Generic;

namespace WcfService1
{
 public class Service1 : IIslands
 {
 #region IIslands Members

 public List<Destination> GetIslands()
 {
 List<Destination> destinations = new List<Destination>();
 destinations.Add(new Destination {Name = “St. Croix”});
 destinations.Add(new Destination {Name = “St. John”});
 destinations.Add(new Destination {Name = “St. Thomas”});

 return destinations;
 }

 #endregion
 }
}

From these new additions, you can see that you don’t have to do anything different to the Service1
class. It is a simple class that implements the IIslands interface and provides an implementation of
the GetIslands() method.

Reviewing the Service
Now that the service is in place, you can right-click the .svc file and select the View in Browser
option from the provided menu. You will then be presented with what is shown in Figure 7-12.

The page presented in Figure 7-12 is the information page about the service. In the image, notice
the link to the WSDL file of the service. As with ASP.NET Web Services, a WCF service can also
auto-generate the WSDL file. Clicking the WSDL link shows the WSDL in the browser, as illus-
trated in Figure 7-13.

244  ❘  Chapter 7   Accessing Data

Figure 7-12

Figure 7-13

Working with Services  ❘  245

Building a Silverlight Consumer
Now that an HTTP service is out there, which you built using the WCF framework, the next step is
to build a consumer application in Silverlight that uses the simple Service1 service. The consumer
sends its request via HTTP using SOAP. This section describes how to consume this service. From
the same solution, add a new Silverlight project called SilverlightWcfConsumer. You will also have
the customary SilverlightWcfConsumer.Web project contained within the same solution.

After you have laid out your Silverlight view with a ListBox control, make a reference to the new
WCF service. You do this in a manner quite similar to how you do it with XML Web Service ref-
erences. Right-click the solution name from the Visual Studio Solution Explorer and select Add
Service Reference from the dialog box that appears.

The Add Service Reference dialog box (see Figure 7-14) asks you for two things: the Service URI or
Address (basically a pointer to the WSDL file) and the name you want to give to the reference. The
name you provide the reference is the name that will be used for the instantiated object that enables
you to interact with the service.

This adds to your project a Service Reference folder containing some proxy files, as shown in
Figure 7-15.

Figure 7-14 Figure 7-15

Changing Configuration Files
Looking at the ServiceReference.ClientConfig file, you can see that Visual Studio has placed
information about the service inside the document, as illustrated in Listing 7-37.

Listing 7-37:  ​The created ServiceReference.ClientConfig file

<configuration>
 <system.serviceModel>

continues

246  ❘  Chapter 7   Accessing Data

 <bindings>
 <basicHttpBinding>
 <binding name=”BasicHttpBinding_IIslands”
 maxBufferSize=”2147483647”
 maxReceivedMessageSize=”2147483647”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=”http://localhost:28856/Service1.svc”
 binding=”basicHttpBinding”
 bindingConfiguration=”BasicHttpBinding_IIslands”
 contract=”DestinationsService.IIslands”
 name=”BasicHttpBinding_IIslands” />
 </client>
 </system.serviceModel>
</configuration>

The important part of this configuration document is the <client> element. This element contains a
child element called <endpoint> that defines the where and how of the service consumption process.

The <endpoint> element provides the address of the service — ​http://localhost:28856/Service1
.svc — ​and it specifies which binding of the available WCF bindings should be used. In this case, the
BasicHttpBinding is the required binding. Even though you are using an established binding from
the WCF framework, from the client side you can customize how this binding behaves. The settings
that define the behavior of the binding are specified using the bindingConfiguration attribute of
the <endpoint> element. In this case, the value provided to the bindingConfiguration attribute is
BasicHttpBinding_IIslands, which is a reference to the <binding> element contained within the
<basicHttpBinding> element.

As demonstrated, Visual Studio 2010 makes the consumption of these services fairly trivial. The
next step is to code the consumption of the service interface into the GUI that you created as one of
the first steps of this section.

Consuming the Service Interface
Now that everything is in place, the next step is to interact with this proxy in your Silverlight proj-
ect. The idea here is that when the view is loaded, the service will be invoked and the result will be
populated into the ListBox control. This action is demonstrated in Listing 7-38.

Listing 7-38:  ​Calling the Service1 web service

using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using SilverlightWcfConsumer.DestinationsService;

namespace SilverlightWcfConsumer

Listing 7-37  (continued)

http://localhost:28856/Service1.svc%E2%80%9D
http://localhost:28856/Service1

Working with Services  ❘  247

{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 IslandsClient client = new IslandsClient();

 client.GetIslandsCompleted += client_GetIslandsCompleted;
 client.GetIslandsAsync();
 }

 private void client_GetIslandsCompleted(object sender,
 GetIslandsCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 else
 {
 ICollection<Destination> result = e.Result;

 foreach (var destination in result)
 {
 listBox1.Items.Add(destination.Name);
 }
 }
 }
 }
}

This code is quite similar to what is done when working with web references from the XML Web
Services world. First is an instantiation of the proxy class, as shown with the creation of the svc object:

IslandsClient client = new IslandsClient();

Working with the client object now, the IntelliSense options provide you with the appropriate
GetIslandsAsync() and GetIslandsCompleted() methods. Remember that with Silverlight, you
are not allowed to invoke services synchronously.

Working with REST-Based Services
It is very easy to build REST-based services using .NET. Using WCF Data Services, you can
quickly expose interactions with the application’s underlying data source as RESTful-based ser-
vices. The current version of WCF Data Services allows you to work with the data stores using
JSON or Atom-based XML.

WCF Data Services works to create a services layer to your back-end data source. Doing so yourself,
especially if you are working with a full CRUD model, means a lot of work. WCF Data Services allow
you to get a service layer that is URI-driven.

248  ❘  Chapter 7   Accessing Data

To work through the creation and consumption of a REST-based service, create a typical Silverlight
application called SilverlightRest. This will also create the standard SilverlightRest.Web project
within the same solution. This is where you will put the WCF Data Service.

Creating a WCF Data Service
Figuring out how to build a complete services layer to your database for all create, read, update, and
delete functions would take some serious time and thought. However, WCF Data Services makes
this task much more feasible, as you will see as you work through this example.

Because this example of a WCF Data Service works from an underlying database, you will need to
add one. For this example, add the AdventureWorks_Data.mdf database as you previously used in
this chapter. Place this database within the App_Data folder of your project.

Adding Your Entity Data Model
After you have the database in place, you next create an Entity Data Model that WCF Data Services
will work with. To do this, right-click your project and select Add ➪ New Item from the list of
options in the provided menu.

The Add New Item dialog appears. Add an ADO.NET Entity Data Model to your project.
Name your ADO.NET Entity Data Model file AdventureWorks.edmx. When you create the
AdventureWorks.edmx file by clicking Add, the Entity Data Model Wizard appears, offering
you the option of creating an empty EDM or creating one from a pre-existing database (shown
in Figure 7-16).

Figure 7-16

For this example, choose the option to create one from the pre-existing (AdventureWorks_Data)
database (shown in Figure 7-17). Then click Next.

Working with Services  ❘  249

Figure 7-17

In Figure 7-17, notice that the connection string and the locations of the mapping details will be
stored within the Web.config file. You can also see on this screen that you are naming the instance
of the model AdventureWorks_DataEntities in the text box at the bottom of the wizard. This name
is important to note because you will use it later in this example.

The next screen allows you to select the tables, views, or stored procedures that will be part of the
model (Figure 7-18). For this example, select the checkbox next to the Table item in the tree view to
select all the tables in the database.

Figure 7-18

250  ❘  Chapter 7   Accessing Data

After selecting the Tables checkbox, click Finish to have Visual Studio create the EDM for you. You
will notice that Visual Studio creates a visual representation of the model for you in the O/R Designer.

Creating the Service
Now that the EDM is in place along with the database, the next step is to add your WCF Data
Service. To accomplish this, right-click your project within the Visual Studio Solution Explorer and
select Add ➪ New Item from the provided menu. The Add New Item dialog appears again; select
WCF Data Service as shown in Figure 7-19.

Figure 7-19

As shown in the figure, name your WCF Data Service Contacts.svc. Click the Add button and Visual
Studio generates a WCF service for you. Listing 7-39 shows the code of the default service file.

Listing 7-39:  ​The default .svc file for a WCF Data Service

using System;
using System.Collections.Generic;
using System.Data.Services;
using System.Data.Services.Common;
using System.Linq;
using System.ServiceModel.Web;
using System.Web;

namespace SilverlightRest.Web
{
 public class Contacts : DataService< /* TODO: put your data source class
 name here */ >
 {

Working with Services  ❘  251

 // This method is called only once to initialize service-wide policies.
 public static void InitializeService(DataServiceConfiguration config)
 {
 // TODO: set rules to indicate which entity sets and service
 // operations are visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule(“MyEntityset”,
 // EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule(“MyServiceOperation”,
 // ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

The code generated here is the base framework for what you are going to expose through WCF Data
Services. It will not work, however, until you accomplish the big TODO that the code specifies. The
first step is to put in the name of the EDM instance using the code presented in Listing 7-40.

Listing 7-40:  ​Changing the WCF Data Service to work with your EDM

namespace SilverlightRest.Web
{
 public class Contacts : DataService<AdventureWorks_DataEntities>
 {
 // Code removed for clarity
 }
}

Now your application is at a state in which the database, the EDM, and the service to work with
the EDM are in place. Upon compiling and pulling up the NorthwindDataService.svc file in the
browser, you are presented with the following bit of XML:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>
<service xml:base=”http://localhost:14057/Contacts.svc/”
 xmlns:atom=”http://www.w3.org/2005/Atom”
 xmlns:app=”http://www.w3.org/2007/app”
 xmlns=”http://www.w3.org/2007/app”>
 <workspace>
 <atom:title>Default</atom:title>
 </workspace>
</service>

If you don’t see this XML, you need to turn off the feed-reading capabilities of your IE browser by
selecting Tools ➪ Internet Options. From the provided dialog, select the Content tab and within the
Feeds section, click the Select button. From there, uncheck the Turn on Feed Reading checkbox.

The result of the earlier XML is supposed to be a list of all the available sets that are present in the
model, but by default, WCF Data Services locks everything down. To unlock these sets from the model,
go back to the InitializeService() function and add the following bolded code as illustrated in
Listing 7-41.

http://localhost:14057/Contacts.svc/%E2%80%9D
http://www.w3.org/2005/Atom%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D

252  ❘  Chapter 7   Accessing Data

Listing 7-41:  ​Opening up the service for reading from the available tables

using System.Data.Services;
using System.Data.Services.Common;

namespace SilverlightRest.Web
{
 public class Contacts : DataService<AdventureWorks_DataEntities>
 {
 public static void InitializeService(DataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule(“*“, EntitySetRights.AllRead);
 config.DataServiceBehavior.MaxProtocolVersion =
 DataServiceProtocolVersion.V2;
 }
 }
}

In this case, every table is opened up to access. Everyone who accesses the tables can read from
them but they can’t write or delete them. All tables are specified through the use of the asterisk (*)
and the right to the underlying data is set to read-only through the EntitySetRights enum being
set to AllRead.

Now when you compile and run this service in the browser, you see the following bit of XML:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>
<service xml:base=”http://localhost:14057/Contacts.svc/“
 xmlns:atom=”http://www.w3.org/2005/Atom”
 xmlns:app=”http://www.w3.org/2007/app” xmlns=”http://www.w3.org/2007/app”>
<workspace>
 <atom:title>Default</atom:title>
 <collection href=”Addresses”>
 <atom:title>Addresses</atom:title>
 </collection>
 <collection href=”AddressTypes”>
 <atom:title>AddressTypes</atom:title>
 </collection>
 <collection href=”Contacts”>
 <atom:title>Contacts</atom:title>
 </collection>
 <collection href=”ContactTypes”>
 <atom:title>ContactTypes</atom:title>
 </collection>
 <collection href=”CountryRegions”>
 <atom:title>CountryRegions</atom:title>
 </collection>
 <collection href=”StateProvinces”>
 <atom:title>StateProvinces</atom:title>
 </collection>
 </workspace>
 </service>

http://localhost:14057/Contacts.svc/%E2%80%9C
http://www.w3.org/2005/Atom%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D
http://www.w3.org/2007/app%E2%80%9D

Working with Services  ❘  253

Consuming the WCF Data Service in Silverlight
The next step is to consume this REST-based service. Keep in mind that consuming a WCF Data
Service in all types of .NET applications is obviously possible, but this chapter focuses on using this
technology within Silverlight itself.

To start, change the UI of the MainPage.xaml page so that it is similar to Listing 7-42.

Listing 7-42:  ​The XAML from MainPage.xaml

<UserControl x:Class=”SilverlightRest.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <ListBox Height=”276” HorizontalAlignment=”Left” Margin=”12,12,0,0”
 Name=”listBox1” VerticalAlignment=”Top” Width=”376”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding FirstName}“ Margin=”3” />
 <TextBlock Text=”{Binding LastName}“ Margin=”3” />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </Grid>
</UserControl>

With this in place, you then want to make a standard Service reference to the service. Figure 7-20
shows the Add Service Reference dialog.

Figure 7-20

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

254  ❘  Chapter 7   Accessing Data

Once added, the code-behind of the MainPage.xaml page is presented in Listing 7-43.

Listing 7-43:  ​The code-behind for MainPage.xaml

using System;
using System.Data.Services.Client;
using System.Linq;
using System.Windows.Controls;
using SilverlightRest.ContactsRest;

namespace SilverlightRest
{
 public partial class MainPage : UserControl
 {
 private readonly DataServiceCollection<Contact> _contacts;

 public MainPage()
 {
 InitializeComponent();

 AdventureWorks_DataEntities svc =
 new AdventureWorks_DataEntities(new
 Uri(“http://localhost:14057/Contacts.svc”));
 _contacts = new DataServiceCollection<Contact>();
 _contacts.LoadCompleted += contacts_LoadCompleted;

 var query = from c in svc.Contacts
 orderby c.LastName
 select c;

 _contacts.LoadAsync(query);
 }

 private void contacts_LoadCompleted(object sender,
 LoadCompletedEventArgs e)
 {
 if (_contacts.Continuation != null)
 {
 _contacts.LoadNextPartialSetAsync();
 }
 else
 {
 listBox1.ItemsSource = _contacts;
 listBox1.UpdateLayout();
 }
 }
 }
}

When you run this page, you are presented with an alphabetical list of the contacts in the database.

http://localhost:14057/Contacts.svc%E2%80%9D

Summary  ❘  255

Summary

Silverlight truly provides the core infrastructure needed to allow pervasive data in your applications.
Silverlight makes few assumptions about where your data lives and the format it takes, which opens up
exciting opportunities to work with data across a variety of platforms and from disparate providers.

You should now be able to retrieve data from Silverlight, provide compelling data-bound interfaces
with bindings, and work with a wide variety of different service layer types. The core options for
accessing and manipulating data presented in this chapter are a great foundation for exploring the
wealth of options available to all Silverlight developers.

8
WCf ria services

what’s in this chapter?

Working with entity data models➤➤

Using domain services➤➤

Paging content➤➤

Filtering content➤➤

If you are building a business application that needs to move content from servers down to your
Silverlight application, WCF RIA Services is going to be one of the most important resources in
your arsenal. WCF RIA Services provides your presentation tier with quick and easy access to
the services and data that are made available from the middle tier of your larger application.

Many of the developers that are making their way into the Silverlight ranks are from the
ASP.NET world, where dealing with logic and data between the tiers was quite a bit simpler.
In the ASP.NET world, it was simpler because the presentation tier and the middle tier were
usually on the same server, or even in the same co-location. The generated presentation tier,
once completed, and after working with the middle tier for any type of logic or data, was
then shot down to the client as HTML, JavaScript, and the like. Any further interactions
between the client and the middle tier could then be done with a complete page refresh, or
using AJAX to make connections to the middle tier in the cloud.

Silverlight brings a more stark separation between the presentation and middle tiers of your
application. The code for the application is actually residing on the client. The client then will
need to have a means to communicate back to the middle tier for the logic and data that are
required. WCF RIA Services is a means to make the process of n-tier communications between
what is on the client and what is back on your server just that much easier. Specifi cally designed
for rich Internet applications, this new approach is something that will make it easier for you to
bring these two tiers closer together.

258  ❘  Chapter 8   WCF RIA Services

Understanding WCF RIA Services

Again, most people are quite used to working in
various web technologies where you will find
the close proximity of the presentation tier
and the middle tier is quite advantageous. An
example of this is shown in Figure 8-1.

From this figure, you can see that traditional
applications created and manipulated the presen-
tation within the presentation tier and then, in
effect, shipped down the finalized UI to the client
to be displayed (for example, in the browser).

Silverlight changes all of this. Now the client is
running the application code on the client and,
for the most part, the entire presentation tier is
residing on the client as well. This means that
the client will need to somehow interact over the
Internet to deal with the middle tier and, in turn,
gain access to the data tier. This model is shown
in Figure 8-2.

From this figure, you can see that the presentation
tier is now on the client and WCF RIA Services is
the glue between the middle tier and this presenta-
tion tier. Really, there is still a gap between the
middle tier and the presentation tier, but
now with WCF RIA Services, you have a
programmatic view that they are still in the
same place.

WCF RIA Services is exactly what the name
states. It is a technology, like WCF Data
Services, that is built upon the Windows
Communication Foundation stack. Though
WCF RIA Services works to simplify your
life as a developer and make it easy to work
with your data and capabilities up and
down the application stack, it still does
provide you with the capabilities you might
need to dig deep into WCF and take full
advantage of everything that WCF brings
to the table. Using WCF RIA Services does
not limit you in your abilities in working
with WCF overall. The nice thing, though,
is that if you have usually found that WCF
was complex to begin with and you are not

Presentation
Tier

The Presentation Tier on
the server generates the
final UI (HTML) that is then
pushed to the Client.

Middle Tier
(Business Tier)

Data
Tier

Traditional Application

HTML

Client

Internet

The Client receives
the final presentation
from the server.

Figure 8-1

The Middle Tier now
communicates with the
Presentation Tier directly
over the Internet.

Middle Tier
(Business Tier)

Data
Tier

RIA Application

Presentation
Tier

Client

Internet

The Client interacts with the remote
Middle Tier as if it is co-located and
the Client can still take complete
control over the UI logic.

Figure 8-2

Building a Simple RIA Services Application  ❘  259

too interested in digging in the weeds of this technology, you will still like working with WCF RIA
Services because it works to obfuscate this complexity from you as best as possible.

Building a Simple RIA Services Application

At the time of this writing, WCF RIA Services is a separate download that you can find at
www.silverlight.net/getstarted/riaservices. On this page, you will find the Visual Studio
additions that you need to install to work through the examples in this chapter.

Once installed, you will find some new WCF RIA Service capabilities contained within Visual Studio.
The example in this chapter uses Visual Studio 2010. For the first step in creating a project that works
with this new technology, open up Visual Studio and create a new Silverlight project that is going to
work with WCF RIA Services. To do this, select File ​➪ ​New ​➪ ​Project from the Visual Studio menu.
The New Project dialog appears. Select Silverlight from the list of installed templates and you will see
a list of your Silverlight project options, as shown in Figure 8-3.

Figure 8-3

If you just installed the WCF RIA Services, you will notice some new options. One new project
option is the Silverlight Business Application. This is a sample WCF RIA Services business application.
Another option is the WCF RIA Services Class Library. This option allows you to create a project that
is a WCF RIA Services class library that can then be utilized by any of your Silverlight applications.

Select the option Silverlight Business Application project. By default, the name of the project is
BusinessApplication1. For this example, you can keep this in place.

http://www.silverlight.net/getstarted/riaservices

260  ❘  Chapter 8   WCF RIA Services

Reviewing the Business Application Solution
Once you have created the BusinessApplication1 solution, you will
find two projects for this. The two projects and the entire output of
this project, as shown in the Visual Studio Solution Explorer, are
shown in Figure 8-4.

BusinessApplication1 is the Silverlight application,
and BusinessApplication1.Web is the server-side solution that
will contain your WCF RIA Services. At this point, there is not
a WCF RIA Service in place to work with, because you will have
to construct that portion yourself.

However, you will notice that a stub of an application is in place
for you. Microsoft built out a sample application in a structure
that it deems appropriate for working with WCF RIA Services.
This is an approach Microsoft likes to call a “prescriptive
architecture” — ​or an architecture that it prescribes to
developers building applications using its technologies. You
as the developer can follow this prescription, but you can also
rip it apart and set things up exactly as you see fit.

If you compile and run the BusinessApplication1 as it is now, you
will notice (shown in Figure 8-5) that you are presented with a
basic Silverlight application with some basic navigation. At this
point, no WCF RIA Services are being utilized. The next step is to
change that and build a WCF RIA Service within this solution.

Figure 8-5

Figure 8-4

Building a Simple RIA Services Application  ❘  261

Building an Entity Data Model
The first step is to build an entity data model and expose that model out from the server-side solution.
You are not always required to use entity data models to work with WCF RIA Services. You are also
able to use LINQ to SQL, plain old XML (POX) objects, and standard-based web services. For this
example, you build a WCF RIA Service that makes use of the entity framework.

To accomplish this task, you first need to add a data store to work
with. The one used in a few places within this book is the Microsoft
AdventureWorks sample database located at msftdbprodsamples
.codeplex.com. Add the AdventureWorks database to the App_Data
folder within the project, as shown in Figure 8-6.

Once you have the database in place, add an ADO.NET Entity Data Model to your project. You will
find this in the Data section of installed templates within Visual Studio 2010. Name your ADO.NET
Entity Data Model AdventureWorks.edmx as shown in Figure 8-7.

Figure 8-7

Click the Add button in the Add New Item dialog and the Entity Data Model Wizard appears
(shown in Figure 8-8).

You can create your entity models directly from code or from reading and understanding the contents
of a database. In this case, make sure that you choose the database option. Clicking the Next button
in the dialog presents you with the second step of the wizard, as shown in Figure 8-9.

In this screen, select the underlying data store that you are using. You will notice that the connec-
tion string is defined for you and you can choose to name the connection string within the project’s
Web.config file. Click Next.

Figure 8-6

http://msftdbprodsamples.codeplex.com/
http://msftdbprodsamples.codeplex.com/

262  ❘  Chapter 8   WCF RIA Services

Figure 8-8

Figure 8-9

On the next screen of the wizard, select the database objects that you want to be a part of the model
that you are creating. In this case, select all the tables associated with the Human Resources section
of the database. This is shown in Figure 8-10.

Building a Simple RIA Services Application  ❘  263

Figure 8-10

In addition, you can see from this figure that you also need to provide a model namespace. In this
case, it is named AdventureWorks_DataModel.

Click Finish. You are presented with a visual view of your model directly in Visual Studio. This view
is shown in Figure 8-11.

Figure 8-11

264  ❘  Chapter 8   WCF RIA Services

You will also notice that the connection string for the database has been added to the Web.config
file as was stated in the wizard. Now that the entity model is in place, compile the application. Now
you are ready to build the Domain Service.

Building a Domain Service
Now that you have the entity model in place, it’s time to build your first domain service. A domain
service allows you to expose the pieces of the entity models that you want as well as the operations
over those models that you need for your client application.

Adding the Domain Service Class
Working in the BusinessApplication1.Web project, add a Domain Service Class. Right-click on the
project and choose the option to add a new item to the project. You will find the option to add a
Domain Service Class within the Add New Item dialog, as illustrated in Figure 8-12.

Figure 8-12

In this case, name the data service class AdventureWorksDomainService.cs as shown in Figure 8-12.
Click the Add button to display the Add New Domain Service Class dialog, as shown in Figure 8-13.

Here you are constructing a new class based on what you want to get at from the entity model.
From the dialog, you can see that the AdventureWorksDomainService class is making use of the
AdventureWorks_DataEntities entity model that you created earlier in this chapter. Visual Studio
reads all the entity models from AdventureWorks_DataEntities and provides you with a list of
what is available. In this case, select all of them, but you will notice that the Employee entity model
is also enabled for editing. This means that you are exposing the ability to insert, update, or delete
items for this model.

Building a Simple RIA Services Application  ❘  265

Figure 8-13

The other important item to pay attention to in this dialog is the checkbox to enable client access to
the domain service. Make sure that this is checked in order for your Silverlight client to get access
to what is being constructed here.

Click the OK button in this dialog to produce a new class file within your project,
AdventureWorksDomainService.cs. This new class file is presented in Listing 8-1.

Listing 8-1:  ​The new domain service class — ​AdventureWorksDomainService.cs

namespace BusinessApplication1.Web
{
 using System;
 using System.Collections.Generic;
 using System.ComponentModel;
 using System.ComponentModel.DataAnnotations;
 using System.Data;
 using System.Linq;
 using System.ServiceModel.DomainServices.EntityFramework;
 using System.ServiceModel.DomainServices.Hosting;
 using System.ServiceModel.DomainServices.Server;

 // Also consider adding roles to restrict access as appropriate.
 // [RequiresAuthentication]
 [EnableClientAccess()]
 public class AdventureWorksDomainService :

continues

266  ❘  Chapter 8   WCF RIA Services

 LinqToEntitiesDomainService<AdventureWorks_DataEntities>
 {
 public IQueryable<Department> GetDepartments()
 {
 return this.ObjectContext.Departments;
 }

 public IQueryable<Employee> GetEmployees()
 {
 return this.ObjectContext.Employees;
 }

 public void InsertEmployee(Employee employee)
 {
 if ((employee.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.ChangeObjectState
 (employee, EntityState.Added);
 }
 else
 {
 this.ObjectContext.Employees.AddObject(employee);
 }
 }

 public void UpdateEmployee(Employee currentEmployee)
 {
 this.ObjectContext.Employees.AttachAsModified(currentEmployee,
 this.ChangeSet.GetOriginal(currentEmployee));
 }

 public void DeleteEmployee(Employee employee)
 {
 if ((employee.EntityState == EntityState.Detached))
 {
 this.ObjectContext.Employees.Attach(employee);
 }
 this.ObjectContext.Employees.DeleteObject(employee);
 }

 public IQueryable<EmployeeAddress> GetEmployeeAddresses()
 {
 return this.ObjectContext.EmployeeAddresses;
 }

 public IQueryable<EmployeeDepartmentHistory>
 GetEmployeeDepartmentHistories()
 {
 return this.ObjectContext.EmployeeDepartmentHistories;

Listing 8-1  (continued)

Building a Simple RIA Services Application  ❘  267

 }

 public IQueryable<EmployeePayHistory> GetEmployeePayHistories()
 {
 return this.ObjectContext.EmployeePayHistories;
 }

 public IQueryable<JobCandidate> GetJobCandidates()
 {
 return this.ObjectContext.JobCandidates;
 }
 }
}

Many of the code comments were removed from this code, but this is a class file generated for you
that exposes out the objects you chose from your entity model. You can see that this class file makes
use of the underlying RIA Services framework using the System.ServiceModel.DomainServices
namespace.

While looking at what is presented in the class structure, you should make note of some impor-
tant items.

[EnableClientAccess()]
public class AdventureWorksDomainService :
 LinqToEntitiesDomainService<AdventureWorks_DataEntities>
{

 // Code removed for clarity

}

First, the class that is created for you is called AdventureWorksDomainService and it
inherits from an abstract base class called LinqToEntitiesDomainService<T>. The
LinqToEntitiesDomainService<T> is part of the RIA Services framework and will expose
the entity model you want. You put the entity model in place of <T> and in this case, it becomes
LinqToEntitiesDomainService<AdventureWorks_DataEntities>. Remember
that AdventureWorks_DataEntities was something that you built earlier in this chapter.

The other important aspect of this is that this class has been enabled for client access (from checking
the checkbox earlier from the Add New Domain Service Class dialog). This is accomplished by adding
the class attribute [EnableClientAccess()] to the class.

Looking into the class, you can see that a series of methods have been created for you that
expose the entities from the model. The first one (the one that you work with in this example),
is the GetEmployees() method as shown here:

public IQueryable<Employee> GetEmployees()
{
 return this.ObjectContext.Employees;
}

268  ❘  Chapter 8   WCF RIA Services

You can see from this code snippet that the GetEmployees() method call returns an IQueryable<T>
interface of IQueryable<Employee>, which is a list of employees. IQueryable<T> is from the
System.Linq namespace. From this bit of code, you can see it returned all the employees found in the
table. You could, if you wanted, change the output to provide any filtering or sorting to what is output
directly in this method.

Reviewing the Operations
In addition to the GetEmployees() method call, because you have checked the edit option when
setting up the class you are provided with Insert, Update, and Delete options for the Employees
object as well:

public void InsertEmployee(Employee employee)
{

 // Code removed for clarity

}

public void UpdateEmployee(Employee currentEmployee)
{

 // Code removed for clarity

}

public void DeleteEmployee(Employee employee)
{

 // Code removed for clarity

}

Once you have the domain service in place, compile your solution. Now that this is in place, it is
time to turn your attention to the client application.

Connecting the Silverlight Client to Your Domain Service
At this point, everything is in place on the server-side project. This project now includes an entity model
and the model is exposed to the client through a domain service. Working with BusinessApplication1
now, you can make the connection to this domain service.

Start by displaying a full list of the employees from the Employee table using the GetEmployees()
method call. To do this, create a new Silverlight page called Employees.xaml. Place this view within
the Views folder along with the About.xaml and the Home.xaml files.

You can open both the About.xaml and the Home.xaml files to look at how you want to set up the
Employees.xaml page to make it fit in with the rest of the application. At the end of the day, you
want the Employees.xaml page to show a grid of all the employees that are provided via the domain
service. The Employees.xaml page is presented in Listing 8-2.

Building a Simple RIA Services Application  ❘  269

Listing 8-2:  ​The page to present a list of employees

<navigation:Page
 xmlns:my=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data”
 xmlns:sdk=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data.Input”
 x:Class=”BusinessApplication1.Employees”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 xmlns:navigation=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation”
 d:DesignWidth=”640” d:DesignHeight=”480”
 Title=”Employees Page”>
 <Grid x:Name=”LayoutRoot”>
 <ScrollViewer x:Name=”PageScrollViewer”
 Style=”{StaticResource PageScrollViewerStyle}“>

 <StackPanel x:Name=”ContentStackPanel”
 Style=”{StaticResource ContentStackPanelStyle}“>

 <TextBlock x:Name=”HeaderText”
 Style=”{StaticResource HeaderTextStyle}“
 Text=”Employees”/>

 <my:DataGrid x:Name=”gridEmployees” />

 </StackPanel>

 </ScrollViewer>
 </Grid>
</navigation:Page>

From this, you can see that there is not much to this page besides some header text and a DataGrid
control. The DataGrid control’s name is gridEmployees.

Connecting the Two Solutions
With this in place, now you can turn your attention to the code-behind for this page. The first step
is to add a new using statement to the top of the code-behind file. At the bottom of the list of using
statements, add a reference to the other project as illustrated in Listing 8-3.

Listing 8-3:  ​Adding a using statement to BusinessApplication1.Web

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;

continues

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

270  ❘  Chapter 8   WCF RIA Services

using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;
using System.Windows.Navigation;
using BusinessApplication1.Web;

Once you have this in place, compile the entire solution.
Then you have made the tie between the client and the
server applications in regard to the domain service.

You probably are looking now to see what changed in
your client project. It appears as if nothing changed when
looking at the project directly in Visual Studio. However,
you can see the changes that were made directly to the
BusinessApplication1 project by clicking the Show All
Files button from the toolbar of the Visual Studio Solution
Explorer. You are then presented with what is shown in
Figure 8-14.

Looking over this image from Figure 8-14, you can see that
there is a new folder now called Generated_Code. Contained
within this folder is a file called BusinessApplication1
.Web.g.cs. This file contains all the methods that interact
with the methods from the domain service. It also contains
the entity models that were defined.

You will see a lot in this class — ​too much to show here (it is more than 3,000 lines of code). Some
interesting parts, though, are that you can see some overloaded DomainContext instances:

public AdventureWorksDomainContext() :
 this(new WebDomainClient<IAdventureWorksDomainServiceContract>
 (new
 Uri(“BusinessApplication1-Web-AdventureWorksDomainService.svc”,
 UriKind.Relative)))
{
}

Also, within the IAdventureWorksDomainServiceContract, you can see the asynchronous service
calls such as BeginGetEmployees() and EndGetEmployees():

/// <summary>
/// Asynchronously invokes the ‘GetEmployees’ operation.
/// </summary>
/// <param name=”callback”>Callback to invoke on completion.</param>
/// <param name=”asyncState”>Optional state object.</param>

Figure 8-14

Listing 8-3  (continued)

Building a Simple RIA Services Application  ❘  271

/// <returns>An IAsyncResult that can be used to monitor the request.</returns>
[FaultContract(typeof(DomainServiceFault),
 Action=”http://tempuri.org/AdventureWorksDomainService/
 GetEmployeesDomainServiceFault”, Name=”DomainServiceFault”,
 Namespace=”DomainServices”)]
[OperationContract(AsyncPattern=true,
 Action=”http://tempuri.org/AdventureWorksDomainService/GetEmployees”,
 ReplyAction=
 “http://tempuri.org/AdventureWorksDomainService/GetEmployeesResponse”)]
[WebGet()]
IAsyncResult BeginGetEmployees(AsyncCallback callback, object asyncState);

/// <summary>
/// Completes the asynchronous operation begun by ‘BeginGetEmployees’.
/// </summary>
///<param name=”result”>The IAsyncResult returned from ‘BeginGetEmployees’.</param>
///<returns>The ‘QueryResult’ returned from the ‘GetEmployees’ operation.</returns>
QueryResult<Employee> EndGetEmployees(IAsyncResult result);

Working with the Domain Context
You will find a lot more in the BusinessApplication1.Web.g.cs class. Now, you can make use of
this in the code-behind of your Employees.xaml file. This is accomplished in Listing 8-4.

Listing 8-4:  ​Employess.xaml.cs

using System.Windows;
using System.Windows.Controls;
using System.Windows.Navigation;
using BusinessApplication1.Web;

namespace BusinessApplication1
{
 public partial class Employees : Page
 {
 public Employees()
 {
 InitializeComponent();
 Loaded += Employees_Loaded;
 }

 private void Employees_Loaded(object sender, RoutedEventArgs e)
 {
 AdventureWorksDomainContext context = new
 AdventureWorksDomainContext();
 gridEmployees.ItemsSource = context.Employees;
 context.Load(context.GetEmployeesQuery());
 }
 }
}

http://tempuri.org/AdventureWorksDomainService/
http://tempuri.org/AdventureWorksDomainService/GetEmployees%E2%80%9D
http://tempuri.org/AdventureWorksDomainService/GetEmployeesResponse%E2%80%9D

272  ❘  Chapter 8   WCF RIA Services

In this case, create an instance of the AdventureWorksDomainContext and assign the DataGrid
control’s ItemsSource property to the value of context.Employees. From there, load the context
object with a query to GetEmployeesQuery(). This will load everything in the entity model based
on what was defined earlier in this chapter.

As you work with the code in the Employees_Loaded() method, you will notice that from the con-
text object, you have everything you would expect via IntelliSense as illustrated in Figure 8-15.

Figure 8-15

When you run this code, you will notice the pause as the content gets loaded into the view, but once
loaded, you are presented with something similar to what is presented in Figure 8-16.

WCF RIA Services allowed the client to make a service call to a remote service location and get at con-
tent and capabilities that resided on the server. The nice thing about this was that in working in code
within the client project, it was as if you were working with local objects rather than through a service
layer. You can see from this example just how simple WCF RIA Services makes the entire process.

Figure 8-16

Building a Simple RIA Services Application  ❘  273

Connecting to the Domain Service through XAML
So far, you have seen what it is to connect with the domain service through code and work with
the underlying data that is retrieved. The next step is to look at solving much of the same problem,
except this time you will be doing it using declarative coding using XAML.

Creating Your Entity Data Model
For this example, create a new entity data model within the same
BusinessApplication1.Web project. Call this model Customers.edmx. Attach only
the Customer table from the Adventure Works database. This gives you a simple
data model as presented in Figure 8-17.

Creating the Domain Service
When you have created this entity data model, be sure to compile the solution first
before proceeding with any additional steps. With this data model in place and
available throughout the application, it’s time to create your domain service. Create
a new domain service and give it the name of CustomerDomainService.cs. When
you are presented with the dialog of the entities that you are going to want to work with in creating this
domain service, you will notice that there are now two options contained within the drop-down. Select
the one that contains the Customer table and check the Edit box to enable it for editing.

From there, open the CustomerDomainService.cs class file and make a small change. Listing 8-5
shows you in bold the change you must make to the generated file.

Listing 8-5:  ​Having the customers come out of the database ordered by their account number

namespace BusinessApplication1.Web
{
 using System;
 using System.Collections.Generic;
 using System.ComponentModel;
 using System.ComponentModel.DataAnnotations;
 using System.Data;
 using System.Linq;
 using System.ServiceModel.DomainServices.EntityFramework;
 using System.ServiceModel.DomainServices.Hosting;
 using System.ServiceModel.DomainServices.Server;

 [EnableClientAccess()]
 public class CustomerDomainService :
 LinqToEntitiesDomainService<AdventureWorks_DataEntities1>
 {
 public IQueryable<Customer> GetCustomers()
 {
 return this.ObjectContext.Customers.OrderBy(c => c.AccountNumber);
 }

 public void InsertCustomer(Customer customer)

Figure 8-17

continues

274  ❘  Chapter 8   WCF RIA Services

 {
 if ((customer.EntityState != EntityState.Detached))
 {
 this.ObjectContext.ObjectStateManager.ChangeObjectState(customer,
 EntityState.Added);
 }
 else
 {
 this.ObjectContext.Customers.AddObject(customer);
 }
 }

 public void UpdateCustomer(Customer currentCustomer)
 {
 this.ObjectContext.Customers.AttachAsModified(currentCustomer,
 this.ChangeSet.GetOriginal(currentCustomer));
 }

 public void DeleteCustomer(Customer customer)
 {
 if ((customer.EntityState == EntityState.Detached))
 {
 this.ObjectContext.Customers.Attach(customer);
 }
 this.ObjectContext.Customers.DeleteObject(customer);
 }
 }
}

In this small change of code, you are returning the customers in the GetCustomers() call so that
they are ordered by their account numbers simply by adding OrderBy(c => c.AccountNumber).
You need this type of ordering in place when you start paging results as they come out of the service.
This is demonstrated shortly.

When you have finished creating the domain service, compile the application one more time.

Creating Customers.xaml
If you have made it this far, the server-side of the solution to work with your customers is accomplished.
The next step is to create a new Silverlight page called Customers.xaml. For the purposes of working
with this example, place this page with the other pages within the Views folder of the project.

The first step is to get the page to a point where it is like the other pages you have been working
with so far. Listing 8-6 provides you with the XAML code to place within this file.

Listing 8-6:  ​The start of the Customers.xaml page

<navigation:Page x:Class=”BusinessApplication1.Views.Customers”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Listing 8-5  (continued)

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Building a Simple RIA Services Application  ❘  275

 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 xmlns:navigation=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation”
 d:DesignWidth=”640” d:DesignHeight=”480”
 Title=”Customers Page”
 xmlns:sdk=”http://schemas.microsoft.com/
 winfx/2006/xaml/presentation/sdk” >
 <Grid x:Name=”LayoutRoot”>
 <ScrollViewer x:Name=”PageScrollViewer”
 Style=”{StaticResource PageScrollViewerStyle}“>

 <StackPanel x:Name=”ContentStackPanel”
 Style=”{StaticResource ContentStackPanelStyle}“>

 <TextBlock x:Name=”HeaderText”
 Style=”{StaticResource HeaderTextStyle}“
 Text=”Customers”/>
 <sdk:DataGrid Name=”dataGrid1” />

 </StackPanel>

 </ScrollViewer>
 </Grid>
</navigation:Page>

You will notice that this page is not much different from the other pages you have seen so far. There is
a TextBlock control on the page and DataGrid control that will later contain your list of customers.

When you add the WCF RIA Services to Visual Studio, you will also notice that there is a new control
available to you via the Visual Studio Toolbox. Here you will find a control called DomainDataSource.
For this example, you want to make use of this. To do this, just drag-and-drop the control onto the
design surface of your Silverlight page. You will notice that a few changes happened to your XAML
code. First, a new namespace was added to deal with the control. Second, you will see the new control
on the page:

<riaControls:DomainDataSource />

The idea here is that you are going to declaratively define the details of the domain service that you
are going to work with and tie the DataGrid control to this new control on the page. Listing 8-7
shows you the changes you need to make to the Customers.xaml page.

Listing 8-7:  ​Adding a DomainDataSource control to the page

<navigation:Page x:Class=”BusinessApplication1.Views.Customers”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”

continues

http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

276  ❘  Chapter 8   WCF RIA Services

 xmlns:navigation=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation”
 d:DesignWidth=”640” d:DesignHeight=”480”
 Title=”Customers Page” xmlns:sdk=”http://schemas.microsoft.com/
 winfx/2006/xaml/presentation/sdk”
 xmlns:riaControls=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.DomainServices”
 xmlns:domain=”clr-namespace:BusinessApplication1.Web”
 xmlns:Views=”clr-namespace:BusinessApplication1.Views”>
 <Grid x:Name=”LayoutRoot”>
 <ScrollViewer x:Name=”PageScrollViewer”
 Style=”{StaticResource PageScrollViewerStyle}“>

 <StackPanel x:Name=”ContentStackPanel”
 Style=”{StaticResource ContentStackPanelStyle}“>

 <TextBlock x:Name=”HeaderText”
 Style=”{StaticResource HeaderTextStyle}“
 Text=”Customers”/>
 <sdk:DataGrid Name=”dataGrid1”
 ItemsSource=”{Binding Data, ElementName=domainDataSource1}“ />
 <riaControls:DomainDataSource Name=”domainDataSource1”
 LoadSize=”10” QueryName=”GetCustomers” AutoLoad=”True”>
 <riaControls:DomainDataSource.DomainContext>
 <domain:CustomerDomainContext />
 </riaControls:DomainDataSource.DomainContext>
 </riaControls:DomainDataSource>
 </StackPanel>

 </ScrollViewer>
 </Grid>
</navigation:Page>

Here, the DomainDataSource control is placed on the page and is set to query the GetCustomers()
method using the property QueryName. The LoadSize property is set to 10, meaning that the Silverlight
page will make calls 10 at a time to the service rather than calling for everything at once.

The domain context to use is defined using <riaControls:DomainDataSource.DomainContext />
and assigning the context to the CustomerDomainContext.

From there, the DataGrid is bound to this data source control through the ItemsSource property.

Reviewing the Behavior of the Results
When you compile and run this page, you are presented with a grid of 10 results, as you would expect.
This is demonstrated in Figure 8-18.

As stated, when this page is pulled up, 10 results are quickly displayed. However, after a slight pause,
another 10 results are called for and bound to the grid. The grid continues to do this until all the
results are bound to it.

Listing 8-7  (continued)

http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk

Building a Simple RIA Services Application  ❘  277

Figure 8-18

This is actually the correct behavior and, in some cases, something you might want to achieve if you
wanted to display the entire dataset in one view. You can modify this behavior by simply adding a
DataPager control to your XAML page. This small control is presented in Listing 8-8.

Listing 8-8:  ​Adding a DataPager control

<sdk:DataPager Height=”26” Name=”dataPager1” PageSize=”10”
 Source=”{Binding Data, ElementName=domainDataSource1}“ />

Now with this DataPager control in place, when you run the page you are presented with a grid
containing a page of only 10 items. This is illustrated in Figure 8-19.

Now the page size is set to 10 and the load size through the DomainDataSource control is also set
to 10. This means that for each new page called, a new call is made to the underlying service. If the
DomainDataSource’s LoadSize property was set to 20, there would only be a new call made for each
odd page in the grid because the client application would already contain the first 20 in memory.

Filtering Results
There is a lot you can do with WCF RIA Services — ​more than can be covered in this single chapter.
One interesting item, in addition to pulling pages of content, is filtering the items that are coming
back from the service.

278  ❘  Chapter 8   WCF RIA Services

Figure 8-19

You can apply filtering options to the Customers.xaml page by adding some new controls and
changing how the DomainDataSource control works. This is illustrated in Listing 8-9.

Listing 8-9:  ​Adding filtering to the DomainDataSource control

<navigation:Page x:Class=”BusinessApplication1.Views.Customers”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 xmlns:navigation=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Navigation”
 d:DesignWidth=”640” d:DesignHeight=”480”
 Title=”Customers Page”
 xmlns:sdk=”http://schemas.microsoft.com/
 winfx/2006/xaml/presentation/sdk”
 xmlns:riaControls=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.DomainServices”
 xmlns:domain=”clr-namespace:BusinessApplication1.Web”
 xmlns:Views=”clr-namespace:BusinessApplication1.Views”>
 <Grid x:Name=”LayoutRoot”>
 <ScrollViewer x:Name=”PageScrollViewer”
 Style=”{StaticResource PageScrollViewerStyle}“>

 <StackPanel x:Name=”ContentStackPanel”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/

Building a Simple RIA Services Application  ❘  279

 Style=”{StaticResource ContentStackPanelStyle}“>

 <TextBlock x:Name=”HeaderText”
 Style=”{StaticResource HeaderTextStyle}“
 Text=”Customers”/>

 <StackPanel x:Name=”filterStackPanel”
 Orientation=”Horizontal” Height=”40”>
 <sdk:Label Name=”lblFilter”
 Content=”Filter by Territory ID “ />
 <ComboBox Height=”23” Name=”comboBox1” Width=”120”>
 <ComboBoxItem Content=”1” />
 <ComboBoxItem Content=”2” />
 <ComboBoxItem Content=”3” />
 </ComboBox>
 </StackPanel>

 <sdk:DataGrid Name=”dataGrid1” ItemsSource=”{Binding Data,
 ElementName=domainDataSource1}“ />
 <riaControls:DomainDataSource Name=”domainDataSource1”
 LoadSize=”10” QueryName=”GetCustomers” AutoLoad=”True”>
 <riaControls:DomainDataSource.DomainContext>
 <domain:CustomerDomainContext />
 </riaControls:DomainDataSource.DomainContext>
 <riaControls:DomainDataSource.FilterDescriptors>
 <riaControls:FilterDescriptor
 PropertyPath=”TerritoryID”
 Operator=”IsEqualTo”
 Value=”{Binding ElementName=comboBox1,
 Path=SelectedItem.Content}“ />
 </riaControls:DomainDataSource.FilterDescriptors>
 </riaControls:DomainDataSource>
 <sdk:DataPager Height=”26” Name=”dataPager1” PageSize=”10”
 Source=”{Binding Data, ElementName=domainDataSource1}“ />
 </StackPanel>

 </ScrollViewer>
 </Grid>
</navigation:Page>

In this case, a ComboBox control was added and this will be the control that the end user makes use
of to filter the contents found in the DataGrid control. With this simple control in place, the only
additional change required is to provide a <riaControls:DomainDataSource.FilterDescriptors>
section to the DomainDataSource control. Here you provide a PropertyPath property, which points
to the item in the entity model that you are looking to filter by. From there, you will need to provide
an operator to utilize. The Operator property in this sample is set to IsEqualTo, but it can be set to
several other things, such as:

Contains➤➤

EndsWith➤➤

IsContainedIn➤➤

IsEqualTo➤➤

280  ❘  Chapter 8   WCF RIA Services

IsGreaterThan➤➤

IsGreaterThanOrEqualTo➤➤

IsLessThan➤➤

IsLessThanOrEqualTo➤➤

IsNotEqualTo➤➤

StartsWith➤➤

From there, you need only to set the binding to what is presented in the ComboBox control and then
compile and run the page. You are then presented with the results as shown in Figure 8-20.

Figure 8-20

Summary

This chapter looked at working with WCF RIA Services within your Silverlight applications. Most
developers coming from the ASP.NET world will be wondering how to bring the data and logic from
the middle tier of their application stacks down to the presentation tier if the entire presentation tier is
residing on the client. WCF Data Services makes this task quite simple in that it provides you with the
means to code your client applications as if the middle tier resides directly on the client itself. Instead,
behind the scenes, calls are being made up to a WCF service layer.

WCF RIA Services is a new feature available to Silverlight developers, and you will find that it is a
useful tool in your tool belt when building business applications.

9
out-of-Browser experiences

what’s in this chapter?

Confi guring and installing an out-of-browser application➤➤

Detecting network connectivity➤➤

Creating a trusted application➤➤

Implementing COM automation➤➤

Customizing windows➤➤

An out-of-browser application, or OOB for simplicity, is a Silverlight-based application that
can be installed from the host browser from which it is running onto a user’s local computer.
Once installed locally, it can be launched from a local, application-specifi c icon located on the
desktop or Start menu. From a user’s perspective, the installed application is launched just like
any other application: there is an application-specifi c icon, and double-clicking that icon opens
up the application for execution.

creating an out-of-Browser application

An OOB application is really no different than an application that is hosted within a browser.
You use Visual Studio to build out a user interface, you write code that responds to events,
and you use features like isolated storage and printing to deliver expected Line of Business or
rich Internet applications (RIA) features. From a security perspective, an OOB is subject to
the same security sandbox restrictions as ordinary in-browser applications. To increase the
features that Silverlight has available, such as COM automation support and local fi lesystem
access, you can remove some sandbox restrictions by confi guring your application to require
elevated trust. Elevated trust is a new feature to Silverlight 4, and its implications are covered
later in the chapter.

282  ❘  Chapter 9   Out-of-Browser Experiences

To enable an in-browser application to run outside of the browser, you can do either one of the
following:

Set OOB-specific properties in the Properties window in Visual Studio.➤➤

Edit the application’s manifest to set OOB properties.➤➤

Once you perform one of the aforementioned operations, there is an additional menu option when
you right-click your Silverlight application that enables you to install the application locally to run
outside of the browser as Figure 9-1 shows.

Figure 9-1

When an application is installed outside of the browser, it is still accessing the Internet for its net-
work resources. If you are accessing data from a service, or doing some sort of authentication, you
need to make sure you handle any network connection issues gracefully. Using the network detec-
tion API built into Silverlight, you can deal with these issues effectively. This also allows you to
create applications that can run successfully without a network connection. You can use local files
or isolated storage to read and write data, and when a connection is available, you can allow your
application to sync with a server. Later in this chapter you learn how you can detect network con-
nectivity and deal with situations in which the network is not available.

Out-of-Browser Application Features
You may decide to create an OOB application just to have a more interesting experience for your
application; for example, you may be after a desktop-like look and feel, which the OOB application
gives you. You have other good reasons to choose an OOB application. The following features are
available to your Silverlight application only if it is running outside of the browser.

Window Manipulation➤➤  — ​At run time, you can change the window size, set it as the topmost
window, and minimize or maximize the window programmatically. You also have the abil-
ity to handle the Window_Closing event, which you can cancel except when the computer is
shutting down or the user is logging off. The Closing event enables you to perform actions
such as displaying a warning if the user has unsaved changes in the application data.

Creating an out-of-Browser application ❘ 283

Window Customization➤➤ — Trusted applications can hide the title bar and border of the
out-of-browser application window to provide a completely customized user interface. The
Window class provides APIs that trusted applications can use to replace the title bar buttons
and enable mouse dragging to move or resize the window.

HTML Hosting➤➤ — You can display HTML content within your out-of-browser application
to replace functionality provided by a host web page.

Notifi cation Windows➤➤ — Out-of-browser applications can display a toaster (or pop-up)
notifi cation similar to what displays when a new e-mail arrives in Outlook. The notifi cation
window displays in the lower right of the screen.

Digital Rights Management (DRM)➤➤ — DRM support is available for offl ine media fi les.

Elevated Trust➤➤ — Trusted applications can integrate with native functionality, such as cross-
domain access, and are not subject to the same security restrictions as normal Silverlight-
based applications.

Filesystem Access➤➤ — Trusted applications can use the System.IO types and related types to
enable read and write access to fi les in user folders on the local computer.

OOB applications can access network resources over HTTPS when a connec-
tion is available, but OOB applications are no more secure than their host web-
sites. Therefore, users must rely on the security of the host site when installing
or updating an out-of-browser application. If your application handles sensitive
information, you should use HTTPS for the application URI and for secure
communications. Note that the URI (including protocol) of the original applica-
tion is always used when the application checks for updates.

Now that you have a basis for what an OOB application is and why you might create one, the next
step is to learn how to create an OOB application.

confi guring an out-of-Browser application in visual studio
You can enable your existing Silverlight application to run outside of the browser in two ways:

Modify the properties on the Out-of-Browser Settings dialog, which is launched from the ➤➤

Properties window of your Silverlight project.

Modify the Out-of-Browser settings in the ➤➤ AppManifest.xaml fi le.

To confi gure OOB support via the Out-of-Browser Settings dialog, follow these steps:

 1 . In Solution Explorer, select the Silverlight project for which you want to enable OOB support.

 2 . On the Project menu, select project name Properties.

 3 . On the Silverlight tab, select Enable running application out of the browser as demonstrated in
Figure 9-2.

284  ❘  Chapter 9   Out-of-Browser Experiences

	 4.	 Click Out-of-Browser Settings to launch the Out-of-Browser Settings dialog box, as shown in
Figure 9-3.

Figure 9-2

Figure 9-3

Creating an Out-of-Browser Application  ❘  285

Table 9-1 describes each property of the OutOfBrowserSettings or WindowSettings class that are
available in the Out-of-Browser Settings dialog.

Table 9-1

Field Property Description

Window Title (required) Title Appears in the title bar of the OOB appli-
cation window.

Width and Height Width and Height Indicates the initial dimensions of the
OOB application window. If you do not
specify this property, the window defaults
to 800x600.

Set Window Location
Manually

WindowStartupLocation Indicates whether the initial position
of the OOB application window will be
centered or positioned according to the
specified Top and Left values.

Top and Left (not sup-
ported in Silverlight 3)

Top and Left Indicates the initial location of the OOB
application window. These fields are
disabled if you do not select Set Window
Location Manually.

Shortcut Name (required) ShortName Appears in the OOB installation dialog
box and on the installed application short-
cut or shortcuts.

Application Description
(required)

Blurb Appears as a tooltip on the installed appli-
cation shortcuts.

Icon fields Icons The operating system chooses the most
appropriate icon to display in the follow-
ing locations:

•  The installation dialog box
•  The application window
•  Windows Explorer
•  Windows taskbar
•  Macintosh dock bar

Icons must be of type PNG and have their
Build Action property set to Content.

If you do not specify an icon, a default
will be used. If you do specify an icon,
you should include an icon for each size
(16x16, 32x32, 48x48, and 128x128).

continues

286  ❘  Chapter 9   Out-of-Browser Experiences

Field Property Description

Use GPU Acceleration EnableGPUAcceleration Indicates whether graphics perfor-
mance is enhanced by using hardware
acceleration.

Show Install Menu ShowInstallMenuItem Indicates whether the install option
should appear on the application right-
click menu.

Require Elevated Trust
When Running Outside
the Browser (not sup-
ported in Silverlight 3)

SecuritySettings Indicates whether the application runs
with relaxed security restrictions.

Window Style (not sup-
ported in Silverlight 3)

WindowStyle Indicates the appearance of the title
bar and border for the OOB application
window.

Once you set the property values in the Out-of-Browser Settings dialog, the values are reflected in
the OutOfBrowserSettings.xaml file as demonstrated in Figure 9-4.

Figure 9-4

Table 9-1  (continued)

Creating an out-of-Browser application ❘ 287

As mentioned earlier, the other option for enabling OOB in an application is to modify the
AppManifest.xml fi le, which is created by default when you create a Silverlight application.
The AppManifest.xml fi le has a DeploymentParts section, where you can insert the property
settings for the OOB confi guration. The following code demonstrates an AppManifest.xml fi le
set up for an OOB experience:

<Deployment xmlns=”http://schemas.microsoft.com/client/2007/deployment”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Deployment.Parts>
 </Deployment.Parts>
 <Deployment.OutOfBrowserSettings>
 <OutOfBrowserSettings
 ShortName=”Out of Browser Sample Application”
 EnableGPUAcceleration=”True”
 ShowInstallMenuItem=”True”>
 <OutOfBrowserSettings.Blurb>
 This is the description of an OOB Application
 </OutOfBrowserSettings.Blurb>
 <OutOfBrowserSettings.Icons>
 <Icon Size=”16,16”>icons/16x16.png</Icon>
 <Icon Size=”32,32”>icons/32x32.png</Icon>
 <Icon Size=”48,48”>icons/48x48.png</Icon>
 <Icon Size=”128,128”>icons/128x128.png</Icon>
 </OutOfBrowserSettings.Icons>
 <OutOfBrowserSettings.WindowSettings>
 <WindowSettings
 Title=”Out of Browser Sample Application”
 Height=”500” Width=”500”
 Left=”0” Top=”0” WindowStartupLocation=”Manual”
 WindowStyle=”SingleBorderWindow”/>
 </OutOfBrowserSettings.WindowSettings>
 <OutOfBrowserSettings.SecuritySettings>
 <SecuritySettings ElevatedPermissions=”Required” />
 </OutOfBrowserSettings.SecuritySettings>
 </OutOfBrowserSettings>
 </Deployment.OutOfBrowserSettings>
</Deployment>

If you use the Out-of-Browser Settings dialog box, you cannot specify out-of-
browser settings in the AppManifest.xml fi le. This creates duplicate informa-
tion in the manifest, which raises an exception when your application runs.

installing an out-of-Browser application
As shown in Figure 9-1, the default installation experience of an OOB application is that you right-
click the application that is running in the web browser and select the Install <application name>
menu option to initiate the install process. Clicking this menu item launches the Install application
dialog shown in Figure 9-5.

http://schemas.microsoft.com/client/2007/deployment%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

288  ❘  Chapter 9   Out-of-Browser Experiences

This is a fairly simple process. The user is
prompted to install, and once he or she clicks
the OK button on the Install application dia-
log, the application is deployed locally to an
out-of-browser cache located in the user’s
local profile folder. The process that occurs
is as follows:

	 1.	 The user clicks Install <application
name> from the right-click menu.

	 2.	 The Install application dialog launches.

	 3.	 The user clicks OK.

	 4.	 A new HTTP request is made to the originating domain and the XAP is downloaded to the
user’s local profile folder.

	 5.	 The application is launched locally using sllauncher.exe (passing it a unique ID assigned
to the OOB application) using the width, height, and title bar text specified when the OOB
application was configured.

If you close the OOB application that is running, you can launch it from the desktop shortcut or the
Start menu shortcut, which then launches the application again using the sllauncher.exe applica-
tion. If you are giving your user an additional UI to install your application, such as a button or custom
menu item, you can use the following code to install your application out-of-browser:

App.Current.Install();

Once this code is executed, it initiates the same confirmation dialog as the install option from the
right-click menu. Before you actually run any code to install the application, you should check
the InstallState of the application:

if (App.Current.InstallState == InstallState.Installed)
{
 // do not show an install button, or indicate app is installed
}

Once you have determined whether the application is installed, you can check whether it’s running
outside of the browser with the IsRunningOutOfBrowser property check (see Listing 9-1).

Listing 9-1:  ​Checking if an application is running outside of the browser

if (!App.Current.IsRunningOutOfBrowser)
{
 // let user know they need to install your app OOB
}
else
{
 // Not running outside of browser, let user know
}

Figure 9-5

Creating an Out-of-Browser Application  ❘  289

No matter which technique you use to install your application out-of-browser, users are always
prompted with the confirmation dialog to ensure that they actually want to install your application.
You are prohibited from installing an application without the user initiating the process.

Once the application is installed, various techniques are available to enable a complete client application,
which caches data locally to the local filesystem or to isolated storage, and accesses network resources
only as needed. If you do need to access the network, you can call the GetIsNetworkAvailable method
before attempting to access a network resource. Listing 9-2 demonstrates how to call
GetIsNetworkAvailable.

Listing 9-2:  ​Determining if a network connection is available

if (NetworkInterface.GetIsNetworkAvailable())
{
 // Access the network resource
}
else
{
 // Notify user that Internet connection is not available
 MessageBox.Show(“This application requires an Internet connection”);
}

During the execution of your application, you may want to let the user know if the network is
available, or the application may need to know if there is a connection dropped once a connection
is open. To do this, you handle the NetworkChange.NetworkAddressChanged event in the System
.Net.NetworkInformation namespace (see Listing 9-3).

Listing 9-3:  ​Using the NetworkAddressChanged event

public MainPage()
{
 InitializeComponent();

 // Add event handler to check the network status
 NetworkChange.NetworkAddressChanged +=
 new NetworkAddressChangedEventHandler(NetworkChange_NetworkAddressChanged);
}

void NetworkChange_NetworkAddressChanged(object sender, EventArgs e)
{
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 MessageBox.Show(“Network is available”);
 }
 else
 {
 MessageBox.Show(“Network is not available”);
 }
}

290 ❘ chapter 9 out-oF-BrowSer experIenceS

In the following sections, you learn how to uninstall your application and update your OOB
application.

uninstalling an out-of-Browser application
You remove an OOB application the same way you install one — by right-clicking the application that
is running in the web browser and selecting the Remove This Application menu option to initiate the
uninstall process. This menu option is shown in Figure 9-6.

Once the menu option is selected, the dialog shown in Figure 9-7 is launched.

figure 9-6 figure 9-7

By default, an OOB application will not be listed in the list of programs to unin-
stall in the Programs and Features dialog in the Control Panel. If you suppressed
the right-click application menu by handling the MouseRightButtonDown event in
your OOB application, you need to uninstall the application from the Programs
and Features page in the Control Panel (Windows 7).

updating an out-of-Browser application
If you consider that your OOB application is just like any other web application, you’ve cho-
sen this platform not only for the RIA experiences it offers, but for the ease of deployment and
ease of updating it provides. Because the OOB application is running from a XAP stored in
the local cache, there will be times when you update your application and the client will need
to download the update to refresh the application with any new features or bug fi xes you have
added. To check for and retrieve updates, you call CheckAndDownloadUpdateAsync and then

Creating an out-of-Browser application ❘ 291

handle the Application.CheckAndDownloadUpdateCompleted event. In the event handler, the
UpdateAvailable property is true if a newer version of your application was discovered and
successfully downloaded. The purpose of this is to let the end users know that a new update has
been downloaded and is available once they restart the application. Listing 9-4 shows how to
implement the event handler and check for available updates.

listing 9-4: Checking for and downloading updates to an application

public MainPage()
{
 InitializeComponent();

 App.Current.CheckAndDownloadUpdateCompleted +=
 new CheckAndDownloadUpdateCompletedEventHandler
 (Current_CheckAndDownloadUpdateCompleted);
}

void Current_CheckAndDownloadUpdateCompleted(object sender,
 CheckAndDownloadUpdateCompletedEventArgs e)
{
 if (e.UpdateAvailable)
 {
 MessageBox.Show(“An application update has been downloaded. “ +
 “Restart the application to run the new version.”);
 }
 else if (e.Error != null &&
 e.Error is PlatformNotSupportedException)
 {
 MessageBox.Show(“An application update is available, “ +
 “but it requires a new version of Silverlight. “ +
 “Visit the application home page to upgrade.”);
 }
 else
 {
 MessageBox.Show(“There is no update available.”);
 }
}

When you check whether there is an available update with the UpdateAvailable property, you should
also check for the PlatformNotSupportedException exception. This occurs when an update is avail-
able but uses a newer version of Silverlight than the version that is installed on the local computer.

Silverlight 4 provides support for running OOB applications with elevated
trust. Trusted applications cannot use the update mechanism described in this
section unless the application and the update have both been signed with the
same valid, code-signing certifi cate. To update a trusted application that does
not have a valid signature, users must uninstall the old version and install the
new version manually.

292  ❘  Chapter 9   Out-of-Browser Experiences

Installing Trusted Applications

A Silverlight application runs in the safety of the partial trust browser sandbox. However, an OOB
application can be installed with elevated trust, which gives the application access to local computer
resources that you might expect only in a full desktop application. These features include local file-
system access, COM automation support, full-screen keyboard support, and cross-domain access,
all without getting the user’s permission beyond the initial application install.

To enable elevated trust, you can update the SecuritySettings in the AppManifest.xml file
if you are manually configuring your OOB application. Or you can simply check the Require
elevated trust when running outside the browser checkbox on the Out-of-Browser Settings dialog
as shown back in Figure 9-3.

 If your application is configured for elevated
trust, a Security Warning dialog box appears
when the installation is initiated. This dialog
warns users that they should not install applica-
tions they do not trust, as shown in Figure 9-8.
(Note that I clicked in the More Options expan-
sion indicator on the dialog to show the dialog
in its entirety.)

Once the application is installed, it behaves
the same as a default OOB application, except
you have those additional application options
available to you mentioned earlier in this sec-
tion, such as local filesystem access. Before you
execute any code that requires elevated trust,
you should check whether your application is
installed with elevated permission by checking
the HasElevatedPermissions property:

if (Application.Current.HasElevatedPermissions)
{
 // perform operation that requires elevated permissions
}

Listing 9-5 can be considered a reusable “stub” that you can use for your OOB application. It encap-
sulates several features that every trusted OOB application needs:

Checking if the application is running outside of the browser➤➤

Checking for updates➤➤

Checking for elevated permissions➤➤

Checking if the network is available➤➤

Figure 9-8

Installing Trusted Applications   ❘  293

I have bolded the lines of code that you should become familiar with when writing OOB
applications:

Listing 9-5:  ​Checking for elevated permissions and an available network

public MainPage()
{
 InitializeComponent();

 if (Application.Current.IsRunningOutOfBrowser)
 {
 // If running out-of-browser, find out whether a newer version is available
 Application.Current.CheckAndDownloadUpdateCompleted
 += new
 CheckAndDownloadUpdateCompletedEventHandler
 (OnCheckAndDownloadUpdateCompleted);
 Application.Current.CheckAndDownloadUpdateAsync();

 if (Application.Current.HasElevatedPermissions)
 {
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Perform a trusted feature
 }
 else
 {
 // Let user know there is no Internet connection
 MessageBox.Show(“This application requires an Internet connection”);
 }
 }
 else
 {
 // Display warning if running without elevated permissions
 MessageBox.Show(“This application requires elevated permissions”);
 }
 }
 else
 {
 // Display warning if not running OOB
 MessageBox.Show(“This application must be run outside
 the browser with elevated permissions”);
 }
}

private void OnCheckAndDownloadUpdateCompleted(object sender,
 CheckAndDownloadUpdateCompletedEventArgs e)
{
 if (e.UpdateAvailable)
 {
 MessageBox.Show(“An updated version of this application is available.
 Close the application and restart it to run the new version.”,
 “Update Available”, MessageBoxButton.OK);
 }
}

294  ❘  Chapter 9   Out-of-Browser Experiences

In the preceding code, a MessageBox is used to prompt the user with information. An additional
feature available to OOB applications is the ability to show a notification window, or toaster pop-up
to notify the user of useful information. A notification window should be familiar to you; it is the
pop-up in the lower-right portion of the screen when new mail arrives in Microsoft Outlook. To
duplicate this feature in an OOB application, create an instance of a NotificatoinWindow class and
assign a control or user control to its content control. This is demonstrated in the Listing 9-6.

Listing 9-6:  ​Displaying a notification window

private void AlertDone(string Message)
{
 NotificationWindow notify = new NotificationWindow();
 notify.Width = 329;
 notify.Height = 74;

 TextBlock tb = new TextBlock();
 tb.Text = Message ;
 tb.FontSize = 24;

 notify.Content = tb;
 notify.Show(3000);
}

When the Show method is called for 3000 milliseconds, the pop-up window appears on the lower
right of the screen for 3 seconds.

Note that system administrators can disable the ability to install trusted applications. If this capability
is disabled, attempting to install has no effect, and the Install method returns false. Some additional
considerations for elevated trust applications include:

Keyboard support in full-screen mode is available only in a trusted application.➤➤

The ➤➤ WebClient and HTTP classes in the System.Net namespace can be used without policy
checks. An application installed from one domain using the HTTP protocol can access media
files from a cross-domain site using the HTTPS protocol.

Networking and socket communication can be performed without being subject to cross-➤➤

domain and cross-scheme access restrictions. An application installed from one subdomain
using the HTTP protocol can access media files from a separate subdomain using the HTTPS
protocol.

Networking ➤➤ UdpAnySourceMulticastClient and UdpSingleSourceMulticastClient
classes in the System.Net.Sockets namespace can be used with relaxed policy checks.

A TCP connection can be made to any port on any host without the need for a cross-domain ➤➤

policy file.

A TCP destination port is no longer required to be within the range of 4502–4534.➤➤

The ➤➤ UdpAnySourceMulticastClient and UdpSingleSourceMulticastClient classes can
join any multicast group on any port greater than or equal to 1024 without the need for a
policy responder to authorize the connection.

installing Trusted applications ❘ 295

User consent is only required for the AudioSink (microphone) and VideoSink (camera) ➤➤

functionality.

Full-screen mode applications will not display the message “Press ESC to exit full-screen mode.”➤➤

ESC will not exit full-screen mode in trusted applications because trusted applications ➤➤

do not automatically intercept keystrokes and do not have any keyboard restrictions in
full-screen mode.

The following sections look at specifi c elevated trust operations and how to code them.

accessing the filesystems
In a non-trusted Silverlight application, fi lesystem access is allowed only through the OpenFileDialog
and SaveFileDialog classes. In a trusted OOB application, you can access the MyDocuments,
MyMusic, MyPictures, and MyVideos user folders using the System.IO classes. To obtain the path of
these folders and to access their contents, you use the System.Environment.SpecialFolder enumer-
ation to construct paths. In the following example (Listing 9-7), the MyDocuments folder is accessed
and the fi les in the folder are added to a ListBox control. To make this code work, you should add the
System.IO namespace to your class.

listing 9-7: enumerating the fi lesystem

if (Application.Current.HasElevatedPermissions)
{
 List<string> folderFilers = new List<string>();
 var files = Directory.EnumerateFiles(Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments));

 foreach (var item in files)
 {
 folderFilers.Add(item);
 }
 listBox1.ItemsSource = folderFilers;
}

Windows 7 Libraries named Documents, Music, Pictures, and Videos combine
the contents of the user folders with other folders, such as shared media folders.
However, trusted applications cannot access non-user folders except through
the OpenFileDialog and SaveFileDialog classes.

using coM automation
Using the AutomationFactory class in the System.Runtime.InteropServices.Automation
namespace, OOB trusted applications can integrate with some native functionality of the host

296 ❘ chapter 9 out-oF-BrowSer experIenceS

operating system, including the ability to access Automation APIs on Windows operating systems.
The types of automation servers include but are not limited to Microsoft Offi ce applications like
Outlook and Excel; system objects like Scripting.FileSystemObject; WScript.Shell; and
ShellApplication.

In Listing 9-8, the AutomationFactory.IsAvailable property is checked to verify the applica-
tion is running outside of the browser with elevated permissions before creating the COM Outlook
object to send an e-mail using Outlook on the client machine. To get this code to work, add the
System.Runtime.InteropServices.Automation namespace to your class.

listing 9-8: Using CoM automation

private void sendEmail(string fileName)
{
 // Check if application has elevated privileges outside of browser
 if (AutomationFactory.IsAvailable)
 {
 // Send an email
 dynamic outlook =
 AutomationFactory.CreateObject(“Outlook.Application”);
 dynamic mail = outlook.CreateItem(0);
 mail.Recipients.Add(“webmaster@contoso.com”);
 mail.Subject = “Hello, Silverlight”;
 mail.Body = “This message was sent from Silverlight 4”;
 mail.Save();
 mail.Send();
 }
}

IntelliSense is not available when using COM automation, so be sure to keep
your API reference handy for the automation server you are using.

support for window customization
When you create a trusted OOB application, you have the option to change from a normal border
around your window to a borderless window or a borderless window with rounded corners. Figure 9-9
shows the lower portion of the Out-of-Browser Settings dialog, which has the drop-down with your
window options.

figure 9-9

mailto:mail.Recipients.Add(%E2%80%9Cwebmaster@contoso.com%E2%80%9D

Installing Trusted Applications   ❘  297

Behind the scenes, when you hide the title bar and border, Silverlight displays your application
content over a white background, which means you cannot create irregularly shaped applications,
because the white background is not transparent. To replace the functionality provided by the title
bar and border, you can use the Window class members to perform actions like dragging the window
or window borders using the DragMove and DragResize methods. You can adjust the window posi-
tion and size by using the Left, Top, Width, and Height properties. Use the WindowState property
to minimize or maximize the window. Listing 9-9 demonstrates some of the code that you would
use from the Window class.

Listing 9-9:  ​Using the Window class

private void MoveWindow(object sender, MouseButtonEventArgs e)
{
 if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
 {
 App.Current.MainWindow.DragMove();
 }
}

private void ResizeWindowFromBottom(object sender, MouseButtonEventArgs e)
{
 if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
 {
 App.Current.MainWindow.DragResize(WindowResizeEdge.BottomRight);
 }
}

private void MinimizeWindow(object sender, MouseButtonEventArgs e)
{
 if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
 {
 App.Current.MainWindow.WindowState = WindowState.Minimized;
 }
}

private void RestoreWindow(object sender, MouseButtonEventArgs e)
{
 if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
 {
 App.Current.MainWindow.WindowState = WindowState.Normal;
 }
}

private void MaximizeWindow(object sender, MouseButtonEventArgs e)
{
 if (App.Current.IsRunningOutOfBrowser && App.Current.HasElevatedPermissions)
 {
 App.Current.MainWindow.WindowState = WindowState.Maximized;
 }
}

298  ❘  Chapter 9   Out-of-Browser Experiences

To create a simple application that has no border and a custom close button, as well as the ability
to move the window around the screen, create a new application based on the Silverlight Navigation
Application template. In the Out-of-Browser Settings, change the Window Style to Borderless Round
Corners as shown in Figure 9-10.

Figure 9-10

In the MainPage.xaml file, add the MouseLeftButtonDown, MouseLeftButtonUp, and MouseMove
events (Listing 9-10).

Listing 9-10:  ​Adding mouse events to the UserControl in MainPage.xaml

<UserControl
 x:Class=”WindowlessApp.MainPage”
 MouseLeftButtonDown=”UserControl_MouseLeftButtonDown”
 MouseLeftButtonUp=”UserControl_MouseLeftButtonUp”
 MouseMove=”UserControl_MouseMove”

From the Toolbox, drag a button to the page, and name it closeButton and add an event handler
for the closeButton_Click event. Next, add the code in Listing 9-11 in the code-behind to the
event handlers for each of the events you added.

installing Trusted applications ❘ 299

listing 9-11: interacting with a Window object

bool dragging = false;

private void UserControl_MouseLeftButtonDown
 (object sender, MouseButtonEventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser && !dragging)
 dragging = true;
}

private void UserControl_MouseLeftButtonUp
 (object sender, MouseButtonEventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser && dragging)
 dragging = false;
}

private void UserControl_MouseMove
 (object sender, MouseEventArgs e)
{
 if (dragging)
 Application.Current.MainWindow.DragMove();
}

When you run the application, you can drag it around the screen by clicking anywhere on the user
control, and you can close the application by clicking the button you added.

adding digital signatures
Adding a digital signature to your trusted application is an important step to help secure the appli-
cation and increase customer confi dence during installation. Additionally, only trusted applications
with valid digital signatures can use the out-of-browser update mechanism. To update a trusted
application that does not have a valid signature, users must uninstall the old version and install the
new version manually.

To add a digital signature to a trusted application, use the SignTool.exe utility with an Authenticode
X.509 code-signing certifi cate. For example, you could use the following command line:

signtool sign /v /f certificateFile.pfxfileToSign

Code signing is relevant only for trusted applications.

Silverlight verifi es the signature and certifi cate whenever a user installs or updates the application.
Users can install a trusted application without a valid signature. However, Silverlight prevents
trusted applications from updating unless both the original application and the update are signed
with the same valid, verifi ed, code-signing certifi cate. Additionally, the certifi cate must not be
expired at the time of update. Be sure to take the certifi cate expiration date into consideration in
your deployment and update planning.

300  ❘  Chapter 9   Out-of-Browser Experiences

Installing a Local Silverlight Application

In the same manner that an OOB application is launched using sllauncher.exe, you can install an
OOB application from a network resource, USB device, or CD-ROM as long as Silverlight is already
installed on the local computer. The sllauncher.exe application is located in the \program files
(x86)\Microsoft Silverlight folder. Note that on a 64-bit machine, Silverlight is installed in the x86
32-bit Program Files folder. The following installs an application locally by running sllauncher
.exe from the location of your XAP file:

“%ProgramFiles(x86)%\Microsoft Silverlight\sllauncher.exe” /overwrite /
install:”xapfilename.xap” /origin:http://www.original_web_location/clientbin/
xapfilename.xap /shortcut:desktop

The original_web_location is the originating URI and path to the XAP file where the application
should look for automatic updates. Even though the application is installed locally, it still needs
to get new updates at a URI origin. If you want to run the application after it’s installed, use the
emulate switch:

“%ProgramFiles(x86)%\Microsoft Silverlight\sllauncher.exe” /overwrite /
emulate:”xapfilename.xap” /origin:http://www.original_web_location/clientbin/
xapfilename.xap /overwrite

To uninstall it use the following command:

“%ProgramFiles(x86)%\Microsoft Silverlight\sllauncher.exe” /overwrite /
uninstall:”xapfilename.xap” /origin:http://www.original_web_location/clientbin/
xapfilename.xap /shortcut:desktop

The following options can be passed to sllauncher.exe:

/install:“path-toXAP-File”➤➤  — ​Required. Points to the XAP file that you are installing.

/origin:“URI-to-origin”➤➤  — ​Required. The originating URI of the XAP file.

/shortcut:desktop+startmenu➤➤  — ​Optional. Indicate desktop, startmenu, or
desktop+startmenu for the shortcut location. If you omit this, the user will not be able to
launch the application from a shortcut.

/overwrite➤➤  — ​Optional. Overwrites an existing installation.

Summary

In this chapter, you learned about the experiences you can create in an out-of-browser applica-
tion. You learned how to configure the application using Visual Studio, or manually by editing
the AppManifest.xml file. You also learned how trusted applications behave and how to install
and uninstall an OOB application. Finally, you learned how to sign your application for an even
better UX.

http://www.original_web_location/clientbin/
http://www.original_web_location/clientbin/
http://www.original_web_location/clientbin/

10
networking applications

what’s in this chapter?

Using WebClient to call for remote content➤➤

Dealing with cross-domain access➤➤

Using WCF duplex communications with Silverlight➤➤

Working with sockets➤➤

Because Silverlight applications are on the client side, this chapter focuses on the communica-
tion capabilities these types of applications provide. This chapter is not a guide to computer
networking, but an introduction to using the .NET Framework along with Silverlight for net-
work communication.

This chapter covers facilities provided through the .NET base classes for using various net-
work protocols, particularly HTTP and TCP, to access networks and the Internet as a cli-
ent. It covers some of the lower-level means of getting at these protocols through the .NET
Framework. You will also fi nd other means of communicating via these items using tech-
nologies such as the Windows Communication Foundation (WCF) or using REST-based ser-
vices to get at remote capabilities. The two namespaces of most interest for networking are
System.Net and System.Net.Sockets. The System.Net namespace is generally concerned
with higher-level operations, for example, downloading and uploading fi les, and making web
requests using HTTP and other protocols, whereas System.Net.Sockets contains classes
to perform lower-level operations. You will fi nd these classes useful when you want to work
directly with sockets or protocols, such as TCP/IP. The methods in these classes closely mimic
the Windows Socket (Winsock) API functions derived from the Berkeley sockets interface.

Utilizing these namespaces provides you with the access you will need from Silverlight. With
the use of System.Net, you are able to use the simplifi ed WebClient object as well as the more

302 ❘ chapter 10 networkIng ApplIcAtIonS

generic but more powerful HttpWebRequest/Response objects. Now with these objects, you have
libraries that allow for such activities as dealing with RSS/syndication, duplex communications, and
downloading.

You also have the ability to access capabilities or underlying data using some kind of a web service
from Silverlight. You might have a formal service with an accompanying Web Services Description
Language (WSDL) fi le. If that is the case, you will be able to generate a client proxy for that service
and access it remotely using the proxy. Another very common scenario is to access services that
are just a Plain-Old XML (POX) and Representational State Transfer (REST) services. For both
of these, you can use just the aforementioned WebClient or HttpWebRequest/Response classes,
although Silverlight does provide additional means to access REST services, particularly for WCF
Data Services.

the weBclient class

If you only want to request a fi le from a particular URI (Uniform Resource Identifi er), you will fi nd
that the easiest .NET class to use is System.Net.WebClient. This is an extremely high-level class
designed to perform basic operations with only one or two commands. You can use the WebClient
class to retrieve data from a wide variety of endpoints including POX-, JSON-, RSS-, and REST-
based services. All requests using WebClient are performed asynchronously in Silverlight, which
enables your application to still respond even while it is loading data under the covers.

It is worth noting that the term URL (Uniform Resource Locator) is no longer
in use in new technical specifi cations, and URI (Uniform Resource Identifi er)
is now preferred. URI has roughly the same meaning as URL, but is a bit more
general because URI does not imply you are using one of the familiar protocols,
such as HTTP or FTP.

Depending on the format of the data returned by the server, you can choose the appropriate class
to parse it into a format for your application to consume. For example, the XmlReader class can be
used to quickly access data returned from the server in POX.

using openreadasync()
This fi rst example demonstrates the WebClient.OpenReadAsync() method. You will use this to dis-
play the contents of a downloaded XML fi le in a TextBlock control on the page. To begin, create a
new project as a standard C# Silverlight application called WebClientSolution and add a TextBlock
control called textBlock1. Another possibility would be to use DownloadStringAsyc() rather than
OpenReadAsync(), as this is an XML fi le. It is interesting to note that OpenReadAsync() can work
with not only string data, but images, videos, and anything else you can plug into a stream.

The WebClient Class  ❘  303

Before working with the default MainPage.xaml page in detail, create an XML file that you will
work with from this application. In the ClientBin folder next to the XAP being accessed, create an
XML file called Persons.xml. The content of this file is presented in Listing 10-1.

Listing 10-1:  ​The contents of Persons.xml

<?xml version=”1.0” encoding=”utf-8” ?>
<People>
 <Person>
 <FirstName>Bill</FirstName>
 <LastName>Evjen</LastName>
 </Person>
 <Person>
 <FirstName>Devin</FirstName>
 <LastName>Rader</LastName>
 </Person>
 <Person>
 <FirstName>Jason</FirstName>
 <LastName>Beres</LastName>
 </Person>
</People>

With this is place, you can now turn your attention to MainPage.xaml.cs. At the beginning of this
file, you need to add the System.Net and System.IO namespace references to your list of using
directives. The code for this page is presented in Listing 10-2.

Listing 10-2:  ​Calling the server-side XML file using WebClient

using System;
using System.IO;
using System.Net;
using System.Windows.Controls;

namespace WebClientSolution
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 WebClient client = new WebClient();
 Uri uri = new Uri(“Persons.xml”, UriKind.Relative);
 client.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(client_OpenReadCompleted);

 client.OpenReadAsync(uri);
 }

 void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

continues

304  ❘  Chapter 10   Networking Applications

 {
 if (e.Error == null)
 {
 Stream strm = e.Result;
 StreamReader sr = new StreamReader(strm);
 textBlock1.Text = sr.ReadToEnd();
 strm.Close();
 }
 else
 {
 textBlock1.Text = e.Error.Message;
 }
 }
 }
}

In this example, you connect a StreamReader class from the System.IO namespace to the network
stream. This lets you obtain data from the stream as text through the use of higher-level methods,
such as ReadToEnd() or ReadLine(). In addition, it is important to note that like all other .NET
applications, all paths in Silverlight applications are relative to the location of the .xap file. Running
this example produces a simple page as illustrated in Figure 10-1.

Figure 10-1

Downloading Files Using WebClient
In Silverlight 1.0, there was a special Downloader service that simplified downloading items with
HTTP GET. Since Silverlight 2.0, the Downloader has been replaced with the WebClient class,
which is a more general-purpose web client (as its name implies). You can actually use WebClient to

Listing 10-2  (continued)

The WebClient Class  ❘  305

download all sorts of things including XAML, XML, media, fonts, packages, additional assemblies,
and more. This is also done asynchronously over HTTP.

In addition to starting and receiving the down-
load process, you can also use this to moni-
tor the overall progress of the download. The
DownloadProgressChangedEventArgs object has
various members such as bytes and total bytes to
receive as well as a progress percentage member that
you can use to display meaningful progress to the
end user.

To see the progress aspect in action, create a new
project called Downloading in Visual Studio. Put
a large file in the host solution’s ClientBin folder
and create a simple XAML page as shown in
Figure 10-2.

The XAML code for this is presented in Listing 10-3.

Listing 10-3:  ​XAML code for the Downloading solution

<UserControl x:Class=”Downloading.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”
 xmlns:sdk=”http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Start downloading ...” Height=”23”
 HorizontalAlignment=”Left” Margin=”12,12,0,0” Name=”button1”
 VerticalAlignment=”Top” Width=”376” Click=”button1_Click” />
 <ProgressBar Height=”20” HorizontalAlignment=”Left”
 Margin=”12,41,0,0” Name=”progressBar1”
 VerticalAlignment=”Top” Width=”376” />
 <sdk:Label Height=”28” HorizontalAlignment=”Left” Margin=”12,67,0,0”
 Name=”lblPercentComplete” VerticalAlignment=”Top” Width=”376” />
 <sdk:Label Height=”28” HorizontalAlignment=”Left” Margin=”12,87,0,0”
 Name=”lblBytesReceived” VerticalAlignment=”Top” Width=”376” />
 <sdk:Label Height=”28” HorizontalAlignment=”Left” Margin=”12,107,0,0”
 Name=”lblBytesToReceive” VerticalAlignment=”Top” Width=”376” />
 </Grid>
</UserControl>

The idea here is that when the user clicks the only button, the download process starts and the end
user is provided with a series of stats on the download that is occurring. The code-behind for this
file is presented in Listing 10-4.

Figure 10-2

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

306  ❘  Chapter 10   Networking Applications

Listing 10-4:  ​Monitoring the download progress

using System;
using System.Net;
using System.Windows;
using System.Windows.Controls;

namespace Downloading
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 WebClient client = new WebClient();
 Uri uri = new Uri(“Big Movie.wmv”, UriKind.Relative);

 client.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(client_OpenReadCompleted);
 client.DownloadProgressChanged +=
 new DownloadProgressChangedEventHandler
 (client_DownloadProgressChanged);
 client.OpenReadAsync(uri);
 }

 void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
 {
 MessageBox.Show(“Download completed!”);
 }

 void client_DownloadProgressChanged(object sender,
 DownloadProgressChangedEventArgs e)
 {
 progressBar1.Value = e.ProgressPercentage;
 lblPercentComplete.Content = e.ProgressPercentage + “% done”;
 lblBytesReceived.Content = e.BytesReceived + “ bytes received”;
 lblBytesToReceive.Content = e.TotalBytesToReceive + “ bytes needed”;
 }
 }
}

Once the download starts, the ProgressBar control is provided with a value of the progress
percentage from the DownloadProgressChangedEventArgs object. In addition, three Label con-
trols are updated with the progress percentage, the total bytes received, and the total number of
bytes of the entire file. When you run this solution, you will see results similar to those shown in
Figure 10-3.

The WebClient Class  ❘  307

Figure 10-3

Uploading Files Using WebClient
In addition to downloading files, you can also allow the end user to upload files to the server. There
is a bit of extra work for this, because you are required to create a generic handler on the server for
the Silverlight client to interact with in the upload process.

To accomplish this, create a new solution called UploadFiles and the associated UploadFiles.Web.
First, this section focuses on the UploadFiles.Web solution. To start, create a generic handler
called FileUpload.ashx in the root of the solution. Listing 10-5 provides you with the code
for the FileUpload.ashx.cs file.

Listing 10-5:  ​A generic handler file for uploading files to the server

using System.IO;
using System.Web;

namespace UploadFiles.Web
{
 public class FileUpload : IHttpHandler
 {
 #region IHttpHandler Members

 public void ProcessRequest(HttpContext context)
 {
 string fileuploaded = context.Request.QueryString[“uploadedfile”];

 using (FileStream fileStream =

continues

308  ❘  Chapter 10   Networking Applications

 File.Create(context.Server.MapPath(“~/Uploads/” + fileuploaded)))
 {
 byte[] bytes = new byte[4096];
 int totalBytesRead;

 while ((totalBytesRead =
 context.Request.InputStream.Read(bytes, 0, bytes.Length)) != 0)
 {
 fileStream.Write(bytes, 0, totalBytesRead);
 }
 }
 }

 public bool IsReusable
 {
 get { return false; }
 }

 #endregion
 }
}

From this handler, you can see that it is looking for a querystring object called uploadedfile
and will take that as the name of the file being uploaded. The upload is occurring in a folder called
Uploads that should be created within the UploadFiles.Web solution. You should make sure that
there are write privileges to this folder.

Now that you have the handler and the folder ready, the next step is to focus on the Silverlight client
and create an application that will make use of this handler.

The actual Silverlight form that you are using is rather simple; it contains a simple button and noth-
ing more. The idea is that when users click the button, they are presented with a file dialog. The file
selected will then be the file that is uploaded to the server. Listing 10-6 shows the code-behind file
for MainPage.xaml.

Listing 10-6:  ​Uploading a file from a Silverlight client application

using System;
using System.IO;
using System.Net;
using System.Windows;
using System.Windows.Controls;

namespace UploadFiles
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

Listing 10-5  (continued)

The WebClient Class  ❘  309

 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Multiselect = false;

 bool? userAccepts = openFileDialog.ShowDialog();

 if (userAccepts == true)
 {
 // Start the upload process
 // Change the port on the localhost to what
 // yours is when running in Visual Studio
 UriBuilder uriBuilder = new
 UriBuilder(“http://localhost:63906/FileUpload.ashx”);
 uriBuilder.Query =
 string.Format(“uploadedfile={0}”, openFileDialog.File.Name);

 WebClient client = new WebClient();

 client.OpenWriteCompleted += (innerSender, innerE) =>
 {
 Stream inputStream = openFileDialog.File.OpenRead();
 Stream outputStream = innerE.Result;
 byte[] bytes = new byte[4096];
 int totalBytesRead;

 while ((totalBytesRead =
 inputStream.Read(bytes, 0, bytes.Length)) !=0)
 {
 outputStream.Write(bytes, 0, totalBytesRead);
 }

 inputStream.Close();
 outputStream.Close();

 MessageBox.Show(“File Uploaded!”);
 };

 client.OpenWriteAsync(uriBuilder.Uri);
 }
 }
 }
}

For this application, the OpenFileDialog object is used to bring forth the file dialog that
allows the end users to select the file that they are interested in uploading. Notice that using
openFileDialog.Multiselect = false; forces only one selection in this process.

A URI is built using the generic handler in conjunction with the querystring uploadedfile. Then
the WebClient object’s OpenWriteAsync() method is called to upload the file. In the end, a message

http://localhost:63906/FileUpload.ashx%E2%80%9D

310  ❘  Chapter 10   Networking Applications

box is presented saying that the file upload process is complete. When you run this application, you
can select a file on the client and then, running through the process, you will notice that the selected
file, at the end of it all, is contained within the Uploads folder.

Reusing a Single WebClient Object
If you want to build an application that allows the end user to download a set of files, but you do
not want to instantiate different instances of the WebClient object and a separate event handler
for each one, you can choose to reuse a single WebClient object to do this instead. Although each
download request is made asynchronously, the WebClient class does not support simultaneous
requests. You can, however, make additional calls to DownloadStringAsync once the previous calls
have completed.

Because each WebClient instance has a single DownloadStringCompleted event, you need a way to
distinguish exactly what request has completed in your event handler. You can achieve this by speci-
fying some state with each call to DownloadStringAsync through the userToken parameter. An
example of this in action is presented in Listing 10-7.

Listing 10-7:  ​Allowing for multiple downloads

public partial class MainPage : UserControl
{
 // Construct a new WebRequest object as a private member
 WebClient _client = new WebClient();

 public MainPage()
 {
 InitializeComponent();
 this.Loaded += new RoutedEventHandler(Page_Loaded);
 }

 void Page_Loaded(object sender, RoutedEventArgs e)
 {
 // Configure an event handler for when the download is complete
 _client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadCompleted);

 // Construct a URI based on files with an indexed naming scheme
 Uri targetUri = new Uri(“Destination.xml”, UriKind.Relative);

 // Initiate the download passing an integer as the userToken
 _client.DownloadStringAsync(targetUri, 1);
 }

 void client_DownloadCompleted(object sender, DownloadStringCompletedEventArgs e)
 {
 // If no error, process the result
 if (e.Error == null)

The WebClient Class  ❘  311

 {
 // Retrieve the state originally specified
 int count = (int)e.UserState;

 // Set the text of the appropriate textbox based on the integer userToken
 switch (count)
 {
 case 1:
 ResultsTextBlock1.Text = e.Result;
 break;
 case 2:
 ResultsTextBlock2.Text = e.Result;
 break;
 case 3:
 ResultsTextBlock1.Text = e.Result;
 break;
 }

 // Fire off requests until you have retrieved three files
 if (count ++ < 3)
 {
 Uri targetUri = new Uri(“Destinations” + count + “.xml”,
 UriKind.Relative);

 // Initiate the download passing an integer as the userToken
 _client.DownloadStringAsync(targetUri, count);
 }
 }
 }
}

Cross-Domain Access
Silverlight has a few URL access restrictions. For the most part, they are what you would expect
from a browser-based technology, but they are worth discussing briefly. They apply to both HTTP-
based classes and to other facilities in the .NET Framework that internally use HTTP, such as
images, media, font files, XAML source files, and streaming media.

At a high level, three kinds of restrictions exist: those that are based on schemes (HTTP, HTTPS,
and FILE), those based on domains (for which Silverlight loosens the standard browser restrictions
to enable cross-domain access), and those that are based on zone access (as in Internet Explorer).

For zone-based access, the rule is that you cannot access resources in a zone that is more trusted.
For example, you cannot get a resource in Trusted Sites if your application is running in the Internet
zone. This zone-based security will override cross-domain policies, so keep this in mind if you find
yourself trying to access a site that you know has the correct cross-domain policy. In this case, it
does good to ensure that the site you are trying to access is not in a more trusted zone.

Table 10-1 gives a good outline of how the restrictions affect the various kinds of access in
Silverlight.

Ta
b

le
 1

0
-1

W
e

bC

li
e

n
t

 a
n

d

HTTP

 C
l

a
s

s
e

s

Im
a

g
e

,
M

e
d

ia

e
le

m
e

n
t

 (
N

o
n

-

S
t

r
e

a
m

in
g

)

XA

M
L

S
o

u
r

c
e

F
il

e
s

F
o

n
t

 F
il

e
s

S
t

r
e

a
m

in
g

M
e

d
ia

A
llo

w
ed

 S
ch

em
es

H
TT

P
, H

TT
P

S
H

TT
P

, H
TT

P
S

, F
IL

E
H

TT
P

, H
TT

P
S

,
FI

LE
H

TT
P

, H
TT

P
S

,
FI

LE
H

TT
P

C
ro

ss
-S

ch
em

e
A

cc
es

s
N

o
N

o
N

o
N

o
N

ot
 fr

om

H
TT

P
S

C
ro

ss
-D

om
ai

n
A

cc
es

s
O

nl
y

w
ith

 s
ec

ur
ity

po

lic
y;

 N
ot

 H
TT

P
,

H
TT

P
S

N
ot

 H
TT

P
, H

TT
P

S
N

ot
 H

TT
P

,
H

TT
P

S
N

o
N

ot
 H

TT
P

,
H

TT
P

S

C
ro

ss
-Z

on
e

A
cc

es
s

(o
n

IE
)

S
am

e
or

 le
ss

re

st
ric

tiv
e

S
am

e
or

 le
ss

re

st
ric

tiv
e

S
am

e
or

 le
ss

re

st
ric

tiv
e

S
am

e
or

 le
ss

re

st
ric

tiv
e

S
am

e
or

 le
ss

re

st
ric

tiv
e

R
e-

D
ir

ec
tio

n
A

llo
w

ed
S

am
e

si
te

/s
ch

em
e

or
 c

ro
ss

-d
om

ai
n

w
ith

 a
 p

ol
ic

y

N
o

cr
os

s-
sc

he
m

e
N

o
N

o
N

o

The WebClient Class  ❘  313

Silverlight enables access to any services that are contained in the same domain as the applica-
tion. If you want to access services that are located on a different domain, a policy file is required.
Assuming that you have root access to your deployment server, adding a Silverlight policy file is
actually simple.

Many domains have already been configured to allow cross-domain access from Flash clients via a
crossdomain.xml policy file. Thankfully, Silverlight supports the Silverlight (clientaccesspolicy
.xml) policy format and the subset of Flash (crossdomain.xml) policy formats. First Silverlight checks
to see if the Silverlight policy file, crossaccesspolicy.xml, exists on the server. If it does, Silverlight
uses this. However, if not, Silverlight looks for the Flash version of this, crossdomain.xml. In effect,
Silverlight supports both. Silverlight doesn’t check for crossdomain.xml if crossaccesspolicy.xml
exists on the server.

The clientaccesspolicy.xml Silverlight policy file enables classes in the System.Net namespace,
such as the WebClient object. It also allows for classes in the System.Net.Sockets namespace
to access all the available resources located in the domain. An example of this is presented in
Listing 10-8.

Listing 10-8:  ​The clientaccesspolicy.xml file

<?xml version=”1.0” encoding=”utf-8” ?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers=”*”>
 <domain uri=”*” />
 </allow-from>
 <grant-to>
 <resource path=”/” include-subpaths=”true” />
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

The * for the domain URI means that the clients can come from anywhere, whereas using
<domain uri=”http://www.thomsonreuters.com” /> means that for the client domain, only
www.thomsonreuters.com is allowed along with all of its subpaths.

The crossdomain.xml file is the Flash-based one and is presented in Listing 10-9.

Listing 10-9:  ​The crossdomain.xml file

<?xml version=”1.0”?>
<!DOCTYPE cross-domain-policy SYSTEM
 “http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd”>
<cross-domain-policy>
 <allow-http-request-headers-from domain=”*” headers=”*” />
</cross-domain-policy>

http://www.thomsonreuters.com%E2%80%9D
http://www.thomsonreuters.com
http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd%E2%80%9D

314 ❘ chapter 10 networkIng ApplIcAtIonS

silverlight and wcf duplex coMMunications

Duplex communication is a special facility that enables Silverlight clients to connect to a server and
effectively keep a channel of communication open so that the server can send updates (sometimes
called push) to clients without their having to repeatedly poll for updates. This is especially helpful
in cases such as instant communication clients (instant messaging/chat services) as well as server-
based monitoring.

Note that under the covers, there is intermittent polling going on, but it is
effectively two-way, because the server keeps the poll connection open until it
responds.

The following sample demonstrated next illustrates the basics of setting up duplex (two-way) com-
munications. Be prepared to be mystifi ed if this sort of thing is new to you. It requires jumping
through many hoops and does not provide most of the WCF service niceties (like client generation)
that you might be used to. First, you set up your Silverlight application as usual and add a website
(or link to an existing one). For this example, name your Silverlight application SilverlightDuplex.
This also means that the associated web application Visual Studio helps you create will be called
SilverlightDuplex.Web. Now that this is set up, instead of fi rst concentrating on the client, you fi rst
turn your attention to building the service within the same solution.

setting up the duplex service
With your Silverlight client in place, you fi rst build the duplex service. To do this, right-click the
solution from the Solution Explorer within Visual Studio and select the option to add a new project
to the solution. You are presented with the Add New Project dialog. Select the option to add a WCF
Service Application as presented in Figure 10-4.

Name the service WCFDuplexServer as is presented in the fi gure. Once in place, you need to add
a reference to System.ServiceModel.PollingDuplex.dll, which you will fi nd in a server-side
folder within the Silverlight SDK (C:\Program Files\Microsoft SDKs\Silverlight\v4.0\
Libraries\Server). To do this, right-click the References folder and choose the option to add a
reference. The Add Reference dialog displays. Click the Browse tab and use the fi le dialog to select
the appropriate DLL. Once selected, you will see reference to the PollingDuplex.dll in your
References folder.

From there, create the interface that will be utilized on the server. This interface,
IServerTimeService.cs, is defi ned in Listing 10-10.

listing 10-10: The server-side interface iserverTimeservice.cs

using System.ServiceModel;

namespace WCFDuplexServer

Silverlight and WCF Duplex Communications  ❘  315

{
 [ServiceContract(Namespace = “Silverlight”,
 CallbackContract = typeof (IServerTimeClient))]
 public interface IServerTimeService
 {
 [OperationContract(IsOneWay = true)]
 void GetServerTime();
 }
}

Figure 10-4

This code shows that IServerTimeService is the server-side contract and IServerTimeClient
is the client-side contract. What is important here is the ServiceContract attribute, because that
is how WCF maps the messages sent back and forth to the corresponding code operations. On the
server, you just define a Subscribe that clients can call to subscribe to server notifications; the client
defines a Notify that the server uses to send notifications to clients. Note the CallbackContract
on IServerTimeService; this indicates the client-side contract that WCF expects for duplex
communication.

Now that the server-side interface implementation is in place, add the client-side implementa-
tion. This is also done within the WCF service right next to the server-side interface definition.
Listing 10-11 provides the code for this interface.

316  ❘  Chapter 10   Networking Applications

Listing 10-11:  ​The client-side interface implementation IServerTimeClient

using System.ServiceModel;

namespace WCFDuplexServer
{
 [ServiceContract]
 public interface IServerTimeClient
 {
 [OperationContract(IsOneWay = true)]
 void Receive(ServerDateTime serverDateTime);
 }
}

Here, you also make use of the ServiceContract attribute on the interface, and for the method def-
inition, you make use of the OperationContract, setting the IsOneWay property to a value of true.
From this bit of code in Listing 10-11, you can see that the client receives a ServerDateTime object
back. The next step is to define this complex type as shown in Listing 10-12.

Listing 10-12:  ​Defining ServerDateTime

using System;

namespace WCFDuplexServer
{
 public class ServerDateTime
 {
 public DateTime ServerDateTimeValue { get; set; }
 public ServerDateTimeStatus Status { get; set; }
 }

 public enum ServerDateTimeStatus
 {
 Working,
 Completed
 }
}

Here, the class ServerDateTime is a simple definition of a DateTime object called
ServerDateTimeValue along with the status of the service, ServerDateTimeStatus. Looking at
ServerDateTimeStatus, you can see that it is actually an enum value that tells the clients that the
request that they made is either being worked on or it has been completed. This is not really needed for
this example, but is put here to make a point that if you had some long-running server-side operations,
you might want to consider such an approach on how you would communicate that down to the client.

Now that the interfaces and the type being returned to the client have been created, the next step is
to create the actual WCF service that will make use of all of this. For this step, create a new service
or use the default Service1.svc implementation (though you are going to have to change the code
for this). Listing 10-13 shows the code for the Service1.svc file that you are going to need to put
into place. If you are using the pre-existing Service1.svc file, pull up this file by right-clicking the

Silverlight and WCF Duplex Communications  ❘  317

.svc file (not the .svc.cs file) and selecting Open With. In the Open With dialog, select HTML
Editor to view the actual file; otherwise, you will be consistently presented with the code-behind file
if you are just double-clicking the .svc file.

Listing 10-13:  ​The Service1.svc file

<%@ ServiceHost Language=”C#” Debug=”true”
 Service=”WCFDuplexServer.ServerTimeService” CodeBehind=”Service1.svc.cs” %>

Here, make sure that the Service value is actually WCFDuplexServer.ServerTimeService if you
have been following along with this example exactly.

With this all in place, it is now time to turn your attention to the code-behind page for this file.
This is presented in Listing 10-14.

Listing 10-14:  ​The code-behind for the service Service1.svc.cs

using System;
using System.ServiceModel;
using System.Threading;

namespace WCFDuplexServer
{
 public class ServerTimeService : IServerTimeService
 {
 private IServerTimeClient _client;
 private bool _working;

 public void GetServerTime()
 {
 // Grab the client callback channel.
 _client =
 OperationContext.Current.GetCallbackChannel<IServerTimeClient>();

 // Pretend service is processing and will call client back
 // in 5 seconds.
 using (new Timer(CallClient, null, 5000, 5000))
 {
 Thread.Sleep(11000);
 }
 }

 private void CallClient(object o)
 {
 ServerDateTime sdt = new ServerDateTime();

 if (_working)
 {
 sdt.ServerDateTimeValue = DateTime.Now;

continues

318  ❘  Chapter 10   Networking Applications

 sdt.Status = ServerDateTimeStatus.Completed;
 }
 else
 {
 // Turn the status to working.
 sdt.Status = ServerDateTimeStatus.Working;
 _working = true;
 }

 // Call client back.
 _client.Receive(sdt);
 }
 }
}

This service, ServerTimeService, implements the IServerTimeService interface. This is the
server-side implementation. All this code simply sets up a service that sends delayed updates to sub-
scribed clients, telling them what the current server time is. The timer is just there to facilitate the
updates; normally you would not do this — ​you would have something more meaningful to send
back to the client that would more likely be event-based than timer-based.

Looking over the example in Listing 10-14, you can see that an instance of the ServerDateTime
object is returned though the client interface’s Receive() method.

The next step to take with the WCF service is to configure the Web.config file. If you are working
with the Visual Studio-generated Service1.svc file and Web.config file, you most likely want to
delete the previous contents of the Web.config file and replace it with the contents illustrated in
Listing 10-15.

Listing 10-15:  ​The Web.config file for Service1.svc

<?xml version=”1.0”?>

<configuration>

 <system.web>
 <compilation debug=”true” targetFramework=”4.0” />
 </system.web>

 <system.serviceModel>
 <extensions>
 <bindingExtensions>
 <add name=”pollingDuplexHttpBinding”
 type=”System.ServiceModel.Configuration
 .PollingDuplexHttpBindingCollectionElement,
 System.ServiceModel.PollingDuplex, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35” />
 </bindingExtensions>

Listing 10-14  (continued)

Silverlight and WCF Duplex Communications  ❘  319

 </extensions>

 <!-- Create the polling duplex binding. -->
 <bindings>
 <pollingDuplexHttpBinding />
 </bindings>

 <services>
 <service name=”WCFDuplexServer.ServerTimeService”
 behaviorConfiguration=”WCFDuplexServer.ServerTimeServiceBehavior”>

 <!-- Specify the service endpoints. -->
 <endpoint address=”“
 binding=”pollingDuplexHttpBinding”
 contract=”WCFDuplexServer.IServerTimeService”>
 </endpoint>
 <endpoint address=”mex”
 binding=”mexHttpBinding”
 contract=”IMetadataExchange”/>
 </service>
 </services>

 <behaviors>
 <serviceBehaviors>
 <behavior name=”WCFDuplexServer.ServerTimeServiceBehavior”>
 <!-- To avoid disclosing metadata information,
 set the value below to false and remove the metadata
 endpoint above before deployment -->
 <serviceMetadata httpGetEnabled=”true”/>
 <!-- To receive exception details in faults for debugging purposes,
 set the value below to true. Set to false before deployment to
 avoid disclosing exception information -->
 <serviceDebug includeExceptionDetailInFaults=”false”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>

 <serviceHostingEnvironment multipleSiteBindingsEnabled=”true” />
 </system.serviceModel>

 <system.webServer>
 <modules runAllManagedModulesForAllRequests=”true” />
 </system.webServer>

</configuration>

Some of the main points of this configuration file are that you are declaring a binding of
PollingDuplexHttpBinding. Your version of Visual Studio might not recognize this option,
but it will still work when compiled and run, so don’t worry too much about that.

<bindings>
 <pollingDuplexHttpBinding />
</bindings>

320  ❘  Chapter 10   Networking Applications

You are also declaring a binding extension pointing to the provided and referenced
System.ServiceModel.PollingDuplex.dll from earlier:

<extensions>
 <bindingExtensions>
 <add name=”pollingDuplexHttpBinding”
 type=”System.ServiceModel.Configuration.
 PollingDuplexHttpBindingCollectionElement,
 System.ServiceModel.PollingDuplex, Version=4.0.0.0,
 Culture=neutral,
 PublicKeyToken=31bf3856ad364e35” />
 </bindingExtensions>
</extensions>

One of the final points is in creating the endpoint for the service:

<endpoint address=”“
 binding=”pollingDuplexHttpBinding”
 contract=”WCFDuplexServer.IServerTimeService”>

Now that the configuration file is in place, the final step is to create a policy file in the root of the
WCF solution so that your Silverlight application has the appropriate permissioning to make the
call to the service. To accomplish this task, create a new XML file called clientaccesspolicy.xml
within the root of the solution. The code for this file is presented in Listing 10-16.

Listing 10-16:  ​The clientaccesspolicy.xml file

<?xml version=”1.0” encoding=”utf-8” ?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers=”*”>
 <domain uri=”*” />
 </allow-from>
 <grant-to>
 <resource path=”/” include-subpaths=”true” />
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

With this all in place, you are now ready to turn your attention to the client portion of this example.
Therefore, expand the SilverlightDuplex Silverlight project within this solution.

Setting Up the Duplex Client
Now that the server-side capabilities for duplex communication are established, the next step is to create
the client. If you remember, you had to make a server-side reference to the PollingDuplex.dll for this
all to work within the WCF project. On the client, you are also going to have to make a similar refer-
ence. However, in this case, you will reference the System.ServiceModel.PollingDuplex.dll found
at C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client. This is obviously

Silverlight and WCF Duplex Communications  ❘  321

the one that is specifically designed for the client. On another note, you are also going to have to make a
reference to the System.Runtime.Serialization.dll as well.

After you have the appropriate DLLs referenced, make a service reference to the WCF service
that you created earlier in this chapter. To accomplish this, right-click the References folder and
select Add Service Reference. The Add Service Reference dialog appears. Click the arrow next
to the Discover button to search for services that are contained within the same solution. You
are presented with the option to reference the service that you just built. This is demonstrated in
Figure 10-5.

Figure 10-5

In creating the client, the user interface for this is pretty straightforward. Listing 10-17 shows the
XAML that is used for the MainPage.xaml file.

Listing 10-17:  ​The MainPage.xaml file

<UserControl x:Class=”SilverlightDuplex.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Height=”276” HorizontalAlignment=”Left” Margin=”12,12,0,0”
 Name=”textBlock1” Text=”“ VerticalAlignment=”Top” Width=”376” />
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

322  ❘  Chapter 10   Networking Applications

As you can see from this bit of code, there isn’t much to this view. The only thing on the page is
a TextBlock control. Here you will publish the text that is pushed out of the WCF service using
duplex communications. With that small bit of UI in place, the next step is to work with the
MainPage.xaml.cs file. The code-behind to the MainPage.xaml file is represented in Listing 10-18.

Listing 10-18:  ​The MainPage.xaml.cs file

using System;
using System.Windows.Controls;
using System.ServiceModel;
using SilverlightDuplex.ServiceReference1;

namespace SilverlightDuplex
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 EndpointAddress endpointAddress = new
 EndpointAddress(“http://localhost:3737/Service1.svc”);
 PollingDuplexHttpBinding pollingDuplexHttpBinding =
 new PollingDuplexHttpBinding();

 ServiceReference1.ServerTimeServiceClient svc =
 new ServerTimeServiceClient
 (pollingDuplexHttpBinding, endpointAddress);
 svc.ReceiveReceived += new
 EventHandler<ReceiveReceivedEventArgs>(svc_ReceiveReceived);
 svc.GetServerTimeAsync();

 textBlock1.Text += Environment.NewLine +
 “Request made for the server’s time”;
 }

 void svc_ReceiveReceived(object sender, ReceiveReceivedEventArgs e)
 {
 if (e.Error == null)
 {
 textBlock1.Text += Environment.NewLine +
 “Request status: “ + e.serverDateTime.Status;

 if (e.serverDateTime.Status == ServerDateTimeStatus.Completed)
 {
 textBlock1.Text += Environment.NewLine +
 “Server time: “ + e.serverDateTime.ServerDateTimeValue;
 }
 }
 }
 }
}

http://localhost:3737/Service1.svc%E2%80%9D

Sockets  ❘  323

This client application creates an instance of the WCF proxy and then applies the endpoint as well
as the binding that will be utilized — ​the PollingDuplexHttpBinding. The next bit of important
code is in setting the callback for the ReceiveReceived event:

svc.ReceiveReceived +=
 new EventHandler<ReceiveReceivedEventArgs>(svc_ReceiveReceived);

Whenever the server sends a message back to the client, this method is invoked. Through this event
handler, you are instructing that the svc_ReceiveReceived() method should be invoked. This
method deals with the result that comes back from the server. In this case, the TextBlock control is
populated with status and finally, with the server DateTime value.

