

ffirs.indd viffirs.indd vi 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

Beginning

Microsoft® Visual Basic® 2008

Acknowledgments ...xi
Introduction ...xxvii
Chapter 1: Welcome to Visual Basic 2008 .. 1
Chapter 2: The Microsoft .NET Framework .. 25
Chapter 3: Writing Software ... 37
Chapter 4: Controlling the Flow .. 87
Chapter 5: Working with Data Structures ... 133
Chapter 6: Extensible Application Markup Language (XAML) 185
Chapter 7: Building Windows Applications .. 211
Chapter 8: Displaying Dialog Boxes .. 257
Chapter 9: Creating Menus .. 301
Chapter 10: Debugging and Error Handling ... 325
Chapter 11: Building Objects ... 363
Chapter 12: Advanced Object-Oriented Techniques 403
Chapter 13: Building Class Libraries ... 439
Chapter 14: Creating Windows Forms User Controls 457
Chapter 15: Programming Custom Graphics ... 485
Chapter 16: Accessing Databases.. 535
Chapter 17: Database Programming with SQL Server and ADO.NET 555
Chapter 18: ASP.NET ... 617
Chapter 19: Web Projects .. 653
Chapter 20: Visual Basic 2008 and XML .. 677
Chapter 21: Distributed Computing with Windows

Communication Foundation ... 717
Chapter 22: Building a Sequential Workflow Using the Windows

Workflow Foundation .. 737
Chapter 23: Building Mobile Applications ... 755
Chapter 24: Deploying Your Application .. 775
Chapter 25: Where to Now? ... 793

(Continued)

ffirs.indd iffirs.indd i 4/2/08 5:13:16 PM4/2/08 5:13:16 PM

Appendix A: Exercise Solutions .. 797
Appendix B: Using the Microsoft Solutions Framework 827
Appendix C: An Introduction to Code Security and SSL 835
Appendix D: An Introduction to Windows CardSpace 841
Appendix E: .NET Framework Differences .. 849
Index .. 853

ffirs.indd iiffirs.indd ii 4/2/08 5:13:17 PM4/2/08 5:13:17 PM

Beginning

Microsoft® Visual Basic® 2008

Thearon Willis
and

Bryan Newsome

Wiley Publishing, Inc.

ffirs.indd iiiffirs.indd iii 4/2/08 5:13:17 PM4/2/08 5:13:17 PM

Beginning Microsoft® Visual Basic® 2008
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-19134-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Willis, Thearon.
 Beginning Microsoft Visual basic 2008 / Thearon Willis and Bryan Newsome.
 p. cm.
 Includes index.
 ISBN 978-0-470-19134-7 (paper/website)
 1. Microsoft Visual BASIC 2. BASIC (Computer program language)
 I. Newsome, Bryan, 1971- II. Title.
 QA76.73.B3W45556 2008
 005.2'762—dc22

2008004982

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all war-
ranties, including without limitation warranties of fitness for a particular purpose. No warranty may be cre-
ated or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make. Further, readers
should be aware that Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Microsoft and Visual
Basic are registered trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

ffirs.indd ivffirs.indd iv 4/2/08 5:13:17 PM4/2/08 5:13:17 PM

www.wiley.com
www.wiley.com

 For my daughter, Stephanie, my most precious gift from God.
 For Wendy, my love and friend in Christ.

— Thearon

 To Jennifer and Katelyn.
— Love, Bryan

ffirs.indd vffirs.indd v 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

ffirs.indd viffirs.indd vi 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

 About the Authors
 Thearon Willis currently works as a senior developer and builds Windows applications and add - ins for
Microsoft Office products using Microsoft Visual Basic 2008. Over the years, Thearon has worked on a
variety of systems from mainframe to client - server development.

 Bryan Newsome works as a director for a custom software solutions company specializing in Microsoft
applications. Since starting his career building Visual Basic 5 solutions, he has embraced each new
version Visual Basic and now creates all new solutions leveraging the .NET platform and VB.NET.
He provides clients with solutions and mentoring on leading - edge Microsoft technologies. For VB.NET,
Bryan is a Microsoft Certified Application Developer.

ffirs.indd viiffirs.indd vii 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

ffirs.indd viiiffirs.indd viii 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

Acquisitions Editor
Katie Mohr

Development Editors
Sara Shlaer
Sydney Jones

Technical Editor
Mark Lavoie

Production Editor
Kathryn Duggan

Copy Editor
Travis Henderson

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jeremy Bagai, Word One New York Editing &
Proofreading

Indexer
Johnna VanHoose Dinse

Credits

ffirs.indd ixffirs.indd ix 4/2/08 5:13:18 PM4/2/08 5:13:18 PM

ffirs.indd xffirs.indd x 4/2/08 5:13:19 PM4/2/08 5:13:19 PM

 Acknowledgments

 First and foremost I want to thank God for giving me the wisdom and knowledge to share with others
and for the many talents that he has blessed me with. I would also like to thank Katie Mohr for giving
me the opportunity to write this book and Sara Shlaer and Sydney Jones for their hard work in editing.
Also thanks to all the other people at Wiley who work so hard to bring this book to market. I ’ d be
remiss if I didn ’ t thank my good friend and co - author Bryan Newsome; thanks for your hard work
and dedication.

— Thearon

 So many people put so much effort into publishing this work. Thank you all; this would not be possible
without your hard work and dedication. Special thanks to Katie Mohr, Sara Shlaer, Sydney Jones, and
Mark Lavoie for making my work readable and technically sound. It was a pleasure to work with you all
over the past months. Thank you Thearon; you were a terrific mentor for me and the reason I ever had
the opportunity to write.

— Bryan

ffirs.indd xiffirs.indd xi 4/2/08 5:13:19 PM4/2/08 5:13:19 PM

ffirs.indd xiiffirs.indd xii 4/2/08 5:13:19 PM4/2/08 5:13:19 PM

Contents

Acknowledgments xi
Introduction xxvii

Chapter 1: Welcome to Visual Basic 2008 1

Event-Driven Programming 2
Installing Visual Basic 2008 3
The Visual Basic 2008 IDE 7

The Profile Setup Page 7
The Menu 8
The Toolbars 9

Creating a Simple Application 10
The Toolbox 14
Modified Hungarian Notation 18
The Code Editor 19

Using the Help System 23
Summary 24
Exercise 24

Chapter 2: The Microsoft .NET Framework 25

Microsoft’s Reliance on Windows 25
MSN 1.0 26
The .NET Vision 27
This Sounds like Java 28
Where Now? 29

Writing Software for Windows 29
The .NET Framework Classes 30
Executing Code 31

Common Language Runtime 32
Code Loading and Execution 33
Application Isolation 33
Security 33
Interoperation 34
Exception Handling 34

The Common Type System and Common Language Specification 35
Summary 35

ftoc.indd xiiiftoc.indd xiii 4/2/08 5:13:54 PM4/2/08 5:13:54 PM

Contents

xiv

Chapter 3: Writing Software 37

Information and Data 37
Algorithms 38
What Is a Programming Language? 39

Working with Variables 39
Comments and Whitespace 42

Comments 42
Whitespace 44

Data Types 44
Working with Numbers 45
Common Integer Math Operations 45
Integer Math Shorthand 48
Working with Strings 52
Using Dates 61
Boolean 68

Storing Variables 69
Binary 69
Bits and Bytes 70
Representing Values 70
Converting Values 72

Methods 73
Why Use Methods? 74
Methods You’ve Already Seen 75
Building a Method 78
Choosing Method Names 81
Scope 82

Summary 84
Exercises 85

Chapter 4: Controlling the Flow 87

Making Decisions 87
The If Statement 88

The Else Statement 90
Allowing Multiple Alternatives with ElseIf 91
Nested If Statements 92
Single-Line If Statement 92
Comparison Operators 93
String Comparison 103

ftoc.indd xivftoc.indd xiv 4/2/08 5:13:55 PM4/2/08 5:13:55 PM

Contents

xv

Select Case 105
Case-Insensitive Select Case 108
Multiple Selections 112
The Case Else Statement 113
Different Data Types with Select Case 114

Loops 114
The For . . . Next Loop 115
The For Each . . . Next Loop 120
The Do . . . Loop Loops 121
Nested Loops 127
Quitting Early 128
Infinite Loops 131

Summary 132
Exercises 132

Chapter 5: Working with Data Structures 133

Understanding Arrays 133
Defining and Using Arrays 134
Using For Each . . . Next 137
Passing Arrays as Parameters 139
Sorting Arrays 142
Going Backwards 143
Initializing Arrays with Values 144

Understanding Enumerations 145
Using Enumerations 145
Determining the State 150
Setting Invalid Values 152

Understanding Constants 153
Using Constants 153
Different Constant Types 155

Structures 155
Building Structures 156
Adding Properties to Structures 159

Working with ArrayLists 160
Using an ArrayList 160
Deleting from an ArrayList 164
Showing Items in the ArrayList 167

Working with Collections 168
Creating CustomerCollection 169
Adding an Item Property 170

ftoc.indd xvftoc.indd xv 4/2/08 5:13:55 PM4/2/08 5:13:55 PM

Contents

xvi

Building Lookup Tables with Hashtable 172
Using Hashtables 172
Cleaning Up: Remove, RemoveAt, and Clear 176
Case Sensitivity 178

Advanced Array Manipulation 180
Dynamic Arrays 180
Using Preserve 182

Summary 183
Exercises 184

Chapter 6: Extensible Application Markup Language (XAML) 185

What Is XAML? 185
XAML Syntax 187
Windows Presentation Foundation 190

Creating a Rich WPF User Interface 191
Using WPF Common Controls 197
Wiring Up Events 205

Summary 209
Exercise 209

Chapter 7: Building Windows Applications 211

Responding to Events 211
Setting Up a Button Event 212

Building a Simple Application 219
Building the Form 219
Counting Characters 223
Counting Words 226

Creating More Complex Applications 232
The Text Editor Project 232
Creating the Toolbar 233
Creating the Status Bar 238
Creating an Edit Box 240
Clearing the Edit Box 242
Responding to Toolbar Buttons 244

Using Multiple Forms 251
The About Dialog Box 251

Summary 255
Exercises 255

ftoc.indd xviftoc.indd xvi 4/2/08 5:13:55 PM4/2/08 5:13:55 PM

Contents

xvii

Chapter 8: Displaying Dialog Boxes 257

The MessageBox Dialog Box 257
Available Icons for MessageBox 258
Available Buttons for MessageBox 259
Setting the Default Button 259
Miscellaneous Options 260
The Show Method Syntax 260
Example Message Boxes 262

The OpenDialog Control 265
The OpenFileDialog Control 265
The Properties of OpenFileDialog 266
The Methods of OpenFileDialog 267
Using the OpenFileDialog Control 268

The SaveDialog Control 273
The Properties of SaveFileDialog 273
The Methods of SaveFileDialog 274
Using the SaveFileDialog Control 274

The FontDialog Control 278
The Properties of FontDialog 278
The Methods of FontDialog 279
Using the FontDialog Control 279

The ColorDialog Control 282
The Properties of ColorDialog 283
Using the ColorDialog Control 284

The PrintDialog Control 285
The Properties of PrintDialog 286
Using the PrintDialog Control 286
The PrintDocument Class 287
Printing a Document 287

The FolderBrowserDialog Control 294
The Properties of FolderBrowserDialog 295
Using the FolderBrowserDialog Control 295

Summary 298
Exercises 299

Chapter 9: Creating Menus 301

Understanding Menu Features 301
Images 302
Access Keys 302
Shortcut Keys 302

ftoc.indd xviiftoc.indd xvii 4/2/08 5:13:56 PM4/2/08 5:13:56 PM

Contents

xviii

Check Marks 302
The Properties Window 303

Creating Menus 304
Designing the Menus 304
Adding Toolbars and Controls 306
Coding Menus 308
Coding the View Menu and Toolbars 312
Testing Your Code 314

Context Menus 316
Creating Context Menus 317
Enabling and Disabling Menu Items and Toolbar Buttons 320

Summary 324
Exercise 324

Chapter 10: Debugging and Error Handling 325

Major Error Types 326
Syntax Errors 326
Execution Errors 329
Logic Errors 329

Debugging 331
Creating a Sample Project 331
Setting Breakpoints 347
Debugging Using the Watch Window 354
Debugging with the Locals Window 356

Error Handling 358
Using Structured Error Handling 359

Summary 361
Exercises 362

Chapter 11: Building Objects 363

Understanding Objects 363
Encapsulation 365
Methods and Properties 365
Events 365
Visibility 366
What Is a Class? 367

Building Classes 367
Reusability 368

ftoc.indd xviiiftoc.indd xviii 4/2/08 5:13:56 PM4/2/08 5:13:56 PM

Contents

xix

Designing an Object 369
State 370
Behavior 370
Storing State 371
Real Properties 374
Read/Write Properties 377
The IsMoving Method 380

Constructors 382
Inheritance 384

Adding New Methods and Properties 385
Adding a GetPowerToWeightRatio Method 387
Changing Defaults 389
Polymorphism: Scary Word, Simple Concept 391
Overriding More Methods 392
Inheriting from the Object Class 394

Objects and Structures 395
The Framework Classes 396

Namespaces 396
The Imports Statement 398
Creating Your Own Namespace 399
Inheritance in the .NET Framework 401

Summary 402
Exercises 402

Chapter 12: Advanced Object-Oriented Techniques 403

Building a Favorites Viewer 403
Internet Shortcuts and Favorites 404
Using Classes 407
Scanning Favorites 413
Viewing Favorites 420

An Alternative Favorite Viewer 422
Building a Favorites Tray 422
Displaying Favorites 424

Using Shared Properties and Methods 428
Using Shared Procedures 428
Using Shared Methods 433

Understanding Object-Oriented Programming and Memory Management 434
Garbage Collection 435
Releasing Resources 436
Defragmentation and Compaction 437

Summary 438
Exercise 438

ftoc.indd xixftoc.indd xix 4/2/08 5:13:56 PM4/2/08 5:13:56 PM

Contents

xx

Chapter 13: Building Class Libraries 439

Understanding Class Libraries 440
Creating a Class Library 440
Building a Class Library for Favorites Viewer 442
A Multitiered Application 445

Using Strong Names 446
Signing Assemblies 447
Assembly Versions 449

Registering Assemblies 449
Gacutil Utility 450
Why Is My Assembly Not Visible in the References Dialog Box? 450

Designing Class Libraries 452
Using Third-Party Class Libraries 453
Viewing Classes with the Object Browser 454
Summary 455
Exercise 455

Chapter 14: Creating Windows Forms User Controls 457

Windows Forms Controls 458
Creating and Testing a User Control 458
Exposing Properties from User Controls 462

Adding Properties 462
Exposing Methods from User Controls 464
Exposing Events from User Controls 465

Design Time or RunTime 470
Creating a Command Link Control 472

Building the Command Link Control 473
Using the Command Link Control 481

Summary 484
Exercise 484

Chapter 15: Programming Custom Graphics 485

Building a Simple Paint Program 485
Creating a Project with User Controls 486
How Drawing Programs Work 486
The GraphicsItem Class 488
Screen and Client Coordinates 490
Listening to the Mouse and Drawing GraphicsCircle Objects 491
Invalidation 496

ftoc.indd xxftoc.indd xx 4/2/08 5:13:57 PM4/2/08 5:13:57 PM

Contents

xxi

Optimized Drawing 497
Choosing Colors 498
Responding to Clicks 504

Dealing with Two Colors 507
Indicating the Assigned Buttons 509
Using Advanced Colors 516
Using Different Tools 520
Implementing Hollow Circle 521

Working with Images 525
Drawing Images 526
Scaling Images 528
Preserving the Aspect Ratio 530

More Graphics Methods 533
Summary 533

Chapter 16: Accessing Databases 535

What Is a Database? 535
Microsoft Access Objects 536
Tables 536
Queries 536

The SQL SELECT Statement 537
Queries in Access 539
Creating a Customer Query 539
Data Access Components 543

DataSet 544
DataGridView 544
BindingSource 545
BindingNavigator 545
TableAdapter 545

Data Binding 546
Summary 552
Exercises 553

Chapter 17: Database Programming with SQL Server and ADO.NET 555

ADO.NET 556
ADO.NET Data Namespaces 557
The SqlConnection Class 558
SqlCommand 560
SqlDataAdapter 562
The DataSet Class 566
DataView 567

ftoc.indd xxiftoc.indd xxi 4/2/08 5:13:57 PM4/2/08 5:13:57 PM

Contents

xxii

The ADO.NET Classes in Action 570
Examining a DataSet Example 570

Data Binding 578
BindingContext and CurrencyManager 579
Binding Controls 580

LINQ to SQL 610
Summary 614
Exercises 615

Chapter 18: ASP.NET 617

Thin-Client Architecture 618
Web Forms versus Windows Forms 619

Windows Forms Advantages 619
Web Forms Advantages 619

Web Applications: The Basic Pieces 620
Web Servers 620
Browsers 620
HyperText Markup Language 620
VBScript and JavaScript 621
Cascading Style Sheets 621

Active Server Pages 621
Benefits of ASP.NET Web Pages 622
Special Web Site Files 622
Development 622
Controls: The Toolbox 623

Building Web Applications 623
Creating a Web Form for Client- and Server-Side Processing 623
Web Site Locations with VS 2008 628
Performing Data Entry and Validation 630
Designing the Site’s Look and Feel 635
Using the GridView to Build a Data-Driven Web Form 645

Summary 651
Exercises 651

Chapter 19: Web Projects 653

Web Site Authentication 653
Windows Authentication 654
Forms Authentication 654

ftoc.indd xxiiftoc.indd xxii 4/2/08 5:13:57 PM4/2/08 5:13:57 PM

Contents

xxiii

Web Site Administration Tool (WAT) 654
Login Controls 662

Summary 675
Exercises 675

Chapter 20: Visual Basic 2008 and XML 677

Understanding XML 677
What Does XML Look Like? 678
XML for Visual Basic Newcomers 680

The Address Book Project 681
Creating the Project 681
The SerializableData Class 682
Loading the XML File 688
Changing the Data 691
Sending E-mail 692
Creating a List of Addresses 694
Ignoring Members 698
Loading Addresses 701
Adding New Addresses 702
Navigating Addresses 704
Deleting Addresses 705

Integrating with the Address Book Application 707
Demonstrating the Principle of Integration 708
Reading the Address Book from Another Application 709

Summary 714
Exercises 715

Chapter 21: Distributed Computing with Windows
Communication Foundation 717

What Is a Web Service? 717
How Does a Web Service Work? 718
SOAP 719

Building a Web Service 721
A Web Services Demonstration 721
Adding More Methods 724

Understanding WCF Services 726
WCF services 726

Summary 735
Exercises 735

ftoc.indd xxiiiftoc.indd xxiii 4/2/08 5:13:58 PM4/2/08 5:13:58 PM

Contents

xxiv

Chapter 22: Building a Sequential Workflow Using the Windows
Workflow Foundation 737

Visual Studio Workflow Templates 739
Workflow Foundation Components 740
Sequential Workflow Activities 740
Creating a Sequential Worklow 741
Property Tax Listing Form Workflow 744
Summary 753
Exercises 753

Chapter 23: Building Mobile Applications 755

Understanding the Environment 755
Common Language Runtime 756
ActiveSync and Windows Mobile Device Center 756
Common Types in the Compact Framework 758
The Compact Framework Classes 759

Building a Pocket PC Game 761
Summary 773
Exercise 773

Chapter 24: Deploying Your Application 775

What Is Deployment? 775
ClickOnce Deployment 776
XCOPY Deployment 781

Creating a Visual Studio 2008 Setup Application 781
User Interface Editor 785
Deploying Different Solutions 788

Private Assemblies 789
Shared Assemblies 789
Deploying Desktop Applications 790
Deploying Web Applications 790
Deploying XML Web Services 790
Useful Tools 791

Summary 791
Exercises 792

ftoc.indd xxivftoc.indd xxiv 4/2/08 5:13:58 PM4/2/08 5:13:58 PM

Contents

xxv

Chapter 25: Where to Now? 793

Online Resources 794
P2P.Wrox.com 794
Microsoft Resources 794
Other Resources 795

Offline Resources (Books) 795
Professional Visual Basic 2008 795
Visual Basic 2008 Programmer’s Reference 796

Appendix A: Exercise Solutions 797

Appendix B: Using the Microsoft Solutions Framework 827

Appendix C: An Introduction to Code Security and SSL 835

Appendix D: An Introduction to Windows CardSpace 841

Appendix E: .NET Framework Differences 849

Index 853

ftoc.indd xxvftoc.indd xxv 4/2/08 5:13:58 PM4/2/08 5:13:58 PM

ftoc.indd xxviftoc.indd xxvi 4/2/08 5:13:58 PM4/2/08 5:13:58 PM

 Introduction

 Visual Basic 2008 is Microsoft ’ s latest version of the highly popular Visual Basic .NET programming
language, one of the many languages supported in Visual Studio 2008. Visual Basic 2008 ’ s strength lies in
its ease of use and the speed at which you can create Windows Forms applications, WPF Windows
applications, web applications, WPF Browser applications, mobile device applications, and web services.

 In this book, we introduce you to programming with Visual Basic 2008 and show you how to create these
types of applications and services. Along the way you ’ ll also learn about object - oriented techniques and
learn how to create your own business objects and Windows controls.

 Microsoft .NET Framework provides Visual Basic 2008 programmers with the capability to create full
object - oriented programs, just like the ones created using C# or C++. The .NET Framework provides a
set of base classes that are common to all programming languages in Visual Studio 2008, which provides
you with the same capability to create object - oriented programs as a programmer using C# or C++.

 This book will give you a thorough grounding in the basics of programming using Visual Basic 2008;
from there the world is your oyster.

 Who Is This Book For?
 This book is designed to teach you how to write useful programs in Visual Basic 2008 as quickly and
easily as possible.

 There are two kinds of beginners for whom this book is ideal:

 You ’ re a beginner to programming and you ’ ve chosen Visual Basic 2008 as the place to start.
That ’ s a great choice! Visual Basic 2008 is not only easy to learn, it ’ s also fun to use and very
powerful.

 You can program in another language but you ’ re a beginner to .NET programming. Again,
you ’ ve made a great choice! Whether you ’ ve come from Fortran or Visual Basic 6, you ’ ll find
that this book quickly gets you up to speed on what you need to know to get the most from
Visual Basic 2008.

 What Does This Book Cover?
 Visual Basic 2008 offers a great deal of functionality in both tools and language. No one book could ever
cover Visual Basic 2008 in its entirety — you would need a library of books. What this book aims to do is
to get you started as quickly and easily as possible. It shows you the roadmap, so to speak, of what there
is and where to go. Once we ’ ve taught you the basics of creating working applications (creating the
windows and controls, how your code should handle unexpected events, what object - oriented

❑

❑

flast.indd xxviiflast.indd xxvii 4/1/08 6:18:52 PM4/1/08 6:18:52 PM

xxviii

Introduction

programming is, how to use it in your applications, and so on), we ’ ll show you some of the areas you
might want to try your hand at next. To this end, the book is organized as follows:

 Chapters 1 through 9 provide an introduction to Visual Studio 2008 and Windows
programming.

 Chapter 6 provides an introduction to XAML and Windows Presentation Foundation (WPF)
programming.

 Chapter 10 provides an introduction to application debugging and error handling.

 Chapters 11 through 13 provide an introduction to object - oriented programming and
building objects.

 Chapter 14 provides an introduction to creating Windows Forms user controls.

 Chapter 15 provides an introduction to graphics in Windows applications.

 Chapters 16 and 17 provide an introduction to programming with databases and covers Access,
SQL Server, ADO.NET and LINQ.

 Chapters 18 and 19 provide an introduction to ASP.NET and show you how to write
applications for the Web.

 Chapter 20 provides a brief introduction to XML, a powerful tool for integrating your
applications — regardless of the language they were written in.

 Chapter 21 introduces you to web services and the Windows Communication
Foundation (WCF).

 Chapter 22 introduces you to sequential workflows using the Windows Workflow
Foundation (WF).

 Chapter 23 introduces you to building applications for mobile devices using the Compact
Framework classes.

 Chapter 24 introduces you to deploying applications using ClickOnce technology.

 Chapter 25 provides some insight on where to go next in your journey to learn about
Visual Basic 2008.

 Appendix A provides the answers to chapter exercises.

Appendix B introduces the Microsoft Solution Framework.

Appendix C provides some background on security.

Appendix D provides insight into Windows CardSpace.

Appendix E compares the differences between the latest versions of the .NET Framework.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

flast.indd xxviiiflast.indd xxviii 4/1/08 6:18:53 PM4/1/08 6:18:53 PM

xxix

Introduction

 What Do I Need to Run Visual Basic 2008?
 Apart from a willingness to learn, all you ’ ll need for the first 13 chapters are a PC running Windows
Vista (preferred), Windows XP (Home or Professional Edition), or Windows Server 2003; Internet
Explorer; and of course, one of the following:

 Microsoft Visual Basic 2008 Express

 Microsoft Visual Basic 2008 Profession Edition

 Microsoft Visual Basic 2008 Team System

 As the later chapters cover more advanced subject areas, you will need other software to get the most
out of them. Also note that Visual Basic 2008 Express does not support creating web applications, mobile
applications, or deployment projects.

 Chapter 14 requires Microsoft Visual Basic 2008 Professional Edition or above in order to create
Windows Forms User Controls.

 Chapter 16 requires Microsoft Access 2000.

 For Chapter 17 , you will need to have access to SQL Server 2005, SQL Server 2005 Express
Edition, or SQL Server 2008.

 Don ’ t worry if you don ’ t have these products yet and want to wait a while before you purchase them.
You should still find that you get a lot out of this book.

 Conventions
 We ’ ve used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we used and an explanation of
what they mean.

Try It Out How Do They Work?
 1. Each step has a number.

 2. Follow the steps in sequence.

 How It Works
 If there ’ s more that you need to understand about what ’ s going on as you complete the steps, you will
find a subsequent “ How It Works ” section that explains what ’ s going on behind the scenes.

 Background information, asides, and references appear in text like this.

❑

❑

❑

❑

❑

❑

flast.indd xxixflast.indd xxix 4/1/08 6:18:54 PM4/1/08 6:18:54 PM

xxx

Introduction

 Code has several styles. If it ’ s a word that we ’ re talking about in the text — for example, when
discussing a For ... Next loop, it ’ s in this font . If it ’ s a block of code that can be typed as a program
and run, it looks like this:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click
 Dim n As Integer
 n = 27
 MessageBox.Show(n)
End Sub

 Sometimes you ’ ll see code in a mixture of styles, like this:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 Dim n As Integer
 n = 27
 n = n + 2
 MessageBox.Show(n)

End Sub

 In cases like this, the code with a white background is code that Visual Studio 2008 has automatically
generated (in a Try It Out) or code you are already familiar with (in a How It Works); the lines
highlighted in gray show a change or a new addition to the code.

 Source Code
 As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www.wrox.com . When at the site, locate the book ’ s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail page
to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 19134 - 7.

 After you have downloaded the code, decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

flast.indd xxxflast.indd xxx 4/1/08 6:18:54 PM4/1/08 6:18:54 PM

xxxi

Introduction

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that have been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc-pages/booklist.shtml .

 If you don ’ t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s errata page and fix the problem in subsequent editions
of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
 provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

 After you ’ ve joined, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxiflast.indd xxxi 4/1/08 6:18:54 PM4/1/08 6:18:54 PM

flast.indd xxxiiflast.indd xxxii 4/1/08 6:18:55 PM4/1/08 6:18:55 PM

1
 Welcome to

Visual Basic 2008

 This is an exciting time to enter the world of programming with Visual Basic 2008 and Windows
Vista. Windows Vista represents the first Windows operating system upgrade since Windows XP
was first released in 2002. A lot has changed in the Windows user interface and Visual Basic 2008
makes it easy to write professional - looking Windows applications as well as web applications and
web services. Haven ’ t upgraded to Windows Vista yet? No worries, Visual Basic 2008 also allows
you to write professional - looking applications for Windows XP as well.

 The goal of this book is to help you use the Visual Basic 2008 programming language, even if you
have never programmed before. You will start slowly and build on what you have learned in
subsequent chapters. So take a deep breath, let it out slowly, and tell yourself you can do this.
No sweat! No kidding!

 Programming a computer is a lot like teaching a child to tie his shoes. Until you find the correct
way of giving the instructions, not much is accomplished. Visual Basic 2008 is a language you can
use to tell your computer how to do things. But, like a child, the computer will understand only if
you explain things very clearly. If you have never programmed before, this sounds like an arduous
task, and sometimes it can be. However, Visual Basic 2008 gives you an easy - to - use language to
explain some complex tasks. Although it never hurts to have an understanding of what is
happening at the lowest levels, Visual Basic 2008 frees the programmer from having to deal with
the mundane complexities of writing Windows applications. You are free to concentrate on solving
real problems.

 Visual Basic 2008 helps you create solutions that run on the Microsoft Windows operating systems,
such as Windows Vista, Windows Server 2008, and Windows Mobile 6. If you are looking at this
book, you might have already felt the need or desire to create such programs. Even if you have
never written a computer program before, as you progress through the Try It Out exercises in this
book, you will become familiar with the various aspects of the Visual Basic 2008 language, as well
as its foundations in the Microsoft .NET Framework. You will find that it is not nearly as difficult
as you had imagined. Before you know it, you will feel quite comfortable creating a variety of
different types of programs with Visual Basic 2008.

c01.indd 1c01.indd 1 4/2/08 5:17:02 PM4/2/08 5:17:02 PM

2

Chapter 1: Welcome to Visual Basic 2008

 Visual Basic 2008 can also be used to create web applications and web services as well as mobile
applications that can run on Pocket PCs or SmartPhones. However, you will begin by focusing on
Windows applications before extending your boundaries to other platforms.

 This chapter covers the following topics:

❑ Event - driven programming

❑ The installation of Visual Basic 2008

 ❑ A tour of the Visual Basic 2008 Integrated Development Environment (IDE)

❑ How to create a simple Windows program

❑ How to use the integrated Help system

 Event - Driven Programming
 A Windows program is quite different from yesteryear ’ s MS - DOS program. A DOS program follows a
relatively strict path from beginning to end. Although this does not necessarily limit the functionality of
the program, it does limit the road the user has to take to get to it. A DOS program is like walking down
a hallway; to get to the end you have to walk down the hallway, passing any obstacles that you may
encounter. A DOS program would only let you open certain doors along your stroll.

 Windows, on the other hand, opened up the world of event - driven programming . Events in this context
include clicking a button, resizing a window, or changing an entry in a text box. The code that you write
responds to these events. In terms of the hallway analogy: In a Windows program, to get to the end of
the hall, you just click the end of the hall. The hallway can be ignored. If you get to the end and realize
that is not where you wanted to be, you can just set off for the new destination without returning to your
starting point. The program reacts to your movements and takes the necessary actions to complete your
desired tasks.

 Another big advantage in a Windows program is the abstraction of the hardware ; which means that
Windows takes care of communicating with the hardware for you. You do not need to know the inner
workings of every laser printer on the market just to create output. You do not need to study the
schematics for graphics cards to write your game. Windows wraps up this functionality by providing
generic routines that communicate with the drivers written by hardware manufacturers. This is probably
the main reason that Windows has been so successful. The generic routines are referred to as the
Windows application programming interface (API), and the classes in the .NET Framework take care of
communicating with those APIs.

 Before Visual Basic 1.0 was introduced to the world in 1991, developers had to be well versed in C and
C++ programming, as well as the building blocks of the Windows system itself, the Windows API. This
complexity meant that only dedicated and properly trained individuals were capable of turning out
software that could run on Windows. Visual Basic changed all of that, and it has been estimated that
there are now as many lines of production code written in Visual Basic as in any other language.

 Visual Basic changed the face of Windows programming by removing the complex burden of
writing code for the user interface (UI). By allowing programmers to draw their own UI, it freed them to
concentrate on the business problems they were trying to solve. When the UI is drawn, the programmer
can then add the code to react to events.

c01.indd 2c01.indd 2 4/2/08 5:17:03 PM4/2/08 5:17:03 PM

Chapter 1: Welcome to Visual Basic 2008

3

 Visual Basic has also been extensible from the very beginning. Third - party vendors quickly saw the
market for reusable modules to aid developers. These modules, or controls , were originally referred to as
VBXs (named after their file extension). Prior to Visual Basic 5.0, if you did not like the way a button
behaved, you could either buy or create your own, but those controls had to be written in C or C++.
Database access utilities were some of the first controls available. Version 5 of Visual Basic introduced the
concept of ActiveX , which allowed developers to create their own ActiveX controls .

 When Microsoft introduced Visual Basic 3.0, the programming world changed significantly. Now you
could build database applications directly accessible to users (so - called front - end applications) completely
with Visual Basic. There was no need to rely on third - party controls. Microsoft accomplished this
task with the introduction of Data Access Objects (DAO), which allowed programmers to manipulate
data with the same ease as manipulating the user interface.

 Versions 4.0 and 5.0 extended the capabilities of Version 3.0 to allow developers to target the new Windows
95 platform. They also made it easier for developers to write code, which could then be manipulated to
make it usable to other language developers. Version 6.0 provided a new way to access databases with the
integration of ActiveX Data Objects (ADO). The ADO feature was developed by Microsoft to aid web
developers using Active Server Pages (ASP) to access databases. All of the improvements to Visual Basic
over the years have ensured its dominant place in the programming world — it helps developers write
robust and maintainable applications in record time.

 With the release of Visual Basic .NET in February 2002, most of the restrictions that used to exist have
been obliterated. In the past, Visual Basic was criticized and maligned as a “ toy ” language, because it did
not provide all of the features of more sophisticated languages such as C++ and Java. Now, Microsoft has
removed these restrictions and made Visual Basic .NET a very powerful development tool. This trend
has continued with the release of Visual Basic 2003, Visual Basic 2005, and the latest release, Visual Basic
2008. Each new release of the Visual Basic .NET programming language brings about many new trends,
features, and improvements, making it a great choice for programmers of all levels.

 Installing Visual Basic 2008
 You may own Visual Basic 2008 in one of the following forms:

❑ As part of Visual Studio 2008, a suite of tools and languages that also includes C# (pronounced
 C - sharp) and Visual C++. The Visual Studio 2008 product line includes Visual Studio
Professional Edition or Visual Studio Tools Team Editions. The Team Edition versions come
with progressively more tools for building and managing the development of larger, enterprise -
 wide applications.

❑ As Visual Basic 2008 Express Edition, which includes the Visual Basic 2008 language, and a
reduced set of the tools and features that are available with Visual Studio 2008.

 Both of these products enable you to create your own applications for the Windows platform.
The installation procedure is straightforward. In fact, the Visual Studio Installer is smart enough to figure
out exactly what your computer requires to make it work.

 The descriptions in the following Try It Out exercise are based on installing Visual Studio 2008
Professional Edition. Most of the installation processes are straightforward, and you can accept the

c01.indd 3c01.indd 3 4/2/08 5:17:03 PM4/2/08 5:17:03 PM

4

Chapter 1: Welcome to Visual Basic 2008

default installation options for most environments. So, regardless of which edition you are installing, the
installation process should be smooth when accepting the default installation options.

1. The Visual Studio 2008 DVD has an auto-run feature, but if the Setup screen does not appear
after inserting the DVD, you need to run Setup.exe from the root directory of the DVD. To do
this, click the Windows Start menu at the bottom left of your screen and then select the Run
start menu item or browse to the Setup program on the DVD. In the Run dialog box, you can
click the Browse button to locate the setup.exe program on your DVD. Then click the OK
button in the Run dialog box to start the setup program. After the setup program initializes,
you will see the initial screen as shown in Figure 1-1.

2. The dialog box shown in Figure 1-1 shows the order in which the installation will occur. To
function properly, Visual Studio 2008 requires various updates to be installed depending on
the operating system that you have (for example, Service Pack 2 on Windows XP). The setup
program will automatically inform you of these updates if they are not installed. You should
install those updates first and then return to the Visual Studio 2008 setup program. The
individual updates required are different from the service releases listed as the third option in
Figure 1-1. Step 1 of the setup program will install Visual Studio 2008 so click the Install Visual
Studio 2008 link shown in Figure 1-1.

3. The next step in the installation process asks you if you want to send the setup information from
the installation of Visual Studio 2008 to Microsoft. This is a good idea to help streamline the
installation process of future editions of Visual Studio, and no personal information will be sent.
You can click the Next button at this screen after you have selected or cleared the check box
indicating whether or not you want this information sent.

Try It Out Installing Visual Basic 2008

Figure 1-1

c01.indd 4c01.indd 4 4/2/08 5:17:04 PM4/2/08 5:17:04 PM

Chapter 1: Welcome to Visual Basic 2008

5

4. The third step in the installation process is the license agreement. Read the license agreement
and then select the option button indicating your acceptance of the licensing terms. Then click
the Next button to continue.

5. As with most setup programs, you are presented with a choice of options to be installed
as shown in Figure 1-2. The default installation installs the recommended product features as
determined by Microsoft. You have the option to choose the default installation, a full
installation, or to customize the installation. When choosing the custom installation feature, you
will be presented with a dialog box allowing you to choose the languages and features of each
language to be installed. If disk space allows, it is recommended that you choose a full
installation. However, if you choose to customize the installation and omit some features from
being installed, you can always install those features later by rerunning the setup program.
After choosing your installation option, click the Install button to have those features installed.

Figure 1-2

6. The first component that is installed is the Microsoft .NET Framework version 3.5. During the
installation of this component you will be required to restart your computer. After your com-
puter has restarted and you log back in, the setup program will continue. Note to Windows
Vista users: you will be prompted that the setup program needs to run and will need to grant
permission to let the setup program continue. After the setup program continues, you can sit
back and relax while all of the features are being installed. The setup program can take any-
where from 20 minutes on up depending on the installation features chosen and the speed of
your computer.

c01.indd 5c01.indd 5 4/2/08 5:17:04 PM4/2/08 5:17:04 PM

6

Chapter 1: Welcome to Visual Basic 2008

7. Once the installation has been completed, you will be presented with a dialog box informing
you of the status of the installation. Here you can see any problems that the setup program
encountered. At this point you are encouraged to update your computer with the latest secu-
rity patches and a link is provided in the notes to Windows Update. When you have finished
reviewing the setup status, click the Finish button to move on to the next step.

8. If you chose to have your setup information sent to Microsoft, the next step will be a dialog
box sending the setup information. This dialog box requires no action on your part and it will
automatically close when finished. The next dialog box is the one shown earlier in Figure 1-1
with the option to install the production documentation enabled. Click the Install Product
Documentation link to install the MSDN library.

9. The first step in installing the MSDN library is choosing whether to send the setup informa-
tion to Microsoft. Make the appropriate choice and then click the Next button to continue.
Again, it is recommended to send this information to help streamline future MSDN library
installations.

10. Next, read and accept the license agreement. After you click the option button to accept the
license agreement, click the Next button to continue.

11. Like the installation of Visual Studio 2008, the MSDN library installation provides you with
the options to choose the installation that best suits your needs, as shown in Figure 1-3. If you
chose to install the complete Visual Studio 2008 product set then you’ll most likely want
to choose the full installation of the MSDN library. After making your installation option
choice, click the Install button to begin the installation.

Figure 1-3

c01.indd 6c01.indd 6 4/2/08 5:17:04 PM4/2/08 5:17:04 PM

Chapter 1: Welcome to Visual Basic 2008

7

If you have the spare hard drive space, it is a very good idea to install the full documentation. That way
you have access to the full library, which will be important if you choose a limited set of options during
the install and later add more features.

12. After the MSDN documentation has been installed, you are presented with a dialog box informing
you of the status of the installation. Click the Finish button to be returned to the initial setup screen
again. The Check for Service Releases option is now available.

It is a good idea to select Service Releases to check for updates. Microsoft has done a good job of making
software updates available through the Internet. These updates can include anything from additional
documentation to bug fixes. You will be given the choice to install any updates through a Service Pack
CD or the Internet. Obviously, the Internet option requires an active connection. Since updates can be
quite large, a fast connection is highly recommended.

 After you have performed the update process, Visual Studio 2008 is ready to use. Now the real fun can
begin! So get comfortable, relax, and enter the world of Visual Basic 2008.

 The Visual Basic 2008 IDE
 You don ’ t need Visual Basic 2008 to write applications in the Visual Basic .NET language. The ability to
run Visual Basic .NET code is included with the .NET Framework. You could write all of your Visual
Basic .NET code using a text editor such as Notepad. You could also hammer nails using your shoe as a
hammer, but that slick pneumatic nailer sitting there is a lot more efficient. In the same way, by far the
easiest way to write in Visual Basic .NET code is by using the Visual Studio 2008 IDE. This is what you
see when working with Visual Basic 2008 — the windows, boxes, and so on. The IDE provides a wealth
of features unavailable in ordinary text editors — such as code checking, visual representations of the
finished application, and an explorer that displays all of the files that make up your project.

 The Profile Setup Page
 An IDE is a way of bringing together a suite of tools that makes developing software a lot easier. Fire up
Visual Studio 2008 and see what you ’ ve got. If you used the default installation, go to your Windows
Start menu and then select All Programs Microsoft Visual Studio 2008 Microsoft Visual Studio 2008.
A splash screen will briefly appear, and then you see the Choose Default Environment Settings dialog
box. Select the Visual Basic Development Settings option and click Start Visual Studio. After Visual
Studio configures the environment based on the chosen settings, the Microsoft Development
Environment will appear, as shown in Figure 1 - 4 .

c01.indd 7c01.indd 7 4/2/08 5:17:05 PM4/2/08 5:17:05 PM

8

Chapter 1: Welcome to Visual Basic 2008

 The Menu
 By now, you may be eager to start writing some code. Begin your exploration of the IDE by looking at
the menu and toolbar, which are not really all that different from the toolbars and menus you have seen
in Microsoft Office 2003 (although they differ from the ribbon bars in Microsoft Office 2007).

 The Visual Studio 2008 menu is dynamic , which means items will be added or removed depending on
what you are trying to do. When looking at the blank IDE, the menu bar consists only of the File, Edit,
View, Tools, Window, and Help menus. When you start working on a project, however, the full Visual
Studio 2008 menu appears as shown in Figure 1 - 5 .

Figure 1-4

Figure 1-5

 At this point, there is no need to cover each menu topic in detail. You will become familiar with each of
them as you progress through the book. Here is a quick rundown of what activities each menu item
pertains to:

❑ File: Most software programs have a File menu. It has become the standard where you should
find, if nothing else, a way to exit the application. In this case, you can also find ways of opening
and closing single files and whole projects.

❑ Edit: The Edit menu provides access to the common items you would expect: Undo, Redo, Cut,
Copy, Paste, and Delete.

 ❑ View: The View menu provides quick access to the windows that exist in the IDE, such as the
Solution Explorer, Properties window, Output window, Toolbox, and so on.

c01.indd 8c01.indd 8 4/2/08 5:17:05 PM4/2/08 5:17:05 PM

Chapter 1: Welcome to Visual Basic 2008

9

❑ Project: The Project menu allows you to add various files to your application such as forms and
classes.

❑ Build: The Build menu becomes important when you have completed your application and
want to run it without the use of the Visual Basic 2008 environment (perhaps running it directly
from your Windows Start menu, as you would any other application such as Word or Access).

❑ Debug: The Debug menu allows you to start and stop running your application within the
Visual Basic 2008 IDE. It also gives you access to the Visual Studio 2008 debugger. The debugger
allows you to step through your code while it is running to see how it is behaving.

❑ Data: The Data menu enables you to use information that comes from a database. It allows you
to view and add data sources, and preview data. Chapters 16 and 17 will introduce you to work-
ing with databases.

❑ Tools: The Tools menu has commands to configure the Visual Studio 2008 IDE, as well as links
to other external tools that may have been installed.

❑ Test: The Test menu provides options that allow you to create and view unit tests for your appli-
cation to exercise the source code in various scenarios.

❑ Window: The Window menu has become standard for any application that allows more than
one window to be open at a time, such as Word or Excel. The commands on this menu allow you
to switch between the windows in the IDE.

❑ Help: The Help menu provides access to the Visual Studio 2008 documentation. There are many
different ways to access this information (for example, through the help contents, an index, or a
search). The Help menu also has options that connect to the Microsoft web site to obtain updates
or report problems.

 The Toolbars
 Many toolbars are available within the IDE, including Formatting, Image Editor, and Text Editor, which
you can add to and remove from the IDE through the View Toolbars menu option. Each one provides
quick access to often - used commands, preventing you from having to navigate through a series of menu
options. For example, the leftmost icon (New Project) on the default toolbar (called the Standard toolbar),
shown in Figure 1 - 6 , is available from the menu by navigating to File New Project.

Figure 1-6

 The toolbar is segmented into groups of related options, which are separated by vertical bars. The first
six icons provide access to the commonly used project and file manipulation options available through
the File and Project menus, such as opening and saving files.

c01.indd 9c01.indd 9 4/2/08 5:17:05 PM4/2/08 5:17:05 PM

10

Chapter 1: Welcome to Visual Basic 2008

 The next group of icons is for editing (Cut, Copy, and Paste). The next icon is for finding and replacing
items in your code.

 The third group of icons is used for commenting out and un - commenting sections of code. This can be
useful in debugging when you want to comment out a section of code to determine what results the
program might produce by not executing those lines of code.

 The fourth group of icons is for undoing and redoing edits and for navigating through your code.

 The fifth group of icons provides the ability to start (via the green triangle), pause, and stop your
application. You can also use the last three icons in this group to step into your code line by line, step over
entire sections of code, and step out of a procedure. These icons will be covered in depth in Chapter 10 .

 The final group of icons provides quick links to the Solution Explorer, Properties window, Object
Browser, Toolbox, Error List, and the Immediate window. If any of these windows is closed, clicking the
appropriate icon will bring it back into view.

 If you forget what a particular icon does, you can hover your mouse pointer over it so that a tooltip
appears displaying the name of the toolbar option.

 You could continue to look at each of the windows in the IDE by clicking on the View menu and
choosing the appropriate window. But, as you can see, they are all empty at this stage and therefore not
too revealing. The best way to look at the capabilities of the IDE is to use it while writing some code.

 Creating a Simple Application
 To finish your exploration of the IDE, you need to create a project, so that the windows shown earlier in
Figure 1 - 4 have some interesting content for you to look at. In the following Try It Out exercise, you are
going to create a very simple application called HelloUser that will allow you to enter a person ’ s name
and display a greeting to that person in a message box.

1. Click the New Project button on the toolbar.

2. In the the New Project dialog box, select Visual Basic in the Project Types tree-view box to
the left and then select Windows beneath it. The Templates box on the right will display all of the
available templates for the project type chosen. Select the Windows Forms Application template.
Finally, type Hello User in the Name text box and click OK. Your New Project dialog box
should look like Figure 1-7.

Try It Out Creating a HelloUser Project

c01.indd 10c01.indd 10 4/2/08 5:17:05 PM4/2/08 5:17:05 PM

Chapter 1: Welcome to Visual Basic 2008

11

Figure 1-7

Visual Studio 2008 allows you to target your application to a specific version of the Microsoft .NET
Framework. The combo box in the upper right corner of the New Project dialog box has version 3.5
selected, but you can target your application to version 3.0 or even version 2.0 of the .NET
Framework.

 The IDE will then create an empty Windows application for you. So far, your Hello User
program consists of one blank window, called a Windows Form (or sometimes just a form),
with the default name of Form1.vb, as shown in Figure 1-8.

Whenever Visual Studio 2008 creates a new file, either as part of the project creation process or
when you create a new file, it will use a name that describes what it is (in this case, a form)
followed by a number.

 Windows in the Visual Studio 2008 IDE
 At this point, you can see that the various windows in the IDE are beginning to show their purposes, and
you should take a brief look at them now before you come back to the Try It Out exercise. Note that if any
of these windows are not visible on your screen, you can use the View menu to show them. Also, if you
do not like the location of any particular window, you can move it by clicking its title bar (the blue bar at

c01.indd 11c01.indd 11 4/2/08 5:17:06 PM4/2/08 5:17:06 PM

12

Chapter 1: Welcome to Visual Basic 2008

the top) and dragging it to a new location. The windows in the IDE can float (stand out on their own) or
be docked (as they appear in Figure 1 - 8). The following list introduces the most common windows:

Figure 1-8

❑ Toolbox: The Toolbox contains reusable controls and components that can be added to your
application. These range from buttons to data connectors to customized controls that you have
either purchased or developed.

❑ Design window: The Design window is where a lot of the action takes place. This is where you
will draw your user interface on your forms. This window is sometimes referred to as the
Designer.

❑ Solution Explorer: The Solution Explorer window contains a hierarchical view of your solution.
A solution can contain many projects, whereas a project contains forms, classes, modules, and
components that solve a particular problem.

❑ Data Sources: The Data Sources window allows you to connect to a database and choose the
database objects for your application.

❑ Properties: The Properties window shows what properties the selected object makes available.
Although you can set these properties in your code, sometimes it is much easier to set them
while you are designing your application (for example, drawing the controls on your form). You
will notice that the File Name property has the value Form1.vb . This is the physical file name
for the form ’ s code and layout information.

c01.indd 12c01.indd 12 4/2/08 5:17:06 PM4/2/08 5:17:06 PM

Chapter 1: Welcome to Visual Basic 2008

13

Next you’ll give your form a name and set a few properties for it.

1. Change the name of your form to something more indicative of what your application is.
Click Form1.vb in the Solution Explorer window. Then, in the Properties window, change the
File Name property from Form1.vb to HelloUser.vb and press Enter, as shown in Figure 1-9.
When changing properties you must either press Enter or click on another property for it to
take effect.

Figure 1-9

Try It Out Creating a HelloUser Project (cont.)

2. Note that the form’s file name has also been updated in the Solution Explorer to read
HelloUser.vb.

3. Click the form displayed in the Design window. The Properties window will change to
display the form’s Form properties (instead of the File properties, which you have just been
looking at). You will notice that the Properties window is dramatically different. The differ-
ence is the result of two different views of the same file. When the form name is highlighted in
the Solution Explorer window, the physical file properties of the form are displayed. When the
form in the Design window is highlighted, the visual properties and logical properties of
the form are displayed.

