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“My good friend, every profession requires
effort and devotion and practice.”

— advice to the young Perceval
[de Troyes 1190]
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Preface

This book is about Smallralk and objects, in more or less balanced measure. By this |
mean that there is ample Smallralk ro expose and crystallize in the reader’s mind all the
important uhj:ct—uri:nt:d d.tiigl‘l ideas, and not 5o much as o distract from them.
Smallealk is an excellent vehicle for this task because it is small and simple enough that
learning abour it intrudes as lirtle as possible on learning abour design. Yer it is rich
enough to precisely clarify what can orherwise degenerate into academic discussions.

By no means is this an advanced book, on either Smalltalk or objects. | have strived
to stick to the matters that seasoned Smalltalk developers are fully aware of but con-
sider too obvious to explain. These marters range from what roday would be deemed
elementary (“What do I mean by an object?”) to sophisticated (“Can | reuse a pattern
of objects?”}, but mostly reside somewhere in the middle ground. 1 think back to how
long (too long) it took me to internalize all these “obvious™ matters and imagine chat
some well-placed explanations along the way could have saved me a good bit of trou-
IJIE. I I'I.DP'E DO SAvVie S0me GF}I'DII tl'llt tI'DIIIJIE..

Oine cant ralk abour objects and Smallralk wirthour also ralking in pracrically the
same breath about design. “Design” is a word that all computer people know, yet
many still disagree about its meaning, or whar it produces, or when it begins and ends.
For the purposes of this book, to design is to discover alternatives, weigh them, and
consciously choose among them. Design, like life, is all abour striking the right bal-
ance. In this sense of design, we are liable to be designing even at moments when our
job description says we are doing something else entirely: we may discover design
alvernarives and weigh or reject them while we are doing object analysis or modeling,
writing code, or peeling carrots.

The goal is 1o design more like veteran software developers do. They choose
among alternatives qu'u:]dy and -5u|:rﬂ:|nﬁr.‘iu1.|s|y. drawing upon years of expenence,
something like chess grandmasters choosing among moves. Lacking this experience,
novices have a hard time discovering plausible alternatives, and an impossible rime dis-
covering subtle ones. For their sake then, 1 often argue alternatives and the trade-offs
berween them, so thar they will have an ourside chance of considering the same design
alternatives that the veterans do.
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The approach is not encyclopedic. Absent are systematic tours through class librar-
ies, discussions of the visual programming or collaborative development tools thar are
available for Smallalk environments, and discourses abour notations and methadolo-
gies, Notations are as capable of obscuring ideas as they are of elucidating them, so the
few thar appear are deferred until they become indispensable to the presentation. IF i
is not already clear, let me also issue the explicit disclaimer that this is not a catalog of
Smallealk rricks and rechniques.

Smallealk is not the unl}r way to think about uh]tct—uri:nt:-.‘l software. Ce+, the
most widespread object-oriented language, contrasts sharply with Smallealk in so
many ways that awareness of C++ enriches the overall object-oriented experience.
Therefore | include remarks about C++ whenever they may enhance your appreciation
of objects.

For those new to objects, reading the chaprers in order will make most sense. On
the other hand, because of my own weakness for selectively reading portions of books,
many chapters are relatively independent and accessible without having to digest
everything thar comes before. Thus, you can pick chaprers and sections according to
your background and goals, and if you encounter some you can't {or don't want to)
crack, leave them and rerurn later. It is even plausible to plunge immediately into
Smallcalk {Chaprer 3), referring o the first two chapters only as needed.

The examples are all as simple as possible, because the simplest things form the
clearest and most surprising lessons. Exercises appear irregularly, whenever under-
standing the topic ar hand demands active participation. There is a blend of design
exercises and programming exercises that require a Smalltalk workstation. Solutions
accompany the meatier design exercises, but of course even for exercises with solutions
I recommend you try them first on your own.

The programming exercises are written on an |BM Smallralk base. You can work
them on either the Professional or Standard version of IBM Smallealk or VisualAge.
Most of them are generic enough thax they, or variations of them, can be made 1o work
for other dialects of Smallualk, but only ambitious readers should aempt 1o do so. A
few small hints for such readers appear in the Appendix. The exercises on winduwing
are a notable exception: interpreting them into other dialects will be beyond the means
of even the most determined reader. Every dialect has its own event and windowing
protocols, so building windows in other dialects is a wholly different experience.

Learning occurs differently in different people. Thar is why diversions—I call them
“commentaries —are scparated out for some readers o blow by and others 1o dive
into, according to their fancy. These diversions are variously technical (like compari-
sons with other ways of doing objects, particularly C++), historical, or philosophical.



When you finish the book, 1 hope you will be able to think about software prob-
lems in some of the ways thax the veterans do, and be able to implement your thoughs
in Smallealk. Not expertly, however. Mastery of both object-oriented design and
Smallralk comes only with actual practice. Of course, these are truisms for any activi-
ties, from driving a car to playing the piano. Bur Smallealk, more than most sofrware
tools, requires you to plunge in and abandon yourself to the language and environ-
ment. A taste for adventure definitely helps, more than in learning how to drive a car.

Notes on the organization

This is not an orthodox book. Much of its structure derives from my experiences in
sustaining the eagerness and momentum of typical Smalltalk beginners for thircy-six
or 50 hours a week, making sure that they leamn some really important things. For
example, polymorphism does not appear as a formal ropic untl Chaprer 14, not
because it is the fourteenth most important topic, but because students have marured
enough by then to get an adrenaline rush from ir.

You will not find a predictable or monotonous rhythm. People learn best when they
sometimes sweat and program in the depths of Smalltalk proper, and at other times sit
back and reflect on how ideas interconnect. One chaprer (4) consists entirely of hands-
on exercises, but on balance the book is weighted more toward thinking than coding,

Here, then, are a few alerts abour the conrent.

The first fifteen chaprers cover the basics, marerial thar every practicing developer
absolurely must know abour objects in Smallralk. The first two chaprers establish a
groundwork of objects, classes, and inheritance in a way that is meant to be com-
pletely reassuring. All nuances, paradoxes, and the like are reserved for later.

Chaprcr Fis pra.-l:ri.m“}' the un]}' “I:I!I'LBI.I'.'I.EI:“ eXposItion in the book. It covers pmb-
ably 95 percent of the Smalltalk language and also forewarns readers of common got-
chas. Chapter 4 is a concentrated opportunity to practice the lessons of Chaprer 3 as
well as many more essentials, You should surface from it with a sound inwition of
whar irs like to live in a Smallalk programming environment. The orthodox
approach is to spread this material around at least a livtle, but Smalltalk has so few facts
and laws that it is feasible to get the bulk of them our of the way in this ene fell swoop.

Chapters 5 and 6 begin the assault on major object-oriented conceptual matters,
namely abstract classes, containers, and object identity. The next two chaprers, 7 and
8. pause to tackle the nuts and bolts of designing and implementing a basic applica-
tion. Chaprers 9 and 10 resume the discussion of ideas essential o the sound practice
of objects. This material questions, among other things, when inheritance produces
the right design.



The next three chapters, 11 through 13, form a unit on the topic of user interfaces.
They begin with an obligatory discussion of model-view-controller, continue with
Motif programming (which is specific to the IBM dialect of Smallealk), and conclude
with how not to make a mess of the user interface. This final chapter in the unic is
unusual for a book on objects. It is an arempr o emphasize the connection berween
objects and user interfaces and confront heads-down programmers with the moral
obligation ro do it justice.

Cl‘laptcn 14 and 15 ::puum:l o pﬂl}mnrphi.sm from several anglts, cnnugh (7o)
browbeat everyone into internalizing its value and applicability. These chaprers fit-
tingly conclude coverage of the essentials, the omission of any of which would be a
major embarrassment for me and you.

Chapter 16 demysrifies the workings of method disparch, storage management,
and the like, mostly emphasizing Smallcalk, but contrasting with C++ for the sake of
perspective. The purpose is not so much academic as to demonstrate how these con-
wrasting workings influence the development gestale of an object-oriented language.

Chapter 17 should raise your consciousness abour the two distiner rationales for
inheriting, which | call beauty and the beast. Sensitivity to this issue is an earmark of
mature object-oriented designers. The chaprer includes a lengthy discussion of consis-
tency (page 201), bordering on the philosophical, which is probably the headiest sec-
tion in the book.

Chapter 18 covers some favorite design patterns, and how to realize them in Small-
talk. Because it ties together so many ideas, it should reassure you that you have acru-
ally learned something, because you will understand the patterns if and only if you've
been conscientious abour all the programming and thinking thar have gone before.

Chapter 19 illustrates whar object-oriented frameworks are and why they martrer
by way of one concrete client/server framework.

Chaprer 20 is another demystifying chaprer, and the most oprional one in the
book. | discuss the basics of metaclasses (a class’s class) from the standpoint of what
they buy the programmer, as well as the extraordinary lengths vo which Smallralk goes
to preserve a uniform view of objects. Metaclasses are the final technical topic in the
book, and are positioned last because the reader needs to have thoroughly internalized
Smallealk’s conceprual underpinnings before appreciating them.

The book concludes with a subjective assessment (Chaprer 21) of what is wrong
and right with typical object-oriented development effores,



Typographical conventions

Boldface type, as in MyClass, indicares Smalltalk names and code. Iralics indicate
emphasis and also special instructions, like picking the Display menu irem. Text chax
would appear on a compurer screen is in bold ialics, as in Here is the resuilt.

In keeping with a spirit of candor, no attempt has been made 1o homogenize the
appearance of screen shots of Smallialk browsers. Browsers vary from dialect o dialect,
of course, but also within a dialect (e.g., the standard and Trailblazer browsers in 1BM
Smalltalk). For that mareer, they can even be customized ro display or suppress informa-
tion, according to the whims of the programmer. Rather than present a fagade of con-
sistency, the browsers you will see are the ones that | happened to be using ar the tme.



CHAPTER 1

Objects

The central idea in object-oriented programming is, of course, the programming
object. This opening chapter explores this idea, and along the way introduces just a
litele Smallealk. Bur don't get caught up in the details of the Smallualk fragments here;
their purpose is to illustrate conceprs.

11 Objects
A programming object has some operations plus some
information. We often portray programming objects
withdetrer as “doughnuts,” as in this drawing of a bank account
@ object on the left. I you—a “client™—want to use this
' object, you are aware of three operations thart it oughr
deposit to be able to do: well you its balance, withdraw some

money, or deposit some money. Tha's it. In fact, you

don't even gert to know thar $150 are ensconced within

the object. Thar information is held prisarely within the object, inaccessible to your
prying eyes. Thus a more accurate picture of your point of view is as shown below.

We can define a programming object as having

an outside, consisting of the operations you can ask

of it, plus an inside, concealing information from

you that may nevertheless be used by the object’s

operations. You can see the outside, but not the

inside. The software engineering term for this idea is

encapsulaiion: the inside of the object is encapsulated
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by the object’s operations. As a rule, data are inside and operations are outside. (We
will see occasions when this rule is not whar we want, bur for the time being it is a
good rule of thumb.)

If it happens that you really want to know abour the inside of an object, like the
accounts balance, you can hope 1o gert it only indirectly, by using one of the object’s
operations. In this example, one hopes thar, by invoking the balance operation, the
object will respond by announcing thar it contains $150. Notice the notational quirk:
dcpmit: and withdraw: are followed h}' colons, but balance is not. This is a2 Smallealk
idiosyncrasy. It's a convenient way to indicare that an operation requires an argu-
ment—when you deposit or withdraw money from an account, you specify an
amount; when you ask for the balance, you don'.

Another way to conceprualize a programming object is to
think of it as a little person: You can ask this little person, this
honrincilus (from the Latin, man + liitke), wo perform any of
his operations, but you haven't any idea how he acrually imple-
ments them, or whar he uses from his own insides to do them.

When you're designing an object’s operations, you should not
be embarrassed to think of the object as a little person and
wonder, “What ought a smart little account object be capable of?®

This blatantly anthropomorphic question sounds like a cheap wrick. Bur mera-
phor—I include imagery and simile and analogy—is a powerful cognitive tool. Meta-
phors let you use what you already know abour one domain (like people) o clarify
your thoughts about a less familiar domain (like banking software). This device
encourages you to say things like, “An account ought 1o be smart enough to hand our
money of tell me how much money he has.” As a marter of fact, the idea of a program-
ming object in the original Smallealk, Smalltalk-72, was a metaphor for a biological
cell [Kay 1988]. Imagery like this may not measure up to, “Shall | compare thee 1o a
summers day?” but you get the idea [Shakespeare 1609].

MNow that you understand whar objects are, let’s develop some ways to think abour
using them. When you “15k” an nhj:::t to pﬂﬁ:lrrn one of its OpErations, you send it a
message. Now, everyone cavalierly assumes they understand whar a message is. which
is 2 sign thar they haven't thought much abour it. The trouble is thar “message™ con-
notes many ideas. (An e-mail message? A whisper! The thing on my answering
machine? A Post-it? A TCP/IP packer?) “Message™ is roo abstract a word. A betrer
word is I'f,&:gmm. A “;-u:l-cgram" I5 l;angihll:: I can touch it, | can see the informarion it
carries, and [ can picture the moment it arrives at the door of its addressee. [t is not
some vague electronic-sounding thing like a “message.” Therefore, | encourage you to
think of an old-fashioned relegram whenever you see the term “message.”
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A message has a bundle of information, consisting of the operation’s name and any
arguments it needs. For example, to withdraw $50 from the account objecr, youd
send a message (or relegram)}—withdraw: 50-—to it

wilhdirani:
T Z withdraw: 50
o
message
deposit {or telegram)

The account object, which has been dormant, awakens and promptly starts executing
its withdraw: operation. All kinds of interesting things could now happen, producing
all kinds of effects. For instance, the account object could in wrn send messages o
other objects, perhaps with the effect of appending to a report for the bank’s auditors.
Or, maybe nothing much interesting happens, other than that the $150 concealed
within the account object drops to $100. Eventually, though, the account object fin-
ishes executing withdraw:, and returns an object to you. Maybe it’s a receipt object.
Whatever it is, it's what you've been waiting for. You sent the message, and you
expected some result, and now thar you've go it, you're ready to do something else.
To reiterate: in Smalltalk, the normal result of your firing a message is always that
some object is returned 1o you. The returned object may even be uninteresting o you,
bur you always get one, whether you need it or not. You should think of the conse-
quences of any message as twofold: first, something happens—ithe operation has an
effect—and second, ar the end of execurtion, some object is rerurned. Remember, an
effect plus a return.
Here are some pretry straightforward candidares for programming objects:
* A bank account, as we've just seen, with operations for depositing, withdrawing,
and querying the balance.
= A dictionary, with operations to add or remaove entries, or updare them.
* A window in a user interface, with operations for displaying, resizing. moving, and
50 On.
(Some languages from the carly 1980s have special syntaxes tor defining programming
objects like these. For example, one could use a package in Ada or madiele in Modula-2.)
A more unusual prospect for a programming object is an integer, like 7. Smallualk
embraces a principle: “Everything is an object.” S0 Smallalk, unlike other object-oriented
languages, insists thar integers are objects, wo. This statement may sound harmless
enough, but it will challenge our customary understanding of arithmetic.
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Consider an expression like:
7+4

We expect a result of 11, and we expect thar reversing the order thus:
4+7

produces the same resuli. We've been trained since elementary school to expect this
expression 1o behave in this symmetric fashion. Some of us recited slogans like “addi-
tion is commutative” to describe this symmerry. We were studying addivion, and we
concentrated on the plus sign.

The object point of view has a different emphasis. Thar is, if the integer 7 is 1o be
an object, then the focus is going 1o shift; 7 will be much more interesting and the plus
sign much less so. Here'’s whar happens:

The message, + 4, strikes the 7 object, whereupon the plus operation execures and
eventually returns 11, another integer object. Note that the symmetrical feeling you
had in elementary school is absent. Instead, the 7 object plays a leading role. It's a
homunculus that's clever enough to respond 1o messages, such as the one labeled + 4.
It recognizes + as one of its operations, and it also expects the + to be accompanied by
an argument, which in this case is 4. It executes the operation, and eventually returns
the object 11 to whomever sent the message. Fortunately, this is the same answer we
got in elementary school. Bur the line of reasoning we used to get it is unlike anything
we learned in elementary school. The symmetry is gone, and the center of attention
has shifted from the operation (+) 1o the object (7).

A lot of people find this model of arithmetic distasteful. One of my outspoken
fricnds, who isn't a Smallmlk programmer, denounces schemes like this as conspiracies
from the “lunatic fringe” (a label Smallcalk’s critics in the early 1970s also used). The
only redeeming virtue seems o be consistency: integers, along with bank accounts and
dicronaries, are just another kind of object, activared by messages just like the rest. As
you hear more about Smallealk, you'll recognize that Smallralk is one of the most stub-

bornly consistent software systems around, whether one likes it or not. Everything will
be an object.
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Before leaving this lunatic-fringe discussion, what about the argument 4? | men-
tioned that the 11 that'’s returned is also an (integer) object; is the argument also an
object? Yes, absolutely. Arguments as well as return values are objects in Smallwalk.
Everything is an object.

Mow, there is one conceprual distinction between an object like an integer and an
object like a bank account. Think abour the inside of the 7 object. Should it change
after the telegram + 4, as the balance inside a bank account changes after the welegram
withdraw: 507 For that marrer, what i inside an integer object? Well, think of the
inside as a special F-mess quality—the precise bits and bytes don’t matter. This qualicy
is whar makes 7 respond to + 4 with 11 rather than, say, 13. No one else has such a
quality. This 7-ness never changes; later on if we send 7 the telegram + 19, we trust
thar it will respond with 26. Objects like integers are immurable—rthey never
chan.g:-—in contrast with matable nl:j:cts like accounts, whose insides may dIHI'IEI:..

1.2 Examples of Smalltalk messages (telegrams)

In Smallealk, the uwsual rule of thumb is to parse expressions from left to right. Consider:
9 talk

This syntax differs from that of most programming languages. It means that I'm firing
a message named talk to the object 9. Parsing from left to right, the object comes first,
followed by the message that it receives. What happens next depends entirely on
whether and how integers have been programmed to respond o requests to wlk. For
example, in my demonstration Smallealk system, the result of execuring 9 walk is dhe
following text on my screen: Helfo, I am one more than 8 Another example with the
SAME SYNLAX is:

4 factorial
From left to right, I'm asking the 4 object vo calculare its factorial, thar is, 4*3*2*1. If
1 ask Smalltalk o digplay the result, I'll ger 24, (I'll discuss the distinction between exe-
critinig and displaying in the next section.)

This example should be familiar from the discussion of the preceding section:

6*7
From lefr to right, 6 receives the message * 7. If | ask Smalltalk ro display the result, we
will see 42 This lefi-to-right rule can cause surprises; about half of Smallealk novices
guess the wrong answer to:

s+6*2
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The correct answer is 22, not 17. Why? Proceed from left to right. The 5 object
receives a request for its + operation, namely the + 6 message. The result, which is the
11 abject, in its turn (lefe-ro-right), receives a request for is ® operation, namely the * 2
message. And it {the 11 object) responds with the final result, the 22 object. For the
first time we have an example of something in Smallealk thar differs plainly from what
we learned in school. Like it or not, that'’s how Smalltalk works. OF course, if | really
want to get the answer 17, | can use parentheses ro change the precedence of Small-
tﬂ.lkt'i parsc:

5+ (6 * 2)

The next example requires a little guesswork:

"turnip’ reversed

Proceeding from left to righe, the first element, "turnip’, is the object that receives the
message. Because of the single quotes, it is reasonable 1o surmise thar it is a character
string. The message apparently asks it to reverse itself. If we ask Smallealk to display the
resulr, Smalltalk will display the characrers of the original string spelled our in reverse
order: pinrut’

This one has a different form than the others:

HomeBudget spend: 229 on: *VCR'

The object on the left appears to be something that manages home accounting and
inventory. The message is less obvious. A colon, you recall, signals the presence of an
argument. But two colons? Smallealk’s parsing rule for this situarion is to trear all the
colons and their arguments together as a single message. Thus, spend: 229 on: "VCR'
is a complex bundle of information packaged in one relegram aimed at HomeBudget.
Evidently, the telegram (message) informs the object of a purchase of a new VCR for
$229. In my system, if | ask Smalltalk to execwie this expression, Smallalk responds
with: You bought a VCR and you are poorer by 229 dollars.

1.3 Pitfall: the effect versus the return

MNaotice the distinction berween what an operation does—its gffece—and the object it
chooses o return to its invoker. Depending on the sitvation, you may care more abour
one than the other. Sometimes the name of an operation suggests thar ir’s the effect
thar martters:

7 storeOn: someFile

This expression looks like it has the effect of placing the 7 object out on a disk, in a file
the argument someFile refers . This effect is apparently the purpose of the message;
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what the object returns to the sender is irrelevant. Sometimes, part of the effect is 1w
explicidy display feedback to the screen, as in the example, 9 talk, in the previous sec-
tion. We don't care what object 9 talk returns; whatever object it is is irrelevant,

O the other hand, the opposite may be true. In:

I factordial

we don't care abour the effects thar occur while factorial does is caleulation, We're
much more interested in the object it flings back at us when it's done, which happens
to be 5040, [n this case we want to see the retnrn, not the gffeer.

You can specify whether you want Smallealk to display the return or not. Thar's the
finicky distinction berween displaying and executing in the preceding section. [F you
displiy an expression, the effect occurs and Smallaalk displays the returned object on
the screen. If you just exeesite the expression, the effect occurs bur Smallealk ignores the
returned object. For the examples so far, you have to trust my choices of displaying or
execuring because you havent seen the code thar implements ecach operation. The
names of np:rat'mns may suggest what their effects and returns are, but the u-nljr way
to be sure is 1o read their code. In Chaprer 4, you'll work through exercises char will
help keep the distincrion straighe.

1.4 Why objects matter

When all the rhetoric is set aside—rthe rhetoric abour reusability and producrivity and
so on—the salient characteristic of objects is that they reduce translation. That is,
objects promote a common vocabulary: everyone, whether a software professional or
not, has some intuitive understanding of what an ebject is. Thus we can understand
one another more easily when we use objects to describe our thinking. Objects, then,
promote mutual understanding—berween users, analyses, executives, designers, pro-
grammers, testers.... They reduce the effort of wranslating one person’s thoughts o
another’s, and therefore reduce misunderstandings as an idea passes from one person
to the next.

As for reuse and productivity, they are nothing more than side effects of bewer
und-:l:il.'“.i.nding. It s more iImportant to concentrate on clear uh]tm than on the side
effects; unless the objects are clearly understood, they will be neither productive nor
reusable. Concentrate on clear objects and you will evenrually produce reusable ones;
concentrate on reusable objects and you will produce muddled ones. In this light, the
goal of this book is to clarify and deepen your understanding of objects, which in the
end will deepen your ability to understand and be understood by other people in the
software enterprise. And that is the source of the economic value of objects.
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1.5 Recap: objects

Programming objects appeal 1o different people for quire different reasons. Right
brain, intuitive individuals appreciate their metaphorical power. For example, the
object-oriented customer-information system at Brooklyn Union Gas Company ' has
gas meter and bill objects, exactly analogous ro gas meters and bills in the company’s
real problem domain. To design gas meter software, developers imagine real gas
meters. This expedient helps them reason about programming objects in ways they are
already familiar with from their everyday experience; it reduces the gap between the
problem (billing for gas service) and the solution (programming). This cognitive
economy—breaching the gap between two domains—is the essence of metaphor.

Meanwhile, left-brain, analytic individuals are drawn 1o the software engineering
benefits of objects. If software consists of objects, which are by definition encapsu-
lated, then their insides can be improved without affecting their outsides, and there-
fore without affecting the rest of the system. Problems are more easily isolated 1o
specific objects and fixed, and the system is generally more tolerant of change, more
malleable. In short, modularity in software is desirable, and objects provide a level of
modularity beyond traditional structuring rechniques.

Omne other inherent characteristic of objects deserves mention. Traditional sofrware
structuring techniques concentrate first on funcrion—the function of a program, is
sub-functions, their sub-sub-functions. ... Bur human cognition often works the other
way, recognizing things first, and the functions that connect them afterward. For
example, upon hearing thar the neighbors dog bit the mail carrier, | conjure up a pic-
ture of the two antagonists first, then a moment later, the dug's Jaws c]ming an the vic-
tim’s leg. 1 don't conjure up an abstract bite first. Since our minds are naturally
practiced at thinking abour things in the everyday world, why not parlay thar practice
into the software world? This is what objects do for us programmers,

To summarize the machinery available so far: if

I have programming objects, | can build software @
out of them, as shown in the diagram on the right. @
Unfortunately, this software doesnt have much \ }
structure—it’s just a chaotic bunch of communi- @ T @

cating objects. In the next chaprer we'll enrich the
picture by way of structuring principles—classes

and inheritance.

U This landmark project, deployed in 190 under the leadership of Tom Morgan, is noteworthy for
being the first large-scale objecr-oriented mainframe application, See [Davis and Morgan 1993,
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1.6 Exercise: warmup (the image)

Generally, the fmage is the file that contains all the objects you use and creare, as well
as other critical Smallealk objects. By starting Smallealk you activate the image, and all
these objects, of which there are tens or hundreds of thousands, spring to life, ready w
work when asked. In [BM Smallalk, the defaule name for the image file is simply

inrage.

O Once you have installed Smallalk, make some provision for disaster recovery. The
minimal provision is to copy your image file vo a backup hile of your choosing,

O Start Smallealk by double-clicking on the icon for Smallealk or VisualAge. If you've
never used a cut-and-paste editor, take a few minutes to practice with Smallalk’s.
Type a line of wext in the Sptemn Trnscript window and figure out how to:

» Splic it and rejoin it. (Hine: try the <enters and <backspaces keys.)
= Copy a portion of it to another place in the same window.
= Move a portion and delete a portion.

O In the ranseript, type the following lines, highlight them one at a time, and display
the resulting object:
4 factorial
B*7
E+6*2
5+ (6 *2)
"turnip’ reverse
You are now operating with objects in the image.

1.7 Commentary: perspectives on objects

The metaphorical character of a programming object (page 2) dares back ar least o
the pioneering work of Alan Kay at Xerox PARC (Palo Alto Research Center) in the
early 1970s. Nort everyone agrees that metaphor is valuable in programming. In a
1989 paper, the eminent computer scientist Edsger Dijkstra, father of structured pro-
gramming (or at the very least, executioner of the GOTO statement), ridiculed the use
of analogy and metaphor and advocated purely formal thinking in their stead. His
paper set off a firestorm of impassioned rejoinders [Dijkstra ec al. 1989],

Research on invention and creativity suggests that imagery, not formal reasoning,
fuels the creative process. The study by mathemartician Jacques Hadamard includes a
response from Albert Einstein that makes this point clearly [Hadamard 1954].
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Having found an apt metaphor, one must take care not to let it limit the imagina-
tion, cither: although the spreadsheet was inspired by an accountant’s ledger sheer, it
transcended the capabilities of a real ledger sheer. Alan Kay calls this step the “magic”
of going beyond a metaphor [Kay 1990]. For the use of memaphor and magic in user
interfaces, see Chaprer 13.

A complementary property of objects, even a corollary of the anthropomorphic
view, is their auronomy [de Champeaux ex al. 1993; Collins 1995]. Auronomy implies
that ub]ﬂ:ts are |ih'.'|'_r to act ind:p:ndmﬂy. which in turn mellﬁ that tl'l.c}r may act
concurrently. Concurrently executing objects are also a natural consequence of the
biclogical metaphor of cells acting concurrently by the billion [Kay 1988]. Although
some languages mix concurrency and objects, no consensus exists on a proper model
for the rwo. In pracrice one usually builds concurrent objects on top of the same facil-
ities that non-object systems use—semaphores or other low-level operating system ser-
vices. For samplings of research approaches to the problem, see [Yonezawa and Tokoro
1987; Agha et al. 1989; Agha et al. 1991; Briot 1992; CACM 193],

The contrast berween function on the one hand and data on the other leads to two
polar approaches to software design, namely, traditional functional decomposition (dat-
ing from the 1960s) and dara-driven or entity-relationship decomposition (dating from
the 1970s). Objects occupy a middle ground; they have the angibility and data content
of an entity, but their outsides are defined by their function or behavior. This synthesis
of data and function is what differentiates object-driven approaches from the others.
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Classes and inberitance

The previous chaprer hinted ar the cognitive and programming potenrial of objects.
To fulfill this potential, we need to organize them in our minds. We need two structur-
ing principles: classes and inheritance.

21 Classes

How do you create objects? In some languages you have to build them one ar a time,
but it’s more convenient to have a mechanism that produces them for you. This mech-
anism is called a clss.

You can think of a class as a facrory that can produce programming objecrs. Each
factory makes just one kind of object, or product. For example, we could have a
BankAccount class, from which we produce bank accounts, a Menu class, from which
we produce menus for a user interface, or a Dictionary class, from which we produce
objects that behave like real dictionaries.

In Smallralk, here's how you mighe use a Dictionary class:

Dictionary new
Left to right, Dictionary receives the message named new. Because Dictionary is a
class or factory, it responds to new by creating a brand-new dictionary object. What
happens to this object from now on is up 1o you. Being a dictionary, it may have oper-
ations like add: thar would permit you to add a new entry to it. You could gradually
add to it and make it into any kind of dictionary you liked.

Realistically, if we wanr o continue to use this dictionary object, we should establish
a handle by which we could refer to it. That is, we would use a variable name, like X:

X = DMectionary new

"
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The := is Smalltalk’s assignment. It means that we want to assign the result of Dictio-
nary new into the variable X. Assignment is an exception 1o the left-to-right rule.
First, Smallealk does whar's to the right of the assignment (Dictionary new), then it
assigns that result into the variable to the left (X).

We can now add things to the dictionary by referring to it as X:

X add: ...anm entry...

and
X add: ...another entry...

If we need another dicrionary, we can just execute:
¥ = Dictionary new

X and Y refer to two distinct dictionary objects, but they come from the same class,
namely Dictionary. And having come from the same class, or factory, they behave sim-
ilarly. They both support operations appropriate for dictionaries, like adding, looking
up, or removing entries. We can use these operations to grow them in much different
ways—X into a Danish dictionary, perhaps, and Y into a Portuguese one.

In object-oriented systems, dicrionary objects are widely used ro associare one kind
of information with another. Many dictionarics are present in Smalltalk (that is, in
Smallralk’s image—page 9) before you even begin to use it; you won't even be aware of
most of them. One of them, the sptem dictionary, is Smalltalk’s central object. It
records associations berween variables and the objects they refer 1o, For instance, after
Smallealk execures:

X := Whale new

the system dictionary contains an entry for X associating it to the acrual whale objecr.
There are hundreds of other dictionaries in a live Smallealk in'ﬂg:; thq' hold all soris
of associations—character names to their numeric values (like "XKunderscore' 10 95),
mouse events to window system event numbers (like "WmButtonldown' 1o 113),
and so on. These dictionaries are crucial 1o running Smallalk, bur mostly operate
unbeknownst o you.

In a language like Smallealk that has classes, objects
are not individualistic. Those from the same class have @
the same operations—their behavior is the same. We can @
indicate that objects are from the same class by enclosing
them in a box. This representation is less chaotic than @ @
our picture of objects ar the end of Chaprer 1 (page 8); @
the software is more organized. We will soon give it even
more organization, when we discuss inheritance.
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2.2 The word “class”

“Class” is a misleaning word because it has meanings that predate object-oriented pro-
gramming,. Schoolchildren are commonly taughe to use “class™ as a synonym for “ser.”
Mathemaricians, on the other hand, use “class” to refer to collections thar were found
nearly a century ago 1o be oo large to be treated as sers. (An example of such a collec-
tion is the “class of all sers.”)

Of course, both the schoolchild and the mathemarician have ar the back of their
mind some notion of a collection of entities. For object-oriented developers, however,
the betrer conceprual model for a “class™ is a_factory rather than a collection. (Mot thar
it's a crime to lapse into convenient expressions like “this object belongs to that class,”
s0 long as you remain aware that you really mean that “this object was created by thar
class.”) Inexperienced designers who think of dass Onion as the collection of all
onions run into trouble when they have to partition onions into those on the grocer’s
shelf versus those in a shopping basker; they attempt to invent more classes (Shelf-
Omnion, BasketOnion,...) when what they really need are containers (shelves, shop-
ping baskets, ...} to hold their onions. More on containers in Chapter 6.

Another word that is often confused with “class” is “type.” To casual object-
oriented programmers, they are synonymous. Indeed, for many discussions, there is
no harm in using the words interchangeably. Bur in fact types are wos classes, and we
will see later (Chaprer 17) why it is perilous to assume they are. Until then, it would
be pedantic to fuss over the distinction, and we will suffer lictle harm by occasionally
saying Onion is a “type” instead of a “class.” (The verms absenact data type or dasa type
also accur in mftw:n:—:nsin:crins discussions, Th:}r are Synonyms Or REar-synonyms
of “rype.” burt they and their nuances won't concern us at all in this book.)

2.3 Inheritance

Inberitance, our second strucruring p:im;ipll:.. means

thar you may specify in your programming language Animal

that a class is a special kind of another class. Its a .
notion that we all studied in school. The picture at Insect  Mammal
the right meant that an insect is a special kind (“spe- T

cialization”) of animal, that a burerfly is a special
kind of insect, and so on. We called the study of hier-
archical pictures like this raxenermy Object-oriented programmers say thart the picture
depicts a hierarchy of classes in which Burterfly is a subelass of Insect, or equivalently,
Insect a superclass of Butterfly. They also commonly say that Buwerfly imberits from
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Insect. People who work in artificial intelligence sometimes call this relationship
AKO—A-Kind-Of. Butterfly is AKO Insect. Wharever the terminology, the underly-
ing idea is the one we learned in school, thar of classifying things by increasing degrees
of specialization.

The boranist Carl von Linné, berter known as Linnaeus, popularized this way of
thinking abour planes (as well as animals) in the eighteenth century. Nowadays, chil-
dren take the idea for granted; they think the raxonomy of plants and animals is just a
tedious academic exercise. But back then, the idea extended the VEry way in which
people could think abour the world. For example, if | connect butterflies with insects,
1 establish a mental erutch thar helps me rense knowledge 1 already have abour insects.
Everything | know to be true of insects automarically applies to burterflies—six legs,
egg-laying, metamorphose, breathe through holes in their bodies.... All | had to do
was stipulate that a buwerfly is a kind of insect (or say “inherits from” or "is a subclass
of"). Thar’s a lot of cognition to get free, or for the small price of stipulating an AKO
relationship.

Mow let’s apply this idea vo Smallalk. Part of Smallralk’s inheritance hierarchy
locks like this:

Class Float {Hoating point numbers) is a special

!ﬁ?ﬂx kind of Number. 50 too is class Integer. Everything

Magnitude  Monu that’s true of a Number object (we can add them,

P muliiply them, and so on) is also true of a Float or
Die  Time M Integer object. Its the same idea as the Linnacan

wteger  Flos  Diological taxonomy, only this is a taxonomy of
classes in Smallealk.

Class Object, the highest class in the diagram, is analogous 1o class Animal. Just as
everything in the Linnacan picture is a kind of Animal, everything in Smallealk is a
kind of Object. This diagram legitimizes the expression, “In Smallealk, everything is
an object.” And just as Animal is quite abstract, with few specific qualities, Object is
similarly abstracr.

The other classes in the di:gmm all have intultive m:aning,s. with one exception.
Whar role does class Magnitude have? Swart by thinking abour its subclasses. What-
ever is true of Magnitude objects must also be true of Date, Number, and Time
objects. In other words, 1o imagine what Magnitude objects do, you should look for
whartever behavior dates, numbers, and times have in common. Try not to think abour
the insides of these objects. Think about behavior—the outside of the object—rather
than the internal, private way in which the object’s data happen to be stored. Remem-
ber that behavior, the outside, is what marters to users of an object. What behavior do
dares, numbers, and times all have?
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Here are some bad guesses: multiplication and addition. Although it's reasonable
o multiply two numbers together, it's unreasonable to ory o muldply two dates, like
July 4, 1776 and October 14, 1066. Similarly, addition makes sense for numbers, but
we aren't interested in adding 3 o'clock and 2 o'dock; or July 4 and Ocrober 14,

Mevertheless, something abour dates, numbers, and rimes is similar. Whar? Not
arithmetic, as we've just determined. What about the sense of order? Dates are
ordered, as are numbers and times. Bur we would have ro express this idea in terms of
behavior, or operations. How? W|1:|.r not companson operanons, like = (greater than)
or <= (less than or equal w)? A dare may be grearer than another dare, a number
greater than another number, or a time greater than another time. These comparisons
then are the operations thar the subclasses have in common, We'll simply place them
in the Magnitude class, instead of replicaring them in all three subclasses. The sub-
classes then inherit them. Instant code savings.

It’s a great, Linnacan idea, but in real object-oriented systems, theres sometimes a
catch. The subclasses might still have to have their own version of some of the opera-
tions, because the code for the operations is likely to depend on how the dara inside
the object are represented, and this representation could well be different for different
subclasses. For example, because the bit conventions used vo store floating point num-
bers are different from those for dates, the code that compares them must be different
oo, We will deal later with this situation. For now, staying at a conceprual level, lets
just celebrate having Factored the concept of comparison out of the three subclasses
and into their Magnitude superclass.

This discussion illustrates a simple guideline abour taxonomy, henee abour object-
oriented design. Whenever you sense commonalities berween classes of objects, con-
sider defining a superclass and “factoring” the commonality out of the subclasses and
into the superclass. That's what the Smalltalk-80 designers did late in the 1970s w0
Date, Number, and Time, and their decision has proved so durable thar the design
occurs today in all commercial Smallalk systems.

The little hierarchy under Object and Magnitude is just a part of Smallalk’s class
himn::h]r. The full class hi:ran:h].r includes classes for winduning, the ::|::|m|:i||:r1 s;r:ph-
ics, text, operating system services, and much more. All told, a fresh VisualSmallealk
(formerly Smallealk/V) image arrives with abour 700 classes, a fresh VisualWorks
(Smallcalk-80) image arrives with abour 1400, and a fresh VisualAge (IBM Smallwalk)
image arrives with abour 2000. Here's a view of some I1BM Smallealk classes, with help
from a tool known as a browser:
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The upper-left windowpane focuses on subclasses of class Magnitude; it can be
scrolled to reveal many more classes. Since class Number is highlighted, the list of
operations you see in the middle windowpane, namely *, +, =, and so on, are the ones
that numbers understand. In other words, these operations correspond to the rele-
grams thar you can send to Number objects. You can see that numbers understand the
usual arithmetic operations. And you could see many more by scrolling the window-
pane. Don't forger that because of inheritance, you can also use operations thar are
defined in any superclasses of Number. By highlighting Magnitude:
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you can see operations that Number inherits from Magnitade, and they're exactly the
comparison operations we suspected earlier, plus a few others. I've elongated the win-
dow 1o show more of Magnitude’s subclasses. Compare the hierarchy implied by this
screen shot with the diagram of Smallwalk’s hierarchy on page 14. (The three dots fol-
lowing Integer mean thar there are subclasses of Integer, presently concealed by the
browser. To roggle berween revealing and concealing these classes, one double-clicks
the mouse over Integer.)

It is also worth gla.ru:'mg at the lower windowpane. Donlt get distracted by syntactic
peculiarities or the last three lines; the first line is the most significanc. It is the Smallealk
code that makes class Magnirude a subclass of class Object. Similarly, in the preceding
screen shot you can see the code thar makes class Number a subclass of class Magnitude,

Class browsers are standard rools in all Smallalk produces, although their form
varies from product to product, Even within one product, there are alternate browsers,
The browser above is particularly adepr ar suppressing superfluous information; other
browsers show more information, sometimes more than you care to see. Browsers are
the most common way for a programmer to navigate through Smalltalk’s code librar-
ies. As you'll see, you can also use browsers to write or change and compile code. (Sim-
ilar rools, often less nimble, are available in good C++ environments as well.)

Omne use of inheritance is incremental programming. If you can find a class char
comes close to fulfilling your need, but doesn’t quite do ir, you can create a subclass
from it and simply write the relatively small amount of code that distinguishes what
you need from what the class already provides. Before you plunge pell-mell into this
style of programming, understand thar, when practiced imprudentdly, it can produce
obscure and arbitrary designs. In later chaprers we'll discuss the challenges of crafting
high-quality inheritance hierarchies. For now, think of inheritance as Pandoras box,
releasing prospects for hope as well as disaster.

We can picture the inheritance relation
berween two classes by nesting the rectangles of
our earlier schemaric (page 12). In Smalltalk, the @ @
outermaost rﬂ:t:lngl: represents class  Object.

Since this rectangle contains all the objects, @ |
“everything is an object.” The nested recrangles @

on the right could indicare thar SavingsAccount @
and CheckingAccount are two subclasses of

BankAccount, or that Integer and Float are two

subelasses of class Number. Keep in mind that this schematic notation is just thar—a
notation. Remember to resist the tempration to think of objects as firerally being
inside their class. It is beter to think of objects as being creared from their class—the
class is a factory for producing new objects.
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Omne fundamental point. You should implant in your mind an inwition that
objects of a subclass have more qualities than objects of its superclass. A burterfly has
all the qualiries of an insect, and then some. A savings account object has all the qual-
ities of a bank account, plus more. The same goes for a dare object and a magnitude
object. When you subclass, you enrich your objects. This is an essential intuition, even
though the time will come later on when we must challenge ir.

2.4 Terminology

It’s time to deal with terminology—the rechnical jargon that you need o communi-
cate clearly with other object programmers. The following terms arise from the Small-
talk community, but they are accepred by the broader community of Ce+ and other
object programmers two.

* Objects are also called snstances.

* The data inside an object are
described by instance variables. methods -
In other words, these are the @ massage

variables that h:lung [0 an instance.

* An object’s operations are called * instanca varables
methods,

* Invocations of methods are called
rressdages, as you already know.

instance (object)

A message arrives at an object, where it activares a method. The message is like a
telegram, and the method represents whatever the object does in response 1o the tele-
gram. Some simple examples:

Class Instance Message Effect or Return
Account MySavings MySavings withdraw: 230 Processes a withdrawal
Integer 134 134 - 95 Rewurns 39

String "hello" 'hella' size Returns 5

Set MySet MySet add: 'hells’ Puts one more object,

namely the string 'hello’,
into MySet
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You will sometimes encounter alternative terms. An object’s outside, consisting of
the “names” of all the methods thart a user of the object can see, is known as its:
» protocol
= behavior
* interface
* services
= public member funcrions (a C++ term)
Instance variables, an object’s inside, are also sometimes called the object’s:
* attributes
* characteristics

* memary
* stare
= private member data (a C++ term)

To be historically precise, MySet add: 'hello’, not just add: "hello’, is a message. In

other words, messages include their receiver object. Nevertheless, the term “message”
is commonly used in both ways, with or without the receiver object. The distinerion
rarcly martters in conversation.
Technical aside: Because “everything is an object,” Smalltalk messages are themselves
first-class objects, too. In other words, telegrams have behavior in their own right.
(NWe'll exploit this feature in the ghost design pattern on page 226.) IBM Smallalk
goes even further, by explicidy observing the distincrion above: a “message™ withour a
receiver object is an instance of class Message, and a “message” with a receiver object
is an instance of class DirectedMessage.

Many readers will have correctly noticed a jarring similarity berween messages and
function (or procedure) calls in conventional languages. Both are invocations of oper-
ations. Moreover, although the term “message” may conjure images of simultancous
events, messages are no more simultaneous than calls; rather, both calls and messages
are synchronous: while the methed or procedure executes, nothing else happens; the
sender or caller flocks. In other words, a telegram’s sender waits for a response.

There is a key distinction berween messages and funcrion calls, however. A mes-
sage always has a distinguished “argument,” namely the receiver objecr, who is respon-
sible for responding to the call; a conventional call trears all its arguments as peers.

Method usually means the operation, includling all the code thax goes into its imple-
mentation. Bur sometimes we want to refer 1o a method withour also referring ro all
this code; we wane to refer only to its “name.” The Smallealk term for a method'’s name
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is selecior (or message selecior). In the following picture, the methed, shown only in
part, is a substantial body of code that you are probably not prepared 1o read yer, bur
the selector is simply add:.

To make marters worse, you'll hear Co+ programmers say signarsre instead of selec-
far, and_ﬁr.r.rdinu instead of method, In casual conversation, most nl:j:ct programmers
aren't roo careful abour all these distinctions. They say merhod when they mean selec-
tor, or message when they mean meethod. Don't ler terminology discourage you. Just
retain a firm grasp on the imagery: a telegram (message) arrives ar an object (instance),
the object recognizes it (the selector) and execures the appropriate body of code
{method).

Some data-driven development methodologies, not customarily favored by Small-
talk developers, reserve the word attribute for only the most primitive kinds of things
inside objects—things like integers and characters—but not for complex objects
within objects. Thus some people would say that my bicycle’s color is an attribute, but
its rear wheel is roo complicated to be an acribure. Bur a Smallaalk philosopher insists
on L'\"L'J'II'IEI'Id.L'd.I'IEEE o r]'l.l.' cxneme, EI'IEI 20 frcacs hﬂth EDI'E" and WI'I.IL'fl in tl'll:' SAIme
way. They are peer instance variables, one of which happens to be more complicared
than the other.

Finally, a really substantive distinction:

u must carefully distinguish berween a
El‘iﬂbff and the p}.ﬁl‘lfcc: th:ﬁ is its value. In Myser ——— @
Smallealk, it’s a good idea to think of a vari- variable object (inslance)
able as a poinrer 1o an object. For example,
in this diagram MySet is a variable that points to an actual ser object (imstance). All
variables, including instance variables, should be thought of as pointers o objecs,

Thus, a wheel or color instance variable inside a bicycle object points 1o an acrual
instance of a class like Wheel or Color.
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2.5 Exercise: hierarchies

Here are four hierarchies to pracrice with. For cach one, decide whether it may reason-
ably represent inheritance.

Ao Auto
RN P IR
Dashboard  Engine Sports Wagon Sedan
/N VPN
Fiosl o Spsecometer Halchback 2-000f  4-800f
AN
Mosdie  Display
Hiararchy 1 Hierarchy 2
Quesan Elizabeth Polosd
7N 2N
Andrew ANme Chares Deck  Pot  Player
PN VA A SN
Hary  Wiliam mﬂhl-llindﬁh
Cards
Hierarchy 3 Hierarchy 4

2.6 Solution and discussion: Aggregation hierarchies

Hicrarchy 1 is definitely not inheritance. Engines are not special kinds of cars. Never-
theless, this kind of hierarchy is important. It describes a hierarchy of parts, and goes
by various names: part-of, aggregarion, asembly, whole-part, composite, or has-a (an auro
“has-a” dashboard). In fact, aggregation hierarchies are even more fundamental than
inheritance ones. Children realize that things are made up of other things—her hand
“has-a” thumb—Ilong before they think abour specialization of classes. Aggregation
hicrarchies have been essential in programming, long before the popularization of
inheritance. Some authorities elevare them 1o one of their defining object-oriented
principles [Booch 1994; Collins 1995]. There isnt much hope for your software if you
cant do a good job of putting little things together to make big ones.

Hierarchy 2 is a fine example of inheritance. It's reasonable to think of Hatchback
as a .'ip:-ci:ll kind of Station ’ﬂ'r:.gum. or Sedan a5 a .'ip:r.;i:ll kind of Automaobile,
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If you think hierarchy 3 is inheritance, you are saying that Charles is a special kind
of Queen Elizabeth. Thars an odd statement. Moreover, an inheritance tree should
always depict classes, not individual instances of a class. In whar way can we interpret
Charles as a class (a factory for producing objects)? We are more likely to think of him
as an individual instance of some class, perhaps the class Person, or perhaps Royaley:
Interpreting hierarchy 3 as inheritance therefore gets us into trouble.

MNevertheless, one could argue thar “inheritance” is applicable to hierarchy 3. After
all, Charles inhenits hair color, blood type, even money from the ern. The pml:rlcm
is that the vernacular usage of “inheritance” isn't the same as the object-oriented pro-
grammer's usage. It’s just a case of one word taking on different meanings in different
contexts, If we wanted rerminology for this kind of hicrarchy, we mighr call it genea-
logical, family-tree, or genetic. (The vernacular meaning aligns neatly with a language
called SELE SELF is an alternative approach 1o object-oriented programming, in
which instances (Charles) rely on other instances (Elizabeth) for behavior, racher than
on classes.)

Hierarchy 4 is also nor a likely inheritance hierarchy. It again exemplifies aggrega-
tion—important but not the same as inheritance. It also demonstrates something
common in aggregations, namely thar a node may appear more than once in the hier-
archy. Both Chips and Cards appear twice here. You will never see that in an inherit-
ance hierarchy. We will revisit this whole marter of aggregation versus inheritance plus
some notable connections between them in Chapter 9.

When dealing with aggregation, warch for some subtle distinctions: the automo-
bile aggregation, consisting of its engine and so on, differs qualitatively from the rela-
tionship berween a pot and its chips. An engine is more tightly coupled to its car than
chips are to the por. Object-oriented designers sometimes call the loase relationship
between a pot and its chips a container, instead of an aggregation. Pots contain chips
and (an earlier example) baskets contain onions. We'll discuss conrainer classes more
fully in Chaprer 6. Another distinction is sharing. A sub-object in an aggregation may
or may not be shareable. My arm is mine alone, bur a word-processing document has
sub-objects (like graphics or spreadsheers) that are sometimes shared by other docu-

ment objects,’

2.7 Example: aggregation plus inheritance

You may remember from our snapshots of a class hierarchy browser thar defining a
subclass in Smalltalk has this unwieldy form:

' For a lengthicr treatment of these nuances, see [Civello 1993],
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Number subclass: #Fraction
instanceYariableNames: '‘numerator denominator

This code specifies an inheritance relationship berween
fractions and numbers and also defines instance variables
to represent the numerator and denominator of a fraction.
On the right is a picrorial representation of the fracrion
object 3/4, where I've embellished the sketch with some of
the methods that a fraction ought to have. The instance
variables are, in effect, pars of the fraction. Since they
should represent the integer objects 3 and 4, respecrively,
I'll add those objects to the sketch below.

Again, 've embellished the inte- - pmpar
gers with some of the methods they
ought to have. This final sketch dem-
onstrates the interplay between aggre-
gation and inheritance: 3 and 4 are
parts of 3/4 (aggregation) and ac the
same time both Fraction and Integer
are subclasses of Number (inhent-
ance). In object-oriented software,
you don't get far without both aggregation and inheritance.

L]

2.8 Syntaxes for inheritance

Here is the syntax for specifying inheritance in seven object-oriented languages.
The first is the Smallealk syntax you just saw:

Inheritance Syntax Language
Insect subclass: FButterfly ... Smallealk
Insect Class Butterfly (... Simula-67
class BUTTERFLY inherit INSECT ... Eiffel
@implementation Butterfly : Insect {... Objective-C
class Butterfly extends Insect { ... Java

type Butterfly = object({Insect) ... Object Pascal

class Butterfly : public Insect { ... Cas
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For sheer clarity of expression, it’s hard to bear Eiffel or Java. But the real point of the
table is that every object-oriented language has a direct way 1o express inheritance.

2.9 Example: inheritance in Smalltalk

Suppose | ask Smalltalk ro execnre
Whale new talk

Left vo right, Whale is a class, new creares a new instance of the class, in other words
a whale uh_il:::t, and this instance then receives the talk message. In my demonstration
system, Smalltalk would respond with: I am prerty quier. In which class is the walk
method thar execured?

One begins of course by looking in class Whale. If we don’t find valk there, we'll
keep looking up the class hierarchy until we do. Here are two browsers with class
Whale and its superclass Mammal highlighted:
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Meither browser shows any instance methods at all defined in these two classes. We

surmise that the talk method must be inherited from still higher in the hierarchy, and
g0 we examine class Animal:

This time we see not only the talk selector, bur its code in the lower pane. Moreover,
this code contains the string of characters we sought—'I am pretty quiet’. Evidently
this is the method thar execured.

Mow suppaose | want whale instances to ralk in a way that is appropriate for whales,
but [ don't want to affect the way in which other animals walk. | had berrer not modify
the ralk method in the animal class. Instead, I'll write anorber ralk method, in the
whale class. In this method I'll replace "I am pretty quiet’ with a string more suitable
for whales:
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MNow if | again execwee

Whale new talk
Smallealk will display: 1 spout and simg! 1've aliered the behavior of only the intended
objects, whales, without perturbing the rest of the system. If | execwir

Animal new talk

Smallcalk will still display: T am precey quiet.
Inheritance lets us reuse defaule behavior from superclasses when we wane ie (£ am

prerey quied), but also lets us override and alter the behavior when we want thac
(1 spout and sing).

Summary: Whenever two or more methods with the same selector (talk) could
respond, Smallealk executes the first one it finds as ir goes up the class hierarchy. In
other words, same-named methods lower in the hierarchy override or eclipse those
above them. (We'll discuss a small exceprion (page 54), when we talk abourt the special
variable super.)

2.10 Exercise: building a class hierarchy

In IBM Smallralk or VisualAge, any code you write must belong to an Application. An
application generally contains several classes and their methods.?

QO Creare an application:
1 From the transcript, drop down the Smalltalk ools menu, and pick Manage

Applications.

2 From the Application Manager, pick Applications > Create > Application. (For
prerequisites, the defaules will do.)?

3 Select your new application, then pick Applicarions » Browse Application.

O Build the class hierarchy shown on the right, Animal

popularized by Digitalk in its Smallalk/V 7 Eﬂ

tutorials. Seart by making Animal a new sub- Mammal

class of Object. To define a new class, select its ra

proposed superclass and pick the Add Subelass Dog Whale Parrot Penguin

? There are situarions in which some of a dass's methods may belong 1o one application, and some 1o
others, bur we won't worry about them in this boolk.

* This sequence of menu selections is just a guide; the acnual sequence you need will vary berween

versions of the produce,
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menu option. {In the dialogue box that pops up, select swbclass.) When you finish
this step, you should have an application browser that resembles this one:

O Finally, give all your animals the ability 1o have a name, by defining an instance
variable name in class Animal. Do so by editing the rext for Animal, as the browser
above shows, and picking the Seve menu option,

2.11 Commentary: what is object-oriented programming?

In the mid-1980s, there wasn't much consensus on what constituted “objecit-oriented
programming.” Although everyone agreed thar Smallralk and Ce+ were object-
oriented, some also said Ada and Medula-2 were object-oriented, and a few people
said they had been doing object-oriented programming in C and Pascal. In those
days, a lot of unproductive disputes were incited by people who were narurally reluc-
tant to acknowledge thar their favorite programming style or language was deficient
in some way.

To move beyond these disputes, the community needed a stake in the ground.
Happily, in 1987, Pever Wegner proposed a definition for object-oriented languages
[Wegner 1987]. Definitions act like benchmarks; they are arbitrary points of refer-
ence, and hence nothing is intrinsically right or wrong abour them. We gauge them by
their usefulness—how they help us understand the world around us. Wegner's defini-
tion was deemed useful; people embraced it as a plausible benchmark, and in so doing
got back to the business of discussing substantive sofrware marters instead of defend-
ing their prejudices about their favorite programming languages.
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Wegner's definition had three elements, essentially the three principles we have
discussed. For a programming language 1o be object-oriented, he required thar ic:
* Be object-based, meaning that you can easily make encapsulated programming
objects in it
* Be clay-based, meaning that every object belongs 1o (is manufactured from) a class.
* Support inberitance, meaning that classes may be arranged in a subclass—superclass
hierarchy.
He depicred his definition this way:

+ classes + Inheritance

The three principles—objects, classes, and inheritance—are a starting point for
discussing object-oriented development. Most authorities add dete or dymanvic binding
to their definitions, something we'll discuss in the chaprer on pelymorphism, Chapter
14. Whether there should be still other defining characteristics of the object-oriented
paradigm depends on the authority. As we discussed earlier, some add aggregacion to
the definition. [Meyer 1988] insists on garbage collection and multiple inberitance,
important topics that we'll discuss in Chapters 9 and 16. Again, there is no such thing
as a “correct” definition. It is more important 1o understand what the ideas are and
how they affect software development than to lapse into disputing what eughr o be
part of the definiton,

By the way, there are also languages thar everyone agrees are object-oriented, bur
that den't comply with the Wegner requirements. The most significant of these is the
research language SELE which displaces classes and inheritance with defegarion. Dele-
gation lets one object delegate to another object whatever behavior the first cannot
handle. Instead of a chain of superclasses, each object relies on a chain of delegartes. See
[Chambers 1989] for SELE, and [Lieberman 1986; Lalonde 1986) for other discus-
sions of delegation.