Once you have this part of the client application in place and considering the fact that you already
set up the WCF service as was described earlier in the chapter, you are basically done with this
example. You actually don’t have to make any changes to the web application that is hosting the
Silverlight application. When you compile and run the application, you end up with something simi-
lar to what is presented in Figure 10-6.

Figure 10-6

Sockets

Like HTTP-based duplex communication, sockets are likely going to appeal to a limited audi-
ence, but they are very useful for those who need them. Silverlight’s sockets implementation uses
Windows Sockets (Winsock) on Windows and BSD UNIX’s sockets on OS X to provide a standard,
managed interface. If you need true, real-time duplex communication and can use TCP, this is your
solution in Silverlight. The challenge of course is that it uses ports (4502-4532 and 943 for policy)
that are less likely to be open in firewalls, so the application of a sockets solution may be limited due
to that.

324  ❘  Chapter 10   Networking Applications

The example that follows is a simple implementation of essentially the same scenario covered in the
duplex HTTP section, that is, server notifications. The first thing you’ll need to do is create a server;
probably the easiest way to do this is via a console application, so you can just add a console appli-
cation to your solution and call it SocketsServer to get started.

Setting Up the Policy Server
Because sockets require a call access security file (even for site-of-origin calls), you first need to set
up a policy server listener. To do this, add a new class file to your console application, calling it
PolicyServer.cs. You must use a few namespaces to make things more manageable. The entire set
of code for this class is presented in Listing 10-19.

Listing 10-19:  ​Building PolicyServer.cs

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;

namespace SocketsServer
{
 internal class PolicyServer
 {
 private readonly byte[] _policyData;
 private Socket _listener;

 public PolicyServer(string policyFile)
 {
 using (FileStream policyStream =
 new FileStream(policyFile, FileMode.Open))
 {
 _policyData = new byte[policyStream.Length];
 policyStream.Read(_policyData, 0, _policyData.Length);
 }
 }

 public void Start()
 {
 Console.WriteLine(“Starting policy server...”);
 _listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 _listener.Bind(new IPEndPoint(IPAddress.Any, 943));
 _listener.Listen(10);
 _listener.BeginAccept(OnConnection, null);
 Console.WriteLine(“Policy server waiting for connections...”);
 }

 private void OnConnection(IAsyncResult res)

Sockets  ❘  325

 {
 Socket client;

 try
 {
 client = _listener.EndAccept(res);
 }
 catch (SocketException)
 {
 return;
 }

 Console.WriteLine(“Policy client connected.”);

 PolicyConnection policyConnection =
 new PolicyConnection(client, _policyData);
 policyConnection.NegotiatePolicy();

 _listener.BeginAccept(OnConnection, null);
 }

 public void Close()
 {
 _listener.Close();
 }
 }
}

Looking at this code, most of the socket’s functionality you’ll need is, of course, in System.Net
.Sockets. The namespace System.IO is included because you want to read the policy XML file
from the local filesystem, as you will see shortly. System.Net has the network endpoint classes
you will be using.

The Socket object created, _listener, of course is the listener socket you will set up; the policy
data will be an in-memory byte buffer of your policy file data to be shared across connections. The
next part of the code, the PolicyServer() method, defines a constructor that takes a file path to
the location of your policy file. As you can see, this simply reads the policy file data into the afore-
mentioned byte buffer. The policy file you will use can be added to your project and called whatever
you like; because you will allow all access, you can call it allow-all.xml. You could create differ-
ent policies in different files then and just use some mechanism to specify which policy should apply
at any particular time.

The Start() method here creates the socket listener and starts listening for requests. Silverlight lim-
its the kinds of sockets you can create — ​pretty much streams over TCP. Because this is the policy
server, you need to bind to the well-known port 943. The Listen method starts it listening on that
port, allowing up to 10 connections in the queue, which is more than enough in this sample. Finally,
attach a handler to the BeginAccept() event, such as the OnConnection() method.

This handler first gets a reference to the client socket, which is used to send the policy file. To facili-
tate this, create a PolicyConnection class as illustrated in Listing 10-20.

326  ❘  Chapter 10   Networking Applications

Listing 10-20:  ​The PolicyConnection class

using System;
using System.Net.Sockets;
using System.Text;

namespace SocketsServer
{
 internal class PolicyConnection
 {
 private const string PolicyRequest = “<policy-file-request/>”;
 private readonly byte[] _policyData;
 private readonly byte[] _policyRequestBuffer;
 private readonly Socket _connection;
 private int _numBytesReceived;

 public PolicyConnection(Socket client, byte[] policy)
 {
 _connection = client;
 _policyData = policy;
 _policyRequestBuffer = new byte[PolicyRequest.Length];
 _numBytesReceived = 0;
 }

 public void NegotiatePolicy()
 {
 Console.WriteLine(“Negotiating policy.”);
 try
 {
 _connection.BeginReceive(_policyRequestBuffer, 0,
 PolicyRequest.Length,
 SocketFlags.None, OnReceive, null);
 }
 catch (SocketException)
 {
 _connection.Close();
 }
 }

 private void OnReceive(IAsyncResult res)
 {
 try
 {
 _numBytesReceived += _connection.EndReceive(res);
 if (_numBytesReceived < PolicyRequest.Length)
 {
 _connection.BeginReceive(_policyRequestBuffer,
 _numBytesReceived,
 PolicyRequest.Length -
 _numBytesReceived,
 SocketFlags.None, OnReceive,
 null);

Sockets  ❘  327

 return;
 }
 string request =
 Encoding.UTF8.GetString(_policyRequestBuffer, 0,
 _numBytesReceived);
 if (StringComparer.InvariantCultureIgnoreCase.Compare(request,
 PolicyRequest) != 0)
 {
 _connection.Close();
 return;
 }
 Console.WriteLine(“Policy successfully requested.”);
 _connection.BeginSend(_policyData, 0, _policyData.Length,
 SocketFlags.None, OnSend, null);
 }
 catch (SocketException)
 {
 _connection.Close();
 }
 }

 public void OnSend(IAsyncResult res)
 {
 try
 {
 _connection.EndSend(res);
 }
 finally
 {
 _connection.Close();
 }
 Console.WriteLine(“Policy sent.”);
 }
 }
}

The System.Net.Sockets namespace is of course for the sockets work, and the System.Text
namespace facilitates using the text encoding to read a string from a byte array.

In the case of the fields defined in this file, the Socket object will be the connection to the client.
_policyRequestBuffer will be used to compare the connection request with the expected request,
identified in the shared policy request string — ​this is what Silverlight clients send when looking for
a policy file. The number of bytes received is just used to track that the full request is received, as
you will see, and the policy data byte array will be a reference to the given policy file data.

The NegotiatePolicy() method you called from the PolicyServer’s OnConnection() handler is
used to negotiate the policy for the current connection. It simply starts receiving the request from
the client into your buffer, using the OnReceive() method as the completion event handler.

Okay, so this is where dealing with sockets can be a little more archaic than what the average .NET
developer is probably used to. Because there is no guarantee that the entire request that you are
expecting was sent in the first go, you may want to take this approach. Calling EndReceive()tells

328  ❘  Chapter 10   Networking Applications

you how many bytes were received. You can then compare that with what you are expecting to see
if you are done. In the preceding code, you are expecting to receive a request with the length of the
policy request Length property; if it is not there yet, call BeginReceive() again to (hopefully) get
the rest of what you are looking for.

Once you have something that is at least the right length, the next step is to compare that to what
you are expecting; however, you first need to read the received bytes into a UTF8 string. You can
then compare the actual request contents with the well-known policy request string. If it does not
match, just close the connection — ​this server only handles negotiating server policy according to
the Silverlight policy negotiation protocol. If, on the other hand, it is the expected request, just send
the server policy data down to the client.

The last thing to do for the policy server is set it up when the console application starts. So go
into your Main() method (in the Program class file, assuming you used the standard Visual Studio
Console Application template) and create a policy server instance and start it up as illustrated in
Listing 10-21.

Listing 10-21:  ​The Main() method of the console application

namespace SocketsServer
{
 internal class Program
 {
 private static void Main(string[] args)
 {
 PolicyServer ps = new PolicyServer(“allow-all.xml”);
 ps.Start();
 }
 }
}

Looking over this code, you can see that you are passing in the path to your policy file. This is hard-
coded in this example for simplicity; you would probably want to let the policy file be passed in
via command-line arguments or some other fancier mechanism in real-world code. Also, note that
you can simply add that file as a text file to your project and set its Build Action to Content and the
Copy to Output Directory to “Copy if newer” so that you can manage the file in your project and
have it be in the output location to be consumed while running and debugging.

Unfortunately, that’s a lot of boilerplate code that you have to deal with just to enable Silverlight
clients to connect to your “real” sockets server; that is, the one that is doing your domain work. On
the positive side, your policy server should be the same (code) for all sockets apps, so you can reuse
it across them and just tweak your policy files as needed.

Setting Up the Application Sockets Server
In this sample case, the real sockets server just sends notifications, so set that up next by adding a
SocketsServer class file to your project. The code for this class is presented in Listing 10-22.

Sockets  ❘  329

 Listing 10-22:  ​The SocketsServer class

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Net;
using System.Net.Sockets;
using System.Text;
using System.Threading;
using System.Timers;
using t = System.Timers;
using Timer = System.Timers.Timer;

namespace SocketsServer
{
 internal class SocketsServer
 {
 private readonly object _syncRoot = new object();
 private readonly ManualResetEvent _threadCoordinator =
 new ManualResetEvent(false);
 private List<Socket> _clients = new List<Socket>();
 private Socket _listener;
 private Timer _serverTimer;

 public void Start()
 {
 _serverTimer = new Timer(1000);
 _serverTimer.Enabled = false;
 _serverTimer.Elapsed += ServerTimer_Elapsed;

 _listener = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 IPEndPoint serverEndpoint = new IPEndPoint(IPAddress.Any, 4502);
 _listener.Bind(serverEndpoint);
 _listener.Listen(2);

 while (true)
 {
 _threadCoordinator.Reset();
 _listener.BeginAccept(AcceptClient, null);
 Console.WriteLine(“Waiting for clients...”);
 _threadCoordinator.WaitOne();
 }
 }

 private void AcceptClient(IAsyncResult result)
 {
 try
 {
 _threadCoordinator.Set();

 Socket clientSocket = _listener.EndAccept(result);
 lock (_syncRoot)
 _clients.Add(clientSocket);

continues

330  ❘  Chapter 10   Networking Applications

 Console.WriteLine(“Client connected.”);

 if (!_serverTimer.Enabled)
 _serverTimer.Enabled = true;
 }
 catch (ObjectDisposedException ex)
 {
 Trace.WriteLine(“Socket closed: “ + ex);
 }
 catch (SocketException ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

 private void ServerTimer_Elapsed(object sender, ElapsedEventArgs e)
 {
 byte[] serverTimeBytes = Encoding.UTF8.GetBytes(
 DateTimeOffset.Now.ToString());
 Console.WriteLine(“Sending server time.”);
 lock (_syncRoot)
 {
 List<Socket> refreshedList = new List<Socket>(_clients.Count);
 foreach (Socket client in _clients)
 {
 if (client.Connected)
 {
 try
 {
 client.Send(serverTimeBytes);
 }
 catch (Exception ex)
 {
 if (!(ex is SocketException) ||
 ((SocketException) ex).SocketErrorCode !=
 SocketError.ConnectionReset)
 Console.WriteLine(“Client Send Error: “ + ex);
 else
 Console.WriteLine(“Client disconnected.”);
 client.Close();
 return;
 }
 refreshedList.Add(client);
 }
 }
 _clients = refreshedList;
 if (_clients.Count == 0)
 _serverTimer.Enabled = false;
 }
 }
 }
}

Listing 10-22  (continued)

Sockets  ❘  331

Because there is a System.Threading timer and a System.Timers timer, it is helpful to clarify using
the namespace alias setup in the using statements, that is, “t.” The thread coordinator, sync root, and
clients list are all there to facilitate tracking multiple connections and coordinating between them.

In the Start() method, the first thing here is the creation of the timer. Note that it is disabled ini-
tially — ​no need for it to be running while no clients are connected. Also, keep in mind that this is
just used for simulation purposes; it is safe to assume that you would have more meaningful events
and notifications to send to real-world clients than timer-based ones.

The next block of code should look familiar; it is setting up the server socket listener. One thing that
is different is that it is listening on port 4502 — ​one of the ports allowed by Silverlight and not the
policy negotiation port of 943. In addition, the code is (arbitrarily) limiting queued connections to
two; you need to adjust this to what makes sense for your expected usage and capacity.

The last block here sets up the listener loop. The ManualResetEvent() that here is called
_threadCoordinator is used as a simple way for threads to signal that they are doing or not doing
something. Reset tells all the threads to hold on while the current thread does its thing. WaitOne()
tells the current thread to chill until it gets a signal that says go ahead.

In between there, you set up the AcceptClient() method to take the next connection that comes
in. In this method, the first thing is to let the waiting threads that were previously blocked pre-
cede. Then it goes on to get a reference to the connected client socket, synchronizes access to the
current list of clients, and adds this one to the list of subscribed clients. Next, enable the server
timer now that clients are connected and waiting for notifications. If you recall, you attached the
ServerTimer_Elapsed() method to the timer’s Elapsed() method back in the Start() method.

This method does the actual sending of notifications to clients, but remember that this is completely
arbitrary — ​you could send updates to clients based on any number of server-side events. Because
this sample is timer-based, it makes sense to just send the server time, so that first bit is grabbing the
current server time into a byte buffer to be sent to the clients.

The next block goes ahead and synchronizes access to your client list by locking on your sync root
object. It then creates a new list of clients that are used to refresh the list of currently connected
clients — ​this way, when clients fall off or unsubscribe, you let go of them on the server side and let
their resources get cleaned up. Then for every client still connected, add them to the new list and try
to send them the message (the server time).

The last bit of code in this method updates the _clients reference with the new, refreshed list of clients
and then checks if any clients are still connected. If not, it disables the timer until new clients connect.

The final thing you need to do on the server is create an instance of this class and start it up, so go
back to your Main() method and add it as is presented in Listing 10-23.

Listing 10-23:  ​Adding more to the Main() method

namespace SocketsServer
{
 internal class Program
 {
 private static void Main(string[] args)

continues

332  ❘  Chapter 10   Networking Applications

 {
 PolicyServer ps = new PolicyServer(“allow-all.xml”);
 ps.Start();

 SocketsServer s = new SocketsServer();
 s.Start();
 }
 }
}

Setting Up the Sockets Client
Now that your server is all set, you need to create a client. To do this, you can create a new
Sockets.xaml user control within a new Silverlight solution. In the code-behind, you need to
set up very little. This is where you will find that sockets are easier than duplex HTTP communi-
cations. You can accomplish the same scenario with far fewer methods and trouble.

MainPage.xaml is a simple construction and is provided in Listing 10-24.

Listing 10-24:  ​The XAML code for MainPage.xaml

<UserControl x:Class=”SilverlightSockets.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Button Content=”Subscribe” x:Name=”SubscriptionButton”
 Click=”SubscriptionButton_Click” />
 <Button Content=”Unsubscribe” x:Name=”UnsubscriptionButton”
 Click=”UnsubscriptionButton_Click” />
 <TextBlock x:Name=”SusbscriptionInfo” TextWrapping=”Wrap” />
 </StackPanel>
 </Grid>
</UserControl>

The code-behind for this simple view is presented in Listing 10-25.

Listing 10-25:  ​MainPage.xaml.cs

using System;
using System.Net;
using System.Net.Sockets;

Listing 10-23  (continued)

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Sockets  ❘  333

using System.Text;
using System.Threading;
using System.Windows;
using System.Windows.Controls;

namespace SilverlightSockets
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 SynchronizationContext _uiThread;
 Socket _channel;
 DnsEndPoint _remoteEndPoint;
 bool Connected { get { return _channel != null && _channel.Connected; } }

 void AppendServerMessage(object messagePayload)
 {
 string message = messagePayload as string;
 if (!string.IsNullOrEmpty(message))
 this.SusbscriptionInfo.Text += message + Environment.NewLine;
 }

 void SubscriptionButton_Click(object sender, RoutedEventArgs e)
 {
 if (Connected)
 {
 AppendServerMessage(“Already subscribed.”);
 return;
 }

 AppendServerMessage(“Subscribing to server notifications...”);
 _uiThread = SynchronizationContext.Current;

 _channel = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 _remoteEndPoint =
 new DnsEndPoint(Application.Current.Host.Source.DnsSafeHost, 4502);

 SocketAsyncEventArgs args = new SocketAsyncEventArgs();
 args.RemoteEndPoint = _remoteEndPoint;
 args.Completed += SocketConnectCompleted;
 _channel.ConnectAsync(args);
 }

 void SocketConnectCompleted(object sender, SocketAsyncEventArgs args)
 {
 if (!_channel.Connected)
 {
 _uiThread.Post(AppendServerMessage,
 “Could not connect to server.”);

continues

334  ❘  Chapter 10   Networking Applications

 _channel.Dispose();
 _channel = null;
 return;
 }

 args.Completed -= SocketConnectCompleted;
 args.Completed += ReceiveData;
 args.SetBuffer(new byte[2048], 0, 2048);
 _channel.ReceiveAsync(args);
 _uiThread.Post(AppendServerMessage, “Waiting for notifications...”);
 }

 void ReceiveData(object sender, SocketAsyncEventArgs e)
 {
 if (Connected)
 {
 string notification = Encoding.UTF8.GetString(
 e.Buffer, e.Offset, e.BytesTransferred);
 _uiThread.Post(AppendServerMessage, notification);
 _channel.ReceiveAsync(e);
 }
 }

 void UnsubscriptionButton_Click(object sender, RoutedEventArgs e)
 {
 if (Connected)
 {
 _channel.Dispose();
 _channel = null;
 AppendServerMessage(“Unsubscribed.”);
 }
 else
 AppendServerMessage(“Not subscribed.”);
 }
 }
}

The first part of this should look familiar from the duplex HTTP, just ensuring only one subscrip-
tion for this client at a time and grabbing a reference to the UI thread context. Assuming it is not
already connected, this creates a new socket and set up a DnsEndPoint to the site of origin (that is
the Application.Current.Host.Source bit) on port 4502. The important thing here is, of course,
to connect on the port that the server is listening on. So if this were a real-world app, you would
have to somehow publish that information to your clients. Here we are hard coding for simplicity.

Now Silverlight uses the SocketAsyncEventArgs class as a sort of general socket communication
facility, so go ahead and create an instance, set the remote endpoint to the one just created, attach to
the Completed() event with the SocketConnectCompleted() handler, and call ConnectAsync() on
the socket. When the connection completes, it calls SocketConnectCompleted().

Listing 10-25  (continued)

Sockets  ❘  335

If the result of the connection attempt is not successful, dispose of the socket and send a mes-
sage to the users letting them know that. If it does succeed, move on to the next step — ​receiv-
ing data. Again, the SocketAsyncEventArgs class is used; in fact, you can reuse it to conserve
resources as done here. First, remove the SocketConnectCompleted() event handler and attach
instead the ReceiveData() handler. Set up a buffer to specify how much to receive at a time; in
this case, 2048 is rather arbitrary and actually way more than you need because you know the
server is just sending the server time. Set it up to something reasonable that would handle most
messages but not so large that it ties up too many resources. Then it puts itself into a state to
receive data from the server.

Remember that once this client is connected, the server enables its timer (if no other clients were
already connected) and starts sending server-time updates every second, so the ReceiveData()
method should be called almost immediately.

The ReceiveData() method just grabs the bytes sent as a UTF8 string, posts those to the UI thread,
and tells the socket to receive again (using the same SocketAsyncEventArgs instance). This loop
continues as long as the server keeps sending data and, of course, as long as the socket remains
open, which leads us to the UnsubscriptionButton_Click() handler.

If connected, this disposes of the socket, clears out your reference to it, and notifies the user
accordingly.

To see this in action, right-click the SilverlightSocketsTestPage.html page from Visual Studio’s
Solution Explorer and choose the option to view the page in a browser.

Once that page is open in the browser, right-click the SocketsServer project and select this as the
startup project. Compiling and running this gives you what is presented in Figure 10-7.

Figure 10-7

Once the SocketsServer project is running and waiting, click the Subscribe button back in the view.
You are then presented with something similar to what is shown in Figure 10-8.

336  ❘  Chapter 10   Networking Applications

Figure 10-8

That about wraps it up for the communications services. As noted, you will see a lot of samples in
this book using the standard HTTP- and WCF-style communications, so those were omitted here.
But you did learn about the duplex HTTP and sockets in enough depth to give you a good under-
standing of what is involved in using them. If you have a need for duplex, real-time communication,
those are your two best options in Silverlight. If the application is meant to run over the Web, your
best bet is duplex HTTP; however, if you can require your clients to open up the right ports, sockets
may be a more dependable, perhaps even simpler, solution.

Summary

This chapter covered various services that Silverlight provides to make application development and
maintenance easier and, in some cases, possible user scenarios. This chapter looked at communica-
tions services such as HTTP-based services, including duplex communication over HTTP, and at
sockets communications.

11
Building line of Business
applications

what’s in this chapter?

Working with the mouse➤➤

Printing from a Silverlight application➤➤

Drag-and-drop support➤➤

Communicating between Silverlight players➤➤

Integrating with Microsoft Offi ce applications➤➤

Making full-screen applications➤➤

It’s an exciting new age for software development. Rich Internet applications (RIAs) are
quickly becoming the standard architecture chosen by a number of developers. In the past
building RIA-based Line of Business (LOB) applications has been very challenging, especially
when you to need handle the following key scenarios: printing, localizing, and integrating
with Microsoft Offi ce applications.

Silverlight 4 includes several new components and API(s) to address the challenges of building
LOB applications to add context-sensitive menus, build a printer-friendly version of your applica-
tion, integrate with Microsoft Excel or Word, and more. The Silverlight platform makes these and
many other typical LOB scenarios easy to implement.

line of Business Basics

Silverlight includes several key features for easily building Line of Business applications. You
can respond to mouse actions to display context menus, drag-and-drag items, and add Multi-
Touch support to your application. The printing support introduced in Silverlight 4 allows you

338  ❘  Chapter 11   Building Line of Business Applications

to print the contents of an entire screen, part of the screen or to build a printer friendly version of
your screen. With each new release, Silverlight makes it easier to build Line of Business applications
that will impress your users.

Responding to Mouse Actions
Silverlight provides a rich set of events for responding to mouse actions such as clicking a button
or moving the location of the mouse. In addition, Silverlight 4 supports responding to right-click
behaviors and turning stylus input/Multi-Touch input into equivalent mouse actions.

Table 11-1 shows the mouse events you can respond to in your application.

Table 11-1

Event Description

LostMouseCapture Occurs when the UI element loses mouse capture.

MouseMove Occurs when the coordinate position of the mouse (or stylus) pointer
changes.

MouseEnter Occurs when the mouse (or stylus) enters the bounding area of an object.

MouseLeave Occurs when the mouse (or stylus) leaves the bounding area of an object.

MouseLeftButtonDown Occurs when the left mouse button is down or when the tip of the stylus
touches the screen.

MouseLeftButtonUp Occurs when the left mouse button is up or when the tip of the stylus
leaves the screen, typically following a MouseLeftButtonDown event.

MouseRightButtonDown Occurs when the right mouse button is pressed.

MouseRightButtonUp Occurs when the mouse (or stylus) leaves the bounding area of an object.

MouseWheel Occurs when the mouse wheel is spun or clicked.

Listing 11-1 shows an example of subscribing to the MouseLeftButtonUp and MouseMove events of
a tree view control. The left button event allows you to retrieve the data context of the item clicked,
and the MouseMove events expose the current X and Y coordinates of the mouse.

Listing 11-1:  ​Subscribing to the mouse events

using System.Windows;
using System.Windows.Controls;
using System.Windows.Input;

namespace Chapter11.Views
{
 public partial class Listing1101 : UserControl

Line of Business Basics  ❘  339

 {
 public Listing1101()
 {
 InitializeComponent();

 this.Loaded += new RoutedEventHandler(Sample_Loaded);
 }

 void Sample_Loaded(object sender, RoutedEventArgs e)
 {
 this.DataTree.MouseLeftButtonUp +=
 new MouseButtonEventHandler(DataTree_MouseLeftButtonUp);
 this.DataTree.MouseMove += new
 MouseEventHandler(DataTree_MouseMove);
 }

 void DataTree_MouseMove(object sender, MouseEventArgs e)
 {
 // When you pass null to GetPosition you get the
 // absolute positon of the mouse on the screen
 // if you pass a UIElement you will get a relative offset
 Point point = e.GetPosition(null);
 this.MousePositionX.Text = point.X.ToString();
 this.MousePositionY.Text = point.Y.ToString();
 }

 void DataTree_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)
 {
 FrameworkElement element = (FrameworkElement)e.OriginalSource;
 this.MouseButton.Text = “Left Button Up: “ + element.DataContext;
 }
 }
}

Listing 11-2 shows an example of subscribing to the MouseWheel events for a slider and image. The
MouseWheel event argument includes a Delta property that tracks the factor of the mouse wheel, based
on its previous value. In the sample, the image scale is increased or decreased based on when the Delta
value is positive or negative. The same condition is used to adjust the value of the slider control.

Listing 11-2:  ​Subscribing to MouseWheel events

using System.Windows.Controls;
using System.Windows.Input;

namespace Chapter11.Views
{
 public partial class Listing1102 : UserControl
 {
 public Listing1102()
 {
 InitializeComponent();
 }

continues

340  ❘  Chapter 11   Building Line of Business Applications

 private void slImage_MouseWheel(object sender, MouseWheelEventArgs e)
 {
 if (e.Delta > 0)
 {
 imageScale.ScaleX *= 1.1;
 imageScale.ScaleY *= 1.1;
 }
 else
 {
 imageScale.ScaleX *= 0.9;
 imageScale.ScaleY *= 0.9;
 }

 e.Handled = true;
 }

 private void sliderValue_MouseWheel(object sender, MouseWheelEventArgs e)
 {
 if (e.Delta > 0)
 slider.Value += 1;
 else
 slider.Value -= 1;

 e.Handled = true;
 }
 }
}

Enabling Right-Click Support
Many LOB applications require support for context style menus. Typically developers add this
feature by enabling right-click support for one or more UI elements. The menu displayed would
be context sensitive to its related UI element. In previous versions of Silverlight, you faced many
challenges when enabling right-click support. But now, in addition to events for LeftButtonDown
and LeftButtonUp, you have RightButtonDown and RightButtonUp events you can use to display
context-sensitive menus.

Listing 11-3 shows how to subscribe to the right-click events for a tree view control. In order for the
event not to be bubbled up to the default Silverlight context menu, you have to mark it as handled in
the MouseRightButtonDown event handler. If this is not done, the MouseRightButtonUp event will
not be fired. When the right-click event fires, this code displays a context menu for expanding or
collapsing the nodes of the tree view.

Listing 11-3:  ​Subscribing to right-click events

using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;

Listing 11-2  (continued)

Line of Business Basics  ❘  341

using System.Windows.Input;
using Chapter11.Common;

namespace Chapter11.Views
{
 public partial class Listing1103 : UserControl
 {
 public Listing1103()
 {
 InitializeComponent();
 }

 private void DataTree_MouseRightButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 e.Handled = true;
 }

 private void DataTree_MouseRightButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 FrameworkElement element = (FrameworkElement)e.OriginalSource;

 if (element.DataContext != null)
 {
 this.DisplayContextMenu();
 }
 }

 private Popup contextMenu = new Popup();
 private void DisplayContextMenu()
 {
 if (!this.contextMenu.IsOpen)
 {
 ContextMenu menu = new ContextMenu();
 menu.TreeView = this.DataTree;
 menu.ActionClick += (s, e) =>
 {
 this.contextMenu.IsOpen = false;
 };

 this.contextMenu = new Popup();
 this.contextMenu.Child = menu;
 this.contextMenu.VerticalOffset = 150;
 this.contextMenu.HorizontalOffset = 100;

 this.contextMenu.IsOpen = true;
 }
 }
 }
}

342  ❘  Chapter 11   Building Line of Business Applications

Handling Multi-Touch
The Silverlight platform includes Multi-Touch support, which enables a wide range of gestures and
touch interactions that can be integrated into your application’s user experience. However, it’s possible
to add Multi-Touch features to your application by tracking mouse movements and clicks. Silverlight
provides a better mechanism using the Multi-Touch API’s FrameReported event. This event will be
called when the underling Multi-Touch hardware sends the touch events at run time to your application.

The argument for the FrameReported event includes methods to get the primary touch point plus a list
of current touch points. Using either method you get access to the TouchPoint class. The class returns
a relative or absolute position based on the offset you passed to the GetTouchPoint method. If you
pass in null, the absolute position of the touch point will be returned. The TouchPoint class includes
an action property that tells the state of the TouchPoint: Down, Move, or Up. The same sequence will
always be followed: first down, then move until the user removes the touch, and then the up action will
be fired. The move action is the key piece. It will be fired even if the user is no longer moving any ele-
ments. During this state is when you should respond to the gesture by updating the UI element position
or size.

To utilize Multi-Touch features in your application you are going to need to run your application
on supported Multi-Touch hardware that properly handles sending the WM_TOUCH message to the
Windows operating system.

Listing 11-4 shows how to use the FrameReported event to add Multi-Touch features to your
application.

Listing 11-4:  ​Using Multi-Touch support

using System.Collections.ObjectModel;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Input;

namespace MultiTouchTest
{
 public partial class MainPage : UserControl
 {

 ObservableCollection<TouchPoint> currentPoints
 = new ObservableCollection<TouchPoint>();
 TouchPoint primary = new TouchPoint();

 public MainPage()
 {
 InitializeComponent();

 Touch.FrameReported +=
 new TouchFrameEventHandler(Touch_FrameReported);

Line of Business Basics  ❘  343

 this.Loaded += new RoutedEventHandler(Sample_Loaded);
 }

 void Sample_Loaded(object sender, RoutedEventArgs e)
 {
 PagedCollectionView data = new PagedCollectionView(currentPoints);
 data.GroupDescriptions.Add(new PropertyGroupDescription(“Action”));
 this.TouchPointData.ItemsSource = data;
 }

 void Touch_FrameReported(object sender, TouchFrameEventArgs e)
 {
 TouchPointCollection touchPoints = e.GetTouchPoints(this.Host);

 foreach (TouchPoint item in touchPoints)
 {
 switch(item.Action)
 {
 case TouchAction.Down:
 this.currentPoints.Add(item);
 break;
 case TouchAction.Move:
 var p = from pts in currentPoints
 where pts.TouchDevice.Id == item.TouchDevice.Id
 select pts;

 this.currentPoints.Remove(p.First());
 this.currentPoints.Add(item);
 break;
 case TouchAction.Up:
 var c = from pts in this.currentPoints
 where pts.TouchDevice.Id == item.TouchDevice.Id
 select pts;

 this.currentPoints.Remove(c.First());
 break;
 }
 }
 }
 }
}

Drawing with Ink
An exciting feature that the Silverlight platform supports out-of-the-box is the ability to add
Tablet PC Ink features to your application. The InkPresenter control provides a drawing surface
that enables an end user to use ink to enter input. The InkPresenter control supports display-
ing one or more UI elements and a stroke collection. The control supports ink input from stylus
devices, touch, and mouse input. Input from a mouse has a lower resolution than what can be
gathered from a digitizer style input.

<InkPresenter x:Name=”InkContainer” Background=”Transparent” Cursor=”Stylus” />

344  ❘  Chapter 11   Building Line of Business Applications

The stroke collection supported by the InkPresenter is a collection that contains one or more stroke
objects. Each stroke corresponds to a stylus -down, stylus-move, and stylus -up sequence. A stroke can
be a dot, a straight line, or a curving line. Each stroke object contains a StylusPointCollection,
which contains one or more StylusPoints and their height, width, color, and outline color.

Listing 11-5 shows how to use the InkPresenter control to add ink support to your Silverlight
application.

Listing 11-5:  ​Drawing with ink

using System.Windows.Controls;
using System.Windows.Ink;
using System.Windows.Input;
using System.Windows.Media;

namespace Chapter11.Views
{
 public partial class Listing1105 : UserControl
 {
 public Listing1105()
 {
 InitializeComponent();
 }

 private Stroke _stroke = null;
 private StylusPointCollection eraserPoints;
 private InkMode _mode = InkMode.Draw;

 public enum InkMode
 {
 Draw,
 Erase
 }

 private void InkContainer_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
 {
 InkContainer.CaptureMouse();
 if (_mode == InkMode.Draw)
 {
 _stroke = new Stroke();
 _stroke.DrawingAttributes.Color = Colors.White;
 _stroke.StylusPoints.Add(
 e.StylusDevice.GetStylusPoints(InkContainer));

 InkContainer.Strokes.Add(_stroke);
 }
 if (_mode == InkMode.Erase)
 {
 eraserPoints = new StylusPointCollection();
 eraserPoints = e.StylusDevice.GetStylusPoints(InkContainer);

Line of Business Basics  ❘  345

 }
 }

 private void InkContainer_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
 {
 _stroke = null;
 eraserPoints = null;
 InkContainer.ReleaseMouseCapture();
 }

 private void InkContainer_MouseMove(object sender, MouseEventArgs e)
 {
 if (_mode == InkMode.Draw)
 {
 if (null != _stroke)
 {
 _stroke.StylusPoints.Add(
 e.StylusDevice.GetStylusPoints(InkContainer));
 }
 }
 if (_mode == InkMode.Erase)
 {
 if (null != eraserPoints)
 {
 eraserPoints.Add(
 e.StylusDevice.GetStylusPoints(InkContainer));
 StrokeCollection hits =
 InkContainer.Strokes.HitTest(eraserPoints);

 for (int cnt = 0; cnt < hits.Count; cnt++)
 {
 InkContainer.Strokes.Remove(hits[cnt]);
 }
 }
 }
 }
 }
}

Enabling Clipboard Access
Prior to Silverlight 4 you had to jump through many hoops to get limited Clipboard access support
added to your application. Silverlight 4 introduces a cross-browser Clipboard API that allows you to
get and send text to and from the user’s Clipboard. Using this feature, it’s possible to paste the con-
tents of a Word document or other application into your Silverlight application or copy your appli-
cation contents into Word.

Some limitations are put on the Clipboard API because of security restrictions. You can get Clipboard
access only through a user-initiated action (via a keyboard or mouse). Once per session, the user will
be prompted to acknowledge that your application wants to access the Clipboard.

346  ❘  Chapter 11   Building Line of Business Applications

Figure 11-1 displays the warning dialog that the end user must accept before your application can access
their Clipboard. The user will only be prompted once per session to allow access to their Clipboard.

Figure 11-1

The Clipboard API supports only the copying and pasting of text. If the Clipboard contains any
other type of data (for example, contents of an image), the call to GetText returns nothing. You
can use the ContainsText method to verify whether the Clipboard contains text data.

Listing 11-6 shows an example of using the Clipboard API to copy and paste the contents of one
text box into another. While running this sample you should open Notepad or your preferred text
editor. First, click the copy button in the application. Then make Notepad the active application,
and press Ctrl+P. The text you entered into the text box will appear in Notepad. Change the text in
Notepad and copy it (Ctrl+C). Make your Silverlight application active and click the Paste button.
The text you typed in Notepad now appears.

Listing 11-6 shows an example of using the Clipboard API to copy and paste text to and from a
Silverlight application and external application (for example, Notepad).

Listing 11-6:  ​Using the Clipboard API

using System.Windows;
using System.Windows.Controls;

namespace Chapter11.Views
{
 public partial class Listing1106 : UserControl
 {
 public Listing1106()
 {
 InitializeComponent();
 }

 private void CopyAction_Click(object sender, RoutedEventArgs e)
 {
 Clipboard.SetText(this.Source.Text);
 }

 private void PasteAction_Click(object sender, RoutedEventArgs e)
 {

Line of Business Basics  ❘  347

 if (Clipboard.ContainsText())
 {
 this.Destination.Text = Clipboard.GetText();
 }
 }
 }
}

Adding Printing Support
Sooner or later almost all LOB applications have to deal with printing. Whether you have a need
to build a sophisticated sales report or just want to provide a printer-friendly view of the current
screen, the printing API included in Silverlight 4 provides you with the framework to successfully
add print capabilities to your Silverlight application.

The printing API allows you to address simple and complex printing requirements. You can do
WYSIWYG printing of the whole or portions of the UI, custom “printer friendly” views, or produce
multiple page reports.

To use the printing API, follow these steps:

	 1.	 Create a PrintDocument object.

	 2.	 Attach an event handler for the PrintPage event (you can do the same for BeginPrint
and EndPrint).

	 3.	 Call the Print method. You can optionally pass in the text that will appear in the print queue.

	 4.	 In the PrintPage event, create one or more visual components you want to print and assign
the root element to the PageVisual property of the PrintPageEventArgs object.

	 5.	 You can toggle whether you want to print more than one page by setting the HasMorePages
property.

As long as there are more pages to print, the PrintPage event will be called. Once the HasMorePages
flag is set to false, the event will no longer be called.

Listing 11-7 shows an example of using the printing API to print the contents of the current screen.
When the PrintPage event fires, the PageVisual property is set to the root UI element of the current
page. To print only part of the UI set the PageVisual property to the UI element you want to print.

Listing 11-7:  ​Printing the contents of the current page

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Printing;

namespace Chapter11.Views
{
 public partial class Listing1107 : UserControl

continues

348  ❘  Chapter 11   Building Line of Business Applications

 {
 public Listing1107()
 {
 InitializeComponent();
 }

 private void PrintAction_Click(object sender, RoutedEventArgs e)
 {
 PrintDocument printHandler = new PrintDocument();
 printHandler.PrintPage +=
 new EventHandler<PrintPageEventArgs>(printDoc_PrintPage);
 printHandler.Print(“Printing Example”);
 }

 void printDoc_PrintPage(object sender, PrintPageEventArgs e)
 {
 e.PageVisual = this.LayoutRoot;
 }
 }
}

Listing 11-8 shows an example of using the printing API to create a printer-friendly version of the
current screen. Because the PageVisual property can be set to any UI element it’s possible to use a
tool like Microsoft Expression Blend to build multiple views for the same data.

Listing 11-8:  ​Building a printer-friendly version of the page

using System;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Printing;

namespace Chapter11.Views
{
 public partial class Listing1108 : UserControl
 {
 public Listing1108()
 {
 InitializeComponent();
 }

 private void PrintAction_Click(object sender, RoutedEventArgs e)
 {
 PrintDocument printHandler = new PrintDocument();
 printHandler.PrintPage +=
 new EventHandler<PrintPageEventArgs>(printDoc_PrintPage);
 printHandler.EndPrint +=

Listing 11-7  (continued)

Line of Business Basics  ❘  349

 new EventHandler<EndPrintEventArgs>(printHandler_EndPrint);

 printHandler.Print(“Printing Friendly Example”);
 }

 void printHandler_EndPrint(object sender, EndPrintEventArgs e)
 {
 this.Normal.Visibility = Visibility.Visible;
 this.PrinterFriendly.Visibility = Visibility.Collapsed;
 }

 void printDoc_PrintPage(object sender, PrintPageEventArgs e)
 {
 this.Normal.Visibility = Visibility.Collapsed;
 this.PrinterFriendly.Visibility = Visibility.Visible;

 e.PageVisual = this.PrinterFriendly;
 }
 }
}

Supporting Drag-and-Drop
For years the Windows operating system has supported the concept of being able to drag-and-drop
content from one application to another. In previous versions of Silverlight it was not possible for your
application to be a drop target. Silverlight 4 introduces support for drag-and-drop by enabling the
AllowDrop property on any UI element. If you use an external application such as Windows Explorer
it is now possible to drag one or more selected files into your Silverlight application. By handling the
drop event of a particular target element you can access the list of files using the FileInfo class and a
stream reader to access the contents of the dropped files.

Currently there are some limitations you need to understand before using the drag-and-drop API.
The events for drag-and-drop will not fire if you are in full-screen or windowless mode. In addition,
you have to use a JavaScript workaround in the Silverlight player’s hosted page to get this feature to
work on a Macintosh platform.

Listing 11-9 shows how to respond to the drop event being fired on a ListBox control that has
AllowDrop enabled. Using the Data property of DragEventArgs you can get a list of files being
dropped. This sample iterates through the list of files and adds them to the ListBox control.

Listing 11-9:  ​Dragging from an external application

using System.IO;
using System.Windows;
using System.Windows.Controls;

namespace Chapter11.Views
{
 public partial class Listing1109 : UserControl
 {

continues

350  ❘  Chapter 11   Building Line of Business Applications

 public Listing1109()
 {
 InitializeComponent();
 }

 private void ListBox_Drop(object sender, DragEventArgs e)
 {
 IDataObject dataObject = e.Data as IDataObject;
 FileInfo[] files =
 dataObject.GetData(DataFormats.FileDrop)
 as FileInfo[];

 this.FileList.Items.Clear();
 foreach (FileInfo item in files)
 {
 this.FileList.Items.Add(
 new ListBoxItem { Content = item.Name });
 }

 }
 }
}

Using the Web Browser Control
The Web is built around the concept of using HTML
to render content. The typical scenario will be to
enhance an existing web application by adding an
island of richness using Silverlight. Sooner or later,
however, you are going to run into a scenario of
having to display HTML content from within your
Silverlight application.

Silverlight 4 introduces the WebBrowser control
to make it easier to render HTML content. The
control supports displaying string-based HTML
content or navigating to a website URL. To use the
web browser control, your application needs to be
configured for out-of-browser (OOB) mode. If you
try to use the control in a normal browser-hosted
Silverlight application, the message shown
in Figure 11-2 will be displayed.

Listing 11-10 shows how to use the Navigate and NavigateToString methods of the WebBrowser
control to tell it to display a specific page or set of HTML content.

Figure 11-2

Listing 11-9  (continued)

Advanced Scenarios  ❘  351

Listing 11-10:  ​Using the WebBrowser control

using System;
using System.Text;
using System.Windows;
using System.Windows.Controls;

namespace Chapter11.Views
{
 public partial class Listing1110 : UserControl
 {
 public Listing1110()
 {
 InitializeComponent();
 }

 private void OptionURL_Checked(object sender, RoutedEventArgs e)
 {
 browserControl.Navigate(
 new Uri(“http://www.micrsoft.com”));
 }

 private void OptionsHTML_Checked(object sender, RoutedEventArgs e)
 {
 StringBuilder html = new StringBuilder();
 html.Append(“<div style=’color:blue;width:100;height:100’>”);
 html.Append(“Silverlight Rocks</div>”);

 browserControl.NavigateToString(html.ToString());
 }
 }
}

Advanced Scenarios

When building Line of Business applications, it’s very common to integrate your application with an
external application or product. The most common product you will integrate is Microsoft Office,
which offers a rich set of feature that a lot of users are accustomed to using. Silverlight now offers
the ability to use COM automation to communicate with Microsoft Office. Another scenario you
might run into is the need to communicate between multiple Silverlight players running in the same
or even different browsers. As the Silverlight platform continues to mature, it’s becoming easier and
easier to deal with advanced Line of Business applications.

Communicating between Silverlight Applications
While building a Line of Business application, you may need to use multiple Silverlight players.
For example, you may be enhancing an existing web application instead of migrating the entire
application to Silverlight all at once. You can add multiple islands of richness to the same page.
Then using the Silverlight messaging API you can send and receive asynchronous messages. In

http://www.micrsoft.com%E2%80%9D

352  ❘  Chapter 11   Building Line of Business Applications

addition to communicating between multiple Silverlight players on the same page, the messaging
API supports communicating between different Silverlight players across multiple web browser
instances.

The following sample walks you through the steps to set up a web application that contains two
Silverlight applications that will communicate to each other using the messaging API.

Figure 11-3 displays the UI of the Customer Search and Customer Detail applications. These
applications — ​which you build later in this section — ​use the Silverlight messaging API to send
and receive messages between each other.

Figure 11-3

The application you are going to build includes two separate Silverlight projects called Customer
Search and Customer Detail. Make sure to download the samples for this chapter from www.wrox.com
to see the working version of the solution.

To build the solution, you need to understand a couple of concepts. First, you need to understand how
the messaging API uses senders and receivers to communicate between different running instances
of the Silverlight player. Then you need to understand how to serialize and desterilize data using the
JSON API provided by the Silverlight Framework.

To set up communication between different instances of the Silverlight player you use the
LocalMessageSender to send messages and a LocalMessageReceiver to receive messages.

http://www.wrox.com

Advanced Scenarios  ❘  353

The constructors for both objects accept a string that must identify the name of the receiver/
sender the other instance is using. To send a message use the SendAsync(string value) method
of the sender and to receive a message set up a delegate for the receiver’s MessageReceived
event. The event argument for this delegate contains a property to receive the message sent.

string message = “Hello World”;
this.sender = new LocalMessageSender(“CustomerDetail”);
this.sender.SendAsync(message);

this.receiver = new LocalMessageReceiver(“CustomerSearch”);
this.receiver.MessageReceived
+= new EventHandler<MessageReceivedEventArgs>(Receiver_MessageReceived);

this.receiver.Listen();

void Receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
 string message = e.Message;
}

As you may have noticed the message API senders and receivers only allow you to send string mes-
sages. At first this may seem to limit what you can do with it, but the Silverlight Framework includes
a powerful JSON API for serializing and deserializing objects to and from strings. Though this is
possible, it’s best to limit to the size of the message and try to only pass simple objects and not com-
plex hierarchical object graphs that contain references to multiple children objects.

To use the JSON API you need to make sure your project has references to the System.SeviceModel
.Web and System.Runtime.Serialization assemblies. The JSON API includes methods to read and
write data to a stream so you will need to add a using statement to System.IO. The object you want to
serialize/deserialize must be annotated with the [DataContact] and [DataMember] attributes. If there
are attributes of the class you do not want to serialize, just skip adding the [DataMember] attribute.

Listing 11-11 shows the structure of the Customer class that will be serialized and sent between the
Search and Detail applications.

Listing 11-11:  ​Customer class

using System.ComponentModel;
using System.Runtime.Serialization;

namespace CustomerViewer.Search
{
 [DataContract]
 public class Customer : INotifyPropertyChanged
 {

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(string info)
 {
 if (this.PropertyChanged != null)

continues

354  ❘  Chapter 11   Building Line of Business Applications

 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(info));
 }
 }

 public Customer()
 {
 }

 [DataMember]
 public string CustomerId { get; set; }

 private string companyName;
 [DataMember]
 public string CompanyName
 {
 get { return this.companyName; }
 set
 {
 if (this.companyName != value)
 {
 this.companyName = value;
 this.NotifyPropertyChanged(“CompanyName”);
 }
 }
 }

 private string addressLineOne;
 [DataMember]
 public string AddressLineOne
 {
 get { return this.addressLineOne; }
 set
 {
 if (this.addressLineOne != value)
 {
 this.addressLineOne = value;
 this.NotifyPropertyChanged(“AddressLineOne”);
 }
 }
 }

 private string city;
 [DataMember]
 public string City
 {
 get { return this.city; }
 set {
 if (this.city != value)
 {
 this.city = value;

Listing 11-11  (continued)

Advanced Scenarios  ❘  355

 this.NotifyPropertyChanged(“City”);
 }
 }
 }

 private string state;
 [DataMember]
 public string State
 {
 get { return this.state; }
 set
 {
 if (this.state != value)
 {
 this.state = value;
 this.NotifyPropertyChanged(“State”);
 }
 }
 }

 private string postalCode;
 [DataMember]
 public string PostalCode
 {
 get { return this.postalCode; }
 set
 {
 if (this.postalCode != value)
 {
 this.postalCode = value;
 this.NotifyPropertyChanged(“PostalCode”);
 }
 }
 }

 private string country;
 [DataMember]
 public string Country
 {
 get { return this.country; }
 set
 {
 if (this.country != value)
 {
 this.country = value;
 this.NotifyPropertyChanged(“Country”);
 }
 }
 }

 }
}

356  ❘  Chapter 11   Building Line of Business Applications

Listing 11-12 shows how to use the DataContractJsonSerializer class to serialize and deserialize
a customer object converted into JSON data.

Listing 11-12:  ​Using the JSON Data Contract Serializer

 string jsonData = string.Empty;

 Customer selectedCustomer = new Customer
 {
 CustomerId = “TEST001”,
 CompanyName = “Test”
 };

 using (MemoryStream ms = new MemoryStream())
 {
 DataContractJsonSerializer json = new
 DataContractJsonSerializer(typeof(Customer));
 json.WriteObject(ms, selectedCustomer);
 ms.Position = 0;

 StreamReader reader = new StreamReader(ms);
 jsonData = reader.ReadToEnd();
 reader.Close();
 }

 Customer customer = null;
 using (MemoryStream ms =
 new MemoryStream(Encoding.Unicode.GetBytes(e.Message)))
 {
 DataContractJsonSerializer serializer = new
 DataContractJsonSerializer(typeof(Customer));
 customer = (Customer)serializer.ReadObject(ms);
 }

Now that you understand the key concept for sending and receiving messages using the messaging
API, you are ready to build out the sample solution. The solution will include a web application and
two Silverlight projects (Search and Detail). The following steps walk you through building both
the Search and Detail applications. The messaging API is used to synchronize changes made in the
detail application back to the search application.

Here are the steps to create the sample solution:

	 1.	 Create a new web application and add two Silverlight projects (Search and Detail) to the
same solution.

	 2.	 Add a new page to the web project called default.aspx.

	 3.	 Set up the object tags for both Silverlight projects.

Listing 11-13 shows the default.aspx page for the Customer application with two Silverlight
players configured: one running the Customer Search application and one running the Customer
Detail application.

Advanced Scenarios  ❘  357

Listing 11-13:  ​Setting up multiple Silverlight players

<div id=”SearchHost”>
 <object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/CustomerViewer.Search.xap”/>
 <param name=”onError” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50331.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/?LinkID=149156&v=
 4.0.50331.0” style=”text-decoration:none”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight” style=”border-style:none”/>

 </object>
 </div>
 <div id=”DetailHost”>
 <object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/CustomerViewer.Details.xap”/>
 <param name=”onError” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50331.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/?LinkID=149156&v=
 4.0.50331.0” style=”text-decoration:none”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight” style=”border-style:none”/>

 </object>
 </div>

Listing 11-14 shows the XML structure for the customer data used in this sample. The customers.xml
file must be located in the ClientBin folder of the web project. The download for this chapter includes
a complete set of data for running the sample.

Listing 11-14:  ​XML structure for customer data

<Customers>
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
 <ContactName>Maria Anders</ContactName>
 <ContactTitle>Sales Representative</ContactTitle>
 <Address>Obere Str. 57</Address>
 <City>Berlin</City>
 <PostalCode>12209</PostalCode>
 <Country>Germany</Country>
 <Phone>030-0074321</Phone>
 <Fax>030-0076545</Fax>
</Customers>

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D%20style=%E2%80%9Dtext-decoration:none
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0%E2%80%9D%20style=%E2%80%9Dtext-decoration:none

358  ❘  Chapter 11   Building Line of Business Applications

Add a class called SearchViewModel to the Search project. This class will contain the logic to
download the customers.xml file from the web project’s ClientBin Folder and to synchronize the
changes sent back from the CustomerDetail class.

Listing 11-15 shows the contents of the SearchViewModel class.

Listing 11-15:  ​Building the view model for the Search application

using System;
using System.Collections.ObjectModel;
using System.ComponentModel;
using System.IO;
using System.Linq;
using System.Net;
using System.Xml.Linq;

namespace CustomerViewer.Search
{
 public class SearchViewModel : INotifyPropertyChanged
 {
 public event PropertyChangedEventHandler PropertyChanged;

 private ObservableCollection<Customer> customers;

 public SearchViewModel()
 {
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new
 DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);
 client.DownloadStringAsync(new Uri(“Customers.xml”,
 UriKind.RelativeOrAbsolute));
 }

 void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 using (TextReader reader = new StringReader(e.Result))
 {
 XDocument doc = XDocument.Load(reader);
 var dataSource = (from d in doc.Descendants(“Customers”)
 select new Customer
 {
 CustomerId = d.Element(“CustomerID”).Value,
 CompanyName = d.Element(“CompanyName”).Value,
 AddressLineOne = d.Element(“Address”).Value,
 City = d.Element(“City”).Value,
 State = d.Element(“Region”) != null
 ? d.Element(“Region”).Value : string.Empty,
 PostalCode = d.Element(“PostalCode”) != null

Advanced Scenarios  ❘  359

 ? d.Element(“PostalCode”).Value : string.Empty,
 Country = d.Element(“Country”).Value,
 });

 this.customers =
 new ObservableCollection<Customer>(
 dataSource.ToList<Customer>());
 }

 this.NotifyPropertyChanged(“Customers”);
 }

 private void NotifyPropertyChanged(String info)
 {
 if (this.PropertyChanged != null)
 {
 this.PropertyChanged(this,
 new PropertyChangedEventArgs(info));
 }
 }

 public ObservableCollection<Customer> Customers
 {
 get
 {
 return this.customers;
 }
 }

 public void SyncCustomer(Customer selectedCustomer)
 {
 Customer customer = this.customers.Where(
 q => q.CustomerId == selectedCustomer.CustomerId).Single();

 customer = selectedCustomer;

 this.NotifyPropertyChanged(“Customers”);
 }

 }
}

Add a class called Customer to the Search project. This class will contain the attributes for a
customer. The same class will need to be created in the Detail project so the data can be properly
serialized and deserialized between the two projects.

Open the MainPage.xaml in the Search project and add a DataGrid control. The data grid will be
used to display the list of customers. The code-behind file for MainPage.xaml will contain the code
for using the messaging API and the SearchViewModel class.

Listing 11-16 shows the XAML used to define the UI of the Customer Search application.

360  ❘  Chapter 11   Building Line of Business Applications

Listing 11-16:  ​XAML for the Search application

<UserControl x:Class=”CustomerViewer.Search.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d” d:DesignHeight=”352” d:DesignWidth=”485”
 xmlns:sdk=”http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk”>
 <Grid x:Name=”LayoutRoot” Background=”White” Width=”750”>
 <StackPanel Margin=”0,0,0,0”>
 <TextBlock Text=”Customer Search” Margin=”29, 5” Foreground=”Red” />
 <sdk:DataGrid AutoGenerateColumns=”False”
 Height=”308” HorizontalAlignment=”Left”
 Margin=”29,2,0,0” Name=”customerView”
 VerticalAlignment=”Top”
 ItemsSource=”{Binding Customers}“ IsReadOnly=”true”>
 <sdk:DataGrid.Columns>
 <sdk:DataGridTextColumn Header=”Company”
 Binding=”{Binding CompanyName}“ />
 <sdk:DataGridTextColumn Header=”Address Line 1”
 Binding=”{Binding AddressLineOne}“ />
 <sdk:DataGridTextColumn Header=”City”
 Binding=”{Binding City}“ />
 <sdk:DataGridTextColumn Header=”State”
 Binding=”{Binding State}“ />
 <sdk:DataGridTextColumn Header=”PostalCode”
 Binding=”{Binding PostalCode}“ />
 <sdk:DataGridTextColumn Header=”Country”
 Binding=”{Binding Country}“ />
 </sdk:DataGrid.Columns>
 </sdk:DataGrid>
 </StackPanel>
 </Grid>
</UserControl>

Listing 11-17 shows the code behind the Customer Search MainPage.xaml.cs file.

Listing 11-17:  ​Search application MainPage.cs

using System;
using System.IO;
using System.Runtime.Serialization.Json;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Messaging;

namespace CustomerViewer.Search
{
 public partial class MainPage : UserControl
 {

 private LocalMessageSender sender { get; set; }

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

Advanced Scenarios  ❘  361

 private LocalMessageReceiver receiver { get; set; }

 public MainPage()
 {
 InitializeComponent();

 this.sender = new LocalMessageSender(“CustomerDetail”);
 this.receiver = new LocalMessageReceiver(“CustomerSearch”);
 this.receiver.MessageReceived += new
 EventHandler<MessageReceivedEventArgs>(Receiver_MessageReceived);
 this.receiver.Listen();

 this.viewModel = new SearchViewModel();
 this.DataContext = this.viewModel;
 this.customerView.SelectionChanged +=
 new SelectionChangedEventHandler(customerView_SelectionChanged);
 }
 private SearchViewModel viewModel;
 void customerView_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
 {
 string jsonData = string.Empty;
 Customer selectedCustomer = e.AddedItems[0] as Customer;

 using (MemoryStream ms = new MemoryStream())
 {
 DataContractJsonSerializer json =
 new DataContractJsonSerializer(typeof(Customer));
 json.WriteObject(ms, selectedCustomer);
 ms.Position = 0;

 StreamReader reader = new StreamReader(ms);
 jsonData = reader.ReadToEnd();
 reader.Close();
 }

 this.sender.SendAsync(jsonData);
 }

 void Receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
 {
 using (MemoryStream ms =
 new MemoryStream(Encoding.Unicode.GetBytes(e.Message)))
 {
 DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(Customer));
 Customer customer = (Customer)serializer.ReadObject(ms);

 this.viewModel.SyncCustomer(customer);
 }

 }
 }
}

362  ❘  Chapter 11   Building Line of Business Applications

At this point you should have everything to run the Search application. The first step for setting up
the Detail application is to add the same customer class that the search application uses. For com-
munication to work between applications, you must make sure the same properties are annotated
with [DataMember] attributes in both customer classes.

Then add a set of TextBlocks and TextBoxes to the Detail application. These will be used to dis-
play and change the selected customer sent from the Search application. In the code behind the
MainPage.xaml, add the necessary code to sync changes back to the Search application.

Listing 11-18 shows the XAML used to define the UI of the Customer Detail application.

Listing 11-18:  ​XAML for the Customer Detail application

<UserControl x:Class=”CustomerViewer.Details.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”316” d:DesignWidth=”444”>
 <Grid x:Name=”LayoutRoot” Background=”White” Height=”400” Width=”370”>
 <StackPanel HorizontalAlignment=”Left”>
 <TextBlock Text=”Customer Detail” Margin=”29, 5” Foreground=”Red” />
 <Grid Height=”300”>
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,5,0,0” Name=”CompanyNameCaption” Text=”Company Name”
 VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left” Margin=”138,5,0,0”
 Name=”CompanyName” VerticalAlignment=”Top” Width=”212”
 Text=”{Binding CompanyName, Mode=TwoWay}“ />
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,35,0,0” Name=”AddressLineOneCaption”
 Text=”Address Line One” VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left” Margin=”138,35,0,0”
 Name=”AddressLineOne” VerticalAlignment=”Top” Width=”212”
 Text=”{Binding AddressLineOne, Mode=TwoWay}“ />
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,65,0,0” Name=”CityCaption” Text=”City”
 VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left” Margin=”138,65,0,0”
 Name=”City” VerticalAlignment=”Top” Width=”212” Text=”{Binding
 City, Mode=TwoWay}“ />
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,95,0,0” Name=”StateCaption” Text=”State”
 VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left” Margin=”138,95,0,0”
 Name=”State” VerticalAlignment=”Top” Width=”212” Text=”{Binding
 State, Mode=TwoWay}“ />
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,125,0,0” Name=”PostalCodeCaption” Text=”Postal Code”
 VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left”
 Margin=”138,125,0,0” Name=”PostalCode” VerticalAlignment=”Top”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Advanced Scenarios  ❘  363

 Width=”212” Text=”{Binding PostalCode, Mode=TwoWay}“ />
 <TextBlock Height=”23” HorizontalAlignment=”Left”
 Margin=”29,155,0,0” Name=”CountryCaption” Text=”Country”
 VerticalAlignment=”Top” />
 <TextBox Height=”23” HorizontalAlignment=”Left”
 Margin=”138,155,0,0” Name=”Country” VerticalAlignment=”Top”
 Width=”212” Text=”{Binding Country, Mode=TwoWay}“ />
 <Button Content=”Save” Height=”30” HorizontalAlignment=”Left”
 Margin=”275,205,0,0”
 Name=”SaveButton” VerticalAlignment=”Top” Width=”75”
 Click=”SaveButton_Click” />
 </Grid>
 </StackPanel>
 </Grid>
</UserControl>

Listing 11-19 shows the code behind the Customer Detail MainPage.xaml.cs file.

Listing 11-19:  ​Detail application MainPage.cs

using System;
using System.IO;
using System.Runtime.Serialization.Json;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Messaging;

namespace CustomerViewer.Details
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 this.sender = new LocalMessageSender(“CustomerSearch”);
 this.receiver = new LocalMessageReceiver(“CustomerDetail”);
 this.receiver.MessageReceived +=
 new EventHandler<MessageReceivedEventArgs>
 (Receiver_MessageReceived);
 this.receiver.Listen();
 }

 private LocalMessageSender sender { get; set; }
 private LocalMessageReceiver receiver { get; set; }
 private Customer selectedCustomer;

 private void SaveButton_Click(object sender, RoutedEventArgs e)
 {
 string jsonData = string.Empty;

 using (MemoryStream ms = new MemoryStream())

continues

364  ❘  Chapter 11   Building Line of Business Applications

 {
 DataContractJsonSerializer json =
 new DataContractJsonSerializer(typeof(Customer));
 json.WriteObject(ms, this.selectedCustomer);
 ms.Position = 0;

 StreamReader reader = new StreamReader(ms);
 jsonData = reader.ReadToEnd();
 reader.Close();
 }

 this.sender.SendAsync(jsonData);
 }

 void Receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
 {
 using(MemoryStream ms =
 new MemoryStream(Encoding.Unicode.GetBytes(e.Message)))
 {
 DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(Customer));
 this.selectedCustomer = (Customer)serializer.ReadObject(ms);
 }

 this.DataContext = this.selectedCustomer;
 }
 }
}

Integrating with Office
It’s a very typical scenario in a LOB application to have to interact with one or more of the applica-
tions included in the Microsoft Office suite. For example, you may need to import/export data from
Excel, generate a report using a Word template, or interface with the object model in Outlook.

Silverlight 4 adds supports for these types of scenarios by using the new COM interop features sup-
port in the ComAutomationFactory API. This component allows you to use Office Automation to
load data into an Excel spreadsheet and display it to the user. The following code snippet demon-
strates the basic steps to making this work:

dynamic excel = ComAutomationFactory.CreateObject(“Excel.Application”);
excel.Visible = true; // make it visible to the user.
dynamic workbook = excel.workbooks;
workbook.Add();
dynamic sheet = excel.ActiveSheet;

To utilize this feature you must build a trusted application with elevated permissions. See Chapter 9
for details on how to build an out-of-browser Silverlight application.

Listing 11-19  (continued)

Advanced Scenarios  ❘  365

Listing 11-20 shows how to export data stored in a Silverlight DataGrid control to Excel using the
Office automation API. Make sure to download the source code for this chapter to see the complete
working version of the Excel exported application.

Listing 11-20:  ​Exporting data to Excel

using System.Collections;
using System.Runtime.InteropServices.Automation;
using System.Windows;
using System.Windows.Controls;
using ExcelExporter.ViewModel;

namespace ExcelExporter
{
 public partial class MainPage : UserControl
 {
 private ExporterViewModel viewModel;
 public MainPage()
 {
 InitializeComponent();

 this.viewModel = new ExporterViewModel();
 this.DataContext = this.viewModel;

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);
 }

 void MainPage_Loaded(object sender, RoutedEventArgs e)
 {
 this.viewModel.LoadData();
 this.dataView.ItemsSource = this.viewModel.Customers;
 }

 private void ExportToExcel_Click(object sender, RoutedEventArgs e)
 {
 this.ExportDataGrid(this.dataView.ItemsSource);
 }

 private void ExportDataGrid(IEnumerable dataSource)
 {

 // Create Reference to Excel API
 dynamic excel
 = AutomationFactory.CreateObject(“Excel.Application”);

 excel.Visible = true; // make it visible to the user.

 // Create Workbook and Sheet to export data
 dynamic workbook = excel.workbooks;
 workbook.Add();
 dynamic sheet = excel.ActiveSheet;

 // Add Header Row

continues

366  ❘  Chapter 11   Building Line of Business Applications

 this.AddHeader(sheet);

 // Export Data from data source to excel
 int row = 2;
 foreach (Customer item in dataSource)
 {
 this.AddCell(sheet, row, 1, item.CustomerId, 15);
 this.AddCell(sheet, row, 2, item.CompanyName, 40);
 this.AddCell(sheet, row, 3, item.AddressLineOne, 40);
 this.AddCell(sheet, row, 4, item.City, 20);
 this.AddCell(sheet, row, 5, item.State, 10);
 this.AddCell(sheet, row, 6, item.PostalCode, 10);
 this.AddCell(sheet, row, 7, item.Country, 20);
 row++;
 }
 }

 private void AddHeader(dynamic sheet)
 {
 this.AddCell(sheet, 1, 1, “Customer Id”, 15);
 this.AddCell(sheet, 1, 2, “Company Name”, 40);
 this.AddCell(sheet, 1, 3, “Address Line One”, 40);
 this.AddCell(sheet, 1, 4, “City”, 20);
 this.AddCell(sheet, 1, 5, “State”, 10);
 this.AddCell(sheet, 1, 6, “Postal Code”, 10);
 this.AddCell(sheet, 1, 7, “Country”, 20);
 }

 private void AddCell(dynamic sheet, int row, int col,
 string value, int width)
 {
 dynamic cell = sheet.Cells[row, col];
 cell.Value = value;
 cell.ColumnWidth = width;
 }

 }
}

Globalization and Localization

When you build a LOB application, adding support for globalization and localization can be one of
the most challenging tasks. It’s important to understand the needs of your application up front so
you can properly handle the localization of your application.

You need to understand which cultures and locales your application must support, how to properly
set up a default (fallback) culture, what impact localization will have on how you package and deploy
your application, and how to support cultures that require right-to-left reading.

Listing 11-20  (continued)

Globalization and Localization  ❘  367

Localizing Your Application
Localization is the process of customizing your application to handle a given culture or locale.
This is done by translating the UI elements of your application to display a specific culture or
locale, handling complex scripts that must be displayed right to left, and the formatting of data
(Numbers, Currency, and DateTime) using the rules for a specific culture or locale.

The approach a developer uses to localize a Silverlight application is very similar to how he would han-
dle localizing an ASP.NET or WinForm application. A developer will create one or more string or image
resource files for each culture/language his application needs to support. A hub and spoke model is used
to package and deploy localized resources. At run time Silverlight will use the CurrentUICulture of the
UI thread to dynamically load culture-specific satellite assemblies. If a satellite assembly is missing for a
given culture, the Silverlight run time will default back to the generic region-natural resource files.

Figure 11-4 displays the contents of a Resource file displayed in Visual
Studio. To support specific culture or locales, add different Resource
files that start with the same name followed by a period and the cul-
ture code. It is recommended that you define an invariant resource file
for each language plus any culture-specific ones. For example, if you
have a strings.resx file you should add a strings.de.resx and a
strings.de-DE.resx file. This way if a culture-specific assembly can
be found for de-DE, it will fall back to the language invariant version
strings.de.resx.

Using Resource Files
To use resource files to localize your Silverlight UI, you need to add a static resource to your XAML
and set up your controls to use data binding to retrieve the strings defined in the resource file. At
run time, Silverlight will use the UI threads CurrentUICulture to load the corresponding localized
resource strings. By default CurrentUICulture is based on the culture of the end user’s machine.
For testing you can override this by setting the current thread culture and CurrentUICulture to a
specific culture code.

Thread.CurrentThread.CurrentCulture
= new System.Globalization.CultureInfo(“de-DE”);

Thread.CurrentThread.CurrentUICulture
= new System.Globalization.CultureInfo(“de-DE”);

When you are done setting up the data binding for resource strings, you need to update your Silverlight
project to set the <SupportedCultures> attribute. The easiest way to do this is to right-click your proj-
ect in Visual Studio and click Unload Project. Then right-click the project name and click Edit. This
opens the metadata for your project. Find the <SupportedCultures> attribute and add all the cultures
your application needs to support. The culture/language codes should be separated by a semicolon. The
list should not include the default generic fallback culture.

Listing 11-21 shows how to use static resources and data binding to use localized resource strings. To
set up your XAML to use localized strings you need to add the namespace (xmlns:res) that points

Figure 11-4

368  ❘  Chapter 11   Building Line of Business Applications

to the local namespace for the resource file, add a static resource to the resources section of the con-
trol, and then update all text and content properties of your control to data-bind to the static resource
(for example: Text=“{Binding Path=CompanyName, Source={StaticResource Strings}}“).

Before trying to run this sample, make sure the resource class and all its methods are marked as
public instead of internal. The class and all its methods must be marked as public for data binding
to work. It’s annoying but if you modify the resource file, you will need to reset the class and its
methods to public again.

Listing 11-21:  ​Setting up a Silverlight UI to use resource strings

<UserControl x:Class=”Chapter11.Views.Listing1121”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:res=”clr-namespace:Chapter11.Resources”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidh=”400”>
 <UserControl.Resources>
 <res:Demo x:Key=”Strings” />
 </UserControl.Resources>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”10,10,0,0”
 Name=”CompanyNameCaption” VerticalAlignment=”Top”
 Text=”{Binding Path=CompanyName, Source={StaticResource Strings}}“ />
 <TextBox Height=”21” HorizontalAlignment=”Left” Margin=”104,12,0,0”
 Name=”CompanyName” VerticalAlignment=”Top”
 TextWrapping=”Wrap” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”12,39,0,0”
 Name=”ContactNameCaption” VerticalAlignment=”Top”
 Text=”{Binding Path=ContactName, Source={StaticResource Strings}}“ />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,37,0,0”
 Name=”ContactName” TextWrapping=”Wrap”
 VerticalAlignment=”Top” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”12,69,0,0”
 Name=”PhoneCaption” VerticalAlignment=”Top”
 Text=”{Binding Path=Phone, Source={StaticResource Strings}}“ />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,69,0,0”
 Name=”Phone” TextWrapping=”Wrap” VerticalAlignment=”Top” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”15,100,0,0”
 Name=”EmailCaption” VerticalAlignment=”Top”
 Text=”{Binding Path=Email, Source={StaticResource Strings}}“ />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,100,0,0”
 Name=”Caption” TextWrapping=”Wrap”
 VerticalAlignment=”Top” Width=”147” />
 <Button Height=”23” HorizontalAlignment=”Left”
 Margin=”176,145,0,0” Name=”SaveAction”
 VerticalAlignment=”Top” Width=”75”
 Content=”{Binding Path=Save, Source={StaticResource Strings}}“ />
 </Grid>
</UserControl>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Globalization and Localization  ❘  369

Packing and Deploying
At run time the Silverlight platform will handle loading the necessary satellite assembly based on
the CurrentUICulture. Depending on whether you are running a Silverlight web application or an
out-of-browser application, the satellite assemblies will be packaged differently.

For a Silverlight web application the main assemblies and all the culture-specific satellite assemblies
will be included in the application’s XAP file.

Figure 11-5 uses the contents of the Silverlight web application XAP file. Note that each satellite
assembly is stored in a culture-specific subfolder, such as de-DE.

Figure 11-5

For out-of-browser (OOB) Silverlight applications you have to create separate XAP files for each
localized culture or locale your application needs to support. You create separate XAP files by
creating new build configurations in Visual Studio. If you want to localize your OOB application
window title, shortcut name, and description, you need to create culture-specific versions of the
OutofBrowserSettings.xml configuration file.

After you create each culture’s OutofBrowserSettings.xml setting file, unload your project file
and edit the metadata for the project. Below the <PropertyGroup> attribute add the following code
for each culture setting file you created. The culture code should match the name of the culture you
used to define the browser setting config file.

<OutOfBrowserSettingsFile>
 Properties\OutOfBrowserSettings.culture-code.xml
</OutOfBrowserSettingsFile>

After reloading the project in Visual Studio open the OutofBrowserSettings.xml file for each
culture and modify the following settings:

ShortName➤➤ attribute of the <OutOfBrowserSettings> tag, which provides the shortcut
name for the application

<OutOfBrowserSettings.Blurb>➤➤ content, which provides the application description that
appears as a tooltip on the installed application shortcuts

Title➤➤ attribute of the <WindowSettings> tag, which provides the window title

Filenames of icons listed in the ➤➤ <OutOfBrowserSettings.Icons> section, for icons to
display in the installation dialog box, Windows Explorer, taskbar, and so on

370  ❘  Chapter 11   Building Line of Business Applications

Supporting Bidirectional Right-to-Left (RTL) Text
Silverlight 4 includes enhancements for localizing your application to support bidirectional text,
right-to-left layouts, and complex scripts such as Arabic, Hebrew, Thai, and so on.

To enable right-to-left (RTL), set the FlowDirection property on one or more UI elements of your
application. Children elements will honor their parent’s FlowDirection setting. To minimize the
impact to your XAML just set your root element’s FlowDirection property.

When working in RTL mode it’s important to understand that the location of the 0 (x) and 0 (y)
coordinate is now changed to the upper-right corner. So any settings you defined for margins or
padding will be based on the upper-right corner.

Figure 11-6 shows how a Silverlight application will render when FlowDirection is set right-to-left.

Figure 11-6

Listing 11-22 shows an example of changing the FlowDirection property of a control’s root
element to be RightToLeft.

Listing 11-22:  ​Setting FlowDirection in XAML

<UserControl x:Class=”Chapter11.Views.Listing1122”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <Grid x:Name=”LayoutRoot” Background=”White” FlowDirection=”RightToLeft”>
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”10,10,0,0”
 Name=”CompanyNameCaption” Text=”Company Name”
 VerticalAlignment=”Top” />
 <TextBox Height=”21” HorizontalAlignment=”Left” Margin=”104,12,0,0”
 Name=”CompanyName” TextWrapping=”Wrap”
 VerticalAlignment=”Top” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”12,39,0,0”
 Name=”ContactNameCaption” Text=”Contact Name”
 VerticalAlignment=”Top” />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,37,0,0”
 Name=”ContactName” TextWrapping=”Wrap”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Full-Screen Applications  ❘  371

 VerticalAlignment=”Top” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”12,69,0,0”
 Name=”PhoneCaption” Text=”Phone”
 VerticalAlignment=”Top” />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,69,0,0”
 Name=”Phone” TextWrapping=”Wrap”
 VerticalAlignment=”Top” Width=”147” />
 <TextBlock Height=”23” HorizontalAlignment=”Left” Margin=”15,100,0,0”
 Name=”EmailCaption” Text=”Email”
 VerticalAlignment=”Top” />
 <TextBox Height=”25” HorizontalAlignment=”Left” Margin=”104,100,0,0”
 Name=”Email” TextWrapping=”Wrap”
 VerticalAlignment=”Top” Width=”147” />
 <Button Content=”Save” Height=”23” HorizontalAlignment=”Left”
 Margin=”176,145,0,0” Name=”SaveAction”
 VerticalAlignment=”Top” Width=”75” />
 </Grid>
</UserControl>

Deploying Best Practices
In addition to deciding to enable RightToLeft flow direction, you should consider a few things
when localizing your application. If your default language is English you need to consider the
impact to your UI layout when you need to support multiple languages. Some languages can take
up to 40 percent more space to render the same text displayed in English. The following list is
just a small subset of the best practices you should follow when localizing an application:

Avoid the ➤➤ Canvas control because it requires hard-coded sizes and positions. Instead use the
grid or StackPanel that support automatic layouts.

Use ➤➤ TextBlocks or TextBox controls instead of Glyphs.

Avoid setting the ➤➤ Width and Height properties of the control.

Make sure ➤➤ TextWrapping=”Wrap” is set for content that may wrap

Full-Screen Applications

In some cases, applications benefit from offering an enhanced experience by being shown as a full-
screen application. Silverlight allows applications to be made full-screen using the IsFullScreen
property. Setting this property to true resizes the application to the current screen size and makes
the application the topmost application. Listing 11-23 shows how you can use a button’s click event
to toggle an application between normal and full-screen modes.

Listing 11-23:  ​Toggling an application between normal and full-screen modes

private void btnFullScreen_Click(object sender, RoutedEventArgs e)
{
 App.Current.Host.Content.IsFullScreen = !App.Current.Host.Content.IsFullScreen;
}

372  ❘  Chapter 11   Building Line of Business Applications

Because placing an application into full-screen mode has certain security risks, Silverlight places a
number of restrictions around putting and keeping an application in full-screen mode, and disables
certain features while you’re in full-screen mode.

First, placing an application in full-screen mode is only allowed using a user-initiated action like the
button click shown in the previous listing. Attempting to set the IsFullScreen property to true in
any other way will result in an exception being thrown. When an application is in full-screen mode,
the end user can always use the Escape key (Esc) to exit full-screen mode. There is no way to override
the function of this key while in full-screen mode.

Also, as an application enters full-screen mode, Silverlight automatically displays a notice to the end
user, reminding them they can use the Escape key to exit. The notice is shown in Figure 11-7.

Figure 11-7

The message shown is hard-coded into Silverlight and cannot be changed.

While in full-screen mode, again for security reasons, certain features of Silverlight are restricted:

Attempting to access the ➤➤ OpenFileDialog and SaveFileDialog while in full-screen mode
causes Silverlight to revert to its normal embedded mode.

Keyboard input is greatly restricted. Silverlight allows input from only the arrow keys, space-➤➤

bar, Tab, Page Up, Page Down, Home, Enter, and End keys. However, Silverlight 4 allows full
keyboard input for full-screen applications running as out-of-browser applications with elevated
privileges. You can learn more about out-of-browser applications in Chapter 9.

Summary  ❘  373

Multi-Touch capabilities of Silverlight are disabled while in full-screen mode. Basic single-➤➤

touch events remain available.

When running in Safari on Mac, hardware acceleration is not available in full-screen mode ➤➤

because of limitations of the Safari browser.

If you are enabling a full-screen experience in your application, you may want this experience to
be different than the application’s normal experience. This is especially true for applications that
are not already using the full browser frame, but are embedded as an “island of richness” within a
larger web page experience.

In this case you need to know when the full-screen state of the application has changed. You can
use the FullScreenChanged event to add logic to your application to change the experience. An
example of this is shown in Listing 11-24.

Listing 11-24:  ​Using the FullScreenChanged event

void Content_FullScreenChanged(object sender, EventArgs e)
{
 if (App.Current.Host.Content.IsFullScreen)
 btnFullScreen.Content = “Exit Full Screen”;
 else
 btnFullScreen.Content = “Make Full Screen”;
}

In the listing you can see that the application is using the FullScreenChanged event to change the text
of the button, although it would be just as simple to make more complex changes to the application UI.

Finally, if you include a full-screen experience in your application, you should consider setting
the new FullScreenOptions object to the StaysFullScreenWhenUnfocused value available in
Silverlight 4. This allows the application to remain in full-screen mode, even if it loses focus.

App.Current.Host.Content.FullScreenOptions =
 System.Windows.Interop.FullScreenOptions.StaysFullScreenWhenUnfocused;

Prior to Silverlight 4, if a full-screen application lost focus, it would revert to its embedded mode.
Having the ability to keep full-screen mode for the application is especially important for your
users with multiple monitors. Setting the FullScreenOptions property allows those users to pin
the Silverlight application in full-screen mode on one monitor while continuing to use applications
on another monitor.

Summary

In this chapter, you examined several typical Line of Business (LOB) application scenarios from how
to build context-sensitive menus, printer-friendly views, integrating with Microsoft Excel or Word,
and how to support localizing your application. As more and more developers adopt RIA-based
architectures, the Silverlight platform will continue to grow to support additional LOB scenarios.

12
application architecture

what’s in this chapter?

Understanding design patterns and principles➤➤

Working with the Model View ViewModel pattern➤➤

Exploring Silverlight frameworks (MEF and PRISM)➤➤

Defi ning a data access strategy➤➤

Designing with performance in mind➤➤

When architecting your Silverlight application you need to keep in mind the functional and
non-functional requirements.

Functional requirements➤➤ include navigation, workfl ow, and security.

Non-functional requirements➤➤ include number of concurrent users, performance,
scalability, maintainability, and reliability.

Whether your application is confi gured to run as a web browser plug-in or installed on an end-
user machine (out-of-browser application), you need to understand the tradeoffs involved in and
best practices for designing an n-tier application. Addressing these functional and non-functional
requirements is no small task. A solution that increases performance may impact scalability or
the maintainability of your application. Fortunately, n-tier application design is not new and sev-
eral well-documented approaches exist to address functional and non-functional requirements.

The most proven approach for architecting n-tier application is to focus on building loosely
coupled components. Each component is focused on a single or small set of responsibilities
(features). This approach increases the maintainability of your application and allows you to
easily address performance/scalability issues that might come up. For example, if your appli-
cation has a long-running process, such as creating a report, you can easily set it up to run
asynchronously if it’s loosely coupled from the rest of your application. Another key principle

376 ❘ chapter 12 ApplIcAtIon ArchItecture

related to using loosely coupled components is separation of concerns. This principle promotes
separating responsibility for a feature into several classes that are loosely coupled.

This chapter will introduce you to the common patterns (MVVM) and frameworks (MEF and
PRISM) for developing loosely coupled Silverlight applications. The Model View ViewModel
(MVVM) pattern has become almost the de facto standard way of building Silverlight applications
because of the rich data-binding capabilities built into the platform. The Managed Extensibility
Framework (MEF) and the PRISM Composite Application Library (PRISM/CAL) are frameworks
you can use to build loosely coupled applications. Both frameworks use the concept of dependency
injection that allows classes to have their dependencies injected at run time instead of having direct
references to concrete classes. One of the most critical design decisions that impacts the performance
and scalability of your application is the data access strategy you use. You could choose to build cus-
tom Windows Communication Foundation (WCF) services or use one of the data access frameworks
(WCF Data Services or WCF RIA Services) available from Microsoft. In some scenarios your data
source may be one or more external services to which you subscribe.

The most important thing to remember when architecting a Silverlight or any other n-tier applica-
tion is that there are no silver bullets. Every choice you make has pros and cons. The golden rule
of architecture is “It depends.” A well-informed software architect/developer will research the best
options for his requirements and focus on building loosely coupled components that can be easily
replaced as requirements change.

The download for this chapter includes a Northwind sample application built using the PRISM/CAL
Framework and RIA Services. You should download the code ahead of time as you review this chap-
ter. The code listings included in the chapter are simplifi ed to illustrate the topic being discussed with-
out needing the infrastructure of a full-fl edged sample. You will need the following items installed to
run the Northwind sample.

SQL Server Express 2008➤➤ — http://www.microsoft.com/express/database/

RIA Services➤➤ — http://www.silverlight.net/getstarted/riaservices/

PRISM/CAL➤➤ — http://compositewpf.codeplex.com/

Unity Application Block➤➤ — http://unity.codeplex.com/

If you installed the Silverlight 4 tools you will already have RIA Services
installed and the download for PRISM includes the Unity Application Block.

understanding design patterns

A design pattern is a common solution for dealing with a problem within a specifi c context. Several
well-known design patterns exist but some are more appropriate for data access, whereas others are
designed to address separating concerns of a user interface. Before you dive into the inner workings
of the MVVM pattern, it is important to get a grasp of what a design pattern is and the design prin-
ciples applied when using the pattern.

http://www.microsoft.com/express/database/
http://www.silverlight.net/getstarted/riaservices/
http://compositewpf.codeplex.com/
http://unity.codeplex.com/

Understanding Design Patterns  ❘  377

As design patterns have become more popular, developers have adopted a set of design principles
called SOLID. SOLID is an acronym for a set of best practices developers use to design loosely coupled
applications. When you read the rest of the chapter keep these principles in mind. They are the key to
understanding how to properly utilize the MVVM pattern and the frameworks available for building
Silverlight applications.

Table 12-1 lists out the SOLID design principles.

Table 12-1

Acronym Description

(S) SRP The single responsibility principle is the notion that a class should have only one
reason to change. For example, instead of creating a class that has data access
code for several different items you should instead separate the data access for
items into a single class.

(O) OCP The open/closed principle is the notion that a class should be open for extensions
but closed to modification. For example, you should be able to add a new behavior
to a class without affecting the rest of the code. Instead of adding a new case to a
switch statement, you should consider re-factoring the code to use separate classes
for each case.

(L) LSP The Liskov substitution principle is the notion that a derived class must be sub-
stitutable for its base class. A good example of this is the .NET stream classes
FileStream and MemoryStream. Both inherit from the Stream class but are
accessing different types of streams. When you call Read() on either class you
get the same expected result. If you were to create your own MyStream class
and override the Read() method to write data instead of reading data you would
break this principle.

(I) ISP The interface segregation principle is the notion that it’s better to have many
specific behavior-related interfaces than one giant monolithic interface. For
example, by having IEnumerable and IDisposable interfaces separate, it’s
possible for client code to only care about dealing with enumerating a collection
or disposing of it and not clutter up either operation by mixing two totally differ-
ent kinds of behaviors.

(D) DIP The dependency inversion principle is the notion that you should depend on
abstractions and not concretions. For example, when dealing with streams you
should be able to read and write data to a file stream or memory stream without
having to create or know the underlying stream source.

Exploring the Model View ViewModel (MVVM)
The Model View ViewModel (MVVM) pattern is a User Interface (UI)/Architectural design pattern
based on the popular Model View Controller (MVC) and Model View Presenter (MVP) patterns. The
MVVM pattern is well-suited for building Silverlight applications because of the rich data binding

378  ❘  Chapter 12   Application Architecture

and commanding abilities built into the Silverlight Platform. All of these patterns promote the same
core approach of isolating domain/business logic from the user interface. This approach allows you
to change either the UI or the domain logic without affecting the other. For example, in Silverlight it’s
possible for you to build an application using the out-of-the-box look and feel for buttons and lists.
Then later, you can allow a designer to customize the application look and feel without touching the
domain logic you wrote.

Figure 12-1 shows the differences between implementing the MVC, MVP, and MVVM patterns.
Although each pattern uses a slightly different approach to handle user input, they all share the same
core approach of separating concerns across multiple classes. In some advanced scenarios, you may
use a combination of these patterns. The most important thing to remember is to build loosely coupled
classes that have specific responsibilities.

View
Passes
Calls to

Fires
Events

Manipulates

Controller Model

Model View Controller

View
(XAML/Codebind)

Change
Notification

Data
Binding
Commands

ViewModel Model

Model View ViewModel

View
Passes
Calls to

Fires
Events

Updates

Manipulates

Presenter

Model

Model View Presenter

Figure 12-1

Now that you have an understanding of what the MVVM pattern is and how it relates to the other
popular UI/Architectural patterns, it is time to examine the components of the MVVM pattern and
steps for using it in a Silverlight application.

MVVM and Separation of Concerns
Understanding what separation of concerns means is the key to successfully using the MVVM, MVC,
or MVP patterns. All three patterns focus on separating the concern of a use case or feature across
multiple classes, In MVVM there are three main components that are assigned responsibilities (the
Model, View, and ViewModel). In advances scenarios you may use additional controller or service
layer classes to limit the responsibility of ViewModel. Using a separation of concern approach has the
following advantages over putting all your code in code-behind files.

Each component has a small set of responsibilities.➤➤

It is easier to test each component independently.➤➤

Isolated code can be replaced without affecting your other code.➤➤

It is easier to eliminate duplicate code.➤➤

Different developers or teams can work on each component.➤➤

Understanding Design Patterns  ❘  379

Earlier in the chapter, we talked about the SOLID principles. As you use MVVM, it is important to
keep these principles in mind and to remember each component is really a layer in your application
that has a set of responsibilities assigned to it.

The Responsibility of the Model
A model represents the domain/business logic of your application. Several different approaches exist
to structure the model. The two most popular approaches are data-centric and domain-driven.

If you use a ➤➤ data-centric approach the model is made up of classes that contain only attributes
(data points), and your business logic is handled by the ViewModel or another set of classes
outside of the model.

In a ➤➤ domain-driven design, the model contains behavior and attributes spread across multiple
classes that are based on real-world business (domain) concepts.

Both approaches (data-centric and domain-driven)
have pros and cons to implementing them, and it is
up to you to decide which approach works best for
your application.

Figure 12-2 shows a class diagram for a typical
customer/order model. In this example, a domain-
driven approach was used and the classes contain
attributes and behaviors for calculating total sales
history and current year sales.

The Responsibility of the View
A view represents the screens and controls of your
application. The view should focus only on render-
ing the user interface of your application and have
little or no code. In Silverlight a view is made up of
the XAML for your screens/controls and their code-
behinds. Its main responsibility should be displaying
and formatting data for the end user. In a properly
designed MVVM application, there is little or no
code in your code-behind. Instead, you should rely
on the rich data-binding capabilities in Silverlight to
set up the binding between UI elements (TextBoxes,
Lists, and so on) and your ViewModel. Silverlight 4
introduces support for ICommands so now it is possi-
ble to link up commands defined in your ViewModel
to button clicks just using XAML. In cases where
you need to rely on code-behind (for example, for
subscribing to events) you should use the minimal amount of code necessary to communicate with
your ViewModel. If you need to handle the selected event of a list or DataGrid event, you should
pass the data item returned to the ViewModel. The ViewModel would then be responsible for using
the data passed from the code bind to trigger any changes to the view or persisting model to your
data store.

Figure 12-2

380  ❘  Chapter 12   Application Architecture

Listing 12-1 shows how to set up the XAML for a view to data bind to the properties and commands
defined in a ViewModel.

Listing 12-1:  ​Data binding to a ViewModel

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Margin=”14,30,0,0” Text=”First Name:”
 Style=”{StaticResource Label}“ />
 <TextBox Margin=”120,30,0,0” Name=”FirstName”
 Text=”{Binding Mode=TwoWay, Path=FirstName}“
 Style=”{StaticResource Data}“ />
 <TextBlock Margin=”14,60,0,0” Text=”Last Name:”
 Style=”{StaticResource Label}“ />
 <TextBox Margin=”120,60,0,0” Name=”LastName”
 Text=”{Binding Mode=TwoWay, Path=LastName}“
 Style=”{StaticResource Data}“ />
 <TextBlock Margin=”14,90,0,0” Text=”Email:”
 Style=”{StaticResource Label}“ />
 <TextBox Margin=”120,90,0,0” Name=”EmailAddress”
 Text=”{Binding Mode=TwoWay, Path=EmailAddress}“
 Style=”{StaticResource Data}“ />
 <TextBlock Margin=”14,120,0,0” Text=”Password:”
 Style=”{StaticResource Label}“ />
 <PasswordBox Margin=”120,120,0,0” Name=”Password”
 Password=”{Binding Mode=TwoWay, Path=Password}“
 Style=”{StaticResource Password}“ />
 <TextBlock Margin=”14,150,0,0” Text=”Repeat Password:”
 Style=”{StaticResource Label}“ />
 <PasswordBox Margin=”120,150,0,0” Name=”PasswordRepeated”
 Password=”{Binding Mode=TwoWay, Path=PasswordRepeated}“
 Style=”{StaticResource Password}“ />
 <Button Content=”Button” Visibility=”{Binding DisplaySave}“
 Margin=”119,189,0,0” Name=”SaveButton”
 Command=”{Binding Save}“
 Style=”{StaticResource Button}“ />
 </Grid>

There are two approaches to linking a view to its ViewModel

View First➤➤  — ​The view is responsible for creating an instance of a ViewModel, via data
binding to a static resource or setting the data context in the code-behind file.

ViewModel First➤➤  — ​The ViewModel creates an instance of the view and sets its data context.
This is usually done using an Inversion of Control Container.

The code snippet that follows shows the View First approach of using data binding or code-behind
to set the view’s data context to its ViewModel.

<UserControl.Resources>
 <local:SampleViewModel x:Key=”ViewModel” />
</UserControl.Resources>

<Grid DataContext=”{Binding Path=User,

Understanding Design Patterns  ❘  381

 Source={StaticResource ViewModel}}“>
</Grid>

this.DataContext = new SampleViewModel();

The code snippet that follows next shows the ViewModel First approach of using dependency injection
to create an instance of the view and the ViewModel, setting the data context of the view inside the
ViewModel. Later on in the chapter you will learn more about inversion of control and dependency
injection and how to use them in your Silverlight application.

public interface IMyView
{
 object DataContext { get; set; }
}

public class SampleViewModel
{
 public SampleViewModel(IMyView view)
 {
 view.DataContext = this;
 }
}

The Responsibilities of the ViewModel
A ViewModel has three main responsibilities:

Abstracting the model from the view➤➤

Tracking UI state➤➤

Handling user input➤➤

You can use several different approaches to design your ViewModel. For simple scenarios, it is okay to
have a single ViewModel per screen that exposes each binding type as properties in the ViewModel. For
more advanced scenarios you can decide to wrap each model type with a corresponding ViewModel
(for example, CustomerViewModel will wrap a Customer class) or create separate ViewModels for each
key component of your UI. For example, if you have a shared search user control it might makes sense
to have a SearchViewModel that abstracts away the different searchable types. The ViewModel should
be responsible for tracking all UI states such as what’s selected, hidden, and so on and handling all user
input either through ICommands or when necessary via methods the view calls.

When you create a ViewModel class, it must implement the INotifyPropertyChanged interface.
The interface requires you to create an event called PropertyChanged. This event is used by the
ViewModel to communicate changes to the view via data binding. For example, you have cre-
ated a property in your ViewModel called DisplaySave. In the view’s XAML you have bound
the Visibility property of the Save button to the DisplaySave property in the ViewModel. In
your ViewModel you change the value of the DisplaySave property after a user enters in all the
required data. When changing the value you send a notification to the Save button by firing off
the PropertyChanged event, passing in a parameter equal to “DisplaySave”. Silverlight handles

382  ❘  Chapter 12   Application Architecture

the operation of notifying the view about the property changed and changing the Visibility
of the Save button.

<Button Content=”Button” Visibility=”{Binding DisplaySave}“ />

Visibility displaySave = Visibility.Collapsed;

public Visibility DisplaySave
{
 get
 {
 return this.displaySave;
 }
 set
 {
 if (this.displaySave != value)
 {
 this.displaySave = value;
 this.OnPropertyChanged(“DisplaySave”);
 }
 }
}

In real-world scenarios, you should create a base ViewModel class that implements the
INotifyPropertyChanged interface. This way you can minimize repeating the same notification
code in each ViewModel. Silverlight 4 adds support for the ICommand interface, which allows you
to bind commands exposed by the ViewModel to any UI element that inherits from ButtonBase.
This new feature allows you to use XAML to bind to a command and pass in parameters to it
instead of relying on code-behind events. Using this new feature and having a base ViewModel
class will allow you to minimize unnecessary duplicate code.

Listing 12-2 shows a ViewModel class that includes properties and commands. By using the
PropertyChanged event, the ViewModel can notify any view bound to it that a property has
changed. The view will invoke the ViewModel’s command when an end user performs an action.

Listing 12-2:  ​Sample ViewModel

using System.ComponentModel;
using System.Windows;
using Chapter12.Commands;

namespace Chapter12.ViewModel
{
 public class SampleViewModel : INotifyPropertyChanged
 {

 public event PropertyChangedEventHandler PropertyChanged;

 protected void OnPropertyChanged(string name)
 {
 if (this.PropertyChanged != null)
 {

Understanding Design Patterns  ❘  383

 this.PropertyChanged(this, new PropertyChangedEventArgs(name));
 }
 }

 public SampleViewModel()
 {
 this.firstName = “John”;
 this.lastName = “Doe”;
 this.emailAddress = “jdoe@company.com”;
 this.password = “12345”;
 this.passwordRepeated = “12345”;

 this.DisplaySave = Visibility.Visible;
 }

 private string firstName;
 public string FirstName
 {
 get
 {
 return this.firstName;
 }
 set
 {
 if (this.firstName != value)
 {
 this.firstName = value;
 this.OnPropertyChanged(“FirstName”);
 }
 }
 }

 private string lastName;
 public string LastName
 {
 get
 {
 return this.lastName;
 }
 set
 {
 if (this.lastName != value)
 {
 this.lastName = value;
 this.OnPropertyChanged(“LastName”);
 }
 }
 }

 private string emailAddress;
 public string EmailAddress
 {
 get
 {

continues

mailto:jdoe@company.com%E2%80%9D

384  ❘  Chapter 12   Application Architecture

 return this.emailAddress;
 }
 set
 {
 if (this.emailAddress != value)
 {
 this.emailAddress = value;
 this.OnPropertyChanged(“EmailAddress”);
 }
 }
 }

 private string password;
 public string Password
 {
 get
 {
 return this.password;
 }
 set
 {
 if (this.password != value)
 {
 this.password = value;
 this.OnPropertyChanged(“Password”);
 }
 }
 }

 private string passwordRepeated;
 public string PasswordRepeated
 {
 get
 {
 return this.passwordRepeated;
 }
 set
 {
 if (this.passwordRepeated != value)
 {
 this.passwordRepeated = value;
 this.OnPropertyChanged(“PasswordRepeated”);
 }
 }
 }

 Visibility displaySave = Visibility.Collapsed;
 public Visibility DisplaySave
 {
 get
 {
 return this.displaySave;

Listing 12-2  (continued)

Understanding Design Patterns  ❘  385

 }
 set
 {
 if (this.displaySave != value)
 {
 this.displaySave = value;
 this.OnPropertyChanged(“DisplaySave”);
 }
 }
 }

 private SaveCommand saveCommand;
 public SaveCommand Save
 {
 get
 {
 if (this.saveCommand == null)
 this.saveCommand = new SaveCommand(this);

 return this.saveCommand;
 }
 }
 }
}

Using MVVM Best Practices
As your Silverlight application gets more complex you should keep the following best practices in mind.
Always keep separation of concerns and testability in mind. In more complex scenarios, it might make
sense to introduce controller or service layer classes to handle interactions with the model or external
data access services. Loading the model each time a new screen is displayed can be very costly if you
have to call an external data source. This can affect the performance and scalability of your applica-
tion because you are making multiple run trips to a data source and keep instantiating the same model
or, worse yet, keep loading multiple instances of the model. This can lead to a harder to maintain code
base. A good solution to this problem is to have a root (shell) ViewModel that keeps a reference to the
model and manages properties for the other ViewModel in your application.

More than likely, your Silverlight application will use services to access your data store, so it is
important to keep in mind that all service calls are asynchronous and will be executed in a thread
outside the UI thread. When the service call is complete, the MVVM pattern is a good way for noti-
fying your user interface that data is ready to be displayed. For example, say your application allows
users to search for products. By defining a visibility property in your ViewModel you can control the
display of a loading status message. When the service call is kicked off, you would toggle the visibil-
ity property to show the message. When the call is complete, you would set the ViewModel property
for product search results and set the visibility property to hide the status message.

Listing 12-3 shows an advanced MVVM scenario where the ViewModel displays product search
results based on filters the user entered in. It relies on a service layer for calling the search service
and loading the model. Once the service call is complete, the service class notifies the ViewModel,
which fires off property notification events to the view.

386  ❘  Chapter 12   Application Architecture

Listing 12-3:  ​Advanced ViewModel

using System.Collections.ObjectModel;
using System.Windows;
using Chapter12.Model;
using Chapter12.Services;

namespace Chapter12.ViewModel
{
 public class ProductSearchViewModel : BaseViewModel
 {

 public ProductSearchViewModel()
 {
 }

 public void LoadData()
 {
 new MockProductService().Execute(Display);
 }

 private void Display(ProductResult result)
 {
 this.Categories = result.Categories;
 }

 private ObservableCollection<Product> products;
 public ObservableCollection<Product> Products
 {
 get
 {
 return this.products;
 }
 set
 {
 if (this.products != value)
 {
 this.products = value;
 this.OnPropertyChanged(“Products”);
 }
 }
 }

 private Product selectedProduct;
 public Product SelectedProduct
 {
 get
 {
 return this.selectedProduct;
 }
 set
 {
 if (this.selectedProduct != value)
 {

Understanding Design Patterns  ❘  387

 this.selectedProduct = value;
 this.OnPropertyChanged(“SelectedProduct”);

 if (this.selectedProduct != null)
 {
 this.IsProductSelected = Visibility.Visible;
 }
 else
 {
 this.IsProductSelected = Visibility.Collapsed;
 }
 }
 }
 }

 private Visibility isProductSelected = Visibility.Collapsed;
 public Visibility IsProductSelected
 {
 get
 {
 return this.isProductSelected;
 }
 set
 {
 if (this.isProductSelected != value)
 {
 this.isProductSelected = value;
 this.OnPropertyChanged(“IsProductSelected”);
 }
 }
 }

 private ObservableCollection<Category> categories;
 public ObservableCollection<Category> Categories
 {
 get
 {
 return this.categories;
 }
 set
 {
 if (this.categories != value)
 {
 this.categories = value;
 this.OnPropertyChanged(“Categories”);
 }
 }
 }

 private Category selectedCategory;
 public Category SelectedCategory
 {
 get
 {
 return this.selectedCategory;

continues

388  ❘  Chapter 12   Application Architecture

 }
 set
 {
 if (this.selectedCategory != value)
 {
 this.selectedCategory = value;
 this.OnPropertyChanged(“SelectedCategory”);
 this.DisplayProducts(this.selectedCategory);
 }
 }
 }

 private void DisplayProducts(Category selectedCategory)
 {
 this.Products = selectedCategory.Products;
 }

 }
}

Listing 12-4 shows the view (XAML) for the product search view. This is a more complex UI than
the previous sample. It shows how to bind a ViewModel to a ListBox, DataGrid, and multiple
TextBoxes. When a category is selected, its corresponding products will be displayed.

Listing 12-4:  ​XAML data bound to ViewModel

<UserControl x:Class=”Chapter12.Views.Listing1204”
 xmlns:data=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data”
 xmlns:sdk=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls”
 xmlns:common=”clr-namespace:System.Windows;assembly=System.Windows.Controls”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <UserControl.Resources>
 <Style x:Key=”Label” TargetType=”TextBlock”>
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 </Style>
 <Style x:Key=”Data” TargetType=”Control”>
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Width” Value=”250” />
 <Setter Property=”Height” Value=”25” />
 </Style>
 <Style x:Key=”Button” TargetType=”Button”>

Listing 12-3  (continued)

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Understanding Design Patterns  ❘  389

 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Width” Value=”75” />
 <Setter Property=”Height” Value=”25” />
 </Style>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel Orientation=”Horizontal”>
 <ListBox Grid.Column=”0”
 Margin=”5”
 Height=”200”
 VerticalAlignment=”Top”
 ItemsSource=”{Binding Categories}“
 DisplayMemberPath=”Name”
 SelectedItem=”{Binding SelectedCategory, Mode=TwoWay}“
 />

 <StackPanel>
 <data:DataGrid AutoGenerateColumns=”False”
 ItemsSource=”{Binding Products}“
 SelectedItem=”{Binding SelectedProduct, Mode=TwoWay}“>
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header=”Name”
 Binding=”{Binding Name}“ Width=”200” />
 <data:DataGridTextColumn Header=”Price”
 Binding=”{Binding Price}“ Width=”120” />
 <data:DataGridTextColumn Header=”Number In Stock”
 Binding=”{Binding NumberInStock}“ Width=”120” />
 <data:DataGridCheckBoxColumn Header=”On Back Order”
 Binding=”{Binding OnBackOrder}“ Width=”100” />
 </data:DataGrid.Columns>
 </data:DataGrid>
 <StackPanel VerticalAlignment=”Top” Margin=”0,10,0,0”
 Visibility=”{Binding IsProductSelected}“>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”150” />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text=”Name:” Grid.Column=”0” Grid.Row=”0”
 Style=”{StaticResource Label}“ />
 <TextBox Name=”Name” Grid.Column=”1” Grid.Row=”0”
 Text=”{Binding Mode=TwoWay,
 Path=SelectedProduct.Name}“
 Style=”{StaticResource Data}“ />
 <TextBlock Text=”Amount:” Grid.Column=”0” Grid.Row=”1”
 Style=”{StaticResource Label}“ />
 <TextBox Name=”Price” Grid.Column=”1” Grid.Row=”1”

continues

390  ❘  Chapter 12   Application Architecture

 Text=”{Binding Mode=TwoWay,
 Path=SelectedProduct.Price}“
 Style=”{StaticResource Data}“ />
 <TextBlock Text=”Number In Stock:”
 Grid.Column=”0” Grid.Row=”2”
 Style=”{StaticResource Label}“ />
 <TextBox Name=”NumberInStock”
 Grid.Column=”1” Grid.Row=”2”
 Text=”{Binding Mode=TwoWay,
 Path=SelectedProduct.NumberInStock}“
 Style=”{StaticResource Data}“ />
 <TextBlock Text=”On Back Ordered:”
 Grid.Column=”0” Grid.Row=”3”
 Style=”{StaticResource Label}“ />
 <CheckBox Name=”IsBackOrder”
 Grid.Column=”1” Grid.Row=”3”
 IsChecked=”{Binding Mode=TwoWay,
 Path=SelectedProduct.OnBackOrder}“
 Style=”{StaticResource Data}“ />
 </Grid>
 </StackPanel>
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

Learning about Inversion of Control/Dependency Injection
When designing the architecture for applications, it is important to understand how different com-
ponents, layers, and classes depend on each other. To truly achieve separation of concern you must
consider how to best isolate different classes. Using the dependency inversion principle is a good
place to start. The principle states that you should depend upon abstractions and not concretions.

A related principle to this is the inversion of control (IoC)/dependency injection. This principle
allows you to achieve loosely coupled components by relying on third-party containers to create
and manage the lifetime of dependencies and at run time inject dependencies into each other. For
example, you would use IoC to inject a view into a ViewModel as we previously talked about when
you use a ViewModel First approach.

There are several IoC containers available for the Silverlight platform. For the purpose of this book,
you will learn about how to use the Managed Extensibility Framework (MEF) and Unity Application
Block from the Microsoft Pattern and Practices group. Unity is currently the IoC container used by the
PRISM (CAL) framework. Future versions of PRISM will include more integration with MEF. Later
on in the chapter, you will learn about each of these frameworks. For now, we are going to focus on
the core concepts of IoC.

Listing 12-5 shows the basic implementation of the dependency inversion principle. The
GameViewModel creates an instance of the GameService. Instead of referencing the GameService
directly, it uses the interface (abstraction) the service implements.

Listing 12-4  (continued)

Understanding Design Patterns  ❘  391

Listing 12-5:  ​Using abstraction

using System.Collections.Generic;
using Chapter12.Model;
using Chapter12.Services;

namespace Chapter12.ViewModel
{
 public class GameViewModel
 {

 public GameViewModel()
 {
 }

 public void LoadData()
 {
 IGameService service = new GameService();

 Game game = service.GetGameById(1);
 IList<Game> game = service.SearchForGames();
 }

 }
}

This example is a good starting point. However, there still exists a tight coupling between the
ViewModel and its service because the ViewModel is still responsible for creating the service directly.
A better approach is to use an IoC Container to inject the dependency at run time. Two popular
approaches exist for implementing IoC: dependency injection and service locator.

When you use a service locator, you must specifically ask the container for a dependency.➤➤

When you use dependency injection, the container will inject the dependency.➤➤

If you use constructor injection, the dependency is injected when the container creates an instance
of your class; property injection allows you to have a dependency injected the first time you try to
use it. Both approaches require you to register any dependency prior to using them. An exception
is raised if a type is not registered. The combination of dependency inversion and the inversion of
control principles allows you to design better architected Silverlight applications by loosely coupling
classes (components) using abstraction and dependency injection.

Now that you have a basic understanding of IoC, you can examine a few samples of implementing a
service locator and dependency injection using the Unity Application Block.

Listing 12-6 shows how to set up a service locator using Unity. When the GameViewModel wants
to call the GameService to search for games, it asks the IoC container to locate the class that
implements the IGameService interface.

392  ❘  Chapter 12   Application Architecture

Listing 12-6:  ​Using Unity as a service locator

using System.Collections.Generic;
using Chapter12.Model;
using Chapter12.Services;
using Microsoft.Practices.Unity;

namespace Chapter12.ViewModel
{
 public class GameViewModel
 {

 public GameViewModel()
 {
 }

 private UnityContainer container;
 public GameViewModel(UnityContainer container)
 {
 this.container = container;
 }

 public void UseServiceLocator()
 {
 IGameService service = this.container.Resolve<IGameService>();

 Game game = service.GetGameById(1);
 IList<Game> gameList = service.SearchForGames();
 }

 }
}

using System.Windows;
using System.Windows.Controls;
using Chapter12.Services;
using Chapter12.ViewModel;
using Microsoft.Practices.Unity;

namespace Chapter12.Views
{
 public partial class Listing1206 : UserControl
 {
 private GameViewModel viewModel;
 UnityContainer container;

 public Listing1206()
 {
 InitializeComponent();

 this.container = new UnityContainer();
 this.container.RegisterType<IGameService, GameService>();

 this.viewModel = new GameViewModel(this.container);

Understanding Design Patterns  ❘  393

 this.DataContext = this.viewModel;
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 this.viewModel.UseServiceLocator();
 }
 }
}

Listing 12-7 shows how to do constructor dependency injection using Unity. The
SportsGameViewModel constructor requires a reference to a class that implements the IGameService.
To have the reference injected into the ViewModel the IGameService must be registered with Unity and
your ViewModel must be created by calling Resolve on the IoC container.

Listing 12-7:  ​Constructor dependency injection

using System.Windows;
using System.Windows.Controls;
using Chapter12.Services;
using Chapter12.ViewModel;
using Microsoft.Practices.Unity;

namespace Chapter12.Views
{
 public partial class Listing1207 : UserControl
 {
 private SportsGameViewModel viewModel;
 UnityContainer container;

 public Listing1207()
 {
 InitializeComponent();

 this.container = new UnityContainer();
 this.container.RegisterType<IGameService, GameService>();

 this.viewModel = container.Resolve<SportsGameViewModel>();
 this.DataContext = this.viewModel;
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 this.viewModel.LoadData();
 }
 }
}

using Chapter12.Model;
using Chapter12.Services;

namespace Chapter12.ViewModel

continues

394  ❘  Chapter 12   Application Architecture

{
 public class SportsGameViewModel
 {
 private IGameService service;
 public SportsGameViewModel(IGameService service)
 {
 this.service = service;
 }

 public void LoadData()
 {
 Game game = this.service.GetGameById(1);
 }

 }
}

Listing 12-8 shows how to do property (setter) dependency injection using Unity. The
ActionGameViewModel contains a property GameService that has been annotated with the
[Dependency] attribute. This allows you to simplify your code instead of adding many dependen-
cies to your constructor, and it delays the loading of a dependency until the first time you use it. You
are still required to register the IGameService with Unity and create your ViewModel using the
Resolve method on the IoC container.

Listing 12-8:  ​Property Dependency Injection

using System.Windows;
using System.Windows.Controls;
using Chapter12.Services;
using Chapter12.ViewModel;
using Microsoft.Practices.Unity;

namespace Chapter12.Views
{
 public partial class Listing1208 : UserControl
 {
 private ActionGameViewModel viewModel;
 UnityContainer container;

 public Listing1208()
 {
 InitializeComponent();

 this.container = new UnityContainer();
 this.container.RegisterType<IGameService, GameService>();

 this.viewModel = container.Resolve<ActionGameViewModel>();
 this.DataContext = this.viewModel;
 }

 private void button1_Click(object sender, RoutedEventArgs e)

Listing 12-7  (continued)

Understanding Design Patterns  ❘  395

 {
 bool isServiceLoaded = this.viewModel.GameService != null;
 this.viewModel.LoadData();
 }
 }
}

using Chapter12.Model;
using Chapter12.Services;
using Microsoft.Practices.Unity;

namespace Chapter12.ViewModel
{
 public class ActionGameViewModel
 {

 public ActionGameViewModel()
 {
 }

 private IGameService service;

 [Dependency]
 public IGameService GameService
 {
 get{return this.service;}
 set{this.service = value;}
 }

 public void LoadData()
 {
 Game game = this.GameService.GetGameById(1);
 }
 }
}

Inversion of Control (IoC) and Dependency Injection (DI) are powerful tools to help you build better
architected applications. By using an IoC container to manage dependencies, you create a better sepa-
ration of concerns between the different classes (or components) of your application. It is important to
understand that all dependency injection happens at run time so there is some performance cost that
you should consider when using IoC/DI. Later in the chapter, you examine the inner workings of the
MEF and PRISM frameworks. Both rely heavily on the concept of IoC/DI so you might want to refer
to this section as you read how to use the frameworks.