The Properties window allows you to set a control’s properties easily. Properties are a
 particular object’s set of internal data; they usually describe appearance or behavior. In
 Figure 1-10 you can see that properties are displayed alphabetically. The properties can also
be grouped together in categories — Accessibility, Appearance, Behavior, Data, Design,
Focus, Layout, Misc, and Window Style.

c01.indd 13c01.indd 13 4/2/08 5:17:06 PM4/2/08 5:17:06 PM

14

Chapter 1: Welcome to Visual Basic 2008

Figure 1-10

4. Right now, the title (Text property) of your form (displayed in the bar at the top) is Form1.
This is not very descriptive, so change it to reflect the purpose of this application. Locate the
Text property in the Properties window. Change the Text property’s value to Hello from
Visual Basic 2008 and press Enter. Note that the form’s title has been updated to reflect the
change.

If you have trouble finding properties, click the little AZ icon on the toolbar toward the top of the
Properties window. This changes the property listing from being ordered by category to being
ordered by name.

5. You are now finished with the procedure. Click the Start button on the Visual Studio 2008
toolbar (the green triangle) to run the application. As you work through the book, whenever
we say “run the project” or “start the project,” just click the Start button. An empty window
with the title Hello from Visual Basic 2008 is displayed.

 That was simple, but your little application isn ’ t doing much at the moment. Let ’ s make it a little more
interactive. To do this, you are going to add some controls — a label, a text box, and two buttons to the
form. This will let you see how the Toolbox makes adding functionality quite simple. You may be
wondering at this point when you will actually look at some code. Soon! The great thing about Visual
Basic 2008 is that you can develop a fair amount of your application without writing any code. Sure, the
code is still there, behind the scenes, but, as you will see, Visual Basic 2008 writes a lot of it for you.

 The Toolbox
 The Toolbox is accessed through the View Toolbox menu option, by clicking the Toolbox icon on the
Standard menu bar, or by pressing Ctrl+Alt+X. Alternatively, the Toolbox tab is displayed on the left of
the IDE; hovering your mouse over this tab will cause the Toolbox window to fly out, partially covering
your form.

c01.indd 14c01.indd 14 4/2/08 5:17:06 PM4/2/08 5:17:06 PM

Chapter 1: Welcome to Visual Basic 2008

15

 The Toolbox contains a Node type view of the various controls and components that can be placed onto
your form. Controls such as text boxes, buttons, radio buttons, and combo boxes can be selected and
then drawn onto your form. For the HelloUser application, you will be using only the controls in the
Common Controls node. Figure 1 - 11 shows a listing of common controls for Windows Forms.

Figure 1-11

 Controls can be added to your forms in any order, so it does not matter if you add the label control after
the text box or the buttons before the label. In the following Try It Out exercise, you start adding controls.

1. Stop the project if it is still running, because you now want to add some controls to your form.
The simplest way to stop your project is to click the close (X) button in the top-right corner of
the form. Alternatively, you can click the blue square on the toolbar (which displays a ToolTip
that says “Stop Debugging” if you hover over it with your mouse pointer).

2. Add a Label control to the form. Click Label in the Toolbox, drag it over to the form’s
Designer and drop it in the desired location. (You can also place controls on your form by
double-clicking the required control in the Toolbox or clicking the control in the Toolbox and
then drawing it on the form.)

3. If the Label control you have just drawn is not in the desired location, it really isn’t a problem.
When the control is on the form, you can resize it or move it around. Figure 1-12 shows what

Try It Out Adding Controls to the HelloUser Application

c01.indd 15c01.indd 15 4/2/08 5:17:07 PM4/2/08 5:17:07 PM

16

Chapter 1: Welcome to Visual Basic 2008

the control looks like after you place it on the form. To move it, click the dotted border and
drag it to the desired location. The label will automatically resize itself to fit the text that you
enter in the Text property.

4. After drawing a control on the form, you should at least configure its name and the text that
it will display. You will see that the Properties window to the right of the Designer has
changed to Label1, telling you that you are currently examining the properties for the label.
In the Properties window, set your new label’s Text property to Enter Your Name. Note that,
once you press Enter or click on another property, the label on the form has automatically
 resized itself to fit the text in the Text property. Now set the Name property to lblName.

5. Now, directly beneath the label, you want to add a text box, so that you can enter a name. You
are going to repeat the procedure you followed for adding the label, but this time make sure
you select the TextBox control from the toolbar. After you have dragged and dropped
(or double-clicked) the control into the appropriate position as shown in Figure 1-13, use
the Properties window to set its Name property to txtName.

Notice the sizing handles on the left and right side of the control. You can use these handles to
resize the text box horizontally.

Figure 1-12

Figure 1-13

c01.indd 16c01.indd 16 4/2/08 5:17:07 PM4/2/08 5:17:07 PM

Chapter 1: Welcome to Visual Basic 2008

17

6. In the bottom left corner of the form, add a Button control in exactly the same manner as you
added the label and text box. Set its Name property to btnOK and its Text property to &OK.
Your form should now look similar to the one shown in Figure 1-14.

The ampersand (&) is used in the Text property of buttons to create a keyboard shortcut (known
as a hot key). The letter with the & sign placed in front of it will become underlined (as shown in
Figure 1-14) to signal users that they can select that button by pressing the Alt+letter key combi-
nation, instead of using the mouse (on some configurations the underline doesn’t appear until the
user presses Alt). In this particular instance, pressing Alt+O would be the same as clicking the
OK button. There is no need to write code to accomplish this.

Figure 1-14

7. Now add a second Button control to the bottom right corner of the form by dragging the But-
ton control from the Toolbox onto your form. Notice that, as you get close to the bottom right
of the form, a blue snap line appears, as shown in Figure 1-15. This snap line allows you to
align this new Button control with the existing Button control on the form. The snap lines
assist you in aligning controls to the left, right, top, or bottom of each other, depending on
where you are trying to position the new control. The light blue line provides you with a consis-
tent margin between the edge of your control and the edge of the form. Set the Name property
to btnExit and the Text property to E&xit. Your form should look similar to Figure 1-16.

Figure 1-16Figure 1-15

c01.indd 17c01.indd 17 4/2/08 5:17:07 PM4/2/08 5:17:07 PM

18

Chapter 1: Welcome to Visual Basic 2008

 Now before you finish your sample application, let us briefly discuss some coding practices that you
should be using.

 Modified Hungarian Notation
 You may have noticed that the names given to the controls look a little funny. Each name is prefixed with a
shorthand identifier describing the type of control it is. This makes it much easier to understand what type
of control you are working with when you are looking through the code. For example, say you had a control
called simply Name, without a prefix of lbl or txt . You would not know whether you were working with a
text box that accepted a name or with a label that displayed a name. Imagine if, in the previous Try It Out
exercise, you had named your label Name1 and your text box Name2 — you would very quickly become
confused. What if you left your application for a month or two and then came back to it to make some changes?

 When working with other developers, it is very important to keep the coding style consistent. One of the
most commonly used styles for control names within application development in many languages was
designed by Dr. Charles Simonyi, who worked for the Xerox Palo Alto Research Center (XPARC) before
joining Microsoft. He came up with short prefix mnemonics that allowed programmers to easily identify
the type of information a variable might contain. Because Simonyi is from Hungary, and the prefixes
make the names look a little foreign, the name Hungarian Notation came into use for this system. Because
the original notation was used in C/C++ development, the notation for Visual Basic 2008 is termed
Modified. Table 1 - 1 shows some of the commonly used prefixes that you will be using in this book.

Table 1-1: Common Prefixes in
Visual Basic 2008

Control Prefix

Button btn

ComboBox cbo

CheckBox chk

Label lbl

ListBox lst

MainMenu mnu

RadioButton rdb

PictureBox pic

TextBox txt

 Hungarian Notation can be a real time - saver when you are looking at code someone else wrote or at
code that you wrote months earlier. However, by far the most important thing is to be consistent in your
naming. When you start coding, choose a convention for your naming. It is recommended that you use
the de facto standard Modified - Hungarian for Visual Basic 2008, but it is not required. After you pick a
convention, stick to it. When modifying others ’ code, use theirs. A standard naming convention followed
throughout a project will save countless hours when the application is maintained. Now let ’ s get back to
the application. It ’ s now time to write some code.

c01.indd 18c01.indd 18 4/2/08 5:17:08 PM4/2/08 5:17:08 PM

Chapter 1: Welcome to Visual Basic 2008

19

 The Code Editor
 Now that you have the HelloUser form defined, you have to add some code to make it actually do
something interesting. You have already seen how easy it is to add controls to a form. Providing the
functionality behind those on - screen elements is no more difficult. To add the code for a control, you just
double - click the control in question. This opens the code editor in the main window, shown in Figure 1 - 17 .

 Note that an additional tab has been created in the main window. Now you have the Design tab and the
Code tab, each containing the name of the form you are working on. You draw the controls on your form
in the Design tab, and you write code for your form in the Code tab. One thing to note here is that Visual
Studio 2008 has created a separate file for the code. The visual definition and the code behind it exist in
separate files: HelloUser.Designer.vb and HelloUser.vb . This is actually the reason why building
applications with Visual Basic 2008 is so slick and easy. Using the Design view you can visually lay out
your application, and then, using Code view, you add just the bits of code to implement your desired
functionality.

 Note also that there are two combo boxes at the top of the window. These provide shortcuts to the
various parts of your code. Hover your mouse on the combo box on the left, and you ’ ll see a tooltip
appear, telling you that it is the Class Name combo box. If you expand this combo box, you will see a list
of all the objects within your application. If you hover your mouse on the combo box on the right, you ’ ll
see a tooltip telling you that this is the Method Name combo box. If you expand this combo box, you
will see a list of all defined functions and subroutines for the object selected in the Class Name combo
box. If this particular form had a lot of code behind it, these combo boxes would make navigating to the
desired code area very quick — jumping to the selected area in your code. However, since all of the code
for this project so far fits in the window, there are not a lot of places to get lost.

Figure 1-17

1. To begin adding the necessary code, click the Design tab to show the form again. Then
double-click the OK button. The code window will open with the following code. This is the
shell of the button’s Click event and is the place where you enter the code that you want to
run when you click the button. This code is known as an event handler and sometimes is also
referred to as an event procedure:

 Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 End Sub

Try It Out Adding Code to the HelloUser Project

c01.indd 19c01.indd 19 4/2/08 5:17:08 PM4/2/08 5:17:08 PM

20

Chapter 1: Welcome to Visual Basic 2008

As a result of the typographic constraints in publishing, it is not possible to put the Sub
declaration on one line. Visual Basic 2008 allows you to break up lines of code by using the
underscore character (_) to signify a line continuation. The space before the underscore is
required. Any whitespace preceding the code on the following line is ignored.

Sub is an example of a keyword. In programming terms, a keyword is a special word that is
used to tell Visual Basic 2008 to do something special. In this case, it tells Visual Basic 2008
that this is a subroutine, a procedure that does not return a value. Anything that you type be-
tween the lines Private Sub and End Sub will make up the event procedure for the OK
button.

2. Now add the highlighted code into the procedure:

 Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 ‘Display a message box greeting to the user
 MessageBox.Show(“Hello, “ & txtName.Text & _
 “! Welcome to Visual Basic 2008.”, _
 “Hello User Message”)

 End Sub

Throughout this book, you will be presented with code that you should enter into your program if
you are following along. Usually, we will make it pretty obvious where you put the code, but as
we go, we will explain anything that looks out of the ordinary. The code with the gray background
is code that you should enter.

3. After you have added the preceding code, go back to the Design tab, and double-click the Exit
button. Add the following highlighted code to the btnExit_Click event procedure:

 Private Sub btnExit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnExit.Click

 ‘End the program and close the form
 Me.Close()

 End Sub

You may be wondering what Me is. Me is a keyword that refers to the form. Just like the pro-
noun me, it is just shorthand for referring to one’s self.

4. Now that the code is finished, the moment of truth has arrived and you can see your creation.
First, however, save your work by using File Save All from the menu or by clicking the Save
All button on the toolbar. The Save Project dialog box is displayed as shown in Figure 1-18,
prompting you for a name and location for saving the project.

By default, a project is saved in a folder with the project name; in this case Hello User. Since
this is the only project in the solution, there is no need to create a separate folder for the
solution which contains the same name as the project, thus the Create directory for solution
check box has been unchecked.

c01.indd 20c01.indd 20 4/2/08 5:17:09 PM4/2/08 5:17:09 PM

Chapter 1: Welcome to Visual Basic 2008

21

Figure 1-18

5. Now click the Start button on the toolbar. You will notice a lot of activity in the Output
window at the bottom of your screen. Provided that you have not made any mistakes in enter-
ing the code, this information just lets you know which files are being loaded to run your
application.

At this point Visual Studio 2008 will compile the code. Compiling is the activity of taking
the Visual Basic 2008 source code that you have written and translating it into a form that the
computer understands. After the compilation is complete, Visual Studio 2008 runs (also
known as executes) the program, and you’ll be able to see the results.

Any errors that Visual Basic 2008 encounters will be displayed as tasks in the Task List window.
Double-clicking a task transports you to the offending line of code. You will learn more about how
to debug the errors in your code in Chapter 10.

6. When the application loads, you see the main form. Enter a name and click OK or press the
Alt+O key combination (see Figure 1-19).

Figure 1-19

 A window known as a message box appears as shown in Figure 1-20, welcoming the person
whose name was entered in the text box on the form — in this case Stephanie.

Figure 1-20

c01.indd 21c01.indd 21 4/2/08 5:17:09 PM4/2/08 5:17:09 PM

22

Chapter 1: Welcome to Visual Basic 2008

7. After you close the message box by clicking the OK button, click the Exit button on your form.
The application closes and you will be returned to the Visual Basic 2008 IDE.

How It Works
The code that you added to the Click event for the OK button will take the name that was entered in
the text box and use it as part of the message that was displayed in Figure 1-20.

The first line of text you entered in this procedure (‘Display a message box greeting to the
user) is actually a comment, text that is meant to be read by the human programmer who is writing or
maintaining the code, not by the computer. Comments in Visual Basic 2008 begin with a single quote
(’), and everything following on that line is considered a comment and ignored by the compiler.
Comments will be discussed in detail in Chapter 3.

The MessageBox.Show method displays a message box that accepts various parameters. As used in
your code, you have passed the string text to be displayed in the message box. This is accomplished
through the concatenation of string constants defined by text enclosed in quotes. Concatenation of
strings into one long string is performed through the use of the ampersand (&) character.

The code that follows concatenates a string constant of “Hello, “ followed by the value contained in
the Text property of the txtName text box control followed by a string constant of “! Welcome to
Visual Basic 2008.”. The second parameter being passed to the MessageBox.Show method is the
caption to be used in the title bar of the Message Box dialog box.

Finally, the underscore (_) character used at the end of the lines in the following code enables you to
split your code onto separate lines. This tells the compiler that the rest of the code for the parameter is
continued on the next line. This is really useful when building long strings, because it allows you to
view the entire code fragment in the Code Editor without having to scroll the Code Editor window to
the right to view the entire line of code.

 Private Sub btnOK_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOK.Click

 ‘Display a message box greeting to the user
 MessageBox.Show(“Hello,” & txtName.Text & _
 “! Welcome to Visual Basic 2008.”, _
 “Hello User Message”)
 End Sub

The next procedure that you added code for was the Exit button’s Click event. Here you simply enter
the code: Me.Close(). As explained earlier, the Me keyword refers to the form itself. The Close
method of the form closes the form and releases all resources associated with it, thus ending the
program.

 Private Sub btnExit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnExit.Click

 ‘End the program and close the form
 Me.Close()
 End Sub

c01.indd 22c01.indd 22 4/2/08 5:17:09 PM4/2/08 5:17:09 PM

Chapter 1: Welcome to Visual Basic 2008

23

 Using the Help System
 The Help system included in Visual Basic 2008 is an improvement over the Help systems in earlier versions.
As you begin to learn Visual Basic 2008, you will probably become very familiar with the Help system.
However, it is worthwhile to give you an overview, just to help speed your searches for information.

 The Help menu contains the items shown in Figure 1 - 21 .

Figure 1-21

 As you can see, this menu contains a few more items than the typical Windows application. The main
reason for this is the vastness of the documentation. Few people could keep it all in their heads — but
luckily, that is not a problem, because you can always quickly and easily refer to the Help system. Think
of it as a safety net for your brain.

 One really fantastic feature is Dynamic Help. When you select the Dynamic Help menu item from the
Help menu, the Dynamic Help window is displayed as a tab behind the Properties window, with a list of
relevant topics for whatever you may be working on.

 Suppose you are working with a text box (perhaps the text box in the HelloUser application) and want to
find out some information; you just select the text box on your form or in the code window and then use
Dynamic Help to see all the help topics that pertain to text boxes, as shown in Figure 1 - 22 .

Figure 1-22

c01.indd 23c01.indd 23 4/2/08 5:17:10 PM4/2/08 5:17:10 PM

24

Chapter 1: Welcome to Visual Basic 2008

 The other help commands in the Help menu (Search, Contents, and Index), function just as they would
in any other Windows application. The How Do I menu item displays the Visual Studio Help collection
with a list of common tasks that are categorized. This makes finding help on common tasks fast and
efficient.

 Summary
 Hopefully, you are beginning to see that developing basic applications with Visual Basic 2008 is not that
difficult. You have taken a look at the IDE and have seen how it can help you put together software very
quickly. The Toolbox enables you to add controls to your form and design a user interface very quickly
and easily. The Properties window makes configuring those controls a snap, while the Solution Explorer
gives you a bird ’ s eye view of the files that make up your project. You even wrote a little code.

 In the coming chapters, you will go into even more detail and get comfortable writing code. Before you
go too far into Visual Basic 2008 itself, the next chapter will give you an introduction to the Microsoft
.NET Framework. This Framework is what gives all of the .NET languages their ease of use, ease of
interoperability, and simplicity in learning.

 To summarize, you should now be familiar with:

❑ The integrated development environment (IDE)

❑ Adding controls to your form in the Designer

❑ Setting the properties of your controls

❑ Adding code to your form in the code window

 Exercise
 The answers for this exercise and those at the end of each chapter in this book can be found in Appendix A .

 1. Create a Windows Application with a Textbox and Button control that will display whatever is
typed in the text box when the user clicks on the button.

c01.indd 24c01.indd 24 4/2/08 5:17:10 PM4/2/08 5:17:10 PM

2
 The Microsoft .NET

Framework

 The .NET Framework provides an unprecedented platform for building Windows, web,
and mobile applications with one or more languages. It is a definitive guide, encompassing and
encapsulating where we have come from as a development community and, of course, where we
are going.

 .NET has been a success in many respects. Within the .NET Framework, new languages (C# and J#)
have been born, and the well - established Visual Basic language has been reborn. The .NET
Framework even supports legacy languages such as C++.

 The .NET Framework provides the base for all development using Visual Studio 2008. It provides
base classes, available to all Visual Studio 2008 languages for such functions as accessing
databases, parsing XML, displaying and processing Windows and Web forms, and providing
security for your applications. All languages in Visual Studio 2008 share and use the same base
classes, making your choice of a programming language in Visual Studio 2008 a matter of personal
preference and syntax style.

 In this chapter, you will examine the following topics:

 What the .NET Framework is

 The .NET vision

 Why Microsoft dared to spend $2 billion on a single development project

 Microsoft ’ s Reliance on Windows
 In terms of the great corporations of the world, Microsoft is still a new kid on the block. It is a
fabulously rich and successful business. Nonetheless, the company has grown from nothing to
a corporate superpower in a very short time.

❑

❑

❑

c02.indd 25c02.indd 25 4/1/08 6:20:23 PM4/1/08 6:20:23 PM

Chapter 2: The Microsoft .NET Framework

26

 What is perhaps more interesting is that although the origins of Microsoft can be traced to the mid - 1970s,
it is really the Windows family of operating systems that has brought the company great success. Based
on Presentation Manager for OS/2, Windows has seen many incarnations from Windows/286 to
Windows Vista, but the essential way that you use Windows and Windows applications has not changed
in all that time. (Granted, there have been advances in the user interface and the hardware, but you still
use the version of Excel included with Office 2007 in roughly the same way that you used the first
version.)

 The scary thing to Microsoft and its investors is that the pace of technological change means that they
cannot be sure that Windows is going to be as relevant in 2011 as it is today. All it takes is one change in
the way that people want to use computers, and the Windows platform ’ s current incarnation may
become obsolete.

 It is unfair to say that Microsoft has been extremely lucky over the past several years in the way that it
has reacted to the opportunities offered by the Internet. Do not underestimate the number of smart
people working for that company. When they discovered that companies like Netscape were making
money with the Internet and identified the risk, they turned a large corporation on a dime and went
after an unexplored market with teeth bared. Their gambles paid off, and with the invention of the .NET
Framework, corporations and users are leveraging the power of the Internet in new ways.

 Luckily for Microsoft, the applications that drove the adoption of the Internet worked well on a desktop
operating system. Microsoft managed to adapt the Windows platform to provide the two killer Internet
applications (e - mail and the Web browser) to the end user with a minimum of hassle, securing the
Windows platform for another few years. It also delivered several powerful tools for developers, such as
Active Server Pages Extended (ASPX), web services, and Internet Information Server (IIS), and improved
existing tools such as Visual Basic and SQL Server, all of which made it easier for developers to build
advanced Internet applications.

 MSN 1.0
 When the Internet started to become popular in the early 1990s, Microsoft was trying to push the original
incarnation of Microsoft Network (MSN). Rather than the successful portal that it is today, MSN was
originally a proprietary dial - up service much like CompuServe. In the beginning, MSN did not provide
access to the rich world of the Internet as we know today; it was a closed system. Let us call the original
MSN “ MSN 1.0. ”

 MSN 1.0 provided an opportunity for innovative companies to steal a march on Microsoft, which was
already seen as an unshakable behemoth thanks to the combination of Windows and Office. As it turned
out, it was a missed opportunity.

 Imagine an alternative 1995 in which Microsoft stuck to its guns with MSN 1.0, rather than plotting the
course that brought it where it is today. Imagine that a large computer manufacturer, such as Dell,
identified this burgeoning community of forward - thinking business leaders and geeks called the Internet.
Also suppose Dell predicted that Microsoft ’ s strategy was to usurp this community with MSN 1.0 — in
other words, rather than cooperating with this community, Microsoft would decide to crush it at all costs.

 Now Dell needs to find a way to build this community. It predicts that home users and small businesses
will love the Internet and so puts together a very low - cost PC. They need software to run on it and,
luckily, they predict that the Web and e - mail will be the killer applications of this new community. They

c02.indd 26c02.indd 26 4/1/08 6:20:24 PM4/1/08 6:20:24 PM

Chapter 2: The Microsoft .NET Framework

27

find Linus Torvalds, who has been working on this thing called Linux since 1991, and they find Sun,
which is keen to start pushing Java as a programming language to anyone who will listen. Another
business partner builds a competent, usable suite of productivity applications for the platform using
Java. Another business partner builds easy - to - use connectivity solutions that allow the computers to
connect to the Internet and other computers in the LAN, easily and cheaply.

 Dell, Sun, and their selected business partners start pushing this new computer to anyone and everyone.
The concept is a success and, for the first time since 1981, the dominance of the IBM - compatible PC is
reduced, and sales of Microsoft products plummet. All because Microsoft did not move on a critical
opportunity.

 We all know that this did not happen, but there is nothing outlandish or crazy about this scenario. It
could have happened, and that is what scared Microsoft. It came very close to losing everything, and
.NET is its insurance against this happening again.

 The .NET Vision
 To understand .NET, you have to ignore the marketing hype from Microsoft and really think about what
it is doing. With the first version of the .NET Framework and indeed even now, Microsoft appears to be
pushing .NET as a platform for building web services and large - scale enterprise systems. Although we
cover web services in Chapter 21 , it is a tiny, tiny part of what .NET is all about. In simple terms, .NET
splits an operating system’s platform (be it Windows, Linux, Mac OS, or any other OS) into two layers:
a programming layer and an execution layer.

 All computer platforms are trying to achieve roughly the same effect: to provide applications to the user.
If you wanted to write a book, you would have the choice of using the word processor in StarOffice
under Linux, or Word under Windows. However, you would be using the computer in the same way;
in other words, the application remains the same irrespective of the platform.

 It is a common understanding that software support is a large part of any platform ’ s success. Typically,
the more high-quality the available software is for a given platform, the larger the consumer adoption of
that platform will be. The PC is the dominant platform because, back in the early 1980s, it was the
predominant target for software writers. That trend has continued to this day, and people are writing
applications that run on Windows, which targets the 32 - bit and 64 - bit Intel processors. The Intel processor
harks back to the introduction of the Intel 8086 processor in 1979 and today includes the Intel Core 2 Duo,
Intel Core 2 Quad, and Intel Xeon processors, and competitors like AMD ’ s Athlon and Turion.

 So without .NET, developers are still reliant on Windows, and Windows is still reliant on Intel. Although
the relationship between Microsoft and Intel is thought to be fairly symbiotic, it is reasonable to
assume that the strategists at Microsoft, who are feeling (rightly) paranoid about the future, might want
to lessen the dependence on a single family of chips too.

 The Windows/Intel combination (sometimes known as Wintel) is also known as the execution layer . This
layer takes the code and runs it — simple as that.

 Although .NET originally targeted and still targets only the Windows platform, you are seeing
development communities using open - source projects to convert .NET to run on other platforms such as
Linux and Unix. What this means is that a program written by a .NET developer on Windows could run
unchanged on Linux. In fact, the Mono project (www.mono-project.com) has already released several

c02.indd 27c02.indd 27 4/1/08 6:20:24 PM4/1/08 6:20:24 PM

Chapter 2: The Microsoft .NET Framework

28

versions of its product. This project has developed an open source version of a C# and VB.NET compiler,
a runtime for the Common Language Infrastructure (CLI, also known as the Common Intermediate
Language or CIL), a subset of the .NET classes, and other .NET goodies independent of Microsoft ’ s
involvement.

 .NET is a programming layer . It is totally owned and controlled by Microsoft. By turning all developers
into .NET programmers rather than Windows programmers, software is written as .NET software, not
Windows software.

 To see the significance of this, imagine that a new platform is launched and starts eating up market share
like crazy. Imagine that, like the Internet, this new platform offers a revolutionary way of working and
living that offers real advantages. With the .NET vision in place, all Microsoft has to do to gain a foothold
on this platform is develop a version of .NET that works on it. All of the .NET software now runs on the
new platform, lessening the chance that the new platform will usurp Microsoft ’ s market share.

 This Sounds like Java
 Some of this does sound a lot like Java. In fact, Java ’ s mantra of “ write once, run anywhere ” fits nicely
into the .NET doctrine. However, .NET is not a Java clone. Microsoft has a different approach.

 To write in Java, developers were expected to learn a new language. This language was based on C++,
and although C++ is a popular language, it is not the most popular language. In fact, the most popular
language in terms of number of developers is Visual Basic, and, obviously, Microsoft owns it. Some
estimates put the number of Visual Basic developers at approximately three million worldwide, but bear
in mind that this number includes both Visual Basic professionals and people who tinker with macros in
the various Office products.

 Whereas Java is “ one language, many platforms, ” .NET is “ many languages, one platform, for now. ”
Microsoft wants to remove the barrier to entry for .NET by making it accessible to anyone who has used
pretty much any language. The two primary languages for .NET are Visual Basic 2008 and C#. Visual
Studio 2008 comes supplied with both of these. Although C# is not C++, the developers of C++
applications should be able to migrate to C# with about the same amount of relearning that a
Visual Basic 6 developer will have to do in order to move to Visual Basic 2008. Of course the .NET
Framework supports developers using C++ and allows them to write C++ applications using the
.NET Framework.

 With Java, Sun attempted to build from the ground - up something so abstracted from the operating
system that when you compare an application written natively in something like Visual C++ with a Java
equivalent, it becomes fairly obvious that the Java version will run slower and not look as good in terms
of user interface. Sun tried to take too big a bite out of the problem by attempting to support everything,
so in the end it did not support one single thing completely. That ’ s probably why you see so many third
party and open source tools for Java developers, like Eclipse and Ruby.

 Microsoft ’ s .NET strategy is more like a military campaign. First, it will use its understanding of the
Windows platform to build .NET into something that will stand against a native C++ application. After it
wins over the voters on Windows, it may invade another platform, most likely Linux. This second stage
will prove the concept that .NET applications can be ported from one platform to the next. After
invading and conquering Linux, it may move to another platform. Microsoft has been attempting to
shake Solaris from the top spot in the server market for a long time, so it ’ s likely that it ’ ll go there next.

c02.indd 28c02.indd 28 4/1/08 6:20:24 PM4/1/08 6:20:24 PM

Chapter 2: The Microsoft .NET Framework

29

 Where Now?
 Microsoft has bet its future on .NET and rightly so with its ever-increasing adoption by developers and
businesses alike. With developers writing software for the programming layer rather than an execution
layer, it really does not matter whether Windows or Linux or some other software is the dominant
platform in 2011. The remainder of this chapter drills into the mechanics of .NET and takes a detailed
look at how the whole thing works.

 Writing Software for Windows
 To understand how .NET works, you need to look at how developers used to write software for
Windows. The general principle was the same as with .NET, only they had to do things in different ways
to work with different technologies — the Component Object Model (COM), ActiveX Data Objects
(ADO), and so forth.

 Any software that you write has to interact with various parts of the operating system to do its job. If the
software needs a block of memory to store data in, it interacts with the memory manager. To read a file
from disk, you use the disk subsystem. To request a file from the network, you use the network
subsystem. To draw a window on the screen, you use the graphics subsystem, and so on.

 This subsystems approach breaks down as far as .NET is concerned, because there is no commonality
between the ways you use the subsystems on different platforms, despite the fact that platforms tend to
have things in common. For example, even if you are writing an application for Linux, you may still
need to use the network, disk, and screen subsystems. However, because different organizations
developed these platforms, the way you open a file using the Linux platform may be different from the
way you do it on Windows. If you want to move code that depends on one platform to another, you will
probably have to rewrite portions of the code. You will also have to test the code to ensure it still works
as intended.

 Windows software communicates with the operating system and various subsystems using something
called the Windows 32 - bit Application Programming Interface (Win32 API). Although object - orientation
in programming was around at the time, this API was designed to be an evolution of the original
Windows API, which predates the massive adoption of object - oriented techniques that are discussed in
Chapter 11 .

 It is not easy to port the Win32 API to other platforms, which is why there is no version of the Win32 API
for Linux even though Linux has been around for over a decade. There is a cut - down version of the
Win32 API for the Mac, but this has never received much of an industry following.

 The Win32 API provides all basic functionality, but now and again, Microsoft extends the capabilities of
Windows with a new API. A classic example is the Windows Internet API, also known as the WinInet
API . This API allows an application to download resources from a web server, upload files to an FTP
server, discover proxy settings, and so on. Again, it is not object oriented, but it does work. Another
example of this is the Win32 API that is part of the Windows Vista operating system. Since so many of
the core components of the operating system have changed, a new version of the Win32 API had to be
developed for this operating system.

c02.indd 29c02.indd 29 4/1/08 6:20:25 PM4/1/08 6:20:25 PM

Chapter 2: The Microsoft .NET Framework

30

 A large factor in the success of early versions of Visual Basic is that it took the tricky - to - understand
Win32 API calls and packaged them in a way that could be easily understood. Using the native Win32
API, it takes about a hundred lines of code to draw a window on the screen. The same effect can be
achieved in Visual Basic with a few gestures of the mouse. Visual Basic represents an abstraction layer on
top of the Win32 API that makes it easier for developers to use.

 A long - time frustration for C++ developers was that a lot of the things that were very easy to do in
Visual Basic remained not so much hard as laborious in C++. Developers like C++ because it gives them
an amazing amount of control over how a program works, but their programs take longer to write.
Microsoft introduced the Microsoft Foundation Classes (MFC) because of this overhead, which, along
with the IDE of Visual Studio, brought the ease of Visual C++ development closer to that of Visual Basic.

 The .NET Framework Classes
 Unlike the Win32 API, .NET is totally object - oriented. Anything you want to do in .NET, you are going to
be doing with an object. If you want to open a file, you create an object that knows how to do this. If you
want to draw a window on the screen, you create an object that knows how to do this. When you get to
Chapter 11 , you will discover that this is called encapsulation ; the functionality is encapsulated in an
object, and you don ’ t really care how it ’ s done behind the scenes.

 Although there is still the concept of subsystems in .NET, these subsystems are never accessed directly —
 instead they are abstracted away by the Framework classes. Either way, your .NET application never has
to talk directly to the subsystem (although you can do so if you really need or want to). Rather, you talk to
objects, which then talk to the subsystem. In Figure 2 - 1 , the box marked System.IO.File is a class defined
in the .NET Framework.

Irrespective of the
platform you are writing
for, you still only use the
Framework classes.

.NET supports Windows
and Windows Mobile so
System.IO.File can
communicate with any
version of Windows.

System.IO.File provides
access to a file on disk,
either on your local
computer or the network.

Programming Languages

Execution Platforms

Windows File
System

Linux File SystemWindows Mobile
File System

Your Application

System.IO.File

 Figure 2 - 1

c02.indd 30c02.indd 30 4/1/08 6:20:25 PM4/1/08 6:20:25 PM

Chapter 2: The Microsoft .NET Framework

31

 If you are talking to objects that talk to subsystems, do you really care what the subsystem looks like?
Thankfully the answer is “ no, ” and this is how Microsoft removes your reliance on Windows. If you
know the name of a file, you use the same objects to open it whether you are running on a Windows
Vista machine, a Pocket PC, or even, the Mono Project version of the .NET Framework, Linux. Likewise,
if you need to display a window on the screen, you do not care whether it is on a Windows operating
system or on a Mac.

 The .NET Framework is actually a set of classes called base classes . The base classes in the .NET
Framework are rather extensive and provide the functionality for just about anything that you need to
do in a Windows or Web environment, from working with files to working with data to working with
forms and controls.

 The class library itself is vast, containing several thousand objects available to developers, although in
your day - to - day development you will only need to understand a handful of these to create powerful
applications.

 Another really nice thing about the base classes in the .NET Framework is that they are the same
irrespective of the language used. So, if you are writing a Visual Basic 2008 application, you use the same
object as you would from within a C# application. That object will have the same methods, properties,
and events, meaning that there is very little difference in capabilities between the languages, since they
all rely on the framework.

 Executing Code
 The base class library is only half the equation. After you have written the code that interacts with the
classes, you still need to run it. This poses a tricky problem; to remove the reliance on the platform is to
remove the reliance on the processor.

 Whenever you write software for Windows, you are guaranteed that this code will run on an Intel chip.
With .NET, Microsoft does not want to make this guarantee. It might be that the dominant chip in 2011 is
a Transmeta chip, or something you have never yet seen. What needs to be done is to abstract .NET from
the processor, in a similar fashion to the way .NET is abstracted from the underlying subsystem
implementations.

 Programming languages are somewhere in between the languages that people speak every day and the
language that the computer itself understands. The language that a computer uses is the machine code
(sometimes called machine instructions or machine language) and consists entirely of zeros and ones, each
corresponding to electrical current flowing or not flowing through this or that part of the chip. When
you are using a PC with an Intel or competing processor, this language is more specifically known as x 86
machine instructions.

 If you wrote an application with Visual Basic 6, you had to compile it into a set of x 86 machine
instructions before you could deploy it. This machine code would then be installed and executed on any
machine that supported x 86 instructions and was also running Windows.

 If you write an application with Visual Basic 2008, you still have to compile the code. However, you do
not compile the Visual Basic 2008 code directly into x 86 machine instructions, because that would mean
that the resulting program would run only on processors that support this language — in other words,
the program would run only on Intel chips and their compatible competitors. Instead, compilation

c02.indd 31c02.indd 31 4/1/08 6:20:25 PM4/1/08 6:20:25 PM

Chapter 2: The Microsoft .NET Framework

32

creates something called Microsoft Intermediate Language (MSIL). This language is not dependent on any
processor. It is a layer above the traditional machine code.

 MSIL code will not just run on any processor, because processors do not understand MSIL. To run the
code, it has to be further compiled, as shown in Figure 2 - 2 , from MSIL code into the native code that
the processor understands.

Visual Basic
Source Code

Visual Basic
Compiler

Visual Basic 2008
Source Code

Visual Basic 2008
Compiler

MSIL MSIL to x86
Converter

x86 Instruction
Set

x86 Instructions

With VB6 the program source code is
converted to x86 instructions (also
known as “native” or “machine” code).

With Visual Basic 2008
the source is compiled
into MSIL instructions.

Before the program executes a portion
of code it converts the MSIL instructions
to x86 instructions. This is known as
Just in Time (JIT) compilation.

 Figure 2 - 2

 However, this approach also provides the industry with a subtle problem. In a world where .NET is
extremely popular (some might say dominant), who is responsible for developing an MSIL - to - native
compiler when a new processor is released? Is the new processor at the mercy of Microsoft ’ s willingness
to port .NET to the chip? Time will tell.

 Next, take a look at the thing that makes .NET work: the Common Language Runtime.

 Common Language Runtime
 The Common Language Runtime (CLR) is the heart of .NET. CLR takes your .NET application, compiles
it into native processor code, and runs it. It provides an extensive range of functionalities for helping
applications run properly:

 Code loading and execution

 Application isolation

 Memory management

 Security

 Exception handling

 Interoperation

❑

❑

❑

❑

❑

❑

c02.indd 32c02.indd 32 4/1/08 6:20:26 PM4/1/08 6:20:26 PM

Chapter 2: The Microsoft .NET Framework

33

 Do not worry if you do not understand what all these are — the following sections discuss all of them
except for memory management. Memory management is quite a complex subject and is discussed in
Chapter 12 .

 Code Loading and Execution
 The code loading and execution part of the CLR deals with reading the MSIL code from the disk and
running it. It compiles the code from MSIL into the native language (machine code) that the processor
understands.

 Java also has a concept similar to MSIL, known as byte code, which the Java runtime loads and
executes.

 Application Isolation
 One important premise of modern operating systems like Windows and Linux is that applications are
isolated from one another. This is critically important from both security and stability standpoints.

 Imagine that you have a badly written program and it crashes the PC. Should this happen? No, you
want only the badly behaved program to crash, as you do not want other applications or the operating
system itself to be affected by a program running on it. For example, if your e - mail program crashes, you
do not want to lose any unsaved changes in your word processor. With proper application isolation, one
application crashing should not cause others to crash.

 In some instances, even under Windows XP, a badly behaved program can do something so horrendous
that the entire machine crashes. This is commonly known as a Blue Screen of Death (BSOD), so called
because your attractive Windows desktop is replaced with a stark blue screen with a smattering of white
text explaining the problem. This problem should be alleviated in .NET, but it is unlikely to be
completely solved.

 The other aspect to application isolation is one of security. Imagine that you are writing a personal and
sensitive e - mail. You do not want other applications running on your computer to be able to grab, or
even stumble across, the contents of the e - mail and pass it on to someone else. Applications running in
an isolated model cannot just take what they want. Instead, they have to ask whether they can have
something, and they are given it only if the operating system permits it.

 This level of application isolation is already available in Windows. .NET extends and enhances this
functionality by further improving it.

 Security
 .NET has powerful support for the concept of code security. The Framework was designed to give
system administrators, users, and software developers a fine level of control over what a program can
and cannot do.

 Imagine that you have a program that scans your computer ’ s hard disk looking for Word documents.
You might think this is a useful program if it is the one that you run to find documents that are missing.
Now imagine that this program is delivered through e - mail and it automatically runs and e - mails copies
of any “ interesting ” documents to someone else. You are less likely to find that useful.

c02.indd 33c02.indd 33 4/1/08 6:20:26 PM4/1/08 6:20:26 PM

Chapter 2: The Microsoft .NET Framework

34

 This is the situation you find yourself in today with old - school Windows development. To all intents and
purposes, Windows applications have unrestricted access over your computer and can do pretty much
anything they want. That is why the Melissa and I Love You – type viruses are possible — Windows does
not understand the difference between a benign script file you write that, say, looks through your
address book and sends e - mails to everyone, and those written by others and delivered as viruses.

 Windows Vista solves this problem by locking down the security aspects of Windows applications. If an
application is not properly signed, Vista will prompt you for permission to let the program run.
Likewise, Vista will prompt you for any program needing administrative permission to do operating
system tasks. You then have the option of letting these programs run or canceling them, thus protecting
your computer from these rogue viruses.

 With .NET this situation changes because of the security features built into the CLR. Under the CLR,
code requires evidence to run. This evidence can consist of policies set by you and your system
administrator, as well as the origin of the code (for example, whether it came off your local machine,
off a machine on your office network, or over the Internet).

 Security is a very involved topic and is addressed only briefly in Appendix C of this book. However, you
can find many books that cover only the topic of .NET security and it is worthwhile to find the book that
best meets your needs.

 Interoperation
 Interoperation in the .NET Framework is achieved on various levels not covered here. However, we
must point out some of the types of interoperation that it provides. One kind of interoperation is at
the core of the framework, where data types are shared by all managed languages. This is known as the
Common Type System (CTS). This is a great improvement for language interoperability (see the section
 “ The Common Type System and Common Language Specification ” later in this chapter).

 The other type of interoperation is that of communicating with existing Component Object Model
(COM) interfaces. Because a large application-software base is written in COM, it was inevitable that
.NET should be able to communicate with existing COM libraries. This is also known as COM interop.

 Exception Handling
 Exception handling is the concept of dealing with exceptional happenings when you are running the
code. Imagine that you have written a program that opens a file on disk. What if that file is not there?
Well, the fact that the file is not there is exceptional, and you need to handle it in some way. It could be
that you crash, or you could display a window asking the user to supply a new file name. Either way,
you have a fine level of control over what happens when an error does occur.

 .NET provides a powerful exception handler that can catch exceptions when they occur and give your
programs the opportunity to react and deal with the problem in some way. Chapter 10 talks about
exception handling in more detail, but for now, think of exception handling as something provided by
the CLR to all applications.

c02.indd 34c02.indd 34 4/1/08 6:20:27 PM4/1/08 6:20:27 PM

Chapter 2: The Microsoft .NET Framework

35

 The Common Type System and Common
Language Specification

 One of the most important aspects of .NET that Microsoft had to get right is inter - language operation.
Remember, Microsoft ’ s motivation was to get any developer using any language to use .NET, and for
this to happen, all languages had to be treated equally. Likewise, applications created in one language
have to be understood by other languages. For example, if you create a class in Visual Basic 2008, a C#
developer should be able to use and extend that class. Alternatively, you may need to define a string in
C#, pass that string to an object built in Visual Basic 2008, and make that object understand and
manipulate the string successfully.

 The Common Type System (CTS) allows software written in different languages to work together. Before
.NET, Visual Basic and C++ handled strings in completely differently ways, and you had to go through a
conversion process each time you went from one to the other. With the CTS in place, all .NET languages
use strings, integers, and so on in the same way, and therefore no conversion needs to take place.

 In addition, the Common Language Specification (CLS) was introduced by Microsoft to make it easier
for language developers to adapt their languages to make them compatible with .NET.

 The Common Type System and Common Language Specification are the foundation for this
interoperation, but detailed discussion is, unfortunately, beyond the scope of this book.

 When talking to other .NET developers, you will likely hear the term managed code. This simply describes
code that runs inside the CLR. In other words, you get all of the advantages of the CLR, such as the
memory management and all of the language interoperability features previously mentioned.

 Code written in Visual Basic 2008 and C# is automatically created as managed code. C++ code is not
automatically created as managed code, because C++ does not fit well into the memory management
scheme implemented by the CLR. You can, if you are interested, turn on an option to create managed
code from within C++, in which case you use the term managed C ++.

 Hand - in - hand with managed code is managed data . As you can probably guess, this is data managed by
the CLR, although in nearly all cases this data actually consists of objects. Objects managed by the CLR
can easily be passed between languages.

 Summary
 This chapter introduced the Microsoft .NET Framework and explained why Microsoft chose to radically
change the way programs were written for Windows. You also saw that part of Microsoft ’ s motivation
for this was to move the dependence of developers from the execution platform (Windows, Linux,
whatever) over to a new programming platform that it would always own.

 After learning about why Microsoft developed .NET, you saw how writing for it is not much different
from writing for Windows. You still have a layer that you program against; it is just that now, rather than
being flat like the Win32 API, it is a rich set of classes that allows you to write true object - oriented
programs no matter what .NET language you choose to develop in. This chapter also discussed how
these classes could be ported to other platforms and how your applications could transfer across.

c02.indd 35c02.indd 35 4/1/08 6:20:27 PM4/1/08 6:20:27 PM

Chapter 2: The Microsoft .NET Framework

36

 Finally, you looked at some of the more technical aspects of the .NET Framework, specifically the
Common Language Runtime.

 To summarize, you should now understand:

 Microsoft ’ s new business venture

 The goals of the .NET Framework

 The abstractions that the .NET Framework provides

 An introduction to the core of the .NET Framework

❑

❑

❑

❑

c02.indd 36c02.indd 36 4/1/08 6:20:27 PM4/1/08 6:20:27 PM

 3
Writing Software

 Now that you have Visual Basic 2008 up and running and even written a simple program, you ’ re
going to look at the fundamentals behind the process of writing software and start putting
together some exciting programs of your own.

 In this chapter, you will:

 Learn about algorithms

 Learn to use variables

 Explore different data types, including integers, floating - point numbers, strings, and dates

 Study scope

 Learn about debugging applications

 Learn more about how computers store data in memory

 Information and Data
 Information describes facts and can be presented or found in any format, whether that format is
optimized for humans or for computers. For example, if you send four people to different
intersections to survey traffic, at the end of the process you will end up with four handwritten
tallies of the number of cars that went past (say, a tally for each hour).

 The term data is used to describe information that has been collated, ordered, and formatted in
such a way that it can be used by a piece of computer software. The information you have (several
notebooks full of handwritten scribbles) cannot be directly used by a piece of software. Rather,
someone has to work with it to convert it into usable data the computer can understand. For
example, the scribbles can be transferred to an Excel spreadsheet that can be directly used by a
piece of software designed to analyze the results.

❑

❑

❑

❑

❑

❑

c03.indd 37c03.indd 37 4/1/08 6:21:03 PM4/1/08 6:21:03 PM

Chapter 3: Writing Software

38

 Algorithms
 The computer industry changes at an incredible speed. Most professionals constantly retrain and re -
 educate themselves to keep their skills sharp and up - to - date. However, some aspects of computing
haven ’ t really changed since they were first invented and perhaps won ’ t change within our lifetimes.
The process and discipline of software development is a good example of an aspect of computer
technology whose essential nature hasn ’ t changed since the beginning.

 For software to work, you need to have some data to work with. The software then takes this data and
manipulates it into another form. For example, software may take your customer database stored as ones
and zeros on your computer ’ s hard drive and make it available for you to read on your computer ’ s
monitor. The on - board computer in your car constantly examines environmental and performance
information and continually adjusts the fuel mix to make the car run more efficiently. Your telephone
service provider records the phone number of each call and the length of the call that you make and
generates bills based on this information.

 The base underpinning of all software is the algorithm . Before you can write software to solve a problem,
you have to break it down into a step - by - step description of how the problem is going to be solved. An
algorithm is independent of the programming language, so, if you like, you can describe it to yourself
either as a spoken language, with diagrams, or with whatever helps you visualize the problem.

 Imagine that you work for a wireless telephone company and need to produce bills based on calls that
your customers make. Here ’ s an algorithm that describes a possible solution:

 1. On the first day of the month, you need to produce a bill for each customer you have.

 2. For each customer, you have a list of calls that the customer has made in the previous month.

 3. You know the duration of each call, and the time of day when the call was made. Based on this
information, you can determine the cost of each call.

 4. For each bill, you total the cost of each call.

 5. If a customer exceeds a preset time limit, you charge the customer a certain rate for each minute
that exceeds the allotted time.

 6. You apply sales tax to each bill.

 7. After you have the final bill, you need to print it and mail it.

 Those seven points describe, fairly completely, an algorithm for a piece of software that generates bills
for a wireless telephone company. At the end of the day, it doesn ’ t matter whether you build this solution
in C++, Visual Basic 2008, C#, Java, or whatever — the basic algorithms of the software never change.
(However, it ’ s important to realize that each of those seven parts of the algorithm may well be made up
of smaller, more detailed algorithms.)

 The good news for a newcomer to programming is that algorithms are usually easy to construct. There
shouldn ’ t be anything in the preceding algorithm that you don ’ t understand. Algorithms always follow
common - sense reasoning, although you may have to code algorithms that contain complex
mathematical or scientific reasoning. It may not seem like common sense to you, but it will to someone
else! The bad news is that the process of turning the algorithm into code can be arduous. As a
programmer, learning how to construct algorithms is the most important skill you will ever obtain.

c03.indd 38c03.indd 38 4/1/08 6:21:04 PM4/1/08 6:21:04 PM

Chapter 3: Writing Software

39

 All good programmers respect the fact that the preferred language of the programmer is largely
irrelevant. Different languages are good at doing different things. C++ gives the developer a lot of control
over the way a program works; however, it ’ s harder to write software in C++ than it is in Visual Basic
2008. Likewise, building the user interface for desktop applications is far easier to do in Visual Basic 2008
than it is in C++. (Some of these problems do go away when you use managed C++ with .NET, so this
statement is less true today than it was years ago.) What you need to learn to do as a programmer is to
adapt different languages to achieve solutions to a problem in the best possible way. Although when you
begin programming you ’ ll be hooked on one language, remember that different languages are focused
toward developing different kinds of solutions. At some point, you may have to take your basic skills as
an algorithm designer and coder to a new language.

 What Is a Programming Language?
 A programming language is anything capable of making a decision. Computers are very good at making
decisions, but they have to be fairly basic, for example: “ Is this number greater than three? ” or “ Is this
car blue? ”

 If you have a complicated decision to make, the process of making that decision has to be broken down
into simple parts that the computer can understand. You use algorithms to determine how to break
down a complicated decision into simpler ones.

 A good example of a problem that ’ s hard for a computer to solve is recognizing peoples ’ faces. You can ’ t
just say to a computer, “ Is this a picture of Dave? ” Instead, you have to break the question down into a
series of simpler questions that the computer can understand.

 The decisions that you ask computers to make will have one of two possible answers: yes or no. These
possibilities are also referred to as true and false and also as 1 and 0. In software terms, you cannot make a
decision based on the question, “ How much bigger is 10 compared to 4? ” Instead, you have to make
a decision based on the question, “ Is 10 bigger than 4? ” The difference is subtle, yet important — the first
question does not yield an answer of yes or no, whereas the second question does. Of course, a computer
is more than capable of answering the first question, but this is actually done through an operation; in
other words, you have to actually subtract 4 from 10 to use the result in some other part of your algorithm.