Wegner's three object-oriented programming principles are already part of every-
one’s experience. When you adjust your refrigerator or drive a car, you're using encap-
sulated objects; you needn’t be aware of their inner workings. When you think of the
notion of a dog, you think of the features shared among normal dogs—the dog class.
And when you think of successive levels of specialization, like furniture then sofas,
you're subclassing or inheriting. None of these ideas is new; we are just transporting
them into the realm of progamming.
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212 Commentary: other languages
Here's a lineup of languages against the three principles:

Objects Classes Inheritance
Ada +
APL
C
CLOS + * *
CLU + +
COBOL
Cas + # ¥
Eiffdl + * *
FORTRAN
Java + * *
Modula-2 +
Ohjective-C * * *
Pascal
Prolog
Simula-67 + + *
Smallualk + + *

Whether a language has one of the characreristics (objects, classes, or inheritance) can
be a matter of opinion; you could reasonably challenge some entries in the table. For
example, in both Ada and Modula-2, is not too much of a stretch 1o define classes as
well as objects. Also, variants of many standard non—object-oriented languages are
object-oriented. Examples include Borland’s Pascal products and Apple’s Object Pascal,
as well as Ada95 (known earlier as Ada®X) and versions of COBOL and FORTRAMN.
There are also some unreasonable challenges: one could argue that a language like
C is object-based, because it is possible, with work, to build objects in C. One could

¥ Meventheless, Wegner dasified them only as object-based. Thar's becawse Ada and Modula-2
objects do not mecesarrly come from dasses; indeed, they generally don', and so software built from
those languages often lacks the siructural coherence of the drawing on page 12,
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even argue that all languages are object-oriented! After all, they are all computationally
complete, which is a technical way 1o say thar any task that can be done by any one of
them can be done by all of them. For example, you could theoretically use any of them
to write a C++ compiler. Therefore, they can all support objects, classes, and inherit-
ance. This generous interpretation of whar it means to support objects (or classes or
inheritance) is plainly unproductive. We want to know thar a language has constructs
thar make it effortless to use objects, not thar objects may be used through some cir-

cultous route,

213 Commentary: history

Plato postulated a theory of “forms,” wherein an ideal form of a bed is the basis for all
the ordinary beds in the world [Plato 375 nc.). His forms prefigured Smallealk’s
classes, a historical debr thar was explicitly acknowledged in an article on Smallalk-72
[Shoch 1979]. However, Plato’s emphasis is the opposite of an object-oriented pro-
grammers: Plato argues thar the ordinary beds are less significant than the ideal bed.

Linnacus’s classification of plants [Linnacus 1753] became an international stan-
dard. Although he was first to apply inheritance systematically on a wide scale, the
intellectual roots of inhentance go all the way back to Plato’s successor Anstotle, who
wrote, “If we do speak of the animals severally, it is plain that we shall often be saying
the same things about many of them” [Aristotle 330 B.C.]. Thus if rwo classes have
common features, Aristotle suggests that we can save our breath by ascribing those fea-
rures instead ro whar we could roday call a superclass.

Inheritance and uhjl:ct—uril:ntnd ngnlmm'lns have been around since the mid-
1960s. Smalltalk iself evolved ar Xerox PARC during the 1970s. Thar work culmi-
nated with Smallealk-80, the first commercial Smallealk. See [Kay 1993] for the fullest
account of its history. Smallralk-80 later evolved into ParcPlace’s Objecrworks\Small-
talk and VisualWorks (which includes visual-programming tools) but is still com-
monly called Smalltalk-80. The Digitalk Smallaalk/V' family originated in the mid-
19805 and is now known as VisualSmallealk, and IBM Smallealk (often bundled in
VisualAge) appeared in 1994. In 1995, ParcPlace and Digitalk joined into one com-
pany, ParcPlace-Digitalk, which is now combining the two families of products (Visual-
Smallealk and VisualWorks) into one dialect. Other less-prominent Smallealks are also
available commercially roday.

An ANSI commirttee is dtﬁning a Smallealk standard that will consist of a core
body of classes and methods. However, because this core will be only a small propor-
tion of any one dialect, the standard will not be able 1o ensure portability of whole
Smallealk applications,
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The following family tree shows some of the milestones in the history of object-
oriented languages. (Objecr-oriented languages are in boldface type.)

FORTRAN
———
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\/f

- [¥ \/ﬂw

Wmmmm

1990 ::ma
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Two carly landmarks were Sketchpad and Simula-67. Skerchpad, a direct manipula-
tion graphics system developed at MIT by Ivan Sutherland, evinced the principles
we ve discussed but was not a progra mming lansu.a.g:- Thus, pcuph: n:gard Simula-67
as the first object-oriented programming language. Berween Smalltalk-72 and Small-
talk-80 were Smallealks -74, -76, and -78; inheritance first appeared in Smallealk-76.
CLOS (Common Lisp Object System) is part of the Common Lisp standard.



CHAPTER 3

Smalltalk introduction

Smallealk’s lengrage is viny. You will learn almost all of it from this chaprer alone. And
much of the chapter reviews what you've already scen in the first two chaprers. Not
thar Smallealk itself is tiny. A rypical Smalltalk system our of the box includes a library
of thousands of classes. And in Smalltalk you can't do amyrthing without classes, even,
as you'll soon see, something as ordinary as a conditional or a loop. Though it is a
quick matter to learn the language, learing “Smalltalk” is a heftier challenge. To
become effective you will have 1o learn many (but by no means all) of the classes,
Moreover, using them wisely really amounts o doing good object-oriented design.
This mastery takes months of practice—getting in there with your own fingers and
snooping through the system and writing and stumbling through your own applica-
tions. A modicum of curiosity and daring helps.

3.1 Elementary objects

A few elementary Smallealk objects merix their own special notations. Here are some
exam ples:

Sample Instance Its Class

iz Integer (really the subclass Smalllnteger)
"To be or not to be' String

271828 Float

$p (the character p)  Character

true Boolean (really the subclass True)

false Boolean (really the subclass False)

3z
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One of the by-products of these notations is that you do not issue the customary mes-
sages Float new or Integer new to produce a number object. Instead, the expression
2.71828 by irself produces a reference to a floating point object. In fact, exeenting or
displaying Float new or Integer new results in an error or walkback window.' Small-
talk disables the new message for numeric classes.

3.2 Messages and their precedences

Smalltalk has exactly three kinds of messages: umary binary and keyword. Keyword
miessages are messages that conrain colons. The message:

HomeBudget spend: 229 on: 'WCR'
is an example. It's the keyword message whose selector is spend:on:,

Mote thar this selector consists of two keywords thar are smashed rogether. Each of
them expects an argument. Hence this message includes two argument objecrs,
namely 229 and "VCR". A keyword message can have any number of keywords (i.e.,
colons), and it must have one argument following each colon.

Mow, another way to mentally parse the message above is:

(HomeBudget spend: 229) on: "VCR'

that is, in the form of one message following another, for a grand ol of two mes-
sages. This is an alvernarive, but it is not the way Smallwalk works. The original expres-
sion had no parentheses, so Smallcalk interprets it in just one way, s a single message
that happens to have two arguments riding on it. If you want instead to indicate two
separate messages, you must explicitly use the parentheses.

Birmary messages are the simplest 1o recognize. They're denoted by special symbaols,
suchas+-*/ ¢ ¢= > >=,

17 <= 14

is a binary message. lts selector is <= and the object it returns is the false objecr.

The comma 5 a wrprisin.g l:::l.mpll: of a hin:r}r message. You use it most often to
concatenate two String objects:

"Let them eat ' , "cake.’
If you ask Smalltalk vo display che resul, Smallralk displays: "Lee them ear cake."Com-

mas and comparisons and arithmetic symbols aren't the only binary selectors. You can
define a binary message using any one or two of thesymbols + - * V-2 <= @ % | & 2,

' These windows are known as wabbbacks in Smalltalk, because, as you will see in Chaprer 4, they let
vou "walk back™ through the code thar exeouted just before the eror,
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as a selector. Mot that you should. The selector @\ is perfectly valid, but it is hard o
imagine a good use for ir.

All other messages—rthose whose selectors neither are special symbals nor have
colons—must be wmary messages. The selector for a unary message consists of a single
word. Examples are:

"smart' reversed
whose selector is reversed, and:

4 factorial

whose selecror is factorial.

When faced with a more complicated expression, comprising more than one kind
of message, Smalltalk’s precedenee rule is unary, then binary, then keyword. For example,

12 between: 7 and: 3 + 2
contains a keyword message and a binary message. Since binary has higher precedence
than keyword, 9 + 2 execures first, resulting in 11. Next, 12 between: 7 and: 11 exe-
cutes, which is a keyword message (with two argumenis) asking 12, “Are you berween
7 and 113" to which 12 finally responds with the false object.

What happens if we alter the expression by inserting parentheses?

(12 between: 7 and: 9) + 2

The parentheses change the precedence; in this case the result will be an error window
(walkback). Here's why. The parenthesized expression execures first, resulting in the
false object. Then false + 2 executes, which asks the false object to add 2. Because the
Smallealk false object docsnt understand addiion, it pops up the walkback window,
announcing an error. As in any other language, parentheses make a big difference.

3.3 Pitfalls: basic Smalltalk gotchas

The first simple picfall is thar Smallealk is case-sensitive, which means that you can't
write whale instead of Whale and expect your code to work the same. We'll discuss
Smallealk’s capitalization conventions in the upcoming section on variables (page 39).

Another pitfall is that Smallealk assignments are not messages.” Assignment is an
exception to the lefi-to-right rule. Smallaalk processes the right-hand side of the :=
first, then puts the resulring object in the variable on the left-hand side. For example,

* In a rwisted sor of way, you can think of an assignment as a iar kind of message, of lower

cedence than llmudwr kinds, and where the receiver is rheﬁdirﬁdu: 'wm'l.luw.riﬂnbdptr:
assigned to. For example, an assignment to an instance variable can be interpreted as a message 1o
the instance of the form instVarAvpure: But it is neither customary nor linguissically illuminasing
o view assgnments in this way,
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X i 12 between: 7 and: 9 + 2

doesn't mean that X refers to the 12 object. It means thar the entire expression on the
right of the assignment execurtes, resulting in the false object, only after which does
assignment occur. [n the end, X refers to the false object, not the integer 12.

More insidious pitfalls surround the differences between instances of Character,
String, Symbol, and Array. But before telling you abour the differences, 1 want o
highlight a similarity. Along with numbers such as 19 or 2.71828, these objects are
often called firerals, In 1BM Smallalk, liverals are immurable—they are read-only
objects and cannot be modified. (Literal strings and literal arrays are mutable in other
dialects.) Here is how you indicate literal objects:

Smallealk Meaning
19 and 2.71828 MNumbers {(aSmallInteger and aFloat)
$h The single character b

‘roschud’ aString

#Frosebud aSymbaol (explained below)

#{5 "roscbud’ 7) anArray

(It's a Smallealk rradition to ram words together and use just an uppercase letter 1o
mark the boundary, as in aString.)

An instance of Symbel is a sequence of 1 or more characters beginning with a
number sign (#). Aside from cosmetic differences berween symbols and strings, they
differ in one profound respect: Tivo strings may have the same characrer sequence, bur
no two symhuk may have the same character sequence. Even if the _'.}rml;ml #rosebud
occurs more than once, Smalltalk construes all occurrences as referring to one and the
same underlying object. As a by-product, copying a symbol results in ... the same
symbol! This behavior of symbols plays a role in mawers of efjecr idemsiey, which we
will discuss in Chaprer 6.

An instance of String is a sequence of 0 or more characters delimited by single
quotation marks. Note that although " has no characters and 'b" has one characrer,
both denote legitimate instances of String. And don't confuse the string ‘b’ with the
character $b; they are instances of entirely different classes. As in many other lan-
guages, a quote within a string must be doubled: "Alice”s Restaurant’.

Again, a Smalltalk system may contain many instances of the string 'rosebud’, but
at most one instance of the symbol #rosebud. In Smallealk, it so happens that Symbeol
is a subclass of String. Thus, you can think of a symbol as a special kind of string in
which the meaning of “sameness” or identity differs.
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Motice that by putting parentheses after #, instead of characters, you no longer get
a symbol. Instead, you get an array. The array #(5 "rosebud’ 7) has three elements: first
the integer 5, then the string "rosebud’, and finally the integer 7. You can nest literals
inside a literal array. As examples, #(5 #rosebud 7) has three elements, the second of
which is a symbaol, and #(5 #(2 11 13) 7) also has three elements, the second of which
is another array. (In these last ewo examples, odd as it may seem, the inner # is optional
in [BM Smallealk.)

Fma]]}'. quotation marks delimit comments, and are ignur:d |::|.r Smallealk. Thus,
“"rosebud” is a comment. You can use comments freely anywhere white space occurs
in your code.

3.4 Examples

What do you expect will be returned from each of these expressions?
I-H*2
Integer superclass
#(me you they) at: 2

The answers should be -4, Number, and #you. The first consists of two consecutive
binary messages, processed left to right. The second is a unary message sent to Integer,
asking this class to tell us its superclass. The last is 2 keyword message with a single
argument, 2, asking the array object to reply with its second element; this second ele-
ment is the symbol #you.

What do you expect to be the effect of each of these messages? Don't think about
the return, just the effect.

fzero at: 1 put: $h

"rera' at: 1 put: %h

‘zero' copy at: 1 put: $h

fzero copy at: 1 put: $h

The first two messages should fail (!) because literals are immutable. The third one
works fine; copying the literal string produces another string, which is not a literal.
This copy’s first letter is replaced, so thar the copied string becomes 'hero”. The final
message again fails. That's because the copy has the same sequence of characters as the
original symbol, and for symbols the copy must then be the same as the original,
which we know to be immutable.
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3.5 Exercise: a hypothetical method

The code below is an entire, hypothetical Smalltalk method named replaceLastBy:. Ir
introduces several elements of the language. Look it over and try to answer these rwo

questions:
O YWhart does the method do?
O Whar is a lass for which it would make sense?

Here iz the code:
replacelastBy: anObject
[1ast|
last := self size.
self at: last put: andDbject.

You will need explanations for several things you are seeing for the first time:

* The first line just has the selector—the keyword replaceLastBy:—plus a dummy
name the method will use for the argument. I've chosen anObject for this name,
which represents a healthy, orthodox Smallalk coding style, but in theory any name
is equally legal.

* The next line (after the comment) declares a local variable berween the vertical bars;
its name is last, although again it could be anything we like. You can use local vari-
ables throughout the method o refer to objects. And you can declare any number
of them between the bars, separating them by blanks.

* To understand self, which appears in the final two lines, it helps to think anthropo-
maorphically. Imagine that fam the object for which the method is executing. self is
a special Smalltalk variable that refers to e, (But you may not know whe [am yet

because that's the second question in this exercise.)
* Finally, notice the periods at the ends of lines; they separate Smalltalk statements.
Because periods are separators, the final period is optional.
As a final hint before attacking the two questions above, imagine a concrete situa-
tion. Imagine that some object has several elements within ir and receives the message

replaceLastBy: $e.
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3.6 Solution and discussion

Whar does the method do? Imagine that [ have, say, 4 elements. In other words, imag-
ine thar | am some sort of collection. Then self size calculaves my size, which is 4. And
self at: 4 put: anObject substitutes anObject for whatever my 4th element is. For
instance, suppose that | am a string conraining the characrers b, I, u, and r, and a vari-
able Me refers to me. IF | receive the message (or telegram):

Me replacelLastBy: %e

then | am being asked to replace my last element with the character e. The method
thus transforms me into a sering with characrers b, 1, v, and €. In general, no marer
whar object Me refers to, the method will attempt to replace thar object’s last element.

As for the second question, what is a likely dass for Me? An obvious candidaie is
String, because ‘blur’ is a string, Others? Perhaps Array, or any class whose instances
have an indexed urd-:ring on them. Strin.g and Array are the two most obvious, but
you will encounter others as you learn more abour Smallalk.

Another language element that appears often in methods is the caret, A, Axyz
means that the method should return xyz to whoever invoked it and stop execurting, 1f
there’s a complicated expression to the right of the A, the whole expression executes,
then the method returns 1o the invoker whatever the expression produced and stops
executing. Thus, the statement:

A5 w2
in 2 method would terminate the method and return 22 1o its invoker. Or,

“gelf

would terminate the method and return “me” to the invoker.

Mow, if a method, like the one in this exercise, contains no carets, Smallealk scill
insists that the method reurn something—Smallalk methods always return some
object. This default return object is always self. Therefore the method could have been
written equivalently as follows:

replacelastBy: anlbject
|1ast|
Tast := self size.
self at: last put: anObject.
~self
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3.7 Kinds of variables

Variables may be spelled with any letters. Whether the first lewter of the variable is
uppercase or lowercase is a marter of preference in some Smallealks (IBM Smallealk
and VisualWorks), but is stricilly enforced in others (Smallealk/V). Although 1BM
Smallralk offers consderable latirude in this regard, | recommend you use the common
conventions (which are the same as the Smallalk/V' rules). Your Smallaalk code will
then resemble other Smallealk code, which fosters murual readability. Here are the
CONVentions:

Begin variables like anObject or last, which are visible to only one object, with a
lowercase letter. The most common kinds of these variables are:

= formal arguments like anObject, declared along with the selector ar the top of the
method,

* foral or Femporary pariables like last, declared within vertical bars.
® ristance variables like numerator, declared :lu.ng with its class Fraction (page 23).

We'll come to another kind of variable when discussing blocks on page 55.
Although all these variables are visible to just one object, the first two kinds (anObject
and last) are even less visible; they are usable only within the single method thar
defines them. By contrast, instance variables like numerator are usable by any of the
object’s methods.

Begin variables that are shareable among many objects with an uppercase letter.
The most common kind of uppercased variable is a globa! variable, Global variables
are universally visible; any object in Smallralk can see and use them. You're already
familiar with one variety of global variable—classes. More precisely, names like Frac-
tion and Whale are global variables (thar happen to point to the actual classes for frac-
rions and whales). The other common variety ufglul;nl variable consists of the ones
you invent so that you can refer to an object at a later time. An example is the global
variable X in the expression X := Whale new. X provides a handle by which you can
refer to the whale instance. (Recommendarion: Experienced object programmers limic
their use of global variables, because globals are the antithesis of encapsulation. Your
goal is to hide as much as possible, and global variables have the opposite effect. Bux
you can't shun global vaniables entirely: for example, you can’t do much in Smallealk
withour classes.)

Another kind of shareable (uppercase) variable, a class variable, is not quire global.
These are variables that may be shared among all the instances of one dass and its
subclasses. For example, a graphical icon might be a class vanable, because every
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instance of a class does not need to have its own private copy of the icon. O, if we
want to copy and paste text among several text windows, it might be convenient for
all rexr window instances to share a TextBuffer. Class variables, being visible to more
than one but not all objects, occupy a middle ground berween global variables and the
variables thar a single object enjoys.

Anather kind of shareable (uppercase) variable is known as a class fnstance variable.
Class instance variables are handy for implementing solitaires (page 230); 1 will save
their explanation until then.

Summary: To conform to the preponderance of Smallualk code in the industry, begin
global, class, and class instance variables with an uppercase lerter, and begin any vari-
able that makes sense to only one object with a lowercase letter.

3.8 Pitfall: variables > objects

It bears repeating thar a variable is not an object (page 20). Rather, a variable refers w
or “points to" an object. At one moment the variable X could refer to the integer 92,
at another moment, merely by reassigning it, X could refer o the string "Call me Ish-
mael’. Smallralk permits X to refer to any oype of object ar all. Thar's why you will hear
people say, “Smalltalk is an untyped language.” (Remember thar, until Chaprer 17, it
is safe to think of “type” as just another word for “class.”)

Although the type of a variable can vary from moment to moment, the type of an
object is never ambiguous. 92 is and always will be an instance of dass Integer (actu-
ally Smalllnteger, the subclass of Integer consisting of the 31-bir positive and negative
integers) and "To be or not o be' is always an instance of class String. Thus one can
say, “In Smalltalk, variables are untyped, but objects are strongly typed.” The only
exception is a powerful Smallralk method, become:, which can actually alver the class
of an object. (See the discussion on proxies and ghosts in Chaprer 18.)

3.9 Classes are objects

In the spirie of “everything is an object,” Smalltalk classes (factories) are themselves
special kinds of objects. Like other objects, they can receive messages, new being the
most frequent. This is no mean feat—classes are decidely not objects in most other
object-oriented languages. That's why you hear the expression: “Smallalk classes are
first-class objects.”
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The methods that apply to classes are called class merhods and those thar apply o
instances are called fnstance methods. Both kinds of messages occur in the expression:
Whale new talk

The object that receives the new message is class Whale; thus new is a class method.
The object that receives the talk message is the whale instance that comes out the fac-
tory door; thus talk is an instance method.

Smallealk browsers present instance and class methods to us separately. This
browser:

EI'IIE!I.EIH'IH Categories umu.

-r1-|-|:|;

"Tignal the recebeer, Resume I FIFD sny proceas which has
been walling.'

shows three instance methods at the upper righe. We know they are instance methods
because the pushbutton near the middle of the window says fnstance. Toggling chis
button gives us:

| Hile Edit Classes Applications Cplegedies Methods =~~~ |

Precessars ]| CPl
| 'T' .m.ﬂw hl ek
= | ---

WMMH«!H signal aperstion on i The lirst
semaphore will nel bleck*

“Euper mEw inltisllze

Class Semaphore defines only one class method, namely new. This reflects the general
situation: Smalltalk has many more instance methods than class methods. That
shouldn’t be a surprise, for it’s the instances themselves which you want to do most of
your useful computing.
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3.0 Control flow

Cine of the earliest facts you learn abourt programming is that programs need 1o be able
to branch conditionally (if~then) and loop, as well as sequence statements one afrer
the other. Yer Smallealk has language statements for neither conditionals nor loops,
Smallealk accomplishes these in the only way it knows how to do anything, via mes-
sages. We need one additional language element first,

A block is a special kind of object, delimited by brackets [...]. A block acts like a
chunk of code without a name. Here’s a simple block:

[Whale new talk)
Since ir’s an object, you treat it like an object, assigning ir, passing it as an argument,
and sending messages to it. For example, | can assign it to a variable by execuing:

MyBlock := [Whale new talk].

Smallealk obliges, but nothing appears on the screen. Thar's because all I've done is
assign the block ro MyBlock. 1 haven't done anything to execute the block. To do so,
I send the block a special message named value:

MyBlock walue

And now Smallealk finally responds with T sposet and sing!"Blocks, in effect, are a way
to defer the execution of code unil it is appropriate.
Mow, conditionals and loops. Here's an example of a conditional branch:
MyValue = 17
ifTrue: [Whale new talk].

Because binary messages (<) precede keyword messages (ifTrue:), Smallalk first deter-
mines whether MyValue is less than 17, resulting in either the true object or the false
object. If the answer is the true object, the ifTrue: method evaluates the block. Con-
trol then passes to any subsequent statements. If the answer is the false object, the
if True: method does nothing; it doesn't bother to evaluate the block of code, and con-
trol still passes 1o any subsequent statements. The result then is as you would hope:
depending on the outcome of MyValue < 17, cither the block executes or not.

There are several methods for looping. Here is a simple message that invokes such
a method:

6 timesRepeat: [K = K + 1]
This message causes 6 repetitions of the block of code. Motice thar the receiving object
is 6, a lowly integer. In other words, class Integer has behavior so rich thar all s
instances can control loops; they all understand the keyword message timesRepeat:,
This example illustrates how extreme the Smalltalk object model is. Nothing stands in
the way of giving rich behavior to innocuous objects like integers.
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3.11 Commentary: metaclasses

This section takes an entirely oprional glimpse at an advanced ropic that 1 trear fully
in Chapeer 20. One of the consequences of admirting classes as first-class objects is
thar classes themselves must then be instances of some other dass. In effect, a factory
must come from some sort of higher-level factory. Thus every class, like Whale, is
iself an instance of some class, which happens o be called its metaclass. Moreover,
class Whale happens to be the one and only instance of its metaclass. As a mater of
fact, every class is the one and only instance of its own metaclass.

Mow, if every class has an associated metaclass, and the class is the only instance of
this metaclass, that doubles the number of class-like objects running around the sys-
tem. You're probably fearing the worst—thar this goes on forever, with meta-mera-
classes and so on. Portunately not. The next level is much simpler. All the metaclasses
are instances of one and the same class, whose name is, naturally enough, Metaclass.
The explosion of class-like objects stops cold with this one dass. You can even count
them all up. If your system has 2000 ordinary classes—mind you, that's really 1999
plus one called Metaclass—ithen ir also has 2000 metaclasses. And all 2000 of these
metaclasses are instances of Metaclass. That's just 4000 class-like objects in all.

MNow, 4000 is 2000 more than a class browser really needs 1o make you aware of.
The class browser is a practical tool and was designed o conceal those 2000 meta-
classes. How? By giving you the convenient toggle you saw thar lets you look ar “class
I'I'I.ﬂl'.ltﬂ:li.“ TI'IE m—calltd diﬂ m:thﬂdi ﬂl:' Whﬂlt are :IEtLI.B"}" tl'l: INstance m:tl‘mds EIF
Whale’s metaclass! By this sleight-of-hand, the Smallualk browser conceals Whale's
metaclass, and portrays 1ts methods to us as an artificial breed of method called “class
methods.”

You can program for a long time in Smalltalk withour knowing as much as I've
already said about meraclasses. The noteworthy theme is thar metaclasses preserve the
conceptual consistency of Smallralk. ("Everything is an object, and everything is there-
fore also an instance of some class.”) This consistency is unlike what you'll find in
most other object-oriented languages. Ce+ classes are not objects; they aren't eligible
to receive messages, for example. C++ classes are limited to the role of describing the
system rather than participating in ir.

Again, the details of the metaclass story appear in Chapter 20. Meanwhile, the
next step is to begin programming in Smallwalk.



CHAPTER 4

Exercises— Foundations

Smallralk is so compact thar almost all irs essentials can be pracriced in one sitting,
This c|'|:||:|-t:r covers these essentials—the Ianguag: elements in ﬂmplr: 3, plus tools
for maneuvering through Smallcalk. It consists entirely of hands-on exercises. Only by
experiencing Smallealk firsthand will you understand whar is unique abour object-
oriented programming in Smallalk. Reading this or any other book withour doing
Smallealk will ger you nowhere. Do the exercises, look around, try experiments, be
curious, Set aside at beast half a day for this effor.

Werrning

Do not get distracted by the myriad menus and options present in the Smallralk envi-
ronment, nor by the code version and management tools that are available. These
exercises emphasize the nature of objects in Smalltalk, and only enough menu oprions
and tools to survive. You will acquire the rest gradually, through experience and self-
discovery. Confronting flundamental conceprual marters is more valuable now than
becoming proficient in mechanical skills.

41 Precautions

I mentioned in Chapter 1 that each Smallralk workstation has a erucial file known as
the “image.” The image contains executing objects, and it therefore grows and shrinks.
The name of this file varies among Smallralk dialects, but in IBM Smallealk and Visual-
Age, the default name is simply fmage. You should imagine it as consisting of objects
and their methods, but not their source code, Although source code may be present in

44
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the images of some dialects, this is an artfact of the dialect rather than an inherent
characteristic of Smalltalk. Source code is needed 1o describe objects and their behav-
ior, but it is not pare of the objects themselves; hence it is not an essential ingredient
of an image.

Of course, developers need access to a reliable copy of their source code. Smallealk
stores code that you write either in a wext file or in a special library or repository. The
standard versions of IBM Smalltalk or VisualAge use a vext file called ehanges. fog, local
to cach workstation:

—
'.-‘-—_
1 mathods
@ﬂ @x anKMghod
w @) =
image changes.log
(tet

S B
Standalone

—
_—-—"".I
1

coda’|

file)

(You may notice exclamation points peppering files like ehanges.log thar contain
Smallealk source. They delineare methods and other chunks of code, and they are read
and inserted automatically by the tools that handle source code.)

The ream and professional versions of these products use a shared library with a
qualifier of dat, such as managerdar or abtmgr30.das

Team or Professional

Motice that the image contains instances of class X as well as class X itself. This is
a reminder that in Smallralk, classes are first-class objects. The class X wouldn’t be a
live object in C++, nor is the idea of an image relevant.
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The point of this discussion is that you need two things—a sound backup image
and a reliable repository of your source code—in the event thar your image becomes
corrupt, as it inevitably does sometime in every complex development project. Then
you can always reconstruct an up-to-date image by merging your work into the
backup image. The borrom line is that you should conscientiously back up changes. log
or manager.dat, plus at least one trustworthy image.”

4.2 Finding things in Smalltalk

Finding things is a basic survival skill. Smallralk developers most frequently need o
find classes and methods.

Classes

O One workhorse tool is the browser on alf the classes in the system. To open one,
pick Smallialk rools > Browse Classes from the menu bar of the system transcript
window. Familiarize yourself with this browser by clicking, double-clicking, and
scrolling around; dont try to read any code yer, though. Spend a few minutes (no
more) trying to find class Sex; if you fail, read on.

" In the standard environment, you might as well hack up both imuage and chauges.log ar the same
rime, This precaution ensures that the live objecrs and dhe source code are in step with one another,
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0 This browser’s alphabetical listing docsn't help much if you're locking for a class
thar’s nested deeply in the hierarchy. For example, because Set isn't a direct descen-
dant of Object, it doesn’t appear in the browsers initial alphabetical listing. To find
it, pick Classes » Find Class from the browser’s menu bar. Type Ser in the dialogue
box, and click OK.

Methods

O Suppose you want to find all the implementations of the atzput: method. Pick the
Semallealk tool menu from the transcript again, bue this time pick Brotwse fmple-
mentors. Type at:pus: in the dialogue box and click OK. A list of the many imple-
mentations of atzput: thar exist in Smalltalk appears. Select one for a glimpse at the
source code; don't try too hard to understand the source code yet, though.

O Anything that happens in Smallialk happens, ultimarely, by way of a message, In
particular, the effect of the Smalltalk tools > Browse Implementors menu sequence
above s to execnte this message:

System implementors

Instead of using the menu, type this message in the transcripe, highlighe it, and exe-
cute it, then produce a list of all the implementations of the + message.

By the way, the transcript is an obvious place to type and experiment with mes-
sages, but you can actually type them and try them in any textual window in Small-
talk. In general, if you can type somewhere you can also execute there. Regardless of
which window you happen 1o have ryped and executed messages in, you are making
Smallcalk wse live objects in the image.

QO Similarly, you can find every method that sends a message by executing
System senders

or by picking Smalltalk tools > Browse Senders. Use either technique to produce a

list of all senders of the message aczput:. Use the other technique to produce a list
of all senders of the {recursive) message Facrorial,

O To understand a method, say remove:, we often need to understand the methods
it invokes in . Lets investigate class Collection’s remove:, Since there are
remove: methods in many classes, Smallralk developers use the notation Collec-
tion>>remove: to distinguish Collection’s method from the others. Select Collec-
tions>remove: from the list, then pull down the Methods menu (or pop it up with
a right mouse click), pick the Browse Messages menu item, then its fmplemenors
sub-item. Smalltalk brings up a list of the messages thar remove: sends. There are
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only two in this case. Selecting cither one produces a list of all its implementors.
We could repear this procedure indefinitely. Thar is, we can drill as deeply as we
wish into the implementation of any method by repeatedly picking Browse Mes-

sages = [mplementors.
O Apply this technique to the method thart tests whether a dare occurs between two

others. In other words, by alternately selecting Browse Mesages and Tmplementors,
trace the implementations of this chain of methods: between:and:, <=, <, and year.”

4.3 Elements of Smalltalk
Establishing global variables

O Add the global variable T 1o your image:
Smalltalk declareVariable: #T.
This message establishes an entry for T in the so-called system dictionary.
Global variables should generally be avoided. Professional developers use them
sparingly because they conflict with the object-oriented spirit of limiting the visibility
of informarion, and there is almost always a way around using them. Bur they can help

illustrate ideas and facilitate experimentation, and in this opening chaprer we use a few
of them.

Global versus temporary variables
O In the transcript window, displey this entire chunk of code (remember thar periods
separate statements, and the final period is optional):

T := 'dig" copy.
T at: 2 put: 5o.
T.

O Repear the experiment with this chunk:
It]
t = 'dig' copy.
t at: 1 put: $p.
t.

! In older versions of 1BM Smalkalk an additional > method occurs in this chain.
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O MNow display the global variable T. Then try displaying the temporary variable ¢
The latter is no longer defined; it was valid only when it was highlighted rogether

with itz declaration lel.

The & (caret)

O Smallalk methods always return some object. The * specifies the object. Use the
classes browser to refamiliarize yourself with the hierarchy under class Magnitude
that we examined on page 14, Locate the method whose selector is max: and read
through its code. MNotice that the # precedes the object that the method returns.
The # also terminates execution of the method.

Many methods contain no # at all. Nevertheless, the method must return an
object. In this default situation, that object is self, the receiver of the message. Notice
that unless you look into a method’s code, you cannot be sure of what it returns
because you can't know if and where there are any . Somerimes, as you will see
shortly, the returned object isnt what you expect.

Execute versus Display

Execute and Display both compile and execure the highlighted code. The only differ-
ence is their treatment of the returned object. Execnire ignores it. Display prints it on
the screen.
O Declare a new global variable W. Then exvecuee
Wi=3.14-2*2.
MNext execnte:
W

MNothing should appear on the screen. But you can verify that the code has com-

piled and executed by displaying:
W

O Similarly, merely execnsing:
Array with: 'Tolstoy" with: W
produces nothing on the screen, but displaying
Array with: '"Tolstoy" with: W

displays the resulting array instance on the screen. (The with:with: class method is
an easy way to produce an array instance.)
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0 As a final example, execnite:
Transcript show: 'War and Peace'

In this case, the effect of the execution is 1o echo back the string to the transcript
window. But don't confuse this effect with the return. What is the returned objece?
Short of reading source code, you can find out by displaying:

Transcript show: "War and Peace’

The same effect will occur, and Smallealk will prine the returned object—an

ErTranscripr—which is Smallalk’s description of an instance of class ExTran-
script. As a marrer of fact, thar's whar Transcript is—a global variable pointing o
an instance of ErTranscript.?

The next exercise illustrates several returns, one of which astonishes nearly everybody:.

Messages

O Display the returns from each of these messages:

4 factorial

B max: 5

8 between: 5 and: 7

#{vanilla fce cream) at: 2

#{vanilla "ice' cream) at: 2

'milk and * , "honey'

'salt' at: 1 put: $m "Remember that literals are immutable"

‘salt' copy at: 1 put: $m
The rerurn from the last message surprises most people. They expect at:put: o
return the (modificd) string that received the message; instead it returns the argu-
ment $m! This experience emphasizes that you cannot always guess the return.
You must either read the method's code or experiment by sending a message.

Q Finally, cither displaying or execuring
#salt copy at: 1 put: 3m

brings up a walkback window. The error occurs because symbols are unique, so
that the copy message is ineffectual; it returns the original liceral symbol, which is
immutable.

¥ In other dialecrs of Smallralk, Transcripe points instead o an insance of dass TextWindow or
TranscriptWindow or TexiCollector,



4.3 ELEMEWTS OF SAAAMILTALK 51

Parsing precedence
Remember that unless overridden by parentheses, unary messages precede binary mes-
sages, which precede keyword messages.
O Apply this rule to predict and confirm the returns for:
#ME54321)at:2*13
and:
‘oat bran' sire * 4 between: 6 negated and: 3 factorial *= 5

Classes and instances

O Examine the hierarchy of Animal classes you built on page 26. Predict and con-
H.I'.I'I'I tl'l: refurns FI'DI'I'I fl'!l,'.ﬂ: I'.I.'Hm.ﬂ:ﬁ[
‘pat bran' class
Penguin new class superclass
(2/7) class superclass superclass
String alllnstances size
Penguin allInstances size

O Creare a new global variable, P, then execute P := Penguin new. Display the returns
from:
P 1sKindOf: Animal
P isMemberOf: Animal

O Finally, count the number of penguins in the system again by displaying
Penguin alllnstances size

Inspectors

O Examine the pl:n.guin ﬂh]:ct h}rmﬁu_gpin;pm. This window is called an imlpm-
tor; by clicking on its entries, you'll see the values of the penguin's instance variables,
including any it inheries from s superclasses. You can also inspect an object by
highlighting it and using the fuspecr menu option, Try this technique wo.

O You can use inspectors to plunge through several layers of complex object struc-
ture, For example, inspect this object:

Array with: P with: "ice cold' with: -273

and double-click on the array’s three instance variables 1o examine the underlying
objects.



52 EXERCISES—FOUNDATIONS | CHAPTER 4

Cascading messages
Smalltalk offers an economical syntax for repeatedly sending messages to the same
object. Instead of writing;
Somelbject msgl.
Somedbject msgl.
Some(bject msg3.
you can cascade the messages by writing:
SomeObject msgl;
msg2;
msg3.
A cascaded message—one following a semicolon—is delivered to the same object chax
the previous message was delivered to. Here's another way to think abour itz igure out

the last message before the first semicolon; wharever object received thatr message also
receives all the other cascaded messages.

O Exerute

Transcript cr;
show: 'If 1 had a';
cr;
show: 'hammer'.
(The message cr just instructs the window to do a carriage return. )

O What is the return from:
5+ 2% 3;
+ ?’;
+ 9,
Verify your answer by displeying this code.

O The simple but handy message yourself returns wharever object it is sent to. Put-
ting yourself together with a cascade gives us a convenient way to see the effect
(instead of the return) of atput:. Try displaying

‘salt' copy at: 1 put: $m;
yoursel f

Whiting methods

O Bring up an application browser on the animal application you prepared earlicr.
(Just as before, first Manage Applications, then select your application, then finally
Browse Application.)
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O Select class Animal, check that the fnstancelclass burton is toggled to imstance, pull
down the Merhods menu and pick New Method Template. Write a display: method
that looks like:

display: aString
"Display aString in the transcript®
Transcript cr;
show: aString;
er.

Compile the method by picking the Save menu option.

O MNow write a talk method in Animal so that animals say ' bave morhing to say’
This method uses the method you just wrote, and is simply:
talk
"Speak tersaly®
self display: 'l have nothing to say'.

O Test your work by execuring
P talk

Assuming that P is still your penguin, the response should be F have uﬂi‘:’.li:.rg to
say.

O As in the Smalltalk/V animal hierarchy, we are going to make parrows behave a linle
dil:ﬁtrcn[]y. Parrots should have vocabulanies, Define an instance vanable vocabu-
lary in class Parrot. Also write and compile a method setVecabulary: thar assigns a
string to this instance variable. Last, write a talk method for parrots with this code:

talk
"Repeat my vocabulary"
self display: vocabulary.

O Assign a new parrot to a new global variable P2, Ask this parrot 1o rlk. Do you
understand this response? Now give P2 a vocabulary ('l want a cracker’) by send-
ing it the setVocabulary: message. Ask P2 1o ralk again.

O In class Animal, write and compile a setMName: method thar assigns a string o the
name instance variable.

O Create a Human subclass of Mammal. Assign a new human to a global variable H.
Does H have a name? (Inspect H to confirm your answer.) Give H a name ("Claude
Monet’) by sending it the setName: message. Finally, write a talk method so thar
all humans will say My name is « Verify thar H says his name properly.
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Special variables self and super

0 Write a new instance method blab for humans. The method's body should simply be:
self talk.

Predict and confirm the result of exeenting H blab. Replace the variable self with
the variable super and recompile blab. What is the result of execwting H blab now?

Here's the explanation. Changing self to super alters Smallealk’s rule for search-
ing for methods. Instead of h-:ginning the scarch in the class of the objeci—
Human in this example—super causes Smalltalk ro begin searching in the super-
elass of the method conraining super. In this example, Smalltalk bypasses the ralk
method in class Human and begins its search in class Mammal. Thus, super is a
way to access a superclass method thar would ordinarily be eclipsed by an overrid-
ing subclass method. Notice that super and self both refer to the same object; they
differ only in how they affect the starting point for method lookup.

O Make a small addition to your talk method in class Human so that humans say

bork "I have nothing to say'and My name is .

Mow that you've developed some code of your own, you should save your work by
saving the image. It's prudent to get into this habit, because a recently saved image
simplifies recovery if and when the system crashes.”

Accessing variables
Consider a class hitmn:h}' like thas:
Cigiact
VBN
" w [T
|
Dhrwins

Suppose Up defines an instance variable named u and a class variable named U and
Down defines an instance variable d and class variable D,

O Sketch an instance of Up and an instance of Down. Can instance methods of
Down use u? Can instance methods of Up use d?

4 In Profesional TBM Smalltalk, VisualAge, or any Smalltalk daabect with the Emry library control
system add-on, you can also create a peroiow of your code, A version is a permanent snapshot of your

code,
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O Can instance methods of Down use U? Can instance methods of Up use D?
O Can class methods of Down use u or U? Can class methods of Up use d or D?

If you are uncertain about your answers, create a brand-new application and per-
form the experiments. (To create a new application, use your Application Manager.
Pﬂp up a menu and pir.lc Ap‘ﬂ.ﬁi’dﬁam = Create.)

Blocks f ... |

Like everything else in Smallealk, a block (sometimes also called a conrexr) is an object.
It is defined by placing code between brackets [ ... ]. Burt it is stranger than most
objects, because the code it represents might never execure, Meanwhile, you can assign

it toa ﬂl’lﬂHt‘. Pﬂ.ﬁ it H.I!'DI.II'Id a% an II'ELII'I'":’IIIZ Drl m. Il!ld SEI'I{I. It m

short, you can trear it like any other Smallralk object. The code will execure only if the
block receives an explicit request for it to do so. Here’s an example.
Q If you execnee

X := [ H talk ]

the assignment to the variable X occurs, bur the code for talking does nor execure.
Only by sending the message:

X value
does the code actually execure,

O Blocks occur regularly in condirional messages. Exeente this:
(H isKindOf: Mammal)
ifTrue: X
and:
{H isKindOf: Mammal)
ifTrue: [ P2 talk ]
ifFalse: [ H talk ]

O They also occur in loops. Execure:
6 timesRepeat: [ P2 talk ]

Q With a litte syntactic twist, blocks can also have arguments, For example, to mul-
tiply all the elements in a set, display (don't forger 1o declare global variables):
MyProduct := 1.
5 = Set with: 5 with: 3 with: 4,
S do: [ :number | MyProduct := MyProduct * number].
MyProduct
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The do: method is one of the most common ways to loop. It iterates over all the

clements of S, substituting them one ar a time for the variable number in the
block. The name of this variable is arbitrary; it could just as well have been called
:element or :n as :number.”

Class Date

Date objects occur frequently in applications. Class Date is unusual because it has
many more class methods for creating instances than other classes do. For example,
knowing a day from 1 to 366 and a year, the newDay:year: class method can creare a
date instance for this date. Or, from a day and a month and year, the newDay:-
month:year: class method can creare a dare instance for thar dare.

QO Dvsplay the object returned from sending the message today ro Dare.

O Use the newDayzyear: method to ereate December 31, 1999; assign it to a global

variable X.

O Use the newDay:month:year: class method to create your birthday; assign it to a
global variable Y. Read the comment in the method first to determine the form

that it expects for its arguments,
O Verify that X > Y returns a sensible object.

Rendering any Smalltalk object into text
The printString message attempts to return a string from any object at all, although
the string may not be very informative, Some examples:
0 To see how useful it is to be able to render an object as a string, contrase displaying
‘The bird is " , P2
with displaying

"The bird is ' , P2 printString

* IBM Smallalk also supports an infrequently used fearure known as black remporery sariables. These
are variables that are declared inside a block for use only within that block. For example, in the
block [ lxl ... | the variable x has been declared and may be used frely within the block. If the black
also has an argument, the form is [ nomber 1 il ... |.
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O Similarly, contrast displaying
Y, ' is my birthday'
with displaying
Y printString , ' is my birthday'

Many Smalltalk implementations have a single printString method, located in
class Object. IBM Smalltalk has a few, but not many, more implementations of print-
String. (How many?} How then is printString rich enough to render practically every
kind of object into a meaninghul text string? In facr, it is not ar all rich enough.
Instead, it invokes another method that is implemented individually in many classes;
it is this method and not printString that does the brunt of the work of rendering
objects into strings.

U Find this method. How many implementations of it are there? (Hundreds!)

4.4 Smalltalk's debugger
Debugging
O Create a new application (or use one of yours), then a subclass AAA of Object,
with an instance variable iv and an instance method m whose body is:
iv = 4,

self badMessage.
Transcript show: ‘Dome’.

Execure
AAA new m

The debugger window that appears is called a walkback because the list in the upper
left windowpane lets you scroll, or "walk back,” through the method invocations lead-
ing to the error. Each line represents a class and method. The order is that in which
the methods called each other, with the caller benearh the callee. In all, they depict the
frozen stack of method invecations at the time of the error,



58 EXERCISES—FOUNDATIONS | CHAPTER 4

The line AAA>>#m indicates the method you wrote. Selecting this line displays your
own code in the large windowpane, as you can see above. (The notation
AAA(XXX)>>#mmm, means thae although the object is an instance of AAA, the
mmm method is inherived from the superclass XXX, Depending on the whim of the
tool, the # may or may not be part of the notation.)

O Examine the present object (an instance of AAA) by double-clicking on self in the
middle windowpane. An inspector opens on the object, from which you can deter-
mine the current value of the instance variable iv.

O You can fix the problem directly in the debugger, without having to use a browser:
remove the erroncous message in the large windowpane, then seve (recompile).
Close the walkback window and verify that:

ARA new m

runs correctly.

Controlling execution siep by siep
Once the debugger freezes the execution stack, you can often continue executing with

the inve button (which stops immediately after plunging down into the current,
highlighted message), the aver button (which stops after completely executing the high-
lighted message), the resurn button (which stops after completing the current method,
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just before returning to its calling method), or the reswme button (which execures as
far as possible).

O Replace self badMessage with self halt in the preceding exercise, and again exeente
AAA new m. This time, experiment with the buttons.

4.5 Provocations
Alfasing
Q Display or inspect:
Ir el
r = Rectangle origin: 20820 extent: 10810.
p := r corner.
*p x: 50; y: 50.°
.
Mow remove the quotation marks, and displey or inspect again. Did you expectr o
change? p refers 1o r's corner—p is an alfas for the corner point. Thus, by changing

P rirsel Fchnngﬁ. In Smallealk, aliasi NE occurs because variables are pointers, even
though there is no synractic cue thar they are.

O Replace the third line with p := r corner copy and display or inspecr again. This
fime, r is unaffected. That'’s because pis no |1;|-n5¢r an alias for the corner point
itself, but a separate object that is a copy of the corner point.

Smallealk shields programmers from the pointer bugs thar afflict programs in lan-
guages with explicit pointers, but at the cost of making aliasing less apparent than in
conventional languages.

Concite rense

O Write a method foobar in class AAA with this body:

®ees Lots of code ...
Transcript show: "To be or not to be'.
®ee. Lots more code ..."

O Creare a subclass BBB of AAA. Make instances of BBB behave the same as

instances of AAA, except that they respond to foobar messages with ‘My kingdom
Jfor a horseinstead of 'To be or not to be'. The ground rules are not to copy code—
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for example, copying "... Lots of code ..." 1o another method would not be a con-
cise form of reuse. Instead, consider modifying the foobar method in AAA and
defining brand-new methods in AAA and BBB.

Because no one can anticipate in general how code will be used, or reused—we did
not know of the requirement for BBB>> foobar until after AAA>> foobar was work-
ing—no one can expect to produce reusable designs without considerable rrial and
error. “Not until you try 1o reuse do you discover what’s wrong” [Sarkela 1989].



CHAPTER 5

Abstract classes

This chapter and the next introduce essential object-oriented conceprs thar build on
and go beyond the elemental principles of objects, classes, and inheritance.

Abstract classes are a simple idea that profoundly influences software design. The
definition sounds paradoxical: an abstrect elass is a class that never has any instances.
Why bother to build a class thar wont have any instances? We'll spend this chaprer
answering this question, going so far as to argue that such classes are indispensable in
good object-oriented design. We begin with some examples.

Class Magnitude is abstract. (See the drawing on page 14.) No one has any use for
something as abstruse as an instance of Magnitude. Mevertheless, class Magnitude has
subclasses like Date and Time, whose instances are quite useful. An abstract class can
act as a center for gathering behavior and expectations common to its subclasses. In
this case, as we saw on page 15, the behavior common to Magnitudes subclasses is
comparability. For example, two instances of the subclass Date can be compared via
messages like <=, Although Magnitude has no instances to enjoy this behavior, its sub-
classes evidently do.

Animal is another abstrace class. We have lictle interest in an instance of class Ani-
mal—it’s instances of Whale and Dog that we care about. This idea is not just a pro-
gramming nicety; its a cognitive distinction in the everyday world. The concrere
objects we visualize are whales and dogs, not animals. Whar after all would something
as abstract as an animal look like?

In Smallralk, the most abserace of all abstrace classes is class Object. An instance of
class Object is too nebulous o be useful 1o a programmer. Yer class Object is an
invaluable center for gathering expectations we have abour all Smallralk objects: all
objects should be copyable, displayable, testable for equality with other objects, and so
on. The idea sounds tidy, but theres a rub. Copying or displaying an object depends

61
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a lot on the particulariries of the object. It would be naive to hope that we could write
code in class Object for copying or displaying and have it work meaningfully for all
subclasses. Thar’s why an abstract class is a repository for axpectations. We expect
objects 1o be displayable and we expecr animals to move, but how they do it depends
on the kind of object or animal. The actual code to display and copy is likely to reside
in concrete subclasses, not the abstract class,

5.1 Exercise in object-oriented design

Consider this hictitious hierarchy of class Table and its

subclasses. An instance of ArrayTable is organized as Tabio

an array; that is, its elements are stored at consecutive N
offsers in memory, the first ar the first offset, the scc- Hequnkile =
ond at the second, and so on. An instance of Link- AN

Table is organized by a chain of pointers; its clements ArayToble  LinkTable
are scattered through memory, the first pointing to the
second, the second 1o the third.. .. We are going to examine the object-oriented impli-
cations of searching these tables.
Here's some plausible pseudo-code for a search method:

search for an <items
start
loop while (not end and pext # <item=)
end loop
if end then return not_found
else return found

Underdines indicate methods. Thus the search method calls three other methods,
namely start, end, and next.

3 In which classes should each of these four methods be coded?

5.2 Solution and discussion

We begin with next. The way in which a table advances o its next element depends
on the kind of table. An ArrayTable adds 1 to its current index (index := index + 1)
while a LinkTable updares a pointer (current := next). Since the logic is different, the
rwo subclasses will need their own separare versions of the next method.
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The situation for the start method is similar. An ArrayTable starts by initializing
the index to the first element (index := 1) while a LinkTable initializes the pointer o
the head of the chain (current := head). Again, separate versions of start must sccur
in the two subclasses. There also must be two versions of the end method: an Array-
Table must test for the upper limit of the array (index > upper) while a LinkTable tests
for a null pointer (current = nil).

So far, then, we're forced 1o write separate versions of the start, next, and end
methods in the two classes ArrayTable and LinkTable:

Tabla
7N
/

ArrayTable
start
et
e

Do we also need two versions of the search method? Thar would be foolhardy, for
the code in both versions would be identical; both would simply be based on the
pseudo-code illustrated above. Instead, we will write it once, in class Sequential Table,
and ler the subclasses inherir ic:

N

LinkTable
A
it
and

Tabbe

/N

SoquantialTabie

SN

ArayTable  LinkTable

skart Stan
et maxt
and and

MNow, why not move search stll higher, into class Table? Because our search
method has a strongly sequential flavor, and some kinds of tables behave in non-
sequential ways. Consider a hash table, for example. A hash wble searches directly
instead of sequentially. Given a search item, the table uses the item itself to calculate
(“hash”™) a position where the item may reside. This kind of table doesn't iverate through
its items one by one. Hashing calculations don't resemble the sequential pseudo-code

above at all. Therefore a hash table needs its own version of search, so we end up with
our methods distributed through the hierarchy like so:
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5.3 Pure virtual (subclassResponsibility) methods

So far, Table has no behavior at all. We dared not write search there, because its sub-
classes required their own versions. On the other hand, one could argue thar a class
with a name like Table ought to be searchable; we expecr any table to be searchable.
Object designers settle this quandary by boldly writing a search method in Table
anyway, but one thar does nothing. This disembodied methad is variously called a
pure virtwal function (Ce+), implementedBySubelass or subelassResponsibility method
(Smallealk), a deferred routine (Eiffel), or an absrrace method (Java). 1 will use these
terms interchangeably, even the C++ term pure wirfual, because it is so evocative,
(%What could do less than something that is purely virtual?)

Why bother with a method like Table>>search thar does nothing? There are two
reasons: it announces to potential consumers of Tables subclasses thar they ought w
be able to find things in any table by using a method named search. And it announces
to the programmers who will write any Table subclasses that they are obligated o sup-
ply a search method. At the very least, then, a pure virtual method is effective docu-
mentation. In Smallralk, it’s little more than this; the pure virtual search amounis 1o
an informal contract between Table consumers and Table developers. MNothing
enforces this contract. But in a language like C++ where the compiler can settle con-
tract disputes, once the designer specifies a pure virtual function, the subclasses must
provide a concrete (“do-something”) implemetation of the funcrion, or the code will
fail vo cumpilc. Thar 15, a pure virtual function in C++ enforces the contract between
consumers and developers.

Morice one logical consequence of pure virtual methods: a class thar has such a
method is necessarily an abstract class, An instance of Table is nonsensical, since it has
no working code for its search merhod.
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5.4 Exercise: discovering pure virtuals

O Returning to our example, the hierarchy contains, in addition to Table, one other
abstracr class. Which class is this, and does it present another opportuniry for pure
virtwal methoeds?

5.5 Solution and discussion

Do any other classes in the hicrarchy have no instances? SequentialTable is such a
class, lIts subclasses can have instances because they support a full complement of
behavior, namely start, next, end, plus an inherited search, but any instances of
Sequential Table itself would be worthless. Hence Sequential Table is an abstract class.

Mow an abstract class is rather hollow unless we have a sense of what can be
expected of it. The mechanism for recording these expectations is to declare pure vir-
rual methods. Whar should these methods be for Sequential Table? The suspects are,
of course, start, next, and end. Not only are these nawral qualities of sequential-ness,
the search pseudo-code acrually demands their presence. Whar berrer way to remind
the ArrayTable and LinkTable developers to implement them than to declare them as
pure virtual, subclassResponsibility methods? The final hierarchy, then, looks like this:

Tabla
o SeEh"
SequentialTable HashTable
soanch saarch
| star:
naxt*
ArrayTable  LinkTable and®
slart slart
i gl * defevred, pure wirtual,
ond and SubclpssRpsponsibility

5.6 Ensuring no instances

We have determined that Table is an abstracr class; an instance of it would be worth-
less because it would not have sufficient executable behavior It would be nice if
object-oriented languages could provect programmers from mistakenly creating such
an instance. Smallealk can’t quitc. The best it can do, if a wa]rw:rd instance of Table
has been created, is to alert the programmer ar the time the instance receives a search
message. [F Table>»search is absent, the message triggers the familiar doesNotUnder-
stand: walkback thar occurs whenever an object receives a message thar it can't resolve,
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The walkback duly alerts the programmer, but the preferred technique is not to omit
search, but to write the method as follows:
search: anltem
self subclassResponsibility

Then any artempr to send the search message o an instance of Table will invoke the
subclassResponsibility method. This method roo produces a walkback, but one thar
specifically describes its cause as the absence of a proper implementation of search. As
we discussed earlier, writing search in this way also delivers the most important service
of pure virtual methods—documentation of the abstracr class.

Compiled object-oriented languages like C++ can do even better. By specifying
even one pure virtual function in a class, the compiler rejects any code that declares an
object of that class. Thus, the mere presence of a pure virmual funcrion guarantees chat
the class will have no instances and will really be abstract.!

In cither case, Smalltalk or C++, the goal is the same: we don't want programmers
to use instances of the abstract class because the abstract class lacks a full complement
of behavior, It presents expectations bur doesn't have the assets o back them up.

Teehmical aside: Sometimes a shrewd designer will wrire a benign method in an abstract
class with no code ar all, not even the message self subclassResponsibility. Here's an
example:
customInitialize
"This method does nothing, not even cause a walkback!
It executes harmlessly, but §f you wish to prowide
some subclass-specific initialization code, feel free to
override 1t in your subclass.®

Let’s say thar some method in the abstract class (perhaps its initialize method) execures
some standard code, but along the way also executes self customlnitialize. The pro-
grammer of a subclass can optionally everride customlnitialize 1o do something spe-
cial, bur if she does not, the inherited customlInitialize method executes harmlessly.
The designer has therefore opened an oprional back door for custom code, analogous
to what was called a user exit in the heyday of mainframe system software. Today these
back doors are sometimes referred 1o as hook methods.

' The C++ jargon for 2n abstracy class is an ABC, or abameer base olaw,
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5.7 Concrete behavior in abstract classes

Lest you write off abstract classes as devoid of substance, you should know thar ir's
possible and often beneficial to imbue them with comcrere behavior roo. In other
words, not all methods in an abstract class need be pure virtual, The class may sill
have lots of code thar is shareable among irs subclasses, For example, Smallralk’s Col-
lection class is an abstract class with plenty of behavior its concrete subclasses—Array,
Set, SortedCollection, and many others—gratefully inherir.

A concrete method in an abstract class will sometimes appear to invoke one or
more pure virtual methods. This is not as odd as it sounds. In the able example we
just studied, the search method in class SequentialTable is a concrere methed thart
appears 1o invoke SequentialTable's pure virtual methods next, start, and end. These
pure virtual versions actually never execute. Instead, because we use only instances of
the subclasses of SequentialTable, the concrete, overriding versions execure. This is
such a typical characteristic of sound object-oriented designs, and so often misunder-
stood by newcomers, that [ want to belabor the point by examining another example.