Exploring the Event Broker Pattern
A key concept to building a Silverlight application is using events. Events allow one class to communi-
cate to one or more other classes that a specific thing happened (for example, a button was clicked or
data had been retrieved from a service). The normal way to use an event is for one class to subscribe to
the events of another class. This approach works great when each class has direct access to the other
and only one class can trigger an event. However, in more advanced scenarios one or more classes may
need to send the same event or be notified by events without subscribing directly to the caller event.

396  ❘  Chapter 12   Application Architecture

As discussed in the previous section on IoC/DI, it is a good idea to use a container for managing
dependencies instead of classes having direct access to each other. Events can be treated as another
type of dependency and instead of subscribing directly to an event, a container (Event Broker) could
be used to manage the subscribers and publishers of an event. When an event occurs, the Event
Broker would be responsible for notifying all subscribers that an event occurred. A good example of
this is handling the closing of an application. Instead of looping through each control on the screen
to check to see if its needs to be saved before your applications closes, an Event Broker could handle
notifying each control to save itself. Another example of where an Event Broker would greatly sim-
plify your code is when you need to display a retrieving data status message. The user control for
the status message could subscribe to events that a ViewModel publishes: one for when the async
call starts and one when it ends. This approach allows the status control to be totally independent
of the ViewModel. In fact, the status control and ViewModel do not even know the other one exists.
Briefly, an Event Broker allows components to be loosely coupled from the events they need to pub-
lish or subscribe to.

Using Silverlight Frameworks

When architecting an application it’s important to understand how frameworks can help you better
design your application. For a simple project, a framework might be overkill. However, for advanced
scenarios where you may have several or even dozens of developers it is critical to use or build a frame-
work for your application. By using a framework, you can centralize the plumbing and common ser-
vices all developers need to use in one place. Even when using an existing framework such as PRISM
(Composite Application Library) or the Managed Extensibility Framework (MEF) you should consider
building your own application-specific framework on top to increase code reuse and simplify the devel-
oper’s experience.

Exploring the Managed Extensibility Framework
The Managed Extensibility Framework (MEF) is a new component included in the Silverlight 4
Platform for simplifying the design of extensible applications and components. MEF offers discovery
and composition capabilities that you can leverage to load application extensions. MEF now ships
with the Silverlight 4 run time. However, there is a version available for Silverlight 3 as a separate
download on CodePlex (http://mef.codeplex.com). MEF is a key component of the .NET 4.0
platform as well. Therefore, you can now use the same extensibility framework whether you are
building a Silverlight, WPF, or ASP.NET application.

It is important to note that there is some overlap between MEF and the PRISM (CAL) Framework.
MEF focuses on building extensible applications by providing support for automatic component
discovery and compositions. Though PRISM (CAL) is an application framework that is used for
building modular composite applications that use UI patterns such as MVVM, MEF will be more
integrated into a future version of the PRISM (CAL) Framework.

What Problem Does MEF Solve?
MEF presents a simple solution for addressing run time extensibility. Prior to MEF, any application
that wanted to support the plug-in model needed to create its own infrastructure. In many cases, the
approaches that developers used were application-specific and could not be easily reused across multiple

http://mef.codeplex.com

Using Silverlight Frameworks  ❘  397

implementations. Because the MEF model does not require any hard dependencies on a particular
application assembly, you can design your extension to be application-specific or generic. This makes
it easy to develop a test harness for testing your extension independently of any application. MEF will
handle any dependencies between extensions by insuring that they are loaded in the proper order.

How Does MEF Work?
MEF includes a catalog and a composition container. The catalog is responsible for discovering
extensions and the composition container is responsible for managing the creation, lifetime, and
dependencies for an extension.

ComposablePart is a first-class citizen in MEF and offers up one or more exports, and may depend on
one or more externally provided services or imports. The default implementation of ComposablePart
manages an object instance of a given type. However, MEF has built-in extensibility to support addi-
tional custom implementations of ComposableParts as long as they adhere to import/export contracts.

You define a ComposablePart by defining an export contract and then import the ComposableParts
you want to use in your application. Contracts are the bridge shared between exports and imports.
An export contract consists of metadata that can be used to filter the discoverability of the export. A
container interacts with a catalog to load the ComposableParts your application uses. The container
will handle loading any dependencies the ComposableParts require. If you want, you can manu-
ally add composable part instances directly to a container. By default, MEF uses attribute-based
metadata to declare exports and imports. This allows MEF to determine which parts, imports, and
exports are available completely through discovery.

Figure 12-3 shows the relationship between the MEF catalog, composition container, and multiple
extensions (plug-ins). Each composable part can define export and import contracts and the catalog
export provider is extensible enough to support custom export providers. This gives you the ability
to build custom providers to better manage extensions if you have custom requirements that do not
fit in the default export provider.

Export Import

Part

Export Import

Compostition Container

Part

Export

CustomExportProvider CatalogExportProvider MutableExportProvider

Import

Part

Catalog

Figure 12-3

398  ❘  Chapter 12   Application Architecture

Using MEF in Your Application
Now that you have a basic understanding of what MEF is and how it works, you can dive into using
MEF in your Silverlight application to add extensibility. To use MEF in your application you need to
understand how to set up a ComposablePart and the import/export contracts for the part.

A ComposablePart is a unit within MEF. It exports services that other parts need and imports
services from other parts. You use the [System.ComponentModel.Composition.Import] and
[System.ComponentModel.Composition.Export] attributes to declare the imports/exports for a
ComposablePart. A part must contain at least one export. The default MEF catalog will automati-
cally load ComposableParts that have export attributes defined. It is possible to use the catalog to
add a ComposablePart at run time also.

ComposableParts do not depend on each other directly. Instead, they depend on a contract.
When defining a contract it’s a good idea to use a fully qualified namespace. This will allow
ComposableParts to be more uniquely defined. The MEF container will handle matching up
export and import contracts when a ComposablePart is loaded.

The following code snippet shows the different approaches to exporting a contract. If a contract name
is not specified, MEF will implicitly use the fully qualified name of the type as the contract.

 [Export]
 public class TextExporter
 {
 public TextExporter()
 {
 }
 }

 [Export(typeof(TextExporterOne))]
 public class TextExporterOne
 {
 }

 [Export(“Chapter12.MEF.Services.TextExporterTwo”)]
 public class TextExporterTwo
 {
 }

When defining your export contract you should consider using an interface or abstract class type
rather than a concrete class. This allows the importer to be completely decoupled from a specific
implementation of an export contract. You should consider deploying a contract assembly that con-
tains the contract types that extenders can use for extending your applications. Additionally, the
contract assembly can contain metadata or custom MEF export attributes needed by importers.

The following code snippet shows multiple log source implementations that export the ILogService
interface. The LogService class imports a collection of ILogService implementations, which it
invokes in the WriteToLog method. This approach makes it easy to add new log sources to your
application.

 public interface ILogService
 {
 void Write(string value);

Using Silverlight Frameworks  ❘  399

 }

 [Export(typeof(ILogService))]
 public class DatabaseLogService : ILogService
 {
 public void Write(string value)
 {
 }
 }

 [Export(typeof(ILogService))]
 public class FileLogService : ILogService
 {
 public void Write(string value)
 {
 }
 }

 public class LogService
 {
 [ImportMany]
 public IEnumerable<ILogService> Services { get; set; }

 public void WriteToLog(string value)
 {
 foreach (ILogService service in this.Services)
 service.Write(value);
 }
 }

Declaring Exports
ComposableParts declare exports through the [System.ComponentModel.Composition.Export]
attribute. In MEF you can use several different approaches to declare exports, including at the class
level and through properties and methods.

To export a ComposablePart you simply decorate the part with the Export attribute as shown in
the following code snippet:

 [Export]
 public class TextExporter
 {
 public TextExporter()
 {
 }
 }

In addition to exporting itself, a part can export properties or methods. Property exports have
several advantages. They allow the exporting of sealed types (such as core CLR types). They allow
decoupling the export from how it is created, for example, exporting the existing Html.Document
the run time creates for you. Moreover, they allow having a family of related exports in the same
ComposablePart, such as the DefaultSendersRegistery ComposablePart that exports a default
set of senders as properties.

400  ❘  Chapter 12   Application Architecture

To export a property, just decorate it with the Export attribute as the ConfigurationService class
does in the following code snippet:

public class ConfigurationService
 {
 private int timeout = 60;
 private string serverUri = @“http://www.myserver.com”;

 [Export(“TimeoutAmount”)]
 public int TimeoutAmount
 {
 get { return this.timeout; }
 }

 [Export(“ServerUri”)]
 public string ServerUri
 {
 get { return this.ServerUri; }
 }

 }

Methods are exported as delegates. They have several benefits, including allowing finer grained
control as to what is exported. For example, a rules engine might import a set of pluggable methods
that shield the caller from any knowledge of the type and that can be generated through simple code
generation. Method exports are limited to four arguments because of limitation built into the .NET
Framework. They must be defined using a type or string contract name.

The following code snippet shows you how to define a contract for a method export and how a
delegate is used for importing the contract:

 [Export(typeof(Action<Customer>))]
 public void Send(Customer data)
 {
 // Call Service to save dats
 }
 [Import(typeof(Action<Customer>))]
 public Action<Customer> CallService { get; set; }

 public void Save()
 {
 CallService(new Customer { ContactName = “John Doe” });
 }

MEF includes support for base classes/interfaces to define exports that are automatically inherited
by subclasses. This is ideal for integration with legacy frameworks that want to take advantage
of MEF without requiring modification to existing code. To use this capability you must deco-
rate your class/interface using the [System.ComponentModel.Composition.InheritedExport]
attribute. In the standard .NET version of MEF, it is possible to discover public and non-public
parts, but this behavior is not supported by medium/partial trust environments including the
Silverlight 4 Platform.

http://www.myserver.com%E2%80%9D

Using Silverlight Frameworks  ❘  401

Declaring Imports
ComposableParts declare imports through the [System.ComponentModel.Composition.Import]
attribute. MEF supports Field, Property, and Constructor importing. Property imports are done by
decorating the property using the [Import] attribute:

 [Import]
 public IMessageSender MessageSender { get; set; }

Instead of listing out multiple imports using properties you can define a constructor that accepts one or
more parameters. You have two approaches to define a constructor import. By default, the types for of
each parameter will be used when you decorate the constructor using the [ImportingConstructor]
attribute. It is also possible to explicitly define the import for each parameter using the [Import] attri-
bute. An import can be marked as optional by setting the AllowDefault import parameter to true. If
an optional import is not available it will be set to default(T) for its type.

The following code snippet shows how to mark one of the import parameters as optional by setting
the AllowDefault parameter to true:

 private IProductService service;

 [ImportingConstructor]
 public ProductViewModel([Import(AllowDefault = true)] IProductService
 service)
 {
 this.service = service;
 }

Member variables (fields) can be defined as imports also using the [Import] attribute. Importing
private fields, properties, and methods is fully supported in a full trust environment, but will be
problematic in a medium/partial trust environment like Silverlight because reflection in Silverlight
cannot access private or internal members.

 [Import]
 private ILogService service;

In addition to single imports, you can import collections using the [ImportMany] attribute. This means
that all instances of a specific contract will be imported from the container. MEF parts can support
recomposition, which means as new exports become available in the container; collections are auto-
matically updated with any new items. You can implement the IPartImportsSatisfiedNotification
interface to be notified when all imports that could be satisfied are loaded.

public class LogManager : IPartImportsSatisfiedNotification
 {

 [ImportMany(AllowRecomposition = true)]
 public IEnumerable<ILogService> Services { get; set; }

 public void WriteToLog(string value)
 {
 foreach (ILogService service in this.Services)
 service.Write(value);

402  ❘  Chapter 12   Application Architecture

 }

 public void OnImportsSatisfied()
 {
 // Called when all imports are satisfied
 }
 }

Using Catalogs
One of the key value propositions of the MEF attribute-based programming model is the ability
to dynamically discover parts via catalogs. Catalogs allow applications to easily consume self-
registered exports. Out-of-the-box MEF includes several catalogs that make it easy to consume
MEF parts. To use a catalog inside of a container, simply pass an instance of a catalog to the con-
tainer’s constructor:

var container = new CompositionContainer(catalog);

AssemblyCatalog allows you to access all the exports available within a specific assembly. For
example, use AssemblyCatalog to access the parts available in the currently executing assembly:

Assembly currentAssembly = Assembly.GetExecutingAssembly();
var catalog = new AssemblyCatalog(currentAssembly);

DirectoryCatalog allows you to discover all the exports in all assemblies for a given directory:

var catalog = new DirectoryCatalog(“Plugins”);

AggregateCatalog can be used to combine multiple catalogs into a single catalog. Its constructor
can accept a collection of catalogs or you can add catalogs individually to the catalog collection. A
common approach is to load the currently executing AssemblyCatalog and DirectoryCatalog for
third-party extensions:

 Assembly currentAssembly = Assembly.GetExecutingAssembly();

 var catalog = new AggregateCatalog(
 new AssemblyCatalog(currentAssembly),
 new DirectoryCatalog(“Plugins”)

In addition to the previous catalog, there is a TypeCatalog that discovers all the exports in a specific
set of types. Silverlight includes a DeploymentCatalog that allows you to design your application
using multiple XAP files. The DeploymentCatalog is discussed later in the chapter.

Managing a Part’s Lifetime
One of the most important aspects of MEF is understanding how a container manages the lifetime of a
part. Because MEF focuses on making your application extensible, you have no control on how many
third-party extensions will be created. Lifetime can be explained as being the desired “shareability” of
a part, which translates to the policy that a container will use for when a new part is created as well as
when the part will be closed or disposed.

Using Silverlight Frameworks  ❘  403

The “shareability” of a MEF part is defined using the CreationPolicy attribute available only at
the class level. The following values are supported:

Shared➤➤  — ​The part author is telling MEF that only one instance of the part can exist per
container.

NonShared➤➤  — ​The part author is telling MEF that a new instance should be used for each
request for the export.

Any or not supplied➤➤  — ​The part author allows the part to be used in either a Shared or
NonShared way.

 [PartCreationPolicy(CreationPolicy.NonShared)]
 [Export(typeof(IProductService))]
 public class ProductService : IProductService
 {
 public ProductService()
 {
 }
 }

The container is always responsible for the ownership of the parts it has created. The ownership will
never be transferred to a class that requested it by using the container instance (directly) or through
an import (indirectly). An import contract can define or constrain the creation policy used by the con-
tainer, by your setting the RequiredCreationPolicy parameter of the Import attribute. By default,
this value is set to Import.Any, but it can be marked as Import.Shared or Import.NonShared. You
would use this in scenarios where the shareability of a part is relevant to an importer.

Table 12-2 defines the behavior used. If both the part and the importer define “Any,” the container
will treat the part as shared.

Table 12-2

Part.Any Part.Shared Part.NonShared

Import.Any Shared Shared Non Shared

Import.Shared Shared Shared No Match

Import.NonShared Non Shared No Match Non Shared

An instance of a container is normally the lifetime holder of parts. A part instance created by the
container will have its lifetime conditioned to the container’s lifetime. You dispose of a container to
signal the end of the container’s lifetime. Disposal ordering is not guaranteed in any way and you
should avoid using imports from within a dispose method.

The implications of disposing a container are:

Parts that implement ➤➤ IDisposable will have the Dispose method called.

References to parts held on the container will be cleaned up.➤➤

404  ❘  Chapter 12   Application Architecture

Shared parts will be disposed of and cleaned up.➤➤

Lazy exports won’t work after the container is disposed.➤➤

Operations might throw the ➤➤ System.ObjectDisposedException.

The .NET garbage collector is the best thing to rely on for proper clean up of your container and
parts. However, there are times when you need deterministic behavior and a container will not hold
references to parts it creates unless one of the following conditions is true:

The part is marked as ➤➤ Shared.

The part implements ➤➤ IDisposable.

One or more imports are configured to allow recomposition.➤➤

For those cases when a part reference is kept or when you have many non-shared parts requests
that cause memory demand to quickly become an issue, you need to consider one of the following
approaches for mitigating the issue.

Some applications like web applications and Windows services vary greatly from desktop applications.
They are more likely to rely on short-lived or batched operations. For these types of scenarios, you
should either use child containers or release the object graph for your parts early. Releasing early allows
the container to clean up non-shared part references. To trigger this operation call the ReleaseExport
method on the container:

 var container = new CompositionContainer(catalog);

 var logExport = container.GetExport<ILogService>();
 var service = logExport.Value;

 service.Write(“Test Message”);
 container.ReleaseExport(logExport);

Another approach for dealing with this issue is to use container hierarchies. You create child containers
by connecting one container to another one. It is important that a child container does not access the
same catalog as its parent container. This is necessary so the part references can be properly managed.
You should consider filtering a catalog so you can load different filtered catalogs into parent and child
containers. A common approach is to have Shared parts created in the parent container and NonShared
ones created in child containers. If a Shared part depends on exports in a NonShared part, the parent
catalog will have to contain the whole set of parts while the child container can still be filtered to only
contain NonShared parts.

Not all parts are created directly by a container. You have the ability to add and remove parts to a con-
tainer. When this happens, the container will create any additional parts to satisfy the dependencies for
the parts you added. When a part is removed, MEF will handle reclaiming the resources and disposing
of any non-shared parts that the part you added used. MEF will never take ownership of an instance
you supply, but it does retain ownership of any parts created to satisfy your instance’s imports.

Listing 12-9 shows how to add/remove parts to a container. When the MEFViewModel part is added
to the container, the container will automatically handle importing in the dependencies needed by
the MEFViewModel instance.

Using Silverlight Frameworks  ❘  405

Listing 12-9:  ​Adding/removing parts to a container

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Windows;
using System.Windows.Controls;

namespace Chapter12.MEF.Views
{
 public partial class Listing1209 : UserControl
 {
 private ComposablePartCatalog catalog;
 private CompositionContainer container;
 private MEFViewModel root;
 private ComposablePart key;

 public Listing1209()
 {
 InitializeComponent();
 }

 private void CreateButton_Click(object sender, RoutedEventArgs e)
 {
 this.catalog = new AssemblyCatalog(
 typeof(Listing1209).Assembly);

 this.container = new CompositionContainer(catalog);
 this.root = new MEFViewModel();

 this.Status.Text = “Object Created”;
 }

 private void LoadButton_Click(object sender, RoutedEventArgs e)
 {
 CompositionBatch batch = new CompositionBatch();
 batch.AddPart(this.root);
 this.key = batch.AddExportedValue<DataService>(“DataService”,
 new DataService());
 container.Compose(batch);

 this.Status.Text = root.GetMessage();
 }

 private void UnloadButton_Click(object sender, RoutedEventArgs e)
 {
 CompositionBatch batch = new CompositionBatch();
 batch.RemovePart(this.key);
 container.Compose(batch);

 this.Status.Text = root.GetMessage();
 }

continues

406  ❘  Chapter 12   Application Architecture

 }

 [Export]
 public class MEFViewModel
 {
 public MEFViewModel()
 {
 }

 public string GetMessage()
 {
 string result = “Dependency Not Loaded”;

 if (this.Dep != null)
 {
 result = this.Dep.GetMessage();
 }

 return result;
 }

 [Import(“DataService”, AllowDefault = true,
 AllowRecomposition = true,
 RequiredCreationPolicy = CreationPolicy.NonShared)]
 public DataService Dep { get; set; }
 }

 [Export, PartCreationPolicy(CreationPolicy.NonShared)]
 public class DataService : IDisposable
 {
 public DataService()
 {
 }

 public string GetMessage()
 {
 return “Dependency Loaded”;
 }

 public void Dispose()
 {
 Console.WriteLine(“Disposed”);
 }
 }
}

Hosting MEF in Silverlight
The previous sections focused on the key components of the MEF framework. You learned how to
set up export and import contracts and how MEF uses containers and catalogs to manage the life-
time of parts. So now, it is time to examine how to use MEF in your Silverlight application.

Listing 12-9  (continued)

Using Silverlight Frameworks  ❘  407

For desktop applications, you are required to manually configure the composition container and cata-
logs in order for your application to discover parts. The container often needs to be passed around to
all the components of your application that may need it for dynamically composing parts.

In Silverlight, a CompositionInitializer class allows parts to be composed by MEF without having
to do a manual bootstrapping. When using the CompositionInitializer MEF will be set up to run
on demand when any class that has been created contains imports. This means you can use MEF any-
where within your Silverlight application including XAML markup.

Listing 12-10 shows how to use the CompositionInitializer SatisfyImports method to import
the ViewModel for the MainView screen. When the application startup method is called, an instance
of the Listing1210 class is passed to the CompositionInitializer to have is imports created.
This causes the MainViewModel to be discovered by MEF and inject it with an IProductService.
Then the application loads the view and sets its data context to the imported ViewModel.

Notice that the Listing1210 class does not have any exports. SatisfyImports only works with
parts that cannot be discovered by the catalog. The method throws an exception if you pass it a
class that has an [Export] attribute.

Listing 12-10:  ​Using CompositionInitializer

using System.ComponentModel.Composition;
using System.Windows;
using System.Windows.Controls;
using Chapter12.MEF.ViewModel;

namespace Chapter12.MEF.Views
{
 public partial class Listing1210 : UserControl
 {

 [Import]
 public MainViewModel ViewModel { get; set; }

 public Listing1210()
 {
 InitializeComponent();

 CompositionInitializer.SatisfyImports(this);
 this.DataContext = this.ViewModel;
 }

 private void button_Click(object sender, RoutedEventArgs e)
 {
 this.ViewModel.LoadData();
 }
 }
}

using System.ComponentModel.Composition;
using Chapter12.MEF.Services;

continues

408  ❘  Chapter 12   Application Architecture

using Chapter12.MEF.Model;

namespace Chapter12.MEF.ViewModel
{
 [Export]
 public class MainViewModel : BaseViewModel
 {

 public MainViewModel()
 {
 }

 [Import]
 public IProductService ProductService { get; set; }

 private Product selectedProduct;
 public Product SelectedProduct
 {
 get
 {
 return this.selectedProduct;
 }
 set
 {
 if (this.selectedProduct != value)
 {
 this.selectedProduct = value;
 this.OnPropertyChanged(“SelectedProduct”);
 }
 }
 }

 public void LoadData()
 {
 this.SelectedProduct = this.ProductService.GetProduct();
 }

 }
}

CompositionInitializer is designed to be called multiple times, which makes it ideal to not only
be used within the root application class, but also on elements created in XAML.

Listing 12-11 shows how to use the CompositionInitializer from within XAML-created ele-
ments. OrderHeader and OrderDetail are nested controls within the OrderView. Both have their
own respective ViewModels imported. The OrderHeader is directly importing its ViewModel versus
having it externally wired by its parent view. This is done to allow the OrderHeader control to be
dropped within XAML without its containing control having any knowledge of how to wire the
OrderHeader ViewModel.

Listing 12-10  (continued)

Using Silverlight Frameworks  ❘  409

Listing 12-11:  ​Activating CompositionInitializer from XAML

using System.ComponentModel.Composition;
using System.Windows.Controls;
using Chapter12.MEF.ViewModel;

namespace Chapter12.MEF.Controls
{
 public partial class OrderHeader : UserControl
 {
 [Import]
 public HeaderViewModel ViewModel { get; set; }

 public OrderHeader()
 {
 InitializeComponent();

 CompositionInitializer.SatisfyImports(this);
 this.DataContext = this.ViewModel;
 }
 }
}

There are a few caveats to keep in mind when using the SatisfyImports method of the
CompositionInitializer. By default, only assemblies in the current XAP are discoverable. The next
section explores how to override this behavior. All parts created with this method are held around by
MEF until the application shuts down. This is not ideal when composing transient multiple-instance
parts. In those cases, you should look into using an Export Factory. Classes passed to the method can-
not have any exports defined.

MEF creates a default host configuration for CompositionInitializer the first time SatisfyImports
is called. This is ideal for simple applications or ones where all the parts are contained in the current
XAP. For more complex scenarios like composite applications, there is a CompositionHost class.
You have to add a reference to the System.ComponentModel.Composition.Initialization.dll
to use the CompositionHost class. The class allows you to override the default configuration by
calling the Initialize method of the host class and passing in your own configuration. The
CompositionHost Initialize method can be called only once when your application is being loaded.

The easiest way to override the default configuration is to call the overload of the Initialize
method, which accepts one or more catalogs. When you override the host configuration, you take
full control, and MEF does not automatically load the parts in the current XAP. To make the current
XAP discoverable you create an instance of the DeploymentCatalog using its default constructor.
This tells MEF to find all the parts in the current XAP.

 var aggregateCatalog = new AggregateCatalog();
 CompositionHost.Initialize(new DeploymentCatalog(), aggregateCatalog);
 CompositionInitializer.SatisfyImports(this);

410  ❘  Chapter 12   Application Architecture

In most cases, overriding with catalogs should be fine. For more advanced scenarios such as provid-
ing a scoped container strategy, you may need to override the container itself. To do this you create
an instance of a CompositionContainer and pass it to the Initialize method:

 AggregateCatalog aggregateCatalog = new AggregateCatalog();
 aggregateCatalog.Catalogs.Add(new DeploymentCatalog());

 CompositionContainer container = new CompositionContainer(
 aggregateCatalog);

 CompositionHost.Initialize(container);
 CompositionInitializer.SatisfyImports(this);

Partitioning Applications across Multiple XAPs
The default programming model for Silverlight requires all MEF parts to be stored in the current
XAP file. This is fine for simple Silverlight applications, but poses severe problems for large applica-
tions. The default XAP can get bloated and increase the initial download time for your application.
It prevents Silverlight from supporting an extensibility experience similar to what you can have in
a desktop application. It can hamper development when multiple teams want to work on the same
large application.

The DeploymentCatalog was created to address these issues. It supports separating your applica-
tion into multiple XAP(s) that are hosted on the server. The DeploymentCatalog asynchronously
downloads XAP files and fires events so you can monitor the download and handle errors. Even
though the DeploymentCatalog is recomposable, you should override the default configuration for
CompositionInitializer so the download parts in each XAP can be discoverable.

Listing 12-12 shows the most common approach for using the DeploymentCatalog to reduce your
application startup footprint and immediately start downloading the other XAPs for your applica-
tion in the background.

Listing 12-12:  ​Using the DeploymentCatalog

 }

 private void Application_Startup(object sender,
 StartupEventArgs e)
 {
 var catalog = new AggregateCatalog();
 catalog.Catalogs.Add(CreateCatalog(
 “Chapter12.ModuleOne.xap”));
 catalog.Catalogs.Add(CreateCatalog(
 “Chapter12.ModuleTwo.xap”));

 CompositionHost.Initialize(new DeploymentCatalog(), catalog);
 CompositionInitializer.SatisfyImports(this);

 this.RootVisual = new MainPage();

Using Silverlight Frameworks  ❘  411

 }

 private DeploymentCatalog CreateCatalog(string uri)
 {
 var catalog = new DeploymentCatalog(uri);
 catalog.DownloadCompleted +=
 new System.EventHandler<AsyncCompletedEventArgs>(
 catalog_DownloadCompleted);
 catalog.DownloadAsync();
 return catalog;
 }

 void catalog_DownloadCompleted(object sender,
 AsyncCompletedEventArgs e)
 {
 if (e.Error != null)
 {
 MessageBox.Show(e.Error.Message);
 }
 }

There are some caveats to consider when using the DeploymentCatalog. Cached assemblies are not
supported out-of-the-box. Localization is not supported; the DeploymentCatalog only downloads
assemblies that are defined in the manifest. Loose resources/files outside of the assembly cannot be
accessed and downloaded catalogs are not copied to the filesystem.

Exploring PRISM/Composite Application Library
PRISM/Composite Application Library (CAL) is a framework for building modular Windows
Presentation Foundation (WPF) or Silverlight applications. PRISM is designed for applications
that need to be loosely coupled and evolve over several iterations to adapt to changing require-
ments. This book focuses on the components and features available in the Silverlight version of
the Composite Application Library.

As you review the components available in PRISM, you will start to notice the many similar concepts
it shares with MEF. Though similarities exist, it’s important to remember that PRISM is an application
framework for building composite applications, whereas MEF is an extensibility framework. The tech-
nologies complement each other and future versions of PRISM will include more integration with MEF.
Currently, PRISM uses the Microsoft Pattern and Practices Unity application framework DI Container.
In addition, the PRISM framework includes a set of guidance documentation, quick starts, and videos
for building composite Silverlight and WPF applications.

The samples and content for this section are based on earlier versions of the PRISM framework for
Silverlight 4. Check the PRISM website — ​http://compositewpf.codeplex.com — ​for the latest
builds. The October 2009 release is the latest version available for Silverlight 3.

Table 12-3 lists the important terms and definitions for the components used in a PRISM
application.

http://compositewpf.codeplex.com

412  ❘  Chapter 12   Application Architecture

Table 12-3

Class/Term Description

Shell The shell is the main window of the application where the pri-
mary user interface (UI) content is contained. The shell may be
composed of multiple windows if desired, but most commonly
it is just a single main window that contains multiple views.

View View is an ordinary .NET Framework user control that is
responsible for presenting a part of or the whole model to the
user and allowing the user to modify its contents through user
interface controls. Typically, the view implements only UI logic,
whereas the related client-business logic is implemented in
the presenter/controller/ViewModel.

Regions These are placeholders for content and host visual elements
in the shell. These can be located by other components
through the RegionManager to add content to those regions.
Regions can also be hosted in individual views to create dis-
coverable content placeholders.

Modules These are separate sets of views and services, frequently
logically related, that can be independently developed,
tested, and optionally deployed. In many situations, these can
be developed and maintained by separate teams. In a com-
posite application, modules must be discovered and loaded.
In the Composite Application Library, this process consists of
populating the module catalog, retrieving the modules if they
are remote, loading assemblies into the application domain,
and initializing the modules

CompositeCommand The CompositeCommand is a strategy to combine the execution
of commands. This allows the command invoker to interact with
a single command that affects multiple commands.

EventAggregator The EventAggregator service is primarily a container for
events that allow decoupling of publishers and subscribers
so they can evolve independently. This decoupling is useful
in modularized applications because new modules can be
added that respond to events defined by the shell or, more
likely, other modules.

Bootstrapper The Bootstrapper is responsible for the initialization of an
application built using the Composite Application Library.
By using a Bootstrapper, you have more control of how the
Composite Application Library components are wired up to
your application.

Using Silverlight Frameworks  ❘  413

Class/Term Description

IModule Each module consists of a class that implements the IModule
interface. This interface contains a single Initialize method
that is called during the module’s initialization process.

DelegateCommand<T> The DelegateCommand allows delegating the commanding
logic instead of requiring a handler in the code-behind. It uses a
delegate as the method of invoking a target handling method.

IServiceLocator The Composite Application Library provides support for
the Unity Application Block (Unity) container, but it is not
container-specific. Because the library accesses the container
through the IServiceLocator interface, the container can
be replaced. To do this, your container must implement the
IServiceLocator interface.

UnityServiceLocatorAdapter The UnityServiceLocatorAdapter is an
IUnityContainer adapter for the IServiceLocator inter-
face. The UnityServiceLocatorAdapter is mapped to the
IServiceLocator interface and the mapping is registered
in the UnityBootstrapper class.

When designing an application that uses the PRISM framework, you will create a shell and one
or more modules. The shell contains the main UI elements of your application plus one or more
regions. You use XAML to define the regions of your application that modules use to load their
views into at run time. A module is set of views and services that can be developed, tested, and
deployed independently. A shell uses a catalog to define what modules to load.

Figure 12-4 shows the high-level design of an application built with the PRISM Framework. The left
side shows the custom shell and modules you will create for your application. The right side shows
the core components and services that the framework provides for building composite applications.

REGION

View ViewModel

Model

SHELL

HOST APPLICATION
Region Manger

Region Manger

LOADING SERVICES

Region Manger

Logging

Event Aggregator

Module Pro�ered Services

CORE SERVICES

S
ER

V
IC

E/
D

EP
EN

D
EN

C
Y

 IN
JE

C
TI

O
N

 C
O

N
TA

IN
ER

Shell
View

Model

Figure 12-4

414  ❘  Chapter 12   Application Architecture

Using PRISM to Build an Application
When designing an application using PRISM, you need to define a couple of key items up front: how
many modules you want to create and what regions your shell will expose for hosting module views.
You can take several approaches to define how to partition your application. It might make sense to
separate your application into related functionality or to separate it by the different teams that will
work on it.

It is always a good idea to start simple and let the shell evolve independently outside the rest of your
application. Initially you should create a single region and two modules. You should create a com-
mon infrastructure assembly that can be shared across the shell and modules. The shared assembly
should include anything that needs to be shared between the different components of your applica-
tion: model, services, or other shared code. It is a good idea to add a region names class that uses
constants to define all your regions. You should avoid adding any unnecessary features to the shell
or having modules referencing each other. Instead, always use the dependency injection container
included with PRISM for accessing regions, services, and shared events.

Building the Shell and Modules
Once you define the regions and separate your application into modules, it is time to set up the
Bootstrapper for your shell. A Bootstrapper is used to load the module catalog and services
exposed by the Shell application. In your application startup event, instead of setting the root ele-
ment to your main UI, create an instance of your custom Bootstrapper and call its Run method.

var bootstrapper = new ShellBootstrapper();
bootstrapper.Run();

Listing 12-13 shows how to create a custom Bootstrapper by inheriting from the UnityBootstrapper
base class and overriding the GetModuleCatalog, ConfigureContainer, and CreateShell methods.
The GetModuleCatalog method is used for loading your modules into the shell’s catalog. Each module
added to the catalog will be loaded by the PRISM framework. When you add a module, you can specify
whether it depends on any other modules. The ConfigureContainer method handles registering the
shell so it can be dependency injected into the shell ViewModel. The CreateShell method uses Unity
to resolve the dependencies from the shell presenter and display the shell view.

Listing 12-13:  ​Creating a PRISM Bootstrapper

using System.Windows;
using Microsoft.Practices.Composite.Modularity;
using Microsoft.Practices.Composite.UnityExtensions;
using Microsoft.Practices.Unity;
using NorthWndCal.Model.Customer;
using NorthWndCal.Model.Order;

namespace NorthWndCal
{

 public partial class ShellBootstrapper : UnityBootstrapper
 {
 protected override IModuleCatalog GetModuleCatalog()

Using Silverlight Frameworks  ❘  415

 {
 var catalog = new ModuleCatalog();
 catalog.AddModule(typeof(CustomerModule))
 .AddModule(typeof(OrderModule));
 return catalog;
 }

 protected override void ConfigureContainer()
 {
 Container.RegisterType<IShellView, Shell>();
 base.ConfigureContainer();
 }

 protected override DependencyObject CreateShell()
 {
 ShellPresenter presenter = Container.Resolve<ShellPresenter>();
 IShellView view = presenter.View;

 view.ShowView();

 return view as DependencyObject;
 }
 }
}

Defining Region Adapters
Region adapters are used by the shell to define shared UI elements in which module views can
be displayed. The region manager is used to define the region adapters your application supports.
For Silverlight, PRISM includes the following region adapters: ContentControlRegionAdapter,
SelectorRegionAdapter, ItemsControlRegionAdapter, and TabControlRegionAdapter. The
TabControlRegionAdapter is available only in the Silverlight version of PRISM because the
Silverlight tab control does not derive from the Selector class.

The RegionManager includes the attached properties you can use to define a region using XAML.
You can use the RegionManager class to define regions via code, too. The following code snippet
shows how to use the RegionName attached property to define a region in your shell:

 <Border x:Name=”ContentBorder” Style=”{StaticResource ContentBorderStyle}“>
 <StackPanel Orientation=”Horizontal”>
 <StackPanel>
 <ContentControl
 Regions:RegionManager.RegionName=”FilterRegion”
 x:Name=”ActionControl” >
 <ContentControl.Template>
 <ControlTemplate>
 <Grid>
 <ContentPresenter Margin=”10,0,10,0” />
 </Grid>
 </ControlTemplate>
 </ContentControl.Template>
 </ContentControl>
 </StackPanel>

416  ❘  Chapter 12   Application Architecture

 <StackPanel>
 <ContentControl
 Regions:RegionManager.RegionName=”MainRegion”
 x:Name=”MainContent” >
 <ContentControl.Template>
 <ControlTemplate>
 <Grid>
 <ContentPresenter Margin=”10,0,10,0” />
 </Grid>
 </ControlTemplate>
 </ContentControl.Template>
 </ContentControl>
 </StackPanel>
 </StackPanel>
 </Border>

To share context between multiple views the RegionManager includes a RegionContext attached
property. The RegionContext can be any simple or complex object and can be a data-bound value
defined to a ViewModel.

cal:RegionManager.RegionContext=”{Binding Path=SelectedEmployee.EmployeeId}“

To override the default behavior or add your own custom region adapters, override the
ConfigureRegionAdapterMapping method in your custom Bootstrapper class:

 protected override RegionAdapterMappings
 ConfigureRegionAdapterMappings()
 {
 RegionAdapterMappings regionAdapterMappings =
 Container.TryResolve<RegionAdapterMappings>();
 if (regionAdapterMappings != null)
 {

 regionAdapterMappings.RegisterMapping(typeof(TabControl),
 this.Container.Resolve
 <CustomTabControlRegionAdapter>());
 }

 return regionAdapterMappings;

 }

Adding Views to a Region
To use the regions defined in your shell you have to register your view with a region. Views can be cre-
ated and displayed either automatically using view discovery or programmatically using view injection.

When you use ➤➤ view discovery, you set up a relationship between a view and its region using
the RegionViewRegistry. When a region is created, it looks for all the ViewTypes associ-
ated with the region and it automatically instantiates and loads the corresponding views.
This approach is simpler than view injection but limits your ability to control when views
are loaded and displayed.

Using Silverlight Frameworks  ❘  417

When you use ➤➤ view injection you programmatically add a view to a region. Typically, this
is done when a module is initialized or the result of a user action. In code, you will query
the RegionManager or a specific region by name and then inject your view into it. This
approach gives you the most control over when views are loaded and displayed. You also
have the ability remove views from a region, but it is not possible to add a view to a region
that has not been created yet.

this.regionViewRegistry.RegisterViewWithRegion(RegionNames.SelectionRegion
 ,typeof(EmployeesView));

Using Commands
When a user interacts with your Silverlight application, you typically use commands or events to
handle user input and modify your application UI accordingly. For example, when a row in a grid
is selected, the ShowCustomer command will be fired in your ViewModel to load the details for the
selected customer. Although using the basic ICommand and events available in Silverlight works great
for simple applications, in more advanced applications such as composite applications you need a
more loosely coupled approach. PRISM includes the DelegateCommand<T> and CompositeCommand
classes for supporting these scenarios.

Using DelegateCommand<T>
A DelegateCommand<T> is a generic command that is used instead of an event. It uses a delegate as the
method of invoking a target method. Its constructor takes in a custom action for execution (Execute)
and as an optional parameter a custom action for its CanExecute implementation. Because the class is
generic, it enforces compile-time checking on command parameters, which normal WPF and Silverlight
commands do not support. In addition, because it uses a generic type, it removes the need for creating
new command types for every specific type your application needs.

Listing 12-14 shows how to use the DelegateCommand<T> to load customers into a ViewModel after
the view is loaded.

Listing 12-14:  ​Using DelegateCommand<T>

using System.ComponentModel;
using System.Windows.Input;
using Microsoft.Practices.Composite.Events;
using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model.Models;
using NorthWndCal.Model.Service;

namespace NorthWndCal.Model.CustomerModule.Views
{
 public class CustomerViewModel : BaseViewModel, ICustomerViewModel
 {
 private readonly ICustomerView view;
 private readonly IEventAggregator eventAggregator;
 private readonly ICustomerService service;

 public CustomerViewModel(ICustomerView view,

continues

418  ❘  Chapter 12   Application Architecture

 ICustomerService service,
 IEventAggregator eventAggregator)
 {
 this.view = view;
 this.view.Model = this;
 this.service = service;
 this.eventAggregator = eventAggregator;

 this.LoadCustomersCommand =
 new DelegateCommand<object>(LoadCustomers);
 }

 public ICustomerView View
 {
 get { return this.view; }
 }

 public ICommand LoadCustomersCommand { get; set; }

 private ICollectionView customers;
 public ICollectionView Customers
 {
 get
 {
 return this.customers;
 }
 set
 {
 if (this.customers != value)
 {
 this.customers = value;
 this.OnPropertyChanged(“Customers”);
 }
 }
 }

 protected void LoadCustomers(object parameter)
 {
 this.service.GetCustomers(this.DisplayCustomers);
 }

 protected void DisplayCustomers(ICollectionView dataSource)
 {
 this.Customers = dataSource;
 }

 }
}

Listing 12-14  (continued)

Using Silverlight Frameworks  ❘  419

Using CompositeCommands
The CompositeCommand allows you to register and unregister child commands so that when the
composite command is invoked all registered commands will be invoked. This is useful when your
application has a shared common command that multiple subscribers want their command execu-
tion to participate in, such as a Save All command.

Listing 12-15 shows how to use the CompositeCommand to execute multiple commands when the
close button is clicked by the end user.

Listing 12-15:  ​Using CompositeCommand

using Microsoft.Practices.Composite.Presentation.Commands;

namespace NorthWndCal.Model.Events
{
 public class SharedCommands
 {
 public static readonly CompositeCommand
 ApplicationClosingCommand = new CompositeCommand();

 }
}

using NorthWndCal.Model.Events;

namespace NorthWndCal
{
 public class ShellPresenter
 {
 public ShellPresenter(IShellView view)
 {
 View = view;
 this.View.Model = this;
 }

 public IShellView View { get; private set; }

 public void CloseApplication()
 {
 SharedCommands.ApplicationClosingCommand.Execute(null);
 }

 }
}
using System.Windows.Input;
using Microsoft.Practices.Composite.Events;
using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model.Events;
using NorthWndCal.Model.Models;
using NorthWndCal.Model.Service;

namespace NorthWndCal.Model.CustomerModule.Views

continues

420  ❘  Chapter 12   Application Architecture

{
 public class CustomerViewModel : BaseViewModel, ICustomerViewModel
 {
 private readonly ICustomerView view;
 private readonly IEventAggregator eventAggregator;
 private readonly ICustomerService service;

 public CustomerViewModel(ICustomerView view,
 ICustomerService service,
 IEventAggregator eventAggregator)
 {
 this.view = view;
 this.view.Model = this;
 this.service = service;
 this.eventAggregator = eventAggregator;

 this.ApplicationClosing =
 new DelegateCommand<object>(OnClosing);

 SharedCommands.ApplicationClosingCommand.RegisterCommand(
 ApplicationClosing);
 }

 public ICustomerView View
 {
 get { return this.view; }
 }

 public ICommand ApplicationClosing { get; set; }

 public void OnClosing(object e)
 {
 // Handle closing event
 }

 }
}

Using the Event Aggregator
When building a composite application you may run into scenarios that involve multiple compo-
nents: ViewModels, services, and controllers that exist in different modules need to communicate
with one another when some state changes occur or application logic is executed. For example,
when data is returned from your application data access service, you may need to notify multiple
ViewModels in several different modules that data returned is ready to be displayed.

Because of the loosely coupled design of a composite application you need to use the EventBroker
pattern to handle the lack of direct connection between publishers and subscribers and any possible
threading issues because the publisher is on a different thread than its subscriber.

Listing 12-15  (continued)

Using Silverlight Frameworks  ❘  421

The PRISM framework includes the event aggregation (broker) service, which is an implementation
of the EventBroker pattern. The service uses a repository to track event objects. An event object
uses delegates instead of standard .NET Framework events. One advantage of this approach is that
delegates can be created at the time of publishing and immediately released, which does not prevent
the subscriber from being garbage collected. Each event object contains a collection of subscribers to
publish to. This way, new events can be added to the system without modifying the service and can
automatically handle marshaling to the correct thread.

Listing 12-16 shows how the event aggregation service is used to notify multiple ViewModels that
data has been retrieved from a data service.

Listing 12-16:  ​Using the event aggregation service

using System.ComponentModel;
using Microsoft.Practices.Composite.Presentation.Events;

namespace NorthWndCal.Model.Events
{
 public class ChangeCustomerEvent
 : CompositePresentationEvent<ICollectionView>
 {
 public ChangeCustomerEvent()
 {
 }
 }
}
using System.ComponentModel;
using System.Windows.Input;
using Microsoft.Practices.Composite.Events;
using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model.Events;
using NorthWndCal.Model.Models;
using NorthWndCal.Model.Service;
using NorthWndCal.Web;

namespace NorthWndCal.Model.CustomerModule.Views
{
 public class CustomerViewModel : BaseViewModel, ICustomerViewModel
 {
 private readonly ICustomerView view;
 private readonly IEventAggregator eventAggregator;
 private readonly ICustomerService service;

 public CustomerViewModel(ICustomerView view,
 ICustomerService service,
 IEventAggregator eventAggregator)
 {
 this.view = view;
 this.view.Model = this;
 this.service = service;
 this.eventAggregator = eventAggregator;

continues

422  ❘  Chapter 12   Application Architecture

 this.LoadCustomersCommand =
 new DelegateCommand<object>(LoadCustomers);

 this.ApplicationClosing =
 new DelegateCommand<object>(OnClosing);

 SharedCommands.ApplicationClosingCommand.RegisterCommand(
 ApplicationClosing);
 }

 public ICustomerView View
 {
 get { return this.view; }
 }

 public ICommand LoadCustomersCommand { get; set; }
 public ICommand ApplicationClosing { get; set; }

 private ICollectionView customers;
 public ICollectionView Customers
 {
 get
 {
 return this.customers;
 }
 set
 {
 if (this.customers != value)
 {
 this.customers = value;
 this.OnPropertyChanged(“Customers”);
 }
 }
 }

 protected void LoadCustomers(object parameter)
 {
 this.service.GetCustomers(this.DisplayCustomers);
 }

 protected void DisplayCustomers(ICollectionView dataSource)
 {
 this.Customers = dataSource;
 }

 protected void DisplayOrders(ICollectionView dataSource)
 {
 this.eventAggregator.GetEvent
 <ChangeCustomerEvent>().Publish(dataSource);
 }

 public void LoadSelectedCustomer(Customer customer)

Listing 12-16  (continued)

Using Silverlight Frameworks  ❘  423

 {
 this.service.GetOrdersForCustomer(
 this.DisplayOrders, customer);
 }

 public void OnClosing(object e)
 {
 // Handle closing event
 }

 }
}
using System.ComponentModel;
using System.Windows.Input;
using Microsoft.Practices.Composite.Events;
using Microsoft.Practices.Composite.Presentation.Commands;
using NorthWndCal.Model.Events;
using NorthWndCal.Model.Models;

namespace NorthWndCal.Model.OrderModule.Views
{
 public class OrderViewModel : BaseViewModel, IOrderViewModel
 {
 private readonly IOrderView view;
 private readonly IEventAggregator eventAggregator;

 public OrderViewModel(IOrderView view,
 IEventAggregator eventAggregator)
 {
 this.view = view;
 this.view.Model = this;

 this.eventAggregator = eventAggregator;

 this.eventAggregator.GetEvent
 <ChangeCustomerEvent>().Subscribe(
 CustomerChanged, true);

 this.ApplicationClosing =
 new DelegateCommand<object>(OnClosing);

 SharedCommands.ApplicationClosingCommand.RegisterCommand(
 ApplicationClosing);
 }

 public IOrderView View
 {
 get { return this.view; }
 }

 public ICommand ApplicationClosing { get; set; }

 private ICollectionView orders;
 public ICollectionView Orders

continues

424  ❘  Chapter 12   Application Architecture

 {
 get
 {
 return this.orders;
 }
 set
 {
 if (this.orders != value)
 {
 this.orders = value;
 this.OnPropertyChanged(“Orders”);
 }
 }
 }

 public void CustomerChanged(ICollectionView dataSource)
 {
 this.Orders = dataSource;
 }

 public void OnClosing(object e)
 {
 // Handle closing event
 }

 }
}

Defining Your Data Access Strategy

When architecting an n-tier application the most important component that impacts the rest of
the application is the data access strategy you adopted. Early in the book, the data access and RIA
Services chapters (Chapters 7 and 8) walked you through the basic data access approaches for dis-
playing and saving data in your Silverlight application.

This chapter looks at data access from an architecture viewpoint. By reviewing the typical applica-
tion layers of an application, you can review and consider the best data access strategy options for
your application.

Figure 12-5 shows the high-level overview of the typical layers found in an n-tier Silverlight
application:

Presentation Layer (Silverlight Plug-In)➤➤  — ​Includes views, ViewModel, models, and a client
service layer. The client service layer is responsible for calling the Windows Communication
Foundation (WCF) or external services your application uses.

Business Layer (Web Server)➤➤  — ​Includes the application service layer, domain model, and
business (workflow/components) used by your application. Depending on your application
requirements, the client and server domain model may be shared or completely different.

Listing 12-16  (continued)

Defining Your Data Access Strategy  ❘  425

Data Layer (Web Server)➤➤  — ​Includes the data access components and repositories, Object
Relational Mappers (ORM). Examples of an ORM are Entity Framework, LINQ to SQL,
and nHibernate.

Data Stores (Database Server)➤➤  — ​Includes your application databases and any other external
data access stores your application may be dependent on.

View

Presentation Layer (Tier)

Silverlight Plug-In (Web Browser)

ViewModel

Client Service Layer Domain Model (Client)

Application Service Layer (WCF Services)

Business Layer (Tier)

Web Server

Business
(Workflow/Components)

Domain Model
(Server)

Data Layer (Tier)

Data Access Components ORM/Repositories

Data Stores

Database Server

OLAP/Cubes External
Data Store

Transaction
Database

Figure 12-5

426  ❘  Chapter 12   Application Architecture

In a typical n-tier application design each layer (tier) has a core set of responsibilities. This allows
you to design each layer to focus on what it is responsible for and not worry about what the other
layers are doing. Each layer should be designed to be loosely coupled and dependencies should be
based on abstraction. The same set of design principles and concepts (IoC/dependency injection)
can be used to design each layer.

You need to consider a number of things when choosing a data access strategy. Will you be using a
brand new data source (database) or will you be consuming an existing data source? Is your data
source currently exposed as a service and does it need to be consumed by one or many applications?
In some cases, you may be using one or more external data sources/services that you subscribe to.
Understanding the skill-set of your developers, the time-market for your applications, plus any
application-specific requirements should all be considered when choosing a data access strategy.

Once you understand the requirements for your data access strategy, it is time to decide how to
design and implement the business and data layers of your application. The approach you adopt
for one layer may affect the choices or approach you can use for the other layer. You could decide
to build a total custom solution using Windows Communication Foundation (WCF), POCO (Plain
old CLR Object), and the Object Relational Mapper nHibernate. Decide to use one of the available
frameworks (WCF RIA Services or WCF Data Services) along with the ADO.NET Entity Framework
from Microsoft. Build a hybrid solution that uses nHibernate as the ORM and a combination of RIA
and custom WCF services. Your best option is to adopt the solution that best meets the needs of your
application and the skill set of your developers.

Both WCF Data Services and WCF RIA Services are very extensible and share many common
features. However, they use two very different approaches for handling data access. WCF Data
Services focuses on exposing your data via a REST service. RIA Services uses a prescriptive
approach for building n-tier applications. Table 12-4 outlines the major differences between WCF
Data Services and WCF RIA Services.

Table 12-4

WCF Data Services WCF RIA Services

Uses a RESTful approach for exposing
the data source

Prescriptive approach to n-tier app development

Cross Platform interoperability is a goal Designed specifically for end-to-end Silverlight
and ASP.NET solutions

Supported by a number of MS products such
as SharePoint 2010, Excel 2010, Azure, and
SQL2008 R2

Some technology proprietary to Silverlight (no WPF
support)

Uses ASP.NET Authentication/Roles across SL
and ASP.NET applications.

ASP.NET/AJAX can use service layer.

Loosely coupled client and servers Client and server are designed and deployed
together.

Handling Performance  ❘  427

WCF Data Services WCF RIA Services

Service later exposes raw data source Opportunity to easily add business logic into
service layer
• Encourage “domain” concepts.
• Strong validation framework
• Offline / Sync enabled

Services can be consumer by .NET and non
.NET clients including AJAX, PHP, and JAVA

Service can be consumed easily from SL, AJAX,
WebForms.

Service’s data source must:
• Expose at least one IQueryable property.
• Implement IUpdateable for updating.

Service exposes domain objects via convention:
• IQueryable GetX
• UpdateX/InsertX/DeleteX

Standardized on OData protocol but supports
multi-formats including JSON and XML

• SOAP (binary) for SL clients
• JSON for AJAX clients
• SOAP (XML) for other clients
• Will include OData Support.

Hosted as a WCF Service (.svc) Old version hosted in custom web handler (.axd).
New version is WCF service

No client design-time support Design-time experience with data sources,
drag-and-drop, and so on.

More mature — ​public for more than 2 years;
formerly known as “Project Astoria”

Less mature — ​public for less than a year

Handling Performance

So far, in this chapter you have looked at the different patterns, frameworks, and data access strategies
you can use for building your Silverlight applications. This section switches focus to discuss some best
practices to consider when designing and building your n-tier Silverlight applications.

When dealing with the performance of an application it is always important to keep in mind that
there are no silver bullets and everything has trade-offs. This is particularly true when dealing with
performance versus scalability

Initially it is easy to think both of these work hand-in-hand, but in most applications, the trade-off
you make centers around balancing these two. For example, you want to minimize the load time of
your application so you choose to limit the data you load up front. This works great for the initial
load time, but this could affect the scalability of your application because you have to make multiple
calls to retrieve the data the user needs. Another good example of a trade-off is deciding between
making one or two large data requests versus making multiple small requests.

428  ❘  Chapter 12   Application Architecture

The best way to really address application performance or any other non-functional requirements is
to try different approaches and test them using real-world hardware and data. An in-depth guide on
n-tier application performance is outside the scope of this book. See Table 12-5 for a small subset of
scenarios related to the client tier of your application. When dealing with performance and scalability
issues it’s best to always address them from the perspective of your overall application.

Table 12-5

Scenario Best Practice

Large Result Set. When returning a large result set you should consider paging the
data displayed to users. For overall application performance it’s best
to offload the paging of data to your data source.

Application Load Time Consider using multiple XAP files and retrieving only the necessary
data the user needs up front.

Memory Footprint Consider freeing resources and object instances as soon as possible.

Frequently Used Data Look into caching the data in local storage or memory. If the data
is static (for example, drop-down lists) make sure you only load the
data once per session.

Heavy Load If you are experiencing heavy load on your database, consider cach-
ing static and non-critical data in memory or a caching server. When
possible, utilize isolated storage on the client to cache data needed
across sessions.

XAP File Size Try to eliminate any unnecessary resources; make sure any images
are stored as *.png. Consider deferred loading of resources until
they are needed.

Long Running Process Use multiple threads to offload the long-running process outside of
the UI thread.

Complex Model Complex models can be very hard to work with and cause performance
issues when retrieving or saving data. Lazy loading and the unit of work
pattern are two good options for dealing with a complex model.

Summary

In this chapter, you learned how to architect an n-tier Silverlight application. You were introduced
to the common design patterns and frameworks available, including the MVVM UI pattern, the
Managed Extensibility Framework (MEF), and PRISM (Composite Application Library) guidance
framework. This chapter reviewed the different data access strategies and frameworks commonly
used when building Silverlight applications. You also learned some options for dealing with perfor-
mance issues when building your Silverlight application.

13
DoM interaction

what’s in this chapter?

Confi guring the Silverlight plug-in➤➤

Interacting with the plug-in using JavaScript➤➤

Because Silverlight is a browser plug-in, eventually you must embed the Silverlight player into a
host web page. The browser sees the plug-in as any other ordinary object in the Document Object
Model (DOM), and, therefore, you can use standard HTML and JavaScript DOM manipulation
techniques to confi gure and interact with the plug-in. This chapter looks at the ways you can
confi gure the plug-in in the browser and how you can use JavaScript to interact with the plug-in.
It also looks at a feature of Silverlight called the HTML Bridge, which allows you to interoperate
between JavaScript and managed code running in the plug-in.

configuring the silverlight plug-in

When you set up a new web page to host a Silverlight application, you must add the appropriate
HTML and JavaScript in order to load and confi gure the plug-in. If you created a new website
when you created the Silverlight application, Visual Studio automatically generates both a test
ASP.NET page and test HTML page. These pages include the HTML and JavaScript needed to
embed the player.

If you add the Silverlight application to an existing site or page, you can also add this content
manually by adding an <object> tag to your page, fi lling in all the appropriate object <param>
tags, and including the appropriate JavaScript fi les and code. Listing 13-1 shows the contents of
the test ASP.NET page.

430  ❘  Chapter 13   DOM Interaction

Listing 13-1:  ​Embedding the Silverlight plug-in in an ASP.NET page

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>
 <title>Chapter13</title>

 <style type=”text/css”>
 html, body {
 height: 100%;
 overflow: auto;
 }
 body {
 padding: 0;
 margin: 0;
 }
 #silverlightControlHost {
 height: 100%;
 text-align:center;
 }
 </style>
 <script type=”text/javascript” src=”Silverlight.js”></script>
 <script type=”text/javascript”>
 function onSilverlightError(sender, args) {
 var appSource = “”;
 if (sender != null && sender != 0) {
 appSource = sender.getHost().Source;
 }

 var errorType = args.ErrorType;
 var iErrorCode = args.ErrorCode;

 if (errorType == “ImageError” || errorType == “MediaError”) {
 return;
 }

 var errMsg = “Unhandled Error in Silverlight Application “ +
 appSource + “\n”;

 errMsg += “Code: “ + iErrorCode + “ \n”;
 errMsg += “Category: “ + errorType + “ \n”;
 errMsg += “Message: “ + args.ErrorMessage + “ \n”;

 if (errorType == “ParserError”) {
 errMsg += “File: “ + args.xamlFile + “ \n”;
 errMsg += “Line: “ + args.lineNumber + “ \n”;
 errMsg += “Position: “ + args.charPosition + “ \n”;
 }
 else if (errorType == “RuntimeError”) {
 if (args.lineNumber != 0) {
 errMsg += “Line: “ + args.lineNumber + “ \n”;
 errMsg += “Position: “ + args.charPosition + “ \n”;
 }
 errMsg += “MethodName: “ + args.methodName + “ \n”;

http://www.w3.org/1999/xhtml%E2%80%9D

Configuring the Silverlight Plug-In  ❘  431

 }

 throw new Error(errMsg);
 }
 </script>
</head>

<body>
 <form id=”form1” runat=”server” style=”height:100%;”>
 <div id=”silverlightControlHost”>
 <object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2”
 width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/Chapter13.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50331.0” />
 <param name=”autoUpgrade” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/
 ?LinkID=149156&v=4.0.50331.0”
 style=”text-decoration: none;”>
 <img src=”http://go.microsoft.com/fwlink/
 ?LinkId=161376”
 alt=”Get Microsoft Silverlight”
 style=”border-style: none”/>

 </object><iframe id=”_sl_historyFrame”
 style=’visibility:hidden;height:0;width:0;border:0px’>
 </iframe></div>
 </form>
</body>
</html>

This HTML embeds the Silverlight plug-in in your page using an <object> tag, and the JavaScript
provides functionality such as detecting whether the plug-in is installed (and proceeds to install if it
is not) and what version is installed.

Exploring the HTML markup a bit, you can see that within the object tag are a number of <param>
tags, which are used to specify the parameters of the player.

Two of the more important parameters of the Silverlight plug-in are minRumtimeVersion and
autoUpgrade. The minRunTimeVersion property allows you to specify the minimum Silverlight
version the client must have to run your application. As shown in Listing 13-1, the default templates
automatically set it to the current Silverlight 4 version. The autoUpgrade property tells the control
whether or not it should automatically render the appropriate JavaScript needed to automatically
upgrade the client’s version of Silverlight if it does not meet the minimum version requirement. Using
these properties together makes it easy to give your end users a positive experience when they inter-
act with your website.

If the end user has a version of Silverlight installed that is older than the application requires and
the Silverlight control is not configured to auto-upgrade, the default template will include content
that lets the user know he or she needs to upgrade. You, of course, can customize this content,
which is shown in Listing 13-2.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0
http://go.microsoft.com/fwlink/?LinkId=161376
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50331.0
http://go.microsoft.com/fwlink/?LinkId=161376

432  ❘  Chapter 13   DOM Interaction

Listing 13-2:  ​Providing custom content when the Silverlight plug-in is not installed

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/Chapter13.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50311.0” />
 <param name=”autoUpgrade” value=”true” />
 <h1>Whoops!</h1>
 <p>Looks like you don’t have the right version of
 Silverlight installed. This means you're missing out
 on the greatest thing on the Internet!</p>
 <p>I really suggest that you go download the latest
 version of Silverlight as it will greatly enhance
 your life.</p>
</object>

This sample shows custom HTML content added to the object tag, which tells end users about the
content they could be viewing if they installed the right version of Silverlight.

A handful of other interesting properties are available on the Silverlight control and are discussed in
the following sections.

windowless
The windowless parameter (which applies only when running on Windows) enables you to config-
ure the Silverlight plug-in to be displayed directly by the browser rather than having its own render
window as it normally would. Running the plug-in in Windowless mode allows the control’s content
to overlap and better blend with other surrounding HTML content.

Listing 13-3 shows how you can use the windowless property to integrate your Silverlight applica-
tion more seamlessly into its host HTML page. In this case, the Silverlight application has had its
root UserControl’s background color set to its default transparent color.

Listing 13-3:  ​Setting the Windowless property

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”400” height=”300”>
 <param name=”source” value=”ClientBin/Chapter13.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”transparent” />
 <param name=”minRuntimeVersion” value=”4.0.50311.0” />
 <param name=”autoUpgrade” value=”true” />
 <param name=”windowless” value=”true” />
 <a href=”http://go.microsoft.com/fwlink/
 ?LinkID=149156&v=4.0.50311.0”
 style=”text-decoration: none;”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight” style=”border-style: none”/>

</object>

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0

Confi guring the silverlight Plug-in ❘ 433

Figure 13-1 shows how enabling and disabling the windowless property affects how the plug-in is
rendered in the browser.

figure 13-1

With the windowless property set to true, the underlying DIV containing the image shows through.

By default, the Silverlight plug-in background is set to White. Therefore, to achieve
the transparency shown in Figure 13-1, you must explicitly set the plug-in’s back-
ground parameter to Transparent. Also note that the Silverlight User Control
template in Visual Studio has its root layout element’s background property set
to White by default, which you also must change to see the transparency shown
in Figure 13-1.

Use caution when enabling the windowless property as performance can be signifi cantly hindered
when using the plug-in in Windowless mode. Specifi cally, complex animations and high-defi nition
video content will not perform as well when running in Windowless mode.

splashscreensource
The splashScreenSource parameter enables you to specify the URI of a XAML fi le that the
Silverlight plug-in should use to replace its default loading splash screen. The splash screen is
the content that Silverlight displays while downloading and loading its application content, which

434  ❘  Chapter 13   DOM Interaction

is typically an XAP file. Replacing the default splash screen enables you to provide a highly custom-
ized experience to your users; however, you must note a number of restrictions when providing your
own splash screen content. First, unlike the source parameter, which accepts both XAML and
XAP files, the splashScreenSource property accepts only a simple XAML file. Second, significant
restrictions exist regarding the XAML that is allowed to be run for the splash screen. Only XAML
that is exposed by the plug-in’s JavaScript API can be used in the splash screen source.

Finally, the splash screen XAML URI must come from the same domain as the Silverlight application
and the hosting page. As part of this step, you must make sure your web server is properly configured
to serve files with an .xaml extension, which may mean adding a new Multipurpose Internet Mail
Extensions (MIME) type to your web server.

To create a new splash screen content XAML file, you can simply add a new Silverlight 1.0 JScript
Page to your web application, as shown in Figure 13-2.

Figure 13-2

Next, simply add some content to the default canvas of the XAML file. Listing 13-4 shows a simple
TextBlock as the content of the XAML file.

Listing 13-4:  ​Simple splash screen XAML content

<Canvas xmlns=”http://schemas.microsoft.com/client/2007”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <Canvas x:Name=”contentCanvas” Width=”240” Height=”74” >
 <TextBlock x:Name=”textBlock”>
 <Run FontSize=”48” Text=”Loading…“/>
 </TextBlock>
 </Canvas>
</Canvas>

http://schemas.microsoft.com/client/2007%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Confi guring the silverlight Plug-in ❘ 435

Finally, specify the XAML fi le as the splashScreenSource in the Silverlight control (Listing 13-5).

listing 13-5: specifying the splash screen source

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/Chapter13.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50311.0” />
 <param name=”autoUpgrade” value=”true” />
 <param name=”splashScreenSource” value=”Listing13-4.xaml” />
 <a href=”http://go.microsoft.com/fwlink/
 ?LinkID=149156&v=4.0.50311.0”
 style=”text-decoration: none;”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight”
 style=”border-style: none”/>

</object>

When you run your application, you should now see that the default Silverlight splash screen has
been replaced by the custom splash screen content.

To test your splash screen, make sure the XAP being downloaded is large
enough. Silverlight displays the splash screen only if the content load time
exceeds 0.5 second. To simulate a longer load time, you can artifi cially infl ate
the XAP size by embedding a large resource in your application.

Although the XAML in Listing 13-4 is completely static, Silverlight does allow you to provide a
better experience to your end users by adding animation to the splash screen XAML, and by using
two JavaScript events that the plug-in exposes, which provide information relevant to the plug-in’s
loading process. The onSourceDownloadProgressChanged and onSourceDownloadCompleted
events provide details about the current state of the source download and notifi cation that the
download has completed. Using these events in JavaScript, you can provide your end users with
download progress information by using the Silverlight JavaScript API to change the splash screen
XAML content. Using the JavaScript API to manipulate XAML is discussed in depth later in
this chapter.

Note that although the plug-in will fi re the onSourceDownloadCompleted event, when this point in
the plug-in life cycle is reached, the plug-in immediately stops displaying the splash screen content
and begins to display main application content. You have no opportunity to provide any type of
graceful transition from the splash screen to the main player content.

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0

436  ❘  Chapter 13   DOM Interaction

initParams
The initParams parameter enables you to pass initialization parameters that you can use inside of
your application into the Silverlight player. initParams accepts a comma-delimited list of key/value
pairs, as shown in Listing 13-6.

Listing 13-6:  ​Specifying initParams in the Silverlight control

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%“ height=”100%“>
 <param name=”source” value=”ClientBin/Chapter13.xap”/>
 <param name=”onerror” value=”onSilverlightError” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”4.0.50311.0” />
 <param name=”autoUpgrade” value=”true” />
 <param name=”initParams”
 value=”DefaultColor=Blue,DefaultStartPoint=Customer” />
 <a href=”http://go.microsoft.com/fwlink/
 ?LinkID=149156&v=4.0.50311.0”
 style=”text-decoration: none;”>
 <img src=”http://go.microsoft.com/fwlink/?LinkId=161376”
 alt=”Get Microsoft Silverlight”
 style=”border-style: none”/>

</object>

The list of initialization parameters is exposed as a property of type Dictionary<string, string>
off the application’s Startup event arguments. Listing 13-7 shows how to use initialization parameters
to alter the content loaded by the Silverlight application at startup.

Listing 13-7:  ​Accessing the initParams in the Silverlight application

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page();
 switch (e.InitParams[“DefaultStartPoint”])
 {
 case “Customer”:
 this.RootVisual = new Customer();
 break;
 case “Order”:
 this.RootVisual = new Order();
 break;
 default:
 this.RootVisual = new Home();
 break;
 }
}

http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0
http://go.microsoft.com/fwlink/?LinkId=161376%E2%80%9D
http://go.microsoft.com/fwlink/?LinkID=149156&v=4.0.50311.0

Configuring the Silverlight Plug-In  ❘  437

In this listing, the application uses the initParams property, which is a member of StartUpEventArgs,
within the application’s Startup event. Visual Studio automatically creates the Startup event handler
in the App.xaml file when a new Silverlight application is created.

As mentioned earlier, the initParams passed into the plug-in are exposed as a Dictionary, which allows
you to access the parameters as key/value pairs, in this case using the value of the DefaultStartPoint
key to select a specific XAML UserControl as the application’s RootVisual.

enablehtmlaccess
The enablehtmlaccess parameter indicates whether the Silverlight player can access the DOM of
the host page. The default value allows access to elements from the same domains. Specifying a true
value broadens access to any domain, whereas a false value blocks all DOM access.

This property is important if you want to allow or deny communication between the Silverlight
plug-in and JavaScript running on a browser, which is discussed later in this chapter.

enableAutoZoom
The enableAutoZoom parameter allows you to configure whether the plug-in should respect the
zoom settings from its host. For example, in Internet Explorer 8, you can set a zoom level. By default,
Silverlight respects this level as it is changed. Using this parameter you can opt out of this behavior.

enableGPUAcceleration
The enableGPUAcceleration parameter allows you to indicate that you want to leverage the video
hardware for rendering in your application. To enable this feature, you also must set the CacheMode
property on the XAML elements in your application that you want to accelerate.

You can also use the enableGPUAcceleration parameter in conjunction with several other useful diag-
nostics parameters, such as the enableCacheVisualization parameter, which allows you to see what
parts of your application are taking advantage of GPU rendering; enableFramerateCounter, which
adds a display showing the current application frame rate; and the enableRedrawRegions parameter,
which allows you to see what regions of the plug-in are being redrawn with each frame.

enableNavigation
The enableNavigation parameter allows you to control the behavior of the HyperlinkButton con-
trols in the application, configuring that application to allow or disallow navigation to external URIs.
The parameter accepts two values: all, which allows HyperlinkButtons to navigate to any URI, and
none, which prevents this behavior.

Regardless of the parameter setting, relative URIs for internal navigation are always permitted.

allowHtmlPopupWindow
You can use the allowHtmlPopupWindow parameter to configure whether managed code running
in a Silverlight application can use the HtmlPage.PopupWindow method to display new browser
windows. You can test the status of this parameter at run time in your application by using the
HtmlPage.IsPopupWindowAllowed property.

438  ❘  Chapter 13   DOM Interaction

Plug-In API
The Silverlight plug-in also includes a full client-side API that you can use to interact with the control
in the browser with JavaScript. You can find a complete description of the plug-in’s client-side API at
http://msdn.microsoft.com/en-us/library/cc838259(VS.96).aspx.

The plug-in’s JavaScript API lets you change various property settings such as the plug-in source,
splash screen source, and Scale mode. Additionally, you can use these APIs to handle events raised
by the plug-in, such as the OnLoad event.

Table 13-1 lists the events exposed by the Silverlight plug-in as well as a description of the event.

Table 13-1

Plug-In Event Description

onLoad Occurs when the plug-in and its content are success-
fully loaded.

onError Occurs when something prevents the plug-in or
content from loading.

onResize Occurs when the ActualWidth or ActualHeight
properties of the plug-in change.

onFullScreenChanged Occurs when the player enters or leaves Full
Screen mode.

onZoom Occurs when the plug-in receives a host-generated
zoom event.

onSourceDownloadCompleted Occurs when the plug-in source has been downloaded.

onSourceDownloadProgressChanged Occurs as the download progress of the plug-in changes.

The default host page template in Visual Studio automatically configures a JavaScript handler for
the plug-in’s onError event in order to provide a more graceful handling of errors that might happen
in the player.

Creating Interaction between Silverlight and JavaScript

After a Silverlight control is embedded in a host web page, you can add interaction between your
Silverlight application running in the Silverlight plug-in and the host web page running in a browser
window. You have two ways to interoperate between the Silverlight plug-in and the browser.

The first option is to use the plug-in’s JavaScript APIs. Introduced in Silverlight 1.0, these ➤➤

APIs allow developers to programmatically reach into the Silverlight plug-in and manipulate
the plug-in or XAML content running inside of the plug-in.

http://msdn.microsoft.com/en-us/library/cc838259%28VS.96%29.aspx

Creating interaction between silverlight and Javascript ❘ 439

Although most of the original Silverlight 1.0 JavaScript APIs exist in newer
versions of Silverlight, certain features have been removed in favor of managed-
code options now available. For example, the original CreateFromXaml method
that was available in the Silverlight 1.0 APIs has been removed in favor of using
the managed XamlReader class inside of your Silverlight application.

The second option is to use the HTML Bridge, which was introduced with
Silverlight 2. The HTML Bridge is a set of managed APIs that allows you to
reach out from the Silverlight plug-in and access elements of the browser, like
the DOM of the host, as well as to expose managed code contained in the
plug-in and allow it to be executed from JavaScript running the host page.

Javascript api
The Silverlight plug-in exposes a set of JavaScript APIs, which allow you to reach into the plug-in
and manipulate content running in a Silverlight application. Listing 13-8 shows how you can use the
plug-in’s onload event to access the root element of the application.

listing 13-8: accessing the root visual element using Javascript

<script type=”text/javascript” language=”javascript”>
 function plugin_onload(sender) {
 alert(sender);
 }
</script>

As you can see in Listing 13-8, the onload event passes a single method parameter that is a reference
to the root element of the application. The type of the root element is shown using a JavaScript alert.

After the JavaScript code is written, you still need a way to tell the Silverlight plug-in that it should
use the plugin_onload function to handle its Loaded event. To do this, provide the function name
to the plug-in by specifying it in a <param> tag:

<param name=”onload” value=”plugin_onload” />

Waiting for the plug-in’s Loaded event to fi re before trying to access elements in the Silverlight applica-
tion is a good idea because trying to access prior content may cause null reference exceptions. Waiting
for the Loaded event ensures that Silverlight has completed successfully loading all of its content.

While you can use different plug-in events like the onload event to access the application’s elements,
you may need access outside of a plug-in event, for example, a Button’s onclick event. To do that, you
simply need to get a reference to the plug-in object. You do this using the traditional getElementByID
JavaScript function:

<button
 onclick=”alert(document.getElementByID(‘silverlightControl’).content.Root);”
 id=”Button1”>Click Me!</button>

440  ❘  Chapter 13   DOM Interaction

Or if you are using a JavaScript Library like jQuery, use its selector syntax:

<button
 onclick=”alert($(‘object#silverlightControl’)[0].content.Root);”
 id=”btnContent”>Click Me!</button>

Once you get a reference to the plug-in, you can use the content property representing Silverlight’s
visual tree, which contains a reference to all the visual elements in the Silverlight application. Finally,
the code uses the Root property to access root visual elements of the application’s Visual Tree.

The JavaScript APIs also allow you to access and change element properties. For example, suppose
you want to dynamically change the text of a TextBlock element in your Silverlight application.
You can do this via the JavaScript API by locating the named TextBlock element and then setting
its Text property, as shown in Listing 13-9.

Listing 13-9:  ​Accessing XAML elements and properties in JavaScript

function plugin_onload(sender) {
 var textBlock1 = sender.FindName(“textBlock1”);

 if (textBlock1 != null) {
 textBlock1.Text = “Hello from the Host!”;
 }
}

This sample shows the use of the plug-in’s FindName method to locate the named element textBlock1
in the element tree. After it is located, you simply set its Text property.

You can even get and set dependency properties on elements, although to do that, you must use
the getValue and setValue functions provided by the element. Listing 13-10 shows how to set an
attached property on the TextBlock.

Listing 13-10:  ​Setting attached properties in JavaScript

function plugin_onload(sender) {
 var textBlock1 = sender.FindName(“textBlock1”);

 if (textBlock1 != null) {
 textBlock1.Text = “Hello from the Host!”;
 }

 var currentColumn = textBlock1.getValue(“Grid.Column”);
 if (currentColumn == 0) {
 textBlock1.setValue(“Grid.Column”, 1);
 }
}

Being able to access elements contained in the XAML also allows you to connect event handlers to
element events.

Creating Interaction between Silverlight and JavaScript  ❘  441

It’s important to note that although the Silverlight 1.0 JavaScript APIs allowed you to access and
manipulate every XAML element available in Silverlight 1.0, the same cannot be said of later Silverlight
JavaScript APIs. After Silverlight 1.0, a significant number of new XAML elements were added to the
platform. These elements make designing and laying out applications much easier; however, not all of
those elements have been exposed through the JavaScript API. You can find the full JavaScript API for
Silverlight 4 at http://msdn.microsoft.com/en-us/library/bb979679(VS.96).aspx. This docu-
mentation lists all the XAML elements that have been exposed to the JavaScript APIs.

Also, with the addition of significant new functionality in Silverlight since version 1.0, many XAML
elements gained new properties, methods, and events. However, not all of these properties are useful
unless used in conjunction with other features available only in the managed API. You can find a list of
objects, types, and members that are not accessible via the JavaScript API, or that somehow otherwise
expose only limited functionality via the JavaScript API, at http://msdn.microsoft.com/en-us/
library/cc964287(VS.96).aspx.

HTML Bridge
Although the Silverlight JavaScript APIs can be useful, Silverlight contains a powerful set of managed
APIs that allow you not only to manipulate XAML elements from JavaScript, but also to access any
managed type, method, property, or event included in the Silverlight application from JavaScript.
Additionally, the APIs allow you to access the entire browser DOM (including JavaScript code) from
within the Silverlight plug-in. Reaching out from the Silverlight plug-in into the browser allows you
to add interesting interoperability capabilities to your application, such as accessing properties of the
current browser window or leveraging existing JavaScript libraries you may have.

The HTML Bridge managed-code APIs are contained in the System.Windows.Browser namespace
(located in the System.Windows.Browser.dll assembly). The primary class in the System.Windows
.Browser namespace that you will work with is the HtmlPage class, whose primary function is to
allow you to access and manipulate the browser’s DOM. The class exposes a variety of static proper-
ties that enable you to access the actual HTML document, the browser window, basic browser infor-
mation such as the name and version, and even the Silverlight plug-in itself. Additionally, as you’ll see
in the next section, it includes several static methods that help you expose the managed code included
in your Silverlight application, via JavaScript APIs.

Exposing Managed Code in JavaScript
Exposing managed code via JavaScript APIs is a powerful tool that helps form a bridge between
managed-code developers and developers who are skilled in JavaScript. The easiest way to expose
managed types to JavaScript is to use the ScriptableType attribute on the class you want to
expose. Using this attribute exposes any public member of the class to JavaScript, including meth-
ods, properties, and events. Listing 13-11 shows how you can use the ScriptableType attribute on
a custom Silverlight class.

Listing 13-11:  ​Exposing a class using the ScriptableType attribute

[System.Windows.Browser.ScriptableType()]
public class Employee

continues

http://msdn.microsoft.com/en-us/library/bb979679%28VS.96%29.aspx
http://msdn.microsoft.com/en-us/library/cc964287(VS.96).aspx
http://msdn.microsoft.com/en-us/library/cc964287(VS.96).aspx

442  ❘  Chapter 13   DOM Interaction

{
 private bool _status = false;

 public Employee()
 {
 }

 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Department { get; set; }
 public string SSN { get; set; }
 public DateTime StartDate { get; set; }
 public bool Status { get { return _status; } }

 public void ChangeStatus(bool status)
 {
 this._status = status;
 }

 public string GetFullName()
 {
 return string.Format(“{0} {1)“, this.FirstName, this.LastName);
 }
}

After you have decorated a type with the ScriptableType attribute, you must register instances of
that type as scriptable objects. Registering the instances allows them to be accessed from the host
web page using JavaScript. To register an object instance, use the RegisterScriptableObject
method of the HtmlPage class, as shown in Listing 13-12.

 Listing 13-12:  ​Registering the scriptable type

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new Page();

 Employee employee = new Employee();
 HtmlPage.RegisterScriptableObject(“Employee”, employee);
}

RegisterScriptableObject requires two parameters: a Key, which represents the name used
to register the object, and the actual object instance you want to expose. Although you can call
the RegisterScriptableObject anywhere in your code, in the preceding sample it is called in
the application Startup event, allowing you to access this member in JavaScript as soon as the
Silverlight application is loaded.

Listing 13-13 shows you how to use the Silverlight plug-in’s JavaScript API to access the registered
object instance from JavaScript and call its ChangeStatus method.

Listing 13-11  (continued)

Creating Interaction between Silverlight and JavaScript  ❘  443

Listing 13-13:  ​Accessing scriptable objects from JavaScript

function plugin_onload(sender) {
 var host = sender.GetHost();

 alert(“Current Status: “ + host.content.Employee.Status);
 host.content.Employee.ChangeStatus(true);
 alert(“Updated Status: “ + host.content.Employee.Status);
}

Notice that Silverlight exposes the managed type as a property of the plug-in’s content object.
The property name exposed from the content object is determined by the Key parameter pro-
vided in the RegisterScriptableObject. Therefore, in Listing 13-12, had you used Foo as the
key, you would have accessed the object in JavaScript by using plugin.Content.Foo.Status.

As stated earlier, applying the ScriptableType attribute exposes all public members of a type to the
JavaScript API, but you may not want to do that. Thankfully, Silverlight provides the more granular
ScriptableMember attribute, which allows you to more specifically control which members of a type
are exposed through the JavaScript API. The use of this attribute is shown in Listing 13-14. Rather than
decorating the entire Employee class with the ScriptableType, only specific members are exposed by
using the ScriptableMember attribute.

Listing 13-14:  ​Exposing specific class properties using the ScriptableMember attribute

public class Employee
{
 private bool _status = false;

 public Employee()
 {
 }

 [ScriptableMember]
 public string FirstName { get; set; }
 [ScriptableMember]
 public string LastName { get; set; }
 public string Department { get; set; }
 public string SSN { get; set; }
 [ScriptableMember()]
 public DateTime StartDate { get; set; }
 [ScriptableMember()]
 public bool Status { get { return _status; } }

 public void ChangeStatus(bool status)
 {
 this._status = status;
 }

 public string GetFullName()

continues

444  ❘  Chapter 13   DOM Interaction

 {
 return string.Format(“{0} {1)“, this.FirstName, this.LastName);
 }
}

The ScriptableMember attribute also enables you to change the name of the member that is exposed
through the JavaScript API by setting an alias on the member being exposed. This is shown in the fol-
lowing code, where the Status property has been given the alias CurrentStatus:

[ScriptableMember(ScriptAlias = “CurrentStatus”)]
public bool Status { get { return _status; } }

In addition to accessing existing type instances, the HTML Bridge allows you to register specific
types as creatable types. A creatable type is a type that can be instantiated directly in JavaScript.
For example, rather than instantiating an instance of the Employee type in managed code and regis-
tering that specific instance, Silverlight allows you to register the Employees type as Creatable and
instantiate new instances of it directly in JavaScript.

To register a type as creatable using the JavaScript API, call the HtmlPage object’s
RegisterCreatableType method, as shown here:

HtmlPage.RegisterCreatableType(“Employee”, typeof(Employee));

This method requires two parameters, a ScriptAlias and the type to expose. After it is exposed,
you can use JavaScript to instantiate the Employee class, as shown in Listing 13-15.

Listing 13-15:  ​Creating managed types in JavaScript

function onLoaded(sender) {
 var host = sender.GetHost();
 var employee = host.content.services.createObject(“Employee”);

 employee.FirstName = “John”;
 employee.LastName = “Doe”;
}

Notice that to create the type in JavaScript, you use the Silverlight JavaScript API’s createObject
function, passing it the ScriptAlias provided to the RegisterCreatableType method. After
it is created, you can set properties and call functions on the object just as you would any other
JavaScript object.

Accessing the DOM Using Managed Code
So far in this section, you have seen how you can expose managed code to JavaScript. However, the
HTML Bridge is a two-way street, allowing you to also access the browser. Accessing the browser
allows you to access the DOM, reference specific elements in the DOM, execute JavaScript functions
contained in the host page, or even access aspects of the browser window that contains the host page.

Listing 13-14  (continued)

Creating Interaction between Silverlight and JavaScript  ❘  445

In this section, you learn some of the APIs included in the HTML Bridge that can help you access
information about the browser window and the HTML document, beginning with returning to
the familiar HtmlPage object, which exposes three important properties, BrowserInformation,
Document, and Window.

The BrowserInformation property returns a BrowserInformation object, which, as the name
implies, allows you to access basic information about the browser the application is currently running
in, such as the browser name, version, and platform.

The Document property returns an HtmlDocument object, which represents the browser’s document
object. The managed HtmlDocument provides similar functionality to its JavaScript equivalent, allowing
you to locate elements in the document using the familiar GetElementByID and GetElementByTagName
methods, as well as create new HTML elements and attach and detach events to HTML elements.

When working with existing HTML elements obtained from the HtmlDocument, or when new elements
are created, the HTML Bridge uses the HtmlElement object, which represents the managed version of
basic HTML elements present in the DOM. As with the HtmlDocument object, the HtmlElement object
exposes much of the same functionality as its client-side peer, enabling you to get and set element prop-
erty and attribute values, and access and manipulate its collection of child elements.

Listing 13-16 demonstrates the use of the HtmlDocument and HtmlElement objects to dynamically
manipulate the loaded document structure.

Listing 13-16:  ​Manipulating the HTML document structure

public void AddListItem()
{
 System.Windows.Browser.HtmlElement unorderedlist =
 System.Windows.Browser.HtmlPage.Document.GetElementById(
 “demoList”);

 if (unorderedlist != null)
 {
 System.Windows.Browser.HtmlElement listitem =
 System.Windows.Browser.HtmlPage.Document.CreateElement(
 “li”);
 listitem.SetAttribute(“Id”, “listitem1”);
 listitem.SetAttribute(“innerHTML”, “Hello World!”);
 unorderedlist.AppendChild(listitem);
 }
}

In this sample, the HtmlDocument’s GetElementById method is used to locate a specific unordered
list element in the DOM. If it is found, then a new HtmlElement representing an HTML list item is
created and its id and innerHTML attributes set. Then, the new list item element is added as a child
of the unordered list element.

Finally, the Window property of the HtmlPage object returns an HtmlWindow, which provides you
with a managed representation of the browser’s window object. The HtmlWindow allows you to do

446  ❘  Chapter 13   DOM Interaction

things such as raise Alert and Prompt dialogs, navigate to new URIs or bookmarks, create instances
of JavaScript types, and evaluate strings containing arbitrary JavaScript code.

Listing 13-17 demonstrates how to create a managed representation of a JavaScript type.

Listing 13-17:  ​Creating a JavaScript type in managed code

public void Calculate()
{
 var calculator =
 System.Windows.Browser.HtmlPage.Window.CreateInstance(
 “Calculator”);
 var sum = Convert.ToInt32(calculator.Invoke(“add”, 5, 1));
 System.Windows.Browser.HtmlPage.Window.Alert(sum.ToString());
}

This sample uses the HtmlWindow object’s CreateInstance method, which requires two param-
eters — ​a string containing the type you want to create and an object array containing the type’s
creation parameters. The method returns an instance of a ScriptObject, which you can then use
to call methods and properties of the JavaScript type.

Finally, take a look at how you can use the HtmlWindow object to call a JavaScript function located in
the host web page. The following code shows a simple JavaScript function that could be included in the
HTML page hosting the Silverlight plug-in:

function Add(a, b) {
 return a + b;
}

To execute this function, use Silverlight’s Invoke method, which is exposed from the HtmlWindow
object, shown here:

HtmlWindow window = HtmlPage.Window;
object result = window.Invoke(“Add”, new object[] {1,2});

The Invoke method takes two parameters — ​the name of the function you want to execute and an
object array of function parameters — ​and returns an object type.

Summary

This chapter introduced some of the basic concepts that an ASP.NET developer must know to integrate
a Silverlight application into a website and to add interoperability between the Silverlight application
and its host web page. The chapter started by introducing the basics of creating a new Silverlight appli-
cation and the tools that are available for Visual Studio 2010 developers. It showed you how you can
automatically have Visual Studio create a new website project to host your Silverlight application or
even associate the Silverlight application with an existing website.

Summary  ❘  447

Next, you looked at the Silverlight plug-in and how to embed it into a web page. You looked at the
configuration parameters exposed by the plug-in that allow you to customize the default Silverlight
loading splash screen, and pass initialization parameters into the Silverlight plug-in.

Finally, you explored the different options Silverlight provides for interoperating between JavaScript
and managed code. You first looked at how to use the Silverlight plug-in’s JavaScript API to reach
into a Silverlight application and manipulate its XAML content. This chapter also demonstrated
how to use the HTML Bridge to expose managed code contained in a Silverlight application out
to the browser via a JavaScript API, to directly access browser properties information from within
your Silverlight application, to manipulate the browser’s DOM, and to run client-side JavaScript
code from within a Silverlight application.

14
securing Your applications

what’s in this chapter?

Understanding authentication and authorization➤➤

Working with ASP .NET authentication types➤➤

Exposing ASP .NET application services to Silverlight➤➤

Security is a very wide-reaching term. This chapter does not cover each and every thing you
can do to build secure applications because this material is covered throughout the entire
book. Coding for secure applications is something you should do with every line of code that
you write. During every step of the application-building process, you must, without a doubt,
be aware of how mischievous end users might attempt to bypass your lockout measures.
You must take steps to ensure that no one can take over the application or gain access to its
resources. Whether it involves working with basic server controls or accessing databases, you
should be thinking through the level of security you want to employ to protect yourself.

This chapter takes a look at security from the standpoint of how you can establish access
rules for your Silverlight applications, who can access them, and how to really tell who the
user is. Also, this chapter looks at other security aspects in dealing with cryptography and
the Security APIs at your disposal. Out-of-browser applications are covered in Chapter 9.

One of the more important aspects of security is in how your applications deal with the end
users who come to it. Not every view that you build with Silverlight is meant to be open and
accessible to everyone on the Internet. Sometimes, you want to build views that are acces-
sible to only a select group of your choosing. For this reason, you need the security measures
explained in this chapter. They can help protect the data behind your applications and the
applications themselves from fraudulent use.

How security is applied to your applications is truly a measured process. For instance, a
Silverlight application on the Internet, open to public access, has different security requirements
than does another Silverlight application that is available to only selected individuals because it
deals with confi dential information such as credit card numbers or medical information.

450  ❘  Chapter 14   Securing Your Applications

The first step is to apply the appropriate level of security for the task at hand. Because you can take
so many different actions to protect your applications and the resources, you have to decide for
yourself which of these measures to employ.

An important aspect of security is how you handle the authentication and authorization for access-
ing resources in your applications. Before you begin working through some of the authentication/
authorization possibilities in ASP.NET, which is what this chapter covers, you should know exactly
what those two terms mean:

Authentication➤➤ is the process that determines the identity of a user. After a user has been
authenticated, a developer can determine whether the identified user has authorization to pro-
ceed. Giving an entity authorization is impossible if no authentication process has been applied.

Authorization➤➤ is the process of determining whether an authenticated user is permitted access
to any part of an application, access to specific points of an application, or access only to
specified data sets that the application provides. Authenticating and authorizing users and
groups enable you to customize a site based on user types or preferences.

Taking Advantage of ASP.NET

When working with authentication and authorization for your Silverlight applications, remember that
Silverlight is a client-side technology and that means that you are required to communicate back to the
server to deal with many of the permissioning options that you are going to want to work with.

The nice thing in that regard is that in many cases, you are probably delivering the Silverlight appli-
cation through an ASP.NET application and therefore can take advantage of some of the security
that ASP.NET offers out-of-the-box. However, you have to expose those capabilities in order for
your Silverlight application to take advantage of them.

Forms-Based Authentication
Because your Silverlight application is serviced up in an ASP.NET web page for this example, you
are able to take advantage of one of the more popular means to provide authentication to your ASP.
NET applications — ​through forms authentication.

Forms-based authentication is a means of authenticating users to access your entire Silverlight appli-
cation or specific server-side resources. Once you have this authentication system in place, you can
then interact with it through a regular login form that is located somewhere within your Silverlight
application. Using the login form, the end user simply enters his or her username and password into
a provided form contained within the Silverlight application itself.

Making use of forms-based authentication in your Silverlight application is easy and relatively
straightforward. To begin, you first need to set up the ASP.NET application that will be hosting
your Silverlight application.

Create a project called Security and you end up with the default Security Silverlight applica-
tion along with a Security.Web ASP.NET application. The first changes you must make are to the
Security.Web solution. Open up the Web.config file and make the following changes as illustrated
in Listing 14-1.

Taking Advantage of ASP.NET  ❘  451

Listing 14-1:  ​Modifying the Web.config file for forms-based authentication

<?xml version=”1.0”?>

<configuration>
 <system.web>
 <compilation debug=”true” targetFramework=”4.0” />

 <authentication mode=”Forms”>
 <forms name=”Wrox”>
 <credentials passwordFormat=”Clear”>
 <user name=”BillEvjen” password=”Bubbles” />
 </credentials>
 </forms>
 </authentication>

 </system.web>
</configuration>

Using the pattern shown in Listing 14-1, your credentials are stored within the Web.config file of
the web application that is hosting the Silverlight application. Within this configuration file, you
need to add an <authentication> section (it usually already contains one) and change the mode
attribute to have a value of Forms. From there, another sub-element, <credentials>, allows you to
specify username and password combinations directly in the Web.config file. You can choose from
a couple of ways to add these values.

The <credentials> element has been included to add users and their passwords to the configu-
ration file. <credentials> takes a single attribute — ​passwordFormat. The possible values of
passwordFormat are Clear, MD5, and SHA1. The following list describes each of these options:

Clear➤➤  — ​Passwords are stored in clear text. The user password is compared directly to this
value without further transformation.

MD5➤➤  — ​Passwords are stored using a Message Digest 5 (MD5) hash digest. When credentials
are validated, the user password is hashed using the MD5 algorithm and compared for equal-
ity with this value. The clear-text password is never stored or compared. This algorithm pro-
duces better performance than SHA1.

SHA1➤➤  — ​Passwords are stored using the SHA1 hash digest. When credentials are validated, the
user password is hashed using the SHA1 algorithm and compared for equality with this value.
The clear-text password is never stored or compared. Use this algorithm for best security.

The example from Listing 14-1 uses a setting of Clear. This method is not the most secure, but it
is used for demonstration purposes. If you want to use this means to provide authentication to your
Silverlight application, you can use one of the password encryptions and store the encrypted pass-
words within the Web.config file. A sub-element of <credentials> is <user>; that is where you
define the username and password for the authorized user with the attributes name and password.

Now that the Web.config file is in place, you must create a WCF service that will expose the appli-
cation of forms authentication to any consuming applications (e.g., your Silverlight application). To
the Security.Web project, add a Silverlight-enabled WCF Service called Login.svc. This new service,
when completed, is presented in Listing 14-2.

452  ❘  Chapter 14   Securing Your Applications

Listing 14-2:  ​Exposing forms authentication through the Login.svc file

using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Web.Security;

namespace Security.Web
{
 [ServiceContract(Namespace = ““)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class Login
 {
 [OperationContract]
 public bool Authenticate(string username, string password)
 {
 if (FormsAuthentication.Authenticate(username, password))
 {
 return true;
 }

 return false;
 }
 }
}

Here you have a class called Login that contains a single method called Authenticate(). The
Authenticate() method takes a username and password as input (both of type string). In this
example, simply use the Authenticate() method to get your ASP.NET page to look at the creden-
tials stored in the Web.config file for verification. If the credential lookup is successful, a value of
true is returned from the service.

Storing Encrypted Passwords within the Web.config File
Obviously, it is best not to store your users’ passwords in the Web.config file as clear text as the
preceding example did. Instead, use one of the available hashing capabilities so you can keep the end
user’s password out of sight of prying eyes. To do this, simply store the hashed password in the con-
figuration file as shown in Listing 14-3.

Listing 14-3:  ​Changing the Web.config file to store encrypted passwords

<forms name=”Wrox”>
 <credentials passwordFormat=”SHA1”>
 <user name=”BillEvjen” password=”58356FB4CAC0B801F011B397F9DFF45ADB863892” />
 </credentials>
</forms>

Using this kind of construct makes it impossible for even the developer to discover a password
because the clear-text password is never used in the configuration file or in your code. The
Authenticate() method used by the Login.svc service hashes the password using SHA1 (because
it is the method specified in the Web.config’s <credentials> node) and compares the two hashes
for a match. If a match is found, the user is authorized to proceed.

Taking Advantage of ASP.NET  ❘  453

When using SHA1 or MD5, the only changes you make are in the Web.config file and
nowhere else. You do not have to make any changes to the WCF service or to any other page
in the application. To store hashed passwords, however, use the FormsAuthentication
.HashPasswordForStoringInConfigFile() method.

Authenticating Against Values in a Database
Another common way to retrieve username/password combinations is by getting them directly from a
data store of some kind. This enables you, for example, to check the credentials input by a user against
values stored in Microsoft’s SQL Server. Listing 14-4 presents the code for this credentials check.

Listing 14-4:  ​Checking credentials using SQL Server

using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Web.Security;

namespace Security.Web
{
 [ServiceContract(Namespace = ““)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class Login
 {
 [OperationContract]
 public bool Authenticate(string username, string password)
 {
 bool returnValue;

 SqlConnection conn;
 SqlCommand cmd;
 string cmdString = “SELECT [Password] FROM [AccessTable] WHERE” +
 “ (([Username] = @Username) AND ([Password] = @Password))”;

 conn = new SqlConnection(“Data Source=localhost;Initial “ +
 “Catalog=Northwind;Persist Security Info=True;User ID=sa”);
 cmd = new SqlCommand(cmdString, conn);

 cmd.Parameters.Add(“@Username”, SqlDbType.VarChar, 50);
 cmd.Parameters[“@Username”].Value = TextBox1.Text;
 cmd.Parameters.Add(“@Password”, SqlDbType.VarChar, 50);
 cmd.Parameters[“@Password”].Value = TextBox2.Text;
 conn.Open();

 SqlDataReader myReader;

 myReader = cmd.ExecuteReader(CommandBehavior.CloseConnection);

 if (myReader.Read()) {
 returnValue = true;
 }
 else {
 returnValue = false;

continues

mailto:cmd.Parameters%5B%E2%80%9C@Username%E2%80%9D%5D.Value
mailto:cmd.Parameters%5B%E2%80%9C@Password%E2%80%9D%5D.Value

454  ❘  Chapter 14   Securing Your Applications

 }

 myReader.Close();
 return returnValue;
 }
 }
}

You can now authenticate usernames and passwords against data stored in SQL Server. In the
Authenticate() event, a connection is made to SQL Server. (For security reasons, you should
store your connection string in the Web.config file.) Two parameters are passed in — ​these will
be coming from your Silverlight application. If a result is returned, you can consider the user
valid and return true.

Now that you have the service in place that exposes the forms authentication required, the next step
is to build your Silverlight application so that it can consume this Login service.

Silverlight Consuming the Authenticate() Service
The first step is having your Silverlight application work with the Login service’s Authenticate()
method. To start, create a form for your MainPage.xaml file as presented in Figure 14-1.

Figure 14-1

The idea here is that the end user inputs his username and password in the form and when he clicks
the Login button, the Silverlight application calls the WCF service to authenticate him. The code-
behind for the MainPage.xaml file is presented in Listing 14-5.

Listing 14-5:  ​The MainPage.xaml.cs file

using System;
using System.Windows;
using System.Windows.Controls;

Listing 14-4  (continued)

Taking Advantage of ASP.NET  ❘  455

using Security.Login;

namespace Security
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 Login.LoginClient svc = new LoginClient();
 svc.AuthenticateCompleted +=
 new EventHandler<AuthenticateCompletedEventArgs>
 (svc_AuthenticateCompleted);
 svc.AuthenticateAsync(textBox1.Text, passwordBox1.Password);
 }

 void svc_AuthenticateCompleted(object sender,
 AuthenticateCompletedEventArgs e)
 {
 if (e.Result)
 {
 label1.Content = “Authenticated!”;
 }
 else
 {
 label1.Content = “Not Authenticated!”;
 }

 }
 }
}

After making a service reference to the Login service in your Silverlight project, you are then able
to call the Authenticate() method that the service exposes. Based on the results returned (using
e.Result), you then show the appropriate message to the end user.

Now that you have seen using forms authentication from ASP.NET with your Silverlight applica-
tions, the next section takes a look at using other forms of authentication.

Windows-Based Authentication
Windows-based authentication is handled between the Windows server where the server application
resides and the client machine. In a Windows-based authentication model, the requests go directly
to Internet Information Services (IIS) to provide the authentication process. This type of authenti-
cation is quite useful in an intranet environment where you can let the server deal completely with
the authentication process — ​especially in environments where users are already logged on to a net-
work. In this scenario, you simply grab and utilize the credentials that are already in place for the
authorization process.

456 ❘ chapter 14 SecurIng your ApplIcAtIonS

IIS fi rst takes the user’s credentials from the domain login. If this process fails, IIS displays a pop-up
dialog box so the user can enter or re-enter his login information. To set up your Silverlight applica-
tion to work with Windows-based authentication, begin by creating a new Silverlight application
called IntegratedWindows with its respective IntegratedWindows.Web solution. This will host your
WCF service that will be locked down.

Within the IntegratedWindows.Web solution, create a new Silverlight-enabled WCF Service called
SimpleMath.svc. Listing 14-6 shows how your SimpleMath.svc.cs fi le should appear.

listing 14-6: reviewing the simpleMath service

using System.ServiceModel;
using System.ServiceModel.Activation;

namespace IntegratedWindows.Web
{
 [ServiceContract(Namespace = ““)]
 [AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
 public class SimpleMath
 {
 [OperationContract]
 public int Add(int a, int b)
 {
 return (a + b);
 }
 }
}

This is a simple WCF service that exposes a single method called Add(), which requires two int
types that are then added and returned to the consumer. The tricky part with this service is confi g-
uring it for working with Windows-based authentication.

running the WCf solution in iis
The fi rst step in confi guring the solution is to ensure that the IntegratedWindows.Web solution runs
within IIS. You can do this through the solution’s property pages. From the property page, select the
Web tab and choose the option to Use Local IIS Web Server. You also have the option to generate
the virtual directory at this point.

If you are using Windows 7, you will not have IIS installed by default. To install
IIS within Windows 7, from the Add/Remove Programs dialog, select the option
to Turn Windows features on or off. You are then presented with a dialog that
allows you to add or remove additional Windows 7 features. From the pro-
vided list, you’ll want to select ASP.NET, Internet Information Services, IIS 6
Metabase and IIS 6 Confi guration Compatibility.

Taking Advantage of ASP.NET  ❘  457

Authenticating and Authorizing a User in the Web.config
Now create an application that enables the user to enter it. You work with the solution’s Web.config
file to control which users are allowed to access the site and which users are not allowed. You do this
in the solution’s Web.config file. The first step is to enable your WCF service to work with this type
of authentication. Listing 14-7 shows the required configuration to the <system.serviceModel>
section of the configuration file.

Listing 14-7:  ​Changing the <system.serviceModel> element of the WCF service

<system.serviceModel>
 <behaviors>
 <serviceBehaviors>
 <behavior name=”“>
 <serviceMetadata httpGetEnabled=”true” />
 <serviceDebug includeExceptionDetailInFaults=”false” />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <bindings>
 <customBinding>
 <binding name=”IntegratedWindows.Web.SimpleMath.customBinding0”>
 <binaryMessageEncoding />
 <httpTransport authenticationScheme=”Ntlm”/>
 </binding>
 </customBinding>
 </bindings>
 <serviceHostingEnvironment aspNetCompatibilityEnabled=”true”
 multipleSiteBindingsEnabled=”true” />
 <services>
 <service name=”IntegratedWindows.Web.SimpleMath”>
 <endpoint address=”“ binding=”customBinding”
 bindingConfiguration=”IntegratedWindows.Web.SimpleMath.customBinding0”
 contract=”IntegratedWindows.Web.SimpleMath” />
 <endpoint address=”mex” binding=”mexHttpBinding”
 contract=”IMetadataExchange” />
 </service>
 </services>
</system.serviceModel>

Looking this over, there is only one minor change to the default generation of configuration code
that Visual Studio generates for you when you create a new WCF service in your solution. In your
<bindings> section, you will notice that the <httpTransport> section is normally defined as:

<httpTransport />

Instead of this, you want to change the line to read:

<httpTransport authenticationScheme=”Ntlm” />

458  ❘  Chapter 14   Securing Your Applications

The other options here include None, Digest, Negotiate, Ntlm, IntegratedWindowsAuthentication,
Basic, and Anonymous. Using IIS you can design your application to work with all of these when using
the appropriate WCF binding.

Once you have this in place, you can then add more to the Web.config to deal with the users
you want to access your application. To do this, add the section presented in Listing 14-8 to
your Web.config file.

Listing 14-8:  ​Denying all users through the Web.config file

<system.web>
 <authentication mode=”Windows” />
 <authorization>
 <deny users=”*” />
 </authorization>
</system.web>

In this example, the Web.config file is configuring the application to employ Windows-based authen-
tication using the <authentication> element’s mode attribute. In addition, the <authorization> ele-
ment is used to define specifics about the users or groups who are permitted access to the application. In
this case, the <deny> element specifies that all users (even if they are authenticated) are denied access to
the application. Not permitting specific users with the <allow> element does not make much sense, but
for this example, leave it as it is. Figure 14-2 shows the results of this operation.

Figure 14-2

Any end user — ​authenticated or not — ​who tries to access the application sees a large “Access is
denied” statement in his or her browser window, which is just what you want for those not allowed
to access your application!

Taking Advantage of ASP.NET  ❘  459

In most instances, however, you want to allow at least some users to access your application. Use the
<allow> element in the Web.config file to allow a specific user. Here is the syntax:

<allow users=”Domain\Username” />

Listing 14-9 shows how the user is permitted access.

Listing 14-9:  ​Allowing a single user in through configuration

<authentication mode=”Windows”>
</authentication>

<authorization>
 <allow users=”MainLap-PC\BillEvjen”/>
 <deny users=”*”/>
</authorization>

This section needs to be contained within the <system.web> section of the configuration file.
Although all users (even authenticated ones) are denied access through the use of the <deny> ele-
ment, the definitions defined in the <allow> element take precedence. In this example, a single
user — ​BillEvjen — ​is allowed.

Now, if you are logged on to the client machine as the user Bill and run the page in the browser, you
get access to the application.

Looking Closely at the <allow> and <deny> Nodes
The <allow> and <deny> nodes enable you to work not only with specific users, but also with
groups. The elements support the attributes defined in Table 14-1.

Table 14-1

Attribute Description

Users Enables you to specify users by their domain and/or name.

Roles Enables you to specify access groups that are allowed or denied access.

Verbs Enables you to specify the HTTP transmission method that is allowed or denied access.

When using any of these attributes, you can specify all users with the use of the asterisk (*):

<allow roles=”*” />

In this example, all roles are allowed access to the application. Another symbol you can use with
these attributes is the question mark (?), which represents all anonymous users. For example, if you
want to block all anonymous users from your application, use the following construction:

<deny users=”?” />

460  ❘  Chapter 14   Securing Your Applications

When using users, roles, or verbs attributes with the <allow> or <deny> elements, you can spec-
ify multiple entries by separating the values with a comma. If you are going to allow more than one
user, you can either separate these users into different elements, as shown here:

<allow users=”MyDomain\User1” />
<allow users=”MyDomain\User2” />

or you can use the following:

<allow users=”MyDomain\User1, MyDomain\User2” />

Use the same construction when defining multiple roles and verbs.

Authenticating Specific Files and Folders
So far, you have seen how it is possible to lock down the entire Silverlight application and require
some sort of authentication for the end user to access it. However, it is also possible to lock down
only specific server-side resources that your Silverlight application will use. For example, you
might have a public Silverlight application with sections anyone can access without credentials,
although you might have an administration section as part of your application that might require
authentication/authorization measures.

URL authorization enables you to use the Web.config file to apply the settings you need.
Using URL authorization, you can apply any of the authentication measures to only specific
files or folders. Listing 14-10 shows an example of locking down a single file.

Listing 14-10:  ​Applying authorization requirements to a single file

<configuration>
 <system.web>
 <authentication mode=”None” />

 <!-- The rest of your web.config file settings go here -->

 </system.web>

 <location path=”SensitiveData.xml”>
 <system.web>
 <authentication mode=”Windows” />

 <authorization>
 <allow users=”MainLap-PC\BillEvjen” />
 <deny users=”*” />
 </authorization>
 </system.web>
 </location>
</configuration>

This Web.config construction keeps the web application open to the general public while, at the
same time, it locks down a single file contained on the server-side within the application — ​the

Using ASP.NET Application Services  ❘  461

SensitiveData.xml file. You accomplish this lockdown through the <location> element.
<location> takes a single attribute (path) to specify the resource defined within the <system.web>
section of the Web.config file.

In the example, the <authentication> and <authorization> elements are used to provide the authen-
tication and authorization details for the SensitiveData.xml file. For this page, Windows authentica-
tion is applied, and the only user allowed access to it is BillEvjen in the MainLap-PC domain. You can
have as many <location> sections in your Web.config file as you want.

Using ASP.NET Application Services

In addition to what has been demonstrated thus far, you can also work with users and the roles that
they are in through the provided ASP.NET application services such as the ASP.NET membership
and role management systems. .NET 4 includes an authentication and authorization management
service that takes care of the login, authentication, authorization, and management of users who
require access to your Silverlight applications. This outstanding membership and role management
service is an easy-to-implement framework that works out-of-the-box using Microsoft SQL Server
as the backend data store. This framework also includes a service-level API that allows for program-
matic access to the capabilities of both the membership and role management services.

These services were offered when ASP.NET 2.0 was released, but ever since the release of the .NET
Framework 3.5, you have been able to interact with a new services layer that allows this member-
ship and role management system to be accessible from clients such as ASP.NET AJAX, other
AJAX applications, as well as Silverlight applications. This is also something that can be utilized by
Windows Forms and Windows Presentation Foundation applications.

Working with Membership on the Server
The first step in working with the underlying ASP.NET membership system from your Silverlight
application is to create a WCF service that will act as the interface to this capability. To start, create
a new Silverlight application called AspnetAppServices. You are also going to create the standard
ASP.NET hosting solution called AspnetAppServices.Web. Within the web portion of the solution,
create a new folder called Services and add a simple text file (with a new extension of .svc rather
than .txt) called Auth.svc. Open this up in Visual Studio and utilize the small amount of code
that is presented in Listing 14-11.

Listing 14-11:  ​Creating the Auth.svc membership service

<%@ ServiceHost Language=”C#”
 Service=”System.Web.ApplicationServices.AuthenticationService”
 Factory=”System.Web.ApplicationServices.ApplicationServicesHostFactory” %>

You are not going to need a code-behind for this file. This solution will know how to work with the
underlying capabilities that the AuthenticationService provides. You will later use this file and make
a reference to it from your consuming Silverlight application.

462  ❘  Chapter 14   Securing Your Applications

Now that you have the service in place, the next step is to make some changes to the project’s
Web.config file. This is illustrated in Listing 14-12.

Listing 14-12:  ​Working with the membership service from the configuration file

<?xml version=”1.0”?>

<configuration>
 <system.web>
 <authentication mode=”Forms” />
 <compilation debug=”true” targetFramework=”4.0” />
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled=”true”
 requireSSL = “false”/>
 </webServices>
 </scripting>
 </system.web.extensions>

 <system.serviceModel>
 <services>
 <service name=”System.Web.ApplicationServices.AuthenticationService”
 behaviorConfiguration=”AuthenticationServiceTypeBehaviors”>
 <endpoint contract=
 “System.Web.ApplicationServices.AuthenticationService”
 binding=”basicHttpBinding”
 bindingConfiguration=”userHttp”
 bindingNamespace=”http://asp.net/ApplicationServices/v200”/>
 </service>
 </services>
 <bindings>
 <basicHttpBinding>
 <binding name=”userHttp”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <behaviors>
 <serviceBehaviors>
 <behavior name=”AuthenticationServiceTypeBehaviors”>
 <serviceMetadata httpGetEnabled=”true”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled=”true”/>
 </system.serviceModel>

</configuration>

http://asp.net/ApplicationServices/v200%E2%80%9D/

Using ASP.NET Application Services  ❘  463

This operation creates a binding with no security applied. The <security> element does
allow for the values of None, Transport, Message, TransportWithMessageCredential, and
TransportCredentialOnly. In this case, for simplicity, None is selected.