 You might be looking at the requirement for yes/no answers as a limitation, but it isn ’ t really. Even in
our everyday lives the decisions we make are of the same kind. Whenever you decide something, you
accept (yes, true, 1) something and reject (no, false, 0) something else.

 You are using Visual Basic 2008 for a language, but the important aspects of programming are largely
language independent of the language. Understanding that any software, no matter how flashy it is, or
which language it is written in, is made up of methods (functions and subroutines: the lines of code that
actually implement the algorithm) and variables (place holders for the data the methods manipulate) is key.

Working with Variables
 A variable is something that you store a value in as you work through your algorithm. You can then
make a decision based on that value (for example, “ Is it equal to 7? ” or “ Is it more than 4? ”), or you can
perform operations on that value to change it into something else (for example, “ Add 2 to the value ” ,
 “ Multiply it by 6 ” , and so on).

c03.indd 39c03.indd 39 4/1/08 6:21:05 PM4/1/08 6:21:05 PM

Chapter 3: Writing Software

40

 Before you get bogged down in code, take a moment to look at another algorithm:

 1. Create a variable called intNumber and store in it the value 27 .

 2. Add 1 to the value of the variable called intNumber and store the new value in the same
variable.

 3. Display the value of the variable called intNumber to the user.

 This algorithm, creates a variable called intNumber and stores in it the value 27 . This means that there ’ s
a part of the computer ’ s memory that is being used by the program to store the value 27 . That piece of
memory keeps storing that value until you change it or tell the program that you don ’ t need it any more.

 In the second step, an add operation is performed. You ’ re taking the value contained in intNumber and
adding 1 to its value. After you ’ ve performed this operation, the piece of memory given over to storing
 intNumber contains the value 28 .

 In the final point, you want to tell the user what the value of intNumber is. So you read the current
value from memory and write it out to the screen.

 Again, there ’ s nothing about the algorithm there that you can ’ t understand. It ’ s just common sense!
However, the Visual Basic 2008 code looks a little more cryptic. In the following Try It Out, you learn
more about working with variables first hand.

 Try It Out Working with Variables

 1. Create a new project in Visual Studio 2008 by selecting File New Project from the menu bar.
In the New Project dialog box, select Windows Forms Application from the right - hand pane
and enter the project name as Variables and click OK (see Figure 3 - 1).

Figure 3-1

c03.indd 40c03.indd 40 4/1/08 6:21:05 PM4/1/08 6:21:05 PM

Chapter 3: Writing Software

41

 2. Make Form1 a little smaller and add a Button control from the Toolbox to it. Set the button ’ s
 Text property to Add 1 to intNumber and its Name property to btnAdd. Your form should
look similar Figure 3 - 2 .

Figure 3-2

 3. Double - click the button to open the btnAdd_Click event handler. Add the following
highlighted code to it:

 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 Dim intNumber As Integer
 intNumber = 27
 intNumber = intNumber + 1
 MessageBox.Show(“Value of intNumber + 1 = “ & intNumber.ToString, _
 “Variables”)

 End Sub

 4. Click the Save All button on the toolbar, verify the information in the Save Project dialog box,
and then click the Save button to save your project.

 5. Run the project, click the Add 1 to intNumber button, and you ’ ll see a message box like the
one in Figure 3 - 3 .

Figure 3-3

 How It Works
 The program starts at the top and works its way down, one line at a time, to the bottom. The first line
defines a new variable, called intNumber :

 Dim intNumber As Integer

 Dim is a keyword. As stated in Chapter 1 , a keyword has a special meaning in Visual Basic 2008 and is
used for things such as commands. Dim tells Visual Basic 2008 that what follows is a variable
definition.

c03.indd 41c03.indd 41 4/1/08 6:21:05 PM4/1/08 6:21:05 PM

Chapter 3: Writing Software

42

 Its curious name harks back to the original versions of the BASIC language. BASIC has always needed
to know how much space to reserve for an array (discussed in Chapter 5), so it had a command to tell it
the dimensions of the array — Dim for short. Visual Basic extends that command to all other kinds of
variables as well to mean make some space for in general.

 The variable name comes next and is intNumber . Note that the variable name uses the Modified
Hungarian notation discussed in Chapter 1 . In this case the prefix int is short for Integer, which
represents the data type for this variable, as described in the following paragraph. Then a name was
chosen for this variable; in this case the name is Number . Whenever you see this variable throughout
your code, you know that this variable will represent a number that is of the Integer data type.

 As Integer tells Visual Basic 2008 what kind of value you want to store in the variable. This is
known as the data type . For now, all you need to know is that this is used to tell Visual Basic 2008 that
you expect to store an integer (whole number) value in the variable.

 The next line sets the value of intNumber :

 intNumber = 27

 In other words, it stores the value 27 in the variable intNumber .

 The next statement simply adds 1 to the variable intNumber :

 intNumber = intNumber + 1

 What this line actually means is: Keep the current value of intNumber and add 1 to it.

The final line displays a message box with the text Value of intNumber + 1 = and the current
value of intNumber . You ’ ve also set the title of the message box to Variables to match the project
name. When using numeric variables in text, it is a good idea to use the ToString method to cast the
numeric value to a string. This prevents the compiler from having to figure out that this is a number
and then converting that number to a string so it can be displayed:

 MessageBox.Show(“Value of intNumber + 1 = “ & intNumber.ToString, _
 “Variables”)

 Comments and Whitespace
 When writing software code, you must be aware that you or someone else may have to change that code
in the future. Therefore, you should try to make it as easy to understand as possible.

 Comments
 Comments are parts of a program that are ignored by the Visual Basic 2008 compiler, which means you
can write whatever you like in them, be it English, C#, Perl, FORTRAN, Chinese, whatever. What
they ’ re supposed to do is help the human developer reading the code understand what each part of the
code is supposed to be doing.

c03.indd 42c03.indd 42 4/1/08 6:21:06 PM4/1/08 6:21:06 PM

Chapter 3: Writing Software

43

 All languages support comments, not just Visual Basic 2008. If you ’ re looking at C# code, for example,
you ’ ll find that comments start with a double forward slash (//).

 What ’ s a good way of knowing when you need a comment? Well, it ’ s different for different situations,
but a good rule of thumb is to think about the algorithm. The program in the previous Try It Out exercise
had this algorithm:

 1. Define a value for intNumber .

 2. Add 1 to the value of intNumber .

 3. Display the new value of intNumber to the user.

 You can add comments to the code from that example to match the steps in the algorithm:

 ‘Define a variable for intNumber
 Dim intNumber As Integer

 ‘Set the initial value
 intNumber = 27

 ‘Add 1 to the value of intNumber
 intNumber = intNumber + 1

 ‘Display the new value of intNumber
 MessageBox.Show(“Value of intNumber + 1 = “ & intNumber.ToString, _
 “Variables”)

 In Visual Basic 2008, you begin your comments with an apostrophe (‘). Anything on the same line
following that apostrophe is your comment. You can also add comments onto a line that already has
code, like this:

intNumber = intNumber + 1 ‘Add 1 to the value of intNumber

 This works just as well, because only comments (not code) follow the apostrophe. Note that the
comments in the preceding code, more or less, match the algorithm. A good technique for
adding comments is to write a few words explaining the stage of the algorithm that ’ s being expressed as
software code.

 You can also use the built - in XML Documentation Comment feature of Visual Studio 2008 to create
comment blocks for your methods. To use this feature, place your cursor on the blank line preceding
your method definition and type three consecutive apostrophes. The comment block is automatically
inserted as shown in the code here.

 ‘’’ < summary >
 ‘’’
 ‘’’ < /summary >
 ‘’’ < param name=”sender” > < /param >
 ‘’’ < param name=”e” > < /param >
 ‘’’ < remarks > < /remarks >
 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

43

c03.indd 43c03.indd 43 4/1/08 6:21:06 PM4/1/08 6:21:06 PM

Chapter 3: Writing Software

44

 What ’ s really cool about this feature is that Visual Studio 2008 automatically fills in the name values of
the parameters in the comment block based on the parameters defined in your method. If your method
does not have any parameters, the < param > tag will not be inserted into the comment block.

 Once a comment block has been inserted, you can provide a summary of what the method does and any
special remarks that may need to be noted before this method is called or any other special requirements
of the method. If the method returns a value, then a < returns > tag will also be inserted, and you can
insert the return value and description.

 Comments are primarily used to make the code easier to understand, either to a new developer who ’ s
never seen your code before or to you when you haven ’ t reviewed your code for a while. The purpose of
a comment is to point out something that might not be immediately obvious or to summarize code to
enable the developer to understand what ’ s going on without having to ponder each and every line.

 You ’ ll find that programmers have their own guidelines about how to write comments. If you work for a
larger software company, or your manager/mentor is hot on coding standards, they ’ ll dictate which
formats your comments should take and where you should and should not add comments to the code.

 Whitespace
 Another important aspect of writing readable code is to leave lots of whitespace . Whitespace (space on the
screen or page not occupied by characters) makes code easier to read, just as spaces do in English. In
the previous example, there is a blank line before each comment. This implies to anyone reading the
code that each block is a unit of work, which it is.

 You ’ ll be coming back to the idea of whitespace in the next chapter, which discusses controlling the flow
through your programs using special code blocks, but you ’ ll find that the use of whitespace varies
between developers. For now, remember not to be afraid to space out your code — it ’ ll greatly improve
the readability of your programs, especially as you write long chunks of code.

 The compiler ignores whitespace and comments, so there are no performance differences between code
with lots of whitespace and comments, and code with none.

 Data Types
 When you use variables, it ’ s a good idea to know ahead of time the things that you want to store in
them. So far in this chapter, you ’ ve seen a variable that holds an integer number.

 When you define a variable, you must tell Visual Basic 2008 the type of data that should be stored in it.
As you might have guessed, this is known as the data type , and all meaningful programming languages
have a vast array of different data types to choose from. The data type of a variable has a great impact on
how the computer will run your code. In this section, you ’ ll take a deeper look at how variables work
and how their types affect the performance of your program.

c03.indd 44c03.indd 44 4/1/08 6:21:06 PM4/1/08 6:21:06 PM

Chapter 3: Writing Software

45

 Working with Numbers
 When you work with numbers in Visual Basic 2008, you ’ ll be working with two kinds of numbers:
 integers and floating - point numbers . Both have very specific uses. Integers are usually not much use for
calculations of quantities, for example, calculating how much money you have left on your mortgage or
calculating how long it would take to fill a swimming pool with water. For these kinds of calculations,
you ’ re more likely to use floating - point variables because they can be used to represent numbers with
fractional parts, whereas integer variables can hold only whole numbers.

 On the other hand, oddly, you ’ ll find that in your day - to - day activities you ’ re far more likely to use
integer variables than floating - point variables. Most of the software that you write will use numbers to
keep track of what is going on by counting, rather than to calculate quantities.

 For example, suppose you are writing a program that displays customer details on the screen.
Furthermore, suppose you have 100 customers in your database. When the program starts, you ’ ll display
the first customer on the screen. You also need to keep track of which customer is being displayed, so
that when the user says, “ Next, please, ” you ’ ll actually know which one is next.

 Because a computer is more comfortable working with numbers than with anything else, you ’ ll usually
find that each customer has been given a unique number. This unique number will, in most cases, be an
integer. What this means is that each of your customers will have a unique integer number between 1
and 100 assigned to them. In your program, you ’ ll also have a variable that stores the ID of the customer
that you ’ re currently looking at. When the user asks to see the next customer, you add one to that ID
(a.k.a. increment by one) and display the new customer.

 You ’ ll see how this works as you move on to more advanced topics, but for now, rest assured that you ’ re
more likely to use integers than floating - point numbers. Take a look now at some common operations.

 Common Integer Math Operations
 In this section, you create a new project for your math operations.

 Try It Out Common Integer Math

 1. Create a new project in Visual Studio 2008 by selecting File New Project from the menu. In
the New Project dialog box, select Windows Forms Application from the right pane (refer to
Figure 3 - 1), and enter the project name as Integer Math and click OK.

 2. Using the Toolbox, add a new Button control to Form1 as before. Set its Name property to
btnIntMath and its Text property to Math Test. Double - click it and add the following
highlighted code to the new Click event handler that will be created:

 Private Sub btnIntMath_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnIntMath.Click

 ‘Declare variable
 Dim intNumber As Integer

 ‘Set number, add numbers, and display results
 intNumber = 16

c03.indd 45c03.indd 45 4/1/08 6:21:07 PM4/1/08 6:21:07 PM

Chapter 3: Writing Software

46

 intNumber = intNumber + 8
 MessageBox.Show(“Addition test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, subtract numbers, and display results
 intNumber = 24
 intNumber = intNumber - 2
 MessageBox.Show(“Subtraction test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, multiply numbers, and display results
 intNumber = 6
 intNumber = intNumber * 10
 MessageBox.Show(“Multiplication test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, divide numbers, and display results
 intNumber = 12
 intNumber = CType(intNumber / 6, Integer)
 MessageBox.Show(“Division test... “ & intNumber.ToString, _
 “Integer Math”)

 End Sub

 3. Save your project by clicking the Save All button on the toolbar.

 4. Run the project and click the Math Test button. You ’ ll be able to click through four message
box dialog boxes, as shown in Figure 3 - 4 .

Figure 3-4

 How It Works
 None of the code you ’ ve seen should be too baffling. You ’ ve already seen the addition operator before.
Here it is again:

 ‘Set number, add numbers, and display results
 intNumber = 16
 intNumber = intNumber + 8
 MessageBox.Show(“Addition test... “ & intNumber.ToString, _
 “Integer Math”)

c03.indd 46c03.indd 46 4/1/08 6:21:07 PM4/1/08 6:21:07 PM

Chapter 3: Writing Software

47

 So, all you ’ re saying is this:

 1. Let intNumber be equal to the value of 16 .

 2. Then, let intNumber be equal to the current value of intNumber (which is 16) plus 8 .

 As you can see from the message dialog box shown in Figure 3 - 4 , you get a result of 24 , which is
correct.

 The subtraction operator is a minus (–) sign. Here it is in action:

 ‘Set number, subtract numbers, and display results
 intNumber = 24
 intNumber = intNumber - 2
 MessageBox.Show(“Subtraction test... “ & intNumber.ToString, _
 “Integer Math”)

 Again, same deal as before:

 1. Let intNumber be equal to the value 24 .

 2. Let intNumber be equal to the current value of intNumber (which is 24) minus 2 .

 The multiplication operator is an asterisk (*). Here it is in action:

 ‘Set number, multiply numbers, and display results
 intNumber = 6
 intNumber = intNumber * 10
 MessageBox.Show(“Multiplication test... “ & intNumber.ToString, _
 “Integer Math”)

 Here your algorithm states:

 1. Let intNumber be equal to the value 6 .

 2. Let intNumber be equal to the current value of intNumber (which is 6) times 10 .

 Finally, the division operator is a forward slash (/). Here it is in action:

 ‘Set number, divide numbers, and display results
 intNumber = 12
 intNumber = CType(intNumber / 6, Integer)
 MessageBox.Show(“Division test... “ & intNumber.ToString, _
 “Integer Math”)

 Again, all you ’ re saying is:

 1. Let intNumber be equal to the value of 12 .

 2. Let intNumber be equal to the current value of intNumber (which is 12) divided by 6 .

c03.indd 47c03.indd 47 4/1/08 6:21:07 PM4/1/08 6:21:07 PM

Chapter 3: Writing Software

48

 The division of intNumber by the value of 6 has been enclosed in the CType function. The CType
function returns the result of explicitly converting an expression to a specified data type, which in this
case is an Integer number as indicated by the Integer type name. Because the division of two numbers
could result in a floating - point number, you should use the CType function to force the results to an
integer number.

 This explicit conversion is not necessary when the Option Strict setting is set to Off but is required
when this setting is set to On. The Option Strict setting ensures compile - time notification of narrowing
conversion of numeric operations so they can be avoided and prevent run - time errors.

 To access the settings for Option Strict, click the Tools menu in Visual Studio 2008 and then click the
Options menu item. In the Options dialog box, expand the Projects and Solutions node and then click
VB Defaults. From here you can turn the Option Strict setting on and off.

 Integer Math Shorthand
 In the next Try It Out, you ’ ll see how you can perform the same operations without having to write as
much code by using shorthand operators (assignment operators). Although they look a little less logical
than their more verbose counterparts, you ’ ll soon learn to love them.

 Try It Out Using Shorthand Operators

 1. Go back to Visual Studio 2008 and open the code for Form1.vb again. Change the highlighted
lines:

 Private Sub btnIntMath_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnIntMath.Click

 ‘Declare variable
 Dim intNumber As Integer

 ‘Set number, add numbers, and display results
 intNumber = 16

 intNumber += 8

 MessageBox.Show(“Addition test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, subtract numbers, and display results
 intNumber = 24
 intNumber -= 2
 MessageBox.Show(“Subtraction test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, multiply numbers, and display results
 intNumber = 6

 intNumber *= 10

c03.indd 48c03.indd 48 4/1/08 6:21:08 PM4/1/08 6:21:08 PM

Chapter 3: Writing Software

49

 MessageBox.Show(“Multiplication test... “ & intNumber.ToString, _
 “Integer Math”)

 ‘Set number, divide numbers, and display results
 intNumber = 12
 intNumber = CType(intNumber / 6, Integer)
 MessageBox.Show(“Division test... “ & intNumber.ToString, _
 “Integer Math”)
 End Sub

 2. Run the project and click the Math Test button. You ’ ll get the same results as in the previous
Try It Out exercise.

 How It Works
To use the shorthand version you just drop the last intNumber variable and move the operator to the
left of the equals sign. Here is the old version:

intNumber = intNumber + 8

 … and here ’ s the new version:

intNumber += 8

 The Problem with Integer Math
 The main problem with integer math is that you can ’ t do anything that involves a number with a
fractional part. For example, you can ’ t do this:

 ‘Try multiplying numbers...
 intNumber = 6
 intNumber = intNumber * 10.23

 Or, rather, you can actually run that code, but you won ’ t get the result you were expecting. Because
 intNumber has been defined as a variable designed to accept an integer only; the result is rounded up or
down to the nearest integer. In this case, although the actual answer is 61.38 , intNumber will be set to
the value 61 . If the answer were 61.73 , intNumber would be set to 62 .

 With the Option Strict setting set to On, the preceding code would produce an error in the IDE and the
program would not compile. With the Option Strict setting set to Off, this code is allowed.

 A similar problem occurs with division. Here ’ s another piece of code:

 ‘Try dividing numbers...
 intNumber = 12
 intNumber = intNumber / 7

 This time the answer is 1.71 . However, because the result has to be rounded up in order for it to be
stored in intNumber , you end up with intNumber being set equal to 2 . As you can imagine, if you were
trying to write programs that actually calculated some form of value, you ’ d be in big trouble, as every
step in the calculation would be subject to rounding errors.

c03.indd 49c03.indd 49 4/1/08 6:21:08 PM4/1/08 6:21:08 PM

Chapter 3: Writing Software

50

 In the next section, you ’ ll look at how you can do these kinds of operations with floating - point numbers.

 Floating - Point Math
 You know that integers are not good for most mathematical calculations because most calculations of
these types involve a fractional component of some quantity. Later in this chapter, you ’ ll see how to use
floating - point numbers to calculate the area of a circle. In the following Try It Out, we ’ ll introduce the
concepts.

 Try It Out Floating - Point Math

 1. Create a new Windows Forms Application project in Visual Studio 2008 called Floating Point
Math . As before, place a button on the form, setting its name to btnFloatMath and its text to
Double Test .

 2. Double - click btnFloatMath and add the following highlighted code:

 Private Sub btnFloatMath_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnFloatMath.Click

 ‘Delcare variable
 Dim dblNumber As Double

 ‘Set number, multiply numbers, and display results
 dblNumber = 45.34
 dblNumber *= 4.333
 MessageBox.Show(“Multiplication test... “ & dblNumber.ToString, _
 “Floating Points”)

 ‘Set number, divide numbers, and display results
 dblNumber = 12
 dblNumber /= 7
 MessageBox.Show(“Division test... “ & dblNumber.ToString, _
 “Floating Points”)

 End Sub

 3. Save your project by clicking the Save All button on the toolbar.

 4. Run the project and you ’ ll see the results shown in Figure 3 - 5 .

Figure 3-5

c03.indd 50c03.indd 50 4/1/08 6:21:08 PM4/1/08 6:21:08 PM

Chapter 3: Writing Software

51

 How It Works
 Perhaps the most important change in this code is the way you ’ re defining your variable:

 ‘Declare variable
 Dim dblNumber As Double

 Rather than saying As Integer at the end, you ’ re saying As Double . This tells Visual Basic 2008 that
you want to create a variable that holds a double - precision floating - point number, rather than an integer
number. This means that any operation performed on dblNumber will be a floating - point operation,
rather than an integer operation. Also note that you have used a different Modified Hungarian notation
prefix to signify that this variable contains a number that is of the Double data type.

 However, there ’ s no difference in the way either of these operations is performed. Here, you set
 dblNumber to be a decimal number and then multiply it by another decimal number:

 ‘Set number, multiply numbers, and display results
 dblNumber = 45.34
 dblNumber *= 4.333
 MessageBox.Show(“Multiplication test... “ & dblNumber.ToString, _
 “Floating Points”)

 When you run this, you get a result of 196.45822 , which, as you can see, has a decimal component,
and therefore you can use this in calculations.

 Of course, floating - point numbers don ’ t have to have an explicit decimal component:

 ‘Set number, divide numbers, and display results
 dblNumber = 12
 dblNumber /= 7
 MessageBox.Show(“Division test... “ & dblNumber.ToString, _
 “Floating Points”)

This result still yields a floating - point result, because dblNumber has been set up to hold such a result.
You can see this by your result of 1.71428571428571 , which is the same result you were looking for
when you were examining integer math.

 This time, the code allows you to use the math shorthand to divide two numbers as the variable that
holds the results will accept a floating - point number. Thus you do not have to use the CType function to
convert the results to an integer value.

 A floating - point number gets its name because it is stored like a number written in scientific notation
on paper. In scientific notation, the number is given as a power of 10 and a number between 1 and 10
that is multiplied by that power of 10 to get the original number. For example, 10,001 is written
1.0001 × 10 4 , and 0.0010001 is written 1.0001 × 10 – 3 . The decimal point “ floats ” to the position after
the first digit in both cases. The advantage is that large numbers and small numbers are represented
with the same degree of precision (in this example, one part in 10,000). A floating - point variable is
stored in the same way inside the computer, but in base two instead of base 10 (see “ Storing Variables, ”
later in this section).

c03.indd 51c03.indd 51 4/1/08 6:21:09 PM4/1/08 6:21:09 PM

Chapter 3: Writing Software

52

 Other States
 Floating - point variables can hold a few other values besides decimal numbers. Specifically, these are:

 NaN — which means not a number

 Positive infinity

 Negative infinity

 We won ’ t show how to get all of the results here, but the mathematicians among you will recognize that
.NET caters to your advanced math needs.

 Single - Precision Floating - Point Numbers
 We ’ ve been saying “ double - precision floating - point. ” In .NET, there are two main ways to represent
floating - point numbers, depending on your needs. In certain cases the decimal fractional components of
numbers can zoom off to infinity (pi being a particularly obvious example), but the computer does not
have an infinite amount of space to hold digits, so there has to be some limit at which the computer stops
keeping track of the digits to the right of the decimal point. The limit is related to the size of the variable,
which is a subject discussed in much more detail toward the end of this chapter. There are also limits on
how large the component to the left of the decimal point can be.

 A double - precision floating - point number can hold any value between – 1.7 × 10 308 and + 1.7 × 10 308 to a
great level of accuracy (one penny in 45 trillion dollars). A single - precision floating - point number can only
hold between – 3.4 × 10 38 and +3.4 × 10 38 . Again, this is still a pretty huge number, but it holds decimal
components to a lesser degree of accuracy (one penny in only $330,000) — the benefits being that single -
 precision floating - point numbers require less memory and calculations involving them are faster on some
computers.

 You should avoid using double - precision numbers unless you actually require more accuracy than the
single - precision type allows. This is especially important in very large applications, where using double -
 precision numbers for variables that only require single - precision numbers could slow your program
significantly.

 The calculations you ’ re trying to perform will dictate which type of floating - point number you should
use. If you want to use a single - precision number, use As Single rather than As Double , like this:

Dim sngNumber As Single

 Working with Strings
 A string is a sequence of characters, and you use double quotes to mark its beginning and end. You ’ ve
seen how to use strings to display the results of simple programs on the screen. Strings are commonly
used for exactly this function — telling the user what happened and what needs to happen next. Another
common use is storing a piece of text for later use in an algorithm. You ’ ll see lots of strings throughout
the rest of the book. So far, you ’ ve used strings like this:

 MessageBox.Show(“Multiplication test... “ & dblNumber.ToString, _
 “Floating Points”)

❑

❑

❑

c03.indd 52c03.indd 52 4/1/08 6:21:09 PM4/1/08 6:21:09 PM

Chapter 3: Writing Software

53

 “ Multiplication test... ” and “ Floating Points ” are strings; you can tell because of the double
quotes (“). However, what about dblNumber ? The value contained within dblNumber is being converted
to a string value that can be displayed on the screen by use of the ToString method of the Double class,
which defines the variable type. For example, if dblNumber represents the value 27 , to display it on the
screen it has to be converted into a quoted string two characters in length, and this is what the ToString
method does. In the next Try It Out, you look at some of the things you can do with strings.

 Try It Out Using Strings

 1. Create a new Windows Forms Application using the File New Project menu option. Call it
 Strings .

 2. Using the Toolbox, draw a button with the Name property btnStrings on the form and set its
 Text property to Using Strings. Double - click it and then add the highlighted code:

 Private Sub btnStrings_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnStrings.Click

 ‘Declare variable
 Dim strResults As String

 ‘Set the string value
 strResults = “Hello World!”

 ‘Display the results
 MessageBox.Show(strResults, “Strings”)

 End Sub

 3. Save your project by clicking the Save All button on the toolbar.

 4. Run the project and click the Using Strings button. You ’ ll see a message like the one in
Figure 3 - 6 .

Figure 3-6

 How It Works
 You can define a variable that holds a string using a similar notation to that used with the number
variables, but this time using As String :

 ‘Declare variable
 Dim strResults As String

c03.indd 53c03.indd 53 4/1/08 6:21:09 PM4/1/08 6:21:09 PM

Chapter 3: Writing Software

54

 You can also set that string to have a value, again as before:

 ‘Set the string value
 strResults = “Hello World!”

 You need to use double quotes around the string value to delimit the string, meaning to mark where
the string begins and where the string ends. This is an important point, because these double quotes
tell the Visual Basic 2008 compiler not to try to compile the text that is contained within the string. If
you don ’ t include the quotes, Visual Basic 2008 treats the value stored in the variable as part of the
program ’ s code, tries to compile it and can ’ t, causing the whole program to fail to compile.

 With the value Hello World! stored in a string variable called strResults , you can pass that
variable to the message box whose job it is to extract the value from the variable and display it. So,
you can see that strings can be defined and used in the same way as the numeric values you saw
before. Now look at how to perform operations on strings.

 Concatenation
 Concatenation means linking things together in a chain or series; to join them. If you have two strings that
you join together, one after the other, you say they are concatenated. You can think of concatenation as
addition for strings. In the next Try It Out, you work with concatenation.

 Try It Out Concatenation

 1. Using the same Strings project, view the Designer for Form1 and add a new button. Set its
 Name property to btnConcatenation and its Text property to Concatenation. Double - click the
button and add the following highlighted code:

 Private Sub btnConcatenation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnConcatenation.Click

 ‘Declare variables
 Dim strResults As String
 Dim strOne As String
 Dim strTwo As String

 ‘Set the string values
 strOne = “Hello”
 strTwo = “ World!”

 ‘Concatenate the strings
 strResults = strOne & strTwo

 ‘Display the results
 MessageBox.Show(strResults, “Strings”)

 End Sub

 2. Run the project and click the Concatenation button. You ’ ll see the same results that were
shown in Figure 3 - 6 .

c03.indd 54c03.indd 54 4/1/08 6:21:10 PM4/1/08 6:21:10 PM

Chapter 3: Writing Software

55

 How It Works
 In this Try It Out, you start by declaring three variables that are String data types:

 ‘Declare variables
 Dim strOne As String
 Dim strTwo As String
 Dim strResults As String

 Then you set the values of the first two strings.

 ‘Set the string values
 strOne = “Hello”
 strTwo = “ World!”

 After you ’ ve set the values of the first two strings, you use the & operator to concatenate the two
previous strings, setting the results of the concatenation in a new string variable called strResults :

 ‘Concatenate the strings
 strResults = strOne & strTwo

 What you ’ re saying here is, “ Let strResults be equal to the current value of strOne followed by the
current value of strTwo . ” By the time you call MessageBox.Show , strResults will be equal to
 “ Hello World! ” , so you get the same value as before.

 ‘Display the results
 MessageBox.Show(strResults, “Strings”)

 Using the Concatenation Operator Inline
 You don ’ t have to define variables to use the concatenation operator. You can use it on the fly, as you saw
in the Floating - Point Math, Integer Math, and Variables projects. You ’ ve already seen the concatenation
operator being used like this in previous examples. What this is actually doing is converting the value
stored in dblNumber to a string so that it can be displayed on the screen. Look at this code:

 MessageBox.Show(“Division test... “ & dblNumber.ToString, _
 “Floating Points”)

 The portion that reads, “ Division test... “ is actually a string, but you don ’ t have to define it as a
string variable. In Visual Basic 2008 parlance, this is called a string literal , meaning that it ’ s exactly as
shown in the code and doesn ’ t change. When you use the concatenation operator on this string together
with dblNumber.ToString , the value contained in the dblNumber variable is converted into a string
and tacked onto the end of “ Division test... “ . Remember that the ToString method converts the
value contained in a variable to a string value. The result is one string that is passed to MessageBox
.Show and that contains both the base text and the current value of dblNumber .

c03.indd 55c03.indd 55 4/1/08 6:21:10 PM4/1/08 6:21:10 PM

Chapter 3: Writing Software

56

 More String Operations
 You can do plenty more with strings! Take a look at some examples in the next Try It Out. The first thing
you ’ ll do is look at a property of the string that can be used to return its length.

 Try It Out Returning the Length of a String

 1. Using the Strings project, return to the designer for Form1. Add a TextBox control to the form
and set its Name property to txtString. Add another Button control and set its Name property
to btnLength and its Text property to Length. Rearrange the controls so that they look like
Figure 3 - 7 :

Figure 3-7

 2. Double - click the Length button to open its Click event handler. Add the following
highlighted code:

 Private Sub btnLength_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLength.Click

 ‘Declare variable
 Dim strResults As String

 ‘Get the text from the TextBox
 strResults = txtString.Text

 ‘Display the length of the string
 MessageBox.Show(strResults.Length.ToString & “ characters(s)”, _
 “Strings”)

 End Sub

 3. Run the project and enter some text into the text box.

 4. Click the Length button and you ’ ll see results similar to those shown in Figure 3 - 8 .

Figure 3-8

c03.indd 56c03.indd 56 4/1/08 6:21:10 PM4/1/08 6:21:10 PM

Chapter 3: Writing Software

57

 How It Works
 The first thing that you do is to declare a variable to contain string data. Then you extract the text from
the text box and store it in your string variable called strResults :

 ‘Declare variable
 Dim strResults As String

 ‘Get the text from the TextBox
 strResults = txtString.Text

When you have the string, you can use the Length property to get an integer value that represents the
number of characters in it. Remember, as far as a computer is concerned, characters include things like
spaces and other punctuation marks. Since the Length property returns the number of characters as
an Integer data type you want to convert that number to a string using the ToString method:

 ‘Display the length of the string
 MessageBox.Show(strResults.Length.ToString & “ characters(s)”, _
 “Strings”)

 Substrings
 Common ways to manipulate strings in a program include using a set of characters that appears at the
start, a set that appears at the end, or a set that appears somewhere in between. These are known as
 substrings .

 In the following Try It Out, you build on your previous application and get it to display the first three,
middle three, and last three characters.

 Try It Out Working with Substrings

 1. Using the Strings project, return to the designer for Form1. Add another Button control to
Form1 and set its Name property to btnSubStrings and its Text property to SubStrings.
Double - click the button and add the code highlighted here:

 Private Sub btnSubStrings_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSubStrings.Click

 ‘Declare variable
 Dim strResults As String

 ‘Get the text from the TextBox
 strResults = txtString.Text

 ‘Display the first three characters
 MessageBox.Show(strResults.Substring(0, 3), “Strings”)

c03.indd 57c03.indd 57 4/1/08 6:21:11 PM4/1/08 6:21:11 PM

Chapter 3: Writing Software

58

 ‘Display the middle three characters
 MessageBox.Show(strResults.Substring(3, 3), “Strings”)

 ‘Display the last three characters
 MessageBox.Show(strResults.Substring(strResults.Length - 3), “Strings”)
 End Sub

 2. Run the project. Enter the word Cranberry in the text box.

 3. Click the Split button and you ’ ll see three message boxes one after another as shown in
Figure 3 - 9 .

Figure 3-9

 How It Works
 The Substring method lets you grab a set of characters from any position in the string. The method
can be used in one of two ways. The first way is to give it a starting point and a number of characters
to grab. In the first instance, you ’ re telling it to start at character position 0 — the beginning of the
string — and grab three characters:

 ‘Display the first three characters
 MessageBox.Show(strResults.Substring(0, 3), “Strings”)

 In the next instance, you to start three characters in from the start and grab three characters:

 ‘Display the middle three characters
 MessageBox.Show(strResults.Substring(3, 3), “Strings”)

In the final instance, you ’ re providing only one parameter. This tells the Substring method to start at
the given position and grab everything right up to the end. In this case, you ’ re using the Substring
method in combination with the Length method, so you ’ re saying, “ Grab everything from three
characters in from the right of the string to the end. ”

 ‘Display the last three characters
 MessageBox.Show(strResults.Substring(strResults.Length - 3), “Strings”)

c03.indd 58c03.indd 58 4/1/08 6:21:11 PM4/1/08 6:21:11 PM

Chapter 3: Writing Software

59

 Formatting Strings
 Often when working with numbers, you ’ ll need to alter the way they are displayed as a string.
Figure 3 - 5 shows how a division operator works. In this case, you don ’ t really need to see 14 decimal
places — two or three would be fine! What you need is to format the string so that you see everything
to the left of the decimal point, but only three digits to the right, which is what you do in the next
Try It Out.

 Try It Out Formatting Strings

 1. Open the Floating - Point Math project that you created earlier in this chapter.

 2. Open the Code Editor for Form1 and make the following changes:

 ‘Set number, divide numbers, and display results
 dblNumber = 12
 dblNumber /= 7

 ‘Display the results without formatting
 MessageBox.Show(“Division test without formatting... “ & _
 dblNumber.ToString, “Floating Points”)

 ‘Display the results with formatting
 MessageBox.Show(“Division test with formatting... “ & _
 String.Format(“{0:n3}”, dblNumber), “Floating Points”)

 End Sub

 3. Run the project. After the message box dialog box for the multiplication test is displayed
you ’ ll see two more message boxes as shown in Figure 3 - 10 .

Figure 3-10

 How It Works
 The magic here is in the call to String.Format . This powerful method allows the formatting of
numbers. The key is all in the first parameter, as this defines the format the final string will take:

 MessageBox.Show(“Division test with formatting... “ & _
 String.Format(“{0:n3}”, dblNumber), “Floating Points”)

c03.indd 59c03.indd 59 4/1/08 6:21:11 PM4/1/08 6:21:11 PM

Chapter 3: Writing Software

60

 You passed String.Format two parameters. The first parameter, “ {0:n3} ” , is the format that you
want. The second parameter, dblNumber , is the value that you want to format. Note that since you are
formatting a number to a string representation, you do not need to provide the ToString method
after dblNumber as in the previous call to the Show method of the MessageBox class. This is because
the String.Format method is looking for a number and not a string.

 The 0 in the format tells String.Format to work with the zeroth data parameter, which is just a cute
way of saying “ the second parameter ” , or dblNumber . What follows the colon is how you want
 dblNumber to be formatted. You said n3 , which means “ floating - point number, three decimal places. ”
You could have said n2 for “ floating - point number, two decimal places. ”

 Localized Formatting
 When building .NET applications, it ’ s important to realize that the user may be familiar with cultural
conventions that are uncommon to you. For example, if you live in the United States, you ’ re used to
seeing the decimal separator as a period (.). However, if you live in France, the decimal separator is
actually a comma (,).

 Windows can deal with such problems for you based on the locale settings of the computer. If you use
the .NET Framework in the correct way, by and large you ’ ll never need to worry about this problem.

 Here ’ s an example — if you use a formatting string of n3 again, you are telling .NET that you want to
format the number with thousands separators and also that you want the number displayed to three
decimal places (1,714.286).

 The equation changed from 12 / 7 to 12000 / 7 to allow the display of the thousands separator (,).

 Now, if you tell your computer that you want to use the French locale settings, and you run the same code
(you make no changes whatsoever to the application itself), you ’ ll see 1 714,286.

 You can change your language options by going to the Control Panel and clicking the Regional and
Language Options icon and changing the language to French.

 In France, the thousands separator is a space, not a comma, while the decimal separator is a comma, not
a period. By using String.Format appropriately, you can write one application that works properly
regardless of how the user has configured the locale settings on the computer.

 Replacing Substrings
 Another common string manipulation replaces occurrences of one string with another. To demonstrate
this, in the next Try It Out you ’ ll modify your Strings application to replace the string “ Hello ” with the
string “ Goodbye ” .

c03.indd 60c03.indd 60 4/1/08 6:21:12 PM4/1/08 6:21:12 PM

Chapter 3: Writing Software

61

 Try It Out Replacing Substrings

 1. Open the Strings project that you were working with earlier.

 2. Return to the Forms Designer for Form1, add another Button control and set its Name property
to btnReplace and set its Text property to Replace . Double - click the button and add the
following highlighted code to its Click event handler:

 Private Sub btnReplace_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnReplace.Click

 ‘Declare variables
 Dim strData As String
 Dim strResults As String

 ‘Get the text from the TextBox
 strData = txtString.Text

 ‘Replace the string occurance
 strResults = strData.Replace(“Hello”, “Goodbye”)

 ‘Display the new string
 MessageBox.Show(strResults, “Strings”)

 End Sub

 3. Run the project and enter Hello World! into the text box (using this exact capitalization).

 4. Click the Replace button. You should see a message box that says Goodbye World!

 How It Works
 Replace works by taking the substring to look for as the first parameter and the new substring to
replace it with as the second parameter. After the replacement is made, a new string is returned that
you can display in the usual way.

 ‘Replace the string occurance
 strResults = strData.Replace(“Hello”, “Goodbye”)

 You ’ re not limited to a single search and replace within this code. If you enter Hello twice into the text
box and click the button, you ’ ll notice two Goodbye returns. However, the case is important — if you
enter hello, it will not be replaced. You ’ ll take a look at case - insensitive string comparisons in the next
chapter.

 Using Dates
 Another data type that you ’ ll often use is Date . This data type holds, not surprisingly, a date value. You
learn to display the current date in the next Try It Out.

c03.indd 61c03.indd 61 4/1/08 6:21:12 PM4/1/08 6:21:12 PM

Chapter 3: Writing Software

62

 Try It Out Displaying the Current Date

 1. Create a new Windows Forms Application project called Date Demo .

 2. In the usual way, use the Toolbox to draw a new Button control on the form. Call it
 btnShowDate and set its Text property to Show Date.

 3. Double - click the button to bring up its Click event handler and add this code:

 Private Sub btnShowDate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnShowDate.Click

 ‘Declare variable
 Dim dteResults As Date

 ‘Get the current date and time
 dteResults = Now

 ‘Display the results
 MessageBox.Show(dteResults.ToString, “Date Demo”)

 End Sub

 4. Save your project by clicking the Save All button on the toolbar.

 5. Run the project and click the button. You should see something like Figure 3 - 11 depending on
the locale settings on your machine.

Figure 3-11

 How It Works
 The Date data type can be used to hold a value that represents any date and time. After creating the
variable, you initialized it to the current date and time using the Now property. Then you display the
date in a message box dialog box. Note that since you want to display a Date data type as a string,
that you once again use the ToString method to convert the results to a string format.

 ‘Declare variable
 Dim dteResults As Date

 ‘Get the current date and time
 dteResults = Now

 ‘Display the results
 MessageBox.Show(dteResults.ToString, “Date Demo”)

c03.indd 62c03.indd 62 4/1/08 6:21:13 PM4/1/08 6:21:13 PM

Chapter 3: Writing Software

63

 Date data types aren ’ t any different from other data types, although you can do more with them. In
the next couple of sections, you ’ ll see ways to manipulate dates and control the way they are
displayed on the screen.

 Formatting Date Strings
 You ’ ve already seen one way in which dates can be formatted. By default, if you pass a Date variable to
 MessageBox.Show , the date and time are displayed as shown in Figure 3 - 11 .

 Because this machine is in the United States, the date is shown in m/d/yyyy format and the time is
shown using the 12 - hour clock. This is another example of how the computer ’ s locale setting affects the
formatting of different data types. For example, if you set your computer to the United Kingdom locale,
the date is in dd/mm/yyyy format and the time is displayed using the 24 - hour clock, for example,
07/08/2004 07:02:47.

 Although you can control the date format to the nth degree, it ’ s best to rely on .NET to ascertain how the
user wants strings to look and automatically display them in their preferred format. In the next Try It
Out, you ’ ll look at four useful methods that enable you to format dates.

 Try It Out Formatting Dates

 1. Return to the Code Editor for Form1, find the Click event handler for the button, and add the
following highlighted code:

 ‘Display the results
 MessageBox.Show(dteResults.ToString, “Date Demo”)

 ‘Display dates
 MessageBox.Show(dteResults.ToLongDateString, “Date Demo”)
 MessageBox.Show(dteResults.ToShortDateString, “Date Demo”)

 ‘Display times
 MessageBox.Show(dteResults.ToLongTimeString, “Date Demo”)
 MessageBox.Show(dteResults.ToShortTimeString, “Date Demo”)

 End Sub

 2. Run the project. You ’ ll be able to click through five message boxes. You have already seen the
first message box dialog box; it displays the date and time according to your computers locale
settings. The next message dialog box displays the long date, and the next message dialog box
displays the short date. The fourth message box displays the long time, and the last message
box displays the short time.

 How It Works
You ’ re seeing the four basic ways that you can display dates and times in Windows applications,
namely long date, short date, long time, and short time. The names of the formats are self - explanatory!

c03.indd 63c03.indd 63 4/1/08 6:21:13 PM4/1/08 6:21:13 PM

Chapter 3: Writing Software

64

 ‘Display dates
 MessageBox.Show(dteResults.ToLongDateString, “Date Demo”)
 MessageBox.Show(dteResults.ToShortDateString, “Date Demo”)

 ‘Display times
 MessageBox.Show(dteResults.ToLongTimeString, “Date Demo”)
 MessageBox.Show(dteResults.ToShortTimeString, “Date Demo”)

 Extracting Date Properties
 When you have a variable of type Date , there are several properties that you can call to learn more about
the date; let ’ s look at them.

 Try It Out Extracting Date Properties

 1. Return to the Forms Designer for the Date Demo project and add another Button control to
Form1 and set its Name property to btnDateProperties and its Text property to Date
Properties. Double - click the button and add the following highlighted code to the Click
event:

 Private Sub btnDateProperties_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDateProperties.Click

 ‘Declare variable
 Dim dteResults As Date

 ‘Get the current date and time
 dteResults = Now

 ‘Display the various date properties
 MessageBox.Show(“Month: “ & dteResults.Month, “Date Demo”)
 MessageBox.Show(“Day: “ & dteResults.Day, “Date Demo”)
 MessageBox.Show(“Year: “ & dteResults.Year, “Date Demo”)
 MessageBox.Show(“Hour: “ & dteResults.Hour, “Date Demo”)
 MessageBox.Show(“Minute: “ & dteResults.Minute, “Date Demo”)
 MessageBox.Show(“Second: “ & dteResults.Second, “Date Demo”)
 MessageBox.Show(“Day of week: “ & dteResults.DayOfWeek, “Date Demo”)
 MessageBox.Show(“Day of year: “ & dteResults.DayOfYear, “Date Demo”)

 End Sub

 2. Run the project. If you click the button, you ’ ll see a set of fairly self - explanatory message
boxes.

 How It Works
 Again, there ’ s nothing here that ’ s rocket science. If you want to know the hour, use the Hour property.
To get at the year, use Year , and so on.

c03.indd 64c03.indd 64 4/1/08 6:21:13 PM4/1/08 6:21:13 PM

Chapter 3: Writing Software

65

 Date Constants
 In the preceding Try It Out, when you called DayOfWeek property, you were actually given an integer
value, as shown in Figure 3 - 12 .

Figure 3-12

 The date that we ’ re working with, September 3, 2007, is a Monday, and, although it may not be
immediately obvious, Monday is 1. Because the first day of the week is Sunday in the United States, you
start counting from Sunday, with Sunday being 0. However, there is a possibility that you ’ re working on
a computer whose locale setting starts the calendar on a Monday, in which case DayOfWeek would
return 0 . Complicated? Perhaps, but just remember that you can ’ t guarantee that what you think is
 “ Day 1 ” is always going to be Monday. Likewise, what ’ s Wednesday in English is Mittwoch in German.

 If you need to know the name of the day or the month in your application, a better approach is to get
.NET to get the name for you, again from the particular locale settings of the computer, as you do in the
next Try It Out.

 Try It Out Getting the Names of the Weekday and the Month

 1. Return to the Form Designer in the Date Demo project, add a new Button control and set its
 Name property to btnDateNames and its Text property to Date Names. Double - click the
button and add the following highlighted code to the Click event handler:

 Private Sub btnDateNames_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDateNames.Click

 ‘Declare variable
 Dim dteResults As Date

 ‘Get the current date and time
 dteResults = Now

 MessageBox.Show(“Weekday name: “ & dteResults.ToString(“dddd”), _
 “Date Demo”)
 MessageBox.Show(“Month name: “ & dteResults.ToString(“MMMM”), _
 “Date Demo”)

 End Sub

 2. Run the project and click the button. You will see a message box that tells you the weekday
name (Monday, for example) and a second one that tells you the month (September, for
example).

c03.indd 65c03.indd 65 4/1/08 6:21:14 PM4/1/08 6:21:14 PM

Chapter 3: Writing Software

66

 How It Works
 When you used your ToLongDateString method and its siblings, you were basically allowing .NET
to look in the locale settings for the computer for the date format the user preferred. In this example,
you ’ re using the ToString method but supplying your own format string.

 MessageBox.Show(“Weekday name: “ & dteResults.ToString(“dddd”), _
 “Date Demo”)
 MessageBox.Show(“Month name: “ & dteResults.ToString(“MMMM”), _
 “Date Demo”)

 Usually, it ’ s best practice not to use the ToString method to format dates to different string values,
because you should rely on the built - in formats in .NET, but here you ’ re using the “ dddd ” string to
get the weekday name and “ MMMM ” to get the month name. (The case is important here — “ mmmm ”
won ’ t work.)

 To show this works, if the computer is set to use Italian locale settings, you get one message box telling
you the weekday name is Luned ì and another telling you the month name is Settembre .

 Defining Date Literals
 You know that if you want to use a string literal in your code, you can do this:

Dim strResults As String
strResults = “Woobie”

 Date literals work in more or less the same way. However, you use pound signs (#) to delimit the start
and end of the date. You learn to define date literals in the next Try It Out.

 Try It Out Defi ning Date Literals

 1. Return to the Forms Designer for the Date Demo project and add another Button control to
the form and set its Name property to btnDateLiterals and its Text property to Date Literals.
Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnDateLiterals_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDateLiterals.Click

 ‘Declare variable
 Dim dteResults As Date

 ‘Set a date and time
 dteResults = #1/1/2010 8:01:00 AM#

 ‘Display the date and time
 MessageBox.Show(dteResults.ToLongDateString & “ “ & _
 dteResults.ToLongTimeString, “Date Demo”)

 End Sub

c03.indd 66c03.indd 66 4/1/08 6:21:14 PM4/1/08 6:21:14 PM

Chapter 3: Writing Software

67

 2. Run the project and click the button. You should see the message box shown in Figure 3 - 13 .

Figure 3-13

 How It Works
 When defining a date literal, it must be defined in the mm/dd/yyyy format, regardless of the actual
locale settings of the computer. You may or may not see an error if you try to define the date in the
format dd/mm/yyyy. This is because you could put in a date in the format dd/mm/yyyy (for
example, 06/07/2008) that is also a valid date in the required mm/dd/yyyy format. This requirement
reduces ambiguity: Does 6/7/2008 mean July 6 or June 7?

 In fact, this is a general truth of programming as a whole: There are no such things as dialects when
writing software. It ’ s usually best to conform to North American standards. As you ’ ll see through the
rest of this book, this includes variables and method names, for example GetColor rather than
 GetColour .

 It ’ s also worth noting that you don ’ t have to supply both a date and a time. You can supply one, the
other, or both.

 Manipulating Dates
 One thing that ’ s always been pretty tricky for programmers to do is manipulate dates. Most of you will
remember New Year ’ s Eve 1999, waiting to see whether computers could deal with tipping into a new
century. Also, dealing with leap years has always been a bit of a problem.

 The next turn of the century that also features a leap year will be 2399 to 2400. In the next Try It Out,
you ’ ll take a look at how you can use some of the methods available on the Date data type to adjust the
date around that particular leap year.

 Try It Out Manipulating Dates

 1. Return to the Forms Designer for the Date Demo project and add another Button control to
the form and set its Name property to btnDateManipulation and its Text property to Date
Manipulation. Double - click the button and add the following highlighted code to the Click
event handler:

 Private Sub btnDateManipulation_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDateManipulation.Click

c03.indd 67c03.indd 67 4/1/08 6:21:14 PM4/1/08 6:21:14 PM

Chapter 3: Writing Software

68

 ‘Declare variables
 Dim dteStartDate As Date
 Dim dteChangedDate As Date

 ‘Start in the year 2400
 dteStartDate = #2/28/2400#

 ‘Add a day and display the results
 dteChangedDate = dteStartDate.AddDays(1)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 ‘Add some months and display the results
 dteChangedDate = dteStartDate.AddMonths(6)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 ‘Subtract a year and display the results
 dteChangedDate = dteStartDate.AddYears(-1)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 End Sub

 2. Run the project and click the button. You ’ ll see three message boxes, one after another. The
first message box displays the long date for 2/29/2400, whereas the second message box
displays the long date for 8/28/2400. The final message box displays the long date for
2/28/2399.