Consider a method max: that returns the maximum of two magnitude objects.
Morthing deters us from implementing max: concrerely in the abstract class Magnitude:

max: anotherdag

self < anotherMag
ifTrue: [ ~anotherMag )
ifFalse: [ ~self ]

The odd aspect of this code is that although it is in class Magnitude, it uses a method,
<, that cannot be implemented in class Magnitude. (Thar’s because comparisons like <
depend on the internal representation of an object, and these representations differ
from subclass o subclass. For instance, the representation for objects of the Time sub-
class differs from that for the Float subclass. Thar’s the “carch™ we discussed on page 15.)

With this background—thar max: uses a method that must be defined in sub-
classes—whar kinds of objects in the Magnitude hierarchy can execute max:s code?
Clearly not instances of Magnitude iself, since Magnitude is abstract and should have
no instances. Henee, only instances of subclasses qualify. Consider 13.7, an instance
of Float, and the message:

13.7 max: 17.3

The relevant portion of the class hierarchy is:

Mligniich
P
aa Numbar

TN
- Float
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MNow 13.7's class, Float, docsn’t implement max:. Thus 13.7 searches up its inherit-
ance wree until it finds a superclass that does implement max:—in this case Magni-
tude. The max: code abave then execures. The first line sends the binary message <
back to self (13.7). This time 13.7 recognizes < as a method that its own class Float
implements, and hence executes it without recourse to inheritance. The resulr is true
(because anuﬂ\v:rM:g i5 17.3), and so the code execures the branch that returmns 17.3
(anotherMag) as the final resulr.

Tao recap, the code for max: was written in Maguitudc with the full undcrst:lnding
that it depends on pure virual methods thar can't possibly be written correctly in
Magnitode. No instances of Magnitude, only instances of its subclasses, can success-
fully execute max:. And finally, because the code in max: refers 1o self, execution can
flow from the superclass method {max:) dewn to the subclass method (<).

This example is typical of sound object-oriented design. It maximizes reuse because
there is just one max: method and as many versions of < as necessary, but no more than
are necessary. More important, subclass implementors can direct their attention to sub-
class-specific methods like <; they enjoy the benefit of max: withourt thinking abour it.

You should seek opportunities to write reusable methods like max: in your own
applications. Unfortunately on larger projects, where different subclasses are written
by different developers, opportunities for unifying common function aren't often rec-
ognized. In effect, each developer writes a slightly different version of max:. The price
is redundant thinking, design, code, and especially maintenance. The redundancy can
cost hours and days when the methods in question are more complex than max:

5.8 Summary: methods in abstract classes

The methods in an abstrace class have three primary forms. Some are pure virrual (sub-
classResponsibility, deferred, abstract, implementedBySubclass); subclass developers must
override them with concrete implementations. Some are concrete and self-contained;
subclass developers inherit them without any obligarions. And some are like max: (or
Sequential Table>>search) above; subdass developers are obligated o provide some con-
crete behavior thar the method needs, but they do not override the whole method.

There is no consensus on terminology for distinguishing the three forms, but
[Wirfs-Brock et al. 1990] and [Johnson and Russo 1991] call them afsracr merbods
(the fava verm), base methods, and template methods, respectively. [Gamma et al. 1995]
also call the last kind rrmpﬂu'rr mrethods. 1 think of them as yo-yo methods because exe-
cution bounces up and down with respect to a subelass, and framework designer Kirk
WDJ.F I'Eﬁ:‘ﬁ o tl'll:' F']'Lfl'lﬂmtl'll:ll'l a5 an ﬂFPﬂ'ﬂﬂf M{Eﬁt

You will see in Chaprer 19 thar abstract classes and these three kinds of methods
arc at EI'I.I.' hfﬂ.l't uf EII:I'iECt—DIi'I.'I'It'EEI FIE.I'I'IE'H'CII'I"-'E.



CHAPTER 6

Containers and other
indispensable ideas

In the everyday world, containers—rthings thar contain other things—are everywhere.
Pors, Sproeains, baskets, buses, countertaps, books, CD-ROMs, and pea puds are all
containers. Containers commonly even contain other containers. My kitchen contains
a pantry, which in turn contains shelves, which in their turn contain boxes and cans,
which contain cereals and soups. My kitchen also contains a refrigerator, which con-
rains shelves and a door, both of which are also conrainers.

Containers are such indispensable everyday objects thar we should expect them to
also be indispensable software objects. The parterns thar oceur among software objects
should reflect the ones that we observe among everyday objects.

For a programmer, important containers include queues, stacks, arrays, sets, and
the like. Object-oriented programmers, and especially Smalltalk programmers, some-
times call containers collections. That's because the container classes in Smallralk are all
!I]IJEI'.'IS.S-E! nfan :IIJ!tr:I'EI' diﬂ- namcd CIDII.EHi.D.I'I!

Collection

Dictionary  SequenceableCollection Sat
AN

Array OvderedCollection

For our purposes, collection and contaimer are interchangeable.
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The hierarchy above shows just a few of IBM Smallealk’s container classes. Here are
the most commonly used Smalltalk containers, and some of their distinguishing char-

ACTErisTics.

Class Characteristics

Dictionary Like a real dictionary, it organizes informarion by a
lookup key.

Array lis elements are arranged in consecutive dlots, Also,
its size is fixed.

Ordered Collection Like an array, but its sisc may increase or decrease.

Set lis elements are not arranged in any order. Also,
an object can ocour in it at Most once.

String It contains 0 or more characters.,

ByteArcay Like an array, but its elements are bynes,

Sorted Collection Smarter than an ordered collection, it maingins is
elements in an ordering determined by some sarting
Criterion.

IdentityDictionary A special, efficient dictionary, suitable mainly if the

Stream (not a collection,  Smuarter than a collection, it remembers where it

but similar) was last accessed.

A hinal word of introduction o the study of containers: pracrically every object-
oriented design you do will require one or more containers, including your first sizable
design exercise in the next chapter. Learning to recognize the need for containers in
your designs is a major step toward becoming a good object-oriented designer.

6.1 Heterogeneity and homogeneity

In the everyday world, some containers, such as drawers, hold many kinds of things
and others, such as three-ring binders, hold just one kind of thing, such as pages.
Smallealk’s containers are like the drawers. That is, a typical Smallealk container won't
verify that its contents are all of the same type; it can hold integers, or whales, or even
a mixture of integers and whales. This drawer-like property, the ability o hold betero-
geneons elements, is attractive bur potentially dangerous. Its artraction is evident: you
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can pick up and use a conminer without worrying about whether it will work for the
kinds of objects you want to hold—it'll hold any Smallalk object. On the ocher hand,
if your container is one thar maintains elements in sorted order (see the exercise in the
next section), what good would it be to hold a mixture of integers and whales, or for
thar marrer, whales alone? Or, suppose you have a set thar presently holds integers, bur
you've accidentally deposited a whale into it. If you double all the elements, the whale
will protest, via a walkback, thar it doesn't understand mulriplication by rwo.

6.2 Exercise: heterogeneity and homogeneity

O Ordered collections are like arrays, except thar their size is not fixed. Define a class
Whale, then explore heterogeneity by displaying the following. (Don't forger o
declare global variables like OC.)

0C := OrderedCollection new.
0C add: 'a’;
add: ‘'c’.
"0C add: Whale new."
oc.

Remove the quotation marks and try again. This exercise demonstrates thar the
ordered collection is able to accommodate any kind of object. However, if you
want to do something meaningful to OC, its heterogeneous contents are a prob-
lem. Why does execuring the following code produce a walkback?

Pet := 't'.
0C do: [:elem | Pet := elem , Pet].
Pet

But if you now re-comment the whale line by replacing the quotation marks,
and display the whole sequence of statements, from beginning to end, the errors
vanish and Smallaalk displays ‘sar’

O Another subclass of class Collection is SortedCollection. An instance of class Sorted-
Collection is a collection whose objects are always in sorted order. Diisplay:

X := SortedCollection new.
% add: 3; add: 2; add: 5.
X

What defines the order? The answer is that every SortedCollection object has a
sort block that defines the ardering operation. The default operation is <=, Reverse

the order by displaying
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X sortBlock: [:a :b | a == b].
X

O How heterogencous is a sorted collection? Unlike a set, which accepts any object

you add to it, a sorted collection starts sending comparison messages as soon as you
add more than one object. If an object you add isn't comparable, the sorted collec-
tion will protest with a walkback. For example, execnie

X add: Whale new.

Thus the first object you add to a sorted collection can be of any class, bur all
subsequent ones had better be comparable o the first.

6.3 Exercise: dictionaries

Q

Looking things up—in dictionarics, phoncbooks, software help files, relational
database tables, and so on—is an elemental activiry for both humans and comput-
ers. Smalltalk’s container class for this activity is Dictionary. Dictionaries are
among the most widespread containers in a rypical Smalltalk application. (Arrays,
however, are even more prevalent.) To see the relative occurrence of these objects
in your current image, désplay these lines, one by one:

Set alllnstances size.

Dictionary alllnstances size.

Array alllnstances size.

String alllnstances size.

A Smalltalk dictionary consists of entries that Smallralk calls assciarions. Each
association has a key and a value. Execuring:
% = Dictionary new.

X at: "Kilauvea' put: "Most active wolcano';
at: "Denali® put: 'Formerly Mt. McKinley'.

constructs a new dictionary with rwo associations whose keys are geographic
names and whose values are descriptions of the associated places. You can look up
an association by displaying

X at: ‘Denali’
or you can examine the entire dictionary by execsting:

X inspect.
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6.4 Preparatory exercise: identity versus equality

Like any object system, Smallaalk maintins a critical distinction berween idenrity and
equality You will need to grasp this distinction to understand identiry dictionaries in
the next section.

To say thar “rwo” objects are idenrical is to say thar they are actually the same
object. The message selector that tests for this condition is ==. As an example, X == X
resules in the true object, no marter what object the variable X may refer to.

O The == message can be used o resolve some fundamental questions in Smallealk.
For one, do different occurrences of an integer refer to different objects or the same
object? To answer this question, execnse the first two lines below, one ar @ time, then
display the last line:

X = 3.
Y =3
X = Y,

Since the result is the true object, we conclude that there is only one 3 object in all
of Smallaalk. (The same is true for any “small” integer, which means technically any
instance of the class Smalllnteger. Each dialect of Smallralk has a range, beyond which
an integer is no longer an instance of Smalllnveger but Largelnteger. For [BM Small-
talk, this range is from -2 10 +2*'-1, or ~1073741824 1o +1073741823.)

O Symbols are like integers: there can be at most one symbel with a given spelling, as
you can verify by executing these lines, one ar a rinve, and displaying the last one:
X := fHobbes.
Y := #Hobbes.
X oe= ¥,

On the other hand, repear the experiment, again line by line," with:
% = 'Hobbes'.

Y := 'Hobbes'.

X ==,

" In some Smallalk dialects, including IBMY, the behavior of examples like these depends on
whether the code is compiled all ar onge, or piece by picce. When compiled all at once, the compiler
can perform optimizations thar camouflage dhe striking resules we wang o see,
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The result, false, forces us to conclude that the two instances of the string "Hob-
bes' are distinct from each other. In other words, strings are nor identical, even if they

consist of exactly the same characters! Picture it in this way:

vt Hobbes'  Hobbes'
Just one Possibly many
The other est, squality, uses the message selector =, This is a weaker test than iden-
tity. In rough terms, equality merely measures whether two objects are “indistinguish-
able.” The precise meaning of “indistinguishability” depends on how the programmer
defines it for a given class; thar is, on how the programmer overrides the = method.

O Execute the first two lines, one at a time, and display the last
X := 'Hobbes'.
Y := 'Hobbes'.
=1,

The result, true, tells us that the two strings are agual to cach other, even though
we have just seen thar they are not the same, identical string object. Thus, objects may
be equal—indistinguishable—withour being identically the same object. On the other
hand, identical objects are necessarily equal.

Identity is such a fundamental Smallwalk notion thart if you override the == method
Smalltalk ignores your override.” By contrast, you can override the = method ar will,
Therefore, in your own classes, the definition of equality—"indistinguishability”—is
entirely up to you. As a case in point, Smalltalk’s designers decided on their own defi-
nition of equality for strings, namely that two strings are equal if they contain the
same characters in the same order. But before you override equality in your classes,
read the upcoming section “Overriding equaling.”

6.5 Identity dictionaries

Class Dictionary has a famous subclass named IdentityDictionary. These two kinds
of dictionaries use different rests to determine whether two keys are the “same.” Ordi-
nary dictionaries use the equality test, and identity dictionaries use the identity test.

* Acnually, there is an uncommon way to force your own == method o execute. See the rechnical
aside on page 197,
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What's more, in many Smalltalk products, the implementations of at:put: and at: in
class IdentityDictionary execute faster than in class Dictionary. And identity dicrio-
naries occupy less storage than ordinary dictionaries. When performance marrers,
identity dictionaries may be preferable. But you can use them only if equal keys are
also idenrical. For example, using strings as keys in identity dicrionaries is inadvisable.
Thar’s because most programmers who write code like:

somelictionary at: "Hobbes' put: "17th century philosopher’.

someDictionary at: 'Hobbes® put: 'stuffed tiger'.

expect the second atzput: to replace the value "17th century philosopher’ by "stuffed
tiger' ar the (sole) dictionary entry for "Hobbes'. Ordinary dictionaries indeed behave
this way. If, however, the dictionary is an fdentity dictionary, we know that the two
serings are distinct objects, so thar, contrary to expectarion, a separare second entry
will be creared.

To summarize, almost all identity dictionaries in practical use have keys thar are
cither small integers or symbols. These make suitable keys for identity dictionaries
because for these kinds of objects, equality implies identity. For most applications,
ordinary dictionaries suffice, and they have the advantage of operating reliably for any
kind of key at all.

6.6 Exercise: identity dictionaries

O Explain why this code, executed line by line, produces a walkback:
% := ldentityDictionary new.
% at: "Heidegger' put: 'Difficult existentfalist'.
X at: "Heidegger'.

6.7 Overriding equality

We've seen that developers have the prerogative of overriding the = method as they
please in their own classes (page 74). Those who do, however, risk introducing a subtle
bug into their programs. They will find, for instance, thar objects they add to a sex
may appear not to be there later on. [ call this the “anomaly of the disappearing ele-
ment,” and you will experiment with it in the exercise in the next section.

Here's how the anomaly occurs: sets use hashing vo determine where to insert an
added object, and the default hashing algorithm produces different hash values for
wwo distinct (non-identical) objects. The set therefore tends 1o place non-identical
objects in different positions, which is ordinarily desirable and harmless. But if the
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developer overrides the = method so that the two distinet objects are equal, adds the
first one to the set, then searches the set 1o see if the second, equal one is present,
expecting that it is, he will find thar ir isn’t. Thar's because the ser will begin its search
at a different position, determined by che different hash value of the second object.
The developer’s error was 1o expect the second object to behave as though it were iden-
tical to the first, when in fact it is only equal to the first.

This scenario may seem unlikely, bur it arises in client/server systems, which com-
monly use a proxy for an object to stand in for the object iself. To determine which
proxy stands for which object, the system uses an overridden equality test thar com-
pares a problem-specific darum (like a social security number or other unique identi-
fier) in the proxy and the object. Although the proxy and its object aren’t idenrical,
they are equal because they have the same idenrifying datum. The system then trears
the proxy and its object as though they are the same, which was the purpose for over-
riding equality. But it also exposes the system to the “anomaly of the disappearing ele-
ment.” The different hash results of the proxy and the proxied object specify different
positions for the rwo objects:

aProwy | prowedCtiest
mash hash in ASat
A ‘/
Troubhe!

To prevent this anomaly, whenever you override the = method for a class, also over-
ride the hash method. Whatever the = method compares, write the hash methed so
thart it hashes the same thing. In the client/server example above, if the = method com-
pares a social security number, write the hash method so that it too hashes the social
security number. This ensures that when a set hashes to determine the position of an
object, it will compute the same position for both the proxy and its object.

6.8 Exercise: anomaly of the disappearing element

0 Write a subclass Book of Object with an instance variable isbn and methods set-
Isbn: and getlsbn thac simply set and answer the instance variable. Override the =
method so that it compares ISBN numbers:

= anotherBook
~zelf getlsbn = anotherBook getlsbn
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The following code will construct a library with an initial capacity of 100 hold-
ings, add a holding, then test the library for the holding. Execure the first two lines,
one at a time, then display the last line:

Library := 3et new: 100.

Library add: (Book new setlsbn: '0-671-20158-1").

Library includes: (Book new setIsbn: '0-671-20158-1').

The result, false, demonstrates the anomaly of the disappearing element. (The set
is large enough thar it is stacistically unlikely for the result 1o be true, bur if it is,
adjust the size of the ser.) Now amend class Book so that the anomaly does not occur.

O Once you've solved the preceding exercise, here is an additional wrinkle. An
object’s identity may occasionally change. Perhaps the book has been re-assigned a
different ISBN number. This change affects future searches through the library:
the book will again not be found. Why not?

6.9 Exercise: excursion into Streams

Stream classes are not officially under Smallralk’s Collection hierarchy, bur streams are
sa closely allied with collections thar this chaprer is a sensible place in which to intro-
duce them, Streams do something that collections cannot: a Stream remembers where
it twas. You can work somewhere in the middle of one, go away for a while, and then
continue working on it at the same place you were before. For example, a stream over
a string can remember where you last accessed one of its characters, so thar at any time
you can ask the stream for its mext character. Collections cannot remember where
something last happened o them.

O Predict the resule of désplaying this code:
|stream|
stream := ReadStream on: 'Van Gogh'.
stream next; mext; next; next; next; next.

Natice that the stream remembers its position between next messages.

O One of the most common everyday programming problems is having to construct
a string from various sources of information, then passing it off as an argument o
some distant object. Complete this code sequence:

|string|
string := "You write a few lines®.
Transcript show: string.
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in such a way that exrcuting the sequence will produce this text in the transcripe:

Sunflowers

frises

Starry Night

Hint: When you want your string to advance to the next line, you have litde

choice but to physically advance using the <enter> key on the keyboard. Unfortu-
nately, the resulting code is awkward 1o read and maintain.

It is more elegant to create a stream and incrementally add chunks to it uncil it is
complete. For incremental processing, streams exeel and strings founder. [t is contrary
10 A SIrings narure o grow, since a string has a fixed length.

O To illustrate this approach, reproduce the resule above by completing this code

sequence:
|stream|
stream := ReadWriteStream on: ',
stream cri

nextPutAll: "Sunflowers';
"You write a few messages”.
Transcript show: stream contents.
stream close.

To summarize, if you need to access or add consecutive elements of a collection,
you will have to write code that keeps track of the positional information. Better to use
a stream, which relieves you of this obligation by absorbing the responsibility into its
own behavior.

6.10 Containers versus aggregations

tions and containers share a main characteristic: a bigger thing holding smaller
things. They differ in thar an aggregation is, by convention, a rigid relationship
berween an object and its parts. The makeup of a container, by contrast, is expected
to evolve, with elements taking up residence and departing over time. A telephone,
comprising a handser, a dial, and so on, is an aggregation. So roo is a compiler, com-
prising a lexical analyzer, a parser, and a code generator. On the other hand, a setora
queue is a container, one of whose principal responsibiliries is the comings and goings
of objects within it. Containers should therefore respond to add and remove requests.
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You can verify this property by browsing through Smallealk’s Collection hierarchy and
noticing all the add: and remove: methods.> An object like a telephone for which
pickup and dial, rather than add and remove, are the more apparent behaviors, should
not be designed as a container.

The trouble is thar chis apparent distincrion is somerimes not so crisp. Whether an
object has the rigidity of an aggregation or the plasticity of a container is a distincrion
in degree only. Consider the leaves on a branch. They are rigidly located ar fixed loca-
tions on the branch, yet they come and go from year to year. One could argue that a
branch is an aggregation or a container.

In many situations an object is predominantly an aggregation bue also has contain-
ment propertics. A human body is an aggregation of limbs and organs, yet it also con-
rains blood cells thar are continually replenished. Thar doesnt make the body a
container—you wouldn't define it as a subclass of Collection. It is an aggregation, but
one of the components of the aggregation happens itself to be a container, namely, the
circulatorySystem, which is a container of blood cells. The component of the body,
rather than the body itself, is the container.

Similarly, a class browser, though principally an aggregation of user interface wid-
gets, also conmains the collection of methods for the class it browses. Again, the
browser itself is not a container, but one of its constituentis—its methods instance
variable—is an instance of SortedCollection that contains methods.

Diesigns that resemble these decompositions are plentiful. A body and its circula-
tory system, a browser and its methods, or a refrigerator and its vegetable drawer are
all abjects with many sub-objects, one or more of which is a container object. You will
see several of these designs in this book; they represent a design pattern, the smars con-
tainer, in Chaprer 18,

6.11 Shallow and deep copying

Copying an object sounds straightforward. In facr, it's one of the

subtlest and most trouble-prone areas in object-oriented pro- @
gramming. The essential question arises when an object refers o

other objects. Consider a container. If we copy the container,

what should happen to the elements in it? For an even simpler @
example, su one object has an instance variable v that

|:u|:ui:'|.tf:I 1w a m object and we copy the first. Whar should SO Py

happen to the second?

* In some diabocts, add: and remove: are pure virual (subclasResponsibility) methods in Collection,
reminding us that the subclasses are obligated 10 support adding and removing.
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The question has two possible answers. IF the element or referenced object is also
copied, the copy is deep; if it isn't copied bur instead shared, the copy is shallow:

8 &

As the drawing illustrares, shallow copying is appropriate when you intend o share
the referenced objects. Container objects are usually shallow copied because we intend
to share their contents. In fact, shallow copying is the prevalent (and default) copy in
Smallealk. A realtor, for example, would prefer a shallow copy of the county’s collec-
tion of real estate listings because he can then be sure that he and everyone else is mod-
ifying the same, shared entries. (He'd be even happier to have access to the master
collection itself rather than any kind of copy at all, for then he could also keep up with
deletions and new listings.)

Dieep copying is appropriate in some situations. A Xerox copy is a deep copy
because the copy and the original don't share anything. The copy is a complete done
of the original. Deep copying is also often appropriate for aggregations—a house and
its garage, for example, or a bicycle and all its parts and, recursively, all their subparts,
Two houses shouldn't share one garage, nor should two bicycles share one sear. Aggre-
gations generally retain rigid associations with their components.

There is, however, a gray area berween deep and shallow copying. Suppose the
house has an instance variable for its builder and we intend for copies of the house 1o
share the same builder. Then copies of the house should have both shallow and deep
characreristics. They must be shallow, to share the builder, and deep, 1o replicate the
garage, as well as the kitchen and other rooms. This example illustrates thar the devel-
oper of any class whose objects are likely to be copied must design its copy method in
accordance with the sharing requirements of the object’s instance variables.

6.12 Commentary: value and reference semantics

Smallealk is based on reference semantics. les programming model relies on pointers
that refer one object (or variable} to another. In Smallealk, though you may think of a
bicycle object having a seat object embedded in it, the bicycle object merely has a
pointer o the sear object. Thus, when a message passes argument objects, it is really
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passing pointers to those objects. (At a machine level, little objects like characters and
small integers are passed around bodily and indeed embedded in bigger objects racher
than pointed o by those bigger objects. Bur a Smalltalk programmers conceprual
view is pointer-based; thar is, reference semantics.)

By contrast, C++ supports salue semantics as well as reference semantics. A Cos
programmer may optionally embed a sear solidly into a bicycle. Also, messages fre-
quently pass an object around by passing a copy of the object instead of a pointer 1o
the ul:j:ct. Because of this h:n-l:ltnqr for Ce+ code to copy uhjtcts. Ces ProOgramimers
discipline themselves to think rigorously about whether their copies should be deep or
shallow. Copying demands so much artention in C++ thar each class has a special fea-
wire {a copy comstructor) with which the programmer defines just how copying of its
instances should work. Smallralk programmers tend to be less disciplined in thinking
abourt copy behavior, and get away with it because copying occurs so much less fre-
quently in Smallealk.

6.13 Commentary: containers in C++

C#+ containers are like three-ring binders: they generally hold objects from a single
class {or subclasses of that class). These containers are less flexible than Smallealk’s, but
safer, for any code that aceempis 1o add an object of the wrong class to a C++ container
fails ro compile. This safery comes ar a price, though, because you need o develop a
class of container specialized for each kind of object you intend 1o hold—a SerOf-
Whale as well as a SetOflnteger. A Co+ language feature (templates) simplifies the def-
inition of such container classes, but container libraries in C++ snill tend o be
unwicldy, complex, and difficult to write. The need for fast, robust conrainers has
spawned a cottage industry for container libraries. Sometimes these libraries are called
foundation libraries, 1o acknowledge their essential place in object programming.
Sadly, foundation libraries are sometimes not interchangeable,® because they are often
integrated into larger libraries or frameworks thar provide other services like window-
ing or communications or persistence. By contrast, every Smallealk dialeet includes an
integrated foundation library—the subclasses of Collection. This library cannot be
decoupled from Smalltalk because so much of Smallealk itself is buile using collection
classes,

* Standardization will help. The AMS] Cs+ mandard now specifies a Standard Templare Lifmary
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CRC cards

We now shift from the essential concepts of containers and object identity to a con-

erete design problem, and some techniques to help solve it. After working through the

design here you will, in Chaprer 8, write the Smallcalk code to implement ir.
Probably no object-oriented subject fuels as much debare as object-oriented design

methods.' The question of whart contribures to a good design method is large and inver-

esting, bur not our focus in this book. Rather, | present a simple rechnique thar helps

with one inescapable step in designing an application—discovering classes. This tech-

nique is a simplification of CRC cards, an idea published in 1989 by Kent Beck and

Ward Cunningham. Since then CRC cards, or Class-Responsibility-Collsboration cards,

have been widely used and imitated. (See the commentary ar the end of this chaprer.)
Start with a pile of index

cards, 3x5 inches or 4x6 Cassname

inches, as you wish. (Their paper 9088 hore === “MyClass®

stipulated 4 x 6 inches, bur Kent

and Ward  chemochves  dont e mnes >

agree.) If you don't have index O

cards, tearing up several full

sheets of paper into quarters is

almost as good. On each card,

skerch an instance of an object:

I Also known as methodofagies. Methods is the vrendier, more precise term, bur suffers from already
meaning something ese to object-oniented programmers. Ull use the terms interchangeably, except
where there is risk of confusion,
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Record as responsibilities whatever you think instances of the class ought o be able w
do, the “know-how™ thart instances should have. Record them ar a level of detail you
find helpful. For example, you may first want to deseribe the responsibilities of a traffie-
light object broadly: “Mediate orderly flow of vehicles through an intersection.” Later,
if you're almost to the point of writing code, you might describe responsibilities more
concretely: “advanceColor,” “initializeGreenDuration:,” and so on. Whatever you do,
don't use the cards dogmatically. They are an informal tool, and they should stimulare
your creativity rather than limir it

If you feel unhappy about something you've written, throw away the card and start
again. Cards are inexpensive, and disposability is one of their happiest virtues. In this
carly phase, the price one pays for stupidity oughr 1o be low; the more dumb ideas you
can discard early, the betrer your final design will be. This is an erernal human cruch,
even for the most successful thinkers. Francis Crick, who shared a Nobel prize for dis-
covering the double-helix structure of DNA, said, "[F we deserve any eredir ar all, ir is
for...the willingness to discard ideas when they become untenable”™ [Crick 1988].
The software designer who doesn’t explore some dead ends won't learn much.

Another virtue of CRC cards is tangibility. Designers wave them around for
emphasis, move them as arguments of a message, or arrange them on che table to illus-
trate relationships. This tangibility explains why attempts to represent CRC cards in
computerized tools have been disappointing. Entombing them in a computer, no
matter how advanced the user interface may be, constrains your thinking at a time
when you need to excite your imagination and brainstorm as much as possible. The
time for methodical thought comes larer.

7.1 Design exercise

W Use CRC cards o design a simple personal-compurer application thar could keep
track of a checking account. Transactions should be retained in a log or register,
and ordered by dare.

Remember to explore competing alternatives and throw away cards that are
least promising. In the next chapter you will write the code for this exercise, so
keep the design simple—don't get bogged down in all the detiled kinds of daa
that a full-blown application needs, and don't go overboard into extensions like
on-line checking. Aim for a range of rwo to five cards. Finally, remember the lesson
in Chapter 6: containers are essential participants in almost every object-oriented
design.
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7.2 Solution and discussion

If you have trouble getting started, try looking for nouns and verbs in the problem
description. Nouns are candidates for objecrs, and verbs are candidares for responsibil-
ities or methods, This is a suggestion, not a general rule, (For example, in Chaprer 15,
verbs will #fe be excellent candidares for objects. Design always depends on the prob-
lem at hand.)

From the problem statement, these nouns are promising: account, log, transaction,
and date. We know from our earliest glimpses of Smalltalk that class Date is already
available in Smallialk. Let’s concentrate then on the other three classes, beginning with
some plausible responsibilities for them:

Transacticn
Ko date
Aecoust & amount
transactions C}
Koeps (0
al  HKnows
Ishlanc
Liog
Maintain
gort ordar
O
Accept & contaln
Iransachions

Mthuu.gh account balances and transaction amounts are not l:xplil;it in the pmb—
lem statement, they seem like unavoidable elements. On the other hand, I've chosen
to omit a host of ancillary elements—account number and description, check num-
ber, payee, memo—on the grounds that they would contribute little 1o understanding
the essential object interactions that we are after. Adding such informartion would be
straightforward and accurate but distracting. Mote that I've overlain the edge of the
Log card on the Account card 1o emphasize the dose collaboration implied by the
responsibility, “The account keeps a log.”

So far, the rransaction objects are bland. This is abour 1o change. The logs chief
responsibility—sorting—recalls a class we worked with in Chapter 6 with exactly this
responsibility. That class was SortedCollection (page 71). Thus, rather than defining
a new Log class, we will reuse the SortedCollection class. Remember char a sorted col-
lection object sorts the objects added 1o it, provided thar its sortBlock makes sense for



7.2 SOLUTION AMD DISCUSSION BS

the objects. The default sortBlock assumes that the objects understand the <=
method. Thar's why integers and their kin are all automarically sortable. To ensure
thar transactions are sortable via the defaule sortBlock, they roo must be comparable
via <=, Therefore an additional responsibility for the transaction card above is, “Com-
parable 1o one another.”

With an eye toward eventual implementation, we can summarize our observations
with a more derailed, Smalltalk-biased version of the cards:*

The dashed lines around SortedCollection indicare that it doesn’t warrant a new card
or class because, like Darte, it is already present in Smallealk. Thar leaves just two
classes to write, Account and Transaction. The kinds of objects the methods expect as
arguments, omitted from the drawing to reduce visual clurrer, are:

* handleTransaction: a Transaciion

initial Balance: an/wreger

* initialAmount: anfureger dave: aDare

* <= gnother Transaction

* add: a Transaction

* remove: a fransaciion

where aninteger represents a monetary amount, such as dollars.

* Spelling our scrual method selectors departs from the responsibiliy-based spirit of pure CRC cards.
Wi are shanring the design toward Smallalk, and also blumring the distincrion berween “whar™ a
class does and “how™ it E]kiil. But a lirtke help with method names now will help you write che
code in the next chapeer.
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Mow we turn to relationships like inheritance and aggregation. Inheritance is irrel-
evant for the classes in this design, bur aggregation marrers. The usual way 1o imple-
ment “knowing” and “keeping” responsibilities of a CRC design is to define instance
variables. Thus, for the responsibility, “An account knows its balance,” define an
instance variable in Account named balance o hold the account’s current balance.
And for an account to “keep a log,” define an instance variable log, which will refer 1o
a sorted collecrion. Similarly, because transacrions “know”™ their amounts and dares,
they ought to have instance variables amount and date.

Whart about the log’s responsibility for “containing transactions™ Since we intend
to reuse class SortedCollection, which Smalltalk has already implemented for us, we
don't really have to worry about the derails for discharging this responsibility. (Here,
nevertheless, is an aside abour the internals of containers like sorted collections. A con-
tainer cannot practically describe each object in it by an instance variable with a name,
A Smallealk container therefore has an unspecified number of smmarmed instance vari-
ables, and the number of such variables appears to increase or decrease as one adds or
removes objects to or from the container.)

If we enlarge the insides of our objects to emphasize instance variables (and the
“knowing,” “keeping,” and “containing” relationships they imply), our cards suggest
this arrangement of objects:

Although 1 have said little about the “collaboration™ part of CRC cards, you can see
that instance variables impart collaborative relationships o a design.

The progression in this section is more orderly than you should expect from real,
large-scale problems. Experienced designers working together on large problems will,
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at times, shulffle dozens of cards as fast as they can seribble notes on them; between the
frantic scribblings will be lulls consisting of hard thinking and discussion. The crude
product of all this efforr evenrually needs to be rewritten with more thoughrful and
lucid wordings, 1o communicate the ideas 1o developers who weren't present for the
session.

7.3 Common questions and answers

There is little chance that everyone who tries the problem above will arrive at exacily
the same conclusion along exactly the same path. Some of the common deviations are:

1

Why not use plural names for classes, like Accounts and Transactions? The shor,
irrefutable answer is that it is a convention among object-oriented designers to use
singular names for classes. Bur another answer, subtle but important, is that using
a plural name suggests a collection, and we wouldn't want to mislead anyone into
thinking of a class as a collection. The preferred way to think of a class is as a fac-
vory {Chaprer 2).

Why not subclass Account (Checking, Savings,...) and Transaction (Check,
Deposit, ...)? These extensions would make the design more realistic. It is never-
theless almost always better vo master the simplest form of a design first, and save
the embellishments for later. One danger in enriching a design too carly is in
making it so rich that developers never implement it. This is a frequent cause of
failed projects. Better to have accomplished something simple than nothing at all.
(Our solution is so simple that our mechanism for distinguishing deposits from
checks is 1o use a positive transaction amount to denote a deposit and a negartive
one 1o denote a check or debir. It is simple enough that you will be able write the
code for it in one sitting, )

Why not make transactions responsible for “processing themselves™ This is an ac-
ceprable alternate design, consistent with the term “transaction,” which computer
professionals define as a “unit of work.” On the other hand, home users of this
kind of application Feel thar a rypical transaction like a check is relatively inert,
and that accounts are the center of activity. I've deferred 1o the users viewpoint
rather than the profesional’s.

Where should you record class responsibilities or methods on a CRC card? Good
question. Methods like new don't belong in the picture of an instance because an

instance doesnt understand them. Only the class understands them. If they are
worth capturing, | generally scribble them in the upper-right corner of the card.
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In addition, you can prefix them with a special symbeol, like a § as in some nota-
tions [Rumbaugh et al. 1991].

5 Can we shift the responsibility for comparison from the transactions to the log?
Yes, this is an atractive alternative. In the present design, the log does not know i
contains transaction objects; it assumes only that the objects it contains respond
to <= messages. Removing the <= from Transaction implies thart the log (a sorted
collection) must assume more knowledge of is contents. The logs sortBlock
must now retrieve and compare the dares from the transactions. To specify such a
sortBlock, send the message:

log sortBlock: [:tl :tZ| t1 getDate <= tZ getDate].

This log doesn't entrust comparison to the transactions; instead it compares their
dates iself. The same idea can be used 1o sort the transactions by other eriteria, like
amounts, Just updare the sortBlock by sending the message:

log sortBlock: [:tl :t2| t1 getAmount <= t2 getAmount].

7.4 Commentary: analysis, design, and implementation

Methodologists often partition software development into three phases: anafysis (Fully
expressing the application’s requirements in a vocabulary comprehensible to users),
design (determining software structures to solve the problem), and implementarion
(renderi ng the dﬁign ina 5pﬁ;iﬁr.; unpn:m['mg environment and computer langLu.g:[s]-]-.
Each phase is, in effect, the “how” of the preceding phase’s “whar.”

Unfortunately, one person’s “what” is another’s “how,” and so the phase boundaries
blur unavoidably. Is deciding how to make “an account have a log™ the act of designing
or the act of implementing? (You could define a log instance variable in class Account,
as weve done, or you could add a single entry 1o a dictionary whose keys are account
objects and whaose values are logs. The dictionary is overkill for the small personal sys-
tem we studied, bur it may be more artractive in a distributed computing environment
where account information—like name, number, PIN—and transaction histories may
reside on different computers. As you weigh these two alternatives, are you designing
or implementing?)

Even the level of abstraction—design or analysis—you ascribe to the relationship,
“an account has a log,” is inconclusive. Mothing precludes a relationship from appear-
ing at two levels of abstraction. Indeed, in object-oriented methodologies, objects and
their relationships generally endure from one phase to the next. Despite the inherent
ambiguities, it is still customary to try to distinguish among analysis, design, and
implementation phases, Thus one uwsually ascribes the responsibility cards in the
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diagram on page 84 to the design phase, and the prescriprion of Smallealk-style
method names in the diagram on page 85 1o the implementation phase.

Rigid progressions from analysis to design to implementation, historically known
as “waterfall” models of development, are our of vogue, Problems can rarely be fully
understood until afrer users have examined a prototype. Nothing will expose more
misunderstandings or fuzzy analysis or elicit more feedback than a working mock-up
or prototype. For this reason, current design or analysis methods almost always
:mph:lsizc “splir:ll'l or “iterative’ d:v:lnp:m:nt. which cxplicitl)r ac]tnuw]cd.g: that what
you learn from downstream phases induces rework of upstream phases,

The greatest shortcoming of CRC cards is also their greatest strength, namely, cheir
disconnection from the biases and constraints of actual computer systems, They pro-
voke discussions, bur they leave lirte trace of these discussions. The cards fall our of dare
and are eventually lost, along with the ideas and associations they once engendered. OFf
course, a project is obligated to preserve as much of value as possible from those carly
CRC discussions. The prevailing schools of thought for solving this documentation
problem are to: (1) produce compurerized diagrams thar illustrate the analysis or design,
supplemented by text, (2) write thoughtful comments embedded in the code, or (3)
combine these. There has never been a completely satisfactory solution, even before
objects or CRC cards, and each project must set and enforce a suitable policy.

Any policy must rely heavily on the names and comments of methods. Thar's
because these are praciically the only development artifacts (along with dlass names)
thar are relevant and meaningful 1o everyone on the project—analysts, developers,
testers. Everyone can understand them, and if anyone changes them, everyone else can
understand the changes. Class and method names therefore constiture 2 common lan-
guage for sharing the conceprual model (page 144) of the problem. A coneeprual
model that people do not have to translate for one another is a side-effect of a success-
ful object-oriented project.

Good analyses and designs also trear the dynamic behavior of a system—thar is,
sequences of messages among several interacting objects. CRC cards promote rudi-
mtntar}r ﬁ:l"'l'l!- Df Ei.}l'l'lll'l'lil: dll.'ilgl'l I:H:ﬂl.lﬂ:‘ tI'IE E‘E'I.I'ds can I:h'.' H':H"EI:I :Illﬂllt ﬂl'ld at one
another while enacting scenarios, but one must again wrn elsewhere to document the
knowledge =0 acquired. More on this subject in Chaprer 10.

The original CRC cards [Beck and Cunningham 1989) had two columns of vexr,
the first listing responsibilities and the second collaborarors; thar is, classes on which
the current class depends to fulfill its responsibilities. Variants abound, however. The
simplification in this chaprer, underplaying the collaborators, is among the least
orthodox. Whether as part of using CRC cards or another method or at a later stage in
design, the developer must think through collaborating classes. Rebecca Wirfs-Brock's
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“responsibility-driven design” methedology follows the original card formar, but also
documents superclass and subclasses on the card, and suggests thar collaborators be
grouped with the responsibility they support. Her use of cards does not emphasize
their physical manipulation, however. Her book [Wirfs-Brock et al. 1990] is a good
source of larger CRC examples than this chaprer’s, and is also one of the standard text-
books on object-oriented design and analysis, Ochers include those by [Rumbaugh
eral. 1991; Booch 1994; Jacobson er al. 1992; and Coad and Yourdon 1991].

Last but not least, failure as a necessary element of good design is the theme of

[Petroski 1985]. He examines engineering failures, but the underlying principle is uni-
versal.



CHAPTER 8

Exercises—Implementing a design

You now have the basic skills to begin developing Smallealk applications. Your first
application will be a prototype of the application we designed in the preceeding chap-
ter. Rather than spell our every detail of the implementation, I'll just guide you
through the mileposts and encourage you to think through the details. As you know
by now, Smalltalk programmers explore a lot as they develop applications, so you
should expecr to explore and experiment as you proceed. Allow about three hours for
this chapter.

8.1 Create the classes

O First create a new application for the work you are about to do.
0 Then create both classes Account and Transaction.

O Define the instance variables for these classes. To review the appropriate instance
variables, look ar the figure on page 86, and to review how to create classes and

instance variables, review your work in Chaprer 4.

8.2 A test case

A good way to stay honest is to write a method you can use as a test case.

O Create a closs method named example for the class Account. [t won't make sense to
execute it yet, since none of the methods it invokes exist.

M
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exampl e
"Test by executing:

Account example inspect

|account transaction|

agccount := Account newBalance: Z2500.

transaction := Transaction newAmount: -30{ date: Date today.
account handleTransaction: transaction.

*account

This test uses class {factory) methods to create an account and a transaction, pro-
cesses the transaction, and returns the account. The reason for so much whire space in
the comment i5 to make Account mmph: Inspect an ¢asy target for highlighting with
the mouse and executing. You can execute the method while you are browsing i,
instead of having to move over to the Transcript every time you want to run a test.
Mot essential, but a convenient trick. Also nortice thar unlike most other new methods
you've seen, the methods for creating new instances of Account and Transaction above

CXPECT ATgUMeEnts.

8.3 Write “new” methods

O Because you will be creating new instances of both classes in the application, write
a “new” method for Account and Transaction. Remember thar these are class
methods, not instance methods. Heres an cmmp]t of the method for class
Account:

newBalance: anlnteger
"Answer a new instance of the receiver with balance anlnteger®
~zelf new initialBalance: anlnteger

Motice that you will also need an instance method named initialBalance:.
By the way. you dont have to use names with “new” in them, like newBalance:,
although it is common to do so for class methods thar ereate new instances of the elass.

8.4 Write instance methods

O Prepare instance methods for the classes Account and Transaction, according 1o
our design. Refer to the CRC cards on page 85.
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The <= method often puzzles beginners. Remember that the design assumes that
transactions are smart enough 1o compare themselves with other transactions, for
which they need the binary method <= in class Transaction, like so:

<= anotherTransaction

"Answer true 1f my date is before anotherTransaction's date,
false otherwise®

But how? The code must explicitly compare my (the receiving transaction’s) dare with
the date of the erher transaction. How do [ access the inside of amather object? Thart's
the basic prohibition of encapsulation: I can't. [ can obrain the informartion only if the
other object has a method thar obliges. Thus transactions must also support a method
of the form:
getDate
“date

8.5 Test your solution

MNow run the test case by execuring Account example inspect (or equivalently, inspecr-
ing Account example). An inspector window should open on an account, bur if some-
thing goes wrong, like getting a walkback, use it as an opporunity w practice your
debugging skills. (Review the exercise on page 57 if necessary) Once you have an
inspector window on an account, verify that it holds your transaction. You can do so
by denble-clicking on the entries in the inspector; this action opens another inspector
on whatever you double-clicked. By repeatedly double-clicking, you can drill down
and examine the account’s log, any transactions inside the log, and dates and amounts
inside the transactions.

This first test was too simple to thoroughly test your code—one transaction
doesn't make for an interesting sort. Wrire another test case, example2, similar to the
first, burt thar handles at least two additional transactions with different dates. You can
produce different dates in several ways: look through the class methods of Date or
review your work with dates on page 56. Run example, and double-click through
inspector levels to verify that the log contains all your transactions, and that they accur
in chronological order.
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8.6 Engineering discipline

The Smalltalk environment, dynamic as it is, encourages programmers to try changes
quickly, sometimes at the expense of sound engineering practices. For example, unless
cautioned otherwise, many students modify example directly instead of writing an
additional example2 and keeping the original example for regression resting. Make it
a practice 1o think twice before discarding any test case. Old test cases are one of the
best ways to ensure that you haven't introduced unwanted changes to your code. Lest
you fear having to retype or copy-and-paste test methods, notice that by merely over-
typing the first line of a method and saving (compiling), you create a new method—
different name, same code. Using this technique, you can effortlessly create a clone of
the original and then proceed 1o modify the clone as much as you wish, Thus, you can

rerain the original until you consciously want to purge ir.

8.7 A minor variation

Some people prefer a solution in which the account object irself builds new rransac-
tions and processes them, so that a test method contains CXpressions like:

account transactionfmount: -300 date: Date today.

O Prepare a test method in this spirix, then implement the variation by writing the
instance method transactionAmount:darte: for class Account. This method will
contain just one Smalltalk expression, and you need not write or modify any other

methods.

8.8 "“Private” methods

In Smalltalk’s early days, a method was deemed privare if it was to be invoked only by
other methods in its same class (or subclasses); a method was padlic if it could be
invoked by methods from other classes. Private methods were for use only by the pro-
grammer who was developing the class in question. Programmers working on other
classes were not to invoke them. With this understanding, the owner of a class could
rewrite it, revamping the classs privare methods ar will, as long as the public methods
rerained their names and functions.

In the last few years, many Smallealk programmers have relaxed the interpretation
of a private method. They now sanction invecations of a private method not only
from the same class but also from closely cooperating classes. Privacy has evolved into
an understanding within a subsystem or framework of classes rather than within an
individual class.
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In some Smalltalks you indicate that a method is private simply by adding the
word “private” 1o the method’s comment. Other Smallwalks have enhanced browsers
that ler you earmark a method as private, either by placing it in a special category or
by means of a button thar toggles berween a list of all privare selectors or all public
selectors.

In all cases, though, designating a method private is only informational. Unlike a
C++ compiler, the Smalltalk compiler has no way 1o determine whether a method
your code invokes even exisis, let alone whether it happ:ns to be private. Therefare
your code can freely invoke any method you like, private or not, even though the
author of the method may have intended otherwise. In short, Smallealk privacy is a
recommendation only; it is not enforced.

U Browse through some Smallaalk classes and find some private methods.

O Which methods in your checking account solution ought o be marked privave?
Make them private by pulling down or popping up the Methods menu and select-
ing Change public/private,

8.9 Commentary: getters and setters

Simple methods like getDate, which merely return an instance variable, are called
“gerter” methods. Smallealk stylists usually write gerters more economically like this:

date
“date

This style is nor ambiguous, in spite of how it may appear: the first date is the method
selector and the second is the instance variable in the transaction object.
The opposite of a getter is a “setter,” with a selector like setDate: or simply date:.
The method would be written:
date: aDate
date := aDate

Gerers and serters (together called accessor methods) are common, pedestrian
methods in object-oriented programming, bur take care not to overuse them. Writing
a public getter and setter for every instance variable violates the spirit of encapsulation,
because it announces thar any other object may access the instance variables.

O the other hand, one stylistic school of thought recommends that you write pri-
vate gerters and setters for every instance variable. The object itself should access its
own instance variables anly by invoking the getter and setter methods, never directly.
This convention makes the design less britde. For example, imagine thar you decide
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later to move information that is now in an instance variable 1o an entirely different
object. Without a getter and setter, every method thar touches the instance variable
breaks. With a getrer and setrer, only the getrer and serter methods must be rewritten.

For a discussion of this and other Smallaalk coding conventions and their ration-
ales, see [Skublics et al. 1996].

840 Summary

In the exercises of this chapter you produced a complete working application, however
small or artificial. By this | mean thar all the application logic is there, and it executes
correctly. But you have probably noticed thar the windows and buttons and scrollbars
that people have come to expect of Smalltalk applications are absent. Your application
has no user interface to speak of.

This absence is no accident. As you will see in Chapters 11-13, serious object-ori-
ented developers work hard o separate their user interface code from their application
logic. When we designed the checking account application in Chaprer 7, we concen-
trated solely on the application objects, not a user interface. Windows come later.



CHAPTER 9

When (not) to inberit

Now that you have worked through serious Smallralk code, we return 1o conceprual
challenges. In Chapter 2 I suggested that aggregation and inheritance are indepen-
dent, separable ideas. [n fact, they are not so independent, and for some problems it is
difficult to decide which of the two to apply. This chapter exposes the tension between
them. (Further discussion appears in Chaprer 14, on polymorphism, and in the com-
mentary on page 255.)

91 Historical background

In recent years, inheritance has received much more artention than aggregarion,
mostly as a macter of fashion. Aggregation is the older facer of programming life. Pro-
grammers have used it for decades, so unwirtingly thar they never bothered to give it
a glamorous name. In Pascal, an aggregation looks like this:
type Flight = record

gate: integer;

terminal: char;

onTime: booleéan

END;
and in C, like this:
struct Flight {
int gate;
char terminal;
int onTime;

H
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Both samples express the idea of composing an airline flight from three constitu-
ents. Of course, nowadays the flight and it constituents are all likely to be objects, but
the underlying idea is still aggregarion. In Smalltalk, one would have:

Object subclass: FF1ight

instanceYariableNames: 'gate terminal onTime'

MNorice the disappearance of type informarion in the Smallralk code fragment. This
absence is not a characteristic of object-oriented programming in general, bur of
Smallealk in particular. The Ce+ version looks much like the C version, including the
type information, with the principal difference being the word class instead of the
word struct.

9.2 Inverting hierarchies

With inheritance as well as aggregation in our vocabulary, the porential complexity of
a design doubles. When a language gains power, it also presents opportunities for con-
fusion. Consider this innocuous aggregation:

Face

Maouth

Tmilguu

I suggest that by inverting this aggregation, I can produce a legitimate inheritance
hierarchy:
Tongue

I
Mouth

Face

Here's my argument. According to the discussion of inheritance in Chaprer 2, we
agreed to the rule of thumb that instances of a subclass have more properties than
instances of their superclass. Mouth, then, should be a subclass or special kind of
Tongue, because a mourh is a rongue embellished with reeth, gums, and lips. Even
more striking, Face should be a subclass or special kind of Mouth because a face is a
mouth plus lots of additional properties like eyes, nose, ears, and cheeks. A face even
does n':r]rthinga mouth does (it eats), and also sees and smells and hears. This an:ll}rsis..
preposterous as it sounds, is completely consistent with the definition of inheritance.
Nothing in Smallealk or C++ prevents you from designing and implementing a class
hierarchy in this way.
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Hence the dilemma: should these dasses be designed using aggregation or inherit-
ance? In this case, trust your intuition. Although ic's entirely possible 1o use inherit-
ance, thinking of Face as a special kind of Mouth just isnt intuitive. And whar isn't
intuitive to the designer is unlikely to be intitive to other programmers who will use
the design. The essence of programming objects is the cognitive economy they prom-
15¢; 2 good design reduces mental ranslations. This observation alone justifies design-
ing a rongue as part of a mouth and a mouth as part of a face.

But we are not ready to dismiss the example yet. The decision may not be so clear
in other languages. Smalltalk supports single inbericance—each class has exactly one
immediate superclass. Other languages, like C++, support maltiple inheritance, where
a class can inherit from several immediate superclasses, Designers using these lan-
guages sometimes employ a technique called mie-ins. Mix-ins are simple classes like
Mouth and Nose that are used as superclasses for creating more complicated sub-
classes like Face. The subelass gets its properties and behavior by inheriting from as
many mix-in superclasses as it needs. Thus, Face could inherit from borh Mouth and
MNose. Motice that although mix-ins clearly rely on the inheritance mechanism, the
designer is thinking of composition or aggregation—building an aggregate object like
a face from components like a mouth and nose.

9.3 Buy or inherit?

The problem in the previous section illustrates one of the most characteristic object-
oriented design quandaries, thar of buying versus inberiting. To buy an object is simply
0 acquire one for use, often h}- :wtinn- B.r.:f s a simph:.. evocative word, to my
knowledge first used in the context of programming objects by Bertrand Meyer
[Meyer 1988]. (You can also use the stuffier synonym, compose.)

In the preferred design above, class Face buys class Mouth, We implement this
design in Smallealk by defining an instance variable in the Face dass that will refer o
a Mouth objecr:

Object subclass: #Face

instanceYariableMames: ‘mouth ...°

The method thar initializes Face will include a statement like:

mouth := Mauth néw.
If, instead of buying a mouth we wish to inherit it, as in the less desirable design, we
would have:

Mouth subclass: #Face
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These two designs represent the full range of options open to the designer. There
dre tiwe technigues an abject-oriented desigrer can use to access a classt bebavior or proper-
ties: buy or inberit. If you like what you see in class Y and want to incorporate it into
class X you must either buy from Y or inherit from Y; these are the only ways o give
X direct access to Y. (Indirect relationships are another matter: see the discussions on
many-to-many relationships on page 217 and lawyer objects on page 233.)

This is a bold claim, but it is entirely consistent with your experience. Every direct
relationship you've designed or seen so far either buys or inherits. For example, in the
checking account exercise in Chaprers 7 and 8, the Account class boughr a SortedCol-
lection to use as its log.

9.4 Exercise

Remember that in Smallalk, class Collection is an abstract class thar is a superclass of
many subclasses with continer-like properties. One of these subclasses is Ordered-
Collection. An instance of OrderedCollection maintains its elements in relative posi-
tions: it has a first, second, ... and last element. [t has methods thar remove or add 1o
cither end of it. Thus, it resembles an array whose size may grow or shrink. For this
exercise, we care most about the methods thar stretch or contract from the far end,
namely addLast: and removeLast.

O Design a Stack class. Because class OrderedCollection already offers stack-like
propertics, you will want to exploit OrderedCollection directly. Skerch a solution
that buys, then 2 solution that inherits from Ordered Collection.

9.5 Solution and discussion
Here's a design for buying an ordered collection:

Smck OrderpdCollection —————

initialye
MG
- O
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The instance variable oc enables the stack to access the ordered collection it is buying.
The essential methods for a stack are push: and pop. Their code buys an appropriate
method from the ordered collection, simply by forwarding the request across the
instance variable. Thus for pushing:
push: anDbject
oc addLast: anQbject

And for popping:
pop
of isEmpty
ifTrue: [ “nil ].
o¢ removelast
{The first statement prevents a walkback in case someone tries to pop from an empty
stack.) Initialization sets up the instance variable to point o a valid ordered collection:
initialize
oc == OrderedCollection new

Conrrast this with a design for inheriting instead of buying from class Ordered-
Collection:

Because we're not buying, there's no instance variable to forward requests across. And
because we are inheriting, the stack inherits the addLast: and removeLast methods
from its superclass. The stack # an ordered collection; thar’s whar inheritance means.
Thar’s why the drawing shows only one object. The code for push: is therefore:
push: anQbject
self addLast: anlbject

The only difference from buying is that self receives the message instead of oc. In facr,
self is the one and only object available for receiving messages.

The code for pop changes in the same small way. And the initialize method disap-
pears, because there is no instance variable o set up.
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9.6 Conclusions

Either technique, buying or inheriting, works. Inheritance generally yields a smaller
solution. In the example, inheritance lets us dispense with the initialize method, as
well as the oc instance variable. The net saving in this small example is only about two
lines of code, but it still illustrates the general rule that inheritance saves code.

Anather consequence of inheritance is tight coupling: inhentance couples the sub-
class 1o its superclass so tightly that absolutely everything that applies to the superclass
also applies to the subclass. Whether this coupling is desirable or not depends on the
situation.

In our example, right coupling would be undesirable. [t would imply thar any of
the dozens of MESSAZEs that make sense for an ordered collection would also make
sense for a stack. That’s much more than we bargained for; it is treacherous for a stack
to respond to OrderedCollection messages like at:put: or removeFirst. A trustworthy
stack ought to respond only to messages push: and pop. Thus, to prevent subversive
messages in Smallealk, the designer must buy instead of inherit. Thar is whar che first
solution showed: buying safeguarded the stack from responding 1o OrderedCollec-
HON MESSAges.

Inheriting, thereby rightly coupling two classes, is a long-term commirmenr,
because as the software ages and undergoes maintenance and enhancements, any
changes to the superclss will automatically reflect into the subclass. Again, whether
this commitment is desirable or not depends on the situation. The designer must con-
sider not only the economies of coupling the classes, but whether users of the classes
expect them to evolve in tandem. Do they expect public methads added later in the
superclass to be relevant for the subclass too?

In our example, it is unlikely thar enhancements to the public protocol of
OrderedCollection will ever mater for stacks. Stacks should mer do much besides
push and pop. Thus, subclassing Stack from OrderedCollection confers no mainte-
nance benefit and may even deceive users of stacks into expecting more similarities
with ordered collections than they should.

For this exercise on stacks, then, software engineering considerations militate in
favor of buying. The modest code savings from inheriting Stack from OrderedCollec-
tion aren't worth the reliabilicy and maintenance implicarions.

The buy versus inherit decision is a fundamental activity in object-oriented design.
Initial intuition is often valid, but you should weigh the trade-offs—(1) code redue-
tion, (2) subversive superclass messages, and (3) maintenance—summarized in this
table:



9.7  COMMEMTARY: MULTIPLE iNMERITANCE 103

Buying Inheriting
(Selectively access (Aceess all methods
methods of and instance variables
another class) of another class)
Code bulk More Less (good!)
Subversive superclass Preventable (good!) Possible
S i
Maintenance Evolve independendy Evolve together
{loose coupling) {right coupling)
Familiarity with Less More
the superclasss internals

The last row in the table indicates the degree to which the developer will have o
study a class before buying or inheriting from it. Buying requires less familiarity with
the internals than inheriting does. For this reason, buying is sometimes known as
black-box rense and inhteriting is sometimes known as wihite-box reuse.