Looking at the top of the configuration file, you can see that forms authentication has been enabled.
You will need this in order to work with this membership system.

Before you can start to work with this underlying interface, you need to enable it. This is the pur-
pose of the <system.web.extensions> element in the configuration file:

<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled=”true”
 requireSSL = “false”/>
 </webServices>
 </scripting>
</system.web.extensions>

Here, the <authenticationService> is turned on using the enabled attribute. In addition, you are
setting the SSL requirement to false. Setting this to true requires you to use an SSL certificate and
then use https:// to get at the services themselves.

Creating Users
With both the service and the configuration in place, the next step is to create some users that you can
work with in your Silverlight application. To add users to the membership service, you can register
users into the Microsoft SQL Server Express Edition data store. You can also use any data store that
you want and even build a custom provider that interacts with that data store. By default, ASP.NET
uses the Microsoft SQL Server Express Edition database.

The Microsoft SQL Server provider for the membership system can use a SQL Server Express
Edition file that is structured specifically for the membership service (and other ASP.NET systems,
such as the role management system). ASP.NET is set to automatically create this particular file
for you if the appropriate file does not exist already. To create the ASPNETDB.mdf file, you work
with the ASP.NET Configuration tool that utilizes an aspect of the membership service. When
the application requires the ASPNETDB.mdf file, ASP.NET creates this file on your behalf in the
App_Data folder.

After the data store is in place, it is time to start adding users to it. To get started with this, high-
light the AspnetAppServices project within your Visual Studio Solution Explorer and click the
ASP.NET Configuration button in the toolbar of this section. This launches a web-based config-
uration application for you to use to make the necessary changes. The first page that is presented
is shown in Figure 14-3.

From here, select the Security tab and start by clicking the Select Authentication Type link in the
provided view. Here you want to change the mode to work from the Internet as is illustrated in
Figure 14-4.

https://to

464  ❘  Chapter 14   Securing Your Applications

Figure 14-3

Figure 14-4

Using ASP.NET Application Services  ❘  465

Once done with that section, you should then create one or more users that will be in the system for
you to work with. You do this by clicking the Create User link from the Security tab. You are then
presented with the form shown in Figure 14-5 to input a new user.

Figure 14-5

Notice that there is a pretty strict password requirement here, but that can be corrected later in the
Web.config file if you want. Once you have created one or more users, you are ready to work with
this membership system from your Silverlight application.

Seeing Where Users Are Stored
Now that you have used the ASP.NET Configuration tool to add a user to the membership service,
you might want to then look at where this information is stored. If you used Visual Studio to cre-
ate the Microsoft SQL Server Express Edition file in which you want to store the user information,
the file is created when you complete the form process as shown in the preceding figures. When the
example is completed, you will find the ASPNETDB.mdf file, which is located in the App_Data folder
of your project. Many different tables are included in this file, but you are interested in the aspnet_
Membership table only.

When you open the aspnet_Membership table (by right-clicking the table in the Server Explorer and
selecting Show Table Data), the users you entered are in the system, as illustrated in Figure 14-6.

466  ❘  Chapter 14   Securing Your Applications

Figure 14-6

The user password in this table is not stored as clear text; instead, it is hashed, which is a one-way
form of encryption that cannot be reversed easily. When a user logs in to an application that is using
the ASP.NET membership service, his or her password is immediately hashed and then compared
to the hashed password stored in the database. If the two hashed strings do not compare, the pass-
words are not considered a match. Storing clear-text passwords is considered a security risk, so you
should never do so without weighing the risk involved.

A note regarding the passwords used with the membership system: If you are having difficulty enter-
ing users because of a password error, it might be because this system requires strong passwords by
default. All passwords input into the system must be at least seven characters and contain at least
one non-alphanumeric character (such as [,], !, @, #, or $). Whew! An example password of this
combination is

Bevjen7777$

Although this type of password is a heck of a lot more secure, a password like this is sometimes
difficult to remember. You can actually change the behavior of the membership provider so that it
doesn’t require such difficult passwords by reworking the membership provider in the Web.config
file, as shown in Listing 14-13.

Using ASP.NET Application Services  ❘  467

Listing 14-13:  ​Modifying the membership provider in Web.config

<configuration>
 <system.web>

 <membership>
 <providers>
 <clear />
 <add name=”AspNetSqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider, System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”
 connectionStringName=”ApplicationServices”
 enablePasswordRetrieval=”false”
 enablePasswordReset=”true”
 requiresQuestionAndAnswer=”false”
 requiresUniqueEmail=”true”
 passwordFormat=”Hashed”
 minRequiredNonalphanumericCharacters=”0”
 minRequiredPasswordLength=”3” />
 </providers>
 </membership>

 </system.web>
</configuration>

This example shows the membership provider reworked for SQL Server so that it does not
actually require any non-alphanumeric characters and allows passwords as small as three
characters in length. You do this by using the minRequiredNonalphanumericCharacters and
minRequiredPasswordLength attributes. With these in place, you can now create users with
these password rules as set forth in these configuration settings.

The important attributes of the membership provider definition include the
enablePasswordRetrieval, enablePasswordReset, requiresQuestionAndAnswer,
requiresUniqueEmail, and PasswordFormat attributes. These are described in Table 14-2.

Table 14-2

Attribute Description

enablePasswordRetrieval Defines whether the provider supports password retrievals. This
attribute takes a Boolean value, and the default value is False.
When it is set to False, passwords cannot be retrieved although
they can be changed with a new random password.

enablePasswordReset Defines whether the provider supports password resets. This
attribute takes a Boolean value, and the default value is True.

requiresQuestionAndAnswer Specifies whether the provider should require a question-and-
answer combination when a user is created. This attribute takes
a Boolean value, and the default value is False.

continues

468  ❘  Chapter 14   Securing Your Applications

Attribute Description

requiresUniqueEmail Defines whether the provider should require a unique e‑mail to be
specified when the user is created. This attribute takes a Boolean
value, and the default value is False. When set to True, only
unique e‑mail addresses can be entered into the data store.

passwordFormat Defines the format in which the password is stored in the
data store. The possible values include Hashed, Clear, and
Encrypted. The default value is Hashed. Hashed passwords use
SHA1, whereas encrypted passwords use Triple-DES encryption.

In addition to having these items defined in the machine.config file, you can also redefine them
again (thus overriding the settings in the machine.config) in the Web.config file.

Working with Membership on the Client
Now that the server-side of what you want to do is established, the next step is to build a consuming
Silverlight application that will make use of the Auth service.

The first step is to make a service reference to the new Auth service that you created earlier. To do
this, right-click the project within the Solution Explorer and select Add Service Reference from the
provided options. You are presented with a dialog that allows you to search for services that are
contained within the same solution. Here you will find the Auth service. Now that you have the ref-
erence in place, the next step is to create the form that interacts with this service.

For this, create a form similar to what is shown in Figure 14-7. This is a simple login form.

Figure 14-7

Table 14-2  (continued)

Using ASP.NET Application Services  ❘  469

The code-behind for this form is presented in Listing 14-14.

Listing 14-14:  ​Code-behind for the Silverlight login form

using System;
using System.Windows;
using System.Windows.Controls;
using AspnetAppServices.AspnetAuthentication;

namespace AspnetAppServices
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 AspnetAuthentication.AuthenticationServiceClient svc =
 new AuthenticationServiceClient();
 svc.LoginAsync(textBox1.Text, passwordBox1.Password,
 string.Empty, false, textBox1.Text);
 svc.LoginCompleted += new EventHandler<LoginCompletedEventArgs>
 (svc_LoginCompleted);
 }

 void svc_LoginCompleted(object sender, LoginCompletedEventArgs e)
 {
 if (!e.Result)
 {
 MessageBox.Show(“Unable to login”);
 }
 else
 {
 MessageBox.Show(“Successfully logged in!”);
 }
 }
 }
}

Now, when the button is clicked on the client, the username and password are utilized in the
LoginAsync() call. A svc_LoginCompleted() event handler is then used to show whether the user
was successful in logging in to the application. Running this application produces results similar to
what is presented in Figure 14-8.

As you can see, it is straightforward to work with the ASP.NET membership system through WCF.
Off the Auth.svc that you created, you will also find methods to logoff and validate the user. In
fact, to logoff the user after he has logged in to the application is as simple as what is presented here
in Listing 14-15. For this example, simply add another button to the AspnetAppServices application.

470  ❘  Chapter 14   Securing Your Applications

Figure 14-8

Listing 14-15:  ​Logging off the user

private void button2_Click(object sender, RoutedEventArgs e)
{
 AspnetAuthentication.AuthenticationServiceClient svc =
 new AuthenticationServiceClient();
 svc.LogoutAsync();
 svc.LogoutCompleted += new EventHandler
 <System.ComponentModel.AsyncCompletedEventArgs>(svc_LogoutCompleted);
}

void svc_LogoutCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 MessageBox.Show(“You are now logged off”);
}

Next, this chapter looks at the role management system that is also part of this same application
services story.

Working with Role Management on the Server
After you have authenticated a user, the next step is to look at authorizing the user. You usually do this
by figuring out which role that user takes in your system and that role aligns that user with what he is
allowed to see or do within your application. These questions are important for any application.

In addition to the membership service just reviewed, the application services system at your disposal
provides you with the other side of the end-user management service — ​the role management ser-
vice. The membership service covers all the details of authentication for your applications, whereas

Using ASP.NET Application Services  ❘  471

the role management service covers authorization. Just as the membership service can use any of the
data providers listed earlier, the role management service can also use a provider that is focused on
SQL Server (SqlRoleProvider) or any custom providers. In fact, this service is comparable to the
membership service in many ways.

Making Changes to the <roleManager> Section
The first step in working with the role management service is to change any of the role manage-
ment provider’s behaviors either in the machine.config or Web.config files. If you look in the
machine.config.comments file, you will see an entire section that deals with the role manage-
ment service (see Listing 14-16).

Listing 14-16:  ​Role management provider settings in the machine.config.comments file

<roleManager
 enabled=”false”
 cacheRolesInCookie=”false”
 cookieName=”.ASPXROLES”
 cookieTimeout=”30”
 cookiePath=”/”
 cookieRequireSSL=”false”
 cookieSlidingExpiration=”true”
 cookieProtection=”All”
 defaultProvider=”AspNetSqlRoleProvider”
 createPersistentCookie=”false”
 maxCachedResults=”25”>
 <providers>
 <clear />
 <add connectionStringName=”LocalSqlServer” applicationName=”/”
 name=”AspNetSqlRoleProvider” type=”System.Web.Security.SqlRoleProvider,
 System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a” />
 <add applicationName=”/” name=”AspNetWindowsTokenRoleProvider”
 type=”System.Web.Security.WindowsTokenRoleProvider, System.Web,
 Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a” />
 </providers>
</roleManager>

The role management service documents its settings from within the machine.config.comments
file, as shown in the previous code listing. You can make changes to these settings either directly in
the machine.config file or by overriding any of the higher-level settings you might have by making
changes in the Web.config file itself (thereby making changes only to the application at hand).

Adding Roles to the Database
From the previous example when you were using the membership system, you applied some of the set-
tings for this through the ASP.NET Configuration tool. The first step in this example of working with
roles in your Silverlight application is to reopen this tool and go to the Security tab it provides. From
this tab, you simply click the Enable Roles link and this gives you the view as presented in Figure 14-9.

472  ❘  Chapter 14   Securing Your Applications

Figure 14-9

The role management service, just like the membership service, uses data stores to store information
about the users. These examples focus primarily on using Microsoft SQL Server Express Edition as
the provider because it is the default provider.

Once you have enabled roles for this section, click the Create or Manage Roles link. You are then
presented with a simple textbox where you can enter a role name. This is illustrated in Figure 14-10.

Clicking the Add Role button adds the SilverlightGroup role to your application database. Once
added, you can then manage the users that are contained within that role. Clicking the Manage link
takes you to a page that allows you to specify this. Figure 14-11 shows adding the user BillEvjen to
the SilverlightGroup role.

Once you have added the SilverlightGroup role and assigned some users to this role, create an addi-
tional role called Admin and assign some of the same users to this role so that some of your users
are in a couple of roles.

Using ASP.NET Application Services  ❘  473

Figure 14-10

Figure 14-11

474  ❘  Chapter 14   Securing Your Applications

Creating a Role Service
Now that the roles are in place, create a WCF service in your AspnetAppServices.Web project
that deals with roles. For this, follow the same step for working with the membership system. In
the Services folder of your solution, create a Role.svc file (starting from a text file again). The
Role.svc file should be as illustrated in Listing 14-17.

Listing 14-17:  ​Defining the Role.svc file

<%@ ServiceHost Language=”C#”
 Service=”System.Web.ApplicationServices.RoleService”
 Factory=”System.Web.ApplicationServices.ApplicationServicesHostFactory” %>

Again, there isn’t much to this file. It is as simple as what is illustrated. The big changes that you are
required to make are made to the project’s Web.config file. This is presented in Listing 14-18.

Listing 14-18:  ​Changes required to the Web.config file for working with roles

<?xml version=”1.0”?>

<configuration>
 <system.web>
 <roleManager enabled=”true” />
 <authentication mode=”Forms” />
 <compilation debug=”true” targetFramework=”4.0” />
 </system.web>

 <system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled=”true”
 requireSSL=”false” />
 <roleService enabled=”true” />
 </webServices>
 </scripting>
 </system.web.extensions>
 <system.serviceModel>
 <services>
 <service name=”System.Web.ApplicationServices.AuthenticationService”
 behaviorConfiguration=”ApplicationServiceTypeBehaviors”>
 <endpoint contract=”System.Web.ApplicationServices.AuthenticationService”
 binding=”basicHttpBinding”
 bindingConfiguration=”userHttp”
 bindingNamespace=”http://asp.net/ApplicationServices/v200”/>
 </service>
 <service name=”System.Web.ApplicationServices.RoleService”
 behaviorConfiguration=”ApplicationServiceTypeBehaviors”>
 <endpoint contract=
 “System.Web.ApplicationServices.RoleService”
 binding=”basicHttpBinding”
 bindingConfiguration=”userHttp”

http://asp.net/ApplicationServices/v200%E2%80%9D/

Using ASP.NET Application Services  ❘  475

 bindingNamespace=”http://asp.net/ApplicationServices/v200”/>
 </service>
 </services>
 <bindings>
 <basicHttpBinding>
 <binding name=”userHttp”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <behaviors>
 <serviceBehaviors>
 <behavior name=”ApplicationServiceTypeBehaviors”>
 <serviceMetadata httpGetEnabled=”true”/>
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment
 aspNetCompatibilityEnabled=”true”/>
 </system.serviceModel>

</configuration>

The first step here is to ensure that you have roles enabled within the <system.web> section of the
document:

<roleManager enabled=”true” />

Also, with the <system.web.extensions> section, you want to enable the role management system
just as you did the membership system:

<system.web.extensions>
 <scripting>
 <webServices>
 <authenticationService enabled=”true”
 requireSSL=”false” />
 <roleService enabled=”true” />
 </webServices>
 </scripting>
</system.web.extensions>

Once enabled, the next step is to add a service reference and use the same behavior and binding that
the membership service used:

<service name=”System.Web.ApplicationServices.RoleService”
 behaviorConfiguration=”ApplicationServiceTypeBehaviors”>
 <endpoint contract=”System.Web.ApplicationServices.RoleService”
 binding=”basicHttpBinding”
 bindingConfiguration=”userHttp”
 bindingNamespace=”http://asp.net/ApplicationServices/v200”/>
</service>

This is the last step you need to take to enable roles on the server-side. The next step is to turn to
the client.

http://asp.net/ApplicationServices/v200%E2%80%9D/
http://asp.net/ApplicationServices/v200%E2%80%9D/

476  ❘  Chapter 14   Securing Your Applications

Adding Roles to Your Silverlight Application
Now that the service is in place, you need to make a reference to this service. To accomplish this
task, right-click the project in the Visual Studio Solution Explorer and select Add Service Reference
from the provided menu. Looking for a service in the same solution produces the Role service. Name
the reference AspnetRoles.

To make this simple, add a new button (button3) to your form. When the user clicks the button,
that user is presented with all the roles that he or she is part of in the system. The code-behind for
the form is presented in Listing 14-19.

Listing 14-19:  ​Getting the user roles

private string _userState;

private void button3_Click(object sender, RoutedEventArgs e)
{
 AspnetRoles.RoleServiceClient svc = new RoleServiceClient();

 if (_userState != string.Empty)
 {
 svc.GetRolesForCurrentUserAsync(_userState);
 svc.GetRolesForCurrentUserCompleted += new EventHandler
 <GetRolesForCurrentUserCompletedEventArgs>(
 svc_GetRolesForCurrentUserCompleted);
 }
}

void svc_GetRolesForCurrentUserCompleted(object sender,
 GetRolesForCurrentUserCompletedEventArgs e)
{
 List<string> userRoles = e.Result.ToList();

 foreach (var userRole in userRoles)
 {
 MessageBox.Show(“User is part of “ + userRole);
 }
}

The Roles service exposes a method called GetRolesForCurrentUserAsync() that allows you to
get a full list of all the roles for a particular user. The only parameter required is the user state that
was stored in reference when the user logged in to the system. Figure 14-12 shows this in action.

In addition to getting a specific list of roles the user is in, you can also ask if a user is in a par-
ticular role:

svc.IsCurrentUserInRoleAsync(“SilverlightGroup”);

Summary  ❘  477

Figure 14-12

Summary

This chapter covered some of the basics in dealing with security in the authentication and authoriza-
tion process. Silverlight applications are no different from other applications. Many of the applica-
tions that you build require an understanding of user context in some manner and making choices
based upon that context.

15
accessing audio and
Video Devices

what’s in this chapter?

Capturing a video frame➤➤

Capturing an audio stream➤➤

Saving a video frame as an image➤➤

Silverlight 4 adds new capability for accessing audio and video devices on your computer. You can
access the audio from internal and external microphones and you can access video from webcams
attached to your computer. This audio/video capability encompasses three key concepts:

Grabbing a video frame and converting it to a static image➤➤

Capturing/recording a complete audio or video feed for viewing later ➤➤

Accessing raw audio or video feeds➤➤

With that list, you are probably seeing some interesting scenarios, including streaming the
video or audio feed to other computers, using attached video devices to scan barcodes, record-
ing audio for later use or distribution, or even creating an application that takes a photo and
displays a security badge for printing using the new printing features in Silverlight 4. This
chapter gives you the insight you need to access audio and video devices and work with the
data that comes from them.

configuring perMissions
In an application that runs in the default sandbox of the browser, Silverlight prompts
the user with a permissions dialog if an attempt is made to access microphone or camera
devices. Figure 15-1 shows the permissions dialog that launches if your code attempts to
access devices.

480  ❘  Chapter 15   Accessing Audio and Video Devices

Figure 15-1

Several actions can occur based on the user response to this dialog:

User clicks Yes and access to microphone and cameras is allowed.➤➤

User checks the Remember My Answer checkbox and clicks Yes. Access is granted to micro-➤➤

phone and camera devices for this URI and the user is not prompted again.

User clicks the No button, which cancels the permission request and returns the user to the ➤➤

Silverlight application.

To determine what microphone and camera devices are available on the computer, and to view
permissions for these devices, you can right-click the running Silverlight application and click the
Silverlight menu item to launch the Silverlight Configuration Settings dialog. In the context of
microphone and camera support, two tabs on this form are important:

The Webcam/Mic tab shown in Figure 15-2 lists the available devices on the computer and ➤➤

verifies that the devices are working by displaying the Video Source and Audio Source and
their respective current input.

Figure 15-2

accessing audio and Video Devices ❘ 481

The Permissions tab shown in Figure 15-3 lists the URIs that have been granted permission to ➤➤

access the audio and video devices from a user-initiated check on the Remember My Answer
checkbox on the permissions dialog shown in Figure 15-1. Users can also remove permis-
sions. For example, if they have granted your application access previously, they can open
this dialog and remove those permissions later.

figure 15-3

If your application is an out-of-browser application that requires elevated trust,
the user will not be prompted to access audio and video devices. This permis-
sion is implicitly granted when an application is installed with elevated permis-
sions. To learn more about trusted applications and elevated permissions, read
Chapter 9.

accessing audio and video devices

To get started with accessing audio and video devices, you need to understand the APIs available to you.
Two of the most important ones are the CaptureDevice class and the CaptureDeviceConfiguration
class. Each is covered in this section.

The CaptureDeviceConfiguration public static class has four methods and one property that
return information about the available devices on the system and the state of client permission to
access the audio or video devices on the user’s system. The following fi ve methods are in this class:

GetAvailableAudioCaptureDevices➤➤ — Returns a collection of AudioCaptureDevice
objects of the available audio capture devices on the client system.

482 ❘ chapter 15 AcceSSIng AudIo And vIdeo devIceS

GetAvailableVideoCaptureDevices➤➤ — Returns a collection of VideoCaptureDevice
objects of the available video capture devices on the client system.

GetDefaultAudioCaptureDevice➤➤ — Returns the AudioCaptureDevice object that repre-
sents the default audio capture devices on the client system.

GetDefaultVideoCaptureDevice➤➤ — Returns the VideoCaptureDevice object that repre-
sents the default video capture devices on the client system.

RequestDeviceAccess➤➤ — Returns a Boolean when you request access to all available audio
and video capture devices on the client system. This call actually prompts the user with the
permissions dialog discussed earlier in the chapter and shown in Figure 15-1.

The AllowDeviceAccess property returns whether or not the user has previously granted access.
You should call RequestDeviceAccess before AllowDeviceAccess if you are not sure if permis-
sions have been granted by the user. Keep in mind that AllowDeviceAccess is an all-or-nothing
property setting. For example, users cannot specify they will give your application access to a
certain audio device yet not a certain video device. Also remember that this request launches the
permissions dialog discussed earlier in the chapter if the users have not specifi ed to remember their
choices or if their applications are not running with elevated trust.

For the permissions dialog to launch correctly, RequestDeviceAccess should be
called from the context of a user-initiated event, such as a button click or menu
item selection. If the RequestDeviceAccess is made from a non-user-initiated
event, the dialog is not displayed and no exception is thrown. However, if users
have previously granted access to the audio and video devices on their systems,
the access is still valid even if this exception is thrown.

Listing 15-1 demonstrates checking the permissions and requesting a list of available devices on the
user’s machine:

listing 15-1: requesting capture device access

if (CaptureDeviceConfiguration.RequestDeviceAccess ||
 CaptureDeviceConfiguration.AllowDeviceAccess())
{
 // Create and configure a capture source
}

Once you’ve made the CaptureDeviceConfiguration method calls to return the collections devices
and the default devices, you need to use the CaptureSource class to interact with audio and video
devices. You use the following three methods:

Start➤➤ — Starts the capture from all capture devices that are relevant to this CaptureSource.

Accessing Audio and Video Devices  ❘  483

Stop➤➤  — ​Stops capture from all capture devices that are relevant to this CaptureSource.

CaptureImageAsync➤➤  — ​Initiates an asynchronous image capture request that retrieves the
images returned by handling the CaptureImageCompleted event on this CaptureSource.

To do a basic video capture, add this XAML (Listing 15-2) to a project that represents a Button and
Border that you’ll use to demonstrate the capture features:

Listing 15-2:  ​XAML to set up the camera interactions

<Button Content=”Start Camera” Height=”44” Name=”startCamera”
 Width=”128” Click=”startCamera_Click”
 Margin=”12,12,500,648” />

<Border BorderBrush=”Silver” BorderThickness=”1”
 Height=”314” Name=”videoRender” Width=”433”
 Margin=”12,75,195,315” />

Listing 15-3 creates a CaptureSource object and sets the VideoCaptureDevice to the default video
capture device and starts the video capture. First you need to create a class-level variable for the
CaptureSource object that you will assign to the physical video device:

Listing 15-3:  ​Creating a new CaptureSource instance

private CaptureSource _cs = new CaptureSource();

Next add this code (Listing 15-4) to the startCamera Click event. This code listing performs the
key operations when attempting to get a video feed; it checks for access, requests it if it is not there,
gets the default video capture device, and then starts capturing from it.

Listing 15-4:  ​Retrieving and starting a camera device

private void startCamera_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 // Create and configure a capture source
 _cs.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

 // TODO: Add source for render

 // Start the capture
 _cs.Start();
 }
}

484 ❘ chapter 15 AcceSSIng AudIo And vIdeo devIceS

Now that video is being captured, you need to render it onto a VideoBrush. To do this, set the
source of a VideoBrush to the CaptureSource. The brush can then be rendered onto almost any
object, such as Rectangle, Border, or Button.

The following code sets the source of a VideoBrush to a CaptureSource and displays the video by
setting the Fill property on a Border named videoRender. You can add this code (Listing 15-5)
under the TODO directive in the previous listing to set up the rendering target before the call to Start.

listing 15-5: setting the VideoBrush to paint the video capture render

// Create a VideoBrush to paint the video capture onto
VideoBrush brush = new VideoBrush();
brush.SetSource(_cs);
videoRender.Background = brush;

If you run the application, you should see something like Figure 15-4.

figure 15-4

On the Mac OSX, if an application calls GetDefaultAudioCaptureDevice
or GetDefaultVideoCaptureDevice and the default audio and video devices
have not previously been set by the user, Silverlight returns the fi rst device
found. If a physical device is not connected to this CaptureDevice, an
InvalidOperationException is thrown when Start is called. This excep-
tion should be caught by the application and the users can then be notifi ed
to manually set their default devices in the “Webcam/Mic” section of the
Confi guration Settings dialog.

Accessing Audio and Video Devices  ❘  485

To stop the video capture, add a function that calls Stop on the CaptureSource (Listing 15-6):

Listing 15-6:  ​Calling Stop on the video capture device

private void StopButton_Click(object sender, RoutedEventArgs e)
{
 // Verify the VideoCaptureDevice is not null then Stop it
 if (_cs.VideoCaptureDevice != null)
 {
 _cs.Stop();
 }
}

You’ll notice that once you have started a capture and you close the Silverlight application, the
capture stops. As good programming practice, you should always clean up any object that you
open. So build the Stop function into your design.

You can also use the CaptureSource to get both the AudioCaptureDevice and VideoCaptureDevice
based on the default values returned from CaptureDeviceConfiguration method calls. Listing 15-7
demonstrates this.

Listing 15-7:  ​Getting both audio and video capture devices

CaptureSource _cs = new CaptureSource();

VideoCaptureDevice _webcam =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
AudioCaptureDevice _audio =
 CaptureDeviceConfiguration.GetDefaultAudioCaptureDevice();

_cs.VideoCaptureDevice = _webcam;
_cs.AudioCaptureDevice = _audio;

Once you have the physical VideoCaptureDevice and AudioCaptureDevice, you can get the
supported video and audio formats of each device by checking the SupportedFormats prop-
erty. The SupportedFormats property returns a read-only collection of the AudioFormat or
VideoFormat type.

The following AudioFormat properties are available:

BitsPerSample➤➤  — ​Gets the number of bits that are used to store the audio information for a
single sample of an audio format.

Channels➤➤  — ​Gets the number of channels that are provided by the audio format.

SamplesPerSecond➤➤  — ​Gets the number of samples per second that are provided by the
audio format.

WaveFormat➤➤  — ​Gets the encoding format of the audio format as a WaveFormatType value.

486  ❘  Chapter 15   Accessing Audio and Video Devices

The following VideoFormat properties are available:

FramesPerSecond➤➤  — ​Gets the number of frames per second for the represented video format.

PixelFormat➤➤  — ​Gets the graphics format information for individual pixels of the video format.

PixelHeight➤➤  — ​Gets the height of the camera-framing area for the represented video format.

PixelWidth➤➤  — ​Gets the width of the camera-framing area for the represented video format.

Stride➤➤  — ​Gets the array stride that is used in the video format.

Up until now, every interaction with an audio or video device has been with the default device. Most
systems today have multiple audio and video devices, and you have multiple ways to connect devices
to a system. Based on the type of application you are creating, you will either use the default device on
the system, such as the attached webcam or built-in microphone, or you may want to give users the
option of which devices they prefer to use. An application like Skype, which is a voice over IP software
for Windows and Mac computers, allows you to choose the best audio device in its configuration as
shown in Figure 15-5. This is useful in scenarios where an attached microphone specifically designed
for large rooms or multiple people speaking in to it is more appropriate than the default built-in micro-
phone on the computer.

Figure 15-5

The following example mimics this configuration behavior, and returns a list of the available audio
and video devices on the system. The XAML

CaptureDevice..::..FriendlyName Property

shows how to set the source of a ComboBox to the list of available video devices on the system.

Accessing Audio and Video Devices  ❘  487

The FriendlyName of the device is used to bind to the control (Listing 15-8). An approach like
this can be useful if you would like to give users an easy way to choose the media devices they
would like to use. You can then listen to the SelectionChanged event for the control and set the
CaptureSource to the appropriate device.

Listing 15-8:  ​Setting up the combo box for audio and video device lists

<StackPanel>
 <TextBlock Margin=”5,5,5,5”>Select an Audio Device</TextBlock>
 <ComboBox x:Name=”audioDeviceList”>
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding FriendlyName}“ />
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>

 <TextBlock Margin=”5,5,5,5”>Select an Video Device</TextBlock>
 <ComboBox x:Name=”videoDeviceList”>
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding FriendlyName}“ />
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
</StackPanel>

Once the controls are set up in XAML with the FriendlyName binding, bind the available devices
to the ComboBoxes with the following code (Listing 15-9).

Listing 15-9:  ​Binding the audio and video device lists

audioDeviceList.ItemsSource =
 CaptureDeviceConfiguration.GetAvailableAudioCaptureDevices();

videoDeviceList.ItemsSource =
 CaptureDeviceConfiguration.GetAvailableVideoCaptureDevices();

The code to set the AudioCaptureDevice and VideoCaptureDevice based on the user’s selection
should be added to the SelectionChanged event for the audioDeviceList and videoDeviceList
controls and should look like Listing 15-10.

Listing 15-10:  ​Setting the selected audio and video capture device

private void audioDeviceList_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
{
 // set the AudioCaptureDevice to the selected item
 _cs.AudioCaptureDevice =

continues

488  ❘  Chapter 15   Accessing Audio and Video Devices

 (AudioCaptureDevice)audioDeviceList.SelectedItem;

 // display the friendly name
 Console.WriteLine(_cs.AudioCaptureDevice.FriendlyName);
}
private void videoDeviceList_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
{
 // set the AudioCaptureDevice to the selected item
 _cs.VideoCaptureDevice =
 (VideoCaptureDevice)videoDeviceList.SelectedItem;

 // display the friendly name
 Console.WriteLine(_cs.VideoCaptureDevice.FriendlyName);
}

That’s all there is to getting or setting an audio and video device. You can swap out the ComboBox
with a DataGrid or ListBox, or any type of display that fits the experience you are creating. The
goal is to make sure users have the option to use their desired devices. You’ll also notice when you
run this code, you’ll see the FriendlyName of the selected device in the Console window, which can
help you verify the correct device as you are testing.

Capturing Images from a Video Feed

A common scenario in webcam applications is the ability to snap a photo, or grab the frame, that is
currently being rendered by the camera onto a VideoBrush. To grab a single frame using the currently
started VideoCaptureDevice, you use the CaptureImageAsync method on the CaptureSource,
which initiates an asynchronous image capture. Like any asynchronous event, you could have an
accompanying Completed and Failed event to be notified of when the asynchronous call is complete.
For the CaptureImageAsync method, listen to the CaptureImageCompleted event for success and the
CaptureImageFailed event in case of failure.

To create an example that snaps a photo of the current frame of a video feed, add the XAML in
Listing 15-11, which contains two Button controls, a Border control, and a ListBox control.

Listing 15-11:  ​XAML for the photo snapping user interface

<StackPanel>
 <Button Content=”Start Camera”
 Height=”44” Name=”startCamera”
 Width=”128” Margin=”10”
 Click=”startCamera_Click” />
 <Button Content=”Snap Photo”
 Height=”44” Name=”snapPhoto”
 Width=”128” Margin=”10”
 Click=”snapPhoto_Click” />
 <Border BorderThickness=”1”

Listing 15-10  (continued)

Capturing Images from a Video Feed  ❘  489

 Height=”314” Name=”videoRender” Width=”433” />
 <ListBox Height=”226” Name=”imageList”
 Width=”435” Margin=”10” >
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <Image Source=”{Binding}“ Margin=”5”
 Stretch=”UniformToFill” Height=”80” />
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
</StackPanel>

Now you’ll add code to the Click events for the buttons and you’ll create the event handler for cap-
turing the image asynchronously. First, add two class-level variables, one for the CaptureSource
and one for the WriteableBitmap collection that you’ll store the images in as you snap the photos.
See Listing 15-12.

Listing 15-12:  ​Setting up the variables to capture the snapped photos

private CaptureSource _cs = new CaptureSource();

ObservableCollection<WriteableBitmap> _images =
 new ObservableCollection<WriteableBitmap>();

In the constructor, after the InitializeComponent method call, register the
CaptureImageCompleted event and the CaptureFailed event:

// register a handler for CaptureImageCompleted event
_cs.CaptureImageCompleted +=
 new EventHandler<CaptureImageCompletedEventArgs>
 (_cs_CaptureImageCompleted);

// register a handler for CaptureFailed event
_cs.CaptureFailed +=
 new EventHandler<ExceptionRoutedEventArgs>(_cs_CaptureFailed);

In the CaptureImageCompleted event, the CaptureImageCompletedEventArgs event argument
returns a WriteableBitmap. This WriteableBitmap can then be displayed, saved, or modified. In
this code (Listing 15-13), you’ll take the WriteableBitmap result and add it to the _images collec-
tion of WriteableBitmaps and bind the collection to the ListBox.

Listing 15-13:  ​The GetImageCompleted event

void _cs_CaptureImageCompleted
 (object sender, CaptureImageCompletedEventArgs e)
{
 // add the snapped bitmap to the collection

continues

490  ❘  Chapter 15   Accessing Audio and Video Devices

 _images.Add(e.Result);

 // bind collection to ItemsControl
 imageList.ItemsSource = _images;
}

Make sure the CaptureFailed event hander is dealt with. In the cases of a failed CaptureImageAsync,
you may want to prompt the user that the camera may not be connected or there is a problem with
the device.

void _cs_CaptureFailed
 (object sender, ExceptionRoutedEventArgs e)
{
 // handle the exception
}

To initiate the capture, call CaptureImageAsync on the CaptureSource in the snapPhoto Click
event (Listing 15-14).

Listing 15-14:  ​Snapping the photo

private void snapPhoto_Click
 (object sender, RoutedEventArgs e)
{
 // fire the image capture on button click
 _cs.CaptureImageAsync();
}

Finally, add the following (Listing 15-15) to the startCamera Click event, which verifies the per-
mission to access the video device, sets the VideoCaptureDevice to the default device, sets up the
render target, and then starts the video capture source.

Listing 15-15:  ​Starting the camera to capture the photo

private void startCamera_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 // create and configure a capture source
 _cs.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

 // create a VideoBrush to paints the video capture onto
 VideoBrush brush = new VideoBrush();
 brush.SetSource(_cs);
 videoRender.Background = brush;

 // start the capture

Listing 15-13  (continued)

Capturing Images from a Video Feed  ❘  491

 _cs.Start();
 }
}

That’s all that’s needed to snap a photo. If you run the code, and click the Snap Photo button a few
times, you should see something similar to Figure 15-6.

Figure 15-6

Another technique to use in the snapPhoto_Click event handler is to check if the CaptureSource is
started. If it is, snap the photo. See Listing 15-16.

Listing 15-16:  ​Updating the SnapPhoto event handler

private void snapPhoto_Click
 (object sender, RoutedEventArgs e)
{
 // verify the VideoCaptureDevice is not null and the device is started.

continues

492  ❘  Chapter 15   Accessing Audio and Video Devices

 if (_cs.VideoCaptureDevice != null
 && _cs.State == CaptureState.Started)
 {
 _cs.CaptureImageAsync();
 }
}

Saving Images to the Filesystem
In some cases you may want to save the images that you have snapped to the filesystem. You have
various ways to accomplish this, some more difficult than others. The easiest way I have found is
to use a CodePlex project called .NET Image Tools, which gives you a library of image utilities
that lets you save a bitmap as a PNG or as other file formats. To do this, go to the URL — ​http://
imagetools.codeplex.com/ — ​and download the Image Tools binaries. Once you unzip the down-
load, add the following assemblies as references to your project:

ImageTools.dll➤➤

ImageTools.IO.dll➤➤

ImageTools.Utils.dll➤➤

Then add the following namespace references:

using System.IO;
using ImageTools;
using ImageTools.IO.Png;

Add a class-level variable named Snapshot. This will be set when the snapPhoto_Click event fires
and when the user selects an image from the ListBox.

public WriteableBitmap Snapshot { get; set; }

In the user interface, add a Button control in XAML that initiates the SaveFileDialog to save
the image:

<Button Content=”Save Photo”
 Height=”44” Name=”savePhoto”
 Width=”128” Margin=”10”
 Click=”savePhoto_Click” />

To get to the savePhoto_Click event handler, you can either double-click the button you just added
or right-click savePhoto_Click and select Navigate to Event Handler. In the savePhoto_Click
event handler, add this code (Listing 15-17).

Listing 15-17:  ​savePhoto_Click event handler code

SaveFileDialog _sfd = new SaveFileDialog
{

Listing 15-16  (continued)

http://imagetools.codeplex.com/
http://imagetools.codeplex.com/

Capturing Images from a Video Feed  ❘  493

 Filter = “PNG Files (*.png)|*.png|All Files (*.*)|*.*“,
 DefaultExt = “.png”,
 FilterIndex = 1
};

if ((bool)_sfd.ShowDialog())
{
 var img = Snapshot.ToImage();
 var encoder = new PngEncoder();
 using (Stream stream = _sfd.OpenFile())
 {
 encoder.Encode(img, stream);
 stream.Close();
 }
}

To set the value of the Snapshot variable, update the CaptureImageCompleted event to set the
Snapshot to the e.Result WriteableBitmap return value (Listing 15-18).

Listing 15-18:  ​Adding the captured photo to the list

void _cs_CaptureImageCompleted
 (object sender, CaptureImageCompletedEventArgs e)
{
 // add the snapped bitmap to the collection
 _images.Add(e.Result);

 // set the value of Snapshot to return bitmap
 Snapshot = e.Result;

}

At this point, any time the Snap Photo button is clicked, the Snapshot value is filled, which
means you can always save the last photo taken. If you want to give the user the ability to select
an image from the ListBox to save, you can set the current value of Snapshot by handling the
SelectionChanged event of the imageList ListBox control (Listing 15-19).

Listing 15-19:  ​Setting the selected item in the list

private void imageList_SelectionChanged
 (object sender, SelectionChangedEventArgs e)
{
 Snapshot = (WriteableBitmap) imageList.SelectedItem;
}

At this point, you have a complete process that can view video, take snapshots, and then save those
snapshots to an image file on the local system.

494  ❘  Chapter 15   Accessing Audio and Video Devices

Capturing an Audio Stream

Using the AudioSink abstract class, you can capture and play back audio. AudioSink gives you access
to the raw audio stream coming from the audio device, which can then be encoded into a format of
your choosing. AudioSink has four virtual methods that you will override in your derived class:

OnCaptureStarted➤➤  — ​Invoked when an audio device starts capturing audio data.

OnCaptureStopped➤➤  — ​Invoked when an audio device stops capturing audio data.

OnFormatChange➤➤  — ​Invoked when an audio device reports an audio format change and is
the only way to get the correct audio format. The audio format is passed as an AudioFormat
object, which specifies the bits per second, the number of channels, and the wave format.

OnSamples➤➤  — ​Invoked when an audio device captures a complete audio sample. The
arguments passed into this method are the sample time (in hundreds of nanoseconds),
the sample duration (in hundreds of nanoseconds), and the sample data as a byte array.
The interval at which OnSamples is called depends on the AudioFrameSize value for the
AudioCaptureDevice.

To save an audio stream, you can use the following class (Listing 15-20) derived from AudioSink.

Listing 15-20:  ​Using the AudioSink class

namespace AudioRecorder.Audio
{
 public class MemoryAudioSink : AudioSink
 {
 private MemoryStream _stream;
 private AudioFormat _format;

 public AudioFormat CurrentFormat
 {
 get { return _format; }
 }

 protected override void OnCaptureStarted()
 {
 _stream = new MemoryStream(1024);
 }

 protected override void OnCaptureStopped()
 {
 }

 protected override void OnFormatChange
 (AudioFormat audioFormat)
 {
 if (audioFormat.WaveFormat !=
 WaveFormatType.Pcm)
 throw new InvalidOperationException
 (“MemoryAudioSink supports only PCM

Summary  ❘  495

 audio format.”);

 _format = audioFormat;
 }

 protected override void OnSamples(long sampleTime,
 long sampleDuration, byte[] sampleData)
 {
 _stream.Write(sampleData, 0, sampleData.Length);
 }
 }
}

One of the issues with Silverlight is that is does not include audio codecs that make it easy to
actually save the audio to a specific format. Hopefully, this will be addressed in the future so that
capturing audio is as easy as capturing video. For a great sample that uses some open source code
to save an audio stream to PCM format, check out this URL: http://blog.ondrejsv.com/post/
Audio-recorder-Silverlight-4-sample.aspx.

Summary

This chapter introduced you to working with audio and video with the new Silverlight 4 APIs. You
learned how to access the audio and video devices on the local system and how to work with the
audio and video that streams from those devices. You were also introduced to an open source image
tools library, which gives you helper functions to save images.

http://blog.ondrejsv.com/post/Audio-recorder-Silverlight-4-sample.aspx
http://blog.ondrejsv.com/post/Audio-recorder-Silverlight-4-sample.aspx

16
Working with file i/o

what’s in this chapter?

Working with the OpenFileDialog and SaveFileDialog classes➤➤

Examining the class available for fi le and directory access➤➤

Silverlight and fi le access➤➤

Moving, copying, and deleting fi les➤➤

Invariably, most applications built deal with fi les in some fashion. It might be that your
application needs to simply work from an XML confi guration fi le or even store the end
users’ settings or data on a fi le on their machines. For this reason, this chapter looks at
working with fi les in your Silverlight applications as well as other means to store content
on the client’s computer.

You have a couple of different means to work with fi les and folders with your Silverlight
applications. Silverlight does supply fi le dialogs that allow you to get the end user to spec-
ify the actual fi le that your application is to work with. But, with Silverlight 4, you also
have to get programmatic access to specifi c folders on the end user’s system through the
Environment.SpecialFolders object when running your Silverlight 4 application in an
out-of-browser mode with elevated permissions.

the openfiledialog and savefiledialog classes

In working with fi les, one of the easiest means has been around even prior to Silverlight 4.
Using the OpenFileDialog and SaveFileDialog classes has allowed you to work with fi les
directly on the end user’s desktop. However, working with fi les in this manner did include some
overall limitations that caused Microsoft to further expand upon your overall fi le management
capabilities when it comes to working with the end user’s fi lesystem.

498  ❘  Chapter 16   Working with File I/O

One of the limitations of the OpenFileDialog or the SaveFileDialog class is that it has to be an
end-user initiated action. The OpenFileDialog will pop up a file dialog that requires the end user
to make a file selection before you can proceed in your application code. In some cases, this might
be just fine for your application. If this is the case, this would be the preferred approach because it
requires the lowest level of trust for your application.

Listing 16-1 shows an example of using the OpenFileDialog class to open and read a text or XML
file. For the UI of this application, all you need is a Button and a TextBox server control on your page.

Listing 16-1:  ​Using the OpenFileDialog class

using System.IO;
using System.Windows;
using System.Windows.Controls;

namespace UsingOpenFileDialog
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.Filter = “Text files (*.txt, *.xml)|*.txt;*.xml”;

 bool? userAccepts = openFileDialog.ShowDialog();

 if (userAccepts == true)
 {
 // Open the selected file to read.
 Stream fs = openFileDialog.File.OpenRead();

 using (StreamReader sr = new StreamReader(fs))
 {
 textBox1.Text = sr.ReadToEnd();
 }

 fs.Close();
 }
 }
 }
}

The first step is to instantiate the OpenFileDialog class. In this example, because you want only
text or XML files, a filter is placed on the dialog using the Filter property and assigning it a com-
bination of values that limit the dialog to work only with .txt or .xml files.

When end users click the button, they are presented with the dialog shown in Figure 16-1.

The OpenFileDialog and SaveFileDialog Classes  ❘  499

Figure 16-1

The SaveFileDialog class does the reverse of this and allows the application to send a file down to
the client to be saved on the client’s actual machine. Listing 16-2 shows an example of saving a file
in this manner.

Listing 16-2:  ​Saving a file to the client machine

private void button2_Click(object sender, RoutedEventArgs e)
{
 SaveFileDialog saveFileDialog = new SaveFileDialog();
 saveFileDialog.Filter = “Only text files (*.txt)|*.txt”;

 bool? userAccepts = saveFileDialog.ShowDialog();

 if (userAccepts == true)
 {
 Stream fs = saveFileDialog.OpenFile();
 StreamWriter sw = new StreamWriter(fs);

 sw.WriteLine(“Hello World!”);

 sw.Flush();
 sw.Close();
 }
}

500  ❘  Chapter 16   Working with File I/O

In this case, clicking the button produces a file dialog where end users can provide the location on
their computer and the name of the file that should be utilized. Clicking the Save button (as shown
in Figure 16-2) then saves the file as requested.

Figure 16-2

The rest of this chapter goes beyond the OpenFileDialog and the SaveFileDialog classes and
looks at how to make file operations without the end user’s constant permissions being required.

Classes for Managing the Filesystem

A series of classes are used for managing your abilities to work with files or folders (also known as
directories) in .NET. Figure 16-3 shows a diagram of these objects.

Figure 16-3

Classes for Managing the Filesystem  ❘  501

When you want your Silverlight application to do things like create, copy, delete, move, or open files
and directories, you have to build a Silverlight application with elevated trust. This is detailed shortly.

The following list briefly explains the objects presented in the diagram in Figure 16-3.

FileSystemInfo➤➤  — ​This is the base class that represents any filesystem object.

FileInfo➤➤ and File — ​These classes represent a file on the filesystem.

DirectoryInfo➤➤ and Directory — ​These classes represent a folder or directory on the
filesystem.

Path➤➤  — ​This class contains static members that you can use to manipulate pathnames.

.NET Classes That Represent Files and Folders
You will notice from the previous list that two classes are used to represent a folder and two classes
are used to represent a file. The class you use depends largely on how many times you need to access
that folder or file:

Directory➤➤ and File contain only static methods and are never instantiated. You use these
classes by supplying the path to the appropriate filesystem object whenever you call a mem-
ber method. If you want to do only one operation on a folder or file, using these classes is
more efficient because it saves the overhead of instantiating a .NET class.

DirectoryInfo➤➤ and FileInfo implement roughly the same public methods as Directory
and File, as well as some public properties and constructors, but they are stateful and the
members of these classes are not static. You need to instantiate these classes before each
instance is associated with a particular folder or file. This means that these classes are more
efficient if you are performing multiple operations using the same object. That’s because they
read in the authentication and other information for the appropriate filesystem object on con-
struction, and then do not need to read that information again, no matter how many meth-
ods and so on you call against each object (class instance). In comparison, the corresponding
stateless classes need to check the details of the file or folder again with every method you
call.

In this section, you are mostly using the FileInfo and DirectoryInfo classes, but it so happens that
many (though not all) of the methods called are also implemented by File and Directory (although
in those cases these methods require an extra parameter — ​the pathname of the filesystem object;
also, a couple of the methods have slightly different names). For example:

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
FileInfo myFile = new FileInfo(Path.Combine(path, “Test.txt”));

string destinationPath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
myFile.CopyTo(Path.Combine(destinationPath, “Test.txt”));

Doing this has the same effect as performing the following:

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
string destinationPath =

502  ❘  Chapter 16   Working with File I/O

 Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);

File.Copy(Path.Combine(path, “Test.txt”),
 Path.Combine(destinationPath, “Test.txt”));

The first code snippet takes slightly longer to execute because of the need to instantiate a FileInfo
object, myFile, but it leaves myFile ready for you to perform further actions on the same file. By
using the second example, there is no need to instantiate an object to copy the file.

You can instantiate a FileInfo or DirectoryInfo class by passing to the constructor a path to the
corresponding filesystem object. You have just seen the process for a file. For a folder, the code looks
similar:

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
DirectoryInfo directoryInfo = new DirectoryInfo(path);

If the path represents an object that does not exist, an exception will not be thrown at construction,
but will instead be thrown the first time you call a method that actually requires the corresponding
filesystem object to be there. You can find out whether the object exists and is of the appropriate
type by checking the Exists property, which is implemented by both of these classes:

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

FileInfo myFile = new FileInfo(path);
label1.Content = myFile.Exists.ToString();

Note that for this property to return true, the corresponding filesystem object must be of the appro-
priate type. In other words, if you instantiate a FileInfo object supplying the path of a folder,
or you instantiate a DirectoryInfo object, giving it the path of a file, Exists will have the value
false. Most of the properties and methods of these objects return a value if possible — ​they will not
necessarily throw an exception just because the wrong type of object has been called, unless they are
asked to do something that really is impossible. For example, the preceding code snippet might first
display false (because Environment.SpecialFolder.MyDocuments is a folder). However, it still
displays the time the folder was created because a folder still has that information. If you tried to
open the folder as if it were a file, using the FileInfo.Open() method, you would get an exception.

After you have established whether the corresponding filesystem object exists, you can (if you are using
the FileInfo or DirectoryInfo class) find out information about it using the properties in Table 16-1.

Table 16-1

Property Description

CreationTime The time at which the file or folder was created

DirectoryName (FileInfo only) The full pathname of the containing folder

Parent (DirectoryInfo only) The parent directory of a specified subdirectory

Exists Provides a Boolean of whether a file or folder exists on the client’s system

Classes for Managing the Filesystem  ❘  503

Property Description

Extension The extension of the file. If used on a folder, the return will be empty.

FullName The full pathname of the file or folder

LastAccessTime The time at which the file or folder was last accessed

LastWriteTime The time at which the file or folder was last modified

Name The name of the file or folder

Root (DirectoryInfo only) The root portion of the path

Length (FileInfo only) The size of the file in bytes

You can also perform actions on the filesystem object using the methods in Table 16-2.

Table 16-2

Method Description

Create() Creates a folder or empty file of the given name. For a FileInfo this
also returns a stream object to let you write to the file. (Streams are
covered later in this chapter.)

Delete() Deletes the file or folder. For folders, there is an option for the delete
to be recursive.

MoveTo() Moves and/or renames the file or folder.

CopyTo() (FileInfo only) Copies the file. Note that there is no copy method
for folders. If you are copying complete directory trees you will need
to individually copy each file and create new folders corresponding to
the old folders.

GetDirectories() (DirectoryInfo only) Returns an array of DirectoryInfo objects
representing all folders contained in this folder.

GetFiles() (DirectoryInfo only) Returns an array of FileInfo objects repre-
senting all files contained in this folder.

GetFileSystemInfos() (DirectoryInfo only) Returns FileInfo and DirectoryInfo
objects representing all objects contained in this folder, as an array of
FileSystemInfo references.

Note that these tables list the main properties and methods and are not intended to be exhaustive.
The preceding tables do not list most of the properties or methods that allow you to write to or read
the data in files. This is actually done using stream objects, which are covered later in this chapter.
FileInfo also implements a number of methods — ​Open(), OpenRead(), OpenText(), OpenWrite(),
Create(), and CreateText() — ​that return stream objects for this purpose.

504 ❘ chapter 16 workIng wIth FIle I/o

using the path class
The Path class is not a class that you would instantiate. Rather, it exposes some static methods that
make operations on pathnames easier. For example, suppose that you want to display the full pathname
for a fi le, Test.txt, in the user’s My Documents folder. You could fi nd the path to the fi le using the
following code:

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
label1.Content = Path.Combine(path);

Using the Path class is a lot easier than using separation symbols manually, especially because the Path
class is aware of different formats for pathnames on different operating systems. Path.Combine() is the
method of this class that you are most likely to use, but Path also implements other methods that sup-
ply information about the path or the required format for it.

Some of the static fi elds available to the Path class are described in Table 16-3.

taBle 16-3

property description

AltDirectorySeparatorChar Provides a platform-agnostic way to specify an alternative
character to separate directory levels . In Windows, a
/ symbol is used, whereas in UNIX, a \ symbol is used .

DirectorySeparatorChar Provides a platform-agnostic way to specify a character to
separate directory levels . In Windows, a / symbol is used,
whereas in UNIX, a \ symbol is used .

PathSeparator Provides a platform-agnostic way to specify path strings that
divide environmental variables . The default value of this set-
ting is a semicolon .

VolumeSeparatorChar Provides a platform-agnostic way to specify a volume separator .
The default value of this setting is a colon .

using Basic file objects from silverlight
This section presents a sample C# application called FileProperties. This application presents a
simple user interface that allows you to browse the fi lesystem and view the creation time, last access
time, last write time, and size of fi les.

You can download the sample code for this application from the Wrox website
at www.wrox.com.

http://www.wrox.com

Classes for Managing the Filesystem  ❘  505

The FileProperties application is a pretty simple application that allows clients to work with the
files on their system in the most basic way. Using this application, the end user selects the folder in
the main drop-down at the top of the window and clicks the Display button. By selecting one of the
special folders and clicking the button, the contents of that particular folder are then listed in the
provided list boxes. Figure 16-4 shows the FileProperties sample application in action.

The user can very easily navigate around the filesystem by clicking any folder in the right list box to
move down to that folder or by clicking the Up button to move up to the parent folder. Figure 16-4
shows the contents of My Documents folder. The user can also select a file by clicking its name in
the list box. This displays the file’s properties in the text boxes at the bottom of the application (pre-
sented in Figure 16-5).

Figure 16-4 Figure 16-5

Note that you can also display the creation time, last access time, and last modification time for
folders using the DirectoryInfo property.

To create this application, create a new Silverlight project called FileProperties. Using Visual
Studio 2010, drag the appropriate controls onto the design surface. In the end, you should have
something similar to what is presented in Figure 16-6.

In the MainPage.xaml.cs page, you need to have the following namespaces as shown in Listing 16-3.

Listing 16-3:  ​The namespaces to use for the FileProperties project

using System;
using System.IO;
using System.Windows;
using System.Windows.Controls;

506  ❘  Chapter 16   Working with File I/O

Figure 16-6

As you can see from this list of namespaces, you were required to add the System.IO namespace in
order to work with files and directories.

You need to do this for all the file-system–related examples in this chapter, but this part of the code
will not be explicitly shown in the remaining examples. The next step is to add a member field to the
main form as shown in Listing 16-4.

Listing 16-4:  ​Creating a private member

public partial class MainPage : UserControl
{
 private string _currentFolderPath;

_currentFolderPath stores the path of the folder whose contents are displayed in the list boxes.

Next, you need to add event handlers for the user-generated events. The possible user inputs are
as follows:

User clicks the Display button➤➤  — ​You need to determine what special folder the user selected
from the provided options. Once the user selects the folder they want and has clicked the but-
ton, you then list the files and subfolders of this folder in the list boxes.

User clicks a filename in the Files list box➤➤  — ​You display the properties of this file in the
lower part of the form.

Classes for Managing the Filesystem  ❘  507

User clicks a folder name in the Folders list box➤➤  — ​You clear all the controls and then display
the contents of this subfolder in the list boxes.

User clicks the Up button➤➤  — ​You clear all the controls and then display the contents of the
parent of the currently selected folder.

Before you see the code for the event handlers, here is the code for the methods that do all the work.
First, you need to clear the contents of all the controls. This method, shown in Listing 16-5, is fairly
self-explanatory.

Listing 16-5:  ​The method required to clear all the contents

private void ClearAllFields()
{
 listBoxFolders.Items.Clear();
 listBoxFiles.Items.Clear();
 lblPathUsed.Content = “”;
 lblAccessTime.Content = “”;
 lblCreationTime.Content = “”;
 lblFileName.Content = “”;
 lblFileSize.Content = “”;
 lblModificationTime.Content = “”;
}

Next, you define a method, DisplayFileInfo(), that handles the process of displaying the informa-
tion for a given file in the text boxes. This method takes one parameter, the full pathname of the file as
a String, and works by creating a FileInfo object based on this path as illustrated in Listing 16-6.

Listing 16-6:  ​The DisplayFileInfo() method

private void DisplayFileInfo(string fileFullName)
{
 FileInfo selectedFile = new FileInfo(fileFullName);

 if (!selectedFile.Exists)
 {
 throw new FileNotFoundException(“File not found: “ + fileFullName);
 }

 lblFileName.Content = selectedFile.Name;
 lblAccessTime.Content = selectedFile.LastAccessTime.ToLongDateString();
 lblCreationTime.Content = selectedFile.CreationTime.ToLongDateString();
 lblModificationTime.Content = selectedFile.LastWriteTime.ToLongDateString();
 lblFileSize.Content = selectedFile.Length + “ bytes”;
}

Note that you take the precaution of throwing an exception if there are any problems locating a file
at the specified location. The exception itself will be handled in the calling routine (one of the event
handlers). Finally, you define a method, DisplayFolderList(), which displays the contents of a
given folder in the two list boxes. The full pathname of the folder is passed in as a parameter to this
method as demonstrated in Listing 16-7.

508  ❘  Chapter 16   Working with File I/O

Listing 16-7:  ​The DisplayFolderFileList() method

private void DisplayFolderFileList(string folderFullName)
{
 DirectoryInfo folderList = new DirectoryInfo(folderFullName);

 if (!folderList.Exists)
 {
 throw new DirectoryNotFoundException(“Folder not found: “ + folderFullName);
 }

 ClearAllFields();

 lblPathUsed.Content = folderList.FullName;
 _currentFolderPath = folderList.FullName;

 foreach (var dir in folderList.EnumerateDirectories())
 {
 listBoxFolders.Items.Add(dir);
 }

 foreach (var file in folderList.EnumerateFiles())
 {
 listBoxFiles.Items.Add(file);
 }
}

Next, you examine the event handlers. The event handler that manages the event that is triggered
when the user clicks the Display button is the most complex because it needs to handle three different
possibilities for the text the user enters in the text box. For instance, it could be the pathname of a
folder, the pathname of a file, or neither of these. This method is shown in Listing 16-8.

Listing 16-8:  ​The method for when the Display button is clicked

private void button1_Click(object sender, RoutedEventArgs e)
{
 try
 {
 switch (comboBox1.SelectedIndex)
 {
 case 0:
 _currentFolderPath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments);
 break;
 case 1:
 _currentFolderPath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyPictures);
 break;
 case 2:
 _currentFolderPath = Environment.GetFolderPath

Classes for Managing the Filesystem  ❘  509

 (Environment.SpecialFolder.MyVideos);
 break;
 case 3:
 _currentFolderPath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyMusic);
 break;
 }

 DirectoryInfo directoryInfo = new DirectoryInfo(_currentFolderPath);
 if (directoryInfo.Exists)
 {
 DisplayFolderFileList(directoryInfo.FullName);
 return;
 }

 throw new DirectoryNotFoundException(“There is no folder with this name: “
 + lblPathUsed.Content);
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

In this code the first step is to figure out which special folder the user wants to work with. Once the
user makes this selection, you then call DisplayFolderFileList() to populate the list boxes.

The following code is the event handler that is called when an item in the Files list box is selected,
either by the user or, as indicated previously, programmatically. It simply constructs the full pathname
of the selected file, and passes it to the DisplayFileInfo() method presented earlier. Listing 16-9
shows this in action.

Listing 16-9:  ​A method for when there is a change to the listBoxFiles control

private void listBoxFiles_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 try
 {
 if (listBoxFiles.SelectedIndex != -1)
 {
 string selectedString = listBoxFiles.SelectedItem.ToString();
 string fullFileName = Path.Combine(_currentFolderPath, selectedString);
 DisplayFileInfo(fullFileName);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

510  ❘  Chapter 16   Working with File I/O

The event handler for the selection of a folder in the Folders list box is implemented in a very similar
way, except that in this case you call DisplayFolderFileList() to update the contents of the list
boxes. Listing 16-10 shows this method.

Listing 16-10:  ​A method for when there is a change to the listBoxFolders control

private void listBoxFolders_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 try
 {
 if (listBoxFolders.SelectedIndex != -1)
 {
 string selectedString = listBoxFolders.SelectedItem.ToString();
 string fullPathName = Path.Combine(_currentFolderPath, selectedString);
 DisplayFolderFileList(fullPathName);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Finally, when the Up button is clicked, DisplayFolderFileList() must also be called, except
that this time you need to obtain the path of the parent of the folder currently being displayed.
You do this with the FileInfo.DirectoryName property, which returns the parent folder path.
Listing 16-11 shows this final method.

Listing 16-11:  ​The Up button method to change the folder path

private void image1_MouseLeftButtonDown(object sender,
 System.Windows.Input.MouseButtonEventArgs e)
{
 try
 {
 if (_currentFolderPath != null)
 {
 string folderPath = new FileInfo(_currentFolderPath).DirectoryName;
 DisplayFolderFileList(folderPath);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

Classes for Managing the Filesystem  ❘  511

Applying Settings for an Out-of-Browser Application
With this code in place, you will notice that you cannot run it as is. The main reason for this is that
in a basic Silverlight application, you are actually not allowed to work with files and folders as has
been shown in the previous code examples.

To have this kind of access to the client’s files from your Silverlight application, you need to convert
your application to a Silverlight application that runs in the out-of-browser mode. To do this, right-
click the project from within Visual Studio Solution Explorer and select Properties. On the Silverlight
tab, select the “Enable running application out of the browser” checkbox. This is demonstrated in
Figure 16-7.

Figure 16-7

Now click the Out-of-Browser Settings button on the same page to apply some final settings. In
Figure 16-8, you can see some settings that have been applied to work with your out-of-browser
version of the FileProperties application.

Building the InstallPage.xaml File
Now that you have established that your FileProperties application will be an out-of-browser
application, the next step is to build an Install page that allows end users to trigger this applica-
tion install themselves.

512  ❘  Chapter 16   Working with File I/O

Figure 16-8

For your InstallPage.xaml file, simply place a single button on the page and provide the click
event for the button as demonstrated in Listing 16-12.

Listing 16-12:  ​The InstallPage.xaml file’s button click event

private void button1_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Install();
}

Now with that simple code in place, the final step is to change your Application_Startup() method
found in your App.xaml.cs file in the same project. This change is demonstrated in Listing 16-13.

Listing 16-13:  ​Changing the Application_Startup() method of the App.xaml.cs file

private void Application_Startup(object sender, StartupEventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser)

Classes for Managing the Filesystem  ❘  513

 {
 this.RootVisual = new MainPage();
 }
 else
 {
 this.RootVisual = new InstallPage();
 }
}

From here, you can see that if the FileProperties Silverlight application is not running in out-of-browser
mode, the InstallPage.xaml page is processed. However, if the application is indeed running in an
out-of-browser mode, the MainPage.xaml page is run instead. Running FileProperties in an out-of-
browser mode is what allows you to work with the client’s files as was demonstrated.

Now that you can run the FileProperties application in an out-of-browser mode, you will notice
some interesting things. First of all, if you select the special folder of My Documents and you are
using Windows, you will see some of the subfolders as well (as shown in Figure 16-9).

Right away, you can see the other special folders of My Music, My Pictures, and My Videos listed
as subfolders here. Selecting to dig into one of these folders by highlighting them will not list out the
contents of these folders as you would expect. Instead, you are presented with the exception shown
in Figure 16-10.

Figure 16-9 Figure 16-10

The reason is that even though these are considered special folders, you are trying to access them
through a sub-path of the My Documents folder. If you need to access these folders specifically, you
want to access them through the use of Environment.SpecialFolder.MyPictures, and so on.

You will also notice that if you are in the root
of any of the special folders, you cannot click the
Up button to get to C:\Users\Bill (or any other
user) because you are presented with the exception
shown in Figure 16-11.

Finally, when you are looking at the My Pictures
folder, you might not find everything you are look-
ing for. For instance, in looking at a fresh operating system install of Windows 7 and selecting the
My Pictures special folder, you won’t find anything listed. However, looking at Figure 16-12, you can
see that I do indeed have some pictures in this folder.

Figure 16-11

514  ❘  Chapter 16   Working with File I/O

Figure 16-12

The reason for this is that the Sample Pictures folder of pictures, though it appears that they are in
C:\Users\Bill, is actually contained within C:\Public\Pictures and is a shared resource among
all users. Working with the Silverlight file features, you will not be able to programmatically see
these items contained within the Public folders.

Moving, Copying, and Deleting Files

It is possible to move or delete files or folders by making use of the MoveTo() and Delete()
methods of the FileInfo and DirectoryInfo classes. The equivalent methods on the File and
Directory classes are Move() and Delete(). The FileInfo and File classes also implement the
methods CopyTo() and Copy(), respectively. However, no methods exist to copy complete folders — ​
you need to do that by copying each file in the folder.

Using all these methods is quite intuitive — ​you can find detailed descriptions in the SDK documenta-
tion. This section illustrates their use for the particular cases of calling the static Move(), Copy(), and
Delete() methods on the File class. To do this, you will build on the previous FileProperties example
and call its iteration FilePropertiesAndMovement. This example will have the extra feature that when-
ever the properties of a file are displayed, the application gives you the option of deleting that file or
moving or copying the file to another location.

Extending on the FileProperties Solution
This next example extends on the FileProperties solution that was presented earlier in this chapter.
When completed, you will have a user interface as presented in Figure 16-13.

Moving, Copying, and Deleting Files  ❘  515

As you can see, the FilePropertiesMore solution is similar in appearance to FileProperties, except for
the group of three radio buttons and a folder selection area at the bottom of the window. These con-
trols are enabled only when the example actually displays the properties of a file; at all other times,
they are disabled. When the properties of a selected file are displayed, FilePropertiesMore automati-
cally places the full pathname of that file in the bottom part of the dialog allowing the users to edit
where they are about to place the file. Users can then click any of the buttons to perform the appro-
priate operations. When they do, a message box is displayed that confirms the action to be taken by
the user (see Figure 16-14).

When the user clicks the Yes button, the action is initiated. Some actions in the form that the
user can take will cause the display to be incorrect. For instance, if the user moves or deletes a
file, the contents of that file obviously cannot continue to display in the same location. In addi-
tion, if you change the name of a file in the same folder, your display will also be out of date. In
these cases, FilePropertiesMore resets its controls to display only the folder where the file resides
after the file operation.

Figure 16-13 Figure 16-14

Using the Move, Copy, and Delete Methods
To code these new capabilities, you need to add the appropriate radio button controls, a button to
enable browsing of the user’s filesystem, as well as another button to initiate the action.

First, look at the event handler that is called when the user chooses to delete the file that is selected.
This is presented in Listing 16-14.

516  ❘  Chapter 16   Working with File I/O

Listing 16-14:  ​Deleting a file

private void DeleteFileOption()
{
 try
 {
 string filePath = Path.Combine(_currentFolderPath,
 listBoxFiles.SelectedItem.ToString());
 string query = “Really delete the file\n” + filePath + “?”;
 if (MessageBox.Show(query,
 “Delete File?”, MessageBoxButton.OKCancel) == MessageBoxResult.OK)
 {
 File.Delete(filePath);
 MessageBox.Show(“Deletion of file successful!”);
 DisplayFolderFileList(_currentFolderPath);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Unable to delete file.
 The following exception occurred:\n” + ex.Message, “Failed”,
 MessageBoxButton.OK);
 }
}

The code for this method is contained in a try block because of the obvious risk of an exception
being thrown if, for example, you do not have permission to delete the file or the if file is moved by
another process after it has been displayed but before the user initiates the delete operation. You
construct the path of the file to be deleted from the _currentFolderPath field, which contains the
path of the parent folder, and the name of the file from the listBoxFiles ListBox control. The
delete operation is really done here through the File.Delete(filepath); operation.

The methods to move or copy the files are quite similar. Both of these methods are presented in
Listing 16-15.

Listing 16-15:  ​Moving or copying files

private void CopyFileOption()
{
 try
 {
 string filePath = Path.Combine(_currentFolderPath,
 listBoxFiles.SelectedItem.ToString());
 string query = “Really copy the file\n” + filePath + “\nto “
 + _moveCopyFolderPath + “?”;

 if (MessageBox.Show(query,
 “Copy File?”, MessageBoxButton.OKCancel) == MessageBoxResult.OK)
 {
 File.Copy(filePath, _moveCopyFolderPath + @“\“ +
 listBoxFiles.SelectedItem);
 MessageBox.Show(“Copying file successful!”);

Reading and Writing Files  ❘  517

 DisplayFolderFileList(_currentFolderPath);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Unable to copy file. The following exception occurred:\n”
 + ex.Message,
 “Failed”, MessageBoxButton.OK);
 }
}

private void MoveFileOption()
{
 try
 {
 string filePath = Path.Combine(_currentFolderPath,
 listBoxFiles.SelectedItem.ToString());
 string query = “Really move the file\n” + filePath + “\nto “
 + _moveCopyFolderPath + “?”;

 if (MessageBox.Show(query,
 “Move File?”, MessageBoxButton.OKCancel) == MessageBoxResult.OK)
 {
 File.Move(filePath, _moveCopyFolderPath + @“\“ +
 listBoxFiles.SelectedItem);
 MessageBox.Show(“Moving file successful!”);
 DisplayFolderFileList(_currentFolderPath);
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Unable to move file. The following exception occurred:\n”
 + ex.Message,
 “Failed”, MessageBoxButton.OK);
 }
}

These methods also work from the location of _currentFolderPath and provide a message box to
the end users asking them if they really want to perform this operation. If affirmed, the File.Move()
or File.Copy() methods are executed depending on the operation selected. Both of these methods use
a signature that requires the source path and filename followed by the destination path and filename.

There is more to this solution, but these are the main methods you need to understand when mov-
ing, copying, or deleting files. For the rest of the solution, please visit www.wrox.com and you will
find the solution FilePropertiesMore in the code download.

Reading and Writing Files

Another common operation is the task of reading and writing files. Reading and writing to files is in
principle very simple; however, it is not done through the DirectoryInfo or FileInfo objects. Instead,
using the Silverlight 4, you can do it through the File object. Later in this chapter, you see how to
accomplish this using a number of other classes that represent a generic concept called a stream.

http://www.wrox.com

518  ❘  Chapter 16   Working with File I/O

Reading from a File
For an example of reading from a file, create a Silverlight application that contains a regular ListBox,
a Button, a TextBlock, and a ScrollViewer server control. In the end, your form should appear
similar to Figure 16-15.

Figure 16-15

The XAML code for this is presented in Listing 16-16.

Listing 16-16:  ​The XAML code for the file reader

<UserControl x:Class=”ReadingFiles.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”600” d:DesignWidth=”800”>

 <Grid x:Name=”LayoutRoot” Background=”White” Loaded=”LayoutRoot_Loaded”>
 <ListBox Height=”100” HorizontalAlignment=”Left” Margin=”12,12,0,0”
 Name=”listBox1” VerticalAlignment=”Top” Width=”568” />
 <Button Content=”Read Selected File” Height=”100”
 HorizontalAlignment=”Left” Margin=”586,12,0,0” Name=”button1”
 VerticalAlignment=”Top” Width=”202” Click=”button1_Click” />

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Reading and Writing Files  ❘  519

 <ScrollViewer HorizontalAlignment=”Stretch” Margin=”12,118,12,12”
 Name=”scrollViewer1” HorizontalContentAlignment=”Stretch”
 HorizontalScrollBarVisibility=”Auto”
 VerticalContentAlignment=”Stretch”
 VerticalScrollBarVisibility=”Auto”>
 <TextBlock HorizontalAlignment=”Left” Name=”textBlock1” Text=”“ />
 </ScrollViewer>
 </Grid>
</UserControl>

The idea of this form is that the end user selects a specific file from his or her My Documents folder
and clicks the Read Selected File button. From there, the application reads the specified file and dis-
plays the file’s contents in the bottom part of the application. This is illustrated in the code example
in Listing 16-17.

Listing 16-17:  ​Reading from a file

using System;
using System.IO;
using System.Windows;
using System.Windows.Controls;

namespace ReadingFiles
{
 public partial class MainPage : UserControl
 {
 private readonly string _filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);

 public MainPage()
 {
 InitializeComponent();
 }

 private void LayoutRoot_Loaded(object sender, RoutedEventArgs e)
 {
 DirectoryInfo directoryInfo = new DirectoryInfo(_filePath);

 if (directoryInfo.Exists)
 {
 foreach (var file in directoryInfo.EnumerateFiles())
 {
 listBox1.Items.Add(file);
 }
 return;
 }

 throw new DirectoryNotFoundException(
 “There was an issue opening the My Documents folder.”);
 }

 private void button1_Click(object sender, RoutedEventArgs e)

continues

520  ❘  Chapter 16   Working with File I/O

 {
 if (listBox1.SelectedIndex != -1)
 {
 string selectedString = listBox1.SelectedItem.ToString();
 string fullPathName = Path.Combine(_filePath, selectedString);

 textBlock1.Text = File.ReadAllText(fullPathName);
 }
 }
 }
}

In building this example, the first step is to add the using statement to bring in the System.IO
namespace. From there, simply use the button1_Click event for the button on the form to populate
the TextBlock control with what comes back from the file. You can now access the file’s contents by
using the File.ReadAllText() method. As you can see, you can read files with a single statement.
The ReadAllText() method opens the specified file, reads the contents, and then closes the file. The
return value of the ReadAllText() method is a string containing the entire contents of the file speci-
fied. The result is something similar to what is shown in Figure 16-16.

Figure 16-16

The File.ReadAllText() signature shown in the preceding example is of the following construction:

File.ReadAllText(FilePath);

Listing 16-17  (continued)

Reading and Writing Files  ❘  521

The other option is to also specify the encoding of the file being read:

File.ReadAllText(FilePath, Encoding);

Using this signature allows you to specify the encoding to use when opening and reading the con-
tents of the file. Therefore, this means that you could do something such as the following:

File.ReadAllText(textBox1.Text, Encoding.ASCII);

Some of the other options for opening and working with files include using the ReadAllBytes()
and the ReadAllLines() methods. The ReadAllBytes() method allows you to open a binary file
and read the contents into a byte array. The ReadAllText() method shown earlier gives you the
entire contents of the specified file in a single string instance. You might not be interested in this but
instead be interested in working with what comes back from the file in a line-by-line fashion. In this
case, you should use the ReadAllLines() method because it allows for this kind of functionality
and will return a string array for you to work with.

Writing to a File
Besides making reading from files an extremely simple process under the .NET Framework umbrella,
the base class library has made writing to files just as easy. Just as the base class library (BCL) gives
you the ReadAllText(), ReadAllLines(), and ReadAllBytes() methods to read files in a few dif-
ferent ways, it gives you the WriteAllText(), WriteAllBytes(), and WriteAllLines() methods to
write files.

For an example of how to write to a file, create a Silverlight application called WritingFiles. It should
appear as shown in Figure 16-17.

Figure 16-17

522  ❘  Chapter 16   Working with File I/O

The code for this is layout is illustrated in Listing 16-18.

Listing 16-18:  ​The XAML code for the WritingFiles solution

<UserControl x:Class=”WritingFiles.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”600” d:DesignWidth=”800”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”Create file with text provided” Height=”23”
 HorizontalAlignment=”Left” Margin=”12,556,0,0” Name=”button1”
 VerticalAlignment=”Top” Width=”776” Click=”button1_Click” />
 <TextBox Height=”538” HorizontalAlignment=”Left” Margin=”12,12,0,0”
 Name=”textBox1” VerticalAlignment=”Top” Width=”776”
 AcceptsReturn=”True” TextWrapping=”Wrap” />
 </Grid>
</UserControl>

The code for the button1_Click event handler should appear as shown in Listing 16-19.

Listing 16-19:  ​Creating a new file

private void button1_Click(object sender, EventArgs e)
{
 string filePath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments) + @“\MyFile.txt”;

 File.WriteAllText(filePath, textBox1.Text);
}

Build and start the application, type some random content in the text box, and then click the button.
Nothing happens visually, but if you look in the root of your My Documents folder, you will see the
MyFile.txt file with the content you specified.

The WriteAllText() method went to the specified location, created a new text file, and provided
the specified contents to the file before saving and closing the file. Not bad for just one line of code!

If you run the application again and provide some new content, click the button again and the
application performs the same task again. This time, however, the new content is not added to
the previous content you specified. Instead the new content completely overrides the previous
content. In fact, WriteAllText(), WriteAllBytes(), and WriteAllLines() all override any
previous files, so you must be careful when using these methods.

The WriteAllText() method in the previous example uses the following signature:

File.WriteAllText(FilePath, Contents)

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Using Streams  ❘  523

You can also specify the encoding of the new file:

File.WriteAllText(FilePath, Contents, Encoding)

The WriteAllBytes() method allows you to write content to a file using a byte array and the
WriteAllLines() method allows you to write a string array to a file. An example of this is illus-
trated in the event handler in Listing 16-20.

Listing 16-20:  ​Using WriteAllLines()

private void button1_Click(object sender, EventArgs e)
{
 string[] movies =
 {“Grease”,
 “Close Encounters of the Third Kind”,
 “The Day After Tomorrow”};

 string filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)
 + @“\MyFile.txt”;

 File.WriteAllLines(filePath, movies);
}

Now clicking the button for such an application gives you a MyFile.txt file with the following
contents:

Grease
Close Encounters of the Third Kind
The Day After Tomorrow

The WriteAllLines() method writes out the string array with each array item taking its own line
in the file.

Because data may be written not only to disk but to other places as well (such as to named pipes or
to memory), it is also important to understand how to deal with file I/O in .NET using streams as a
means of moving file contents around. This is shown in the following section.

Using Streams

The idea of a stream has been around for a very long time. A stream is an object used to transfer
data. The data can be transferred in one of two directions:

If the data is being transferred from some outside source into your program, it is called ➤➤ reading
from the stream.

If the data is being transferred from your program to some outside source, it is called ➤➤ writing
to the stream.

524  ❘  Chapter 16   Working with File I/O

Very often, the outside source will be a file, but that is not always the case. For example,
Microsoft has supplied a .NET base class for writing to or reading from memory, the
System.IO.MemoryStream object.

The advantage of having a separate object for the transfer of data, rather than using the FileInfo or
DirectoryInfo classes to do this, is that separating the concept of transferring data from the particular
data source makes it easier to swap data sources. Stream objects themselves contain a lot of generic code
that concerns the movement of data between outside sources and variables in your code. By keeping this
code separate from any concept of a particular data source, you make it easier for this code to be reused
(through inheritance) in different circumstances. For example, the StringReader and StringWriter
classes are part of the same inheritance tree as two classes that you will use later on to read and write
text files. The classes will almost certainly share a substantial amount of code behind the scenes.

Figure 16-18 shows the actual hierarchy of stream-related classes in the System.IO namespace
for Silverlight.

As far as reading and writing files, the classes that concern you most are:

FileStream➤➤  — ​This class is intended for reading and writing binary data in a binary file.
However, you can also use it to read from or write to any file.

StreamReader➤➤ and StreamWriter — ​These classes are designed specifically for reading from
and writing to text files.

You might also find the BinaryReader and BinaryWriter classes useful, although they are not used
in the examples here. These classes do not actually implement streams themselves, but they are able
to provide wrappers around other stream objects. BinaryReader and BinaryWriter provide extra
formatting of binary data, which allows you to directly read or write the contents of C# variables to
or from the relevant stream. Think of the BinaryReader and BinaryWriter as sitting between the
stream and your code, providing extra formatting (see Figure 16-19).

Figure 16-18

Using Streams  ❘  525

BinaryReader

BinaryWriter

Underlying
Stream object

Data source
(file, etc.)

Your code

Figure 16-19

The difference between using these classes and directly using the underlying stream objects is
that a basic stream works in bytes. For example, suppose that as part of the process of saving
some document you want to write the contents of a variable of type long to a binary file. Each
long occupies 8 bytes, and if you used an ordinary binary stream, you would have to explicitly
write each of those 8 bytes of memory.

In C# code, you would have to perform some bitwise operations to extract each of those 8 bytes from
the long value. Using a BinaryWriter instance, you can encapsulate the entire operation in an overload
of the BinaryWriter.Write() method, which takes a long as a parameter and places those 8 bytes
into the stream (and if the stream is directed to a file, into the file). A corresponding BinaryReader
.Read() method extracts 8 bytes from the stream and recovers the value of the long. For more infor-
mation on the BinaryReader and BinaryWriter classes, refer to the SDK documentation.

Using Buffered Streams
For performance reasons, when you read or write to or from a file, the output is buffered. This means
that if your program asks for the next 2 bytes of a file stream, and the stream passes the request on to
Windows, Windows will not connect to the filesystem and then locate and read the file off the disk,
just to get 2 bytes. Instead, Windows retrieves a large block of the file at one time and stores this block
in an area of memory known as a buffer. Subsequent requests for data from the stream are satisfied
from the buffer until the buffer runs out, at which point, Windows grabs another block of data from
the file.

Writing to files works in the same way. For files, this is done automatically by the operating system,
but you might have to write a stream class to read from some other device that is not buffered. If so,
you can derive your class from BufferedStream, which implements a buffer itself. (Note, however,
that BufferedStream is not designed for the situation in which an application frequently alternates
between reading and writing data.)

Reading and Writing Binary Files Using FileStream
Reading and writing to and from binary files can be done using the FileStream class. A FileStream
instance is used to read or write data to or from a file. To construct a FileStream, you need four pieces
of information:

	 1.	 The file you want to access.

	 2.	 The mode, which indicates how you want to open the file. For example, are you intending to
create a new file or open an existing file? Also, if you are opening an existing file, should any
write operations be interpreted as overwriting the contents of the file or appending to the file?

526  ❘  Chapter 16   Working with File I/O

	 3.	 The access, which indicates how you want to access the file. For example, do you want to
read from or write to the file or do both?

	 4.	 The share access, which specifies whether you want exclusive access to the file. Or, are you
willing to have other streams access the file simultaneously? If so, should other streams have
access to read the file, to write to it, or to do both?

The first of these pieces of information is usually represented by a string that contains the full pathname
of the file, and this chapter considers only those constructors that require a string here. Besides those
constructors, however, some additional ones take an old Windows-API–style Windows handle to a file
instead. The remaining three pieces of information are represented by three .NET enumerations called
FileMode, FileAccess, and FileShare. The values of these enumerations are listed in Table 16-4 and
are self-explanatory.

Table 16-4

Enumeration Values

FileMode Append, Create, CreateNew, Open, OpenOrCreate, or Truncate

FileAccess Read, ReadWrite, or Write

FileShare Delete, Inheritable, None, Read, ReadWrite, or Write

Note that in the case of FileMode, exceptions can be thrown if you request a mode that is inconsis-
tent with the existing status of the file. Append, Open, and Truncate throw an exception if the file
does not already exist. CreateNew throws an exception if it does. Create and OpenOrCreate copes
with either scenario, but Create deletes any existing file to replace it with a new, initially empty,
one. The FileAccess and FileShare enumerations are bitwise flags, so values can be combined
with the C# bitwise OR operator, |.

A large number of constructors exist for the FileStream. The three simplest ones work as follows:

 string filePath1 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile1.docx”;
 string filePath2 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile2.docx”;
 string filePath3 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile3.docx”;
 string filePath4 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile4.docx”;
 string filePath5 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile5.docx”;
 string filePath6 =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile6.docx”;
 string filePath7 =

Using Streams  ❘  527

 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile7.docx”;

 // Creates a file with read-write access and allows other streams read access
 FileStream fs1 = new FileStream(filePath1, FileMode.Create);

 // As above, but we only get write access to the file
 FileStream fs2 = new FileStream(filePath2,FileMode.Create, FileAccess.Write);

 // As above, but other streams don’t get access to the file while fs3 is open
 FileStream fs3 = new FileStream(filePath3, FileMode.Create,
 FileAccess.Write, FileShare.None);

As this code reveals, the overloads of these constructors have the effect of providing default values of
FileAccess.ReadWrite() and FileShare.Read() to the third and fourth parameters depending on
the FileMode value. It is also possible to create a file stream from a FileInfo instance in various ways:

 FileInfo myFile4 = new FileInfo(filePath4);
 FileStream fs4 = myFile4.OpenRead();

 FileInfo myFile5= new FileInfo(filePath5);
 FileStream fs5 = myFile5.OpenWrite();

 FileInfo myFile6= new FileInfo(filePath6);
 FileStream fs6 = myFile6.Open(FileMode.Append,
 FileAccess.Write, FileShare.None);

 FileInfo myFile7 = new FileInfo(filePath7);
 FileStream fs7 = myFile7.Create();

FileInfo.OpenRead() supplies a stream that gives you read-only access to an existing file,
whereas FileInfo.OpenWrite() gives you read-write access. FileInfo.Open() allows you to
specify the mode, access, and file share parameters explicitly.

Of course, after you have finished with a stream, you should close it:

 fs.Close();

Closing the stream frees up the resources associated with it and allows other applications to set up
streams to the same file. This action also flushes the buffer. In between opening and closing the
stream, you should read data from it and/or write data to it. FileStream implements a number of
methods to do this.

ReadByte() is the simplest way of reading data. It grabs 1 byte from the stream and casts the result to
an int that has a value between 0 and 255. If you have reached the end of the stream, it returns -1:

 int NextByte = fs.ReadByte();

If you prefer to read a number of bytes at a time, you can call the Read() method, which reads a
specified number of bytes into an array. Read() returns the number of bytes actually read — ​if this
value is zero, you know that you are at the end of the stream. Here is an example where you read
into a byte array called ByteArray:

 int nBytesRead = fs.Read(ByteArray, 0, nBytes);

528  ❘  Chapter 16   Working with File I/O

The second parameter to Read() is an offset, which you can use to request that the Read operation
start populating the array at some element other than the first. The third parameter is the number of
bytes to read into the array.

If you want to write data to a file, two parallel methods are available, WriteByte() and Write().
WriteByte() writes a single byte to the stream:

 byte NextByte = 100;
 fs.WriteByte(NextByte);

Write(), however, writes out an array of bytes. For instance, if you initialized the ByteArray
mentioned before with some values, you could use the following code to write out the first nBytes
of the array:

 fs.Write(ByteArray, 0, nBytes);

As with Read(), the second parameter allows you to start writing from some point other than the
beginning of the array. Both WriteByte() and Write() return void.

In addition to these methods, FileStream implements various other methods and properties related
to bookkeeping tasks such as determining how many bytes are in the stream, locking the stream, or
flushing the buffer. These other methods are not usually required for basic reading and writing, but
if you need them, full details are in the SDK documentation.

Reading and Writing to Text Files
Theoretically, it is perfectly possible to use the FileStream class to read in and display text files.
Having said that, if you know that a particular file contains text, you will usually find it more
convenient to read and write it using the StreamReader and StreamWriter classes instead of the
FileStream class. That is because these classes work at a slightly higher level and are specifically
geared to reading and writing text. The methods that they implement are able to automatically
detect convenient points to stop reading text, based on the contents of the stream. In particular:

These classes implement methods to read or write one line of text at a time, ➤➤ StreamReader

.ReadLine() and StreamWriter.WriteLine(). In the case of reading, this means that the
stream automatically determines for you where the next carriage return is and stops reading
at that point. In the case of writing, it means that the stream automatically appends the
carriage return–line feed combination to the text that it writes out.

By using the ➤➤ StreamReader and StreamWriter classes, you do not need to worry about
the encoding (the text format) used in the file. Possible encodings include ASCII (1 byte for
each character), or any of the Unicode-based formats: Unicode, UTF7, UTF8, and UTF32.
The convention is that if the file is in ASCII format, it simply contains the text. If it is in any
Unicode format, this is indicated by the first 2 or 3 bytes of the file, which are set to particu-
lar combinations of values to indicate the format used in the file.

These bytes are known as the byte code markers. When you open a file using any of the standard
Windows applications, such as Notepad or WordPad, you do not need to worry about this because
these applications are aware of the different encoding methods and will automatically read the file
correctly. This is also true for the StreamReader class, which correctly reads in a file in any of these
formats, and the StreamWriter class is capable of formatting the text it writes out using whatever

Using Streams  ❘  529

encoding technique you request. If you want to read in and display a text file using the FileStream
class, however, you need to handle this yourself.

Using the StreamReader Class
StreamReader is used to read text files. Constructing a StreamReader is in some ways easier than
constructing a FileStream instance because some of the FileStream options are not required when
using StreamReader. In particular, the mode and access types are not relevant to StreamReader
because the only thing you can do with a StreamReader is read! Furthermore, there is no direct
option to specify the sharing permissions. However, you have a couple of new options:

You need to specify what to do about the different encoding methods. You can instruct the ➤➤

StreamReader to examine the byte code markers in the beginning of the file to determine the
encoding method, or you can simply tell the StreamReader to assume that the file uses a speci-
fied encoding method.

Instead of supplying a filename to be read from, you can supply a reference to another stream.➤➤

This last option deserves a bit more discussion because it illustrates another advantage of basing the
model for reading and writing data on the concept of streams. Because the StreamReader works
at a relatively high level, you might find it useful if you have another stream that is there to read
data from some other source. Instead, you can use the facilities provided by StreamReader to pro-
cess that other stream as if it contained text. You can do so by simply passing the output from this
stream to a StreamReader. In this way, StreamReader can be used to read and process data from
any data source — ​not only files. This is essentially the situation discussed earlier with regard to the
BinaryReader class. However, in this book you use only StreamReader to connect directly to files.

The result of these possibilities is that StreamReader has a large number of constructors. Not only
that, but there is another FileInfo method that returns a StreamReader reference: OpenText().
The following code illustrates just some of the constructors.

The simplest constructor takes just a filename. This StreamReader examines the byte order marks
to determine the encoding:

string filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile.txt”;
StreamReader sr = new StreamReader(filePath);

Alternatively, you can specify that UTF8 encoding should be assumed:

 StreamReader sr = new StreamReader(filePath, Encoding.UTF8);

You specify the encoding by using one of several properties on a class, System.Text.Encoding.
This class is an abstract base class, from which a number of classes are derived and which imple-
ments methods that actually perform the text encoding. Each property returns an instance of the
appropriate class, and the possible properties you can use are:

ASCII➤➤

Unicode➤➤

UTF7➤➤

530  ❘  Chapter 16   Working with File I/O

UTF8➤➤

UTF32➤➤

BigEndianUnicode➤➤

The following example demonstrates how to hook up a StreamReader to a FileStream. The advantage
of this is that you can specify whether to create the file and the share permissions, which you cannot do
if you directly attach a StreamReader to the file:

string filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile.txt”;
FileStream fs = new FileStream(filePath, FileMode.Open,
 FileAccess.Read, FileShare.None);
StreamReader sr = new StreamReader(fs);

For this example, you specify that the StreamReader will look for byte code markers to determine
the encoding method used, as it will do in the following examples, in which the StreamReader is
obtained from a FileInfo instance:

string filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile.txt”;
FileInfo myFile = new FileInfo(filePath);
StreamReader sr = myFile.OpenText();

Just as with a FileStream, you should always close a StreamReader after use. Failure to do so
results in the file remaining locked to other processes (unless you used a FileStream to construct
the StreamReader and specified FileShare.ShareReadWrite):

sr.Close();

Now that you have gone to the trouble of instantiating a StreamReader, you can do something
with it. As with the FileStream, you will simply see the various ways to read data, and the other,
less commonly used StreamReader methods are left to the SDK documentation.

Possibly the easiest method to use is ReadLine(), which keeps reading until it gets to the end of a
line. It does not include the carriage return–line feed combination that marks the end of the line in
the returned string:

string nextLine = sr.ReadLine();

Alternatively, you can grab the entire remainder of the file (or strictly, the remainder of the stream)
in one string:

string restOfStream = sr.ReadToEnd();

You can read a single character:

int nextChar = sr.Read();

This overload of Read() casts the returned character to an int. This is so that it has the option of
returning a value of -1 if the end of the stream has been reached.

Using Streams  ❘  531

Finally, you can read a given number of characters into an array, with an offset:

// to read 100 characters in.

int nChars = 100;
char [] charArray = new char[nChars];
int nCharsRead = sr.Read(charArray, 0, nChars);

nCharsRead will be less than nChars if you have requested to read more characters than are left in
the file.

Using the StreamWriter Class
This works in the same way as StreamReader, except that you can use StreamWriter only to write
to a file (or to another stream). Possibilities for constructing a StreamWriter include this:

string filePath =
 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments) +
 @“\MyFile.txt”;
StreamWriter sw = new StreamWriter(filePath);

This uses UTF8 encoding, which is regarded by .NET as the default encoding method. If you want,
you can specify alternative encoding:

StreamWriter sw = new StreamWriter(filePath, true, Encoding.ASCII);

In this constructor, the second parameter is a Boolean that indicates whether the file should be opened
for appending. There is, oddly, no constructor that takes only a filename and an encoding class.

Of course, you may want to hook up StreamWriter to a file stream to give you more control over
the options for opening the file:

FileStream fs = new FileStream(filePath, FileMode.CreateNew,
 FileAccess.Write, FileShare.Read);
StreamWriter sw = new StreamWriter(fs);

FileStream does not implement any methods that return a StreamWriter class.

Alternatively, use the following sequence to create a new file and start writing data to it:

FileInfo myFile = new FileInfo(filePath);
StreamWriter sw = myFile.CreateText();

Just as with all other stream classes, it is important to close a StreamWriter class when you are
finished with it:

sw.Close();

Writing to the stream is done using any of the many overloads of StreamWriter.Write(). The
simplest option to writing out a string:

string nextLine = “Groovy Line”;
sw.Write(nextLine);

532  ❘  Chapter 16   Working with File I/O

You can write out a single character:

char nextChar = ‘a’;
sw.Write(nextChar);

And an array of characters:

char [] charArray = new char[100];

// initialize these characters

sw.Write(charArray);

You can even write out a portion of an array of characters:

int nCharsToWrite = 50;
int startAtLocation = 25;
char [] charArray = new char[100];

// initialize these characters

sw.Write(charArray, startAtLocation, nCharsToWrite);

Using Isolated Storage Options

One nice thing about working with .NET applications is that if you need to store things like user
settings or even state from your application, you can make use of a multitude of different options.
One of the newest options is termed isolated storage.

Think of isolated storage as a virtual disk where you can save items that can be shared only by the
application that created them, or with other application instances. Isolated storage provides two
means to access it. The first is by application and the second is by site.

When accessing isolated storage by application, there is a single storage location on the machine,
which is then accessible on an application-by-application basis. Access to this storage location is
guaranteed through the user identity and the application identity.

The other type of access for isolated storage is based on the site. In this case, you can have multiple
applications using the same isolated storage as long as the applications reside from the same site.

Reading and Writing from Isolated Storage
As an example of writing and reading from isolated storage, create a new Silverlight application and
produce a UI that is similar what is shown in Figure 16-20.

For this, there are really two operations — ​one to save items to isolated storage and another to read
the settings out. The save operation is presented in Listing 16-21.

Using Isolated Storage Options  ❘  533

Figure 16-20

Listing 16-21:  ​Save settings to isolated storage

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream isoStream =
 new IsolatedStorageFileStream(“MainSettings.xml”,
 FileMode.Create, isf))
 {
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;

 using (XmlWriter writer = XmlWriter.Create(isoStream, settings))
 {
 writer.WriteStartElement(“UserSettings”);

 writer.WriteStartElement(“firstName”);
 writer.WriteString(txtFirstName.Text);
 writer.WriteEndElement();

 writer.WriteStartElement(“lastName”);

continues

534  ❘  Chapter 16   Working with File I/O

 writer.WriteString(txtLastName.Text);
 writer.WriteEndElement();

 writer.WriteEndElement();

 writer.Flush();
 }
 }
 }

 MessageBox.Show(“Settings applied.”);
}

There is a bit of code here, but that is mainly due to the code required to build the XML document
that is then placed within isolated storage. The first important thing happening with this code is
presented here:

using (IsolatedStorageFile isf = IsolatedStorageFile.GetUserStoreForApplication())
{
 using (IsolatedStorageFileStream isoStream =
 new IsolatedStorageFileStream(“MainSettings.xml”, FileMode.Create,
 isf))
 {

Here, an instance of an IsolatedStorageFile is created using a user and application type of
access. A stream is then created using the IsolatedStorageFileStream object, which creates the
virtual MainSettings.xml file.

From there, an XmlWriter object is created to build the XML document and the XML contents are
written to the IsolatedStorageFileStream object instance:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using (XmlWriter writer = XmlWriter.Create(isoStream, settings))
{
 // code removed for clarity
}

After the XmlWriter object is created, all the values are written to the XML document node by
node. When everything is written to the XML document, everything is closed and is stored in the
isolated storage.

Reading from isolated storage is done through the other button-click event. This is demonstrated in
Listing 16-22.

Listing 16-22:  ​Reading data from isolated storage

private void btnGet_Click(object sender, RoutedEventArgs e)
{

Listing 16-21  (continued)

Using Isolated Storage Options  ❘  535

 using (IsolatedStorageFile isf =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream(“MainSettings.xml”,
 FileMode.Open, isf));

 XmlReaderSettings xmlReaderSettings = new XmlReaderSettings();

 xmlReaderSettings.IgnoreWhitespace = true;
 xmlReaderSettings.IgnoreComments = true;
 xmlReaderSettings.CheckCharacters = true;

 XmlReader xmlReader = XmlReader.Create(storStream, xmlReaderSettings);

 while (xmlReader.Read())
 {
 if (xmlReader.NodeType == XmlNodeType.Element &&
 “firstName” == xmlReader.LocalName)
 {
 lblFirstName.Content = “First Name: “ +
 xmlReader.ReadElementContentAsString();
 }

 if (xmlReader.NodeType == XmlNodeType.Element &&
 “lastName” == xmlReader.LocalName)
 {
 lblLastName.Content = “Last Name: “ +
 xmlReader.ReadElementContentAsString();
 }
 }

 xmlReader.Close();
 }
}

Using this button-click event, the MainSettings.xml document is pulled from the isolated storage
and then placed into a stream and parsed using the XmlReader object:

using (IsolatedStorageFile isf = IsolatedStorageFile.GetUserStoreForApplication())
{
 StreamReader storStream =
 new StreamReader(new IsolatedStorageFileStream(“MainSettings.xml”,
 FileMode.Open, isf));

 // code removed for clarity
}

After the XML document is contained within the IsolatedStorageFileStream object, it is parsed
using the XmlReader object:

XmlReaderSettings xmlReaderSettings = new XmlReaderSettings();

xmlReaderSettings.IgnoreWhitespace = true;

536  ❘  Chapter 16   Working with File I/O

xmlReaderSettings.IgnoreComments = true;
xmlReaderSettings.CheckCharacters = true;

XmlReader xmlReader = XmlReader.Create(storStream, xmlReaderSettings);

After the document is pulled from the stream via the XmlReader, the element values are then pushed
back into the application.

Understanding Space Constraints
Isolated storage is a limited resource. When you are running a standard Silverlight application,
the default limit is set at 1MB. If you are running your Silverlight application in an out-of-browser
mode, you actually have a much larger space to work with — ​25 MB.

Through your application, you can determine how much space the end user actually has on the
machine and, if required, you can request more space than the default allotment. Listing 16-23
shows an example of understanding the space utilized on the end user’s machine.

Listing 16-23:  ​Understanding space constraints

private void btnStatus_Click(object sender, RoutedEventArgs e)
{
 try
 {
 using (var isf = IsolatedStorageFile.GetUserStoreForApplication())
 {
 string spaceUsed = (isf.Quota - isf.AvailableFreeSpace).ToString();
 string spaceAvailableFreeSpace = isf.AvailableFreeSpace.ToString();
 string quota = isf.Quota.ToString();
 MessageBox.Show(
 String.Format(“Used: {1} bytes\nAvailable: {2} bytes\nQuota: {0}
 bytes”, quota, spaceUsed, spaceAvailableFreeSpace));
 }
 }
 catch (IsolatedStorageException)
 {
 MessageBox.Show(“Unable to access store.”);
 }
}

Here, you can see that the IsolatedStorageFile object allows
you to get at the quota and the amount of available space. This
information, along with some minor math to figure out the amount
of space utilized, is then presented in a message box dialog as shown
in Figure 16-21.

If you don’t have enough space, you need to request more from the end
user (see Listing 16-24). Figure 16-21

Using Isolated Storage Options  ❘  537

Listing 16-24:  ​Requesting more space from the end user

private void btnIncrease_Click(object sender, RoutedEventArgs e)
{
 try
 {
 using (var isf = IsolatedStorageFile.GetUserStoreForApplication())
 {
 Int64 spaceRequested = 1048576; // 1mb
 Int64 spaceAvailableFreeSpace = isf.AvailableFreeSpace;

 if (spaceAvailableFreeSpace < spaceRequested)
 {
 if (!isf.IncreaseQuotaTo(store.Quota + spaceRequested))
 {
 MessageBox.Show(“Sorry you don’t want the additional space!”);
 }
 else
 {
 MessageBox.Show(“Great! Thanks for the extra space!”);
 }
 }
 MessageBox.Show(“You already have 1mb available.”);
 }
 }
 catch (IsolatedStorageException ex)
 {
 MessageBox.Show(“Something went wrong in assigning more space.\n\n” +
 ex.Message);
 }
}

In this example, an additional 1 MB of space is requested from the end user using the
isf.IncreaseQuotaTo() method call. In this case, it is only done if there is not even that
amount of space available to the application. It is important to understand that your application
can request only additional space. You cannot decrease the amount of space available.

Creating Directories in Isolated Storage
So far, you have been working with files in isolated storage that are stored in the root location that
you are working with. In the space provided to your Silverlight application, you can treat this as if
it were a filesystem that you can work with (in fact, that’s what it really is). This means that you are
able to create things like directories and subdirectories quite easily.

Listing 16-25 shows an example of creating a directory in isolated storage.

Listing 16-25:  ​Creating a directory in isolated storage

using (var isf = IsolatedStorageFile.GetUserStoreForApplication())
{
 isf.CreateDirectory(“MyDirectory1”);

continues

538  ❘  Chapter 16   Working with File I/O

 isf.CreateDirectory(“MyDirectory2”);
 isf.CreateDirectory(“MyDirectory3”);
 isf.CreateDirectory(“MyDirectory4”);
}

In this example, four distinct directories are created with the names of MyDirectory1, MyDirectory2,
and so on. To use your file within one of these directories, use a construct similar to what is presented
in Listing 16-26.

Listing 16-26:  ​Saving a file within your directory

using (IsolatedStorageFile isf = IsolatedStorageFile.GetUserStoreForApplication())
{
 string directoryPath = “MyDirectory1”;

 using (IsolatedStorageFileStream isoStream =
 new IsolatedStorageFileStream(Path.Combine(directoryPath,
 “MainSettings.xml”), FileMode.Create, isf))
 {
 // code removed for clarity
 }
}

You can then create subdirectories as presented in Listing 16-27.

Listing 16-27:  ​Creating subdirectories

using (var isf = IsolatedStorageFile.GetUserStoreForApplication())
{
 isf.CreateDirectory(“MyDirectory1”);
 isf.CreateDirectory(“MyDirectory2”);
 isf.CreateDirectory(“MyDirectory3”);
 isf.CreateDirectory(“MyDirectory4”);

 isf.CreateDirectory(Path.Combine(“MyDirectory1”, “MySubDirectory1”));
}

You end up using the exact same method, CreateDirectory(), to create sub-directories.

Deleting Your Store
Now that you have looked at creating your isolated store, you need to know how to delete the store.
You do this by simply using the Remove() method as illustrated in Listing 16-28.

Listing 16-25  (continued)

Summary  ❘  539

Listing 16-28:  ​Deleting your store

isf.Remove()
MessageBox.Show(“Your isolated store has been deleted.”);

Summary

In this chapter, you examined how to use the .NET base classes to access the filesystem from your
application code. You have seen that in both cases the base classes expose simple, but powerful, object
models that make it very simple to perform almost any kind of action in these areas. For the filesys-
tem, these actions are copying files; moving, creating, and deleting files and folders; and reading and
writing both binary and text files.

This chapter also reviewed isolated storage and how to use this from your applications to store them
in the application state.

17
Using Graphics and Visuals

what’s in this chapter?

Working with shapes and paths➤➤

Referencing images and media➤➤

Defi ning and applying custom eff ects➤➤

Transforming elements in 2D and 3D➤➤

Silverlight includes all of the core primitive elements you would expect in a platform
designed to provide a compelling visual experience. These basic elements include the
Rectangle, Ellipse, Path, Image, and MediaElement controls. Expression Blend 4 intro-
duces a new library of shape elements, empowering you to easily create stars, hexagons,
talk bubbles, arrows, and arcs. In addition to these shapes and controls, Silverlight includes
bitmap effects, support for HLSL shaders, and Perspective 3D. These last three items can
empower a limitless array of visual effects in your applications. This chapter starts by cover-
ing the basic building block controls and how they are defi ned in XAML to provide a fi rm
foundation of understanding. Along the way, you see how to use Expression Blend to save
some time by creating these elements on the design surface. Finally, you see how both effects
and 3D can fi t into your application and look at the tooling that supports them.

the Basics

This section starts by looking at the core Silverlight controls at your disposal to create
visuals. It looks at each control individually and covers XAML composition of that control.
Along the way, I’ll try to point out things you need to be aware of when working with par-
ticular controls.

542  ❘  Chapter 17   Using Graphics and Visuals

Working with Rectangles and Borders
The Rectangle control can serve as a founda-
tion for many UI elements. Most controls that
you interact with on a daily basis are rectangu-
lar in nature: buttons, scrollbars, header ele-
ment backgrounds, and so forth. Generally,
these controls are not composed of a single
rectangle, but multiple layered rectangles, each
with varying shades of opacity, margins, and
fills. Together these rectangles form the visuals
you have come to expect from modern operat-
ing systems and applications. Figure 17-1 calls out the nested rectangles used to create the Office 2007
Ribbon control and the default Silverlight button.

The following XAML defines a lime-green Rectangle that is 100 pixels wide by 20 pixels tall:

<Rectangle Width=”100” Height=”20” Fill=”#FFCCFF00” />

Applying Rounded Corners
You might have noticed in Figure 17-1 that both examples had rounded corners. This is easily
achieved in Silverlight by setting the RadiusX and RadiusY properties on the Rectangle control.
The following XAML defines a Rectangle with uniformly rounded corners, each with a 5-pixel
corner radius:

<Rectangle Height=”20” Width=”80” Fill=”#CCFF00” RadiusX=”5” RadiusY=”5” />

Both the RadiusX and RadiusY properties have the same value as in the previous example. These
values do not have to be the same, however. By increasing the value on either axis, you’ll see that
the corner begins to skew either horizontally or vertically, depending on which property value is
greater. Figure 17-2 demonstrates the effect on each axis when one corner radius value is greater
than the other.

Figure 17-2

Understanding Pixel-Based Values
It’s important to note once again that the corner radius values are pixel-based and not percentage-
based. So, if you set the corner radius to 5, the amount of curvature on each corner will remain the

Figure 17-1

The Basics  ❘  543

same whether your rectangle is 100 pixels wide or 100 pixels high. Some design programs store the
corner radius as a percentage of the object’s size, so a corner radius of 10 would be 10 pixels for a
rectangle 100 pixels wide and 100 pixels for a rectangle 1,000 pixels wide. That is always frustrat-
ing for me, so I’m glad Silverlight implements these as pixel values rather than percentage values.

Comparing Rectangles to Borders
You may be wondering why Border is included in a discussion about drawing primitives. The
Border control is actually a FrameworkElement-derived control that can accept child content, and
not a primitive drawing element. The Border control provides a key feature that the Rectangle
control does not — ​individual control over each corner’s radius! This means that you can have a
“rectangle” whose top-left and top-right corners are rounded, while its bottom corners remain
square. With the Rectangle control, it’s an all-or-nothing proposition. The following XAML
defines a lime-green Border that is 100 pixels wide by 20 pixels tall, with its top-left and top-
right corners rounded on a 5-pixel radius:

<Border
 Width=”80” Height=”20”
 Background=”#CCFF00”
 CornerRadius=”5,5,0,0”/>

The Border’s CornerRadius property provides the corner-by-corner flexibility that makes this con-
trol so useful. The CornerRadius property has four properties that let you specify the corner radius
for each corner: TopLeft, TopRight, BottomRight, and BottomLeft. The preceding XAML demon-
strates how these properties can be set inline with comma-delimited values. The following pseudo-
XAML represents the order in which these values are applied to each corner:

<Border CornerRadius=”TopLeft, TopRight, BottomRight, BottomLeft” />

Nesting Borders
The Border element, unlike the Rectangle, has a
Child property and supports nested content. This
means that you can create a series of nested Borders
housed by a single parent Border. You set the Padding
property on each Border to create inset effects with
each child Border. The following XAML demonstrates
how three nested Borders can be used to create a shiny
button, as shown in Figure 17-3:

<Border
 Opacity=”1”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”281.031005859375,250,0,0”
 CornerRadius=”14.805,14.805,14.805,14.805”
 Background=”#ccff00” Width=”208” Height=”63” Padding=”2,2,2,2”>
 <Border
 Opacity=”1”

Figure 17-3

544  ❘  Chapter 17   Using Graphics and Visuals

 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 CornerRadius=”14.1,14.1,14.1,14.1”>
 <Border.Background>
 <LinearGradientBrush
 StartPoint=”0.5098039215686274,0.35”
 EndPoint=”0.5098039215686274,1.0478118896484374”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop
 Color=”#00ccff00”
 Offset=”0” />
 <GradientStop
 Color=”#FF5e7500”
 Offset=”1” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.Background>
 <Border
 Opacity=”1”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”
 Margin=”0,0,0,27”
 CornerRadius=”13.8,13.8,13.8,13.8”>
 <Border.Background>
 <LinearGradientBrush
 StartPoint=”0.3872549019607843,-0.08571428571428572”
 EndPoint=”0.3872549019607843,1.2612723214285715”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop
 Color=”#FFffffff”
 Offset=”0” />
 <GradientStop
 Color=”#00ffffff”
 Offset=”1” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Border.Background>
 </Border>
 </Border>
</Border>

Brushes.xaml

So, you now have two tools in your arsenal to create rectangle-based shapes. The Rectangle is a
lighter control, so you’ll probably want to go with it for most cases, but, when you need to specifi-
cally target individual corners, the Border is your best friend.

The Basics  ❘  545

Using the Ellipse
The Ellipse control is used to define both circles and ellipses and is just as easy to define as the
Rectangle. In fact, the following XAML is the same XAML you started with for Rectangle but
with the term Ellipse instead of Rectangle:

<Ellipse Width=”100” Height=”20” Fill=”#FFCCFF00” />

This XAML results in an oval 100 pixels wide by 20 pixels high, as shown in Figure 17-4.

Figure 17-4

To create a circle, just set the Height and Width to the same value.

Using the Path
Whereas the Rectangle and Ellipse controls are used to customize predefined, familiar shapes,
the Path control is used to represent any shape. Like the Rectangle and Ellipse, the Path control
includes Height and Width properties, but unlike Rectangle or Ellipse, the Path control has a
Data property that is used to define the point data that makes up the shape. And although you can
hand-code the path data, you’ll likely do that only in the most basic of cases and instead rely on a
tool like Expression Blend to actually define artwork.