 How It Works
 The Date data type supports several methods for manipulating dates. Here are three of them:

 ‘Add a day and display the results
 dteChangedDate = dteStartDate.AddDays(1)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 ‘Add some months and display the results
 dteChangedDate = dteStartDate.AddMonths(6)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 ‘Subtract a year and display the results
 dteChangedDate = dteStartDate.AddYears(-1)
 MessageBox.Show(dteChangedDate.ToLongDateString, “Date Demo”)

 It ’ s worth noting that when you supply a negative number to any of the Add methods when working
with Date variables, the effect is subtraction (demonstrated by going from 2400 back to 2399). The
other important Add methods are AddHours , AddMinutes , AddSeconds , and AddMilliseconds .

 Boolean
 So far, you ’ ve seen the Integer , Double , Single , String , and Date data types. The other one you need
to look at is Boolean . After you ’ ve done that, you ’ ve seen all of the simple data types that you ’ re most
likely to use in your programs.

c03.indd 68c03.indd 68 4/1/08 6:21:15 PM4/1/08 6:21:15 PM

Chapter 3: Writing Software

69

 A Boolean variable can be either True or False . It can never be anything else. Boolean values are
really important when it ’ s time for your programs to start making decisions, which is something you
look at in more detail in Chapter 4 .

 Storing Variables
 The most limited resource on your computer is typically its memory. It is important that you try to
get the most out of the available memory. Whenever you create a variable, you are using a piece of
memory, so you must strive to use as few variables as possible and use the variables that you do have in
the most efficient manner.

 Today, absolute optimization of variables is not something you need to go into a deep level of detail
about, for two reasons. First, computers have far more memory these days, so the days when
programmers tried to cram payroll systems into 32KB of memory are long gone. Second, the compilers
themselves have a great deal of intelligence built into them these days, to help generate the most
optimized code possible.

 Binary
 Computers use binary to represent everything. That means that whatever you store in a computer must
be expressed as a binary pattern of ones and zeros. Take a simple integer, 27. In binary code, this number
is actually 11011, each digit referring to a power of two. The diagram in Figure 3 - 14 shows how you
represent 27 in the more familiar base - 10 format, and then in binary.

100,000 10,000 1,000 100 10 110,000,
000

1,000,
000

0 0 0 0 2 70 0

105 104 103 102 101 100107 106

2�10�7�1�27

In base-10, each digit represents a power
of 10. To find what number the “pattern of
base-10 digits” represents, you multiply the
relevant number by the power of 10 that
the digit represents and add the results.

In base-2, or binary, each digit represents
a power of two. To find what number the
“pattern of binary” represents, you multiply
the relevant number by the power of two
that the digit represents and add the results.

32 16 8 4 2 1128 64

0 1 1 0 1 10 0

25 24 23 22 21 2027 26

1�16�1�8�1�2�1�1�27
Figure 3-14

 Although this may appear to be a bit obscure, look what ’ s happening. In base - 10, the decimal system
that you ’ re familiar with, each digit fits into a slot . This slot represents a power of 10 — the first
representing 10 to the power zero, the second 10 to the power one, and so on. If you want to know what
number the pattern represents, you take each slot in turn, multiply it by the value it represents, and add
the results.

c03.indd 69c03.indd 69 4/1/08 6:21:15 PM4/1/08 6:21:15 PM

Chapter 3: Writing Software

70

 The same applies to binary — it ’ s just that you ’ re not familiar with dealing with base-2. To convert the
number back to base-10, you take the digit in each slot in turn and multiply that power of two by
the number that the slot represents (zero or one). Add all of the results together and you get the number.

 Bits and Bytes
 In computer terms, a binary slot is called a bit . It is the smallest possible unit of information, the answer
to a single yes/no question, represented by a part of the computer ’ s circuitry that either has electricity
flowing in it or not. The reason why there are eight slots/bits on the diagram in Figure 3 - 14 is that there
are eight bits in a byte . A byte is the unit of measurement that you use when talking about computer
memory.

 A kilobyte or KB is 1,024 bytes. You use 1,024 rather than 1,000 because 1,024 is the 10th power of 2, so as
far as the computer is concerned it ’ s a round number. Computers don ’ t tend to think of things in terms
of 10s like you do, so 1,024 is more natural to a computer than 1,000 is.

 Likewise, a megabyte is 1,024 kilobytes, or 1,048,576 bytes. Again, that is another round number because
this is the 20th power of 2. A gigabyte is 1,024 megabytes, or 1,073,741,824 bytes. (Again, think 2 to the
power of 30 and you ’ re on the right track.) Finally, a terabyte is 2 to the 40th power, and a petabyte is 2 to
the 50th power.

 So what ’ s the point of all this? Well, having an understanding of how computers store variables helps
you design your programs better. Suppose your computer has 256MB of memory. That ’ s 262,144KB or
268,435,456 bytes or (multiply by 8) 2,147,483,648 bits. As you write your software, you have to make the
best possible use of this available memory.

 Representing Values
 Most desktop computers in use today are 32 - bit, which means that they ’ re optimized for dealing with
integer values that are 32 bits in length. The number you just saw in the example was an 8 - bit number.
With an 8 - bit number, the largest value you can store is:

1x128 + 1x64 + 1x32 + 1x16 + 1x8 + 1x4 + 1x2 + 1x1 = 255

 A 32 - bit number can represent any value between – 2,147,483,648 and 2,147,483,647. Now, if you define a
variable like this:

Dim intNumber As Integer

you want to store an integer. In response to this, .NET will allocate a 32 - bit block of memory in
which you can store any number between 0 and 2,147,483,647. Also, remember you have only a finite
amount of memory, and on your 256MB computer; you can store only a maximum of 67,108,864 long
numbers. Sounds like a lot, but remember that memory is for sharing. You shouldn ’ t write software that
deliberately tries to use as much memory as possible. Be frugal!

 You also defined variables that were double - precision floating - point numbers, like this:

Dim dblNumber As Double

c03.indd 70c03.indd 70 4/1/08 6:21:16 PM4/1/08 6:21:16 PM

Chapter 3: Writing Software

71

 To represent a double - precision floating point number, you need 64 bits of memory. That means you can
store only a maximum of 33,554,432 double - precision floating - point numbers.

 Single - precision floating - point numbers take up 32 bits of memory — in other words half as much as a
double - precision number and the same as an integer value.

 If you do define an integer, whether you store 1, 3, 249, or 2,147,483,647, you ’ re always using exactly the
same amount of memory, 32 bits. The size of the number has no bearing on the amount of memory
required to store it. This might seem incredibly wasteful, but the computer relies on numbers of the same
type taking the same amount of storage. Without this, it would be unable to work at a decent speed.

 Now look at how you define a string:

Dim strResults As String
strResults = “Hello World!”

 Unlike integers and doubles, strings do not have a fixed length. Each character in the string takes up two
bytes, or 16 bits. So, to represent this 12 - character string, you need 24 bytes, or 192 bits. That means that
your computer is able to store only a little over two million strings of that length. Obviously, if the string
is twice as long, you can hold half as many, and so on.

 A common mistake that new programmers make is not taking into consideration the impact the data
type has on storage. If you have a variable that ’ s supposed to hold a string, and you try to hold a
numeric value in it, like this:

Dim strData As String
strData = “65536”

you ’ re using 10 bytes (or 80 bits) to store it. That ’ s less efficient than storing the value in an Integer data
type. To store this numerical value in a string, each character in the string has to be converted into a
numerical representation. This is done according to something called Unicode , which is a standard way
of defining the way computers store characters. Each character has a unique number between 0 and
65,535, and it ’ s this value that is stored in each byte allocated to the string.

 Here are the Unicode codes for each character in the string:

 6: Unicode 54, binary 0000000000110110

 5: Unicode 53, binary 0000000000110101

 5: Unicode 53, binary 0000000000110101

 3: Unicode 51, binary 0000000000110011

 6: Unicode 54, binary 0000000000110110

 Each character requires 16 bits, so to store a 5 - digit number in a string requires 80 bits — five 16 bit
numbers. What you should do is this:

Dim intNumber As Integer
intNumber = 65536

❑

❑

❑

❑

❑

c03.indd 71c03.indd 71 4/1/08 6:21:16 PM4/1/08 6:21:16 PM

Chapter 3: Writing Software

72

 This stores the value as a single number binary pattern. An Integer uses 32 bits, so the binary
representation will be 00000000000000010000000000000000, far smaller than the space needed to store it
as a string.

 Converting Values
 Although strings seem natural to us, they ’ re unnatural to a computer. A computer wants to take two
numbers and perform some simple mathematical operation on them. However, a computer can
perform such a vast number of these simple operations each second that you, as humans, get the results
you want.

 Let ’ s imagine that a computer wants to add 1 to the value 27. You already know that you can represent
27 in binary as 11011. Figure 3 - 15 shows what happens when you want to add 1 to the value 27.

 As you can see, binary math is no different from decimal (base - 10) math. If you try to add one to the first
bit, it won ’ t fit, so you revert it to zero and carry the one to the next bit. The same happens, and you
carry the one to the third bit. At this point, you ’ ve finished, and if you add up the value you get 28,
as intended.

1�16�1�8�1�2�1�1�27

1�16�1�8�1�4�28

Just like the math you’re familiar
with, if you hit the “ceiling” value
for the base (in this case“2”), you
set the digit to “0” and carry “1”.

carry 1carry 1

add 1

32 16 8 4 2 1128 64

0 1 1 0 1 10 0

25 24 23 22 21 2027 26

32 16 8 4 2 1128 64

0 1 1 1 0 00 0

25 24 23 22 21 2027 26

Figure 3-15

 Any value that you have in your program ultimately has to be converted to simple numbers for the
computer to do anything with them. To make the program run more efficiently, you have to keep
the number of conversions to a minimum. Here ’ s an example:

Dim strResults As String
strResults = “27”
strResults = strResults + 1
MessageBox.Show(strResults)

c03.indd 72c03.indd 72 4/1/08 6:21:16 PM4/1/08 6:21:16 PM

Chapter 3: Writing Software

73

 Let ’ s look at what ’ s happening:

 1. You create a string variable called strResults .

 2. You assign the value 27 to that string. This uses 4 bytes of memory.

 3. To add 1 to the value, the computer has to convert 27 to an internal, hidden Integer variable
that contains the value 27 . This uses an additional 4 bytes of memory, taking the total to 8.
However, more importantly, this conversion takes time!

 4. When the string is converted to an integer, 1 is added to it.

 5. The new value then has to be converted into a string.

 6. The string containing the new value is displayed on the screen.

 To write an efficient program, you don ’ t want to be constantly converting variables between different
types. You want to perform the conversion only when it ’ s absolutely necessary.

 Here ’ s some more code that has the same effect:

Dim intNumber As Integer
intNumber = 27
intNumber += 1
MessageBox.Show(intNumber.ToString)

 1. You create an integer variable called intNumber .

 2. You assign the value 27 to the variable.

 3. You add 1 to the variable.

 4. You convert the variable to a string and display it on the screen.

 In this case, you have to do only one conversion, and it ’ s a logical one; use the ToString method on the
 Integer data type. MessageBox.Show works in terms of strings and characters, so that ’ s what it ’ s most
comfortable with.

 What you have done is cut the conversions from two (string to integer, integer to string) down to one.
This will make your program run more efficiently and use less memory. Again, it ’ s a small improvement,
but imagine this improvement occurring hundreds of thousands of times each minute — you ’ ll get an
improvement in the performance of the system as a whole.

 It is absolutely vital that you work with the correct data type for your needs. In simple applications like
the ones you ’ ve created in this chapter, a performance penalty is not really noticeable. However, when
you write more complex, sophisticated applications, you ’ ll really want to optimize your code by using
the right data type.

 Methods
 A method is a self - contained block of code that does something. Methods, also called procedures, are
essential for two reasons. First, they break a program up and make it more understandable. Second, they
promote code reuse — a topic you ’ ll be spending most of your time on throughout the rest of this book.

c03.indd 73c03.indd 73 4/1/08 6:21:16 PM4/1/08 6:21:16 PM

Chapter 3: Writing Software

74

 As you know, when you write code you start with a high - level algorithm and keep refining the detail of
that algorithm until you get the software code that expresses all of the algorithms up to and including
the high - level one. A method describes a line in one of those algorithms, for example “ open a file ” ,
 “ display text on screen ” , “ print a document ” , and so on.

 Knowing how to break up a program into methods is something that comes with experience. To add to
the frustration, it ’ s far easier to understand why you need to use methods when you ’ re working on far
more complex programs than the ones you ’ ve seen so far. In the rest of this section, we ’ ll endeavor to
show you how and why to use methods.

 Why Use Methods?
 In day - to - day use, you need to pass information to a method for it to produce the expected results. This
might be a single integer value, a set of string values, or a combination of both. These are known as input
values . However, some methods don ’ t take input values, so having input values is not a requirement of a
method. The method uses these input values and a combination of environmental information (for
instance, facts about the current state of the program that the method knows about) to do
something useful.

 We say that when you give information to a method, you pass it data. You can also refer to that data as
 parameters . Finally, when you want to use a method, you call it.

 To summarize, you call a method, passing data in through parameters.

 The reason for using methods is to promote this idea of code reuse. The principle behind using a method
makes sense if you consider the program from a fairly high level. If you have an understanding of all the
algorithms involved in a program, you can find commonality. If you need to do the same thing more
than once, you should wrap it up into a method that you can reuse.

 Imagine you have a program that comprises many algorithms. Some of those algorithms call for the area
of a circle to be calculated. Because some of those algorithms need to know how to calculate the area of a
circle, it ’ s a good candidate for a method. You write code that knows how to find the area of a circle
given its radius, encapsulate it (wrap it up) into a method, which you can reuse when you ’ re coding the
other algorithms. This means that you don ’ t have to keep writing code that does the same thing — you
do it once and reuse it as often as needed.

 It might be the case that one algorithm needs to work out the area of a circle with 100 for its radius, and
another needs to work out one with a radius of 200. By building the method in such a way that it takes
the radius as a parameter, you can use the method from wherever you want.

 With Visual Basic 2008, you can define a method using the Sub keyword or using the Function
keyword. Sub , short for subroutine , is used when the method doesn ’ t return a value, as mentioned in
Chapter 1 . Function is used when the method returns a value.

c03.indd 74c03.indd 74 4/1/08 6:21:17 PM4/1/08 6:21:17 PM

Chapter 3: Writing Software

75

 Methods You ’ ve Already Seen
 The good news is that you ’ ve been using methods already. Consider the following code that you wrote
at the beginning of this chapter:

 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 ‘Define a variable for intNumber
 Dim intNumber As Integer

 ‘Set the initial value
 intNumber = 27

 ‘Add 1 to the value of intNumber
 intNumber = intNumber + 1

 ‘Display the new value of intNumber
 MessageBox.Show(“Value of intNumber + 1 = “ & intNumber.ToString, _
 “Variables”)

 End Sub

 That code is a method — it ’ s a self - contained block of code that does something. In this case, it adds 1 to
the value of intNumber and displays the result in a message box.

 This method does not return a value (that is, it ’ s a subroutine, so it starts with the Sub keyword and ends
with the End Sub statement). Anything between these two statements is the code assigned to the
method. Let ’ s take a look at how the method is defined (this code was automatically created by Visual
Basic 2008):

 Private Sub btnAdd_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 1. First of all, you have the word Private . The meaning of this keyword is discussed in later chap-
ters. For now, think of it as ensuring that this method cannot be called up by anything other than
the user clicking the Add button.

 2. Second, you have the keyword Sub to tell Visual Basic 2008 that you want to define a
subroutine.

 3. Third, you have btnAdd_Click . This is the name of the subroutine.

 4. Fourth, you have ByVal sender As System.Object, ByVal e As System.EventArgs .
This tells Visual Basic 2008 that the method takes two parameters — sender and e . We ’ ll talk
about this more later.

 5. Finally, you have Handles btnAdd.Click . This tells Visual Basic 2008 that this method should
be called whenever the Click event on the control btnAdd is fired.

 In the next Try It Out, you take a look at how you can build a method that displays a message box and
call the same method from three separate buttons.

c03.indd 75c03.indd 75 4/1/08 6:21:17 PM4/1/08 6:21:17 PM

Chapter 3: Writing Software

76

 Try It Out Using Methods

 1. Create a new Windows Forms Application project called Three Buttons .

 2. Use the Toolbox to draw three buttons on the form.

 3. Double - click the first button (Button1) to create a new Click event handler. Add the
highlighted code:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ‘Call your method
 SayHello()

 End Sub

 Private Sub SayHello()
 ‘Display a message box
 MessageBox.Show(“Hello World!”, “Three Buttons”)

 End Sub

 4. Save your project by clicking the Save All button on the toolbar.

 5. Run the project and you ’ ll see the form with three buttons appear. Click the topmost button
and you ’ ll see “ Hello World! ” displayed in a message box.

 How It Works
 As you know now, when you double - click a Button control in the Designer, a new method is
automatically created:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

 The Handles Button1.Click statement at the end tells Visual Basic 2008 that this method should
automatically be called when the Click event on the button is fired. As part of this, Visual Basic 2008
provides two parameters, which you don ’ t have to worry about for now. Outside of this method,
you ’ ve defined a new method:

 Private Sub SayHello()
 ‘Display a message box
 MessageBox.Show(“Hello World!”, “Three Buttons”)
 End Sub

 The new method is called SayHello . Anything that appears between the Sub and End Sub keywords
is part of the method and when that method is called, the code is executed. In this case, you ’ ve asked
it to display a message box.

c03.indd 76c03.indd 76 4/1/08 6:21:17 PM4/1/08 6:21:17 PM

Chapter 3: Writing Software

77

So you know that when the button is clicked, Visual Basic 2008 will call the Button1 _ Click method.
You then call the SayHello method. The upshot of all this is that when the button is clicked, the
message box is displayed:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ‘Call your method
 SayHello()
 End Sub

 That should make the general premise behind methods a little clearer, but why did you need to
break the code into a separate method to display the message box? You learn more about that in the next
Try It Out.

 Try It Out Reusing the Method

 1. If your project is still running, stop it.

 2. Return to the Forms Designer, and double - click the second button and add the highlighted
code to the new event handler:

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ‘Call your method
 SayHello()

 End Sub

 3. Switch back to the Forms Designer and double - click the third button and add the
highlighted code:

 Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ‘Call your method
 SayHello()

 End Sub

 4. Now run the project. You ’ ll notice that when you click each of the buttons, they all bring up
the same message box.

 5. Stop the project and find the SayHello method definition. Change the text to be displayed,
like this:

 Private Sub SayHello()
 ‘Display a message box

 MessageBox.Show(“I have changed!”, “Three Buttons”)

 End Sub

c03.indd 77c03.indd 77 4/1/08 6:21:18 PM4/1/08 6:21:18 PM

Chapter 3: Writing Software

78

 6. Run the project again and click each of the three buttons. You ’ ll notice that the text displayed
on the message boxes has changed.

 How It Works
 Each of the event handlers calls the same SayHello() method:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ‘Call your method
 SayHello()
 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button2.Click

 ‘Call your method
 SayHello()
 End Sub

 Private Sub Button3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button3.Click

 ‘Call your method
 SayHello()
 End Sub

 You ’ ll also notice that the Handles keyword on each of the methods ties the method to a different
control — Button1, Button2, or Button3.

 What ’ s really important (and clever) here is that when you change the way that SayHello works, the
effect you see on each button is the same. This is a really important programming concept. You can
centralize code in your application so that when you change it in once place, the effect is felt
throughout the application. Likewise, this saves you from having to enter the same or very similar
code repeatedly.

 Building a Method
 In the next Try It Out, you ’ ll build a method that ’ s capable of returning a value. Specifically, you ’ ll build
a method that can return the area of a circle if its radius is given. You can do this with the following
algorithm:

 1. Square the radius.

 2. Multiply it by pi.

c03.indd 78c03.indd 78 4/1/08 6:21:18 PM4/1/08 6:21:18 PM

Chapter 3: Writing Software

79

 Try It Out Building a Method

 1. To try out this exercise, reuse the Three Buttons project and return to the Code Editor.

 2. Add this code to define a new method (which will be a function, because it returns a value):

 ‘CalculateAreaFromRadius - find the area of a circle
 Private Function CalculateAreaFromRadius(ByVal radius As Double) As Double
 ‘Declare variables
 Dim dblRadiusSquared As Double
 Dim dblResult As Double

 ‘Square the radius
 dblRadiusSquared = radius * radius

 ‘Multiply it by pi
 dblResult = dblRadiusSquared * Math.PI

 ‘Return the result
 Return dblResult
 End Function

 3. Now delete the existing code from the Button1_Click event handler, and add the
highlighted code:

 Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ‘Declare variable
 Dim dblArea As Double

 ‘Calculate the area of a circle with a radius of 100
 dblArea = CalculateAreaFromRadius(100)

 ‘Display the results
 MessageBox.Show(dblArea.ToString, “Area of 100”)

 End Sub

 4. Run the project and click Button1. You ’ ll see results like the one shown in Figure 3 - 16 :

Figure 3-16

c03.indd 79c03.indd 79 4/1/08 6:21:18 PM4/1/08 6:21:18 PM

Chapter 3: Writing Software

80

 How It Works
 First, you build a separate method called CalculateAreaFromRadius . You do this by using the
 Private Function . . . End Function block.

 Private Function CalculateAreaFromRadius(ByVal radius As Double) As Double
 ...
 End Function

 Anything between Private Function and End Function is the body of the method and will be
executed only when the method is called.

 The ByVal radius As Double portion defines a parameter for the method. When a parameter is
passed by value , as indicated here by the keyword ByVal , .NET in effect creates a new variable and
stores the passed parameter information in it. Even if the method is called with a variable given for the
parameter, the contents of that original variable are not modified by the method. In this case, you ’ re
telling .NET that you want to pass a parameter into the method called radius . In effect, this statement
creates a variable called radius , just as if you had done this:

Dim radius As Double

 In fact, there ’ s a little more. The variable will be automatically set to the value passed through as a
parameter, so if you pass 200 through as the value of the parameter, what you ’ re effectively doing
is this:

Dim radius As Double = 200

 If you passed 999 as the value of the parameter, you ’ d have this:

Dim radius As Double = 999

 Another way of passing a parameter is by reference, using the keyword ByRef instead of ByVal . When
a parameter is passed by reference, the parameter name used within the method body effectively becomes
another name for the variable specified when the method is called, so that anything the method does that
modifies the parameter value modifies the original variable value as well.

 The As Double sitting at the end of the method declaration tells Visual Basic 2008 that this method
will return a double - precision floating - point number back to whoever called it:

Private Function CalculateAreaFromRadius(ByVal radius As Double) As Double

 Now you can look at the method properly. First off, you know that to find the area of a circle you have
this algorithm:

 1. Get a number that represents the radius of a circle.

 2. Square the number.

 3. Multiply it by pi (�).

c03.indd 80c03.indd 80 4/1/08 6:21:19 PM4/1/08 6:21:19 PM

Chapter 3: Writing Software

81

 And that ’ s precisely what you ’ ve done:

 ‘Declare variables
 Dim dblRadiusSquared As Double
 Dim dblResult As Double

 ‘Square the radius
 dblRadiusSquared = radius * radius

 ‘Multiply it by pi
 dblResult = dblRadiusSquared * Math.PI

 The Math.PI in the previous code is a constant defined in .NET that defines the value of pi (�) for us.
After the last line, you need to return the result to whatever code called the method. This is done with
this statement:

 ‘Return the result
 Return dblResult

 The code you added in Button1_Click calls the method and tells the user the results:

 ‘Declare variable
 Dim dblArea As Double

 ‘Calculate the area of a circle with a radius of 100
 dblArea = CalculateAreaFromRadius(100)

 ‘Display the results
 MessageBox.Show(dblArea.ToString, “Area of 100”)

 The first thing to do is define a variable called dblArea that will contain the area of the circle. You set
this variable to whatever value CalculateAreaFromRadius returns. Using parentheses at the end of
a method name is how you send the parameters. In this case, you ’ re passing just one parameter and
you ’ re passing the value 100.

 After you call the method, you wait for the method to finish calculating the area. This area is returned
from the method (the Return result line defined within CalculateAreaFromRadius) and stored in
the variable dblArea . You can then display this on the screen in the usual way.

 Choosing Method Names
 The .NET Framework has a few standards for how things should be named. These conventions help
developers move between languages — a topic discussed in Chapter 2 . We recommend that whenever
you create a method, you use Pascal casing . This is a practice in which the first letter in each word in the
method is uppercase but nothing else is. This is merely a suggestion for best coding practices and is not a
requirement of Visual Basic 2008. An example of this is as follows:

 CalculateAreaFromRadius

 OpenXmlFile

 GetEnvironmentValue

❑

❑

❑

c03.indd 81c03.indd 81 4/1/08 6:21:19 PM4/1/08 6:21:19 PM

Chapter 3: Writing Software

82

 Note that even when an abbreviation is used (in this case, XML), it isn ’ t written in uppercase. This
alleviates confusion for developers, who may or may not know how something should be capitalized.

 We recommend that you always write parameter names in camel casing . (If you ’ ve ever seen Java code,
you ’ ll be familiar with this.) To get camel casing, you do the same as Pascal casing, but you don ’ t
capitalize the very first letter:

 myAccount

 customerDetails

 updatedDnsRecord

 Again, abbreviations (such as DNS) are not treated as a special case, so they appear as a mix of upper
and lowercase letters, just like in Pascal casing.

 The name camel casing comes from the fact that the identifier has a hump in the middle, for example,
 camelCasing . Pascal casing comes from the fact that the convention was invented for use with the
programming language Pascal.

 In Chapter 2 , you saw that .NET isn ’ t tied to a particular language. Because some languages are
 casesensitive and others are not, it ’ s important that you define standards to make life easier for
programmers who may be coming from different programming language backgrounds.

 The term case - sensitive means that the positions of uppercase and lowercase letters are important. In a
case - sensitive language, MYACCOUNT is not the same as myAccount . However, Visual Basic 2008 is not
a case - sensitive language, meaning that for all intents and purposes you can do whatever you like with
respect to capitalization; in other words MYACCOUNT would be the same as mYacCounT .

 Note that languages such as Java, C#, and C++ are case - sensitive.

 Scope
 When introducing the concept of methods, we described them as self - contained . This has an important
effect on the way that variables are used and defined in methods. Imagine you have these two methods,
both of which define a variable called strName :

 Private Sub DisplaySebastiansName()
 ‘Declare variable and set value
 Dim strName As String
 strName = “Sebastian Blackwood”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 Private Sub DisplayBalthazarsName()
 ‘Declare variable and set value

❑

❑

❑

c03.indd 82c03.indd 82 4/1/08 6:21:19 PM4/1/08 6:21:19 PM

Chapter 3: Writing Software

83

 Dim strName As String
 strName = “Balthazar Keech”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 Even though both of these methods use a variable with the same name (strName), the self - contained
feature of methods means that this is perfectly practicable and the variable names won ’ t affect each
other. Try it out next.

Try It Out Scope

 1. Create a new Windows Forms Application project called Scope Demo .

 2. Add a Button control to the form and set its Name property btnScope and its Text property to
Scope. Double - click the button and add the following highlighted code to the Click event
handler and add the other two methods:

 Private Sub btnScope_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnScope.Click

 ‘Call a method
 DisplayBalthazarsName()

 End Sub

 Private Sub DisplaySebastiansName()
 ‘Declare variable and set value
 Dim strName As String
 strName = “Sebastian Blackwood”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 Private Sub DisplayBalthazarsName()
 ‘Declare variable and set value
 Dim strName As String
 strName = “Balthazar Keech”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 3. Save your project by clicking the Save All button on the toolbar.

 4. Run the project and you ’ ll see the message box displaying the name Balthazar Keech when
you click the button.

c03.indd 83c03.indd 83 4/1/08 6:21:20 PM4/1/08 6:21:20 PM

Chapter 3: Writing Software

84

 How It Works
 What this exercise illustrates is that even though you ’ ve used the same variable name in two separate
places, the program still works as intended:

 Private Sub DisplaySebastiansName()
 ‘Declare variable and set value
 Dim strName As String
 strName = “Sebastian Blackwood”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 Private Sub DisplayBalthazarsName()
 ‘Declare variable and set value
 Dim strName As String
 strName = “Balthazar Keech”

 ‘Display results
 MessageBox.Show(strName, “Scope Demo”)
 End Sub

 When a method starts running, the variables that are defined within that method (in other words,
between Sub and End Sub , or between Function and End Function) are given local scope . The scope
defines which parts of the program can see the variable, and local specifically means within the current
method .

The strName variable technically doesn ’ t exist until the method starts running. At this point, .NET
and Windows allocate memory to the variable so that it can be used in the code. First, you set the
value and then you display the message box. Therefore, in this case as you ’ re calling the method
 DisplayBalthazarsName , the variable is created the moment the method is called, you run the code
in the method that alters the newly created version of strName , and when the method has finished,
the variable is deleted.

You will see in Chapter 4 that scope can even be limited to loops within your subroutines and functions.

 Summary
 This chapter introduced the concept of writing software not just for Visual Basic 2008 but also for all
programming languages. We started by introducing the concept of an algorithm — the underpinnings of
all computer software. We then introduced the concept of variables, and looked closely at the most
commonly used data types: Integer , Double , String , Date , and Boolean . You saw how you could use
these data types to perform operations such as mathematical operations, concatenating strings, returning
the length of a string, splitting text into substrings, retrieving the current date, and extracting date
properties. You then looked at how variables are stored in the computer.

c03.indd 84c03.indd 84 4/1/08 6:21:20 PM4/1/08 6:21:20 PM

Chapter 3: Writing Software

85

 After this, you looked at methods — what they are, why you need them, how to create them, and how
the variables you declare within your methods have local scope within that method and do not apply
outside of it. We also described the difference between a function and a subroutine.

 To summarize, you should know:

 What an algorithm is and how it applies to software development

 How to declare and use the most common types of variables

 How to use the most common string functions when working with the String data type

 How to use the Date data type and display dates and times so that they are automatically
localized to the user ’ s computer settings

 How to create and use simple methods

 Exercises
 1. Create a Windows application with two button controls. In the Click event for the first button,

declare two Integer variables and set their values to any number that you like. Perform any
math operation on these variables and display the results in a message box.

 In the Click event for the second button, declare two String variables and set their values to
anything that you like. Perform a string concatenation on these variables and display the results
in a message box.

 2. Create a Windows application with a text box and a button control. In the button ’ s Click event,
display three message boxes. The first message box should display the length of the string that
was entered into the text box. The second message box should display the first half of the string,
and the third message box should display the last half of the string.

❑

❑

❑

❑

❑

c03.indd 85c03.indd 85 4/1/08 6:21:20 PM4/1/08 6:21:20 PM

c03.indd 86c03.indd 86 4/1/08 6:21:21 PM4/1/08 6:21:21 PM

 4
Controlling the Flow

 In Chapter 3 , you learned about algorithms and their role in programming. In this chapter, you ’ re
going to look at how you can control the flow through your algorithms so that you can make
 decisions like, “ If X is the case, go and do A; otherwise do B. ” This ability to make decisions is
known as branching . You ’ ll also see how you can repeat a section of code (a process known as
 looping) a specified number of times, or while a certain condition applies.

 Specifically, you ’ ll learn more about:

 The If statement

 Select Case

 For loops

 Do loops

 Making Decisions
 Algorithms often include decisions. It ’ s this decision - making ability that makes computers do
what they do so well. When you ’ re writing code, you make two kinds of decisions. The first kind
is used to find out what part of an algorithm you ’ re currently working on or to cope with prob-
lems. For example, imagine you have a list of 10 people and need to write a piece of code to send
an e - mail to each of them. To do this, after sending each e - mail, you ask, “ Have I finished? ” If so,
you quit the algorithm; otherwise you get the next person in the list. As another example, you
might need to open a file, so you ask, “ Does the file exist? ” You have to deal with both possible
answers to that question.

 The second kind of decision is used to perform a different part of the algorithm depending on one
or more facts. Imagine you ’ re going through your list of 10 people so that you can send an e - mail
to those who own a computer but telephone those who don ’ t. As you look at each person, you use
the fact that the person does or doesn ’ t own a computer to choose what you should do.

❑

❑

❑

❑

c04.indd 87c04.indd 87 4/1/08 6:21:52 PM4/1/08 6:21:52 PM

Chapter 4: Controlling the Flow

88

 These decisions are all made in the same way, and it doesn ’ t matter whether you have more of the first
kind, more of the second kind, or whatever. Now, let ’ s take a look at how to make a decision using the
 If statement.

 The If Statement
 The simplest way to make a decision in a Visual Basic 2008 program is to use the If . . . Then statement.
You learn to use an If . . . Then statement in the following Try It Out exercise.

Try It Out A Simple If . . . Then Statement

 1. Create a Windows Forms Application project called Simple If . Add a Button control, set its
 Name property to btnIf , and set its Text property to If . Double - click the button and add the
following highlighted code:

 Private Sub btnIf_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnIf.Click

 ‘Declare and set a variable
 Dim intNumber As Integer = 27

 ‘Here’s where you make a decision,
 ‘and tell the user what happened
 If intNumber = 27 Then
 MessageBox.Show(“’intNumber’ is, indeed, 27!”, “Simple If”)
 End If

 End Sub

 2. Save your project and then run it. Click the If button and you ’ ll see the message box shown in
Figure 4 - 1 .

Figure 4-1

 How It Works
 First you declare an Integer variable called intNumber and set its value to 27 , all in the same line of
code, as shown here:

 ‘Declare and set a variable
 Dim intNumber As Integer = 27

c04.indd 88c04.indd 88 4/1/08 6:21:53 PM4/1/08 6:21:53 PM

Chapter 4: Controlling the Flow

89

 Then you use an If . . . Then statement to determine what you should do next. In this case, you say,
“ If intNumber is equal to 27... ” :

 ‘Here’s where you make a decision,
 ‘and tell the user what happened
 If intNumber = 27 Then
 MessageBox.Show(“’intNumber’ is, indeed, 27!”, “Simple If”)
 End If

 The code block that follows this will be executed only if intNumber equals 27 . You end the code block
with End If . Anything between If and End If is called only if the expression you ’ re testing for is true.

 So, as you walk through the code, you get to the If statement, and it ’ s true. You drop into the code block
that runs if the expression is true, and the text is displayed in a message box.

 Notice that the code within the If . . . End If block is automatically indented for you. This is to
increase readability so that you can tell what code will run in the event of the condition being true. It ’ s
also good to add some white space before the If . . . Then statement and after the End If statement to
enhance readability further.

 A simple If block like the previous one may also be written on one line, without an End If statement,
for example:

If intNumber = 27 Then MessageBox.Show(“’intNumber’ is, indeed, 27!”, “Simple If”)

This works equally well — although you are limited to only one line of code within the If statement. So
now you know what happens if your condition is true. But what happens if you fail the test and the
result is false? You find out in the next Try It Out.

Try It Out Failing the Test
 1. Return to the Forms Designer for the Simple If program. Add another Button control to the

form and set its Name property to btnAnotherIf and its Text property to Another If . Double -
 click the button and add the following highlighted code:

 Private Sub btnAnotherIf_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAnotherIf.Click

 ‘Declare and set a variable
 Dim intNumber As Integer = 27

 ‘Here’s where you make a decision,
 ‘and tell the user what happened
 If intNumber = 1000 Then
 MessageBox.Show(“’intNumber’ is, indeed, 1000!”, “Simple If”)
 End If
 End Sub

c04.indd 89c04.indd 89 4/1/08 6:21:54 PM4/1/08 6:21:54 PM

Chapter 4: Controlling the Flow

90

 2. Run your project and click the Another If button; nothing will happen.

 How It Works
 In this case, the question “ Is intNumber equal to 1000? ” comes out false. The code block executes only
if the statement is true, so it ’ s skipped. If the statement were true, the line between the If and End If
lines would have executed. However, in this instance the statement was false, so the next line to be
executed was the first line directly following the End If line (which is End Sub). In effect, the true
code block is skipped.

 The Else Statement
 If you want to run one piece of code if the condition is true and another piece if the condition is false,
you use the Else statement. Expand on the previous Try It Out to see how it works.

Try It Out The Else Statement
 1. Return to the Code Editor in the Simple If project and modify the code in the btnAnotherIf_

Click procedure so that it looks like this:

 Private Sub btnAnotherIf_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAnotherIf.Click

 ‘Declare and set a variable
 Dim intNumber As Integer = 27

 ‘Here’s where you make a decision,
 ‘and tell the user what happened
 If intNumber = 1000 Then
 MessageBox.Show(“’intNumber’ is, indeed, 1000!”, “Simple If”)

 Else
 MessageBox.Show(“’intNumber’ is not 1000!”, “Simple If”)

 End If
 End Sub

 2. Run the project and you ’ ll see the message box shown in Figure 4 - 2 .

Figure 4-2

c04.indd 90c04.indd 90 4/1/08 6:21:54 PM4/1/08 6:21:54 PM

Chapter 4: Controlling the Flow

91

 How It Works
 The code following the Else statement runs if the condition in the If statement is not met. In this
case, the value of intNumber is 27 , but the condition being tested for is intNumber = 1000 , so the
code after the Else statement is run:

 Else
 MessageBox.Show(“’intNumber’ is not 1000!”, “Simple If”)
 End If

 Allowing Multiple Alternatives with ElseIf
 If you want to test for more than one condition, you need to make use of the ElseIf statement. Now
take your Simple If program as an example to see how you can test for the value of intNumber being 27
and 1000 .

Try It Out The ElseIf Statement
 1. Return to the Code Editor and change the code in the btnAnotherIf_Click procedure so

that it looks like this:

 Private Sub btnAnotherIf_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAnotherIf.Click

 ‘Declare and set a variable
 Dim intNumber As Integer = 27

 ‘Here’s where you make a decision,
 ‘and tell the user what happened
 If intNumber = 1000 Then
 MessageBox.Show(“’intNumber’ is, indeed, 1000!”, “Simple If”)

 ElseIf intNumber = 27 Then
 MessageBox.Show(“’intNumber’ is 27!”, “Simple If”)

 Else
 MessageBox.Show(“’intNumber’ is neither 1000 nor 27!”, “Simple If”)
 End If
 End Sub

 2. Run the project and you ’ ll see the message box shown in Figure 4 - 3 .

Figure 4-3

c04.indd 91c04.indd 91 4/1/08 6:21:54 PM4/1/08 6:21:54 PM

Chapter 4: Controlling the Flow

92

 How It Works
 This time the code in the ElseIf statement ran because intNumber met the condition intNumber =
27 . Note that you can still include the Else statement at the end to catch instances where intNumber
is neither 27 nor 1000 , but something else entirely:

 ElseIf intNumber = 27 Then
 MessageBox.Show(“’intNumber’ is 27!”, “Simple If”)
 Else
 MessageBox.Show(“’intNumber’ is neither 1000 nor 27!”, “Simple If”)
 End If

 You can add as many ElseIf statements as you need to test for conditions. However, bear in mind
that each ElseIf statement is executed as Visual Basic 2008 attempts to discover whether the condi-
tion is true. This slows your program if you have a lot of conditions to be tested. If this is the case, you
should try to put the statements in the order they are most likely to be executed, with the most common
one at the top. Alternatively, you should use a Select Case block, which you will be looking at later
in the chapter.

 Nested If Statements
 It ’ s possible to nest an If statement inside another:

If intX = 3 Then
 MessageBox.Show(“intX = 3”)

 If intY = 6 Then
 MessageBox.Show(“intY = 6”)
 End If

End If

 There ’ s no real limit to how far you can nest your If statements. However, the more levels of nesting
you have, the harder it is to follow what ’ s happening in your code. So try to keep the nesting of If
 statements to a minimum.

 Single - Line If Statement
 The single - line form is typically used for short, simple tests, and it saves space in the text editor.
 However, it doesn ’ t provide the structure and flexibility of the multiline form and is usually harder
to read:

If intX = 3 Then MessageBox.Show(“intX = 3”) Else MessageBox.Show(“intX is not 3”)

 You don ’ t need an End If at the end of a single - line If . . . Then statement.

c04.indd 92c04.indd 92 4/1/08 6:21:55 PM4/1/08 6:21:55 PM

Chapter 4: Controlling the Flow

93

 Multiple statements can also be executed within a single line If . . . Then statement. All statements must
be on the same line and must be separated by colons, as in the following example:

If intX = 3 Then MessageBox.Show(“intX = 3”) : intX = intX + 1 : Total += intX

 Comparison Operators
 You know how to check whether a particular variable is equal to some value and execute code if this is
the case. In fact, If is far more flexible than this. You can ask questions such as these, all of which have
yes/no answers.

 Is intNumber greater than 49 ?

 Is intNumber less than 49 ?

 Is intNumber greater than or equal to 49 ?

 Is intNumber less than or equal to 49 ?

 Is strName not equal to Ben ?

 When working with string values, most of the time you ’ ll use the Equal To or Not Equal To
operator. When working with numeric values (both integer and floating - point), you can use all of
these arithmetic operators discussed in the previous chapter.

 Using Not Equal To
 You have not used Not Equal To yet, so test the Not Equal To operator with strings.

Try It Out Using Not Equal To
 1. Create a Windows Forms Application project called If Demo . Add a TextBox control and a

 Button control. Set the Name property for TextBox1 to txtName and the Text property to
 Stephanie . Set the Name property for Button1 to btnCheck and the Text property to Check .

 2. Double - click the Button control to create its Click event handler. Add the highlighted code:

 Private Sub btnCheck_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCheck.Click

 ‘Declare a variable and get the name from the text box
 Dim strName As String
 strName = txtName.Text

 ‘Is the name Wendy?
 If strName < > “Wendy” Then
 MessageBox.Show(“The name is *not* Wendy.”, “If Demo”)
 End If

 End Sub

❑

❑

❑

❑

❑

c04.indd 93c04.indd 93 4/1/08 6:21:55 PM4/1/08 6:21:55 PM

Chapter 4: Controlling the Flow

94

 3. Save your project and then run it. When the form is displayed, click the Check button and you
will see a message box indicating that the name is not Wendy.

 How It Works
 The Not Equal To operator looks like this: < > . When the button is clicked, the first thing you do is to
retrieve the name from the text box by looking at its Text property:

 ‘Declare a variable and get the name from the text box
 Dim strName As String
 strName = txtName.Text

 After you have the name, you use an If statement. This time, however, you use the Not Equal To
operator rather than the Equal To operator. Also note that you are comparing two string values.

 ‘Is the name Wendy?
 If strName < > “Wendy” Then
 MessageBox.Show(“The name is *not* Wendy.”, “If Demo”)
 End If

 The code between Then and End If executes only if the answer to the question asked in the
If statement is True . You ’ ll probably find this a bit of a heady principle, because the question
you ’ re asking is, “ Is strName not equal to Wendy ? ” to which the answer is “ Yes, the strName is not
equal to Wendy . ” As the answer to this question is yes, or True , the code runs and the message box
displays. However, if you enter Wendy into the text box and click Check, nothing happens, because
the answer to the question is “ No, the strName is equal to Wendy ” ; therefore you have a no,
or False , answer.

 If you try this, be sure to enter Wendy with an uppercase W and with the rest of the letters in lowercase;
otherwise the application won ’ t work properly. You ’ ll see why later.

 An alternative way of checking that something does not equal something else is to use the Not key-
word. The condition in the If statement could have been written:

If Not strName = “Wendy” Then

 Using the Numeric Operators
 In this section, you take a look at the four other comparison operators you can use. These are all fairly
basic, so you ’ ll go through this quite fast.

c04.indd 94c04.indd 94 4/1/08 6:21:56 PM4/1/08 6:21:56 PM

Chapter 4: Controlling the Flow

95

Try It Out Using Less Than
 1. Return to the Forms Designer for the If Demo project. Add another TextBox control and set its

 Name property to txtValue . Add another Button control and set its Name property to
 btnCheckNumbers and its Text property to Check Numbers .

 2. Double - click the Check Numbers button and add the following highlighted code to its Click
event handler:

 Private Sub btnCheckNumbers_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCheckNumbers.Click

 ‘Declare variable
 Dim intNumber As Integer

 Try
 ‘Get the number from the text box
 intNumber = CType(txtValue.Text, Integer)
 Catch
 End Try

 ‘Is intNumber less than 27?
 If intNumber < 27 Then
 MessageBox.Show(“Is ‘intNumber’ less than 27? Yes!”, “If Demo”)
 Else
 MessageBox.Show(“Is ‘intNumber’ less than 27? No!”, “If Demo”)
 End If

 End Sub

 3. Run the project. Enter a number into the text box and click the Check Numbers button. You ’ ll
be told whether the number entered is less than or greater than 27 as shown in Figure 4 - 4 .

Figure 4-4

c04.indd 95c04.indd 95 4/1/08 6:21:56 PM4/1/08 6:21:56 PM

Chapter 4: Controlling the Flow

96

 How It Works
 First, you get the value back from the text box. However, there is a slight wrinkle. Because this is a text
box, the end users are free to enter anything they like into it, and if a series of characters that cannot be
converted into an integer is entered, the program will crash. Therefore, you add an exception handler to
make sure that you always get a value back. Also, with the Option Strict option turned on, you ’ ll need
to convert the string value in the text box to an Integer data type using the CType function as you
did in the last chapter. If the user enters something invalid, intNumber remains 0 (the default value),
otherwise it will be whatever is entered:

 ‘Declare variable
 Dim intNumber As Integer

 Try
 ‘Get the number from the text box
 intNumber = CType(txtValue.Text, Integer)
 Catch
 End Try

 You ’ ll be introduced to exception handling properly in Chapter 10 . For now, you can safely ignore it!

 The Less Than operator looks like this: < . Here, you test to check whether the number entered was less
than 27 , and if it is, you say so in a message box; otherwise you say No:

 ‘Is intNumber less than 27?
 If intNumber < 27 Then
 MessageBox.Show(“Is ‘intNumber’ less than 27? Yes!”, “If Demo”)
 Else
 MessageBox.Show(“Is ‘intNumber’ less than 27? No!”, “If Demo”)
 End If

 Here ’ s something interesting though. If you actually enter 27 into the text box and click the button,
you ’ ll see a message box that tells you intNumber is not less than 27. The If statement said No, and
it ’ s right; intNumber is actually equal to 27 and the cutoff point for this operator is anything up to but
not including the value itself. You can get around this problem with a different operator, as you ’ ll see in
the next Try It Out.

Try It Out Using the Less Than Or Equal To Operator
 1. Return to the Code Editor and change the If statement in the btnCheckNumbers_Click

event handler as shown here:

 Try
 ‘Get the number from the text box
 intNumber = CType(txtValue.Text, Integer)
 Catch
 End Try

c04.indd 96c04.indd 96 4/1/08 6:21:56 PM4/1/08 6:21:56 PM

Chapter 4: Controlling the Flow

97

 ‘Is intNumber less than or equal to 27?
 If intNumber < = 27 Then
 MessageBox.Show(“Is ‘intNumber’ less than or equal to 27? Yes!”, _
 “If Demo”)

 Else

 MessageBox.Show(“Is ‘intNumber’ less than or equal to 27? No!”, _
 “If Demo”)

 End If

 2. Now run the project and enter 27 into the text box. Click the Check Numbers button and you
should see the results shown in Figure 4 - 5 .

Figure 4-5

 How It Works
 The Less Than Or Equal To operator looks like this: < = . In this situation, you ’ re extending the possible
range of values up to and including the value you ’ re checking. So, in this case when you enter 27, you
get the answer, Yes, n is less than or equal to 27 . This type of operator is known as an
 inclusive operator .

 The final two operators look really similar to this, so let ’ s look at them now.

Try It Out Using Greater Than and Greater Than Or Equal To
 1. Return to the Code Editor and add two additional If statements in the btnCheckNumbers_

Click event handler as shown here:

 ‘Is intNumber less than or equal to 27?
 If intNumber < = 27 Then
 MessageBox.Show(“Is ‘intNumber’ less than or equal to 27? Yes!”, _
 “If Demo”)
 Else
 MessageBox.Show(“Is ‘intNumber’ less than or equal to 27? No!”, _
 “If Demo”)
 End If

c04.indd 97c04.indd 97 4/1/08 6:21:57 PM4/1/08 6:21:57 PM

Chapter 4: Controlling the Flow

98

 ‘Is intNumber greater than 27?
 If intNumber > 27 Then
 MessageBox.Show(“Is ‘intNumber’ greater than 27? Yes!”, _
 “If Demo”)
 Else
 MessageBox.Show(“Is ‘intNumber’ greater than 27? No!”, _
 “If Demo”)
 End If

 ‘Is intNumber greater than or equal to 27?
 If intNumber = 27 Then
 MessageBox.Show(“Is ‘intNumber’ greater than or equal to 27? Yes!”, _
 “If Demo”)
 Else
 MessageBox.Show(“Is ‘intNumber’ greater than or equal to 27? No!”, _
 “If Demo”)
 End If

End Sub

 2. Run the program. This time enter a value of 99 and click the Check Numbers button.
You ’ ll see three message boxes one after the other. The first message box will indicate that
 intNumber is not less than or equal to 27, while the second message box will indicate
that intNumber is greater than 27. The final message box will indicate that intNumber is
greater than or equal to 27.

 How It Works
 The Greater Than and Greater Than Or Equal To operators are basically the opposite of their Less
Than counterparts. This time, you ’ re asking, “ Is intNumber greater than 27 ? ” and, “ Is intNumber
greater than or equal to 27 ? ” The results speak for themselves.

 The And and Or Operators
 What happens when you need your If statement to test more than one condition? For example, if you
want to make sure that “ intNumber is less than 27 and greater than 10 ” ? Or, how about checking that
 strName is “ Wendy ” or “ Stephanie ” ? You can combine operators used with an If statement with the
 And and Or operators, as you do in the next Try It Out.

Try It Out Using the Or Operator
 1. Create a new Windows Forms Application called And Or Demo .