The wable is not the last word on the buy versus inherit dilemma. We will discuss
a powerful reason to inheric—polymorphism—in Chaprer 14. Also, the commentary
on page 255 summarizes buy or inherit decisions in the context of object-oriented
frameworks.

The situation in other object-oriented languages is not as clear as the rable sug-
gests. Co+ designers use inheritance more than Smallalk designers do, partly because
it is their only means of expressing polymorphism, bur also because the C++ language
has facilities that can limit the wheolesale inheritance of superclass features. Because
Smallralk has no such facilities, Smallualk designers must heed the cautions above.

If in doubt, consider buying. MNovice designers tend to overuse inheritance; experi-
enced ones make an effore to buy: As a rule of thumb, buying is less britte than inheriting.

9.7 Commentary: multiple inheritance

Multiple inheritance (page 99) is a powerful facility of some object-oriented lan-
guages. What do you do if your language (Smallealk) doesn’t support it? According 1o
the principle spelled out in this chapter, only one choice remains: buy. [FX and Y are
two classes from which you would like a class C to multiply inherit, and Smallealk lim-
its you to singly inheriting from just one of them, then you will have to buy from the
other.
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The difficulty is thar you may really want to inherit from both X and Y. Thar is,
you may really want C to behave as though it were both an X and a Y, which means
that C should respond automatically to all the same messages that X and Y do. Inher-
itance has this automartic property. But buying doesn't. In this situation buying is
therefore a poor substitute, Smalltalk is not adept ac simulating multiple inheritance
to the degree thar would sarisfy a Ce+ programmer.’

The argument over multiple inheritance isn't complerely one-sided. s detractors
argue that it leads to problems thar require complicared linguistic rules ro resolve, and
tl'lﬁl: LII'IFﬂI'tIJI'IIt‘I: PmbI'I:I'I'IS QOO S0 Eﬂml’l’lﬂl’ll}" as oo cnum‘trha]am:t its I}I:I'IEFIL Here
is a simple illustration of a problem known as repeated inheritance, so called because a

class will inherit more than once from another dass.

Certain television programs mix dramarizations of TVShow
historical matter with archival ducuml:nt:lr}' ﬁ:ml.‘ﬂ.g-: o ’,.-"" ""-.\
produce docudrmas. A multiple inheritance hierarchy Drama  Documentary
for this situation is shown on the righe. N

Consider an instance variable defined in class DocuLlena

TVShow for the shows director. Classes Drama and
Documentary cvidently inherit this instance variable, Class DocuDrama thus stands to
inherit two directors, one from each of its superclasses, which would be an artistic nighi-
mare. We would prefer that DocuDrama inherit just one director instance variable.

Omn the other hand, consider another TVShow instance variable, duration. Classes
Dirama and Documentary again inherit this instance variable, but now we may prefer
that DocuDrama inherit two copies of the instance variable, so thar it can separately
capture the minutes of dramatic material and the minutes of documentary marerial.

To amtempr to accommodare either possibility—sharing some multiply inherited
instance variables and replicating others—languages that support multiple inheritance
introduce additional, complicating facilities. For the deuails, see Ce+'s wirtual buse
classes [Stroustrup 1991] and Eiffel’s renaming [Meyer 1992]. In short, multiple inher-
itance adds power to a programming language, but at a cost of complexiry.

Here is a closing historical curiosity: multiple inheritance appeared briefly in
Smallcalk-80, butr was withdrawn because the benefits were deemed insufficient w
compensate for the ensuing complications,

' Buying may not substiute for inheritance, bur what about the converse: can inheritance subssirure
for buying? Rarcly in Smallralk, bocause of the reasons discussed in Section 1.6, It nurms oul though
that Ce+ supports a form of inheritance calbed privete fmberitance that resembles buying much mone
than Smallialk’s inheritance does,



CHAPTER 10

Use cases and dynamic
relationships

Unril now, we've concentrated on the staric relationships in an object-oriented appli-
cation—aggregation, inheritance, the methods and instance variables of an object,
and the like. The dynamic relationships—ithe order in which methods execure, the
births and deaths of objects and their interactions during their lives—are just as cru-
cial for understanding a design. These are the relationships that weave the objects
together to actually do something. Without them, an object model (or object analysis
or object design) is as empry as a ghost rown.

Long before the dawn of objects, software engineers knew that dynamic relation-
ships were important. They used diagrams they called “flowcharts™ o represent the
idea. Two decades of object-oriented programming passed before anyone thought to
introduce the same idea into an object-oriented design method. (See the historical
commentary on page 114.) Nowadays, finally, dynamic relationships are a standard
feature of all the major object-oriented design methods.

101 Interaction diagrams

A nse case, as coined by lvar Jacobson, is a scenario involving a user and an applicarion.
In his words, it's “a behaviorally related sequence of transactions in a dialogue with the
system’ [Jacobson et al. 1992]. Mow, this definition may make sense to a computer
scientist, but it's a little esoteric for non-technical people. And non-technical end users
are usually the people who are supposed to help us understand new problems by
describing their use cases. Therefore | like to use 2 more accessible definition, like “an

105
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activity or task that the computer can help the user perform.” This wording is simple
enough that it won't stand in the way of a meaningful dialogue berween computer

professionals and computer users.

An example of a use case is, “Ask an Automared Teller Machine for the balance in an
account.” A detailed rendition of this use case might be, “The customer inseres his card,
the machine prompis him for a PIN...." Textual descriptions like these can be cumber-
some or vague, so the designer may choose to skerch an inveraction diagram like this:

915 i
&) — —
cus userinierdaceConirol account verifier
Insgapr] cand
PN ploaseT
Rl R
FlM=455T
+ PIN valid bor dasrd?
g yos
.
Do what'*
R il
quiy Balanc
* el balarcs
——iir
$836
‘balance = S83& ||*- - ""°°" |
- ---------r

Each vertical line represents an object (labeled ar the top of the line). Horizonral
solid arrows represent messages and dashed arrows depict the object thar a method
returns. The vertical boxes illustrate the duration of each method. Notice the time
dimension. Thar is whar differentiates these interaction diagrams from picrures of
class hierarchies and aggregation relationships.

Interaction diagrams illuminate dynamic behavior better than any static picrure can
hope to do, just as flowchares and dataflow diagrams did for earlier, pre—object-oriented
methodologies. As a rule, whenever a design seems fuzzy in your mind, pause (don't
write code) and examine its dynamic structure with use cases and interaction diagrams.

Concsirrency warning: Nothing is concurrent abour these interaction diagrams, nor
is object-orientation inherently concurrent. In particular, nothing in the Smalltalk and
C++ languages has anything to do with concurrency. This news comes as a surprise to
many newcomers, because the terminology of objects emphasizes messapes, a word that
conjures up numerous senders and receivers communicating simultaneously. Concur-
rency is possible in Smalltalk and Co + as well as most other languages, but not because
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the languages support it directly. Instead, you have to go outside the language by call-
ing operating system services. For example, you can use UNIX forks and semaphores
or create 0512 threads from either C++ or Smallealk.!

In interaction diagrams like the one above, what may appear o be concurrently
executing threads or processes (like the vertical bars for guery balance and get balance)
only indicate ordinary call-return semantics. The sending operation (guery balarce)
blocks (does not proceed) until the message it sends (ger balonce) rerurns, just as a call-

ing pm-:fdun: in a conventional F-I'l'.IEI:III'II'I‘.I.iIlE |:|r|.gu:|g|: bloclks until a suhpcma:durc it
calls returns.

Sometimes an activity of the system under seudy is at such a low level and so far from
the user thar you would be hard pressed 1o describe the activity as a use case, But inter-
action diagrams can still be illuminating. The following example emphasizes low-level
Smalltalk message flows; the user’s role is only a mouse click. The diagram tracks what
happens from the time Smalltalk starts looking for an event, through converting this raw
operating system information into an actual Smallaalk message, and finally scheduling
this message for subsequent execution by placing it in the CurrentEvents container.

Smalltalk Motifier PMEvents  CurremEvents

sandinputEvent:
Fb 1 Up:with:a Pt
—
add:msg
W B l.lp:a?l:l
il signal a
nil ] e e i mﬂ

' Although Smallralk has classes for processes and semaphores, their instances sfmnlete concurrency
ans are pot necewanly related 1o concurrent behavior in the underdving operating system. Future
releases from Smalltalk vendors may associate Smallvalk’s concurment objects with aciual operating
system threads, Java and Ada®% are commeercial object-oniented languages thar have built-in concur-
rengy features,
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Messages to self are depicted by solid arrows that hook back to the object they come
from. Dashed, hooked arrows depict the objects rerurned from such methods. When
successive return values are the same, the returned object isn't repeated each time: for
example, the last four rerurn values are all the nil object, even though the two hooked
arrows aren’t labeled. Sometimes a return value—frequently the defaulr return value of
self—is unused and uninteresting; then the dashed arrow is omired entirely, as you
can see for the add: method thar finally schedules the Smalltalk message w b1 Up: aPr.
Theres no standard notation for these djisrams', | often use the conventions above,
bur use whatever works for you.

This scenario applies to a specific Smallealk (Smallealk/V) and a specific operating
system (O8/2) and window manager (Presentation Manager, or PM). Several of us
who were concerned with event handling in thar environment used this diagram off

and on for years as a reference.” The diagram is most likely not relevant for your prob-
lems, so you should not study its derails. Bur other use cases and interaction diagrams

of complex scenarios specific to your own problem domain will be valuable to your
development team. Even a rough hand-drawn sketch is worth the effort. (See the
examples in the analysis and design discussion that begins on page 110.) Try to retain
some form of your skerches, no martter how rudimentary. Not only will other develop-
ers appreciate them, but you will discover that testers find use cases and interaction
diagrams more useful than inheritance and aggregation diagrams. Testers test what
software does, not the static relationships berween classes and objects.

10.2 Exercise

In Chaprers 7 and 8, you added rransactions 1o a log (an instance of class Sorted-

Collection), and with no more support than a <= method for class Transaction, the

log sorted the ransactions chronologically. For many studenis, this is a mysterious

happening.

O Work through a simple scenario unal you are comfortable with the object interac-
tions. You can sketch an interaction diagram for the scenario, but you may find thar
anthropomorphizing the objectis—representing them as people or pencils or coins—
is just as effective. If you skerch an interaction diagram, keep in mind thar the value
of the exercise is in thinking it through, more than in producing a pretty picture.

* The event happens to be number 114, which the operating system has defined as an up-click of the
left mouse button, mdlh:lmﬂlmgﬁmllulkm{whll]]rlhmﬂ nammﬂumn
dhoww velling it that the click ocowrred at a specific point in the window, Another sconario, not illus-
vrated here, inerates through the CurrentEvents container and execunss cach of the messages dherein,
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10.3 Solution and discussion

Before you examine the interaction diagram below, it's important wo develop a sound
intuition for the objects and their staric relationships. Thar's because interaction dia-
grams, sadly, contain nothing to help you reconstruct thar static information, Lets
review this staric information. Refer 1o the drawings on pages 85 and 86 for this
review.

The log. being an instance of SortedCollection, by default uses the comparison <=
to sort. When we add a new transaction to it, it will ask the transaction to compare
itself (using <=) to the transactions already present, one ar a time, undl it finds the
right position in which to insert the new transaction. Whart does this new transaction
use to compare itself with the other transactions? It uses its own dare, comparing it
with the other transaction’s date. This is a key piece of static information—thart the
dartes are encapsulated within the transactions. Keep in mind thar the log contains
transactions, that each transaction encapsulates its own date, and that transactions
have a getDate geter (often named simply date) to access this encapsulated dare. All
this information is static. The interaction diagram that weaves this information
together is:

log
account transi  datei (aSorted  (rans2
Collaction)
ad:trans1
) onifangd
getDats
—— | _daez M
<=gatad
L]
) fuise
Condinue companng — with fransd,
travesd, ... = (il e for ransx,
T iragor? frans T Davons irisi,
¥ |

Mote that two instances of Transaction appear in the diagram. We need at least that
many to illustrate a comparison. Also note thar although trans2’s date dave2 parrici-
pates critically in the interaction, at this level of detail we cannot see it receive or ini-

tiate any messages.
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10.4 Use cases and interaction diagrams in analysis
and design

Llﬂ.' CASCS ans ‘fﬂ.luﬂhlﬂ il'l tl'l:' :Hl'l}r S-t:lgﬁ ﬂfﬂ.nﬂlﬁi“g a MeEwW Pmb.lfm.. Hm are two
examples.

1 To build a subsystem for a new pharmacy application, we asked users of the old
application ro think abour the rasks they wanted the computer to help them with.
They first listed about four tasks, such as “enter a drug order” and “dispense
drugs.” These are both use cases. Because they had already used CRC cards 1o
il:l:ntiry a number of uhjtcts. we hcg:m next to work thmugh interaction dia-
grams. Mot unexpectedly, they observed that there were some important varia-
tions to the initial use cases. We identified those as additional use cases. When we
had complered this preliminary inquiry. they had found about eight use cases for
the subsystem in question, and we all had a good idea of the main objects and
their interactions. Together with the CRC cards, we had the information we
needed to develop a erude mockup of the subsystem.

2 In the requirements analysis for a banking application, although we had iteratively
developed important CRC cards and use cases, not until we worked through an
interaction diagram for a use case did the software developers and bankers reach a
real understanding. The bankers recognized for the first time how objects they
conceprualized could really do work for them by sending messages 1o one another,
and the developers saw both what the bankers were really thinking and how we
had to design the software to solve their problem. For both parties, this was a ca-
thartic moment.

These experiences illustrate one technique for object-oriented analysis. The firse
wwo steps (their order is not critical) are to elicit CRC cards and use cases from the
users. Then, by working through message flows, the developers and users together can
refine both the CRC cards and the use cases to produce an initial round of object-ori-
ented requirements. The entire discussion can occur without introducing any techni-
cal complications—no one has to use words such as class, inheritance, or
polymorphism. Everyone can communicate using cards (objects), activities (use cases),
and telegrams or messages (interaction diagrams).

A general aside about analysis: Good analysts are flexible, spontancous people.
They need to be able to switch gears when they sense that users are getting frustraved.
The larger the group of users, the worse the problem. Different people think in differ-
ent modes, and get frustrated for different reasons. Adapring to this vanability in
human cognition is at the heart of successful analysis. A technique thar inspires one
person stifles another. And a technique that works on one aspect of a problem won't
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on another. In the banking application above, after many successful sessions with
objects and scenarios, one murky area remained. The banker charged with helping us
developers understand it was as frustrated as we were. So we stopped ralking about
objects entirely, and started 1o skerch window layours and how they might relate 1o
one another. This shift produced such responses as, “No, not thar way... Yes, yes,
good!” that got the whole effort moving again. Of course, developers imagine objects
under windows, and we were therefore subconsciously gathering object-oriented
requirements, but the conversation had been unshackled from any object baggage,
much to everyone’s benefit.

I don’t mean to suggest that drawing windows is a universal remedy for analysis
gridlock. It happened 1o work for those people on that aspecr of that problem. Thar is
the point. Different approaches will work for different people and problems. The suc-
cessful analyst needs the creativity and optimism to keep trying approaches until one
works for the situation at hand. Methodologies wont help.

It is worth repeating thar it is possible to spend too much time documenting mes-
sage flows with interaction diagrams. Not every message flow deserves the time it takes
to make it pretty on a computer:
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Real analysis sessions are so harried thar we must caprure message flows by hand—
computers are too slow for the dynamics of creative human interaction. Sometimes we
do not even have the luxury of thinking through the afjects thar send and receive mes-
sages. We may be pleased ro walk our of a session with precious scribblings from a
whiteboard that resemble:
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LoATH

Hastily hand-drawn flows like this are not very readable or shareable. On the other
hand, transcribing diagrams to a computer can take more time than your schedules
allow. Maoreover, for many diagrams the chief benefit comes through the human
exchange in which they were creared, rather than from the appearance of the final art-
work. You will have to decide, after considering the usual factors—shareability, project
standards, available staffing, management expectations—ijust how many sketches are
worth the considerable expense of transcribing into artractive compurerized form.

10.5 Limitations

Interaction dj:.gmms have limitations which may frustrate or disappoint you if you
expect too much from them.,

* Interaction diagrams cannot represent loops and conditionals. You must either limir
your diagram to a scenanio having a single path or annotate the diagram informally
with text. The single-path assumption is often acceptable because it is mainline pro-
cessing that you're often trying to illuminate. Another way to produce non-branch-
ing diagrams is to decompose a highly branching diagram into many small non-
branching ones; these small diagrams turn ourt to be reusable units for reassembling
other complicated diagrams.

* Mot everything is a message. For a Smallralk designer, assignment is the main cul-
prit. Interaction diagrams represent messages berween objects nicely, bur thar’s all.
An assignment 1snt a message to an object, and thus doesn't lend itself o interaction
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diagramming. (Try diagramming balance := 2500.) For a C++ designer, the situa-
tion is even worse: ordinary funcrion calls, which lack a preferred receiver object,
arent messages either. You can't express them in interaction diagrams, which require
well-defined sending and receiving objects.

* Interaction diagrams are graphical, bur they aren't memorable. Because they con-
strain the objects to appear in just one dimension across the top edge, they lose the
spatial benefit of placing objects above, below, or near or far from each other, with
connecting lines indicating, say, aggregation relationships. In other words, interac-
tion diagrams express ime wonderfully, bur are virtually deveid of static informartion.

The first two limitations are troublesome mostly in lower-level interaction dia-
grams. If you stay ar a high enough level, like the first example in this chapeer, the
account balance query, you can often avoid these limirtations.

10.6 Summary

I think of the design of a complex application as a misshapen multidimensional blob.
There is no simple formula for describing or understanding the blob; all one can do is
slice it in different ways and examine the cross-sections to get an idea of its structure.
The most familiar slices are stavic; they are usually class diagrams that show responsi-
bilities, plus inheritance and aggregarion and other relationships.

Bur a static slice rells you nothing abour whar the application is supposed ro do for
its users. For that you need dynamic slices. The simplest dynamic slice is a one-sen-
tence use case, then comes an expansion of the use case into a sequence of statements,
and finally we have interaction diagrams with their objects and messages. These slices
describe the functionality of the application.

Early in analysis and design, the dynamic slices clarify the staric slices. Thar's
because as you work through dynamic slices you realize thar your CRC cards or class
diagrams are missing various objects and responsibilities. Laver, when the blob has ser-
tled down a bir, the dynamic slices become test cases for system testers: if a use case or
interaction diagram doesnt work as documented, the rester knows something has
gone wrong,. (Static diagrams are almost useless for system or integration testers, again
because they say nothing about whar the application oughr to be tested for.)

When you think about something from a different perspective you usually learn
something worthwhile, Thinking through the dynamic dimension usually illuminares
murky areas of the blob. Ifa design problem stumps you, try outlining a use case oran
interaction diagram; at the very least this tactic will give you a fresh outlook on the
problem. Often, it will propel you into a darification of a murky area.
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Unfortunately, for a lot of blobs not a scrap of documentation exists, yet they have
somehow gotten themselves realized into Smallalk. Sooner or later you will need 1o
understand one of these blobs. The only surviving artifact is code, so you have no
choice but to slice through it. You can slice statically, by drilling down through
method invocarions with browsers (using Browse Messages > Implementors, again and
again). Eventually, you will also have to slice dynamically, setting up experimental
conditions and stepping through execurion paths with the debugger. This procedure
15 like skillfully examining specimens with a microscope: instead of selecting tissue
slices and preparing them with appropriate dyes, you scaffold appropriate objects
together and set up conditions for a good debugger session. In effect you are recon-
structing what interaction diagrams would have wold you had there been any.

10.7 Commentary: historical note

The value of understanding the dynamic aspect of a problem was appreciated long
before objects became popular. Software engineers used flowcharts and hardware engi-
neers used tming diagrams. Whar is surprising, or embarrassing, is how long it took
for an object-based variation to appear. Jacobson first alluded 1o use cases in [Jacobson
1987]. By now, every mainstream object-oriented design method advocares some
technique for representing an application’s dynamics. These techniques go by assorted
names: interaction diagrams, mesage flow diagrams, evemt rraces [Rumbaugh er al.
1991), siming diagrams [Booch 1994], scemarios [Reenskaug 1996, or seripes [Gibson
1990; Rubin and Geldberg 1992].

For a different, higher-level look at application dynamics, see timerfreads in [Buhr
and Casselman 1992).



CHAPTER 11

The venerable model-view-controller

An application’s or system’s wser interface (Ul) consists of everything the user interacts
with—the screens and sounds, menus, keyboard and mouse, and so on. This chapter
begins the discussion of user interfaces; the discussion concludes with Chaprer 13,
which addresses the substantial challenges in actually designing a satisfactory user
interface.

We are going to set a goal: to separate Ul from non-Ul software elements as prac-
tically as we can. The idea of this separation, known as the model-vicw-controller
(MVC), dates back to the late 19705 and is the most important milestone in the his-
tory of object-oriented user interface design.

11.1  Modelview-controller example

Imagine that someone needs a compurerized counting tool. Here are two applications
that would do the trick:

15
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These two applications evidently display their values differently, one digitally and the
other like an analog clock. The two kinds of displays are known as two kinds of views.
Serictly speaking, a wiew is just a way of displaying information. Ar this moment, the
digital view displays #and the analog one displays 3.

There are no connections berween the rwo applications, even though they appear
side by side on the screen. You can increment either independently of the other, by
means of their respective menus. The applications therefore each rely on their own
underlying counter object—an object with an increment and decrement method and
an instance variable representing the current value:

Couriar

These two instances of counter, known as model objects, operate independentdly of
each other, just as the views above operate independently. A model is responsible for
changing and maintaining the state of the underlying application—in this case, the
underlying counter. Models are ignorant of how their information is displayed; thar is,
they are ignorant of their views. Models aren't visible on the computer’s display.

We'll discuss the mechanism that connects views to their models shortly, but first
consider another possible configuration: both views could share one model object.

The two views would then operate in lockstep: if you increment either, the other also
increments because it is merely another view of one and the same model object. Here

are the two views:
B e i
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And here is the model object both share:

5o far, all the counters we've considered still operare in the same way, by means of
menu selections. The next step is to introduce an entirely different input mechanism,
like the buttons here:

This application has the same kind of digital view we've already seen, and also the
same kind of model as before, bur a different kind of controller—ithe rechnical rerm for
the inpur mechanism. This kind of controller also could have been associared with the
analog view, producing this counter application:

In theory then, we can decompose the design of an application into independent
elements—models, views, and controllers. In practice, such a decomposition may be
more or less feasible depending on the framework of classes in which you are com-
pelled 1o work. For example, we shall see later that a full three-way decomposition is
more likely to ocour in VisualWorks than in other Smalltalk environments.
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You can think of a controller as an object that handles input events and a view as
an object thar handles ourpur events. More precisely, a controller handles events char
the user generates, like pressing a mouse burton, and a view handles events thar the
model generates, like increasing the value of a counter. A view provides a look and a
controller provides a feel. The model underlies the views and controllers, and as we
will see in the next section, the ideal model is independent of views or controllers. The
model neither knows nor cares abour any of them.

11.2 Exercise

The screen below displays several counter applications. The top two counters are sim-
ple ones thar operate by mouse clicks: a lefe click increments the count and a righe
click decrements ir.

O How many kinds of models are there?
O How many kind: of views?
0O How many kinds of controllers?

O How many instarces of models?
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11.3 How MVC works
Here is how the user interacts with an application based on an MVC decomposition:

madel objects

& |:1+"'
N @“'

The view objects render information to the user and the controller objects accept the
user's input. The user has no direct contact with model objects; she imagines their
presence and characteristics only from her interactions with the views and controllers.
{How and what she imagines are the subjects of Chaprer 13.)

In classical MVC, the relations among these three kinds of objects are indicated here:

'#*
aview
n,
aModel Sa ‘

You can see that views and controllers have instance variables that refer to their model
as well as each other. They know their model. But the converse is false. The model does
not have explicit instance variables pointing to its views or controllers. This is a crucial
omission. The underlying application should function withour knowledge of how the
user interface happens o display information or interpret input. The application
should not know or care what kind of view or controller happens 1o be attached 1o i,
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nor even whether several views and controllers may be attached, or different ones as
time passes. The essence of MVC is this radical decoupling of the model from the user
interface components.

If the model has no instance variables referring 1o its views and controllers, how
does it inform them of changes in its state? In other words, how can the model pro-
claim ignorance of views and controllers, yet still inform them of changes? The answer
is thar it informs them indirectly, via a concealed relationship known as dependercy:
the model’s dependents are indicated above by dashed arrows. Whenever the model
sustains a change thar it wants wo convey 1o its dependents, it sends a message o
itself—self broadcast'—which eventually causes a message to be sent to each of its
dependents—dependent update. The dependents decide whar they want o do, if
anything, ro updare themselves; thar is the function of the npdare methods above. In
the counter example, the view's update method would send a message 1o its model 1o
fetch the current value of the counter, with which the view could refresh its display.

Roughly speaking, there are two mechanisms for implementing dependency rela-
tionships. One uses a global dictionary, where the keys are models, and the value asso-
ciated with each key (model) is a collection of the model's dependents. The broadcast
method searches the dictionary for the model in question, then sends the update mes-
sage to cach of the objects associated with the model. The upcoming exercise illus-
trates this mechanism.

The second mechanism gives each model object its own dependents instance vari-
able that refers 1o an ordered collection of its dependent objects. The broadcast
method then sends the update message 1o cach object in this collection. You don'
want to write code for dependency and broadcasting every time you construct a new
class of models, so if you adopt this second mechanism you should write the code you
need once in an abstract class called Model, and subclass all your model classes from
it. This rechnique conceals the relationship just as we wanred; application program-
mers who build model objects don't have to know that the dependents instance van-
able is present.

A refinement of the second mechanism offers a 5|1:|.1'|:|-|:r form of broadcast, in which
a cluster of messages is broadcast in response 1o a given event. This form is now avail-
able in all the major Smallealk dialects (see the wable on page 125). For example, in
VisualAge the class AbtObservableObject does entirely away with the simple depen-
dents instance variable; instead it has an instance variable called eventDependents thar
15 a dictionary-like object whose keys are events and whose values are clusters of
messages. | herefore, instead of a fixed broadcast resulting in the same update message

! This metsage is self changed instead of self broadcast in some dialects.
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being sent to every object, an AbtObservableObject can selectively broadeast the clus-
ter of messages associated with any one of its events. And these messages may have any
names of receivers at all. In effect, broadeasting can be surgically precise.

This sharper form of broadcast is sometimes called evenr notificarion. Event notifi-
cation is increasingly popular and may eventually displace the older, more basic forms
of broadcast.

11.4 Exercise: the original dependency mechanism

O All major Smallralk dialects support a general dependency mechanism that lets any
object depend on any other. In most Smallealks, this mechanism uses a class vari-
able of Object named Dependents. [nspect Dependents. Whart kind of abject is i,

and whar does it currently conrain?

U Execuie
X = Penguin new. "Any object will dol®
¥ addDependent: 17,
X addDependent: 12.
Dependents inspect.

What does Dependents contain now?

O MNext execnte
& broadcast: Ffupdate.

Smallealk broadcasts an updare, but you should see nothing. That’s because inte-
gers dont respond ro update, Now write an update in Integer whose body is:
Transcript cr;
show: 'l am ", self printitring.

(The Professional version of IBM Smalltalk may require you to put the method
inte a new application edition. Any edition, including a “scrarch” edition, suf-
fices.) Again try:

I broadcast: Fupdate.

This general dependency mechanism is serviceable, but by object-oriented stan-
dards it is not well encapsulated. After all, any object can access the class variable
Dependents in class Objeet. If you want to use a dependency mechanism, con-
sider building or reusing one in which an object encapsulates its own dependents,
The major Smallealk dialects all come with such a mechanism. (See the mble on

page 125.)
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11.5 MVC: benefits and difficulties

A clean MVC decomposition keeps the designer honest. It forces him to separare con-
cerns, which is a basic goal of software engineering. He can focus on the coherence of
the underlying model {(more on this subject in Chaprer 13) without worrying about
presenting it on the screen. Conversely, he can invent new ways of presenting the
maodel without having to reprogram the model objects. In short, development of the
user interface and the model can proceed separately. The objects will then be smaller
and less complicated and the prospects for reusing them will be beteer.

MVC also provides a pathway for porting an application from one platform to
another: model objects should port with little or no trouble—good models are not
cluttered with platform-specific code. The porting problem therefore reduces wo
rewriting only the Ul code. The benefit depends on the relative proportions of Ul and
maodel code in the application. For the counter example above, with its simple model,
the benefit is almost negligible. But for an application like a nerwork simulation with
rich algorithmic content, the benefit is considerable. In any case, ideally, the program-
mer responsible for the port will not need to know or learn anything abour the under-
lying application or problem.

Desirable though it may be, a pure MVC separation is a lofty goal. Here are some
difficulties.

* Simple rendering. In MVC, we strive to keep model objects ignorant of anything hav-
ing to do with their presentation. Serictly speaking, it would be unfaithul to MVC 10
taint a circle object with a method thar paints a circular arrangement of pixels on a
graphical window, or even a method thax spells our the characters * Cirele’. Similarly,
a purist may challenge a method (such as we will see in the next chaprer) for a check-
ing account transaction object that returns a string derailing its date and amount.
Such methods have ro do with views, not models, the argument goes. If you insist on
not tainting model objects with these rendering methods, however, you will have 1o
pay the price for another layer of objects that are responsible for rendering. Thar can
be an overblown response to relatively minor MVC infractions.

= Validicy and consivaint checking. In a screen in which the user enters, say, a telephone
number, the Ul has an opporwunity to validate that the number’s structure—country
code, area or city code, number, and extension—is acceprable. The Ul could even
refresh another field, perhaps the name of the country. The more business-specific
knowledge the Ul brings vo bear on such checking—which counrries are acceprable,
whether to allow letters as well as numbers for the pl'lunl: number, and the like—ihe
less pure the MVC decomposition becomes. The penaley for making the Ul more
powerful in these ways is thar as the business evolves, Ul logic as well as model code
must be rewrirten,



115 MWC: BEMEFITS AND DEFFICULTIES 123

* Partial refresh. In classic MVC, the Ul informs the model of specific changes, and the
model then broadcases a generic update back to the Ul For a drawing application,
the Ul would update by ferching all picture elements from the model, blanking the
canvas, then refreshing the whole canvas, But if the specific changes affect only a
small portion of the canvas, blanking and refreshing the whole canvas would be both
slow and distracting. Classic MVC is not flexible enough to refresh just the small,
affected portion; this localized refresh requires closer cooperation berween view and
maodel. The view still informs the model of the changes, but it must selectively fetch
just those elements it needs from the model, and refresh just the aleered portion of the
canvas. This optimization does not relieve the model from having to broadcast—
there may be other views, after all—bur the current, active view should ignore the
broadcast, lest it respond by blanking and completely refreshing irself, which is what
we've been trying to avoid.

* Diwag and drop. When the user drags an icon across the screen, the icon may change
its appearance as it moves over different targets. For example, when a drop would be
illegal many Uls change the icon to a “Do not enter” symbol. The legality of a drop
commonly depends on a simple consideration, like whether the graphical element
being dragged lies over a particular window. But the legality could conceivably
depend on more complex considerations, such as the stares of the underlying objects.
A prescription icon may not be dropped on a patient icon if the patient is allergic o
that drugs a letter may not be dropped on a mailbox if the lewer has no addressee; an
insurance policy may not be dropped on a client if the client is an assigned risk; and
s0 on. In these situations the underlying model objects must participate in the nego-
tiation, because only they know the relevant stare informartion. Icon objects, which
are merely visual artifacts, aren’t smart enough o help; they do not even know whar
questions they ought o ask the model objects. MVC, with its broadcast meraphor,
has no bearing on this fine-grained, real-time problem. A solution to this problem is
to use Liryer objects (page 233). A lawyer knows both an icon and an underlying
model object, and it negotiares with other lawyers thar represent other icon and
model object pairs. The Ul maintains a collection of lawyers, one for each icon, and
the lawyers decide whether one icon may be dropped on another, by negotiating
berween the model objects they represent.

The last three difficulties underscore the lesson that broadcasting is sometimes oo
slow and heavyweight. Users of today’s computing systems expect immediate feed-
back; they cannot wait for the model to issue a generalized broadeast to the view
objects. Instead, the view objects must become more intimarely involved with model
objects than they would be in an ideal MVC partitioning. MVC is not sufficient for
every situation.
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11.6 What's become of MVC?

The MVC idea originated in 19781979 during Trygve Reenskaug's visit to the Xerox
PARC Smallwalk team, which formalized it in the Smallralk-80 produce, later 1o
become VisualWorks.” Digitalk carried essentially the same ideas into its early DOS
SmallealkfV products, where it was renamed o MPD {model-pane-disparcher).

Mowadays, controller objects are commonly absorbed into view objects, so that the
classical MVC threesome reduces to a twosome. To see the rationale, think abour the
pushbutton controllers in the counter applications above. These controllers have
view-like characteristics: the burtons are visible and they appear vo bounce down and
up when the mouse is clicked over them. A button controller is, in effect, already
bound 1o a view-like object, and messages flow back and forth berween the controller
half and the view half to coordinate their behavior. Because controllers often have
both view and controller characreristics, object-oriented Ul classes usually coalesce
views and controllers into one kind of object, which relieves the programmer of the
burden of managing communication berween two different objects.

Another reason for coalescing views and controllers is that unibied view-contrallers
are a natural march for the buili-in user interface “objects™ (scrollbars, burtons,
menus, and 50 on) found in native windowing environments such as X-Windows,
(5/2 Presentation Manager, Windows, and Macintosh. It is simpler for a layer of pro-
gramming objects above the windowing environment to mirror the underlying archi-
tecture than to dismantle it into separate view and controller constituents that arent
there 1o begin with,

These modern view-controller ul:l-]tm still go b}' the name e, or uccasiun:lll}r
interacror. Instead of a classic three-way MVC decomposition, we decompose applica-
tions into this simpler MV form:

* Trygve's account of the early history appears in [Reenskaug 1996].
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In short, coalescing views and controllers simplifies the programmer's rask, at the
cost of some loss of flexibility in mixing and matching looks and feels. Today, almaost
all Ul frameworks, whether based on Smalltalk or C++, coalesce controllers and views.
Examples include MacApp, Smallallk/V, Interviews, and the X/Motif widgets used in
IBM Smallealk. VisualWorks is the most notable product thar sustains full MVC sep-
aration.

From now on we will focus on MV separations instead of MYC separations. Thus
the primary software engineering obligation of Ul developers is to separate models
and views. You should strive to avoid excess seepage of model behavior into views.
Powerful GUI (graphical user interface) builders increase the tempration, because
developers sometimes become so enamored of GUI building that they overlook the
design of a coherent layer of model objects.

Asl impli:d on page 120, several broadeast or d.cp-cnd:m:r mechanisms are suit-
able for achieving MV or MVC separations. This table illustrates the variety available
in the major Smallealk dialects:

VisualAge Visual Smallalk  VisualWorks

(IBM Smalltalk) (SmallealkV) (Smalltalk-80)
Absrract View and
Controller classes No Mo Yes
(supports full MVC)
Dependency supported EventHandlers
by a class variable Dependents {Dependents in Dependents
in Object older versions)

AbtObservableObject EventManager  Model broadcasts
nd ried .
I;ﬁ : ency WHI:;;H: broadcasts message broadcasts message  message(s) like
i an abstrace cdlass clusters” (aka event  clusters (aka event updare vo all
e notificarion) notification) dependents”

* Asofversion 3.0, instances of subclasses other than AbtObservableObject can alio broadeas message
clusters. The protocol is the same as the one in AbiObservableObject, but the methods are reimple-
mented in Object, using the auxiliary chiss AbtCLDTAddivions.

b ParcMace-Digitalk intends to make EventManager the foundation for its instance-based broadcast
protocs] in s combined VisualSmalliallisual Works offering.

The class variable in Object is convenient for quick and dirty broadeasts bur should
generally be avoided, because i is accessible from any object. It is therefore tantamount
to a global variable, which we know o be generally undesirable. This mechanism also
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involves more message sends, which could degrade performance in designs with many
{probably roo many) broadcasts. Thus you should try to use the built-in instance-based
support (from the last row of the table), or build an abstract class of your own once,
and subclass from it.

Because of the many workable approaches to broadeasting, it is unlikely thar the
ANSI standardization committee will specify a broadcast or dependency protocol as
part of the forthcoming Smalltalk standard.



CHAPTER 1.2

Building windows

This chapter deals with building windows in the IBM Smalltalk environment. You are
going 1o build windows from scratch—almost—with only a linde help from a simple
abstract class. This will be an excursion into the heart of user interface programming.
The specific classes and methods in this chaprer apply only to IBM Smallalk, not
other dialects. Windowing frameworks differ so widely berween Smallalk dialects char
you will have little hope of reinterpreting this material for other dialects.

Using the techniques in this chaprer to handcraft complicated windows would be
inefficient. For constructing lots of intricate windows, programmers nowadays mostly
use a GUI (graphical user interface) builder such as VisualAge or WindowBuilder Pro
(for IBM Smalltalk) or VisualWorks (for Smalltalk-80). These have the advantage of
simplifying the tedious aspects of window construction, although some also obscure
the layer of window components where the programmer may want to fine-tune the
behavior of the user interface. This layer is the subject of this chapter and, GUI
builder or not, i is desirable to know a linle abour it

Before you can build a first, simple window in [BM Smalltalk, you must learn a
little abour Mosif Motif is a standard programming interface for building GUIs. It
was developed by the Open Software Foundation (OSF), a consortium of large com-
puting companies. Motif is not an object-oriented programming system; it consists
instead of many conventional funcrions.

IBM Smallealk’s user interface components include a layer of classes and methods
whose names and arguments mimic Morif reasonably well. These classes therefore
have a strong affinity with systems thar support Motif, which happen 1o include many
UNIX systems. Bur O5/2 and Windows don't support Motif; instead they have their
own window marnagers. Mevertheless, b].-' im;nrpﬂmting a common Motif-like l:l}':r on
these platforms as well as UNIX, IBM Smalltalk ensures thar applications built on this

127
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layer will be highly portable among the three platforms—UNIX, Windows, and OS/
2. Moreover, because this Moif layer ultimately translates o the underlying plarform's
windowing system, the look and feel of user interfaces conform to the platform’s
native look and feel.

121 What you need to know about Motif

Conventional Motif is itself buile atop another stan-
of a collection of function calls called Xisb, or the
XiLibrary. Motif is an example of an X toalkir; X tool- Xt Intrinsics
kits are built on an interface called the Xt Inerinsies (X ity
soolkit Intrinsics), which in rum is built from che Xlib. Unix (X server, X client)
Thus, the conventional Motif layering looks like this:
IBM Smallealk presents a layer of Smallaalk classes and methods that look like
Morif ! services, but are built atop the operating system’s GUI services. In other words,
the IBM Smalltalk Monif layer is buile on whatever the underlying platform offers, be
it raw O8/2 or Windows GUI
services, or a real Monif roolkit applicalion’s windows
and Motif window manager Motif-like layer in IBM Smalitalk
() like the picture above.
The picture for IBM Smallalk is: Windows or OS/2 of Mot window manager
Two other abbreviations—Ciw and Cg—occur commonly in IBM Smallralk’s Ul
classes. “Cw" stands for common widgets. Widget* is the term that X programmers use
for any Ul component—be it a button, a scrollbar, a textual field, a label.... The
counterparts in [BM Smalltalk of Motif's widgets are known as common widgets, and
their class names are prefixed by “Cw.” Similarly, functions in the Xlib for graphics—
drawing, bitmaps, fonts, color palettes—have been structured into Smalltalk classes
thar are prefixed by “Cg,” for commmon graphics.
The first window you build will contin a textual widget thar displays ‘Hells San
Franciseo . Although this window, labeled myWindow below, is abour as simple as they
come, it relies on several Motif widgets, intertwined by instance variable relationships:

I By the way, Moaif is sometimes abbreviated o xm, which stands for XiMorif

* MNon-UNIX programmers often use the word conrraf instead of widper. For our purposes Ul widgers
and U controls are srnonymous,
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callbachs

You can see where a vextual widget would be, ar the bottom of the sketch. Mote that it
is a child of 2 CwForm. Forms are container widgers; a form typically will conrain sev-
eral other widgets, although in your first application it will contain only one rexr wid-
get, a CwText, for presenting the siring ‘Helle San Franciseo . The highest level in the
skerch is a CwTopLevelShell. As its name implies, it is the Motif widger thar forms a
“shell” over all the other widgets. A main windsw (CwMainWindow) is also a con-
tainer; in addition to its forms it can contain a menu bar, should an application
require one.

Mortice also the callback objects at the lower left. Callbacks or, more precisely, call-
back handlers, are methods that are triggered by evenis like resizing or exposing a win-
dow. Widgets can respond 1o evenis like these by executing an appropriate callback
handler. I will say more abourt callbacks larer on.

The sketch above is schematic. The actual instance variable names are somewhat
less readable. They have names like cwChild, cwParent, and xmMNChildren.

Each of the MotiF-like common widgets in the sketch above encapsulates a similar
but more primitive object, which in turn encapsulares a really primitive operating sys-
rem object known as a window handle:
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These primitive objects tie the common widgets to the real operating system. Fortu-
nately, though, you can write all the code you need ar the commeon widget level, and
trust that the rest has been correctly encapsulated to do your bidding,

12.2 Widget resources

Widgets must be customized for each application. Customization covers everything
from where the widget should be positioned to how it responds to events like button
presses. To customize a widget, you send it appropriate customization messages. Cus-
tomization is also known as setting the widget's resowrces. Here are some examples of
setting resources for a widget w:

w topAntachment: XmAT TACHFORM Artach the wop of w 1o the wop of
its form
w bortomAtachment: XmATTACHPOSITION:  Awach the bottom of w 1/10 of the
bottomPosition: 10 "percent” way down from the wop of its form
w opAttachment: XmAT TACHWIDGET; Attach the top of w to the (botwom)
wopWidget: anotherWidget of another widget referred 1o as

anotherWidget
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w editMode: XmMULTILINEEDIT Assuming w is an instance of
CwTexx, let it handle multiple lines
of text, instead of just one line

w value: self myMethod Assuming w is an instance of
Cw Texx, set the text it contains wo a
string thar myMethod returns

w items: self yourMethod Assuming w is an instance of CwList,

set the items in the list o a collection
of strings thar yourMethod returns

w addEventHandler; ButtonPresshask Assuming w is an instance of
receiver: self CwhlPashButton, let its response wo a
sclector: #pushMe:dientDatazcall Daga: button press be defined by a method
clientData: mil; named pushMe:clientDatascall Dara:

The peculiar-looking constants XmATTACHFORM, ButtonPressMask, and so on
are defined in pool dictionaries, which I'll explain in the next section.

12.3 Excursion: pool dictionaries

Any software that talks to an external system must use the same low-level indicators
(typically flags or masks that are bits or integers) that the external system uses. For
example, on OS8/2 the color dark blue is indicared by 9, and red by 2; any sofrware
running on O5/2 must use these same numbers for the same colors, We would like wo
think abour the numbers as lirtle as possible, of course, and instead refer ro them by
names like CleDarkblue and ClrRed. Simil:lrl}!, Moiif resource values like XmAT-
TACHWIDGET are easier o remember than arbitrary integers. (XmATTACH-
WIDGET happens to be 3 in Motif)

Smallaalk pool dictionaries are handy objects for bundling constants like these.
Pool dictionaries are dictionaries that have strings such as "CleDarkblue’ for keys and
values such as 9. (In IBM Smallalk, pool dictionaries are instances of the special class
EsPoolDictionary, which accepts only strings as keys.) For example, the global vari-
able PlatformConstants refers to a pool dictionary thar contains color constants as
well as many other constants. And the global variable CwConstants refers to a pool
dictionary that contains the resource values for Motif widgets.

So far in this discussion, we haven't used pool dictionaries in any unusual way. If
you were to access one of its entries, you would have o write something like:

widget topAttachment: (CwConstants at: "XmATTACHWIDGET')
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just as you would refer to an entry in any other dictionary. The effect would be to pass
3 as an argument, but of course we don't want to write a 3 in our code.
The anraction of a pool dictionary appears when you specify one as part of the def-
inition of a class:
Object subclass: FMyClass
instanceVariableNames: '"
classvariableNames: '*
poolDictionaries: ‘CwConstants *
Mow if you want to access an entry in a method, you can simply write;
widget topAttachment: XmATTACHWIDGET
No need o specify the dictionary or use the at: message! The Smallwalk compiler
searches through the classs pool dictionaries for a key that matches the string "Xm-
ATTACHWIDGET". When it finds the key in CwConstants it compiles the associ-
ation into the compiled method.
In short, pool dictionaries make code more succinct by saving you the wrouble of
typing the name of a dictionary every time you want to refer to an entry.
Here are some characteristics of pool dictionaries:
* The keys are strings.
* The values are often integers. (Bur not always. Try inspecting the pool dictionary
PlatformFunctions, then double-clicking on one of its entries.)
L. Eh:l;u] variable refers to it. (Otherwise there is no name b],' which to 5p¢:iﬁr it
when defining a class.)
* The dictionary should be fully populated beforehand. (If a key is absent, a method

thar uses it cannor compile.)
To solidify your understanding of pool dictionaries, try these simple exercises:

QO What is the underlying value of BurtonPressMask? ClrYellow?

QO Construct a pool dictionary as follows:

smalltalk declarefoolDictionary: #MyPool.

MyPool at: 'ABC' put: 55.
MNow build a subclass of Object called MyClass, being careful o specify MyPool as
a pool dicrionary. Write this instance method:

test
* Test by displaying:
MyClass new test

“ABC
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Predict the result and run the experiment to confirm your prediction. What happens
if you write another test method that returns XYZ instead of ABC?

Techmical curiosity: A pool dictionary can begin life as an ordinary dictionary, that is,
as an instance of Dictionary. As soon as you use it as a pool dictionary though, 1BM
Smallealk auromatically converts it 1o an instance of EsPoolDictionary:

12.4 [Exercise: a first window
Tl'l:gua] for your hrst window 15 mrnl:thins like:

Hella San Frasdsce

O Create a new application, or add to one of your old ones. Change the prerequisite
applications to include ExBaseTools so that you can access class E'Window. Add a
subclass HelloWindow to E*Window:

O Write an example class method for testing:
exampl e

HelloWindow example

“HelloWindow new open

O Write an instance method thar answers any string you like:

myHello
A" Hello San Francisco'

O Remember thar abstract classes come with expectations thar their subclasses fulfill

certain obligations. For the abstract class EtWindow, its subclasses must implement
the method ereateWorkRegion. Write this method in your HelloWindow class.

createWorkRegion
| textWidget|
textWidget := workRegion
createText: 'Hy text widget'®
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argBlock:
[iw ] w
editMode: XmMULTILINEEDIT;
value: self myHello;
leftAttachment: XmATTACHFORM;
rightAttachment : XmATTACHFORM;
topAttachment : XeATTACHFORM;
bottomAttachment: XmATTACHFORM] .
textWidget managelhild
This method looks more formidable than it is. The important messages are the

resource-setring messages inside the block. You should recognize their purposes from
the last section.

O Finally, test your HelloWindow class by evecuring your example method.

12.5 Exercise: a window for the account balance

You are about to add a simple user interface to the bank account you developed in
Chaprer 8. You want to end up with a window representing the account, with separare
widgets to conrain the transaction log and the current balance. We'll proceed in three
steps: first a window that displays only the balance, then one thar displays only the
transaction log, and finally one window that displays both the balance and the log,

using rwo widgers,

O Begin by choosing a suitable application, like the one in which you wrote your ear-
lier account exercise, and change the prerequisites so thar they include ExBaseTools.
Add a subclass, BalanceWindow, o ExWindow. The fundamental difference
berween this exercise and the preceding “Hello™ exercise is the need for the window
to know about an account object. Create an instance variable named account in Bal-
anceWindow for this purpose.

O Prepare a test case by writing this class methed in BalanceWindow:
example

BalanceWindow example

™
“~BalanceWindow new openn: Account example.

This test case reuses Account’s class method example, which you developed on

page 91.
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O Mote that you will need an openOn: instance method that mkes an account as an
argument. Write this method. It should do just two things: set the instance vari-
able and open the window (by saying self open).

O Instead of myHello, write an appropriate method to return the account’s balance.

Don't forget that the returned object should be a string. In other words, don't for-
get to convert the integer balance to a string,

O Finally, write a createWorkRegion method and rese by execuring your example
method.

12.6 Exercise: a window for the transaction log

In this exercise, you will need to transform one collection into a different, brand-new
one. One way would be 1o write a loop. However, object-oriented developers rarely
write loops to process collections. Mature class libraries have powerful methods (or
even objects, called irerarors) that process a collection’s contents, In Smallalk, the
method Collection>>collect: processes each element in a collection and puts the
resulting objects into a new collection.

O Display each of these lines:
(OrderedCollection with: 3 with: 2 with: 1) collect: [:x | x squared].
(SortedCollection with: 3 with: 2 with: 1) collect: [:x | x squared].

O Mimic the steps in the previous exercise: start with a class called LogWindow,
write an example class method, and an openOn: instance method.

O Your createWorkRegion method should be similar to the one for displaying the
account’s balance. That one buile a texe widger, however, and this one should build
a list widget. Thus, part of it should look like:
TistWidget := workRegion
createlist: "My log widget'
argBlock:
[:w |
W
items: self mylog;
leftAttachment: XmATTACHFORM;

1.
Write the creareWorkRegion method.
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O To complete the code, you must write the myLog instance methed specified in
your createWorkRegion method. myLog should use collect: 1o transform the
rransaction log into an OrderedCollection of strings.

O Exccute your example method to test that your window displays the transactions
in chronological order.

12.7 Exercise: a window containing both widgets

O Build a class called AccountWindow. This window should combine ideas from the
preceding exercises so thar it displays both the balance and the rransacrions.

12.8 Assessment: building windows

You've now seen what it takes to build simple windows using Motif. In general, one
subclasses from a suitable abstract window class, E*Window is one example, because
it is the abstract window class for all the everyday browsers and tools you use in IBM
Smallealk. Theoretically E*Window is not the best choice of superclass for a product
that will be delivered o a customer. That's because it was designed as the basis for the
development-time windows, and a producrs code shouldnt depend on development-
time code. In fact, Et stands for "E.mr}r Tools,” where Emr]|.r i5 a suite of team program-
ming facilities thax is also available in other Smallalk environments.

Another starting point could have been the abstract class WidgetWindow, best
found by loading the application CwExamples and its prerequisites. To use Wid-
getWindow as a superclass, you would wrire a creareWindow method insread of the
createWorkRegion you wrote in the exercise.

Another prospective starting point is the class named WhApplication (part of the
public-domain application WhApplicationFramework), which is the abstract window
class of the third-party product WindowBuilder Pro; you override the method add-
Widgets instead of createWorkRegion. WhApplication can thus serve as the super-
class of handcrafred windows as well as of windows generated by the WindowBuilder
Pro GUI builder.

O, you could start by writing your own simple abstrace class, including code 1o
create the top-level shell, 2 main window, and any other standard fixtures you want
your windows to enjoy.

These are all legitimare approaches to handerafting windows, They are valid even
for building claborate windows consisting of numerous, carefully positioned widgers.
Bur as | said earlier, you are most likely to use a GUI building rool to lay our such
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windows. For IBM Smallaalk, that is likely to be VisualAge or WindowBuilder Pro.
VisualAge offers the artraction of wiswe! pragramming, which means that you can con-
nect user interface and model components together 1o produce working logic, withour
even writing Smallalk code. WindowBailder Pro uses fewer layers of objects and so
offers efficiency plus the virtue of making Morif widgets accessible should you need ro
work with them,

Good sources of additional derails abour Motif programming in IBM Smalltalk are
the pruduct manuals [IBM 1995] and [Clhj:ct:harc 1995].

12.9 Callbacks and events

Your windows so far don't respond to any inputs and therefore aren't wo pracrical,
Practical windows respond to mouse actions and other events {or X evenrs) from the
operating system. These include typing on the keyboard, moving the mouse, resizing
or exposing a window, giving a window the focus, and so on. You can think of events
as stimuli that the operating system detects from physical devices and passes on ro
your widgets. (In X-Windows, the component of the system responsible for this ser-
vice is known as the X serper)

A widget won't respond to an event unless it has been sensitized to the event. To
sensitize a widget 1o an event, you must establish an evenr bandfer. You will write event
handlers in the upcoming exercise.

Sometimes it may be convenient to think of higher-level, or “amificial” events. For
example, it would be reasonable o wanrt to sensitize a button widger ro a “click,”
which consisis of two evenis, n:lrm:l].-' a button press followed I:J.r a button release, both
of which must occur over the widget. A click lifts the programmer’s level of abstraction
above the raw hardware concerns of 3 mouse press and release occurring in just the
right sequence and place. In Mouif and other windowing systems, these artificial
events are known as callbacks. (The callback for clicking on a CwPushButton widget
is known as an activateCallback or XmNactivateCallback.)

The programmer writes event handlers for events, and callback handlers for call-
backs. Both event handlers and callback handlers are special methods that execure
whenever the expected stimuli occur. The reason for the name “callback” is that when
the stimulus occurs, the operating system “calls your widger back”™ and gives it the
opportunity to execute its handler. A callback is similar vo arranging for someone 1o
call you back later on the telephone: you expect the callback to occur and you will be
ready for it, but you're not sure when it will happen.

Events and callbacks are similar. The programmer sensitizes the widget o either
ane by establishing handlers, and the operating system calls back when the stimulus
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occurs. The distinction between them—events being low level and callbacks being
higher level—is a Motif convention. In other object-oriented environments, the word
“callback™ applies o all stimuli, whether they are low or high level. In faer, Smallwalk
programmers frequently use the term “callback™ for any call of a Smallalk method
thar originares from ourtside of Smallvalk.

How does a callback (or event) differ from a conventional call? The distinction is
partly one of degree. For one thing, most callbacks represent primitive stimuli and
therefore carry less information (fewer and simpler arguments) than conventional calls
can. Bur the principal conceptual distinction has to do with concurrency. After a view
establishes a callback handler it continues to execute other code; it does not block and
awair the callback. Instead, the callback occurs asynchronously, at some unforeseeable
furure rime, when the view could be doing anything ar all. From the view's perspec-
tive, the callback has an event-driven flavor rather than a procedural one,

1210 Preparation

A CgDrawable (and its subclass CgWindow) can display graphics that are “drawn” on
it by a graphies conrext, an instance of CgGC. You can think of a graphics contexr as a
drawing ool like a pen or brush. Here are examples of CgDrawable drawing methods:
CgDrawable>>drawPoint:xiy:
Cobrawable==drawline:xl:ylaix2:y2:
Cogbrawable>>drawRectangle:x:y:width:height:

O Whar kind of object do you expect the first keyword argument in each of these meth-
ods to be? If you are uncertain, verify your answer by browsing class CgDrawable.

1211 Exercise: mouse event handling

The resule of this exercise will be a window in which you can “doodle™ with the mouse.

O Load the CgExamples application into your image, if it is not already present. (To
install it in the standard environment, start from your System Transcript and pick
menu options Smalltalk tools > Load Features. .. then select Smalltalk Programming
Examples. To load iv in the Professional environment, start from an Application
Manager window and pick menu options Applications > Available > Application.)
You can now access the abstract class CgSingleDrawingAreaApplication. This
abstract class has both a drawable widger (CgWindow) and a graphics context
built into it; therefore its concrete subclasses can “draw.”
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O Which instance variable in the abstract class refers 1o the graphics context? Which
refers to the drawable widger?

O From your Application Manager, create a new application in which to write your
code. Change the application’s prerequisites to include CgExamples.

O Add a subdlazss DoodleWindow to Cgﬂing_l:ﬂmwingﬂmaﬁppﬁmtinn. Add vwo
instance variables, oldX and oldY. You will use these instance variables to retain the
previous position of the mouse as the mouse moves.

O Write a class method to test your application:
example

Doodledindow example

“Doodl eWindow new open

0 Look ar the inherited burtonMotion: and buttonPress: event handlers. Note thar
the argument they expect is an event, actually an instance of CwMotionEvent or
CwButtonEvent. What methods can you use to get the x and y coordinates of the
point at which the event occurred?

O Finally, override the event handlers buttonMotion: and buttonPress:, and test
your window.

1212 Challenging exercise: dynamic updates

O The account window displays both a balance and a list of transactions, but it is sill
relatively inert because it provides no way o add new transactions. Extend the

window 5o that the user can creare and handle new transactions. You can consider
either of rwo Ul designs:

*  Add a burton to the window. When the user clicks the button, another window
or dialogue box should open and let the user fill in a date and amount for the
new transaction. When the user complewes this dialogue, the original window

should refresh with an updated balance and transaction log.

* Add a date field, an amount field, and a button to the window, When the user
completes the date and amount, then clicks the burton, the balance and trans-
action log should refresh.
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This is not an easy exercise. Without a GUI builder, it requires a healthy dose of
exploration and experimentation. It is a good idea 1o have an experienced Smallealk
programmer around in case you ger stuck.