Defining and Understanding Path Data
Start by looking at simple path data, then you can move on to additional properties on the Path
control that define the way the shape is ultimately rendered. The following XAML defines a 10×10
square purely using path data, also known as the path mini-language:

<Path
 HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Stroke=”#FF000000” Data=”M0,0 L10,0 L10,10 L0,10 L0,0 z”/>

Figure 17-5 shows this Path rendered in Expression Blend.

Figure 17-5

546  ❘  Chapter 17   Using Graphics and Visuals

The path data “M0,0 L10,0 L10,10 L0,10 L0,0 z” may look a little cryptic at first, but once you
know the basic structure, I think you’ll find it quite readable. All paths consist of a starting point
(defined by an X,Y-coordinate pair), followed by a series of subsequent points. In the data string for
this rectangle path, think of M as “MoveTo” and L as “LineTo.” The result reads more like a sentence:
“MoveTo 0,0 LineTo 10,0 LineTo 10,10 LineTo 0,10 LineTo 0,0 z”. The z closes the path.

The next XAML defines a circle purely using path data:

<Path Fill=”#FFCCFF00” Stretch=”Fill” Stroke=”#FF000000”
 Data=”M50.147999,25.323999 C50.147999,39.033916 39.033916,50.147999
 25.323999,50.147999 C11.614083,50.147999 0.5,39.033916
 0.5,25.323999 C0.5,11.614083 11.614083,0.5 25.323999,0.5
 C39.033916,0.5 50.147999,11.614083 50.147999,25.323999 z” />

Figure 17-6 shows this path rendered in Expression Blend.

Whereas the rectangle’s path data consists of a series of straight lines, the circle consists of a series
of curves. Instead of a simple X,Y pair representing each point on the path, the circle’s points are
represented by three X,Y pairs to define a Bezier point. The first and third X,Y pairs define the ten-
sion handles, and the second pair defines the anchor point. Figure 17-7 shows a selected point in
Expression Blend. The selected point is solid, with its two tension points denoted by circles drawn at
the end of the tangent line.

Figure 17-6 Figure 17-7

The path data “M50.147999,25.323999 C50.147999,39.033916 39.033916,50.147999
25.323999,50.147999 C11.614083,50.147999 0.5,39.033916 0.5,25.323999 C0.5,11.614083

11.614083,0.5 25.323999,0.5 C39.033916,0.5 50.147999,11.614083 50.147999,25.323999

z” for the circle is a bit more complex than that of the rectangle, but again with a little string substitution
the data will read like a sentence. This time, think of M as “MoveTo” and C as “CurveTo.” You’ll end up
with a sentence that reads like “MoveTo x,y CurveTo x,y x,y x,y CurveTo x,y x,y x,y...”.

The Basics ❘ 547

The following XAML mixes things up a bit by combining both LineTo and CurveTo points:

Data=”M74.833336,76.333336 L85.5,76.333336 C85.5,76.333336
 87.666351,83.250168 80.083427,83.250168 C72.500504,83.250168
 74.833336,76.333336 74.833336,76.333336 z”

With your new understanding of the path data syntax, you can now recognize that this path starts
with a line segment, followed by two Bezier points. However, unless you’re some type of savant, you
probably can’t read the data and immediately picture the path that will be rendered. That’s why, as
I said before, you’ll likely use a design tool to defi ne paths.

Try removing the closing z and see what your Path looks like. Its absence will be
more noticeable if you’ve set both the Stroke and StrokeThickness properties
and if your last point is a considerable distance away from your starting point.

Defi ning the Path resize Behavior
When you defi ned the rectangle as a Path, the fi rst point of your path data was (0,0). However,
when you drew the circle, the starting point was approximately (75,76). When the circle was ren-
dered on the screen, it didn’t actually start at the point (75,76). Instead, Silverlight drew the circle
artwork based on several properties on the Path control, taking into account the Path’s Width,
Height, HorizontalAlignment, VerticalAlignment, and Margin. The underlying path data was
normalized to the top-left corner of the Path control.

When the Path control is resized, the actual size of the control will differ from that of the underlying
path data. You can defi ne how the underlying data is rendered by setting the Stretch property. The
Stretch property accepts one of the following values:

Fill➤➤ (Default) — The artwork is stretched both vertically and horizontally, fi lling the Path
control. This is the behavior you most likely expect if you are coming to Silverlight from the
design world.

None➤➤ — The underlying artwork does not stretch at all.

Expression Blend strives to create a design-time experience that is consistent with
other design tools. As you resize and move Paths on the stage, the underlying path
data is sometimes modifi ed, along with the height, width, and alignment proper-
ties. This results in a Stretch property that does not always behave the way you
would expect if you were hand-coding all of your XAML.

Uniform➤➤ — The underlying artwork maintains its original shape and aspect ratio while scaling
to fi t within the control. With this mode the shape is always drawn in its entirety.

548  ❘  Chapter 17   Using Graphics and Visuals

UniformToFill➤➤  — ​The underlying artwork maintains its original shape and aspect ratio,
although if the aspect ratio of the containing Path control differs from the underlying path
data, the path will be clipped.

Figure 17-8 demonstrates how these different stretch modes affect the final rendering of a Path.

Figure 17-8

Using Geometries
You spent some time looking at the path mini-language to define a Path and came to the conclusion
that you probably wouldn’t be hand-coding this data very often. In cases where do you want to hand-
code paths, you can use alternative Geometry classes via XAML to make this process less abstract.

The Path’s Data property is actually of type Geometry. At run time, the path mini-language
is interpreted and converted to the geometries you’re about to take a look at. Start with the
RectangleGeometry class. Using the mini-language to define a 20×10 rectangle, the Data
would look like “M0,0 L20,0 L20,10 L0,10 C”. You can achieve the same result using a
RectangleGeometry:

<Path
 Fill=”#FFB5DA40”
 UseLayoutRounding=”False”
 Stretch=”Uniform”>
 <Path.Data>
 <RectangleGeometry Rect=”0,0,20,10”/>
 </Path.Data>
</Path>

The Rect property accepts four parameters (Left, Top, Width, and Height), so this code tells the
RectangleGeometry to draw a rectangle that is 20 pixels wide by 10 pixels tall, positioned at (0,0).
Though more verbose than the path mini-language, this XAML is much easier to read and under-
stand. In addition to the RectangleGeometry class, the following Geometries are available for you
to work with:

EllipseGeometry➤➤

LineGeometry➤➤

PathGeometry➤➤

The Basics  ❘  549

Both the EllipseGeometry and LineGeometry are used by themselves like the RectangleGeometry.
The following XAML defines a circle, centered at (100,100) with a radius of 50:

 <EllipseGeometry Center=”100,100” RadiusX=”50” RadiusY=”50”/>

With similar simplicity, the LineGeometry expects start and end points:

 <LineGeometry StartPoint=”0,0” EndPoint=”100,100”/>

And that’s how you define a line that starts at (0,0) and runs diagonally to (100,100).

Defining Complex Shapes
Once your geometry needs grow beyond basic rectangles, ellipses, and straight lines, you’ll need
to turn to the PathGeometry object. The PathGeometry object accepts a collection of PathFigure
objects, which in turn accept a collection of any number and order of PathSegment objects:

ArcSegment➤➤

BezierSegment➤➤

LineSegment➤➤

PolyBezierSegment➤➤

PolyLineSegment➤➤

PolyQuadraticBezierSegment➤➤

QuadraticBezierSegment➤➤

The following XAML uses three LineSegments to create a triangle:

<Path Fill=”Black”>
 <Path.Data>
 <PathGeometry>
 <PathGeometry.Figures>
 <PathFigure StartPoint=”50,0” IsClosed=”True”>
 <PathFigure.Segments>
 <LineSegment Point=”100,100”/>
 <LineSegment Point=”0,100”/>
 </PathFigure.Segments>
 </PathFigure>
 </PathGeometry.Figures>
 </PathGeometry>
 </Path.Data>
</Path>

This sample is intentionally simple so that you can see the basic structure of a PathGeometry. You
can add additional PathFigure objects to the Figures collection and combine any of the available
PathSegment objects in the PathFigure.Segments collection to achieve the final illustration.

550 ❘ chapter 17 uSIng grAphIcS And vISuAlS

Expression Blend will not preserve your hand-coded PathGeometries. Any time
you interact with a path on the design surface, hand-coded PathGeometry syntax
will be replaced with the mini-language syntax.

Why Use PathGeometries?
PathGeometries are generally used procedurally (in code-behind) rather than in XAML. In fact, when
working with Paths in Expression Blend, any hand-coded PathGeometries you’ve created will be blown
away and replaced with the path mini-language. This is rarely a problem, because you’re simply not
creating complex geometries by hand. It doesn’t make sense when you have a design surface and design
tools at your disposal.

However, if you’re dynamically generating masks or creating an application that itself has a design
surface (like a simple paint program) you’ll defi nitely become intimately involved with
the PathGeometry classes.

using clipping/Masking elements
When you want to prevent areas of an element from
showing you can use what is known as a clipping mask. In
Silverlight, this is achieved by setting the Clip property. Like
the Data property of the Path, the Clip property is of type
Geometry, which means you can use either the path mini-
language or the full PathGeometry syntax to defi ne a clip-
ping path. The following XAML clips a Viewbox using
an EllipseGeometry, resulting in the visual shown in
Figure 17-9:

<Grid Height=”213” Width=”318”>
 <Ellipse Fill=”#FF3F3F3F” Height=”211” Width=”314”
 VerticalAlignment=”Top”
 HorizontalAlignment=”Left”/>
 <Viewbox Width=”314” HorizontalAlignment=”Left” VerticalAlignment=”Top”
 Margin=”4,4,0,0” >
 <Viewbox.Clip>
 <EllipseGeometry RadiusX=”150” RadiusY=”100” Center=”150,100”/>
 </Viewbox.Clip>
 <Image Source=”Images/PikesPlace.jpg” Stretch=”Fill”
 Height=”2023” Width=”3038”/>
 </Viewbox>
</Grid>

Geometries.xaml

figure 17-9

The Basics  ❘  551

Just like working with Paths, it’s much easier to use Expression Blend to do the heavy lifting for you
when clipping objects. Simply define a path using the Expression Blend drawing tools, then size and
position the path over the object you want to clip. Once you have the path positioned, select both
the Path and the target object (hold down the Shift key to select multiple objects), then from the
main menu, select Object ➪ Path ➪ Make Clipping Path. Figure 17-10 shows both a MediaElement
and Path selected on the design surface with the command exposed on the main menu.

Figure 17-10

Notice that the Path is positioned directly over the MediaElement that I
want to clip. You need to position the Path exactly where you want the vis-
ible area of the object to be before using the Make Clipping Path command.
Expression Blend normalizes the values of the Path data to be relative to
the top-left corner of the element being clipped. With clipping masks, (0,0)
represents the top-left corner of the object being clipped, not the top-left
corner of the design surface. Figure 17-11 shows the MediaElement after it
has been clipped.

In the following XAML, you can see that the Clip property accepts the same path mini-language
that you should be vaguely familiar with now. Try hand-editing a few points to see how the clipping
mask is affected.

<MediaElement
 Width=“320”
 Height=“240”
 x:Name=“meSampleVideo”
 Source=“/SampleVideo.wmv”
 RenderTransformOrigin=“0.5,0.5”
 Clip=“M89.626343,47.989033 C89.626343,47.989033 1.9381521,109.92341

Figure 17-11

552  ❘  Chapter 17   Using Graphics and Visuals

 54.496151,126.16163 C107.05415,142.39984 88.938194,90.738899
 141.32475,105.99192 C193.71132,121.24493 205.15047,87.790825
 202.15236,82.222031 C199.15424,76.653236 186.56322,39.257092
 151.01031,33.257763 C115.45742,27.258436 89.626343,47.989033
 89.626343,47.989033 z”>
</MediaElement>

To remove the clipping path, select the clipped object on the design surface and then select
Object ➪ Path ➪ Release Clipping Path from the main menu. To edit an existing clipping path
on the design surface, you’ll need to release the clipping path, edit the path, and then use the
Make Clipping Path command once again.

Expression Blend Shapes

Expression Blend 4 ships with a number of predefined shapes
that you can drag directly from the Asset Library to the design
surface. This library adds to the simple Rectangle and Ellipse
more complex shapes like Star, Triangle, Ring, Pie, and
Pentagon. Figure 17-12 shows the new Shapes category selected
in the Asset Library.

Although 18 shapes are listed in this library, there are actually
only 5 underlying controls that have been preconfigured in
18 distinct ways:

Arc➤➤

BlockArrow➤➤

Callout➤➤

LineArrow➤➤

RegularPolygon➤➤

The 18 preconfigured options represent a core set of desirable
shapes, but you can create a much wider array of looks simply
by adjusting a few properties on each control. For example, the
Star, Pentagon, and Hexagon shapes are all created by adjust-
ing the InnerRadius and PointCount properties of the RegularPolygon shape. Figure 17-13 shows
the variety of shapes that can be created simply by dragging these preconfigured shapes onto the
design surface.

When you create an instance of one of these new shapes, Expression Blend automatically adds a
reference to the Microsoft.Expression.Drawing assembly and adds a new ed (Expression Design)
namespace definition to your page. Figure 17-14 shows three customized RegularPolygon controls,
and Listings 17-1 and 17-2 represent the underlying XAML. Note the required <ed:/> namespace
prefix for these new shapes.

Figure 17-12

Expression Blend Shapes  ❘  553

Figure 17-13

Figure 17-14

Listing 17-1:  ​Expression Design namespace definition

xmlns:ed=”http://schemas.microsoft.com/expression/2010/drawing”

Listing 17-2:  ​Defining the RegularPolygon

<StackPanel Height=”100” Orientation=”Horizontal”>
 <ed:RegularPolygon Fill=”#FFB9E04B” InnerRadius=”0.71” PointCount=”8”
 Stretch=”Fill” Width=”100” Margin=”0,0,20,0” StrokeThickness=”4”/>
 <ed:RegularPolygon Fill=”#FF6B4424” InnerRadius=”1” PointCount=”7”
 Stretch=”Fill” Width=”100” Margin=”0,0,20,0”/>
 <ed:RegularPolygon Fill=”#FF302D23” InnerRadius=”0.652” PointCount=”5”
 Stretch=”Fill” Width=”100” Margin=”0,0,20,0”/>
</StackPanel>

RegularPolygon.xaml

http://schemas.microsoft.com/expression/2010/drawing%E2%80%9D

554  ❘  Chapter 17   Using Graphics and Visuals

Binding to Shape Properties
Because these custom shapes are actually controls, all of their customization points can be
DataBound, which can open the door to some unique design opportunities. For example, suppose
you want to show a progress indicator while you’re loading something in the background. You
can start with a Pie shape (actually a customized Arc) and bind a progress value to the EndAngle
property of the Arc. The EndAngle range is 0 to 360, so you’ll have to coerce your underlying per-
centage into a value in that range (where 50% == 180), but that’s easily done. Listing 17-3 shows
the EndAngle property bound to a property named LoadProgress. This binding assumes that the
DataContext of my layout is set to a custom ViewModel object.

Listing 17-3:  ​Binding to shape properties

<ed:Arc EndAngle=”{Binding LoadProgress}” StartAngle=”0” />

This listing required a value of 360 to represent 100% progress. Though this isn’t difficult to achieve
programmatically, it does require additional manipulation.

Images and Media

Images and media are dealt with similarly in Silverlight. Each has a specialized control that points
to a source image or media file. The image or media can be either a file included in the project or an
external file, possibly residing on a remote server. This section starts by looking at the Image control,
then moves on to the MediaElement control. Once the Image control has been covered, there will just
be a few more things to add to bring you up to speed with MediaElement.

Displaying Images
Even though Silverlight provides a vector-based rendering and layout engine, you’re likely to use
Images in your Silverlight applications. Whether you’re creating a photo-browser, using an existing
image-based icon library, or working with artwork from your design team, I’m sure you’ll encounter
the need to use an image at some point in your Silverlight career.

Using the Image Control
The Image control is used to display bitmap images in your Silverlight applications. The following
XAML demonstrates how to display a photo that is 640×480 pixels in dimension, positioned 25 pixels
from the left and top of its parent Grid:

<Image
 Source=”myPhoto.jpg”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”25,25,0,0”
 Stretch=”Uniform” Width=”640” />

Notice that the Image control has a Stretch property, just like the Path control. And, like the Path
control, the available values for Stretch are Fill, None, Uniform, and UniformToFill. See the

images and Media ❘ 555

previous section, “Defi ning the Path Resize Behavior,” to understand how these values affect the
way the Image is resized.

If the Height and Width are not set or other sizing constraints (such as Margins)
are not in place, the Image will be displayed at the native size of the underlying
source image.

referencing images
Images referenced via the Image control can be images compiled into the containing assembly,
images that live inside the XAP fi le as siblings to your compiled assembly, images compiled as
resources in other assemblies, loose images on your server (outside of the XAP), or images on a
remote server. The following sections look at how each of these approaches is achieved and the
pros and cons of each.

Compiling images
An image is compiled into your project’s assembly when its Build Action is set to Resource. This is
the default approach taken by Expression Blend when you fi rst reference an image.

This is the same behavior you see in Flash when an image is imported and dragged
onto the stage. It is compiled into the SWF fi le and does affect fi le size.

Adding an Image in Expression Blend
The Image control in Expression Blend is not exposed in the main Toolbox. You have to open the
Asset Library, expand Controls, and select All, as shown in Figure 17-15. Select Image to make it the
active control. You can now draw an Image control on the canvas, just like you create a rectangle, or
you can double-click the Image icon to add a default-sized Image to the canvas.

Setting the Image Source
Once you’ve added an Image control to the surface, you need to set its Source property using the
Properties panel. The Source property is located in the Common Properties category. If you’ve
already added images to your project, those images should appear in the Source combo box. In
Figure 17-16, you can click the ellipses to launch a File Browser dialog.

Once you’ve selected an image, that image will be copied to your project directory and added to the
root folder of your project. Behind the scenes, the fi le’s Build Action will be set to Resource. This is
not something that you can change via the Expression Blend interface, but you can do so in Visual
Studio. Figure 17-17 highlights both the Build Action and the Copy to Output Directory properties
that are available in Visual Studio’s Properties window when a fi le is selected. The scenarios that
follow will require that you change these properties.

556  ❘  Chapter 17   Using Graphics and Visuals

Figure 17-15

Figure 17-16 Figure 17-17

You reference an embedded image using a relative URL. If the image is in the root folder of your
project, simply type its name. If the image is in a subfolder, such as Images, include the entire relative
path. For example, the following XAML references an image stored in the Images/Icons subfolder of
the project directory:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
 Source=”images/icons/iconHome.jpg”/>

You can also use a path that explicitly references the assembly in which this image is housed. If your
Silverlight project name is MyProject, the previous XAML could be replaced by the following:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
 Source=”/MyProject;component/images/icons/iconHome.jpg”/>

Images and Media  ❘  557

The text in bold is key: /MyProject;component/.

The text /MyProject should be replaced with the name of your project, but ;component/ should
remain at all times.

Pros➤➤  — ​Image is available immediately; simple relative path references; no security issues.

Cons➤➤  — ​Large images or large numbers of small images can bloat the assembly size and
increase page load time.

Using XAP File Images
An image is included in the XAP file and is not compiled into the assembly when its Build Action
is set to Content. When configured as Content, image files do not bloat the size of your project
assembly, but they do continue to bloat the size of the XAP file. You might want to do this if you
will be reusing the project assembly, but not the resources.

To reference the image in XAML, when images are included this way, you need to add a forward
slash (/) before the path to the image:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
 Source=”/images/icons/iconHome.jpg”/>

Pros➤➤  — ​Image is available immediately; simple relative path references; no security issues;
assembly size is reduced.

Cons➤➤  — ​Large images or large numbers of small images can bloat the XAP size and increase
page load time.

Adding Loose Images
You can add images to your project that are not compiled into the project assembly or added to the
XAP file. These files do not bloat either the assembly or the XAP file. To achieve this scenario, set
the Build Action of your image to None and set Copy to Local Directory to Copy Always or Copy
if Newer.

To reference the image in XAML, use the same syntax that you used with XAP file images, adding a
forward slash to the URI:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
 Source=”/images/icons/iconHome.jpg”/>

Pros➤➤  — ​Assembly size is reduced; XAP size is reduced (faster page load time).

Cons➤➤  — ​Image is not loaded at page load; image loads asynchronously after the XAP is
downloaded.

Use this scenario when you want to create a very lightweight, quick-loading application. You
can then use the WebClient to download the image asynchronously and provide a “loading”
experience.

558  ❘  Chapter 17   Using Graphics and Visuals

Compiling Images in Other Assemblies
Just as images can be compiled in your main project assembly, images can be compiled in additional
resource assemblies. These could be assemblies that you create yourself or they could be third-party
assemblies. And, just like referencing images embedded in the project assembly, images in other
assemblies can be referenced in XAML using a special syntax.

The following XAML references an image named alienFace.png defined in an assembly named
AlienImages.dll:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0” Width=”72”
 Source=”/AlienImages;component/images/alienFace.png”/>

This syntax should look familiar to you — ​it’s the same alternative syntax shown previously in the
“Compiling Images” section. The only thing that has changed is the assembly name. It should be
comforting to know that the URI for referencing resources is the same whether it is defined in the
main project assembly or a referenced assembly.

Pros➤➤  — ​Assembly size is reduced; XAP size is (potentially) increased, as referenced assemblies
grow in size; separates visuals from application logic.

Cons➤➤  — ​Images can be renamed or removed if you are not in control of the resource
assembly; increases the number of projects you must maintain (if you are in control of
the resource assembly).

Accessing Images on Other Domains
When you want to access an image on a remote server (like flickr or photobucket, or a friend’s site),
you can use the fully qualified URL to access the image:

<Image HorizontalAlignment=”Left” Margin=”10,10,0,0”
 Source=”http://www.remotewebsite.com/images/targetImage.png”/>

However, Silverlight’s security policies will prevent the remote image from loading if the remote
site does not have a security manifest file in place that grants you access. For all the gory details
on security policies, see Chapter 14.

Pros➤➤  — ​Enables your cross-domain needs.

Cons➤➤  — ​Cannot rely on image being at URI; requires security policies.

Which Build Action you choose is ultimately up to the priorities and reliance on images of your
application. If you are using just a few images that are relatively small in size, embedding the
images in your assembly probably makes sense. If your project is image-intensive and intended to
load gracefully for users with limited bandwidth, going with a loose image solution is probably
the right move for you. It will let you create a fast startup experience that then relies on asynchro-
nous image-loading.

http://www.remotewebsite.com/images/targetImage.png%E2%80%9D/

Images and Media  ❘  559

Displaying Media
Adding video to your Silverlight application is just as easy as adding an image using the Image
control. However, instead of using the Image control, you use the MediaElement control. With the
exception of a few additional properties and methods, working with media is practically the same
as working with images. In fact, you can pretty much re-read the previous section about images and
replace Image with MediaElement.

As was the case with the Image control, the MediaElement control is accessed by launching
Expression Blend’s Asset Library, expanding Controls, and selecting All. Figure 17-18 shows the
MediaElement control in the Asset Library.

Figure 17-18

Create an instance of the MediaElement by
dragging a rectangle on the design surface or
double-clicking the control’s icon once selected.
With the MediaElement selected on the design
surface, you can select a Source file by clicking the
ellipsis next to the Source property. Figure 17-19
shows the Source property in Expression Blend’s
Media category.

Once you’ve selected a supported media file, it will be
added to your project with a Build Action of Content
and a Copy to Output Directory setting of Copy if Newer. You can modify these settings in Visual
Studio to meet your needs. See the previous section, “Referencing Images,” to understand the various
options afforded to you by changing the values of these two properties.

Figure 17-19

560 ❘ chapter 17 uSIng grAphIcS And vISuAlS

This section on MediaElement just touches on adding a MediaElement to your page. For a much
more in-depth look at this control, see Chapter 20.

Brushes

In Silverlight, brushes are used to paint elements on your page. These brushes can be solid color val-
ues, linear or radial gradients, or even images. This section looks at the base XAML defi nitions for
each of these, then looks at how you can defi ne and edit brushes in Expression Blend.

painting with solids
The SolidColorBrush is used to paint elements with a (surprise, surprise) solid color. The following
XAML shows how to defi ne a SolidColorBrush and set its color property:

<SolidColorBrush Color=”#FFCCFF00”/>

Generally, when applying a solid color to an object, just set its appropriate Brush property (Fill,
Stroke, Background, or Border) inline:

<Rectangle Height=”20” Width=”100” Fill=”#CCFF00” />

You need to use the full SolidColorBrush defi nition only when you are creating Resources of type
SolidColorBrush. However, you can use the full syntax:

<Rectangle Height=”20” Width=”100”>
 <Rectangle.Fill>
 <SolidColorBrush Color=”#FFCCFF00”/>
 </Rectangle.Fill>
</Rectangle>

painting with linear gradients
Gradients are used in applications of every fl avor (desktop, Web, mobile) to create a modern,
polished experience. Through skilled techniques, artists can create glass effects, refl ection
effects, and subtle transitions that draw the eye from one area to the next. In Silverlight, you
use the LinearGradientBrush to achieve such feats. The following XAML defi nes a (boring)
black-to-white, vertical gradient:

 <LinearGradientBrush StartPoint=”0.5,0” EndPoint=”0.5,1”>
 <GradientStop Color=”#FF000000” Offset=”0”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”1”/>
 </LinearGradientBrush>

When two GradientStops share the same Offset value, the Silverlight renderer
relies on the order in which the GradientStops appear in XAML when drawing
the gradient.

Brushes  ❘  561

To define the direction of the gradient, you must specify both a
StartPoint and an EndPoint. The value of each of these prop-
erties is an ordered pair that specifies a point in a normalized
1×1 square, where 1 actually represents 100 percent. When the
control is rendered, this imaginary square stretches from the top-
left corner of the object’s bounding box (0,0) to the lower-right
corner of the object’s bounding box (1,1).

Figure 17-20 shows what the directional handles look like for
the previous LinearGradientBrush.

In addition to defining the StartPoint and EndPoint for the
brush, you also define a collection of GradientStops. Each
GradientStop consists of a Color and Offset. The Color
property accepts a Color using the #AARRGGBB notation, just
like the SolidColorBrush, and the Offset accepts a double-
precision value between 0 and 1. The Offset is used to define
the order of the each GradientStop.

Painting with Radial Gradients
The RadialGradientBrush can be used to define both radial and elliptical gradients. Like the
LinearGradientBrush, the RadialGradientBrush accepts a collection of GradientStops. The
following XAML creates a radial gradient that goes from blue in the center to white:

 <RadialGradientBrush>
 <GradientStop Color=”#FF65BADA” Offset=”0”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”1”/>
 </RadialGradientBrush>

By default, the radial gradient is drawn from the center of the object it is being applied to in a symmetri-
cal fashion. However, by adjusting the following properties, you can achieve a wide range of variations:

Center➤➤

RadiusX➤➤

RadiusY➤➤

GradientOrigin➤➤

The first three properties work together to define an ellipse within which a gradient is drawn. Just
like the LinearGradientBrush, you need to imagine a 1×1 normalized box that starts at the top-
left corner of the target object’s bounding box and stretches to the lower-right corner of the target
object’s bounding box. The values of all four of these properties lie within the 0 . . . 1 range and are
applied across this imaginary box. Figure 17-21 demonstrates how changing the values of Center,
RadiusX, and RadiusY affect the ellipse within which the gradient is drawn.

By default, Center is set to 0.5,0.5, and both RadiusX and RadiusY are set to 0.5. This is the first
example shown in Figure 17-21. Once you’ve defined the ellipse, you need to specify a GradientOrigin.

Figure 17-20

562  ❘  Chapter 17   Using Graphics and Visuals

Figure 17-21

You can think of the GradientOrigin almost like a light source, with the GradientStops radiating
from the GradientOrigin to the edge of the ellipse defined by the Center, RadiusX, and RadiusY
properties. Each ray is drawn from the GradientOrigin (offset 0) to the edge of the ellipse (offset 1).
Figure 17-22 shows how various values of GradientOrigin affect the final rendering.

Figure 17-22

Painting with Images
The ImageBrush is used to paint objects with images. You can use an ImageBrush for any Brush-
derived property, like the Path’s Fill property or the TextBlock’s Foreground property. When
applied, the image referenced by the ImageBrush is painted within the bounds of the object. The
following XAML defines an ImageBrush resource whose ImageSource property references a
wood-textured image:

<Grid
 Height=”Auto”
 Background=”{x:Null}”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”29,30,0,0” Width=”Auto”>
 <Grid.Resources>
 <ImageBrush

Brushes  ❘  563

 x:Key=”Brush1”
 Stretch=”UniformToFill”
 ImageSource=”wood.png”
 />
 </Grid.Resources>
 <Border
 Opacity=”1”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 Margin=”0,0,0,0”
 Background=”{StaticResource Brush1}” Width=”125” Height=”125” />
 <Ellipse HorizontalAlignment=”Left” Margin=”147,0,-126,-1”
 Width=”125” Fill=”{StaticResource Brush1}” Stroke=”#FF000000”
 Height=”125”/>
 <TextBlock HorizontalAlignment=”Left” Margin=”285,62,0,0”
 VerticalAlignment=”Center” FontFamily=”Arial Black” FontSize=”48”
 Text=”WOOD” TextWrapping=”NoWrap”
 Foreground=”{StaticResource Brush1}”/>
</Grid>

Figure 17-23 shows the result of the preceding XAML — ​an ImageBrush applied to Border,
Ellipse, and TextBlock objects.

Just like the Image control, the ImageBrush
control has a Stretch property that defines the
way the source image is rendered when the object
being painted is not the same size as the under-
lying image. As you’ve seen before, the values
for Stretch can be None, Fill, Uniform, and
UniformToFill.

Painting with Video
Just as you can paint an object with an image, you can paint an object with video! Though a lot of
the samples demonstrating this may seem a bit frivolous (like animated text with video painted on it),
being able to paint elements with video can enable some really interesting visual effects. Just for fun,
I’ll show you how to paint text with video anyway.

Instead of simply setting a Source property on the VideoBrush (as you did with ImageBrush), you
first have to define a MediaElement and give it a name. You then consume the MediaElement with the
VideoBrush by setting its SourceName property to the name of the MediaElement you just created.
You can then apply the VideoBrush to your target object just like any of the previous brushes you’ve
looked at.

The following XAML defines a MediaElement and sets its name to sourceMediaElement:

<MediaElement
 x:Name=”sourceMediaElement”
 Source=”SampleVideo.wmv” IsMuted=”True” Opacity=”0”
 IsHitTestVisible=”False” />

Figure 17-23

564  ❘  Chapter 17   Using Graphics and Visuals

In addition to giving the MediaElement a name, I also set Opacity to 0, IsHitTestVisible
to False, and IsMuted to True. Together these properties ensure that the MediaElement itself
is neither seen nor heard nor able to intercept mouse clicks. The following XAML defines
a VideoBrush that references this MediaElement. The VideoBrush is then applied to the
Foreground of a TextBlock:

<TextBlock
 FontFamily=”Arial Black” FontSize=”48” Text=”VIDEO”
 TextWrapping=”NoWrap”>

 <TextBlock.Foreground>
 <VideoBrush SourceName=”sourceMediaElement”
 Stretch=”UniformToFill” />
 </TextBlock.Foreground>
</TextBlock>

Editing Brushes in Expression Blend
You’ve seen how to define the various brush types by hand. Now it’s time to take a look at how
these same brushes can be created using Microsoft Expression Blend. Expression Blend provides
a brush-editing experience similar to other design programs you may have experienced before,
reducing the labor of hand-typing GradientStops to simple, familiar user-interface conventions.
Don’t feel that the previous XAML-focused exercise was a waste, however — ​you now have a
solid understanding of what’s happening behind the scenes, and you’re prepared to hand-tweak
the designer-generated brushes when they just don’t follow your every need.

Using the Brush Editor
 Properties such as Fill, Background, Stroke, and
Foreground all accept values of type Brush. You’ve
just seen how Silverlight supports brushes of type
SolidColorBrush, LinearGradientBrush,
RadialGradientBrush, ImageBrush, and VideoBrush.
A simple text field will obviously not work for this type
of property. Enter the Brush editor, a tool that should
look familiar to users of modern design programs.

In Figure 17-24, a rectangle is selected on the canvas
whose Fill property is set to a LinearGradientBrush.
On the right, the Brushes category is expanded (select
the Properties tab in Expression Blend if you haven’t
already). Notice the list of brush properties at the very
top of this category. You’ll see the Fill, Stroke, and
OpacityMask brush properties listed. You can tell that
Fill is the active property because it’s highlighted with
a light-gray background. Pay attention to two other
details here also: the brush preview drawn adjacent to
the property name, and the white marker directly next
to the preview. Figure 17-24

Brushes  ❘  565

You can use the preview to glance and quickly determine the brush values that are applied to the
currently selected object. The white box is known as a marker and launches a context menu for
the property. Clicking it reveals a menu that lets you reset the property value, among other things.
You can see that neither the Stroke nor the OpacityMask properties in Figure 17-24 have values set
because their markers are both grayed out.

Applying a Brush Value
The Brush editor is divided into four tabs, one for each brush type available. Click the first tab to
clear the brush value. Click the second tab to specify a SolidColorBrush, click the third tab to
specify a GradientBrush, and click the fourth tab to select a brush resource.

Applying Solid Color Brushes
When you specify a SolidColorBrush, the Brush editor interface appears as shown in
Figure 17-25.

Although this editor may appear a little complicated at first glance, it is actually quite simple and just
provides multiple ways to achieve the same task. You can quickly change the color by clicking any-
where in the large color area, indicated by the mouse cursor in Figure 17-25. Change the hue by drag-
ging the Hue slider or clicking anywhere along the hue range.

As you change the hue or choose different colors, the R, G, and B values will be updated accord-
ingly. These are the Red, Green, and Blue color components of the selected color, respectively.
Each component has a range from 0 to 255. The “A” entry listed beneath R, G, and B stands for
Alpha (Transparency) and has a value range from 0 percent to 100 percent, where 0 represents
fully transparent and 100 represents fully opaque. You can also specify the color by typing in an
#AARRGGBB hexadecimal representation. The hexadecimal box will accept RRGGBB values if
you paste in from a paint program that doesn’t include an Alpha value, so it’s a quick way to bring
over color values if you have them elsewhere.

SolidColorBrush Selected

Hue Slider

Red, Green, and Blue Color Values (0-255)

Opacity

Hexadecimal color Representation (#AARRGGBB)

EyeDropper Tool

Last Color Used

Initial Color of Selected Brush (return to initial just in case)

Figure 17-25

566 ❘ chapter 17 uSIng grAphIcS And vISuAlS

You can switch between RGB, HSL, HSB and CMYK color modes by clicking
on the R, G, or B letters in the color editor.

applying Gradient Brushes
Click the third tab in the Brush editor to specify a GradientBrush. By default, a
LinearGradientBrush will be applied to your selected object. You can toggle between
LinearGradientBrush and RadialGradientBrush by clicking either of the two Gradient
Type buttons located in the lower-left corner of the editor (as shown in Figure 17-26).

Active Brush Property

1
2
3
4

Brush Types

ImageBrush

Gradient Steps

Additional Brush-type Specific Properties

1
2 Gradient Type

1 – Null (Empty)
2 – SolidColorBrush
3 – Gradient (Linear or Radial)
4 – Resource

1 – LinearGradientBrush
2 – RadialGradientBrush

Active Node O�set

Active Node Selector

figure 17-26

The GradientBrush editor builds on the SolidColorBrush editor by adding a gradient preview
rectangle. The preview includes draggable swatches that represent GradientStops. Simply click a
swatch to make it the active swatch. In Figure 17-26, the rightmost swatch is active, indicated by
its black border.

The gradient editor supports all the key editing actions you would expect in a design tool:

Adding Stops➤➤ — Add additional GradientStops by clicking anywhere in the preview
rectangle that does not already include a stop.

Brushes  ❘  567

Moving Stops➤➤  — ​Change the position and order of stops by pressing and dragging the
target stop.

Deleting Stops➤➤  — ​Remove GradientStops by dragging the stop down and away from the
rectangle preview. Release when the stop disappears.

Precision Editing➤➤  — ​When editing gradients that require extreme precision, such as the sharp
highlight shown in Figure 17-27, you can step through stops by clicking the left and right
arrow, next to the selected stop icon. Specify offsets using the selected gradient stop offset
editor next to the selected stop icon.

In Figure 17-28, the second stop from the left is actually two stops. Their offsets are so close that
they appear to be a single stop. Achieving this level of precision can be achieved using the Precision
Editing method described above, or by directly editing the XAML. Jump directly to the XAML for
your selected rectangle by right-clicking it in the Object tree and selecting View XAML from the
context menu.

Figure 17-27 Figure 17-28

The following code shows the XAML used to define the gradient shown in Figure 17-28:

<Rectangle
 Opacity=“1“
 Canvas.Left=“689“
 Canvas.Top=“114“
 Width=“128“
 Height=“35t“>
 <Rectangle.Fill>
 <LinearGradientBrush
 StartPoint=“0.9334821701049805,0.05263148716517857“
 EndPoint=“0.9334821701049805,0.9473685128348214“>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop
 Color=“#FFd3ddab“
 Offset=“0“ />
 <GradientStop
 Color=“#FF819d35“
 Offset=“0.49“ />
 <GradientStop
 Color=“#FF739221“
 Offset=“0.49“ />
 <GradientStop
 Color=“#FF678822“
 Offset=“0.79“ />
 <GradientStop

568  ❘  Chapter 17   Using Graphics and Visuals

 Color=“#FFBBC749“
 Offset=“0.92t“ />
 <GradientStop
 Color=“#FFdbde58“
 Offset=“1“ />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Notice the two stops with Offset values of 0.49. Remember, when two stops have the same
Offset value, they are rendered in the order in which they’re defined in XAML. This gives you
the ability to create sharp lines in your gradients. Any time you find yourself having trouble get-
ting your gradient to look exactly right using the editor, you can jump to the XAML and manu-
ally tweak the Offset values.

Using the Gradient Tool
The Expression Blend Gradient Tool can be used to edit the gradient direction and gradient stops
directly on the design surface. If you flip back to Figure 17-24, you’ll see an arrow adorner drawn on
the surface of the selected rectangle. This adorner is visible when you press G on your keyboard, or
select the Gradient tool directly from the Tools palette.

You can drag either the head or the tail of the adorner to change the direction of the gradient, and
you can even edit GradientOffsets directly by dragging the circle nodes on the adorner. Double
click the node to launch a color editor on the design surface.

Creating ImageBrushes
ImageBrushes can be quickly created from existing Images on the design surface in Expression
Blend. First, create an instance of the Image control and set its Source property to an image you
want to use as an ImageBrush. With the Image selected, navigate to Make ImageBrush Resource
on the main menu, as shown in Figure 17-29.

After selecting Make ImageBrush Resource, you will be prompted to specify both a Key and a location
for the ImageBrush resource. In Figure 17-30, I gave my brush the name tiledImageBackgroundBrush
and selected UserControl as the location where I want the resource defined.

Figure 17-29 Figure 17-30

Brushes  ❘  569

After clicking OK, it appears as if nothing has happened. The selected control is still an Image,
and your design surface remains unchanged. Behind the scenes, a new ImageBrush resource was
created in the location you specified, either in App.xaml or in the current Page’s resources collec-
tion (UserControl.Resources).

You can now apply this new resource using the fourth tab of the Expression Blend Brush editor.
First, draw a Rectangle on the stage, and then switch to the Properties tab if you have not already
done so. With the rectangle selected, click the Fill property in the Brush editor to make it the
active brush property. Now, select the Brush Resources tab, the fourth tab next to the Gradient
Brush tab. Figure 17-31 shows the Brush Resources tab selected.

Figure 17-31

With the rectangle selected, clicking the name of the ImageBrush you just defined applies the brush
to the active brush property (in this case, Fill). By default, the image used by the ImageBrush is
scaled uniformly within the object to which it is being applied. But, just like the Image and several
other controls you’ve looked at along the way, the ImageBrush has a Stretch property that lets you
define the stretching and scaling behavior of the image.

To edit the Stretch property of the ImageBrush, you have to switch to the Resources tab of
Expression Blend. Figure 17-32 shows the Resources tab selected and UserControl expanded to
reveal the ImageBrush named myTiledBackgroundBrush.

Click the down arrow next to the brush preview to reveal the Brush editor and set the Stretch
property, as shown in Figure 17-33.

Figure 17-32 Figure 17-33

570 ❘ chapter 17 uSIng grAphIcS And vISuAlS

The two other important properties of the ImageBrush — ViewportUnits, and Viewport — are not
exposed in the version of Expression Blend available at the time of this writing. You’ll have to jump
to XAML to edit those properties. (See, I told you the XAML section wasn’t a waste!)

Expression Blend does not currently provide authoring support for VideoBrush.
For now, you’ll have to defi ne your VideoBrush resources by hand. See the
“Painting with Video” section earlier in this chapter.

fonts and font eMBedding

Silverlight ships with several “system” fonts built-in. I put “system” in quotation marks, because
these are included in the Silverlight run time and do not fall back to the operating system, so you
can count on these core fonts whether you are running your Silverlight application on Windows,
OS X, or Linux. Figure 17-34 shows a preview of these always-available fonts.

These fonts should all be familiar to you — they’ve shipped as standard fonts with Windows since
Windows XP. Well, maybe not Portable User Interface. What is that, anyway? The Portable User
Interface designation is really a fallback to the default Lucida Sans Unicode. It’s the font you get
when you don’t specify a FontFamily.

If you’ve selected a TextBlock in Expression Blend, you’ll see these default fonts listed at the top of
the FontFamily drop-down (see Figure 17-35). The blue Silverlight logo next to these fonts indicates
that they are embedded.

figure 17-34 figure 17-35

Fonts and Font Embedding  ❘  571

If you want to use a font other than one of the defaults, you’ll have to embed that font in your proj-
ect (or a referenced assembly). This is easy in Expression Blend: Simply select the font you want to
apply and check the Embed box in the Text Properties panel. Expression Blend will automatically
create a Fonts folder, copy the required fonts files to that folder, and set their Build Action. It will
also write the FontFamily syntax required for referencing embedded fonts so you can go about your
business designing. If you’re not using Expression Blend you’ll have to do these steps manually, as
described next.

To get started, find a font file on your system that you want to use in your Silverlight application. In
Expression Blend, you can add the font to the project by right-clicking either the project itself or a
folder within the project and selecting Add Existing Item, as shown in Figure 17-36.

As with images, when Expression Blend adds external font files, it automatically sets the Build Action to
Resource. If you add the file using Visual Studio, you need to manually set the Build Action to Resource
(see Figure 17-37).

Figure 17-36 Figure 17-37

Once the font is included in your project as a resource, apply it via XAML by setting the
FontFamily property:

<TextBlock FontFamily=”Fonts/DistrictThin.ttf#DistrictThin“
 Text=”Custom Font: District Thin” />

Here’s a breakdown of FontFamily’s value so that you understand exactly how this works. First,
specify the actual font file path within your project. In this case, it’s “Fonts/DistrictThin.ttf”.
Next, you specify the actual name of the font, preceded by the # symbol. Here, it’s “#DistrictThin”.
It’s important to note that the name of the font may be different from the filename of the font. An easy
way to find the name of the font is by double-clicking the font file in Windows Explorer and taking a
look at the Font Name declaration at the top of the preview window. Figure 17-38 shows this preview
window for the example font DistrictThin.

572  ❘  Chapter 17   Using Graphics and Visuals

Figure 17-38

In the previous XAML, the font file was referenced just like you reference image resources in the
project. And, just as you saw with image references, you can add a notation to the FontFamily font
source path that specifies which assembly the font file resides in. The following XAML explicitly
declares the project (assembly) name:

<TextBlock FontFamily=”/BookProject;component/Fonts/DistrictThin.ttf#DistrictThin”
 Text=”Custom Font: District Thin” />

This means that you can embed font resources in other assemblies and still reference them via
XAML, using a familiar syntax that is consistent with the syntax used by other controls.

Effects

Effects are used throughout the design industry — ​from print to the Web to desktop applications to
motion video. These effects are used to add realism (subtle glows), create a sense of depth (drop shad-
ows), simulate a real-world phenomenon (rippling water), and achieve a wide variety of additional visu-
alizations. The core Silverlight run time includes a couple of common effects (Blur and DropShadow)
but also supports custom PixelShader-based effects. This support essentially delivers the potential for an
infinite number of effect possibilities.

Applying Effects
All objects derived from UIElement have a property of type Effect that also happens to be named
Effect. To apply an effect to an object, you simply set the value of this property to an object that
derives from Effect. The following sample XAML defines two buttons, one with and one without
a BlurEffect applied:

<StackPanel Orientation=”Horizontal” HorizontalAlignment=”Center”>
 <Button Content=”I’m Not Blurred”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”

eff ects ❘ 573

 Margin=”0,0,10,0”>
 </Button>
 <Button Content=”I’m Blurred”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”>
 <Button.Effect>
 <BlurEffect Radius=”4” />
 </Button.Effect>
 </Button>
</StackPanel>

This XAML results in a layout that looks like that shown in Figure 17-39.

figure 17-39

Currently only a single effect can be applied to an object at a time. To apply
multiple effects to the same visual, you will need to wrap the target element
with additional panels (such as a Border) and progressively apply effects to
each wrapper panel.

using native eff ects
Silverlight includes two native effects that are included as part of the core run time — BlurEffect and
DropShadowEffect. These two effects alone may not seem like much, but the DropShadowEffect can
also be used to create what is traditionally known as a glow effect as well. Together, these three effects
are probably the most commonly used effects when creating user interface artwork.

applying the Blureff ect
Using the BlurEffect is extremely simple and includes only a single customization property —
Radius. The radius is used to determine how blurry the target element is: the higher the radius
value, the blurrier your target. The default value for this property is 5 (in device-independent units
of 1/96 of an inch).

Figure 17-40 shows the same target element
with varying degrees of blur applied.

Common uses for the BlurEffect include
the following:

Blur the main body of your application to draw focus to modal dialogs in the foreground.➤➤

Apply ➤➤ BlurEffects over time in animations to simulate motion blur.

figure 17-40

574  ❘  Chapter 17   Using Graphics and Visuals

Emphasize disabled items by slightly blurring them.➤➤

Create a sense of depth by applying varying degrees of blur to layers in your application.➤➤

Applying the DropShadowEffect
The DropShadowEffect can be used to create both drop shadow and glow effects. Unlike the
BlurEffect, this effect includes more than one property for customization. The following XAML
defines a DropShadowEffect that results in a green glow around a custom button (Style is
defined in Chapter 21):

<Button Style=”{StaticResource ButtonWithDropShadow}”
 Width=”130” Content=”GLOW” Height=”45”>
 <Button.Effect>
 <DropShadowEffect ShadowDepth=”0” BlurRadius=”20” Opacity=”1”
 Color=”#FF25DFCE” Direction=”315”/>
 </Button.Effect>
</Button>

It’s by setting the ShadowDepth property to 0 that this effect essentially becomes a glow effect.
The other properties all affect the way the final “shadow” is drawn. Figure 17-41 shows several
DropShadowEffect configurations and their resulting visuals. The first sample shown is the result
of the preceding XAML.

Figure 17-41

When using the DropShadowEffect for user interfaces, I generally find subtle techniques, such as
the Soft Shadow or Radiosity samples in the figure, more effective than “in your face” options like
Hard Shadow and Top Shadow. I hope you see that a wide variety of visualizations can be achieved
with this single effect.

Applying Effects in Expression Blend
You don’t have to manually apply effects in XAML if you’re using Expression Blend 4. Figure 17-42
shows the Asset Library expanded with the Effects tab selected.

To apply an effect, press and hold your mouse over the effect you want to apply and drag the effect
to the target object either on the design surface or in the Object tree. The effect will appear in the
Object tree as shown in Figure 17-43.

Effects  ❘  575

Figure 17-42 Figure 17-43

Editing the properties of an effect is no
different from editing the properties of
any other selected object on the stage. You
can either select the effect in the Object
tree directly and edit the effect’s proper-
ties in the Properties panel, or you can
select the parent object (in this case Image)
and expand the Effect property in the
Properties panel. Figure 17-44 shows the
Properties panel when the effect is selected
directly (on the left) and shows the Effect
property expanded when the parent Image
is selected.

Using Custom Effects
Silverlight opens up a world of creativity possibilities by supporting custom High Level Shading
Language (HLSL)–based effects. HLSL is the shader language used to define DirectX effects and
was introduced with DirectX 8. Because HLSL has been around for a while, you can find a large
number of articles and free resources (read: “free effects”) that you can take advantage of. Start by
visiting http://msdn.microsoft.com/en-us/library/bb509561(VS.85).aspx to learn more
about HLSL, then do a Web search on HLSL to find a wealth of resources on this topic.

Figure 17-44

http://msdn.microsoft.com/en-us/library/bb509561%28VS.85%29.aspx

576  ❘  Chapter 17   Using Graphics and Visuals

To use HLSL-based effects in Silverlight, you have to create a proxy class derived from ShaderEffect.
It’s in this derived class that you load precompiled HLSL bytecode and define proxy properties between
your class and the underlying HLSL effect. In the walk-through that follows, you first learn how to use
freely available tools to tweak and compile HLSL shaders, and then see how to consume those effects in
custom classes that can be used in your Silverlight projects in the same way as native effects.

Getting the Tools
To compile HLSL shaders, you’ll need the DirectX SDK, freely available on the Microsoft website.
In addition to the SDK, I also recommend downloading Walt Ritscher’s Shazzam Shader Editing
Tool, updated in early 2010 with native support for Silverlight code generation. Shazzam is delivered
as a WPF ClickOnce application and provides a nice interface for editing and testing HLSL shaders.

DirectX SDK➤➤  — ​http://msdn.microsoft.com/en-us/directx/aa937788.aspx

Shazzam➤➤  — ​http://shazzam-tool.com/publish.htm

Viewing and Compiling Shaders with Shazzam and the DirectX SDK
Start by downloading and installing the latest version of the DirectX SDK. (Be warned, it’s a fairly hefty
400+ MB download.) Once you’ve installed the SDK, install and run Shazzam. The first time you run
Shazzam, you’ll probably need to update its settings to ensure that it knows the correct location of the
DirectX FX compiler. Do this by expanding the Settings panel and clicking the Browse button, shown
expanded in Figure 17-45.

Figure 17-45

http://msdn.microsoft.com/en-us/directx/aa937788.aspx
http://shazzam-tool.com/publish.htm

Effects  ❘  577

The default installation path required by Shazzam will be something like C:\Program Files\
Microsoft DirectX SDK (March 2009)\Utilities\bin\x86\fxc.exe. This path will vary
slightly based on the version of the SDK you’ve installed and whether or not you’ve changed the
default installation path. Be sure to select Silverlight as the Target Framework on the Settings panel
as well. Once you’ve addressed these settings, you can move on to the fun stuff — ​testing and com-
piling shaders.

Shazzam ships with several default shaders that you can play with by expanding the Shader
Loader panel. Click the Sample Shaders button, and then select a shader from the list. The shader
will be loaded in an uncompiled state as the first tab. Press F5 or select Tools ​➪ ​Apply from the
main menu to compile and test the results. When you compile a shader in Shazzam, several impor-
tant things happen:

ShaderEffect➤➤ -derived classes are auto-generated in both C# and Visual Basic for use in your
own projects.

The Change Shader Settings tab is either added or updated, providing you with an interface ➤➤

for modifying the shader input values.

The new effect is applied to all of the sample images in the tabbed preview area.➤➤

Figure 17-46 shows the Embossed.fx shader selected, compiled, and applied to the Sample5 image.

Figure 17-46

578  ❘  Chapter 17   Using Graphics and Visuals

I’ve set the value of the Amount parameter to .57 and the value of the Width parameter to .004.
For many of the sample effects, the default value range of the sliders is not effective. For example,
I changed the Max value of Width to .01 for this Embossed effect. If you compile a shader and feel
like it’s not working, it’s likely that you just haven’t found an appropriate combination of input val-
ues yet.

Creating a Custom Shader Effect
With the custom shader tweaked and compiled, it’s now time to create a custom ShaderEffect class
that can be consumed by your Silverlight applications. Shazzam has already taken a lot of the guess-
work out of the process by compiling the .fx shader and generating a starter effect class for you. You
now have to add the compiled effect to your Visual Studio project and customize the starter class for
Silverlight. (Shazzam currently generates WPF code.)

Adding the Compiled Shader to Visual Studio
Select Tools ​➪ ​View Compiled Shaders from the main menu
in Shazzam. This opens the GeneratedShaders folder in
Windows Explorer. You will see a number of .ps files, one
for each Sample Shader you’ve compiled and tested. In this
sample, I’m going to use the Embossed shader. Create a
folder named Shaders inside your Visual Studio project, and
then drag Embossed.ps from Windows Explorer to the
Visual Studio folder. Figure 17-47 shows the file Embossed.ps
added to the Shaders folder inside the Visual Studio project.
Make sure you set the Build Action of your shader file
to Resource.

Creating the Effect Class
With the shader in place in the project, it’s now time to create
your proxy effect class. Start by creating an Effects folder in
Visual Studio. Add an empty class to that folder with the filename EmbossedEffect.cs. Now, switch
back to Shazzam and select the Generated Shader — ​C# tab (or Visual Basic if you’re trying this in VB).
Copy all of the auto-generated code to the new EmbossedEffect class you just added to Visual Studio.

Following is the initial code generated by Shazzam:

using System;
using System.Windows;
using System.Windows.Media;
using System.Windows.Media.Effects;
using System.Windows.Media.Media3D;

namespace Ch17Graphics.Shaders
{
 /// <summary>An effect that embosses the input.</summary>
 public class EmbossedEffect : ShaderEffect
 {
 public static readonly DependencyProperty InputProperty =

Figure 17-47

Effects  ❘  579

 ShaderEffect.RegisterPixelShaderSamplerProperty(“Input”,
 typeof(EmbossedEffect), 0);
 public static readonly DependencyProperty AmountProperty =
 DependencyProperty.Register(“Amount”, typeof(double),
 typeof(EmbossedEffect), new PropertyMetadata(((double)(0.5)),
 PixelShaderConstantCallback(0)));
 public static readonly DependencyProperty WidthProperty =
 DependencyProperty.Register(“Width”, typeof(double),
 typeof(EmbossedEffect), new PropertyMetadata(((double)(0.003)),
 PixelShaderConstantCallback(1)));
 public EmbossedEffect()
 {
 PixelShader pixelShader = new PixelShader();
 pixelShader.UriSource = new
 Uri(“/Ch17Graphics;component/Shaders/Embossed.ps”, UriKind.Relative);
 this.PixelShader = pixelShader;

 this.UpdateShaderValue(InputProperty);
 this.UpdateShaderValue(AmountProperty);
 this.UpdateShaderValue(WidthProperty);
 }
 public Brush Input
 {
 get
 {
 return ((Brush)(this.GetValue(InputProperty)));
 }
 set
 {
 this.SetValue(InputProperty, value);
 }
 }
 /// <summary>The amplitude of the embossing.</summary>
 public double Amount
 {
 get
 {
 return ((double)(this.GetValue(AmountProperty)));
 }
 set
 {
 this.SetValue(AmountProperty, value);
 }
 }
 /// <summary>The separation between samples (as a fraction of input
 size).</summary>
 public double Width
 {
 get
 {
 return ((double)(this.GetValue(WidthProperty)));
 }
 set
 {

580  ❘  Chapter 17   Using Graphics and Visuals

 this.SetValue(WidthProperty, value);
 }
 }
 }
}

Shaders\EmbossedEffect.cs

The generated code includes a class derived from ShaderEffect and dependency properties for
each of the shader’s input fields. If you didn’t customize the namespace in Shazzam’s settings panel,
now is a good time to update the namespace manually. Here, you’ll see Ch17Graphics.Shaders as
the namespace.

The PixelShader property (defined on ShaderEffect) is initialized to a new instance of PixelShader
whose UriSource references the compiled .ps file you added to the project previously. This is the magic
hookup that ties the HLSL shader to a Silverlight-supported ShaderEffect. The last three lines of this
constructor ensure that the shader values are initialized the first time it is applied.

Before moving on to actually applying the custom effect, I want to recap what is a fairly simple process:

	 1.	 Test and compile the shader in Shazzam.

	 2.	 Add a compiled .ps file to Visual Studio and set its Build Action to Resource.

	 3.	 Add a new xEffect-named class to your project.

	 4.	 Copy the Shazzam-generated effect code to your new class.

	 5.	 Update the namespace (if necessary).

	 6.	 Update the Uri reference to the .ps file you added.

Applying the Custom Effect
With the custom effect defined, you can now apply it via XAML just like you apply the Blur and
DropShadow effects. The only additional thing required is a namespace mapping to your custom
effects namespace. The following XAML defines a localEffects namespace and applies the
EmbossedEffect to a sample image:

<UserControl
 xmlns:localEffects=”clr-namespace:Ch17Graphics.Effects”

<Image Source=”Images/sampleImage.jpg”>
 <Image.Effect>
 <localEffects:EmbossedEffect Width=”.003” Amount=”1” />
 </Image.Effect>
</Image>

Figure 17-48 shows the sample image with and without the EmbossedEffect applied.

You can easily enable real-time adjustments of the effect input values by binding Slider controls
to the effect instance itself, just as Shazzam generates automatically. The following XAML adds

Transforms ❘ 581

an x:Name attribute to the EmbossedEffect instance and binds a Slider’s Value property to the
EmbossedEffect’s Width property:

<Image Source=”Images/sampleImage.jpg”>
 <Image.Effect>
 <localEffects:EmbossedEffect x:Name=”EmbossedEffect”
 Width=”.003” Amount=”1” />
 </Image.Effect>
</Image>
<Slider Value=”{Binding ElementName=EmbossedEffect, Path=Width, Mode=TwoWay}”
 Minimum=”0” SmallChange=”.001” Maximum=”.01” />

Effects.xaml

figure 17-48

When you compile and run, you can drag the slider and adjust the Width parameter of the
EmbossedEffect in real time — Nice!

No doubt you are now starting to see the power of shader-based custom effects in Silverlight. There are
so many creative possibilities here. If you’re interested in seeing more effects than those that ship with
Shazzam, be sure to check out the open-source WPF/Silverlight Shader Effects Library at Codeplex:
http://wpffx.codeplex.com. In addition to providing a large number of predefi ned effects, this solu-
tion also demonstrates how to share a code base between Silverlight and WPF projects.

The use of effects does incur a performance hit, as pixel shader effects are ren-
dered in software. Any objects that have an effect applied to them will also be
rendered in software, so be sure to keep this in mind when working with effects
and apply them strategically.

transforMs

Using the Silverlight Transform classes, you can rotate and position (in 2D and 3D), scale, and
skew any object on the design surface. Together, these transforms are used to add interactivity
and motion to your applications. For example, you can apply and animate both a ScaleTransform

http://wpffx.codeplex.com

582 ❘ chapter 17 uSIng grAphIcS And vISuAlS

and a RotateTransform in the MouseOver state of a Button’s style. You defi ne the underlying
Button, without rotation or scaling, and then independently apply the transform(s) to achieve the
desired effect.

Silverlight offers both 2D and 3D manipulation capabilities. You can apply a single 2D transform, a
single 3D transform, a collection of 2D transforms, or both 2D and 3D transforms at the same time.
All of the properties of these transforms can be animated via Storyboards, or directly manipulated
via code at run time, which provides you with a great deal of creative freedom. This section starts
by looking at the 2D transform classes.

using 2d transforms
Here are the four core Transform classes that you will use most frequently:

RotateTransform➤➤

ScaleTransform➤➤

SkewTransform➤➤

TranslateTransform➤➤

Transforms are applied by setting the RenderTransform property of any UIElement. The following
XAML shows a RotateTransform applied to a simple Button instance:

<Button
 Content=”Rotated”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”>
 <Button.RenderTransform>
 <RotateTransform Angle=”35”/>
 </Button.RenderTransform>
</Button>

Take a look at each of these transforms in a little more detail. For the most part, each of these trans-
forms is extremely easy to work with and consists of just a couple of key properties to manipulate.

To apply more than one transform at a time, you’ll need to either use a
CompositeTransform (new to Silverlight 4) or a TransformGroup. These are
covered in the “Applying Multiple Transforms” section later in this chapter.

Using the rotateTransform
Elements are rotated by applying a RotateTransform. The following XAML demonstrates how to
apply a rotation of –75 degrees to an object. The fi nal result is shown in Figure 17-49.

<Rectangle
 Fill=”#FF3FA9F5”
 HorizontalAlignment=”Left” Margin=”0,0,0,5”

Transforms  ❘  583

 Width=”88” RadiusY=”18” RadiusX=”18”
 RenderTransformOrigin=”0.5,0.5”>
 <Rectangle.RenderTransform>
 <RotateTransform Angle=”-75”/>
 </Rectangle.RenderTransform>
</Rectangle>

Though not commonly used, and not even exposed by Expression Blend, the RotateTransform
includes CenterX and CenterY properties that can be used to adjust the origin of the rotation that
is applied to the underlying object. These values are pixel-based and not percentage based, which
means you’ll need to know the exact size of your target object when setting these values. The more
common approach to modifying the rotation origin is by adjusting the RenderTransformOrigin.

By default, when you apply a transform the translation is anchored to the top-left corner of the
object at (0,0). In some cases this has the desired result (if you want to simulate a stack of photos
that are pinned together at their top-left corner and fanned out); however, in most cases you’ll
expect the transform to be applied from the center of the object. To do this you’ll need to set the
RenderTransformOrigin to (0.5,0.5). Expression Blend does this for you automatically when you
apply a transform to an object.

Test this out by first drawing a rectangle on the design surface and then rotating it. Note that the
RenderTransformOrigin property has automatically been set (either by viewing the XAML or
expanding the Miscellaneous category in the Expression Blend Properties panel). Figure 17-50 dem-
onstrates how various values of RenderTransformOrigin alter the final effect.

Figure 17-49 Figure 17-50

Using the ScaleTransform
The ScaleTransform lets you increase or decrease the size of a target object on a
percentage basis. For example, to double the size of an object, set the ScaleX and
ScaleY properties of the ScaleTransform to 2. This effect is commonly used either
by itself or in combination with the RotateTransform to add interactivity to but-
tons. The following XAML shows a TextBlock being scaled by 150 percent, with
the final result shown in Figure 17-51.

<TextBlock
 HorizontalAlignment=”Left” Margin=”30,31,0,-5” TextWrapping=”Wrap”
 Text=”X” Foreground=”White” FontSize=”64” FontFamily=”ChunkFive”
 RenderTransformOrigin=”0.5,0.5”>
 <TextBlock.RenderTransform>
 <ScaleTransform ScaleX=”1.5” ScaleY=”1.5”/>
 </TextBlock.RenderTransform>
</TextBlock>

Figure 17-51

584  ❘  Chapter 17   Using Graphics and Visuals

Using the SkewTransform
Elements can be skewed either on the X-axis, the
Y-axis, or both by setting the AngleX and AngleY prop-
erties. The following XAML creates an italic effect by
skewing a TextBlock on its X-axis. Figure 17-52 shows
the final result.

<TextBlock Text=”Transforms” Foreground=”#FFA1A1A1” FontSize=”64”
 FontFamily=”ChunkFive” HorizontalAlignment=”Left”
 RenderTransformOrigin=”0.5,0.5”
 <TextBlock.RenderTransform>
 <SkewTransform AngleX=”-8”/>
 </TextBlock.RenderTransform>
</TextBlock>

Using the TranslateTransform
The TranslateTransform is used to move elements on the X- and Y-axis, “translating” them from
their original positions. The X and Y properties are pixel-based, so the following XAML moves the
original object 87 pixels to the right and 26 pixels down (shown in Figure 17-53).

<TextBlock HorizontalAlignment=”Left” Text=”AML” Foreground=”#FFFD832D”
 FontSize=”64” FontFamily=”ChunkFive” RenderTransformOrigin=”0.5,0.5”>
 <TextBlock.RenderTransform>
 <TranslateTransform X=”87” Y=”26”/>
 </TextBlock.RenderTransform>
</TextBlock>

You may be wondering why you would use a TranslateTransform if you
have so many positioning capabilities at your disposal already (Margins,
Canvas.Top, Canvas.Left, and so on). More so than the previous transforms,
the TranslateTransform is used predominantly for animation or interactivity.
For example, when you create an “opening” Storyboard in Expression Blend to
animate elements into place, the X and Y properties of the TranslateTransform
are animated rather than the Canvas.X and Canvas.Y (or left and right mar-
gins plus HorizontalAlignment and VerticalAlignment) properties.

The translation is applied to elements after they have been positioned and sized by the Silverlight
rendering engine so you’re guaranteed that the spacing and layout is not altered as the elements are
re-positioned.

Using the MatrixTransform
The MatrixTransform can be used to achieve additional custom transformations that cannot be
achieved using the core set of transforms just discussed. This particular transform is not tooled by
Expression Blend and is beyond the scope of this book. A number of examples and guided tutorials
are available online that you can use to dig into this more abstract transform.

Figure 17-52

Figure 17-53

Transforms  ❘  585

Applying Multiple Transforms
All of the previous samples demonstrate how to apply a single transform by setting the
RenderTransform property. In real-world layouts, you’ll often need to apply more than one trans-
form at a time, and though the RenderTransform property accepts only a single value, that doesn’t
mean you can’t apply more than one transform.

In previous versions of Silverlight, you would have used the TransformGroup to define a collec-
tion of transforms. Silverlight 4 introduces the CompositeTransform, the new preferred method of
applying multiple transforms to elements. This section starts by looking at the TransformGroup,
then moves on to the CompositeTransform.

Using the TransformGroup
The TransformGroup accepts a collection of transform objects, letting you apply any number of
transforms to the target element. The following XAML scales, skews, rotates, and translates the
target object:

<local:Fly x:Name=”transformViaGroup” Height=”150” Width=”150”>
 <local:Fly.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleX=”0.75” ScaleY=”0.85” />
 <SkewTransform AngleX=”-18” />
 <RotateTransform Angle=”33” />
 <TranslateTransform X=”46” />
 </TransformGroup>
 </local:Fly.RenderTransform>
</local:Fly>

Transforms.xaml

With the TransformGroup, the order in which transforms are applied affects the final rendering.
The order used in the preceding code is the preferred order and is what Expression Blend 3 (and
earlier) generated automatically any time you applied a transform to an element. Try changing the
order of the transforms and note how the final result changes.

Using the CompositeTransform
The CompositeTransform is new to Silverlight 4 and is the preferred method of applying multiple
transforms. In fact, Expression Blend 4 now renders a CompositeTransform any time you apply a
transform to an element, where previous versions used the TransformGroup. This new transform
brings several advantages to the table:

Simplifies XAML by uniting all transform properties on a single object.➤➤

Applies transforms in the recommended order (guaranteeing consistent transform results).➤➤

Simplifies code manipulation of transforms.➤➤

586  ❘  Chapter 17   Using Graphics and Visuals

The following XAML uses a CompositeTransform to achieve the exact same render result as the
TransformGroup of the previous section:

<local:Fly x:Name=”transformViaComposite” Width=”150” Height=”150”>
 <local:Fly.RenderTransform>
 <CompositeTransform
 SkewX=”-18”
 Rotation=”33”
 ScaleX=”0.75”
 ScaleY=”0.85”
 TranslateX=”46”/>
 </local:Fly.RenderTransform>
</local:Fly>

Transforms.xaml

Though most of the CompositeTransform’s properties were used, the following is a complete list of
the available properties:

CenterX➤➤

CenterY➤➤

Rotation➤➤

ScaleX➤➤

ScaleY➤➤

SkewX➤➤

SkewY➤➤

TranslateX➤➤

TranslateY➤➤

Figure 17-54 shows the final composite of the individual transforms seen throughout this section
and shows the TransformGroup and CompositeTransform side-by-side, demonstrating the identical
rendering of these two approaches.

Figure 17-54

Transforms  ❘  587

Using Perspective 3D
Silverlight gives you the ability to rotate every UIElement in your application in its own three-
dimensional (3D) space simply by setting the Projection property. Unlike true 3D environments
wherein multiple elements live in a shared 3D space, objects in Silverlight each have their own
space. In Silverlight, 3D is really a 3D transform applied to individual objects and not a true all-
encompassing 3D environment that supports 3D objects and materials. For example, you can’t
import a .3DS model of a fighter jet and have it fly across the screen, but you can flip a configura-
tion panel up from the bottom of the screen or rotate an image into view.

Though this level of support may sound limited compared to a full 3D environment, it actually sup-
ports a wide array of user interface scenarios and is more flexible than you might at first think. Start
by looking at a simple sample, then you can move on to some of the configuration options that dem-
onstrate flexibility. The following XAML defines two images. The first is displayed normally, and
the second is rotated about the X- and Y-axes:

<Image Height=”116” Margin=”241,317,0,0” VerticalAlignment=”Top”
 Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 HorizontalAlignment=”Left”/>
<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”-17” RotationY=”-34”/>
 </Image.Projection>
</Image>

All you had to do was set the Projection property of the Image to an instance of the
PlaneProjection object. It’s on the PlaneProjection where you customize all of the rotation
properties. This sample uses an Image, but Image could just as easily have been a Button, Grid,
Border, Rectangle, or any other control you felt needed to be rotated. Figure 17-55 shows the
Image both with and without the transform.

Figure 17-55

By default, the image is rotated about its center on all three axes. You can customize the center of rota-
tion by adjusting the CenterOfRotationX, CenterOfRotationY, and CenterOfRotationZ properties

588  ❘  Chapter 17   Using Graphics and Visuals

on the PlaneProjection object. The following XAML sets both the X and Y center to 0 (top, left
corner) of the image and rotates –60 degrees about the Y-axis:

<Image Height=”116” Margin=”241,317,0,0” VerticalAlignment=”Top”
 Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 HorizontalAlignment=”Left”/>
<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”0” RotationY=”-60” CenterOfRotationX=”0”
 CenterOfRotationY=”0” CenterOfRotationZ=”0”/>
 </Image.Projection>
</Image>

In Figure 17-56, you can see how the image appears to be
swinging back, almost like a door on its hinge.

You can simulate a true 3D environment by synchronizing the
initial position of a number of objects and synchronizing their
CenterOfRotation properties. Figure 17-57 shows 200 pro-
cedurally generated Rectangles, all positioned in the center
of a container Grid, with a CenterOfRotationZ property set
to –300. When the RotationX and RotationY properties are
set, it’s as if these images are being moved around the surface
of a sphere.

Figure 17-57

Figure 17-56

Transforms  ❘  589

Each rectangle has its own PlaneProjection and is rotated in its own 3D space, but synchronizing
the initial positions and CenterOfRotationZ property has achieved a deceptive result. The following
code shows how this visual was created:

public ThreeDee()
{
 // Required to initialize variables
 InitializeComponent();

 GenerateSphere();
 this.LayoutRoot.MouseMove += new MouseEventHandler(OnMouseMove);
}

int rowCount = 10;
int columnCount = 20;
int rectHeightWidth = 50;

Random rand = new Random(23496321);

private void GenerateSphere()
{
 for (var i = 0; i < rowCount; i++)
 {
 for (var j = 0; j < columnCount; j++)
 {
 // Create Rectangle
 Fly rect = new Fly();
 rect.Height = rect.Width = rectHeightWidth;
 rect.Opacity = 0.3;

 // Create PlaneProjection and Initialize CenterOfRotationZ
 PlaneProjection projection = new PlaneProjection();
 projection.CenterOfRotationZ = -300;

 // Set RotationX and RotationY based on current row and column
 projection.RotationX = -90 + ((180 / rowCount) * i);
 projection.RotationY = (360 / columnCount) * j;
 projection.RotationZ = rand.Next(5, 360);

 // Assign PlaneProject to Rectangle’s Projection property
 rect.Projection = projection;

 // Add the Rectangle to a XAML-defined Grid (named “sphere”)
 this.sphere.Children.Add(rect);
 }
 }
}

ThreeDee.xaml.cs

This sample just defines and applies a 3D transformation to a collection of rectangles. You could
extend this sample and make it more interactive by responding to mouse position and updating all
of the 3D transforms, creating a sense of interactive 3D space. I’ll leave that up to you, though; you
are now armed with the basic understanding of what is required to take it further.

590  ❘  Chapter 17   Using Graphics and Visuals

Adjusting PlaneProjections in Expression Blend
Expression Blend includes support in the Properties panel for adjust-
ing the values of a PlaneProjection applied to an object. Select an
object on the stage and then scroll to the Transform category of the
Properties panel. By default, the Projection property is hidden in
the Advanced Properties section. Click the down arrow to reveal the
editor shown in Figure 17-58.

You can manually define rotation values for the X-, Y-, and Z-axes,
or you can click and drag the circle-based sphere icon to do a freeform
rotation. Additional tabs in this editor expose the Center of Rotation,
Global Offset, and Local Offset property categories. We did not
look at these last two property groups in the previous exercise. These
additional value categories let you adjust the positions of items in 3D
space, much like applying a TranslateTransform in 2D space. These
properties can be used to further simulate a true 3D environment
much as the previous sphere example demonstrated.

Summary

This chapter started by examining the core set of controls at your disposal for creating interesting
visuals in Silverlight. You were exposed to the XAML syntax first so that you would have a solid
understanding of what’s happening behind the scenes. After covering the XAML, you jumped to
Expression Blend and used a design surface to do the same things you had just done by hand. In
some cases, Expression Blend was able to do everything for you (and was practically necessary for
tasks such as creating complex paths). In other cases, Expression Blend didn’t provide tooling for
certain control features (such as setting ViewportUnits on an ImageBrush), and you had to return
to the XAML to achieve just what you wanted.

You also looked at how to reference and include binary assets (images, fonts, videos, and so on) and
how to use Visual Studio to set the Build Action. You also learned that Expression Blend doesn’t
provide a way to change the Build Action itself and that you have to use Visual Studio (or edit the
.csproj file by hand). Focus then shifted to effects and 3D support offered by Silverlight and even
stepped through creating your own custom effect. You should now have an understanding of how the
various tools at your disposal — ​whether raw XAML, design tools such as Expression Blend, or devel-
opment environments such as Visual Studio — ​all have their place in the Silverlight ecosystem and are
really co-dependent. You can use one or two exclusively, but ultimately you need to be familiar with a
number of design and development tools.

Figure 17-58

18
Working with animations
in silverlight

what’s in this chapter?

Performing storyboard animation➤➤

Creating complex animations using keyframes➤➤

Rendering animations with the CompositionTarget .Rendering event➤➤

Animating sprites➤➤

As software becomes a greater part of our lives, our experience with it becomes ever more
important. Part of this experience can mean adding animation to applications. From Silverlight-
based games to basic Line-of-Business applications, Silverlight includes a variety of ways you can
add animation to an application.

This chapter looks at the animation capabilities available in Silverlight and the support
provided by Visual Studio and Expression Blend to create animations both in XAML and
in code. You learn how to use the Storyboard and Animation objects to create basic and
keyframe animations, using Expression Blend to confi gure them. You also review more
advanced techniques such CompositionTarget rendering.

Note that although this chapter provides information on animation techniques that can be use-
ful for creating Silverlight games, it is not intended to be a complete guide for creating games and
game animations. For more information on creating games, check out the Wrox title Professional
XNA Programming: Building Games for Xbox 360 and Windows with XNA Game Studio 2.0,
2nd Edition by Benjamin Nitschke (Wiley, 2008). Additionally, you can fi nd information specifi c
to creating Silverlight-based games, including leveraging the XNA framework to build Silverlight
games, on this website:

www.bluerosegames.com/silverlight-games-101/

http://www.bluerosegames.com/silverlight-games-101/

592  ❘  Chapter 18   Working with Animations in Silverlight

Storyboard Animations

Storyboard animations allow you to animate object properties over a certain duration. Silverlight
supports two variants of storyboard animations: From/To and keyframe. From/To animations allow
you to create a linear animation between two values (From/To) or by a set amount (From/By).

Listing 18-1 shows a basic From/To storyboard animation that changes the position of an ellipse
over a period of two seconds using a CompositeTransform.

Listing 18-1:  ​Animating an ellipse using a basic animation

<sdk:Page xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d” x:Class=”Chapter18.Listing1801”
 xmlns:sdk=”http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk”
 Title=”Listing1801 Page” d:DesignWidth=”640” d:DesignHeight=”480”>
 <sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <DoubleAnimation Duration=”0:0:2” To=”198”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 </Storyboard>
 </sdk:Page.Resources>

 <Grid x:Name=”LayoutRoot” >
 <Ellipse x:Name=”ellipse” Fill=”#FF0000BA” Margin=”256,170,251,187”
 Stroke=”#FF000558” Width=”100” Height=”100” StrokeThickness=”3”
 RenderTransformOrigin=”0.5,0.5”>
 <Ellipse.RenderTransform>
 <CompositeTransform/>
 </Ellipse.RenderTransform>
 </Ellipse>
 </Grid>
</sdk:Page>

As you can see in the listing, the animation consists of a DoubleAnimation object inside
of a Storyboard. The Storyboard is responsible for executing the animation, and the
DoubleAnimation defines the animation’s Duration, the value to animate to, and the target
element and element property on which the animation will act.

You can manually enter this XAML in Visual Studio or you can use the animation tools in
Expression Blend. Figure 18-1 shows the basic sample loaded in Expression Blend.

To animate the ellipse using Expression Blend, locate the Objects and Timeline panel in Expression
Blend. The panel is shown in Figure 18-2.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

Storyboard Animations  ❘  593

Figure 18-1

Figure 18-2

Click the New Storyboard button and enter a name for the storyboard in the dialog. Once the dialog
closes, Expression Blend creates a new storyboard in XAML and enters storyboard record mode, as
shown in Figure 18-3.

As you can see, while in storyboard record mode, Expression Blend changes its UI. The Objects and
Timeline panel now shows the storyboard timeline. The currently recording storyboard and target
element is shown with a red sphere. The design surface is surrounded by a red border and includes a
message indicating timeline recording is on.

594  ❘  Chapter 18   Working with Animations in Silverlight

Recording Storyboard Message Storyboard Recording Border

Active Storyboard Recording Storyboard Timeline

Figure 18-3

To create the animation shown in Listing 18-1, select the ellipse in the Objects tree, move the play-
head to two seconds, and then on the design surface, move the ellipse. This is shown in Figure 18-4.

Moving the playhead sets the animation’s Duration property and moving the ellipse sets the anima-
tion’s To property, which tells the animation what value to change the target property to.

Once you’ve completed setting up the animation, you can preview it using the timeline player con-
trols. These controls not only allow you to play the animation, they also allow you to step frame-by-
frame and to move to the first and last frames.

If you review the XAML generated by Expression Blend, you will notice that when it created the
animation, it automatically used a DoubleAnimation as the animation type. It chose this based
on the property changed when you moved the ellipse. Silverlight includes three types of animation
objects that Expression Blend can use based on the type of property changed. The animation object
types are shown in Table 18-1.

Storyboard Animations  ❘  595

Figure 18-4

Table 18-1

Animation Type Description

DoubleAnimation Animates the value of a Double property between two target values
using linear interpolation over a specified Duration.

ColorAnimation Animates the value of a Color property between two target values using
linear interpolation over a specified Duration.

PointAnimation Animates the value of a Point property between two target values using
linear interpolation over a specified Duration.

Listing 18-2 shows an example of using the sample ellipse with a ColorAnimation.

Listing 18-2:  ​Animating the color of an ellipse

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <ColorAnimation Duration=”0:0:2” To=”#FF158F0B”

continues

596  ❘  Chapter 18   Working with Animations in Silverlight

 Storyboard.TargetProperty=”(Shape.Fill).(SolidColorBrush.Color)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 </Storyboard>
</sdk:Page.Resources>

You can animate multiple properties in a single storyboard. For example, you can combine the ani-
mations shown in Listing 18-1 and Listing 18-2 into a single storyboard, shown in Listing 18-3.

Listing 18-3:  ​Animating both the color and position in a single storyboard

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <ColorAnimation Duration=”0:0:2” To=”#FF158F0B”
 Storyboard.TargetProperty=”(Shape.Fill).(SolidColorBrush.Color)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 <DoubleAnimation Duration=”0:0:2” To=”198”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 </Storyboard>
</sdk:Page.Resources>

To do this in Expression Blend, while you are editing the storyboard, simply change the ellipse’s
position and fill color. Expression Blend will generate the animation inside of the single storyboard.

Storyboards include a number of other properties that you can use to control the storyboard play
behavior. Some of the properties can be configured using Expression Blend’s property panel, whereas
others must be set directly in XAML.

To view the Storyboard properties in Expression Blend’s property panel, simply select the storyboard
from the Objects and Timeline panel. When you do this, Expression Blend exposes the AutoReverse
and RepeatBehavior properties. The AutoReverse property allows you to tell the storyboard to auto-
matically play the animation in reverse once it reaches the end of the duration. The RepeatBehavior
allows you to configure the storyboard to repeat the animation a set number of times. You can also
select the Forever value to have the storyboard repeat indefinitely.

In XAML you can set several other storyboard properties. The SpeedRatio allows you to
set the rate at which the animation’s time progresses. The BeginTime allows you to set a time
that the animation should begin. The FillBehavior allows you to dictate how the animation
behaves once it ends.

Because the storyboard and animation objects are all derived from the Timeline class, you can set
any of these properties on the storyboard or on the animation objects.

Listing 18-4 demonstrates using several of these properties in a single animation.

Listing 18-2  (continued)

Storyboard Animations  ❘  597

Listing 18-4:  ​Using AutoReverse and RepeatBehavior properties in an animation

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1” AutoReverse=”True” RepeatBehavior=”Forever”>
 <DoubleAnimation Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 <DoubleAnimation BeginTime=”0:0:0.3333333” SpeedRatio=”2”
 Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse1”/>
 <DoubleAnimation BeginTime=”0:0:0.6666667” SpeedRatio=”4”
 Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse2” d:IsOptimized=”True”/>
 </Storyboard>
</sdk:Page.Resources>

As shown in the listing, three ellipses are animated by a single storyboard, each with a different
BeginTime and SpeedRatio. The storyboard has the AutoReverse property set to true and the
ReverseBehavior set to Forever.

Note that even though two of the Ellipse elements have BeginTime values, this does not affect the
overall duration of the animation. It simply delays the start of the animation for those elements.

To play the animation you simply call its Begin method. Storyboards also include Pause, Resume,
and Stop methods that allow you to programmatically control the animation. Listing 18-5 shows
how you can use several buttons to control a storyboard’s animation.

Listing 18-5:  ​Programmatically controlling an animation

private void btnPlay_Click(object sender, System.Windows.RoutedEventArgs e)
{
 Storyboard1.Begin();
}

private void btnPause_Click(object sender, System.Windows.RoutedEventArgs e)
{
 Storyboard1.Pause();
}

private void btnResume_Click(object sender, RoutedEventArgs e)
{
 Storyboard1.Resume();
}

private void btnStop_Click(object sender, System.Windows.RoutedEventArgs e)
{
 Storyboard1.Stop();
}

598  ❘  Chapter 18   Working with Animations in Silverlight

Note that if you are using the Pause method, you should use the Resume method to resume the
storyboard (as opposed to using the Play method, which can have undesired effects on the story-
board). To see this, pause the animation from Listing 18-1, then click the Play button. You will see
that the ellipses transform origin has changed to the location the ellipse was when the play method
was called, affecting how the storyboard runs.

Additionally, calling storyboard members in the page constructor causes the Storyboard to silently fail.

Animations can also be created and played completely programmatically. Listing 18-6 shows how
you can create and play the animation shown in Listing 18-1 completely in code.

Listing 18-6:  ​Creating animations completely programmatically

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 Storyboard1 = new Storyboard();

 DoubleAnimation doubleAnimation = new DoubleAnimation();
 doubleAnimation.Duration = TimeSpan.FromSeconds(2);
 doubleAnimation.To=198;
 Storyboard1.Children.Add(doubleAnimation);

 Storyboard.SetTargetName(doubleAnimation, “ellipse”);
 Storyboard.SetTargetProperty(doubleAnimation,
 new PropertyPath(“(UIElement.RenderTransform).
 (CompositeTransform.TranslateX)“));

 this.Resources.Add(“Storyboard1”, Storyboard1);

 Storyboard1.Begin();
}

As shown in the listing, to programmatically create animations, simply create an instance of a
new storyboard and an instance of the animation type you want to use. Set the animation type’s
properties and add it as a child of the storyboard. Finally, set the target element and property
using the storyboard’s attached properties and add the storyboard to the page’s resources so that
it will be included in the applications visual tree.

By default when Expression Blend creates an animation it uses the To property to set the ending
value of the animation, but you can also use the By property to set this value. The By property tells
the animation to change the target property by a certain value. This can be useful when you are not
certain of the starting position of the element, but you want to move a specific amount.

Applying Easing Functions
Standard animations in Silverlight run at a uniform speed throughout the duration of the animation,
but this does not usually accurately represent the motion that we as humans are used to. In the real
world, objects do not move at uniform rates; they tend to accelerate and decelerate as they move.
You can simulate this in animations by applying an Easing function to the animation.

Storyboard Animations  ❘  599

Silverlight 4 includes a set of predefined easing functions described in the Table 18-2.

Table 18-2

Easing Function Description

Back Represents an easing function that retracts the motion of an animation
slightly before it begins to animate in the path indicated.

Bounce Represents an easing function that creates an animated bouncing effect.

Circle Represents an easing function that creates an animation that accelerates
and/or decelerates using a circular function.

Cubic Represents an easing function that creates an animation that accelerates
and/or decelerates using the formula f(t) = t3.

Elastic Represents an easing function that creates an animation that resembles a
spring oscillating back and forth until it comes to rest.

Exponential Represents an easing function that creates an animation that accelerates
and/or decelerates using an exponential formula.

Power Represents an easing function that creates an animation that acceler-
ates and/or decelerates using the formula f(t) = tp, where p is equal to the
Power property.

Quadratic Represents an easing function that creates an animation that accelerates
and/or decelerates using the formula f(t) = t2.

Quartic Represents an easing function that creates an animation that accelerates
and/or decelerates using the formula f(t) = t4.

Quintic Represents an easing function that creates an animation that accelerates
and/or decelerates using the formula f(t) = t5.

Sine Represents an easing function that creates an animation that accelerates
and/or decelerates using a sine formula.

To apply an easing to an animation simply set the animation’s EasingFunction property as shown
in Listing 18-7.

Listing 18-7:  ​Applying an easing function to an animation

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <DoubleAnimation Duration=”0:0:2” To=”198”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“

continues

600  ❘  Chapter 18   Working with Animations in Silverlight

 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”>
 <DoubleAnimation.EasingFunction>
 <BounceEase EasingMode=”EaseOut” />
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
 </Storyboard>
</sdk:Page.Resources>

You can also use Expression Blend to set the Easing function of an animation. Simply place the
storyboard into record mode and then expand and select the RenderTransform under the ellipse
as shown in Figure 18-5.

Once the transform is selected, you can use the Properties panel to select and configure an easing
function. The Properties panel with a BounceOut function selected is shown in Figure 18-6.

Figure 18-5

Listing 18-7  (continued)

Figure 18-6

Easing functions allow you to configure how they should be applied to an animation using the
EasingMode property, which includes three values: EaseIn, EaseOut, or EaseInOut. Figure 18-7
shows how the BounceEase animation changes based on the value of the EasingMode property.

Figure 18-7

Additionally, each easing includes properties specific to its own function. For example, the
BounceEase class exposes properties that allow you to control the number of bounces and
the elasticity of the bounces.

Storyboard Animations  ❘  601

Controlling Storyboards Using Behaviors
Expression Blend 4 includes a new ControlStoryboardAction behavior
that allows you to easily add the ability to control storyboards without writ-
ing any code. To use the behavior, add a Button to your application and
then locate the ControlStoryboardAction behavior in the Expression
Blend Assets. Select the behavior and drop it into the Button.

Once you have added the behavior, locate and select it in the Objects and
Timeline panel. You can now configure the behavior using the Properties
panel, which is shown in Figure 18-8.

To configure the behavior to start the animation, create a new TriggerType
from the Properties panel, select the Button as value of the SourceObject
property, and then select Click from the EventName property.

Now you simply select the Action you want the Button to execute, and the storyboard it should target.

Nesting Storyboards
You can nest storyboards inside of other storyboards, allowing you to create more complex story-
board animations. Listing 18-8 shows a single storyboard that contains three nested storyboards,
each animating a separate ellipse.

Listing 18-8:  ​Nesting multiple storyboards together

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <Storyboard x:Name=”Storyboard1a”>
 <DoubleAnimation Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse” d:IsOptimized=”True”/>
 </Storyboard>
 <Storyboard x:Name=”Storyboard1b”>
 <DoubleAnimation BeginTime=”0:0:0.3333333” SpeedRatio=”2”
 Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse1”/>
 </Storyboard>
 <Storyboard x:Name=”Storyboard1c”>
 <DoubleAnimation BeginTime=”0:0:0.6666667” SpeedRatio=”4”
 Duration=”0:0:1.7” To=”282.32”
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse2” d:IsOptimized=”True”/>
 </Storyboard>
 </Storyboard>
</sdk:Page.Resources>

Starting the parent storyboard automatically runs each child storyboard but allows you the flexibility
to run each storyboard independent of any others.

Figure 18-8

602  ❘  Chapter 18   Working with Animations in Silverlight

Using Storyboards as Timers
Storyboards can also be used as timers in your application. Storyboards run on a separate thread. To cre-
ate a timer using a storyboard, simply add an empty storyboard to your application, set a duration, and
handle the storyboard’s Completed event. Listing 18-9 shows the empty storyboard created in XAML.

Listing 18-9:  ​Setting up an empty storyboard to use as a timer

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1” Duration=”0:0:1”
 Completed=”Storyboard1_Completed” />
</sdk:Page.Resources>

In the storyboard’s Completed event, shown in Listing 18-10, you can perform the timed action,
which in this case is incrementing a counter and updating a TextBlock.

Listing 18-10:  ​Responding to the animation’s Completed event

private void Storyboard1_Completed(object sender, EventArgs e)
{
 seconds++;
 this.txtSeconds.Text = seconds.ToString();
 Storyboard1.Begin();
}

Using a storyboard for a timer also allows you to create animations that use vector movement.
Listing 18-11 shows how a simple storyboard can be used as a vector movement timer to animate
an ellipse in a Canvas.

Listing 18-11:  ​Creating simple vector animation using a storyboard

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 Storyboard1 = new Storyboard();
 Storyboard1.Completed+=new EventHandler(Storyboard1_Completed);

 doubleAnimation = new DoubleAnimation();
 doubleAnimation.Duration = TimeSpan.FromMilliseconds(1);
 doubleAnimation.By = 5;
 Storyboard1.Children.Add(doubleAnimation);

 Storyboard.SetTargetName(doubleAnimation, “ellipse”);
 Storyboard.SetTargetProperty(doubleAnimation,
 new PropertyPath(“(Canvas.Left)“));

 this.Resources.Add(“Storyboard1”, Storyboard1);

 Storyboard1.Begin();
}

Keyframe Animation  ❘  603

Using the storyboard’s Completed event, you can change the animation parameters. Listing 18-12
show how you can add a test to see if the ellipse has reached the left or right edge of the canvas, and
if so, you can reverse its direction by multiplying the By value by –1.

Listing 18-12:  ​Changing the vector animation direction

private void Storyboard1_Completed(object sender, EventArgs e)
{
 double left = Canvas.GetLeft(ellipse);

 if (((left+ellipse.ActualWidth) >= this.ActualWidth) || (left <=0))
 {
 doubleAnimation.By = doubleAnimation.By * -1;
 }

 Storyboard1.Begin();
}

Of course, in this simple sample only a single attribute is being tested and updated. But you can imagine
how, by adding additional animations and tests, you could create some very complex animations.

Keyframe Animation

The second mechanism of creating animations in Silverlight is keyframe animation. Keyframe ani-
mations are more powerful than standard storyboard animations. They allow you to create more
complex animations by changing multiple values over a period of time and controlling the interpola-
tion method used.

Silverlight includes four keyframe animation types, as shown in Table 18-3.

Table 18-3

Animation Type Description

DoubleAnimationUsingKeyFrames Animates the value of a Double property along a set of
KeyFrames.

ColorAnimationUsingKeyFrames Animates the value of a Color property along a set of
KeyFrames over a specified Duration.

PointAnimationUsingKeyFrames Animates the value of a Point property along a set of
KeyFrames.

ObjectAnimationUsingKeyFrames Animates the value of an Object property along a set of
KeyFrames over a specified Duration.

604  ❘  Chapter 18   Working with Animations in Silverlight

Notice that the available keyframe animation types are similar to the standard animation types,
with the addition of the ObjectAnimationUsingKeyFrames type.

Listing 18-13 demonstrates the use of a keyframe animation, converting the code from Listing 18-1
from a standard storyboard animation to a keyframe animation.

Listing 18-13:  ​Using a keyframe animation to animate an ellipse

<sdk:Page xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d” x:Class=”Chapter18.Listing1813”
 xmlns:sdk=”http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk”
 Title=”Listing1813 Page” d:DesignWidth=”640” d:DesignHeight=”480”>
 <sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”0”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:2” Value=”198”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </sdk:Page.Resources>

 <Grid x:Name=”LayoutRoot” >
 <Ellipse x:Name=”ellipse” Fill=”#FF0000BA” Margin=”256,170,251,187”
 Stroke=”#FF000558” Width=”100” Height=”100” StrokeThickness=”3”
 RenderTransformOrigin=”0.5,0.5”>
 <Ellipse.RenderTransform>
 <CompositeTransform/>
 </Ellipse.RenderTransform>
 </Ellipse>
 </Grid>
</sdk:Page>

In this listing notice that rather than a DoubleAnimation, the storyboard contains a
DoubleAnimationKeyFrames object, which itself contains two EasingDoubleKeyFrame objects.
The EasingDoubleKeyFrame objects define the time and values that the animation should inter-
polate between as well as the style of interpolation.

You can create this example in Expression Blend by opening the storyboard in the Objects and
Timeline panel; within the timeline, add keyframes at the appropriate points using the Record
Keyframe button, shown in Figure 18-9.

As with creating standard animations, when you create the animation using Expression Blend,
Expression Blend automatically chooses an appropriate KeyFrames object to use based on the

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation/sdk%E2%80%9D

Keyframe Animation  ❘  605

properties being animated. Within the KeyFrames object, you can change the specific type of
KeyFrame objects used to interpolate between keyframes by using the Properties panel.

Figure 18-9

To change the EasingDoubleKeyFrame shown in Listing 18-13 to
a different keyframe type, select the RenderTransform from the
Objects and Timeline panel. On the Properties panel, change the
Easing selection. The Properties panel is shown in Figure 18-10.

As you can see, Expression Blend exposes three easing types,
KeySpline, EasingFunction, and Hold In. These different types
correspond to the SplineDoubleKeyFrame, EasingDoubleKeyFrame,
and DiscreteDoubleKeyFrame objects, respectively.

The different types of KeyFrame objects available in Silverlight
are described in Table 18-4. Figure 18-10

606  ❘  Chapter 18   Working with Animations in Silverlight

Table 18-4

Keyframe Type Description

LinearDoubleKeyFrame Animates from the Double value of the previous keyframe to its
own Value using linear interpolation.

DiscreteDoubleKeyFrame Animates from the Double value of the previous keyframe to its
own Value using discrete values.

SplineDoubleKeyFrame Animates from the Double value of the previous keyframe to its
own Value using splined interpolation.

EasingDoubleKeyFrame Defines a property that enables you to associate an easing func-
tion with a DoubleAnimationUsingKeyFrames key frame
animation.

KeyFrame objects like those described in Table 18-4 exist for each of the keyframe animation types
shown previously in Table 18-3.

To create more complex animations using multiple keyframes, simply add additional keyframe objects
to the animation object. You can do this manually in XAML or you can use Expression Blend.

To add additional keyframes to Listing 18-13 in Expression Blend, place the storyboard into record-
ing mode, move the playhead to the new position in the timeline, click the Create Keyframe button
to insert a new keyframe, and then move the ellipse to a new location. Listing 18-14 shows how the
XAML is changed by Expression Blend.

Listing 18-14:  ​Adding multiple keyframes to an animation

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateY)“
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”0”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:2” Value=”198”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:4” Value=”196.5”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:6” Value=”-157.5”/>
 </DoubleAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.RenderTransform).
 (CompositeTransform.TranslateX)“
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0:0:2” Value=”0”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:4” Value=”241.5”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:6” Value=”241.5”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
</sdk:Page.Resources>

Keyframe Animation  ❘  607

You can see the keyframes added by Expression Blend. Additionally, because the animation changes
both the TranslateX and TranslateY properties of the CompositeTransform, an additional double
animation was added by Expression Blend.

Rendering CompositionTargets
In the previous section you learned how you can use keyframe animations to animate
sprites. Silverlight offers an even higher resolution method for rendering animations with the
CompositionTarget.Rendering event. The CompositionTarget.Rendering event is fired
before each frame is rendered and is generally the highest priority loop in Silverlight.

Listing 18-15 shows how to modify the visuals in Silverlight before they are rendered using the
Rendering event.

Listing 18-15:  ​Using the CompositionTarget Rendering event to alter Silverlight visuals

public partial class Listing1815 : Page
{
 public Listing1815()
 {
 InitializeComponent();
 }

 // Executes when the user navigates to this page.
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 CompositionTarget.Rendering +=
 new EventHandler(CompositionTarget_Rendering);
 }

 bool reverseHeight = false;
 bool reverseWidth = false;
 void CompositionTarget_Rendering(object sender, EventArgs e)
 {
 RenderingEventArgs args = e as RenderingEventArgs;
 TimeSpan time = args.RenderingTime;

 double left = Canvas.GetLeft(ellipse);
 double top = Canvas.GetTop(ellipse);

 if (reverseHeight)
 {
 top--;
 if (top <= 0)
 reverseHeight = false;

 Canvas.SetTop(ellipse, top);
 }
 else
 {
 top++;

continues

608  ❘  Chapter 18   Working with Animations in Silverlight

 if (top + ellipse.ActualHeight >= this.ActualHeight)
 reverseHeight = true;

 Canvas.SetTop(ellipse, top);
 }

 if (reverseWidth)
 {
 left--;
 if (left <= 0)
 reverseWidth = false;

 Canvas.SetLeft(ellipse, left);
 }
 else
 {
 left++;
 if (left + ellipse.ActualWidth >= this.ActualWidth)
 reverseWidth = true;

 Canvas.SetLeft(ellipse, left);
 }
 }
}

In this listing, the Rendering event is used to modify the position of the ellipse. When the ellipse
reaches the edge of the canvas, its direction is reversed.

Note that because the Rendering event takes such a high priority in the Silverlight application,
to avoid performance problems in your application you should avoid putting long-running or
performance-intensive logic in the event.

Animating Visibility
A common task in applications is toggling the visibility of UI elements as users navigate the applica-
tions. In Silverlight, it’s common to see this toggling performed using an animation to add a smooth
fade-in/fade-out transition rather than simply toggling an element’s Visibility property.

Listing 18-16 shows an example of how to use keyframe animation to create an animation that
changes an element’s opacity and then toggles its Visibility.

Listing 18-16:  ​Toggling element visibility using an animation

<sdk:Page.Resources>
 <Storyboard x:Name=”Storyboard1”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Opacity)“
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”1”/>

Listing 18-15  (continued)

Keyframe Animation  ❘  609

 <EasingDoubleKeyFrame KeyTime=”0:0:1” Value=”0”/>
 </DoubleAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”ellipse”>
 <DiscreteObjectKeyFrame KeyTime=”0”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 <DiscreteObjectKeyFrame KeyTime=”0:0:1”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
 <Storyboard x:Name=”Storyboard2”>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Opacity)“
 Storyboard.TargetName=”ellipse”>
 <EasingDoubleKeyFrame KeyTime=”0” Value=”0”/>
 <EasingDoubleKeyFrame KeyTime=”0:0:1” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 <ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”ellipse”>
 <DiscreteObjectKeyFrame KeyTime=”0”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 </ObjectAnimationUsingKeyFrames>
 </Storyboard>
</sdk:Page.Resources>

As shown in the listing, two storyboards were created:

One that changes the ellipse Opacity to 0 over two seconds and then changes its Visibility ➤➤

to Collapsed.

One that performs the opposite animation.➤➤

Notice that that the visibility value is changed using a DiscreteObjectKeyFrame inside of an
ObjectAnimationUsingKeyFrames animation. The DiscreteObjectKeyFrame object allows you
to animate properties whose value is a complex object type as opposed to a simple type. As shown
in the previous listing, you can set the target value of the keyframe by defining an instance of the
object as its Value property.

If you are animating the opacity of an element (as shown in the previous listing), you should consider
setting the CacheMode on the element, which allows the animation to render in the GPU. Listing 18-17
shows you how to add the CacheMode property to the ellipse.

610 ❘ chapter 18 workIng wIth AnImAtIonS In SIlverlIght

listing 18-17: Caching elements to improve animation performance

<Ellipse x:Name=”ellipse” Fill=”#FF0000BA” Margin=”256,170,251,187”
 Stroke=”#FF000558” Width=”100” Height=”100” StrokeThickness=”3”
 RenderTransformOrigin=”0.5,0.5”>
 <Ellipse.CacheMode>
 <BitmapCache />
 </Ellipse.CacheMode>
 <Ellipse.RenderTransform>
 <CompositeTransform/>
 </Ellipse.RenderTransform>
</Ellipse>

You can see the results of setting the CacheMode property by enabling GPU acceleration on the
Silverlight plug-in, then setting the application’s EnableCacheVisualization property to true.

If you run the application now, Silverlight shades any non-accelerated area in red. You should see
that the ellipse is not shaded because the CacheMode property has been set on it, indicating that
when it is animated, it will be hardware-accelerated.

animating sprites
Sprite animation is a great example of keyframe animation. Sprites are two-dimensional images
or graphics that are integrated into a larger scene and are commonly used in games for animation.
Similar to an old-fashioned fl ipbook, sprite animation relies on showing and hiding a sequence of
images over a short period of time so that Silverlight appears to animate the image.

The rate at which images are shown is called the frame rate. The frame rate is
typically measured as the number of images shown per second or the number
of frames per second (FPS). You can set the maximum number of frames per
second on the Silverlight plug-in by setting its MaxFrameRate property.

Creating sprite animations in Silverlight is easy using Expression Blend. To get started, add the sprite
images to your project and place them onto the design surface, aligning them vertically and/or horizon-
tally. Select all of the images from the Objects and Timeline panel and then change their Visibility
property to Collapsed.

Now you can start creating the animation. Begin by creating a new storyboard. While the storyboard
is in record mode, select the fi rst sprite image. Place a keyframe at zero in the timeline and change the
fi rst image’s Visibility property to Visible.

Next move the playhead ahead to the next time increment and insert another keyframe. The specifi c
time increment will depend on the number of sprite images you are animating. For example, if you
have 30 sprite images, the time each image is displayed is 0.333333 seconds.

With the playhead at the fi rst interval, set the fi rst image’s Visibility back to Collapsed. Select
the second sprite image and change its Visibility property to Visible.

Summary  ❘  611

Move the playhead forward to the next interval (0.666667 if you have 30 sprite images) and insert a
new keyframe. Set the second image’s Visibility property to Collapsed.

Listing 18-18 shows the animation XAML generated by Expression Blend for the first and
second images.

Listing 18-18:  ​Animating sprites using keyframes

<ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”image00”>
 <DiscreteObjectKeyFrame KeyTime=”0”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 <DiscreteObjectKeyFrame KeyTime=”0:0:0.0333333”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>
<ObjectAnimationUsingKeyFrames
 Storyboard.TargetProperty=”(UIElement.Visibility)“
 Storyboard.TargetName=”image01”>
 <DiscreteObjectKeyFrame KeyTime=”0:0:0.0333333”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Visible</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
 <DiscreteObjectKeyFrame KeyTime=”0:0:0.0666667”>
 <DiscreteObjectKeyFrame.Value>
 <Visibility>Collapsed</Visibility>
 </DiscreteObjectKeyFrame.Value>
 </DiscreteObjectKeyFrame>
</ObjectAnimationUsingKeyFrames>

Continue this process for each of the remaining sprite images in your animation, incrementing
the KeyTime for each animation. Once completed, you can run the animation and see the sprites
animate.

Summary

This chapter introduced you to the variety of ways that you can create animations in a Silverlight
application. Using storyboards and animation objects or keyframes, you can easily add animations
as simple as making a Button fade out to animations as complex as sprite animations. Leveraging
the animation tools in Expression Blend makes adding animations even easier.

19
Working with Text

what’s in this chapter?

Using TextBlock and RichTextBox➤➤

Supporting and rendering text and fonts➤➤

Although the graphical browser has made the Web a powerful platform for expressing ideas
using complex imagery, a core function of the Web remains to disseminate information, and
text remains a primary mechanism to achieve this function. The basic text capabilities of
HTML and CSS have improved dramatically, giving you signifi cant control over the layout
and appearance of the text displayed in your website. Silverlight provides you with many of
the same powerful capabilities of HTML and CSS and extends those basic capabilities with
even more functionality that can dramatically enhance your ability to control, to a fi ne point,
the way your website delivers textual information.

This chapter looks at the features included in Silverlight for inputting, displaying, and format-
ting text using the TextBlock and RichTextBox controls. The chapter also covers the different
font support options included in Silverlight and how transformations can be used to alter the
look of text.

Although this chapter covers the RichTextBox control, you can fi nd additional
content on other text input controls like the TextBox and AutoComplete box in
Chapter 6.

displaying and inputting text
Silverlight includes a variety of ways to display and input text. The easiest way to display text
in your application is to use the TextBlock control. If you need more advanced display of text,
such as rich text display, you can use the RichTextBox control.

614  ❘  Chapter 19   Working with Text

Using the TextBlock Element
The basic mechanism for displaying text in Silverlight is the TextBlock element. This basic element
encapsulates text display and serves as the core means of manipulating the text display. Listing 19-1
shows the most basic use of the TextBlock element in Silverlight.

Listing 19-1:  ​Adding content to a TextBlock

<TextBlock>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit. Fusce porttitor, tellus id tristique viverra, ligula pede
 pulvinar purus, nec hendrerit urna justo et nulla. Cras
 condimentum nulla at ipsum. Nullam nulla. Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus
 et enim. Nunc accumsan. Curabitur ultrices dui ac tortor. Nunc
 mollis, turpis quis consequat laoreet, nisl quam laoreet justo,
 a euismod magna nisi sed orci. Etiam nec dui egestas elit
 pretium sodales. Etiam felis.</TextBlock>

Figure 19-1 shows this TextBlock rendered in a default Silverlight UserControl.

Figure 19-1

The TextBlock control also includes a Text property, shown in Listing 19-2, that you can use to
provide the element’s content.

Listing 19-2:  ​Using the TextBlock’s Text property

<TextBlock Text=”Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Fusce porttitor, tellus id tristique viverra, ligula pede pulvinar purus,
nec hendrerit urna justo et nulla. Cras condimentum nulla at ipsum. Nullam
nulla. Sed elit lectus, hendrerit rhoncus, gravida id, tristique quis,
justo. Vivamus et enim. Nunc accumsan. Curabitur ultrices dui ac tortor.

Displaying and inputting Text ❘ 615

Nunc mollis, turpis quis consequat laoreet, nisl quam laoreet justo, a
euismod magna nisi sed orci. Etiam nec dui egestas elit pretium sodales.
Etiam felis.”></TextBlock>

There is a slight difference in the behavior of the TextBlock, depending on whether
you provide the text content using the Text property or as inline content. Starting
in Silverlight 4, when you use the Text property, the Silverlight parser will honor
any whitespace that may be present in the text; however, this same whitespace is
ignored by the Silverlight parser when using the content inline.

You can force the parser to honor the whitespace in inline content by adding
xml:space=”preserve” to the TextBlock.

You may notice that the Silverlight design surface does not always render text
content identically to the Silverlight run time. Because of a bug in the design
surface, it doesn’t always correctly render TextBlock and RichTextBox content
that contains embedded tags or spaces. At run time, the Silverlight plug-in ren-
ders the content correctly.

You can force the design surface to honor the whitespace in inline content by
adding xml:space=”preserve” to the control.

The TextBlock includes a variety of properties that allow you to control various font-related prop-
erties such as the family, weight, style, and size. Listing 19-3 shows the TextBlock with additional
font-related properties set.

listing 19-3: setting font properties on the TextBlock

<TextBlock FontFamily=”Times New Roman” FontSize=”24”
 FontStyle=”Italic” FontWeight=”Bold”>Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit. Fusce porttitor, tellus id tristique
 viverra, ligula pede pulvinar purus, nec hendrerit urna justo et
 nulla. Cras condimentum nulla at ipsum. Nullam nulla. Sed elit
 lectus, hendrerit rhoncus, gravida id, tristique quis, justo.
 Vivamus et enim. Nunc accumsan. Curabitur ultrices dui ac tortor.
 Nunc mollis, turpis quis consequat laoreet, nisl quam laoreet justo,
 a euismod magna nisi sed orci. Etiam nec dui egestas elit
 pretium sodales. Etiam felis.</TextBlock>

The FontFamily property allows you to specify the family of fonts that the TextBlock should use to
display the text. A font family is a group of typefaces with the same name but differing in features
such as Bold or Italic.

616 ❘ chapter 19 workIng wIth text

You can provide a list of fallback fonts by providing a comma-delimited list of font family names:

<TextBlock FontFamily=”My Favorite Font, Times New Roman” FontSize=”24”>

In the preceding sample, if the font family named My Favorite Font cannot be found on the client,
Silverlight automatically falls back to using Times New Roman as the font for this TextBlock. It is
also possible to use custom fonts by specifying the font name. This is described later in this chapter.

The FontStyle property allows you to specify a style to apply to the font. Currently, Silverlight
supports two FontStyle values: Normal, which is the default, and Italic.

The FontWeight property allows you to specify that a font be displayed as bold.

Silverlight also includes the ability to algorithmically render italic and bold fonts, when a true italic
or bold font set is not available. If the FontStyle is set to Italic or the FontWeight is set to Bold,
Silverlight fi rst attempts to locate an italic or bold font set on the local system. If none is found, it falls
back to algorithmic font rendering and generates Italic and/or Bold glyphs for display. Unlike most
applications, which measure font size in points, the FontSize property in Silverlight is a numeric
value that represents the font size in pixels. This is done to maintain compatibility with Windows
Presentation Foundation (WPF); however, it can cause some confusion if you try to compare a font
size set in an application like Microsoft Word against the font size rendered by Silverlight. For example,
setting the FontSize property to 24 doesn’t render a font of
24 points as you might expect; instead, this value represents
24 pixels, which Silverlight converts to a point value. This is
shown in Figure 19-2, which shows a 24-point font rendered in
Word (top) and a 24-pixel font rendered in Silverlight (bottom).

Notice how much smaller the 24-pixel font appears in Silverlight because of the pixels-to-points
conversion. Silverlight renders text at a default 14.666 pixels, which converts to exactly 11 points.

The calculation from pixels to points is one of the few areas of Silverlight that
contains a fi xed value. To run this conversion, Silverlight needs to know a dots-
per-inch (dpi) value, which is hard-coded at 96 dpi.

In addition to font properties, the TextBlock also allows you to set the foreground of its text. Unlike
many other platforms, where you are limited to simply setting the foreground color of the font, Silverlight
allows you to provide any standard Brush type as the Foreground property value. The following sample
demonstrates using a simple SolidColorBrush to change the foreground color:

<TextBlock Foreground=”Green”>

Notice that you can simply provide the property with a named color, and it automatically converts it
to the appropriate brush.