 2. In the Form Designer for Form1, add two TextBox controls and a Button control. Set the Name
properties of the text boxes to txtName1 and txtName2 and the Name property of the button to
 btnOrCheck .

c04.indd 98c04.indd 98 4/1/08 6:21:57 PM4/1/08 6:21:57 PM

Chapter 4: Controlling the Flow

99

 3. Set the Text property for txtName1 to Wendy and the Text property for txtName2 to
 Stephanie . Finally, set the Text property for btnOrCheck to Or Check . Your completed form
should look similar to the one shown in Figure 4 - 6 .

Figure 4-6

 4. Double - click the Or Check button and add the following code to its Click event handler:

 Private Sub btnOrCheck_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOrCheck.Click

 ‘Declare variables
 Dim strName1 As String, strName2 As String

 ‘Get the names
 strName1 = txtName1.Text
 strName2 = txtName2.Text

 ‘Is one of the names Wendy?
 If strName1 = “Wendy” Or strName2 = “Wendy” Then
 MessageBox.Show(“One of the names is Wendy.”, _
 “And Or Demo”)
 Else
 MessageBox.Show(“Neither of the names is Wendy.”, _
 “And Or Demo”)
 End If

 End Sub

 5. Run the project and click the button. You should see the results as shown in Figure 4 - 7 .

Figure 4-7

c04.indd 99c04.indd 99 4/1/08 6:21:57 PM4/1/08 6:21:57 PM

Chapter 4: Controlling the Flow

100

 6. Click OK to dismiss the message box dialog box and flip the names around so that the top one
(txtName1) is Stephanie and the bottom one (txtName2) is Wendy . Click the button again
and you ’ ll see a message box indicating that one of the names is Wendy.

 7. Now, click OK to dismiss the message box again and this time change the names so that
neither of them is Wendy. Click the button and you should see a message box indicating that
neither of the names is Wendy.

 How It Works
 The Or operator is a great way of building If statements that compare two different values in a single
hit. In your Click event handler, the first thing you do is declare your variables and then retrieve both
names and store them in variables strName1 and strName2 :

 ‘Declare variables
 Dim strName1 As String, strName2 As String

 ‘Get the names
 strName1 = txtName1.Text
 strName2 = txtName2.Text

 You ’ ll notice that you ’ ve defined two variables on the same line. This is perfectly legitimate coding
practice, although it can sometimes make the code look congested. The variables are separated with
commas; note that it ’ s still important to use the As keyword to tell Visual Basic 2008 what data type
each of the variables is.

 Once you have both names, you use the Or operator to combine two separate If statements. The ques-
tion you ’ re asking here is, “ Is strName1 equal to Wendy or is strName2 equal to Wendy ? ” The answer
to this question (provided that one of the text boxes contains the name Wendy) is, “ Yes, either
 strName1 is equal to Wendy or strName2 is equal to Wendy . ” Again, it ’ s a yes/no or true/ false
answer, even though the question is seemingly more complex:

 ‘Is one of the names Wendy?
 If strName1 = “Wendy” Or strName2 = “Wendy” Then
 MessageBox.Show(“One of the names is Wendy.”, _
 “And Or Demo”)
 Else
 MessageBox.Show(“Neither of the names is Wendy.”, _
 “And Or Demo”)
 End If

 Using the And Operator
 The And operator is conceptually similar to Or , except that both parts of the condition need to be satis-
fied, as you will see in the next Try It Out.

c04.indd 100c04.indd 100 4/1/08 6:21:58 PM4/1/08 6:21:58 PM

Chapter 4: Controlling the Flow

101

Try It Out Using the And Operator
 1. Return to the Forms Designer in the And Or Demo project and add another Button control to

the form. Set its Name property to btnAndCheck and its Text property to And Check .
Double - click the button and add the following highlighted code to its Click event handler:

 Private Sub btnAndCheck_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnAndCheck.Click

 ‘Declare variables
 Dim strName1 As String, strName2 As String

 ‘Get the names
 strName1 = txtName1.Text
 strName2 = txtName2.Text

 ‘Are both names Wendy?
 If strName1 = “Wendy” And strName2 = “Wendy” Then
 MessageBox.Show(“Both names are Wendy.”, _
 “And Or Demo”)
 Else
 MessageBox.Show(“One of the names is not Wendy.”, _
 “And Or Demo”)
 End If
 End Sub

 2. Run the program. Click the And Check button, and a message box tells you that one of the
names is not Wendy.

 3. However, if you change both names so that they are both Wendy and click the button, you ’ ll
see the results shown in Figure 4 - 8 .

Figure 4-8

c04.indd 101c04.indd 101 4/1/08 6:21:58 PM4/1/08 6:21:58 PM

Chapter 4: Controlling the Flow

102

 How It Works
 After you ’ ve retrieved both names from the text boxes, you compare them. In this case, you ’ re asking
the question, “ Is strName1 equal to Wendy and is strName2 equal to Wendy ? ” In this case, both parts
of the If statement must be satisfied in order for the “ Both names are Wendy ” message box to be
displayed:

 ‘Are both names Wendy?
 If strName1 = “Wendy” And strName2 = “Wendy” Then
 MessageBox.Show(“Both names are Wendy.”, _
 “And Or Demo”)
 Else
 MessageBox.Show(“One of the names is not Wendy.”, _
 “And Or Demo”)
 End If

 More on And and Or
 You ’ ve seen And and Or used with strings. But they can be used with numeric values, like this:

 If intX = 2 And intY = 2.3 Then
 MessageBox.Show(“Hello, both of the conditions has been satisfied!”)
 End If

or

 If intX = 2 Or intY = 2.3 Then
 MessageBox.Show(“Hello, one of the conditions have been satisfied!”)
 End If

 Also, in Visual Basic 2008, there ’ s no realistic limit to the number of And operators or Or operators that
you can include in a statement. It ’ s perfectly possible to do this:

 If intA = 1 And intB = 2 And intC = 3 And intD = 4 And intE = 5 And _
 intF = 6 And intG = 7 And intH = 1 And intI = 2 And intJ = 3 And _
 intK = 4 And intL = 5 And intM = 6 And intN = 7 And intO = 1 And _
 intP = 2 And intQ = 3 And intR = 4 And intS = 5 And intT = 6 And _
 intU = 7 And intV = 1 And intW = 2 And intX = 3 And intY = 4 And _
 intZ = 5 Then
 MessageBox.Show(“That’s quite an If statement!”)
 End If

 . . . although why you ’ d want to do so is beyond us!

 Finally, it ’ s possible to use parentheses to group operators and look for a value within a range. For exam-
ple, say you want to determine whether the value of intX is between 12 and 20 exclusive or between 22
and 25 exclusive. You can use the following If . . . Then statement:

 If (intX > 12 And intX < 20) Or (intX > 22 And intX < 25) Then

c04.indd 102c04.indd 102 4/1/08 6:21:59 PM4/1/08 6:21:59 PM

Chapter 4: Controlling the Flow

103

 There are many other combinations of operators, far more than we have room to go into here. Rest
assured that if you want to check for a condition, there is a combination to suit your needs.

 String Comparison
 When working with strings and If statements, you often run into the problem of uppercase and
 lowercase letters. A computer treats the characters “ A ” and “ a ” as separate entities, even though people
consider them to be similar. This is known as case sensitivity — meaning that the case of the letters does
matter when comparing strings. For example, if you run the following code, the message box would not
be displayed.

Dim strName As String
strName = “Winston”
If strName = “WINSTON” Then
 MessageBox.Show(“Aha! You are Winston.”)
End If

 Because WINSTON is not strictly speaking the same as Winston , this If statement will not return a
 message. However, in many cases you don ’ t actually care about the case, so you have to find a way of
comparing strings and ignoring the case of the characters. In the next Try It Out, you work with case -
 insensitive strings.

Try It Out Using Case - Insensitive String Comparisons
 1. Return to the Forms Designer in the And Or Demo project and add another TextBox and

Button control to the form.

 2. Set the Name property of the TextBox to txtName3 and the Text property to Bryan . Set the
 Name property of the Button to btnStringCompare and the Text property to String Compare .

 3. Double - click the String Compare button to open its Click event handler and add the
highlighted code:

 Private Sub btnStringCompare_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnStringCompare.Click

 ‘Declare variable
 Dim strName As String

 ‘Get the name
 strName = txtName3.Text

 ‘Compare the name
 If String.Compare(strName, “BRYAN”, True) = 0 Then
 MessageBox.Show(“Hello, Bryan!”, “And Or Demo”)
 End If

 End Sub

c04.indd 103c04.indd 103 4/1/08 6:21:59 PM4/1/08 6:21:59 PM

Chapter 4: Controlling the Flow

104

 4. Run the project and click the button. You should see results like the ones shown in Figure 4 - 9 .

Figure 4-9

 5. Now, dismiss the message box and enter the name in the last text box as BrYaN , or some other
combination of upper - and lowercase letters, and click the button. You should still see a
message box that says “ Hello, Bryan! ”

 6. However, if you enter a name that isn ’ t Bryan, the message box will not be displayed when
you click the button.

 How It Works
 After you get the name back from the text box, you have to use a function to compare the two values
rather than use the basic Equal To operator. In this instance, you ’ re using the Compare method on
 System.String and giving it the two strings you want to compare. The first string is the value stored
in strName (which is the value entered into the text box), with the second string being “ BRYAN ” . The
last parameter that you supply is True , which tells Compare to perform a case - insensitive match; in
other words, it should ignore the differences in case. If you had supplied False for this parameter, the
comparison would have been case sensitive, in which case you would have been no better off than
using the vanilla Equal To operator:

 ‘Compare the name
 If String.Compare(strName, “BRYAN”, True) = 0 Then
 MessageBox.Show(“Hello, Bryan!”, “And Or Demo”)
 End If

 String.Compare returns a fairly curious result. It actually returns an integer, rather than a True or
 False value. This is because String.Compare can be used to determine how two strings are different
rather than just a straightforward, “ Yes, they are ” or, “ No, they ’ re not. ” If the method returns 0 , the
strings match. If the method returns a value that is not 0, the strings do not match.

 String.Compare returns an indication of how different two strings are in order to help you build
sorting algorithms.

c04.indd 104c04.indd 104 4/1/08 6:21:59 PM4/1/08 6:21:59 PM

Chapter 4: Controlling the Flow

105

 Select Case
 On occasion, you need to make a set of similar decisions like this:

 Is the customer called Bryan? If so, do this.

 Is the customer called Stephanie? If so, do this.

 Is the customer called Cathy? If so, do this.

 Is the customer called Betty? If so, do this.

 Is the customer called Edward? If so, do this.

 You can obviously do this with a set of If . . . Then statements. In fact, it would look a little like this:

If Customer.Name = “Bryan” Then
 (do something)
ElseIf Customer.Name = “Stephanie” Then
 (do something)
ElseIf Customer.Name = “Cathy” Then
 (do something)
ElseIf Customer.Name = “Betty” Then
 (do something)
ElseIf Customer.Name = “Edward” Then
 (do something)
End If

 What happens if you decide you want to check Customer.FirstName instead of Customer.Name ?
You ’ d have to change every If statement, which is a pain. Also, if Customer.Name turns out to be
 “ Edward ” , you still have to go through the other four If statements, which is very inefficient. In the next
Try It Out, you learn a better way!

Try It Out Using Select Case

 1. Create a new Windows Forms Application project. Call it Select Demo . Set the Text property
of the form to Select Case .

 2. From the Toolbox, add a ListBox control to the form and set its Name property to lstData , its
 Dock property to Fill , and its IntegralHeight property to False .

 3. With lstData selected in the Form Designer, look at the Properties window and select the
 Items property. Click the ellipses button to the right of the property, and in the String
Collection Editor that appears, add the five names on separate lines as shown in Figure 4 - 10 .

❑

❑

❑

❑

❑

Figure 4-10

c04.indd 105c04.indd 105 4/1/08 6:22:00 PM4/1/08 6:22:00 PM

Chapter 4: Controlling the Flow

106

 4. Click OK to save the changes, and the names are added to your list box.

 5. Now double - click lstData to create a new SelectedIndexChanged event handler and add the
 highlighted code:

 Private Sub lstData_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lstData.SelectedIndexChanged

 ‘Declare variables
 Dim strName As String
 Dim strFavoriteColor As String

 ‘Get the selected name
 strName = lstData.Items(lstData.SelectedIndex).ToString

 ‘Use a Select Case statement to get the favorite color
 ‘of the selected name
 Select Case strName
 Case “Bryan”
 strFavoriteColor = “Madras Yellow”

 Case “Stephanie”
 strFavoriteColor = “Sea Blue”

 Case “Cathy”
 strFavoriteColor = “Morning Mist”

 Case “Betty”
 strFavoriteColor = “Passionate Purple”

 Case “Edward”
 strFavoriteColor = “Battleship Gray”
 End Select

 ‘Display the favorite color of the selected name
 MessageBox.Show(strName & “’s favorite color is “ & strFavoriteColor,
 _ “Select Demo”)

 End Sub

 6. Save your project and then run it. Whenever you click one of the names, a message box will
appear as shown in Figure 4 - 11 .

c04.indd 106c04.indd 106 4/1/08 6:22:00 PM4/1/08 6:22:00 PM

Chapter 4: Controlling the Flow

107

 How It Works
 The first thing you need to do in the SelectedIndexChanged event handler is declare your variables
and work out which name was selected. You do this by finding the item in the list that matches the
current value of the SelectedIndex property. The Items collection of the ListBox class returns an
 Object data type so you use the ToString method to convert the object to a String data type for the
 strName variable:

 ‘Declare variables
 Dim strName As String
 Dim strFavoriteColor As String

 ‘Get the selected name
 strName = lstData.Items(lstData.SelectedIndex).ToString

 When you have that, you start a Select Case . . . End Select block. To do this, you need to supply
the variable that you ’ re matching against; in this case, you ’ re using the name that was selected in
the list.

 Inside the Select Case . . . End Select block, you define separate Case statements for each condi-
tion to be checked against. In this example, you have five, and each one is set to respond to a different
name. If a match can be found, Visual Basic 2008 executes the code immediately following the relevant
 Case statement.

 For example, if you clicked Betty, the message box would display Passionate Purple as her favorite
color, because Visual Basic 2008 would execute the line, strFavoriteColor = “ Passionate
 Purple ” . If you clicked Stephanie, the message box would display Sea Blue as her favorite color,
because Visual Basic 2008 would execute strFavoriteColor = “ Sea Blue ” .

 ‘Use a Select Case statement to get the favorite color
 ‘of the selected name
 Select Case strName
 Case “Bryan”
 strFavoriteColor = “Madras Yellow”

 Case “Stephanie”
 strFavoriteColor = “Sea Blue”

Figure 4-11

c04.indd 107c04.indd 107 4/1/08 6:22:01 PM4/1/08 6:22:01 PM

Chapter 4: Controlling the Flow

108

 Case “Cathy”
 strFavoriteColor = “Morning Mist”

 Case “Betty”
 strFavoriteColor = “Passionate Purple”

 Case “Edward”
 strFavoriteColor = “Battleship Gray”
 End Select

 After the Select Case . . . End Select block, you display a message box:

 ‘Display the favorite color of the selected name
 MessageBox.Show(strName & “’s favorite color is “ & strFavoriteColor, _
 “Select Demo”)

 So how do you get out of a Select Case . . . End Select block? Well, as you ’ re processing code
that ’ s beneath a Case statement, if you meet another Case statement, Visual Basic 2008 jumps out of
the block and down to the line immediately following the block. Here ’ s an illustration:

 1. The user clicks Betty. The SelectedIndexChanged event is activated, and you store “ Betty ”
in strName .

 2. You reach the Select Case statement. This is set to compare the value in strName with one
of the five supplied names.

 3. Visual Basic 2008 finds a Case statement that satisfies the request and immediately moves to
 strFavoriteColor = “ Passionate Purple ” .

 4. Visual Basic 2008 moves to the next line. This is another Case statement, and, seeing that
you ’ re already in one, you move to the first line after the Select Case . . . End Select block
and display the message box.

 Select Case is a powerful and easy - to - use technique for making a choice from several options.
However, you must leave the block as soon as another Case statement is reached.

 Case - Insensitive Select Case
 Just like If , Select Case is case sensitive; prove it in the next Try It Out.

c04.indd 108c04.indd 108 4/1/08 6:22:01 PM4/1/08 6:22:01 PM

Chapter 4: Controlling the Flow

109

Try It Out Using Case - Sensitive Select Case
 1. Return to the Select Demo project and open the Forms Designer. Locate the Items property

for the list box and open the String Collection Editor again.

 2. Change all the names so that they appear in all uppercase letters as shown in Figure 4 - 12 .

Figure 4-12

 3. Click OK to save your changes and run the project. You ’ ll notice that when you click a name,
the message box doesn ’ t specify a favorite color as shown in Figure 4 - 13 .

Figure 4-13

 How It Works
 Select Case performs a case - sensitive match, just like If . This means that if you provide the name
 CATHY or BETTY to the statement, there won ’ t be a corresponding Case statement because you ’ re
 trying to say:

If “CATHY” = “Cathy”

or

If “BETTY” = “Betty”

c04.indd 109c04.indd 109 4/1/08 6:22:01 PM4/1/08 6:22:01 PM

Chapter 4: Controlling the Flow

110

 Earlier in this chapter, you took a look at how you can use the String.Compare method to perform
case - insensitive comparisons with If statements. With Select Case , you can ’ t use this method, so if
you want to be insensitive towards case, you need to employ a different technique — the one you learn
in the next Try It Out.

Try It Out Case - Insensitive Select Case
 1. Return to the Select Demo project and open the Code Editor for Form1 and make these

changes to the event handler for SelectedIndexChanged . Pay special attention to the Case
statements — the name that you ’ re trying to match must be supplied in all lowercase letters:

 Private Sub lstData_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles lstData.SelectedIndexChanged

 ‘Declare variables
 Dim strName As String
 Dim strFavoriteColor As String

 ‘Get the selected name
 strName = lstData.Items(lstData.SelectedIndex).ToString

 ‘Use a Select Case statement to get the favorite color
 ‘of the selected name

 Select Case strName.ToLower
 Case “bryan”

 strFavoriteColor = “Madras Yellow”

 Case “stephanie”

 strFavoriteColor = “Sea Blue”

 Case “cathy”

 strFavoriteColor = “Morning Mist”

 Case “betty”

 strFavoriteColor = “Passionate Purple”

 Case “edward”

 strFavoriteColor = “Battleship Gray”
 End Select

 ‘Display the favorite color of the selected name
 MessageBox.Show(strName & “’s favorite color is “ & strFavoriteColor, _
 “Select Demo”)
 End Sub

c04.indd 110c04.indd 110 4/1/08 6:22:02 PM4/1/08 6:22:02 PM

Chapter 4: Controlling the Flow

111

 2. Run the project and try selecting a name again. This time you will see that the message box
includes the favorite color of the person you clicked as shown in Figure 4 - 14 .

Figure 4-14

 How It Works
 To make the selection case insensitive, you have to convert the strName variable into all lowercase
 letters. This is done using the ToLower method:

 Select Case strName.ToLower

 This means that whatever string you ’ re given (whether it ’ s “ BETTY ” or “ Betty “) you always convert
it to all lowercase (“ betty “). However, when you do this, you have to make sure that you ’ re compar-
ing apples to apples (and not to Apples), which is why you had to convert the values you ’ re checking
against in the Case statements to all lowercase too. Therefore, if you are given “ BETTY ” , you convert
this to “ betty ” , and then try to find the Case that matches “ betty “ :

 Case “bryan”
 strFavoriteColor = “Madras Yellow”

 Case “stephanie”
 strFavoriteColor = “Sea Blue”

 Case “cathy”
 strFavoriteColor = “Morning Mist”

 Case “betty”
 strFavoriteColor = “Passionate Purple”

 Case “edward”
 strFavoriteColor = “Battleship Gray”
 End Select

 Finally, once you have the favorite color, you display a message box as usual.

 You could have done the opposite of this and converted all the names to uppercase and used
 strName.ToUpper instead of strName.ToLower .

c04.indd 111c04.indd 111 4/1/08 6:22:02 PM4/1/08 6:22:02 PM

Chapter 4: Controlling the Flow

112

 Multiple Selections
 You ’ re not limited to matching one value inside a Select Case . . . End Select block. You can also
match multiple items. In the next Try It Out, you ’ ll modify the application so that you also report the sex
of whoever you click on.

Try It Out Multiple Selections
 1. Return to the Select Demo project, open the Code Editor for Form1, and add the code in the

 SelectedIndexChanged handler as highlighted here:

 ‘Display the favorite color of the selected name
 MessageBox.Show(strName & “’s favorite color is “ & strFavoriteColor, _
 “Select Demo”)

 ‘Use a Select Case statement to display a person’s gender
 Select Case strName.ToLower
 Case “bryan”, “edward”
 MessageBox.Show(“This person’s gender is male.”, “Select Demo”)
 Case “stephanie”, “cathy”, “betty”
 MessageBox.Show(“This person’s gender is female.”, “Select Demo”)
 End Select

End Sub

 2. Run the project and click one of the female names. You will see results as shown in Figure 4 - 15
after the message box indicating the person ’ s favorite color.

 How It Works
 The code you use to get back the name and initialize the Select Case block remains the same.
 However, in each Case statement you can provide a list of possible values separated with commas. In
the first one, you look for bryan or edward . If either of these matches, you run the code under the
 Case statement:

 Case “bryan”, “edward”
 MessageBox.Show(“This person’s gender is male.”, “Select Demo”)

Figure 4-15

c04.indd 112c04.indd 112 4/1/08 6:22:03 PM4/1/08 6:22:03 PM

Chapter 4: Controlling the Flow

113

 In the second one, you look for stephanie or cathy or betty . If any of these three matches, you again
run the code under the Case statement:

 Case “stephanie”, “cathy”, “betty”
 MessageBox.Show(“This person’s gender is female.”, “Select Demo”)

 It ’ s important to realize that these are all or matches. You ’ re saying “ one or the other, ” not “ one and
the other. ”

 The Case Else Statement
 So what happens if none of the Case statements that you ’ ve included is matched? You saw this before
when demonstrating the case - sensitive nature of Select Case . In the next Try It Out, you see it with the
 Case Else statement.

Try It Out Using Case Else
 1. Return to the Forms Designer, locate the Items property for the list box, and open the String

Collection Editor again. Add another name in all upper case letters to the collection and then
click the OK button.

 2. In the lstData_SelectedIndexChanged event handler, add the highlighted code:

 ‘Use a Select Case statement to display a person’s gender
 Select Case strName.ToLower
 Case “bryan”, “edward”
 MessageBox.Show(“This person’s gender is male.”, “Select Demo”)
 Case “stephanie”, “cathy”, “betty”
 MessageBox.Show(“This person’s gender is female.”, “Select Demo”)

 Case Else
 MessageBox.Show(“I don’t know this person’s gender.”, _
 “Select Demo”)

 End Select
End Sub

 3. Run the project and click the last name that you just added, and you will see results similar to
those shown in Figure 4 - 16 .

c04.indd 113c04.indd 113 4/1/08 6:22:03 PM4/1/08 6:22:03 PM

Chapter 4: Controlling the Flow

114

 How It Works
 The Case Else statement is used if none of the other supplied Case statements match what you ’ re
looking for. There isn ’ t a Case “ debbie ” defined within the block, so you default to using whatever
is underneath the Case Else statement. In this instance, you display a message box indicating
that you do not know the gender of the person who ’ s been selected.

 Different Data Types with Select Case
 In this chapter, you used Select Case with variables of type String . However, you can use Select
Case with all basic data types in Visual Basic 2008, such as Integer , Double , and Boolean .

 In day - to - day work, the most common types of Select Case are based on String and Integer data
types. However, as a general rule, if a data type can be used in an If statement with the Equals (=)
operator, it will work with Select Case.

Loops
 When writing computer software, you often need to perform the same task several times to get the effect
you want. For example, you might need to create a telephone bill for all customers, or read in 10 files
from your computer ’ s disk.

 To accomplish this, you use a loop , and in this section, you ’ ll take a look at the two main types of loops
available in Visual Basic 2008:

 For loops — These loops occur a certain number of times (for example, exactly 10 times).

 Do loops — These loops keep running until a certain condition is reached (for example, until all

of the data is processed).

❑

❑

Figure 4-16

c04.indd 114c04.indd 114 4/1/08 6:22:03 PM4/1/08 6:22:03 PM

Chapter 4: Controlling the Flow

115

 The For . . . Next Loop
 The simplest loop to understand is the For . . . Next loop, which you learn to build in the next Try It Out.

Try It Out Building a For . . . Next Loop

 1. Create a new Windows Forms Application project called Loops .

 2. Add a ListBox and a Button control to the form.

 3. Change the Name property of the list box to lstData and its IntegralHeight property
to False.

 4. Change the Name property of the button to btnForNextLoop . Also, set its Text property to For
Next Loop . You ’ ll be adding more buttons later so make this button a little wider as shown in
Figure 4 - 17 .

Figure 4-17

 5. Double - click the button to create its Click event handler and add the highlighted code:

 Private Sub btnForNextLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnForNextLoop.Click

 ‘Declare variable
 Dim intCount As Integer

 ‘Clear the list
 ClearList()

 ‘Perform a loop
 For intCount = 1 To 5
 ‘Add the item to the list
 lstData.Items.Add(“I’m item “ & intCount.ToString & _
 “ in the list!”)
 Next

 End Sub

c04.indd 115c04.indd 115 4/1/08 6:22:04 PM4/1/08 6:22:04 PM

Chapter 4: Controlling the Flow

116

 6. Now create the following method:

 Private Sub ClearList()
 ‘Clear the list
 lstData.Items.Clear()
 End Sub

 7. Save and run the project and then click the For Next Loop button. You should see results like
those in Figure 4 - 18 .

 How It Works
 First, inside the Click event handler, you define a variable:

 ‘Declare variable
 Dim intCount As Integer

 Next you clear the list box by calling the ClearList method. Although the list is empty at this point,
you ’ ll be adding more buttons to this project in the following Try It Out exercises and may want to
compare the results of the each of the buttons.

 ‘Clear the list
 ClearList()

 Then you start the loop by using the For keyword. This tells Visual Basic 2008 that you want to create
a loop. Everything that follows the For keyword is used to define how the loop should act. In this
case, you ’ re giving it the variable you just created and then telling it to count from 1 to 5 :

 ‘Perform a loop
 For intCount = 1 To 5

Figure 4-18

c04.indd 116c04.indd 116 4/1/08 6:22:04 PM4/1/08 6:22:04 PM

Chapter 4: Controlling the Flow

117

 The variable that you give the loop (in this case, intCount) is known as the control variable . When you
first enter the loop, Visual Basic 2008 sets the control variable to the initial count value — in this case,
 1 . After the loop starts, Visual Basic 2008 moves to the first line within the For loop — in this case, the
line that adds a string to the list box:

 ‘Add the item to the list
 lstData.Items.Add(“I’m item “ & intCount.ToString & _
 “ in the list!”)

 This time, this line of code adds I ’ m item 1 in the list! to the list box. Visual Basic 2008 then
hits the Next statement, and that ’ s where things start to get interesting:

 Next

 When the Next statement is executed, Visual Basic 2008 increments the control variable by one. The
first time Next is executed, the value in intCount changes from 1 to 2 . Providing that the value of the
control variable is less than or equal to the “ stop ” value (in this case, 5), Visual Basic 2008 moves back
to the first line after the For statement, in this case:

 ‘Add the item to the list
 lstData.Items.Add(“I’m item “ & intCount.ToString & _
 “ in the list!”)

 This time, this line of code adds I ’ m item 2 in the list! to the list box. Again, after this line is
executed, you run the Next statement. The value of intCount is now incremented from 2 to 3 and,
because 3 is less than or equal to 5 , you move back to the line that adds the item to the list. This hap-
pens until intCount is incremented from 5 to 6 . As 6 is greater than the stop value for the loop, the
loop stops.

 When you ’ re talking about loops, you tend to use the term iteration . One iteration includes one move-
ment from the For statement to the Next statement. Your loop has five iterations.

 The method you define contains only one line of code but its reuse becomes apparent in the next Try It
Out. This method merely clears the Items collection of the list box.

 Private Sub ClearList()
 ‘Clear the list
 lstData.Items.Clear()
 End Sub

Step
 You don ’ t have to start your loop at 1 — you can pick any value you like. You also don ’ t have to incre-
ment the control value by 1 on each iteration — again, you can increment by any value you like. In the
next Try It Out, you learn about the flexibility of the Step keyword.

c04.indd 117c04.indd 117 4/1/08 6:22:04 PM4/1/08 6:22:04 PM

Chapter 4: Controlling the Flow

118

Try It Out Using Step
 1. Return to the Forms Designer for the Loops project and add another Button control to your

form. Set its Name property to btnForNextLoopWithStep and its Text property to For Next
Loop w/Step .

 2. Double - click the button and add the following highlighted code in the Click event handler:

 Private Sub btnForNextLoopWithStep_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnForNextLoopWithStep.Click

 ‘Clear the list
 ClearList()

 ‘Perform a loop
 For intCount As Integer = 4 To 62 Step 7
 ‘Add the item to the list
 lstData.Items.Add(intCount.ToString)
 Next

 End Sub

 3. Run the project and click the For Next Loop w/Step button. You will see results like those in
Figure 4 - 19 .

Figure 4-19

 How It Works
 The magic in this example all happens with this statement:

 ‘Perform a loop
 For intCount As Integer = 4 To 62 Step 7

 First, note that you didn ’ t declare the intCount variable using a Dim statement. This has been done as
part of the For statement and makes this variable local to this loop. Using the As keyword and the
data type for the variable (in this case Integer), you have effectively declared an inline variable.

 Next, instead of using 1 as the start value, you ’ re using 4 . This means that on the first iteration of the
loop, intCount is set to 4 , and you can see this by the fact that the first item added to the list is indeed 4.

c04.indd 118c04.indd 118 4/1/08 6:22:05 PM4/1/08 6:22:05 PM

Chapter 4: Controlling the Flow

119

Also, you ’ ve used the Step keyword to tell the loop to increment the control value by 7 on each
iteration rather than by the default of 1 . This is why, by the time you start running the second iteration
of the loop, intCount is set to 11 and not 5 .

 Although you gave For a stop value of 62 , the loop has actually stopped at 60 because the stop value
is a maximum . After the ninth iteration, intCount is actually 67 , which is more than 62 , and so the
loop stops.

 Looping Backwards
 By using a Step value that ’ s less than 0 (or a negative number), you can make the loop go backwards
rather than forward, as you see in the next Try It Out.

Try It Out Looping Backwards

 1. Return to the Forms Designer and add another Button control to your form and set its Name
property to btnBackwardsForNextLoop and its Text property to Backwards For Next Loop .

 2. Double - click the button and add the following highlighted code in the Click event handler:

 Private Sub btnBackwardsForNextLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnBackwardsForNextLoop.Click

 ‘Clear the list
 ClearList()

 ‘Perform a loop
 For intCount As Integer = 10 To 1 Step -1
 ‘Add the item to the list
 lstData.Items.Add(intCount.ToString)
 Next

 End Sub

 3. Run the project and click the Backwards for Next Loop button. You should see results like
those shown in Figure 4 - 20 .

Figure 4-20

c04.indd 119c04.indd 119 4/1/08 6:22:05 PM4/1/08 6:22:05 PM

Chapter 4: Controlling the Flow

120

 How It Works
 If you use a negative number, like - 1 , For tries to add - 1 to the current control value. Adding a nega-
tive number has the effect of subtracting the number, so intCount goes from its start value of 10 to its
new value of 9 and so on until the stop value is reached.

 The For Each . . . Next Loop
 In practical, day - to - day work, it ’ s unlikely that you ’ ll use For . . . Next loops as illustrated here. Because
of way the .NET Framework typically works, you ’ ll usually use a derivative of the For . . . Next loop
called the For Each . . . Next loop.

 In the algorithms you design, whenever a loop is necessary, you ’ ll have a collection of things to work
through, and usually this set is expressed as an array . For example, you might want to look through all of
the files in a folder, looking for those that are over a particular size. When you ask the .NET Framework
for a list of files, you are returned an array of strings, each string in that array describing a single file.
In the next Try It Out, you ’ ll modify your Loops application so that it returns a list of folders contained
at the root of your C drive.

Try It Out For Each Loop

 1. Return to the Forms Designer, add another Button control to your form, and set its Name
property to btnForEachLoop and its Text property to For Each Loop .

 2. Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnForEachLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnForEachLoop.Click

 ‘Clear the list
 ClearList()

 ‘List each folder at the root of your C drive
 For Each strFolder As String In _
 My.Computer.FileSystem.GetDirectories(“C:\”)

 ‘Add the item to the list
 lstData.Items.Add(strFolder)
 Next

 End Sub

 3. Run the project and click the For Each Loop button. You should see a list of folders that are at
the root of your C drive.

c04.indd 120c04.indd 120 4/1/08 6:22:06 PM4/1/08 6:22:06 PM

Chapter 4: Controlling the Flow

121

 How It Works
 The My namespace in the .NET Framework exposes several classes that make it easy for you to find the
information that you ’ ll use on a daily basis. In particular, the Computer class provides several other
classes related to the computer that your program is running on. Since you want to find out about files
and folders, you use the FileSystem class, which provides methods and properties for working with
files and folders.

 The GetDirectories method returns a collection of strings representing names of directories (or fold-
ers) on your computer. In this case, you use it to return a collection of names of folders in the root of
the computer ’ s C drive.

 The principle with a For Each . . . Next loop is that for each iteration you ’ ll be given the “ thing ” that
you ’ re supposed to be working with. You need to provide a source of things (in this case, a collection
of strings r epresenting folder names) and a control variable into which the current thing can be put.
The GetDirectories method provides the collection, and the inline variable strFolder provides
the control variable:

 ‘List each folder at the root of your C drive
 For Each strFolder As String In _
 My.Computer.FileSystem.GetDirectories(“C:\”)
 Next

 What this means is that on the first iteration, strFolder is equal to the first item in the string collec-
tion (in this case, “ C:\$Recycle.Bin “). You then add that item to the list box:

 ‘Add the item to the list
 lstData.Items.Add(strFolder)

 As with normal For . . . Next loops, for every iteration of the loop you ’ re given a string containing a
folder name, and you add that string to the list. When there are no more folders to be returned, execu-
tion automatically drops out of the loop.

 The Do . . . Loop Loops
 The other kind of loop you can use is one that keeps happening until a certain condition is met. These
are known as Do . . . Loop loops, and there are a number of variations.

 The first one you’ll learn about is the Do Until . . . Loop . This kind of loop keeps going until something
 happens. For this Try It Out, you ’ re going to use the random number generator that ’ s built into the .NET
Framework and create a loop that will keep generating random numbers until it produces the
 number 10 . When you get the number 10 , you ’ ll stop the loop.

c04.indd 121c04.indd 121 4/1/08 6:22:06 PM4/1/08 6:22:06 PM

Chapter 4: Controlling the Flow

122

Try It Out Using the Do Until . . . Loop

 1. Return to the Forms Designer in the Loops project, add another Button control to your form,
and set its Name property to btnDoUntilLoop and its Text property to Do Until Loop .

 2. Double - click the button and add the following highlighted code to its Click event handler:

 Private Sub btnDoUntilLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDoUntilLoop.Click

 ‘Declare variables
 Dim objRandom As New Random
 Dim intRandomNumber As Integer = 0

 ‘Clear the list
 ClearList()

 ‘Process the loop until intRandomNumber = 10
 Do Until intRandomNumber = 10
 ‘Get a random number between 0 and 24
 intRandomNumber = objRandom.Next(25)
 ‘Add the number to the list
 lstData.Items.Add(intRandomNumber.ToString)
 Loop

 End Sub

 3. Run the project and click the Do Until Loop button. You ’ ll see results similar to the results
shown in Figure 4 - 21 . Keep clicking the button. You ’ ll see that the number of elements in the
list is different each time.

Figure 4-21

c04.indd 122c04.indd 122 4/1/08 6:22:06 PM4/1/08 6:22:06 PM

Chapter 4: Controlling the Flow

123

 How It Works
 A Do Until...Loop keeps running the loop until the given condition is met. When you use this type
of loop, there isn ’ t a control variable per se ; rather, you have to keep track of the current position of the
loop yourself — let ’ s see how you do this. You begin by declaring a variable (also known as an object)
for the Random class, which provides methods for generating random numbers. This object has been
prefixed with obj to specify that this is an object derived from a class. The next variable that you
declare is the intRandomNumber , and this variable will be used to receive the random number gener-
ated by your objRandom object:

 ‘Declare variables
 Dim objRandom As New Random()
 Dim intRandomNumber As Integer = 0

 Then you clear the list of any previous items that may have been added:

 ‘Clear the list
 ClearList()

 Next, you set up the loop and tell it that you want to keep running the loop until intRandomNumber is
equal to 10 :

 ‘Process the loop until intRandomNumber = 10
 Do Until intRandomNumber = 10

 With each iteration of the loop, you ask the random number generator for a new random number and
store it in intRandomNumber . This is done by calling the Next method of objRandom to get a random
number. In this case, you ’ ve passed 25 as a parameter to Next , meaning that any number returned
should be between 0 and 24 inclusive — that is, the number you supply must be one larger than the
biggest number you ever want to get. In other words, the bounds that you ask for are noninclusive.
You then add the number that you got to the list:

 ‘Get a random number between 0 and 24
 intRandomNumber = objRandom.Next(25)
 ‘Add the number to the list
 lstData.Items.Add(intRandomNumber.ToString)
 Loop

 The magic happens when you get to the Loop statement. At this point, Visual Basic 2008 returns not
to the first line within the loop, but instead to the Do Until line. When execution returns to Do
Until , the expression is evaluated. Provided it returns False , the execution pointer moves to the first
line within the loop. However, if intRandomNumber is 10 , the expression returns True , and instead of
moving to the first line within the loop, you continue at the first line immediately after Loop . In effect,
the loop is stopped.

c04.indd 123c04.indd 123 4/1/08 6:22:07 PM4/1/08 6:22:07 PM

Chapter 4: Controlling the Flow

124

 Do While . . . Loop
 The conceptual opposite of a Do Until . . . Loop is a Do While . . . Loop . This kind of loop keeps iterat-
ing while a particular condition is True . Let ’ s see it in action.

Try It Out Using the Do While . . . Loop

 1. Return to the Forms Designer once again and add another Button control to your form and set
its Name property to btnDoWhileLoop and its Text property to Do While Loop .

 2. Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnDoWhileLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDoWhileLoop.Click

 ‘Declare variables
 Dim objRandom As New Random
 Dim intRandomNumber As Integer = 0

 ‘Clear the list
 ClearList()

 ‘Process the loop while intRandomNumber < 15
 Do While intRandomNumber < 15
 ‘Get a random number between 0 and 24
 intRandomNumber = objRandom.Next(25)
 ‘Add the number to the list
 lstData.Items.Add(intRandomNumber.ToString)
 Loop

 End Sub

 3. Run the project and click the Do While Loop button. You ’ ll see something similar to the results
shown in Figure 4 - 22 .

Figure 4-22

c04.indd 124c04.indd 124 4/1/08 6:22:07 PM4/1/08 6:22:07 PM

Chapter 4: Controlling the Flow

125

 Every time you press the button, the loop executes until the random number generator produces
a number greater than or equal to 15 .

 How It Works
 A Do While . . . Loop keeps running so long as the given expression remains True . As soon as the
expression becomes False , the loop quits. When you start the loop, you check to make sure that
 intRandomNumber is less than 15 . If it is, the expression returns True , and you can run the code
within the loop:

 ‘Process the loop while intRandomNumber < 15
 Do While intRandomNumber < 15
 ‘Get a random number between 0 and 24
 intRandomNumber = objRandom.Next(25)
 ‘Add the number to the list
 lstData.Items.Add(intRandomNumber.ToString)
 Loop

 Again, when you get to the Loop statement, Visual Basic 2008 moves back up to the Do While state-
ment. When it gets there, it evaluates the expression again. If it ’ s True , you run the code inside the
loop once more. If it ’ s False (because intRandomNumber is greater than or equal to 15), you continue
with the first line after Loop , effectively quitting the loop.

Acceptable Expressions for a Do . . . Loop
 You might be wondering what kind of expressions you can use with the two variations of Do . . . Loop .
If you can use it with an If statement, you can use it with a Do . . . Loop . For example, you can write this:

 Do While intX > 10 And intX < 100

or

 Do Until (intX > 10 And intX < 100) Or intY = True

or

 Do While String.Compare(strA, strB) > 0

 In short, it ’ s a pretty powerful loop!

 Other Versions of the Do . . . Loop
 It ’ s possible to put the Until or While statements after Loop rather than after Do . Consider these two
loops:

 Do While intX < 3
 intX += 1
 Loop

c04.indd 125c04.indd 125 4/1/08 6:22:08 PM4/1/08 6:22:08 PM

Chapter 4: Controlling the Flow

126

and

 Do
 intX += 1
 Loop While intX < 3

 At first glance, it looks like the While intX < 3 has just been moved around. You might think that
these two loops are equivalent — but there ’ s a subtle difference. Suppose the value of intX is greater
than 3 (4 say) as these two Do loops start. The first loop will not run at all. However, the second loop will
run once . When the Loop While intX < 3 line is executed, the loop will be exited. This happens
despite the condition saying that intX must be less than 3 .

 Now consider these two Do Until loops:

 Do Until intX = 3
 intX += 1
 Loop

and

 Do
 intX += 1
 Loop Until intX = 3

 Again, although at first glance it looks like these two loops are equivalent, they ’ re not and they behave
slightly differently. Let ’ s say that intX is 3 this time. The first loop isn ’ t going to run, as intX already
meets the exit condition for this loop. However, the second loop will run once . Then when you execute
 Loop Until intX = 3 the first time, intX is now 4 . So you go back to the start of the loop and incre-
ment intX to 5 , and so on. In fact, this is a classic example of an infinite loop (which is discussed later in
this chapter) and will not stop.

 When you use Loop While or Loop Until , you are saying that, no matter what, you want the loop
to execute at least once. In general, it ’ s best to stick with Do While and Do Until , rather than use
 Loop While and Loop Until .

 You may also come across a variation of Do While . . . Loop called the While . . . End While . This con-
vention is a throwback to previous versions of Visual Basic, but old - school developers may still use it
with .NET code, so it ’ s important that you can recognize it. These two are equivalent, but you should use
the first one.

Do While intX < 3
 intX += 1
Loop

and

While intX < 3
 intX += 1
End While

c04.indd 126c04.indd 126 4/1/08 6:22:08 PM4/1/08 6:22:08 PM

Chapter 4: Controlling the Flow

127

 Nested Loops
 You might need to start a loop even though you ’ re already working through another loop. This is known
as nesting , and is similar in theory to the nesting that you saw when you looked at If statements. In this
Try It Out, you ’ ll see how you can create and run through a loop, even though you ’ re already working
through another one.

Try It Out Using Nested Loops

 1. In the Forms Designer, add another Button control to your form and set its Name property to
 btnNestedLoops and its Text property to Nested Loops .

 2. Double - click the button and add the following highlighted code to its Click event handler:

 Private Sub btnNestedLoops_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnNestedLoops.Click

 ‘Clear the list
 ClearList()

 ‘Process an outer loop
 For intOuterLoop As Integer = 1 To 2
 ‘Process a nested (inner) loop
 For intInnerLoop As Integer = 1 To 3
 lstData.Items.Add(intOuterLoop.ToString & _
 “, “ & intInnerLoop.ToString)
 Next
 Next

 End Sub

 3. Run the program and click the Nested Loops button. You should see results that look like
those shown in Figure 4 - 23 .

Figure 4-23

c04.indd 127c04.indd 127 4/1/08 6:22:08 PM4/1/08 6:22:08 PM

Chapter 4: Controlling the Flow

128

 How It Works
 This code is really quite simple. Your first loop (outer loop) iterates intOuterLoop from 1 to 2 , and
the nested loop (inner loop) iterates intInnerLoop from 1 to 3 . Within the nested loop, you have a
line of code to display the current values of intOuterLoop and intInnerLoop :

 ‘Process an outer loop
 For intOuterLoop As Integer = 1 To 2
 ‘Process a nested (inner) loop
 For intInnerLoop As Integer = 1 To 3
 lstData.Items.Add(intOuterLoop.ToString & _
 “, “ & intInnerLoop.ToString)
 Next
 Next

 Each For statement must be paired with a Next statement, and each Next statement that you reach
always “ belongs ” to the last created For statement. In this case, the first Next statement you reach is
for the 1 To 3 loop, which results in intInnerLoop being incremented. When the value of
 intInnerLoop gets to be 4 , you exit the inner loop.

 After you ’ ve quit the inner loop, you hit another Next statement. This statement belongs to the first
 For statement, so intOuterLoop is set to 2 and you move back to the first line within the first, outer
loop — in this case, the other For statement. Once there, the inner loop starts once more. Although
in this Try It Out you ’ ve seen two For . . . Next loops nested together, you can nest Do . . . While
loops and even mix them, so you can have two Do . . . Loop statements nested inside a For loop and
vice versa.

 Quitting Early
 Sometimes you don ’ t want to see a loop through to its natural conclusion. For example, you might be
looking through a list for something specific, and when you find it, there ’ s no need to go through the
remainder of the list.

 In this Try It Out, you ’ ll look through folders on your local drive, but this time, when you get to c:\
Program Files , you ’ ll display a message and quit.

Try It Out Quitting a Loop Early

 1. Return to the Forms Designer and add another Button control to your form and set its Name
property to btnQuittingAForLoop and its Text property to Quitting a For Loop .

 2. Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnQuittingAForLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnQuittingAForLoop.Click

c04.indd 128c04.indd 128 4/1/08 6:22:09 PM4/1/08 6:22:09 PM

Chapter 4: Controlling the Flow

129

 ‘Clear the list
 ClearList()

 ‘List each folder at the root of your C drive
 For Each strFolder As String In _
 My.Computer.FileSystem.GetDirectories(“C:\”)

 ‘Add the item to the list
 lstData.Items.Add(strFolder)

 ‘Do you have the folder C:\Program Files?
 If String.Compare(strFolder, “c:\program files”, True) = 0 Then

 ‘Tell the user
 MessageBox.Show(“Found it, exiting the loop now.”, “Loops”)

 ‘Quit the loop early
 Exit For

 End If
 Next
 End Sub

 3. Run the program and click the Quitting a For Loop button. You ’ ll see something similar to the
results shown in Figure 4 - 24 .

Figure 4-24

c04.indd 129c04.indd 129 4/1/08 6:22:09 PM4/1/08 6:22:09 PM

Chapter 4: Controlling the Flow

130

 How It Works
 This time, with each iteration, you use the String.Compare method that was discussed earlier to
check the name of the folder to see whether it matches C:\Program Files :

 ‘Do you have the folder C:\Program Files?
 If String.Compare(strFolder, “c:\program files”, True) = 0 Then

 If it does, the first thing you do is display a message box:

 ‘Tell the user
 MessageBox.Show(“Found it, exiting the loop now.”, “Loops”)

 After the user has clicked OK to dismiss the message box, you use the Exit For statement to quit the
loop. In this instance, the loop is short - circuited, and Visual Basic 2008 moves to the first line after the
 Next statement.

 ‘Quit the loop early
 Exit For

 Of course, if the name of the folder doesn ’ t match the one you ’ re looking for, you keep looping. Using
loops to find an item in a list is one of their most common uses. Once you ’ ve found the item you ’ re
looking for, using the Exit For statement to short - circuit the loop is a very easy way to improve the
performance of your application.

 Imagine you have a list of a thousand items to look through. You find the item you ’ re looking for on
the tenth iteration. If you don ’ t quit the loop after you ’ ve found the item, you ’ re effectively asking the
computer to look through another 990 useless items. If, however, you do quit the loop early, you can
move on and start running another part of the algorithm.

 Quitting Do . . . Loops
 As you might have guessed, you can quit a Do . . . Loop in more or less the same way, as you see in the
next Try It Out.

Try It Out Quitting a Do . . . Loop

 1. Return to the Forms Designer one last time and add another Button control to your form and
set its Name property to btnQuittingADoLoop and its Text property to Quitting a Do Loop .

 2. Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnQuittingADoLoop_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnQuittingADoLoop.Click

 ‘Declare variable
 Dim intCount As Integer = 0

c04.indd 130c04.indd 130 4/1/08 6:22:09 PM4/1/08 6:22:09 PM

Chapter 4: Controlling the Flow

131

 ‘Clear the list
 ClearList()

 ‘Process the loop
 Do While intCount < 10

 ‘Add the item to the list
 lstData.Items.Add(intCount.ToString)

 ‘Increment the count by 1
 intCount += 1

 ‘Should you quit the loop
 If intCount = 3 Then
 Exit Do
 End If

 Loop

 End Sub

 3. Run the project and click the Quitting a Do Loop button. You ’ ll see a list containing the values
0, 1, and 2.

 How It Works
 In this case, because you ’ re in a Do . . . Loop , you have to use Exit Do rather than Exit For .
 However, the principle is exactly the same. Exit Do will work with both the Do While . . . Loop and
 Do Until . . . Loop loops.

 Infinite Loops
 When building loops, you can create something called an infinite loop . What this means is a loop that,
once started, will never finish. Consider this code:

Dim intX As Integer = 0
Do
 intX += 1
Loop Until intX = 0

 This loop will start and run through the first iteration. Then when you execute Loop Until intX = 0
the first time, intX is 1 . So you go back to the start of the loop again and increment intX to 2 , and so on.
What ’ s important here is that it will never get to 0 . The loop becomes infinite, and the program won ’ t
crash (at least not instantly), but it may well become unresponsive.

 If you suspect a program has dropped into an infinite loop, you ’ ll need to force the program to stop. With
Windows Vista, this is pretty easy. If you are running your program in Visual Studio 2008, flip over to it, and
select Debug Stop Debugging from the menu. This will immediately stop the program. If you are running
your compiled program, you ’ ll need to use the Windows Task Manager. Press Ctrl+Alt+Del and select Task
Manager. Your program should show as Not Responding. Select your program in the Task Manager and
click End Task. Eventually this opens a dialog box saying that the program is not responding (which you
knew already) and asking whether you want to kill the program stone dead, so click End Task again.

c04.indd 131c04.indd 131 4/1/08 6:22:10 PM4/1/08 6:22:10 PM

Chapter 4: Controlling the Flow

132

 In some extreme cases, the loop can take up so much processing power or other system resources that
you won ’ t be able to open Task Manager or flip over to Visual Studio. In these cases, you can persevere
and try to use either of these methods; or you can reset your computer and chalk it up to experience.