1213 Summary

Object-oriented user interface programming has an event-driven flavor. The program-
mer establishes handlers for system events or callbacks, and the specified handlers exe-
cute when the events occur. Typically, these events occur ar a time and place
determined by overt user actions, like elicking a mouse at a point on the sereen. Thus
the event-driven programming model tends to liberate users, lewting them perform
whatever actions they want whenever they want to. User interfaces thar fulfill chis
promise, so that the user is rarely forced to deal with a fixed situation before proceed-
ing, are called non-modal user interfaces. (Not every user interface programmed with
objects is non-modal. For example, a user interface in which button clicks or menu
picks present dialogue boxes thar the user must complete before proceeding may look
as if it has been programmed with objects, but it won't feel thar way.)

Mow consider a procedural or function-oriented programming model, in which
the application decomposes into a tree of sub-functions. In the classic user interface
for this model, interaction occurs mostly through a formidable hierarchy of menus,
This kind of user interface puts the application squarely in control of the user, who
feels psychologically straitjacketed by it. Such user interfaces, in which users must act
in rigidly prescribed ways to proceed or extricare themselves from a siruarion, are an
extreme form of modal user interface.

Events and callbacks originated in Smallalk-80, where widgers were known as
wviews. By supporting different handlers for an event, a view could be customized for
different problems. They were therefore called pluggable views: if you needed a view
with specialized behavior, it was enough to plug one of these views into the overall
application window and establish specialized handlers for it. Withour pluggable views,
you would have had o add a whole new view class to get the behavior you wanted. In
other words, you could either “buy” a pluggable view and customize it, or “inherit”
from another view and customize that. Nowadays, the variety of widgers and their
pluggability is rich enough that you don't need 1o create new widget classes for most
ordinary applications.

50 far, I have discussed only events or callbacks that pass through the operating sys-
tem—that is, stimuli thar arise from outside Smallealk. A similar logical Aow can ocour
strictly within the confines of Smallalk. For instance, an MVC or MV broadcast is
like a callback, The view establishes a handler, namely its updare method, wrirten
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according to the problem or model at hand, and this handler executes whenever the
model calls the view back with a broadcast. Some broadcast mechanisms allow you 0
call back clusters of messages with arguments, instead of just update. The VisualAge
and VisualSmallaalk products support such mechanisms. (CF. the table on page 125.)
Programmers and frameworks sometimes also use these mechanisms for model-to-
model broadcasting, (But approach such usage warily, because excessive broadcasting
can measurably degrade performance.)

Fin:ﬂ}r. 'h:rdafs GUI builders relieve you af ha\'ing to burld the Ul, but you siill
have 1o design it. Good Ul design is much more than assembling widgets into a win-
dow, and is the subject of the next chapter. Users of powerful GUI builders sometimes
backslide from good model-view separations. Carried away by power and speed, they
connect user interface widgers directly 1o low-level components like darabase ele-
ments, without thinking about appropriate model objects.

We can suffer the same lapse even withour a GUI builder. In our rush o build
HelloWindow, we didn't stop to think about a model class. We adopted a style of user
interface programming in which we subclassed from an abstract superclass thar pro-
vided standard view capabilitics. We thought of the application as a kind of windme No
model class encapsulated the application’s logic. Such a fall from grace is pardonable
for a simple example like HelloWindow, which has no interesting application logic. It
is a benign step in the wrong direction; it is perilous only if we begin to build applica-
tions where a monolithic window class is suffused with application logic. We avoided
this misstep with the account windows by using a separate model class (Account) char
encapsulated the application’s behavior.



CHAPTER 13

Designing the UI: a brief tour

The preceding two chaprers covered the principle of separating models from views and
the actual programming that goes into constructing windows. You should now have a
solid grasp on the mechanics of a user interface. We next approach the hardest, most
ineffable aspect of user interfaces—designing them.

131 User interfaces

The wser interface (L) is the sole point of contact between a user and the computer.
As far as the user knows, the user interface is the compurer. Bur even though the user
interacts with nothing else, a lor happens in her mind. The appearance of the Ul
evokes images, just as a novel evokes mental images in the reader’s mind. And the more
the user interacts with the Ul, the further she refines these images, imbuing them with
their own im:ls'mn:l behavior, as a child imbues a t:l“{ing doll with im:a.gintd behavior
Unfortunately, the UT's evocations are rarely as effective as the novel’s or the doll’s. The
quality of that evocation is precisely whar distinguishes bad user interfaces from good
ones, hence bad compurer software from good.

The premise in this chapter is that it is worth investing in the design of your appli-
cation’s user interface, An application’s acceprability in the markerplace can pivot on
the difference between a good user interface and a mediocre one. Although this chap-
ter is not a complete treatise on designing user interfaces, | present some simple, gen-
erally overlooked principles thar are at the heart of designing respectable Uls, Along
the way, we will again meert the principles of object-orientation.

142
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13.2 Elementary examples

Consider two user interfaces for a chess program, one in which the user interacs by
ryping commands of the form “MNd3,” the other in which she uses 2 mouse to drag an
icon depicting a pawn to a square on an image of a board. The game is the same, but
the user interfaces create very different impressions on the user.

Or imagine an interactive video game, rendered not with images of protagonists in
fast-breaking life-and-death simuations and real-time feedback berween a control stick
and the images on the screen, but sentences on the screen describing the action and a
keyboard for typing moves. Again, same game, different user interfaces. One works;
the other elicits, at best, indifference. The quality of the user interface foretells a prod-
uct's acceprabilicy.

Designing a user interface for a game is not a hard problem. (Implementing it may
be another martter.) The reason goes to the heart of this chaprer: a computer user inter-
Fﬂ.l.'l.' ﬁ:" d e EI"IDIIIEI IJ'E a mElfﬂ.PI'lElr FCI‘I tI'IE I'L'ﬂl AL I HD D[I'I.L'l' UsCT inh:rﬁmr maln.'s
sense. If the game involves chess pieces, the user interface should represent chess
picces; if the game involves militant people or rocker ships, the user interface should
represent militant people or rocket ships. The elements of these games are angible,
recognizable objects, and end users won't sertle tor less than faithful representations of
these objects on their computers.

Contrast this situation with other applications: it is much harder o design a good
user interface for a typical software application than it is for a game. A word processor
deals with intangible, uncommon entities—styles, paragraphs, fonts, tables, frames,
|ayuut5.. footnotes. It is alrugcl.‘hcr more ::nmpl:: than a gAme; devoid of blatane met-
aphors. What's more, a game has well-defined rules and actions, so the actions thar its
user interface should accommodare must be equally well defined. Mot so for a word
processor. Contemporary WYSIWYG'! word processors confront users with a daunt-
ing array of icons and menus, offering much richer and less constrained capabiliries
than any sensible game does. No wonder it takes so long to become proficient at pow-
erful software applications; users just cannot get much metaphorical guidance from
their user interfaces,

The essence of the difficulry is the absence of a simple, underlying model. When
such a model exists, as for a game, the Ul can be designed to portray the model. With-
our a simple model, user interface designers facing an inherently complex problem like
word processing have litde to guide them.

' *WWhar You See Is Whar You Ged”
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13.3 Coherent conceptual models

The models discussed in the last paragraph are conceprual models. By a conceprual
model | mean words, metaphors, pictures, rules, or anything thar you use to explain
how you think something fits together. A superior conceprual model sharpens your
understanding of the subject. Here are some examples from my own experience:

* Many people automarically call a tree with needles a pine. Some do so uncasily,
because they know that other trees such as firs and spruces have needles oo, Bur
they still call them all pines. Their conceprual model for a pine is “a tree with nee-
dles.” A berter (and correct) conceprual model for a pine is “a tree with needles bun-
dled in a sheath ar their base™:

Lhesth

With this conceprual medel, it is hard 1o mistake a spruce for a pine.

= My conceptual model for a printer driver used to be “a picce of software that comes
with a printer and allows the compurer 1o send outpur 1o the printer.” Bur every
FAX program [I've seen comes with a printer driver too. Why do | need a FAX
printer driver? {1 didn't know.) If | needed to print a FAX, wouldnt I simply have
used my printers driver? (Yes.) | evenrually realized rthar a FAX printer driver was the
means by which | could send FAXes through the modem in my computer, instead
of printing them. To make sense of this revelation, 1 had vo adjust my conceprual
maodel of a printer driver to “a piece of software that handles an application’s print
commands.” This improved conceprual model neatly implies thar anything thar is
printable is also FAX-able.

Prinl

Driver A *@ —
Prinkar
wl—. Diiver X

Printer | _ e oo

* Printer
Dviver B | T r
Oid conceptual model MNew conceptual model

* A teacher of new computer users told me that when she asked them to “move the
mouse 1o the wp of the display,” some of them lifted their mice into the air and



13,3  COMERENT COMCEPTUAL MODELS

145

placed them on top of their monitors. They were unfamiliar with the direct manip-
ulation conceprual model, in which the mouse is, in effect, something on the screen.

«Fr

Users are not to blame; if computing is to be anractive and helpful, the compurer
industry had better elearly convey conceptual models to its users.

If conceprual models are the means
by which we understand a subjecr, i
follows that they had better be cobrer
ent—their parts must fit together in a
natural, easily understood manner
Only then will users find them memo-
rable and meaningful. On the right is
an attempt o portray a concepiual
model for a face. A face designer
would be satisfied that it contains all
the right elements—eyes, nose,

I'I':I.DUI'J'I. HI'I& S0 O

- s I":

Mow consider an upside-down version of the same face. Study it carefully, withour
turning the page upside down. This lets you analyze it without being influenced by

your usual intuitions abour faces.
Aside from the irrelevane Facr thar
it is upside down, is this model equally
coherent? Can you discern any inco-
herent elements? It should take a few
moments before you notice them: the
mouth and eyes are oriented righe side
up. Thus, a face designer would even-
tually concede that the elements are
not assembled coherentdy, even though
all the right elements are present.
Users, on the other hand, do not
have the designers’ patience for analyz-
ing a model’s coherence. To appreciate

:‘F"'- "{ - ol



146 DesiGhibic THE LI A Brier Tour | CHAPTER 13

their perspective, turn the page upside down now. This conceptual model of a face is
immediately and unmistakably incoherent. Users arrive at the same conclusion as the
designer eventually ought to, but more quickly, and by a different cognitive process.”

The analogy here for user interface design is that wo achieve a successful user inrer-
face the designer must describe not only a conceprual model, but one that is coherent.
If the designer has no conceprual model at all, the user will never make sense of the
user interface. A little better than having none ar all is having one thar is incoherent.
This is the most common situation, where the designer settles for a conceprual model
that nevertheless baffles the user. Best and rarest, and the only hope for comfortable,
intuitive user interfaces, are coherent conceprual models.

In practice, conceprual models funcrion at more than one level. In the word-
processing example, one elemental conceprual model is thar a word processor behaves
something like a typewriter. Another is that the result can be stored indefinirely and
recalled and changed ar will. Another is spell-checking. Another is paragraph styles.
The overall conceptual model of a word processor consists of how these hundreds of
lesser moddels fit rogether. (Note thar assembling them coherently is a herculean rask.)

At another level, many word processors employ scrollbars, a toolbar with iconic
buttons, menus, and dialogue boxes. For each of these widgets, users have developed
expectations for their behavior: “dragging a scrollbar moves a window over the docu-
ment,” “clicking a menu title drops down a list of menu selections,” and so on. These
expectations are conceprual models for each kind of widger. Failure to recognize any
one of these conceprual models at either level will be a major obstacle in using the
word processor.

Because conceprual models are the means by which we understand the world, it
behooves us to find effective ways to describe them. There is no one answer, but the
next section brings one of humankind's most powerful cognitive tools to bear on the

problem.

13.4 Metaphor

Metaphor is the use of one idea in place of another o suggest some likeness. IF | tell
you that my office is a pigsty, | am using a metaphor. | don’t mean thar pigs actually

* The brain has wiring for face (or | ) recognition. Tuming the image upside down disables
thiz wiring, Thar's why we are unaware of how seriousdy amiss things are in the upide-down image.
Some people base this wiring completely, even for right-side-up images. They develop wima/ agnosia,
a right-brain disorder in which they can no longer recognize faces, or assemble visual wholes from
parts. See [Sacks 1985],
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inhabit the place; rather | mean to suggest the disarray of a pigsty. A good meraphor is
a powerful cognitive tool because it is a form of reuse. The mind applies its knowledge
of something it already knows to something it doesn't.

Most people claim thar it is difficult for them to think metaphorically. Bur in fact
they use metaphors all the time without realizing it. “Thar sofa weighs a ron.” “He
reminds me of a politician.” “She is dancing on air.” When taken far enough, pracu-
cally everything we say has a metaphorical roor. Consider:

[The dog] flashed and darved hither and thither as if fairly demented,
screaming and shouting, swirling round and round in giddy leops and circles
like a leaf in a whidwind. [Muir ca. 1880]

How many metaphors do you count? Two are conspicuous: likening the dog o a
lunatic and also to a leaf caught in a whirlwind.

But probe a lictle deeper. Where do words come from? Someone had to invent
them. The word flask came about by onomatopoeia—it sounds like the idea it repre-
sents. Just hearing the word evokes the image of something that swiftly comes and
goes. Someone made it up for this reason. Darts were originally pointed weapons
thrown by hand (surviving today in the form of a game); here they are a metaphor for
the dog’s abrupt movements. Whoever first used the word cirle was connecting it 1o
the Greek word for ring, kirkos. For that individual, a ring was a metaphor for a circle,
and we now accept the invention without reflecting on itz metaphorical origin. The
word shewr goes back to an Old Norse word for a taunt, skite. Demented derives from
the Larin d¢, meaning out of, and smess, meaning mind. And so on.

In short, every word comes about because somebody connected it to an idea, and
so a metaphor lies somewhere behind every word we use. Instead of insisting thar it is
hard for us to think metaphorically, we should concede thar it is hard for us o think
in any other way. Everythings meaning is based on the meaning of something else.
Metaphorical thinking is part of our cognitive core, whether we consciously acknowl-
edge it or not.

Whar metaphors could describe the conceprual models for the word-processing
example? It is like a sypesrirer, but it can do more. It can remember documents, Text
can be rearranged like building blocks. It works with a dicrionary to check spelling. To
someone who has never experienced word processing, or even a computer, metaphors
like these may convey conceptual models more concisely and vividly than a literal
description of the software’s capabilities.

Just as conceprual models apply ar different levels, so do metaphors. Here are some
application-level metaphors that have profoundly influenced the computer industry:
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Application Metaphor

VisiCalc (firse spreadsheet, Bookkeeper’s ledger sheet

precursor of Lows 1-2-3)

Pong (first video game) Ping pong

Xerox Sear (first office GUL, precursor  Dheskrop

of Apple Lisa and Macintosh)

SQL Predicare logic

Word processor Typewriter + dictionary + style guide + -

And here are some metaphors at the level of user interface components:

User Interface Function or Widget ~ Metaphor

Menu Restaurant menu
Scrollbar Sliding window
Drragging hand Sliding paper
Drrag and drop Moving

Folder icon Container

Radio button group Radio presets

In Chaprer 1, | emphasized the value of metaphors in thinking abour program-
ming objects. In this chaprer we've extended their reach from programming objects 1o
mnu:ptu:l models. As before, I'm not interested in the fine distinctions among meta-
phor, simile, analogy, and imagery. Their important common characteristic is that
they use one idea to suggest something abour another idea.

13.5 Magic

The remaining consideration for designing good user interfaces is magic. If a computer
application does neither more nor less than the metaphor it is based on, there's no point
to it. A word processor that exactly duplicates a typewriter's function is no better than a
typewriter. Magic is the verm that user interface designers use to describe the ways in
which a compurer application goes beyond whar the original metaphor suggests.

A spreadsheet program goes beyond a bookkeeper’s ledger sheet in two stunning
ways. First, it permits the user 1o enter formulas where the bookkeeper would have
had ro caleulare a cell's value by hand, and second, it can auromarically recalculare
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these formulas when the cells on which the formulas depend change. We take for
granted these capabilities thar VisiCalc first introduced in 1978, Bur VisiCalc, graced
with this magic, became the first major commercial personal compurter application
and was an early driving force in the personal computer revolution.

Many people form minor addictions to the simple solitaire card game in Microsoft
Windows. lts conceprual model (and metaphor) is the real card game, Klondike soli-
taire. The software provides exactly the same functions as the player with a card deck
does. lts magic consists of the ways in which it is faster and less troublesome to play
than the real version. Starting a new game requires only a menu pick, not a physical
and time-consuming shuffle and deal; this magic overcomes the chief obstacle to play-
ing “just one more game.” Moving a run of cards by dragging and dropping is lazier
and ridier than moving real cards. Turning over cards by pointing and clicking rakes
less energy than grasping and flipping a real card, Owerall, the software version affords
the same intellectual challenge as the real version, but requires markedly less physical
effort to play, on account of its magic.?

Magic fosters good software, bur magic gone awry is treacherous. Getting the righe
balance of magic is part of the challenge in user interface design. Consider the Macin-
tosh trash can. To delete an item, the user drags and drops it into the wash can. The
metaphor is so faithful to a real trash can that you can recover items by opening up the
can and examining its contents. To permanently delete its contents, you must explic-
itly “empty the trash.™

But the trash can has another magjcal property: if you want to eject a diskette from
the diskette drive, you drag and drop the diskette icon into the trash, wo. Every new
Macintosh user I've observed, including me, has been puzzled by this behavior, and ar
least momentanily concerned thar they mighe be erasing all the files from their dis-
kette. They adjust soon enough, but not before the initial scare.

Another example: The O5/2 shredder is based on the metaphor of a paper shred-
der. This metaphor works nicely for documents: drag a document’s icon and drop it
on the shredder and the shredder disposes of the document. Sometimes, though, icons
FEpresent programs instead of documents. And often, two icons r:prﬂ:ntin.g the same
program are tucked away in different places on a deskrop. As a new user, | worried
whenever | wanted to delete an extra icon. In my conceprual model, the icon i i
underlying object (the program). Hence, if I shred the icon, the program must go with
it, which is different from my intent.

* Some critics believe this convenience is a bad thing. They argue that sofrware games are detrimenral
because they distance their users from rangible ::3-“}' Essenially the same ohjections apply o rebe-
vision, breadmaking machines, digital images of am, even books.
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Fortunately in this situation, the shredder deletes only the icon and not the under-
lying program. This behavior isn't consistent with my innocent conceprual model, bur
at least it provides a way to do what | want to do. Bue the story doesn't end there. Afrer
I adjusted 1o this behavior, | stumbled on sitwations where shredding the icon also
deleres the program! On these occasions, the innocent conceprual medel is correct: the
icon identifies with the underlying program file. (Icons found by starting with the
“drives” icon behave in this way.) Unhappily, this kind of icon and the kind of icon
that doesn’t identify with the underlying program are visually indistinguishable. Same
icons, different behaviors. The magic of shredding was designed to present an irrecon-
cilable obstacle to consistent use of the user interface.’ (By the way, Windows and
Windows95 suffer from the same ambiguity. In my experience, only the Macintosh is
unambiguous abour icon identiry.)

A final illustration: in everyday life we often wish we could undo something chat
wrned out badly. Examples range from staining the side of the house the wrong color,
to disassembling a camera lens, to sewing an extra flap of fabric into a seam, to saying
the wrong thing to someone. This wish occurs as often when working with compurers
as it does in real life. But in computer applications, it is theoretically possible to fulfill
the wish. Some applications—the Microsoft Word and DeScribe word processors, the
WindowBuilder Pro and "h"’uu:l.ﬁ.gc GUI builders come to mind—Ilet their users undo
an unlimited number of past actions. Users develop complete confidence that they can
retrace their steps, and therefore are not reluctant to try bold new directions. Such
undo magic is as good as it can ger.

Unfortunately, most undo Facilities are more limited. Some let you undo perhaps
four actions, or warn you thar specified actions are not undoable. This undo magic has
gone awry. Users are burdened with remembering an arbitrary derail, like whether the
state to which they wish to return is within the four-action limit. They stop using
undo because they regard it as untrustworthy. The effect can be debilitating: they hes-
itate to risk actions whose results they are not sure of. Oine sees this hesitation in the
use of photo-editing software, where they are inhibited from trying special effects
because of the fear that I'l'-:}r will not c:lsi.l.}r be able to return to an a:;c:pl:abl: im;lEc.

Limired undo functions remind me of a timeless piece of wisdom, known as the
“zero, one, infinity” rule: if you are going to design undo, make ir support zero, one,

* Compurer scientists call chese kinds of problems aliaing problems. This is an example of aliasing
on the user interface. Bur aliasing problems pervade software, and object-oriented programming is
no exception. In Ces, cvery pointer is an opportunity for an aliasing bug. Smalltalk is a litthe betrer,
because it has no explicit pointers. But implicit pointers are everywhere, 50 vou can still encounter
aliasing surprises, Befer vo the aliasing exercise on page 59,
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or infinitely many undos. These are the only numbers that people can remember. We
will revisit undo in Chapter 15, where we will discover an object-oriented design for
infinite undo.

Magic is hard to get right. All of these examples—the Macintosh trash can, the
0572 shredder, and undo facilities—are based on reasonable metaphors, bur present
disruprive magic. The resulting conceptual models aren’t coherent.

Let’s summarize the characteristics of good user interfaces: they are based on coher-
ent EHI'ID.'.F'“.III !'I'Iﬂd:l! tl'l:lt are IJ!'I.EI-EIE'IH:H:I tI'II'ﬂIIEh E-BI'I.'H.J.U}' EI'ICIGEI'I m:tapl'mm Fl.nd
they improve on these metaphors by just the right kind of magic—magic thar adds
power to users withour disrupting their understanding of the user interface.

13.6 Exercise: design a user interface

Design the user interface for an application for managing addresses and phone num-
bers of friends, family, and associares. This is the “contact-management™ component
of products called PIMs, or Personal Informarion Managers. Be as imaginative and
unconstrained as you like, but consider all these:

O Brainstorm until you have at least two metaphors for the user interface. ("It like
a ")

QO Develop some high-level use cases. Brief descriprions of some of the users rasks
will suffice.

O Choose one of your metaphors and outline your ideas for a user interface based on
it. Use your use cases vo evaluate (a) ease of learning, (b) ease of use, and () magie.

0O As a responsible user interface designer, try to articulate one or more underlying
conceptual models to a prospective end user. A good test for coherence of your
conceprual model(s) is to limit how much you say. (Twenty seconds? Three sen-
tences? One picture?) Imagine just one brief opportunity to convey the spirit of the
application. The conceptual model(s) can be the same as your user interface met-

aphor, but it need not be.

This exercise produces the most interesting results if you can do it in a group of up
to four people.
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13.7 Discussion of your results

People who do this exercise invent all kinds of ingenious interaction techniques. Most
are variations on the fine details in their chosen user interface metaphor. As for the
metaphors themselves, the list of candidares seems short—three that I can distinguish.
And no marter whar the meraphor, the same conceprual model always emerges. Ler’s
begin with the metaphors.

The two most popular user interface metaphors for contact management are the
address book and the Rolodex. A real address book has some obvious limitations: you
cant add pages if you need more space, and you can’t order the entries. For instance,
all names beginning with “5" are together, but not in any logical order. These limita-
tions present obvious opporwunities for magic—unlimited names and automatic
alphabetic sorting. The result is a more gratifying address book than a real one. Notice
thar although unlimited pages and sorting are magical extensions for the address-book
metaphor, they are already part of the Rolodex metaphor.

One interesting feature of real address books is the index tab. Imagine che use case
of searching for a name, say, “Segovia.” | pick the tab for the leter 5" first, then scan
thar page for “Segovia.” Not bad. Those tabs on manual address books and Rolodexes
were an inspired way to cope with large numbers of names. Far better than, say, a wele-
phone book. Bur that was before computers. A compurerized contact manager thar
makes me select an index tab o ger to the vicinity of the name | wanr feels, well, inef-
ficient. Computerized Rolodexes and address books both give users this fecling,

To overcome this problem, contact managers often provide a fast-path facility in
which the user can type letters like “S-E-G” and immediately reach the first name that
begins with “Seg.” This technique is an appealing form of magic, bur it doesn’t quire
fir with address books and Rolodexes. The user looking ar an address book sees an
alphabetic tab for the lewer “5” thar entices him to pick that tab o find “Segovia.” The
user may not guess thar typing rwo or three characrers will lead progressively 1o a
matching entry. The technique is ingenious, bur it differs sufficienty from the base
metaphor that it runs the risk of appearing to be inconsistent.

Perhaps a computerized contact manager should do away with index tabs. Does
such a design depart too radically from the world of real contact managers? Or is there
a real-world contact manager that has no index tabs, on which we could model the
computerized version?

Absolutely. The simplest real-world metaphor is one that people carry on a sheet or
two of paper—a [t of names and contact information. If a list of names on a sheet of
paper is oo dreadfully mundane a metaphor, you may consider a fancier version of the
metaphor—your local telephone book. Either way, the designer can spruce up the user
interface with a little magic: the user can seroll a window over the list (continuously,
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and without artificial markers like the twenty-six letters of the alphabet); the user can
search by typing “5-E-G" and the window will scroll farther as the user enters each let-
ter; and selecting one name from the list can open a view of that individuals detailed
contact information:

This user interface is unencumbered by superfluous index tabs that set expectations
more appropriate for physical contact managers than compurerized ones.

We have concentrated so far on the use case of searching for a name. Other essen-
tial use cases are adding a new entry, deleting an obsolete one, or altering an existing
one. You may also have considered use cases like dialing a phone number, sending e-
mail, or printing an envelope, or variations of the essential use cases such as copying
or sharing contact information from another contact. Sooner or later, in a real design
effort, you would have o walk through detailed versions of each of these use cases. You
would find the challenge to be in balancing Rithfulness to the metaphor you've chosen
with the magic you need to make the computerized version more usable than its real
counterpart.

Finally, can you as a Ul designer articulate a coherent conceprual model to the pro-
spective end user? This is a serious challenge. For example, the designer who wants 1o
say that the conceprual model is a Rolodex or address book, and then adds multileter,
progressive searching, will have a tough rime arguing for coherence. First, you must
succeed in articulating a coherent conceptual model to yourself. Thinking back wo
model-view archivectures (Chaprer 11), a good place 1o begin is 1o imagine the model
objects you would need.

Regardless of the Ul metaphor you started with, it doesn’t take long ro concede
that a Person or Contact class, and a suirable container to hold them, like a Sorted-
Collection, are unavoidable. Rolodex and address-book Ul designers also need a
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Rolodex or AddressBook class, respectively. List or telephone-book Ul designers
quickly recognize that they will need a class thar supplies the magical behavior for their
views oo, [hey might name this class PaperList or TelephoneBook. The striking
resule of all three approaches is thar, regardless of the user interface metaphor, the
model objects end up configured something like this:

These model objects can service any of the three user interfaces—the three views.
Any behavior beyond whar a conuainer like a SortedCollection can manage resides
mainly in the Rolodex/AddressBook/PaperList class.

You have actually used this configuration of objects before, in the checking
account exercise in Chaprer 7. Compare the sketch here with the CRC cards illus-
trated on page 86. The resemblance is not coincidental; this configuration of objects
solves many design problems. Recurring configurations like this are known as design
parterns (Chaprer 18).

Motice that this common conceprual model resembles address books and Rolo-
dexes least. In fact, it's not very different from the paper-list metaphor. For one thing,
the index tabs char are an artifact of the other metaphors and so strongly predispose
users to search for and add names by rabbing to a specific letrer, are absent. Because
tabs don’t intrude on a paper list, both it and the conceprual model are free of the
biases with which magic multilerter progressive searching mighr clash. Thar the paper-
list metaphor aligns so well with the conceprual model (they are isomorplic—see the
next section) suggests thar compurerized lists may be desirable user interfaces for
contact-management applications. The irony is that so many contact-manager user
interfaces roday look like address books and Rolodexes, in spite of the dissonance with
the underlying conceptual model.
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The sketch above is a satisfactory way for the user interface designer who knows
about object-oriented programming to picture how the application fits together. It
constitutes a coherent conceprual model. The same skerch can conjure up a coherent
conceptual model for the user: the user can imagine a sophisticated main object char
has a container of contacts. A conceptual model shared berween user and designer—
even one as simple as this sketch—is the essence of successful user interface design.

13.8 Isomorphism

The sharing of a conceprual model by user and designer is an example of isomorphism
(from the Greek, s = same, morphism = form). In a successful user interface, the user’s
and designer’s conceputal models have the same form. If a user can learn the user inver-
face quickly, this shared conceprual model is probably coherent 1oo. This isomor-
phism is illustrated in the following picture, with the designer’s thoughts ar the lefe
and the user’s on the right:

Once the product is out the door, the only way for the designer to convey the con-
ceprual model to a user is through the user interface itself, represented by the monitor
and mouse in the figure. (Manuals may be available, too, but they are gerting smaller
and becoming less of a factor.) Hence, the user interface had berer also be isomorphic
to the conceptual models of the designer and user.

Just as an isomorphism berween user interface designer and user reduces mennal
translations, all other isomorphisms reduce mental translations. Thus, programmers
benefit from an isomorphism (A in the picture) berween the user interface and the
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programming language, and database designers benefic from an isomorphism (B in
the picture) berween the programming language and the database. Isomorphism A
comes from an object-oriented language into which the programmer can translate the
objects from the conceprual model. Isomorphism B comes from an object database
system, into which the programming objects may be directly stored.

At least that is the theoretical ideal. Nowadays, all these isomorphisms are feasible—
and desirable—except for the database isomorphism. The darabase solution for a prob-
lem 15 sometimes an uhlr:cr database, but the decision d:p:nds on a host urpnu:tical con-
siderations: scalability, performance, distribution, transaction size and frequency, and
the presence of legacy dara. For example, in large-scale business problems, the darabase
solution often necessarily involves an existing relational database management system,

Isomorphism brings us full circle, back 1o objects. Isomorphism means thar the
conceprual models of the user and designer have the same form; the user interface
evokes this shared model; and the programming model and wistfully, the database
model, are faithful to it. Metaphors help us impare our conceprual models o each
other, but we cannot program in metaphors. So we use the universal language of objects
to express our metaphors in a form that object-oriented programming can handle.

13.9 Summary

Designing a first-class user interface is orders of magnitude more difficulr than most
people think. 1f we had a prescription for success, many more of us would be grear user
interface designers, and many more grear user interfaces would be on the marker.
Unfurmnatcl}'. great user interfaces are rare, In p:lrtir.;ulan we have seen that tl'n:}r can
appear only in conjunction with great overall designs. No user interface can compen-
sate for a poorly designed application.

Although we have no prescription for success, we know of some considerations
without which failure is certain. The user interface designer must:

- l:-u-n.'irru:[ ED]'I.IE“:'ﬂt EDI'I'I:‘:P[LI.:II mu-l:[-l.'ls
* Identify and develop use cases.

* Apply metaphors wherever practical—ro facilitate learning and use of the user inter-
face or to describe conceprual models.

* Ukse magic judiciously, to go beyond the metaphors in ways that do not clash with
them.

There is no special order o these steps. We have to do them all repearedly before they
converge 1o a product.
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You practiced these steps in the exercise on page 151. Given enough time, you
would study usability too: observing users at work; presenting crude early mockups of
windows to them for their feedback: and, once working prototypes are available, mea-
suring the time for them 1o complete tasks.

In real projects, the difficulty of user interface design, indeed application design, is
compounded by the often conflicting requirements placed on the application by dif-
ferent groups of users. Each group does things in its own way, or deals with its own
cross-section of the objects, or sees the business from its own standpeint. Conflicting
conceptual models are all around. This cacophony of demands makes it even harder
to produce a coherent overall conceprual model and a firse-race user interface.

For a comprehensive treatment of the problem of designing user interfaces, see the
book by Dave Collins [Collins 1995], which amplifies the theme only rouched upon
here, namely that a good user interface design is inseparable from a good system
design. For the pervasiveness of metaphor in human cognition, see [Lakoff and
Johnson 1980). For several excellent essays on metaphor in user interfaces, see [Laurel
1990]. Two essays in that volume that challenge the value of metaphor are [Nelson
1990] and [Kay 1990]. The former is a diatribe against excessive use of metaphor and
the latter emphasizes magic in overcoming the limirations of metaphor.

We have seen conceptual models that are metaphors, or definitions, or picrures.
Here is one final example, from Nobel physicist Richard Feynman’s perspective on
physical laws: “A philosophy, which is sometimes called an understanding of the law,
is simply a way that a person holds the laws in his mind in order 1o guess quickly ar
consequences |Feynman 1967]. His “philosophics™ help physicists anticipare experi-
mental outcomes in precisely the same sense thar coherent conceprual models help
computer users anticipate the behavior of applications. Feynman’s “philosophies™ are
yet another kind of conceprual model.

This chaprer concludes our three-chapter tour of user interfaces. We turn nex to
the essential subject of polymorphism.



CHAPTER 14

Polymorphism

One of object-orientation’s most vital properties is polymorphism. Polymorphism
increases the extensibility and darity of object-oriented code. It influences object-
oriented design so much thar many authorities wrear it as a fundamental object-oriented
principle, alongside the objecrs, classes, and inheritance we discussed in Chapeers 1 and 2.

Polymorphism relates 1o several other ideas, including swbeyping (Chaprer 17),
type-checking, and dysamic binding. We begin with dynamic binding, which is an idea
that makes sense in either object-oriented or non—-object-oriented contexts.

141 Dynamic binding

Alan Kay observes that postponing a decision until the last possible moment is one of
the most fruitful and characeristic rends in the evolution of compuring [Kay 1993].
Examples of postponement in computing history include linkers, relocatable pro-
grams, and virtual memory. Another is dymamic binding, which postpones selection of
an operation until execution rime.

Most wraditional languages, like Pascal and FORTRAN, don't support dynamic
binding: if you write foo(x) in those languages, the compiler (or linker) determines the
exact function foo to be executed, then compiles the directions to find that function. If
the program has more than one function foo, the compiler uses the rules of the lan-
guage to pick one. When the program eventually executes, thar one runs.'

" The special situarion in languages like C or Ada where the compiler can pick among funcrions with
the same name bur different argument types, such as foo(3) for integers and foo("hi®) for srings. is
hmumﬁnﬂqmshmmmnﬂedpmmmhmqﬂhdmw
the two functions by examining the argument types, long before the function executes. Overloading
is emphatically not dynamic binding,

158
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Dynamically bound languages don't preordain the funcrion that executes. Instead,
the function is selected while the program is already running, from possibly many
functions named foe. [t is often impossible to select the function or method any ear-
lier, as this example in Smalltalk, which is dynamically bound, illustrates.

aCondition

ifTrue: [y := 3]
ifFalse: [y := #(5 7 eleven)].
¥y printOn: some3tream.

Smallealk has numerous printOn: methods—classes often define their own
printOn: method o customize the way in which instances print or display themselves
in texrual form. (Recall the exercise on rendering any object into text, on page 56.) If
it happens that the “true” path execures, the printOmn: thar execures should be the one
appropriate for 3; that is, for class Integer. IF the “false”™ path executes, it should be the
one for #(5 7 eleven); thar is, for class Array.

The Smallealk cnmpill:r cannot prﬂ:rrdiin the choice, for it can't prﬂ:lict which
branch will actually occur ar execution time, This is dynamic binding—the ability o
postpone selection of the specific printOn: method unril execution time. The more
interactive an application is, the more situations arise in which the compiler can't
know the funcrion in advance, and the more unavoidable such postponements are.

14.2 Dynamic binding enables...polymorphism

MNewcomers commonly assume thar dynamic binding must work by way of condi-
tional code that selects among the candidate methods, and is necessarily slow. Mot
always. The presence of conditional code and the speed of method selection depend
on how a particular language system-—the compiler plus the runtime environment—
implements dynamic binding. Today's Smallalk implementations are fast, and the
different rechnique thar C++ employs is even faster. (We'll see in Chaprer 16 how Cas
gets this speed by foregoing conditional code entirely.)

Here iz one way o do dynamic binding. This technique is somertimes used in non—
nl:i:ct—uricnt-rd |:|ngu:l.gﬁ. but we will see that it 1s unﬂr]sﬁn:mr}r for uhjrct—nri:nt:d

ones. Suppose your application has a user interface thar will show each item in a mail-
box. The items or “objects” could be memos, spreadsheets, or documents. You could

use a conditional statement like CASE, SELECT, or SWITCH, depending on your
language:
case y.type of
m : showMemoly) |
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5 : showSpread(y) |
d : showDocum{y}
end:

This is Pascal, bur the same style works in any language, as long as the “type” infor-
mation is available along with the “object™ ar the time the program executes. In this
example, the programmer would have to build and maintain the extra “rype” field.
Mow, if you can do it in non—object-oriented languages, you can ako do it in object-
oriented ones. Moreover, in Smalltalk the type or class of y is readily available just by
sending the message y class. Nonetheless, Smallralk or not, this is an awful way ro do
dynamic binding, for the following reasons.

First, performance. On many computers, conditional branches, especially those
with many cases, are slower than straight line code. (Branches are less of a drawback
nowadays on most RISC computers, because they can pre-execute code ahead of a
branch while t|'||::|.r evaluate the branch condition.)

Second, and mere serious, is an engineering drawback. Sooner or later you'll want
to extend the application to accommodate other kinds of objects—changing and
enhancing software is inevitable. Let’s say graphics could now show up in the mailbox,
too. You would have to alter the case statement to accommeodate another case (g :
showGraphic); that much is unavoidable, Furthermore, if the same case statement
occurs elsewhere, for example to show the items in a file folder, each such occurrence
must be repaired, too. Bur the case statement is much more insidious than that. Not
only do you show items, but you are also likely to mail them, or prine them, or save
them, or execute or read them. These operations invelve nearly the same case state-
ment, each of which must be alwered, o, Searching for and altering all those stare-
ments is tedious and error-prone.

We would like ro avoid having to repair client code—the code thar uses our
spreadsheet and memo objects—every time we add a new kind of object to our library
of reusable components. We are willing 1o concede thar adding graphics objects neces-
sitates new library code, namely the Graphics class, but we hope that client code can
benefir from these new objects withour incurring widespread alverations.

The solution to this problem in Smallealk looks like this:

y showlt

Thar’s all. If you now add a class of graphic objects to your application, this line of
code doesn't change. I the line occurs at several points in the client code, none of
those occurrences changes, either. And if a similar line of code occurs to mail, pring,
save, execute, or read objects, those occurrences don't change, either. We have liberared
client code from conditionals and in so doing immunized it against a whole caregory
of invasive alterations.
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Does the conditional really disappear? You may suspect me of merely Ractoring the
noxious conditionals our of the client code and into just one conditional hidden inside
a single showlt method. Thar approach is indeed possible. But it makes for a complex
showlt method and is still one error-prone conditional too many. It is unnecessary and
undesirable.

Here's how the object-oriented design works without any conditional ar all. There
are really severaf methods, all with the same name, showlt, one for each class of objects
we're interested in: sprc-;ldshﬂ.'ts.. documents, E;r:lphics. and so on. By nsl:ing the van-
able y vo showlt, we are really asking the object that happens o lurk under y 1w
showlt:

Client code v showl
AN T
- rad % S -

J’ \ H“H
Ehcwdi shteadt s
o] Q Q
aSpreadsheat aDocisment aGraphic

One ol these objects lurks under v

Whatever kind of object that is, it responds directly with its ewn showle methad.
There is no type testing and no branching. The running program doesn’t even know
whar kind of object is there, and it doesn't care. It just trusts thar the object under-
stands showl.

The fashionable name for this conditional-free style of programming is pofymer-
pf:fm. "Ftl-!]"-l- murphism" i5 of Greek orgin and means, "mu]tiplcf form.” The van-
able y assumes “multiple forms,” depending on the kind of object it happens to point
to. Each kind of object administers its own showlt method, and so the response to the
message ¥ showlt effectively also assumes “multiple forms.” Polymorphism—multiple
forms—is a way to replace conditionals by classes, resulting in code thar is easier o

read and easier to modify.

14.3 A word on terminology

The concept of dynamic binding in object-oriented systems has two aspects: dever-
mining the object (and its type) and, having done so, looking up its chain of super-
classes for the method. The latter often also goes, z||:lt|:|.r and uni.rnl:igunusl]r, l:n]f the
name method lookup. 1 use “dynamic binding” in the broadest and loosest sense, wo
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cover both aspeets. Many authors limit “dynamic binding” to one or the other; that is,
either 1o type selection [Booch 1991] or method lookup [Meyer 1988; de Champeaux
eral. 1993).

You can think of dynamic binding as a mechanism for postponing method selec-
tion, implemented in different ways by different object-oriented languages. Polymor-
phism, although it requires a dynamically bound language, is not a mechanism bur a
design technique for improving the clarity of our software. The relationship berween
polymorphism and dynamic binding is a strill:ing example of the inscparability of
design from implementation. You can't design polymorphically unless your language
supports dynamic binding.

14.4 Exercise: polymorphism

O Suppose an importer wants to caleulate the rarff on the motor vehicles she
imports. Suppose her software must apply different calculations, depending on

whether the vehicle is a truck or passenger car. Whar should the high-level design
look like? Think of two designs.

14.5 Solutions and discussion

Selution 1. Define an abstract class Vehicle, and two concrete subclasses, Truck and
Car. Define a method Vehicles>taniff that does nothing. We called such a method
“pure virtual” or or “subclassResponsibility™ on page 64. Then define methods
Truck>>tanff and Car>>tanff that apply the respective calculations for the two kinds
of vehicles.

Vehicle
~ N

Truck Car

Solurion 2. Define a class Vehicle with an instance variable named type. The method
Vehicles = tariff has the form:
type = "truck'
ifTrue: ["truck calculation"]
ifFalse: [“car calculation®]
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Object-oriented developers invariably think of the first solution first. People with-
out object-oriented training, however, have recourse only to the second, which is acru-
ally not object-oriented. By now you know the drawback of solution 2: it is harder o
maineain if and when other kinds of vehicles like motorcycles with different cariff cal-
culations appear on the scene.

To summarize: The polymorphic, object-oriented design is extensible because the
client code consists solely of:

v tariff
This line of code doesn't change, even if motorcycles are imported. Polymorphism uses
classes instead of conditionals to solve the problem.

14.6 Exercise: Smalltalk's if-less-ness

Consider any code that sends the if TruesifFalse: message, such as this sample:
K= ..

X 1fTrue: [“"true path"]
ifFalse: ["false path®].

Think about the following questions without looking at any Smalltalk browsers,
Then use a Smallealk browser to verify your answers.

Q In whart class should the method ifTrue:ifFalse: be?

0O What should the method ifTrue:ifFalse: do? In particular, should its code be con-
ditional? And how many ifTrue:ifFalse: methods are there?

14.7 Solution

A plausible first guess for a class that implements if True:ifFalse: is class Boolean. But
the browser shows no such method:
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A closer look ar class Boolean, however, reveals two subclasses named True and
False. Examining class True first, we find among its methods an if Troe:ifFalse:. Now,
one might well expect 1o see some conditional code in the body of this method. Bur
there is none:

= : o

B I

The evaluation of the “trucAlrernativeBlock”™ is wmeondirional. That's because the
receiver of the message, knowing itself to be the true object, has no need for the mes-

sage’s “falseAlternativeBlock.” A true object ignores the false alternative and simply
executes the true alternarive.

Mow, class False has a totally different method, albeir also named ifTrueifFalse:.
The logic within thar method unconditionally executes the “falseAlternativeBlock.”
After all, the false object knows full well char it has no need for the true alternartive and

summarily ignores it
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This situation seems paradoxical, ar least on a superficial first glance. How can
something as ostensibly conditional as 2 method named if True:ifFalse: in fact execure
no conditional code? The answer is exactly the same principle the tanff methods illus-
wrated in the earlier exercise: subclasses can replace conditionals, as long as each sub-
class supports its own version of the method. Smallealk juse takes the principle
radically far, down to the level of boolean objects.

14.8 Summary tip

As a rule of thumb, think twice about conditional statemenis in your code. Many of
them may be opportunities for subclassing and polymorphism. “IF" statements dis-
quiet object-oriented programmers. Unless you are certain never to expand them with
addirional cases, you should be as suspicious of them as as you are of the “GOTO" in
conventional programming.

14.9 Commentary: performance

Performance is a peculiar topic. The things that people dispute heatedly and ar great
length are often the ones that marrer least. Usually they are the things thar are easy to
measure—how many conditionals, how many levels of address indirection, a highly
specialized benchmark, and so on.

What really matters—when static SQL can be an order of magnitude faster than
dynamic SQL, or when searching a queue from the rear instead of the front can halve
CPU time, or when a working set size exceeds virtual memory—isn't so easy to mea-
sure. Instead, these are marers for savvy design. The savvy designer grasps the prob-
lem at hand and has a mental arsenal of alternatives to apply to it, plus an intuition
born of experience 1o weigh their trade-offs and anticipate which is best and by how
much.

Keeping these caveats in mind, whar are the performance implications of polymor-
phism in object-oriented languages? Its measurable effect reduces to the net of wo
opposing forces:

1 Fast: replacing condirionals by defining new subclasses.

2 Slow: method lookup. Looking up an inheritance hierarchy for the class that im-
plements a method, no matter how fast, is still slower than calling a function
whose location is known at compile time. The techniques that language imple-

mentors use to achieve acceprably fast lookup are covered in Chaprer 16.
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The danger with cold calculations of these forces is thar they are likely vo distract us
from the main event. Polymorphism above all contribures 1o cleaner systems thar are
more mentally rracrable. And designers can understand tracrable systems and hypoth-
esize ways to improve their performance. You can't write faster code unless you can
understand ir.

Benchmark experiments on early versions of the CHOICES operating system,
developed in C++ ar the University of Illinois, showed that it performed unfavorably
against UNIX. A year later, benchmark results showed CHOICES to be consistently
superior to UNIX. The developers cited two reasons for the improvement. The first
was thar performance bortlenecks were casy to fix because they were encapsulared—
hardly a surprise, for encapsulation is the most flaunted of object virtues, The second

was replacing conditionals by subclasses—polymorphism can improve performance.

1410 Commentary: Smalltalk, C++, and type-checking

The expression type-checking means to try to detect occasions when an ebject is being
used in circumstances that are appropriate only for objects of other types or classes,
{Remember that we don't distinguish berween the words class and fype; thar is, not
until Chapter 17.) Sending a message to an object that doesn't understand it is a typi-
cal example of an error that object-oriented languages type-check:

Whale new + 2.71828

Because Whale instances do not understand arithmeric messages like + 2.71828,
Smallealk will inform us of this type error with a walkback.

The type-checking rules in C++ and Smalltalk are quite different. Consider these
Smallcalk starements:

R := Rectangle new.

T := Triangle new.

R:=T.

Smallealk variables like R and T point to objects. They have no allegiance to any spe-
cific type (class); they can point at one moment to an object of one type and at another
moment to an object of a completely different type.
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aRactangie aRectangie
—® —@©
aTriangle aTriangle
Before After

The assignment statement R := T just switches R so thar it too points o the wriangle
object. This is not a type error in Smallralk.

Contrast this with the analogous situation in Ce+ (The assignment syntax in Ce+
5=t

Rectangle *r;

Triangle *t;

ro= t;

The Ce+ compiler, recognizing that variables r and t have been declared for different,
presumably incompatible classes, detects right away thar the assignment is an error. In
effect, the type of object that a vanable like r (or t) may point to is fixed once and for
all by the compiler. Hence, any code that tries to use the variable for another type of
object won't even compile.

If you take this restriction liverally—thar C++ fixes the ype of object that a vari-
able can hold or point to—then you may wonder whether the polymorphic mailbox
example illustrated on page 161 works in C++. In other words, you may worry thar
the variable y in y showlt (or in C++ syntax, y->showlt();) is constrained 1o just one
kind of object. Fortunately not. In C++, if you declare y to be a pointer to objects of

‘Tmﬂnpulqnfdmmgffptmimutdmwh' to our instinet for safery, O the other
hand, safery comes ar a price. A program wrirten in a lan like Seallealk where variables are
unq-pedhquhhf:ndmﬂmmndﬁl.:ndnm becawse its variables can accept more

r}punfu:luu.mddnuhmdx:nu early eype-checking is exhausting, emotional. endless,
and rarely profitable 1o linger on. Su t to say that Ces and Smalltalk represent opposite poles
in the debate, both with good reasons. Safety is important, and so o is Aexibilioe
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type T, then the compiler will afe allow y to point to objects of the subtypes of T! This
is a remarkable, but intuitive and narural feature of the language. It says that it makes
sense for a shape variable to refer 1o a rectangle object (or a tiangle, or...). Bur the
converse would be silly: to expect that a rectangle variable could refer to an object of
any shape.

Similarly, an insect variable ought to be able to refer to any butterfly, but a buter-
fly variable ought not to be able to refer to an arbitrary insect. Thar's how object-ori-
ented languages like C++ and Eiffel and Java work: a variable can point to objects of
any of its subtypes, but it can't point to an object of its supertyped(s).

Here's a concrete C++ example. First, declare recrangles and triangles to be sub-
types of shapes, and (derails omirted) supply various methods that override do-noth-
ing methods in the shape superclass. These methods mighr calculare area or perimeter,
for example.

class Rectangle : public Shape { ...

class Triangle : public Shape { ...

Mext, declare variables of each of these types, and (derails again omited) make r and
t point to a rectangle and riangle objecr:

Shape* s; Rectangle* r; Triangle* t;

Either of the following assignments is legitimate—an insect can refer to a burterfly:
if{...)s=r;
else 5 = t;
On the other hand, an assignment like r = 5; would be forbidden by the compiler—a
butterfly can't refer to an arbitrary insect. Next, ask for the area of s with this message:
answer = S=>areal);

Which area method execures, the one for recrangles or the one for triangles? The
right one. Thar is, assuming certain C++ niceties are observed in declaring areal), the
area method for whartever s actually points ro execurtes: if the conditional is true, then
s points to a rectangle, and Rectangle's area() executes; if the conditional is false, s
points to a triangle, and Triangle's area() execures.

That's how Cs++ supports polymorphism, as a compromise between the fexible
dynamism of Smallealk and the rigid safery of traditional type-checked languages. The
same approach is used by other object-oriented languages—Eiffel, Java, Modula-3...
—thar oblige the programmer to declare types for variables. Smalltalk differs from all
these because there is no way to declare a type for a Smallealk vanable; any variable can
refer to any kind of object.
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1411 Commentary: the tomato in the mailbox

Suppose you're handling your postal mail. You discard the bulk mail, bur you open your
packages immediarely. This is a Riry ordinary object-oriented problem. The polymor-
phic solution is to design a Mail supertype of both Package and BulkMail and write
appropriate handleMail methods for each kind of mail. As we know, this solurion side-
steps the need for runtime type testing ("if the object’s type is BulkMail, then...").

You can't always sidestep runtime type testing, however. Suppose you find some-
thing in your mailbox that isn't an instance of a subtype of Mail, say a garden-fresh
tomaro from your neighbor. Does #his problem have a polymorphic solution?

In C++, the answer is no. Polymorphism works only for types that share a super-
type. Other than inventing an artificial supertype of both Mail and Tomate, your only
recourse is for your program to ascertain at execution time that the object is a tomato
and not mail, then send it a valid Tomato message. This difficulty mortivated the
AMNSI C++ committee to add runtime type testing to the Ce+ standard. (See [Lea
1992] for practical uses of this feature.)

Contrast the situation with Smallulk. Polymorphism works for tomatoes and
mail, even though they are in unrelated parts of the class hierarchy. In other words, if
you write a Tomato>>handleMail method thar eats the tomato, client code like y
handleMail works fine, whether y points 1o a package or a tomaro. The Smallealk vari-
able y isn't constrained o any specific type(s). The Smalltalk developer doesnt need
runtime type testing to solve this problem.

We can describe the polymorphism that Smallialk supporns—and Ce+ doesnt—
as J'mpﬁrr'.r pul)murphism- ["‘:upl: also refer to it v:rim:sl}':as ad Froc, ﬂ'gnﬂmmﬁﬂrd'; or
dpparent polymorphism. This is a concepr on which the terminologists have not yer
had their last word. Implicit polymorphism is polymorphism thar works for types of
objects that may not share supertypes; explicit type relationships aren't necessary. It's
polymorphism across type hierarchies instead of within type hierarchies.

'Drrdinar]' pnl}rmurphism—pnl}mnrphisln within 1::p]'u;i; hierarchics—is some-
times called imclesion polymorphism. The rules for any variant of polymorphism
amount to the way in which a language determines whether it is okay to substitute
instances of one class for instances of another. These rules have to do with measuring
consistency berween classes, a mateer 1'll tell you more about in Chapter 17.

To sum up, C++ supports only inclusion polymorphism, while Smallalk suppors
both inclusion and implicit polymorphism. Where implicit polymorphism is necessary,
the C+ + developer reverts 1o runtime type testing. Thus, the need for runtime type test-
ing is greater in C++ than in Smallalk because of the absence of implicit polymorphism
in C++, Ironically, Smalltalk makes runtime type testing easy (send any object the mes-
sage class), but requires it less often. In any language, you should use runtime type vests
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sparingly. {Again, see [Lea 1992].) They are apt to introduce hard-to-maintain condi-
tionals and are antithetical 1o the object-oriented style of programming.

O To emphasize this point one final time, decide whether this sample use of runtime
type testing is desirable (Hint: it is not.) and what you would do to rectify i
mailbox do: [ :m |

m class = BulkMail
ifTrue: [ m discard].

m class = Package
ifTrue: [ m open].

m class = Tomato
ifTrue: [ m eat]

1412 Commentary: multi-methods

Sometimes, the orthodox object model is not enough. For some problems, it is just
awkward to conceprualize the solution as a method on an object. Sometimes a behav-
ior involves two peer objects, and neither one particularly merits having sole responsi-
bility for the behavior. For example, why model a dancing couple by writing a method
on one favored partner that accepts the other partner as an argument? Wouldn't it be
more natural to write a multi-method on both partners? OF course, there is no such
thing as a multi-method in most object-oriented languages, including Smalltalk. The
only commercial language with multi-methods is CLOS. What then do you do
instead when confronted with this kind of problem?

The answer is a technique first published by Dan Ingalls [Ingalls 1986]. First, des-
ignate one of the dancers, say x, as a preferred target. Send it the message dance: y,
passing along the other object, y, as an argument. Mow, x will need the help of behav-
ior on y, and so it redispatches a message danceX: x to y 1o invoke this behavior, pass-
ing itself as an argument, as illustrated here:
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MNote thar we allow the two dancers to belong to different classes. Nothing prevents
rwo disparate dancers from dancing, for example if X is BalletDancer and Y is Swing-
Dancer. Also, don't overlook the significance of passing self as an argument 1o y: not
only is y gerting control, but y is getting full access to x. Thus, the objects x and y are
as intimarte as object-orientation lets two objects be,

MNow, none of this discussion so far has a very polymorphic feel; it only conveys a
strong sense of alternation of control, plus object-oriented intimacy. Polymorphism
happens when we let a vaniable range over objects of different types, and we haven’t
considered that possibility yet. So ler’s add some variability. We could ler either x or y
vary, but to make things interesting, we'll let them both vary. We must then generalize
the preceding skerch:
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The message flow is the same as before—ir starts with x dance: y and proceeds with
a redisparch to y of a message of the form danceX: x. Only now we see four variations
in which this dance may play out. Bur the implementation uses #e conditional stare-
ments! We have an example of multiple polymorphism, where both the receiving vari-
able x and the argument variable y are independently polymerphic, because either can
refer to an instance of two classes.

Because the alternation of control resembles whar occurs in a classical pas de deux,
where the dancer and ballerina take turns upstaging each other, | call this object-
oriented arrangement a pas de desoe or a duet. Bur the name thar occurs most often in
the literature is dowble disparch. By whatever name, this arrangement occurs widely in
object-oriented systems, and is discussed again as a patern in Chaprer 18,

As a final aside, lers contrast mult-methods with the runtime type resting dis-
cussed earlier. Because C++ has wraditional functions as well as methods, we could use
a function of the form dance(x, y), thereby more faichfully portraying the symmetry
berween the two real-world dancers. And because the C++ standard supports runtime

type testing, this dance function can consist of if-statemens like:
if ((BalletDancer*)(x) &% (SwingDancer*)(y)) wild_combo(x, y);
which means, “if x is a baller dancer and y is a swing dancer, then have them dance a

wild combo.” We would add a similar if-statement for every combination of dancer
types that we cared about. This technique is an alternative to the double disparch solu-
tion of dancing outlined above.

The symmetry of the function dance(x, y) in this approach is more ateractive than
double disparch, which depends strongly on arbitrarily favoring one partner or the
other. The runtime type tests, however, expose maintenance programmers to the
instabilities of conditional code, which we have sought 1o avoid throughout this chap-
ter. Moreover, the symmetric solution is not even possible in Smallealk. Smallealk has
methods only. Therefore we must designate one dancer or the other as the primary
object to carry the dance responsibility.



CHAPTER 15

Practicing polymorphism

Understanding polymorphism, which was our purpose in Chapter 14, is nor as valu-
able as being good at applying it. This chaprer is an opportunity for you to design an
object-oriented, polymorphic solution to a real problem. This is the problem of undo-
ing a user’s actions. First, we need an application.