If you want to get more complex, you can provide more complex brushes such as a gradient brush
or even image or video brushes. Listing 19-4 demonstrates how to provide a LinearGradientBrush
for the TextBlock’s foreground property.

figure 19-2

Displaying and Inputting Text  ❘  617

Listing 19-4:  ​Setting the TextBlock’s Foreground to a GradientBrush

<TextBlock TextWrapping=”Wrap” >
 <TextBlock.Foreground>
 <LinearGradientBrush EndPoint=”0,0” StartPoint=”1,1”>
 <GradientStop Color=”#FFFF2300”/>
 <GradientStop Color=”#FFFB00FF” Offset=”1”/>
 <GradientStop Color=”#FFF0FF00”
 Offset=”0.25900000333786011”/>
 <GradientStop Color=”#FF1CFF00”
 Offset=”0.51800000667572021”/>
 <GradientStop Color=”#FF0B07FF”
 Offset=”0.75900000333786011”/>
 </LinearGradientBrush>
 </TextBlock.Foreground>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Fusce
 porttitor, tellus id tristique viverra, ligula pede pulvinar purus,
 nec hendrerit urna justo et nulla. Cras condimentum nulla at ipsum.
 Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida id,
 tristique quis, justo. Vivamus et enim. Nunc accumsan. Curabitur
 ultrices dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci. Etiam nec
 dui egestas elit pretium sodales. Etiam felis.
</TextBlock>

Figure 19-3 shows what your text will look like after setting the Foreground to a
LinearGradientBrush.

Figure 19-3

Using Text Element Layout Properties
The TextBlock element also includes a series of properties that allow you to influence the layout of
text in the TextBlock. TextWrapping, LineHeight, and LineStackingStrategy are all properties
that give you fine-grained control over the layout of the TextBlock’s text.

618  ❘  Chapter 19   Working with Text

The TextWrapping property allows you to indicate whether you want the text within the
TextBlock to automatically wrap based on the size of the TextBlock. As you have seen in previ-
ous samples in this chapter, by default, if your TextBlock’s text exceeds its container, it is simply
clipped. To instead set the text to wrap, simply set the TextWrapping property to Wrap, as shown
in Listing 19-5.

Listing 19-5:  ​Setting the TextBlock’s TextWrapping property

<TextBlock TextWrapping=”Wrap”>Lorem ipsum dolor sit amet,
 consectetuer adipiscing elit. Fusce porttitor, tellus id
 tristique viverra, ligula pede pulvinar purus, nec hendrerit
 urna justo et nulla. Cras condimentum nulla at ipsum. Nullam
 nulla. Sed elit lectus, hendrerit rhoncus, gravida id, tristique
 quis, justo. Vivamus et enim. Nunc accumsan. Curabitur ultrices
 dui ac tortor. Nunc mollis, turpis quis consequat laoreet, nisl
 quam laoreet justo, a euismod magna nisi sed orci. Etiam nec dui
 egestas elit pretium sodales. Etiam felis.</TextBlock>

Enabling text wrapping allows the TextBlock to intelligently wrap the text to fit it within the width
of its container.

Note that even though the TextBlock wraps text horizontally, if the wrapped text exceeds the vertical
height available to the TextBlock, the text continues to be clipped.

For East Asian text, Silverlight correctly uses Kinsoku line-breaking rules when wrapping
is enabled.

Also keep in mind that when you enable text wrapping, you alter the values returned from the
TextBlock’s ActualWidth and ActualHeight properties. When text wrapping is disabled,
the ActualWidth property returns a value that is equal to the width of the TextBlock’s container.
When text wrapping is enabled, the ActualWidth will be the length of the longest wrapped line
in the TextBlock. The TextWrapping property is honored even if the TextBlock is given infinite
width, such as when it is contained in a StackPanel.

LineHeight and LineStackingStrategy give you control over the height given to each line of text
and how lines are stacked when wrapped.

LineStackingStrategy offers two options. MaxHeight says that Silverlight should use the smallest
value that contains all of the inline elements on that line that are aligned properly. BlockLineHeight
says that the stack height is determined by the block element’s LineHeight property, which by default
is determined according to the font characteristics.

Using Text Trimming
A new feature of Silverlight 4 is Text Trimming. This simple feature allows you to tell Silverlight to
automatically trim words that exceed the bounds of the TextBlock. To enable Text Trimming, use
the TextTrimming property:

<TextBlock TextTrimming=”WordEllipsis”>

Displaying and Inputting Text  ❘  619

As indicated by the property value, trimmed text is indicated to the end user by the insertion of an
ellipsis at the end of the text, as shown in Figure 19-4.

Figure 19-4

Using Text Decorations
TextBlock also allows you to supply a text decoration. Text decorations are visual ornaments that
can be applied to text (such as underline, overline, or strikethrough). Whereas in WPF you can apply
any of these different types of text decorations, in Silverlight you are limited to only the underline
text decoration. To apply the decoration, simply use the TextDecorations property and provide it
with a value of Underline, as shown in the following sample:

<TextBlock TextDecorations=”Underline”>

Formatting Inline Text
So far in this chapter, you have looked at how changing the different formatting properties on a
TextBlock affects the format of the text within; however, many times you want to format only a por-
tion of a larger block of text. Thankfully, Silverlight supports formatting blocks of text within a larger
body of text.

TextBlock allows you to specify specific runs of Text that need unique formatting options by using
the Run element. Listing 19-6 demonstrates using the Run element within a TextBlock to create
three discrete text sections, each of which has its own unique font styling.

Listing 19-6:  ​Using Run elements for inline text formatting

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 <Run FontFamily=”Courier New”>Fusce porttitor, tellus id

continues

620  ❘  Chapter 19   Working with Text

 tristique viverra, ligula pede pulvinar purus, nec hendrerit
 urna justo et nulla.</Run> Cras condimentum nulla at ipsum.
 <Run Foreground=”Red”>Nullam nulla.</Run> Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus
 et enim. Nunc accumsan. <Run FontWeight=”Bold”>Curabitur
 ultrices dui ac tortor.</Run> Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi
 sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.</TextBlock>

Figure 19-5 shows the output of this TextBlock.

Figure 19-5

Setting styling properties in a discrete Run element overrides the style properties set on the
TextBlock for that specific Run.

The TextBlock also allows you to explicitly insert line breaks into the text content using the
LineBreak element. Using the LineBreak element gives you explicit control over the location
where the TextBlock breaks a line of text, as shown in Listing 19-7.

Listing 19-7:  ​Using LineBreaks in a TextBlock

<TextBlock TextWrapping=”Wrap”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 <Run FontFamily=”Courier New”>Fusce porttitor, tellus id
 tristique viverra, ligula pede pulvinar purus, nec hendrerit
 urna justo et nulla.</Run>
 <LineBreak />
 Cras condimentum nulla at ipsum.

Listing 19-6  (continued)

Displaying and Inputting Text  ❘  621

 <Run Foreground=”Red”>Nullam nulla.</Run> Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. Vivamus
 et enim. Nunc accumsan. <Run FontWeight=”Bold”>Curabitur
 ultrices dui ac tortor.</Run>
 <LineBreak />
 Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi
 sed orci. Etiam nec dui egestas elit pretium sodales.
 Etiam felis.</TextBlock>

Figure 19-6 shows the text rendered with the line breaks.

Figure 19-6

Using Run and LineBreak still allows the TextBlock to control the rendering of the text as a single
unified object; therefore, as your application is resized, the TextBlock can intelligently reorganize
the text it contains, regardless of how that text may be formatted.

Using the RichTextBox Control
Silverlight 4 introduces a new RichTextBox control, which provides a means to display and edit rich
content in your Silverlight application. Rich content includes text formatted using font face, italics,
underline, bold, and color, controlling the layout and arrangement of content as well as inserting
other UI elements directly into text. The control also includes basic text editing features like selec-
tion, copy and paste, and undo/redo.

Creating Rich Content
By default, the RichTextBox exists in an editable mode, allowing end users to add and remove
content. You can change this by using the IsReadOnly property. While in read-only mode,
the content of the RichTextBox remains selectable and programmatic changes can still be made,
but no end-user input or edits are accepted. Additionally, interactive inline elements like the

622  ❘  Chapter 19   Working with Text

Hyperlink and InlineUIContainer (both discussed later in this chapter) are active only while
the control is read-only.

To add content to a RichTextBox, there is no Text or Value property. Instead the control exposes a
Blocks collection. A Block is the outer-most content container in the RichTextBox and Silverlight
includes two types of Block objects: Paragraph and Section. As its name suggests, the Paragraph
object groups RichTextBox content into paragraphs. The Section object represents some section of
content that is typically accessed only by selecting content in the control, which is discussed later in
this chapter.

Typically when you define content to be added to the control, that content will be contained inside
of a Paragraph, which is then added to the control’s Blocks collection. You can add multiple para-
graphs of content to the RichTextBox simply by creating multiple Paragraph objects and adding
them to the Blocks collection.

Listing 19-8 shows how to create several paragraphs of text within the RichTextBox.

 Listing 19-8:  ​Adding paragraphs to the RichTextBox

<RichTextBox x:Name=”RichTextBox1”>
 <Paragraph>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Fusce porttitor, tellus id tristique viverra, ligula pede pulvinar
 purus, nec hendrerit urna justo et nulla. Cras condimentum nulla
 at ipsum. Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida
 id, tristique quis, justo. Vivamus et enim. Nunc accumsan. Curabitur
 ultrices dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci. Etiam nec
 dui egestas elit pretium sodales. Etiam felis.</Paragraph>
 <Paragraph>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Fusce porttitor, tellus id tristique viverra, ligula pede pulvinar
 purus, nec hendrerit urna justo et nulla. Cras condimentum nulla
 at ipsum. Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida
 id, tristique quis, justo. Vivamus et enim. Nunc accumsan. Curabitur
 ultrices dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci. Etiam nec
 dui egestas elit pretium sodales. Etiam felis.</Paragraph>
 <Paragraph>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Fusce porttitor, tellus id tristique viverra, ligula pede pulvinar
 purus, nec hendrerit urna justo et nulla. Cras condimentum nulla
 at ipsum. Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida
 id, tristique quis, justo. Vivamus et enim. Nunc accumsan. Curabitur
 ultrices dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci. Etiam nec
 dui egestas elit pretium sodales. Etiam felis.</Paragraph>
</RichTextBox>

Because the default content container of the RichTextBox is the Blocks collection, the Paragraphs
are added directly to the control. Also note that of the two Block types, Paragraph is the only
one that can be used from XAML. Figure 19-7 shows the results of adding the paragraphs to the
RichTextBox.

Displaying and inputting Text ❘ 623

The Paragraph object exposes a set of basic font formatting properties that allow you to control
font styling. These properties apply to all content in the Paragraph.

figure 19-7

Because content elements of the RichTextBox, including Paragraph, all derive
from the abstract TextElement class (which includes properties for basic text
formatting, including the font family, size, style, weight, and foreground color),
you have to set these font properties on any content object in the RichTextBox.

Also note that although you can change the foreground color of an individual
TextElement, currently there is no way to change the background color of an
individual run of content in the control.

The Paragraph also allows you to set the text alignment for its content using the TextAlignment
property. Like the text alignment for the TextBlock, you can align Paragraph content Center,
Left, or Right. The Paragraph TextAlignment property also allows you to align content in a
Justifi ed format.

The easiest and most fl exible way to style individual sections of a paragraph is using inline format-
ting elements. Inline formatting elements allow you to apply a variety of formatting to Paragraph
content and to insert more complex rich content. The inline formatting elements included in
Silverlight are described in the Table 19-1.

624  ❘  Chapter 19   Working with Text

Table 19-1

Format Object Description

Run Describes a discrete section of formatted or unformatted text.

LineBreak Inserts an explicit line break into the content.

Span Groups multiple inline content elements into a single section.

Bold Applies a Bold weight to content. This is the same as setting the
FontWeight property.

Italic Applies an Italic style to content. This is the same as setting the
FontStyle property.

Underline Applies an underline to content. This is the same as setting the
TextDecoration property.

Hyperlink Formats text content as a hyperlink using a HyperlinkButton.

InlineUIContainer A generic container for adding UI elements to inline content.

As you can see, the Paragraph supports the same basic Run and LineBreak elements as the
TextBlock but adds a number of other formatting elements.

To apply formatting to content within a paragraph, simply wrap the content in a formatting
object. Listing 19-9 shows how you can use the Bold, Italic, Underline, and Hyperlink
objects in a Paragraph.

Listing 19-9:  ​Adding inline formatting elements to RichTextBox content

<RichTextBox x:Name=”RichTextBox1”>
 <Paragraph>
 <Bold>Lorem ipsum dolor sit amet, consectetuer adipiscing
 elit.</Bold> Fusce porttitor, tellus id tristique viverra,
 <Italic>ligula pede pulvinar purus</Italic> ,
 nec hendrerit urna justo et nulla. Cras
 <Hyperlink>condimentum</Hyperlink> nulla at ipsum. Nullam nulla.
 Sed elit lectus, hendrerit rhoncus, gravida id, tristique quis,
 justo. <Underline>Vivamus et enim. Nunc accumsan.</Underline>
 Curabitur ultrices dui ac tortor. Nunc mollis, turpis quis
 consequat laoreet, nisl quam laoreet justo, a euismod magna nisi
 sed orci. Etiam nec dui egestas elit pretium sodales. Etiam felis.
 </Paragraph>
</RichTextBox>

As noted in the previous table, the Bold, Italic, and Underline formatting objects are simply
markup-friendly ways of setting the standard font properties. The Hyperlink is a friendly way of
inserting a HyperlinkButton within the RichTextBox. The Hyperlink object exposes the same
properties as the HyperlinkButton, including NavigationUri and TargetName. There are also
properties for altering the style of the link.

Displaying and Inputting Text  ❘  625

You can use the Span object to group together multiple sections of text within a paragraph and
apply formatting to them. Listing 19-10 shows how you can use the Span object to create a group
of content with a specific font face and use additional formatting elements within the span.

Listing 19-10:  ​Grouping rich content using the Span element

<RichTextBox x:Name=”RichTextBox1”>
 <Paragraph FontFamily=”Comic Sans MS”>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Fusce porttitor, tellus id tristique viverra, ligula pede
 pulvinar purus, nec hendrerit urna justo et nulla.
 <Span Foreground=”Red” FontFamily=”Courier New”
 FontSize=”16”>Cras condimentum nulla at ipsum. <Bold>
 Nullam nulla.</Bold> Sed elit lectus, hendrerit rhoncus,
 gravida id, <Italic>tristique</Italic> quis, justo.
 Vivamus et enim. Nunc accumsan. Curabitur ultrices
 dui ac tortor. Nunc mollis, turpis quis consequat laoreet,
 nisl quam laoreet justo, a euismod magna nisi sed orci.
 Etiam nec dui egestas elit pretium sodales. Etiam felis.
 </Paragraph>
</RichTextBox>

Finally, the InlineUIContainer allows you to add arbitrary UI Elements like Buttons, Images, or
even a DataGrid to the RichTextBox content.

Listing 19-11 demonstrates how you can add a Button to the RichTextBox content using the
InlineUIContainer.

Listing 19-11:  ​Adding a Button to rich content

<RichTextBox x:Name=”RichTextBox1” Grid.Row=”1”>
 <Paragraph>
 <Bold>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 </Bold>Fusce porttitor, tellus id tristique viverra, <Italic>
 ligula pede pulvinar purus</Italic>, nec hendrerit urna justo
 et nulla. Cras <Hyperlink>condimentum</Hyperlink> nulla at ipsum.
 Nullam nulla. Sed elit lectus, hendrerit rhoncus, gravida id,
 tristique quis, justo. <Underline>Vivamus et enim. Nunc accumsan.
 </Underline> Curabitur ultrices dui ac tortor. Nunc mollis, turpis
 quis consequat laoreet, nisl quam laoreet justo, a euismod magna
 nisi sed orci. Etiam nec dui egestas elit pretium sodales. Etiam.
 </Paragraph>

 <Paragraph TextAlignment=”Center” >
 <InlineUIContainer>
 <Button x:Name=”Button1” Content=”Chapter 19”
 Margin=”10” Click=”Button1_Click” />
 </InlineUIContainer>
 </Paragraph>
</RichTextBox>

626  ❘  Chapter 19   Working with Text

Figure 19-8 shows the RichTextBox containing a variety of text elements.

Figure 19-8

If you decide to use the InlineUIContainer in the RichTextBox, you should be aware of several
restrictions:

Use of the ➤➤ InlineUIContainer is not supported within the Hyperlink element. An exception
will be raised by Silverlight if it finds an InlineUIContainer within a Hyperlink’s content.

The content of the ➤➤ InlineUIContainer is always bottom-aligned with its surrounding
content. This is not currently configurable.

InlineUIElement➤➤ s are not included in the content exposed by the RichTextBox’s Xaml
property. If you intend to allow users to save the control’s content, and restore it at a later
point, the content of any InlineUIContainers will be converted to empty Run objects.

InlineUIElement➤➤ s are not included in Cut/Copy/Paste operations.

As mentioned earlier, ➤➤ InlineUIElements are active only when the RichTextBox is in
read-only mode. This means that elements like Buttons will remain disabled while the
RichTextBox is editable.

In addition to content formatting the Paragraph allows you to set the alignment of its content using
the TextAlignment property. As you would expect you can set the alignment of the content to be
LeftAligned, RightAligned, Centered, or Justified.

Adding content at design time is one way to provide content to the RichTextBox. You can also
provide content dynamically at run time using the control’s Xaml property, which accepts a string
of XAML content.

Note that currently the Xaml property is not a dependency property; therefore, you cannot use normal
XAML data binding syntax to set this property. Setting it at run time must be done in code-behind.

Displaying and Inputting Text  ❘  627

Listing 19-12 demonstrates how you can read in some XAML stored in a file and load that into the
RichTextBox using the Xaml property.

Listing 19-12:  ​Providing XAML to the RichTextBox

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 Uri url = new Uri(“Listing1920.xml”, UriKind.Relative);
 WebClient client = new WebClient();
 client.DownloadStringCompleted +=
 new DownloadStringCompletedEventHandler(
 client_DownloadStringCompleted);
 client.DownloadStringAsync(url);
}

void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 this.RichTextBox1.Xaml = e.Result;
}

As mentioned earlier, some restrictions exist around what will be included in the XAML returned by
the Xaml property. Only attributes that can be represented as a string will be included. For example,
if you have an element’s foreground property set to a complex brush like a gradient brush, this will
not be included in the XAML.

If enough content is entered into the RichTextBox that it begins to overflow the control bounds,
the control will begin to show scrollbars to allow end users to scroll the content. By default the
control shows scrollbars only when its content begins to exceed the bounds of the control, but
you can control the visibility of scrollbars using the HorizontalScrollbarVisibility and
VerticalScrollbarVisibility properties.

Finally, as the end user inputs content into the control or the Block’s property is changed, or for-
matting changes occur in the control, its ContentChanged event is raised. This event allows you to
add custom application logic that reacts to changes in the content.

Working with RichTextBox Default Behaviors
As stated earlier, by default the content within the RichTextBox is editable by the end user. To assist
in editing this content, the RichTextBox includes a set of editing behaviors beyond the basic inline
editing experience. These behaviors are all enabled by default.

First, the ability to cut, copy, and paste text using the default platform shortcut keys is included.
This means that users can simply select a section of text and use Ctrl+X to copy, Ctrl+C to cut, and
Ctrl+V to paste (Command+X, Command+C, Command+V on a Mac). End users can also copy
and paste using the standard select and drag mouse gestures.

The cut/copy/paste commands in the RichTextBox leverage Silverlight 4’s new ability to access
the system’s Clipboard. Like using the Clipboard APIs directly, cutting, copying, or pasting
from the RichTextBox causes a security prompt to be shown to the end user asking for permis-
sion to access the Clipboard.

628  ❘  Chapter 19   Working with Text

You can of course add your own user interface to perform the same action should you want to.
Adding a series of buttons and using Silverlight Clipboard APIs allows you to create an “editing”
toolbar for the RichTextBox. Listing 19-13 shows how to use the RichTextBox selection APIs and
Silverlight’s Clipboard APIs to add cut, copy, and paste buttons to your application.

Listing 19-13:  ​Using the Clipboard APIs to save and restore content

private void btnCopy_Click(object sender, RoutedEventArgs e)
{
 if (this.RichTextBox1.Selection != null)
 {
 Clipboard.SetText(this.RichTextBox1.Selection.Text);
 }
}

private void btnPaste_Click(object sender, RoutedEventArgs e)
{
 string content = Clipboard.GetText();
 this.RichTextBox1.Selection.Xaml = content;
}

This listing shows how in an event such as a Button’s click event you can access the RichTextBox’s
currently selected content using the Selection object, which is discussed in greater detail later in
this section. The listing also shows how you can insert content stored on the Clipboard back into
the control.

If you create your own custom cut/copy/paste user interface, it is important to know about and plan
for a number of limitations. Currently the public Clipboard APIs in Silverlight place only text into
the Clipboard. There are no APIs that allow you to place content in XAML form into the Clipboard.
This can be problematic if you allow users to use both the keyboard commands as well as a custom
user interface to set or get RichTextBox content to and from the Clipboard.

For example, if you include a button that copies XAML content from the RichTextBox to the
Clipboard using the SetText method, if the user subsequently uses the Ctrl+V command to paste
that content from the Clipboard back into the RichTextBox, the content is pasted as plain text.
This will expose the raw XAML, even though when originally copied it was understood by the
RichTextBox to be XAML.

Conversely, if the user copies rich content to the Clipboard using the Ctrl+X or Ctrl+C commands,
using the GetText Clipboard API returns only the plain text content, not the XAML.

It is possible via a custom user interface to paste XAML content stored on the Clipboard back into
the RichTextBox. To do this you must load the content using the XamlReader, then because you
cannot load a Section directly into the control, walk the resulting TextElements and manually
insert Paragraphs into the control’s Blocks collection.

As stated earlier, select and copy behaviors are enabled regardless of the RichTextBox’s read-only
state. But as you would expect, cut and paste behaviors require the control to be in an editable state.

Displaying and Inputting Text  ❘  629

The RichTextBox also includes an Undo/Redo stack, which end users can access using the standard
Ctrl+Z and Ctrl+Y commands (Command+Z and Command+Y on a Mac). Note that there is cur-
rently no public API for the Undo/Redo stack; therefore you cannot programmatically cause an undo
or redo action, or access the items in the stack. Additionally, undo/redo behavior can be disabled only
by placing the RichTextBox into read-only mode.

Selecting and Navigating Content
Once you have content in the RichTextBox, users can begin to select and navigate the content using
the cursor. The control includes APIs that allow you to determine the currently selected content as
well as change the position of the cursor and the selection.

Users can select content by using standard selection mouse gestures, placing the cursor at some
position in the content and using mouse drag gestures to select a section of content.

When a section of content is highlighted, while the RichTextBox has focus, the section will
be shown with a blue background. Currently this is hard-coded into the control and cannot be
changed. A section of selected content is shown in Figure 19-9.

Figure 19-9

You can also programmatically select text using the RichTextBox APIs. The control includes a
simple SelectAll method, which simplifies programmatically selecting all of the content in the
control. Listing 19-14 shows how you can use this method.

Listing 19-14:  ​Using the SelectAll method to select all content

private void btnSelectAll_Click(object sender, RoutedEventArgs e)
{
 //Make sure you focus on order to get the text to highlight
 this.RichTextBox1.Focus();
 this.RichTextBox1.SelectAll();
}

630  ❘  Chapter 19   Working with Text

Note that before the SelectAll method is called the control’s Focus method is called. As described
earlier, the selection highlight is shown only while the control has focus, so this listing makes sure to
return focus from the Button to the RichTextBox.

You can also programmatically select sections of content using the control’s Selection property.
This property returns a TextSelection object that provides a Select method that allows you to set
the specific section of content you want selected.

The Select method accepts two TextPointer objects as input. A TextPointer represents a specific
point in the RichTextBox content, and is used to navigate the content of the RichTextBox. When
using TextPointers with the Select method you need to provide one that represents the selection
starting point and one that represents the selection end point. Listing 19-15 shows how you can use
the Select method to select all content in the RichTextBox.

Listing 19-15:  ​Selecting a section of RichTextBox content

private void btnSelectAll_Click(object sender, RoutedEventArgs e)
{
 this.RichTextBox1.Selection.Select(
 this.RichTextBox1.ContentStart,
 this.RichTextBox1.ContentEnd);
}

It is also possible to use the Select method to position the cursor. To do this, simply pass the same
start and end TextPointer into the method. This is shown in Listing 19-16 where the Select method
positions the cursor at the start of the content.

Listing 19-16:  ​Positioning the cursor using the Select method

private void btnMoveCursor_Click(object sender, RoutedEventArgs e)
{
 this.RichTextBox1.Selection.Select(
 this.RichTextBox1.ContentStart,
 this.RichTextBox1.ContentStart);
}

You can use the ContentStart and ContentEnd properties to get TextPointers, which represent
the content’s starting point and end point. A number of other of ways also exist to get TextPointers
from the RichTextBox that represent other locations in the content.

The control’s GetPositionFromPoint method allows you to get the TextPointer from a Point.
Listing 19-17 shows how you can use the GetPositionFromPoint method to select a word in the
control’s content based on the current mouse position.

Listing 19-17:  ​Getting a TextPointer based on mouse position

void RichTextBox1_MouseMove(object sender, MouseEventArgs e)
{
 Point mouse = e.GetPosition(this.RichTextBox1);

Displaying and Inputting Text  ❘  631

 TextPointer originationPosition =
 RichTextBox1.GetPositionFromPoint(mouse);
}

As you can see, the code in the listing uses the MouseMove event’s GetPosition method to get a
Point that represents the current mouse position. To get the corresponding TextPointer, simply
pass the Point in to the GetPositionFromPoint method.

Finally, you can use the GetPositionFromOffset method to get a TextPointer based on an offset
from another TextPointer. The method accepts as input an integer representing the offset, and a
LogicalDirection value that dictates the direction of the offset. Listing 19-18 demonstrates using
the method to position the cursor at a specific location in the content.

Listing 19-18:  ​Getting a TextPointer based on an offset value

private void btnFind_Click(object sender, RoutedEventArgs e)
{
 int offset = int.Parse(this.txtPosition.Text);

 TextPointer position =
 this.RichTextBox1.ContentStart.
 GetNextInsertionPosition(LogicalDirection.Forward).
 GetPositionAtOffset(offset, LogicalDirection.Forward);

 if (position != null)
 {
 this.RichTextBox1.Selection.Select(position, position);
 this.RichTextBox1.Focus();
 }
}

As you can see, an offset TextPointer is created based on the control’s ContentStart TextPointer
position. In this case the listing uses the GetNextInsertionPoint method to determine the position of
the first valid insertion point forward of the ContentStart position. This is done because the actual
ContentStart position is not a valid insertion point, and therefore using it directly would cause the
curser to be positioned incorrectly.

Once selection of content has been made, you can use the TextSelection object and get and set
formatting properties of the selection, as well as get the actual selection content.

The TextSelection object exposes the current selection both as Xaml and as Text. As its name
implies the Xaml property returns the currently selected content’s XAML. The XAML returned is in
the form of a Section. By using a Section, the RichTextBox is able to resolve selections that begin
in the middle of content elements, and cross paragraph boundaries.

The Text property returns the plain text content of the currently selected content.

Listing 19-19 shows how you can use the Xaml property to get the current selection and Listing 19-20
shows the XAML that is returned.

632  ❘  Chapter 19   Working with Text

Listing 19-19:  ​Accessing the current selection’s XAML

private void btnSave_Click(object sender, RoutedEventArgs e)
{
 if (this.RichTextBox1.Selection!=null)
 {
 string content = this.RichTextBox1.Selection.Xaml;
 }
}

Listing 19-20:  ​An example of a Section’s XAML

<Section xml:space=”preserve”
 HasTrailingParagraphBreakOnPaste=”False”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”>
 <Paragraph FontSize=”11” FontFamily=”Portable User Interface”
 Foreground=”#FF000000” FontWeight=”Normal” FontStyle=”Normal”
 FontStretch=”Normal” TextAlignment=”Left”>
 <Bold FontWeight=”Bold”>
 <Run Text=”consectetuer adipiscing elit.” />
 </Bold>
 <Run Text=” Fusce porttitor, tellus id tristique viverra, “ />
 <Italic FontStyle=”Italic”>
 <Run Text=”ligula pede pulvinar purus” />
 </Italic>
 <Run Text=” , nec hendrerit urna justo et nulla. Cras “ />
 <Hyperlink Foreground=”#FF337CBB” TextDecorations=”Underline”
 MouseOverForeground=”#FFED6E00”>
 <Run Text=”condimentum” />
 </Hyperlink>
 <Run Text=” nulla at ipsum. Nullam nulla. Sed elit lectus,
 hendrerit rhoncus, gravida id, tristique quis, justo. “ />
 <Underline TextDecorations=”Underline”>
 <Run Text=”Vivamus et enim. Nunc accumsan.” />
 </Underline>
 <Run Text=” Curabitur ultrices dui ac tortor. Nunc mollis,
 turpis quis consequat laoreet, nisl quam laoreet
 justo, a euismod magna nisi sed orci. Etiam nec dui
 egestas elit pretium sodales. Etiam felis.” />
 </Paragraph>
</Section>

The TextSelection object also includes methods that allow you to access and change the property
values assigned to the selection. Using the GetPropertyValue method, you can check the value of cur-
rently applied properties. Using the ApplyPropertyValue method, you can change the value of those
properties. Listing 19-21 shows how you can use these methods to check if the selection is currently
Bold and change its state based on that.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D

Displaying and Inputting Text  ❘  633

Listing 19-21:  ​Setting selection format properties

private void btnBold_Click(object sender, RoutedEventArgs e)
{
 if (this.RichTextBox1.Selection != null)
 {
 object obj = this.RichTextBox1.Selection.GetPropertyValue(
 Section.FontWeightProperty);

 if (obj != DependencyProperty.UnsetValue)
 {

 FontWeight currentWeight = (FontWeight)obj;

 if (currentWeight == FontWeights.Bold)
 this.RichTextBox1.Selection.ApplyPropertyValue(
 Section.FontWeightProperty, FontWeights.Normal);
 else
 this.RichTextBox1.Selection.ApplyPropertyValue(
 Section.FontWeightProperty, FontWeights.Bold);
 }
 }
}

Note that in the preceding listing, once the property value is retrieved from the Selection, it is
checked to see if it is equal to DependancyProperty.UnsetValue. UnsetValue is a value used by
the property system instead of null, and will be returned by the GetPropertyValue method if
the TextSelection extends across more than one value for the property being retrieved. In the
preceding example, if the selection contains both Bold and Normal text, the method will return
UnsetValue.

Finally, the TextSelection object includes an Insert method, which allows you to programmatically
insert content into the control at the current cursor position. The Insert method accepts any content
derived from the base TextElement class as input.

Note that because the Insert method accepts TextElement objects, it cannot be used to directly
insert XAML content that has been previously copied to the Clipboard. As described earlier, using
the GetText method to retrieve content from the Clipboard returns the content as plain text, not
true XAML.

To insert content retrieved from the Clipboard’s GetText method into the RichTextBox, you
can either:

Set the plain XAML content to the ➤➤ Selection’s Xaml property.

Load the content using the ➤➤ XamlReader’s Load method.

If you choose to use the XamlReader to load the content, you need to walk the resulting Section
object’s Paragraphs and copy them to the RichTextBox’s Blocks collection.

634 ❘ chapter 19 workIng wIth text

font support and rendering

Silverlight continues to improve its already excellent support for text and font rendering. Silverlight 4
adds support for additional languages including use of Indic scripts in an application. Also added to
Silverlight 4 is the FlowDirection property, which allows you to render text in right-to-left orienta-
tion. Figure 19-10 shows an example of a Silverlight TextBlock displaying Arabic script in right-to-left
orientation.

figure 19-10

By default, Silverlight uses a special font called the Portable User Interface (PUI) font, which is a
composite font that uses several different fonts to implement characters for the full range of interna-
tional languages supported by Silverlight. The font is primarily composed of Lucida Grand, which is
used for most Western writing systems, and many other fonts used for East Asian support.

The PUI font is actually not really a font at all. It is just a logical defi nition of how
Silverlight does font fallback. This defi nition ultimately maps to real OS fonts.

Starting in Silverlight 4, Silverlight removes the font “whitelist” restriction that was present in previous
versions. This restriction limited Silverlight support for the local system fonts to only 10 local system
Latin fonts and 31 different East Asian fonts. But, starting with Silverlight 4, you are free to use any
font available on the local system.

You can get a list of the typefaces available on the local system by using the static Fonts
.SystemTypefaces property, which returns a collection of TypeFace objects. A typeface is a
single variation of a font within a font family, for example, the italic version of Times New
Roman is an example of a specifi c typeface within a family.

Font Support and Rendering  ❘  635

Listing 19-22 shows how you can create a FontSource from a Typeface and assign it to a TextBlock.

Listing 19-22:  ​Accessing local system typefaces

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 List<Typeface> typefaces = Fonts.SystemTypefaces.ToList<Typeface>();

 List<GlyphTypeface> glyphtypefaces = new List<GlyphTypeface>();

 foreach (Typeface t in typefaces)
 {
 GlyphTypeface glyph;

 if (t.TryGetGlyphTypeface(out glyph))
 {
 try
 {
 FontSource source = new FontSource(glyph);
 Glyphs testGlyphs = new Glyphs() {
 UnicodeString = glyph.FontFileName,
 FontSource = source,
 FontRenderingEmSize = 11.0,
 Fill = new SolidColorBrush(Colors.Black) };

 this.fontslist.Children.Add(testGlyphs);
 }
 catch (NullReferenceException exc)
 {
 /* This typeface is not supported by Silverlight */
 }

 }
 else
 {
 System.Diagnostics.Debug.WriteLine(“No Glyph found”);
 }
 }
}

In this listing, the SystemTypefaces property is used to get the list of local typefaces, which is then
converted to a List<T>. The list of typefaces is then converted to a list of glyph typefaces using the
TryGetGlyphTypeface method. A GlyphTypeface is a low-level text object that represents a single
face of a font in a font family. The GlyphTypeface is what actually ties the Typeface to a physical
font file on disk.

Finally, the list of GlyphTypeface objects is enumerated and a Glyphs object is created that displays
the names of the available typefaces.

636 ❘ chapter 19 workIng wIth text

You might think the next logical step from listing the fonts would be to
allow your end users to select a font to apply to text in something like a
TextBlock. Unfortunately in Silverlight 4 this is not a simple task. In order
to tell the TextBlock to render a font, you need to set both its FontFamily
and FontSource properties. In the preceding listing you can see that you can
create a FontSource from the GlyphTypeface, but then there is no way to
determine the FontFamily. You would need to fi nd some way to divine the
font family based on the glyph’s font fi lename.

using embedded fonts
In addition to local system fonts, Silverlight also supports embedding fonts directly into an applica-
tion, allowing you to use any font you want in your application design.

To use an embedded font with the TextBlock, simply provide the FontFamily property with a spe-
cial font URI that tells Silverlight the name of the TrueType font fi le you want to use and the specifi c
TypeFace from that fi le to use. This is shown in the following sample:

<TextBlock FontFamily=”[FontFile]#[TypeFace]“ />

So, for example, if you want to use the font fi le named MyFavoriteFont.ttf, which contains a type-
face named My Favorite Font Normal, confi gure a TextBlock to use this font using this syntax:

<TextBlock FontFamily=”segoesc.ttf#Segoe Script” />

Figure 19-11 shows the text in the TextBlock using the embedded font.

Note that if you are embedding fonts in your Silverlight application, this may be
considered distributing a font with your application. If you are using a licensed
font, you may need to ensure that you have the appropriate distribution rights.

Blend provides a set of advanced properties editors that make managing fonts in your application
easy. Figure 19-12 shows the font selection list of the Text property editor. The list not only includes
the list of available fonts, but uses icons to indicate if a font is a built-in Silverlight font or a font that
has been embedded in the application.

When you select a font, if it is not a built-in font, you can choose to have Blend automatically embed
the font in your application by checking the Embed checkbox, shown in Figure 19-13.

Checking the Embed checkbox tells Blend to add the font as a resource in your application’s XAP
fi le, which ensures that all of the users of your application will be able to see the font even if they do
not have it installed. Note, this does also increase the size of your XAP fi le.

Font Support and Rendering  ❘  637

Figure 19-11

Icons indicating the source of the font

Figure 19-12

The Text property editor also includes a button to launch the Font Manager dialog, shown
in Figure 19-14. Note that the Font Manager can also be accessed from the Expression Blend
Tools menu.

Figure 19-13 Figure 19-14

The Font Manager gives you a single location to manage all the fonts embedded in your application
and also lets you create a font subset by selecting only specific glyphs from the font to include.

638  ❘  Chapter 19   Working with Text

Creating Font Glyph Subsets
Silverlight also allows you to render individual font glyphs. The advantage of using glyphs is that
you do not have to embed an entire font file into your application. Instead, you create a subset of the
font that includes only the specific characters you need.

The easiest way to create a font subset is to use Expression Blend’s Font Manager dialog, which was
shown in the previous section. The dialog allows you to create font subsets by specifying the exact
glyphs you want to use and includes a number of common selection options such as selecting only
upper- or lowercase characters. You can explicitly set the specific characters you want to include.

Once you select the characters you want to include in the font subset, Expression Blend automati-
cally generates the appropriate TTF files and adds them to a compressed ZIP file. This ZIP file is
included in your project as a resource.

To use the font subset you use the same syntax as shown in the previous section for accessing
embedded fonts.

<TextBlock TextWrapping=”Wrap”
 FontFamily=”/Chapter19;component/Fonts/Fonts.zip#Curlz MT” >
 Font Subset
</TextBlock>

If the TextBlock contains characters that are not included in the font subset, Silverlight will auto-
matically fall back to the default Portable User Interface font to display those characters.

You can also use the Glyphs element to display specific font glyphs. While the Glyphs object is a
low-level object and in most cases you should simply use the TextBlock, using Glyphs can be useful
if you are creating XPS documents at run time because XPS uses glyphs to display text.

Listing 19-23 shows using the Glyphs element to render specific glyphs contained in a font.

Listing 19-23:  ​Displaying font glyphs

<Glyphs FontUri=”=”/Chapter19;component/Assets/LANDMARK.ttf”
 Fill = “SteelBlue” FontRenderingEmSize = “36”
 UnicodeString = “Chapter 19”>
</Glyphs>

In the preceding sample, only the glyphs necessary to render the UnicodeString are retrieved from
the font that is specified by the FontUri property. Also note that, unlike TextBlock, the default
Fill value for Glyphs is null and the FontRenderingEmSize is zero; therefore, you should make
sure to provide values for both of these properties in order to render the text.

You can use the Glyphs element’s Indices property to specify specific glyph indices in the font. You
can also use the Indices property to control the spacing of characters in the UnicodeString. The
Indices property accepts a semicolon-delimited list of glyph indices and spacing information. Each
index can be defined using the following format:

[GlyphIndex][,[Advance][,[uOffset][,[vOffset]]]]

summary ❘ 639

Although the Glyphs FontUri property accepts a URI object as its value, the
object only works with URIs that resolve to an embedded resource. Absolute
URIs and URIs that are relative to the server location will not work as the
FontUri of the Glyphs object. If you want to load the font from a remote loca-
tion, you can download the font using the WebClient APIs and set the resulting
stream as the Glyphs font using its FontSource property.

Each portion of this format is optional. You can fi nd more information on using the Indices property
to control font spacing at http://msdn.microsoft.com/en-us/library/ms748985.aspx.

rendering text
Since Silverlight 3, Silverlight has included ClearType as its default mechanism for rendering text.
Although in most cases the use of ClearType is transparent to you, some situations can cause the run
time to fall back to grayscale antialiasing for text rendering.

The basic rule of thumb is if during rendering Silverlight cannot determine the background color
that the text should be blending with, it falls back to grayscale antialiasing. This may happen in the
following scenarios:

The application uses Cached Composition (Bitmap Caching).➤➤

The application uses Writable Bitmap.➤➤

The Silverlight plug-in’s ➤➤ Windowless property is set to true, and the plug-in has a transparent
background.

You are using the ➤➤ DropEffect class.

suMMary

As the Internet moves toward even more rich media content, text still remains a central way to
convey information to end users. Silverlight puts signifi cant new capabilities into the hands of web
developers and frees web designers from many of the constraints imposed on them by traditional
HTML text displays.

This chapter looked at the core mechanisms used to display text in Silverlight, the TextBlock and
RichTextBox. These versatile elements give you amazing power to style and display text. Choose
from the local system fonts or provide your own font set to differentiate your site from others.

The chapter also explored more advanced text options such as using the Glyphs element to display
individual font glyphs.

http://msdn.microsoft.com/en-us/library/ms748985.aspx

20
Making it richer with Media

what’s in this chapter?

Examining Silverlight’s media support and DRM➤➤

Working with the MediaElement Control➤➤

Setting up playlists➤➤

Silverlight supports MP3 audio, H.264 Video, AAC Audio, and several Windows Media
Audio and Windows Media Video formats, giving you the ability to create media-rich, web-
based experiences. And even if you’re not creating a photo browser or interactive video appli-
cation, you can use Silverlight’s media capabilities to add subtle MouseOver sound effects to
buttons in your application to add that next level of polish. In this chapter, you’ll learn the
capabilities of the Silverlight MediaElement control and the fi le formats it supports. You’ll see
how to defi ne the control both in XAML and in Expression Blend and see how to respond to
the events it raises. You’ll also be introduced to Expression Media Encoder 3 and learn how to
prepare your media for use in your Silverlight app.

supported forMats

Before we even take a look at including media in our Silverlight apps, let’s take a look at the
fi le formats and codecs supported natively by the Silverlight player. Media can be encoded
using several of the Windows Media Video and Windows Media Audio codecs, as well as the
MP3 and AAC audio codecs and H.264 video codec. Windows Media Audio and Video are
more than just two codecs. Both of these formats include various versions and use-specifi c
codecs (such as Windows Media Screen and Windows Media Voice). Silverlight supports a
subset of the broad array of Windows Media codecs. Listed next are the versions supported

642  ❘  Chapter 20   Making It Richer with Media

by the player. These formats are supported, regardless of the file extension of the encoded file.
Silverlight ignores the file extension when the source media file is referenced.

Video

Raw Video➤➤

YV12➤➤  — ​YCrCb(4:2:0)

RGBA➤➤  — ​32-bit Alpha Red, Green, Blue

WMV1➤➤  — ​Windows Media Video 7

WMV2➤➤  — ​Windows Media Video 8

WMV3➤➤  — ​Windows Media Video 9

Supports Simple and Main Profiles.➤➤

Supports only progressive (non-interlaced) content.➤➤

WMVA➤➤  — ​Windows Media Video Advanced Profile, non-VC-1

WVC1➤➤  — ​Windows Media Video Advanced Profile, VC-1

Supports Advanced Profile.➤➤

Supports only progressive (non-interlaced) content.➤➤

H264 (ITU-T H.264 / ISO MPEG-4 AVC)➤➤

Supports H.264 and MP43 codecs.➤➤

Supports Base, Main, and High Profiles.➤➤

Supports only progressive (non-interlaced) content.➤➤

Supports only 4:2:0 chroma subsampling profiles.➤➤

Supports PlayReady DRM with Mp4 (H264 and AAC-LC).➤➤

Audio

1➤➤  — ​This is Linear 8- or 16-bit Pulse Code Modulation. Roughly speaking, this is
WAV format.

353➤➤  — ​Microsoft Windows Media Audio v7, v8 and v9.x Standard (WMA Standard)

354➤➤  — ​Microsoft Windows Media Audio v9.x and v10 Professional (WMA Professional)

Supports full fidelity decoding of WMA 10 Professional Low Bit Rate (LBR) modes ➤➤

in the 32–96-Kbps range.

Multichannel (5.1 and 7.1 surround) audio content is automatically mixed down ➤➤

to stereo.

H.264 and AAC Support  ❘  643

24-bit audio will return silence.➤➤

Sampling Rates beyond 48,000 return an invalid format error code in same-domain ➤➤

and a 4001 in cross-domain scenarios.

85➤➤  — ​ISO MPEG-1 Layer III (MP3)

255➤➤  — ​ISO Advanced Audio Coding (AAC)

Supports Low Complexity (AAC-LC) decoding at full fidelity (up to 48 kHz).➤➤

High Efficiency (HE-AAC) encoded content will decode only at half-fidelity (up to ➤➤

24 kHz).

Multichannel (5.1 surround) audio content is not supported.➤➤

Unsupported Windows Media Formats

The following Windows Media–based formats are not supported by the Silverlight MediaElement
control:

Interlaced video content➤➤

Windows Media Screen➤➤

Windows Media Audio Professional➤➤

Windows Media Voice➤➤

Combination of Windows Media Video and MP3 (WMV video + MP3 audio)➤➤

Windows Media Video using odd (not divisible by 2) dimensioned frames; for example, ➤➤

127 × 135

VC-1 in MP4➤➤

H.264 and AAC Support

H.264 is a popular codec for encoding high-definition video. This format is used widely across
several devices and applications and has been made popular by the iTunes Store and family of sup-
ported devices. Many consumer camcorders now encode video natively to H.264 so that the video
can be immediately uploaded to media-sharing websites such as YouTube.com and Vimeo.com.
The Silverlight player can access H.264 videos directly via the MediaElement or via IIS7 Smooth
Streaming (enabled through the Media Services 3.0 extension for IIS7 available at www.iis.net/
extensions/SmoothStreaming).

AAC is the audio codec counterpart to H.264; most videos encoded with the H.264 codec have an
accompanying audio stream encoded using the AAC codec. AAC is also the audio format natively
used by iTunes.

http://www.iis.net/extensions/SmoothStreaming
http://www.iis.net/extensions/SmoothStreaming
http://www.youtube.com
http://www.vimeo.com

644  ❘  Chapter 20   Making It Richer with Media

Digital Rights Management

Silverlight 4 has introduced a robust Digital Rights Management (DRM) capability to help you
deliver audio and video content that is more secure and better protected from unauthorized capture
and redistribution. The scenarios for DRM include:

Online Scenarios➤➤  — ​Live Streaming and Progressive Download are scenarios that require a
user to be online while they play protected content.

Live Streaming➤➤  — ​Live streaming (or true streaming) sends content directly to the
computer or device without saving the file to a hard disk and is played immediately.

Progressive Download➤➤  — ​Progressive download lets users play back the media while
it is downloading. In this scenario, the data that is downloaded is temporarily stored
on the user’s computer before playback.

Offline Scenarios➤➤  — ​Download Offline, Rental, and Subscription are three scenarios that
allow users to be offline while they play the content. There must be an initial connection to
validate the user’s rights to the content.

Download File Offline➤➤ (onetime purchase) — ​The user downloads the content from
the Internet and later plays it by using an offline Silverlight player.

Rental➤➤  — ​You can specify time limits in your DRM licenses in order to limit play-
back of content, such as a 24-hour or 30-day viewing period.

Subscription➤➤  — ​Customers can play back content based on a subscription.

Using the MediaElement Control

Media is displayed in Silverlight applications by using the MediaElement control. Just like the
Image control, the MediaElement control has a Source property that points to the source media.
The source media can be an internal resource, compiled into your Silverlight assembly, a resource
compiled into a referenced assembly, a loose file sitting on the host server, a file residing on a remote
server, or a playlist served up from a local or remote server. In short, the MediaElement can refer-
ence a file that resides just about anywhere.

The following XAML defines a MediaElement control and references a loose video on the server,
located as a sibling to the XAP file:

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”SampleVideo.wmv” />

This particular MediaElement is 320 pixels wide × 240 pixels tall and is aligned to the top-left
corner of the page with both a top and left margin of 50 pixels (Margin=”50,50,0,0”, where
Margin=”TL, TR, BR, BL”). It’s as easy as that to get video or audio in your Silverlight application.

Using the Mediaelement Control ❘ 645

Review Chapter 5 to understand the layout principles like Margin.

Build actions and referencing Media
Just like images or other binary fi les, media fi les can reside just
about anywhere and can even be included in your project in a
number of ways. Let’s take a look at the various approaches
available, examine the pros and cons of each, and see how the
approach alters the way the media is referenced via XAML.

Each of the following sections mentions the term Build Action.
Build Action refers to a property available in Visual Studio
(and not available in Expression Blend) that dictates how the
fi le is treated when the project is compiled. Figure 20-1 shows
the Visual Studio Property panel when a media fi le has been
selected in Solution Explorer.

The Build Actions that are important to understand and are
covered in detail in the next section are:

Resource➤➤

Content➤➤

None➤➤

assembly resource Media
A media fi le is compiled into your project’s assembly when its Build Action is set to Resource. This
should only be done for short clips that you want to be available immediately when your application
or assembly is loaded. Files included as Resources are compiled into the application assembly and
can greatly increase the assembly’s fi le size, which will increase the amount of time to download and
load the XAP fi le to start your application.

You reference an embedded media fi le using a relative URL. If the fi le is in the root folder of your
project, you simply type its name. If the fi le is in a subfolder, such as Media, include the entire rela-
tive path. For example, the following XAML (Listing 20-1) references a video stored in the Media/
Stockfootage subfolder of the project directory:

listing 20-1: referencing an embedded media fi le

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”media/stockfootage/Bear.wmv” />

figure 20-1

646  ❘  Chapter 20   Making It Richer with Media

You can also use a path that explicitly references the assembly that the video is housed in. If your
Silverlight project name is MyProject, then the previous XAML could be replaced by the following
(Listing 20-2):

Listing 20-2:  ​Referencing media embedded in an assembly

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”MyProject;component/media/stockfootage/Bear.wmv” />

The text in bold is key: MyProject;component/.

The text MyProject should be replaced with the name of your project, but ;component/ should
remain at all times.

Pros➤➤

Media is available immediately.➤➤

Simple relative path references➤➤

No security issues➤➤

Cons➤➤

Large media files can bloat the assembly size and increase page load time.➤➤

XAP File Media
A media file is included in the XAP file and is not compiled into the assembly when its Build Action
is set to Content. When configured as Content, media files do not bloat the size of your project
assembly, but they do continue to bloat the size of the XAP file. You might take this approach if you
want your media files available immediately but do not want to bloat the size of your assembly.

When media is included this way, you must add a forward slash (/) before the path to the file
(Listing 20-3):

Listing 20-3:  ​Referencing media when Build Action set to Content

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”/media/stockfootage/Bear.wmv” />

Using the MediaElement Control  ❘  647

Pros➤➤

Media is available immediately.➤➤

Simple absolute path references➤➤

No security issues➤➤

Assembly size is reduced.➤➤

Cons➤➤

Large media files can bloat the XAP size and increase page load time.➤➤

Loose Files
You can add media files to your project that are not compiled into the project assembly or added to the
XAP file. These files bloat neither the assembly nor the XAP file. To achieve this scenario, set the Build
Action of your file to None, and “Copy to Local Directory” to Copy Always or Copy if Newer.

Use the same syntax as you used with XAP File Images, adding a forward slash to the URI
(Listing 20-4):

Listing 20-4:  ​Referencing media file when Build Action set to None

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”/media/stockfootage/Bear.wmv” />

Pros➤➤

Assembly size is reduced.➤➤

XAP size is reduced (faster page load time).➤➤

Cons➤➤

Media is not loaded at page load; instead, it loads asynchronously after the XAP is ➤➤

downloaded.

Use this scenario when you want to create a very lightweight, quick-loading application. The media
begins streaming from the server to the MediaElement control as soon as it is referenced.

Media in Other Assemblies
Media does not have to be housed in your main project’s assembly for you to reference it. Media
files can be compiled as resources into separate assemblies created either by you or a third party.
When referencing images in assemblies other than the main project, you are required to use the
“ProjectName;component/” syntax introduced a couple of sections back.

648  ❘  Chapter 20   Making It Richer with Media

The following XAML (Listing 20-5) references a video named cloudTexture.wmv defined in an
assembly named BackgroundVideoTextures.dll:

Listing 20-5:  ​Referencing media in another assembly

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”BackgroundVideoTextures;component/cloudTexture.wmv” />

Pros➤➤

Assembly size is reduced.➤➤

XAP size is (potentially) increased; as referenced assemblies grow in size, separates ➤➤

visuals from application logic.

Cons➤➤

Media cannot be renamed or removed if you are not in control of the resource ➤➤

assembly.

Increases the number of projects you must maintain (if you are in control of the ➤➤

resource assembly).

Media on Other Domains
When you want to access audio or video on a remote server, you can use the fully qualified URI to
access the image (Listing 20-6):

Listing 20-6:  ​Referencing media on another server

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”http://www.remotewebsite.com/publicvideo.wmv” />

However, Silverlight’s security policies prevents the remote file from loading if the remote site does
not have a security manifest file in place that grants you access.

Pros➤➤

Allows you to host media on remote, high-capacity servers.➤➤

http://www.remotewebsite.com/publicvideo.wmv%E2%80%9D

Using the MediaElement Control  ❘  649

Cons➤➤

You don’t have control of the remote server.➤➤

The integrity of the application is dependent on third-party server performance.➤➤

Requires security policies.➤➤

Adding a MediaElement in Blend
While it’s important to know how to define MediaElement
by hand in XAML, it’s also quite likely that you’ll use
Visual Studio 2010 or Expression Blend to add, position,
and size media. In this section, we’ll cover working with the
MediaElement in Blend. There are a couple of nice features
in Blend that help manipulating the MediaElement easier
than in Visual Studio 2010. Either way, everything you
see here can be achieved in Visual Studio 2010, although
some of it you’ll need to code yourself in XAML. The
MediaElement control is accessed from Expression Blend’s
Asset Library and clicking the “All” tree node under
Controls. Figure 20-2 shows the MediaElement control in
the Asset Library.

Create an instance of MediaElement by first selecting the
MediaElement control from the Asset Library and then drag-
ging a rectangle on the design surface to define its initial posi-
tion and size. You can also double-click on the control’s icon
in the toolbar. With “MediaElement” selected on the design
surface, you can specify a Source file by either clicking the
drop-down arrow or clicking the ellipsis next to the Source
property. Clicking the drop-down arrow reveals any media
files already added to the project.

Clicking the ellipsis launches a File Browser dialog. Once
you’ve selected a supported media file, i’s added to your proj-
ect with a Build Action of Content and a “Copy to Output
Directory” setting of Copy if Newer. You can modify these
settings in Visual Studio to meet your needs.

Figure 20-3 shows the Source property in Blend’s Media
category.

Sizing Video and Setting the Stretch Behavior
The MediaElement control does not have to be the same size as the source video. Just like any ele-
ment in your Visual Tree, you are in charge of its positioning and size. Just like the Image and Path

Figure 20-2

Figure 20-3

650 ❘ chapter 20 mAkIng It rIcher wIth medIA

controls that we examined earlier, the MediaElement control has a Stretch property that dictates
the way the underlying video is drawn as its container MediaElement control is sized and resized.
The following values can be set on MediaElement.Stretch:

Fill➤➤ — The video is stretched both vertically and horizontally, fi lling the MediaElement
control. With this setting, video can feel distorted.

None➤➤ — The underlying artwork does not stretch at all.

In practice, the behavior when set to None is the same as when set to Fill.

Uniform➤➤ (Default) — The underlying video maintains its original aspect ratio while scaling
to fi t within the control. With this mode, the video is always drawn in its entirety.

UniformToFill➤➤ — The underlying video maintains its original aspect ratio; although unlike
Uniform, it always scales to fi t the longest axis. The resulting video is never distorted,
although it may be clipped.

Figure 20-4 demonstrates how the various values of Stretch affect the fi nal rendering of the
MediaElement.

figure 20-4

The Stretch property lets you control the behavior of the MediaElement when the source video is a
different size from the MediaElement control. What if you always want to draw the MediaElement
at the exact same size as the underlying video? Fortunately, the MediaElement control provides
a couple of properties that expose the native height and width of the loaded fi le. You can use
NaturalVideoHeight and NaturalVideoWidth to get the original height and width of the source
video, then update the Height and Width properties (and any additional layout properties) of your
MediaElement to display your video in the size it was intended to be viewed.

The following method (Listing 20-7) handles the MediaOpened event for our sample video. Once
this event has been raised, we have access to the NaturalVideoHeight and NaturalVideoWidth

Using the MediaElement Control  ❘  651

properties. This event handler uses these two properties to update the Height and Width properties
of the MediaElement that raised the event:

Listing 20-7:  ​Handling the MediaOpened event

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MediaOpened=”SetNaturalDimensions”
 Source=”/SampleVideo.wmv” />

private void SetNaturalDimensions(object sender, RoutedEventArgs e)
{
 MediaElement media = sender as MediaElement;
 media.Height = media.NaturalVideoHeight;
 media.Width = media.NaturalVideoWidth;

Transforming Video
Just like any FrameworkElement-derived object, the MediaElement can be positioned, sized, trans-
formed, and clipped in a myriad of ways to meet your layout needs. I’ll show you a few examples
here, just to get your creative juices flowing, but this is in no way an exhaustive demonstration of
what can be achieved.

Let’s start by rotating a MediaElement. On the Blend design surface, shown in Figure 20-5, I can
simply mouse over one of the corners of my selected MediaElement until I get the rotate icon, then
rotate to the desired angle.

Figure 20-5

652  ❘  Chapter 20   Making It Richer with Media

Figure 20-6 shows the RenderTransform Editor in the Blend Properties panel that lets you adjust
rotation (and all of the other transform properties) with numerical precision.

Behind the scenes, the RenderTransform property of the MediaElement has been set. When edit-
ing any of the transform properties in Blend, a TransformGroup containing each of the trans-
form types is applied to the RenderTransform property. The following XAML (Listing 20-8)
shows what Blend has applied behind the scenes:

Listing 20-8:  ​Setting a RenderTransform on a MediaElement

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 x:Name=”meSampleVideo”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5” >
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle=”9.862”/>
 <TranslateTransform/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

Rotating Video in 3D
After realizing that you can apply a RenderTransform to video, it’s only natural to consider rotat-
ing the video in three-dimensional (3D) space. Fortunately, 3D transformations can be applied to
MediaElements just as easily as they can be applied to other UIElements, by setting the Projection
property. The following XAML (Listing 20-9) swings the video back. Refer to Figure 20-6 to see the
Projection in the Properties panel.

Listing 20-9:  ​Setting a Projection on a MediaElement to perform a 3D transformation

<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”0” RotationY=”-60” CenterOfRotationX=”0”
 CenterOfRotationY=”0” CenterOfRotationZ=”0”/>
 </Image.Projection>
</Image>

Using the Mediaelement Control ❘ 653

Figure 20-7 shows the resulting MediaElement.

With the ability to apply true 3D transformations to video, Silverlight is empowering creative and
media professionals to create truly stunning interfaces that were previously only capable on desktop
and gaming platforms. And it’s easy to do, too!

Performing operations, such as 3D transforms, using PlaneProjection on your
video could impact performance at run time depending on the hardware
your application is running on.

clipping video
Again, just like any FrameworkElement-derived object, the MediaElement can be clipped using a clip-
ping path. To clip the MediaElement, you set the Clip property using the same path data syntax you
were introduced to in Chapter 7. Blend makes creating clipping paths easy. Simply defi ne a path using
the Blend drawing tools, and then size and position the path over the MediaElement you want to clip.
Once you have the path where you want it, select both the Path and the MediaElement (hold down the
Shift key to select multiple objects); then, from the main menu, select Object➤➪➤Path➤➪➤Make Clipping
Path. Figure 20-8 shows both a MediaElement and a Path selected on the design surface with the com-
mand exposed on the main menu.

Figure 20-6 shows the RenderTransform Editor in the Blend Properties panel that lets you adjust
rotation (and all of the other transform properties) with numerical precision.

Behind the scenes, the RenderTransform property of the MediaElement has been set. When edit-
ing any of the transform properties in Blend, a TransformGroup containing each of the trans-
form types is applied to the RenderTransform property. The following XAML (Listing 20-8)
shows what Blend has applied behind the scenes:

listing 20-8: setting a renderTransform on a Mediaelement

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Stretch”
 x:Name=”meSampleVideo”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5” >
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform/>
 <SkewTransform/>
 <RotateTransform Angle=”9.862”/>
 <TranslateTransform/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

rotating video in 3d
After realizing that you can apply a RenderTransform to video, it’s only natural to consider rotat-
ing the video in three-dimensional (3D) space. Fortunately, 3D transformations can be applied to
MediaElements just as easily as they can be applied to other UIElements, by setting the Projection
property. The following XAML (Listing 20-9) swings the video back. Refer to Figure 20-6 to see the
Projection in the Properties panel.

listing 20-9: setting a Projection on a Mediaelement to perform a 3D transformation

<Image Source=”Images/sampleImage.jpg” Stretch=”Fill” Width=”154”
 VerticalAlignment=”Top” Height=”116” HorizontalAlignment=”Left”
 Margin=”421,317,0,0”>
 <Image.Projection>
 <PlaneProjection RotationX=”0” RotationY=”-60” CenterOfRotationX=”0”
 CenterOfRotationY=”0” CenterOfRotationZ=”0”/>
 </Image.Projection>
</Image>

figure 20-6

figure 20-7

654  ❘  Chapter 20   Making It Richer with Media

Figure 20-8

Notice that the Path is positioned directly over the MediaElement that I want
to clip. You must position the Path exactly where you want the visible area of
the video to be before using the Make Clipping Path command. Expression
Blend normalizes the values of the Path data to be relative to the top-left corner
of the element being clipped. With clipping masks, (0,0) represents the top-left
corner of the object being clipped, not the top-left corner of the design surface. Figure 20-9 shows
the MediaElement after it has been clipped.

In the following XAML (Listing 20-10), you can see that the Clip property accepts the same path
data syntax that you should be vaguely familiar with now. Try hand-editing a few points to see how
the clipping mask is affected:

Listing 20-10:  ​Clipping video using a Path on the MediaElement Clip property

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 Source=”/SampleVideo.wmv”
 RenderTransformOrigin=”0.5,0.5”
 Clip=”M89.626343,47.989033 C89.626343,47.989033 1.9381521,109.92341
54.496151,126.16163 C107.05415,142.39984 88.938194,90.738899 141.32475,105.99192
C193.71132,121.24493 205.15047,87.790825 202.15236,82.222031 C199.15424,76.653236
186.56322,39.257092 151.01031,33.257763 C115.45742,27.258436 89.626343,47.989033
89.626343,47.989033 z” >
</MediaElement>

Figure 20-9

Using the MediaElement Control  ❘  655

Painting Elements with the VideoBrush
Using the VideoBrush, you can paint any element on your design surface with video. The classic
example is text painted with video; however, you can paint any custom artwork with a video brush
to create a variety of really interesting effects. You could, for example, have cloud-shaped paths,
painted with subtly moving fluffy textures, floating across your page. Let’s stick with convention,
though, and paint some text with video!

The VideoBrush is not completely self-contained. Instead, it needs a reference to an exist-
ing MediaElement defined within your page. The following XAML (Listing 20-11) defines a
MediaElement that references a WMV file named texture.wmv:

Listing 20-11:  ​Working with Properties on the MediaElement

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”textureVideo”
 Opacity=”0”
 IsMuted=”True”
 IsHitTestVisible=”False” />

I’ve bolded several properties in the preceding code that you’ll likely want to set when defining a
MediaElement for use by a VideoBrush. First, I’ve set Opacity to 0 so that the source video won’t
be seen except when used by the VideoBrush. Second, I’ve set IsMuted to True. I don’t really want
to hear any audio playing in the background if this video has an audio track. I just want the video.
Last, I’ve set IsHitTestVisible to False so that the MediaElement doesn’t erroneously capture
my mouse clicks. These three properties together keep the MediaElement quiet and prevent it from
making itself known in ways other than how I’ve intended.

The following XAML (Listing 20-12) defines a TextBlock and sets its Foreground property
with a VideoBrush that references the MediaElement just defined. Note that the name of the
MediaElement is “textureVideo” (x:Name=”textureVideo”).

Listing 20-12:  ​Applying a VideoBrush on a MediaElement

<TextBlock
 Text=”VideoBrush”
 FontFamily=”Arial”
 FontSize=”72”
 FontWeight=”Bold”>
 <TextBlock.Foreground>
 <VideoBrush
 SourceName=”textureVideo” Stretch=”UniformToFill” />
 </TextBlock.Foreground>
</TextBlock>

The VideoBrush is applied just as you apply a SolidColorBrush, LinearGradientBrush, or
ImageBrush. I’ve bolded the SourceName property in the previous code listing. The SourceName

656  ❘  Chapter 20   Making It Richer with Media

property accepts a string with the name of the source MediaElement, in this case, textureVideo.
Because VideoBrush is derived from TileBrush (like ImageBrush), it has a Stretch property. Use
the Stretch property to define how the video is applied as it fills the target element.

Simulating Video Reflections
It’s likely you’ve seen Silverlight media samples that simulate reflected video. This technique is easy
and fast to achieve once you know the basics. You can apply this same technique to any other ele-
ment in your Page as well. To achieve the effect, we’ll use:

Two ➤➤ MediaElements, both using the same Source

ScaleTransform➤➤

OpacityMask➤➤

First, start by creating two MediaElements and set their Source
property to the same video. Then, position them one on top of the
other as shown in Figure 20-10.

You can use whatever layout panel works best for you here — ​posi-
tioning absolutely using the Canvas control, or via the StackPanel
with its Orientation set to Vertical. Next, we need to flip the
bottom video using a ScaleTransform. The following XAML
(Listing 20-13) shows how to do this by setting the ScaleY property
to -1 to flip the video on the Y-axis:

Listing 20-13:  ​Setting up for video reflection by adding a flip on the ScaleY property

<MediaElement
 Height=”320”
 Width=”240”
 x:Name=”videoReflection”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5”>
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleY=”-1”/>
 </TransformGroup>
 </MediaElement.RenderTransform>
</MediaElement>

You can achieve this with a single button click in the Expression Blend
transform editor. Just select the second video and select the last tab
in the transform editor. Figure 20-11 shows the “Flip Y axis” button
that automatically applies the ScaleTransform for you.

The last step in simulating a reflection is applying a
LinearGradientBrush as an OpacityMask to the second video. The
following XAML (Listing 20-14) defines a vertical LinearGradientBrush that starts at 50 percent
opacity (4C in Hexadecimal) and fades to 0 percent opacity (00 in Hexadecimal):

Figure 20-10

Figure 20-11

Using the Mediaelement Control ❘ 657

listing 20-14: adding a linearGradientBrush to simulate video refl ection

<MediaElement
 Height=”320”
 Width=”240”
 x:Name=”videoReflection”
 Source=”/SampleVideo.wmv” RenderTransformOrigin=”0.5,0.5”>
 <MediaElement.RenderTransform>
 <TransformGroup>
 <ScaleTransform ScaleY=”-1”/>
 </TransformGroup>
 </MediaElement.RenderTransform>
 <MediaElement.OpacityMask>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#00FFFFFF”/>
 <GradientStop Color=”#4CFFFFFF” Offset=”1”/>
 </LinearGradientBrush>
 </MediaElement.OpacityMask>
</MediaElement>

The order of the stops feels reversed, with the fi rst stop representing 0 percent
opacity and the second stop representing 30 percent opacity. This is because the
OpacityMask is applied to the MediaElement before it is fl ipped.

So, that’s all there is to it! Create two videos. Position them. Flip the second. Apply an
OpacityMask. Easy, easy! Now you can spend time adjusting the OpacityMask until you achieve the
fi nal effect you’re after. Try wrapping the two MediaElements with a container panel (such as Grid)
and apply a 3D transform — refl ected, 3D-rotated video in just a few steps!

enabling gpu hardware acceleration
When rendering high-defi nition video (or any video for that matter), you may want to enable hardware
acceleration to offl oad the processing to your GPU. You set these parameters using the <param /> tag
when adding the <object /> tag for the Silverlight plugin to your HTML page (Listing 20-15):

listing 20-15: setting enableCacheVisualization and enableGPUacceleration in
the silverlight plugin

<object data=”data:application/x-silverlight-2,”
 type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/Ch10MakingItRicherWithMedia.xap”/>
 <param name=”EnableGPUAcceleration” value=”true” />
 <param name=”EnableCacheVisualization” value=”true” />
 <param name=”background” value=”white” />
 <param name=”minRuntimeVersion” value=”3.0.40307.0” />
</object>

658  ❘  Chapter 20   Making It Richer with Media

The first parameter, EnableGPUAcceleration, enables the option of GPU acceleration at the plug-
in level. Note that at this point no elements in the player are actually GPU-accelerated. The second
parameter, EnableCacheVisualization, applies a red overlay to all elements not GPU-accelerated.
If you run your project at this point, everything should be red because you haven’t explicitly turned
on acceleration for any objects. EnableCacheVisualization is a great tool for understanding what
is actually being offloaded to the GPU.

Now that you’ve enabled GPU acceleration at the plug-in level, you have to turn on GPU accelera-
tion for specific elements in your application. The following XAML (Listing 20-16) enables GPU
acceleration by setting the CacheMode property to BitmapCache on a MediaElement:

Listing 20-16:  ​Setting CacheMode on the MediaElement

<MediaElement x:Name=”sampleVideo”
 Source=”media/sampleVideo.m4v”
 CacheMode=”BitmapCache”
/>

If you test now, you should see that your video is no longer red (meaning that the GPU is rendering
it). When you’re satisfied with your caching settings, either delete the EnableCacheVisualization
parameter or set its value to false.

Audio Settings
The Blend interface exposes some of the common properties you might want to set when ini-
tializing your media. Three of the properties shown in Figure 20-3 deal with audio: Balance,
IsMuted, and Volume. These properties can be set via XAML, via the Blend Property panel, or at
run time via code.

Balance➤➤  — ​The Balance property accepts a value between –1 and 1, where –1 represents
the left channel of audio, and 1 represents the right channel. By default, this value is centered
with a value of 0.

IsMuted➤➤  — ​Toggle the value of this property to turn the volume of the MediaElement on or
off, while preserving the value of the Volume property.

Volume➤➤  — ​The Volume property accepts a value between 0 and 1, where 0 represents no vol-
ume, and 1 represents full volume.

Buffering
By default, the MediaElement buffers five seconds of the target source file before playback starts.
You can adjust this value by setting the BufferingTime property. This property is of type TimeSpan
and accepts a value in the following format:

[days.]hours:minutes:seconds[fractionalSeconds]

Using the MediaElement Control  ❘  659

Both days and fractionalSeconds are optional. The following XAML (Listing 20-17) instructs
the MediaElement to buffer 1 minute and 30.5 seconds of video:

Listing 20-17:  ​Setting the BufferingTime on a MediaElement

<MediaElement
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

As the buffer is loaded, the BufferingProgress property of the MediaElement is updated.
The value of this property, like other properties representing a percentage, is 0 to 1. When this
value reaches 1, it means that 100 percent of the media specified by the BufferingTime has
been downloaded, not 100 percent of the media itself. Every time the BufferingProgress value
is updated by 0.05 or more, the MediaElement raises the BufferingProgressChanged event.
The following XAML (Listing 20-18) demonstrates how to specify an event handler for the
BufferingProgressChanged event:

Listing 20-18:  ​Setting the BufferingProgressChanged event handler

<MediaElement
 x:Name=”meSampleVideo”
 BufferingProgressChanged=”meSampleVideo_BufferingProgressChanged”
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

The following code (Listing 20-19) represents the meSampleVideo_BufferingProgressChanged
event handler, referenced by the previous XAML. When called, this method sets the Text property
of the TextBlock named tbBufferProgress with a meaningful message, based on the value of the
MediaElement’s BufferingProgress value:

Listing 20-19:  ​Handling the BufferingProgressChanged event

private void meSampleVideo_BufferingProgressChanged(object sender,
 RoutedEventArgs e)
{
 tbDownloadProgress.Text = (meSampleVideo.BufferingProgress *
 100).ToString() + “% Buffered”;
}

660  ❘  Chapter 20   Making It Richer with Media

Detecting Download Progress
Just as you can detect the amount of video that has been buffered, you can detect the amount of the
total video that has been downloaded. The MediaElement’s DownloadProgress property represents
the percentage of video that has been downloaded in the value range of 0 to 1. As the value of this
property increases by 0.05, the DownloadProgressChanged event is raised by the MediaElement.
The following XAML (Listing 20-20) demonstrates how to specify an event handler for the
DownloadProgressChanged event:

Listing 20-20:  ​Setting the DownloadProgressChanged event handler

<MediaElement
 x:Name=”meSampleVideo”
 DownloadProgressChanged=”meSampleVideo_DownloadProgressChanged”
 Width=”320”
 Height=”240”
 BufferingTime=”00:01:30.5”
Source=”/media/stockfootage/Bear.wmv” />

The following code (Listing 20-21) represents the meSampleVideo_DownloadProgressChanged
event handler referenced by the previous XAML. When called, this method sets the Text prop-
erty of the TextBlock named tbDownloadProgress with a download status message based on the
MediaElement’s DownloadProgress property:

Listing 20-21:  ​Handling the DownloadProgressChanged event

private void meSampleVideo_DownloadProgressChanged(object sender,
 RoutedEventArgs e)
{
 tbDownloadProgress.Text = (meSampleVideo.DownloadProgress *
 100).ToString() + “% Downloaded”;
}

Notice that I’m multiplying the DownloadProgress value by 100 to obtain a percentage-based value.

Detecting Playback Quality
The MediaElement control exposes two properties, DroppedFramesPerSecond and
RenderedFramesPerSecond, that you can use to detect the video quality being rendered at any
point in time. If the frame rate has dropped to a really low number or the number of frames being
dropped per second is close to the frame rate of your video, you could choose to change the Source
of the MediaElement to a stream encoded at a lower bit rate.

Using the MediaElement Control  ❘  661

Controlling Playback
The MediaElement exposes several common methods that you can use to control the playback of
the loaded media.

Pause()
When called, the Pause method pauses playback at the current position. Playback can be resumed
from the Pause position by calling the Play method. If Pause is called but not available, the call
is simply ignored. The MediaElement exposes a Boolean CanPause property that you can access
to determine whether or not pausing is available for the currently loaded media. Even though the
Pause method is ignored when CanPause is false, you can take advantage of this property to
update your user interface, potentially disabling or hiding your Pause button.

The following code (Listing 20-22) represents the Click event handler for a Button named
btnPause:

Listing 20-22:  ​Checking the CanPause property

 private void btnPause_Click(object sender, RoutedEventArgs e)
 {
 if (meSampleVideo.CanPause)
 meSampleVideo.Pause();
 }

Play()
When the Play method is called, the media is either started (if media was loaded with AutoPlay set
to false) or playback resumes from the current position (if paused). If the media is already playing,
calling this method has no effect. The following code (Listing 20-23) represents the Click event
handler for a Button named btnPlay:

Listing 20-23:  ​Calling the Play method on a MediaElement

 private void btnPlay_Click(object sender, RoutedEventArgs e)
 {
 meSampleVideo.Play();
 }

Stop()
When called, the Stop method stops playback and resets the Position property to 00:00:00. If
the media was paused when Stop was called, the Position is simply reset. If playback was already

662  ❘  Chapter 20   Making It Richer with Media

stopped, the method is ignored. The following event handler (Listing 20-24) stops playback of the
MediaElement named meSampleVideo:

Listing 20-24:  ​Calling the Stop method on a MediaElement

private void btnStop_Click(object sender, RoutedEventArgs e)
{
 meSampleVideo.Stop();
}

SetSource()
Generally, you set the value of the MediaElement’s Source property directly, specifying a valid URI.
However, if you already have access to a media file via a Stream or MediaSourceStream (potentially
obtained asynchronously using the WebClient), you can use the SetSource method to change the
media stream. The following code hints at how this might be achieved:

 private void btnLoadStream_Click(object sender, RoutedEventArgs e)
 {
 // Load media using a stream obtained via WebClient
 // meSampleVideo.SetSource(WebClient stream here);
 }

Seeking
The MediaElement does not expose a method for seeking to a particular location within the loaded
media. You can, however, set the value of the Position property, which achieves the desired result.
Just like pausing, seeking is not available when the media source is a live stream. You can detect
whether or not seeking is available for the loaded media by accessing the CanSeek property.

The following XAML (Listing 20-25) specifies an event handler for the MediaElement’s
MediaOpened event:

Listing 20-25:  ​Setting the MediaOpened event handler

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MediaOpened=”UpdateScrubberVisibility”
 Source=”/SampleVideo.wmv” />

The following code (Listing 20-26) handles the MediaOpened event and toggles the visibility of a
Slider named Scrubber based on the value of the MediaElement’s CanSeek property:

Listing 20-26:  ​Handling the MediaOpened event

private void UpdateScrubberVisibility(object sender, RoutedEventArgs e)
{

Using the MediaElement Control  ❘  663

 MediaElement media = sender as MediaElement;

 if (media.CanSeek)
 {
 Scrubber.Visibility = Visibility.Visible;
 }
 else
 {
 Scrubber.Visibility = Visibility.Collapsed;
 }
}

Responding to Video Markers
Windows Media files can be encoded with markers throughout their timelines that can represent
either text or some type of script at a specified point on the timeline. You can use these markers
to create a higher level of interactivity with the media currently playing. For example, consider a
recorded presentation that includes a set of coordinating slides. As the video plays, you would like
to change the active slide at different points in the video to coincide with the appropriate narration.
You can achieve this by encoding your video with markers at each point along the timeline where
you want the slide to change. The section “Encoding Media with Expression Encoder” later in this
chapter describes how to add markers to video.

The Markers Property
When media is loaded via the MediaElement control, the MediaElement.Markers property is
cleared and then loaded with any markers defined in the currently loaded media. This property is
available once the MediaOpened event is raised.

The Markers property is of type TimelineMarkerCollection, a collection of TimelineMarker
objects. Each timeline marker has a Text, a Time, and a Type property. Generally, with video
encoded for Silverlight applications, the value of the Type property will be “Name”, with the value of
Text representing the Name of the particular marker. The Time property is of type TimeSpan and
represents the location along the media’s timeline where the marker occurs.

Using the Markers collection, you can retrieve all of the names of each marker for the currently
loaded video and create an interface that lets you jump directly to a particular scene. The following
code (Listing 20-27) loops through all of the markers for a MediaElement that has just been opened
and writes the value of each marker’s Text property to the Debug window:

Listing 20-27:  ​Iterating the Markers collection in a MediaElement

private void TraceMarkers(object sender, RoutedEventArgs e)
{
 MediaElement mediaElementWithMarkers = sender as MediaElement;
 foreach (TimelineMarker marker in mediaElementWithMarkers.Markers)
 {
 Debug.WriteLine(“Marker Found: “ + marker.Text);

continues

664  ❘  Chapter 20   Making It Richer with Media

 Debug.WriteLine(“ > “ + marker.Time.ToString());
 }
}

You can also use the Time property of a particular marker to seek a position in the loaded media.
The following code (Listing 20-28) jumps to the position of the last marker in the Markers
collection:

Listing 20-28:  ​Setting a MediaElement position with the Time property of a Marker

private void SeekLastMarker(MediaElement mediaElement)
{
 // Get Index of Last Marker
 int lastMarkerIndex = mediaElement.Markers.Count - 1;

 // Seek to Position of Last Marker
 mediaElement.Position = mediaElement.Markers[lastMarkerIndex].Time;
}

Remember, the MediaElement does not contain a Seek() method; instead, you simply set the value
of the Position property directly.

The MarkerReached Event
The Markers property gives you all of the information you need to jump directly to a predefined
point in your media. However, if you want to enable the synchronized video + slideshow scenario
described at the beginning of this section, you’ll need to respond to the MarkerReached event of
the MediaElement. The MarkerReached event is raised any time a marker is reached during play-
back. The following XAML (Listing 20-29) demonstrates how to assign an event handler to the
MarkerReached event:

Listing 20-29:  ​Setting the MarkerReached event handler

<MediaElement
 Width=”320”
 Height=”240”
 x:Name=”meSampleVideo”
 MarkerReached=”OnMarkerReached”
 Source=”/SampleVideo.wmv” />

Similar to the TraceMarkers method we saw earlier, the following OnMarkerReached method
(Listing 20-30) displays the Text and Time of the marker that was just reached:

Listing 20-30:  ​Handling the MarkerReached event

private void OnMarkerReached(object sender,
 TimelineMarkerRoutedEventArgs e)

Listing 20-27  (continued)

Using the Mediaelement Control ❘ 665

{
 Debug.WriteLine(“Marker Reached: “ + e.Marker.Text);
 Debug.WriteLine(“ > “ + e.Marker.Time.ToString());
}

The TimelineMarkerRoutedEventArgs object includes a Marker property that you use to get infor-
mation about the marker that has just been reached. The previous simple event handler just writes
the Text and Time to the Debug window. A more realistic sample might update an image and mod-
ify the text of a label. The following example (Listing 20-31) does just that:

listing 20-31: Updating controls in the Markerreached event handler

private void OnMarkerReached(object sender, TimelineMarkerRoutedEventArgs e)
{
 // Set Slide Title
 txtSlideTitle.Text = e.Marker.Text;

 // Update Slide Image
 imgSlide.Source = new BitmapImage(new Uri(“images\\”
 + e.Marker.Text
 + “.png”, UriKind.Relative));
}

In the previous example, we created a new BitmapImage (System.Windows.Media.Imaging
namespace), assuming that there is a PNG image available that matches the string contained
within the Marker.Text property. In practice, you could have some type of data structure that
matches the marker’s text or offset with the source video fi le and provides any number of fi elds
you need to support your UI.

Windows Media fi les support multiple streams, each of which can have its own
set of markers. The MediaElement.Markers property only contains the mark-
ers embedded in the main fi le header, not the additional streams. However, the
MediaElement still raises the MarkerReached event as these additional markers
are reached.

handling failed Media
We’d all like to think that nothing we create will ever fail, but you and I both know that’s just
not reality. When you’re setting the source fi le of the MediaElement to a URL on a remote web-
site, you can only hope that it will always be there. If you’re not in control of the server, you can
never truly count on its existence, or the availability of the server, for that matter. Fortunately, the
MediaElement control lets us know when a referenced media fi le doesn’t load, isn’t supported, or
errors out during playback.

666  ❘  Chapter 20   Making It Richer with Media

The following XAML (Listing 20-32) demonstrates how to assign an event handler to the
MediaFailed event:

Listing 20-32:  ​Setting the MediaFailed event handler

<MediaElement
 Width=”320”
 Height=”240”
 MediaFailed=”OnMediaFailed”
 Source=”/SampleVideo.wmv” />

When this unfortunate event occurs, you can either try to load another file or present the user with
some type of meaningful message or experience. The following code (Listing 20-33) updates a
TextBlock and displays an error image:

Listing 20-33:  ​Handling the MediaFailed event

private void OnMediaFailed(object sender, RoutedEventArgs e)
{
 // Set Slide Title
 txtSlideTitle.Text = “An error occurred while trying to load the
 selected video.”;

 // Update Slide Image
 imgSlide.Source = new BitmapImage(new Uri(“images\\errorSlide.png”,
 UriKind.Relative));
}

Responding to State Changes
The MediaElement has a CurrentState property that can be accessed at any point during the life
of the control to determine its state. The CurrentState property is of type MediaElementState, an
enum type with the following values:

Closed➤➤

Opening➤➤

Individualizing➤➤

AcquiringLicense➤➤

Buffering➤➤

Playing➤➤

Paused➤➤

Stopped➤➤

Media Playlists  ❘  667

The MediaElement also raises a CurrentStateChanged event that you can handle and respond to.
The following XAML (Listing 20-34) demonstrates how to assign an event handler to this event:

Listing 20-34:  ​Setting the CurrentStateChanged event handler

<MediaElement
 Width=”320”
 Height=”240”
 CurrentStateChanged=”OnCurrentStateChanged”
 Source=”/SampleVideo.wmv” />

The following code (Listing 20-35) handles this event and writes the current state of the
MediaElement to the Debug window:

Listing 20-35:  ​Handling the CurrentStateChanged event

private void OnCurrentStateChanged(object sender, RoutedEventArgs e)
{
 MediaElement media = sender as MediaElement;
 Debug.WriteLine(“Current State: “ + media.CurrentState);
}

You can use your knowledge of the current state of the MediaElement to update playback controls
in your application. For example, if the current state changes to Playing, you probably want to
show a Pause button and vice versa.

Media Playlists

In certain scenarios, playing a single media file is not enough. Consider an online news program that
consists of several news segments interspersed with commercials. Or consider on online radio pro-
gram that consists of several audio tracks, framed at the beginning and the end with commentary. In
both of these scenarios, a media playlist is desirable.

Silverlight supports both Server Side Playlist (SSPL) and Advanced Stream Redirector (ASX) playlist
files to enable the scenarios described previously.

Server-Side Playlist (SSPL) Files
SSPL files are XML-based and use the .wsx file extension. These files are used by a Microsoft Media
Server of some flavor (Windows Server 2003, Windows Server 2008, Windows Web Server 2008,
etc.). Microsoft has a server comparison guide to help illustrate the differences between their differ-
ent server offerings at the following URL: www.microsoft.com/windows/windowsmedia/forpros/
server/version.aspx.

http://www.microsoft.com/windows/windowsmedia/forpros/server/version.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/server/version.aspx

668  ❘  Chapter 20   Making It Richer with Media

You’ll see that the Standard Edition of Windows Server 2003 does not support Advanced Fast Start
or Advanced Fast Forward/Rewind, whereas the Enterprise and Datacenter versions of those servers
do. There are several other features such as this that you don’t get with the non-Enterprise version of
the servers.

Why Use a Media Server and SSPL?
Below are some common advantages offered by the Media Server technologies. Access the pre-
viously referenced website to get a full understanding of the capabilities offered by Microsoft
Media Servers.

Dynamic Generation➤➤  — ​SSPL files can be created either statically or, more attractively,
dynamically. This means that you can serve up a dynamic playlist based on a user’s authen-
tication level or the time of day the playlist is being requested. You can even edit the playlist
after it has been accessed by a client, giving you an extreme level of control over the served-
up content.

Loading/Startup Experience➤➤  — ​When broadcasting a live event, it’s common for users to sign
in before the event has started. To provide a better experience for the early birds, you can
specify a media file to loop prior to the broadcast.

Fine-Grained Control➤➤  — ​The SSPL supports various configuration options that give you a
high level of control over each media file in your playlist. For example, you can define alter-
native video streams or files should another video fail. You can also display a subclip of a
video instead of the entire video, by setting the clipBegin and clipEnd properties.

Creating and Consuming a WSX File
The .wsx file is an XML-based file that can be easily defined by hand. Once defined and saved, the
file must be published using a Windows Media Server. When a .wsx file is published, a publishing
point will be defined. It is this publishing point that will be consumed by the MediaElement control,
just like a standard media file:

myCustomPlaylist.wsx => publish => mms://MyMediaServer:8081/myCustomPlaylist

The following (Listing 20-36) shows a simple WSX file definition:

Listing 20-36:  ​A WSX file definition

<?wsx version=”1.0”?>
<smil>
 <seq id=”debateSeq”>
 <media id=”introVideo” src=”intro.wmv” />
 <media id=”debate” src=”debate.wmv” />
 <media id=”summaryVideo” src=”summary.wmv” />
 <seq>
</smil>

mms://MyMediaServer:8081/myCustomPlaylist

Media Playlists  ❘  669

Consuming the WSX is just as easy as consuming a single media file. You simply set the Source
property of MediaElement to the URI of your published playlist (see Listing 20-37):

Listing 20-37:  ​Setting the MediaElement Source property to consume a server side playlist

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”mms://MyMediaServer:8081/myCustomPlaylist” />

The SSPL currently supports a number of features that Silverlight does not support. To see the
latest list of Silverlight-supported attributes, visit the Audio and Video ➪ Server-Side Playlists
section of the Silverlight Developer Center (http://msdn.microsoft.com/en-us/library/
cc645037(VS.95).aspx).

Advanced Stream Redirector (ASX) Files
In addition to SSPL files, Silverlight supports ASX-based playlist files. Like WSX files, ASX files are
XML-based and can be easily defined by hand or programmatically on the server. Unlike WSX files,
ASX files can reside on a standard web server and do not have to be published via Windows Media
Server. This capability may make ASX files more attractive to you when the power (and extra over-
head) of Windows Media Server is too much for your needs. The following URL covers all aspects
of the ASX file format in depth: http://msdn.microsoft.com/en-us/library/ms925291.aspx.

Key Features of ASX
The following are a few key features of the ASX playlist that may help you decide between SSPL
and ASX:

Server-Independent➤➤  — ​ASX files do not require a Windows Media Server. They are stand-
alone files that can reside loosely on a server or as part of your Silverlight project.

Dynamic Generation➤➤  — ​ASX files can be created either statically or, more attractively,
dynamically. This means that you can serve up a dynamic playlist based on a user’s authenti-
cation level or the time of day the playlist is being requested. You could achieve this dynamic
approach by creating an ASPX page that returns ASX content. Set the Source property of
your MediaElement to the ASPX page’s path.

Fine-Grained Control➤➤  — ​The ASX file format offers various configuration options for each
entry in the playlist. For example, the STARTMARKER attribute lets you specify the start time of
a particular entry. Most of these features of ASX are not currently supported by Silverlight 3,
although I wanted to call this ASX feature out should they be implemented at some point in
the future.

mms://MyMediaServer:8081/myCustomPlaylist%E2%80%9D
http://msdn.microsoft.com/en-us/library/cc645037
http://msdn.microsoft.com/en-us/library/cc645037
http://msdn.microsoft.com/en-us/library/ms925291.aspx

670  ❘  Chapter 20   Making It Richer with Media

Creating and Consuming an ASX File
A simple ASX file contains a single root ASX element and a list of child Entry elements. Each Entry
represents an item in the playlist. Listing 20-38 is a simple example that defines a playlist with a
single item:

Listing 20-38:  ​An ASX file definition

<ASX version = “3.0”>
<!--A simple playlist with entries to be played in sequence.-->
 <Title>Playlist Title</Title>
 <Entry>
 <Title>Sample Show Title</Title>
 <Author>ABC Video</Author>
 <Copyright>(c) 2008 ABC Video</Copyright>
 <Ref href=”Bear.wmv” />
 </Entry>
</ASX>

Reference the ASX playlist just as you would a single media element (Listing 20-39):

Listing 20-39:  ​Setting the MediaElement Source property to an ASX file

<MediaElement
 Width=”320”
 Height=”240”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Bottom”
 Margin=”50,50,0,0”
 Source=”MyCustomPlaylist.asx” />

Not all of the capabilities of the ASX format are supported by Silverlight. Table 20-1 identifies those
features and describes the behavior of the player when unsupported features are encountered.

Table 20-1

ASX Feature Description

PreviewMode attribute This attribute is found on the root ASX object. It is not supported and
will raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

BannerBar attribute This attribute is found on the root ASX object. It is not supported and
will raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

SkipIfRef This attribute is found on the root ENTRY object. It is not supported and
will raise a MediaError with AG_E_ASX_UNSUPPORTED_ATTRIBUTE.

Media Playlists  ❘  671

ASX Feature Description

REPEAT element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

EVENT element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

STARTMARKER element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

ENDMARKER element This is not supported and will raise a MediaError with
AG_E_ASX_UNSUPPORTED_ELEMENT.

Invalid content If a valid ASX tag has content that is not accepted (e.g., a MOREINFO tag
contains a REF tag), a MediaFailed error is raised.

Fallback URLs If an ENTRY tag has multiple REF children, only the first one is read.
Unlike WMP, Silverlight will not attempt to open additional REF URLs in
case the first one fails, and a MediaFailed error is raised.

Encoding Media with Expression Encoder
Now that you know how to do practically everything you can with the MediaElement, let’s take
a look at how to prepare media for use by the MediaElement. We’ll use Microsoft Expression
Encoder 3 (available as a trial download from www.microsoft.com/expression/products/
Encoder_Overview.aspx). Expression Encoder is designed with Silverlight exporting in mind.
It lets you quickly record videos, trim videos, add markers, and render to a format natively sup-
ported by Silverlight. It even includes publishing templates that generate Silverlight-based layouts
(that include MediaElements, of course) to quickly present your media on the Web.

In this walk-through, I’ll step you through a common encoding scenario to get you up-and-running
quickly, but I won’t cover Expression Encoder in full detail. If you really need to dig deep, the
Expression website has complete video training that can get you really immersed into the product.
Check that out here: http://expression.microsoft.com/en-us/cc197144.aspx.

Here’s a quick glance at what we’ll cover:

Importing a media file➤➤

Trimming the media➤➤

Adding markers➤➤

Setting encoder settings➤➤

Defining metadata➤➤

Publishing the video➤➤

http://www.microsoft.com/expression/products/Encoder_Overview.aspx
http://expression.microsoft.com/en-us/cc197144.aspx
http://www.microsoft.com/expression/products/Encoder_Overview.aspx

672  ❘  Chapter 20   Making It Richer with Media

Let’s get started. Figure 20-12 shows Expression Encoder right after it’s been launched.

Figure 20-12

The default workspace is mostly disabled at startup. To get going, click on the Import button in the
lower-left corner of the screen or select File ➪ Import from the main menu.

Clicking Import launches the “File Browser” dialog and let you select a file of any of the supported
media types, a fairly exhaustive list that should meet most of your needs.

Once you’ve selected a media file, it’s added to the Media Content panel, shown in Figure 20-13. I
selected the file Wildlife.wmv from the Windows 7 Videos folder as an example.

Figure 20-13

Media Playlists  ❘  673

Once you’ve imported the file, Expression Encoder detects some features of the file, such as File
type, duration, file size, and dimensions. These are displayed inline as a quick reference for you and
are demonstrated in Figure 20-14. You can import any number of media files by clicking on the
Import button again. Just select the media element in the Content panel’s list to make it the active
element on the edit surface, as seen in Figure 20-14.

Figure 20-14

Timeline Controls
The Timeline and Transport controls appear directly beneath a video once it is selected. The inter-
face is broken into six key regions, highlighted in Figure 20-15:

Timeline➤➤

Timeline Viewing controls➤➤

Playback controls➤➤

Editing buttons➤➤

“Add leader” button➤➤

“Add trailer” button➤➤

Figure 20-15

674  ❘  Chapter 20   Making It Richer with Media

Timeline
The Timeline is where you trim the begin-
ning and ending of your video, cut seg-
ments from your video, and add media
markers. You navigate the Timeline by
dragging the playhead (orange box icon)
to a desired position. As you drag (or
scrub, as it’s also known), the position
indicator and video preview updates (see
Figure 20-16).

Trimming Video
Mouse over the beginning or ending of the Timeline until your cursor changes, and you’ll see the
icons shown in Figure 20-17. Once you see the icon, press and drag to the right or left to trim the
beginning or ending of the video.

Cutting Video/Editing along the Timeline
You can cut segments from the middle of the Timeline by adding an edit. Do this by positioning the
scrubber at the location where you want to make the edit, then click the “Add an edit at the play-
head” button, as shown in Figure 20-18.

Once you’ve added an edit, you can trim the beginning or ending of the new segment just like you
trimmed the entire Timeline (see Figure 20-19).

The third of the editing buttons lets you remove the seg-
ment currently beneath the playhead. This lets you cut out
an entire segment of video. If you want to control your edits
with an extra level of precision, select the Clips tab on the
Properties panel. Figure 20-20 shows the “Start time” and
“End time” for all of the edits you’ve added.

Adding Markers
Markers can be added to the Timeline by right-clicking at
the location of the playhead and selecting “Add Marker,” or
by positioning the playhead and pressing Ctrl+M on your keyboard. Once you’ve added a marker, it
appears on the Timeline as a white rectangle (see Figure 20-21).

Figure 20-16

Figure 20-17 Figure 20-18 Figure 20-19

Figure 20-20

Media Playlists  ❘  675

Figure 20-21

Once you’ve added markers on the Timeline, you can edit their
properties using the Markers panel, available on the Metadata
tab (Window ➪ Metadata). Figure 20-22 shows the Markers
tab open with three markers added.

You can hand-tweak the time, provide a Value, specify whether
or not to encode this as a key frame, and specify whether or not
to generate a thumbnail for this particular marker. When you
click on the Thumbnail checkbox, a JPG image is created from
the video at the position of the marker. This is useful if you want
to create a DVD-style navigation that displays images for differ-
ent jump points in your media.

Timeline Viewing Controls
The Timeline Viewing controls are directly beneath the start of the Timeline, on the left side of the
screen. The first item in this set is a toggle button that lets you toggle the visibility of segments in
the video that have been cut. In Figure 20-23, this feature is turned on, revealing a section in red
(though this book doesn’t show the color) that has been cut. The second button toggles between the
current zoom level (set by the Zoom slider at the end of this set) and a zoom level that shows the
Timeline in its entirety. Use the Zoom slider to set the zoom factor, sliding it to the right to zoom in
for more precise editing.

Figure 20-23

Playback Controls
The Playback controls are positioned right in the middle of the Timeline area, making it easy to
navigate your Timeline quickly. The leftmost and rightmost buttons, commonly used to navigate to
the previous and next track on a media player, are here used to navigate from edit point to edit point
or marker to marker. The next set of buttons, second from the left and second from the right, lets
you step through your video frame-by-frame. The middle button lets you toggle between Play and

Figure 20-22

676 ❘ chapter 20 mAkIng It rIcher wIth medIA

Pause. If you ever forget the meaning of practically any element in the interface, just hover for a few
moments to see the control’s tooltip.

Editing Buttons
See the previous section, “Cutting Video/Editing along the Timeline.”

“Add Leader”/“Add Trailer” Buttons
Expression Encoder lets you quickly set an opening (leader) and closing (trailer) video to your cur-
rently selected media by clicking on either the “Add leader” or the “Add trailer” button. This is use-
ful if you have a standard branding that you want to apply to the beginning, end, or both of all of
the videos you produce.

You cannot edit or trim either the leader or trailer. You’ll have to edit those
separately, encode them, and then set them as a leader or trailer if you need to
perform any editing on those videos.

editing Metadata
Select the Metadata tab (Window➤➪➤Metadata) to edit prop-
erties such as Title, Author, Copyright, Rating, and the
like that will be included with your encoded media fi le. If the
encoded fi le is opened with Windows Media Player, this infor-
mation is displayed. The metadata properties listed by default
are only the most commonly used fi elds. Click the down
arrow beneath the Description fi eld to see all of the supported
fi elds. You can access this metadata in Silverlight using the
MediaElement.Attributes property (see Figure 20-24).

encoding settings
Select the Encode tab (Window➤➪➤Encode) to customize the
way your video and audio will be encoded. At the beginning
of this chapter, we looked at a list of codecs supported by
Silverlight. Now, we actually encounter them. Figure 20-25
shows the Profi le panel of the Encode tab. The fi rst two sec-
tions let you specify a video profi le and an audio profi le by
selecting from a drop-down list of options. You can think of
these as presets, each of which sets a codec, bit rate, height,
width, and several other properties.

When you click the down arrow beneath the Video combo
box, you’ll see all of the properties each item in the combo
box is setting. Try changing your combo box selection to see
how property settings are updated. figure 20-24

Media Playlists  ❘  677

If you want to get a feeling for how your video looks with your current encoding settings, click the
A/B compare button in the lower-right corner of the Media Content area, as shown in Figure 20-26.

When you click A/B compare, the video preview area goes
into a Split mode, with the original video on the left and
a preview of the encoding video on the right. You first
have to click the Generate preview link positioned in the
right area of the video. When the preview area goes blank,
don’t worry — ​the preview is being rendered. You will see
a progress bar in the Media Content List for the currently
selected item.

Exit the Preview mode by clicking on the same A/B button
you pressed to enter this mode. Its label has changed to
Exit A/B compare.

Additional Encoding Features
The Encode tab also includes two other panels: Video and
Audio. Each panel lets you further customize the individual
settings of the video and audio output.

Adding a Video Overlay
You can quickly add an overlay image to your encoded video.
This could be useful if you wanted to watermark your video
with a transparent logo, or even if you wanted to simulate a
television-style footer. You can supply either a static overlay,
in the form of an image, or a motion overlay, in the form of
another video file or even XAML!

To add an overlay, select the Enhance tab (Window ➪ ➤

Enhance) and then scroll down to the Overlay panel, as
shown in Figure 20-27.

Click on the ellipsis button to the right of the File box to
browse for an overlay file. For still-image overlays, you can
use a JPG, BMP, PNG, or GIF file. I recommend using a
32-bit PNG file, as it supports a full alpha channel (meaning Figure 20-27

Pause. If you ever forget the meaning of practically any element in the interface, just hover for a few
moments to see the control’s tooltip.

Editing Buttons
See the previous section, “Cutting Video/Editing along the Timeline.”

“Add Leader”/“Add Trailer” Buttons
Expression Encoder lets you quickly set an opening (leader) and closing (trailer) video to your cur-
rently selected media by clicking on either the “Add leader” or the “Add trailer” button. This is use-
ful if you have a standard branding that you want to apply to the beginning, end, or both of all of
the videos you produce.

Editing Metadata
Select the Metadata tab (Window ➪ Metadata) to edit prop-
erties such as Title, Author, Copyright, Rating, and the
like that will be included with your encoded media file. If the
encoded file is opened with Windows Media Player, this infor-
mation is displayed. The metadata properties listed by default
are only the most commonly used fields. Click the down
arrow beneath the Description field to see all of the supported
fields. You can access this metadata in Silverlight using the
MediaElement.Attributes property (see Figure 20-24).

Encoding Settings
Select the Encode tab (Window ➪ Encode) to customize the
way your video and audio will be encoded. At the beginning
of this chapter, we looked at a list of codecs supported by
Silverlight. Now, we actually encounter them. Figure 20-25
shows the Profile panel of the Encode tab. The first two sec-
tions let you specify a video profile and an audio profile by
selecting from a drop-down list of options. You can think of
these as presets, each of which sets a codec, bit rate, height,
width, and several other properties.

When you click the down arrow beneath the Video combo
box, you’ll see all of the properties each item in the combo
box is setting. Try changing your combo box selection to see
how property settings are updated.

Figure 20-25 Figure 20-26

678 ❘ chapter 20 mAkIng It rIcher wIth medIA

real transparency). When you want to use a video overlay, select any of the many video types that
Expression supports for encoding. Expression also supports QuickTime fi les with full alpha chan-
nels, giving you the ability to add animated overlays with full alpha-channel transparency.

As mentioned earlier, you can also provide XAML-based overlays. This puts the full power of the
Silverlight rendering and animation engine at your disposal for creating video overlays.

You’ll need to use a Canvas-based layout when creating your overlay.

output settings
The Output tab (Window➤➪➤Output) lets you customize
thumbnail encoding options (fi le type, image dimensions, etc.)
and, most importantly, lets you specify where you want to ren-
der your media and whether or not you want to publish using
a Silverlight template. Figure 20-28 shows the Job Output
panel. The fi rst property listed is Template. By default, (None)
is selected. If you wish to publish your video with a Silverlight
Media Player template, select an item from the drop-down list.
As you change your selection, the preview below the drop-
down changes. Selecting one of these presets does not affect
your render settings; it just adds to the number of fi les that are
generated and copied to your destination folder. With None
selected, only the .wmv or .wma is generated. With a template,
the .wmv or .wma plus several supporting fi les are generated.

Encoding Media
Once you’ve fi nished customizing the Output Settings,
Encoding Options, and optional overlay, you’re ready to
encode. So, click on the large Encode button in the lower-left
corner of the screen, and watch the progress bar work its way
to 100 percent. That’s it! (See Figure 20-29.)

smooth streaming and iis 7
Smooth Streaming is an IIS Media Services extension,
available for download at www.iis.net/extensions/
SmoothStreaming. This technology dynamically switches between various encodings of the same
media content based on the detected bandwidth of the requesting PC. Via this dynamic switching,
Smooth Streaming can enable near-instant seeking of video: A low-quality version of the video is
immediately sent to the PC upon seeking so that playback can begin. In the background, the next-
higher-quality feed is being cached. When available, the video steps up to the next level of quality.
This process continues until the PC’s bandwidth no longer supports the next-higher encoding.

figure 20-28

figure 20-29

http://www.iis.net/extensions/SmoothStreaming
http://www.iis.net/extensions/SmoothStreaming

Summary  ❘  679

In order to deliver Smooth Streaming video, the video must be encoded at several target quality lev-
els to support the various levels of bandwidth encountered. To generate a collection of files to enable
Smooth Streaming, select the “Adaptive Streaming” profile from the Video drop-down, and select
“Adaptive Streaming Audio” from the Audio drop-down.

Like any of the other presets, you can customize individual properties once the preset has been
selected. Once you’re satisfied with your settings, you can complete the Publish section to publish
your rendered files directly to a Smooth Streaming IIS 7 server. Select “WebDAV” from the “Publish
To” drop-down in the Publish category.

Finally, click the Encode button and step away for a coffee or a good night’s rest, depending on the
length of your footage.

Summary

The media capabilities offered by the Silverlight player empower you to create true multimedia expe-
riences. You now know how to respond to all of the events raised by the MediaElement and interact
with its properties to create interactive, media-rich applications. You learned how to use Microsoft
Expression Media Encoder to prepare media files for consumption by your Silverlight applications
and saw how the Microsoft Silverlight Streaming service can be used to help carry your bandwidth
burden. I hope your mind is now racing with ideas for exciting media applications!

21
styling and Themes

what’s in this chapter?

Defi ning core terminology➤➤

Defi ning and using resources➤➤

Creating keyed styles➤➤

Re-templating controls➤➤

Creating implicit styles➤➤

Using themes➤➤

Styling with Expression Blend➤➤

Creating beautiful, highly styled web-based applications is a core promise of the Silverlight
platform. Rarely have you seen Microsoft promote ugly Silverlight applications. Generally,
they have been through the user experience and visual design machines of top-notch compa-
nies that specialize in creating beautiful software. However, learning to take advantage of the
power of the platform and thus deliver on the promise of the platform starts at a technical,
and somewhat unbeautiful, level. This chapter does not try to teach you to create a thing of
great beauty — it’s just going to empower you to apply your artistic talents to a platform that
embraces them.

In this chapter, you learn how to customize the look and feel of the core controls you were
introduced to in previous chapters. You see how you can target controls for styling, gain insight
into approaches for organizing your styles and resources, and learn what a resource actually is.
When you are fi nished, you should have a solid understanding of how to make your application
look the way you want it to.

682  ❘  Chapter 21   Styling and Themes

Getting Started

Before you jump into styling, this section defines a small set of core terminology that will be used
throughout this chapter, and also defines a testing environment that you can use to follow the
examples that are coming up.

Defining a Core Terminology
The following are five key concepts that are used throughout this discussion. Many more concepts are
covered along the way, but these will provide you with just enough common ground to move ahead.

Brush➤➤  — ​A Brush object in Silverlight is used to paint elements with solid colors, linear gra-
dients, radial gradients, and images. The brush can be applied to elements such as rectangles,
circles, text, and panels.

Resource➤➤  — ​A resource is a static instance of some type of object. Brush-based types are
frequently defined as resources for use within an application.

ResourceDictionary➤➤  — ​A ResourceDictionary contains a collection of resources. A
ResourceDictionary can be defined inline in a Silverlight page (for example, Page.xaml)
or externally as a stand-alone XAML file.

Style➤➤  — ​A Style is a special type of object that contains a collection of property Setters.
A Style is defined within a ResourceDictionary and targets a particular type of control,
like a TextBox. It is commonly used to set properties like Foreground, FontStyle, and
FontFamily. Remember and repeat to yourself: A Style is a collection of Setters.

ControlTemplate➤➤  — ​A ControlTemplate is the VisualTree of elements that make up the
look of a control. These elements can range from a series of nested Borders (like the default
button) to a combination of paths with complex gradient fills. A ControlTemplate is gener-
ally applied by a Style in a Setter that sets the Template property.

The term “styling” encompasses many ideas, from the Foreground color and FontStyle of a
TextBlock, to the default hover animation applied to a button. You will start from the ground
up, first learning how to set visual properties inline, at the control level. You’ll then learn how
resources, such as SolidColorBrushes, are defined and consumed by elements in a Page, then
move on to defining Styles that set multiple properties on a particular type of control. Finally,
you will learn how to re-template controls to completely customize their appearance. In the
end, you should understand the “big picture” of styling in Silverlight.

Defining the Working Environment: A XAML-Based Approach
As you start your styling journey, it’s important to establish a common working environment so
that you can easily follow the examples. Either you can work in Visual Studio 2010 or in Expression
Blend 4; the environment you choose is really not important at this point. (Expression Blend was
used as the primary authoring tool during the creation of this chapter, so the screenshots you see
will likely be taken in the Expression Blend environment.)

Defining Local Styling (Inline Styling)  ❘  683

Create a new Silverlight 4.0 Project and add a UserControl to your project. Figure 21-1 demonstrates
how to do this in both Expression Blend and Visual Studio by right-clicking the Project node in Solution
Explorer. Once you have added the UserControl, double-click its XAML file to make it the active
document, and then switch to XAML view.

Figure 21-1

To ensure that your new UserControl is the page that you see when you debug, open App.xaml.cs
and edit the Application_Startup method created by the Silverlight Project starter template. Change
the line bolded in the following code to match the name of your new UserControl:

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the main control here
 this.RootVisual = new UserControl1(); // Change this control
}

Now, with that little bit of housecleaning out of the way, you can get started.

Defining Local Styling (Inline Styling)

Local styling is no more than setting properties on an instance of a control. This may sound a bit
obvious, but it is crucial that you see this basic piece of the bigger puzzle. Assume that you want
to customize the look of a TextBlock, setting its Foreground to red (#FF0000 in hexadecimal), its

684  ❘  Chapter 21   Styling and Themes

FontStyle to Arial, and its FontWeight to bold. The following code demonstrates how to do this
in XAML:

<TextBlock
 Text=”My Red Bold Arial Label”
 Foreground=”#FF0000”
 FontFamily=”Arial”
 FontWeight=”Bold” />

The Foreground property accepts an inline hexadecimal value that represents a SolidColorBrush.
You can also use the longhand version and set the Foreground property by explicitly declaring a
SolidColorBrush object:

<TextBlock Text=”My Red Bold Arial Label” FontFamily=”Arial”
 FontWeight=”Bold”>
 <TextBlock.Foreground>
 <SolidColorBrush Color=”#FF0000” />
 </TextBlock.Foreground>
</TextBlock>

This longhand version illustrates the underlying object type needed to set the Foreground property.
You have just encountered the first definition — ​Brush, in this case, the SolidColorBrush. Suppose
now that you want to create a Rectangle, painted with the same red SolidColorBrush. You can do
it inline just as you did with the TextBlock:

<Rectangle Width=”100” Height=”100”>
 <Rectangle.Fill>
 <SolidColorBrush Color=”#FF0000” />
 </Rectangle.Fill>
</Rectangle>

Now assume that you always want your TextBlock Foreground to match the Fill of this Rectangle,
and pretend that your mood just changed from red to green. Also, add to your layout ten additional
TextBlocks and three additional Rectangles and demand that they abide by the same color rules.
You could step through your XAML (or Expression Blend or Visual Studio) and manually change
property values every time you change your mind . . . or you can use resources.

Styling with Resources

You can resolve your color-sync nightmare through the use of resources. First, define the resource
and then reference that resource inline on each of your TextBlocks and Rectangles. The following
XAML snippet shows your UserControl prior to defining any resources:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Ch21StylesAndThemes.MainPage”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Styling with Resources  ❘  685

 d:DesignWidth=”640” d:DesignHeight=”480”>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle
 Height=”84”
 HorizontalAlignment=”Left”
 Margin=”8,35,0,0”
 VerticalAlignment=”Top”
 Width=”84”
 Fill=”#FFFF0000”
 Stroke=”#FF000000”/>
 <TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock”
 TextWrapping=”Wrap”
 Margin=”8,12,0,0”/>
 </Grid>
</UserControl>

Resources are housed in a ResourceDictionary, commonly in the outermost element of your XAML
file. All UIElement-derived classes have a Resources property of type ResourceDictionary, and
UserControl is no exception. The following code shows a new SolidColorBrush added to the
UserControl.Resources ResourceDictionary:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Ch21StylesAndThemes.MainPage”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 </UserControl.Resources>

Notice that the definition of the brush is exactly the same as the inline definition, only it now
includes an x:Key property value. When applying this resource, you will reference it by the key
value SharedBrush. To reference a resource in XAML, use the {StaticResource keyName}
markup extension. The following shows both the Rectangle’s Fill property and the TextBlock’s
Foreground property referencing the new resource named SharedBrush:

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 x:Class=”Ch21StylesAndThemes.MainPage”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

686 ❘ chapter 21 StylIng And themeS

 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle
 Height=”84”
 HorizontalAlignment=”Left”
 Margin=”8,35,0,0”
 VerticalAlignment=”Top”
 Width=”84”
 Fill=”{StaticResource SharedBrush}”
 Stroke=”#FF000000”/>
 <TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock”
 TextWrapping=”Wrap”
 Margin=”8,12,0,0”
 Foreground=”{StaticResource SharedBrush}“/>
 </Grid>
</UserControl>

The key thing to notice in the XAML is the statement Fill=“{StaticResource SharedBrush}“.
This statement reads, “Assign the resource named SharedBrush to the Fill property.”