 Visual Studio 2008 does not automatically save your project before running the application the first time,
so you ’ re likely to lose all of your program code if you have to reset. Therefore, it would be wise to save
your project before you start running your code.

 Summary
 In this chapter, you took a detailed look at the various ways that programs can make decisions and loop
through code. You first saw the alternative operators that can be used with If statements and examined
how multiple operators could be combined by using the And and Or keywords. Additionally, you exam-
ined how case - insensitive string comparisons could be performed.

 You then looked at Select Case , an efficient technique for choosing one outcome out of a group of pos-
sibilities. Next you examined the concept of looping within a program and were introduced to the two
main types of loops: For loops and Do loops. For loops iterate a given number of times, and the deriva-
tive For Each loop can be used to loop automatically through a list of items in a collection. Do While
loops iterate while a given condition remains True , whereas Do Until loops iterate until a given condi-
tion becomes True .

 In summary, you should know how to use:

 If , ElseIf , and Else statements to test for multiple conditions

 Nested If statements

 Comparison operators and the String.Compare method

 The Select Case statement to perform multiple comparisons

 For . . . Next and For . . . Each loops

 Do . . . Loop and Do While . . . Loop statements

 Exercises
 1. Create a Windows Forms Application with a text box and a Button control. In the Click event of

the Button, extract the number from the text box and use a Select Case statement with the
numbers 1 through 5. In the Case statement for each number, display the number in a message
box. Ensure that you provide code to handle numbers that are not in the range of 1 through 5.

 2. Create a Windows Forms Application that contains a ListBox control and a Button control. In the
 Click event for the button, create a For . . . Next loop that will count from 1 to 10 and display
the results in the list box. Then create another For . . . Next loop that will count backwards from
10 to 1 and display those results in the list box.

❑

❑

❑

❑

❑

❑

c04.indd 132c04.indd 132 4/1/08 6:22:10 PM4/1/08 6:22:10 PM

5
Working with Data

Structures

In the previous chapters, you worked with simple data types, namely Integer and String
variables. Although these data types are useful in their own rights, more complex programs call
for working with data structures; that is, groups of data elements that are organized in a single unit.
In this chapter, you learn about the various data structures available in Visual Basic 2008. You also
will see some ways in which you can work with complex sets of data. Finally, you learn how you
can build powerful collection classes for working with, maintaining, and manipulating lists of
complex data.

In this chapter, you learn about:

❑ Arrays

❑ Enumerations

❑ Constants

❑ Structures

Understanding Arrays
A fairly common requirement in writing software is the need to hold lists of similar or related data.
You can provide this functionality by using an array. Arrays are just lists of data that have a single
data type. For example, you might want to store a list of your friends’ ages in an integer array or
their names in a string array.

In this section, you take a look at how to define, populate, and use arrays in your applications.

c05.indd 133c05.indd 133 4/2/08 5:31:39 PM4/2/08 5:31:39 PM

Chapter 5: Working with Data Structures

134

Defining and Using Arrays
When you define an array, you’re actually creating a variable that has more than one dimension. For
example, if you define a variable as a string you can only hold a single string value in it:

Dim strName As String

However, with an array you create a kind of multiplier effect with a variable, so you can hold more than
one value in a single variable. An array is defined by entering the size of the array after the variable
name. So, if you wanted to define a string array with 10 elements, you’d do this:

Dim strName(9) As String

The reason you use (9) instead of (10) to get an array with 10 elements is explained in detail later.
The basic explanation is simply that because numbering in an array starts at zero, the first element in
an array is zero, the second element in an array is one, and so on.

When you have an array, you can access individual elements in it by providing an index value between 0
and a maximum possible value — this maximum possible value happens to be one less than the total
size of the array.

So, to set the element with index 2 in the array, you’d do this:

strName(2) = “Katie”

To get that same element back again, you’d do this:

MessageBox.Show(strName(2))

What’s important is that other elements in the array are unaffected when you set their siblings. So, if you
do this:

strName(3) = “Betty”

strName(2) remains set to “Katie”.

Perhaps the easiest way to understand what an array looks like and how it works is to write some code.

1. In Visual Studio 2008, click the File menu and choose New Project. In the New Project
dialog box, create a new Windows Forms Application called Array Demo.

2. When the Designer for Form1 appears, add a ListBox control to the form. Using the Properties
window set its Name property to lstFriends and its IntegralHeight property to False.

3. Add a Button control to the form, set its Name property to btnArrayElement, and set its Text
property to Array Element. Arrange your controls so that your form looks similar to Figure
5-1 as you’ll be adding more Button controls to this project later.

Try It Out Defi ning and Using a Simple Array

c05.indd 134c05.indd 134 4/2/08 5:31:41 PM4/2/08 5:31:41 PM

Chapter 5: Working with Data Structures

135

4. Double-click the button and add the following highlighted code to its Click event handler.
You’ll receive an error message that the ClearList procedure is not defined. You can ignore
this error because you’ll be adding that procedure in the next step:

 Private Sub btnArrayElement_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnArrayElement.Click

 ‘Clear the list
 ClearList()

 ‘Declare an array
 Dim strFriends(4) As String

 ‘Populate the array
 strFriends(0) = “Wendy”
 strFriends(1) = “Harriet”
 strFriends(2) = “Jay”
 strFriends(3) = “Michelle”
 strFriends(4) = “Richard”

 ‘Add the first array item to the list
 lstFriends.Items.Add(strFriends(0))

 End Sub

5. Now create the following procedure:

 Private Sub ClearList()
 ‘Clear the list
 lstFriends.Items.Clear()
 End Sub

6. Save your project by clicking the Save All button on the toolbar and then run it. When the
form displays, click the Array Element button and the list box on your form will be populated
with the name Wendy.

Figure 5-1

c05.indd 135c05.indd 135 4/2/08 5:31:41 PM4/2/08 5:31:41 PM

Chapter 5: Working with Data Structures

136

How It Works
First you clear the list box by calling the ClearList method. Although the list is empty at this point,
you’ll be adding more buttons to this project in the following Try It Out exercises and may want to
compare the results of the each of the buttons.

 ‘Clear the list
 ClearList()

When you define an array, you have to specify a data type and a size. In this case, you’re specifying an
array of type String and also defining an array size of 5. The way the size is defined is a little quirky.
You have to specify a number one less than the final size you want (you’ll learn why shortly).
So here, you have used the line:

 ‘Declare an array
 Dim strFriends(4) As String

In this way, you end up with an array of size 5. Another way of expressing this is to say that you have
an array consisting of 5 elements.

When done, you have your array, and you can access each item in the array by using an index. The
index is given as a number in parentheses after the name of the array. Indexes start at zero and go up
to one less than the number of items in the array. The following example sets all five possible items in
the array to the names:

 ‘Populate the array
 strFriends(0) = “Wendy”
 strFriends(1) = “Harriet”
 strFriends(2) = “Jay”
 strFriends(3) = “Michelle”
 strFriends(4) = “Richard”

Just as you can use an index to set the items in an array, you can use an index to get items back out. In
this case, you’re asking for the item at position 0, which returns the first item in the array, namely Wendy:

 ‘Add the first array item to the list
 lstFriends.Items.Add(strFriends(0))

The reason the indexes and sizes seem skewed is that the indexes are zero-based, whereas humans
tend to number things beginning at 1. When putting items into or retrieving items from an array, you
have to adjust the position you want down by one to get the actual index; for example, the fifth item
is actually at position 4, the first item is at position 0, and so on. When you define an array, you do not
actually specify the size of the array but rather the upper index bound — that is, the highest possible
value of the index that the array will support.

Why should the indexes be zero-based? Remember that to the computer, a variable represents the
address of a location in the computer’s memory. Given an array index, Visual Basic 2008 just
multiplies the index by the size of one element and adds the product to the address of the array as
a whole to get the address of the specified element. The starting address of the array as a whole is
also the starting address of the first element in it. That is, the first element is zero times the size of
an element away from the start of the whole array; the second element is 1 times the size of an
element away from the start of the whole array; and so on.

c05.indd 136c05.indd 136 4/2/08 5:31:42 PM4/2/08 5:31:42 PM

Chapter 5: Working with Data Structures

137

The method you define contains only one line of code but its reuse becomes apparent in the next
Try It Out. This method merely clears the Items collection of the list box.

 Private Sub ClearList()
 ‘Clear the list
 lstFriends.Items.Clear()
 End Sub

Using For Each . . . Next
One common way to work with arrays is by using a For Each...Next loop. This loop is introduced in
Chapter 4, when you used it with a string collection returned from the My.Computer.FileSystem
.GetDirectories method. In the following Try It Out, you look at how you use For Each...Next
with an array.

1. Close your program if it is still running and open the Code Editor for Form1. Add the
following highlighted variable declaration at the top of your form class:

Public Class Form1

 ‘Declare a form level array
 Private strFriends(4) As String

2. In the Class Name combo box at the top left of your Code Editor, select (Form1 Events). In
the Method Name combo box at the top right of your Code Editor, select the Load event. This
causes the Form1_Load event handler to be inserted into your code. Add the following
highlighted code to this procedure:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ‘Populate the array
 strFriends(0) = “Wendy”
 strFriends(1) = “Harriet”
 strFriends(2) = “Jay”
 strFriends(3) = “Michelle”
 strFriends(4) = “Richard”

 End Sub

3. Switch to the Form Designer and add another Button control. Set its Name property to
btnEnumerateArray and its Text property to Enumerate Array.

Try It Out Using For Each . . . Next with an Array

c05.indd 137c05.indd 137 4/2/08 5:31:43 PM4/2/08 5:31:43 PM

Chapter 5: Working with Data Structures

138

4. Double-click this new button and add the following highlighted code to its Click event
handler:

 Private Sub btnEnumerateArray_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnEnumerateArray.Click

 ‘Clear the list
 ClearList()

 ‘Enumerate the array
 For Each strName As String In strFriends
 ‘Add the array item to the list
 lstFriends.Items.Add(strName)
 Next

 End Sub

5. Run the project and click the button. You’ll see results like those in Figure 5-2.

Figure 5-2

How It Works
You start this exercise by declaring an array variable that is local to the form, meaning that the variable
is available to all procedures in the form class. Whenever variables are declared outside a method in
the form class, they are available to all methods in the form.

 ‘Declare a form level array
 Private strFriends(4) As String

Next you added the Load event handler for the form and then added code to populate the array. This
procedure will be called whenever the form loads, ensuring that your array always gets populated.

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ‘Populate the array
 strFriends(0) = “Wendy”

c05.indd 138c05.indd 138 4/2/08 5:31:43 PM4/2/08 5:31:43 PM

Chapter 5: Working with Data Structures

139

 strFriends(1) = “Harriet”
 strFriends(2) = “Jay”
 strFriends(3) = “Michelle”
 strFriends(4) = “Richard”
 End Sub

Chapter 4 shows the For Each...Next loop iterate through a string collection; in this example, it is
used in an array. The principle is similar; you have to create a control variable that is of the same type
as an element in the array and gives this to the loop when it starts. This has all been done in one line of
code. The control variable, strName, is declared and used in the For Each statement by using the As
String keyword.

The internals behind the loop move through the array starting at element 0 until it reaches the last ele-
ment. For each iteration, you can examine the value of the control variable and do something with it;
in this case, you add the name to the list.

 ‘Enumerate the array
 For Each strName As String In strFriends
 ‘Add the array item to the list
 lstFriends.Items.Add(strName)
 Next

Also, note that the items are added to the list in the same order that they appear in the array. That’s
because For Each...Next proceeds from the first item to the last item as each item is defined.

Passing Arrays as Parameters
It’s extremely useful to be able to pass an array (which could be a list of values) to a function as a
parameter. In the next Try It Out, you’ll look at how to do this.

1. Return to the Forms Designer in the Array Demo project and add another Button control. Set
its Name property to btnArraysAsParameters and its Text property to Arrays as Parameters.

2. Double-click the button and add the following highlighted code to its Click event handler.
You’ll receive an error message that the AddItemsToList procedure is not defined. You can
ignore this error because you’ll be adding that procedure in the next step:

Private Sub btnArraysAsParameters_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnArraysAsParameters.Click

 ‘Clear the list
 ClearList()

 ‘List your friends
 AddItemsToList(strFriends)

End Sub

Try It Out Passing Arrays as Parameters

c05.indd 139c05.indd 139 4/2/08 5:31:44 PM4/2/08 5:31:44 PM

Chapter 5: Working with Data Structures

140

3. Add the AddItemsToList procedure as follows:

 Private Sub AddItemsToList(ByVal arrayList() As String)
 ‘Enumerate the array
 For Each strName As String In arrayList
 ‘Add the array item to the list
 lstFriends.Items.Add(strName)
 Next

 End Sub

4. Run the project and click the button. You’ll see the same results that were shown in Figure 5-2.

How It Works
The trick here is to tell the AddItemsToList method that the parameter it’s expecting is an array of
type String. You do this by using empty parentheses, like this:

 Sub AddItemsToList(ByVal arrayList() As String)

If you specify an array but don’t define a size (or upper-bound value), you’re telling Visual Basic 2008
that you don’t know or care how big the array is. That means that you can pass an array of any size
through to AddItemsToList. In the btnArraysAsParameters_Click procedure, you’re sending
your original array:

 ‘List your friends
 AddItemsToList(strFriends)

But what happens if you define another array of a different size? In the next Try It Out, you’ll find out.

1. Return to the Forms Designer of the Array Demo project. Add another Button control and set
its Name property to btnMoreArrayParameters and its Text property to More Array
Parameters.

2. Double-click the button and add the following highlighted code to its Click event handler:

Private Sub btnMoreArrayParameters_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnMoreArrayParameters.Click

 ‘Clear the list
 ClearList()

 ‘Declare an array
 Dim strMoreFriends(1) As String

 ‘Populate the array

Try It Out Adding More Friends

c05.indd 140c05.indd 140 4/2/08 5:31:44 PM4/2/08 5:31:44 PM

Chapter 5: Working with Data Structures

141

 strMoreFriends(0) = “Elaine”
 strMoreFriends(1) = “Debra”

 ‘List your friends
 AddItemsToList(strFriends)
 AddItemsToList(strMoreFriends)

End Sub

3. Run the project and click the button. You will see the form shown in Figure 5-3.

Figure 5-3

How It Works
What you have done here is prove that the array you pass as a parameter does not have to be of a
fixed size. You created a new array of size 2 and passed it through to the same AddItemsToList
function.

As you’re writing code, you can tell whether a parameter is an array type by looking for empty paren-
theses in the IntelliSense pop-up box, as illustrated in Figure 5-4.

Figure 5-4

Not only are you informed that arrayList is an array type, but you also see that the data type
of the array is String.

c05.indd 141c05.indd 141 4/2/08 5:31:45 PM4/2/08 5:31:45 PM

Chapter 5: Working with Data Structures

142

Sorting Arrays
It is sometimes useful to be able to sort an array. In this Try It Out, you see how you can take an array
and sort it alphabetically.

Try It Out Sorting Arrays

1. Return to the Forms Designer in the Array Demo project and add another Button control. Set
its Name property to btnSortingArrays and its Text property to Sorting Arrays.

2. Double-click the button and add the following highlighted code to its Click event handler:

 Private Sub btnSortingArrays_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSortingArrays.Click

 ‘Clear the list
 ClearList()

 ‘Sort the array
 Array.Sort(strFriends)

 ‘List your friends
 AddItemsToList(strFriends)

 End Sub

3. Run the project and click the button. You’ll see the list box on your form populated with the
names from your array sorted alphabetically.

How It Works
All arrays are internally implemented in a class called System.Array. In this case, you use a method
called Sort on that class. The Sort method takes a single parameter — namely, the array you want to
sort. The method then does as its name suggests and sorts it for you into an order appropriate to the
data type of the array elements. In this case you are using a string array, so you get an alphanumeric
sort. If you were to attempt to use this technique on an array containing integer or floating-point val-
ues, the array would be sorted in numeric order.

 ‘Sort the array
 Array.Sort(strFriends)

The ability to pass different parameter types in different calls to the same method name and to get
behavior that is appropriate to the parameter types actually passed is called method overloading. Sort is
referred to as an overloaded method.

c05.indd 142c05.indd 142 4/2/08 5:31:45 PM4/2/08 5:31:45 PM

Chapter 5: Working with Data Structures

143

Going Backwards
For Each...Next will go through an array in only one direction. It starts at position 0 and loops
through to the end of the array. If you want to go through an array backwards (from the length –1
position to 0), you have two options.

First, you can step through the loop backwards by using a standard For...Next loop to start at the
upper index bound of the first dimension in the array and work your way to 0 using the Step -1
keyword, as shown in the following example:

 For intIndex As Integer = strFriends.GetUpperBound(0) To 0 Step -1
 ‘Add the array item to the list
 lstFriends.Items.Add(strFriends(intIndex))
 Next

You can also call the Reverse method on the Array class to reverse the order of the array and then use
your For Each...Next loop, as shown in the next Try It Out.

Try It Out Reversing an Array

1. Return to the Forms Designer and add another Button control. Set its Name property to
btnReversingAnArray and its Text property to Reversing an Array.

2. Double-click the button and add the following highlighted code to its Click event handler:

 Private Sub btnReversingAnArray_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnReversingAnArray.Click

 ‘Clear the list
 ClearList()

 ‘Reverse the order - elements will be in descending order
 Array.Reverse(strFriends)

 ‘List your friends
 AddItemsToList(strFriends)

 End Sub

3. Run the project and click the button. You’ll see the friends listed in reverse order as shown in
Figure 5-5.

Figure 5-5

c05.indd 143c05.indd 143 4/2/08 5:31:46 PM4/2/08 5:31:46 PM

Chapter 5: Working with Data Structures

144

How It Works
The Reverse method reverses the order of elements in a one-dimensional array, which is what you are
working with here. By passing the strFriends array to the Reverse method, you are asking the
Reverse method to re-sequence the array from bottom to top:

 ‘Reverse the order - elements will be in descending order
 Array.Reverse(strFriends)

After the items in your array have been reversed, you simply call the AddItemsToList procedure to
have the items listed:

 ‘List your friends
 AddItemsToList(strFriends)

If you want to list your array in descending sorted order, you would call the Sort method on the Array
class to have the items sorted in ascending order and then call the Reverse method to have the sorted array
reversed, putting it into descending order.

Initializing Arrays with Values
It is possible to create an array in Visual Basic 2008 and populate it in one line of code, rather than having
to write multiple lines of code to declare and populate the array as shown here:

 ‘Declare an array
 Dim strFriends(4) As String

 ‘Populate the array
 strFriends(0) = “Wendy”
 strFriends(1) = “Harriet”
 strFriends(2) = “Jay”
 strFriends(3) = “Michelle”
 strFriends(4) = “Richard”

You learn more about initializing arrays with values in the next Try It Out.

1. Return to the Forms Designer in the Array Demo project and add one last Button control. Set
its Name property to btnInitializingArraysWithValues and its Text property to Initializing
Arrays with Values.

2. Double-click the button and add the following highlighted code to its Click event handler:

 Private Sub btnInitializingArraysWithValues_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles btnInitializingArraysWithValues.Click

Try It Out Initializing Arrays with Values

c05.indd 144c05.indd 144 4/2/08 5:31:46 PM4/2/08 5:31:46 PM

Chapter 5: Working with Data Structures

145

 ‘Clear the list
 ClearList()

 ‘Declare and populate an array
 Dim strMyFriends() As String = {“Elaine”, “Richard”, “Debra”, _
 “Wendy”, “Harriet”}
 ‘List your friends
 AddItemsToList(strMyFriends)

 End Sub

3. Run the project and click the button. Your list box is populated with the friends listed in this
array.

How It Works
The pair of braces {} allows you to set the values that should be held in an array directly. In this
instance, you have five values to enter into the array, separated with commas. Note that when you do
this, you don’t specify an upper bound for the array; instead, you use empty parentheses. Visual Basic
2008 prefers to calculate the upper bound for you based on the values you supply.

 ‘Declare and populate an array
 Dim strMyFriends() As String = {“Elaine”, “Richard”, “Debra”, _
 “Wendy”, “Harriet”}

This technique can be quite awkward to use when populating large arrays. If your program relies on
populating large arrays, you might want to use the method illustrated earlier: specifying the positions
and the values. This is especially true when populating an array with values that change at runtime.

Understanding Enumerations
So far, the variables you’ve seen had virtually no limitations on the kinds of data you can store in them.
Technical limits notwithstanding, if you have a variable defined As Integer, you can put any number
you like in it. The same holds true for String and Double. You have seen another variable type, however,
that has only two possible values: Boolean variables can be either True or False and nothing else.

Often, when writing code, you want to limit the possible values that can be stored in a variable. For
example, if you have a variable that stores the number of doors that a car has, do you really want to be
able to store the value 163,234?

Using Enumerations
Enumerations allow you to build a new type of variable, based on one of these data types: Integer,
Long, Short, or Byte. This variable can be set to one value of a set of possible values that you define,
and ideally prevent someone from supplying invalid values. It is used to provide clarity in the code, as it

c05.indd 145c05.indd 145 4/2/08 5:31:47 PM4/2/08 5:31:47 PM

Chapter 5: Working with Data Structures

146

can describe a particular value. In the following Try It Out, you’ll look at how to build an application
that looks at the time of day and, based on that, can record a DayAction of one of these possible values:

❑ Asleep

❑ Getting ready for work

❑ Traveling to work

❑ At work

❑ At lunch

❑ Traveling from work

❑ Relaxing with friends

❑ Getting ready for bed

1. Create a new Windows Forms Application in Visual Studio 2008 called Enum Demo.

2. Set the Text property of Form1 to What’s Richard Doing?

3. Now add a DateTimePicker control and set the following properties:

❑ Set Name to dtpHour.

❑ Set Format to Time.

❑ Set ShowUpDown to True.

❑ Set Value to 00:00 AM.

❑ Set Size to 90, 20.

4. Add a Label control to the form, set its Name property to lblState, and set its Text property to
State Not Initialized. Resize your form so it looks similar to Figure 5-6.

Try It Out Using Enumerations

Figure 5-6

c05.indd 146c05.indd 146 4/2/08 5:31:47 PM4/2/08 5:31:47 PM

Chapter 5: Working with Data Structures

147

5. View the Code Editor for the form by right-clicking the form and choosing View Code from
the context menu. At the top of the class add the following highlighted enumeration:

Public Class Form1

 ‘DayAction Enumeration
 Private Enum DayAction As Integer
 Asleep = 0
 GettingReadyForWork = 1
 TravelingToWork = 2
 AtWork = 3
 AtLunch = 4
 TravelingFromWork = 5
 RelaxingWithFriends = 6
 GettingReadyForBed = 7
 End Enum

6. With an enumeration defined, you can create new member variables that use the enumeration
as their data type. Add this member:

 ‘Declare variable
 Private CurrentState As DayAction

7. Add the following code below the variable you just added:

 ‘Hour property
 Private Property Hour() As Integer
 Get
 ‘Return the current hour displayed
 Return dtpHour.Value.Hour
 End Get
 Set(ByVal value As Integer)
 ‘Set the date using the hour passed to this property
 dtpHour.Value = _
 New Date(Now.Year, Now.Month, Now.Day, value, 0, 0)
 ‘Set the display text
 lblState.Text = “At “ & value & “:00, Richard is “
 End Set
 End Property

8. In the Class Name combo box at the top of the Code Editor, select (Form1 Events), and in the
Method Name combo box, select the Load event. Add the following highlighted code to
the event handler:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ‘Set the Hour property to the current hour
 Me.Hour = Now.Hour

 End Sub

c05.indd 147c05.indd 147 4/2/08 5:31:48 PM4/2/08 5:31:48 PM

Chapter 5: Working with Data Structures

148

9. In the Class Name combo box at the top of the Code Editor, select dtpHour, and in the Method
Name combo box, select the ValueChanged event. Add the following highlighted code to the
event handler:

 Private Sub dtpHour_ValueChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles dtpHour.ValueChanged

 ‘Update the Hour property
 Me.Hour = dtpHour.Value.Hour

 End Sub

10. Save your project and then run it. You will be able to click the up and down arrows in the date
and time picker control and see the text updated to reflect the hour selected as shown in
Figure 5-7.

Figure 5-7

How It Works
In this application, the user will be able to use the date-time picker to choose the hour. You then look
at the hour and determine which one of the eight states Richard is in at the given time. To achieve this,
you have to keep the hour around somehow. To store the hour, you have created a property for the
form in addition to the properties it already has, such as Name and Text. The new property is called
Hour, and it is used to set the current hour in the DateTimePicker control and the label control. The
property is defined with a Property...End Property statement:

 Private Property Hour() As Integer
 Get
 ‘Return the current hour displayed
 Return dtpHour.Value.Hour
 End Get
 Set(ByVal value As Integer)
 ‘Set the date using the hour passed to this property
 dtpHour.Value = _
 New Date(Now.Year, Now.Month, Now.Day, value, 0, 0)
 ‘Set the display text
 lblState.Text = “At “ & value & “:00, Richard is “
 End Set
 End Property

Note the Get...End Get and Set...End Set blocks inside the Property...End Property
statement. The Get block contains a Return statement and is called automatically to return the
property value when the property name appears in an expression. The data type to be returned is not
specified in the Get statement, because it was already declared As Integer in the Property

c05.indd 148c05.indd 148 4/2/08 5:31:48 PM4/2/08 5:31:48 PM

Chapter 5: Working with Data Structures

149

statement. The Set block is called automatically when the value is set, such as by putting the property
name to the left of an equals sign.

When the application starts, you set the Hour property to the current hour on your computer. You get
this information from Now, a Date variable containing the current date and time:

 Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ‘Set the Hour property to the current hour
 Me.Hour = Now.Hour
 End Sub

You also set the Hour property when the Value property changes in the DateTimePicker control:

 Private Sub dtpHour_ValueChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles dtpHour.ValueChanged

 ‘Update the Hour property
 Me.Hour = dtpHour.Value.Hour
 End Sub

When the Hour property is set, you have to update the value of the DateTimePicker control to show
the new hour value, and you have to update the label on the form as well. The code to perform these
actions is put inside the Set block for the Hour property.

The first update that you perform is to update the Value property of the DateTimePicker control. The
Value property of the date-time picker is a Date data type; thus, you cannot simply set the hour in
this control, although you can retrieve just the hour from this property. To update this property, you
must pass it a Date data type.

You do this by calling New (see Chapter 11) for the Date class, passing it the different date and time
parts as shown in the code: year, month, day, hour, minute, second. You get the year, month, and day
by extracting them from the Now variable. The hour is passed using the value parameter that was
passed to this Hour property, and the minutes and seconds are passed as 0, since you do not want to
update the specific minutes or seconds.

 ‘Set the date using the hour passed to this property
 dtpHour.Value = _
 New Date(Now.Year, Now.Month, Now.Day, value, 0, 0)

The second update performed by this Hour property is to update the label on the form using some
static text and the hour that is being set in this property.

 ‘Set the display text
 lblState.Text = “At “ & value & “:00, Richard is “

c05.indd 149c05.indd 149 4/2/08 5:31:49 PM4/2/08 5:31:49 PM

Chapter 5: Working with Data Structures

150

You have not evaluated the Hour property to determine the state using the DayAction enumeration,
but you do that next.

Determining the State
In the next Try It Out, you look at determining the state when the Hour property is set. You can take the
hour returned by the DateTimePicker control and use it to determine which value in your enumeration it
matches. This section demonstrates this and displays the value on your form.

1. Open the Code Editor for Form1 and modify the Hour property as follows:

 Set(ByVal value As Integer)
 ‘Set the date using the hour passed to this property
 dtpHour.Value = _
 New Date(Now.Year, Now.Month, Now.Day, value, 0, 0)

 ‘Determine the state
 If value >= 6 And value < 7 Then
 CurrentState = DayAction.GettingReadyForWork
 ElseIf value >= 7 And value < 8 Then
 CurrentState = DayAction.TravelingToWork
 ElseIf value >= 8 And value < 13 Then
 CurrentState = DayAction.AtWork
 ElseIf value >= 13 And value < 14 Then
 CurrentState = DayAction.AtLunch
 ElseIf value >= 14 And value < 17 Then
 CurrentState = DayAction.AtWork
 ElseIf value >= 17 And value < 18 Then
 CurrentState = DayAction.TravelingFromWork
 ElseIf value >= 18 And value < 22 Then
 CurrentState = DayAction.RelaxingWithFriends
 ElseIf value >= 22 And value < 23 Then
 CurrentState = DayAction.GettingReadyForBed
 Else
 CurrentState = DayAction.Asleep
 End If

 ‘Set the display text

 lblState.Text = “At “ & value & “:00, Richard is “ & _
 CurrentState

 End Set

2. Run the project. You’ll see something like Figure 5-8.

Try It Out Determining State

Figure 5-8

c05.indd 150c05.indd 150 4/2/08 5:31:49 PM4/2/08 5:31:49 PM

Chapter 5: Working with Data Structures

151

3. Here’s the problem: The user doesn’t know what 2 means. Close the project and find the
following section of code at the end of the Hour property:

 ‘Set the display text
 lblState.Text = “At “ & value & “:00, Richard is “ & _
 CurrentState

 End Set

4. Change the last line to read as follows:

 ‘Set the display text

 lblState.Text = “At “ & value & “:00, Richard is “ & _
 CurrentState.ToString

 End Set

5. Now run the project and you’ll see something like Figure 5-9.

Figure 5-9

How It Works
As you typed the code, you might have noticed that whenever you tried to set a value against
 CurrentState, you were presented with an enumerated list of possibilities as shown in Figure 5-10.

Figure 5-10

Visual Studio 2008 knows that CurrentState is of type DayAction. It also knows that DayAction is an
enumeration and that it defines eight possible values, each of which is displayed in the IntelliSense pop-up
box. Clicking an item in the enumerated list causes a tooltip to be displayed with the actual value of the
item; for example, clicking DayAction.RelaxingWithFriends will display a tooltip with a value of 6.

c05.indd 151c05.indd 151 4/2/08 5:31:50 PM4/2/08 5:31:50 PM

Chapter 5: Working with Data Structures

152

Fundamentally, however, because DayAction is based on an integer, CurrentState is an integer
value. That’s why, the first time you ran the project with the state determination code in place, you
saw an integer at the end of the status string. At 7 A.M., you know that Richard is traveling to work, or
rather CurrentState equals DayAction.TravelingToWork. You defined this as 2, which is why 2 is
displayed at the end of the string.

What you’ve done in this Try It Out is to tack a call to the ToString method onto the end of the
 CurrentState variable. This results in a string representation of DayAction being used, rather than
the integer representation

Enumerations are incredibly useful when you want to store one of a possible set of values in a variable.
As you start to drill into more complex objects in the Framework, you’ll find that they are used all over
the place!

Setting Invalid Values
One of the limitations of enumerations is that it is possible to store a value that technically isn’t one of
the possible defined values of the enumeration. For example, you can change the Hour property so that
rather than setting CurrentState to Asleep, you can set it to 999:

 ElseIf value >= 22 And value < 23 Then
 CurrentState = DayAction.GettingReadyForBed
 Else
 CurrentState = 999
 End If

If you build the project, you’ll notice that Visual Basic 2008 doesn’t flag this as an error if you have the
Option Strict option turned off. When you run the project, you’ll see that the value for CurrentState is
shown on the form as 999.

So, you can see that you can set a variable that references an enumeration to a value that is not defined in
that enumeration and the application will still “work” (as long as the value is of the same type as the
enumeration). If you build classes that use enumerations, you have to rely on the consumer of that class
being well behaved. One technique to solve this problem would be to disallow invalid values in any
properties that used the enumeration as their data type.

c05.indd 152c05.indd 152 4/2/08 5:31:50 PM4/2/08 5:31:50 PM

Chapter 5: Working with Data Structures

153

Understanding Constants
Another good programming practice that you need to look at is the constant. Imagine you have these two
methods, each of which does something with a given file on the computer’s disk. (Obviously, we’re
omitting the code here that actually manipulates the file.)

 Public Sub DoSomething()
 ‘What’s the filename?
 Dim strFileName As String = “c:\Temp\Demo.txt”
 ‘Open the file
 ...
 End Sub
 Public Sub DoSomethingElse()
 ‘What’s the filename?
 Dim strFileName As String = “c:\Temp\Demo.txt”
 ‘Do something with the file
 ...
 End Sub

Using Constants
The code defining a string literal gives the name of a file twice. This is poor programming practice
because if both methods are supposed to access the same file, and if that file name changes, this change
has to be made in two separate places.

In this instance, both methods are next to each other and the program itself is small. However, imagine
you had a massive program in which a separate string literal pointing to the file is defined in 10, 50, or
even 1,000 places. If you needed to change the file name, you’d have to change it many times. This is
exactly the kind of thing that leads to serious problems for maintaining software code.

What you need to do instead is define the file name globally and then use that global symbol for the file name
in the code, rather than using a string literal. This is what a constant is. It is, in effect, a special kind of variable
that cannot be varied when the program is running. In the next Try It Out, you learn to use constants.

1. Create a new Windows Forms Application in Visual Studio 2008 called Constants Demo.

2. When the Forms Designer appears, add three Button controls. Set the Name property of the first button
to btnOne, the second to btnTwo, and the third to btnThree. Change the Text property of each to
One, Two, and Three, respectively. Arrange the controls on your form so it looks similiar Figure 5-11.

Try It Out Using Constants

Figure 5-11

c05.indd 153c05.indd 153 4/2/08 5:31:50 PM4/2/08 5:31:50 PM

Chapter 5: Working with Data Structures

154

3. View the Code Editor for the form by right-clicking the form and choosing View Code from
the context menu. At the top of the class definition, add the following highlighted code:

Public Class Form1

 ‘File name constant
 Private Const strFileName As String = “C:\Temp\Hello.txt”

4. In the Class Name combo box at the top of the editor, select btnOne, and in the Method Name
combo box select the Click event. Add the following highlighted code to the Click event
handler:

 Private Sub btnOne_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnOne.Click

 ‘Using a constant
 MessageBox.Show(“1: “ & strFileName, “Constants Demo”)

 End Sub

5. Select btnTwo in the Class Name combo box and select its Click event in the Method Name
combo box. Add the highlighted code:

 Private Sub btnTwo_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnTwo.Click

 ‘Using the constant again
 MessageBox.Show(“2: “ & strFileName, “Constants Demo”)

 End Sub

6. Select btnThree in the Class Name combo box and the Click event in the Method Name
combo box. Add this code to the Click event handler:

 Private Sub btnThree_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnThree.Click

 ‘Reusing the constant one more time
 MessageBox.Show(“3: “ & strFileName, “Constants Demo”)

 End Sub

7. Save and run your project and then click button One. You’ll see the message box shown in
Figure 5-12.

Figure 5-12

c05.indd 154c05.indd 154 4/2/08 5:31:51 PM4/2/08 5:31:51 PM

Chapter 5: Working with Data Structures

155

Likewise, you’ll see the same file name when you click buttons Two and Three.

How It Works
A constant is actually a type of value that cannot be changed when the program is running. It is
defined as a variable, but you add Const to the definition indicating that this variable is constant and
cannot change.

 ‘File name constant
 Private Const strFileName As String = “C:\Temp\Hello.txt”

You’ll notice that it has a data type, just like a variable, and you have to give it a value when it’s
defined — which makes sense, because you can’t change it later.

When you want to use the constant, you refer to it just as you would refer to any variable:

 Private Sub btnOne_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnOne.Click

 ‘Using a constant
 MessageBox.Show(“1: “ & strFileName, “Constants Demo”)
 End Sub

As mentioned before, the appeal of a constant is that it allows you to change a value that’s used
throughout a piece of code by altering a single piece of code. However, note that you can change
constants only at design time; you cannot change their values at runtime. Look at how this works.

Different Constant Types
In this section, you’ve seen how to use a string constant, but you can use other types of variables as
constants. There are some rules: Basically, a constant must not be able to change, so you should not store
an object data type (which we will discuss in Chapter 11) in a constant.

Integers are very common types of constants. They can be defined like this:

 Public Const intHoursAsleepPerDay As Integer = 8

Also, it’s fairly common to see constants used with enumerations, like this:

 Public Const intRichardsTypicalState As DayAction = DayAction.AtWork

Structures
Applications commonly need to store several pieces of information of different data types that all relate
to one thing and must be kept together in a group, such as a customer’s name and address (strings) and
balance (a number). Usually, an object of a class is used to hold such a group of variables, as you’ll

c05.indd 155c05.indd 155 4/2/08 5:31:51 PM4/2/08 5:31:51 PM

Chapter 5: Working with Data Structures

156

discover in Chapter 11, but you can also use a structure. Structures are similar to class objects but are
somewhat simpler, so they’re discussed here.

Later on, as you design applications, you need to be able to decide whether to use a structure or a class.
As a rule of thumb, we suggest that if you end up putting a lot of methods on a structure, it should
probably be a class. It’s also relatively tricky to convert from a structure to a class later on, because
structures and objects are created using different syntax rules, and sometimes the same syntax produces
different results between structures and objects. So choose once and choose wisely!

Building Structures
Take a look at how you can build a structure.

Try It Out Building a Structure

1. Create a new Windows Forms Application in Visual Studio 2008 called Structure Demo.

2. When the Forms Designer appears add four Label controls, four TextBox controls, and a
Button control. Arrange your controls so that they look similar to Figure 5-13.

3. Set the Name properties as follows:

❑ Set Label1 to lblName.

❑ Set TextBox1 to txtName.

❑ Set Label2 to lblFirstName.

❑ Set TextBox2 to txtFirstName.

❑ Set Label3 to lblLastName.

❑ Set TextBox3 to txtLastName.

❑ Set Label4 to lblEmail.

❑ Set TextBox4 to txtEmail.

❑ Set Button1 to btnListCustomer.

4. Set the Text properties of the following controls:

❑ Set lblName to Name.

❑ Set lblFirstName to First Name.

❑ Set lblLastName to Last Name.

❑ Set lblEmail to E-mail.

❑ Set btnListCustomer to List Customer.

c05.indd 156c05.indd 156 4/2/08 5:31:52 PM4/2/08 5:31:52 PM

Chapter 5: Working with Data Structures

157

5. Right-click the project name in the Solution Explorer, choose the Add menu item from the con-
text menu, and then choose the Class submenu item. In the Add New Item – Structure Demo
dialog box, enter Customer in the Name field and then click the Add button to have this item
added to your project.

6. When the Code Editor appears, replace all existing code with the following code:

Public Structure Customer
 ‘Public members
 Public FirstName As String
 Public LastName As String
 Public Email As String
End Structure

Note that you must make sure to replace the Class definition with the Structure definition!

7. View the Code Editor for the form and add this procedure:

Public Class Form1

 Public Sub DisplayCustomer(ByVal customer As Customer)
 ‘Display the customer details on the form
 txtFirstName.Text = customer.FirstName
 txtLastName.Text = customer.LastName
 txtEmail.Text = customer.Email
 End Sub

8. In the Class Name combo box at the top of the editor, select btnListCustomer, and in the
Method Name combo box select the Click event. Add the following highlighted code to the
Click event handler:

 Private Sub btnListCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnListCustomer.Click

 ‘Create a new customer
 Dim objCustomer As Customer
 objCustomer.FirstName = “Michael”
 objCustomer.LastName = “Dell”
 objCustomer.Email = “mdell@somecompany.com”

 ‘Display the customer
 DisplayCustomer(objCustomer)

 End Sub

Figure 5-13

c05.indd 157c05.indd 157 4/2/08 5:31:52 PM4/2/08 5:31:52 PM

Chapter 5: Working with Data Structures

158

9. Save and run your project. When the form appears, click the List Customer button and you
should see results similar to those shown in Figure 5-14.

Figure 5-14

How It Works
You define a structure using a Structure...End Structure statement. Inside this block, the vari-
ables that make up the structure are declared by name and type: These variables are called members of
the structure.

Public Structure Customer
 ‘Public members
 Public FirstName As String
 Public LastName As String
 Public Email As String
End Structure

Notice the keyword Public in front of each variable declaration as well as in front of the Structure
statement. You have frequently seen Private used in similar positions. The Public keyword means
that you can refer to the member (such as FirstName) outside of the definition of the Customer
structure itself.

In the btnListCustomer_Click procedure, you define a variable of type Customer using the Dim
statement. (If Customer were a class, you would also have to initialize the variable by setting
objCustomer equal to New Customer, as will be discussed in Chapter 11.)

 Private Sub btnListCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnListCustomer_Click.Click

 ‘Create a new customer
 Dim objCustomer As Customer

Then you can access each of the member variables inside the Customer structure objCustomer by
giving the name of the structure variable, followed by a dot, followed by the name of the member:

 objCustomer.FirstName = “Michael”
 objCustomer.LastName = “Dell”
 objCustomer.Email = “mdell@somecompany.com”

 ‘Display the customer
 DisplayCustomer(objCustomer)
 End Sub

c05.indd 158c05.indd 158 4/2/08 5:31:53 PM4/2/08 5:31:53 PM

Chapter 5: Working with Data Structures

159

The DisplayCustomer procedure simply accepts a Customer structure as its input parameter and
then accesses the members of the structure to set the Text properties of the text boxes on the form:

 Public Sub DisplayCustomer(ByVal customer As Customer)
 ‘Display the customer details on the form
 txtFirstName.Text = customer.FirstName
 txtLastName.Text = customer.LastName
 txtEmail.Text = customer.Email
 End Sub

Adding Properties to Structures
You can add properties to a structure, just as you did to the form in the Enum Demo project earlier in the
chapter. You learn how in the next Try It Out.

1. Open the Code Editor for Customer and add this highlighted code to create a read-only
property Name:

 ‘Public members
 Public FirstName As String
 Public LastName As String
 Public Email As String

 ‘Name property
 Public ReadOnly Property Name() As String
 Get
 Return FirstName & “ “ & LastName
 End Get
 End Property

2. Open the Code Editor for Form1. Modify the DisplayCustomer method with the highlighted
code:

 Public Sub DisplayCustomer(ByVal customer As Customer)
 ‘Display the customer details on the form

 txtName.Text = customer.Name

 txtFirstName.Text = customer.FirstName
 txtLastName.Text = customer.LastName
 txtEmail.Text = customer.Email
 End Sub

3. Run the project and click the List Customer button. You’ll see that the Name text box, which
was empty in Figure 5-14, is now populated with the customer’s first and last name.

Try It Out Adding a Name Property

c05.indd 159c05.indd 159 4/2/08 5:31:55 PM4/2/08 5:31:55 PM

Chapter 5: Working with Data Structures

160

Working with ArrayLists
Suppose you need to store a set of Customer structures. You could use an array, but in some cases the
array might not be so easy to use.

❑ If you need to add a new Customer to the array, you need to change the size of the array and
insert the new item in the new last position in the array. (You’ll learn how to change the size of
an array later in this chapter.)

❑ If you need to remove a Customer from the array, you need to look at each item in the array in
turn. When you find the one you want, you have to create another version of the array one
element smaller than the original array and copy every item except the one you want to delete
into the new array.

❑ If you need to replace a Customer in the array with another customer, you need to look at each
item in turn until you find the one you want and then replace it manually.

The ArrayList provides a way to create an array that can be easily manipulated as you run your
program.

Using an ArrayList
Look at using an ArrayList in this next Try It Out.

1. Return to the Structure Demo project in Visual Studio 2008. Make the form larger, move the
existing controls down, and then add a new ListBox control as shown in Figure 5-15.
Set the Name property of the list box to lstCustomers and its IntegralHeight property to False.

You can click the form and press Ctrl+A to select all of the controls and then drag them to their
new location.

Try It Out Using an ArrayList

Figure 5-15

c05.indd 160c05.indd 160 4/2/08 5:31:55 PM4/2/08 5:31:55 PM

Chapter 5: Working with Data Structures

161

2. Open the Code Editor for Form1 and add the member highlighted here to the top of the class
definition:

Public Class Form1

 ‘Form level members
 Private objCustomers As New ArrayList

3. Add this method to Form1 to create a new customer:

 Public Sub CreateCustomer(ByVal firstName As String, _
 ByVal lastName As String, ByVal email As String)

 ‘Declare a Customer object
 Dim objNewCustomer As Customer

 ‘Create the new customer
 objNewCustomer.FirstName = firstName
 objNewCustomer.LastName = lastName
 objNewCustomer.Email = email

 ‘Add the new customer to the list
 objCustomers.Add(objNewCustomer)

 ‘Add the new customer to the ListBox control
 lstCustomers.Items.Add(objNewCustomer)
 End Sub

4. Modify the btnListCustomer_Click method next, making these code changes:

 Private Sub btnListCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnListCustomer.Click

 ‘Create some customers
 CreateCustomer(“Darrel”, “Hilton”, “dhilton@somecompany.com”)
 CreateCustomer(“Frank”, “Peoples”, “fpeoples@somecompany.com”)
 CreateCustomer(“Bill”, “Scott”, “bscott@somecompany.com”)

 End Sub

5. Run the project and click the List Customer button. You’ll see results like those shown in
Figure 5-16.

Figure 5-16

c05.indd 161c05.indd 161 4/2/08 5:31:57 PM4/2/08 5:31:57 PM

Chapter 5: Working with Data Structures

162

You are adding Customer structures to the list, but they are being displayed by the list as Structure_
Demo.Customer; this is the full name of the structure. The ListBox control accepts string values, so, by
specifying that you wanted to add the Customer structure to the list box, Visual Basic 2008 called the
ToString method of the Customer structure. By default, the ToString method for a structure returns
the structure name, not the contents that you wanted to see. So what you want to do is tweak the
Customer structure so that it can display something more meaningful. When you do that in the next Try
It Out, you’ll see how the ArrayList works.

1. Return to the Structure Demo project and open the Code Editor for Customer and add the
 following method to the structure, ensuring that it is below the member declarations.
 Remember from Chapter 3 that to insert an XML Document Comment block, you type three
apostrophes above the method name:

 ‘’’ <summary>
 ‘’’ Overrides the default ToString method
 ‘’’ </summary>
 ‘’’ <returns>String</returns>
 ‘’’ <remarks>Returns the customer name and email address</remarks>
 Public Overrides Function ToString() As String
 Return Name & “ (“ & Email & “)”
 End Function

End Structure

2. Run the project and click the List Customer button. You’ll see the same results as shown in
Figure 5-17.

Try It Out Overriding ToString

Figure 5-17

c05.indd 162c05.indd 162 4/2/08 5:31:57 PM4/2/08 5:31:57 PM

Chapter 5: Working with Data Structures

163

How It Works
Whenever a Customer structure is added to the list, the list box calls the ToString method on the
structure to get a string representation of that structure. With this code, you override the default func-
tionality of the ToString method so that, rather than returning just the name of the structure, you get
some useful text:

 ‘’’ <summary>
 ‘’’ Overrides the default ToString method
 ‘’’ </summary>
 ‘’’ <returns>String</returns>
 ‘’’ <remarks>Returns the customer name and email address</remarks>
 Public Overrides Function ToString() As String
 Return Name & “ (“ & Email & “)”
 End Function

An ArrayList can be used to store a list of objects/structures of any type (in contrast to a regular
array). In fact, you can mix the types within an ArrayList — a topic we’ll be talking about in a little
while. In this example, you created a method called CreateCustomer that initializes a new Customer
structure based on parameters that were passed to the method:

 Public Sub CreateCustomer(ByVal firstName As String, _
 ByVal lastName As String, ByVal email As String)

 ‘Declare a Customer object
 Dim objNewCustomer As Customer

 ‘Create the new customer
 objNewCustomer.FirstName = firstName
 objNewCustomer.LastName = lastName
 objNewCustomer.Email = email

After the structure has been initialized, you add it to the ArrayList stored in objCustomers:

 ‘Add the new customer to the list
 objCustomers.Add(objNewCustomer)

You also add it to the list box itself, like this:

 ‘Add the new customer to the ListBox control
 lstCustomers.Items.Add(objNewCustomer)

With CreateCustomer defined, you can call it to add new members to the ArrayList and to the List-
Box control when the user clicks the List Customer button:

 Private Sub btnListCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnListCustomer.Click

 ‘Create some customers
 CreateCustomer(“Darrel”, “Hilton”, “dhilton@somecompany.com”)
 CreateCustomer(“Frank”, “Peoples”, “fpeoples@somecompany.com”)
 CreateCustomer(“Bill”, “Scott”, “bscott@somecompany.com”)
 End Sub

c05.indd 163c05.indd 163 4/2/08 5:31:58 PM4/2/08 5:31:58 PM

Chapter 5: Working with Data Structures

164

Deleting from an ArrayList
OK, so now you know the principle behind an ArrayList. You use it to do something that’s
traditionally hard to do with arrays but is pretty easy to do with an ArrayList, such as dynamically
adding new values. Now let’s look at how easy it is to delete items from an ArrayList.

1. Return to the Code Editor in the Structure Demo project and add the SelectedCustomer
property to the form as follows:

Public ReadOnly Property SelectedCustomer() As Customer
 Get
 If lstCustomers.SelectedIndex <> -1 Then
 ‘Return the selected customer
 Return CType(objCustomers(lstCustomers.SelectedIndex), Customer)
 End If
 End Get
End Property

2. Now switch to the Forms Designer and add a new Button control to the bottom of the form
and set its Name property to btnDeleteCustomer and its Text property to Delete Customer.

3. Double-click the button and add the highlighted code:

 Private Sub btnDeleteCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDeleteCustomer.Click

 ‘If no customer is selected in the ListBox then...
 If lstCustomers.SelectedIndex = -1 Then

 ‘Display a message
 MessageBox.Show(“You must select a customer to delete.”, _
 “Structure Demo”)

 ‘Exit this method
 Exit Sub
 End If

 ‘Prompt the user to delete the selected customer
 If MessageBox.Show(“Are you sure you want to delete “ & _
 SelectedCustomer.Name & “?”, “Structure Demo”, _
 MessageBoxButtons.YesNo, MessageBoxIcon.Question) = _
 DialogResult.Yes Then

 ‘Get the customer to be deleted
 Dim objCustomerToDelete As Customer = SelectedCustomer

 ‘Remove the customer from the ArrayList

Try It Out Deleting Customers

c05.indd 164c05.indd 164 4/2/08 5:31:58 PM4/2/08 5:31:58 PM

Chapter 5: Working with Data Structures

165

 objCustomers.Remove(objCustomerToDelete)

 ‘Remove the customer from the ListBox
 lstCustomers.Items.Remove(objCustomerToDelete)
 End If

 End Sub

4. Run the project and click the List Customer button. Do not select a customer in the list box and
then click the Delete Customer button. You’ll see a message box indicating that you must
select a customer.