15.1 Design exercise I: a shape editor

Consider a simple application thar lets the user create, move, or remove shapes. The
kinds of shapes won't affect the overall design much, so let’s agree to limit them to cir-
cles and squares. This application is a foundation for many families of commercial
applications—graphical editors and simulators, network management tools, CASE
rools, and video games,

0O Use CRC cards to brainstorm abour the essential classes and their responsibilities.

Brainstorming works best as a social act, in a group of two 1o four peers. Hints:

* Stick to the model. In other words, don't worry about the look and feel, or
“view,” of the application. This is largely an exercise in disciplining yourself to
prevent the user interface from influencing your design. Design only the essen-
tial underlying classes—those which will work with any view ar all.

* Don't forget that coneainer objects are ubiquitous in the everyday world, and
are therefore likely to insinuate themselves into even a small design like this one.

* If you find fewer than three classes, you definitely don't have enough 1o describe
the application in an object-oriented way. If you can't find enough classes, wry

173
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resorting to the trick of looking for nouns and verbs in the problem starement.
MNouns may signify objects and verbs may signify responsibilicies.

* Finding too many classes is just as undesirable. If you find more than abourt six,
you're probably obscuring the essence of the design.

15.2 Solution and discussion

I will discuss the ideas that students typically try as they work toward a solution, fol-
lowing the same order in which they try them.

The most obvious CRC cards are ones for Circle and Square objects. It is also not
much of a strerch to anticipate thar an abstract superclass named Shape might be
handy for gathering common expectations of circles and squares. For example, if we
expect both circles and squares 1o be capable of movement, we can record thar respon-
sibility in the Shape class. Imagining further how we might eventually move a shape,
we might even allow for an instance variable thar caprures the position of each shape
instance. Our CRC cards would now resemble:

Shape
mowing

Circle ' P Souare

<P

Instance variables specific to Circle and Square appear on their respective cards.’
Because the application is supposed o “create, move, or remove” shapes, it is tempting
to add “creating” and “removing” responsibilities to the Shape “doughnur” above;
almost everyone considers this. However, I advise against adding cither one, for these
rCASOns:

' Ovthodox use of CRC cards does not plunge to the level of instance variables. | use them here to
indicare the way toward implemencation a licke funther dhan is customary,
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First, creating an object is not the object’s responsibility. An object that doesn’t
exist yet can hardly create itself. Rather, as we have seen, crearion is a responsibility of
the object’s class, by means of something like 2 new methed. It is fine ro write down
this responsibility for creation, but not on the doughnut that represents an instance.
Wrire it somewhere else, like the upper-right corner of the card, or the reverse side.

Second, writing “removes itsell™ on the Shape doughnut {or the Circle or Square
doughnur) is disagreeable for two reasons. First, you are metaphorically asking the object
to commit suicide, and pmgramming uh]:cls don't want to do that any mdore than real
objects do. Second, the expression “remove itsell”™ implies a place from which the object
is to be removed—remove it from when? We need o pur our finger on this place.

According to the second hint, we need a container object. If you remove flowers,
you remove them from a vase; if you remove books, you remove them from a library,
or a bookshelf, What shall we call the container that holds our shapes? A common but
undesirable answer is Window. A window sugpests a user interface, and we do not
want our design to be biased by user interface or view considerations. We want o
emphasize the model aspects, so we need a more neutral word. | suggest ShapeRoom;
you can probably do better, but ShapeRoom is good enough for us to proceed.

This container for the shapes is a handy place
for recording several responsibiliies:  holding
shapes, removing them, adding them, even moving
them. The CRC card for this class now looks like
the one on the right. This class is a alented con-
tainer; it supports ordinary container-like responsi-
bilities, bur also somewhat more, like moving
shapes within it. It does whar we would expect of a
shape editor; ShapeEditor could well be another
name for it. An instance of this class—a model—will process messages from the user
interface—a view.

Morice thar the instance variable named contents suggests how ShapeRoom will
fulfill its container-like uHigat'mns: this instance variable should refer to an instance of
class OrderedCollection, or perhaps Set. In other words, a ShapeRoom buys an ordi-
nary Smalltalk collection to hold irs shape objects.

Also notice that “moving” appears on the card for ShapeRoom as well as the card
for Shape. A ShapeRoom receives a message to move a specific shape to a specific
peint. The method in ShapeRoom that performs this function in tum sends a
message to the specific shape o move iself to the specified point. This arrangement
isn't unusual—a high-level move method on ShapeRoom collaborates with a lower-
level one on Shape 1o get its job done.
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Mext, let’s mke a moment to review the topic of the previous chapter, polymor-
phism. Consider the presentation of the shapes on the user interface. This is nomi-
nally a responsibility of the view classes thar | said we would not design here,
Mevertheless, model classes must cooperate by making information about themselves
available o view classes. We can call this responsibility of shapes “rendering.” Each
kind of shape will render itself in a way appropriate for iself; hence we should expect
circles to render themselves differenty than squares would. A view will nor know or
care whether a !I'I:IFH.' IS 4 square or circle; it wall simpl}' trust the 5|'|:||:r-: to render 1self
acceprably.

Thus, class Circle and Square will each have a method named, say, render, and
class Shape will have a subclassResponsibility method with the same name,
Shape>>render documents the obligarion of each subclass to support rendering, bur
iself does nothing. As the application evolves, and additional classes of shapes emerge,
each will require its own render method. In other words, shapes are polymorphic.
Here, as in the examples of the last chaprer, client code, in this case a view, will not be
affected by introducing new classes of shapes.

15.3 Design exercise |I: undo and redo

Mow that we have an application, this simple shape editor, we want to make the user’s
actions undoable. Unde means reverting an interactive application to an earlier stare.
An application with strong undo support motivates users to explore unfamiliar fea-
rures and provisional streams of thoughr because they know they can always revert o
their point ufd-:p:lrtun: if I:'!'I.iI'IES furn ot |:r.'n;||:|.r. Ifan :npp] ication also lets 1ts users redo
whar they've undone, so much the better. A few years ago it was unusual for interactive
applications to support undo, let alone redo. Today, the opposite is true: almost all
new applications support undo, albeit vo varying degrees. But once you have been
spoiled by an application with unlimited undo-redo, anything less is an anachronism.

3 Design an enhancement to the shape editor that lets the user undo any number of
his most recent actions. If possible, brainstorm with CRC cards and a small group
of peers. Hints:
= A good object-oriented solution will handle multiple undos as well as it handles
one undo. You might as well aim for unlimited undo. Don't get sidetracked into
worrying about redo yer. After you solve unlimited undo, unlimited redo is a
small extension.

* As always, if you have trouble gerting started, look for nouns and verbs, They
are especially relling in this problem.
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* Four to seven classes is a good range for describing the solution. The number
depends on the original application. It therefore pays to review the shape-editor

EXErcise.
* You will need another appropriate container class,

15.4 Solution and discussion

The solution is an object-oriented classic; it also works for other interactive applica-
tions. It appeared early in the 1980s in the MacApp framework for Object Pascal
developers, and proliferated thereafter. It has even achieved the status of a design par-
tern (Chaprer 18).

The key to discovering the solution is the clause,
“undo...actions” in the problem stavement. Here,
“actions” is a noun (!), and nouns are always plausi-
ble aspirants for objects. The verb “undo” then looks
like a promising responsibility of an action object—
actions should know how to undo themselves. Once
you accept this much, unorthedox as it may ar first
seem, you have litde choice but 1o sketch a card like
the one on the right.

The trouble is that an acrion is a pretty nebulous idea, and so this card isn't very
satisfying. Thar’s where the original, concrete problem comes in. The shape editor had
exactly three functions: create, move, and remove, Each of these is an action that the
user may want to undo. Thar gives us three kinds of undoable actions or, in other
words, three subclasses of Action. This is a perfect setup for an abstract class and three
concrete subclasses:

£
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Undoing is a subclassResponsibility of the superclass—it does nothing—but a con-
crete responsibility of the three subclasses, each of which carries it our in its own way.
They will retain any information (in the form of instance variables) they need to carry
out their mission. For example, the only way a Move object can have the wherewithal
to undo itselfis if it knows the shape instance being moved and the position from which
it came. Thus the information inside the Move instance pictured above consists at least
of instance variables representing a shape and the shape’s original position. (Look for
these instance variables when you work with the code in the next section.)

To understand the life cycle of these action objects, imagine a sample scenario: move
a circle, then move it again, then undo both moves. Each move will resule in a separare
instance of the Move class. These two instances must be stored in order, then recalled
and undone in reverse order. A conrainer of some kind is evidently needed, and because
of the order reversal, a stack seems eminently suitable, Thus whenever the application
moves the circle, it instantiates a Move object and pushes it onto the stack. When the
user calls for one or more undo's, the application pops the Move objects off the stack
one by one, and asks them o undo themselves. The Move objects are able to comply
because they know the circle and its previous position. Summing up the design:

Oine loose end remains: how do you attach this design o the design of the original
editor? Not much changes. The implementation of the “move a shape” responsibility
of ShapeRoom must now instantiate a Move object and push it onto the stack. Simi-
larly, the “add” and “remove” responsibilities of ShapeRoom instantiate Create and
Remove cll:li:cts. rﬁpﬂtli\':l}". and push them onto the stack. Shapcﬂnnm gets one
additional responsibility, “undo.” ShapeRoom carries our its "undo” responsibilicy by
popping the top action from the stack, whatever the action may be, and asking it o
undo iself.

Morice the implications of the clause, “wharever the action may be:" this is another
pelymorphic design. The room doesnt know and doesn’t care whether the popped
action is an instance of Create, Move, or Remove. For that mareer, the room doesn’t
care what kinds of actions reside anywhere in the stack; it truses only that they know
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how to respond to requests to undo themselves. Even if you should later extend the
application with additional kinds of actions, the room won't care—nor one jor of its
code changes. This is an archerypal example of polymorphism’s value.

Inexperienced designers usually feel wricked thar something so verb-like as “move”
turns out to be an object. Sometimes they feel that the solution is contrived. After all,
in the original shape editor, “move” was a responsibilicy—more akin o a method than
an object. That analysis remains correct and valid. It's simply irrelevant for the present
problem—the undo problem has only a superficial relationship to the edivor problem.
The editor problem was abour manipulating shapes, and so we designed shape objects.
The undo problem is abour manipulating acrions, so we design action objects.
Because actions are ar the heart of the problem, they become the leading candidares
for classes. The problem has shifred from shapes to actions, and the designer’s arten-
tion had berrer shifr along with ir.

Finally, remember that real designs proceed in fits and starts and rarely arrive
smoothly at a neat conclusion. Thus, a team of designers working on this problem for
the first time should have hit a few dead ends and scratched out and discarded quite a
few CRC cards along the way. Good design derives from failure.

15.5 Implementing undo

O Build a stack class named StackBuy by buying from class OrderedCollection. If
the stack is empty, make pop return the nil object. If necessary, review the stack
designs on page 100. Test StackBuy until you are confident thar it works correctly.

O Build a stack class named StackInherit by inheriting from class OrderedCollec-
tion. Ideally, Stacklnherit and StackBuy should behave identically. Thar is,
although their internals differ, a user or dient shouldn't know the difference. (Bux
remember the tradeoffs discussed on page 102, In Smallwalk, some behavioral dif-
ferences are unavoidable.) Test StackInherit also.

O The code you are abour to work with requires application CwExamples to be in
your image. IBM provides this application with either the Standard or Professional
product. (If you are using the Professional version and it does not appear in your
Application Manager, pick the menu options Applications > Available, then select
the CwExamples application. Load the most recent edition.)

U Obtain the file student.aps from heeps/fwww.darityeomputing.com/books/sod/files.

This code implements a working shape editor, except that the undo feature is bro-
ken. File in the code by following these steps:
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a

* Start from an Application Manager.

* Select any application. [v doesn't marter which; any selection will activate the
menus }"DU.“ I'IE'E'EI.

* Pick menu option File In.

* In the dialogue box, locate and select the file student.aps, and push O

Select the application ShapesApp, double-click on it to expose its subapplicarions,
and select and browse the subapplications ShapesModels, ShapesUndoSupport,
and ShapesViews. Answer these questions:

* Whar are the names of the two main methods in the action classes? Read their
code to reassure yourself that they are simple yer will do the job.

* Whar class and method instantiates a Mowe object? A Remove object? A Create
or Add object?

* Why does Move have a third instance variable representing the target position?

Try the class method example in both TextualView and GraphicalView. Whar is
the pmhl:m? Fix it, using class Stack in the Sh:p-rsUnduSuppurt applimtiun.

Verify that your own stacks, StackBuy and StackInherit, also fix the problem.

15.6 Summary

Most object-oriented solurions to this problem use the name Command instead of
Action. By cither name, this is one of the most exquisite nppliﬂtium of pnl}rmur-
phism in object-oriented design.

The solution is recognized as a design pattern, also called Command (page 217).

Two noteworthy characteristics of the parern:

1
F

Srmall size. The solution required dozens, not hundreds of lines of code.

Minimal memory. The application stores only the information indispensable for
undoing (or redoing) an action. In many cases, like moving, this informarion
amounts to just a few words of storage. By contrast, the nun—ubj:ct—uritnrtd al-
ternative that some people consider—saving the entire state of the application
upon every action—consumes machine resources so rapidly as o render multi-

level undo impracrical.
This chapter completes your study of the object-oriented essentials. The rest of the

book pushes into areas which beginners rarely see, but are part of the menral landscape
nfc:tpn:ri:nc:d Smallealk dwclupcrs.



CHAPTER 16

How object-oriented languages work

This is the first chaprer in which we venture past the essential object-oriented princi-
plcsu We brgin |3:|.r d:aling with how ul:j:ct—uricnl:cd |=.ngu=.grs m:tuaﬂjr wark, d::p
down inside. We will see that the look and feel of a language is shaped by these inner
workings.

At one end of the spectrum is Smallwalk, noted for its incremental development
style, its handling of memory concerns for the programmer, and its reflectiveness.
(Reflectiveness or reflection is a software system’s ability to examine and modify itself on
the fly.) These are all consequences of a runtime engine, also called the Smallralk vir-
tal machine, which controls execution of every message and monitors computing
resources.

Ar the other extreme, C++ relies on a conventional compile, link, and execute
cycle. It is faster ar runtime than Smalltalk and it links readily to foreign languages, but
the price is a sluggish development fecling and memory bugs that sorcly test a pro-
grammer s mertle.

You don't need 1o know the content of this chapter to program in Smallaalk or
C++, but knowing it will go a long way toward explaining why your language and its
environment behave as they do.

161 Virtual machines

A virtwal machine is a synthetic compurer. It behaves as a real machine would, if only
there were such a machine. Because there isn't, people use a virtual machine to emulate
the one they wish they really had. Virtual machines are interesting only because of
what they execute. For a Smallralk virtual machine, that something is called the frvage.

181
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The image consists of all the objects in your computer, both the ones you ereate and
the ones Smallealk already provides.

Because “everything is an object,” the image contains unusual objects like compiled
methods. Thar is, whenever you write and compile a Smallealk method, Smallealk’s
compiler produces an instance of the class CompiledMethod. Each of these objects
consists of bytecodes, which are the machine instructions that the virtual machine
knows how to execure.

A running Smallealk system therefore consists of these two pieces of software—a
virtual machine running on your underlying computer hardware plus an image run-
ning bytecodes on the virtual machine. This is really a familiar notion cloaked in a
fancy name. An interpreter—a BASIC interprerer, or a Pascal p-code interpreter—is
also a virrual machine. Instead of execuring the byrecodes in a Smallralk image, it exe-
cutes some other language, like BASIC or p-code. Sometimes people even refer to the
Smallealk virtual machine as the Smallealk interpreter.

The difference berween Smalltalk’s virtual machine and other, simpler virtual
machines (or interpreters) is sophistication. The Smallralk virtual machine does more
than merely execute one bytecode after another. It also manages processing and mem-
ory resources, much as a full-blown operating system does,

By the way, one side-effect of this arrangement, or of any arrangement based on a
virtual machine, is a technique for transporting applications berween computer archi-
tectures. If Smallealk runs on one computer architecture, we ought to be able to make
it run on another by rewriting only the vircual machine. The image should run as well
on one virtual machine as another. The industry’s carly learning experience with
Smalltalk came about in just this fashion. Early in the 1980s, Xerox PARC released the
Smallealk-80 image, along with the specification for its virtual machine, so thar any
computer manufacturer could run Smallealk-80 on their own hardware, merely by
writing a virrual machine. In those days a basic virtual machine implementation could
be built in about one programmer-year.

The situation is a little more complicared roday because many modern images con-
tain objects that are specific to the und-:rt}'ing operating system or winduwing man-
ager. These objects exploit specific features of the platform, and their presence
guarantees thar the image cannot simply be moved to other platforms. [BM Smallralk
overcomes this difficulty by encapsulating these platform-specific objects under a layer
of objects thar is standard across all irs platfforms. As we saw in Chapeer 12, the layer
for user interface objects resembles the Mot standard. The layer for file-system
objects resembles another UNIX standard, known as POSEL L. IBMSmallealk code
that adheres to these standards is then portable from plarform to platform.
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Smallealk-80, now known as VisualWorks, preserves the old tradition best: its vir-
twal machine encapsulates all of the underlying platform; this arrangement decouples
the image from the platform. Smallralk-80 images are therefore highly porable. Bur
because they are oblivious to platform-specific widgets, user interfaces don't have the
look and feel of the platform they are running on. (ParcPlace-Digitalk has stared irs
intent to base its combined Visual Works/VisualSmallalk offering on the Smallralk-80
virtual machine.)

16.2 Method lookup

Method looksp, also called merhod disparch, selects the right method o execute among
all the methods in an object’s class and superclasses. Smalltalk’s virtual machine per-
forms this rask by way of a component known as the megage handler (or dispatcher).

Ar the moment of each message, and no sooner, the message handler decides which
method the virtual machine should execute. It cannot, as conventional compiled lan-
guages can, decide the method ar compilation time. In fact, Smalltalk is such a
dynamic system that Smalltalk code could medify methods, or add or remove them,
ar any time, even immediately prior to executing them. Thus, any message can poren-
tially affect the environment of classes and methods in which subsequent messages
execure. Conventional languages can’t do this; it would be akin to recompiling and
relinking changes to your program in the midst of executing it

MNow, one proposal for handling this lasi-minute lookup could be to store a dictio-
nary of method pointers for each object, as illustrared here for an object of class Point:

aPgin

* the kenys ans mathod selectons

axecutable methods

This hypothetical dictionary must be constructed carefully: if a method occurs in both
a superclass and subclass, the dictionary entry should peint to the overriding one in
the subclass.
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To resolve a message to this point instance, the message handler locates the mes-
sage’s selector among the dictionary’s keys and executes the associated method. This
doesn’t solve the prickly marter of messages to the special variable super,

which breach the normal lookup and may access overridden methods.

Moreover, this proposal imposes unnecessary bloar on every object. [t burdens an
object as lean as a point with pointers to all the methods of Peint and its superclass
Object. Thar's many dozens of pointers, and they are all repeated over and over for
each of possibly multitudinous point instances in an application. Clearly unacceptable.
To remedy this problem, Smallialk arranges matters in the following uniform way.
{This is only a conceprual picture—the actual details vary berween Smallealk dialects.
1BM Smalltalk for example conforms to the spirit but not the lerter of this picrure.)

class Object
class Point
HF"ﬂ'l'l -.I.'.'- - fil
| Amy class = | d Sctiona
- chiss Amy superclass oy of
dictionary of painters lo
-4 poinibars b ﬂ'rm'ﬂ‘rnﬁ
methods .t
e 11
e [%
() cvmrcos
axacutable mathods

Each instance has just a pointer to its class. The class (Point) carries a dictionary of
its (instance) methods, plus a pointer o its superclass (Object), which in turn carries
a dictionary of its own (instance) methods. If there are more layers of classes in the
hierarchy, the pattern repears: each class object carries its own dictionary of methods,
plus a pointer to its superclass. The dispatcher merely chases through the chain of dic-
tionaries until it finds the method it seeks. If the method is absent from all the dictio-
naries, the familiar “does not understand”™ walkback appears. Notice the flexibility: the
methods and the dictionaries may be altered at any time; the disparcher durifully
chases through the current chain of dictionaries no mater how recently such aleer-
ations have occurred.

This approach minimizes storage consumption—each poine carries its own private
instance variables, plus one pointer to its class, But its performance is suspect—irera-
tive searches up the chain would be intolerably slow. Smalltalk therefore resores to two
venerable performance tricks, caching and hashing. Hashing is a way o place cach
entry in a table ar a magic offser that can be compured (“hashed”) directly from the
entry. Because every entry then resides at a predictable offset, tble lookups can
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proceed directly by computing the offset at which an entry ought to reside. 1Fthe entry
isn't at the offser, it isn't in the wble. (I've oversimplified a livle—hashing algorithms
also have to handle the portential for collisions when the magic offser compured for
wwo different entries is the same.) Because Smallalk dictionary objects are designed
with hashed lookups, instead of more naive binary or sequential lookups, search times
are nothing like our worst fears.

Actually, searching through the method dicrionaries is rarely necessary. Because a
message that occurs once tends to recur in the near future, Smalltalk maintains 2 cache
of recently sent messages, and the dispaccher looks in this cache first before beginning
the laborious search up the superclass chain. The effect of 2 method cache is sizable.
According to [Krasner 1984], an appropriate method cache can have hir rarios as high
as 95 percent, decrease method lookup time by a facror of 9, and improve overall sys-
tem speed by 37 percent.

Method lookup in Ce+ works withour any kind of engine or disparcher. It suill
relies on a table, called a pirtsal furction table or v-table, for each class. But these tables
are simply lists of pointers, not dictionaries with powerful lookup faciliries as in Small-
talk. Imagine a music synthesizer application, where Piano and Oboe are concrete
subclasses of the abstract class Instrament, and all instruments support methods (pér-
sual furctions in C++ parlance) 1o tune themselves (to some intonation and pitch) and

to play (a note). The v-table for Piane looks like this:

When the C++ compiler encounters a message to tune a piano (piano->tune() in
Ce+ notation), it generates code 1o execute the function found by the first pointer in
the v-table. If it encounters piano->play{), it generates code to execute the function
found by the second pointer. The v-table is stable; unlike in Smallalk, there is no
prospect of introducing or removing methods at execution time. Thus, this generated
code is unconditional; the compiler determines once and for all the location of the
function to be executed. No dispatcher ever gets involved.

5o far, this rable is fairly unremarkable. The oboes, however, make life interesting,
For Oboe also has a v-table, and it has exacily the same structure as Pianos. Thar is,
its first pointer points to the tune function for oboe and the second points o the play

function for oboe. The compiler carefully builds all v-tables for subclasses of Instru-
ment in this parallel way.
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Mow consider a polymorphic variable instrument, which could point o sither a
piano or an oboe.

for class Plano pane’s lung
Htuno function] Joton
Aplary Funetion f— ———,
plans’s pliy
v-tabla St
tor class Oboo /,1-'—-\
Mune function}” | 0b0a'S funa
“play function H\&
o M
oboa's play
unknown object lurks \Ancton )
under “instrument” at tables prepared in
execution-time advance by the compilar

Which of the two play funcrions executes in response to a message of the form
instrument->play()? The right one. The C++ compiler, knowing that Oboe and Piano
are subclasses of Instrument, has crafted the two v-tables to have a parallel structure—
the function pointers are in the some order in both rbles. When the compiler encoun-
ters the expression instrument->play(), it unconditionally generates code o execure
the method found by the second pointer in the table—even though it is quire unable o
anricipate whar kind of object instrument will point to when the code eventually exe-
cutes. If the object turns out to be a piano, the second pointer points to piano playing;
if the object rurns out 1o be an oboe, the second peinter points o oboe playing. Either
way, the second pointer is the right one, and the appropriate function will execute.

Let's recapitulare the two salient points abour method disparch in Ce+: it works flaw-
lessly withour a runtime engine, and the execuring code is free of conditionals. All else
being equal, you should expect C++ programs to run much faster than Smallalk pro-
grams. All else is rarely equal in the real wodd, though, and performance is never this
simple.

ﬂt one example, two of my friends—one partial to Ce+ and the other to Small-
talk—got into a dispute about speed and sertled it by benchmarking a loop of method
dispatches. To the chagrin of my C++ friend, the Smalltalk code was just as fast. The
reason? They happened o be using a 16-bir operating system in which the v-rables
were in a different memory segment than the objects. As a result, segmentation faules
occurred on every function call, and this overhead swamped the speed benchit of the
v-table scheme. This is an unusual example, but it illustrates an imporant perfor-
mance principle, namely that astute programming almost always matters more than
the programming language does.
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Performance aside, here are ather by-products of the method lockup implementa-
tions we've been discussing. Reflection, Smalltalk’s ability 1o examine and fundamen-
tally aleer its own semantics while it is execuring, is impaossible in the rradirional
compile, link, and execurte world of C++. Moreover, the instantaneous (re}compilation
of 2 Smallealk method—>3Smallralk’s exploratory development gestalt—is possible pre-
ciscly because the runtime engine decouples the calling of methods from their compi-
lation. The Smallralk programmer can compile messages ar will, and not worry
whether methods exist to respond to them uniil the instant before they're called.

By contrast, adding or removing a C++ method requires recompilation of poten-
tially many v-tables to preserve their parallel structure. And although we know thar
polymorphic client code does not need 1o be rewriten, it must still be recompiled 1o
account for new offsets to the pointers in the tables. This recompilarion overhead dis-
courages exploratory programming. On the other hand, C++ cooperates readily with
foreign languages, while Smallealk’s runtime engine gets in the way of calling into or
out of the Smalltalk image.

16.3 Memory management: a brief history of garbage
collection

A Smalltalk programmer doesnt manage storage for her objects. In particular, when
she's done with an uhj-n:r,sh: doesn't WOITy about reclaimi ng the memory uccupin:l l:n}-
the object. Instead, a component of the virmal machine known as the garbage collecror
monitors memory and ascertains when it can safely reclaim the memeory occupied by
an objecr.

Consider this question: how many point objects are present in your Smallalk sys-
tem? The answer is casy (o determine, [ can count them I;rr a’f,?ﬁﬁug:

Point alllnstances size
The answer an my system at this moment is I3, If] allocate a new poine:

X := Point new
and count again, [ get one more, 14, If ] now execute:

X = "Casablanca’

the global variable X refers to a string instead of the point. The point has been
orphaned—although it was once accessible through the varable X, it is now com-
pletely inaccessible—and is therefore eligible for garbage collection. If | counr again,
Smallalk reports 13, the original number of points. The garbage collector has
reclaimed the memory occupied by the newest point. Here is the progression of evenis:
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Garbage collection in Smallialk contrasts sharply with memory management in
C++ and many other compiled languages that permit a program to acquire chunks of
memory while it execures. Because C++ has no garbage collector, the programmer
must carefully and explicitly reclaim an object’s storage ar the appropriate moment.
The dangers of entrusting this responsibility to the programmer are well known: free-
ing an object’s memory too soon invites another object into the space, corrupring the
original object’s data. And failing to free memory soon enough exposes the program to
running out of room for additional memory allocations. These are among program-
ming’s most nightmarish bugs; they often manifest themselves as catastrophic crashes
that occur well after the event, considerably complicating debugging.

On the other hand, a garbage collector is a program that runs continually, con-
sumes CPU cyeles, and, being beyond the programmer’s control, can become espe-
cially active at inopportune moments. Critics observe that an airplane’s control system
or a nuclear power plant’s monitoring system can ill-afford 1o pause while a garbage
collector decides to shift into high gear. The traditional debate goes like this:

* Pro: Only a garbage collector can safeguard against application crashes induced by

subtle and inevitable errors in memory dEiETI.

= Con: Only a programmer can fine-tune memory management for high-perfor-
mance applications. In particular, a garbage collecror’s sporadic intensification
makes it unacceptable for real-time software.

Mexr, by examining how garbage collectors work, we will gain insight into the lives
and deaths of objects. This is a useful study regardless of your position in the (endless)
debate on the merits of garbage collection.

Most early garbage collectors, prior to the mid-1980s, were variants of either mark-
and-sweep or reference-counting collectors. A mark-and-sweep collector makes two
passes through memory. The first pass begins at one or more anchor objects that the
virtual machine knows it needs (like the activation stack in Smalltalk, which contains
all execuring methods and the objects they reler o).
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The anchor object is “marked”—let’s say a bit is urned on—and then all objects
the anchor refers to are also marked, and then all objects these objects refer to are
marked, and so on recursively until no more objects are reachable. At the end of this
mark pass, objects that remain unmarked must be inaccessible and are therefore gar-
bage objects, eligible for reclamation. A second pass sweeps through all the objects,
reclaiming space from unmarked objects and wurning off the mark bir on all others,
preparing them for further collections.

A major drawback of this scheme is its burstiness—the collector may not often go
into action, but when it does, the rest of the system freezes while it makes these two
exhaustive passes through memory. The user experiences a long pause during which
nothing seems to happen.

Reference counting isnt bursty; a reference-counting collector does some book-
keeping every time a pointer is set or reset. The collector maintains a count of the
number of references to each object. If a count ever drops 1o 0, thar object must be
inaccessible, and the collector immediarely reclaims is storage:

Reference counters eliminate the distracting pauses of mark-and-sweep collectors.
On the other hand, reference counters never rest, so the overhead of maintining the
counts degrades performance continuously. Reference counters also overlook dead
eycles. For instance, a pair of objects may refer to each other but still be isolated from

the rest of the system; their counts will each be 1, hence they are not reclaimable, even
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though they are genuine garbage. Reference counting by itself is therefore insufficient
to collect all garbage correctly. Nevertheless, the earliest Smalltalks used reference
counting because it is straightforward to implement and it eliminares pauses,

Another famous older collector, sometimes called a Baker collecror [Baker 1978],
addresses shortcomings of both preceding schemes. [t suffers neither reference count-
ing’s susceptibility to dead cycles, nor mark-and-sweep’s ewo full passes through mem-
ory. A Baker collector parritions memory into two halves, known as semi-gpaces. All
new nhj:cts are allocated in one of the SEmi-Spaces, d:signah:d the active one. The cal-
lector occasionally flips spaces, making the other one active. But before opening up
the new active space to additional objecr allocations, it makes one pass through the old
semi-space, starting from an anchor, just like a mark-and-sweep collector. And just as
in a mark pass, it recursively reaches only all the live objects. Instead of marking them,
however, it immediately evacuates each one by moving it into the new semi-space. In
the object’s original place, it leaves a romrbstone with a forwarding address to the new
location, just in case other objects come looking for it later during the pass. At the end
of this single pass, all live objects have been evacuated into the new active space; the
detritus in the old semi-space is garbage and requires no further processing.

Q0 O L.‘.‘

o0
Active Move live Active
spaca objects anly

In due course another ﬂip ocours, in the opposite direction. Motice that as a resulk,
each flip enjoys an entirely clean semi-space into which objects are moved and allo-
cated. I'll say more about the benefit of this cleanliness in a few moments.

The Baker collector has a cunning wrinkle: with a livde care, the flip can proceed
incrementally. Thar is, new object allocations can begin before the flip finishes; the col-
lector can make these allocations in the new active space while it continues to evacuate
live objects from the old space. The one danger is that one of the newly allocared objects
may point back to a (not yet evacuated) object in the old active space; such a pointer will
be incorrect at the end of the flip. To safeguard against this condition, the collector must
move the unevacuated object immediately, ahead of schedule. Once this precaution,
known as scapenging, has been taken, the Baker collector is truly incremental and, like
the reference counter, overcomes the burstiness of 2 mark-and-sweep collector.

One undesirable property shared with mark-and-sweep collecrors remains—Baker
collectors process live objects over and over again. The profusion of live objects in
Smallealk—from 15,000 in a small Smalltalk system to more than 278,000 in the
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image I'm using at this moment—makes this a considerable burden. IF only we had a
way to overlook objects thar are particularly durable, thereby sparing us the overhead
of repetitious reprocessing, This observation brings us 1o gesterarion scavenging, which
late in the 1980s became the de facto standard for Smallalk garbage collection.
Generation scavengers depend on the empirical observation that most objects per-
ish quickly. New objects—points, arrays, sets, rectangles, blocks...—are created like
mad in running Smallralk systems, used briefly, then orphaned. The garbage collector
MUSE Pprocess these ubjn:ts.. but we would like it to IZNOre as much as F-DH“JIE the other
tens or hundreds of thousands of longer-lived objects.
A scavenger begins just like the Baker collec-

tor, but every time it flips an object, it also incre- r..i;

ments the object’s gemeration count. An object — ihind
that survives # flips will be » generations old. 1 goneration
The scavenger deems objects that survive to some i sunaver
threshold age, let us say three generations, vener- O

able enough 1o move 1o a privileged area, called S

the tenured area.

Once renured, objects are no longer subject 1o repetitive garbage processing. Thus,
short-lived objects are efficiently collected by Baker flips, and long-lived objects are
promoted eventually to the tenured area, where they are left quictly alone. The oppor-
tunities for varying the basic scavenger design are evidently multitudinous—how
many generations to allow before tenuring (63 in the original VAX implementation),
how to process a tenured object if it perishes, whether and when to age tenured objects
into successively more securely tenured areas.... A good generation scavenger con-
sumes as little as 3 percent of CPU time, compared to 9 to 20 percent for the older
techniques. For a sampling of scavenging schemes, see [Licberman and Hewire 1983;
Krasner 1984; Samples er al. 1986; Ungar and Jackson 1988]. In particular, [Krasner
1984] recaps the history of the carly VAX Smallaalk-80 implementations chrough
more and more sophisticated garbage collectors—first mark-and-sweep, then Baker,

:II'Id. E!‘lﬂ.lt}" F | El.‘l'H:IEri.DI'I SCEVENECT.

16.4 The irony of garbage collection

The remarkable irony about garbage collectors is that their reputation for consuming
processing cycles is half wrong. Some of them also sve cycles. Curiously, these savings
have nothing to do with cleaning up objects; they occur at the other end of an object’s
life, when its memory is first allocated. The savings have to do with the clean spaces |
mentioned earlier.
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A side-effect of schemes like the Baker collector and the generation scavenger is
thar object allocations occur in one large, contiguous chunk of free memory. Memory
has no holes, no gaps thar must be compurted and accounted for. This absence of
“fragmentation” considerably simplifies allocation; finding space for a new object is a
mere matter of returning the location of the beginning of free memory and then
advancing this beginning by the size of the object. New objects simply go right afeer
the last object in memory.

By contrast, the h:ap& found in C, or Pascal, or C++ are full of holes and gaps.
Memory allocation schemes must rely on one or more chains of holes. Each object
allocation entails a search through these chains for space of adequate size, followed by
adjusting the chain to reflect the space relinquished 1o the new object. Searching and
managing these chains takes time, which is why fragmentarion is the enemy of effi-
cient object allocation, and conversely why clean spaces enable fast object allocation,

Thus, garbage collection, which purports to worry about the end of an object’s life,
can in fact expedite its birth. The effect is measurable: adding a garbage collection
scheme for a Ce+ application’s objects can sometimes irmprove the performance of the
application. Regardless of the performance implications, the main benefit of garbage
collectors stands: by auromating storage reclamation they reduce the incidence of
memory design errors.

16.5 Commentary: why not garbage collect C++?

If garbage collection is so beneficial, why cant it be rerrofitted onto any language?
Gnrh:gc collection is FH:I-!.EJIJ'.I: in Smalltalk because all ubjl:cts have a uniform structure
known to the virtual machine. Everything is an object, and every object’s memory lay-
out begins with a standard three-word header, consisting of a pointer to the object’s
class, some flags, and the object’s size. (Each word is four bytes.) After these three
words come the object’s instance variables, one word per instance variable,

Knowing this regularity, the memory manager (i.e., the garbage collector) can fig-
ure out where an object begins and ends, and most critically, where the objects it
points to are. Any garbage-collection scheme needs this information. Unfortunarely,
in a language like C++, the contents of an object are arbitrary. Within the memory of
an object is a jumble of information—data, pointers, even other objects directly
embedded inside. A memory manager cannot know where all the pointers are, and so
it cannot find the objects pointed to. That kind of informarion is in the semantics of
the program, where it is inaccessible 1o a hypotherical virtual machine. Hence, you
will find thar all object-oriented languages with garbage collectors—Smallalk, Eiffel,
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CLOS, Java...—adopt a uniform object structure, Ce+ is as flexible as can be, hence
lacks this uniformicy; it therefore precludes garbage collection of arbitrary objects.

For the definitive discussion on the desirability of and prospects for garbage collec-
tion in C++, see [Stroustrup 1994],

16.6 Smalltalk deviates from uniformity

Even Smallealk, insistent as it is on uniformity, has i limits. Methods, for instance,
are written in Smalltalk and call other Smallealk methods. Carried on indefinively, this
recursion would be hopelessly circular. Some Smalltalk methods must be expressed in
something other than Smallalk. These methods are called primitives. They are typi-
cally written in a language like C, compiled, and packaged into a “dynamic link
library” (on Windows or 05/2), from which they may be called by a Smallealk
method. An example is integer multiplication. The method Smalllnteger>>* reads:

* aNumber
“Answer a ...
sprimitive: WMprSmalllntegerMultiply=
*... more code ..."

The very un-Smallealk-like expression <primitive: ... > is the call ro a special function
outside of Smalltalk. (The code following the primitive exccutes only if the primitive
call fails.)

Primitives need not be limited to low-level methods like multiplication. Because a
primitive is essentially a way to call a foreign language from Smallealk, it can also be
used to access functions that Smalltalk doesnt provide, or to replace a slow Smallalk
method with a faster version coded in another language. Primitives are the means by
which Smallealk issues calls to ourside services like database managers or communica-
tion programs.

Another area in which Smallealk is not uniform is its storage model. Most objects
conform to the smandard structure | discussed in the preceding secrion; thar is, three
header words followed by the object’s instance variables. Bur objects such as small inte-
Ecrs—thuuar which fit with room o Spare in a 32-bit word {(or 16 bits, in some impl:-
mentations)—are created and used so commonly in Smalltalk thax the overhead of the
standard structure would be grossly inefficient. Smallealk therefore dispenses with the
header for these objects and stores the whole object in one word, This special trear-
ment for small integers and other small objects saves both time and space. Bue it intro-
duces an irregularity into the virtual machine.
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Smallealk goes further with its special treatment of small integers. Not enly are
they stored in a different formar, they are also stored “in-line.” Here's what I mean:
ordinarily you would expect assignments like X := someWhale and Y := 149 1o estab-
lish pointers to a whale and integer object, respectively. Indeed, the word in memory
specified by X does contain a pointer to a whale object. But the word specified by Y
contains the small integer 149 itself, not a pointer to 149, Thus dhe layout of memory
inside the image mighr look like this:

X Y
i aWhal {redx poindér)
3 ward hamner
15t word of data
I

Accessing small integers directly, rather than through a pointer, is much more efficient
for the virtual machine. But how does the virtual machine know whether a word is a
pointer to an object (X) or the object itself (Y)? It recognizes the difference by using a
flag bit, such as the first bit in the word. If the bit is turned on, the word represents a
small integer. Otherwise it represents a pointer to a conventional object. (Actually, sev-
eral ather special small objects are distinguished by specific bit patterns too: charac-
ters, the true and false objects, and the nil object. They are known collectively as
immediate objects.)

You will never observe any of these storage conventions ar the Smallalk level,
These are strictly privare conventions for use by the virtual machine. Smallealk conrin-
ues to deceive the developer into believing that, “Everything is an object, and all
objects are treated uniformly.”

While we're on the subject of economy, realize that even packing individual char-
acter objects into a word apiece squanders a lot of space, namely three bytes of every
four. This waste is particularly excessive when, as is the case more often than not, they
occur together, as in a String object. For strings woo, the Smalltalk virual machine
deviates from uniformity for the sake of efficiency. The characters in a string oceur in
successive bytes, right inside the string object, illustrated in these alternative memory
layouts for the string "juice’:
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Smallealk offers other specialized formats for storing the instances of a class. Most
classes simply use the standard structure of three header words followed by a word per
instance variable. Bur you can specify the other formars ro use ar the time you define
your classes—you will sec how in the coming exercises,

16.7 Exercises

Inspecting classes
3 You know how to find the superclass of a class using Smalltalk’s browsers, Try it in
another way by using inspector(s) to find the superclass of Date.

O Use inspectors to find the bytecodes—numbers like 132, 36...—for the method
dayOfYear in the class Date. Begin by inspecting the class Date; in IBM Smallealk,
inspect down through the instance variable methodsArray rather than method-

Dictionary.

Object memory layorts

O Although the memory layout of objects is strictly the business of the virmual
machine, you can see intimations within Smalltalk thar the instances of some
classes are treated differendy than others. For example, the classes like String thac
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store their data in consecutive byte-sized objects answer true 1o the message isBytes.
To see how many such classes there are, fngpecr this expression:

Object allSubclasses select: [:sc| sc isBytes].

O How does Smalltalk know whether to lay out objects of a class in the usual way, or
in the compressed form thar strings use? To answer this question, browse the defi-
nition of an ordinary class like Rectangle, and compare it to the definition of
String. Confirm thar ordinary classes are creared by the old standby:

subclass:instanceVariableNames:classVariableNames:poolDictionaries:
What method does class String employ? This is the method that informs the
virtual machine thar ir should use the compressed-memory layour for strings.

O How many other conventions does Smalltalk have for laying our objects? Hint:

Locarte the class thar implements the class definition messages above and look for
similar methods,

Counting instances
3 To estimate the number of classes within your Smallialk image, display:
“Object allSubclasses size.

For reasons that you will understand when we discuss metaclasses in Chapeer 20,
this estimate is about rwice as high as it should be.

O You can count the number of objects in your Smalltalk image by displaying:
|count |
count := 0.
Object allSubclasses do: [:¢1 | count := count + ¢l alllnstances size].
*count

But try this experiment overnight—it may take hours. That's because the all-
Instances method invokes a full-blown garbage collection, and we are invoking it
once for every class.'

' In IBM Smallralk you can ger a quicker but less precise count by using basicAlllnstances, which
does not invoke garbage collection. You can sharpen this count by clearing the garbage once in the
beginning with the mesage Svstem globalGarbageCollect. Mevertheless, be prepared o wair a
while.
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Non-uniformities in Smalliall's compiler

Mat all messages are equal. Thar is, Smallealk’s compiler recognizes a few special mes-
sages and generates oprimized code for them. You can rewrite and recompile those
methods in any way you like, bur your code, whatever you wrire, will be iE;MH:d.

O To demonstrate this curiosity, recompile the ifTrue: method in dass True after
inserting self halt into its body. Then display:
I=7
ifTrue: [ 'Breezing through the halt' ].
The same shore circuit applies o all the other common boolean messages, like
ifTroe:ifFalse:, ifFalse:, etc. Another noteworthy message that the compiler inter-
cepts in this fashion is ==,

Technical aside: The only way to circumvent the compiler’s optimization and force
your rewritten method to execute is to invoke it indirectly. The usual technique is to
use variants of the method perform:, as in:

7 = 7 perform: #ifTrue: with: [ 'Hit my halt' ]

16.8 Summary

Every implementation choice in an object-onented language is a tradeoff. If method
disparch is fast, compilation will be slow. A garbage collector will reduce the number
and severty u“:m;s.. but d-cEm:cl: p-crfnrm:a.n:: A ::umpil:r optimization spu:ds up a
corner of the language, bur at a loss of consistency in the language. An image can be
portable, bur it won't enjoy the platform’s native widgers. Virtual machines make
interactive debugging a snap, but complicate life with foreign languages.

This interplay berween a languages definition and its underpinnings shapes the
whole texture of the programming system—its responsiveness, its reflectiveness, the
degree of its coupling to other languages and systems, even the design techniques that
are most suitable in it. Smallealk—the product of one combination of all the
choices—is a respectable point in the space of object-oriented languages.

We now shift from the guts of object-oriented languages to a conceptual predica-
ment that awaits practicing object-oriented designers.
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Two kinds of inheritance

MNexr in our series of beyond-the-basics topics is the distincrion berween a type and a
class, Until now we've blurred this distincrion: I've encouraged you to think thar
inheriance is simply synonymous with the AKO (A-Kind-Of) concepr. Seasoned
designers, however, cringe at this oversimplification.

171 Beauty and the beast

Consider rwo classes, Rectangle and Square, in any object-oriented environment.
Don't worry abour Smallealk; the first four sections in this chaprer are independent of
the object-oriented language. Here are recrangle and square instances:

. .
aRectangle

asSquare

Each has a method for calculating its area and instance variables wo identify its position
(ler’s say the upper-left corner) and the length of its side(s). We won't worry abour
rotation—all our squares and recrangles will have vertical and horizontal sides only.

Mow, a design problem: should Rectangle be a superclass of Square? Or vice versa?
Two perfectly defensible opinions are:

198
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1 Squares are special kinds of rectangles, namely those which have sides of equal
length. Every schoolchild knows this fact. Therefore, Square should be a subclass

of Rectangle.

2 We expect a subclass to inherit everything from its superclass and, generally, to
add further trais. Butterflies have all insect traits, plus more. The picture above

clearly shows thar a rectangle has the traits of a square, plus one additional in-
stance ?ﬂ[iﬂl}l:. TIICTCHJ“.'. Rn‘tlng!: Ehﬂ“ld lbf il ELII}EIE.“ Dr Sql.lll'l:.

Before you get excited about one point of view or the other, let me rell you once
and for all that there is nothing wrong with either argument. The dispute is unavoid-
able: there are two reasons for subclassing, and they aren’t always compatible. (And if
one finds neither reason compelling, one can always design neither class o be a sub-
class of the other; this is a valid third alternative.)

Imagine two object-oriented programmers, one a comsumer of a class hierarchy and
the other the hierarchy’s producer. The consumer wants to reach over and use (“buy”)
the classes in the hierarchy with minimal confusion. He doesn't want surprises; he
expects the hierarchy to be an intitive AKO hierarchy, and he definitely doesnt want
to examine any underlying code or instance variables. Like the schoolchild, he expects
Square to be a subclass of Rectangle. The consumer values external consistency

The producer or developer of the hierarchy, on the other hand, cares how well the
ingides of objects work. She has two reasons for subclassing Rectangle from Square.
First, her jcﬂ:r T simplcr because she autumatlm!l}' inherits the instance variables posi-
tion and side, and just adds an instance variable for side2. (Of course, she must over-
ride the area method to caleulate the product of side and side2.) Second, she worries
that if she subclasses in the other way, every square inherits an extra instance variable
(side2) it doesn't need; if a graphics applicarion uses thousands of squares, it will waste
a3 lok of MEmory. This d:\tlnp:r values pmn‘fmﬂgr.

The dilemma, then, is this conflict between consistency and practicaliry. You can-
not inherit at the same time for the sake of an attractive appearance on the outside and
for the sake of code reuse and machine constraints on the inside. A class hierarchy can-
not at once satisfy its consumer and irs producer.

We need 1o sharpen our vocabulary. The term for the first kind of hierarchy, the
one that is externally attractive ("beauty™), is a fype hicrarchy. When that's the focus,
we use the words sype and subtype. AKO, which implies consistency, is really subtyping.

The second hierarchy, the one favoring internals (“the beast”™), goes by the familiar
words cfass and subelass, and frequently the expression implementation inberitance. OF
course, in practice you often see the word “inheritance™ by iself. Generally, when
experts draw fine lines and say just “inheritance” they mean implementation inherit-
ance. To minimize the risk of confusion in this chaprer, | will avoid using “inheritance”
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by itself unless the context is unambiguous—ir will either be “subtype inheritance” or
“subclass (or implementation) inheritance,” or simply “subtyping” or “subclassing.”

The object communirty first recognized the roubling presence of these rwo distiner
forms of inheritance in 1986. (Sec [Snyder 1986; Lalonde et al. 1986].) Efforts o
wrestle with the rrouble produced several evocarive synonyms:

Subtype Inheritance (Beauty) Subclass Inheritance (Beast)
Subrtyping Subclassing
Specification inheritance Implemencation inheritance
Visible inheritance Invisible inheritance
Essential inheritance Incidental inheritance

For details, see [Snyder 1986; Sakkinen 1989; Wegner and Zdonik 1988). By whar-
ever names, it became clear thar the subrype/subclass distinction was an inescapable
fact of object-oriented life.

17.2  Why types matter: polymorphism

The type (beaury) of an object is the means by which a consumer programmer recog-
nizes an object’s applicability to some problem. For 5 to be a subtype of T (imagine
Butterfly and Insect, or Square and Rectangle), the external description of § ought 1o
be consistent with thar of T, And if so, you would expect 1o be able to use an instance
af § anywhere in a program where the program expects something of type T. This
property is called swbstitutabilicy: an instance of a subtype may be substituted wherever
something of the supertype is expected and the program will still work. Thus any-
where a rectangle works in an application, a square also works; the application musn'e
fail because someone has substituted a square for a rectangle. This is what we mean by
n}ring that Sql.u.m 54 sul:ll}rp-l: ufﬂu:tangj:

The converse, however, is false. If an application depends on a square, say to form
the faces on the dice for a game of craps, an arbitrary rectangle just won't do. Thus
Rectangle is not a subtype of Square.

This freedom to substiture instances of a subtype sounds suspiciously like poly-
morphism, and indeed that's just what it is. In polymorphism, the program is unaware
of the actual type of the object lurking under a varniable—any subtype will do. The
subtype relationship specifies what is substitutable, hence the permissible range of
polymorphic objects. To pur it bluntly, substitutability and polymorphism amount wo
the same idea.
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Another way o think abour substitutability is to think abour variables s and ¢ of
types 5 and T, respectively. Freedom to substitute an § instance wherever a T instance
is expected justifies assignments of the form t := s, This is the same rule we saw for
Ce+ (page 168). An insect variable may refer to a butterfly, but not conversely.

All che following terms, then, are allied: AKC, subtype, substitutable, consistent, and
pelymorphic. All represent beauty, which is different from the notion of a swbvles.
From now on we need to respect this distincrion.

17.3 Commentary: an aside on subsets

A type generates a set. (Or ar least something very much like a ser. Mathemaricians
and logicians would quibble abour using the word “set” here. | alluded to this fussiness
on page 13.) For example, the type Butterfly gencrates the set consisting of all the but-
terfly objects that mighet ever be creared.

Following this reasoning further, it § is a subtype of T, then the set generared by §
is a subser of the set generated by T. Thar's because we have agreed that subryping
means S is consistent (AKO) with T, which implies that 5% objects sarisfy whatever T's
objects satisfy. In other words, §'s objects constitute a subset of T's objects. In everyday
language, butterflies constitute a subser of insects and squares constitute a subset of
rectangles.

Alchough subrypes generate subsets in a narural way, it would be reckless o asser
the converse, that by taking any arbitrary subset of the supertype’s objects, with meth-
ods defined to be the same as the supertype’s methods, we'd ger a subrype. Thars
IJEEBI.IE-E I'I'IEtI'Il}EI."i- thﬂt ]TIBIZE SCMC Omn tI'I'E supl:r!aﬂ I'.I'IiEI'I.[' not I'I'.IE]IE SCNSC fur I'I'I.-I.' S-I.'I.hil.'t.
For example, suppose rectangles have a “squish”™ method that doubles their length and
halves their width. Squares, although forming a legitimare subser of the set of recran-
gles, can't be squished, Squares then wouldn't understand the same messages char rect-
angles do, and so in the presence of squishing, they wouldn't constiture a subrype.

Conclusion: Subtypes naturally generate subsers, but subsets do not necessarily
define natural subrypes.

17.4 Commentary: what does "consistency” mean?

Intuitively, we understand subtyping 1o mean preserving the hierarchy's external con-
sistency. But so Far we do not have a precise definition of "mnsisttnq.’." For instance,
birds fly, but penguins don't. Would we want to say that penguins form a subtype of
birds or not? Are penguins consistent snongh with birds to warrane being a subrype?
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What conditions should their fly method abide by to be consistent with the fly

method for birds?

More rigor is evidently desirable. Wed like an objective test for consistency. Unfor-
wnately, no one vest exists. The candidates range from the weakest condition, where
it doesn’t take much to be consistent, o the strongest, mose rigid condirion, where it's
extremely difficult to be consistent.

Here are four candidartes, covering the spectrum from weakest vo most rigid. In
order of IRCreasing str:ngth. we'll call them amarchy, con nee, behavioral consis-
rency, and rigidity:

* Anarchy. § has at least all the message selectors thar T has, and possibly more, but
there are no limits on whar the method bodies themselves do. For example, if Bird
has a fly method, then the subtype Penguin must too. But Penguinz>fly may
answer No! while Bird>>fly answers Yes! Yer more flagrant, Penguin>>fly might
AMSWEr 1 ipm:ial Error uhjﬂ:t OF generate a walkback, inﬁ:rrming you that you should
not have sent the message in the first place. The effect would be o cancel the
Bird>>fly. The possibilities for Penguins>fly being unlimited, anarchy barely
deserves 1o be called subtyping. Yet ivis whar Smallualk allows. Smalltalk imposes no
restrictions on what a subrype method does. This is such a weak form of consistency
that one could say in good conscience thar it isn't in the spinit of subtyping at all.
And it is often said that Smallealk programmers dont really subtype; they subelass.

= Conformance. We now depart from Smallralk; conformance can be checked only by
a language whose variables have types and as we know, Smalltalls do not. Neverthe-
less, as an object designer, you can still think abour conformance, and knowing
about it can improve your designs.

Conformance has to do with the consistency of the types of arguments and
return values of methods. 1 will discuss the most widely accepted definition. First
ler’s adopt the convention that the word “subtype” includes the type itself. A type
then is always a subtype of itsell, and also a supertype of itself.

5 will conform to T if its methods follow certain rules. The gist of these rules is
to force cach method o “deliver more™ and “require less” than the corresponding
method in T. By delivering more and requiring less, §'s instances will be more
accommodating. Therefore §'s instances can be substitured wherever T's instances
are called for.

Thar'’s the outline; now the specifics. We need to think about the return types
and argument types of a method. First, the return ype.

Consider methods for laying eggs, Duck>>lay and Bird>>lay. Bird>>lay returns
an instance of Egg, and Duck>>lay returns an instance of DuckEgg. Thus Duck’s

method returns a more specific type of object than Bird's method does—ducks
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deliver more than birds do when they lay. We say that the return type of Duck>=lay
conforms to the rerurn type of Bird>>lay.

The official wording is: for the return types of a method m to conform, the type
of object returned by S>>m must be a subtype of the type returned by T>>m.
(Remember that the types of the returned objects may be equal, too.) The right-
hand side of this schematic illustrates the possible objects returned by T>>m
(Bird>>lay) and S»>m (Ducks>lay). (Ignore the lefi-hand side for now.)

I

Notice that fewer objects may be returned by S>>m than T>>m—only duck eggs,
not all eggs. Thar is the key. The objects returned by S>>m are more specific; they
represent a subtype or subser of the objects rerurned by T>>m.

Thar’s the rule for conformance of return types—ir's drearily straightforward.
The rule for argument types, however, has a twist, We will need a lirtde extra nota-
tion: $>>m(P) means that the method m accepts an argument of type P We are
going to define what it means for the types P and Q of the arguments of the method
S>>m(P) and method T>>m(Q) to conform,

Consider Piano>>play(Pianist); in other words, the play method for pianos
requires an argument, namely a pianist. Think about the ConcertGrand subtype of
Piano. Who can play a concert grand? In other words, whar condition should we
impose on the argument type of ConcertGrand>»play(___}?

It is tempting to argue that the argument type ought to be the Virtuoso subrype
of Pianist. Bur this impulse turns out to be dead wrong, at least for this interpreta-
tion of conformance, That's because we want our rules to guarantee substiturabilicy,
and if we demand thar only a virtuoso can play a concert grand, then the concert
grand will not be substitutable for the piano! (For example, imagine the piano in my
living room being played by a pianist. We want to roll in a concert grand to replace
it and for the living room to continue to operate normally, Well, it won't if we
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suddenly require a virtuoso instead of a pianist. The only way for the substitution w
work is if the concert grand may also be played by a pianist, or even possibly a more
general type of individual, like Person.)

Paradoxically, to guarantee substitutabilicy, | have to make my Concert-
Grand>>play(___) method accept a supertype of Pianist as an argument! This rule
makes the software consistent, although it may not do much for musicaliy. (A
design technique known as mudti-methods preserves the musicality of this problem.
The idea is to treat Piano and Pianist as peer classes and to imagine a “method” that
operates on both objects at once. This outlook differs from our customary object-
centric perspective, where we always have a preferred object. For a discussion of
multi-methods, see the commentary on page 170.)

Thus conformance of argument types works in the opposite direction from con-
formance of return types. The official definition must be: for the argument types of
a method m to conform, the type of an argument of $>>m must be a supertype of
the respective argument of T>>m. (Again, the types may be equal, too.) Looking
back ar the left half of the schemaric above, you can see that $>>m (Concert-
Grands>play) accommodates more possible arguments than T>>m (Piano>>play).
The arguments that S>>m accepts represent a supertype or superset of those thar
T}:rln dﬂﬁ..