The curly braces are required when referencing a resource.

You have now seen how to defi ne a resource and reference that resource. Try changing the Color
property of your SharedBrush resource and re-run your application. You should see that both the
foreground of the text and the fi ll of the rectangle have been updated, refl ecting your new color value.

As pointed out in the Defi ning a Core Terminology section at the beginning of the chapter, a
resource is a static instance of some type of object. You are not limited to creating Brush resources.
The following code shows two additional resources, CornerRadiusX and CornerRadiusY, both of
type System:Double (note that a namespace defi nition has been added for System). These are ref-
erenced by the Rectangle’s CornerX and CornerY properties.

<UserControl
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:System=”clr-namespace:System;assembly=mscorlib”
 mc:Ignorable=”d”
 x:Class=”Silverlight2BookSamples.UserControl1”
 d:DesignWidth=”640” d:DesignHeight=”480”>
 <UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 <System:Double x:Key=”CornerRadiusX”>9</System:Double>
 <System:Double x:Key=”CornerRadiusY”>9</System:Double>

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Styling with Resources  ❘  687

 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <Rectangle
 Height=”84”
 HorizontalAlignment=”Left”
 Margin=”8,35,0,0”
 VerticalAlignment=”Top”
 Width=”84”
 Fill=”{StaticResource SharedBrush}”
 Stroke=”#FF000000”
 RadiusX=”{StaticResource CornerRadiusX}”
 RadiusY=”{StaticResource CornerRadiusY}”/>
 <TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock”
 TextWrapping=”Wrap”
 Margin=”8,12.4,0,0”
 Foreground=”{StaticResource SharedBrush}”/>
 </Grid>
</UserControl>

If you are keeping your local project in sync with this running sample, your
UserControl should now look like Figure 21-2.

Carrying this idea further, you can define resources for the FontFamily,
FontSize, FontWeight, and FontStyle properties of your TextBlock.
Though this approach still satisfies your goal of centralizing shared
values, the following code demonstrates how messy this approach
can become:

<UserControl.Resources>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
 <System:Double x:Key=”CornerRadiusX”>9</System:Double>
 <System:Double x:Key=”CornerRadiusY”>9</System:Double>
 <FontFamily x:Key=”SharedFont”>Portable User Interface</FontFamily>
 <System:Double x:Key=”SharedFontSize”>14.666666984558106</System:Double>
 <FontWeight x:Key=”SharedFontWeight”>Normal</FontWeight>
 <FontStyle x:Key=”SharedFontStyle”>Normal</FontStyle>
 </UserControl.Resources>

<TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock”
 TextWrapping=”Wrap”
 Margin=”8,12.4630002975464,0,0”
 Foreground=”{StaticResource SharedBrush}”
 FontFamily=”{StaticResource SharedFont}”
 FontSize=”{StaticResource SharedFontSize}”
 FontWeight=”{StaticResource SharedFontWeight}”
 FontStyle=”{StaticResource SharedFontStyle}”/>

Figure 21-2

688  ❘  Chapter 21   Styling and Themes

You are now referencing resources for a large number of properties on this TextBlock control. You will
have to do the same thing for every other TextBlock in your layout that you want to share this same
look. Not only will this make your XAML hard to read, but it will also become a nightmare to main-
tain. What if you decide to synchronize another property, such as TextWrapping? With this model, you
will need to define another resource and update all of your TextBlocks to point to this new resource.
This is quickly becoming a problem. Fear not — ​the Style object is here to save the day!

Working with the Style Object

In defining Style at the beginning of this chapter, you were asked to remember that a Style is a
collection of Setters. Furthermore, a Style is a resource that contains a collection of Setters
that target properties and specify values for a particular type of control (such as TextBlock). The
previous code block shows what can happen when you try to centralize values for several different
properties on a control. A large number of resources are defined, one for each property. Then, on
each instance of the control (TextBlock in the example), you have to use a StaticResource refer-
ence for each centralized property value. It becomes a real mess! The following code shows you
how this problem is solved, using a Style object defined in the same ResourceDictionary:

<UserControl.Resources>
 <Style x:Key=”TextBlockStyle” TargetType=”TextBlock”>
 <Setter Property=”FontFamily” Value=”Verdana”/>
 <Setter Property=”FontSize” Value=”14”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”FontStyle” Value=”Normal”/>
 <Setter Property=”Foreground” Value=”#FFFF0000”/>
 </Style>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White” >
 <TextBlock
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Text=”TextBlock” TextWrapping=”Wrap”
 Style=”{StaticResource TextBlockStyle}”/>
 </Grid>

See how much cleaner your TextBlock has become? All of the individual property settings (and
StaticResource references) have been replaced by a single Style property setting. Additionally, all
of your resources have been rolled into a single resource of type Style. With all of these resources
rolled into a single Style, keeping several TextBlocks in sync is no longer a problem. You simply
set the Style property.

Now, look a little more closely at the details of this Style object. First, and not surprisingly, the
Style resource has a key. In addition to the Key property, the Style object also has a property
named TargetType. When defining a Style, you must specify the type of control the Style
is going to target, and you do this by setting the TargetType property. If you are coming to
Silverlight from Windows Presentation Foundation (WPF), you will note the omission of curly
braces when setting the target type. This value is simply a string. If you were targeting a control
in a custom assembly, you would need to preface the control name with the correct namespace
mapping (that is, TargetType=”customNamespace:customControl”).

Working with the Style Object  ❘  689

The previous code sample demonstrated clearly the collection of Setters idea. Where once you
had four individual resources, you now have five Setter objects. Each Setter has a property/
value pair that must be set. The value of the Property property (not a typo) is set to the name of a
property on the TargetType control. The first Setter defined previously sets the default value of
TextBlock.FontFamily to “Verdana”. Any property defined on the TargetType control can be set
in the Style, using a Setter. Applying the Style is just as easy as pointing the Foreground prop-
erty to a StaticResource: You set the Style property of the control using the {StaticResource
Syntax}. The following snippet highlights how this is set one more time for you:

<TextBlock
 Text=”TextBlock” TextWrapping=”Wrap”
 Style=”{StaticResource TextBlockStyle}”/>

If you want to synchronize the TextWrapping property of all TextBlocks using this Style, you
simply add another Setter to the Style:

<Setter Property=”TextWrapping” Value=”Wrap” />

You have gone from a large number of cumbersome resource references to a single resource reference,
all thanks to the Style object.

Understanding Value Resolution
When defining and applying a custom Style to a control, it is important to understand how the
values defined in that style are resolved with local values set on the control itself and with values set
in the default Style for the control. When a custom Style is applied, the property settings in the
custom style are combined with the property settings of both the default style and the local control
instance. Each property set in a custom Style overrides the default value defined in the control’s
default Style, and properties set at the control-instance level override values set in the custom
Style. The following demonstrates the order of resolution, with the highest priority on the right:

Default Control Style > Custom Style > Local Values

If FontSize is set in the default style of TextBlock to 14 and the custom Style does not include
a Setter for FontSize, 14 will still be applied to the TextBlock.FontSize property, unless the
TextBlock explicitly sets its own FontSize property inline.

It is important to remember that custom Styles do not completely replace all of the default property
settings, but instead override the default property settings. Test this out for yourself by creating a
simple Style that targets a Button. Define a single Setter that targets the FontWeight property and
set its value to Bold. When you apply this Style to a Button, the button looks exactly like the default
button, only the text is bold. All of the other property settings defined by the control’s default Style
are still intact — ​you have simply overridden the FontWeight property.

Creating BasedOn Styles
The Style object has a BasedOn property that can be used to reference another Style. This can be
a real time-saver when you want to create Styles that have subtle derivations from a master Style.

690  ❘  Chapter 21   Styling and Themes

When the BasedOn property is set, the referenced Style is essentially injected into the resolution
order shown in the previous section:

Default Control Style > BasedOn Style > Custom Style > Local Values

It should come as no surprise that the BasedOn property is set using the {StaticResource keyName}
markup syntax. The following XAML shows two Button styles, the second based on the first:

<Style x:Key=”ButtonBaseStyle” TargetType=”Button”>
 <Setter Property=”Foreground” Value=”#FF0000” />
</Style>

<Style x:Key=”ButtonBasedOn”
 BasedOn=”{StaticResource ButtonBaseStyle}”
 TargetType=”Button”>
 <Setter Property=”FontWeight” Value=”Bold” />
</Style>

It is important to note that the order in which resources are defined in XAML makes a difference when
they’re being referenced by other resources. For example, if you move the ButtonBasedOn style so that
it is defined before ButtonBaseStyle, you will get a run time error because the ButtonBaseStyle will
not have been created yet. It is also important to note that the Style you derive from should have the
same TargetType as your new Style or have a TargetType matching one of the current Styles’s
base classes.

Changing the Look of a Control with a Custom ControlTemplate
You have now seen how you can set multiple properties of a particular type of control using the
Style object. These properties all affect the look of the control in some way, often by changing
the FontStyle, the Foreground, or perhaps the default Height or Width. When your customiza-
tion needs outgrow simple property settings, you need to customize the ControlTemplate.

Overriding the ControlTemplate is achieved in the Style by setting the Template property.
Remember, a Style is just a collection of Setters, and the Template property is the most powerful
property you can set.

What Is a ControlTemplate?
At the beginning of this chapter, you learned that a ControlTemplate is the VisualTree of elements
that make up the look of a control. These elements can range from a series of nested Borders (like the
default Button) to a combination of paths with complex gradient fills. A ControlTemplate is gener-
ally applied by a Style. In Silverlight, just like WPF, controls are said to be lookless. The definition
of a control’s properties is independent from the actual look of the control. The look of the control is
defined in XAML and is applied at compile time.

Why Define a Custom Template?
Acknowledging that Silverlight controls are devoid of style is one thing, but understanding why they
are without style is another. Because a control is without style, you can completely replace its visual
appearance. Consider the Button for a moment. The Button control is probably the most commonly

Working with the Style Object  ❘  691

re-templated control in both Silverlight and WPF. Consider the immersive web experiences or appli-
cations you have encountered over the years. A core action of your experience is clicking. You click,
click, click — ​text, images, custom artwork — ​anything is fair game. Generally, the item you are
clicking responds to the MouseOver and MousePressed events, providing you with visual feedback
to your interaction.

If you are asked to picture different button styles that you’ve encountered, your mind probably fills
with different shapes, colors, and textures — ​imprints left by the many visually diverse experiences
you’ve had in your travels. If your mind did not fill with images, at least consider the differing appear-
ance between a Windows Vista button and an OS X button. The two buttons react to the same inter-
action (MouseOver, MousePressed, Disabled) and generally fire the same events for developers (for
example, Click), but their appearance is markedly different.

Your application will likely need the functionality provided by Buttons, ListBoxes, RadioButtons,
and CheckBoxes, but your brand may require a look other than the default look provided by Silverlight.
By re-templating the controls, you get the same functionality provided out-of-the-box with the added
benefit of having your custom look applied.

Defining and Applying a Custom Template
Before you re-template the Button, add a default-styled Button to the page for
comparison. Figure 21-3 shows the default Silverlight Button on the stage in
Expression Blend.

All of the visual elements that make up the look of the button reside in the
Button’s default template. Later, you will look at the XAML that makes
up the default button; for now, you should be aware of a few key elements.
Notice the single-pixel gray border with rounded corners — ​that is defined by
a Border element. In the foreground of that Border element is another border with a gradient fill.
In the foreground of that element is a rounded piece of artwork that simulates a highlight. Finally,
there is an element that displays the Content you have specified on the button. It is center-aligned
both vertically and horizontally.

A custom template is defined using the same layout panels and controls you have been introduced
to throughout this book. Everything in your Silverlight arsenal is fair game for a control’s template.
The following code shows a simple Style that sets the Template property of a Button control,
replacing the default template with a Grid containing a nested red Rectangle:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”#FF0000” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Figure 21-3

692 ❘ chapter 21 StylIng And themeS

Here, for the fi rst time in this chapter, you are seeing the more verbose way of setting the Value
property of a Setter. Because the value you are supplying is much more complex than a single string
value, you have to set the Value property by using <Setter.Value />. The value of the Template
property is always a ControlTemplate object whose TargetType property matches the value of the
Style object within which it is defi ned. The ControlTemplate object accepts a single child element
whose value is always some type of Panel; in this case, it’s a Grid.

Unlike WPF, the value of the TargetType property is just a string and does not
require the {x:Type ControlName} syntax.

Applying this Style to a Button is achieved by setting the Style property, just like you did for the
TextBlock example before:

<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”/>

Applying this Style to a Button results in a button that looks like a fl at,
red rectangle like the button depicted in Figure 21-4. You have completely
replaced the default template of the button with a single rectangle.

Not too exciting, eh? Moreover, where is the text “Click Me!” as specifi ed
on the Content property? Because you have completely replaced the template
of the Button with a Grid and nested Rectangle, you have eliminated the
Button’s ability to display its own content! See, the Template property really is the most powerful
property of all. As you defi ne the template of a control, you have to think about how you want the
control’s property values to affect the way the control actually looks. You will deal with the content
issue fi rst.

Using the ContentPresenter
The ContentPresenter control, just as its name indicates, is used to display content. All con-
trols derived from ContentControl have a Content property. Button happens to be derived
from ContentControl, which is why you set its Content property instead of its Text property.
The Content property is of type UIElement, which means pretty much any visual element can be
thrown at it, even another Button.

To display the text “Click Me!” as set on your Button’s Content property, you need to add a
ContentPresenter to your custom template defi ned in customStyle. The following XAML
shows this ContentPresenter in place:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>

figure 21-4

Working with the Style Object  ❘  693

 <Grid>
 <Rectangle Fill=”#FF0000” />
 <ContentPresenter Margin=”5,5,5,5” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

That is all there is to it. It is actually deceptively simple. The ContentPresenter, when dropped
into a ContentControl, automatically detects the type of content that has been set and displays
it accordingly. When the content is text, as in this example, a TextBlock is automatically created
whose Text property is set to the value specified.

Try setting the Content of the button to different types of objects (Circles, Rectangles, ComboBoxes,
and so on) and notice how each of these objects is displayed inside the custom template. Figure 21-5
shows some of the variations available. Remember you can affect the layout of the ContentPresenter
by using the HorizontalAlignment, VerticalAlignment, and Margin properties (or any other layout
properties) as with any other control.

Figure 21-5

Using the TemplateBinding Markup Extension
In the previous section, you learned how to present the Content of a ContentControl by using a
ContentPresenter. In this section, you learn how you can use other properties defined on the control
you are templating, using the TemplateBinding markup extension.

TemplateBinding is a special type of binding that lets you access the value of properties defined on
a control from within the template you are authoring. The first template you created consisted of
a Grid with a nested Rectangle. At run time, all Buttons whose Style was set to customStyle
looked exactly the same, regardless of their property settings. If the Background property was set
to green, the Rectangle in the template was still red. In fact, those buttons could not even present
their own content. You took care of the content situation by adding a ContentPresenter to the
template. You now want to take advantage of the Background property, empowering the template
to set the Rectangle’s color to the value of the Button’s Background property.

694  ❘  Chapter 21   Styling and Themes

The following XAML demonstrates how to use the TemplateBinding Markup Extension
(TemplateBinding from this point on) syntax to assign values set on the control to elements
within its template:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

The Rectangle’s Fill property is now bound to the Button’s Background property. This example
uses the Background property, but it could just as easily have used the BorderBrush property, because
they are both of type Brush. If you were authoring a template for another control that defined more
Brush properties, you could have chosen those properties as well.

Try creating several instances of Button, setting each instance’s Style property to customStyle,
and then set each Button’s Background property to a different color value. When you run the
sample, you should see your Background properties honored on each Button instance. It is impor-
tant to note that the value supplied by the TemplateBinding is the run time value of each control’s
instance. TemplateBinding does not synchronize values across controls; it just gives you a way to
pump property values into your control’s template.

Embracing TemplateBinding throughout the ControlTemplate
In the previous example, you used TemplateBinding to bind the Button’s Background property to
the Fill property of a Rectangle nested within the Button’s ControlTemplate. Every single prop-
erty defined on Button can be bound to an element within the template using TemplateBinding.
It is through TemplateBinding that the properties of this lookless control come to life and start to
have meaning.

Attach a few more properties. Start with Padding. Padding is typically used to define the amount of
space surrounding an object’s content. In comparison, an object’s margin is the amount of space pre-
served around the control itself. Both the Margin and Padding properties are of type Thickness and
are defined using four Double values that represent Left, Top, Right, and Bottom. The most meaning-
ful way to use the Padding property is by applying it as the Margin of the ContentPresenter. The
following code demonstrates how this is achieved:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template” >
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter Margin=”{TemplateBinding Padding}” />
 </Grid>

Working with the Style Object  ❘  695

 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

KeyedStyles.xaml — ​line 97

...
<!--Red Button with 5 Pixel Margin on All Sides-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#FF0000”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,10,0,0”
 Padding=”5,5,5,5” />

<!--Green button with 5 pixel Margin on Top and Bottom-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#00FF00”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,60,0,0”
 Padding=”0,5,0,5” />

<!--Blue Button with 5 pixel Margin on Left and Right-->
<Button
 Style=”{StaticResource customStyle}”
 Content=”Click Me!”
 Background=”#0000FF”
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”
 Margin=”10,120,0,0”
 Padding=”5,0,5,0” />

KeyedStyles.xaml — ​line 121

The preceding code defines a custom Style that is then used by three subsequent Buttons. Figure 21-6
demonstrates how the local values set on the individual Buttons are represented by the underlying
ContentTemplate through TemplateBinding. Note how the space around the content changes as the
Padding value changes.

Now add HorizontalAlignment and VerticalAlignment property settings to the ContentPresenter
and set their values to HorizontalContentAlignment and VerticalContentAlignment using
TemplateBinding. The following XAML demonstrates the updated Style:

<Style x:Key=”customStyle” TargetType=”Button”>
 <Setter Property=”Template”>
 <Setter.Value>

696  ❘  Chapter 21   Styling and Themes

 <ControlTemplate TargetType=”Button”>
 <Grid>
 <Rectangle Fill=”{TemplateBinding Background}” />
 <ContentPresenter
 Margin=”{TemplateBinding Padding}”
 HorizontalAlignment=”{TemplateBinding
 HorizontalContentAlignment}”
 VerticalAlignment=”{TemplateBinding
 VerticalContentAlignment}” />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

KeyedStyles.xaml — ​line 97

Now that you’ve hooked these properties up in the template, they actually have an effect when set
on each Button instance. You can now specify both the padding and internal alignment of the con-
tent of each Button that uses the customStyle style.

You can continue this process for other properties on Button, repeating the same TemplateBinding
process, experimenting to your heart’s content. One thing you should know, however, is that you
can TemplateBind to the same property multiple times in a template. For example, you could have
two nested Borders, each of whose Padding property is bound to the Button’s Padding prop-
erty. Similarly, you could have multiple TextBlocks, each of whose Text property is bound to the
Button’s Content property, achieving the drop-shadow effect shown in Figure 21-7.

Figure 21-6 Figure 21-7

Without TemplateBinding, properties set on individual control instances would have no visual effect
at all. TemplateBinding provides a path into the template of a control by means of simple property
settings at the control-instance level. The Styles and Templates defined for the default Silverlight
controls have made extensive use of TemplateBinding. Try changing the Background, BorderBrush,
HorizontalContentAlignment, and Padding properties of the default Button. As you change these

Working with the Style Object  ❘  697

properties, the button’s appearance changes accordingly. The author(s) of the default Styles had to
employ TemplateBinding throughout the default Styles to enable the behavior that you expect when
interacting with the control.

Preserving the Essence of Your Style
If you have experimented with the default Silverlight Button control, you should have noticed that
as you set its Background property, the overall look and feel, or essence, of the control remains the
same. For example, if you set the Background property to a green SolidColorBrush, the button
does not actually appear flat green. Instead, it looks almost the same, only now it has a green hue.
The oval highlight in the foreground remains, and the background color appears to fade vertically
to white. Figure 21-8 shows the default Silverlight button, without a custom background color, and
two additional buttons, each of whose Background property has been set.

Figure 21-8

To achieve this effect, the Template must include more than a single rectangle, as you have been
using up to this point. The default template employs several elements, layered in the foreground of
a base element that is template-bound to the Background property. The foreground elements are
partially transparent to allow the base element to shine through. As the Style author, it is up to you
to define how various property settings affect the final look of your control. You can choose to com-
pletely ignore local settings, by not using TemplateBinding at all, or you can choose to strategically
apply TemplateBinding to elements within your Template to maintain the essence of your design,
while providing a degree of flexibility.

Listing 21-1 displays the XAML for the default Silverlight button. Comments have been added
throughout the template to hopefully shed some light on the techniques employed.

Listing 21-1:  ​Default Silverlight button style

<Style x:Key=”DefaultButtonStyle” TargetType=”Button”>
 <!-- ======================================= -->
 <!-- Default Brushes Defined At Style Level -->
 <!-- ======================================= -->
 <Setter Property=”Background” Value=”#FF1F3B53”/>
 <Setter Property=”Foreground” Value=”#FF000000”/>
 <Setter Property=”Padding” Value=”3”/>
 <Setter Property=”BorderThickness” Value=”1”/>
 <Setter Property=”BorderBrush”>
 <Setter.Value>

continues

698  ❘  Chapter 21   Styling and Themes

 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFA3AEB9” Offset=”0”/>
 <GradientStop Color=”#FF8399A9” Offset=”0.375”/>
 <GradientStop Color=”#FF718597” Offset=”0.375”/>
 <GradientStop Color=”#FF617584” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid>
 <!-- ===
 VisualStateManager Defined as Child of First Template Element
 === -->
 <vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal”/>
 <!-- =============== -->
 <!-- MouseOver State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundAnimation”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill)
 .(GradientBrush.GradientStops)[1]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#F2FFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[2]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#CCFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[3]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#7FFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>

Listing 21-1  (continued)

Working with the Style Object  ❘  699

 </vsm:VisualState>
 <!-- ============== -->
 <!-- Pressed State -->
 <!-- ============== -->
 <vsm:VisualState x:Name=”Pressed”>
 <Storyboard>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”Background” Storyboard.TargetProperty=
 ”(Border.Background).(SolidColorBrush.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#FF6DBDD1”/>
 </ColorAnimationUsingKeyFrames>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundAnimation”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[0]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#D8FFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[1]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#C6FFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[2]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#8CFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 <ColorAnimationUsingKeyFrames
 Storyboard.TargetName=”BackgroundGradient”
 Storyboard.TargetProperty=”(Rectangle.Fill).(GradientBrush
 .GradientStops)[3]
 .(GradientStop.Color)”>
 <SplineColorKeyFrame KeyTime=”0”
 Value=”#3FFFFFFF”/>
 </ColorAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <!-- =============== -->
 <!-- Disabled State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”Disabled”>

continues

700  ❘  Chapter 21   Styling and Themes

 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”DisabledVisualElement”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”.55”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <!-- =============== -->
 <!-- Focused State -->
 <!-- =============== -->
 <vsm:VisualState x:Name=”Focused”>
 <Storyboard>
 <DoubleAnimationUsingKeyFrames
 Storyboard.TargetName=”FocusVisualElement”
 Storyboard.TargetProperty=”Opacity”>
 <SplineDoubleKeyFrame KeyTime=”0” Value=”1”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </vsm:VisualState>
 <vsm:VisualState x:Name=”Unfocused”/>
 </vsm:VisualStateGroup>
 </vsm:VisualStateManager.VisualStateGroups>
 <!-- ===
 Base Border (BorderBrush and BorderThickness TemplateBound)
 === -->

 <Border x:Name=”Background” Background=”White”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}” CornerRadius=”3”>
 <!-- == -->
 <!-- Grid (Background TemplateBound to Button.Background) -->
 <!-- == -->
 <Grid Margin=”1” Background=”{TemplateBinding Background}”>
 <Border x:Name=”BackgroundAnimation” Opacity=”0”
 Background=”#FF448DCA”/>
 <Rectangle x:Name=”BackgroundGradient”>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”.7,1”
 StartPoint=”.7,0”>
 <GradientStop Color=”#FFFFFFFF” Offset=”0”/>
 <GradientStop Color=”#F9FFFFFF”
 Offset=”0.375”/>
 <GradientStop Color=”#E5FFFFFF”
 Offset=”0.625”/>
 <GradientStop Color=”#C6FFFFFF” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 </Grid>

Listing 21-1  (continued)

Working with the Style Object  ❘  701

 </Border>
 <!-- == -->
 <!-- ContentPresenter (Content and ContentTemplate
 <!-- Property Settings Not Necessary) -->
 <!-- == -->
 <ContentPresenter x:Name=”contentPresenter”
 HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”
 Margin=”{TemplateBinding Padding}”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”
 Content=”{TemplateBinding Content}”
 ContentTemplate=”{TemplateBinding ContentTemplate}”/>
 <Rectangle x:Name=”DisabledVisualElement” Fill=”#FFFFFFFF”
 RadiusX=”3” RadiusY=”3” IsHitTestVisible=”false”
 Opacity=”0”/>
 <Rectangle x:Name=”FocusVisualElement” Stroke=”#FF6DBDD1”
 StrokeThickness=”1” RadiusX=”2” RadiusY=”2” Margin=”1”
 IsHitTestVisible=”false” Opacity=”0”/>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

If you look at the first grid defined in the template, you’ll see that its Background property is set to
{TemplateBinding Background}:

<!-- == -->
<!-- Grid (Background TemplateBound to Button.Background) -->
<!-- == -->
<Grid Margin=”1” Background=”{TemplateBinding Background}”>

The second child of that grid is a rectangle that uses a LinearGradientBrush as its Fill. The Color
values of each GradientStop are white, each with varying shades of opacity. This lets the containing
grid’s background brush bleed through. The foreground rectangle is used to create a shading effect.
When the Background property of the control is set, the essence of the button remains the same because
it’s really the foreground rectangle that’s responsible for creating the gradient effect.

Try replacing the white foreground gradient with a black-based gradient. You should see that the tem-
plate still responds to the Background setting, only now the button is much darker than the default
Silverlight version.

Understanding the Limitations of TemplateBinding
You just learned that the default button lets you change its background color by allowing you
to specify a custom value for its Background property. However, what if you want to change
the button’s hover color? There is not a BackgroundHover property. Likewise, if you want the
HorizontalContentAlignment to change when the button is in a hover state, you will not find a
property specific to the hover state. Or maybe you just want to turn off the default button’s oval
highlight artwork — ​it’s in these cases of interaction and customization where the control author
can either choose to add additional properties (such as a DisplayHighlight property) or require
you to edit the default template. In most cases, you will need to edit the default template.

702  ❘  Chapter 21   Styling and Themes

You can see that once your customization needs step beyond just the basics, you have to create a
custom Style and override the default template. To anticipate even a minor level of template-level
customization, a large number of properties would need to be added to the control. Consider once
again, just for a moment, the ways you might want to customize the button when it is in a hover
state. How about turning off the highlight and changing the border color, the background color, the
foreground color of the text, and the text’s FontWeight? This would all require custom properties
to be defined on the control that you could then TemplateBind to. In addition, what if the template
itself had no highlight artwork? What good would your highlight-based property(ies) be then?

Hopefully you see that properties defined simply to point directly into the template can be quite
arbitrary in nature and often won’t hold up across the many uses a control might find itself in. There
are certainly cases in which it makes sense to add properties (such as an AlternateRowBackground
brush property for a grid), but they should not be added on a whim. Fortunately, Silverlight provides
a model that allows you to react to state changes from within the template itself.

Visual State Manager: Reacting to State Changes within a Template
So far, you have seen how to define the look of a control by creating a custom ControlTemplate.
However, the examples so far result in a static visual, with no interaction whatsoever. The control
looks the same whether it has focus or does not have focus, whether or not the mouse is over it, and
even whether or not it is pressed. For a personal project, this may be fine, but for interactive Silverlight
applications, your users are going to expect visual feedback. Enter the VisualStateManager.

In the previous code listing, you may have noticed the VisualStateManager definition
(<vsm:VisualStateManager />) defined within the button’s ControlTemplate. The
VisualStateManager is used to define how controls react visually to changes in state, such
as MouseOver or Pressed. You use the VisualStateManager (VSM) to define different
VisualStates for the control whose template you are authoring.

It is up to the control author to define both the control’s VisualStateGroups and the VisualStates
of each group. The control author is also responsible for transitioning from state to state through-
out the life of the control. The default Silverlight controls all employ this State Model and use the
TemplateVisualState attribute:

[TemplateVisualState(Name = “MouseOver”, GroupName = “CommonStates”)]

Expression Blend looks for this attribute on controls and presents all VisualStateGroups and
VisualStates defined when in Template-editing mode. Figure 21-9 shows how Expression Blend
exposes these states.

Editing state transitions is most commonly done in Expression Blend, but the default button’s
VisualStateManager is broken down in XAML here so that you have a firm grasp of what is
being generated behind the scenes. The following XAML defines two VisualStateGroups — ​
CommonStates and FocusStates:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”></vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”></vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

Working with the Style Object  ❘  703

Figure 21-9

To the VisualStateGroups, add VisualStates:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver” />
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

These are all of the states that have been defined for the Button control by the Silverlight engineering
team. You can add additional VisualStates to the XAML, but they will never be accessed because
the control is not looking for them. This is another reason it is a good idea to start from the default
control XAML when skinning controls.

Now that you have the default VisualStateGroups and VisualStates defined, add a simple
Storyboard to the MouseOver state:

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color”
 To=”#000000” Duration=”0”/>
 </Storyboard>
 </vsm:VisualStatep>
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />

704 ❘ chapter 21 StylIng And themeS

 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

The ColorAnimation added targets a GradientStop with the name “LinearBevelDarkEnd” defi ned
in the default button’s XAML and animates the value of the GradientStop’s Color property to black
(#FF000000). This Storyboard starts when the control enters the MouseOver state. The Duration of
the ColorAnimation is set to 0, which essentially means “Take 0 seconds to get to your destination.” If
you wanted the GradientStop value to slowly change to black, you could have entered “00:00:05.00”
for a 5-second animation. The animation continues to have an effect even after the Duration has
been reached and remains at the destination value until another animation is started. In this case, the
GradientStop value remains black until the control changes state.

A control can be in only one state per VisualStateGroup at a time. Therefore, based on the preceding
XAML, this means that the Button cannot be in both a Normal state and a MouseOver state at once.
If you look at the states that have been defi ned, you will see this makes sense. However, a control can
be in multiple states across VisualStateGroups. For example, the Button can be in both a MouseOver
and Focused state at the same time.

Empty VisualStates have an effect on the control: As a control changes state,
if a matching VisualState is found, any previous animations that were started
as a result of previous VisualStates are stopped. Empty VisualStates essen-
tially reset a control to its base state when triggered.

Defi ning Transitions
The VisualStateManager lets you defi ne Transition Storyboards that are played as the control
transitions between states. The animations do not replace the VisualState Storyboards; they just
serve as interludes between them. The XAML shown in Listing 21-2 adds to the VisualStateManager
a VisualTransition that will be played as the control leaves the MouseOver state and enters the
Normal state:

listing 21-2: Defi ning state transitions

<vsm:VisualStateManager.VisualStateGroups>
 <vsm:VisualStateGroup x:Name=”CommonStates”>
 <vsm:VisualStateGroup.Transitions>
 <vsm:VisualTransition From=”MouseOver” To=”Normal”
 Duration=”0:0:0.2”>
 <Storyboard>
 <ColorAnimation
 Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color” To=”#FFFFFFFF” />

Working with the Style Object  ❘  705

 </Storyboard>
 </vsm:VisualTransition>
 </vsm:VisualStateGroup.Transitions>

 <vsm:VisualState x:Name=”Normal” />
 <vsm:VisualState x:Name=”MouseOver”>
 <Storyboard>
 <ColorAnimation Storyboard.TargetName=”LinearBevelDarkEnd”
 Storyboard.TargetProperty=”Color” To=”#FF000000” Duration=”0” />
 </Storyboard>
 </vsm:VisualStatep>
 <vsm:VisualState x:Name=”Pressed” />
 <vsm:VisualState x:Name=”Disabled” />
 </vsm:VisualStateGroup>
 <vsm:VisualStateGroup x:Name=”FocusStates”>
 <vsm:VisualState x:Name=”Focused” />
 <vsm:VisualState x:Name=”Unfocused” />
 </vsm:VisualStateGroup>
</vsm:VisualStateManager.VisualStateGroups>

Over a period of 0.2 seconds, the same GradientStop you have been targeting animates to a white
color before returning to its base state. Because the “Normal” VisualState is empty, all previously
applied Storyboards are stopped. The final result of this VisualStateManager definition: Mousing
over the Button will result in the GradientStop named LinearBevelDarkEnd animating to black
immediately (Duration: 0). As the mouse leaves the control, the same GradientStop animates to
white over a 0.2-second duration, then immediately returns to its original, base state.

The default Button XAML defines additional Storyboards and transitions that were not covered here.
It is really just more of the same, but now you can read the XAML and actually decipher what you see!

Using Text-Related Properties
Text properties in Silverlight behave differently than their fellow non-text properties. Unlike properties
such as Fill and HorizontalAlignment, the following properties cascade from the top down in the
VisualTree:

FontFamily➤➤

FontWeight➤➤

FontStyle➤➤

FontSize➤➤

FontStretch➤➤

When set at any level, these property settings are inherited by all children in the VisualTree of the
element where the properties are set. Only set these properties locally when you want to intercept this
inheritance and override those values. Keep this in mind when you are defining styles for controls — ​
font settings on the Style will take precedence over those defined at an application or page level, inter-
cepting application-level font settings.

706  ❘  Chapter 21   Styling and Themes

Defining and Using Implicit Styles

Up to this point, you have looked at defining keyed styles and learned how to reference those styles
using the StaticResource keyword. This model works well when you want to target individual con-
trols with custom styles, but what if you want to target every instance of a particular control type? New
to Silverlight 4 are implicit styles, or un-keyed styles. By omitting the x:Key attribute of a Style, you
can implicitly apply a Style to all controls whose TargetType matches that of your Style.

The XAML in Listing 21-3 defines a simple Style that targets the Button control along with a
layout that includes a couple of buttons:

Listing 21-3:  ​Defining an implicit button style

<UserControl x:Class=”Ch21StylesAndThemes.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <UserControl.Resources>
 <!-- Style All Buttons -->
 <Style TargetType=”Button”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”Button”>
 <Grid
 Background=”{x:Null}“
 HorizontalAlignment=”Left”
 VerticalAlignment=”Top”>
 <Rectangle Opacity=”1” HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” RadiusX=”12” RadiusY=”12”>
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint=”0.05,-2.45”
 EndPoint=”0.05,-1.45”>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Color=”#FF7a7a7a” Offset=”0”/>
 <GradientStop Color=”#FF000000” Offset=”0.99”/>
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Rectangle Opacity=”1” HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Margin=”4” RadiusX=”8”
 RadiusY=”8” Stroke=”#ffffff” StrokeThickness=”1”
 Fill=”#000000”/>
 <TextBlock
 HorizontalAlignment=”Center”
 VerticalAlignment=”Center”
 Opacity=”1”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Defining and Organizing Resources  ❘  707

 TextWrapping=”Wrap”
 FontSize=”31”
 FontFamily=”ChunkFive”
 TextAlignment=”left”
 Text=”{TemplateBinding Content}“ Margin=”15,17,15,15” >
 <TextBlock.Foreground>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”White”/>
 <GradientStop Color=”#FF727272” Offset=”1”/>
 </LinearGradientBrush>
 </TextBlock.Foreground>
 </TextBlock>
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </UserControl.Resources>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Button Content=”ACCEPT” HorizontalAlignment=”Left” Margin=”28,52,0,0”
 x:Name=”btnAccept” VerticalAlignment=”Top” />
 <Button Content=”CANCEL” HorizontalAlignment=”Right” Margin=”0,52,37,0”
 x:Name=”btnCancel” VerticalAlignment=”Top” />
 </Grid>
</UserControl>

Because the Style is defined at the UserControl
level, and because the x:Key attribute is not
set, all Buttons defined in the UserControl
pick up this Style automatically, as shown in
Figure 21-10.

 Using implicit styles does not prevent you from
using explicit styles. You can redefine the default
look and feel of the buttons (or any other con-
trol) in your application and still set the Style
property on any individual, unique button. Later
in this chapter, the “Using Themes” section dis-
cusses how implicit styles can be used to define
application-wide themes.

Defining and Organizing Resources

Resources can be defined almost anywhere. Because all FrameworkElement-derived objects
have a .Resources collection, you can dangle resources off your base UserControl (UserControl
.Resources), in nested Grids (Grid.Resources), in nested Buttons (Button.Resources), and any
number of other elements. In addition to defining resources within a single UserControl, resources
can also be defined in App.xaml and in external ResourceDictionaries. With all of these locations

Figure 21-10

708  ❘  Chapter 21   Styling and Themes

capable of housing resources, it is important to define some best practices and understand how these
resources are scoped.

Defining Stand-alone ResourceDictionaries
Silverlight provides you with a mechanism for housing resources outside of UserControls.
These stand-alone ResourceDictionaries are simply XAML files whose outermost element is
a ResourceDictionary. Both Expression Blend and Visual Studio have ResourceDictionary
templates that can be accessed by right-clicking the project, selecting Add New Item, and select-
ing ResourceDictionary from the dialog that appears. In both applications, you are prompted
to provide a name for the new ResourceDictionary. The following XAML shows a simple
stand-alone ResourceDictionary with a single SolidColorBrush resource defined:

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <SolidColorBrush x:Key=”SharedBrush” Color=”#FFFF0000”/>
</ResourceDictionary>

Loading ResourceDictionaries (via the Merged
Dictionaries Collection)

Much like CSS’s @import statement for referencing additional CSS files, Silverlight’s
ResourceDictionary.MergedDictionaries collection lets you reference external
ResourceDictionaries. Each ResourceDictionary has a MergedDictionaries collection,
so you can reference external dictionaries from any location where resources can be defined.
The following XAML demonstrates how a ResourceDictionary containing button resources
(Resources/Buttons.xaml) can be referenced at the UserControl level:

<UserControl x:Class=”SilverlightBookSamples.Resources”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Height=”300” Width=”300”>
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”Resources/Buttons.xaml” />
 <!-- Additional Resource Definitions Here -->
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <Grid>

 </Grid>
</UserControl>

When using the MergedDictionaries collection, you have to explicitly declare a ResourceDictionary
object within the container .Resources collection. If you refer to previous resource definitions in the
chapter, the <ResourceDictionary /> tag was not required.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D

Defining and Organizing Resources  ❘  709

Understanding Resource Scope
The location where a resource is defined and/or referenced determines the scope within which it can
be used. The following are the locations where resources may be defined:

App.xaml➤➤

Themes/generic.xaml➤➤ (for defining custom controls)

Custom ➤➤ UserControl.xaml

External ➤➤ ResourceDictionaries (.xaml files within the project)

Defining Application-Wide Resources
Resources defined or referenced at the App.xaml level can be used anywhere in your Silverlight
application. When you are synchronizing the look of an application across multiple UserControls,
you will want to define your resources here. Any external ResourceDictionaries referenced at this
level will also be available throughout your application.

Defining Styles for Custom Controls
In projects in which you define custom controls, a myButton control, for example, the default style
for that custom control is defined in Themes/generic.xaml. Both Expression Blend and Visual
Studio automatically add this file to your project when you add a custom control to the project using
their starter templates. When your project is compiled and your control is used either in the same
project or another project, the style defined in Themes/generic.xaml is applied. You should not
house application-level styles or resources in this file as this ResourceDictionary is reserved for
custom control-specific resources.

Scoping Resources to a Single UserControl or Element
When you do not need your resources to have a full application-wide scope, you can define them
within the current UserControl you’re authoring. In these cases, you will likely add the resources
to <UserControl.Resources>:

<!-- Add Resources Here -->
</UserControl.Resources>

All resources defined in <UserControl.Resources /> will be available throughout your UserControl.
If you want to further scope your resource definitions to a particular area within your UserControl,
this is a possibility as well. Each FrameworkElement-derived object in Silverlight has a Resources col-
lection, so just as you can access the UserControl’s resources collection via UserControl.Resources,
you can access the Grid’s resources collection via Grid.Resources:

<Grid x:Name=”LayoutRoot”>
 <Grid.Resources>
 <!-- Add Local Resources Here. Only items within this Grid have
 access to these resources -->
 </Grid.Resources>
</Grid>

710  ❘  Chapter 21   Styling and Themes

Littering your UserControl with localized Resources is generally not the best approach. You will
end up with resources scattered throughout your page and have a hard time tracking down your
styling bugs. However, for those times when you need to scope your resources, you now know that
you have localized resources at your disposal.

Thus, the discussion of organization is really a discussion of scope. If you want your entire Silverlight
application to have access to a resource, you need to add that resource to App.xaml. Every page loaded
in your Silverlight application will have access to resources defined in App.xaml.

Understanding External ResourceDictionary Scope
External ResourceDictionaries do not have an inherent scope. Their scope is determined by
the scope of the MergedDictionaries collection to which they are added. If they are referenced
in App.xaml, they will have an application-wide scope. Likewise, if they are referenced by a Grid
defined within UserControl2.xaml, they will be scoped to that Grid.

Organizing Resources
You have already looked at where resources can be defined; now look at one approach for organiz-
ing your resources within those locations. Often, the organization of resources is an afterthought,
something that you come back to as part of your cleanup phase once you have everything working.
When you choose to organize your resources is dependent on your workflow requirements. If you are
a single developer working on a project, the resource organization is more for your own sanity than
the sanity of others, so you can do this when you please. If you are a member of a team, collaborating
with both designers and developers, it makes sense to organize your resources early, providing both
consistency and clarity for team members.

In applications with a large number of resources, it generally makes sense to organize your resources
into external ResourceDictionaries. Start by creating a Resources folder in your project and then
group your resources by shared type or shared purpose:

Define common brushes in one ➤➤ ResourceDictionary.

Define non-➤➤ Style or non-Template related resources (that is, CornerRadius, Thickness,
and so on) in their own ResourceDictionary.

Define ➤➤ Styles, grouped by control type (that is, all Buttons together).

Define ➤➤ Styles for related controls (that is, ComboBox and its subcontrols).

The following sample folder structure gives you a better idea:

\[ProjectName]\
 \Resources
 \Brushes.xaml
 \Buttons.xaml
 \CommonControls.xaml
 \MainMenuBrushes.xaml
 \MainMenuControls.xaml

Defining and Organizing Resources  ❘  711

It is important to get into the habit of creating centralized styles and brushes for use throughout
your application. It may feel like extra work at first, but in the end, it empowers you and your team
to refine the application much more quickly than they could if everything were defined inline.

Naming Resources
Just as there are best practices for naming variables within an application, there are best practices for
naming resources. In addition, just like strategies for naming variables, with a little Web searching,
you can find some heated debates as to which approach is the best. As was the case in the previous sec-
tion on organization, this section is just going to present you with a few guidelines to get you started.
How you evolve this and make this work within your organization is entirely up to you.

Naming Brushes: Template/Style-Specific Brushes
When naming brushes that are specific to certain Styles and Templates, try to tie the name of
the brush to the Style, to elements within the Style, and to the state of the control represented
by the brush. For example:

ControlNameStateElementNameFill

Here are three hypothetical brushes used by the PlayButton style:

PlayButtonNormalOuterBorderFill
PlayButtonHoverOuterBorderFill
PlayButtonPressedOuterBorderFill

Here are three additional brushes that will be applied to the BorderBrush of the OuterBorder
element contained within the PlayButton template:

PlayButtonNormalOuterBorderBorderBrush
PlayButtonHoverOuterBorderBorderBrush
PlayButtonPressedOuterBorderBorderBrush

Naming Brushes: Non-Template Brushes
Name brushes for elements within your applications in a way that makes sense to you and
your team. For example, using the name BackgroundBrush is quite vague. Instead, use the
name ApplicationBackgroundBrush or MainMenuBackgroundBrush. It is important that your
brush naming maps to the element-naming conventions you have decided on for your applica-
tion. Consistency here is key. If you have a UserControl named MenuArea, do not name the
brush that is applied as the MenuArea’s background BackgroundRegionMenu; instead, name it
MenuAreaBackground. Furthermore, name additional MenuArea brushes and resources with the
MenuArea prefix: MenuAreaForeground, MenuAreaCornerRadius, and so forth.

Again, consistency is paramount here. Define a naming convention that is logical for your team, that
is repeatable, and that is readable; and follow that convention religiously.

712  ❘  Chapter 21   Styling and Themes

Naming Styles/Templates
When naming styles, include the control’s TargetType in your key (PlayButtonStyle,
PlayButtonTemplate, VolumeSliderStyle). This lets you quickly identify the control type
without having to rely on additional information that the IDE might provide you with (via an
icon or additional label).

Using Themes

A theme in Silverlight is a collection of styles that redefine the way all of the controls in your appli-
cation look. The Silverlight Toolkit (http://silverlight.codeplex.com) includes a number of
predefined themes and originally included a control known as the ImplicitStyleManager. Prior to
Silverlight 4’s introduction of implicit style support, the ImplicitStyleManager was the only way
to target all controls of a specific type without having to explicitly set the Style property.

Now, you can create a ResourceDictionary that targets all of the control types in your application,
then reference that ResourceDictionary anywhere in your application. To scope the resources to
your entire application, simply reference the ResourceDictionary within App.xaml:

<Application
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Ch21StylesAndThemes.App”>
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source=”/Ch21StylesAndThemes;component/AppThemes/CustomTheme.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

App.xaml

Any resources defined within CustomTheme.xaml will be applied automatically to all controls
throughout your application.

Using Silverlight Toolkit Themes
The Silverlight Toolkit (http://silverlight.codeplex.com) includes both loose XAML
ResourceDictionaries and custom Theme controls, the effects of which are shown in Figure 21-11.

Referencing via the MergedDictionaries Collection
After downloading the Toolkit, you will find the loose XAML in the Themes\Xaml folder, shown in
Figure 21-12.

http://silverlight.codeplex.com
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://silverlight.codeplex.com

Using Themes  ❘  713

Figure 21-11

Figure 21-12

714  ❘  Chapter 21   Styling and Themes

To apply any of these themes, add the XAML file to your project with a Build Action of Page.
You can now reference the file as you would any external ResourceDictionary:

<Application
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Ch21StylesAndThemes.App”>
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”/Ch21StylesAndThemes;component/AppThemes/
 System.Windows.Controls.Theming.BureauBlack.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

App.xaml

To compile your project with one of these theme ResourceDictionaries, you will need to either
add all of the assemblies that are referenced in the theme’s namespace definitions or manually
remove Styles that target controls found in assemblies you are not referencing. For example, the
dataPrimitives namespace definition references the System.Windows.Controls.Data assembly:

xmlns:dataPrimitives=”clr-namespace:System.Windows.Controls.Primitives;
 assembly=System.Windows.Controls.Data”

You need to either a) add a project reference to the System.Windows.Controls.Data assem-
bly or b) remove this namespace definition and remove all styles whose TargetType includes
dataPrimitives:controlName.

Using the Theme Controls
In addition to the loose ResourceDictionaries, the Toolkit includes ContentControl-based
versions of each of these themes. Instead of referencing the themes via the MergedDictionaries
collection, add these theme controls directly to your layout, using the theme control to wrap any
elements you want to be themed. Listing 21-4 demonstrates how to apply the BureauBlack theme
to all elements within a sample UserControl.

Listing 21-4:  ​Using the BureauBlack Silverlight Toolkit theme control

<UserControl x:Class=”Ch21StylesAndThemes.UsingThemeControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:bureauBlack=”clr-namespace:System.Windows.Controls.Theming;assembly=
 System.Windows.Controls.Theming.BureauBlack”

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Using Themes ❘ 715

 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <bureauBlack:BureauBlackTheme>
 <StackPanel Orientation=”Horizontal” Margin=”20,20,0,0”>
 <Button Content=”Accept” Margin=”0,0,10,0” x:Name=”btnAccept”/>
 <Button Content=”Cancel” x:Name=”btnCancel”/>
 </StackPanel>
 </bureauBlack:BureauBlackTheme>
</UserControl>

Again, the same results could be achieved by manually referencing the ResourceDictionary via the
UserControl.Resources collection, as shown in Listing 21-5.

listing 21-5: loading the BureauBlack theme resourceDictionary

<UserControl x:Class=”Ch21StylesAndThemes.ReferencingThemeRD”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:bureauBlack=”clr-namespace:System.Windows.Controls.Theming;assembly=
 System.Windows.Controls.Theming.BureauBlack”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>
 <UserControl.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”/Ch21StylesAndThemes;component/AppThemes/
 System.Windows.Controls.Theming.BureauBlack.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </UserControl.Resources>
 <StackPanel Orientation=”Horizontal” Margin=”20,20,0,0”>
 <Button Content=”Accept” Margin=”0,0,10,0” x:Name=”btnAccept”/>
 <Button Content=”Cancel” x:Name=”btnCancel”/>
 </StackPanel>
</UserControl>

When the ResourceDictionary is referenced directly (instead of using the Theme control) a default
background isn’t applied. The Theme controls have background fi lls applied to their root elements.

The Silverlight Toolkit Themes required modifi cation out-of-the-box in order to
get them working correctly with my Silverlight 4 project. I had to remove a couple
of Styles from the XAML fi le and recompile the theme assembly before it would
work at run time. Be prepared for a little work when using these Themes because
they are not offi cially supported.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

716  ❘  Chapter 21   Styling and Themes

Creating Custom Themes
At this point, it should be clear that a Theme is just a collection of Styles and other resources stored in
an external ResourceDictionary. When creating your own theme for a specific application, you really
need only to target the controls that are used by your application. If you are not using RadioButtons,
there is no need to re-style the RadioButton control. Similarly, if your application includes custom con-
trols (like a SuperIconButton), you’ll want to include custom styles for those controls.

If you’re creating a set of Themes to be deployed across your development team, you’ll definitely
want to target all of the system controls as well as custom controls defined within your organiza-
tion. When creating a custom theme, you should start with one of the Silverlight Toolkit themes.
A lot of the organization work has already been taken care of for you.

Distributing Your Theme
Once you have created your theme, you’ll need a way to distribute it to your development team or
throughout your organization. Either you can pass around the loose XAML ResourceDictionaries,
or you can compile these ResourceDictionaries into an assembly that can be shared. By creating a
custom assembly, you can maintain tighter control over the underlying Styles and version the deployed
assemblies.

If you choose to compile the resources, the ResourceDictionaries can still be referenced directly
using /AssemblyName;component syntax:

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”/ThemeAssembly;component/Path/To/
 ResourceDictionary.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

Editing Styles and Templates in Expression Blend

This chapter has focused on the fundamentals of styling and tried to illuminate the concepts
through XAML. This section departs from this pure XAML approach and demonstrates how
Expression Blend simplifies the creation of custom Styles and ControlTemplates. This will not
be an exhaustive Expression Blend tutorial but will instead tie some of the concepts you’ve just
covered to the tool. You will start, as always, with a custom Button Style.

Editing the Default Button Style
You can take two approaches when creating a custom button in Expression Blend. In the first
approach, simply drag a button to the Stage and then select Edit Template ➪ Edit a Copy from the
Style Breadcrumb shown in Figure 21-13.

Editing Styles and Templates in Expression Blend  ❘  717

Figure 21-13

In the resulting Create Style Resource dialog
(Figure 21-14), you can choose whether to define
a Key for this resource or to select Apply to
all, which creates an un-keyed (Implicit) Style
that will be applied to all Buttons within the
new resource’s scope. The Define in section
lets you choose where this resource will be
defined. Don’t worry; you can always move the
Style later, either via the Resources pane in
Expression Blend or manually via XAML. Figure 21-14

718  ❘  Chapter 21   Styling and Themes

After clicking OK in this dialog, you are taken directly into Template-editing mode within
Expression Blend, shown in Figure 21-15.

Figure 21-15

You are now editing an exact copy of the default Silverlight Button. This is a great way for you to
really gain an understanding of how elements and states come together to create production-ready
control Styles. There are several key things that you need to notice when in Template-editing mode.
First, note how the Breadcrumb has changed. There are now three pieces:

[Button]➤➤  — ​The Type and/or name of the control you’re editing

Style Icon➤➤  — ​Click this icon to scope the Object tree to the Style itself, not the Template.

Template Icon➤➤  — ​This element changes as you select different elements in the Object tree.
By default, the root-level Template node will be selected in the tree.

It is important to understand the functionality this breadcrumb provides. You can quickly switch
between Style editing and Template editing. When in Style-editing mode, you are simply setting
default values for properties (like Foreground or Background or Margin). When in Template-editing
mode, you are actually editing the underlying ControlTemplate.

Using the Property Panel to Define TemplateBindings
A number of elements in the default Button use TemplateBinding. Figure 21-16 shows the
Properties panel when the ContentPresenter has been selected in the object tree.

Editing Styles and Templates in Expression Blend  ❘  719

Figure 21-16

Any property that uses TemplateBinding is highlighted in orange. To change the binding, click the
property Marker (small square button) to the right of the property name to display the Advanced
property options menu. In Figure 21-16 the HorizontalAlignment menu is opened with the Template
Binding submenu selected. To bind to a property, just click an available property from the Template
Binding menu. Expression Blend will show only properties whose type matches the current property
you are editing. Once you have bound to a property, you can switch back to Style-editing mode (via
the Breadcrumb) to change the default value for that property.

Editing Control States
When you are in Template-editing mode, use the States panel to edit the VisualStates of a
control. Expression Blend automatically shows you all of the VisualStateGroups and their child
VisualStates, whether or not you have defined them in XAML. With the default Button tem-
plate open, step through the different states by selecting them in the States panel. When a par-
ticular state is active, you’ll see a red icon indicating “state recording” is on.

Any changes you make to elements within the Object tree during state recording will be applied only
when the control finds itself in the selected state at run time.

Creating a Custom Button
You can quickly convert any artwork on the stage to a custom Button, or any control for that
matter, using the Make Into Control command. Figure 21-17 shows a Grid on the stage with a
TextBlock and two child Rectangles.

720  ❘  Chapter 21   Styling and Themes

Figure 21-17

With the root Grid selected, click Tools ➪ Make Into Control to launch the dialog shown in
Figure 21-18.

Figure 21-18

You first need to select a target Control type. Button is selected here, but you can select any control
type available within your project. Like the Create Style Resource dialog you saw earlier, you must
choose whether to key this resource and define where the resource lives.

summary ❘ 721

After clicking OK in this dialog, several things happen behind the scenes. A new Style is
created whose Template property is set with a copy of the elements you selected on the Stage.
The elements you selected on the Stage are replaced with a Button whose Style property is
set to {StaticResource StyleName}. If the elements you selected contain a TextBlock,
that TextBlock will likely be converted to a ContentPresenter with the Font properties of the
TextBlock promoted to the Style level as Property Setters. If the elements you selected did
not contain a TextBlock, a ContentPresenter is automatically added to the Object tree. It’s up
to you to jump in and tweak the positioning of the ContentPresenter.

Now that your elements have been converted into a ControlTemplate, you need to step through
and apply TemplateBinding where necessary and edit the various states of the control using the
States panel.

Some controls have specifi c, named parts that are required to be defi ned in the
ControlTemplate to function properly. Select the Parts panel (Window ➪ Parts)
any time you create a ControlTemplate from scratch like this to make sure the
control works. The Progress bar is an example of a control that has required
parts. Try editing a copy of the default Progress bar template then select the
Parts panel to see how Expression Blend highlights these requirements.

suMMary

You should now have a solid mental image of what the term “styling” means in the context of
Silverlight. In this chapter, you started by learning a very basic approach of setting properties on
controls, and then you learned how to replace those property values with Resources that represented
the property type (a SolidColorBrush Resource was the fi rst). From there, you learned how to set
more and more properties with inline StaticResource references and welcomed the clarity, and
brevity, that the Style object provides. With all of your property Setters moved to a centralized
Style, you learned the highest degree of control customization possible: template editing. You saw
how powerful template editing is and learned how TemplateBinding ties specifi c elements within
the template to the properties of your lookless control.

You saw how the absence of an x:Key attribute lets you target all controls of a specifi c type (implicit
styling), and then you learned how the location of resource defi nitions and references defi ne resource
scope. From there you looked at Silverlight Themes and learned how implicit styles empower this capa-
bility. The chapter concluded in Expression Blend, tying XAML theory to design surface practice.

As we mentioned at the start of this chapter, learning to style Silverlight apps starts at a technical,
and somewhat unbeautiful, level. This chapter has laid the groundwork for your technical under-
standing; it is now up to you to make something of it!

A
XaMl Primer

Chapter 1 exposed you to the fundamentals of building Silverlight applications. You were
introduced to XAML, which is the glue between the interactive user interfaces you create and
the managed code you write. This appendix explores more details of XAML and gives you a
primer on XAML that can serve as a reference as you work through the book.

introducing xaMl

As you learned in Chapter 1, XAML fi nally provides a unifi ed markup that can describe not
only what a control is and how it fi ts into a page, but also how layout and, more importantly,
the overall look and feel of the controls on a page are defi ned. A designer can use XAML to
create a mockup of a page or an application, and a developer can take that XAML markup
and use it directly in his project fi les. Because partial classes and code-behind fi les in Visual
Studio allow you to separate the code logic from the layout and control defi nitions, using
XAML gives the opportunity to have this separation of the design from the code. Look at the
following XAML example, which demonstrates an animation on a TextBlock element:

<Canvas
 Width=“640“ Height=“480“
 Background=“White“>
 <Canvas.Triggers>
 <EventTrigger RoutedEvent=“Canvas.Loaded“>
 <BeginStoryboard>
 <Storyboard x:Name=“Timeline1“/>
 </BeginStoryboard>
 </EventTrigger>
 </Canvas.Triggers>

 <TextBlock Width=“349“ Height=“67“
 Canvas.Top=“140“ Text=“Hello World“
 TextWrapping=“Wrap“
 RenderTransformOrigin=“0.5,0.5“
 x:Name=“textBlock“>
 <TextBlock.RenderTransform>

724  ❘  Appendix A   XAML Primer

 <TransformGroup>
 <ScaleTransform ScaleX=“1“ ScaleY=“1“/>
 </TransformGroup>
 </TextBlock.RenderTransform>
 </TextBlock>
</Canvas>

This XAML may seem daunting, but learning XAML is like learning HTML; there are a lot of
details, but for most of your applications, you are using tools to build the XAML and not hand-
coding it yourself. The reason why it is important to understand XAML is the same reason why it is
important to know HTML if you are a web developer. There are times when you need to inspect the
HTML of a file to understand or debug a page, just as there will be times when you are looking at
XAML and you need to understand why something is happening in your Silverlight application.

Microsoft Expression Blend and Visual Studio are both Rapid Application Development (RAD)
tools that you can use to create the XAML in your Silverlight applications. Both applications give
you the ability to drag-and-drop controls onto the design surface and switch between the designer
view and the XAML view as you design your user interface.

Before you delve deeper into XAML, there is an issue that’s important to understand: When using
XAML in Silverlight versus using XAML in WPF, not all things are created equal. Because Silverlight
is optimized for speed and the fast delivery of rich, interactive applications to the browser, the XAML
available to Silverlight applications is a subset of the XAML that can be used in a full desktop-based
WPF application. In WPF, each XAML element maps directly to a corresponding class in the .NET
Framework. In Silverlight, the XAML parser is part of the Silverlight player, so there is no dependency
on the .NET Framework for it to run. With Silverlight 4, the distinction between the XAML objects
in Silverlight and WPF is becoming smaller; however, you will still run in to areas where the XAML in
WPF has no equivalent in Silverlight.

Silverlight XAML Basics

XAML is a case-sensitive declarative language based on XML that lets you design the user interface
of a Silverlight application in descriptive markup. Similar to the way ASP.NET or Windows Forms
work with the concept of a code-behind file, XAML files map to managed-code partial classes
where you can write in your language of choice. XAML is important for the evolution of how you
create the user interface because the user interface is separate from the code files. This means that a
designer using tools like Expression Blend can create a UI using XAML, and that same XAML can
be used in Visual Studio and integrated into a larger project. As a matter of fact, Expression Blend
and Visual Studio share the same project structure, so the .csproj and .vbproj files can be opened
by either tool. The ability for a designer to express a user interface and have it directly used without
alteration in an application is something that has never been possible with Microsoft tools. There
has always been a large amount of throwaway art work, because developers would get a mockup
and try to duplicate it.

XAML files have a .xaml extension and, at first glance, might be confused with an XML data file.
This makes sense, because XML (Extensible Markup Language) is the basis for XAML (Extensible
Application Markup Language). The following code shows the default Silverlight XAML file when

Silverlight XAML Basics  ❘  725

you create a new Silverlight application using Visual Studio, which is also broken down in the table
that follows the code:

<UserControl x:Class=”XamlTestApp.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=http://schemas.openxmlformats.org/markup-compatibility/2006
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>

 </Grid>
</UserControl>

Table A-1 describes the preceding code.

Table A-1

XAML Description

<UserControl x:Class=”XamlTestApp.MainPage” Opening object tag of the root
UserControl

xmlns=”http://schemas.microsoft.com/

winfx/2006/xaml/presentation”

Default Silverlight namespace
mapping

xmlns:x=”http://schemas.microsoft.com/

winfx/2006/xaml”

Default XAML namespace mapping

xmlns:d=”http://schemas.microsoft.com/

expression/blend/2008”

Designer namespace for design-time
support

xmlns:mc=”http://schemas.openxmlformats.org/

markup-compatibility/2006”

Markup Compatibility prefix for sharing
data between Blend and Visual Studio

mc:Ignorable=”d” Directive to ignore the “d” namespace
at runtime

d:DesignHeight=”300” d:DesignWidth=”400”> Default design-time Height and
Width properties of the UserControl

<Grid x:Name=”LayoutRoot” Background=”White”> Opening tag for the Grid layout
element

</Grid> Closing tag for the Grid layout
element

</UserControl> Closing tag for the root UserControl
object

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

726  ❘  Appendix A   XAML Primer

In Chapter 1, you learned about the namespace declaration in Visual Studio for assemblies other
than the core Silverlight and core Silverlight XAML namespaces. If you had a compiled user control
or class file that you wanted to include in your opening UserControl declaration, you would use
a custom prefix and point to the fully qualified namespace and object you are adding to the page.
For example, if you need to access features in the System.Windows assembly, add the following
namespace declaration to your page:

xmlns:vsm=”clr-namespace:System.Windows;assembly=System.Windows”

where vsm is your custom prefix (which can be whatever prefix you would like), the clr-namespace
you are using is System.Windows, and the actual assembly name is System.Windows. Later in
this appendix, you learn about the XAML namespace, whose objects are prefixed with the default
x: identifier.

Declaring Objects in XAML

You can use either the object element syntax or the attribute syntax to declare objects in XAML:

Object Element Syntax➤➤  — ​Uses opening and closing tags to declare an object as an XML ele-
ment. You can use this syntax to declare root objects or set complex property values.

Attribute Syntax➤➤  — ​Uses an inline value to declare an object. You can use this syntax to set
the value of a property.

Object or Content Element Syntax
Most elements are created using the object (or content) element syntax, which is used in the
“Introducing XAML” section earlier in this chapter to create the TextBlock object:

<TextBlock>Hello World</TextBlock>

This syntax maps to:

<ObjectName> … </ObjectName>

where ObjectName is the name of the object that you are trying to instantiate. The following
example uses object element syntax to declare a Canvas:

<Canvas>
</Canvas>

Some objects, such as Canvas, can contain other objects, such as Rectangle or TextBlock:

<Canvas>
 <TextBlock>
 </TextBlock>
</Canvas>

Declaring Objects in XAML  ❘  727

If an object does not contain other objects, you can declare it using one self-enclosing tag instead
of two:

<Canvas>
 <Rectangle />
</Canvas>

When you are creating objects, there really is no bad or good way. The hierarchy of the XAML
documents, which is covered later in this appendix, does not change.

Attribute Element Syntax
XAML also supports the less verbose attribute syntax for setting properties. The following markup
creates a rectangle that has a green background (or Fill as the attributed property is named):

<Rectangle Fill=“Green“ Height=“100“ Width=“100“ />

Property Element Syntax
Attribute syntax is not possible on certain object properties because the object or information
necessary to provide the property value cannot be adequately expressed as a simple string. For
these cases, the property element syntax can be used. Property element syntax sets the referenced
property of the containing element with a new instance of the type that the property takes as its
value, for example:

<objectName>
 <objectName.property>
 <setter propertyValue = ““ />
 </objectName.property>
</objectName>

The following code uses property element syntax to add a Stroke with a LinearGradientBrush to
a Rectangle element:

<Rectangle Width=”485” Height=”60”
 Canvas.Left=”99” Canvas.Top=”55”>
 <Rectangle.Stroke>
 <LinearGradientBrush EndPoint=”1,0.5” StartPoint=”0,0.5”>
 <GradientStop Color=”#FF483333” Offset=”0.308”/>
 <GradientStop Color=”#FF514C4C” Offset=”0.1070303”/>
 </LinearGradientBrush>
 </Rectangle.Stroke>
 <Rectangle.Fill>
 <LinearGradientBrush EndPoint=”1,0.5” StartPoint=”0,0.5”>
 <GradientStop Color=”#FF000000” Offset=”0”/>
 <GradientStop Color=”#FFFFFFFF” Offset=”1”/>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

728  ❘  Appendix A   XAML Primer

You can set properties on objects declared using object element syntax. You have three ways to set
properties in XAML:

Using implicit collection syntax➤➤

Using attribute syntax➤➤

Using property element syntax➤➤

Setting a Property Using Implicit Collection Syntax
When a property takes a collection, you can omit the collection element and simply specify
its contents instead. This is known as implicit collection syntax. The following code shows
how you can omit the GradientStopCollection for a LinearGradientBrush and sim-
ply specify its GradientStop objects. The GradientStopCollection is included in the first
LinearGradientBrush but omitted from the second.

<Rectangle Width=”100” Height=”100”
 Canvas.Left=”0” Canvas.Top=”30”>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>

 <!-- Here the GradientStopCollection tag is used. -->
 <GradientStopCollection>
 <GradientStop Offset=”0.0” Color=”Red” />
 <GradientStop Offset=”1.0” Color=”Blue” />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

<Rectangle Width=”100” Height=”100”
 Canvas.Left=”100” Canvas.Top=”30”>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>

 <!-- Notice that the GradientStopCollection
 tag is omitted. -->
 <GradientStop Offset=”0.0” Color=”Red” />
 <GradientStop Offset=”1.0” Color=”Blue” />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Declaring Objects in XAML  ❘  729

There are times when the property collection indicates the type of collection being parsed. In these
cases, you can omit both the collection element and the property element tags, as the following code
demonstrates:

<Rectangle Width=”100” Height=”100”
 Canvas.Left=”200” Canvas.Top=”30”>
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Offset=”0.0” Color=”Red” />
 <GradientStop Offset=”1.0” Color=”Blue” />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

Deciding When to Use Attribute or Property Element Syntax to
Set a Property

So far, you have learned that all properties support either the attribute or property element syntax.
Some properties, however, support other syntax, which is dependent on the type of object property
it accepts.

Primitive types, such as a Double, Integer, or String, support only the attribute element syntax.
The following example uses attribute element syntax to set the width of a rectangle. The Width
property supports attribute syntax because the property value is a Double.

<Rectangle Width=”100” />

Whether or not you can use attribute syntax to set a property depends on whether the object you use
to set that property supports attribute syntax. The following example uses attribute syntax to set the
fill of a rectangle. The Fill property supports attribute syntax when you use a SolidColorBrush to
set it because SolidColorBrush supports attribute syntax.

<Rectangle Fill=”Blue” />

Whether or not you can use property element syntax to set a property depends on whether the
object you use to set that property supports object element syntax. If the object supports object ele-
ment syntax, the property supports property element syntax. The following example uses property
element syntax to set the fill of a rectangle. The Fill property supports attribute syntax when you
use a SolidColorBrush to set it because SolidColorBrush supports attribute syntax.

<Rectangle>
 <Rectangle.Fill>
 <SolidColorBrush Color=”Blue” />
 </Rectangle.Fill>
</Rectangle>

730  ❘  Appendix A   XAML Primer

XAML Hierarchy

When you add XAML objects to the Silverlight control, you are defining a hierarchical tree struc-
ture with a root object. All XAML files have a root element. In Silverlight, the root element is
always the container that has the x:Class attribute. The following XAML example creates an
object hierarchy containing a root UserControl object in the XamlTestApp namespace Page class.
When the XAML is parsed by the player, the Canvas object, which has Rectangle and TextBlock
elements, is resolved, as well as the additional TextBlock element in the file. When the parsing is
complete, there is a tree-structured hierarchy of the elements in the file.

<!-- The top-most object in the XAML hierarchy is -->
<!-- referred to as the root object. -->
<UserControl x:Class=”XamlTestApp.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White” Height=”337” Width=”626”>
 <!-- Canvas objects can be a child of another Canvas object. -->
 <Canvas
 Canvas.Left=”20” Canvas.Top=”20”>
 <Rectangle
 Width=”200” Height=”35”
 Fill=”Red” />
 <TextBlock
 Canvas.Left=”25” Canvas.Top=”5”
 Foreground=”White” FontFamily=”Verdana”
 FontSize=”18” FontWeight=”Bold”
 Text=”Child Canvas TextBlock” />
 </Canvas>

 <TextBlock
 Canvas.Left=”40” Canvas.Top=”60”
 Foreground=”Black” FontFamily=”Verdana”
 FontSize=”18” FontWeight=”Bold”
 Text=”Hello Silverlight” />

 </Grid>
</UserControl>

When the Silverlight player attempts to render the XAML content, it is converted into a hierarchi-
cal tree structure with a root object. The tree structure determines the rendering order of Silverlight
objects. The order of traversal starts with the root object, which is the topmost node in the tree
structure — ​in this case, the UserControl object. The root object’s children are then traversed,
from left to right. If an object has children, its children are traversed before the object’s siblings.
This means the content of a child object is rendered in front of the object’s own content.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Events and the Silverlight Control  ❘  731

Events and the Silverlight Control

The Silverlight object model defines a set of objects that allow you to create a Silverlight application.
In the managed code programming model of Silverlight you have a rich set object that you interact
with in code. The events for these objects are handled in the code-behind of the partial class that
is associated with the XAML file your objects are in. All interaction with the browser is handled
through the normal interaction processing of the browser, where inputs are accepted client-side. In
the case of Silverlight, the player responds to events and routes them to the appropriate event han-
dler that you have defined.

This section discusses the Silverlight objects; how you reference them; and how you handle, add, and
remove events on those objects. Because you cannot create fully interactive applications in XAML
alone, it is important to understand how all of the elements — ​the objects in XAML, the HTML,
and your code-behind — ​work together to deliver the richness that Silverlight offers.

Event Handlers and Partial Classes
In Silverlight, the association of the XAML file with a code-behind file is set up with the x:Class
attribute at the top of your XAML files. The x: prefix indicates that the Class object is part of the
XAML namespace, and the Class object is declared as an attribute off the root element of a XAML
file. The x:Class attribute cannot be used on child elements in a page hierarchy; it can only be
declared once and on the root element. The syntax for declaring the x:Class is the same as for any
other type declaration in Silverlight:

<object x:Class=”namespace.classname;assembly=assemblyname”...>
 ...
</object>

In default cases when you add new pages to your application, the assembly is left off and assumed
to be the current project’s assembly.

<UserControl x:Class=”SilverlightApplication1.Page”

When you build your Silverlight application, the compiler builds the XAML, parses the XAML, and
creates instance objects of all of the uniquely identified elements in the file using x:Name. The asso-
ciation of the class defined in the x:Class attribute and its partial class occur during the compile,
and the references for all of the objects with an x:Name are created so that they can be referenced
at run time. The x:Name attribute is used as a unique identifier to the elements you define. Similar
to HTML, where the id attribute denotes the uniqueness of an element, Silverlight needs a way to
isolate and reference elements in XAML so that they can be referenced in the code-behind files. In
Silverlight 1.0, there were no code-behind files because all coding was handled via JavaScript. But
by using <script> tags in HTML pages, you can define what code files should be able to access
DOM for the page in which you are running the Silverlight control. In Silverlight, the partial class
files contain your managed code, and thus they contain your event handlers. Objects are defined in
XAML with an x:Name attribute, and corresponding fields are created in the partial class, which
can have event handlers that respond to the input event.

732  ❘  Appendix A   XAML Primer

The naming rules for the x:Name, x:Class, and x:Key attributes are:

They can contain numbers, letters, or underscores.➤➤

They cannot begin with a number.➤➤

Unicode characters are not supported.➤➤

The x:Key attributes are used in the child elements of ResourceDictionary objects. The child ele-
ments are basically keyed by the XAML processor and can be used by the StaticResource markup
extension, which is covered later in this appendix.

The following XAML demonstrates a file where a button element has a unique identifier. Although
both x:Name and x:Key enforce uniqueness, you will get a compile error if you have an x:Name and
x:Key object using the same name.

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Button x:Name=”button1” Click=”button1_Click”></Button>
</Grid>

In the code-behind for this XAML file, the event handler looks like this:

private void button1_Click(object sender, RoutedEventArgs e)
{

}

In Visual Studio, the XAML Editor will give you hints for the attributes for the object that you are
typing against, including the object’s corresponding events. This makes it easier to wire events from
XAML to your code-behind. You can also manually wire events to objects:

button1 += new MouseButtonEventHandler(button1_Click);

In Visual Basic, you can use the Handles keyword to associate XAML elements with class
functions:

Private Sub button1_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles button1.Click

End Sub

Your event handlers can be public or private. Objects with the x:Name attribute are scoped to the
page they are in. Similar to the way events are handled in ASP.NET or Windows Forms, the event
handlers in Silverlight have two parameters:

sender➤➤  — ​Identifies the Silverlight object that generated the event. You can retrieve the type
value of the object by calling the object’s API.

args➤➤  — ​Identifies the set of argument values for the specific event. An event, such as the
Loaded event, does not define any event arguments, so the value of eventArgs is null.

Table A-2 shows an example of the event parameters for the KeyDown event of the Silverlight player.
This example is typical of how you will see events described in Silverlight 4.

Events and the Silverlight Control  ❘  733

Table A-2

Event Parameter Description

sender The object that invoked the event

KeyEventArgs keyEventArgs.key — ​Integer that indicates that a key is pressed. This value
is not operating-system-specific.

keyEventArgs.platformKeyCode — ​Integer that indicates that a key is
pressed. This value is operating-system-specific.

keyEventArgs.shift — ​Boolean value that indicates whether the [Shift] key
is down

keyEventArgs.ctrl — ​Boolean value that indicates whether the [Ctrl] key
is down

As an example of the KeyDown event, the following code demonstrates how to define the event on the
TextBox element in XAML:

<TextBox Height=”100” Width=”200”
 KeyDown=”TextBox_KeyDown”></TextBox>
<TextBlock x:Name=”results”></TextBlock>

Next, the code here demonstrates the code-behind in Visual Basic that is used to handle the KeyDown
event on the TextBox object:

Private Sub TextBox_KeyDown(ByVal sender As System.Object, _
 ByVal e As System.Windows.Input.KeyEventArgs)

 results.Text = e.Key & “-” & e.PlatformKeyCode
End Sub

When you wire the event directly in the XAML to the method in your code-behind, the approach is
no different than if you were building a Windows Forms application.

Defining Events in JavaScript
If you choose not to use a managed programming model, which is the case if you omit the x:Class
attribute on your XAML file, you must handle all events in JavaScript. When adding or remov-
ing event handlers via JavaScript, you will use the AddEventListener and RemoveEventListener
methods on the elements on which you want to add or remove events. You use the following syntax:

Element.addEventListener(“EventName”, “EventHandler”);

For example, the following code demonstrates adding the onMouseEnter and onMouseLeave event
handlers to the TextBlock element named Status.

function onLoaded(sender, eventArgs)
{
 textBlock = sender.findName(“Status”);
 textBlock.addEventListener(“MouseEnter”, “onMouseEnter”);
 textBlock.addEventListener(“MouseLeave”, “onMouseLeave”);
}

734  ❘  Appendix A   XAML Primer

To remove an existing event handler function, use the RemoveEventListener method, as demon-
strated next:

function removeEvents()
{
 textBlock.removeEventListener(“MouseEnter”, “onMouseEnter”);
 textBlock.removeEventListener(“MouseLeave”, “onMouseLeave”);
}

Finding a XAML Object Using findName
In JavaScript, you use the findName method and reference the object’s x:Name attribute value.
The findName function searches the entire object hierarchy of the DOM running in the Silverlight
control, so the location of an element in the hierarchy does not matter. If the element passed to the
findName function cannot be found, a null value is returned. The following code demonstrates using
the findName function as well as how to properly check whether the object being sought exists:

function onLoaded(sender, eventArgs)
{
 // Retrieve the object corresponding to the x:Name attribute value.
 var canvas = sender.findName(“rootCanvas”);

 // Determine whether the object was found.
 if (canvas != null)
 {
 alert(canvas.toString());
 }
 else
 {
 alert(“Object not found”);
 }
}

Event Bubbling
Because Silverlight supports the same routed event model that WPF uses, the concept of event bubbling
becomes important for some events. A routed event is an event that traverses the object hierarchy from
the root element that triggers the event up to each of its parent objects. Events are bubbled up.

The framework elements that support routed events are:

KeyDown➤➤

KeyUp➤➤

GotFocus➤➤

LostFocus➤➤

MouseLeftButtonDown➤➤

MouseLeftButtonUp➤➤

MouseMove➤➤

Events and the Silverlight Control  ❘  735

MouseWheel➤➤

BindingValidationError➤➤

DragEnter➤➤

DragLeave➤➤

DragOver➤➤

Drop➤➤

The following code demonstrates an example in which event bubbling might come into play.
Notice there are MouseMove events on the root UserControl, as well as the child elements in
the user control:

<UserControl x:Class=”XamlTestApp.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”
 Loaded=”onLoaded”
 MouseMove=”rootCanvasMouseMove”>

<Grid x:Name=”LayoutRoot” Background=”White”>
 <Rectangle
 x:Name=”rect1”
 MouseMove=”rect1MouseMove”
 Width=”100” Height=”100”
 Fill=”PowderBlue” />

 <Rectangle
 x:Name=”rect2”
 MouseMove=”rect2MouseMove”
 Canvas.Top=”50” Canvas.Left=”50”
 Width=”100” Height=”100”
 Fill=”Gold” Opacity=”0.5” />

 <TextBlock
 x:Name=”statusTextBlock”
 Canvas.Top=”180” />
</Grid>
</UserControl>

Event bubbling means that multiple MouseMove events are defined for an object and its ancestors.
The event is received by each object in the ancestor hierarchy, starting with the object that directly
receives the event.

The next code demonstrates this in a different fashion. Because both Rectangle elements have a
MouseMove event defined and the Canvas element has a MouseMove event defined, if the mouse is
moved over either rectangle, the onRectMouseMove event is fired. And because the Canvas is looking

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

736  ❘  Appendix A   XAML Primer

for a MouseMove event, the mouse move over the rectangles is bubbled up through the object hierarchy
to the Canvas element.

<Canvas
 MouseMove=”onCanvasMouseMove”
 Loaded=”onLoaded”>

 <Rectangle
 x:Name=”RectA”
 MouseMove=”onRectMouseMove”
 Width=”100” Height=”100” Fill=”Red” />

 <Rectangle
 x:Name=”RectB”
 MouseMove=”onRectMouseMove”
 Width=”100” Height=”100” Fill=”Blue”
 Canvas.Top=”25” Canvas.Left=”25” Opacity=”0.5” />
</Canvas>

Markup Extensions

Because you can create static or instance objects in XAML, you need a way to use those objects as
properties on other XAML elements. This is where XAML markup extensions come in. Using an
opening and a closing curly brace ({}) syntax, you can reference static object resources created else-
where in your application using an attribute or property element syntax. For example, if you created
a static Style resource that you planned to use to target multiple elements in your application, use
the markup extension syntax to set the style property on the target element. The following code is
an example of a static style resource:

<Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />
 <Setter Property=”Height” Value=”35” />
 <Setter Property=”FontSize” Value=”18” />
</Style>

To apply this resource to a target element, in this case the TargetType Button, use the attribute
syntax shown here:

Button x:Name=”Button1” Style=”{StaticResource MainButton}” ... />
<Button x:Name=”Button2” Style=”{StaticResource MainButton}” ... />

When the XAML is parsed, the presence of the curly brace indicates that this is an extension and to
process the type of markup extension and the string value that follows the type. Silverlight supports
four markup extensions:

Binding➤➤  — ​Supports data binding, which defers a property value until it is interpreted under
a data context.

StaticResource➤➤  — ​Supports referencing resource values that are defined in a
ResourceDictionary.

Markup Extensions  ❘  737

TemplateBinding➤➤  — ​Supports control templates in XAML that can interact with the code
properties of the templated object.

RelativeSource➤➤  — ​Enables a particular form of template binding.

We look at Binding and StaticResource in this appendix and TemplateBinding in Chapter 21.

Binding Markup Extensions
In Chapter 7, you learned the details of data binding. This section looks at the basic XAML syntax.
To understand the binding markup extension, you’ll need to understand how data retrieved in a
managed function ends up being displayed in XAML. Before we go into an example, let’s go over
the basic syntax. You can set binding in several ways using the Binding markup extension:

<object property=”{Binding}” .../>

<object property=”{Binding propertyPath}” .../>

<object property=”{Binding oneOrMoreBindingProperties}” .../>

<object property=”{Binding propertyPath, oneOrMoreBindingProperties}” .../>

In all cases, object is an element such as a TextBlock, and property is an attribute property on
that element, such as Text. The remaining options are how you specify the properties of the bind-
ing, such as the binding Mode (OneTime, OneWay, or TwoWay), Converter, Path, and so forth.

When you retrieve or build data, you normally set the data source to the DataContext of a XAML
element, such as a Canvas or Grid object, so it can be used by the containers’ child elements. For
example, if you had a basic Grid element named LayoutRoot, it would look something like this:

<Grid x:Name=”LayoutRoot” Background=”White”>

 <!-- grid definition, XAML children -->

</Grid>

In your code-behind, to bind data to the child elements of LayoutRoot, set the data source in your
code-behind to the DataContext of LayoutRoot:

LayoutRoot.DataContext = dataRecords;

In this case, dataRecords is a custom object that has various properties like Name, Address, and
Email that I set through code. Once the DataContext is set, the child elements have access to fields
on the data context of the parent element, as the following code demonstrates:

<Grid x:Name=”LayoutRoot” Background=”White”>

 <!-- Grid definition -->

 <Grid.RowDefinitions>
 <RowDefinition MaxHeight=”30” />

738  ❘  Appendix A   XAML Primer

 <RowDefinition MaxHeight=”30” />
 <RowDefinition MaxHeight=”70” />
 <RowDefinition MaxHeight=”30” />
 <RowDefinition MaxHeight=”40” />
 <RowDefinition MaxHeight=”50” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition MaxWidth=”150”/>
 <ColumnDefinition MaxWidth=”200” />
 </Grid.ColumnDefinitions>

 <!-- XAML children -->

 <TextBlock x:Name=”NameLabel” Text=”Name: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”0” Grid.Column=”0” />

 <TextBlock x:Name=”Name”
 Text=”{Binding Name, Mode=OneWay }”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Grid.Row=”0” Grid.Column=”1” />

 <TextBlock x:Name=”AddressLabel” Text=”Address: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”1” Grid.Column=”0” />

 <TextBlock x:Name=”Address”
 Text=”{Binding Address, Mode=OneWay }”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Grid.Row=”1” Grid.Column=”1” />

 <TextBlock x:Name=”EmailLabel” Text=”Email: “
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Right”
 Grid.Row=”2” Grid.Column=”0” />

 <TextBlock x:Name=”Email”
 Text=”{Binding Email, Mode=OneWay}”
 VerticalAlignment=”Bottom”
 HorizontalAlignment=”Left”
 Height=”60” Width=”200”
 Grid.Row=”2” Grid.Column=”1” />
</Grid>

When the application runs, the data from the custom object is bound to the Grid element, and the
grid’s child TextBlock elements consume the available data by using the binding markup extension.

Summary  ❘  739

StaticResource Markup Extensions
The StaticResource markup extension is used to set the x:Key attribute on an object that is
defined in a ResourceDictionary object.

<Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />
</Style>

The x:Key attribute is applied to the Style object to give it the unique name MainButton. This
Style object is in a ResourceDictionary, which in Silverlight is normally the outermost XAML
element of your XAML file:

<UserControl.Resources>
 <Style x:Key=”MainButton” TargetType=”Button”>
 <Setter Property=”Width” Value=”80” />
 <Setter Property=”Height” Value=”35” />
 <Setter Property=”FontSize” Value=”18” />
 </Style>
</UserControl.Resources>

x:Key gives the resource its uniqueness, so it can be applied to objects in the XAML file using the
StaticResource markup extension syntax you learned about earlier:

<Button x:Name=”Button1” Style=”{StaticResource MainButton}” ... />

In this case, the properties defined in the MainButton Style will be applied to any Button object
using the StaticResource markup extension.

Summary

This appendix gave you a good foundation for the various aspects of using XAML in Silverlight.
Here are a few takeaways about Silverlight XAML that you need to remember:

Silverlight XAML is a subset of WPF XAML, so theoretically an application in Silverlight can ➤➤

move up to WPF.

The Silverlight player is an ActiveX browser plug-in, so the XAML you are using is built into ➤➤

the player; it is not based on .NET Framework objects.

XAML alone cannot build Silverlight applications. You need HTML to host the Silverlight ➤➤

player, which, in turn, hosts the XAML, and you need to use the managed coding model
in Silverlight 2 or greater or the unmanaged coding model in Silverlight 1.0 to interact
with the XAML.

XAML opens the doors for designers and developers to work closely together, because the same ➤➤

language (XAML) that is used to style applications is also used to define the user interface.

The ➤➤ X in XAML stands for extensible, so as Silverlight matures, with the capabilities of the
player such that you can add your own extensions, your applications will become more
powerful.

B
Testing silverlight applications

As software applications become more sophisticated and increasingly part of our daily lives,
they are also becoming more complex. It therefore becomes all that more important that we
focus on the quality of the software we produce. Fantastic progress has been made in both the
development processes and development tools we use to create software, including advances in
how we think about quality and testing as we develop applications. Processes like unit testing
ingrain testing and quality into a developer’s daily life.

A variety of testing platforms are currently available for Silverlight, each with its own pros
and cons, but remember that in general, anything that helps you test is good. Some testing
tools focus exclusively on unit testing, and others focus on UI automation, though as you
may fi nd out when evaluating these tools, the lines between the different types of testing are
not always clear. This appendix looks at three different testing tools that can help you unit
test your application and create recorded UI automation tests.

Because software testing is an enormous topic all on its own, this appendix is not intended
to be a guide on how you should test your software. Nor is this appendix intended to cover
every commercial and free testing tool available. Instead, it reviews a selection of popular tools
that you can use to help test your applications. The good news is that even though Silverlight
is a relatively new platform, a wide variety of tools are already available to help you test your
application.

creating the saMple application

To demonstrate the various Silverlight testing frameworks, this appendix uses a very simple
Silverlight application that allows the end user to add two numbers together and display a
sum. The sample application includes a simple user interface defi ned in XAML, showing in
Listing B-1.

742  ❘  Appendix B   Testing Silverlight Applications

Listing B-1:  ​Sample application user interface markup

<UserControl x:Class=”AppendixB.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 mc:Ignorable=”d”
 d:DesignHeight=”300” d:DesignWidth=”400”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel Orientation=”Vertical” HorizontalAlignment=”Center”
 VerticalAlignment=”Center”>
 <StackPanel Orientation=”Horizontal” Margin=”3”
 HorizontalAlignment=”Right”>
 <TextBlock Text=”A: “ VerticalAlignment=”Center” />
 <TextBox x:Name=”txtA” Width=”50” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal” Margin=”3”
 HorizontalAlignment=”Right”>
 <TextBlock Text=”B: “ VerticalAlignment=”Center” />
 <TextBox x:Name=”txtB” Width=”50” />
 </StackPanel>
 <Button x:Name=”btnAdd” Margin=”3” Width=”50”
 Click=”btnAdd_Click”>Add</Button>
 <StackPanel Orientation=”Horizontal” Margin=”3”>
 <TextBlock Text=”Sum: “ VerticalAlignment=”Center” />
 <TextBlock x:Name=”lblSum” Width=”50” />
 </StackPanel>
 </StackPanel>
 </Grid>
</UserControl>

When the button is clicked, the event creates a new Calculator object, whose Add method is used
to sum the values and produce a result that is shown in a TextBlock. This is shown in Listing B-2.

Listing B-2:  ​Executing the Calculators Add method in a button click

internal void btnAdd_Click(object sender, RoutedEventArgs e)
{
 Calculator calc = new Calculator();

 int a = int.Parse(this.txtA.Text);
 int b = int.Parse(this.txtB.Text);

 this.lblSum.Text = calc.Add(a, b).ToString();
}

This simple application shows you how the various test frameworks can be used to test application
logic like the Calculator class, as well as test UI interaction like clicking the Sum button.

http://schemas.microsoft.com/winfx/2006/xaml/presentation%E2%80%9D
http://schemas.microsoft.com/winfx/2006/xaml%E2%80%9D
http://schemas.microsoft.com/expression/blend/2008%E2%80%9D
http://schemas.openxmlformats.org/markup-compatibility/2006%E2%80%9D

Using the Silverlight Unit Test Framework  ❘  743

Using the Silverlight Unit Test Framework

The Silverlight Unit Test Framework is a derivation of Microsoft’s standard unit testing framework
that has shipped with Visual Studio since 2005. It leverages the same API names as the standard
unit testing framework, allowing you to share tests between platforms. And it includes project and
item templates that are integrated directly into Visual Studio.

To get started with the framework, create a new Silverlight Unit Test Application project, as shown
in Figure B-1.

Figure B-1

This project template sets up a typical Silverlight applica-
tion, but adds two additional project references shown in
Figure B-2.

The project template also changes the default
RootVisual to the Framework’s test page as shown
in Listing B-3.

Listing B-3:  ​Changing the RootVisual to the Unit Test Frameworks test page

private void Application_Startup(object sender, StartupEventArgs e)
{
 RootVisual = UnitTestSystem.CreateTestPage();
}

Figure B-2

744  ❘  Appendix B   Testing Silverlight Applications

Changing the RootVisual allows the test framework to generate a default application harness in
which tests are executed.

Once the project is created, you can start creating unit tests. Listing B-4 shows a basic unit test that
has been created to test the methods of the sample application’s Calculator class. As the test class
name describes, this test is compatible with the standard CLR test framework. If the Calculator
class were a shared class, being used in both a Silverlight application as well as a full CLR applica-
tion (such as a WPF application), this same test could be reused between the two platforms.

Listing B-4:  ​Creating a simple unit test to test the Add method

[TestClass]
public class VisualStudioTestCompatibleTests
{
 [TestMethod]
 public void CalculatorAddReturnsTwo()
 {
 Calculator calc = new Calculator();
 int result = calc.Add(1, 1);
 Assert.AreEqual<int>(2, result);
 }
}

In this test, a new instance of the Calculator class is created and its Add method called with the
test providing two known values. The test asserts that the result of the Add method should be 2.

To run the test, simply set the Unit Test Application as the startup project and run it as a normal
application. When the test harness application loads, it runs all of the tests contained in the project
and reports the results. Figure B-3 shows the results of running the test in Listing B-4.

Figure B-3

Using the Silverlight Unit Test Framework  ❘  745

As you can see, the one test in the project has passed successfully.

The test harness user interface shows a list of the tests that were run, their completion status, and
allows you to copy the results to the Clipboard so that they can be shared with others. Should a test
fail, the UI allows you to drill into the test to see why it failed. Figure B-4 shows a failed test.

Figure B-4

In this case the CalculatorSubtractReturnsOne test has failed. The details can be seen on the left
side of the screen, which tell you that the Assert failed because a value of 1 was expected, but the
method actually returned 3.

It is also possible to test UI aspects of an application using the Silverlight Unit Test Framework, but
because of the asynchronous nature of Silverlight, it requires you to code tests slightly differently.
Listing B-5 shows a test that checks to make sure a Button exists in the UI.

Listing B-5:  ​Using a PresentationTest to check for the existence of a UI Element

[TestClass]
public class PresentationTests : PresentationTest
{
 MainPage mainPage;

 [TestInitialize]
 public void PreparePage()

continues

746  ❘  Appendix B   Testing Silverlight Applications

 {
 mainPage = new AppendixB.MainPage();
 TestPanel.Children.Add(mainPage);
 }

 [TestMethod]
 public void AddButtonExists()
 {
 Assert.IsNotNull(((FrameworkElement)mainPage).FindName(“btnAdd”),
 “btnLogin not found”);
 }
}

Notice that the test class derives from the PresentationTest class. PresentationTest is a special
test base class provided by the Silverlight Unit Test Framework designed to simplify testing the UI.
Also notice this test uses the TestInitialize attribute to perform some setup actions that need to
occur before the test runs. In this case because you are testing the application’s UI, you need to cre-
ate an instance of that UI and add it to the Unit Test Framework’s test panel.

Once that is done, the test can be run and can check to ensure the existence of that button.

The PresentationTest base class also provides a set of methods that allow you to queue com-
mands that the test framework will execute at the appropriate time.

Listing B-6 demonstrates using the enqueue methods to verify that the correct value is assigned to
the Sum TextBlock.

Listing B-6:  ​Simulating a button click in a unit test

[TestMethod, Asynchronous]
public void AddExecutesWhenButtonClicked()
{
 Assert.IsNotNull(((FrameworkElement)mainPage).FindName(“txtA”),
 “txtA not found”);
 Assert.IsNotNull(((FrameworkElement)mainPage).FindName(“txtB”),
 “txtB not found”);
 Assert.IsNotNull(((FrameworkElement)mainPage).FindName(“lblSum”),
 “txtSum not found”);
 Assert.IsNotNull(((FrameworkElement)mainPage).FindName(“btnAdd”),
 “btnAdd not found”);

 EnqueueCallback(() => mainPage.txtA.Text = “1”);
 EnqueueCallback(() => mainPage.txtB.Text = “1”);
 EnqueueCallback(() => mainPage.btnAdd_Click(mainPage.btnAdd,
 new RoutedEventArgs()));

 EnqueueCallback(() => Assert.IsTrue(mainPage.lblSum.Text==”2”));

 EnqueueTestComplete();
}

Listing B-5  (continued)

Using the Silverlight Unit Test Framework  ❘  747

The test first checks to make sure that all of the UI elements exist, then simulates the button click by
executing the button’s click handler method, checking the value of the Sum TextBlock, and finally
indicating that the test is complete.

Note that to execute the button’s click handler method, you must make the method visible by chang-
ing its accessor, which is private by default. To prevent the method from being publicly exposed, you
can change its accessor to Internal and then apply the InternalsVisibleTo assembly attribute to
your application project:

[assembly: InternalsVisibleTo(“AppendixBTests”)]

This allows the test project to see the internal members.

Once you have developed a set of tests, you may want to begin to incorporate those into your
normal automated build process. Starting with Silverlight 4, the Silverlight Unit Test Framework
harness is able to be run as an out-of-browser application (for in-depth discussion of Silverlight out-
of-browser applications see Chapter 9). This means that you can launch the test harness from the
command line using the sllauncher.exe application:

sllauncher /emulate:xapfilename /origin:uri

Additionally, although the test harness is not integrated directly into Visual Studio, it does have
the ability to output its results to the test results format (.trx) used by Visual Studio. By using the
VisualStudioLogProvider class as one of the framework’s Log Providers, the framework will out-
put its results to a service address. Setting up the Log Provider is shown in Listing B-7.

Listing B-7:  Using the VisualStudioLogProvider to log unit test results

private void Application_Startup(object sender, StartupEventArgs e)
{
 UnitTestSettings settings = UnitTestSystem.CreateDefaultSettings();
 settings.TestService.UniqueTestRunIdentifier = Guid.NewGuid().ToString();
 settings.LogProviders.Add(new VisualStudioLogProvider());

 RootVisual = UnitTestSystem.CreateTestPage(settings);
}

As you can see in the listing, the UnitTestSystem method contains a static CreateDefaultSettings
method that returns a UnitTestSettings object. On this object you can set a unique test run identifier
and then add the Log Provider.

By default the log provider outputs the log file to http://localhost:8000/externalInterface.
An example of an ASP.NET MVC website that can capture the log provider content is included in
the downloadable code for this appendix.

http://localhost:8000/externalInterface

748  ❘  Appendix B   Testing Silverlight Applications

Using the Selenium Test Framework

Selenium is a popular testing application that uses managed code to drive JavaScript, which auto-
mates testing of web applications. An add-in called Silverlight-Selenium (or Silvernium) can be used
to automate Silverlight applications running in the browser. To set up the Selenium test environment
needed to execute tests and record test results, you need to download and install a number of appli-
cations (see Table B-1).

Table B-1

Application URL Description

Selenium Remote
Control (RC)

http://seleniumhq.org/ Provides the test harness that
knows how to execute the
Selenium tests in the browser.

NUnit or MbUnit http://www.nunit.org or
https://launchpad.net/nunitv2

The unit test runner application.

Silverlight-Selenium http://code.google.com/p/

silverlight-selenium/

The Selenium extension that allows
you to automate Silverlight using
Selenium commands and the
Selenium test harness.

Once you have these applications downloaded and installed you need to think about the applica-
tion code you are going to test. As stated earlier, Selenium works by driving the browser through
JavaScript. The Silvernium plug-in extends the basic functionality so that you can execute com-
mands using the Silverlight plug-in’s JavaScript API, or against managed code that has been exposed
via Silverlight’s HTML Bridge (see Chapter 13 for details on using the HTML Bridge to expose
managed types).

For example, to test the Add method of the Calculator class in the sample application, you need to
apply the ScriptableType and ScriptMember attributes to the top of the class and its members as
shown in Listing B-8.

Listing B-8:  ​Marking the Calculator class and methods as Scriptable

[ScriptableType]
public class Calculator
{
 [ScriptableMember(ScriptAlias=”Add”)]
 public int Add(int a, int b)
 {
 return a + b;
 }

 [ScriptableMember(ScriptAlias = “Subtract”)]

http://seleniumhq.org/
http://www.nunit.org
https://launchpad.net/nunitv2
http://code.google.com/p/silverlight-selenium/
http://code.google.com/p/silverlight-selenium/

Using the Selenium Test Framework  ❘  749

 public int Subtract(int a, int b)
 {
 return a + b;
 }
}

Next you need to register this class as a scriptable object by using the RegisterScriptableObject
method:

HtmlPage.RegisterScriptableObject(“Calculator”, new Calculator());

Notice the script key parameter provided to the RegisterScriptableType method. This will be the
name of the JavaScript class exposed by Silverlight and will be provided to the Silvernium plug-in
when you write tests.

Finally, before you start writing tests, when Silvernium runs, it attempts to locate the Silverlight
plugin in the browser DOM by using its Object tag’s ID property. If your Silverlight application is
being hosted by the default test pages created by the Visual Studio project templates, you need to
add an ID to the Object tag.

<object data=”data:application/x-silverlight-2,” type=”application/x-silverlight-2”
 width=”100%” height=”100%” id=”silverlightControl”>

Now that you have configured the test environment and
modified your Silverlight application to expose methods via
JavaScript, you can begin to create tests. Start by creating a
new Class Library project.

Note that this should be a full CLR class library, not a Silverlight
class library and that it should target the full .NET 4 Framework,
not the .NET 4 Client Profile.

Once the project is set up, you need to add a number of new refer-
ences, shown in Figure B-5.

Next you need to add Setup and Teardown actions to your test
class. The Setup action is used to configure Selenium to look for
the Remote Control server at the address http://localhost:4444 and then start the test runner
and open the test page. Finally, the Silvernium object is created using the Selenium object, the ID of
the HTML Object tag hosting the Silverlight plug-in, and the script key that represents the managed
object. The setup is shown in Listing B-9.

Listing B-9:  ​Initializing Silvernium in a unit test

[TestFixture]
public class Tests
{
 private const string URL = “http://localhost:6565/AppendixBTestPage.aspx”;

Figure B-5

continues

http://localhost:4444
http://localhost:6565/AppendixBTestPage.aspx%E2%80%9D

750  ❘  Appendix B   Testing Silverlight Applications

 private const string OBJECTID = “silverlightControl”;
 private const string SCRIPTKEY = “Calculator”;
 private ISelenium selenium;
 private Silvernium silvernium;

 [SetUp]
 public void Setup()
 {
 selenium = new DefaultSelenium(“localhost”, 4444, “*iexploreproxy”, URL);
 selenium.Start();
 selenium.Open(URL);
 silvernium = new Silvernium(selenium, OBJECTID, SCRIPTKEY);
 }

 [TearDown]
 public void TearDown()
 {
 selenium.Stop();
 }
}

Note that when configuring the browser parameter, you should specify the *iexplorerproxy
value if you have a pop-up block running with the browser. Selenium also supports running tests in
Firefox, Safari, Opera, and Chrome.

Now you are ready to create tests that exercise the Add and Subtract methods. To do this, you use
the normal NUnit test attributes along with the Silvernium methods as shown in Listing B-10.

Listing B-10:  ​Creating a unit test using the Silvernium Call method

[Test]
public void AddTwoNumericValues()
{
 Assert.AreEqual(“2”, silvernium.Call(“Add”, new string[] { “1”, “1” }));
}

This test ensures that the Add method returns a value of 2.

Once you have written your tests, you are ready to run them using Selenium and NUnit. First, start
the Selenium server by running the following command at the Windows command prompt:

java -jar server\selenium-server.jar –interactive

Now open the NUnit application, load your test project, and run your tests. NUnit runs the test,
instantiating the Selenium test runner, which in turn executes the test against your Silverlight appli-
cation in the browser. Figure B-6 shows NUnit in the foreground running a batch of Selenium tests,
with the Selenium running in the background.

Listing B-9  (continued)

Automated UI Testing Using White  ❘  751

Figure B-6

As is the case with most unit test runners, if the tests succeed, NUnit will show a green banner; if
any tests fail, NUnit will show red.

Automated UI Testing Using White

White is an automated testing framework designed to leverage Microsoft’s new UI Automation
APIs. These APIs are integrated into both Silverlight and WPF controls and allow you to simulate
user interface interaction programmatically.

To get started using White, download and extract the assemblies from the White Codeplex site at
http://white.codeplex.com/.

Once you have White downloaded, you can start to create tests with it. To start, create a new Test
Project in Visual Studio. The Test Project template is located under the Test category as shown in
Figure B-7.

http://white.codeplex.com/

752  ❘  Appendix B   Testing Silverlight Applications

Figure B-7

Once the project is created, add new project references to the
White assemblies as shown in Figure B-8.

Now you are ready to start writing tests. Listing B-11 shows
how you can create a test using White that launches Internet
Explorer, accesses and changes properties of the UI objects
in the application, and then simulates clicking the button.

Listing B-11:  ​Simulating a button click in a unit test using White

[TestMethod]
public void TestMethod1()
{
 InternetExplorerWindow browseWindow =
 InternetExplorer.Launch(@”http://localhost:6565/AppendixBTestPage.aspx”,
 “AppendixB - Windows Internet Explorer”);
 SilverlightDocument document = browseWindow.SilverlightDocument;

 TextBox txtA = document.Get<TextBox>(“txtA”);
 TextBox txtB = document.Get<TextBox>(“txtB”);
 Button btnAdd = document.Get<Button>(“btnAdd”);
 Label lblSum = document.Get<Label>(“lblSum”);

 txtA.Text = “1”;

Figure B-8

mailto:InternetExplorer.Launch(@%E2%80%9Dhttp://localhost:6565/AppendixBTestPage.aspx%E2%80%9D

Automated UI Testing Using White  ❘  753

 txtB.Text = “1”;

 btnAdd.Click();

 Assert.AreEqual(“2”, lblSum.Text);
}

White uses the InternetExplorerWindow object to indicate that you want to launch a test inside
Internet Explorer.

At the time of this writing, Firefox was also partially supported. See the White website site for
updates on Firefox support.

Once the browser is loaded and the document obtained, you can start accessing UIItems. UIItems
are essentially proxies on top of the actual UI controls in the applications. White includes a selection
of UIItems, but you can also extend White, creating custom UIItems by deriving from White.Core
.UIItems.Custom.CustomUIItem.

An advantage to White is that it is well integrated into Visual Studio’s test system, therefore you can
use the normal test execution and report features to run and view test results.

Figure B-9 shows the results of the test in Listing B-11.

Figure B-9

754  ❘  Appendix B   Testing Silverlight Applications

Note that you should make sure you close your existing browser windows before running the White
tests, or tests will fail to run properly.

As previously mentioned, White uses the Microsoft UI Automation APIs to manipulate UI elements
and simulate user interactions. But how do you know if a control or application implements these
interfaces correctly? Microsoft provides another tool for this called UIA Verify, which you can
download from Codeplex (http://uiautomationverify.codeplex.com/).

To use UIAVerify, simply run your application, then run the VisualUIAVerify.exe application.
When UIAVerify opens, you will see a list of all running applications on the left side of the applica-
tion, a list of UIA Verification tests in the center, and a property grid on the right.

To test a specific Silverlight control or application, locate the browser instance running your applica-
tion in the Automation Elements tree and then begin to drill into the tree nodes. Notice that as you
drill down, UIAVerify begins to highlight areas of the application that correspond to the currently
selected tree node.

Figure B-10 shows UIAVerify running with the Add button in your application set as the selected
element.

Figure B-10

http://uiautomationverify.codeplex.com/

Summary  ❘  755

Once you have reached the application or control, simply right-click the tests you want to run, or
from the Tests menu select the Run Selected Test(s) on Selected Element menu option. The results of
the test appear in the Test Results pane.

Mocking Frameworks

A mock object is a stand-in for a real object, used while an application is being unit tested. Mock
objects allow you to create unit tests that are narrowly focused and predictable, enabling you to pin-
point problems by removing the additional layers of complexity that your real objects might intro-
duce to the application.

Mock objects are typically used for calls that return unpredictable results, calls to databases or
other external systems, or calls to long-running processes.

Many mocking frameworks are available for .NET and two of the most popular open source frame-
works have ported their frameworks to Silverlight:

RhinoMocks (➤➤ http://ayende.com/projects/rhino-mocks.aspx)

Moq (➤➤ http://code.google.com/p/moq/)

Summary

This appendix looked at some of the different tools available to you to help you test your Silverlight
applications, from unit testing to record UI testing. Each testing tool has its own unique pros and cons,
so you should evaluate each carefully and remember that you are not limited to using just one tool.

To start, the appendix looked at the Silverlight Unit Testing Framework that ships with Silverlight
tools and integrates through project and file templates into Visual Studio. Using this framework, you
can share some tests across different platforms.

Next you looked at using Selenium to test your application via JavaScript. Selenium is a proven and
powerful web application testing tool and is a fantastic way to test Silverlight applications that exist
as part of a larger website.

Finally, you looked at using White to execute automated UI tests. White uses the UI Automation pro-
vider APIs to allow you to simulate user interface actions like button clicks to test the application UI.

Whichever tool (or tools) you choose, it is important to realize that software testing is an important
part of the development process and that tools can make it easier for you to produce quality soft-
ware release after release.

http://ayende.com/projects/rhino-mocks.aspx
http://code.google.com/p/moq/

C
Building facebook applications
with silverlight

You can create an application that accesses the Facebook API in several ways. If you do a
quick search on Bing you’ll see a variety of open source projects and Visual Studio project
templates that will help you access Facebook information and display it, or add your own
games or social media experiences to Facebook. This appendix looks at using the Facebook
API to interact with your own Facebook data in a unique Silverlight user interface hosted in
an ASP.NET web application.

creating a new application on faceBook

To access your Facebook data, you need an API Key and Secret value. To generate these, you
need to create a Facebook application:

 1 . Sign up for a Facebook account at www.facebook.com.

 2 . Enable Developer access by navigating to http://www.Facebook.com/developers/
(see Figure C-1) and clicking the Allow button. The Developer page displays.

 3 . On the Developer page (see Figure C-2), click the Set Up New Application button.
The Create Application page displays.

 4 . As shown in Figure C-3, type the name of your new Facebook application
(SilverlightDemo in our example) and agree to the Terms of Service. Then click
Create Application.

 5 . On the Edit Silverlight page that displays (see Figure C-4), make sure you make a
note of the API Key and the Secret values for your application. You’ll need to input the
values for the API Key and Secret into your Web.config in your ASP.NET website
later, so copy them to Notepad for later use.

http://www.facebook.com
http://www.Facebook.com/developers/

758  ❘  Appendix C   Building Facebook Applications with Silverlight

	 6.	 Click the Canvas tab on the left, and update the following settings to configure your application:

Canvas Page URL➤➤  — ​This is the unique URL for your application on Facebook.
Logically, this maps directly to the callback URL. Set the value to silverlightdemo.

Render Method➤➤  — ​For a Silverlight app that you want to debug locally, you’ll need
to use an iFrame. For this example, choose iFrame.

Figure C-1

Figure C-2

Creating a New Application on Facebook  ❘  759

Figure C-3

	 7.	 Click Save Changes to save your configured application. At this point, you have the API Key
and Secret values that you’ll need to use in the application you create in the next section to
access your Facebook content.

Figure C-4

760  ❘  Appendix C   Building Facebook Applications with Silverlight

Using the Facebook Developer Toolkit

The following is a summary of the steps you’ll take to create a Facebook application using the
Facebook API:

	 1.	 Create a Silverlight application, hosted in an ASP.NET application.

	 2.	 Add the Facebook Connect Components to the ASP.NET application.

	 3.	 Set up the Silverlight project to reference the assemblies from the Facebook Developer Toolkit.

	 4.	 Set the static port for your web application.

	 5.	 Create a new Facebook application.

	 6.	 Add the API Key and Secret values from the Facebook application configuration to the
Web.config of your web application.

	 7.	 Instantiate the Facebook Developer Toolkit BrowserSession object and authenticate the user.

	 8.	 Use Asynchronous API Requests with the Facebook Developer Toolkit.

Since you’ve already created the Facebook application to generate the API Key and Secret values, the
next step is to build the application that will use these values. To get started, create a new Silverlight
application hosted within an ASP.NET web application and name it SilverlightFacebookDemo as
shown in Figure C-5.

Figure C-5

Adding the Facebook Connect Components
Download and extract the Facebook Developer Toolkit (FDT) from CodePlex at
http://facebooktoolkit.codeplex.com/wikipage. For this application you’ll use
the 3.1 Beta version of the Facebook Developer Toolkit.

http://facebooktoolkit.codeplex.com/wikipage

Using the Facebook Developer Toolkit  ❘  761

To set up the host website application for communication with Facebook, add the following script refer-
ences, shown in Listing C-1, to the web page that will host the Silverlight .xap (i.e., default.aspx).

Listing C-1:  ​Adding the Facebook API script reference

<head runat=”server”>
 <script
src=
“http://static.ak.connect.Facebook.com/js/api_lib/v0.4/FeatureLoader.js.php”
 type=”text/javascript”>
 </script>
 <script type=”text/javascript” src=”fblogin.js”></script>
 <!-- Other header info -->
</head>

Add a new Jscript file to your root of the web application named fblogin.js.

Open fblogin.js and replace the entire file with the code in Listing C-2.