5. Now select a customer and click Delete Customer. You’ll see a confirmation dialog box similar
to the one shown in Figure 5-18.

6. Click Yes, and the customer you selected will be removed from the list.

Figure 5-18

How It Works
The trick here is to build a read-only property that returns the Customer structure that’s selected
in the list box back to the caller on demand. The SelectedIndex property of the list box returns a
value of -1 if no selection has been made. Otherwise it returns the zero-based index of the selected
customer. Since the Items collection of the list box contains a collection of Object data types, you
must convert the object returned to a Customer object, which you do by using the CType function.

Public ReadOnly Property SelectedCustomer() As Customer
 Get
 If lstCustomers.SelectedIndex <> -1 Then
 ‘Return the selected customer
 Return CType(objCustomers(lstCustomers.SelectedIndex), Customer)
 End If
 End Get
End Property

c05.indd 165c05.indd 165 4/2/08 5:31:59 PM4/2/08 5:31:59 PM

Chapter 5: Working with Data Structures

166

Like the Name property that you added to the Customer structure, this property is identified as read-
only by the keyword ReadOnly. It contains a Get block but no Set block. The reason for making it
read-only is that it constructs the value it returns from other information (the contents of the Cus-
tomer structures in the list) that can be set and changed by other means.

Inside the Click event handler for the Delete Customer button, you first test to see whether a cus-
tomer has been selected in the list box. If no customer has been selected, you display a message box
indicating that a customer must be selected. Then you exit the method allowing the user to select a
customer and try again:

 ‘If no customer is selected in the ListBox then...
 If lstCustomers.SelectedIndex = -1 Then

 ‘Display a message
 MessageBox.Show(“You must select a customer to delete.”, _
 “Structure Demo”)

 ‘Exit this method
 Exit Sub
 End If

If a customer has been selected, you prompt the user to confirm the deletion:

 ‘Prompt the user to delete the selected customer
 If MessageBox.Show(“Are you sure you want to delete “ & _
 SelectedCustomer.Name & “?”, “Structure Demo”, _
 MessageBoxButtons.YesNo, MessageBoxIcon.Question) = _
 DialogResult.Yes Then

If the user does want to delete the customer, you get a return value from MessageBox.Show equal to
DialogResult.Yes. Then you declare a customer structure to save the customer to be deleted and
populate that structure with the selected customer:

 ‘Get the customer to be deleted
 Dim objCustomerToDelete As Customer = SelectedCustomer

The Remove method of the ArrayList can then be used to remove the selected customer:

 ‘Remove the customer from the ArrayList
 objCustomers.Remove(objCustomerToDelete)

You also use a similar technique to remove the customer from the list box:

 ‘Remove the customer from the ListBox
 lstCustomers.Items.Remove(objCustomerToDelete

c05.indd 166c05.indd 166 4/2/08 5:31:59 PM4/2/08 5:31:59 PM

Chapter 5: Working with Data Structures

167

Showing Items in the ArrayList
For completeness, you’ll want to add one more piece of functionality to enhance the user interface of
your application. In the next Try It Out, you add code in the SelectedIndexChanged event for the
Customers list box. Every time you select a new customer, the customer’s details will be displayed in
the text boxes on the form.

1. Return to the Forms Designer in the Structure Demo project and double-click the list box. This
creates a new SelectedIndexChanged event handler. Add the highlighted code:

 Private Sub lstCustomers_SelectedIndexChanged(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles lstCustomers.SelectedIndexChanged

 ‘Display the customer details
 DisplayCustomer(SelectedCustomer)

 End Sub

2. Run the project and click the List Customer button to populate the list box. Now when you
select a customer in the list box, that customer’s information will appear in the fields at the
bottom of the form, as shown in Figure 5-19.

Try It Out Showing Details of the Selected Item

Figure 5-19

c05.indd 167c05.indd 167 4/2/08 5:31:59 PM4/2/08 5:31:59 PM

Chapter 5: Working with Data Structures

168

Working with Collections
The ArrayList is a kind of collection, which the .NET Framework uses extensively. A collection is a way
of easily creating ad hoc groups of similar or related items. If you take a look back at your Structure
Demo code and peek into the CreateCustomer method, you’ll notice that when adding items to the
ArrayList and to the list box, you use a method called Add:

 ‘Add the new customer to the list
 objCustomers.Add(objNewCustomer)

 ‘Add the new customer to the ListBox control
 lstCustomers.Items.Add(objNewCustomer)

The code that deletes a customer uses a method called Remove on both objects:

 ‘Remove the customer from the ArrayList
 objCustomers.Remove(objCustomerToDelete)

 ‘Remove the customer from the ListBox
 lstCustomers.Items.Remove(objCustomerToDelete)

Microsoft is very keen to see developers use the collection paradigm whenever they need to work with a
list of items. They are also keen to see collections work in the same way, irrespective of what they
actually hold — which is why you use Add to add an item and Remove to remove an item, even though
you’re using a System.Collections.ArrayList object in one case and a System.Windows.Forms
.ListBox.ObjectCollection object in another. Microsoft has taken a great deal of care with this
feature when building the .NET Framework.

Consistency is good — it allows developers to map an understanding of one thing and use that same
understanding with a similar thing. When designing data structures for use in your application, you
should take steps to follow the conventions that Microsoft has laid down. For example, if you have a
collection class and want to create a method that removes an item, call it Remove, not Delete.
Developers using your class will have an intuitive understanding of what Remove does because they’re
familiar with it. On the other hand, developers would do a double-take on seeing Delete, because that
term has a different connotation.

One of the problems with using an ArrayList is that the developer who has an array list cannot
guarantee that every item in the list is of the same type. For this reason, each time an item is extracted
from the ArrayList, the type should be checked to avoid causing an error.

The solution is to create a strongly typed collection, which contains only elements of a particular type.
Strongly typed collections are very easy to create. According to .NET best programming practices as
defined by Microsoft, the best way to create one is to derive a new class from System.Collections
.CollectionBase (discussed in the How It Works for the next Try It Out) and add two methods (Add
and Remove) and one property (Item):

❑ Add adds a new item to the collection.

❑ Remove removes an item from the collection.

❑ Item returns the item at the given index in the collection.

c05.indd 168c05.indd 168 4/2/08 5:32:00 PM4/2/08 5:32:00 PM

Chapter 5: Working with Data Structures

169

Creating CustomerCollection
In this Try It Out, you create a CustomerCollection designed to hold a collection of Customer
structures.

1. Return to the Structure Demo project in Visual Studio 2008 and in the Solution Explorer, right-
click the project and choose Add from the context menu and then choose the Class submenu
item. In the Add New Item – Structure Demo dialog box, enter CustomerCollection in the
Name field and then click the Add button to have the class added to your project.

2. Add the following highlighted line in the Code Editor:

Public Class CustomerCollection

 Inherits CollectionBase

End Class

3. You’ll need to add an Add method to add a customer to the collection. Add the following code:

 ‘Add a customer to the collection
 Public Sub Add(ByVal newCustomer As Customer)
 Me.List.Add(newCustomer)
 End Sub

4. Next, you need to add a Remove method to remove a customer from the collection, so add this
method:

 ‘Remove a customer from the collection
 Public Sub Remove(ByVal oldCustomer As Customer)
 Me.List.Remove(oldCustomer)
 End Sub

5. Open the Code Editor for the form and find the definition for the objCustomers member.
Change its type from ArrayList to CustomerCollection as highlighted here:

Public Class Form1

 ‘Form level members
 Private objCustomers As New CustomerCollection

6. Finally, run the project. You’ll notice that the application works as before.

How It Works
Your CustomerCollection class is the first occasion for you to create a class explicitly (although you
have been using them implicitly from the beginning). Classes and objects are discussed in Chapter 11
and later chapters. For now, note that, like a structure, a class represents a data type that groups one or
more members that can be of different data types, and it can have properties and methods associated
with it. Unlike a structure, a class can be derived from another class, in which case it inherits the mem-
bers, properties, and methods of that other class (which is known as the base class) and can have fur-
ther members, properties, and methods of its own.

Try It Out Creating CustomerCollection

c05.indd 169c05.indd 169 4/2/08 5:32:00 PM4/2/08 5:32:00 PM

Chapter 5: Working with Data Structures

170

Your CustomerCollection class inherits from the System.Collections.CollectionBase class,
which contains a basic implementation of a collection that can hold any object. In that respect it’s very
similar to an ArrayList. The advantage comes when you add your own methods to this class.

Since you provided a version of the Add method that has a parameter type of Customer, it can accept
and add only a Customer structure. Therefore, it’s impossible to put anything into the collection that
isn’t a Customer. You can see there that IntelliSense is telling you that the only thing you can pass
through to Add is a Structure_Demo.Customer structure.

Internally, CollectionBase provides you with a property called List, which in turn has Add and
Remove methods that you can use to store items. That’s precisely what you use when you need to add
or remove items from the list:

 ‘Add a customer to the collection
 Public Sub Add(ByVal newCustomer As Customer)
 Me.List.Add(newCustomer)
 End Sub

 ‘Remove a customer from the collection
 Public Sub Remove(ByVal oldCustomer As Customer)
 Me.List.Remove(oldCustomer)
 End Sub

Building collections this way is a .NET best practice. As a newcomer to .NET programming, you may
not appreciate just how useful this is, but trust us — it is. Whenever you need to use a collection of
classes, this technique is the right way to go and one that you’ll be familiar with.

Adding an Item Property
At the beginning of this section, you read that you were supposed to add two methods and one property.
You’ve seen the methods but not the property, so take a look at it in the next Try It Out.

1. Return to Visual Studio 2008, open the Code Editor for the CustomerCollection class,
and add this code:

 ‘Item property to read or update a customer at a given position
 ‘in the list
 Default Public Property Item(ByVal index As Integer) As Customer
 Get
 Return CType(Me.List.Item(index), Customer)
 End Get

Try It Out Adding an Item Property

c05.indd 170c05.indd 170 4/2/08 5:32:01 PM4/2/08 5:32:01 PM

Chapter 5: Working with Data Structures

171

 Set(ByVal value As Customer)
 Me.List.Item(index) = value
 End Set
 End Property

2. To verify that this works, open the Code Editor for Form1. Modify the SelectedCustomer
property with this code:

 Public ReadOnly Property SelectedCustomer() As Customer
 Get
 If lstCustomers.SelectedIndex <> -1 Then
 ‘Return the selected customer

 Return objCustomers(lstCustomers.SelectedIndex)

 End If
 End Get
 End Property

3. Run the project. Click the Test button and note that when you select items in the list, the
details are shown in the fields as they were before.

How It Works
The Item property is actually very important; it gives the developer direct access to the data stored
in the list but maintains the strongly typed nature of the collection.

If you look at the code again for SelectedCustomer, you’ll notice that when you wanted to return
the given item from within objCustomers, you didn’t have to provide the property name of Item.
Instead, objCustomers behaved as if it were an array:

 If lstCustomers.SelectedIndex <> -1 Then
 ‘Return the selected customer
 Return objCustomers(lstCustomers.SelectedIndex)
 End If

IntelliSense tells you to enter the index of the item that you require and that you should expect to get a
Customer structure in return.

The reason you don’t have to specify the property name of Item is that you marked the property as
the default by using the Default keyword:

 ‘Item property to read or update a customer at a given position
 ‘in the list
 Default Public Property Item(ByVal index As Integer) As Customer
 Get
 Return CType(Me.List.Item(index), Customer)
 End Get
 Set(ByVal value As Customer)
 Me.List.Item(index) = value
 End Set
 End Property

A given class can have only a single default property, and that property must take a parameter of
some kind. This parameter must be an index or search term of some description. The one used here
provides an index to an element in a collection list. You can have multiple overloaded versions of the

c05.indd 171c05.indd 171 4/2/08 5:32:01 PM4/2/08 5:32:01 PM

Chapter 5: Working with Data Structures

172

same property so that, for example, you could provide an e-mail address rather than an index. This
provides a great deal of flexibility to enhance your class further.

What you have at this point is the following:

❑ A way of storing a list of Customer structures, and just Customer structures

❑ A way of adding new items to the collection on demand

❑ A way of removing existing items from the collection on demand

❑ A way of accessing members in the collection as if it were an ArrayList

Building Lookup Tables with Hashtable
So far, whenever you want to find something in an array or in a collection, you have to provide an
integer index representing the position of the item. It’s common to end up needing a way of being able to
look up an item in a collection when you have something other than an index. For example, you might
want to find a customer when you provide an e-mail address.

In this section you’ll take a look at the Hashtable. This is a special kind of collection that works on a
key-value principle.

Using Hashtables
A Hashtable is a collection in which each item is given a key. This key can be used at a later time to
unlock the value. So, if you add Darrel’s Customer structure to the Hashtable, you’ll be given a key
that matches his e-mail address of dhilton@somecompany.com. If at a later time you come along
with that key, you’ll be able to find his record quickly.

Whenever you add an object to the Hashtable, it calls a method System.Object.GetHashCode, which
provides a unique integer value for that object that is the same every time it is called, and uses this
integer ID as the key. Likewise, whenever you want to retrieve an object from the Hashtable, it calls
GetHashCode on the object to get a lookup key and matches that key against the ones it has in the list.
When it finds it, it returns the related value to you.

Lookups from a Hashtable are very, very fast. Irrespective of the object you pass in, you’re only
matching on a relatively small integer ID. You learn to use a Hashtable in the following Try It Out.

An integer ID takes up 4 bytes of memory, so if you pass in a 100-character string (which is 200 bytes
long), the lookup code only needs to compare 4 bytes, which makes everything run really quickly.

c05.indd 172c05.indd 172 4/2/08 5:32:01 PM4/2/08 5:32:01 PM

Chapter 5: Working with Data Structures

173

1. Return to Visual Studio 2008 and open the Code Editor for the CustomerCollection class.
Add the highlighted member to the top of the class definition:

Public Class CustomerCollection
 Inherits CollectionBase

 ‘Private member
 Private objEmailHashtable As New Hashtable

2. Next, add this read-only property to the class:

 ‘EmailHashtable property to return the Email Hashtable
 Public ReadOnly Property EmailHashtable() As Hashtable
 Get
 Return objEmailHashtable
 End Get
 End Property

3. Now, make this change to the Add method:

 ‘Add a customer to the collection
 Public Sub Add(ByVal newCustomer As Customer)
 Me.List.Add(newCustomer)

 ‘Add the email address to the Hashtable
 EmailHashtable.Add(newCustomer.Email, newCustomer)

 End Sub

4. Next, add this overloaded version of the Item property that allows you to find a customer by
e-mail address:

 ‘Overload Item property to find a customer by email address
 Default Public ReadOnly Property Item(ByVal email As String) As Customer
 Get
 Return CType(EmailHashtable.Item(email), Customer)
 End Get
 End Property

5. Open the Forms Designer for Form1, resize the controls on your form, and add a new Button
control next to the E-mail text box as shown in Figure 5-20. Set the Name property of the but-
ton to btnLookup and the Text property to Lookup.

Try It Out Using a Hashtable

c05.indd 173c05.indd 173 4/2/08 5:32:02 PM4/2/08 5:32:02 PM

Chapter 5: Working with Data Structures

174

Figure 5-20

6. Double-click the Lookup button and add the following highlighted code to its Click event
handler:

 Private Sub btnLookup_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLookup.Click

 ‘Declare a customer object and set it to the customer
 ‘with the email address to be found
 Dim objFoundCustomer As Customer = objCustomers(txtEmail.Text)

 If Not IsNothing(objFoundCustomer.Email) Then
 ‘Display the customers name
 MessageBox.Show(“The customers name is: “ & _
 objFoundCustomer.Name, “Structure Demo”)
 Else
 ‘Display an error
 MessageBox.Show(“There is no customer with the e-mail” & _
 “ address “ & txtEmail.Text & “.”, “Structure Demo”)
 End If

 End Sub

7. Run the project and click the List Customer button to populate the list of customers. If you
enter an e-mail address that does not exist into the E-mail text box and click the Lookup but-
ton, you’ll see a message box similar to the one shown in Figure 5-21.

c05.indd 174c05.indd 174 4/2/08 5:32:02 PM4/2/08 5:32:02 PM

Chapter 5: Working with Data Structures

175

If you enter an e-mail address that does exist, for example, dhilton@somecompany.com, the
name of the customer is shown in the message box.

How It Works
You’ve added a new member to the CustomerCollection class that can be used to hold a Hashtable:

 ‘Private member
 Private objEmailHashtable As New Hashtable

Whenever you add a new Customer to the collection, you also add it to the Hashtable:

 ‘Add a customer to the collection
 Public Sub Add(ByVal newCustomer As Customer)
 Me.List.Add(newCustomer)

 ‘Add the email address to the Hashtable
 EmailHashtable.Add(newCustomer.Email, newCustomer)
 End Sub

However, unlike the kinds of Add methods that you saw earlier, the EmailHashtable.Add method
takes two parameters. The first is the key, and you’re using the e-mail address as the key. The key can
be any object you like, but it must be unique. You cannot supply the same key twice. (If you try to, an
exception will be thrown.) The second parameter is the value that you want to link the key to, so
whenever you give that key to the Hashtable, you get that object back.

The next trick is to create an overloaded version of the default Item property. This one, however, takes
a string as its only parameter. IntelliSense displays the overloaded method as items 1 and 2 when you
access it from your code.

Figure 5-21

c05.indd 175c05.indd 175 4/2/08 5:32:02 PM4/2/08 5:32:02 PM

Chapter 5: Working with Data Structures

176

This time you can provide either an index or an e-mail address. If you use an e-mail address, you end
up using the overloaded version of the Item property, and this defers to the Item property of the
Hashtable object. This takes a key and returns the related item, provided that the key can be found:

‘Overload Item property to find a customer by email address
Default Public ReadOnly Property Item(ByVal email As String) As Customer
 Get
 Return EmailHashtable.Item(email)
 End Get
End Property

At this point, you have a collection class that not only enables you to look up items by index but also
allows you to look up customers by e-mail address.

Cleaning Up: Remove, RemoveAt, and Clear
It isn’t possible to use the same key twice in a Hashtable. Therefore, you have to take steps to ensure
that what’s in the Hashtable matches whatever is in the list itself.

Although you implemented the Remove method in your CustomerCollection class, the
CollectionBase class also provides the RemoveAt and Clear methods. Whereas Remove takes an
object, RemoveAt takes an index. In the next Try It Out, you need to provide new implementations of
these methods to adjust the Hashtable.

1. Return to Visual Studio 2008 and open the Code Editor for Form1. Locate the
 btnListCustomer_Click method and add the highlighted code to clear the two lists:

 Private Sub btnListCustomer_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnListCustomer.Click

 ‘Clear the lists
 objCustomers.Clear()
 lstCustomers.Items.Clear()

 ‘Create some customers
 CreateCustomer(“Darrel”, “Hilton”, “dhilton@somecompany.com”)
 CreateCustomer(“Frank”, “Peoples”, “fpeoples@somecompany.com”)
 CreateCustomer(“Bill”, “Scott”, “bscott@somecompany.com”)
 End Sub

Try It Out Cleaning Up the List

c05.indd 176c05.indd 176 4/2/08 5:32:03 PM4/2/08 5:32:03 PM

Chapter 5: Working with Data Structures

177

2. To demonstrate how a Hashtable cannot use the same key twice, run your project and click
the List Customer button to have the customer list loaded. Now click the List Customer but-
ton again and you’ll see the error message shown in Figure 5-22:

Figure 5-22

3. Click the Stop Debugging button on the toolbar in Visual Studio 2008 to stop the program.

4. Add the following method to the CustomerCollection class:

 ‘Provide a new implementation of the Clear method
 Public Shadows Sub Clear()
 ‘Clear the CollectionBase
 MyBase.Clear()
 ‘Clear your hashtable
 EmailHashtable.Clear()
 End Sub

5. Modify the Remove method as follows:

 ‘Remove a customer from the collection
 Public Sub Remove(ByVal oldCustomer As Customer)
 Me.List.Remove(oldCustomer)

 ‘Remove customer from the Hashtable
 EmailHashtable.Remove(oldCustomer.Email.ToLower)

 End Sub

6. Add the RemoveAt method to override the default method defined in the CollectionBase
class:

 ‘Provide a new implementation of the RemoveAt method
 Public Shadows Sub RemoveAt(ByVal index As Integer)
 Remove(Item(index))
 End Sub

7. Run the project and click the List Customer button to load the customers. Click the List Cus-
tomer button again to have the existing list of customers cleared before the customers are
added again. Note that this time no exception has been thrown.

c05.indd 177c05.indd 177 4/2/08 5:32:03 PM4/2/08 5:32:03 PM

Chapter 5: Working with Data Structures

178

How It Works
The exception isn’t thrown the second time around, because you are now making sure that the
Hashtable and the internal list maintained by CollectionBase are properly synchronized. Specifi-
cally, whenever your CustomerCollection list is cleared using the Clear method, you make sure
that the Hashtable is also cleared.

To clear the internal list maintained by CollectionBase, you ask the base class to use its own Clear
implementation rather than try to provide your own implementation. You do this by calling
MyBase.Clear(). Right after that, you call Clear on the Hashtable:

 ‘Provide a new implementation of the Clear method
 Public Shadows Sub Clear()
 ‘Clear the CollectionBase
 MyBase.Clear()
 ‘Clear your hashtable
 EmailHashtable.Clear()
 End Sub

You’ll also find that when you delete items from the collection by using Remove, the corresponding
entry is also removed from the Hashtable, because of this method that you added:

 ‘Provide a new implementation of the RemoveAt method
 Public Shadows Sub RemoveAt(ByVal index As Integer)
 Remove(Item(index))
 End Sub

The Shadows keyword indicates that this Clear procedure and RemoveAt procedure should be used
instead of the Clear procedure and RemoveAt procedure in the base class. The arguments and the
return type do not have to match those in the base class procedure, even though they do here.

You don’t need to worry too much about the details of Shadows and Overrides at this point, as
they are discussed in detail in Chapter 11.

Case Sensitivity
It’s about this time that case sensitivity rears its ugly head again. If you run your project and click the
List Customer button and then enter a valid e-mail address in all uppercase letters, you’ll see a message
box indicating that there is no customer with that e-mail address.

You need to get the collection to ignore case sensitivity on the key. In the next Try It Out, you do this
by making sure that whenever you save a key, you transform the e-mail address into all lowercase
characters. Whenever you look up based on a key, you transform whatever you search for into
lowercase characters too.

c05.indd 178c05.indd 178 4/2/08 5:32:04 PM4/2/08 5:32:04 PM

Chapter 5: Working with Data Structures

179

1. Return to Visual Studio 2008, open the Code Editor for the CustomerCollection class,
and make the highlighted change to the Add method:

 ‘Add a customer to the collection
 Public Sub Add(ByVal newCustomer As Customer)
 Me.List.Add(newCustomer)

 ‘Add the email address to the Hashtable

 EmailHashtable.Add(newCustomer.Email.ToLower, newCustomer)

 End Sub

2. Find the overloaded Item property that takes an e-mail address and modify the code as
shown here:

 ‘Overload Item property to find a customer by email address
 Default Public ReadOnly Property Item(ByVal email As String) As Customer
 Get

 Return CType(EmailHashtable.Item(email.ToLower), Customer)

 End Get
 End Property

3. Find the Remove method and modify the code as shown here:

 ‘Remove a customer from the collection
 Public Sub Remove(ByVal oldCustomer As Customer)
 Me.List.Remove(oldCustomer)

 ‘Remove customer from the Hashtable

 EmailHashtable.Remove(oldCustomer.Email.ToLower)

 End Sub

4. Run the project and click the List Customer button. Now if you enter a valid e-mail address in
all uppercase, the lookup will still work.

How It Works
In Chapter 4 you saw how you could perform case-insensitive string comparisons using the
String.Compare method. You can’t use this technique here because the Hashtable is handling the
comparison and, ideally, you don’t want to produce your own version of the comparison code that
the Hashtable uses just to do a case-insensitive match.

You can use the ToLower method available on strings. This creates a new string in which all of the
characters are transformed into the lowercase equivalent, so whether you pass
DHILTON@SOMECOMPANY.COM or DHilton@SomeCompany.com in, you always get
dhilton@somecompany.com out.

Try It Out Case Sensitivity

c05.indd 179c05.indd 179 4/2/08 5:32:04 PM4/2/08 5:32:04 PM

Chapter 5: Working with Data Structures

180

When you add an item to the collection, you can get ToLower to convert the e-mail address stored in
the Customer structure so that it is always in lowercase:

 ‘Add the email address to the Hashtable
 EmailHashtable.Add(newCustomer.Email.ToLower, newCustomer)

Likewise, when you actually do the lookup, you also turn whatever value is passed in as a parameter
into all lowercase characters:

 Return CType(EmailHashtable.Item(email.ToLower), Customer)

When you’re consistent with it, this action makes uppercase characters “go away” — in other words,
you’ll never end up with uppercase characters being stored in the key or being checked against
the key.

This technique for removing the problem of uppercase characters can be used for normal string
comparisons, but String.Compare is more efficient.

Advanced Array Manipulation
Being able to manipulate the size of an array from code, and being able to store complex sets of data in
an array is important, but with .NET it’s far easier to achieve both of these using the collection
functionality that the majority of this chapter has discussed. The following two sections are included for
completeness and so that you can make the comparisons between the two for yourself.

Dynamic Arrays
When using an array, if you want to change its size in order to add items, or clean up space when you
remove items, you need to use the ReDim keyword to make it a dynamic array. This is a short form of,
not surprisingly, redimension. In the next Try It Out, you’ll reuse the Array Demo project you created at
the start of the chapter and tweak it so that you can add new friends to the array after the initial array
has been created.

1. Find and open the Array Demo project in Visual Studio 2008. Open the Code Editor for Form1
and modify the code in the AddItemsToList method so that it looks like this:

 Private Sub AddItemsToList(ByVal arrayList() As String)
 ‘Enumerate the array
 For Each strName As String In arrayList
 ‘Add the array item to the list

 lstFriends.Items.Add(“[“ & strName & “]”)

 Next
 End Sub

Try It Out Using ReDim

c05.indd 180c05.indd 180 4/2/08 5:32:04 PM4/2/08 5:32:04 PM

Chapter 5: Working with Data Structures

181

2. Run the project and click the Initializing Arrays with Values button. Your form should look
like Figure 5-23; note the square brackets around each name.

Figure 5-23

3. Stop the project and make the highlighted change to the btnInitializingArraysWithVal-
ues_Click method:

 Private Sub btnInitializingArraysWithValues_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles btnInitializingArraysWithValues.Click

 ‘Clear the list
 ClearList()

 ‘Declare and populate an array
 Dim strMyFriends() As String = {“Elaine”, “Richard”, “Debra”, _
 “Wendy”, “Harriet”}

 ‘Make the strMyFriends array larger
 ReDim strMyFriends(6)
 strMyFriends(5) = “Lane”
 strMyFriends(6) = “Joel”

 ‘List your friends
 AddItemsToList(strMyFriends)
 End Sub

4. Run the project again and click the Initializing Arrays with Values button. Your form should
look like the one shown in Figure 5-24.

c05.indd 181c05.indd 181 4/2/08 5:32:05 PM4/2/08 5:32:05 PM

Chapter 5: Working with Data Structures

182

Figure 5-24

How It Works
After defining an array of five items, you use the ReDim keyword to redimension the array to have an
upper boundary of 6, which, as you know, gives it a size of 7. After you do that, you have two new
items in the array to play with — items 5 and 6:

 ‘Make the strMyFriends array larger
 ReDim strMyFriends(6)
 strMyFriends(5) = “Lane”
 strMyFriends(6) = “Joel”

Then, you can pass the resized array through to AddItemsToList:

 ‘List your friends
 AddItemsToList(strMyFriends)

But, as you can see from the results, the values for the first five items have been lost. (This is why you
wrapped brackets around the results — if the name stored in the array is blank, you still see some-
thing appear in the list.) ReDim does indeed resize the array, but when an array is redimensioned, by
default all of the values in the array are cleared, losing the values you defined when you initialized the
array in the first place.

You can solve this problem by using the Preserve keyword.

Using Preserve
By including the Preserve keyword with the ReDim keyword, you can instruct Visual Basic 2008 to not
clear the existing items. One thing to remember is that if you make an array smaller than it originally
was, data will be lost from the eliminated elements even if you use Preserve. In the next Try It Out, you
use Preserve.

c05.indd 182c05.indd 182 4/2/08 5:32:05 PM4/2/08 5:32:05 PM

Chapter 5: Working with Data Structures

183

1. Return to Visual Studio 2008, open the Code Editor for Form1, and modify the
btnInitializingArraysWithValues_Click method as follows:

 ‘Make the strMyFriends array larger

 ReDim Preserve strMyFriends(6)

 strMyFriends(5) = “Lane”
 strMyFriends(6) = “Joel”

2. Run the project again and click the Initializing Arrays with Values button. You should now
find that the existing items in the array are preserved, as shown in Figure 5-25.

Try It Out Using Preserve

Figure 5-25

Summary
In this chapter, you saw some ways in which you could manage complex groups of data. You started by
looking at the concept of an array, or rather, defining a special type of variable that’s configured to hold a
one-dimensional list of similar items rather than a single item.

You then looked at the concepts behind enumerations and constants. Both of these can be used to great
effect in making more readable and manageable code. An enumeration lets you define human-readable,
common-sense titles for basic variable types. So rather than saying “CurrentState = 2”, you can say
“CurrentState = DayAction.TravelingToWork”. Constants allow you to define literal values
globally and use them elsewhere in your code.

You then looked at structures. These are similar to classes and are well suited for storing groups of items
of information that all pertain to a particular thing or person. After looking at these, you moved on to
look at various types of collections, including the basic ArrayList and then saw how you could build
your own powerful collection classes inherited from CollectionBase. Finally, you looked at the
Hashtable class and covered some of the less commonly used array functionality.

c05.indd 183c05.indd 183 4/2/08 5:32:06 PM4/2/08 5:32:06 PM

Chapter 5: Working with Data Structures

184

To summarize, you should know how to:

❑ Define and redimension fixed and dynamic string arrays

❑ Enumerate through arrays and find their upper dimension

❑ Define an enumeration of values using the Enum class

❑ Create and use structures to manipulate sets of related data

❑ Use an ArrayList to hold any type of object

❑ Use collections to manage sets of related data

Exercises
1. Create a Windows Forms Application that contains three buttons. Add an enumeration of three

names to your code. For the Click event for each button, display a message box containing a
member name and value from the enumeration.

2. Create a Windows Forms Application that contains a TextBox control and a Button control.
At the form level, create a names array initialized with a single name. In the Click event for
the button control, add the code to redimension the array by one element while preserving the
existing data, add the new name from the text box to the array, and display the last name added
to the array in a message box.

 Hint: To determine the upper boundary of the array, use the GetUpperBound(0) method.

c05.indd 184c05.indd 184 4/2/08 5:32:06 PM4/2/08 5:32:06 PM

 6
Extensible Application

Markup Language (XAML)

 In the past, user interface (UI) designers have often relied on tools like Adobe Dreamweaver and
Photoshop to develop screen mockups of Windows applications and HTML for web applications.
Although these tools do provide designers with cutting - edge tools to create graphics, they are
limited to creating graphics and have limited ability to create actual Windows forms and web
forms. Up to this point, these limited tools have hindered UI designers from creating rich user
interfaces, forcing them to rely on developers who have access to tools like Visual Studio.

 Microsoft has recognized the separation of duties between UI designers and developers and has
created a new language and a new set of tools to assist UI designers, allowing them to create the
Windows forms and web forms that will be used by developers to create world-class applications.

 This new language comes in the form of the Extensible Application Markup Language (XAML),
pronounced Zammel . Because XAML is an extensible application markup language, the language
defines the elements of the user interface. This allows not only Microsoft to create tools for
designing user interfaces such as Expression Blend and Expression Design, but other companies as
well. One such example of this is the Aurora XAML Designer from Mobiform Software, which
enables UI designers to create user interfaces for Windows and web applications.

 In this chapter, you will learn:

 What XAML is and how it applies to the .NET Framework

 How XAML relates to the Windows Presentation Foundation (WPF)

 How to create WPF applications in Visual Studio 2008

 What Is XAML?
 As previously mentioned, XAML is an Extensible Application Markup Language. But what exactly
does this mean? Wikipedia (www.wikipedia.org) defines XAML as a declarative XML - based
language used to initialize structured values and objects. Others define XAML as a declarative
XML - based language that defines objects and their properties.

❑

❑

❑

c06.indd 185c06.indd 185 4/2/08 5:32:33 PM4/2/08 5:32:33 PM

Chapter 6: Extensible Application Markup Language (XAML)

186

 Given these definitions you can begin to understand how the acronym for this new language was
formed. You can see that this new language is based on XML, which has become the industry standard
for sharing structured data between applications. The A in XAML is the application part of the acronym,
and the declarative part of the definition refers to the language ’ s ability to declare objects that represent
controls on a form.

 So you can start to visualize that this new language defines an application ’ s UI in an XML - type language
by defining the controls on a form. The controls that XAML defines map to classes in the .NET
Framework. Keep in mind that XAML is an application markup language used to define a user interface
and should not be confused with a programming language such as Visual Basic 2008.

 To illustrate this point, take a look at a basic Windows application defined in XAML and the output that
it produces as shown in Figure 6 - 1 . You can see that XAML looks a lot like XML because is an XML -
 based language and adheres to the XML standard. You can also see that the controls defined in the
sample in Figure 6 - 1 map to classes in the .NET Framework and that the output looks like a standard
windows application that you ’ ve already created in previous chapters.

Figure 6-1

 Given the nature of XAML and the output that it produces, you can start to visualize how XAML can
more completely separate the duties of the UI designer from the developer. The UI designer would
create the XAML code shown in the figure typically using a tool such as Expression Blend, Expression
Design, or Aurora XAML Designer by visually creating the Windows form and having the tool create
the XAML.

 The next step would be for the UI designer to give the developer the XAML, which is stored in a file
with a .xaml extension. The developer would import that XAML file into Visual Studio 2008 and then
write the code to make the form shown in Figure 6 - 1 have functional meaning so that when the user
clicks the button something useful happens.

c06.indd 186c06.indd 186 4/2/08 5:32:34 PM4/2/08 5:32:34 PM

Chapter 6: Extensible Application Markup Language (XAML)

187

 You should now start to visualize the bigger picture and concept behind XAML and can see what
role you might play in this picture in the future. In larger organizations that have a person or team
dedicated to creating user interfaces this scenario may soon become a reality. Your job in that organization
might then be to write the code to make these user interfaces functional.

 XAML Syntax
 The best way to learn about XAML syntax and how it all works is to take an in - depth look at an actual
example. Using the XAML code shown in Figure 6 - 1 , this section breaks down the pieces so you have an
understanding of how it all fits together and how it relates to the .NET Framework, and explains the
syntax along the way.

 Every element in a XAML file maps to a .NET Framework class, thus creating a corresponding object
at runtime. XAML files can be parsed at runtime although it is more typical that they are part of an
application and are compiled into an executable file.

 The following code defines the basic Windows form that you have dealt with in the previous chapters.
Here you notice that the element name is Window , which corresponds to the Window class in the .NET
Framework instead of the typical Form class that you ’ ve been dealing with. The Window element is the
root element in this XAML document, and like every well - formed XML document it must contain only
one root element.

 The attributes of the Window element define the namespaces used in this XAML document and map to
properties of the Window class. The XML standard xmlns attribute, typical of most XML documents,
defines the schema used with this XAML document. The xmlns:x attribute defines a custom namespace
within the document with the name of x, and custom namespaces can also be found in other complex
XML documents.

 The x:Class attribute provides a name for the Window class and in this example the class name is
 Window1 . The Title attribute maps to the Title property of the Window class and sets the title that is
displayed in the window, as shown in the form in Figure 6 - 1 .

 The Height and Width attributes map to the Height and Width properties of the Window class. These
attributes are used to define the height and width of the window as was seen in Figure 6 - 1 .

 < Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”164” Width=”207” >
 < /Window >

 Unlike the Windows forms that you ’ ve been using in the previous chapters, the Window class does not
have a design surface that allows you to just start drawing controls on; it needs to have a container
control that will in turn host other controls. There are several different container controls available for
use in XAML, each with its own purpose. The Grid class, however, is the default container that gets
added to XAML when using Visual Studio 2008 to design a XAML window. This is represented in the
following code by the Grid element.

c06.indd 187c06.indd 187 4/2/08 5:32:35 PM4/2/08 5:32:35 PM

Chapter 6: Extensible Application Markup Language (XAML)

188

 The Grid element allows you to precisely position controls in the window using columns and rows.
Basically, it behaves in the same manner as the forms that you ’ ve been using up to this point.

 < Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”164” Width=”207” >

 < Grid >
 < /Grid >

 < /Window >

 The first control that you see in the window in Figure 6 - 1 is a label that contains the text Enter your
name: . This is represented in XAML by the Label element, which maps to the Label class in the .NET
Framework.

 The Name attribute on the Label element maps back to the Name property of the Label class and is the
name that you would reference in code should you choose to the change the text displayed in the label.
The Height and Width attributes map to the Height and Width attributes of the Label class and
specify the height and width of the label in the window.

 The VerticalAlignment attribute maps to its corresponding property in the Label class and sets the
label ’ s vertical alignment within the Grid . This attribute has a value of Top indicating that this control
should align to the top of the Grid . Other possible values are Center , Bottom , and Stretch .

 The HorizontalAlignment attribute specifies the horizontal alignment of the Label within the Grid
and maps to the same named property in the Label class. Possible values for this attribute are Left ,
 Right , Center , and Stretch .

 The Margin attribute maps to the Margin property of the Label class and specifies the outer margin of
the element. The Margin property defines a Thickness structure that contains Double values for the
 Left , Top , Right , and Bottom sides of the rectangle.

 To put this into perspective, the Enter your name: label has a Left margin of 11 and a Top margin of
 15 . If you set both of these margins to a value of 0 , it would cause the label to be aligned to the very left
and very top of the Grid.

 The inner text of the Label element is the text that gets displayed on the form. In a label on a Windows
form that you ’ ve been using up to this point, the text in the label would be set using the Text property.
The inner text of the Label element in XAML instead maps back to the Content property in the Label
class in the .NET Framework. This is a little confusing and is worth keeping in the back of your mind in
case you ever want to change the text of a label in code.

 At this point you can start to see how a complete window is starting to take shape with the various
XAML elements and their attributes.

 < Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”164” Width=”207” >
 < Grid >

c06.indd 188c06.indd 188 4/2/08 5:32:35 PM4/2/08 5:32:35 PM

Chapter 6: Extensible Application Markup Language (XAML)

189

 < Label Name=”Label1” Height=”23” Width=”106”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”11,15,0,0” > Enter your name: < /Label >

 < /Grid >
 < /Window >

 Let ’ s continue building out the code for this simple form to see how the next element, a text box control,
aligns using the Margin attribute. In the following code you can see that the text box control is
represented by the TextBox element, which maps to the TextBox class in the .NET Framework. The
 Name attribute also maps to the Name property of the class and again, this is the property that you will
use to access the text contained in this control in your code.

 The Height and Width attributes also map to their named counterparts in the TextBox class in the .NET
Framework and specify the height and width of the text box. Again the VerticalAlignment and
 HorizontalAlignment attributes set the vertical and horizontal alignment in the grid specifying that
this control should be aligned to the left and top of the Grid.

 The Margin attribute is what is really interesting here. This attribute maps to the Margin property in the
 TextBox class and behaves in the same manner as it does for the Label element. Remember that the
 Margin property defines a Thickness structure that contains Double values for the Left , Top , Right ,
and Bottom sides of the rectangle.

 The Left attribute, as you would guess, specifies the distance from the left side of the Grid . Similarly,
the Top margin specifies the top of this control from the top of the Grid , not from the bottom of the
previous control as you might expect.

 If you wanted to specify some initial text for the TextBox element, you would create an ending tag of
 < /TextBox > and place the text between the beginning tag and ending tag just as it was specified in the
 Label element. You can also access the text entered by the user in your code by querying the Text
property of the TextBox class.

 < Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”164” Width=”207” >
 < Grid >
 < Label Name=”Label1” Height=”23” Width=”106”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”11,15,0,0” > Enter your name: < /Label >

 < TextBox Name=”txtFirstName” Height=”21” Width=”121”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”16,42,0,0” / >

 < /Grid >
 < /Window >

 The final control in this sample XAML code is a Button control. The Button element in the following
code maps to the Button class in the .NET Framework, and all of the attributes specified map to their
counterparts in the Button class and behave as already discussed.

c06.indd 189c06.indd 189 4/2/08 5:32:35 PM4/2/08 5:32:35 PM

Chapter 6: Extensible Application Markup Language (XAML)

190

 The text that is displayed on the button lies between the beginning and ending tags of the Button
element. Like the Label element, this text is accessed through code via the Content property.

 < Window x:Class=”Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”164” Width=”207” >
 < Grid >
 < Label Name=”Label1” Height=”23” Width=”106”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”11,15,0,0” > Enter your name: < /Label >
 < TextBox Name=”txtFirstName” Height=”21” Width=”121”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”16,42,0,0” / >

 < Button Name=”btnSubmit” Height=”23” Width=”74”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Margin=”16,72,0,0” > Submit < /Button >

 < /Grid >
 < /Window >

 At this point, you ’ ve seen what XAML looks like and the results that it can produce. You should have a
basic understanding of XAML and how it relates to XML and the .NET Framework. The one piece that is
missing is how XAML relates to Windows Presentation Foundation, which is the next topic of
conversation.

 Windows Presentation Foundation
 Windows Presentation Foundation, better known as WPF, is a presentation technology built into the
.NET Framework and used to build rich user interfaces in WPF Windows and WPF Web applications.
WPF Windows applications differ from the Windows Forms applications that you ’ ve built thus far as it
separates the user interface code from the application ’ s business logic code in much the same way that
web forms in a web application do. The user interface code, as you might have guessed, is XAML. You ’ ll
learn more about web forms and its code separation in Chapter 18 .

 WPF is represented in the .NET Framework in the PresentationFramework.dll and contains its own set
of classes for building controls in WPF. For instance, if you display the Button Class topic in the MSDN
Library that gets installed with Visual Studio 2008, you ’ ll get a index result prompting you to select the
appropriate class: Web, WPF, or Windows.

 You ’ ll find most of the common controls (such as Label, TextBox, ComboBox, and Button) that exist for
Windows Forms also exist in WPF. Although most of the properties, events, and methods are the same,
there are some subtle differences as you will soon discover.

c06.indd 190c06.indd 190 4/2/08 5:32:36 PM4/2/08 5:32:36 PM

Chapter 6: Extensible Application Markup Language (XAML)

191

 At this point you may be wondering what you can do in WPF applications that you can ’ t do in a
Windows Forms application. Most everything that can be done in a WPF application can be done
in a Windows Forms application. However, WPF applications make it easier to do more complex tasks
such as working with and manipulating images.

 Figure 6 - 2 demonstrates some of the power of Windows Presentation Foundation in a WPF application.
Notice that the image displayed on the form is skewed at an angle and contains a partial shadow of the
image that fades out. The presentation code for this entire form is represented in XAML and you will
walk through the steps to create this form in the next Try It Out.

Figure 6-2

 Creating a Rich WPF User Interface
 One of the strong points of WPF Windows applications is the ease with which you can create rich
three - dimensional images in a user interfaces such as the one shown in Figure 6 - 2 . You can take a
two - dimensional image, skew it at an angle, and add a drop shadow of the image that fades out. You
will start to create the user interface shown in Figure 6 - 2 in the next Try It Out.

 If you want to use the same credit card image as shown in Figure 6 - 2 , you can download the code for
this chapter at the Wrox web site at www.wrox.com . The download includes this image as well as the
code for this application.

c06.indd 191c06.indd 191 4/2/08 5:32:36 PM4/2/08 5:32:36 PM

Chapter 6: Extensible Application Markup Language (XAML)

192

 Try It Out Creating a Rich WPF User Interface
 1. Open Visual Studio 2008 and from the File menu select New Project. In the New Project dialog

box, select Visual Basic in the Project Types list and WPF Application in the Templates list.
Enter Credit Card in the Name field and click OK.

 2. Note that the Forms Designer is divided into two sections. The top section contains the visual
representation of the form while the bottom section contains the XAML code used to create
the visual representation. You can modify the form contents by clicking on the form or form
controls and setting their properties in the Properties window or you can modify the
properties directly in the XAML code.

 Modify the properties for the Window element in the XAML editor by setting the Height
property to 600 and the Width property to 800 .

 3. Before adding any controls to the form, you want to add the credit card image to your project.
Right - click the Credit Card project in the Solution Explorer and select Add Existing Item.
Browse to the downloaded credit card image or an image of your choice and then click Add in
the Add Existing Item dialog box.

 4. Click in the middle of the window in the Forms Designer which is the Grid control. Now drag
a Label control from the Toolbox and align it at the top of the window and center it from left
to right. In the Properties window, set the Content property to Apply for Your Card Today .

 Scroll down in the Properties window until you find the FontFamily property and then set it
to Segoe UI . Set the FontSize property to 18 and the FontWeight property to Bold .

 Now resize the Label control in the window until all of the text appears and then reposition it
so it is centered in the form.

 5. A Border control will be used to apply the various effects to the image. Drag a Border from the
Toolbox and drop it on your window. In the XAML Code Editor, set the Margin property to
 0,60,0,0 . Set the following properties in the Properties window:

❑ Set Width to 380 .

❑ Set Height to 200 .

 6. Drag an Image control from the Toolbox and drop it in the Border control in the window. Set
the following properties in the Properties window:

❑ Set Source to CreditCard.jpg .

❑ Set Height to 185 .

❑ Set Width to 300 .

❑ Set Height to 200 .

 7. In the XAML Code Editor, click the Border element. In the Properties window, change the
 BitmapEffect property to DropShadowBitmapEffect .

c06.indd 192c06.indd 192 4/2/08 5:32:36 PM4/2/08 5:32:36 PM

Chapter 6: Extensible Application Markup Language (XAML)

193

 8. Beneath the BitmapEffect property in the Properties window are the sub - properties for this
property. Change the following sub - properties:

❑ Set Opacity to 0.5 .

❑ Set ShadowDepth to 8 .

❑ Set Softness to 1 .

 9. At this point your image has a shadow around the bottom and right edges. In order to skew
the image you will need to modify the XAML code in the XAML Code Editor. After adding the
following code, your image should look similar to the one shown in Figure 6 - 3 .

 < /Border.BitmapEffect >

 < Border.RenderTransform >
 < SkewTransform CenterX=”0” CenterY=”0” AngleX=”0” AngleY=”-3” / >
 < /Border.RenderTransform >

Figure 6-3

 10. Now you need to create a second border to contain the upside - down faded reflection of the
credit card. Drag a Border control from the Toolbox and place it beneath the first Border
control. Set the following properties in the Properties window:

❑ Set Margin to 41,251,0,110 .

❑ Set Width to 300 .

c06.indd 193c06.indd 193 4/2/08 5:32:37 PM4/2/08 5:32:37 PM

Chapter 6: Extensible Application Markup Language (XAML)

194

 11. In the XAML Code Editor, modify the second Border element by adding an ending Border
element and removing the forward slash from the end of the Border element. Then add the
following code:

 < Border Margin=”41,259,0,102” Name=”Border2” HorizontalAlignment=”Left”
 Width=”300” >
 < Border.Background >
 < VisualBrush Visual=”{Binding ElementName=Image1}” >
 < VisualBrush.Transform >
 < ScaleTransform CenterX=”300” CenterY=”100” ScaleX=”1”
 ScaleY=”-1” / >
 < /VisualBrush.Transform >
 < /VisualBrush >
 < /Border.Background >
 < /Border >

 12. Now you want to make the image fade out from top to bottom. Add the following code:

 < /VisualBrush >
 < /Border.Background >

 < Border.OpacityMask >
 < LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1” >
 < GradientStop Offset=”0” Color=”Black” > < /GradientStop >
 < GradientStop Offset=”0.7” Color=”Transparent” > < /GradientStop >
 < /LinearGradientBrush >
 < /Border.OpacityMask >

 13. The last thing that you want to do is to skew the image shown in the second Border control.
Add the following code:

 < /LinearGradientBrush >
 < /Border.OpacityMask >

 < Border.RenderTransform >
 < SkewTransform CenterX=”0” CenterY=”0” AngleX=”30” AngleY=”-3.3” / >
 < /Border.RenderTransform >

 14. Save your project by clicking the Save All button on the toolbar. After your project has been
saved, go ahead and run it. Your window should look similar to the one shown in Figure 6 - 4 .

c06.indd 194c06.indd 194 4/2/08 5:32:37 PM4/2/08 5:32:37 PM

Chapter 6: Extensible Application Markup Language (XAML)

195

 How It Works
 You start by modifying the size of the form and you have a choice of setting the Height and Width
properties in the Properties window or using the XAML editor. You selected to modify the Height
and Width properties in the XAML editor and as you changed the Height property you saw the form
resized immediately.

 Next, you add an existing image to the project to be used in the Image control. You then add the Label
control for the title and modify the properties for that control to have it centered in the window and to
display the Segoe UI font.

 The Border control has numerous built - in properties that allow you to render various effects on the
objects contained in the Border control. You add an Image control inside the Border control in order to
apply the effects available in the Border control to the image.

 The BitmapEffect property allows you to create a shadow effect around the bottom and right edges
of the image by setting this property to DropShadowBitmapEffect . You fine - tune the shadow created
by the BitmapEffect property by setting the sub-property Opacity to control the darkness of the
shadow, the ShadowDepth sub - property to control the width of the shadow, and the Softness
sub - property to control the softness of the shadow from one edge to the other. After applying the
 BitmapEffect property your image has a shadow around the bottom and right edges.

 In order to skew the image at an angle, you add the following code. The RenderTransform property
sets the transformation that affects the rendering of the contents contained in the Border control. The
 SkewTransform element is used to transform a two-dimensional object into a three - dimensional
object, in this case the image of the credit card.