Purting everything together into a definition of subtype based on conformance,
we can say that for § to be a subiype of T, § must have all T's methods and possibly
more, and for any method m in both § and T, 5>>m’s return and argument types
must conform to T>>m'. (Motice that this definition is recursive: the subtype rela-
tionship berween S and T is cast in terms of the subtype relationships of arguments
and returns. Recursions need a condition to get them started or stopped, and we
started this one by declaring that any type is a subtype of itself)

Here's another way to express this definition, using some jargon that has caught
on in the C++ community but which originated in the mathematical discipline
known as eategory theory. Return types follow a covariant rule—they vary in the
“same” direction as § and T, That is, ifSis a ﬂﬁ}rpu: of T, then the return of S>>m
must also be a subrype of the return of T>>m. Argument types follow a conrrapari-
ant rule—rthey vary in the “contrary” direction from 8 and T. Thar is, if § is a swb-
type of T, then an argument of S»>m must be a supertype of the respective argument
of T>>m. Briefly then, S is a subnype of T if § has all T's methods and possibly more,
and any methods in common follow covariance in their returns and contravariance
in their arguments.

This subtyping rule—conformance—reflects a theoretical ideal whose essential
appeal is substitutability. Each language defines its subtyping rule in its own way,
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usually not in accordance with the ideal. In Smallwalk, conformance is irrelevant
because of the typelessness of Smallealk’s variables. Even among languages whose
compilers check for the types of arguments and returns, few (see the upcoming
table) adopt the ideal.

For example, Eiffel’s rule for consistency of argument types is the apposire of
whar we've discussed—covariance instead of contravariance. Eiffel's rule has been
the subject of vigorous debate (see [Cook 1989]). Its rationale is that covariance of
argument types is in practice more useful than contravariance. Concernt-
Grand>>play{Virtuoso) should conform to Plano>>play({Pianist) because practi-
cality (musicality) should prevail over any lofty desire for consistency
(substiturability). ConcertGrand>>play({Person) may be theoretically sound, goes
the Eiffel argument, bur it has no pracrical value.

* Behaviora! consistency. By behavior, | mean the semantics of methods; thar is, what
they do rather than merely their names or selectors or signatures. The spirit is the
same as for conformance: for § o be a subtype of T, S>>m should require less
{behaviorally) and deliver more (behaviorally) than Ts>m.

How can we specify a method'’s behavior? The customary technique is 1o use pre-
conditions and postconditions. These mean just whar they say: preconditions consist
of what the method expects prior to its execution (i.c., what it requires) and post-
conditions consist of whar it guarantees when it finishes (i.e., what it delivers).
Therefore, requiring less and delivering more simply mean weakening the precondi-
tions and strengrhening the postconditions.

Thinking abour of preconditions and postconditions for your methods is good
discipline, even though all you can do abour it in Smallralk is record the conditions
informally in comments. Computer scientists don't have a practical way to formally
specify and validate preconditions and postconditions anyway. So there is nothing
shameful about documenting methods with informal preconditions and pestcondi-
tions in their comments, Only Eiffel among the commercial object-oriented lan-
guages has even rudimentary support for checking this kind of consistency.

* Rigidity. The strongest possible form of consistency would be to categorically forbid
alternate implementations of a method. For an object-oriented developer, this is an
academic, useless notion. 5 could only add brand-new methods o T's methods.
Penguins could add any number of methods to bird methods, but penguins could
not have their own fly method. Instead they could only reuse the fly method from
birds. Penguins must then fly like any other bird, an unsatisfactory condition. Neo
object-oriented language is this rigid. Prohibiting alternate implementations
entirely would produce an unacceptable object-oriented language.
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Mow let’s relate these theoretical ideas to the rules for consistency in actual object-
oriented languages. The table below describes these rules for several languages. Think
of them as the rules that derermine when polymorphism or substitution works, The
first column indicates whether substitutability requires an explicit implementation
inheritance relationship berween 5 and T; that is, a declaration of § as a subelass of T.
The remaining columns describe how far each method S>>m may deviate from the

method Ta>m.

When 5 is substitutable for T (polymorphism)
Must 5 For 5>>m to be consistent with T>>m
subclass
from T? | Rewrn ypes | Argument Typed  Behavioral Conditions
Cee Yes Covariant Must agree nfa
Eiffel Yes Covariant Covariant | May weaken preconditions or
strengthen postconditions
Emerald No Covariant Contravariant nfa
Java No Covariant Must agree nfa
Modula-3 | Yes Must agree Must agree | May raise fewer exceptions
POOL-1 Mo Covariang Contravariant | May have more “properties”
Smallvalle No Mo restriction Mo restriction nfa
Theoretical No Covariant Contravariant | May weaken preconditions or
ideal strengthen postconditions

Polymorphism in Ces was onginally conservative: any change to the declared
types of arguments and returns waived polymorphism. But the ANSI C++ committee
took a small step toward conformance in 1993 by allowing covariance for return types,
as shown in the table.

Mote that only the research languages Emerald and POOL-I support ideal con-
formance—covariance in return types and contravariance in argument types. For fur-
ther information on the type systems of the languages in the table, see: [Stroustrup
1991; Meyer 1992; Black et al. 1986; Sun 1995; Cardelli et al. 1992; America 1991;
Goldberg and Robson 1983].
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17.5 Consistency and Smalltalk

What has this discussion of topics like conformance o do with Smallalk, where vari-
ables don't have types in the first place? Well, just because the designer can't express
these ideas in the Smallialk language doesn't mean she is incapable of thinking about
them. It would be a peculiar designer indeed who was oblivious to the concepr of con-
sistency. And that is the nub of this chaprer: to wam you that as a Smallwalk developer
you will have to reconcile your idealistic thoughts abour consistency with the absence
of means to represent these thoughts in your software. You have just one inheritance
mechanism, and the path of least resistance is to use it for subclassing.

Beginners are mostly motivated by AKO (subtyping), but gradually, as they
become familiar with classes and their workings, they begin to inherit for the sake of
reusing the code they find—they subclass. In the end, expert Smalltalk programmers
use inheritance frequenty for subclassing. The reason is simple. In Smalltalk, more
than other object-oriented languages, when you inherit, you inherit coerpthing—all
the instance variables and all the methods. You et access to all the insides, whether
you want them or not. [t's a producer’s sandbox,

The Smallalk developer, hobbled by having to inherit all the insides, has no way
to define a type hierarchy. The limitation is grim, but not as grim as it sounds. Often,
class and rype hierarchies are the same or nearly so, which explains why many Small-
talk developers survive without knowing the difference. Often, bur not always. What
would we see if we masked Smalltalk’s class hierarchy and looked instead for subtype
relationships?

William Cook did this expenment for the collection classes in Smallealk-80 and
found...an entirely different hierarchy! [Cook 1992] In the next exercise, you'll repli-
cate his experiment.

V Techmical aside: By contrast, Ce+ offers more control over inheritance. Private members and privare
imberezance in Ces limit what subsclasses can access and whar consumers of the subclass can access.
These fearures disinguish whar a class inherits for the sake of its own implementarion from whar it
inherits for the sake of its appearance 10 the consumer—a step roward separating subryping from
subclassing. Java goes further, Tt supponts rwo distiner nndﬂmTemvm:h'uﬂ :IuEu hl;p::u'ﬂgﬁm
An interface specifies a set of method names. The programmer can develop eparare and inrer-
face hierarchics, associating specific classes with specific interfaces ar will. And as you may have
guessed. polymorphism (substitutability) in Java depends on an object’s interface, not its das.,
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17.6 Exercise: Smalltalk's container “types”

Consider these container classes: Array. Bag, Collection, Dictionary, Set, and String,
(A bag is like a set, excepr that an element can occur more than once in a bag; you can-
not add an element twice 1o a ser.) Our goal is to arrange them into a reasonable type
(AKO) hierarchy. To do so, we have to examine public selectors thar are appropriate
for consumers of these classes. Here is a representative list—size, at:, atput:,
includes:, <, indexO#F, remove:, removeKey:, add:withOccurrences:. This is a some-
what contrived subset of methods—a complere assessment would entail &f public
methods—bur we want to keep the exercise manageable.

We also have to settle on some definition for consistency. Let’s use a simple one: §
is a subtype of T if § has all the selectors of T, and they alf work, This is a livde more
fastidious than the anarchic subtyping rule (page 202), because we are saying that we
don't want to count methods thar issue an error. A deliberare error in a method tells us
that the developer must want to invalidate the method. We called this condition a can-
eellarion. Also, some methods aren't explicidy cancelled, but still don’t work righe. One
example of a method thar fails a lor is at:, which is defined in Object but fails in most
subclasses.

O For cach class, tabulate its valid selectors. You should use browsers, bur I encourage
you to supplement your browsing by executing experimental messages like Array
new size thar will test whether the size method is supported by the Array class. It
should ke some time to do a thoughtful analysis. After you derermine which
classes support which selectors, arrange the classes into a plausible type hierarchy.

17.7 Solution and discussion

Here is what | found by snooping into these collection classes. Your resules should be
the same. In fact, because these classes are all standard Smallalk classes, you should
arrive at the same results no matter which dialect of Smallralk you use. (The plus (+)
means that the method is valid for the class.)

size| ar| arpur: | includer| <| indexOff| remove:| Key: | Oceurrences:
Mil-_}' + #+ + + +

Collection | * =
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size| av:| arpur | includer:) <| indexOff| remove:| Key: | Ocewrrences)

Diictionary | * | * + N N
5¢| + + +
E'I.'-lil'lg +* + i+ + + +

To analyze the first column, 1 found that in IBM Smallwalk, Array, Collection, and
String successfully inherit a size method from Object. Bur Bag, Dictionary, and Set
don't. Instead, cach overrides Object>>size with its own size method. Nevertheless, by
one means or another, all six classes enjoy a working size method. Each class therefore
gets a + in the first column. (In other dialects of Smallalk, the size method comes
from somewhere else in the class hierarchy, and different intermediate classes and can-
cellations and reimplementations occur along the way. No matter. You will seill find
thar all six classes enjoy a working size method.)

For the second and third columns | found thar Array successfully inherits at: and
at:put: from Object, and thar Dictionary and String provide their own overrides. The
other classes—Bag, Collection, and Set—inherit at: and atzput: from Object too, but
the methods actually produce walkbacks. Thus only Array, Dictionary, and Scring get
a + in the second and third column.

Cunh'nuing cﬂ.rtfh"].r in this way, | cumpl:h:d the rest of the wable. Again, you
should arrive at the same results from any standard dialect of Smallealk, even though
the derails of your route may differ. From the table, we can propose a sype hierarchy
like the diagram below.

Collection szo
7 N
Sat _ "Locatable®
Bag Array Dictionary
| irnchanCM: FTC gy

String

<

Each rype is labeled by the message selecrors thar perrain o ir and its subrypes.
Maotice the fictitious type Locatable. This is a convenient type into which we can factor
the selectors at: and at:put:, which service Array and Dictionary and their subrypes.
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17.8 Exercise: Smalltalk's container “classes™

Consumers appreciate the type hierarchy above because i is easy o locare the classes
they want to buy; it's an intuitive AKO hierarchy. Unfortunately, the hierarchy you see
in Smallalk is different. It's a producer’s hierarchy—the beast—optimized for those
whao buile it, not for those who hope 1o find its classes in inruitive locarions.

O Use a browser to sketch the actual class hierarchy in Smallealk.

17.9 Solution and discussion

The IBM Smallealk elass hierarchy we derive directly from a browser is:

Collection
=N TN
others” Set  Bag  “others'
A AN
Dhctionary Array Saring

An innocent consumer, expecting an AKO hierarchy, is shaken by this one. Sets and bags
are unrelated and arrays and strings have lost their intuitive AKO relationship. Why?

Sadly for the consumer, these classes were built by producers in ways advantageous
to themselves. The consumer doesnt know it, bur bags are built with dictionary-like
objects inside them, so they dont need 1o inherit from sets. Strings are stored in a
unique, compact way (remember the figure on page 195), so they donlt inherit from
arrays. And so on.

These internal design decisions, which the consumer doesn’t want to know abour,
nevertheless affect the structure of the class hierarchy. Class hierarchies set AKO
expectations for consumers, even if, as here, they are not AKO hierarchies. This is the
unfortunate by-product of this chaprers theme: Smalltalk has only one hicrarchy,
which cannot serve rwo incomparible masters, subclassing and subtyping. The collec-
tion hierarchy you see through Smallralk’s browsers is a subclass hierarchy, not the sub-
rype hierarchy you would wish to see. The type hierarchy is conceprually present, bur
for practical purposes it is invisible. We had to work hard to ferret it out.

Incidentally, the class hierarchy derived from a ParcPlace-Digitalk Smallalk
browser doesn’t help, cither:
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Colloction

A IR
Sel Bag “others”
~ N

Dictionary  Amay  Siring

This hierarchy fails to caprure the narural type relationships in an additional discon-
certing way—Dictionary inherits from Set. The producers chose this d-l.-mgn for
implementation reasons: encapsulated within a set is an array, which dictionaries
inherit for their own private purposes.

An carly exposé of the type versus class dilemma in Smallalk appears in [LaLonde
et al. 1986]. For a thorough analysis of Smallwalk collection classes, see [Cook 1992].

1710 Summary

Objects have ourtsides and insides. When we think thar a square is well known 1o be a
special kind of rectangle, we are thinking of is customary behavior—is ouside.
When we think thar a square has just one side instance variable and a rectangle has
two, we are thinking about how they are constructed inside rather than how they
present themselves to their users. The sad truth abour most object-oriented languages
roday, including Smallealk, is thar they don’t make the same distinetion thar our minds
do; they muddle subtyping with subclassing.

It is subryping, not subclassing, thar derermines polymorphism. We can accuse
Smalleallk, with its l,}'ptll:;as variables, of having an um,l.sua")' Fﬂrgiving type system
(look back ar the table on page 206). Smalltalk enforces no discipline on the forma-
tion of type hierarchies, whereas other object-oriented languages go to great pains to
check type relationships for consistency.

As compensation, according to the first column in the able, Smallralk suppores
what we called implicit polymorphism (page 169). This polymorphism doesnt
depend on declared relationships berween the classes. IF two dasses support the same
messages, they are consistent, even if they are in unrelated parts of the class hierarchy.
If Puddle and CarBattery both support jump and drain, Smalltalk regards them as
substitutable cypes, and so they may act polymorphically with respect to each other.
Looking back at our analysis of Smalltalk collections, Bag is a subtype of Set, s0 a bag
may be polymorphically substituted for a set, even though they are unrelated by inher-

iAnceE.
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1711  Commentary: standardizing Smalltalk

Chur analysis of the collection classes in the exercises above raises an interesting ques-
tion: are the incomparible collection class hierarchies of the ParcPlace-Digiralk and
IBM dialects a roadblock for standardizing Smallalk? The ANSI committee’s answer
is a resounding “No.” Its current approach ro the problem is to standardize Smallralk’s
type hierarchy rather than its class hierarchy. This is a progressive departure from the
traditional Smallalk mentality of subclass-based inherirance.

Motice how the ANSI approach fits with collection classes: | mentioned in the
solution to the exercise that the result of the type analysis for the dialects is the same.
That is, the collection fype hierarchies from ParcPlace-Digitalk and IBM agree even
though the collection clasr hierarchies don't. And it is the type hierarchy thar maters
to consumers. 1he type hicrarchy represents their intuitive understanding of the
behavior of objects, and it governs the objects they can use polymorphically in place
of ather objects.

A major arraction of any standard is the prospect of portable code. If we want 1o
port our Smalltalk code from one ANSI standard dialect to another, we will have o
follow one essential guideline when we write the code: we should only buy, not inherit
from standard classes. By buying, we use only the standardized interfaces of the classes.
O the other hand inheriting, even from standard classes, is sure to cause trouble
because inheritance couples our subclasses 1o the nonstandard insides of classes (beast)
instead of their standard outsides (beauty).

Also keep in mind that only part of an application is likely 10 be portable. The
AMSI standard will focus on foundation classes—containers, rn:lgnitur.ii:!.,| SEreams,
and so on. These are the basic building blocks for any Smalltalk application, bur a real
working application uses many other classes thar are unlikely ro be standardized. User
interface classes are the first obvious omission because, as we know, these differ dra-
matically among vendors. Bur they are followed by persistence and darabase classes,
communication classes, and so on. The best we can hope for is trouble-free porability
of model code berween standard dialects; the rest of an application will rake work.
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Design patterns

Having now thoughr quite a bir abour objects and programmed with them in Small-
talk, you are in a position to tackle a higher level of abstraction—design patterns. Pat-
LErNS OCCUR in every activity; software isn't special. A good chess player doesn’t think
through all possible combinations of moves; that is mathematically beyond reach.'
Instead, he draws on his mental respository of positions or parterns vo limit the num-
ber of combinations he explores. Having this personal repository of patterns distin-
guishes the expert from the novice, whether the subject is chess or software.

Just as the chess player’s patterns come from positions he has played plus ones
those he has studied in other games, the designer’s patterns consist of those she has dis-
covered on her own plus ones she has seen in other people’s designs. My purpese in
this chapter is to give you an edge by priming your personal repository of design pat-
terns with proven parterns from other peoples designs.

Think of an object-oriented design pattern as a grouping of objects or classes thar
recurs in good designs.” These groupings are signs of a narural evolution roward larger-
scale reuse: in its early years, the object community focused on what made a good object
or class, and now it turns to the question of whar makes a good grouping of objects or
classes. Our first example (page 215) is a pattern that has already occurred three times in
this book, in the form of the Account and its rransacrion log, the AddressBook and the
eontacts in it, and the ShapeRoom and is shapes. This pattern is a omart containier

' Even chess-playing supercompaers like Diecp Bluse, which won a game against world champion
Gary Kasparow, use “pamems” 1o augment their raw compurational power. For example, a compuner
might use a hewristic such as, “a castled king affords greater protection dhan an uncasled one.”™ Hew-
rintic is a fancy word for a rule of thumb, which is also not a bad way 1o think of 2 pattern.

* Tio some people, a patern is or implics a grear deal more, See the commentary ar the end of this
chapuer (page 240) for an indication of these more profound understandings.

213
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because, for example, an address book conrains contacts, bur it is also smart enough w0
search by company or zipcode, to dial 2 contact’s phone number, and so on.

The patterns in this chaprer are ones | particularly enjoy. All designers have their
own favorites, formed mostly of those thar have helped them solve nasty problems.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides have organized
m"l:l'lt}"-tl'l]':': Fﬂttf"'li- into a catalugul:. T @ sl:and:u'd Tfﬁ:“.'l'l:l: Iﬂ'ﬂﬂlﬁ [G:mml et :I.
1995]. You will eventually develop your own idiosyncratic caralogue, based on the
patterns that pertain to the problems you encounter.

Because these are design patterns, don't expect the Smallralk code in this chaprer o
be entirely spelled our. A partern is a reusable design, not reusable code. The descrip-
tions include enough details o imagine how each patern can help solve a problem,
bur to fully apply a pattern to your problem, you will still have to invest some of your

own energies. [n so doing, you will probably uncover variations on the basic tech-
niques outlined here.

181 Notation

We need some noration to help convey the essence of a pattern. Here is an example of
what we'll use, based I'I'.ID!‘I:I}" on OMT [Rumbaugh et al. 1991].

| | | |
L J LB ——
|
P
T"ﬂ" Z?i\lm
Conducior Wialin
sinings | meed
P— L {
play St bow |

The three-part rectangular boxes are classes; the top part is the name of the class,
the bottom lists pertinent methods, and the middle contains pertinent instance vari-
ables. The triangle means inheritance and the diamond means aggregation. A dark
circle indicates a relationship or aseciation that involves possibly many instances of a
class, such as the many instruments in an orchestra above, When we need to depict the
logic of a method, we'll use a rounded box, as for Violins>play. And we continue to
mark subclassResponsibility methods with asterisks, as we have done since Chaprer 5.
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These notations are a far cry from a full-bodied design methodology notation, bux
they are enough to get us started.

I mentioned in Chapter 6 the gray area between aggregations and containers. A
similar gray area exists berween aggregations and one-to-many or one-to-one associa-
tions. An aggregation is a particularly strong kind of association, one in which the
designer feels that “part-of” is an apt descriprion. But what one designer calls an ordi-
nary association, like the one-to-many relationship between orchestra and instru-
ments illustrated above, another may choose to call an aggregation. This second
designer would have used the diamond notation o indicate that instruments are pare-
of an orchestra, or an orchestra has instruments.

‘Two designers could also quibble over the relationship between orchestra and con-
ductor. One could argue for an ordinary one-to-one association; the other for the
more H:rc::i:] wtiun, as llustrated above. These are jucl;ﬂ'l:nt calls. The decisions
are influenced by the problem you are solving (which doesn’t help here because | have
not yet presented any problems).
For example, a problem on simular-
ing a conductors schedule and
duties might warrant reversing the
relationship entirely and declaring
that a conductor fas an orchestra:

These nuances remind us thar design is an inexact eraft, bur they won't marter for

this chapter. We need notation only to illuminate concepts and avoid ambiguities.

18.2 Smart container (aka collection-worker)

Let's begin on familiar ground, by reviewing the common design for a checking
account, an address book, and a shape editor. They all look like this:

miar! Appunt or AddresaBook or Tranancthon or Paracn oF
orbaing ShapaRoom Shape
| FEEN
*application specific behavior *Hem specific behavicr™
Calipction (ol-tha-shaif)
wdd:
PEHTEYR
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Class Account is conceptually like a container, because it “contains” transactions, yet
it is smart in the sense that it processes transactions and adjusrs its balance. The acrual
container is a built-in container from Smallealk, in thar case an instance of Serted-
Collection. Similarly, class AddressBook basically contains person objects, bur it has
behavior (for managing contacts) that goes beyond whar any of Smallealk’s buile-in
collection classes can do. And class ShapeRoom conceprually contains shapes, bur it
can move them around and even undo the user’s actions.

In all three cx:mplta.. the ]-ul:r nraddins, mmmrins. and huldins on to the pertinent
items goes not 1o the smart container bur to some buile-in Smallealk collection class.
The smart container only appears to contain its items. Perer Coad calls chis “the fun-
damental pawtern” or the collecrion-worker pattern; it is the base for most of the par-
terns in his book [Coad er al. 1995].

18.3 Reification

Reificarion is a broad term thar means to turn something thar doesn't seem to be an
object into an object. It is so broad that it is not quire fair to call it a design patern. IF
anything, it is a meta-partern, our of which other design parterns emerge.

The most striking examples of reification occur when the designer treats a method
or verb-like idea as an object. You have seen a classic example in the undo exercise on
page 176, where commands or actions became classes of objects. We will revisic this
particular reification in the next section,

As a marter of fact, any time an acrivity or behavior starts our as a method, bur over
time you sense that it has rather complicated vanants, then that activity is a good
candidate for a class, and the variants are candidares for subclasses. Thar is whar
happened in the undo situation. Specific kinds of actions—moving, creating, and
removing—became subclasses. We reified each operation into a class of its own.

Another common example is searching. At first blush, searching a repository of
objects is plainly a job for a method. But pretty soon one realizes that the act of
requesting a search can be a rich activity; there may be all manner of ways of specifying
a search. This discovery leads pretty quickly to reification: one defines a class called
Search with instance variables that represent the various arguments describing the eri-
teria for a search. A search object immediately becomes handy if you want to search
again, with slightly different criteria. And the nexe thing you know, you want to search
for different kinds of objects in different repositories, so you define separate subclasses
of Search for each such kind of object. The innocuous verb-like act of searching has
blossomed into several portential classes.
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You'll notice that once you reify something into a dass, is principal public method
often turns out to have a really routine name, like undo for the Command class. [n the
Search example, the name is likely 1o be execute or dolt. The method then gers reim-
plemented polymorphically in each concrete subclass so that every kind of Command
knows how to unde itself and every kind of Search knows how to execute iself. This
observation illustrates a rule of thumb: reificarion begets polymorphism. Whenever you
reify from a method to a class, you are likely to enjoy the benefits of polymorphism.

Although the most dramatic reifications start from a method, not all do. One com-
mon form starts from a relationship berween two classes of objects: introducing a St-
dentCourse class to manage the intricacies of the many-to-many relationship between
Student and Course classes counts as a reification, For example, grades and atcendance
are berter encapsulated within an instance of StudentCourse than within either an
instance of Student or Course. This form of reification is known as an awociation class,
and information such as grades and awendance are known as lnk attributes [Rum-
baugh et al. 1991).

Reifications can also start from larger-scale acrivities than a method. For example,
[Jacobson et al. 1992] suggest that an entire use case can be an appropriate candidate
for an object. When they reify an activity, be it a whole use case or a more modest
activity, they call the resulting object a comtrol abject. In other words, a control object
is a reification of an activity. (These control objects should not be confused with the
controller objects of MVC.)

In general, reifications exhibit the evolution of a design from plain beginnings o
object-oriented respectability. A draw method eventually becomes a Drawing Tool class;
a conversion method for ranslating, say, an MM/DDVYY swring formar into a dare
abject eventually becomes a Converter class (AbtConverter in VisualAge); operations
for copying bitmaps eventually become the BitBlockTransfer class (BitBle in Visual-
Works); and so on. The essential lesson of reifying is that when things start to get com-
plicated in a design, the experienced designer steps back and considers the possibilicy of
introducing a brand-new kind of object. One can almost say thar reification & object-
onented dmgn As you stu.d)r the command pattern aFin, look at it in this SpIniL.

18.4 Command

You have solved the undo problem before; now ler’s cast i into the form of a pattern—
the command patvern.

O How would you complete this design for undoing actions or commands?
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all ol command Hpes ...

Solurion: We review the earlier discussion (beginning on page 177}, using now differ-
ent names. Both Command>>execute and Command>>unExecute are subclassRe-
sponsibility (pure virtual) methods in the Command class, and they have concrete
realizations in each of Command’s subclasses. To maintain a chronology of the com-
mand objects, we need a Stack class. A Stack’s LIFO (last-in-first-out) policy ensures
thar the most recent command will be undone first. The resule is:

pruslic
P

gl
| unExpculn

Mot only does this illustrare the command partern, bur you should appreciate thar
formulating a Command class in the first place is an archerypal example of reification,
The crucial discovery of the undo solution was 1o accept that so verb-like an idea as
migwe, OF remiope, of commnand 15, for the undo problem, an object.
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18.5 Factory method

It often happens that one class depends crucially on another for certain services. For
example, in a client/server system, the class thar transfers customer dara back and forth
berween a database server and a Smallalk client (typically called the CustomerBroker
class) needs the Customer class whenever it creates a new customer object. Or a Cal-
culator class in an office desktop application needs a standard CalculatorWindow
class when it presents itself on the screen.

Early in an application’s life cycle, the designer inevitably realizes that other pairs
of classes have the same relationship: OrderBroker needs Order when it creates a new
order object, or Phonebook needs PhoneWindow when it presents itself. This situa-
tion often leads o code that looks like chis:

Motice the small but woubling redundancy: the messages ...new openWidget
appear twice, in exactly the same form.

O This redundancy calls for a simple but dramartic improvement. We should try o
factor the common ... new open'Widget code out of the subclasses and elevarte it 1o
the superclass DeskiopObject. But how?

Solurion: Just write the code for DeskiopObject>>openWindow in the only way that
makes sense: self windowClass new openWidget. Here the windowClass method
must be deferred to the subclasses. Thart is, each subclass must support a windowClass
method thar returns its associated class. The resulr is:
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DoskiopObiect
oG : Bl wiredorwCLEEE nw CEWGgNt |

This pattern is known as a factory methed, mainly because it frequently occurs
when an object manufactures an instance of an associared class. Note the patterns
minimalism: each class and cach method does only whar it makes sense for it to do,
and no more.

This pattern is an excellent indicator of the quality of any design involving abstract
classes. It occurs in the life of a design only after the designer has spent some effort
architecting clean relationships berween classes. Conversely, if you don't see the par-
tern anywhere, it can be an indication that dasses and their relationships have been
haphazardly laid our.

18.6 Objects from records

The objects from records pattern is more specialized and intricate than the others in this
chapter. It solves today’s most fundamental client/server problem, moving back and
forth between typical flat, relational databases on a server and objects ar a client work-
station.

A record, as programmers have always understood it is simply a string of bytes char
is subdivided into distiner fields. Historically, records were strips of dara firding end o
‘:I'ld ina H.It' ara ﬂdﬂmt.- Tﬂdﬂ}r“ Eummunlf cncounner ml'd".i n tl'“:' ﬁ:"m 'Dr TO%YSs
of a relational darabase rable. Sometimes, in complex client/server applications, the
bytes in a record may be assembled ar the server from several database rows or other
sources. But no marer where the dara comes from, the essence of a conventional
record is still just a sering of byres:
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1223334444, Odysseus |10 Polyphemus Way | Mhaca  |Greece
M 1 name 1  addess | dty i country

¥ L]

Although there is nothing novel about a record, it is so much an intrinsic part of a
rypical server that it (or something like it) must play a leading role in any mechanism
for exchanging data between a server and an object-oriented client. Histoncally, pro-
grammers first solved this problem by translating each field in the record into a corre-
sponding instance variable:

1223334444, Odysseus | 10 Polyphemus Wiy
M 1 name | address

Hhaca  Greece
gty 1 counlry

This translation generally occurred as soon as the record arrived from the server,
and it was performed sometimes by the Customer and sometimes by another object
(such as a CustomerBroker). The record had then served its purpose and became an

unwanted appendage.
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This approach had some drawbacks. It is always important in an object-oriented
design 1o distribute behavior into the classes for which the behavior makes most sense.
Thar a business object class like Customer is responsible for translating low-level byte
representations into objects exceeds our normal expecrations of a “customer.” A “bro-
ker” is a somewhar berter candidate, bur a broker ought to focus on locaring and
retrieving information from wherever it happens to reside, whether a local database or
a remote server, which is a different function than translating berween byte represen-
tations and objects.

Moreover, the “record” object’s role is so passive that it hardly deserves 1o be called
an object. We like our objects to have interesting behavior, and the record above is
merely an inert data structure, All these drawbacks repear in the opposite direction
when the application needs o send an updared customer object back to the server. As
an additional difficulty, users sometimes decide not to proceed with an update but
would rather restore the customer object back o its original state. Since an instance
variable can't hold two values at the same time, the original one and the updated one,
this design doesn't maintain enough information to revert the customer object.

The pattern objects from records addresses these drawbacks by making the record an
integral part of the customer object and also giving the record the responsibiliry for
translation. The record objects will resemble a traditional record, but will be quite a
lot smarter. In its simplest form, the record object encapsulates the darta, irs layour
within the record, and the conversion or translation between bytes and objects. A cus-
tomer object doesn’t even need instance variables. OF course, it still needs getter and
serter methods, but these can communicate directly with the underlying record
instead of with instance variables. The design looks like this:

Empilory s Ratnnd
........................ ~
nacod Byt Araay
*mapping nlo”
{ “ingarnyderiEon ko
e |
| address: an:
waddness
| “rocord ok daddroes

il
|
E
8
;
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“Mapping information” consists of the bookkeeping needed to map names of hields
like #address to positions and lengths in the byre array. *Conversion information” is
the information needed to convert each field of the record to and from primitive
objects such as strings and invegers,

Thar summarizes the basic pawern. For the reader who is interested in the deails,
here is a doser look at class Record and its collaborators. In addition to a ByteArmay
thar conrains its original raw dara, we may as well cache the results of each field con-
version if and when a conversion occurs. The cache saves having to convert again if the

field is accessed a second time. It also provides a serendipitous slot in which an
updared value may be stored via Record>s>at:put:. If the user commirs the updare, the
cached values are copied onto the original byte array, and if the user reverts or rolls
back, the cached values are simply cleared.

Thus, 2 more complete design is:

m --------------------------------- m
brytahmmy A T L
rocardhap oftssalictionary
.. R Wongphlicionary [

. i taplihagAl:
it Apul: offsstir
appiyChanges ergmAr
SRR
tim |
f R’
(at: asymbol
“cache s o dobonary of alneady comverted objects®
“cachn BT ASymbol iLAant:
[eache at: aBymbol put: ((reconiap SekdMapAtL sSymbeol) komByses:.. )],

You should consider this pattern for any client/server application invelving a non—
object-oriented server. It decouples problem domain objects from server data struc-
rures and minimizes the overhead of converting ro and from objects. The basic form
may be embellished in several practical directions. For example, you can auromarte the
generation of getters and setters, or you can automartically generate record maps from
whatever defines the records—COBOL copybooks, C structures, or SQL statements,
And if you lament the absence of instance variables—which you shouldn’t too deeply.
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since the essence of an object is its behavior rather than the particulars of how it stores
its datm—you can resurrect them for use as a cache; conceprually this amounts
transplanting the cache from the record object to the business object.

This pattern may become obsolete someday, if legacy relational databases vanish
and object-oriented distributed computing becomes common through facilities like
the Object Management Group's specification for distribution (CORBA) or object
darabases (such as GemStone, ObjectStore, Tensegriry, and Versanr). In the meantime,
objects from records remains a fast, clean way to exchange information among comput-

€rs across a nerwork.,

18.7 Proxies and ghosts, |

A proxcy stands in the place of an actual thing. Proxies, like objects from records, occur
in client/server designs. That’s because an object, or even more to the point, a collee-
tion of objects, may be quire large, and it may be impractical to materialize the entire
object or collection from the server. Instead, the client manipulates proxies for the
objects, and only if the user needs the whole object does the application materialize it
MNow, when the object finally does marerialize, its proxy may behave in one of wo
ways. It can either forward messages to the object, so that in effect the proxy is trans-
parent, or it can transform (or “morph”) itself into the object, so that the proxy disap-
pears. We'll discuss the second kind of proxy in the nexr secrion.
The first kind, sometimes called a handle-body looks like this:

nddress
Nama

The “handle” is the proxy and the “boedy” is the customer. The hollow circle means
thar the proxy has either zero or one customer object, depending on whether or not its
underlying customer object has been materialized.
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0 What should the code for the method CustomerProxy>>address do?

Solution: It should check to see if the Costomer has been materialized, and if not, it
should marerialize it. Then it should forward the address message on 1o the Customer,
like so:
address
"Answer @y address®
customer isNil
ifTrue: [customer := *materialize the customer®].
“customer address

This trick of initializing an instance variable only at the moment you discover you
need iv is known as Ly fnstializarion. One hopes that most customers will not be
needed by the client, and so the space and time for materialization will occur for rela-
tively few customers.

Finally, how does the proxy know the right customer to materialize? It must know
one more crucial tidbir, namely, some key thar identifies the customer for which it is
the proxy. This key is generally a unique identificacion number stored with each cus-
tomer in the server database. The full design is then:

AbstractCusiomss

Curgiomar kil
T [cusdoamin t= “TRbiriaiing feom &7
“pusiomes addnss
)
[
CusicmarProay Cusismaer
O
id s &
Bor
address nddress
e T

As a crowning touch, we have remembered 1o add subclassResponsibility methods
to the abstract class. Although not mandatory in Smallealk, it is always a good practice

to use them to indicate that the programmer must provide a concrete overriding
method in each subclass (page 64).
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18.8 Proxies and ghosts, Il
The second kind of proxy is called a ghesr. Consider this diagram:

As for any proxy, the ghost must contain at least enough information in the instance
variable id to uniquely identify the object it represents. Object>>doesNotUnderstand:
is the familiar error message that executes whenever a message is not understood by an
object. The essence of the ghost pattern is for the ghost to override this error.

O Unlike the handle-body proxy in the previous section, the ghost does not support
an address getter. Whart then should it do if it receives the message address?

Solurion: Normally, the inherited doesNotUnderstand: would execute, and a walk-
back would follow. To provide a more satisfactory response to the address message, we
override the usual doesMotUnderstand:. Instead of announcing an error, this version
of doesNotUnderstand: will begin by materializing the customer. With a customer
object now in hand, a conventional handle-body proxy would merely redispatch the
address message 1o the customer.

But this being Smallealk,” we will do something extraordinary: we will transform
{morph) the ghost into the customer. Thar is, the ghost object of a moment ago will
become an entirely different kind of object, namely the customer object. To morph an
object in Smallealk, we will need a special method named become:. Finally, we'll redis-
patch the address message 1o self, which by this time refers o the customer and not

the ghost.

* This is the only ."u-ml[nﬁ-qu:iﬁ: pattern in the chapter.
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The method in its entirety looks like this:

doesNotUnderstand: aMessage

"I, a5 a ghost, do not support aMessage. I will materialize a

customer, morph myself to it, and then try aMessage again."”

| customer|

customer := "materialize the customer"

self become: customer.

~aMessage sendTo: self. "re-dispatch!"
Morte how the redispatch in the last line treats aMessage as an object. In Smallalk, every-
thing is an object, including messages. Even in other dialects, where the form of the
redisparch varies slightly, the essential eruth remains ingact: 2 message is an object too.

The overall partern is:

) destceUnderstand: aMsg
1 “maberialize cUsIOMer om i

wanll baoomes: cushoms,
ARG SenaTo; fpl,

LS

The happy outcome of all this activity is that where there was once a ghost chat
understood nothing, there now stands a customer thar understands address, name, as

fully and immediately handled by the customer.

Techmical note: It is only fair 1o say that this auractive design can have one drawback.
In some Smallealk implementations, where objects refer directly to other objects rather
than through a table of object pointers, become: can be much slower than the virmally
instantaneous method executions you are accustomed to. The degradation occurs
because the virtual machine must locate all references 1o the ghost and reset them 1w
point to the customer. You should therefore run some simple performance tests before
adopting this pattern.
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18.9 Dependency (aka broadcasting, model-view,
observing, publish-subscribe)

Remember that in a w-:"-cl:sigp'bcd user interface, views are dj.l!'ﬂ.‘tlj" aware of models,
but not conversely. All a model can do is broadcast update messages 1o its views (or
more generally, to its dependents), and the views then issue any specific inquiries o
the model that they deem appropriate. This lopsided communication recurs often
enough in object-oriented systems thar it warrants recognition as a design parern,

called the observer or dependency pattern. In the model-view situation thatr you are
most familiar with, views are the ofservers or dependents, and models are called subjecss.

Here is the basic scenario:

Rpa] iy
w1 szl
w2 — .
. . |
;imm- e . Evoadcast {or "chinge”) wpeian
“Sad i UpElG MOEIAZE 10 | eVl iy

In Chapter 11 we discussed a variety of ways to implement the dependency rela-
tionship. The model may have a concealed instance variable, or there may be a shared
dictionary somewhere that maintains the dependents of every model in the system.
The specific implementation is unimportant for this discussion. By whatever means,

the view receives an update message.
O Whar should update do?

Solution: It should query the model for the values it cares abour and then reflect these
Fﬂﬁilﬂl]" changu:l values inko 1ts display:. ruughlr :alung these lines:
update
"Obtain current data, then redisplay myself®
mode]l getValues "and process them".
self repaint.
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The resule is:
Mesdol Wigw
vl sl
b . |
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“Band & update MeEIags 1o gelvalune :
‘aach depandent view" ;
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model gefVaiss “and process ihem?,
e et

As we learned in Chapter 11, the essential benefit of this pattern is that the model
functions independently of the number and kind of views. Models then can represent
the conceptual objects of the problem without being burdened by user interface con-
siderations. Views, on the other hand, concentrate on rendering information. They
know their models and how to extract the informarion they care about from them.

Motice that “observer” is a misnomer for view or dependent because modern
views, in absorbing the additional responsibility of MVC controllers (Chapeer 11}, are
not just read-only objects. They respond o user inpurs and may ser values in their
models as well as get them. However intrusive this “observation” is, models remain
oblivious to their views, which is the most important theme of the patern.

In general, the dependency pattern is the right way for an object o norfy
unknown numbers and kinds of other objects (its dependents) abour changes in s
state. For example, a traffic light simulation mighe notify all vehicle objects that it has
changed to green. Or a palace vault might broadcast an alert to various security devices
and stations if its entry has been breached. In fact, the whole idea of event notificarion,
such as an operating system notifying windows that a mouse event has occurred, fits
into the scheme of this pareern. (Also, with all broadcasts it is reasonable to pass some
information along as an argument, such as the coordinates where the mouse event
occurred, or a severity indication like “this evenr is a dire emergency.”)

In the pattern’s sharpest form, the broadcast consists of an arbitrary cluster of mes-
sages, with different clusters triggered by different events, See page 120 for a discus-
sion of this form of the pattern.
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18.10 Solitaire (aka singleton)

A computer should hold no more than one instance of some kinds of objects. Exam-
ples include objects that manage resources such as windows, or memory, or time.

Another example, from distributed or client/server applications, is a broker object
which obrains objects from the server and keeps track of those it has already obrained.

The problem is to design the protocol for constructing and accessing an instance
of a class in a way thar minimizes the possibility of inadvertently constructing a second
instance. Here, for example, is an undesirable solution:

TheBroker := Broker new.

¥ 84

TheBroker getObjectWithld: '1234°.

For one thing, we have introduced a global variable TheBroker, and global vari-
ables are a5 a rule a bad idea. Global vanables present the temptation ufwriting.. else-
where in the application,

OnlyBroker := Broker new.
which creates a second broker, or just as disastrously,

TheBroker := Broker new.

which loses the first broker together with is knowledge of objects it has already

obrained from the server.
The selitaire partern eliminates the global variable and s risks:

Broker nstance 1
I h =
Srwelne il e
T rue: [Shens o= super now]. .F'Ii-' 1
Sarwinnce | . ;o sl peror: ‘Do nol use’ J

% dencles & class mathod or vanabia

O Whar should you write to obrain an object from the server?
Solution:
Broker instance getObjectWithld: "1234'.

Lazy initialization in the class method named instance assures us of the same instance
of Broker, whether this request is the first or a subsequent one. As an additional precau-
tion against accidentally creating brokers, note that the new method has been disabled.
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Typical client/server systems involve more than one class of objects. Because the
logic that marerializes each class of objects may differ, or different classes may require

different servers, it is usually appropriate to define a separate broker for each class.
Broker is then an abstract class with specific broker solitaires like CustomerBroker
and AccountBroker as subclasses.

Technical aside: When Broker has subclasses, a dass variable for theOne is nort as suit-
able as a Smallralk class fmstance variable. Each subclass inherits its own separare,
unshared copy of a superclasss class instance variable, in which the subclass’s separate
broker may reside. Class variables don't have this property. Instead, all subclasses share
a class variable defined by their superclass—not very helpful if you want each to have
its own separate broker.

18.11 Duet (aka pas de deux, double dispatch)

Those few occasions when a “function” just doesn't seem to be a method on a single
object, but rather oughr to be a “method” on two peer objects, can cast the whole
applicability of object-oriented programming in doubt. Our modern, object-centric
view of the world is too narrow for these situartions.

For example, is play a method in class Instrument thart takes a Musician as an argu-
ment? Or is it a method in class Musician that takes Instrument as an argument? Or is
it something else, an operation on a pair of objects? If the situation calls for an opera-
tion on a pair of objects, we use the duet pattern. The most interesting application of
this pattern occurs when Instrument and Musician both have subclasses, because play
then becomes an operation thar is polymorphic on both of its arguments. (Refer to the
commengary on multi-methods on page 170 for an example and discussion. )

A basic example of duets is arithmetic, where the asymmetric interpretation of
a + b (a receives the MEssage: b is “just” an argument) rattles Smallealk newcomers.
From our earliest functional schooling, we developed faith in the symmertry of the
operation a + b. We psychologically want addition to be an operation on two
objects—a multi-method—rather than a message 1o one of them. But Smallualk,
h:ing a “purc" uhjtct—uri:nt:d |=.ngu:|gc, canmnot ul:lligl.-.
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Omnly CLOS among commercial object-oriented languages supports genuine mula-
methods. In Smalltalk we can synthesize an arithmetic multi-method with this duet:

I ——m—
+ +
 sumFrominieger:
[T [+ aMomee 1
™ “Sinoe akumbaer mary be of & Bype 0o 1L 2 a float, ought o be ably 1o handie
CompBeaed bo e b uelirtend, Fm AATAhiT By, whaliend sy iy Be®
poeng i led hamy woery about s
"M STl S, ) 8
L e Froriengm . aniinger
............................................................................... L
"Dio tha nead work of adiding andneges io
. | i s el Aniedeg i
iredeed 2n ninge”

You can use + to add an integer and a floar in either order. Bur only one of them—
the Float—<can do the real work. If the other—ihe |ntr_gtr—is asked to do the juh. it
automatically sends a message 1o the Float, announcing thar it is an integer seeking
assistance from the Float to do the arithmetic.

This pattern is a "duet” because it makes the participants seem like peers. It is a
donble disparch or pas de descx because of the dramatic transfer of control and passing
of self as an argument to the other object.

For the programmer who implements the pattern, the important outcome is the
elimination of conditional ests. The integer does not check anything: it immediarely
and unconditionally sends the message to its argument, announcing that it is an inte-
ger in need of aid. As we've learned from studying polymorphism, one of the best ways
to simplify software maintenance is to write code without conditionals.

For the consumer programmer, the important outcome is conceptual simplifica-
tion: it doesn’t marter which of the two objects he sends the + message to. In effect, +
is, from his perspective, a non—object-oriented operation. It also doesn't matter what
types of objects participare in the operation. He can add any combinarion of Floar,
Integer, or Fraction without a second thought.

O Whart happens if the + message is merely used to add two integers together, racher
than the more complicared scenario of an inveger and a floar?

Selution: sumFromlInteger: still execures unconditionally, bur it is now senrt 1o an Inte-
ger, 5o the Integer class had better implement sumFromInteger: as well. Fortunately, this
is a reasonable expectation—an integer ought to be able to add another integer to iself.
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Although duets are a clean way to implement arithmetic, and VisualWorks and wo
a lesser extent VisualSmalltalk use them for arithmeric, IBM Smalltalk does not. For
speed, IBM Smallealk implements arithmetic directly in its vircual machine.

18.12 Lawyer (aka object handler)
Often, two kinds of objects work together, but neither should be complicated by

direct knowledge of the other. We have seen this situation in many-to-many relation-
ships (page 217), and we are now about to see it in one-to-one relationships.

Consider an icon object and the model object thar it stands for. In the spirit of
model-view separations it would be unseemly to give the model object knowledge of
a visual object like its iconic representation. Also, an icon is such a simple visual
object—roughly a bitmap—that we would not expect it to know how the user inter-
face happens to associate some model object with ir.

We wish to decouple the rwo objects, yet on the other hand we would like to keep
the model informed about the icon’s experiences. For example, if in a graphical edivor
the user drags an icon representing a graphical element to a different location, we
would expect the coordinates of the graphical element o change. Neither the icon nor
the graphical element alone has this responsibility. 50 we construct a third object,
called an object handler or lawyer, which knows both the icon and the graphical ele-
ment [Collins 1995],

The user interface then manipulates lawyers instead of icons. Through lawyers, the
user interface can communicare indirectly with either party a lawyer represents, be it
the icon or the underdying object. The pattern looks like this:

GraphicalEditor

“rmpthacs. thail resspond 1
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Lawyer
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of subject”
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Updating the coordinates of a graphical element is a relatively simple service of one
lawyer—the lawyer merely mediates berween the icon and the graphical element. This
lawyer is an example of the mediator partern [Gamma er al. 1995). Lawyers make espe-
cially good livings by talking to other lawyers; this is the relationship we examine next.

Consider icons again. The usual visual feedback that occurs as a result of dragging
one icon over another depends only on the types of the objects represented by the
icons. For example, the feedback will indicate thar you cannot drop a file icon onto a
caleulator wcon, but that you can dmp it onto 4 prnter icon. This has nuthins rl::a||:|.r
to do with the underlying objects; the user interface can compure the feedback from
the icons alone. But suppose a sophisticated user interface must provide more refined
feedback, such as an indication that you cannot drop a file icon onto a printer icon if
the printer object is off-line. This feedback depends on the state of the underlying
printer object and therefore cannort be determined solely from the icons,

0O Whar objects can make this determinarion?

Solution: We have ruled out the icon objects, since they are oblivious to the state of their
associated objects. But lawyer objects can make the determination because they know
about the icons (is the file icon over the printer icon?) as well as the underlying objects
(is the printer on-line?). Thus the file lawyer can negotiare with the printer lawyer 1o
determine the appropriate feedback. Here are the relationships and responsibilivies:

o
-
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Let’s step through the interactions. Suppaose the user has positioned the file icon
over the printer icon. Since the user interface manipulares lawyers rather than icons, it
asks the file lawyer whether it is droppable on the printer lawyer. To answer the ques-
tion, the file lawyer asks the printer lawyer whether it is a valid wrger, which the
printer lawyer in turn derermines by asking its subject the printer whether it is on-line.
Depending on the response, the user interface will display either a “cannor drop™ or
an “ok to drop” indication.

Without dtl:s'.uing the n:guliatiun to the two |:w].rcrs.,w|: would have had to write
and maintain messages flowing directly among all four principal parties—two icons
and rwo model objects. Lawyers simplify the interactions in direct manipulation user
interface designs just as observers or model-view separations simplify the interactions
in windowed user interface designs.

This pattern is not just about user interfaces. The essential lesson is that whenever
rwo objects are in one-to-one association with each other, the association becomes a
prospective object in its own right. This object—a lawyer—reifies the association. In
our example, the lawyer reifies the association between an icon and the object the icon
represents. The striking additional cwist in our example is chat two lawyers can go on
o negotiate with each other.

1843 Composite

The composite pattern is the workhorse of recursive relationships. Whether you are
nesting graphics or exploding a bill of marerials or processing a parse tree, the compos-
ite lets you apply some operation to every object or node in the structure.

Suppose you want to caleulate the cost of a complex product like a telescope. The
telescope consists of a basic scope and an eyepiece. In turn, the basic scope consists of
a tube and an objective lens, the lens has glass plus a sophisticated fluorite coating, ...
We can represent any such product with this recursive design:

i
%ﬁ
................ | I
Abom - Compound

products
=1 5]
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The picture shows us that a compound product consists of any number of other prod-
ucts, each of which could be either atomic or another compound product. Product is
an abstrace class. It cannot caleulare its cost and it has no instances. Atom is usually

also an abstract class; in our example, it has irreducible subclasses like FluoriteCoat-
ing, each of which can caleulare its own cost.

O Whar is the Smallaalk code for Compound>»>cost?

Solution: The instance variable products is a collection (say, an OrderedCollection),
s0 cost should simply iterate over cach product in the collection, ask it for its cost,
increment a total, and respond with the final roral. The entire partern is thus:

cou |
: ] [uu
Atem Compenind
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The compaosite pattern is simple and elegant. What helps account for its appeal s
how the polymorphic cost method acts in a different bur unimpeachably apt way for
each class.

The compaosite pattern is the basis for more specialized paterns, such as the next one,

1814 Visitor

The wvisitor pattern blends features from two of the preceding patterns, namely the
duet and the composite. The composite pattern is attractive as long as the action thar
must be performed at each node is a straightforward polymorphic message like cost
above. When the action shows signs of blossoming into a complex method involving
other far-reaching objects, the composite solution loses is appeal.

Problems having to do with language translation or program compilation fall into
this category. As a translator iterares through the nodes of a parse tree, it may require
knowledge abour a foreign language. This knowledge probably isn'tc encapsulated
within the parse tree. A node object from an English sentence knows its syntactic role
in English, but shouldn’t have to know about forcign words and syntax.
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Here is a sample problem. Bear with me while [ remind you about some grammar
lessons from school. The first thing a translation program does is the same thing you
did when you diagrammed sentences. It generates a parse tree.’ The sentence, “The

cat chases a dog,” resules in this parse tree:

FEEEE

We want 1o eventually produce the French sentence, “Le char poursuit un chien,”
from this tree. Each node in this tree is an object, but they are instances of several
classes. The leaf nodes along the bottom row are called Terminal nodes. Thus there are
three subclasses of Terminal, namely Article, Noun, and Verb. The non-leaf nodes are
NonTerminal nodes. The subclasses of NonTerminal are Sentence and MounPhrase.
The inheritance hierarchy for these classes looks enticingly like a composire:

A A

4 There are many ways 1o generate a passe tree, the simplest of which is known as recursive descent,
The mechanics of generating a parse tree by this or any other means will not concern us; we are
interested in what you can do afer you have the parse tree.
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But if we try to apply the composite pattern, recursively sending a translate mes-
sage to each node object, we face the drawbacks alluded o above. First, the tree is an
English parse tree, and its nodes shouldnt have vo know any French. (If they did, the
design could not be reused for translating English into, say, Chinese.) Second, trans-
lation is more subtle than just translating leaf nodes one by one. Translating the noun
car to chat affects the translation of the preceding article she—the gender and spelling
of char imply that the result should be f (and not fz or ["). Unforunartely by the rime
the translate message arrives at caf, the pml:cdins word has aln:ad}r been translated. To
wranslate correctly, we evidently must involve the NounPhrase class, and if we insist on
using the composite pattern we will have to add complex, French-specific logic to s
translate methed.

U How can we decouple these French-specific complications from the English-based

node classes?

Sofurion: Invent a new class that reifies the translate method. That is, instead of writ-
ing a complex, French-specific translate method on each node, define a class called
Translator. An instance of Translator #fsits cach node. Upon each visit, it is asked 1o
perform some operation, which is why the pactern is called a sisitor. It looks like this:

Hodg: h Transiaice
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The burden of translation has been lifted from the humble node and placed on the
back of the able-bodied visitor. Translator will have an instance variable for storing a
language-specific translation dictionary. The complex translate method has been
replaced by the visitBy: method, which merely disparches a message back to a transla-
tor object, passing self (the node) as an argument. The translator object can then do
whatever it wants with the node. Any complex logic, such as translating the gender
and article of a noun phrase, resides in the translator instead of the nodes of the parse
tree. Note the similarity to a duet: the message to the translator announces the type of
object being passed (translateNounPhrase: or translateVerb:), just as our duet did
(sumFromInteger:).

This pawern also makes other translator classes feasible (EnglishToFrench,
EnglishToChinese...). The English parse tree doesnt change ar all; to rranslare o
another target language, the parse tree’s nodes are simply visited by a different translator.
The visitor pattern neatly factors behavior into classes for which the behavior is most
suitable. By not cluttering the parse tree with extraneous information, it is easier to
reuse for other language wranslations. The visitor patrern is a firting finale to this chap-
ter because it extends two fundamental patterns—the composite and duer—and illus-
trates again the value of reification.

1815 Conclusion

Since there are infinitely many ways 1o group objects or classes, it's not constructive o

call every grouping a partern. A grouping deserves to be called a partern only if doing

so 15 useful for dﬁism:r:. As for what constitutes “usefulness,” here are some informal

criteria:

* The grouping is based on metaphor(s) or other recognizable ideas. This, rogether
with the next criverion, helps designers remember the partern.

* The grouping has an evocative, memorable name. Among object-oriented design-
ers, pattern names are a lingua franca for quickly exchanging ideas about how o
solve a problem, or understanding how a piece of software has been structured.

* The grouping resembles a micro-architecrure. In other words it is not an ad hoc
assemblage of objects, bur an assemblage that conveys a coherent sense of flunction,
structure, and aesthetics.

Once you know a few design patterns, you will start to recognize opportunities for
applying them. Ics like a chess player who studies openings or a guitarist who learns a
few chords. Sooner or later they are likely to have an opportunity to use them.
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Here is a summary of the patterns we've studied:

Applicability Partern Sample problems

Big object and small objects  Smart conuainer History log, address book, ...
Heavy verbs Reification Converters, Search, Command, ...
Interactive applications Command Undo/redo

Redundant code Factory method Ome class routinely uses another
Flat or relational dara Objects from records  Client/server materialization
Too many large objects Proxy and ghost Remote computation

One-way observation Dependency MVC, alerts, events, callbacks
Mo more than one instance Solitaire (singleron) Brokers

Functions instead of methods  Dwuet Multi-methods

One-to-one associations Lawyer State-based visual feedback
Nested objects Compaosite Drrawings, bill-of-marerials
Language vranslation Visitor Translators, code gencrators

You will find general trearments of all but smart containers, reification, objects
from records, duets, and lawyers in [Gamma et al. 1995). For more on smart contain-
ers, see [Coad et al. 1995]; for objects from records, see [Wolf and Liu 1995]; for duets
see [Ingalls 1986]; and for lawyers (object handlers) see [Collins 1995).

18.16 Commentary: history

The idea of a software partern can be traced as far back as the mid-1970s, when Adele
Goldberg and Alan Kay ar Xerox PARC realized thar novice programmers couldn't
solve hard problems, no marrter how wonderful the programming language. The nov-
ices could comprehend the language well enough, but they couldn’t be expected to
know the design techniques thar might be expressible in the language. This disconti-
nuity is analogous to a child who can read and write English, bu is too young to have
digested the wisdom of great literature. To provide some conceprual building blocks
above the raw language, Goldberg and Kay introduced design templates, which are a
forerunner of roday’s design paterns [Kay 1993].

Kent Beck and Ward Cunningham discussed a small, potent set of software pat-
terns in 1987 [Power 1988]. Bur the interest in patterns really burgeoned ar Bruce
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Anderson’s architecture handbook workshop at QOPSLA "91.° Articles on patterns
began to appear a year laver [Coad 1992; Eggenschwiler and Gamma 1992; Johnson
1992). The landmark catalog appeared at the end of 1994 [Gamma et al. 1995).
Ralph Johnson organized the first conference on the subject of patterns in software in
1994 [Coplien and Schmidr 1995].