Listing C-2:  ​Facebook Login script

// Verify this variable matches the Silverlight plugin ID
var silverlightPluginId = ‘Silverlight1’;

function Facebook_init(appid) {
 FB.init(appid, “/xd_receiver.htm”);
}

function isUserConnected() {
 FB.ensureInit(function () {
 FB.Connect.get_status().waitUntilReady(function (status) {
 var plugin = document.getElementById(silverlightPluginId);
});
 });
}

function Facebook_login() {
 FB.ensureInit(function () {
 FB.Connect.requireSession(Facebook_getSession, true);
 });
}

function Facebook_logout() {
 FB.Connect.logout(Facebook_onlogout);
}

function Facebook_getSession() {

 FB.Facebook.get_sessionState().waitUntilReady(function () {
 var session = FB.Facebook.apiClient.get_session();
 var plugin = document.getElementById(silverlightPluginId);

continues

http://static.ak.connect.Facebook.com/js/api_lib/v0.4/FeatureLoader.js.php%E2%80%9D

762  ❘  Appendix C   Building Facebook Applications with Silverlight

 plugin.Content.FacebookLoginControl.LoggedIn
 (session.session_key, session.secret, session.expires, session.uid);
 });
}

function Facebook_onlogout() {
 var plugin = document.getElementById(silverlightPluginId);
 plugin.Content.FacebookLoginControl.LoggedOut();
}

function Facebook_onpermission(accepted) {
 var plugin = document.getElementById(silverlightPluginId);
 plugin.Content.FacebookLoginControl.PermissionCallback(accepted);
}

function Facebook_prompt_permission(permission) {
 FB.ensureInit(function () {
 FB.Connect.showPermissionDialog(permission, Facebook_onpermission);
 });
}

Edit the fblogin.js file’s silverlightPluginId variable value to match the ID of the Silverlight
plug-in in your hosting web page. This variable is used to locate the plug-in during authentication.

Next, in Visual Studio, add a reference to the Facebook.Silverlight.dll assembly into the Silverlight
project (by browsing to the location to which the Toolkit was extracted). Once the assembly reference
is added, you need to set the development server to a specific port, so in the Properties window for the
project, set the Specific Port to 48282 as shown in Figure C-6.

Figure C-6

Listing C-2  (continued)

Using the facebook Developer Toolkit ❘ 763

Now that the web application is set up, you need to write code that instantiates the Facebook Developer
Toolkit BrowserSession object and authenticates the user. In your Silverlight application’s main page
code-behind, add the following private members, shown in Listing C-3, to the class.

Storing the API Secret within Silverlight code (which runs on the client) is
not recommended because this code can be viewed by third-party tools. The
BrowserSession API requires only the API Key as shown in the following
code snippet.

listing c-3: Private members for MainPage.cs

#region Private Members
private Api _fb;
readonly BrowserSession _browserSession;

private const string ApplicationKey = “add your key here”;
private const string ApplicationSecret = “add your key here”;

#endregion Private Members

Add the code in Listing C-4 to the constructor of the class.

listing c-4: MainPage.cs constructor

public MainPage()
{
 InitializeComponent();

 _browserSession = new BrowserSession(ApplicationKey);
 _browserSession.LoginCompleted += BrowserSession_LoginCompleted;
 _browserSession.LogoutCompleted += BrowserSession_LogoutCompleted;
}

Add a login button to the XAML markup and attach a click event handler as shown in Listing C-5. In
the handler, issue a login call to the Facebook Developer Toolkit BrowserSession object. When the
user clicks the button, the BrowserSession launches the Facebook authentication popup window.

listing c-5: login_Click code behind

 private void Login_Click(object sender, RoutedEventArgs e)
 {
 _browserSession.Login();
 }

764  ❘  Appendix C   Building Facebook Applications with Silverlight

Add a logout button to the XAML markup and attach a click event handler as shown in Listing C-6.

Listing C-6:  ​Logout_Click code behind

private void Logout_Click(object sender, RoutedEventArgs e)
{
 _browserSession.Logout();
}

In the BrowserSession_LoginCompleted event handler referenced in the constructor, add code to
handle a completed user authentication (see Listing C-7). Once the _fb object is assigned, the appli-
cation has everything needed to access and integrate with Facebook data.

Listing C-7:  ​BrowserSession_LoginCompleted code behind

private void BrowserSession_LoginCompleted
 (object sender, AsyncCompletedEventArgs e)
{
 _fb = new Api(_browserSession);
}

Using an Asynchronous API Request
Silverlight applications are required to issue all service requests in an asynchronous manner. It pre-
vents service calls from locking the user interface. Because of this, the Facebook Developer Toolkit’s
Silverlight version (Facebook.Silverlight.dll) exposes only asynchronous API methods.

The following example shows a simple implementation of an asynchronous call to Facebook and
displays the result in a user control.

Authenticating and Initiating a Session (BrowserSession.Login() Method)
To initiate a session with Facebook, you need to have a BrowserSesson object that is initialized in
the constructor as shown in Listing C-8.

Listing C-8:  ​BrowserSession and ApplicationKey local variables

readonly BrowserSession _browserSession;
private const string ApplicationKey = “enter you app key here”;

The AppKey from your Facebook application is required to initialize a browser session (see Listing C-9).

Listing C-9:  ​Initializing a BrowserSession

public MainPage()
{
 InitializeComponent();

Using the Facebook Developer Toolkit  ❘  765

 _browserSession = new BrowserSession(ApplicationKey);
 _browserSession.LoginCompleted += BrowserSession_LoginCompleted;
}

Clicking the button brings up the Facebook Authentication screen (see Listing C-10).

Listing C-10:  ​Logging in to a BrowserSession

private void Login_Click(object sender, RoutedEventArgs e)
{
 _browserSession.Login();
}

Click the Login button, fill in your credentials, and click the Connect button. After a successful
authentication, the LoginCompleted event handler is called. It should look like Listing C-11.

Listing C-11:  ​Getting user information after the login is completed

private void BrowserSession_LoginCompleted
 (object sender, AsyncCompletedEventArgs e)
{
 _fb = new Api(_browserSession);
 this.RefreshInfo();
}
private void RefreshInfo()
{
 _fb.Users.GetInfoAsync(new Users.GetInfoCallback(GetUserInfoCompleted), null);
 _fb.Friends.GetUserObjectsAsync(new
 Users.GetInfoCallback
 (GetFriendsInfoCompleted), null);
}

private void GetUserInfoCompleted
 (IList<user> users, Object state, FacebookException e)
{
 if (e == null)
 {
 _currentUser = users.First();
 if (_currentUser.pic != null)
 {

 Uri uri = new Uri(_currentUser.pic);
 Dispatcher.BeginInvoke(() =>
 {
 ProfilePhoto.Source = new BitmapImage(uri);
 ProfileStatus.Text = _currentUser.status.message;
 ProfileName.Text =
 _currentUser.first_name +
 “ “ + _currentUser.last_name +
 “ Birthday:” + _currentUser.birthday;
 });

continues

766  ❘  Appendix C   Building Facebook Applications with Silverlight

 }
 }
 else
 {
 Dispatcher.BeginInvoke(() => MessageBox.Show(“Error: “ + e));
 }
 }

Once a successful authentication occurs, the GetUserObjectsAsync asynchronously calls the
GetInfoCallback delegate (shown in Listing C-12), which gets the list of friends of the current
user. Information for each friend is stored in Facebook.Schema.user class.

Listing C-12:  ​The GetFriendsInfoCompleted event

private void GetFriendsInfoCompleted
 (IList<user> users, Object state, FacebookException e)
{
 if (e == null)
 {
 Dispatcher.BeginInvoke(() => ListFriends.ItemsSource = users);
 }
 else
 {
 Dispatcher.BeginInvoke(() => MessageBox.Show(“Error: “ + e.Message));
 }
}

Before you can test the application, you need to update the MainPage.xaml. The XAML in Listing C-13
should be added to the root Grid element in MainPage.

Listing C-13:  ​MainPage.xaml user interface

<ListBox x:Name=”ListFriends” Grid.Row=”1” Background=”LightGray”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch” Margin=”0,5,0,0”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Grid Background=”Transparent” Margin=”0, 0, 0, 10”>
<StackPanel Orientation=”Vertical”
 HorizontalAlignment=”Stretch”
 VerticalAlignment=”Stretch”>
 <Grid HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
<Image x:Name=”coverImage” Width=”150”
 Source=”{Binding pic}“ Stretch=”Uniform” Tag=”pic”/>
 </Grid>
 <Grid HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
 <Grid.RowDefinitions>
 <RowDefinition/>

Listing C-11  (continued)

Using the Facebook Developer Toolkit  ❘  767

 <RowDefinition/>
 </Grid.RowDefinitions>
<TextBox x:Name=”firstName” Grid.Row=”0”
 Background=”Transparent”
 BorderThickness=”0” Text=”{Binding first_name}“/>
<TextBox x:Name=”lastName” Grid.Row=”1”
 Background=”Transparent”
 BorderThickness=”0” Text=”{Binding last_name}“/>
 </Grid>
 </StackPanel>
 </Grid>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>

Now you can run and test your application; you should see something similar to Figure C-7.

Once you log in, you should see the friend information, as shown in Figure C-8.

Figure C-7 Figure C-8

Adding Features from the Facebook API
In this section, you will add more features to your application based on the capabilities of the Facebook
API, including setting your status in Facebook and retrieving photo albums and displaying them in the
ItemsControl.

To set your status, use the method call in Listing C-14.

768  ❘  Appendix C   Building Facebook Applications with Silverlight

Listing C-14:  ​Setting the Facebook status

Api.Status.SetAsync(string status, Status.SetCallback callback, object state);
_fb.Status.SetAsync(TxtStatus.Text, SetStatusCompleted, null);

The Status.SetCallback delegate maintains the result and exceptions when the status update is
complete, as shown in Listing C-15.

Listing C-15:  ​SetStatusCompleted event

private void SetStatusCompleted(bool result, Object state, FacebookException e)
{
 if (e == null)
 {
 if (result == false)
 {
 Dispatcher.BeginInvoke(() => MessageBox.Show(“call failed”));
 }
 }
 else
 {
 Dispatcher.BeginInvoke(() => MessageBox.Show(“Error: “ + e.Message));
 }
}

To retrieve the photo albums and photos of a user, implement the GetAlbumsByUser function (as
shown in Listing C-16).

Listing C-16:  ​GetAlbumsByUser funtion to retrieve user albums

private void GetAlbumsByUser(long userId)
{
 // Issue async request for user albums via the Facebook Developer Toolkit
 _fb.Photos.GetAlbumsAsync(userId, GetUserAlbumsCompleted, UserAlbums);
}

private ObservableCollection<album> _userAlbums;

public ObservableCollection<album> UserAlbums
{
 get
 {
 return _userAlbums;
 }
 set
 {
 _userAlbums = value;
 NotifyPropertyChanged(“UserAlbums”);
 }
}

Using the Facebook Developer Toolkit  ❘  769

private void GetUserAlbumsCompleted
 (IList<album> albums, object state, FacebookException exception)
{
 // Marshall back to UI thread
 Dispatcher.BeginInvoke(() =>
 {
 // Verify albums returned
 if (albums == null) return;

 // If existing collection is null, new up collection ObservableCollection
 <album>
 UserAlbums = state as ObservableCollection<album> ??
 new ObservableCollection<album>();

 // Iterate result set
 foreach (var a in albums)
 {
 if (!UserAlbums.Contains(a))
 {
 UserAlbums.Add(a);
 }
 }
 });
}

Next, add a ListBox to the page and bind the objects to the ListBox (see Listing C-17).

Listing C-17:  ​Albums Listbox for displaying retrieved albums

<ListBox Width=”200” Height=”270” x:Name=”ListAlbums”
 ItemsSource=”{Binding UserAlbums,
 ElementName=MainWindow}“ SelectionChanged=”AlbumList_SelectionChanged”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Path=name}“></TextBlock>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

Set the AlbumList_SelectionChanged event to set the album properties and call the
GetAlbumPhotos method (see Listing C-18).

Listing C-18:  ​SelectionChanged event on the AlbumList control

private void AlbumList_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 // Clear any album photo captions
 AlbumPhotoCaption.Text = string.Empty;
 AlbumPhotoCacheCaption.Text = string.Empty;

continues

770  ❘  Appendix C   Building Facebook Applications with Silverlight

 this.CurrentAlbum = e.AddedItems[0] as album;

 this.UserAlbumCaption.Text = string.Format(“User Albums: {0}“,
 UserAlbums.Count);

 GetAlbumPhotos();

 if (AlbumPhotos != null)
 {
 // Set cache loaded and async loaded album photo counts
 AlbumPhotoCacheCaption.Text =
 string.Format(“Original Load Album Photos: {0}“, AlbumPhotos.Count);

 AlbumPhotos.CollectionChanged += delegate
 {
 // Set album photo total count
 AlbumPhotoCaption.Text =
 string.Format(“Total Album Photos: {0}“, AlbumPhotos.Count);
 };
 }

}
private void GetAlbumPhotos()
{
 // Issue async request for all photos in the current album
 if (CurrentAlbum == null || CurrentAlbum.aid == null) return;
 _fb.Photos.GetAsync(null, CurrentAlbum.aid, null,
 GetAlbumPhotosCompleted, AlbumPhotos);

}
private void GetAlbumPhotosCompleted
 (IList<photo> photos, object state, FacebookException exception)
{

 // Marshall back to UI thread
 Deployment.Current.Dispatcher.BeginInvoke(() =>
 {

 // Verify photos returned
 if (photos == null) return;

 // If stateful (existing) collection is null, new up collection
 // if you want to add new photos to list without lost the old photos use:
 // ObservableCollection<photo> statefulPhotos = state as
 ObservableCollection<photo> ??
 new ObservableCollection<photo>();
 ObservableCollection<photo>
 statefulPhotos = new ObservableCollection<photo>();

 // Iterate result set
 foreach (var p in photos)

Listing C-18  (continued)

Using the Facebook Developer Toolkit  ❘  771

 {
 // Set flag to determine existence
 var photoExistsInCollection = false;

 // Iterate existing photo cache
 foreach (var existingPhoto in statefulPhotos)
 {
 // Check for matching photo IDs
 if (existingPhoto.pid == p.pid)
 {
 // This is a duplicate, ignore and break
 photoExistsInCollection = true;
 break;
 }
 }

 // Check if photo does not exist in cache
 if (!photoExistsInCollection)
 {
 // Add to photo collection
 statefulPhotos.Add(p);
 }
 }

 this.AlbumPhotos = statefulPhotos;
 });
}
#endregion //GetAlbumPhotosCompleted

The AlbumPhotos collection, shown in Listing C-19, is used to store a collection of photos from the
selected photo album.

Listing C-19:  ​AlbumPhotos collection to hold the albums list

private ObservableCollection<photo> _currentAlbumPhotos;
public ObservableCollection<photo> AlbumPhotos
{
 get
 {
 return _currentAlbumPhotos;
 }
 set
 {
 _currentAlbumPhotos = value;
 NotifyPropertyChanged(“AlbumPhotos”);
 }
}

To finish, bind the PhotoAlbums to the DataTemplate in an ItemsControl, shown in Listing C-20.

772  ❘  Appendix C   Building Facebook Applications with Silverlight

Listing C-20:  ​ItemsControl DataTemplate which binds to PhotoAlbums

<DataTemplate x:Key=”photoItemsTemplate”>
 <Grid Background=”Transparent” Margin=”0, 0, 0, 10”>
 <StackPanel Orientation=”Vertical”
 HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
 <Grid HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
 <Image x:Name=”coverImage” Width=”180”
 Source=”{Binding src}“ Stretch=”Uniform” Tag=”src”/>
 </Grid>
 </StackPanel>
 </Grid>
</DataTemplate>

<ScrollViewer BorderThickness=”0”
 VerticalScrollBarVisibility=”Visible” HorizontalScrollBarVisibility=”Hidden”
Height=”300” Width=”190” HorizontalAlignment=”Stretch” VerticalAlignment=”Stretch”>
 <ItemsControl x:Name=”ScrollPhoto”
 VerticalAlignment=”Stretch” HorizontalAlignment=”Stretch”
ItemTemplate=”{StaticResource photoItemsTemplate}“
 ItemsSource=”{Binding AlbumPhotos, ElementName=MainWindow}“>
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
</ScrollViewer>

Finally, to upload a new photo to an album, add this code (Listing C-21) to the UploadPhoto
event handler.

Listing C-21:  ​Uploading a photo to Facebook

private void UploadButton_Click(object sender, RoutedEventArgs e)
{
 OpenFileDialog openfile = new OpenFileDialog { Multiselect = false };
 openfile.ShowDialog();

 System.IO.Stream fileStream = openfile.File.OpenRead();
 byte[] data;
 using (BinaryReader reader = new BinaryReader(fileStream))
 {
 TxtUploadStatus.Text = “Uploading...”;
 data = reader.ReadBytes((int)fileStream.Length);
 }
 fileStream.Close();

 _fb.Photos.UploadAsync(null, “Myphoto”, data, “image/jpeg”,
 OnUploadPhoto, null);

}

Summary  ❘  773

Once this is all completed, you have a working Facebook application written in Silverlight that
allows you to view friends, look at photo albums, and upload new photos to an album. Your com-
pleted project should look like Figure C-9.

Figure C-9

Summary

In this appendix, you learned how to create a Silverlight Facebook application using the Facebook
Developer Toolkit from CodePlex. Using this Toolkit, you learned how to list your friends, how
to view albums, and how to upload new photos to albums. You also learned how to configure a
Facebook Developer application on the Facebook website.

D
integrating silverlight into
sharePoint 2010

Since its release, Microsoft’s SharePoint platform has exploded as a hugely popular collabo-
ration and communication platform. It allows organizations to easily get up-and-running
fast with a rich set of out-of-the-box features and includes an expansive set of extensibility
points that allow developers to customize just about every part of it. Starting with the 2010
release, Microsoft has renamed what was formerly known as Windows SharePoint Services
to SharePoint Foundation 2010. Additionally, Microsoft has continued to make signifi cant
investments in both the experience and the extensibility that the platform offers, including a
signifi cant improved way of integrating Silverlight into SharePoint.

This appendix shows you how to use the new features of SharePoint Foundation 2010 to
seamlessly integrate Silverlight applications into SharePoint.

Note that because SharePoint is a vast and highly extensible platform, it would be impossible
for this appendix to cover every aspect of extending SharePoint. This appendix specifi cally
focuses on integrating Silverlight into SharePoint, but you can fi nd more in-depth information
on SharePoint 2010 in the Wrox title Professional SharePoint 2010 Development.

the saMple application

To demonstrate how easy it is to integrate Silverlight applications into SharePoint, this appen-
dix uses a small sample application that displays weather information in SharePoint. Figure
D-1 shows the application running as a Web Part on a SharePoint page.

The application is a standard Silverlight application built using an MVVM style architecture.
It uses Yahoo Pipes as the source of its weather data, receiving back from the Yahoo service
JSON-formatted data. The DataContractSerializer and JsonObject classes are used to
transform this data into managed objects whose data is then displayed by the application.

776 ❘ appendix d IntegrAtIng SIlverlIght Into ShArepoInt 2010

The application also stores data on the locations to get weather in a SharePoint list and uses the
SharePoint Foundation 2010 Silverlight Object Model to retrieve that data.

figure d-1

Although this appendix focuses specifi cally on the SharePoint integration por-
tions of the sample application, the complete source is available as part of the
downloadable code for this book on www.wrox.com.

using the sharepoint foundation 2010 silverlight
oBJect Model

As stated in the previous section, the sample application stores the names of the locations for which
it should retrieve data in a SharePoint list. It uses the new SharePoint Foundation 2010 Silverlight
Object Model to programmatically retrieve the data.

http://www.wrox.com

Using the sharePoint foundation 2010 silverlight object Model ❘ 777

To do this, you fi rst need to add references to the following object model assemblies to your
Silverlight project:

Microsoft.SharePoint.Client.Silverlight.dll➤➤

Microsoft.SharePoint.Client.Silverlight.Runtime.dll➤➤

These assemblies provide a set of managed Silverlight APIs that allow you to interact with
SharePoint Foundation 2010. You can fi nd the assemblies on your SharePoint server at C:\
Program Files\Common Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\

LAYOUTS\ClientBin.

Once you have added the project references you can begin to write code using them. In the sample
application, the APIs are used to read data from a SharePoint list.

You can fi nd the full API documentation for the SharePoint Foundation 2010
Silverlight Object Model on the MSDN website at http://msdn.microsoft
.com/en-us/library/ee536622(office.14).aspx.

Listing D-1 demonstrates using the API’s from the SharePoint Foundation 2010 Silverlight Object
Model assemblies to connect to SharePoint and retrieve the list data.

listing d-1: Using the silverlight object Model aPi’s to connect to and retrieve data
from a sharePoint list

ClientContext spContext = ClientContext.Current;

if (spContext == null)
{
 spContext = new ClientContext(“http://sharepoint-demo”);
}

var spWeb = spContext.Web;
var spList = spWeb.Lists.GetByTitle(“Weather”);
var spQuery = new CamlQuery { ViewXml = “<View></View>” };

//Gets a ListItemCollection containing the List items
_spItems = spList.GetItems(spQuery);

spContext.Load(spWeb);
spContext.Load(spList);
spContext.Load(_spItems);

spContext.ExecuteQueryAsync(OnSharePointGetRequestSucceeded,
 OnSharePointGetRequestFailed);

http://msdn.microsoft.com/en-us/library/ee536622(office.14).aspx
http://sharepoint-demo%E2%80%9D
http://msdn.microsoft.com/en-us/library/ee536622(office.14).aspx

778 ❘ appendix d IntegrAtIng SIlverlIght Into ShArepoInt 2010

To start, the listing attempts to retrieve the current client context, which is the context for
SharePoint objects and operations. If there is no current context, a new context is created using
the URL of the SharePoint server.

Once the context is retrieved, you can start accessing SharePoint objects. First you need to get the
website that is associated with the current client context. Once you have the website, you can access
objects within that website like Lists, Folders, Features, or sub-Webs. For the sample application,
you want to get the contents of a List, so you can use the GetByTitle method to access the content
of a specifi c list. Once you have the list, you can now begin to execute CAML queries against the
list. In this case you want to select all of the Location items in the list so the query asks for the
entire view.

Collaborative Application Markup Language (CAML) is an XML-based
language used by SharePoint to defi ne fi elds and views used by Sites and
Lists. Using CAML you can query SharePoint for specifi c information
about Sites or Lists. You can fi nd a full reference to the CAML language on
Microsoft’s MSDN website at http://msdn.microsoft.com/en-us/library/
ms462365(office.14).aspx.

Note that as you are using the APIs, no calls are actually being executed against SharePoint yet.
The Silverlight Object Model uses a batching architecture that allows you to create multiple com-
mands and execute them as a single batch. You can see this in the next few lines of code, which take
the SharePoint objects created just prior and loads them in the context using its Load method. This
essentially adds them to the execution queue.

Once you are ready to execute the commands, you call the ExecuteQueryAsync method, passing in
two event delegates: one used if the asynchronous call succeeds, and one used if it fails.

The sample application’s query success event delegate is shown in Listing D-2.

listing d-2: Handling a successful asynchronous query

private void OnSharePointGetRequestSucceeded(object sender,
 ClientRequestSucceededEventArgs e)
{
 Locations.Clear();

 foreach (ListItem item in _spItems)
 {
 string location;

 // Try to find the correct column
 try
 {
 location = item[“Location”].ToString();

http://msdn.microsoft.com/en-us/library/ms462365(office.14).aspx
http://msdn.microsoft.com/en-us/library/ms462365(office.14).aspx

Using the SharePoint Foundation 2010 Silverlight Object Model  ❘  779

 }
 catch
 {
 // If that doesn’t work, let’s try the Title column
 location = item[“Title”].ToString();
 }

 Locations.Add(location);
 }

 RaiseCallback();
}

If the asynchronous call is successful, the list items collections will contain the list of Location val-
ues, which you can loop through and add to a local Locations collection. Because the sample needs
to update the UI with the results, it must do this using the BeginInvoke method. This is because the
success event delegate is run on a non-UI thread. Trying to update the UI directly from it will raise
an exception.

In the sample application, at the end of the event delegate method, the RaiseCallback method
is called, which is where the application executes the BeginInvoke method. This is shown in
Listing D-3.

Listing D-3:  ​Updating the UI from the asynchronous execution thread

private void RaiseCallback()
{
 if (_callback == null) return;

 Action<Settings> a = x => _callback(x);

 Deployment.Current.Dispatcher.BeginInvoke(a, this);
}

In the previous listing, you can see a member variable called _callback of type System.Action<T>
is used. The Action<T> object allows you to wrap a delegate. In the sample application, the delegate
contains a reference to the method on the UI thread that will be called in order to marshal the data
retrieved in the asynchronous SharePoint query handler back to the UI thread.

Finally, you must also create the event delegate to handle the asynchronous call failing. This is
shown in Listing D-4.

Listing D-4:  ​Handling a failed asynchronous query

private void OnSharePointGetRequestFailed(object sender,
 ClientRequestFailedEventArgs e)
{
 throw new Exception(e.Message, e.Exception);
}

780  ❘  Appendix D   Integrating Silverlight into SharePoint 2010

Deploying a Silverlight Application into SharePoint

Once you have your Silverlight application completed, you need to deploy it into SharePoint. To do
this, you begin by uploading the application’s XAP file into a document library.

For the sample application shown in this appendix, once
the XAP file is in SharePoint, you need to create a custom
list that contains the list of locations. Figure D-2 shows
a list containing the locations for which the application
should retrieve weather data.

At this point you are ready to add the Silverlight applica-
tion to a SharePoint page by using the new Silverlight
Web Part that is included with SharePoint 2010. To add
the Web Part, start by placing the SharePoint page in Edit
mode and selecting the Web Part Zone to which you want
to add the application.

Once you select the Silverlight Web Part,
a dialog (shown in Figure D-3) appears,
prompting you to enter the location of
the Silverlight application.

Though in the case of the sample
application the location is local to
SharePoint, it is possible to provide any
valid URL to the Web Part. Note, how-
ever, that you may have to resolve cross-
domain access issues if the Silverlight
application is hosted in a different
domain. Once the URL is provided, you
can access the Web Part settings via the
Web Part context menu as you would
any other Web Part.

Once you have configured the Web Part
settings, simply click OK to close the editor. The web page refreshes, and you should see the applica-
tion loaded in the page. Figure D-4 shows the completed sample application running in SharePoint.

Figure D-4

Figure D-2

Figure D-3

Summary  ❘  781

Summary

This appendix introduced you to the new SharePoint Foundation 2010 Silverlight Object Model.
Using a simple sample application, the appendix demonstrated how you can use these managed APIs
in a Silverlight application to execute commands against SharePoint, retrieving data and other infor-
mation about SharePoint.

Finally, the appendix walked you through deploying and configuring a Silverlight application, allow-
ing you to easily integrate Silverlight into your SharePoint pages.

E
silverlight Control assemblies

Table E-1 provides a reference which can help you locate the assembly that contains a
specifi c control.

taBle e-1

control naMe asseMBly

Accordian System.Windows.Controls.Layout.Toolkit.dll

AutoCompleteBox System.Windows.Controls.Input.dll

BusyIndicator System.Windows.Controls.Toolkit.dll

Button System.Windows.dll

Calendar System.Windows.Controls.dll

Chart System.Windows.Controls.DataVisualization.Toolkit.dll

CheckBox System.Windows.dll

ChildWindow System.Windows.Controls.dll

ComboBox System.Windows.dll

ContextMenu System.Windows.Controls.Input.Toolkit.dll

DataForm System.Windows.Controls.Data.DataForm.Toolkit.dll

DataGrid System.Windows.Controls.Data.dll

DataPager System.Windows.Controls.Data.dll

DatePicker System.Windows.Controls.dll

DockPanel System.Windows.Controls.Toolkit.dll

continues

784  ❘  Appendix E   Silverlight Control Assemblies

Control Name Assembly

Expander System.Windows.Controls.Toolkit.dll

Frame System.Windows.Controls.Navigation.dll

GlobalCalendar System.Windows.Controls.Toolkit.dll

GridSplitter System.Windows.Controls.dll

HyperlinkButton System.Windows.dll

Image System.Windows.dll

Label System.Windows.Controls.Data.Input.dll

ListBox System.Windows.dll

MediaElement System.Windows.dll

MultiScaleImage System.Windows.dll

NumericUpDown System.Windows.Controls.Input.Toolkit.dll

Page System.Windows.Controls.Navigation.dll

PasswordBox System.Windows.dll

ProgressBar System.Windows.dll

RadioButton System.Windows.dll

Rating System.Windows.Controls.Input.Toolkit.dll

RichTextBox System.Windows.dll

ScrollViewer System.Windows.dll

Slider System.Windows.dll

TabControl System.Windows.Controls.dll

TextBlock System.Windows.dll

TextBox System.Windows.dll

TimePicker System.Windows.Controls.Input.Toolkit.dll

TimeUpDown System.Windows.Controls.Input.Toolkit.dll

ToggleButton System.Windows.dll

ToolTip System.Windows.dll

TreeMap System.Windows.Controls.DataVisualization.Toolkit.dll

Table E-1  (continued)

Appendix E   Silverlight Control Assemblies  ❘  785

Control Name Assembly

TreeView System.Windows.Controls.dll

ValidationSummary System.Windows.Controls.Data.Input.dll

ViewBox System.Windows.dll

WebBrowser System.Windows.dll

WrapPanel System.Windows.Controls.Toolkit.dll

787

Index

Symbols
/ (slash)

cross-platform support, 21
XAML image, 557

{ } (curly brackets)
resources, 686
XAML markup extensions, 736

A
AAC audio, 2, 643
AcceptClient(), 331
Accordion, 170–172
AcquiringLicense, CurrentState, 666
ActiveX, plug-ins, 2
ActualHeight, 119, 618
ActualWidth, 119, 618
Add Service Reference dialog box, 235, 245
Add, Silverlight Unit Test Framework, 744
Add(), WCF, 456
ADO.NET, 248
Advance Tooltip Service, 142
Advanced Stream Redirector (ASX), 667, 669–671

MediaElement, 21
AdventureWorksDomainService.cs, 265–267
AI. See Illustrator
AJAX, 2, 3, 25
AlbumList, SelectionChanged, 769–771
AlbumPhotos, 771
Alignment, FrameworkElement, 123
Alignment icons, ZIndex, 73
all, enableNavigation, 437
Allow Drop, Expression Blend Miscellaneous settings,

74–75
<allow>, Web.config, 458–460
AllowDefault, 401
AllowDrop, 27
allowHtmlPopupWindow, DOM, 437
AltDirectorySeparatorChar, Path, 504
Animation, 591
animations, 2, 15–17, 591–611

cache, 609–610
easing functions, 598–600
keyframe, 603–611
Navigation Framework, 113–115
sprits, 610–611

storyboard, 592–603
Visibility, 608–610
VisualStates, 704
XAML, 13

Appearance, Expression Blend Properties pane, 72–73
Application, 55
applications

architecture, 375–428
ASP.NET, 34
debugging, 57–58
Expression Blend, 63–91
files, 497–539
full-screen mode, 371–373
life cycle, 55–56
load time, 428
LOB, 337–373
localization, 367
MEF, 398–399
network, 301–336
OOB, 281–291

installation, 287–290
sllauncher.exe, 300
uninstalling, 290
update, 290–291

PRISM/CAL, 414–415
resources, 709
roles, 476–477
security, 449–477
SharePoint, 780
sockets server, 328–332
testing, 741–755
Visual Studio, 31–62
WCF RIA Services, 259–261
web, 40–41

Application.Current.Host.Source, 334
applicationHost.config, 61
Application_Startup(), App.xaml.cs, 512–513
ApplyPropertyValue, TextSelection, 633
AppManifest.xaml, 47, 48, 55
AppManifest.xml, 40, 287
App.xaml, 40, 709
App.xaml.cs, Application_Startup(), 512–513
Arc, Expression Blend shape, 552
ArcSegment, 549
args, 732
Arrange pass, page layout, 118–120
ArrangeOverride, Panel, 134
ASCII, System.Text.Encoding, 529

788

ASP.NET – BrowserInformation

ASP.NET, 5, 257
applications, 34
garbage collection, 14
localization, 367
membership and roles management service, 461–

477
passwords, 466

plug-in, 430–431
security, 450–461
Solution Explorer, 36
Web Service, 227–234

assemblies
cache, 50–52
controls, 783–785
images, 558
media, 645–646, 647–648

AssemblyCatalog, 402
AssemblyInfo.cs, 40, 41
AssemblyInfo.vb, 40, 41
AssemblyPart, 48
Asset Explorer, 67, 80
Assets and Views, Solution Explorer, 95
ASX. See Advanced Stream Redirector
asynchronous API requests, 764–767
Attach to Process dialog, Visual Studio, 57–58
audio

Balance, 658
devices, 479–495

ComboBox, 486–487
formats, 21–22
IsMuted, 658
OOB, 481
Volume, 658
web pages, 21

audio streams, 494–495
AudioCaptureDevice, 481, 482, 487
audioDeviceList, SelectionChanged, 487
AudioFormat, SupportedFormats, 485
AudioSink, 494–495
Authenticate(), 452

SQL Server, 454
authentication, 450

databases, 453–454
files, 460–461
folders, 460–461
forms-based, 450–455
IIS, 455–456
MainPage.xaml.cs, 454–455
SQL Server, 453–454
Web.config, 457–460
windows-based, 455–460

<authentication>, 451, 458
authorization, 450, 457–460
<authorization>, Web.config, 458
Auth.svc, 469
Auto, 122

DataGridLength, 159
AutoCompleteBox, 145–146
AutoGenerateColumns, 155

Automatic:Silverlight Code, 58
AutomationFactory, System.Runtime

.InteropServices.Automation, 295–296
AutoPlay, 661
AutoReverse, 597
autoUpgrade, 431

B
Back, easing function, 599
Background, TemplateBinding, 701
Balance, audio, 658
BannerBar, ASX, 670
Base Class Libraries (BCLs), 2, 521

namespaces, 15
.NET Framework, 1, 14

BasedOn, Style, 689–690
BasicHttpBinding, 246
BCLs. See Base Class Libraries
Begin, storyboards, 597
BeginAccept(), 325
BeginReceive(), 328
BeginTime, 596
Behavior, Expression Blend, 78–81
behaviors

RichTextBox, 627–629
storyboards, 601

BezierSegment, 549
BigEndianUnicode, System.Text.Encoding, 530
binary files, FileStream, 525–528
BinaryReader, 524–525, 529
BinaryWriter, 524–525
Binding, 214, 736

Converter, 223–224
ElementName, 214–215
TextBlock, 26

<bindings>, 457
BindingValidationError, routed events, 735
Bing, 141
BitsPerSample, AudioFormat, 485
Blacklight, 133
BlockArrow, Expression Blend shape, 552
blog.nerdplusart.com, 37
Blur, 15
BlurEffect, 573–574
Bold, Paragraph, 623
Bootstrapper

ConfigureRegionAdapterMapping, 416
PRISM/CAL, 412, 414–415

Border, 18
Fill, 484
Padding, 544–545
Rectangle, 543
StackPanel, 162
video, 483

Bounce, 15
Bounce, easing function, 599
BrowserInformation, HtmlPage, 445

http://blog.nerdplusart.com

789

BrowserSession_LoginCompleted – CollectionChanged

BrowserSession_LoginCompleted, 764
Brush

definition, 682
Foreground, 616

Brush Editor, 39, 564
brushes

Expression Blend, 564–568
graphics, 560–570
names, 711

Brushes, 16
Brushes, Expression Blend Properties pane, 72
BufferedStream, 525
Buffering, CurrentState, 666
BufferingProgressChanged, 659
BufferingTime, 658–659

MediaElement, 659
BufferResponse, WebMethod, 231
buffers, streams, 525
Build Action, 645–649

themes, 714
BureauBlack, 714–715
Business Application template, 2
Business Layer, 424
BusyIndicator, 190–192
Button, 518, 691

Click, 53
controls, 175–178
customization, 719–721
Grid, 121–122
InlineUIContainer, 625
IntelliSense, 54
onclick, 439
Properties pane, 43
SaveFileDialog, 492
Style, 689, 692
Template, 691
TemplateBinding, 718–719
video, 483

Button tool, Expression Blend, 66
byte code markers, 529
ByteArray, 527

C
C#, 2
cache

animations, 609–610
assemblies, 50–52

Cached Composition, 639
CacheDuration, WebMethod, 231
CacheMode, 74–75, 609–610, 658
CacheSize, Frame, 107
Calculator, 742
Calendar, 150–151
CalendarInfo, 150
Callout, Expression Blend shape, 552
CanGoBack, Frame, 108
CanGoForward, Frame, 108
CanSeek, MediaElement, 662
CanUserRender, 160–161

CanUserReorderColumns, 160–161
CanUserSort, 159
CanUserSortColumns, 159
Canvas, 17, 371

layout panels, 126–127
overlay image, 678
TextBlock, 26

Canvas.Left, 18
Canvas.Top, 18
CaptureDevice, 481, 484
CaptureDeviceConfiguration, 481–482
CaptureFailed, 490
CaptureImageAsync, CaptureSource, 483,

488, 490
CaptureImageCompleted, 488, 489, 493
CaptureImageFailed, 488
CaptureSource

CaptureDeviceConfiguration, 482
CaptureImageAsync, 488, 490
snapPhoto_Click, 491
Stop, 483, 485
VideoBrush, 484

CapureImageCompletedEventArgs,
CaptureImageCompleted, 489

catalogs, MEF, 402
CategoryAxis, 188
CellEditingTemplate, 158–159
Centered, 627
CenterOfRotation, 587–589
ChangeStatus, 442
Channels, AudioFormat, 485
Chart, controls, 185–189
CheckBox, 691

DataGrid, 156–159
Children, 118
Circle, easing function, 599
classes

definitions, 52–55
filesystem, 500–514

Clear, passwordFormat, 451
ClearType, 639
Click

Button, 53
NavigationService, 102–103

<client>, 246
clientaccesspolicy.xml, 313, 320
ClientBin, 41, 44, 49, 357
Clip

Geometry, 550–552
video, 653–654

Clip, Expression Blend Miscellaneous settings, 74–75
Clipboard, 2, 27

GetText, 633–634
LOB, 345–347
RichTextBox, 628

Closed, CurrentState, 666
CLR. See Common Language Runtime
cmafest.com, 28
CodePlex, Blacklight, 133
Collapsed, Visibility, 610–611
CollectionChanged, 217

http://cmafest.com

790

collections – crossdomain.xml

collections, BCLs, 2
CollectionViewSource, 155
Color

ColorAnimationUsingKeyFrames, 603
Duration, 595
GradientStop, 701

ColorAnimation, 595
GradientStop, 704

ColorAnimationUsingKeyFrames
Color, 603
Duration, 603
KeyFrames, 603

columns, DataGrid, 156–161
Column, Grid, 129
ColumnDefinitions, Grid, 129–131
ColumnSpan, Grid, 130, 179
COM automation, OOB, 295–296
ComAutomationFactory, 364
ComboBox, 129, 163–169

audio devices, 486–487
video devices, 486

CommandButtonsVisibility, 163
commands, PRISM/CAL, 417–420
Common Language Runtime (CLR), 3, 5, 14
Common Object Request Broker Architecture

(CORBA), 226
Common Properties, Expression Blend Properties

pane, 74–75
common type system (CTS), 14
CommonStates, VisualStateGroups, 202, 702
compatibility image, 84, 85
Compiled Shaders, Visual Studio, 578
Completed(), 334
Completed, storyboards, 602–603
complex models, 428
ComposablePart, 397–398
ComposableParts

[System.ComponentModel.Composition
.Export], 399

[System.ComponentModel.Composition
.Import], 401

CompositeCommand, PRISM/CAL, 412, 419–420
CompositeTransform, 582, 585–586, 592, 607
CompositionContainer, Initialize, 410
CompositionInitializer, 407–410
CompositionTarget, 607–608
Configuration Settings dialog, 480–481
ConfigurationService, Export, 400
ConfigureContainer, 414
ConfigureRegionAdapterMapping, Bootstrapper,

416
ConnectAsync(), 334
Contacts, MainPage.xaml, 236
Contains, Operator, 279
ContainsText, Clipboard, 346
Content, UIElement, 692
ContentControl

ContentPresenter, 693
Templated Control, 197
TransitioningContentControl, 113

ContentControlRegionAdapter, 415

ContentEnd, 631
ContentFrame, 96
ContentFrameStyle, Styles.xaml, 113–115
ContentLoader, Frame, 108
ContentPresenter, 692–693

ContentControl, 693
Frame, 115
HorizontalAlignment, 695
VerticalAlignment, 695

ContentStart, 631
ContentTemplate, TemplateBinding, 695
context-sensitive menus, 338
controls. See also plug-ins

assemblies, 783–785
Button, 175–178
Chart, 185–189
customization, 195–203
data visualization, 180–189
dates, 150–153
GridSplitter, 178–179
Image, 179–180
input editor, 144–153

numeric, 147–149
lists, 154–175
open source, 141
templates, VSM, 81–82
text display, 142–144
themes, 714–715
third-party, 141
time, 150–153
visual, 139–203

Control, Templated Control, 196
ControlStoryboardAction, 601
ControlTemplate

definition, 682
Style, 197–198, 690–705
TargetType, 692
TemplateBinding, 694–697
VisualStateGroup, 202
VisualStateManager, 702
VisualTree, 682

conversion, data types, 222–225
Converter, Binding, 223–224
ConverterParameter, FormatString, 224
CopyTo(), 503
CORBA. See Common Object Request

Broker Architecture
CoreCLR, 14
CornerRadius, 543
Cover Flow Control, 142
creatable type, 444
Create(), 503
CreateInstance, HtmlWindow, 446
CreateShell, 414
CreateText(), 503
CreationPolicy, 403
CreationTime, 502
<credentials>, 451, 452
crossaccesspolicy.xml, 313
cross-domain access, 311–314
crossdomain.xml, 313

791

CTS – default.svc

CTS. See common type system
Cubic, easing function, 599
CultureInfo, GlobalCalendar, 151
Currency, localization, 367
_currentFolderPath, 506, 516
CurrentSource, Frame, 108
CurrentState, MediaElement, 666–667
CurrentStateChanged, MediaElement, 667
CurrentStatus, Status, 444
CurrentUICulture, 367, 369
Cursor, Expression Blend Common Properties, 74
custom menu control, Navigation Framework, 111–113
Customer, 353–355
Customer Detail, 352–353

MainPage.xaml.cs, 363–364
Customer Search, 352–353, 359
CustomerDetails.xampl, XAML, 103
Customers.xaml, 274–276
customization

Button, 719–721
controls, 195–203
effects, 575–581
ItemsPanel, 213–214
layout panels, 133–137
OOB, 296–299
shaders, 578
themes, 716
VSM, 83

D
data

access, 205–255
strategy, 424–427

binding, 26–27
DataGrid, 154–155
Destination, 209
Expression Blend, 554
FrameworkElement, 210
ItemsControl, 212
OneTime, 217
OneWay, 217–218
TabConverter, 167–168
TwoWay, 218–219
UI, 209–225
XAML, 736–738

design time, 70
services, 225–254
SOAP, 229–230
types, conversion, 222–225
updates, 215–221
validation, 219–221
validation errors, VSM, 221
visualization controls, 180–189
XML, 205–209

Data
DragEventArgs, 349
Path, 548

Data Binding Builder, 39

Data Layer, 425
Data Services, WCF, 248–250, 426–427

default.svc, 250–251
Data Sources window, 37

Visual Studios, DataGrid, 155
Data Stores, 425
databases

authentication, 453–454
roles, 471–473

[DataContact], 353
DataContext, 26

DataTemplate, 213
Expression Blend Common Properties, 74
FrameworkElement, 210
ItemsControl, 212
OneTime, 217
StackPanel, 210

DataContractJsonSerializer, 356
DataContractSerializer, 775
DataFields, ReadOnlyTemplate, 163
DataForm, 162–163
DataGrid, 26–27, 154–162, 359

columns
freezing, 160
moving, 160–161
sizing, 159–160
sort, 159

DisplayIndex, 160
Excel, 364–365
InlineUIContainer, 625
ItemsSource, 272

DataGridCheckBoxColumn, 156–157
DataGridColumnHeader, HeaderStyle, 156
DataGridLength, 159–160
DataGridTemplateColumn, 157–158
dataList, 26
[DataMember], 353
DataPager, 169–170, 277
DataSets, 225–226
DataTemplate

DataContext, 213
DataGrid, 156
PhotoAlbums, 772
TreeMapItemDefinition, 181

DatePicker, 151–153
dates, controls, 150–153
DateTime, 188

localization, 367
DateTimeAxis, 188
DCOM. See Distributed Component Object Model
d:DesignHeight=”300” d”DesignWidth=”400”>, 725
debugging

applications, 57–58
JavaScript, 58
Macintosh, 59–61
remote browser, 59–61
Windows 7, 60

Deep Zoom, 87–91
graphics, 28–29

DeepEarth, 141
default.svc, WCF Data Service, 250–251

792

DelegateCommand<T> – effects

DelegateCommand<T>, PRISM/CAL, 413, 417–418
Delete(), 503
<deny>, Web.config, 458–460
[Dependency], 394
dependency injection (DI), 376, 390–395
dependency inversion principle (DIP), 377
DeploymentCatalog, 402, 409, 410–411
Deployment.Parts, AppManifest.xaml, 48
Description, WebMethod, 231
Design Surface, 36–37, 41–47

Toolbox, 42
XAML Editor, 42

design surface, Expression Blend, 69–70
design time data, 70
DesiredSize, elements, 118–119
Destination, 206

data binding, 209
data type conversion, 222
MainPage.xaml.cs, 210
XDocument, 207–208

DestinationsListBox, 208
deviceXDPI, Internet Explorer DOM, 121
DI. See dependency injection
Digital Rights Management (DRM), 2, 283, 644
digital signatures, OOB, 299
DIP. See dependency inversion principle
Direct Selection tool, Expression Blend, 65
directories, isolated storage, 537–538
Directory, 501
DirectoryCatalog, 402
DirectoryInfo, 501, 502, 505
DirectoryName, 502
DirectorySeparatorChar, Path, 504
DirectX, 575–577
Disassembly window, 59
DiscreteDoubleKeyFrame, 606
DiscreteObjectKeyFrame, 609
Display button, 506, 508–509
DisplayAttribute, Name, 143
DisplayFileInfo(), 507
DisplayFolderFileList(), 509–510
DisplayFolderList(), 507–508
DisplayIndex, DataGrid, 160
DisplayMemberPath, 208, 212
DisplayMode, 150
DisplaySave, 381
Dispose, 403
Distributed Component Object Model (DCOM), 225
DockPanel, 18, 19, 132
Document, HtmlPage, 445
Document Object Model (DOM), 429–447

HTML, 429–432
HTML Bridge, 441–446
initParams, 436–437
JavaScript, 429, 438–441
managed code, 444–446
plug-in, 429–432

Document Outline, 37
DOM. See Document Object Model
Domain Service Class, WCF RIA Service, 264–280

DomainDataSource, 275–276
filter, 278–279

domains
images, 558
media, 648–649

Double, 603, 606
DoubleAnimation, 13, 592, 594, 595
DoubleAnimationKeyFrames,

EasingDoubleKeyFrame, 604
DoubleAnimationUsingKeyFrames

Double, 603
EasingDoubleKeyFrame, 606

Double.NaN, FrameworkElement, 121–122
downloads

video, 660
WebClient, 304–307

Download File Offline, DRM, 644
DownloadProgress, MediaElement, 660
DownloadProgressChanged, 660
DownloadStringAsync, userToken, 310
DownLoadStringCompleted, 310
Drag Dock Panel, Blacklight, 133
drag-and-drop, 2, 27, 349–350
DragEnter, 27, 735
DragEventArgs, 27, 349
DragLeave, 27, 735
DragOver, 27, 735
DRM. See Digital Rights Management
Drop, routed events, 735
DropEffect, 639
DroppedFramesPerSecond, 660
DropShadow, 15, 27
DropShadowEffect, 574
Duplex Service, WCF, 314–323
Duration, 592, 595, 603
Dynamic Generation

ASX, 669
Media Server, 668

E
EaseIn, 600
EaseInOut, 600
EaseOut, 600
Easing, 598–600
easing functions

animations, 598–600
Expression Blend, 605

EasingDoubleKeyFrame, 604, 605, 606
EasingFunction, 605
EasingMode, 600
Eclipse, 2, 11
<ed:/>, 552
Editing buttons, Expression Encoder, 676
EDM. See Entity Data Model
Effect, 578–581

UIElement, 572
effects

customization, 575–581
Expression Blend, 574–575

793

Elastic – Expression Blend

graphics, 572–581
performance, 581

Elastic, easing function, 599
ElementName, Binding, 214–215
elements

DesiredSize, 118–119
XAML, 13

Elevated Trust, OOB, 283
Ellipse, 545–548
EllipseGeometry, 15, 548–549
embedded fonts, 636–638
enableAutoZoom, DOM, 437
EnableCacheVisualization, 610, 657–658
enableCacheVisualization, 437
[EnableClientAccess()], 267
EnableGPUAcceleration, 657–658
enableGPUAcceleration, DOM, 437
enablehtmlaccess, DOM, 437
enableNavigation, DOM, 437
enablePasswordReset, 467
enablePasswordRetrieval, 467
EnableSession, WebMethod, 231
Encode tab, Expression Encoder, 676–677
Encryption Password text box, 59
encryption, passwords, 451
ENDMARKER, ASX, 671
<endpoint>, 246
EndPoint, gradients, 561
EndReceive(), 327–328
EndsWith, Operator, 279
EnsureCurrentState, 202–203
Enterprise Services, 238
Entity Data Model (EDM)

ADO.NET, 248
Visual Studio, 250
WCF Data Service, 251
WCF RIA Service, 261–264

EntitySetRights, 252
ENTRY, ASX, 671
EntryPointType, 55
essence, styles, 697–701
events

aggregator, PRISM/CAL, 420–424
bubbling, 734–736
handlers

partial classes, 55
XAML, 440, 731–734

JavaScript, 733–734
partial classes, 53–54
routed, 734
XAML, 731–736

EVENT, ASX, 671
Event Broker, 395–396, 420
EventAggregator, PRISM/CAL, 412
EventName, 601
Events tab, Properties pane, 44, 54
Excel, 364–365
.exe, 59, 60
Exists, 502
Exit, 55
Expander, 192

Experimental components, Toolkit, 141
Exponential, easing function, 599
export

Excel, 364–365
MEF, 399–400

Export, ConfigurationService, 400
Expression Blend, 1, 2, 3, 592

AI, 85
applications, 63–91
Behavior, 78–81
brushes, 564–568
data binding, 554
design surface, 69–70
Easing, 600
easing functions, 605
effects, 574–575
Font Manager, 637–638
fonts, 85–86, 636
Gradient tool, 568
Help tab, 78
IDE, 64–77
Image, 555
images, 85–86
import, 83–86
KeyFrames, 604
media, 658
MediaElement, 649
New Storyboard button, 593
Object Explorer, 68–69
Objects and Timeline panel, 593
Parts panel, 721
Path, 545
PathGeometry, 550
PlaneProjection, 590
Project Explorer, 67–68
Properties pane, 69–75

Appearance, 72–73
Brushes, 72
Common Properties, 74–75
Font Manager button, 86
Layout, 73

property panel, 596
PSD, 84–85
Samples tab, 78
shapes, 552–554
Startup dialog, 77–78

New Project button, 78
States tab, 77, 719
Stretch, 547
styles, 716–721
themes, 716–721
toolbar, 64–67
transforms, 75–77
version 3, 11
version 4, 11
VideoBrush, 570
Visual Studio, 41
VSM, 81–83, 201
WPF, 63
WYSIWYG, 63
XAML, 63, 593

794

Expression Design – Font Manager

Expression Design, 87
Expression Encoder, 87

Editing buttons, 676
Encode tab, 676–677
media, 671–578
Metadata tab, 676
Output tab, 678
Playback controls, 675–676
Timeline, 673–676
Timeline Viewing controls, 675

Expression Suite, 86–91
Extended Selection mode, Grid, 155
eXtensible Applications Markup Language (XAML), 1,

2, 12–14, 723–739
animations, 13
CompositionInitializer, 409
CustomerDetails.xampl, 103
data binding, 736–738
elements, 13
event handlers, 440, 731–734
events, 731–736
Expression Blend, 63, 593
hierarchy, 730
MainPage.xaml, 210, 222, 253–254
markup extensions, 736–739
objects, 726–729
partial classes, 731–734
snippets, 37
styles, 682–683
tabs, 168
Visual Studio, 592
WCF RIA Service Domain Service Class, 273–277

eXtensible Markup Language (XML), 225
data, 205–209
LINQ to XML, 205–208
Web Service, 231–238

Extension, 503
ExternalParts, XAP, 52
Eyedropper tool, Expression Blend, 66

F
Facebook, 757–773

uploads, 772–773
Facebook Developer Toolkit (FDT), 760
failed media, 665–666
FDT. See Facebook Developer Toolkit
File, 501
files

access, 526
applications, 497–539
authentication, 460–461
binary, 525–528
classes, 500–514
copying, 516–517
deleting, 516–517
mode, 525
moving, 516–517
.NET classes, 501–503
OOB, 511

reading, 518–521
resources, localization, 367–368
sharing, 526
text, FileStream, 528–532
web applications, 40–41
writing, 521–523

File Properties, 504–505, 514–515
namespaces, 505–506
OOB, 513

file systems
classes, 500–514
images, 492–493
OOB, 295

File System Access, OOB, 283
FileAccess, 526
FileAccess.ReadWrite(), 527
File.Copy(), 517
File.Delete(), 516
FileInfo, 349, 501, 502, 529, 530
FileInfo.Open(), 527
FileInfo.OpenRead(), 527
FileMode, 526
File.Move(), 517
File.ReadAllText(), 520
FileShare, 526
FileStream, 524

binary files, 525–528
text files, 528–532

FileSystemInfo, 501
FileUpload.ashx, 307
Fill

Border, 484
Glyphs, 638
LinearGradientBrush, 564
MediaElement Stretch, 650
Path, 562
Stretch, 190, 547, 554, 563

fillBehavior, 596
filter

DomainDataSource, 278–279
WCF RIA Service, 277–280

Filter, OpenFileDialog, 498
FilterModes, AutoCompleteBox, 146
FindName, 439
findName, 734
Fine-Grained Control, 668, 669
Firefly Logic, 28
Flip transform, Expression Blend, 76
FlowDirection, 370–371, 634
FocusStates, VisualStateGroups, 702
folders

authentication, 460–461
classes, 500–514
.NET classes, 501–503
OOB, 511

fonts, 634–639
embedded, 636–638
Expression Blend, 85–86, 636
glyphs, 638–639
graphics, 570–572

Font Manager, Expression Blend, 86, 637–638

795

FontFamily – HD Video

FontFamily, 86, 570–572, 615, 636, 705
FontSize, 616, 705
FontSource

Expression Blend Miscellaneous settings, 74–75
Glyphs, 639
TextBlock, 636
TypeFace, 635

Fonts.SystemTypefaces, 635
FontStretch, VisualTree, 705
FontStyle, 616, 705
FontWeight, 616, 705
Foreground

Brush, 616
SoldColorBrush, 684
StaticResource, 689
TextBlock, 562, 683–684

FormatString, ConverterParameter, 224
forms-based authentication, 450–455
Frame, 23–24, 95–96

ContentPresenter, 115
JournalOwnership, 98
Navigation Framework, 105–110
Transition, 115

frame rate, 610
FrameNavigation, Frame, 109
FrameReported, 342
FramesPerSecond, VideoFormat, 486
Frame.UriMapper, 96
FrameworkElement, 79, 120–125

data binding, 210
DataContext, 210
.Resources, 707

frequently used data, 428
FriendlyName, 487
FrozenColumnCount, Grid, 160
FullName, 503
full-screen mode

applications, 371–373
HD Video, 2

FullScreenChanged, 373
FullScreenOptions,

StaysFullScreenWhenUnfocused, 373

G
garbage collection, 14, 404
Generate PC Configuration button, 59
generics, BCLs, 2
Geometry, 15, 548–552
GetAlbumsByUser, 768–769
GetAvailableAudioCaptureDevices, 481
GetAvailableVideoCaptureDevices, 482
GetCustomer, 100–101
GetDefaultAudioCaptureDevice, 482, 484
GetDefaultVideoCaptureDevice, 482, 484
GetDirectories(), 503
getElementByID, 439
GetElementsById, HtmlDocument, 445
GetFiles(), 503

GetFileSystemInfos(), 503
GetFocus, routed events, 734
GetImageCompleted, 489–490
GetIsNetworkAvailable, 289
GetModuleCatalog, 414
GetNextInsertionPoint, 631
GetPositionFromPoint, 631
GetPropertyValue, TextSelection, 633
GetRolesForCurrentUserAsync(), 476
GetSpecialFolder, 23
GetTemplateChild, OnApplyTemplate, 198–199
GetText, 628, 633–634
GetTouchPoint, 342
getValue, 439
GlobalCalendar, 150–151
globalization, LOB, 366–371
Glyphs, 371, 638, 639
Glyphs FontUri, 639
GlyphTypeface, 636
GoBack, Frame, 106
GoForward, Frame, 106
GoToState, 202
GPU hardware acceleration, 657–658
gradients, 560–561
Gradient tool, Expression Blend, 66, 568
GradientBrush, 566–568
GradientStop, 701, 704
GradientStops, Offset, 560
graphics, 15–17, 541–590

brushes, 560–570
Deep Zoom, 28–29
effects, 572–581
Expression Blend shapes, 552–554
Expression Suite, 87
fonts, 570–572
images, 554–558
media, 554–559
transforms, 581–590

Grid, 18, 43, 129–131
Button, 121–122
ColumnSpan, 130, 179
Extended Selection mode, 155
FrozenColumnCount, 160
RowSpan, 179
Single Selection mode, 155
StackPanel, 122
TextBlock, 26

grid, 371
<Grid>, 725
Grid tool, Expression Blend, 66
GridLength, 130
GridSplitter, controls, 178–179

H
H.264, 643

MPEG-4, 2
Handles, Visual Basic, 732
HD Video, full-screen mode, 2

796

Header – information architects

Header, TreeViewItem, 173
HeaderedContentControl, Templated Control, 197
HeaderedItemsControl, Templated Control, 197
HeaderStyle, DataGridColumnHeader, 156
HeaderTemplate, 173
heavy load, 428
Height, 118, 371

Auto, 122
Ellipse, 545
FrameworkElement, 120–123
Image, 555
MediaElement, 650–651

HelloSilverlight.dll, 48
HelloSilverlightTestPage.aspx, 41
HelloSilverlightTestPage.html, 41, 45–47
HelloSilverlight.xap, 44, 47–48
Help tab, Expression Blend, 78
Hexagon, 552
HierarchicalDataTemplate, TreeView, 173–174
hierarchy, XAML, 730
High Level Shading Language (HLSL), 575–576
HLSL. See High Level Shading Language
Hold In, 605
Home_Loaded, 102
Home.xaml, 101–102
HorizontalAlignment, 122, 693, 695
HorizontalScrollbarVisibility, 627
hosting, MEF, 406–410
HTML, 1, 2, 5

DOM, 429–432
HTML Bridge, 429

DOM, 441–446
HTML Hosting, OOB, 283
HtmlDocument, GetElementsById, 445
HtmlPage, 445
HtmlPage.PopupWindow, 437
HtmlWindow, 445–446

CreateInstance, 446
Invoke, 446

HTTP, 226, 301
restrictions, 311

HTTP, System.Net, 294
HTTPS

OOB, 283
restrictions, 311

<httpTransport>, 457
HttpWebRequest, 25, 302
HttpWebResponse, 25, 302
Hyperlink

HyperlinkButton, 625
InlineUIContainer, 626
NavigationUri, 625
Paragraph, 623
TargetName, 625

HyperlinkButton, 96, 98, 177
Click, 102
enableNavigation, 437
Hyperlink, 625

I
IAs. See information architects
ICommand, 382
IDE, Expression Blend, 64–77
IDisposable, 377, 403
IEnumerable, 377
IIOP. See Internet Inter-ORB Protocol
IIS. See Internet Information Services
IL. See Intermediate Language
Illustrator (AI), 85
ILogService, 398
Image, 554–555

controls, 179–180
Expression Blend, 555
Height, 555
InlineUIContainer, 625
Source, 555–557
Stretch, 554
Width, 555

images
assemblies, 558
compiling, 555–558
domains, 558
Expression Blend, 85–86
filesystem, 492–493
graphics, 554–558
loose, 557
referencing, 555
video feeds, 488–493
WebClient, 557
XAP, 557

image, overlay, 677–678
ImageBrush, 16, 562–563, 568–570

ImageSource, 562
Stretch, 563

ImageFailed, 180
ImageOpened, 180
_images, WriteableBitmap, 489
ImageSource, ImageBrush, 562
ImageTools.dll, 492
ImageTools.IO.dll, 492
ImageTools.Utils.dll, 492
IModule, PRISM/CAL, 413
implicit collection syntax, 728–729
implicit styles, 706–707
import

Expression Blend, 83–86
MEF, 401–402

[Import], 401
Import, RequiredCreationPolicy, 403
Import.Any, 403
[ImportMany], 401
Import.NonShared, 403
Import.Shared, 403
Indices, 638
Individualizing, CurrentState, 666
Infinity, StackPanel, 127
information architects (IAs), 63

797

Initialize – KeyFrames

Initialize, CompositionContainer, 410
InitializeComponent, 53
initParams, DOM, 436–437
Ink, Tablet PC, 343
InkPresenter, 24, 343–345
inline styling. See local styling
Inlines, Expression Blend Miscellaneous settings, 74–75
InlineUIContainer, 623, 625–626
InnerRadius, 552
INotifyPropertyChanged, 215–217, 381–382
in-place installation, 8–10
input editor, controls, 144–153

numeric, 147–149
<input>, TextBox, 144
Insert

TextElement, 633
TextSelection, 633

installation packet, 3
Installed Templates, 32–33
InstallPage.xaml, 511–512
/install:”path-toXAP-File”, llauncher.exe, 300
Integer, Slider, 147
IntelliSense, 37

Button, 54
Interactive Timeline Control, 141
interface segregation principle (ISP), 377
Intermediate Language (IL), 3
Internet Explorer DOM, deviceXDPI, 121
Internet Information Services (IIS), 61–62, 455–456,

678–679
Internet Inter-ORB Protocol (IIOP), 226
Invalid, VMS, 201
InvalidateArrange, 118
InvalidateMeasure, 118
InvalidOperationException, Macintosh, 484
inversion of control (IoC), 390–395
Invoke, 79

HtmlWindow, 446
IoC. See inversion of control
IPartImportsSatisfiedNotification, 401
IsContainedIn, Operator, 279
IsCyclic, 153
IsEqualTo, Operator, 279
IServerTimeService.cs, 314–315
IServiceLocator, PRISM/CAL, 413
isf.IncreaeQuotatTo(), 537
IsGreaterThan, Operator, 279
IsGreaterThanOrEqualTo, Operator, 279
IsHitTestVisible, 655

Expression Blend Common Properties, 74
Islands of Richness, 5, 6
IsLessThan, Operator, 280
IsLessThanOrEqualTo, Operator, 280
IsMuted, 655

audio, 658
IsNotEqualTo, Operator, 280
isolated storage, 22, 532–539

reading from, 532–536
Remove(), 538–539
space constraints, 536–537
writing to, 532–536

IsolatedStorageFile, 534, 536
IsolatedStorageFileStream, MainSettings

.xml, 534
IsOneWay, OperationContract, 316
ISP. See interface segregation principle
IsReadOnly, RichTextBox, 622
IsRunningOutOfBrowser, 288
IsSelectionEnabled, 188
Italic, Paragraph, 623
ItemContainerStyle, Rating, 149
ItemCount, Rating, 149
ItemsControl

data binding, 212
Home.xaml, 101–102
ItemSource, 212
PhotoAlbums, 772
Templated Control, 197
VirtualizingStackPanel, 128

ItemsControlRegionAdapter, 415
ItemSource, 102

Accordion, 170–171
DataGrid, 155
ItemsControl, 212

ItemsPanel
ComboBox, 129
customization, 213–214

ItemsSource
AutoCompleteBox, 145
DataGrid, 272

ItemsTemplate, 213
iTunes, 643
IValueConverter, 223

J
JavaScript, 2

API, 439–441
debugging, 58
DOM, 429, 438–441
events, 733–734
findName, 734
managed code, 441–444
Silverlight 1, 5

JIT Compiler, CoreCLR, 14
JournalOwnership, Frame, 98, 109
JSON, 353
JsonObject, 775
Justified, 627

K
kaxaml.com, 14, 37
KeyDown, routed events, 734
KeyEventArgs, 733
keyframe animation, 603–611
KeyFrame, objects, 605–606
KeyFrames

ColorAnimationUsingKeyFrames, 603
Expression Blend, 604

http://kaxaml.com

798

KeySpline – Main()

ObjectAnimationUsingKeyFrames, 603
PointAnimationUsingKeyFrames, 603

KeySpline, 605
KeyTime, 611
KeyUp, routed events, 734

L
Label, 143–144

TextBox, 143
large result set, 428
LargeChange, Slider, 147
LastAccessTime, 503
LastWriteTime, 503
layout, 17–20

Arrange Pass, 118–120
Measure pass, 118–120
panels, 117–138

Canvas, 126–127
customization, 133–137
DockPanel, 132
Grid, 129–131
StackPanel, 127–128
WrapPanel, 131–132

slot, Panel, 120
UI, 117–138

Layout, Expression Blend Properties pane, 73
LayoutRoot, 68
LeftAligned, 627
LeftButtonDown, 24
LeftButtonUp, 24
Length, 503
libraries, 1. See also Base Class Libraries; PRISM

Composite Application Library
Services Class Library, 32

licenses, Silverlight Control Toolkit, 113
Line of Business (LOB)

applications, 337–373
Clipboard, 345–347
drag-and-drop, 349–350
full-screen applications, 371–373
globalization, 366–371
localization, 366–371
Office, 364–366
printing, 347–349
RTL, 370–371
web browser control, 350–351

LinearDoubleKeyFrame, 606
LinearGradientBrush, 16, 560–561

Fill, 564
TextBlock, 616–617
video reflection, 656–657

LineArrow, Expression Blend shape, 552
LineBreak

Paragraph, 623
TextBlock, 620–621

LineBreaks, TextBlock, 142
LineGeometry, 548–549
LineHeight, 618
LineSegment, 549

LineSeries, 188
LineStackingStrategy, 618
LINQ to XML, 205–208
Liskov substitution principle (LSP), 377
ListBox, 43, 163–169, 236, 518, 691

PagedCollection, 169–170
ScrollViewer, 195
snapPhoto_Click, 492
Snapshot, 493
VirtualizingStackPanel, 128

listBoxFiles, 509–510
listBoxFilesListBox, 516
Listen, 325
_listener, Socket, 325
lists, controls, 154–175
List<string>, 229
List<T>, SystemTypefaces, 635
ListTimePickerPopup, 152
Live Streaming, DRM, 644
Loaded, 439
LoadingRow, DataGrid, 155
Loading/Startup Experience, Media Server, 668
LOB. See Line of Business
local filesystem, 23
local storage, 22
local styling, 683–684
localization

applications, 367
LOB, 366–371
resource files, 367–368

LocalMessageReceiver, 352
LocalMessageSender, 352
<location>, path, 461
LoginAsync(), 469
Login_Click, 763–764
LoginForm

Style, 198
VisualStateGroup, 202

Login.svc, WCF, 451–452
Logout_Click, 764
LogService, 398
long-running process, 428
lookless controls, 690
loose files, media, 647
loose images, 557
loosely coupled components, 375–376
LostFocus, routed events, 734
LostMouseCapture, 338
LSP. See Liskov substitution principle

M
machine.config, 471
machine.config.comments, 471
Macintosh, 4, 484

debugging, 59–61
Main()

Program, 328
SocketServer, 331–332

799

MainPage – mouse

MainPage
RootVisual, 56
UserControl, 40

MainPage.cs, 763
MainPage.xaml, 32, 35, 40, 95

Contacts, 236
Customer Search, 359
New Project dialog, 94
SearchViewMode, 359
UserControl, 298
XAML, 210, 222, 253–254
x:Class, 52

MainPage.xaml.cs, 222, 322
authentication, 454–455
Customer Detail, 363–364
Destination, 210

MainSettings.xml, 535
IsolatedStorageFileStream, 534

MainViewModel, 407
managed code

DOM, 444–446
JavaScript, 441–444

Managed Extensibility Framework (MEF), 376,
396–411

applications, 398–399
catalogs, 402
export, 399–400
hosting, 406–410
import, 401–402
IoC, 390
part lifetime, 402–406
partitions, 410–411
sharing, 403
XAP, 410–411

ManualResetEvent(), 331
MappedUri, 96, 100
Margin

ContentPresenter, 693
FrameworkElement, 123–125
TemplateBinding, 694

MarkerReached, 664–665
markers

Timeline, 674–675
video, 663–665

Markers, MediaElement, 663–664
Matrix Transforms, Expression Blend, 75
MatrixTransform, 584
Mature components, Toolkit, 140
MaxFrameRate, 610
MaxHeight, FrameworkElement, 123
Maximum, Slider, 147
MaxWidth, FrameworkElement, 123
mc:Ignorable=”d”, 725
MD5. See Message Digest 5
MD5, 451, 453
Measure pass, page layout, 118–120
MeasureOverride, SimpleWrapPanel, 134–135
media, 641–679

assemblies, 645–646, 647–648
domains, 648–649
Expression Blend, 658
failed, 665–666

graphics, 554–559
loose files, 647
playback, MediaElement, 661–663
playlists, 667–679
supported formats, 641–643
unsupported formats, 643
XAP, 646–647

Media Server, 668
MediaElement, 43, 139, 644

ASX, 21
BufferingTime, 659
CacheMode, 658
CurrentState, 666–667
CurrentStateChanged, 667
3D transformations, 652–653
DownloadProgress, 660
Expression Blend, 649
Height, 650–651
Markers, 663–664
media playback, 661–663
Path, 551, 653–654
RenderTransform, 651–652
Seek(), 664
Source, 21, 559
SourceName, 655–656
Stretch, 650
video reflection, 656–657
VideoBrush, 563, 655–656
Width, 650–651

MediaFailed, 666
ASX, 671

MediaOpened, 651, 662
MEF. See Managed Extensibility Framework
membership and role management service, ASP.NET,

461–477
memory footprint, 428
MergedDictionaries

ResourceDictionary, 708
themes, 712–714

Message Digest 5 (MD5), 451
Message, <security>, 463
MessageName, WebMethod, 231
Metadata tab, Expression Encoder, 676
MIME. See Multipurpose Internet Mail Extensions
MinHeight, FrameworkElement, 123
Minimum, Slider, 147
minRuntimeVersion, 431
MinWidth, FrameworkElement, 123
Miscellaneous settings, Expression Blend Properties

pane, 74–75
MMS, Windows Media Server, 21
mock objects, 755
mode, files, 525
model, MVVM, 379
Model View Controller (MVC), 377
Model View Presenter (MVP), 377
Model View View Model (MVVM), 376, 377–390
modules, PRISM/CAL, 412, 414
Moq, 755
mouse

actions, 338
TextPointer, 631

800

MouseEnter – OnCaptureStopped

MouseEnter, 338
MouseLeave, 338
MouseLeftButtonDown, 338, 734
MouseLeftButtonUp, 338, 734
MouseMove, 338, 734
MouseOver, 582, 691, 703–704
MousePressed, 691
MouseRightButtonDown, 290, 338
MouseRightButtonUp, 338
MouseWheel, 338, 735
Move, 24
MoveTo(), 503
MPEG-4, H.264, 2
MSMQ, 238
multi-directional text rendering, 2
multimedia, 21–22
multiple transforms, 585–586
Multipurpose Internet Mail Extensions (MIME),

61–62, 434
MultiScaleImages, 87
Multi-Touch, 342–343
MVC. See Model View Controller
MVP. See Model View Presenter
MVVM. See Model View View Model
My Documents, 6, 23
My Music, 23
myFile, FileInfo, 502

N
Name, 503

DisplayAttribute, 143
names

brushes, 711
resources, 711
styles, 712
templates, 712

namespaces
BCLs, 15
File Properties, 505–506

native effects, 573–575
NaturalVideoHeight, 650
NaturalVideoWidth, 650
Navigate, 350

Frame, 23–24, 106
Navigated, Frame, 24, 96, 109–110
NavigateToString, 350
NavigateUri, 96
Navigating, Frame, 110
navigation, 2

browsers, 99
RichTextBox, 629–634

Navigation Application template, 93–99
Navigation Framework, 23–24, 93–115

animations, 113–115
custom menu control, 111–113
Frame, 105–110
parameterized query strings, 99–110

NavigationCacheMode, Frame, 107–108
NavigationContext, 100

NavigationFailed, Frame, 24, 96, 110
NavigationOnClick, 112
NavigationService, Click, 102–103
NavigationStopped, Frame, 24, 110
NavigationUri, 112

Hyperlink, 625
nChars, 531
nCharsRead, 531
NegotiatePolicy(), 327
nesting

borders, 543–545
storyboards, 601–602

.NET classes, 501–503

.NET Framework, 3, 14–15
BCLs, 1
restrictions, 311

.NET Remoting, 238
network, 25–26

applications, 301–336
sockets, 323–336
WCF Duplex Service, 314–323
Web.Client, 302–313

NetworkAddressChanged, 289
New Project, 32

Expression Blend Startup dialog, 78
MainPage.xaml, 94

New Storyboard button, Expression Blend, 593
NewPage.xaml, 56
None

MediaElement Stretch, 650
<security>, 463
Stretch, 190, 547, 554, 563

Normal, VMS, 201
Notification Windows, OOB, 283
NotificationWindow, 294
Numbers, localization, 367
NumericUpDown, 147–148

O
<object>, 429, 431
Object Explorer, Expression Blend, 68–69
Object, ObjectAnimationUsingKeyFrames, 603
Object Relational Mappers (ORM), 425
objects, XAML, 726–729
ObjectAnimationUsingKeyFrames, 609

Duration, 603
KeyFrames, 603
Object, 603

object.eventname, 54
Objects and Timeline panel, Expression Blend, 593
ObservableCollection<T>, 217
OCP. See open/closed principle
Office, LOB, 364–366
Offset, 568

GradientStops, 560
OnApplyTemplate, GetTemplateChild,

198–199
OnCaptureStarted, AudioSink, 494
OnCaptureStopped, AudioSink, 494

801

onclick – PathGeometry

onclick, Button, 439
OnConnection(), 325

PolicyServer, 327
onError, 438
OneTime, data binding, 217
OneWay, data binding, 217–218
OnFormatChange, AudioSink, 494
onFullScreenChanged, 438
onLoad, 438
OnNavigatedTo, 103–105
onResize, 438
OnSamples, AudioSink, 494
onSourceDownloadCompleted, 435, 438
onSourceDownloadProgressChanged, 435, 438
onZoom, 438
OOB. See out-of-browser
OpacityMask, video reflection, 656–657
Open(), 503
open source controls, 141
open/closed principle (OCP), 377
OpenFileDialog, 309, 497–500

Filter, 498
full-screen mode, 372

Opening, CurrentState, 666
OpenRead(), 503
OpenReadAsync(), 302–304
OpenText(), 503, 529
OpenWrite(), 503
OpenWriteAsync(), 309
OperationContract, IsOneWay, 316
Operator, 279
OrderDetail, 408
OrderHeader, 408
Orientation, StackPanel, 127
/oring:”URI-to-origin”, llauncher.exe, 300
ORM. See Object Relational Mappers
OS DPI, 121
out-of-browser (OOB), 5, 22–23, 281–300, 350

applications, 281–291
installation, 287–290
sllauncher.exe, 300
uninstalling, 290
update, 290–291

audio/video, 481
COM automation, 295–296
customization, 296–299
digital signatures, 299
File Properties, 513
file systems, 295
files, 511
folders, 511
HTTPS, 283
local Silverlight application, 300
MouseRightButtonDown, 290
My Documents, 6
trusted applications, 292–299
Visual Studio, 283–287
XAP, 369

<OutOfBrowserSettings>, 369
<OutOfBrowserSettings.Blurb>, 369
<OutOfBrowserSettings.Icons>, 369

OutOfBrowserSettings.xml, 369
Output tab, Expression Encoder, 678
overlay image, video, 677–678
/Overwrites, llauncher.exe, 300

P
Padding

Border, 544–545
FrameworkElement, 125
TemplateBinding, 694

Page, 23, 95
PagedCollection, 169
PagedCollectionView, 159
PageVisual, 347, 348

UIElement, 27
Paint Bucket tool, Expression Blend, 66
Pan tool, Expression Blend, 66
Panel

ArrangeOverride, 134
Auto, 122
layout slot, 120
MeasureOverride, 134

panels, layout, 117–138
Paragraph

LineBreak, 623
RichTextBox, 622–624
Run, 623
TextAlignment, 623, 627

<param>, 429, 439
parameterized query strings, Navigation Framework,

99–110
Parent, 502
part lifetime, MEF, 402–406
partial classes, 52–55

event handlers, 55
events, 53–54
XAML, 731–734

partitions, MEF, 410–411
Parts panel, Expression Blend, 721
passwords

ASP.NET membership and roles management
service, 466

encryption, 451
SQL Server, 467
Web.config, 452–453

PasswordBox, 144–145
passwordFormat, 451, 468
Path, 501, 504

Data, 548
Ellipse, 545–548
Expression Blend, 545
Fill, 562
MediaElement, 551, 653–654
PropertyPath, 211
Rectangle, 545–548
Stretch, 547–548

path, <location>, 461
PathFigure, 549
PathGeometry, 548–550

802

PathSegment – reading

PathSegment, 549
PathSeparator, Path, 504
Pause

MediaElement, 661
storyboards, 597

Paused, CurrentState, 666
PCM format, 495
Pen tool, Expression Blend, 66
Pentagon, 552
performance, 427–428

effects, 581
permissions, 479–481
Permissions tab, Configuration Settings dialog, 481
PhotoAlbums, 772
Photoshop (PSD), Expression Blend, 84–85
pixels

points, 616
values, 542–543

Pixel, DataGridLength, 160
PixelFormat, VideoFormat, 486
PixelHeight, VideoFormat, 486
PixelShader, 580
PixelWidth, VideoFormat, 486
Plain old CLR Object (POCO), 426
plain old XML (POX), 261, 302
PlaneProjection, 587

Expression Blend, 590
Play, MediaElement, 661
Playback controls, Expression Encoder, 675–676
Playing, CurrentState, 666
playlists, media, 667–679
plugin_onload, 439
plug-ins, 3, 8–10

ActiveX, 2
ASP.NET, 430–431
DOM, 429–432
Eclipse, 11
GPU hardware acceleration, 657–658

POCO. See Plain old CLR Object
Point

Duration, 595
PointAnimationUsingKeyFrames, 603

points, pixels, 616
PointAnimation, 595
PointAnimationUsingKeyFrames, 603
PointCount, 552
policy server, 324–328
PolicyConnection, 325–327
_policyRequestBuffer, 327
PolicyServer, OnConnection(), 327
PolicyServer.cs, 324–325
PollingDuplex.dll, 320
PollingDuplexHttpBinding, 319, 323
PolyBezierSegment, 549
PolyLineSegment, 549
PolyQuadraticBezierSegment, 549
pop-up windows, 437
Portable User Interface (PUI), 634
Power, easing function, 599
POX. See plain old XML
Presentation Layer, 424

PresentationTest, 745–746
Preview components, Toolkit, 141
PreviewMode, ASX, 670
PrintDocument, 27, 347
printing, 2, 27

LOB, 347–349
PrintPage, 347
PrintPageEventArgs, 347
PRISM Composite Application Library (PRISM/CAL),

376, 390, 411–424
applications, 414–415
commands, 417–420
event aggregator, 420–424

PRISM/CAL. See PRISM Composite Application Library
Program, Main(), 328
Progressive Download, DRM, 644
Project Explorer, Expression Blend, 67–68
Projection, 587, 652
Projection, Expression Blend transforms, 77
Properties pane, 36, 38–40

Buttons, 43
Events tab, 44, 54
Expression Blend, 69–75

Font Manager button, 86
Property Editor, 38–39
property panel, Expression Blend, 596
PropertyChanged, 381
<PropertyGroup>, 369
PropertyPath

Label, 143
Path, 211

protocols, 301
PSD. See Photoshop
PUI. See Portable User Interface
push-style applications, 25

Q
Quadratic easing function, 599
QuadraticBezierSegment, 549
Quartic easing function, 599
Quintic easing function, 599

R
RAD. See Rapid Application Development
RadialGradientBrush, 561–562
RadioButton, 691
RadiusX, 542
RadiusY, 542
RangeTimePickerPopup, 152
Rapid Application Development (RAD), 14
Rating, 148–149
RatingItem, Rating, 149
Read(), 377, 527–528
ReadAllBytes(), 521
ReadAllLines(), 521
ReadAllText(), 520
reading, from streams, 523

803

ReadLine() – RTL

ReadLine(), 304
ReadOnlyTemplate, DataFields, 163
ReadToEnd(), 304
Receive(), ServerDateTime, 318
ReceiveData(), 335
Rectangle, 542

Border, 543
Path, 545–548

Rectangle tool, Expression Blend, 66
RectangleGeometry, 548
REF, ASX, 671
References, 40
reflection, video, 656–657
Refresh, Frame, 107
regions, PRISM/CAL, 412, 415–416
RegionContext, 416
RegionManager, 415–416
RegionViewRegistry, 416
RegisterCreatableType, 444
Registers window, 59
RegisterScriptableObject, 442–443
RegularPolygon, 553

Expression Blend shape, 552
RelativeSource, 214, 737
Remember My Answer, permissions, 480–481
remote browser, debugging, 59–61
Remote Method Invocation (RMI), 225–226
Remove(), isolated storage, 538–539
Render Effect icon, 69
RenderedFramesPerSecond, 660
RenderTransform, 600

EasingDoubleKeyFrame, 605
Expression Blend, 75
MediaElement, 651–652

RenderTransformMargin, 583
RenderTransformOrigin, Expression Blend

Miscellaneous settings, 74–75
Rental, DRM, 644
REPEAT, ASX, 671
RepeatBehavior, 597
Replicator Path text both, .exe, 59
Representational State Transfer (REST), 302

services, 247–254
RequestDeviceAccess,

CaptureDeviceConfiguration, 482
RequiredAttribute, 143
RequiredCreationPolicy, Import, 403
requiresQuestionAndAnswer, 467
requiresUniqueEmail, 468
Reset, 331
resources

{ } (curly brackets), 686
applications, 709
custom controls, 709
defining/organizing, 707–712
definition, 682
files, localization, 367–368
names, 711
scope, 709–710

ResourceDictionary, 710
UserControl, 709–710

styles, 684–688

Resource, Build Action, 645–646
Resource Picker, 39
ResourceDictionary, 685

definition, 682
MergedDictionaries, 708
resource scope, 710
standalone, 708
Styles.xaml, 95

ResourceDictionaryCollection, 187
Resources, 48–49
.Resources, FrameworkElement, 707
Resources, UIElement, 685
REST. See Representational State Transfer
Resume, storyboards, 597
ReverseBehavior, 597
RhinoMocks, 755
RIA Services, 2, 376

Silverlight 4, 5
WCF, 257–280, 426–427

Domain Service Class, 264–280
Services Class Library, Installed Templates, 32

RIAs. See rich Internet applications
rich Internet applications (RIAs), 1, 2, 281, 337
RichTextBox, 146, 613, 621–634

behaviors, 627–629
Clipboard, 628
InlineUIContainer, 625–626
IsReadOnly, 622
navigation, 629–634
Paragraph, 622–624
SelectAll, 630
TextElement, 623
TextPointer, 630
Xaml, 627
XamlReader, 629

RightAligned, 627
right-click, 2

LOB, 340–342
right-to-left text (RTL), LOB, 370–371
RMI. See Remote Method Invocation
<roleManager>, 471
roles

applications, 476–477
databases, 471–473

Roles, 459
Role.svc, Web.config, 474–475
Root, 503
RootVisual

MainPage, 56
Silverlight Unit Test Framework, 743–744

Rotate transform, Expression Blend, 76
RotateTransform, 13, 582–583

MouseOver, 582
rounded corners, 542
routed events, 734
RoutedEvent Canvas.Loaded, 13
rows, DataGrid, 161–162
Row, Grid, 129
RowDefinitions, Grid, 129–131
RowDetailsTemplate, 161–162
RowSpan, Grid, 130, 179
RTL. See right-to-left text

804

Run – single responsibility principle

Run
InlineUIContainer, 626
Paragraph, 623
TextBlock, 142, 620

S
Safari, full-screen mode, 373
Samples tab, Expression Blend, 78
SamplesPerSecond, AudioFormat, 485
SaveFileDialog, 497–500

Button, 492
full-screen mode, 372

savePhoto_Click, 492–493
Scale transform, Expression Blend, 76
ScaleTransform, 583

video reflection, 656–657
scope, resources, 709–710
<script>, 731
ScriptableMember, 443–444
ScriptableType, 441–443
ScriptAlias, 444
ScrollViewer, 118, 128, 194–195, 518
SDK. See Software Development Kit
Search Engine Optimization (SEO), 23
SearchViewModel, 358–359, 359, 381
security

applications, 449–477
ASP.NET, 450–461

membership and role management
service, 461–477

<security>, 463
Seek(), MediaElement, 664
Select Code Type dialog, 58
Select, TextPointer, 630
SelectAll, RichTextBox, 630
SelectedDateFormat, 152
SelectedItem, ComboBox, 165
SelectedValue, ComboBox, 165
SelectedValuePath, ComboBox, 165–166
Selection tool, Expression Blend, 65
SelectionChanged

AlbumList, 769–771
AudioCaptureDevice, 487
audioDeviceList, 487
ComboBox, 165
VideoCaptureDevice, 487
videoDeviceList, 487

SelectionMode, 150
Selector, ComboBox, 165
SelectorRegionAdapter, 415
Selenium Test Framework, 748–751
SendAsync(), 353
sender, 732, 733
SEO. See Search Engine Optimization
separation of concerns, 376
ServerDateTime, 316

Receive(), 318
ServerDateTimeStatus, 316
ServerDateTimeValue, 316

Server-Independent, ASX, 669
Server-Side Playlist (SSPL), 667–669
services

data, 225–254
REST, 247–254

service reference, 321
service-oriented architecture (SOA), 239–240
ServiceReference.ClientConfig, 245–246
ServiceReferences.ClientConfig, 236
Services Class Library, WCF RIA, Installed Templates, 32
Service1.svc, 316–317

Web.config, 318–319
service1.svc.cs, 317–318
ServiceTimeService, 318
SetSource, MediaElement, 662
SetStatusCompleted, 768
Setter

Style, 688–689
Value, 692

SetText, 628
setValue, 439
SeviceContract, 316
SGML. See Standard Generalized Markup Language
Sha1, passwordFormat, 451
SHA1, Web.config, 453
ShaderEffect, 578, 580
shaders, customization, 578
Shape, 15, 79
SharePoint, 775–781

applications, 780
SharePoint Foundation, Silverlight Object

Model, 776–779
sharing

files, 526
MEF, 403

Shazzam, 576–578
shell, PRISM/CAL, 412, 414
Shell Zip, XAP, 49
/shortcut:desktop+startmenu, llauncher.exe, 300
ShowGridLines, Grid, 131
Silverlight Application, Installed Templates, 32
Silverlight Business Application, Installed Templates, 32
Silverlight Class Library, Installed Templates, 32
Silverlight Contrib, 141
Silverlight Control Toolkit

DockPanel, 19
licenses, 113

Silverlight Designer, Visual Studio, 35–40
Silverlight Media Player, 142
Silverlight Navigation Application, Installed Templates, 32
Silverlight Object Model, SharePoint

Foundation, 776–779
Silverlight Project Templates, Visual Studio 2010, 11
Silverlight Unit Test Framework, 32, 743–747
SilverlightWcfConsumer, 245
Simple Object Access Protocol (SOAP), 225, 226–227

data, 229–230
SimpleMath.svc, WCF, 456
SimpleWrapPanel, MeasureOverride, 134–135
Sine, easing function, 599
single responsibility principle (SRP), 377

805

Single Selection mode – Stretch

Single Selection mode, Grid, 155
SizeToCells, DataGridLength, 160
SizeToHeader, DataGridLength, 159
SketchFlow, 63
Skew transform, Expression Blend, 76
SkewTransform, 584
SkipIfRef, ASX, 670
_sl_historyFrame, 98
Slider, 147
sllauncher.exe, OOB applications, 300
SmallChange, Slider, 147
Smooth Streaming, IIS, 678–679
SmoothStreaming, 678
snapPhoto, 491–492
snapPhoto_Click, 490–492
Snapshot, 493
snippets, XAML, 37
SOA. See service-oriented architecture
SOAP. See Simple Object Access Protocol
sockets, 301, 323–336
Socket, _listener, 325
SocketAsyncEventArgs, 334, 335
SocketConnectCompleted(), 334
Sockets, 25
sockets client, 332–336
SocketServer, 328–332
Sockets.xaml, 332
Software Development Kit (SDK), 10–11, 139–140
SoldColorBrush, 565–566

Foreground, 684
SolidColorBrushInterpolator, 181–182
Solution Explorer, 35

ASP.NET, 36
Assets and Views, 95

sort, DataGrid columns, 159
Source, 211

Frame, 95, 109
Image, 555–557
MediaElement, 21, 559
VideoBrush, 563
Windows Media Server, 21

SourceName, MediaElement, 655–656
SourceObject, 601
space constraints, isolated storage, 536–537
Span

Paragraph, 623
RichTextbox, 625

SpeedRatio, 596
splashScreenSource, DOM, 433–435
SplineDoubleKeyFrame, 606
Split View bar, 37
Spring, 15
sprits, animations, 610–611
SQL Server, 27

Authenticate(), 454
authentication, 453–454
passwords, 467

SqlRoleProvider, 471
SRP. See single responsibility principle
SSL, 59, 463
SSPL. See Server-Side Playlist

Stable components, Toolkit, 141
StackPanel, 18, 371

Border, 162
DataContext, 210
Grid, 122
Infinity, 127
layout panel, 127–128
Orientation, 127
RowDetailsTemplate, 162
ScrollViewer, 128, 194–195
Vertical, 127
VerticalAlignment, 162

Standard Generalized Markup Language (SGML), 225
standard install, 8
Star, 552

DataGridLength, 160
Grid, 130–131

Start(), 331
sockets, 325

Start, CaptureSource, 482
startCameraClick, 483, 490–491
STARTMARKER, 669, 671
StartPoint, gradients, 561
StartsWith, Operator, 280
Startup, 55
Startup dialog, Expression Blend, 77–78

New Project button, 78
StartUpEventArgs, 437
States tab, Expression Blend, 77, 719
<staticContent>, MIME, 61
StaticResource, 688, 736

Foreground, 689
markup extensions, 739
x:Key, 739

Status, CurrentStatus, 444
StaysFullScreenWhenUnfocused,

FullScreenOptions, 373
Stop

CaptureSource, 483, 485
MediaElement, 661–662
storyboards, 597

StopLoading, Frame, 107
Stopped, CurrentState, 666
StoryBoard, 13, 592–603
Storyboard, 591

VisualStateGroups, 703–704
storyboards

animations, 592–603
behaviors, 601
Completed, 602–603
nesting, 601–602
timers, 602–603

StreamReader, 304, 524, 529–531
StreamReader.ReadLine(), 528
streams, 517, 523–525
StreamWriter, 524, 531–532
StreamWriter.Write(), 531
StreamWriter.WriteLine(), 528
Stretch, 190

Expression Blend, 547
Fill, 547

806

Stride – Text

GridSplitter, 179
Image, 554
ImageBrush, 563
MediaElement, 650
None, 547
Path, 547–548
Uniform, 547
UniformToFill, 548

Stride, VideoFormat, 486
strings.de.resx, 367
strings.resx, 367
Stroke, 24
Style, 688–705

BasedOn, 689–690
Button, 689, 692
ControlTemplate, 197–198, 690–705
definition, 682
LoginForm, 198
Setter, 688–689
TargetType, 198, 690
Template, 691
values, 689

Style, Expression Blend Miscellaneous settings, 74–75
styles, 681–712

essence, 697–701
Expression Blend, 716–721
implicit, 706–707
local, 683–684
names, 712
resources, 684–688
XAML, 682–683

Styles.xaml
ContentFrameStyle, 113–115
ResourceDictionary, 95

Subscription, DRM, 644
<SupportedCultures>, 367
SupportedFormats

AudioFormat, 485
VideoFormat, 485

svc_LoginCompleted(), 469
svc_ReceiveReceived(), 323
syntax, XAML objects, 726–729
[System.ComponentModel.Composition.Export],

ComposableParts, 399
[System.ComponentModel.Composition.Import],

ComposableParts, 401
[System.ComponentModel.Composition

.InheritedExport], 400
System.ComponentModel.Composition

.Initialization.dll, 409
System.IO, 283, 325, 353

File Properties, 506
StreamReader, 304
using, 520

System.IO.MemoryStream, 524
System.Linq, 229
System.Messaging, 238
System.Net, 25, 294, 301
System.Net.Sockets, 25, 313, 325, 327
System.Runtime.InteropServices.Automation,

AutomationFactory, 295–296

System.Runtime.Serialization, 353
System.ServiceModel.DomainServices, 267
System.ServiceModel.PollingDuplex.dll, 320
System.Text, 327
System.Text.Encoding, 529–530
System.Threading, 331
System.Timers, 331
SystemTypefaces, List<T>, 635
<system.web>, Web.config, 461
System.Windows.Controls, 95

T
TabControl, 163–169
TabControlRegionAdapter, 415
TabConverter, data binding, 167–168
Tablet PC, Ink, 343
tabs, XAML, 168
Tag, Expression Blend Common Properties, 74
Tag Navigator, 37
Target, TypeSource, 688
TargetedTriggerAction, 79
TargetName, 96

Hyperlink, 625
TargetType

ControlTemplate, 692
Style, 198, 690

TCP, 25, 59
TCP/IP, 301
Template

Button, 691
DataGrid, 156–159
Style, 691
TemplateBinding, 198

templates
controls, VSM, 81–82
names, 712
Navigation Framework, 93–99
UI, 200–201
VSM, 702–705

TemplateBinding, 693–697, 737
Background, 701
Button, 718–719
limitations, 701–702
Template, 198

Templated Control, 195–196
TemplatePart, 200–201
testing

applications, 741–755
user interface (UI), 751–755

TestInitialize, 746
text, 613–639

display, controls, 142–144
files, FileStream, 528–532
rendering, 639

Text
DataGrid, 156–159
TextBlock, 439, 614–615
TextSelection, 632
ValidatesOnException, 143

807

Text – TypeSource

Text, Expression Blend Common Properties, 74
TextAlignment, Paragraph, 623, 627
TextBlock, 16, 139, 142, 371, 518, 613, 614–621

Binding, 26
Canvas, 26
ColumnSpan, 130
Customer Detail, 362
FontFamily, 615, 636
FontSource, 636
Foreground, 562, 683–684
Grid, 26
Home.xaml, 101–102
JavaScript API, 439
LinearGradientBrush, 616–617
properties, 618
Slider, 147
splashScreenSource, 434–435
Text, 439, 614–615
Toolbox, 43
WCF, 322

TextBlock tool, Expression Blend, 66
TextBox, 144, 371

Customer Detail, 362
Label, 143

TextCompletion, AutoCompleteBox, 146
TextDecorations, 619
TextElement

Insert, 633
RichTextBox, 623

TextPointer, 630–631
TextSelection, 632, 633
TextTrimming, 619
TextWrapping, 618
TextWrapping=”Wrap”, 371
themes, 712–721

Build Action, 714
controls, 714–715
customization, 716
distribution, 716
Expression Blend, 716–721
MergedDictionaries, 712–714
Toolkit, 712–715

third-party controls, 141
_threadCoordinator, 331
threading, BCLs, 2
3D

effects, Expression Blend, 76
transformations, 587–590

MediaElement, 652–653
video, 652–653

time, controls, 150–153
TimeGlobalizationInfo, 153
Timeline

Expression Encoder, 673–676
markers, 674–675

Timeline, 596
Timeline view, VSM, 83
Timeline Viewing controls, Expression Encoder, 675
TimelineMarkerRoutedEventArgs, 665

TimeParsers, 153
TimePicker, 151–153
timers, storyboards, 602–603
TimeSpan, BufferingTime, 658
TimeUpDown, 153
Title, 26, 98
To, animations, 594
ToggleButton, 177–178
toolbar, Expression Blend, 64–67
Toolbox, 2, 37

Design Surface, 42
TextBlock, 43

Toolkit
Experimental components, 141
Mature components, 140
Preview components, 141
Stable components, 141
themes, 712–715

Tooltip, 193–194
ToolTip, Expression Blend Common Properties, 74
TouchPoint, 342
TransactionOption, WebMethod, 231
Transform Center Point, Expression Blend, 76
TransformGroup, 582, 585
transforms

Expression Blend, 75–77
graphics, 581–590
multiple, 585–586
3D, 587–590
2D, 582–586

Transforms, 16
Transition

Frame, 115
VisualStateManager, 704–705

TransitioningContentControl, ContentControl, 113
Transitions, VSM, 83
Translate transform, Expression Blend, 75
TranslateTransform, 584
TranslateX, CompositeTransform, 607
TranslateY, CompositeTransform, 607
Transparent, plug-in, 433
TransportCredentialOnly, <security>, 463
TransportWithMessageCredential, <security>, 463
TreeMap, 180–185
TreeMapItemDefinition, DataTemplate, 181
TreeMapItemDefinitionSelector, 182–183
TreeView, 172–175
TreeViewItem, Header, 173
TriggerType, 601
trusted applications, OOB, 292–299
try, 516
TryGetGlyphTypeface, 636
2D transformations, 582–586
TwoWay, data binding, 218–219
.txt, Filter, 498
TypeCatalog, 402
TypeFace, FontSource, 635
TypeSource, Target, 688

808

UdpAnySourceMulticastClient – videoDeviceList

U
UdpAnySourceMulticastClient, 294
UI. See user interface
UI Automation, White, 751–755
UIElement

Content, 692
Effect, 572
PageVisual, 27
Projection, 652
Resources, 685

Underline, Paragraph, 623
Unicode, System.Text.Encoding, 529
UnicodeString, Indices, 638
Uniform

MediaElement Stretch, 650
Stretch, 190, 547, 554, 563

Uniform Resource Identifier (URI), 302
Uniform Resource Locator (URL), 302
UniformToFill, 190

MediaElement Stretch, 650
Stretch, 548, 554, 563

Unity of Application Block, 390
UnityBootstrapper, 414
UnityServiceLocatorAdapter, PRISM/CAL, 413
Up button, 510
updates

data, 215–221
OOB applications, 290–291

UpdSingleSourceMulticastClient, 294
uploadedfile, 308
uploads

Facebook, 772–773
WebClient, 307–310

URI. See Uniform Resource Identifier
Uri, 96
UriMapping, 95
URL. See Uniform Resource Locator
<user>, 451
user interface (UI), 1, 5, 20–21, 139–203

AI, 85
data binding, 209–225
page layout, 117–138
templates, 200–201
testing, 751–755
virtualization, 155
Visual Tree, 82
WCF, 241–244

UserControl, 23, 53, 122, 432
MainPage, 40
MainPage.xaml, 298
resource scope, 709–710

</UserControl>, 725
[UserControl], 68
<UserControl x:Class=”XamlTestApp

.MainPage”, 725
UserControl.xaml, 709
Users, 459
userToken, DownloadStringAsync, 310

using System, File Properties, 506
using, System.IO, 520
using System.IO, File Properties, 506
using System.Windows, File Properties, 506
using System.Windows.Controls, File Properties, 506
UTF7, System.Text.Encoding, 529
UTF8, System.Text.Encoding, 530
UTF32, System.Text.Encoding, 530

V
ValidatesOnException, 143, 219, 221
validation, data, 219–221
ValidationErrorEventAction.Removed, 219
ValidationEventArgs, 219
ValidationSummary, 192–193
Value

DiscreteDoubleKeyFrame, 606
LinearDoubleKeyFrame, 606
Setter, 692
Slider, 147
SplineDoubleKeyFrame, 606

values
pixels, 542–543
Style, 689

ValueChanged, Slider, 147
ValueConverter, 166–167
vector-based graphics, 2
Verbs, 459
versions, 5

Visual Studio, 32
Vertical, StackPanel, 127
VerticalAlignment, 122

ContentPresenter, 693, 695
StackPanel, 162

VerticalScrollbarVisibility, 627
video

Border, 483
Button, 483
Clip, 653–654
devices, 479–495
downloads, 660
feeds, 488–493
formats, 21–22
markers, 663–665
OOB, 481
overlay image, 677–678
playback quality, 660
reflection, 656–657
3D transformations, 652–653
web pages, 21

VideoBrush, 16, 17, 563–564
CaptureSource, 484
Expression Blend, 570
MediaElement, 563, 655–656
Source, 563

VideoCaptureDevice, 482, 487
videoDeviceList, SelectionChanged, 487

809

VideoFormat – windowless

VideoFormat, 486
SupportedFormats, 485

videoRender, 484
view

discovery, 416
injection, 416
MVVM, 379–381
PRISM/CAL, 412, 416–417

View First, ViewModel, 380
ViewBox, 189–190
ViewModel First, ViewModel, 380
ViewModel, MVVM, 379–390
ViewTypes, 416
virtualization, UI, 155
VirtualizingStackPanel, 128–129
Visibility, animations, 608–611
Visible, Visibility, 610
Visual Basic, 2

Handles, 732
visual controls, 139–203
Visual State Manager (VSM), 77

control templates, 81–82
customization, 83
data validation errors, 221
Expression Blend, 81–83, 201
templates, 702–705
Timeline view, 83
Transitions, 83

Visual Studio, 1, 2, 3
applications, 31–62
Attach to Process dialog, 57–58
Build Action, 645
Compiled Shaders, 578
Data Sources window, DataGrid, 155
EDM, 250
Expression Blend, 41
OOB, 283–287
Silverlight Designer, 35–40
Silverlight Project Templates, 11
versions, 32
XAML, 592
XAML Editor, 732

Visual Tree, 118
UI, 82
ZIndex, 73

VisualStateGroups, 202, 702
MouseOver, 703–704
Storyboard, 703–704

VisualStateManager, 201–202
ControlTemplate, 702
Transition, 704–705

VisualStates, animations, 704
VisualStudioLogProvider, 747
VisualTree, 705

ControlTemplate, 682
Volume, audio, 658
VolumeSeparatorChar, Path, 504
VSM. See Visual State Manager

W
WaitOne(), 331
Watermark, TextBox, 144
WaveFormat, AudioFormat, 485–486
WCF. See Windows Communication Foundation
web applications, files, 40–41
web browser control, LOB, 350–351
web pages

audio, 21
video, 21

Web Service
ASP.NET, 227–234
XML, 231–238

Web Service Enhancements (WSE), 238
Webcam/Mic tab, Configuration Settings

dialog, 480
WebClient, 25–26, 206, 302–313

downloads, 304–307
images, 557
reusing objects, 310–311
System.Net, 294
uploads, 307–310

Web.config, 41, 249
<allow>, 458–460
authentication, 457–460
<authentication>, 458
authorization, 457–460
<authorization>, 458
<credentials>, 452
<deny>, 458–460
forms-based authentication, 451
MD5, 453
passwords, 452–453
Role.svc, 474–475
Service1.svc, 318–319
SHA1, 453
<system.web>, 461

WebMethod, 230–231
WebService, 230
<WebServiceBinding>, 229
WebService.cs, 228
What You See Is What You Get (WYSIWYG),

Expression Blend, 63
White, plug-in, 433
White, UI Automation, 751–755
whitelist, 635
whitespace, 615
Width, 118, 371

Auto, 122
Ellipse, 545
FrameworkElement, 120–123
Image, 555
MediaElement, 650–651

Window Customization, OOB, 283
Window, HtmlPage, 445
Window Manipulation, OOB, 282
Window_Closing, 282
windowless, 432–433, 639

810

Windows 7 – ZOrder

Windows 7, 4
debugging, 60
IIS, 456

Windows Communication Foundation (WCF), 238–247,
301, 376
Add(), 456
Data Services, 248–250, 426–427

default.svc, 250–251
EDM, 251

Duplex Service, 314–323
IIS, 456
Login.svc, 451–452
RIA Services, 257–280, 426–427

applications, 259–261
Domain Service Class, 264–280, 273–277
EDM, 261–264
filter, 277–280
Services Class Library, 32

SimpleMath.svc, 456
TextBlock, 322
UI, 241–244

Windows DPI Scaling, 121
Windows Media Player, 2
Windows Media Server

MMS, 21
Source, 21

Windows Presentation Foundation (WPF), 3, 117
Expression Blend, 63

Windows Server 2003, 4
Windows Server 2008, 4
Windows Server 2008 R2, 4
Windows Sockets (Winsock), 301, 323
Windows Vista, 4

debugging, 60
Windows XP, 4

debugging, 60
windows-based authentication, 455–460
<WindowSettings>, 369
WinForm, localization, 367
Winsock. See Windows Sockets
WM_TOUCH, 342
WPF. See Windows Presentation Foundation
WrapPanel, 18

layout panel, 131–132
Writable Bitmap, 639
WriteableBitmap, _images, 489
WriteAllBytes(), 521–523
WriteAllLines(), 521–523
WriteAllText(), 521–523
WriteByte(), 528
WriteToLog, 398
Write().WriteByte(), 528
Writing, to streams, 523
WritingFiles, 522
WSE. See Web Service Enhancements
.wsx, 668–669
WYSIWYG. See What You See Is What You Get

X
XAML. See eXtensible Applications

Markup Language
Xaml

InlineUIContainer, 626
RichTextBox, 627
TextSelection, 632

.xaml, 724
XAML Editor, 37

Design Surface, 42
Visual Studio, 732

XAMLPad, 14
XamlReader, 439

RichTextBox, 629
XamWebMenu, 111–112
XAP, 47–50

ExternalParts, 52
file size, 428
images, 557
media, 646–647
MEF, 410–411
OOB, 369
Shell Zip, 49
splashScreenSource, 435

x:Class, 730, 732
MainPage.xaml, 52

XDocument, Destination, 207–208
x:Key, 685, 732

StaticResource, 739
XML. See eXtensible Markup Language
.xml, Filter, 498
xmlns=”http://schemas.microsoft.com/

winfx/2006/xaml/presentation”, 725
xmlns:mc=”http://schemas.openxmlformats.org/

markup-compatibility/2006”, 725
xmlns:x=http://schemas.microsoft.com/

expression/blend/2008”, 725
XmlReader, 206, 208–209, 535–536
XmlWriter, 534
XNA, 591
x:Name, 68, 732

findName, 734

Z
ZIndex

Alignment icons, 73
Visual Tree, 73

zone-based access, 311
Zoom tool, 66, 69
ZOrder, 18

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008

	WroxBooks
	Professional Silverlight 4
	About the Authors
	About the Contributors
	About the Technical Editors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introduction to Silverlight
	What Is Silverlight?
	Silverlight Versions Explained
	Application Development Scenarios
	Getting the Silverlight Plug-In
	Getting the Silverlight SDK
	Building Silverlight Applications
	Silverlight 4 Tour
	Summary

	Chapter 2: Building Applications with Visual Studio
	Creating a Basic Silverlight Application
	Understanding the Application Life Cycle
	Debugging Silverlight Applications
	Configuring Silverlight MIME Types
	Summary

	Chapter 3: Building Applications with Expression Blend 4
	Learning Expression Blend Basics
	Using Expression Blend Behaviors
	Using the Visual State Manager
	Importing Design Assets
	Using the Expression Suite
	Summary

	Chapter 4: Working with the Navigation Framework
	Using the Navigation Template
	Creating Parameterized Query Strings
	Using a Custom Menu Control
	Adding Navigation Animations
	Summary

	Chapter 5: Controlling Layout with Panels
	Measure, Then Arrange
	Element Sizing Characteristics
	Using Layout Panels
	Creating Custom Panels
	Silverlight Plug-In Sizing
	Summary

	Chapter 6: Working with Visual Controls
	Where to Find Controls
	Using Text Display Controls
	Using Input Editor Controls
	Using Lists and Items Controls
	Using Button Controls
	Using the GridSplitter Control
	Using the Image Control
	Using Data Visualization Controls
	Using Other Miscellaneous Controls
	Creating Custom Controls
	Summary

	Chapter 7: Accessing Data
	Processing XML Data
	Binding a User Interface to Data
	Working with Services
	Summary

	Chapter 8: WCF RIA Services
	Understanding WCF RIA Services
	Building a Simple RIA Services Application
	Summary

	Chapter 9: Out-of-Browser Experiences
	Creating an Out-of-Browser Application
	Installing Trusted Applications
	Installing a Local Silverlight Application
	Summary

	Chapter 10: Networking Applications
	The WebClient Class
	Silverlight and WCF Duplex Communications
	Sockets
	Summary

	Chapter 11: Building Line of Business Applications
	Line of Business Basics
	Advanced Scenarios
	Globalization and Localization
	Full-Screen Applications
	Summary

	Chapter 12: Application Architecture
	Understanding Design Patterns
	Using Silverlight Frameworks
	Defining Your Data Access Strategy
	Handling Performance
	Summary

	Chapter 13: DOM Interaction
	Configuring the Silverlight Plug-In
	Creating Interaction between Silverlight and JavaScript
	Summary

	Chapter 14: Securing Your Applications
	Taking Advantage of ASP.NET
	Using ASP.NET Application Services
	Summary

	Chapter 15: Accessing Audio and Video Devices
	Configuring Permissions
	Accessing Audio and Video Devices
	Capturing Images from a Video Feed
	Capturing an Audio Stream
	Summary

	Chapter 16: Working with File I/O
	The OpenFileDialog and SaveFileDialog Classes
	Classes for Managing the Filesystem
	Moving, Copying, and Deleting Files
	Reading and Writing Files
	Using Streams
	Using Isolated Storage Options
	Summary

	Chapter 17: Using Graphics and Visuals
	The Basics
	Expression Blend Shapes
	Images and Media
	Brushes
	Fonts and Font Embedding
	Effects
	Transforms
	Summary

	Chapter 18: Working with Animations in Silverlight
	Storyboard Animations
	Keyframe Animation
	Summary

	Chapter 19: Working with Text
	Displaying and Inputting Text
	Font Support and Rendering
	Summary

	Chapter 20: Making It Richer with Media
	Supported Formats
	Unsupported Windows Media Formats
	H.264 and AAC Support
	Digital Rights Management
	Using the MediaElement Control
	Media Playlists
	Summary

	Chapter 21: Styling and Themes
	Getting Started
	Defining Local Styling (Inline Styling)
	Styling with Resources
	Working with the Style Object
	Defining and Using Implicit Styles
	Defining and Organizing Resources
	Using Themes
	Editing Styles and Templates in Expression Blend
	Summary

	Appendix A: XAML Primer
	Introducing XAML
	Silverlight XAML Basics
	Declaring Objects in XAML
	XAML Hierarchy
	Events and the Silverlight Control
	Markup Extensions
	Summary

	Appendix B: Testing Silverlight Applications
	Creating the Sample Application
	Using the Silverlight Unit Test Framework
	Using the Selenium Test Framework
	Automated UI Testing Using White
	Mocking Frameworks
	Summary

	Appendix C: Building Facebook Applications with Silverlight
	Creating a New Application on Facebook
	Using the Facebook Developer Toolkit
	Summary

	Appendix D: Integrating Silverlight into SharePoint 2010
	The Sample Application
	Using the SharePoint Foundation 2010 Silverlight Object Model
	Deploying a Silverlight Application into SharePoint
	Summary

	Appendix E: Silverlight Control Assemblies
	Index