Software patterns have become so fashionable that they run the risk of overexpo-
sure. Just as almost anything may be construed as a metaphor (page 146}, almost any-
thing may be construed as a pattern. Thus, many “patterns” are too narrow and arcane
to be of much use 1o the general computing public, and many articles that would be
interesting in their own right have been unnaturally cast into a partern format. Never-
theless, plenty of promising, unexplored territory remains for patterns in software.

Before programmers got excited abour software parterns, the architect Christopher
Alexander and his associates published a series of books, starting with [Alexander et al,
1977; Alexander 1979], on the use of patterns to build living spaces for people. Alex-
ander suggested that his catalog of 253 patterns could be a basis for everything from
laying out a community down to deciding the décor for a room. His paterns, like
good software patterns, are metaphoric (*City country fingers”), memorable (“Light
on two sides of every room”), and architectural (*Perimeter beams™). His work
inspired the early software-pattern investigators.

Alexander wanted ro go far beyond merely applying proven patterns to the act of
building. He wanted the resulting living space to have what he called, “the qualicy
without a name.” Patterns were just a means to this end. Unforunarely, this zen-like
quality admits no definition. By and large, people agree on some few dwellings and
communities that have the quality, and they agree thar most dwellings and communi-
ties don't. It is the same with sofoware. Programmers can generally agree that certain
software is masterfully designed, but they encounter such software rarely.

In the years following publication of Alexander’s books on parterns, he realized
thar patterns alone did not ensure thar the results would have “the quality withour a
name.” (He knew it as early as 1977, but the depth of the insufficiency became appar-
ent n:nl}' after diﬂppﬂinﬁns :xp:rimcnts.} R.I:H'ijitiI'IE the chess :n:]ug}r: knuwins and
applying chess patterns improves one’s game, but rarely does a beautiful chess game
happen. The key to attaining this quality in software (or any endeavor) has not been
discovered. For an appreciation of the depth of the problem as it pertains to rhetoric
and philosophy, read [Pirsig 1974], and for a discussion of how Alexander hopes to
solve it for architecture and what his ideas mean to software, see the series of articles
[Gabriel 1993-1994].

3 ﬁ?ﬁlﬂ 'ug]: annual conference on “Object-Oriented Programming, Systems, Languages, and



CHAPTER 19

Frameworks (one hearty example)

Object-oriented framewworks are as fashionable as parterns, and developers everywhere
try to build them. Like patterns, so many things are now called frameworks that the
meaning has gotten blurry, making it rough to appreciate their importance.

A framework is a general skeleton for a software application. More than one appli-
cation may be built around the same framework, but they will all be shaped by the
basic structures and mechanics of the framework, as though frogs of different appear-
ances and appetites could be shaped from the same frog skeleton. To build frogs you
use a frog framework; to build snakes you use a snake framework.

In technical terms, a framework is a body of code that is reusable across different
projects. An example I've already ralked about is the original MVC framework for user
interfaces. MVC consists of the abstract classes Model, View, and Controller and the
interactions among them. The most famous of these interactions are the broadeases
thar a model issues. Pracrically every application developer in Smallealk-80 reuses
MVC by inheriting from one or more of these three abstrace classes.

O the other hand, not every reusable library of casses qualifies as a framework.
For instance, no one calls a library of container classes a framework, nor does anyone
call a library of user interface widgets a framework. Whar's the difference? For one
thing, a framework like MVIC imposes a structure on an application, whereas a library
of containers or widgets doesnt.

Another difference is what Erich Gamma calls the Helfnoood Principle:' “Don’t
call us; we'll call you.” Programmers are accustomed to writing calls to the funcrions

in a library. (We say programmers call an APY, for application programming interface.)

' Erich says thar programmers at Xerox PARC coined this usage.

242
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The Hollywood Principle inverts this relationship: the programmer writes code that
the framework calls. The programmer will have o know in advance whar the frame-
work is going to call—his code must conform to the framework’s expectations. These
being object-oriented expectations, the framework will include some abstract classes
for which he builds subclasses and overrides subclassResponsibility {pure virtual)
methods, Using a framework always involves subclassing from abstract classes; using
an ordinary library of container or widger classes usually does not.

In ather words, a framework 5ptciﬁ:s mis‘sing elements. When you 5u|:r|:ﬂ]r these
elements, the framework makes them operate together as a working application. By
supplying different elements, you can create a different application. A framework pro-
vides all the machinery for an application except the application itself.

The best way o understand the idea of a framework is to study an example, We are
going 1o tour some highlights of a framework that provides the machinery for devel-
oping client/server applications. This framework simplifies construction of Smallwalk
applications that use non-object data from computers across the network. A frame-
work like this one accounts tor a substantial part of the overall efforr in developing a
client/server application; the cost and expertise needed o develop this support from
scratch exceeds the cost of developing the application’s model and view objects.

191 Problems

Any framework for supporting Smalltalk ac the client and non-object daca ac the server
must address some fundamental problems. You can think of these problems as the
basic use cases of dient/server campu[ing.

s Materializarion: Tmnsfnrming traditional, nun—ubj:cr data, u_m.'au}' in the form of

records in a file or rows in a relational darabase, 1o and from objects thar an object-
oriented language can process.

= ldenvity managemens: Ensuring thar ar most one version of an object resides ar the
client workstation. In other words, materialization should not produce a second
copy of an object if the object has marerialized once before.

* Searching: Looking for one or more objects that match some crieria.

* Updaring: Changing the state of objects ar the client workstation and cascading
those changes back 1o the appropriate server. (The problem of crearing a new object

and saving it is similar.)
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This drawing summarizes the problems:

R

1
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Imagine now that a programmer has been handed a client/server framework, and

13 dn'r_luping an ap[:ﬂ ication for, say, bankers who warch over loans. We want to under-

stand what he must do abour each of the problems above. To understand whar follows,

you will need o know just a few facts abour relarional darabases:

* Data are stored in tables. The columns or fields of a table have names, such as
“LoanNumber,” *OutstandingAmount,” and “Collateral.” And cach row in a wable
contains related dara, such as a specific loan’s number, its outstanding amounr, and
Its orgination date.

* The standard language for manipulating relational data is SQL, the Strucinred Query
Language. All relational database systems support dymamic SQL; a dynamic SQL
statement must be reinterprered by the darabase every rime it is issued. Some darabase
systems also support a form of pre-compiled SQL., which, once compiled, is bound
to the database and can therefore execure faster than dynamic SQL. An example of
this kind of SQL is IBM's staife SQL for s DB2 F.;lmil}r of database systems. (You
won't need 1o know the details of the SQL language to understand this chaprer.)

19.2  Materialization

The heart of any dient/server application is marerialization—ithe act of producing
objects at the client workstation from some form of flat, non—object-oriented data ar
the server.

Wihar the framework does. The framework uses the oljects from records pattern
{page 220} 1o convert flat data (records) to and from objects. An abstract class named
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BusinessObject represents the objects produced by the pattern, and another abstract
class named Broker encapsulates the algorithms for sending and receiving records 1o
and from the server.

The design of a broker depends on the overall client/server architecture. One bro-
ker can issue dynamic or static SQL calls to the server; another can use a communica-
ton protocol like APPC or TCP/IP o issue calls wo procedures or programs chat
execute at the server to process the dara. In other words, some brokers are SQL brokers
and others are transaction brokers. Because the private behavior of these brokers differs,
the framework has different abstract classes for them. (See the commentary on
page 254 for more on broker varieties.)

Let’s assume that the application designer decides to use the class of brokers that
supports static SQL. The name for this abstracr class is SQLBroker. This class collab-
orates with another abstract class called DBPackage, which houses the package of
static SQL statements that gets bound ro the database.,

The framework must know that a specific combination of broker, package, and
class of business objects works together—it won't do for a LoanBroker to try to mare-
rialize 2 Customer object, for example—so it declares subclassResponsibility methods
named Broker>>objectClass and Broker>>package that link these classes.

Whar the programmer does. He builds concrete subclasses of the abstracr classes, say
LoanBroker, LoanPackage, and Loan, and links the classes with these methods in
LoanBroker:

objectClass
"Answer the class of business objects I broker®
“Loan
and:
package

“Answer the the package of SQL statements [ need”
“LoanPackage instance

The framework then ensures thar these classes will work together correctly to mareri-
alize loan objects.

O Explain the function of the instance message in the method above.

Solurion: There should be only one instance of LoanPackage at the workstation. Pack-
ages are therefore solitaires (page 230) and instance is the (conventional) name of the

class method that returns the unique instance of LoanPackage.
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Here are highlights of the classes involved in materialization:

| BusinessObject !' SOL Broker DB2Package
| 1

. :

| chpciClass Sentancy

| ’

"Dl ks ol SOL
for ipang”

You might recognize the methods objectClass and package as examples of the factory
method pattern (page 219). The factory method is the bread-and-butter pattern of
framework building.

19.3 Managing object identity

A built-in peril of client/server systems is the materialization of two separate objects
that represent the same business objecr. This circumstance exposes the user to the risk
of independently changing both copies, which would be a serious breach of object
identity. (Remember the discussion of object idenrity, beginning on page 73.)

How could such a thing happen? Suppose a loan object materializes as a result of
searching for all loans with more than $50,000 outstanding. Imagine that some time
later a second search for all loans to some tycoon materializes the samre loan. Unless the
application was designed carefully, two loan objects ar the client workstation now rep-
resent the same loan. To complete the misadventure, suppose the banker updares the
wording of the collateral (... log cabin, running water, screened-in porch...”) in one
and extends the payment terms in the other. Now neither loan object has the data the
banker intended, and no marter which loan{(s) are commired back to the server, con-
fusion results.

Whar nﬁrﬁﬂmrumriﬂ’pﬁ A Broker contains a dictionary of all the objects it has mate-
rialized. Each entry in the dictionary has for its key a unique descripror for the object
and for its value the object itself. Thus if 100,000 loans are stored in the server
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database, and the LoanBroker has marterialized 29 of them, 29 entries will be in the
LoanBroker’s dictionary. Each of them consists of a key—probably the loan's loan
number—and a value that is the loan object irself.

If the banker requests another loan object, the framework checks whether the
loan’s loan number is one of the 29 keys already in the dictionary. I so, it must net
materialize another copy, for that would produce the unpleasant scenario above.

To make all this work, the broker evidently needs to know whart o use as a key for
its business objects. Therefore the BusinessObject class has a subclassResponsibility
method called identityKey. The broker uses this method o manage the entries in irs
dictionary, and in particular to determine whether a business object is already in the
dictionary.

Whar the programmer does. He writes a method LoanssidentityKey which simply
refurns tl'l: |u:|n"£ ]Dﬁ.‘n I'Iu.'l'ﬂb:r. ..I.-.I'I.l.' hmﬂlk dﬂfﬁ I'J'I.'E nest.

Whar else the framework does. The other side of the coin is cleaning up: when should
the framework resove entries from the broker’s dictionary of materialized objects? The
Ffﬂ.m:“'ﬂl'k f‘:l]'ﬁ: .'E.H'"ﬂl'd T Igl'lﬂ-l'ﬂ' rtmm'al I:H.‘E:II.ISE' aFﬂ:r PI'D]EI'IEEd usc, d bl’ﬂl:f[l!i- diE-
tionary of objects may grow so large as to overrun the workstation’s memory. The chal-
lenge is for the framework to recognize when a business object is no longer needed by
the application; that is, when no other business objects or views in the application
refer to the object. At thar moment the object can safely be removed from its broker's
dictionary.

This challenge sounds suspiciously like a garbage collection problem {(page 187).
But not quire, for we have an additional, circular twist: the Smallalk garbage collecror
won't recognize the object as garbage until the broker’s dictionary releases irs reference
to it; on the other hand, the dictionary dares not release the reference uniil it knows
thar the object is garbage.

Fortunately, the latest major Smalltalk releases extend memory management with
a fearure called sweak references. A weak reference to an object is a reference that doesn’t
matter to the garbage collector. Ordinary references are strong references; these are the
references that the garbage collector uses to know that an object is stll needed.

The idea is to design brokers 1o use weak references instead of strong ones so thar
the brokers don't stand in the way of the garbage collecror. For this a broker must use
a special dictionary known as a WeakDictionary—this and other collection classes
whose names are prefixed by “weak”™ are the only kinds of objects that can refer weakly
to other objects. The garbage collector doesn't care if a weak dictionary has a reference
to an object; after all, it's not a strong reference but a weak one.

In the example above, suppose the weak dictionary has its 29 entries, each consist-
ing of a loan number and the corresponding loan object, when the user decides 1o
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close all views that are open on one of the loans, There are now no strong references
to this loan object, but the one weak reference from the weak dictionary remains.
Weak references don't stop the garbage collector; it considers the object to be garbage,
reclaims its memory, and finally removes its reference from the weak dictionary. We
have achieved the desired effect: by using the WeakDictionary instead of an ordinary
Dia.ia.nu‘_r. the broker automatically releases an object once no application objects
refer 1o it.

Wihart else the programmer does. Mothing more than the identityKey method he has
already written, since all the logic of weak references in the LoanBroker will be inher-
ited from Broker.

Here are the highlights of identity management:

BusirserrObject SOLBrolonr
> & widk dctionary”
ity ey “Tllaruaga adgrdry of
business obpsch®
Lioan LoanBnoker
idandity ey

19.4 Searching (filtering)

Searching for things is a basic human activity. Sometimes we know exactly whart we are
IEH]l:’.iI'IE for and we just want to gr:l:r it (the loan with loan number 334455), and
sometimes we want to look ar a collection of things (all loans with more than $50,000
outstanding).

! This problem has solutions other than weak references, but none are as sarisfying. They all involve
kecping track of references o business objects, which amounits 1o replicating the work of a
collecton, A Ces verson of this framework, lacking garbage collection, hence also weak nces,
would have no choice but 1o tackle this sizable and delicae job,
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Whar the framework does. Lev's begin with the first case, where the user or application
knows a key that identifies the desired object. The Broker provides a conerete method
with a name like objectWithKey:, which takes the key as an argument and returns the
business object having thar key.

Whar the programmer does. He does not override objectWithKey: in his broker sub-
classes because the code can be written once with complere generality in Broker. On
the other hand, he will find many occasions for irveking this method.

For example, suppose every loan object contains a customer number. That is, a
loan object contains the key identifying the customer that ook out the loan. While
examining a loan, the user may want 1o also examine the customer. So the user clicks
some button, and the programmers code responds to the click by sending the
objectWithKey: message, carrying the customer’s key as an argument to the Custom-
erBroker, which responds with the customer.

Or the programmer may have designed proxies for customer objects (page 224 i),
and imbued the proxies with gerters thar supply only enough informarion to display
them in a list widger. By and by the user wants to see the full customer object behind
one of them; this proxy then sends the objectWithKey: message 1o the Customer-
B.I'Dll:l". Er.l.ﬂ'ﬂ: tl'l: proxy kI'ID"l'I'E tl'l:‘ CLISDOMmEr numbﬂ FDI tl'l: Customer it Eml'l'l:ll Fﬂn |'1'I'E
message carries this key as its argument.

Here are the highlights of these two scenarios for grabbing full customer objects:
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The moral of chis story is that frameworks not only demand thar the programmer
override subclassResponsibility methods, bur they also make available concrere meth-
ods that the programmer will want to invoke. Notice that the programmer doesn’t
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need 1o examine any tricky code such a method may contain; he trusts that the frame-
work got it right. Another way to say this, using some jargon, is that frameworks are
characrerized largely by wbite-box reuse, bur they also provide some black-box rense.
(See page 253 for more on these terms.)

Whar elee the framework does. The other kind of search sometimes goes by the name filter:
the framework acceprs a description from the user and filters the server for all the objects
that match the description. This is an interesting problem for the framework designer
because it is an opportunity o intreduce two classes of objects that are not initially obvi-
ous. (Remember thar such discoveries are known as reification. See page 216.) The first
is an abstract class named Search; this class encapsulates the descriptions of the objects
being sought. The second is BusinessObjectList, which is whar a search returns.

Search objects solve a basic usability problem: after seeing the results of the search,
the user often wants to adjust the description of the objects in some small way and
search again. Because the framework retains the Search object, it is an casy marter for
the user to access the original deseription, modify it, and reissue the search.

A BusinessObjectList is as good as an OrderedCollection for populating list widgers
because it is designed o support the main methods of OrderedCollection—as far as list
widgets can tell, a BusinessObjectList and an OrderedCollection are polymorphic. Bur
BusinessObjectList also suppors behavior that solves a clienv/server performance prob-
lem: in practice, a search may return so many objects that either the time to move all the
dara from server to client is unacceprably long or the objects consume too much of the
client’s memory. The search object therefore asks the server to limit the number of
matching objects it reurns, say 1o the first 50 business objects, and then creates a Busi-
nessObjectList to hold these objects. IF the user wants o see the next 50, the Business-
ObjectList scrolls, which really means that it asks the search object to retrieve the next 50
matching business objects from the server. Thus a BusinessObjectList holds a limited
number of the objects that march the search description, but it is smart enough to replen-
ish itself with the others as needed. Because it is not the whole list but can access the
whaole list, we can call it a virenal fist that must mega-seroll to reach all its business objects.

Whar the programmer does. He builds concrete subclasses of Search such as Loan-
Search, and customizes LoanSearch to handle the search criteria that marter for loans.
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The highlights of filtering or searching are thus:
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Mote that a search object must collaborate with a broker 1o actually retrieve objects
from the server. Also note that a BusinessObjectList must know the search object that
produced its contents so that it can re-execute this search when it mega-scrolls.

19.5 Updating

An application that allows the user o update dara at the server must support two basic
scenarios:

1 The user makes changes and commits them,
2 The user makes changes, thinks better of them, and wants to discard them.

Whar the framework does. Because the user wants 1o be able to revert a business object to
its original state, the framework must retain the object’s original data somewhere. The
olifects from records pawern (page 220} thar we are using for maverialization provides stor-
age for both the original dara and the user’s changes. The pattern accommodates a Byte-
Array of data plus a cache of converted sub-objects. (The drawing on page 223 shows
one implementation, with both the byte array and cache stored in the record object.)
The ByteArray houses the original data and the cache houses current objects,
whether they are objects cached by conversions from the ByteArray or modifications w
these objects made by the user. Only when the user commits the changes in the cache
does the framework convert the cached objects 1o raw data in the ByreArray and send
the data back to the server. If the user instead discards the changes, the framework simply
empuies the cache, which effectively presents the original ByteArray as the current dara.
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Whar the programmer does. This is another example of black-box reuse. Assuming thar
the user can click buttons for commirtting or reverting, the programmer writes code that
responds o click events by invoking Loanssupdate or Loanssrevert, respectively.
These methods are actually inherited from BusinessObject, and so the framework does

the rest.
Here are the highlights of the design for updaring and reverting;

e =

o choklipdae .

i

ey

BusinossObjoct
Im
| iyl
- clckFevent = EF\
Loan

In keeping with the model-view or observer pattern (page 228), the view’s loan is rep-
resented here by an instance variable named model.

19.6 Summary

The programmer who uses a framework is in something of a straitjacker. He loses
some of programming’s traditional freedom of cheice. Because of the Hollywood Prin-
ciple, his first thought is not, “T'll begin by laying our some logic,” bur, “Where am |
compelled 1o begin?™ Since we are ralking about object-oriented programming, he
answers this question by looking for the framework’s abstract classes and their sub-
classResponsibility methods.

* The Hollywood Principle illustrates 3 programming wrend: application programmers are writing
more and more code that conforms 1o expectations or guidelines from elsewhere. Another example
of this wrend is the handlers you wrote in Chapeer 12 1o respond o events and callbacks, Yer another
is the hook methods thar are objecr-oriented counterpans of user exirs in carly mainframe systems
programs (see the aside on page 66). Since you are not obliged vo write handlers or hook methods,
theie represent a vanation on the Hollywood Prnciple in which you donit have 1o be there when the
call comes. On the other hand, subdlassResponsibility methods are obligatory—you had better be
there when the call comes or you will be in prouble,
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Object-oriented frameworks have other characteristics:

* A framework provides white-box rewse, as well as the more familiar black-box rense
you get from calling an AP or using a library of container classes. A framework user
must understand the abstract classes and whar is expected of their subclassRespon-
sibility methods, whereas a container user just calls encapsulated add: and remove:
methods. White-box reuse follows from the Hollywood Principle: the framework
will have expectations when it calls your code, and it is your job to look into the
framework far enough to understand whar those expecrations are. They may be as
straightforward as making sure you override a method named foobar, bur whartever
they are, you must understand them.

* Learning to use a framework takes effore. You can't do white-box reuse unril you
learn the abstract classes and their subclassResponsibility methods. Because the
EIJ-EI:IB:CT EIM Interact "I'I'itl'l onc annth:r. you El.'ﬂfla"}" I'I'-'I"l"':' o IE‘IIT.I. morc thﬂ.l’l onc
class before you begin writing your application. Black-box reuse, on the other hand,
usually accurs one class ar a time. You are likely to use a Set today and a SortedCal-

lection tomorrow; you don't have to understand interactions berween them.

* Developing a framework takes time. You can't know a framework is reusable uniil
you've used it on more than one project—thar’s the definition of reusability—so it
rakes ar least twice as long to build a framework as to deliver a projecr. A framework
gradually improves as it is refined on successive projects. The client/server frame-
work cutlined in this chaprer has evolved over several years from really crude begin-
nings, and it continues to improve, with no end in sight.

* Developing a framework is hard. If it is going to simplify the application program-
mer's job, it must do all the things he doesnt wane to do. For a client/server frame-
work, these things can include conversions berween darabases and objects,
communications and transaction management, event processing and window man-
agement, u:.:lhﬂil}'. and even p:rﬁ:rrm:mn: optimizations. Technical difficulities that
are not specifically part of the business problem are better left 1o a reusable frame-
work than agonized over by each application programmer.

For background on the conceprual and practical considerations in client/server
computing, sec [Orfali er al. 1994). The principles governing the client/server frame-
work touched upon in this chaprer are the subject of [Wolf and Liu 1995). The actual
framework is known as MFW [mdmfﬂffzdffﬂﬂﬁumrumrﬁ}. However, the ideas, names
of classes and methods, and algorithms here are simplified for clarity and do not coin-
cide licerally with their counterparts in MFW, nor does this chaprer cover the full

scope of the framework.
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Object-oriented frameworks can deal with any aspect of computing: Common-
Point consists of myriad related C++ frameworks for dealing with problems ranging
from graphics to document-editing to National Language Support to /O device driv-
ers [Lewis et al. 1995]. Accounes is a Smallealk framework for building business appli-
cations that maintain general ledger accounts, inventories, investment accounts, and
the like [Johnson 1995]). MacApp is a framework for preducing applications having
the Macintosh look and feel using cither C++ or Object Pascal [Schmucker 1986;
[Lewis er al. 1995]. And MVC is, as historians say abour certain landmarks, the oldest

continuously operating framework in the world.

19.7 Commentary: varieties of brokers

The number of kinds of brokers in the computing world is enormous. They are at the
heart of every distributed compurting archivecture.

Brokers that operate with server programs and exchange standard information
units—records, CORBA objects, Network OLE objects...—are known as transaction
brokers. Transaction brokers are compatible with relational databases: if the server dara
are relational, the server programs convert the data to and from standard informarion
units. Transaction brokers partition logic berween computing nodes; distribured
systems based on them therefore decouple clients from servers, which enhances a sys-
tems long-term flexibiliry.

From the point of view of a client application, a broker object functions much like
an object database: it retrieves objects, updares them, manages concurrent access to
them, and 50 on. If'fuu think of brokers and uhjn:t databases int:mh:ng:ably. then it
is not hard to imagine object darabases as an alternative approach o distribured
objects. Thus you should expect object darabases to compere with transaction brokers
for dominance in client/server and distributed object compuring,

Despite the benefirs of transaction brokers, SQL brokers are more popular. They
can produce working applications quickly because they don't require additional pro-
grams 1o be written in a foreign language ax the server. On the other hand, they require
a relational database at the server, and they couple the client tightly to the structure of
the relational tables—uthe antithesis of the spirit of encapsulation. In the long run they
will remain useful for proofs-of-concept and prototypes, but transaction brokers will
displace them lor extensible, high-performance applications.
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19.8 Commentary: buying outdoes inheriting (sometimes)

Frameworks prove that there is an essential niche in the world for inheritance and
white-box reuse. Moreover, we are all conditioned to savor the appeal of inheritance—
creating a specialized object by inheriting from some class that provides function clase
to what we need. Inheritance is one of the most touted techniques in object-oriented
programming and is so casy to do that we are liable to overdo it. Over nme, however,
good designs inherit less and buy more (Chapter 9). Thar is, we gradually realize ways
ro reduce white-box reuse in favor of black-box reuse.

Here is an example. A loan object’s data are different from a customer object’s, so
the fields in their underlying records, as well as their sizes, are decidedly unlike. Ir is
therefore t:mpr'mg to create two subclasses of class Record, nnmcl],r LoanRecord and
CustomerRecord, cach of which supports appropriate field-by-field accessors, such as
atCollateral and atCollateral Put: for a LoanRecord, and atMName and atNamePut: for
a CustomerRecord.

This straightforward design works, but is unattractive. First, it proliferates classes,
necessitating a separate record class for each class of business object. Second, the inher-
itance is not fundamentally behavioral; rather it is based on inert data atributes like
the loans collareral descriprion and the customer's name. Inreresting objects oughr 1o
be characterized more by behavior than dara. [n Fet it seems here that each subclass is
accompanied by an entire family of methods thar have nothing in common with the
rest. No methods are reused, shared, or overridden, and none are candidares for sub-
classResponsibility methods. The final and perhaps most alarming indication is char
these record classes form an inheritance hierarchy with no polymeorphism in sighe.

These indications encourage us to consider an alwernative, non—inheritance-based
solution. We consider then a single concrere Record class and design it o be config-
urable so thar its instances can serve cither a loan or a customer. Although the records
for loans and customers have disparate sizes and contents, we design them o be
b:h:\rlurall}' identical. Spn:iﬁcn“]r, their essential pul:r]jc selectors are at: and at:put:,
where the first keyword parameter is the name of a field, such as #Collateral or
#Name. In this way we rid the design of an entire hierarchy of record subclasses, trim-
ming countless methods as well as classes from the application. This inheritance-free
design agrees with the abjects from records partern (see the figure on page 223).
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Here are two other examples of this progression away from inheritance-based
designs:

* Pluggable views let programmers configure widgets instead of having ro creare sub-
classes of them (page 140).

* Early object-oriented exceprion-handling mechanisms laid our class hierarchies of
exceprions, even though the essential behavior of all exceprion objects is the same.
Hence recent exception schemes (including IBM Smallealk’s) use instance hierar-
chies of exceptions, This scheme nips in the bud a potential Aurry of class building.

Lest these arguments induce you to aveid inhentance at all costs, remember that
inheritance designs remain desirable as long as you find polymorphism in them. Thus
the shortcomings outlined above do not apply to the key abstract classes we visited in
this chapeer, such as BusinessObject and Broker. You will find lots of overridden
methods and polymarphic behavior (methods Brokers>objectClass and Business-
Object>>identityKey, for example) in the subclasses of these abstract classes, which
should reassure you that this inheritance-based design is entirely appropriate and
worthwhile.



CHAPTER 20

Metaclasses

We have now learned abour polymorphism, patterns, frameworks, and the rest of the
customary object-oriented topics. This bricf chaprer offers a respite from those main-
stream topics and a final excursion for readers who are curious abour just how far
Smallealk goes to celebrate its consistent view of objects. Along the way it answers a
simple bur perplexing question: “Where is method new?”™ It is possible wo program
competently in Smallealk for years without understanding the answer, but the answer
is an opportunity 1o discover the abstruse world of metaclasses.

201 Facts about metaclasses

We begin with a challenge: since a Smallwalk class is an object too, it must be an
instance of something. Whar? Each class is an instance of its own metaclass. If you

think of classes as factories, then you can think of metaclasses as the factones that produce

ordinary factories like String, Date, Stream, and Whale.
Metaclasses have two unusual characteristics:

1 Every class is the only instance of its meraclass. In other words, each metaclass has
exactly one instance, no more and no less, and that instance is an ordinary dass.

2  Moetaclasses have no names. This explains why you won't see them in any brows-
ers. How then do you see them in Smallualk? The same way you see the class of
any object in Smalltalk—by sending the object the message class and displaying
or inspecting the result. Thus, just as displaying 2.7182 class produces Flaar, dis-
playing Whale class produces the meraclass of Whale. Bur how would Smallealk
display this metaclass? After all, I have said that metaclasses have no names. The
answer is barely sarisfying: Smalltalk only displays Whale class. Thar is, Smallralk

257
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only parrots the oniginal message. Disappointing or not, this is how Smalltalk in-
forms us thar the result of 2 message is a metaclass.

O Predict the result of displaying each of the following expressions. If you are uncer-
tain, try the experiments.
‘melatonin® class
String class

Penguin new class class
Bird class
Bird class alllnstances size

Solution: Your answers should be Sering, String class, Penguin class, Bird class, and 1.

H:urinE come this far, you will mll'ura“j.r wonder, “Isn't 2 metaclass an :;:I;j:-ct too?
If 50, musn't it also be an instance of something?” The answer is indeed yes, a metaclass
is an object, and the something it is an instance of is a class whose name is Metaclass,
In effect, Metaclass is the factory that produces allf the metaclasses we have been ralk-
ing about. Metaclass then must be quite large.

O How many instances of Metaclass are there?

Solution: The instances of Metaclass are the metaclass objects, and we know there is
precisely one for each ordinary class. Therefore there are as many instances of Meta-
class as there are ordinary classes in Smallealk. In the version of VisualAge [ am now
using, that amounts to abour 2100 instances. You can count the metaclasses in your
own system by displaying Metaclass allInstances size.

Motice that Metaclass has a name. It is an ordinary class! Its instances just happen
to be these peculiar objects known as meraclasses.

20.2 Inheritance

O Display the result of each of these expressions.
Integer superclass
Penguin superclass
Penguin new class superclass
Penguin class superclass

Solution and discussion: The first vwo responses are dull: Numiber and Bird Bur the
resule of the last two messages is important news abourt the inheritance of metaclasses,
The responses, Bird and Bird class, vell us thar the superclass of Penguins metaclass is

Bird’s metaclass, Invent and experiment with other examples involving classes and the
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superclass message. Your experiments should confirm thar whenever A is a subdlass of
B, A’s metaclass is also a subclass of B's metaclass. More eloquently, imberitance of mera-
classes parallels inberitance of classes.! We mustn't forget this discovery, so let’s give it a
name, say, Rule P (for Parallel).

20.3 Method new

Since a class is an object, it has ordinary methods, just as other objects do. Ordinary
methods would be called instance methods, bur for classes we have been using a spe-
cial name for their methods, namely elass methods. Thus, “class method” is merely a
convenient label for referring to an instance method of the class's metaclass. It is easier
to talk abour “a class method for Whale”™ than “an instance method for Whale's merta-
class, Whale class.”*

O Of all the class methods you will ever need, new is the most important. Suppose
you write a class method new for Bird, and you don't write one for Penguin. What

method do you expect the message Penguin new to execure? Why?

Solurion: From our past experience, we expect the new method for class Bird 1o exe-
cute. Thars because we believe thar class methods are inherited. Bur now we have a
reason for this inheritance: a class method is really a metaclass instance method, which
like any instance method can be inherited from its superclass. Bur the superclass of
Penguin's metaclass is Bird’s metaclass (Rule P), so if Penguins metaclass has no new
method, it inherits the new method from Bird’s metaclass.

This logic is pretty satisfying. Class methods are inherited because of Rule X But
here’s the shocker. Suppose you don’t write any new methods in the Animal hierarchy
at all. What method do you expect the message Penguin new to execute? Everyone’s
first guess is a plausible one—the new class method in Object. Bur there is no such
method! Class Object has no new methed selector, either instance or class.

We will have to push a lirtle further 1o find the default new method in Smallealk.

' O, the supereless of the metackas is the metackass of the superclass,

* Similarly, since a dass is an object, it has a right 1o its own instance variables. These instance vari-
ables have a special name too: they are known as cles instiemoe pariables. Thus, “dass instance vari-
able” is the convenient label we use 1o refer 1o an ordinary instance variable of the meadass, We
needed class instance variables for dhe solitaire pattem on page 230,
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20.4 The full picture

We are going to assemble a schemaric diagram that shows the conceprual relationships
berween instances and their classes and classes and their superclasses. You have seen
the convention before, on page 17, but here it is again in a nucshell:

e, E

2 mstances of a class a subclass and superclass

The relationships berween ordinary instances, their classes, and superclasses look
like chis:

The parallel relationships for classes as objects, their classes, and superclasses look
like this:
s
Object class —
o

o
Bird! clags ————
o

Panguin
[o ]
D) class objects are shaded

Each metaclass has exacily one instance; these instances are classes and are shaded
to distinguish them from ordinary instances. From bottom to top they are Penguin,
Bird, Animal, and Object. Notice the appearance of a class named Class that conve-
niently contains all the class objects. The picture shows that every class is a Class,
which is a reassuring but unremarkable fact.*

* You encountered the class named Class in another context, while solving the exercise on object
memory Liyours on page 195,
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Finally, the metaclasses are objects in their own right, and they all reside in a class
named Metaclass. You can think of the metaclass objects depicred from botrom to op
as Penguin class, Bird class, Animal class, and Object class.

= Wotaciass—

O O 0 0O

O motaclass objects are sinped

And here is the resul of assembling all these schemartics into a whole:

) an ondinary instance
O aciass as an instance (the only instancs of its metaciads)
O metacass &5 an inatancs

One of the side effects of this diagramming technique is that if all 2100 or so classes
in VisualAge were represented in one diagram, each dass would appear twice, once as
a rectangle to indicate its subclass/superclass relationships and once as a shaded circle
to indicate whar it is an instance of. Similarly, every metaclass would appear twice,
once as a rectangle and once as a striped circle.
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Motice that one additional class has appeared—Behavior. Behavior is a superclass
of both Class and Metaclass.® As its name and position in the hierarchy suggest, it
gathers all the behavior thar we would expect for class-like objects.

Behavior is in fact the answer to the question thar began this chaprer: the default
method new is an ingance method in Behavier. A glance ar the diagram shows thar
this is an excellent location for new. For if none of the animal metaclasses implements
a new method, inheritance up the metaclass hierarchy in the center of the diagram
shows that the ll:ml:up for the message Penguin new will mntu:l"}r arrive at Behavior,
where the default new will execure.

In addition to new, whar other instance methods could plausibly reside in Behav-
ior? Well, any method thar makes sense for all the class-like objects, By browsing class
Behavior you will find alluring methods like allSubclasses, allSuperclasses, instVar-
Mames, methodDictionary, as well as ones you've already used like new and all-
Instances.

20.5 Recapitulation

Smallwalk is pure. “Everything is an object,” and every object is an instance of some
class. Even an object like a class or metaclass is an instance of some class. The diagram
above records these instance-of relationships as circles within rectangles. Whether a
circle represents an ordinary instance, a class as an instance, or a mertaclass as an
instance, it is still an instance of some class, represented by the recrangle enclosing it

The diagram also records subclass relarionships as nested rectangles. Any class-like
nl:j:-c[. whether a class or 2 metaclass, alse occurs in the di:gram a5 3 n:-cmns]c. And s
superclass occurs as the immediarely surrounding rectangle.

The left and middle columns in the diagram illustrate Rule P, that metaclass inheric-
ance parallels class inheritance—thar the superclass of the meraclass is the metaclass of
the superclass. A ol message like Penguin new is really an instance message of the meta-
class. In the absence of any overriding implementations of new, it executes the default
nstance method new found in dlass Behavior at the top of the metaclass hierarchy.

4 o 1B Smallialk and Visual Works have yet anadher das-—ClassDescription, which iz a subdass
of Behavior and a superclass of both Class and Metaclass, Its purpose is administrasive, and so it
would add noching o the present discussion.
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20.6 Exercises

It is a simple mater wo verify any relationship in the diagram by experimenting with
an appropriate message. For example, the diagram asserts thar Penguin’s metaclass is a
subclass of Bird's metaclass, To verify an inbericance relationship like this, use the
superclass message. Thus, you would display Penguin class superclass and expecrt a
result of Bird class.

Similarly, vo verify an imstance relationship, such as the diagram’s assertion char
Penguins metaclass is an instance of class Metaclass, use the dass message. Thus, you
would display Penguin class class and expect a result of Metaclass.

0 Conversely, the diagram can help predict the result of the messages elass or super-
class. Use the diagram to predict the result of displaying cach of the following mes-
sages. OF course you can also verify your answers by running the experiments:

Bird new class

Bird new class superclass
Bird class

Bird class superclass
Animal class superclass
Object class superclass
Bird class class

Animal class class

Object class class
Behavior class

0 The diagram is incomplete. A large Smalltalk image contains hundreds of thou-
sands of live objects instead of the 19 shown here. Where in the diagram would
cach of these objects, represented as plain, shaded, or striped circles, be?

* A whale instance

* A string instance

* Whale

- S{M

* Whales metaclass

= String’s metaclass

* Metaclass

* Metaclass’s metaclass

You can verify your answers by experimenting with the objects above, starting by
sending each of them the message class.



CHAPTER 21

Why developing software is
still hard

The whole job of sofrware development remains abour as hard as ever. Every aspect is
hard: making sense of requirements, designing good classes, building coherent user
interfaces, writing extensible code. Objects add an exciting flavor to the enterprise, but
object-oriented development efforts often don't achieve their goals, and many end up
as downrighe failures, Whar goes wrong?

211 Misconceptions

Object-oriented software development is not the bed of roses thar many expect. This
section challenges some of the popular misconceptions, and should adjust your expec-
rations 1o a realistic level.

Object-oriented development is easier to learn and do

Reality: The Smallealk language is casy to learn because it is so small. Bur the language
by itself doesn't do much. It is powerful only in conjunction with the hundreds of
foundation classes and thousands of supporting classes thar are part of roday’s Small-
talk products. You will have to learn many of these classes before you can write clean
Smallealk code. This takes time and pracrice.

It also takes time to become proficient in applying the ideas in this book—design-
ing with containers, polymorphism, patrerns, and so on. Everyone has the innare abil-
ity to understand and talk about objects, but not everyone will work long and hard

264
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enough with them to become a good designer. Look ar it this way: object-oriented
development increases our oolkit of techniques, which gives us more ways than ever
to make a mess. Withour the maturity that comes with experience, it is harder than
ever to pinpoint desirable solutions in this enlarged universe of possibilities.

Inexperienced programmers are better with objects

A popular misconceprion abour object-oriented programming, particularly Smallealk
programming, is that it is detrimental 1o have had conventional programming experi-
ence, because bad habits acquired from this experience will have to be unlearned. The
extreme form of this misconception is that it is better never to have programmed than
to have been corrupted by conventional programming languages. Thus, the argument
goes, an object-oriented project can succeed better with inexperienced programmers
than it would with experienced ones.

Reality: The evidence suggests otherwise. Programming experience is advantageous for
|:amin5 uhj:cr-uri:nutiu-n.] And projects that move ahead, meet their milestones,
and sarisfy users and managers, are staffed by knowledgeable programmers—the more
expert, the better. Expert programmers excel ar the whole infrastructure of software
development—connectivity, databases, versioning and configuration management,
testing, procedural logic, requirements gathering—all of which were essential o soft-
ware development before objects were popularized and none of which have been obso-
lesced by objects. And expert programmers learn objects faster, appreciate their
ramifications, and sense how to apply them to problems at hand.

Reality: An object-oniented project is no more likely vo succeed than any other project.
Our-of-touch leadership, misplaced optimism, complacency, the wrong tools, and all
the rest are just as likely to afflict an object-oriented project as any other. Successful
projects need business acumen coupled with technological knowhow, and you can
find these qualities in conventional projects as well as in object-oriented ones.

Object-oriented applications enjoy rewse
Reality: A project enjoys reuse if a coherent framework is in place. A framework’s
abstract classes help developers avoid redundancy. But frameworks are hard o build,

! See the sudy of several hundred students in [Lin et al, 1992],
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especially for the first problem that the framework is meant to address, Thus reuse
within one project is not automaric.

Reuse of objects across projects is also not automartic. Plug-comparible objects are
rare. Under the pressures of software development, it is hard enough to make an object
work well for the product it is designed for, let alone for one it isn't designed for. The
fellow who built the first fire didn't worry about building one in the rain until lacer.
The first one demanded all his atrention.

When reuse occurs across projects, it 15 com munl}' in the form of a framework that
was successful on another project. A good framework's abstract classes stand a chance
of being applicable to multiple projeces. Evenrually we will also succeed in assembling
corporate or industry libraries of concrete classes, bur only for problems thar we
understand thoroughly—old problems. New problems demand new solurions, for
which there is nothing yet to be reused. Meanwhile, your most reusable asset is your
design: code is less valuable than the thinking that went into its creation. Recast in the
vocabulary of this book, an organization’s real assets are the conceprual models of
objects and patterns that its people hold. Therefore, for some time yet, the organiza-
tion will be better off with the people than the code.

Performance depends on the language

Reality: Performance is popularly ascribed to the programming language: assembler
and C++ are fas; LISP and Smalltalk are slow. Bur the effect of programming lan-
guages on performance is smaller than the effect of design. A good Smallralk design is
faster than a bad C++ design, and vice versa, Diesign therefore matters more than the
language.

Be especially wary of the performance of distributed objects. These are typically
objects that are portable enough to operate in either a Smallralk or a C++ environ-
ment. We measured the performance of ane such object 1o be 70 rimes slower than its
native Smallaalk counterpart. Extreme generality is almost always as costly as it is
seducrive.

If ic's demo-able, its do-able

Reality: A demo is the tip of the iceberg. The hard, time-consuming work comes after,
and under the demo, in producing robust, fast distributed or client/server support.
Making objects persist across a network is tough. (See the border problem on page 267.)

Here's a rule of thumb: from the time the software operates fully, including access-
ing samples of actual dara in a local database, allow half again as much effort to deliver
the final product. In other words, a fully operational requirements release, which
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appears to a user as the final product, consumes only 40 percent of the effore. It is
important to get this message across 1o everyone who is waiting for the final product,
or else you stand the risk of disappointing your sponsors. What they can touch and see
doesn't change for most of the development cycle.

GUT builders make it easy

Reality: GUI builders alleviare tedium. They are a pleasurable addirion 1o our bag of

software tools, But they don't make model-view separations automatic and they divert
us from the profoundly challenging task—design. (Remember Chapter 13.)

“I design in Smallialk”

Reality: Smalltalk programming is unusually close to design, bur it is not the same as
design. If you are working at a blackboard, whiteboard, with CRC cards, or some-
where else away from your computer, you are clearly designing. Good design is often
a social activiry. Very often, hard design problems succumb when you try 1o explain
the difficulty to someone else, and some inconsequential remark triggers an idea chat
pays off.

Mevertheless, much of the time you spend in front of a Smalltalk system is honest
design time. Designing is weighing alternatives, including discovering them in the
first place and eventually rejecting all but one. This is what you are doing when you
investigate classes (remember thar today’s Smalltalks coneain thousands), read and
experiment with their methods, or create your own throwaway classes and methods.

Struggling over naming classes and selecrors, or wordsmithing comments, counts too,
Working in Smallralk can be a form of design, bur it is not the only form.

21.2 Where projects go awry: borders

Spectacular project overruns occur when development teams underestimare the diffi-
culty in connecting their applications o other eritical computing systems. These sys-
tems may be off-the-shelf database products or homegrown systems thar are de facto
standards for the business. Crossing the borders between the Smalltalk application and
each of these systems requires thoughrful design. Smallealk objects are on one side of
each border, and something quire different is on the other. Development teams rarely
invest encugh time or talent to resolve this mismarch.

The classic system border is the relational-to-object interface thar occurs in most
of tu-l;la}r".: client/server appli:nr'mns. The database server may be on a local LAN, but
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if it is at a remote or mainframe computer the number of conceivable techniques for
crossing the border multiplies considerably. Culling the solutions that cannor handle
the size or flux of traffic, or cost oo much to implement, or are difficulr to rest, takes
seasoned developers. Clean, efficient translations result from intimate familiarity with
both sides of the border.

The hurdles proliferate when other kinds of “servers™ enter the picture. The
requirements of projects ['ve worked on include borders with other corporate sys-
tems—ithe paymenis system, the g]ubal customer database, the workflow system, and
so on. These borders can be reacherous, for these reasons:

* The other system isn't working yer.

* The other system was never designed to have an interface with our new dient appli-
cation.

* The interface exists, but new programs will have to be written on the other system
to process our client’s requests.

* The system is written in another language, and so we must entrust the work to an
entirely different organizacion.

* The physical connection to the other system is unreliable.
* The cost of testing the border crossing skyrockets.

A small failure ar one of these system borders stops the application cold: this kind
of failure is more critical and costly than a bug in a user interface or model object.
Experienced project planners alloc more than half (60 percent—see page 266) of a
project’s resources to the border problem. Turnkey, black-box solutions rarely march
your Pmbll:m and are difficult to :d.-;p[. Workable solutions involve frameworks on
one side and perhaps foreign languages on the other.

System borders may be the most spectacular failure points, but all borders are
opportunities for missteps. Chaprer 13 concerns the treacherous human—compurer
border. That border dovetails with what is traditionally called requirements gathering,
which is the border berween the problem-domain expert and the analyst. lll-defined
requirements acquired at this border are at the heart of many disappointing projects.
But every human-to-human border in software development exacts some toll for the
inefficiency of handing off ideas.

The ultimate, fine-grained border is the public interface of a programming objecr.
Each object is supposed to have an understandable outside, consisting of its public
method selectors, so that pmp]: will know how to use it. Cictting these object borders
right is the programmer’s core obligation. The lesson of individual objects coincides
with the lesson of large-scale software development: borders, or interfaces, marer
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most. Peter Deutsch, one of the eminences from Smallealk’s heyday at Xerox PARC,
summarized it thus: “Interface design and funcrional factoring constitutes the key intel-
lectual content of software and is far more difficult o recreate than code”™ [Deutsch
1991].

21.3 Characteristics of successful projects

If we are going to cross our borders efficiently, we will have to understand them. The
first guideline is therefore readability.

Readabiliy
You sometimes encounter software in which, as soon as a bug appears and it becomes
necessary to peer into the code, you discover a fragile labyrinth of object-oriented spa-
El'n.'tti. You have no hnp-r ufﬁ::ins the hus. let alone :n:nding the software, without
introducing new errors. Working software isn't impressive unless it is also a joy to read:
it should hold no mysteries.

Readability plainly involves comments; style; names of methods, classes, and
instance variables; and so on. (See [Skublics et al. 1996].) Bur it includes broader con-
siderations, like window classes weighed down by too many methods, or complicated
behavior thar ought to have been reified, or code that could be re-factored into par-
terns or abstract classes, or.... Readability is almost synonymous with good design,
and is more of an art than a measurable commodiry.

Motivation to write clear code can come from unusual sources. One project, suf-
fering in the wake of client/server code left behind by some eager but inexperienced
framework developers, sponsored a contest for “The Method from Hell.” To win, you
had to find the most hopelessly incomprehensible method in the framework. As a by-
product of this friendly competition, developers thought twice before writing meth-
ods of their own that might be eligible for future honors.

Reading samples of code is like raking someones temperature: a project with
muddy code, like a person with a fever, cannot be healthy. The code is where all other
factors come together; if it is unreadable you have a problem somewhere. You may not
know immediately if the root of the problem is faulty analysis, crude design, or slip-
shod implementation, or even haphazard organizational structures or processes. Bur
you know you must begin the investigation.
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Names

Clear names are an essential element of readability: names of methods, names of
instance variables, names of classes. The first thing a Smallralk programmer does when
looking at a class is browse through the class’s method selecrors. Well-named selecrors
are signposts; poorly named ones confuse programmers and hinder understanding,
Bad names haunt a project forever; good names trumpet the software’s design.

Mames are especially significant in object-oriented software. The name someone
gives a class is supposed 1o clearly and immediately evoke the nature of that class o
everyone else—analysts, developers, testers. Effective names connote the right idea
and act as handles for conversations between developers. Here are some examples of
the consequences of names—a good, mediocre, and bad choice, respectively:

* Micknames for ideas help developers communicate. After deciding to use Skinny-
Customer for the name of a class of ghosts (page 226), we referred to instances as
“skinnies.” This nickname expedited countless rapid-fire conceprual discussions.”

* Precise names can be wo cumbersome for day-to-day thinking and conversation.
MutualFundAccount TelephoneExchangeRole may be precisely right, but it is a
mouthful that takes a while for the brain to process. Sometimes it is worth sacrific-
ing a litde precision for the sake of a simpler name and to trust the contexe of a
project to supplement everyones understanding,.

* At the other extreme, a name like SmartGuy is oo vague. Explanations of this
unfortunate name dragged on through weeks of meerings because it evoked dispar-
ate ideas in the minds of different people. Here, the choice of names impeded rather
than enhanced design. (In this project, the behavior of SmanGuy encompassed
ideas that could have been identified by several specific names, including TaskMon-
itor and WorkflowServer.)

Bad names waste time and money. We expend mental energy reconstructing
what they mean. If a project names the yellow-rumped warbler a “red-winged black-
bird,” then whenever someone says “red-winged blackbird™ we start to imagine a
chunky dark bird in the reeds instead of the tiny flitry bird overhead thar we are sup-
posed to imagine. Qur brains start down the wrong track, processing excess, irrele-
vant thoughrs.

' We rejected several aliernatives: SummaryCustomer {connotes m'll:l,‘El!'l.rlg and paraphrasing rather
than simple subscttingl; LiteCustomer (too trendy to stand the test of nme); DietCastomer (poini-
lessly humorousk; and SymopsisCustomer (difficult to repear quickly during a spirired design con-
VTSRO,
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Understanding the problem

Mothing is more disgraceful than paying expensive Smallealk programmers to produce
what they think an organization needs. If they don't understand the problem they've
been asked to solve, be it how bankers finance international trade or geneticists infer
the locations of genes on chromosomes, the project’s outlook is grim. The remedy,
whether you aall it requirements gathering or object-oriented analysis, is a sizable
investment of time and work with someone who does understand the problem. The
border berween developers and users must be crossed.

Understanding object-orientation
This is the obvious factor. Until you are comfortable with containers, abstract classes,
polymorphism, and all the rest, your designs are bound to be crude. And until you

have written a sizable body of Smallalk code, you can benefit from an experienced
Smallealk programmer who reviews your work and suggests ways of cleaning it up.

Leadership

Leaders may be managers, or team leaders, or programmers. The ritle marers less than
the qualities. Effective leaders understand the problem and have firsthand experience
with the power and limitations of their object-oriented tools. They also have political
savvy: they are amiliar enough with the surrounding organization o secure the sup-
port and resources the project needs. When any of these elements is missing, a project
founders. It acquires the wrong tools and frameworks ar the wrong times, and misap-
plies whatever it acquires. Something will work and delight the team or is customers,
bur no culture or discipline moves the effort toward an industrial-strength product. In
the saddest scenarios, programmers and designers run amok formulating grand
abstractions and trying to solve general problems. (If they knew the adage, “The devil
is in the details,” they would know that there are plenty of challenges in basic, concrete
problems, and that until they overcome those challenges, any atempt 1o solve general
problems is futile.)

I once heard it suggested that software development proceeds like the universe
unfolding from the Big Bang, Whar happens ar a key moment can shape the whole
course of the future. The hiring of an unusual developer or manager, an insinuation
abourt an architecture or tool, the faveful throwaway remark—any of these can lead even-
wally to products with entirely different looks and feels, performance, or durability.
Each decision influences the next decision, and the next, and the next. Software devel-
opment is a chaotic phenomenon like the weather, whose outcome in New York can
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pivot on how a butterfly happened to lap its wings one month earier in Beijing, Mo one

is prescient enough to forecast the precise shape of the future. We only hope that our
leaders’ hunches—their llapping wings—will save us from the costliest blunders.

Involving prospective wsers, contivisnously

A parable: A partnership was formed late in the 1980s to build a 14-mile road. The
partners planned to reap a profit by charging motorists $1.75 for driving on it. The
road would serve a high-income area with a rapidly growing population. In 1995 the
road opened, toll booths and all. But the partership landed immediarely in financial
trouble because few motorists were willing to pay $1.75 for the privilege of using the
road. It rurms ourt that no one ever asked any mortorists how much such a road would
be worth to them.”

Had this been a software project, the developers might have surveyed prospecrive
users before the project began, and several more times while construction proceeded.
As often as practical, the developers would even show the users what they hoped 1w
deliver. This is the best way to prevent unwelcome surprises ar the end of the project.
The developers might even have decided that the project wasn't worth doing.

Hurmilivy

Unless you've done it before, whether it's delivering industrial-strength software or
running a marathon, it's going to hurt more than you think. Make the first milestone
modest. You will learn object-oriented design and programming, how to make objects
persist in a database across a netweork, and how to tune the application so thae it per-
forms acceptably.

21.4 An optimistic conclusion

You know by now thar the overall difficulry of sofrware development has not changed
much from the days before objects. Design, leadership, technology, and so on were
important then wo. Producing high-quality software has always been difficult, and
always will be difficult. Better tools and technologies help, but mostly to simplify the
tasks that we have come to understand well enough o build tools for. The hard work
is understanding new kinds of problems and designing solutions for them. No matter
how good our rools ger, the next generation of problems will tax our ingenuiry.

* You can find this sory documented in the Wislvingron Pur, December 26, 1995,
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Objects present the opportunity for creating elegant software solutions by apply-
ing polymorphism and patterns and frameworks and the like. But amid the hoopla
over these buzzwords we should not overlook the underlying benefit of objects. It is
what we began with (page 7): objects equip programmers with the same cognitive
tools, the same mental processes and metaphors, which the rest of the human popula-
tion enjoys. Objects therefore reduce the cost of ranslating ideas from one mind o
another. They reduce the occasions for misunderstanding throughour the software
enterprise, from requirements mﬂl-_ﬁi.t thmugh hnal 1

We don’t know how 1o quantify the price of these misunderstandings, or the sav-
mg: from preventing them. Mmund:mu.mlmgs are not as measurable as methodolo-
gies, tools, and schedules, or method size, numbers of abstract classes, dcp:ha of
inheritance hierarchies, or numbers of patterns. We therefore scarcely appreciate the
essential economic value of objects: they reduce misunderstandings, so that we can
deliver betrer software.



APPENDIX

Some differences between dialects

The table below outlines some of the differences among major Smallalk dialecrs. Tt is
neither detailed nor complete and therefore is not meant for the faine of heart. But for
readers with an investigative bent it hints ar discrepancies thar are likely to arise berween
this book, written for IBM Smallualk, and other dialects. It also points to a few areas not
discussed in this book where the dialects are based on fundamentally different precepts.
MNore thar ParcPlace-Digiralk is working ro converge the VisualSmallralk and Visual-
Works products into one offering, which will reconcile the differences between the last

rwo columns in the table,

VisualAge Visual Smallcalk VisualWorks
(IBM Smallealk) (SmallealksV) (Smallealk-80)
Image namie . R N
{defauly) i vimage (Macintosh) visual.im
Execute Do It oo it
i Show It iAK it
Display pri
Aanscript’ EcTranscript TextWindow TextCallector
Glhobal variables el b Prompas you on firss Promipes vou on firs
{use sparingly) cxplicitly declared ANMCTAPH T WS¢ DN ATCCTTT Wb LSS O
‘ Yes—literally instance . .
lass imseance . . Yes—lirerally instance
varisbles Yei ﬂmHn[ “:E::Il:ril“"d::r} wariables of the classs class
. . anObject perform: aMsg
D"""“'“ﬁ;'“ aMsgsendTo: anObject~ aMsgperform selectorwithArguments:
¥ abvisg argumenis
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Vi Visual Smalltalk Visual Works

(IBM Smallealk) (Smallealk/V) (Smallealk-80)
Pure virmual {abseracy, . .
feferrod) method mibclassResponsibility  implementedBySubclass  subsclassResponsibiliny
Opening a text h‘ﬂﬁmrm TexaWindow new &wlﬂrﬂ
windeow whiowe: world” openOn: "Hello, world WE {Text
Collection hierarchy
i sul i Mo Mo Mo
Finalization and - Yes {absent in Ya
wizak references e older versions)
Look and feel gow-
erned by platforms Yes Yes Mo
window manager
Liveral surimgs may
be modificd. e Yes b
Literal arrays may
be lified Mo Yies Ve
Block remporary
variables [Ixl ... Y o Yes
Pool dictionary class EsPoolDictionary Dictionary Dictionary
Subdlasses inhenit
pool dictionaries . No b
Smalllnteger range 3 L] o
(on 32-bit latforms) =20 290 2% p 2%} -2¥ 2P
Broadcaster AbtObservableObjea * EventManager” Model ©
Exceprions Imstance hicrarchy Class hicrachy Instance hicrarcy

¥ Also, the same protocol, but less efficient and bess encapsulated, is available for any Object. A third
protoced is the craditional one using the class variable Dependents in Object,

B Also, the same protocol, but less efficient and less encapsulated, is available for any Object. Older ver-
s supported the iradinonal protocol using the cliss vanable Dependents in Object.

* This class suppors the traditional (original MVC) protocol. Abso, the same protocol, bt bess efficient
and using the class variable Dependents, is available for any Object. ParcPlace-Diigiralk intends 1o add
EventManager broadcasting, a5 in VisualSmalleall
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