 The CenterX and CenterY attributes specify the center coordinates of the transform and have been
set to a value of 0 to specify the center of the image. The AngleX attribute specifies the X coordinate of

Figure 6-4

c06.indd 195c06.indd 195 4/2/08 5:32:38 PM4/2/08 5:32:38 PM

Chapter 6: Extensible Application Markup Language (XAML)

196

the skew angle, which in this case is the starting point. The AngleY attribute specifies the Y coordinate
of the skew and in this case has been set to a value of - 3 :

 < Border.RenderTransform >
 < SkewTransform CenterX=”0” CenterY=”0” AngleX=”0” AngleY=”-3” / >
 < /Border.RenderTransform >

 The second Border control that you added to the window provides the upside - down faded reflection
of the credit card. When you add the following code, you immediately see an upside - down image of
the credit card contained in the Image element.

 The Background property of the border sets the brush that will fill the inside area of the border.
However, instead of using a solid color to fill the area inside the border you use a VisualBrush . A
 VisualBrush paints an area with a visual image, in this case the image of the credit card. The Visual
attribute shown in the following code is used to set the visual content of the VisualBrush and is
bound to the Image element whose Name property is set to Image1 . You specify the Binding
ElementName keywords to bind the Image to the Visual attribute.

 The Transform property is used to apply a transformation to the image contained in the
 VisualBrush . The ScaleTransform element is used to rotate the image upside - down. The CenterX
and CenterY attributes are used to specify the center point of the transform and the ScaleX and
 ScaleY attributes are used to specify the X and Y axis for scaling.

 The CenterX attribute has been set to the width of the image and the CenterY attribute has been set to a
value of 100 to show only a portion of the credit card contained in the Image element. ScaleX has been
set to a value of 1 to indicate that the image should be scaled to a one- to-one ratio, in other words its
normal size. The ScaleY value has been set to a value of - 1 in order to rotate the image upside - down:

 < Border.Background >
 < VisualBrush Visual=”{Binding ElementName=Image1}” >
 < VisualBrush.Transform >
 < ScaleTransform CenterX=”300” CenterY=”100” ScaleX=”1”
 ScaleY=”-1” / >
 < /VisualBrush.Transform >
 < /VisualBrush >
 < /Border.Background >

 The OpacityMask element uses a Brush element to set the opacity of a UI element, in this case the
image of the credit card contained in the second Border control. The LinearGradientBrush element
specifies a brush that paints an area with a linear gradient (for example, horizontal). The StartPoint
attribute specifies the two - dimensional starting point to begin the gradient and the EndPoint attribute
specifies the two - dimensional ending point to end the gradient.

 The GradientStop elements are used to specify the location and color of a transition point in a
gradient. The first GradientStop element is used to specify the color Black with an offset of 0
indicating the gradient vector should stop at offset 0 . The second GradientStop element uses the
color Transparent and specifies an offset of 0.7 . This provides the faded look starting at the top of
the image where it is darker to the bottom of the image where it is barely visible:

 < Border.OpacityMask >
 < LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1” >
 < GradientStop Offset=”0” Color=”Black” > < /GradientStop >
 < GradientStop Offset=”0.7” Color=”Transparent” > < /GradientStop >

c06.indd 196c06.indd 196 4/2/08 5:32:38 PM4/2/08 5:32:38 PM

Chapter 6: Extensible Application Markup Language (XAML)

197

 < /LinearGradientBrush >
 < /Border.OpacityMask >

 The RenderTransform property and the SkewTransform element have already been covered
during the creation of the first Border control. Here you set the AngleX attribute to a value of 30
indicating the angle of the transform starting at the upper left corner. The AngleY attribute controls
the angle of the upper right corner and has been set to a value of - 3.3 :

 < Border.RenderTransform >
 < SkewTransform CenterX=”0” CenterY=”0” AngleX=”30” AngleY=”-3.3” / >
 < /Border.RenderTransform >

Using WPF Common Controls
 You worked with the Label, TextBox, and Button controls in the Windows Forms applications that you
built in the previous chapters. At this point you should be quite familiar with the more common
properties of these controls, namely the Name and Text properties.

 In the following Try It Out you will complete the user interface in the WPF Credit Card application that
you have started building by adding Label, TextBox, Button, and ComboBox controls. As you add these
controls to your window and set their properties, you will start to see how they differ from their
Windows Forms counterparts.

 Try It Out Using WPF Common Controls

 1. If your project is still running, stop it and return to the Forms Designer. Drag a Label control
from the Toolbox and drop it on your window towards the upper right corner. Set the
following properties for this control in the Properties window:

❑ Set Content to Personal Information.

❑ Set Margin to 0,38,89,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

❑ Set FontWeight to Bold .

 2. Drag another Label control from the Toolbox and position it slightly beneath and to the left of
the previous Label control. Set the following properties for this label:

❑ Set Content to First Name .

❑ Set Width to 95 .

❑ Set Margin to 0,69,225,0 .

❑ Set FontFamily to Segoe UI .

c06.indd 197c06.indd 197 4/2/08 5:32:39 PM4/2/08 5:32:39 PM

Chapter 6: Extensible Application Markup Language (XAML)

198

❑ Set FontSize to 11 .

 3. Drag a TextBox control from the Toolbox and position it to the right of the second label. The
 Name property is in the top border area of the Properties window. Set the following properties:

❑ Set Name to txtFirstName .

❑ Set Width to 185 .

❑ Set Margin to 0,71,35,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 4. Drag a Label control from the Toolbox and align it beneath the second Label control. Set the
following properties:

❑ Set Content to Last Name .

❑ Set Width to 95 .

❑ Set Margin to 0,99,225,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 5. Drag a TextBox control from the Toolbox and position it beneath the previous TextBox control.
Set the following properties:

❑ Set Name to txtLastName .

❑ Set Width to 185 .

❑ Set Margin to 0,101,35,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 6. Drag a Label control from the Toolbox and align it beneath the previous Label control. Set the
following properties:

❑ Set Content to Address .

❑ Set Width to 95 .

❑ Set Margin to 0,129,225,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

c06.indd 198c06.indd 198 4/2/08 5:32:39 PM4/2/08 5:32:39 PM

Chapter 6: Extensible Application Markup Language (XAML)

199

 7. Drag a TextBox control from the Toolbox and position it beneath the previous TextBox control.
Set the following properties:

❑ Set Name to txtAddress .

❑ Set Width to 185 .

❑ Set Margin to 0,131,35,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 8. Drag a Label control from the Toolbox, align it beneath the previous Label control, and set the
following properties:

❑ Set Content to City .

❑ Set Width to 95 .

❑ Set Margin to 0,159,225,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 9. Drag a TextBox control from the Toolbox, position it beneath the previous TextBox control,
and set the following properties:

❑ Set Name to txtCity .

❑ Set Width to 185 .

❑ Set Margin to 0,161,35,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 10. Drag a Label control from the Toolbox, align it beneath the previous Label control, and set the
following properties:

❑ Set Content to State .

❑ Set Width to 95 .

❑ Set Margin to 0,189,225,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 11. Drag a ComboBox control from the Toolbox, position it beneath the previous TextBox control,
and set the following properties:

❑ Set Name to cboState .

❑ Set Width to 95 .

❑ Set Margin to 0,191,125,0 .

c06.indd 199c06.indd 199 4/2/08 5:32:39 PM4/2/08 5:32:39 PM

Chapter 6: Extensible Application Markup Language (XAML)

200

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 12. Drag a Label control from the Toolbox, align it beneath the previous Label control, and set the
following properties:

❑ Set Content to Postal Code .

❑ Set Width to 95 .

❑ Set Margin to 0,219,225,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 13. Drag a TextBox control from the Toolbox, position it beneath the previous ComboBox control,
and set the following properties:

❑ Set Name to txtPostalCode .

❑ Set Width to 95 .

❑ Set Margin to 0,221,125,0 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 14. Drag a Label control from the Toolbox, align it beneath the previous TextBox control, and set
the following properties:

❑ Set Content to Employment Information .

❑ Set Width to 145 .

❑ Set Margin to 0,261,75,273 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

❑ Set FontWeight to Bold .

 15. Drag a Label control from the Toolbox, position it below and to the left of the previous Label
control, and set the following properties:

❑ Set Content to Company Name .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,242 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

c06.indd 200c06.indd 200 4/2/08 5:32:40 PM4/2/08 5:32:40 PM

Chapter 6: Extensible Application Markup Language (XAML)

201

 16. Drag a TextBox control from the Toolbox, position it to the right of the previous Label control,
and set the following properties:

❑ Set Name to txtCompanyName .

❑ Set Width to 185 .

❑ Set Margin to 0,0,35,245 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 17. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to Address .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,212 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 18. Drag a TextBox control from the Toolbox, position it below the previous TextBox control,
and set the following properties:

❑ Set Name to txtCompanyAddress .

❑ Set Width to 185 .

❑ Set Margin to 0,0,35,215 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 19. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to City .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,182 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 20. Drag a TextBox control from the Toolbox, position it below the previous TextBox control,
and set the following properties:

❑ Set Name to txtCompanyCity .

❑ Set Width to 185 .

❑ Set Margin to 0,0,35,185 .

c06.indd 201c06.indd 201 4/2/08 5:32:40 PM4/2/08 5:32:40 PM

Chapter 6: Extensible Application Markup Language (XAML)

202

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 21. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to State .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,152 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 22. Drag a ComboBox control from the Toolbox, position it below the previous TextBox control,
and set the following properties:

❑ Set Name to cboCompanyState .

❑ Set Width to 95 .

❑ Set Margin to 0,0,125,155 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 23. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to Postal Code .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,122 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 24. Drag a TextBox control from the Toolbox, position it below the previous TextBox control, and
set the following properties:

❑ Set Name to txtCompanyPostalCode .

❑ Set Width to 95 .

❑ Set Margin to 0,0,125,125 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

c06.indd 202c06.indd 202 4/2/08 5:32:41 PM4/2/08 5:32:41 PM

Chapter 6: Extensible Application Markup Language (XAML)

203

 25. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to Years of Service .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,92 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 26. Drag a TextBox control from the Toolbox, position it below the previous TextBox control, and
set the following properties:

❑ Set Name to txtCompanyYearsOfService .

❑ Set Width to 35 .

❑ Set Margin to 0,0,185,95 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 27. Drag a Label control from the Toolbox, position it below the previous Label control, and set
the following properties:

❑ Set Content to Annual Income .

❑ Set Width to 95 .

❑ Set Margin to 0,0,225,62 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 28. Drag a TextBox control from the Toolbox, position it below the previous TextBox control, and
set the following properties:

❑ Set Name to txtCompanyAnnualIncome .

❑ Set Width to 95 .

❑ Set Margin to 0,0,125,65 .

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 29. Drag a Button control from the Toolbox, position it in the bottom right corner of the window,
and set the following properties:

❑ Set Name to btnApplyNow .

❑ Set Content to Apply Now .

❑ Set Margin to 0,0,35,16 .

c06.indd 203c06.indd 203 4/2/08 5:32:41 PM4/2/08 5:32:41 PM

Chapter 6: Extensible Application Markup Language (XAML)

204

❑ Set FontFamily to Segoe UI .

❑ Set FontSize to 11 .

 30. Save your project and then run it. Your completed form should look similar to Figure 6 - 5 .

Figure 6-5

 How It Works
 Adding controls to a WPF window is no different than adding controls to a Windows form, as you
discovered. You simply drag the control from the Toolbox and drop it on the window. The difference
comes when you try to position a control and align it to other controls.

 In a Windows Forms application, you can drag a control from the Toolbox and align it to other
controls with snap lines before releasing the left mouse button. In a WPF application you drag
the control and place it on the form first and then reposition the control before you see any snap lines
when aligning it with other controls.

 A TextBox control in a WPF application has a Text property to specify the text displayed in the control
as it does in a Windows Form application. However, the Label and Button control do not use the Text
property to specify the text displayed in the control as they do in a Windows Forms application;
instead, they use the Content property.

c06.indd 204c06.indd 204 4/2/08 5:32:42 PM4/2/08 5:32:42 PM

Chapter 6: Extensible Application Markup Language (XAML)

205

 You ’ ll undoubtedly have noticed that you must use the Margin property to reposition controls from
within the Properties Window unlike using the Location property in a Windows Forms application.
The differences in the properties do not stop at being named differently. The Location property uses
a set of X,Y coordinates that position a control relative to the upper left corner of the form.

 The Margin property of a WPF control specifies the outer margins of the control as Left , Top , Right ,
and Bottom . Where the control is placed on a window will determine which of the margins are used
to position the control relative to the window bounds. For example, placing a control toward the
upper left corner of the window will cause the Left and Top margins to be set with values relative to
the upper left corner of the window. Placing a control toward the upper right of the window will
cause the Top and Right margin values to be set relative to the upper right of the window.

 You may also have noticed that the Properties Window does not provide as rich of an interface as the
Properties Windows in a Windows Forms application. Case in point is the FontFamily property. In a
Windows Forms application the Font property provides the Font dialog that allows you to choose the
font, style, and size desired. In a WPF application, you must type the actual name of the font in the
box provided for the FontFamily property.

 With these differences and limitations aside, WPF applications do allow you to create some stunning
graphics in your applications. Although WPF may not be the norm for most applications, it does have
a growing presence in desktop and browser applications.

Wiring Up Events
 In the following Try It Out you will wire up some event handlers in the code to load the combo boxes on
the form and to handle the button being clicked. This will allow you to see firsthand how similar events
in WPF applications are compared to Window Forms applications and how to add code to make your
WPF application functional.

Try It Out Wiring Up Events

 1. If your project is still running, stop it. Right - click Window1.xaml in the Solution Explorer and
choose View Code in the context menu. Add the following Imports statement at the top of
the class:

Imports System.Text

Class Window1

 2. Declare a string array to hold the abbreviations of the states that will be loaded in the combo
boxes. To keep the code short, we ’ ve only included the first six state abbreviations in
alphabetical order. Add the following highlighted code to your class:

Class Window1

 ‘Private variables
 Private strStates() As String = {“AL”, “AK”, “AZ”, “AR”, “CA”, “CO”}

c06.indd 205c06.indd 205 4/2/08 5:32:42 PM4/2/08 5:32:42 PM

Chapter 6: Extensible Application Markup Language (XAML)

206

 3. You want to load the combo boxes with the data from the strStates array. The best time to
do this is when the window is loaded and after all the controls have been initialized. Select
 (Windows1 Events) in the Class Name combo box at the top of the Code Editor and then
select the Loaded event in the Method Name combo box. Add the following highlighted code
to the event handler:

 Private Sub Window1_Loaded(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded

 ‘Bind the combo boxes to the strStates array
 cboState.ItemsSource = strStates
 cboCompanyState.ItemsSource = strStates

 End Sub

 4. When the user clicks the button on the window, you want the application to perform some
action. To keep the code simple, display a message box with some information from the
window. Select btnApplyNow in the Class Name combo box and the Click event in
the Method Name combo box. Add the following highlighted code to the event handler:

 Private Sub btnApplyNow_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles btnApplyNow.Click

 ‘Declare and instantiate a StringBuilder object
 Dim objStringBuilder As New StringBuilder

 ‘Add the question
 objStringBuilder.AppendLine(“Is your personal “ & _
 “information listed here correct?”)
 objStringBuilder.AppendLine(String.Empty)

 ‘Add the personal information
 objStringBuilder.AppendLine(txtFirstName.Text & “ “ & _
 txtLastName.Text)
 objStringBuilder.AppendLine(txtAddress.Text)
 objStringBuilder.AppendLine(txtCity.Text & “, “ & _
 cboState.SelectedItem & “ “ & txtPostalCode.Text)

 ‘Display a message box to verify the information
 If MessageBox.Show(objStringBuilder.ToString, _
 My.Application.Info.Title, MessageBoxButton.YesNo, _
 MessageBoxImage.Question) = MessageBoxResult.Yes Then
 ‘Do some processing here
 Else
 ‘Return to the window and let the user correct
 ‘their information
 End If

 End Sub

c06.indd 206c06.indd 206 4/2/08 5:32:42 PM4/2/08 5:32:42 PM

Chapter 6: Extensible Application Markup Language (XAML)

207

 5. Save your project and then run it. Enter some data in the Personal Information section of the
window and click the Apply Now button. You should see results similar to the ones shown in
Figure 6 - 6 .

Figure 6-6

 How It Works
 You start the code by adding the Imports statement below. This Imports statement is needed for the
 StringBuilder class:

Imports System.Text

 The strStates variable is declared as a String array because of the parenthesis after the variable
name. Next you set the array values in the string, enclosing each string value in double quotes and
separating each value with a comma. The entire list of values is enclosed in curly brackets.

 ‘Private variables
 Private strStates() As String = {“AL”, “AK”, “AZ”, “AR”, “CA”, “CO”}

 The code in the Window1_Loaded event handles loading the combo boxes with the items contained in
the strStates string array. The ItemsSource property of the ComboBox class is used to set the
 Items collection to a list of items. You use the ItemsSource property when you want to bind a list of
items to a combo box, such as items in a String array, a DataSet , or a DataView . You ’ ll learn about
the DataSet and DataView in Chapter 16 .

 Private Sub Window1_Loaded(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles Me.Loaded

 ‘Bind the combo boxes to the strStates array
 cboState.ItemsSource = strStates
 cboCompanyState.ItemsSource = strStates
 End Sub

c06.indd 207c06.indd 207 4/2/08 5:32:43 PM4/2/08 5:32:43 PM

Chapter 6: Extensible Application Markup Language (XAML)

208

 When a user clicks the Apply Now button, the Click event handler for this control is fired. The first
thing that you do here is to declare and instantiate a StringBuilder object. The StringBuilder
object is an efficient way to build large strings using less system resources than simply appending text
to a String variable.

 The AppendLine method of the StringBuilder class appends the text to the string and then
automatically appends a line terminator after the data. The first line of text that you specify is a
question for the user, and then you append a blank line by supplying an empty string. This will
provide a separation between the question in the message box and the data that is displayed.

 Private Sub btnApplyNow_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles btnApplyNow.Click

 ‘Declare and instantiate a StringBuilder object
 Dim objStringBuilder As New StringBuilder

 ‘Add the question
 objStringBuilder.AppendLine(“Is your personal “ & _
 “information listed here correct?”)
 objStringBuilder.AppendLine(String.Empty)

 Next you start appending the information entered in the window to the string. First you append the
first and last name on a single line, and then append the address information on the next line. The city,
state, and postal code are added to the next line.

 ‘Add the personal information
 objStringBuilder.AppendLine(txtFirstName.Text & “ “ & _
 txtLastName.Text)
 objStringBuilder.AppendLine(txtAddress.Text)
 objStringBuilder.AppendLine(txtCity.Text & “, “ & _
 cboState.SelectedItem & “ “ & txtPostalCode.Text)

 Next, you want to display the results of the string in a message box. Just as you ’ ve done before, you
use the MessageBox class and call the Show method. The first parameter to the Show method uses the
 ToString method of the StringBuilder class to output the string that has been built. The caption
for the message box is set in the next parameter to the Show method. Here you use the Title property
from the My.Application.Info object. This object contains useful information about your
application. You ’ ll learn more about the My namespace in Chapter 10 .

 The next parameter to the Show method is the buttons that should be displayed on the message box.
Here you specify the YesNo constant from the MessageBoxButton enumeration. The last parameter
to the Show method is the icon that should be displayed in the message box. In this parameter you
specify the Question icon since you are asking the user a question.

 The Show method will return a dialog result based on the buttons that you specify. Because you
specify that the Yes and No buttons be displayed, the Show method will return a dialog result of either
 Yes or No . You handle this in an If … Then statement checking for a dialog result of Yes .

c06.indd 208c06.indd 208 4/2/08 5:32:43 PM4/2/08 5:32:43 PM

Chapter 6: Extensible Application Markup Language (XAML)

209

 The appropriate comments have been added in the following code to indicate where you provide your
own code to perform some processing. You ’ ll learn more about the MessageBox and how to use its
buttons and icons in If … Then statement blocks in Chapter 8 .

 ‘Display a message box to verify the information
 If MessageBox.Show(objStringBuilder.ToString, _
 My.Application.Info.Title, MessageBoxButton.YesNo, _
 MessageBoxImage.Question) = MessageBoxResult.Yes Then
 ‘Do some processing here
 Else
 ‘Return to the window and let the user correct
 ‘their information
 End If
 End Sub

 Summary
 In this chapter you took a look at what XAML is and how it can be used to build WPF applications in
Visual Studio 2008. You have also seen firsthand the power of XAML and WPF in building applications
with interfaces that provide rich graphic manipulation which is not easily done with Windows Forms
applications.

 In building the Credit Card application, you not only learned how to create a WPF application that
provides rich graphic manipulation, but you also learned how to wire events to the controls in a
window. At this point you should start to realize the potential of WPF applications and also start to
understand how they differ from Windows Forms applications. You ’ ll learn more about Windows Forms
applications in the next chapter, which will help to tie all this information together.

 To summarize, you should now know:

 What XAML is

 What WPF is and how XAML relates to it

 How to build a WPF application using Visual Studio 2008

 How to work with graphics in a WPF application

 How to work with control event handlers in a WPF application

 Exercise
 1. Add code to the Credit Card application to display a message box containing the user ’ s state

selection when they select a state in the State combo box. Hint: To access a control ’ s default event
handler, double - click the control in the Forms Designer.

❑

❑

❑

❑

❑

c06.indd 209c06.indd 209 4/2/08 5:32:44 PM4/2/08 5:32:44 PM

c06.indd 210c06.indd 210 4/2/08 5:32:44 PM4/2/08 5:32:44 PM

 7
Building Windows

Applications

 When Microsoft first released Visual Basic 1.0, developers fell in love with it, because it made
building the user interface components of an application very simple. Instead of having to write
thousands of lines of code to display windows — the very staple of a Windows application —
 developers could simply draw the window on the screen.

 In Visual Basic (any version), a window is known as a form . With the .NET Framework, this form
design capability has been brought to all of the managed languages as Windows Forms in Windows
Forms Applications and as Windows in WPF Applications. You ’ ve been using Windows Forms over
the course of the previous chapters and in the last chapter you learned about Windows in WPF
Applications. However, you haven ’ t really given that much thought to them — focusing instead
on the code that you ’ ve written inside them.

 In this chapter, you ’ ll look in detail at Windows Forms and Windows and learn how you can use
Visual Basic 2008 to put together fully featured Windows applications using Windows Forms
Application projects and WPF Application projects. In particular, you will look at:

 Adding more features using buttons, text boxes, and radio buttons

 Creating a simple toolbar and toolbar buttons to respond to events

 Creating additional forms and windows in your applications

 Note that in this chapter Windows Forms refers to Windows Forms Application projects, while
Windows refers to WPF Application projects.

 Responding to Events
 Building a user interface using Windows Forms or Windows is all about responding to events (such
as the Click event), so programming for Windows is commonly known as event - driven
programming . To build a form, you paint controls onto a blank window called the Forms Designer

❑

❑

❑

c07.indd 211c07.indd 211 4/1/08 6:24:00 PM4/1/08 6:24:00 PM

Chapter 7: Building Windows Applications

212

using the mouse. Each of these controls is able to tell you when an event happens. For example, if you
run your program and click a button that ’ s been painted onto a form, that button will say, “ Hey, I ’ ve
been clicked! ” and give you an opportunity to execute some code that you provide to respond to that
event. You have already been using this feature.

 Setting Up a Button Event
 A good way to illustrate the event philosophy is to wire up a button to an event. An example would be
the Click event, which is fired whenever the button is clicked. You have more events than just the Click
event, although in day - to - day practice it ’ s unlikely you ’ ll use more than a handful of these. Even though
you ’ ve already seen the Click event in action, this next Try It Out will go into some of the details of
Code Editor and some more Button events that you have not seen up until this point.

 In the real world, you ’ ll more than likely be tasked to work on multiple projects at the same time. When
you have down time in one project you ’ ll switch to the other project and work on it. That ’ s what you ’ ll
be doing in the next Try It Out, working on multiple projects at one time; one Windows Forms
Application project and one WPF Application project. This will allow you to see firsthand how button
events are handled in each type of Windows application.

 Try It Out Using Button Events
 1. Start two separate instances of Visual Studio 2008. In the first instance of Visual Studio 2008,

select File New Project from the menu. In the New Project dialog box, select Visual Basic as
the Project Type and Windows Forms Application as the Templates type. Enter a project name,
 Windows Forms Button Events , in the Name field and then click the OK button.

 2. Click the form in the Forms Designer and then in the Properties window, change the Text
property from Form1 to Windows Button Events .

 3. From the Toolbox, drag a Button control onto the form. Change its Text property to Hello
World! and its Name property to btnSayHello . Resize your button and form so that it looks
similar to the one shown in Figure 7 - 1 .

 Figure 7 - 1

 4. Save your project by clicking the Save All button on the toolbar.

 5. In the second instance of Visual Studio 2008, select File New Project from the menu. In the
New Project dialog box, select Visual Basic as the Project Type and WPF Application as the
Templates type. Enter the project name WPF Button Events in the Name field and then click
the OK button.

 6. In the WPF Button Events project, click the top of the window in the Forms Designer. In the
Properties window, change the Title property from Window1 to WPF Button Events .

c07.indd 212c07.indd 212 4/1/08 6:24:00 PM4/1/08 6:24:00 PM

Chapter 7: Building Windows Applications

213

 7. From the Toolbox, drag a Button control onto the form. Change its Content property to
Hello World! and its Name property to btnSayHello . Resize your button and form so that it
looks similar to the one shown in Figure 7 - 2 .

 Figure 7 - 2

 Figure 7 - 3

 8. Save your project by clicking the Save All button on the toolbar.

 9. At this point, run both projects to get an idea of how both application types look very similar
as shown in Figure 7 - 3 .

 10. Stop both projects and return to the Forms Designer in the Windows Forms Button Events
project.

 11. Double - click the button and add the following highlighted code to the Click event handler:

 Private Sub btnSayHello_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.Click

 MessageBox.Show(“Hello World!”, Me.Text)

 End Sub

 12. Drop down the list in the Class Name combo box at the top of the code window. You ’ ll see the
options shown in top portion of Figure 7 - 4 . The bottom portion of Figure 7 - 4 shows the class
members from the WPF Button Events project.

 Figure 7 - 4

c07.indd 213c07.indd 213 4/1/08 6:24:01 PM4/1/08 6:24:01 PM

Chapter 7: Building Windows Applications

214

 Visual Basic 2008 adds a small icon to the left of everything it displays in these lists. These can tell you
what the item in the list actually is. A small purple box represents a method, a small blue box represents
a member, four books stacked together represent a library, three squares joined together with lines repre-
sent a class, and a yellow lightning bolt represents an event.

 Visual Studio may also decorate these icons with other icons to indicate the way they are defined. For
example, next to Finalize in Figure 7 - 5 you ’ ll see a small key, which tells you the method is protected.
The padlock icon tells you the item is private. It ’ s not really important to memorize all of these now, but
Visual Basic 2008 is fairly consistent with its representations, so if you do learn them over time they
will help you understand what ’ s going on.

 Notice that the last two items in the list are slightly indented. This tells you that
(Form1 Events) and btnSayHello are all related to Form1. That is, the btnSayHello class is a
member of Form1 . As you add more members to the form, they will appear in this list.

 In the WPF Button Events project this indentation tells you that (Window1 Events) and
btnSayHello are all related to Window1. Again, as you add more members to the form, they
will appear in this list.

 Now select Form1 in this list.

 13. Open the drop - down list from the Method Name combo box to the right of the Class Name
combo box and you ’ ll see the options shown in Figure 7 - 5 ; the top portion of the figure lists
the events in the Windows Form Button Events project and the bottom portion of the figure
lists the events in the WPF Button Events project. These options are described in the list that
follows the figure.

 Figure 7 - 5

❑ The contents of the Method Name combo box change depending on the item selected in the
Class Name combo box. This list lets you navigate through the methods related to the
selected class. In this case, its main job is to show you the methods and properties related to
the class. This applies to both Windows Forms Applications and WPF Applications.

❑ The (Declarations) entry takes you to the top of the class where you can change the
definition of the class and add member variables.

❑ The New method will create a new constructor for the class that you are working with. The
constructor should contain any initialization code that needs to be executed for the class.

❑ The Finalize method will create a new method called Finalize and add it to the class
and will be called when your program ends to release any unmanaged resources.

c07.indd 214c07.indd 214 4/1/08 6:24:01 PM4/1/08 6:24:01 PM

Chapter 7: Building Windows Applications

215

❑ The Dispose method (not available in WPF Applications) takes you to the Dispose
method for the class that you are working with and allows you to add any addition clean
up code for your class.

❑ The InitializeComponent method takes you to the code that initializes the controls for
the class that you are working with. You should not modify this method directly. Instead,
you should use the Form Designer to modify the properties of the controls on your form.

 14. Select btnSayHello in the Class Name combo box. Now, drop down the Method Name
combo box, as shown in Figure 7 - 6 . The list on the left is from the Windows Forms Button
Events project and the list on the right is from the WPF Button Events project.

 Figure 7 - 6

 Since you selected btnSayHello in the Class Name combo box, the Method Name combo box
now contains items that are exclusively related to that control. In this case, you have a huge list
of events. One of those events, Click , is shown in bold because you provided a definition for
that event. If you select Click , you ’ ll be taken to the method in the form that provides an event
handler for this method.

 15. Now add another event handler to the Button control. With btnSayHello still selected in the
Class Name combo box, select the MouseEnter event in the Method Name combo box. A new
event handler method will be created, and you need to add the following code to it as
highlighted:

 Private Sub btnSayHello_MouseEnter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.MouseEnter

 ‘Change the Button text
 btnSayHello.Text = “The mouse is here!”

 End Sub

c07.indd 215c07.indd 215 4/1/08 6:24:02 PM4/1/08 6:24:02 PM

Chapter 7: Building Windows Applications

216

 The MouseEnter event will be fired whenever the mouse pointer enters the control, in other
words, crosses its boundary.

 16. To complete this exercise, you need to add another event handler. With btnSayHello still
selected in the Class Name combo box, select the MouseLeave event in the Method Name
combo box. Again, a new event will be created, so add the highlighted code here:

 Private Sub btnSayHello_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.MouseLeave

 ‘Change the Button text
 btnSayHello.Text = “The mouse has gone!”

 End Sub

 The MouseLeave event will be fired whenever the mouse pointer moves back outside of the
control.

 17. Switch over to the Forms Designer in the WPF Button Events project. Double - click the button
and add the following highlighted code to the Click event handler:

 Private Sub btnSayHello_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles btnSayHello.Click

 MessageBox.Show(“Hello World!”, Me.Title)

 End Sub

 18. Now add another event handler to the Button control. With btnSayHello still selected in the
Class Name combo box, select the MouseEnter event in the Method Name combo box. A new
event handler method will be created, and you need to add the following code to it as
highlighted:

 Private Sub btnSayHello_MouseEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles btnSayHello.MouseEnter

 ‘Change the Button text
 btnSayHello.Content = “The mouse is here!”

 End Sub

 19. To complete this project, you ’ ll need to add an event handler for the MouseLeave event. With
 btnSayHello still selected in the Class Name combo box, select the MouseLeave event in the
Method Name combo box. Add the highlighted code to the event handler as shown:

 Private Sub btnSayHello_MouseLeave(ByVal sender As Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles btnSayHello.MouseLeave

 ‘Change the Button text
 btnSayHello.Content = “The mouse has gone!”

 End Sub

c07.indd 216c07.indd 216 4/1/08 6:24:02 PM4/1/08 6:24:02 PM

Chapter 7: Building Windows Applications

217

 20. Run both projects to compare how they look and perform. Note that both forms look very
similar and that both forms behave exactly the same way.

 The two forms in the upper left hand corner of Figure 7 - 7 show the Windows Buttons Events
form and the WPF Button Events form. The Windows Buttons Events form has focus and the
mouse has been hovered over the button.

 The two forms in the upper right - hand corner of Figure 7 - 7 show that the mouse has left the
region of the button in the Windows Buttons Events form and has entered the button region in
the WPF Button Events form.

 The last two forms at the bottom of Figure 7 - 7 show that the mouse has left the button region of
the WPF Button Events form. As you compare the minor differences in how the forms look, you
should realize that both forms behave exactly the same way.

217

 Figure 7 - 7

 How It Works
 Most of the controls that you use will have a dazzling array of events, although in day - to - day
programming only a few of them will be consistently useful. For the Button control, the most useful
event is usually the Click event.

 Visual Basic 2008 knows enough about the control to create the default event handlers for you
automatically. This makes your life a lot easier and saves on typing!

 You ’ ve seen the Click event handler for buttons in Windows forms in Chapters 1 , 3 , 4 , and 5 . The one
parameter that I want to point out in the btnSayHello_Click method is the parameter defined as a
 System.EventArgs . The EventArgs class is defined in the System namespace and is used for most
common controls in Windows Forms Applications.

 The EventArgs class will contain various data depending on the event being raised. For example,
when the button is clicked and the Click event is raised, EventArgs will contain MouseEventArgs ,
allowing you to determine which mouse button was clicked and the X and Y coordinates of the mouse
within the button.

c07.indd 217c07.indd 217 4/1/08 6:24:02 PM4/1/08 6:24:02 PM

Chapter 7: Building Windows Applications

218

 Private Sub btnSayHello_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.Click

 MessageBox.Show(“Hello World!”, Me.Text)
 End Sub

 Did you notice the class that was specified in the Click event handler in your WPF application that
corresponds to the EventArgs class is defined in a Windows Forms application? The parameter
defined in the Click event handler for the button in your WPF application is defined as
System.Windows.RoutedEventArgs . The RoutedEventArgs class is part of the System.Windows
namespace, which is a namespace for the Windows Presentation Foundation.

 In a WPF application, this class does not provide any useful information about the mouse button that
was clicked. This is one of the major differences between Windows Forms applications and WPF
applications.

 Private Sub btnSayHello_Click(ByVal sender As System.Object, _
 ByVal e As System.Windows.RoutedEventArgs) Handles btnSayHello.Click

 MessageBox.Show(“Hello World!”, Me.Title)
 End Sub

 If you ’ ll look at the end of the btnSayHello_MouseEnter method definition for both application
types, you ’ ll notice the Handles keyword. This ties the method definition into the
btnSayHello.MouseEnter event. When the button fires this event, your code will be executed.

 Private Sub btnSayHello_MouseEnter(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.MouseEnter

 ‘Change the Button text
 btnSayHello.Text = “The mouse is here!”
 End Sub

 Private Sub btnSayHello_MouseEnter(ByVal sender As Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles btnSayHello.MouseEnter

 ‘Change the Button text
 btnSayHello.Content = “The mouse is here!”
 End Sub

 Although you set the button ’ s Text property (for the Windows Forms Button Event project) and the
button ’ s Content property (for the WPF Button Events project) at design time using the Properties
window, here you can see that you can change those properties at run time too.

 As a quick reminder here, design time is the term used to define the period of time that you actually
writing the program, in other words, working with the Designer or adding code. Run time is the term
used to define the period of time when the program is running.

c07.indd 218c07.indd 218 4/1/08 6:24:03 PM4/1/08 6:24:03 PM

Chapter 7: Building Windows Applications

219

 Likewise, the MouseLeave event works in a very similar way for both applications:

 Private Sub btnSayHello_MouseLeave(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSayHello.MouseLeave

 ‘Change the Button text
 btnSayHello.Text = “The mouse has gone!”
 End Sub

 Private Sub btnSayHello_MouseLeave(ByVal sender As Object, _
 ByVal e As System.Windows.Input.MouseEventArgs) _
 Handles btnSayHello.MouseLeave

 ‘Change the Button text
 btnSayHello.Content = “The mouse has gone!”
 End Sub

 Building a Simple Application
 Visual Studio 2008 comes with a comprehensive set of controls that you can use in your projects. For the
most part, you ’ ll be able to build all of your applications using just these controls, but in Chapter 14 you
look at how you can create your own controls.

 Take a look at how you can use some of these controls to put together a basic application. In the
following Try It Out, you build a basic Windows Forms application that lets the user enter text into a
form. The application will count the number of words and letters in the block of text that they enter.

 Building the Form
 The first job in creating your application is to start a new project and build a form. This form will contain
a multi - line text box where you can enter text. It will also contain two radio buttons that will give you
the option of counting either the words or the number of characters in the text box.

 Try It Out Building the Form
 1. Select File New Project from the Visual Studio 2008 menu and create a new Windows Forms

Application project. Enter the project name Windows Forms Word Counter and click OK.

 2. Click on Form1 in the Forms Designer and in the Properties window, set the Size
property to 442, 300 , the StartPosition property to CenterScreen , and the Text property to
 Word Counter .

 3. To instruct the user what to do with the form, add a label. Select the Label control from
the Toolbox, drag it to the top left - hand corner of the form. Use the snap lines to align this

c07.indd 219c07.indd 219 4/1/08 6:24:03 PM4/1/08 6:24:03 PM

Chapter 7: Building Windows Applications

220

control in the upper left of the form as shown in Figure 7 - 8 before releasing the mouse button.
Change the Text property to Enter some text for counting: .

 Strictly speaking, unless you have to talk to the control from your code, you don ’ t need to change
its Name property. With a text box, you need to use its properties and methods in code to make
the application work. However, a label is just there for esthetics, so you don ’ t need to change the
name for Label1.

 If you are referring to a control from code, it ’ s a good coding practice to give the control a name. Devel-
opers should be able to determine what the control represents based on its name even if they ’ ve never
seen your code before. Refer to the section on Modified Hungarian Notation in Chapter 1 for prefixes to
use with your control names.

 Figure 7 - 8

 Figure 7 - 9

 4. Drag a TextBox control from the Toolbox and use the snap lines as shown in Figure 7 - 9 to
align it beneath the Label control that you just added. Once the snap lines show the position
of the control as shown in Figure 7 - 9 , release the mouse button to have the control created and
positioned.

 Now change the properties of the text box as shown in the following list:

❑ Set Name to txtWords .

❑ Set Multiline to True.

❑ Set ScrollBars to Vertical .

❑ Set Size to 390, 190 .

c07.indd 220c07.indd 220 4/1/08 6:24:03 PM4/1/08 6:24:03 PM

Chapter 7: Building Windows Applications

221

 5. Your application will be capable of counting either the characters the user entered or the
number of words. To allow the user to select the preferred count method, you use two radio
buttons . Draw two RadioButton controls onto the form next to each other below the text box.
You need to refer to the radio buttons from your code, so change the properties as shown in
the following lists:

 For the first radio button:

❑ Set Name to radCountChars .

❑ Set Checked to True.

❑ Set Text to Chars .

 For the second radio button:

❑ Set Name to radCountWords .

❑ Set Text to Words .

 6. As the user types, you ’ ll take the characters that the user enters and count the words or
characters as appropriate. You want to pass your results to the user, so add two new Label
controls next to the RadioButton controls that you just added.

 7. The first Label control is just for esthetics, so leave the Name property as is and change its Text
property to The results are: . The second Label control will report the results, so you need to
give it a name. Set the Name property as lblResults and clear the Text property. Your
completed form should look similar to the one shown in Figure 7 - 10 .

 Figure 7 - 10

 8. Now that you have the controls laid out on your form the way you want it, you can make sure
you keep it that way. Select one of the controls and not the actual form, and then select
Format Lock Controls from the menu. This sets the Locked property of each of the controls
to True and prevents them from accidentally being moved, resized, or deleted.

 9. Finally, save your project by clicking the Save All button on the toolbar.

 10. Start another instance of Visual Studio 2008. Select File New Project from the Visual Studio
2008 menu and create a new WPF Application project. Enter the project name WPF Word
Counter and click OK.

c07.indd 221c07.indd 221 4/1/08 6:24:04 PM4/1/08 6:24:04 PM

Chapter 7: Building Windows Applications

222

 11. Click on Window1 in the Forms Designer and in the Properties window, set the Width
property to 442 , the WindowStartupLocation property to CenterScreen , and the
Title property to Word Counter .

 12. The Forms Designer for WPF applications does not have the same rich support as the Forms
Designer for Windows Forms applications thus there are no snap lines to help you align
controls. Drag a Label control from the Toolbox and drop it on the window.

 Now change the properties of the label as shown in the following list:

❑ Set Content to Enter some text for counting:.

❑ Set Width to 165 .

❑ Set Margin to 8,8,0,0 .

 13. Drag a TextBox control from the Toolbox and drop it on the form. Using the list below, set the
properties of the text box:

❑ Set Name to txtWords .

❑ Set Width to 390 .

❑ Set Height to 190 .

❑ Set Margin to 13,34,13,0 .

❑ Set VerticalScrollBarVisibility to Visible.

❑ Check the check box for AcceptsReturn.

❑ Set TextWrapping to Wrap.

 14. Draw two RadioButton controls onto the form next to each other below the text box. You need
to refer to the radio buttons from your code, so change the properties as shown in the
following lists:

 For the first radio button:

❑ Set Name to radCountChars .

❑ Set Content to Chars .

❑ Set IsChecked to True.

❑ Set Width to 55 .

❑ Set Height to 16 .

❑ Set Margin to 14,0,0,11 .

 For the second radio button:

❑ Set Name to radCountWords .

❑ Set Content to Words .

❑ Set Width to 55 .

❑ Set Height to 16 .

❑ Set Margin to 75,0,0,11 .

c07.indd 222c07.indd 222 4/1/08 6:24:04 PM4/1/08 6:24:04 PM

Chapter 7: Building Windows Applications

223

 15. Draw a Label control on the form and set it properties as follows:

❑ Set Content to The results are: .

❑ Set Width to 95 .

❑ Set Height to 23 .

❑ Set Margin to 135,0,190,0 .

 16. Draw another Label control on the form and set its properties as follows:

❑ Set Name to lblResults .

❑ Clear Content.

❑ Set Width to 175 .

❑ Set Height to 23 .

❑ Set Margin to 230,0,0,9 .

 17. There are no lock control features for a WPF window so just save your project by clicking the
Save All button on the toolbar.

 Counting Characters
 With your forms designed, you ’ ll want to build some event handlers to count the number of characters
in a block of text that the user types. Since your application will be able to count words and characters,
you build separate functions for each. In this Try It Out, you write the code to count characters.

 Try It Out Counting Characters
 1. Return to the Windows Forms Word Counter project and view the code for Form1. Add the

following code to count characters. Remember, to insert an XML Document Comment block,
you need to type three apostrophes above the function after you have written the code:

 ‘’’ < summary >
 ‘’’ Count the characters in a block of text
 ‘’’ < /summary >
 ‘’’ < param name=”text” > The string containing the text to count
 ‘’’ characters in < /param >
 ‘’’ < returns > The number of characters in the string < /returns >
 ‘’’ < remarks > < /remarks >
 Private Function CountCharacters(ByVal text As String) As Integer
 Return text.Length
 End Function

c07.indd 223c07.indd 223 4/1/08 6:24:04 PM4/1/08 6:24:04 PM

Chapter 7: Building Windows Applications

224

 2. Now you need to build an event handler for the text box. Select txtWords in the Class Name
combo box and, in the Method Name combo box, select the TextChanged event. Add the
following highlighted code to the event handler:

 Private Sub txtWords_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles txtWords.TextChanged

 ‘Count the number of characters
 Dim intChars As Integer = CountCharacters(txtWords.Text)

 ‘Display the results
 lblResults.Text = intChars & “ characters”

 End Sub

 3. Run the project. Enter some text into the text box and you ’ ll see a screen like the one in
Figure 7 - 11 .

 Figure 7 - 11

 4. Now return to the WPF Word Counter project and view the code for Window1. Add the
following code to count characters:

 ‘’’ < summary >
 ‘’’ Count the characters in a block of text
 ‘’’ < /summary >
 ‘’’ < param name=”text” > The string containing the text to count < /param >
 ‘’’ < returns > The number of characters in the string < /returns >
 ‘’’ < remarks > < /remarks >
 Private Function CountCharacters(ByVal text As String) As Integer
 Return text.Length
 End Function

 5. To build the TextChanged event handler, select txtWords in the Class Name combo box and,
in the Method Name combo box, select the TextChanged event. Add this highlighted code:

 Private Sub txtWords_TextChanged(ByVal sender As Object, _
 ByVal e As System.Windows.Controls.TextChangedEventArgs) _
 Handles txtWords.TextChanged

c07.indd 224c07.indd 224 4/1/08 6:24:05 PM4/1/08 6:24:05 PM

Chapter 7: Building Windows Applications

225

 ‘Count the number of characters
 Dim intChars As Integer = CountCharacters(txtWords.Text)

 ‘Display the results
 lblResults.Content = intChars & “ characters”

 End Sub

 6. Now run the WPF Word Counter project and enter some text. You ’ ll see a screen similar to the
one shown in Figure 7 - 12 .

 Figure 7 - 12

 How It Works
 Whenever you type a character into the text box, the label at the bottom of the form reports the current
number of characters. That ’ s because the TextChanged event is fired whenever the user changes the text
in the box. This happens when new text is entered, when changes are made to existing text, and when
old text is deleted. You are listening for this event, and whenever you hear it (or rather receive it),
you call CountCharacters and pass in the block of text from the text box. As the user types text into the
txtWords text box, the Text property is updated to reflect the text that has been entered. You can get
the value for this property (in other words, the block of text) and pass it to CountCharacters :

 ‘Count the number of characters
 Dim intChars As Integer = CountCharacters(txtWords.Text)

 The CountCharacters function in return counts the characters and passes back an integer
representing the number of characters that it has counted:

 Return text.Length

 After you have the number of characters, you update the lblResults control for your Windows form using:

 ‘Display the results
 lblResults.Text = intChars & “ characters”

 and for the WPF window using:

 ‘Display the results
 lblResults.Content = intChars & “ characters”

c07.indd 225c07.indd 225 4/1/08 6:24:05 PM4/1/08 6:24:05 PM

Chapter 7: Building Windows Applications

226

 Counting Words
 Although building a Visual Basic 2008 application is actually very easy, building an elegant solution to a
problem requires a combination of thought and experience.

 Take your application, for example. When the Words radio button is checked, you want to count the
number of words, whereas when Chars is checked, you want to count the number of characters. This has
two implications.

 First, when you respond to the TextChanged event, you need to call a different method that counts the
words, rather than your existing method for counting characters. This isn ’ t too difficult. Second,
whenever you select a different radio button, you need to change the text in the results from “ characters ”
to “ words ” or back again. Again, this isn ’ t that difficult.

 Now you ’ ll add some more event handlers to your code, and when you finish, examine the logic behind
the techniques you used.

 Try It Out Counting Words
 1. Return to the Windows Forms Word Counter project and stop it if is still running. The first

thing you want to do is add another function that will count the number of words in a block
of text. Add this code to create the CountWords function:

 ‘’’ < summary >
 ‘’’ Count the number of words in a block of text
 ‘’’ < /summary >
 ‘’’ < param name=”text” > The string containing the text to count < /param >
 ‘’’ < returns > The number of words in the string < /returns >
 ‘’’ < remarks > < /remarks >
 Private Function CountWords(ByVal text As String) As Integer
 ‘Is the text empty?
 If text.Trim.Length = 0 Then Return 0

 ‘Split the words
 Dim strWords() As String = text.Split(“ “c)

 ‘Return the number of words
 Return strWords.Length
 End Function

 2. The UpdateDisplay procedure handles getting the text from the text box and updating the
display. It also understands whether it ’ s supposed to find the number of words or number of
characters by looking at the Checked property on the radCountWords radio button. Add this
code to create the procedure:

 Private Sub UpdateDisplay()
 ‘Do we want to count words?
 If radCountWords.Checked Then
 ‘Update the results with words
 lblResults.Text = CountWords(txtWords.Text) & “ words”

c07.indd 226c07.indd 226 4/1/08 6:24:06 PM4/1/08 6:24:06 PM

Chapter 7: Building Windows Applications

227

 Else
 ‘Update the results with characters
 lblResults.Text = CountCharacters(txtWords.Text) & “ characters”
 End If
 End Sub

 3. Now, instead of calling CountCharacters from within your TextChanged handler, you want
to call UpdateDisplay . Make the following change:

 Private Sub txtWords_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles txtWords.TextChanged

 ‘Something changed so display the results
 UpdateDisplay()

 End Sub

 4. Next, you want the display to change when you change the radio button from Chars to Words
and vice versa. To add the CheckedChanged event, select radCountWords in the Class Name
combo box at the top of the code window and the CheckedChanged event in the Method
Name combo box. Add the following highlighted code to the event handler procedure:

 Private Sub radCountWords_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles radCountWords.CheckedChanged

 ‘Something changed so display the results
 UpdateDisplay()

 End Sub

 5. Repeat the previous step for the radCountChars radio button:

 Private Sub radCountChars_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles radCountChars.CheckedChanged

 ‘Something changed so display the results
 UpdateDisplay()

 End Sub

 6. Run the project and enter some text. Then check the Words radio button and notice that the
display changes to show the number of words as shown in Figure 7 - 13 .

 Figure 7 - 13

c07.indd 227c07.indd 227 4/1/08 6:24:06 PM4/1/08 6:24:06 PM

Chapter 7: Building Windows Applications

228

 7. Return to the WPF Word Counter project and stop it if it is still running. Add this code to
create the CountWords function:

 ‘’’ < summary >
 ‘’’ Count the number of words in a block of text
 ‘’’ < /summary >
 ‘’’ < param name=”text” > The string containing the text to count < /param >
 ‘’’ < returns > The number of words in the string < /returns >
 ‘’’ < remarks > < /remarks >
 Private Function CountWords(ByVal text As String) As Integer
 ‘Is the text empty?
 If text.Trim.Length = 0 Then Return 0

 ‘Split the words
 Dim strWords() As String = text.Split(“ “c)

 ‘Return the number of words
 Return strWords.Length
 End Function

 8. Add the following code to create the UpdateDisplay procedure:

 Private Sub UpdateDisplay()
 ‘If the window has not completed initialization then exit
 ‘this procedure as the radCountWords radio button has not
 ‘been created yet
 If Not Me.IsInitialized Then Exit Sub

 ‘Do we want to count words?
 If radCountWords.IsChecked Then
 ‘Update the results with words
 lblResults.Content = CountWords(txtWords.Text) & “ words”
 Else
 ‘Update the results with characters
 lblResults.Content = CountCharacters(txtWords.Text) & “ characters”
 End If
 End Sub

 9. Modify the txtWords_TextChanged event handler as follows:

 Private Sub txtWords_TextChanged(ByVal sender As Object, _
 ByVal e As System.Windows.Controls.TextChangedEventArgs) _
 Handles txtWords.TextChanged

 ‘Something changed to display the results
 UpdateDisplay()

 End Sub

c07.indd 228c07.indd 228 4/1/08 6:24:06 PM4/1/08 6:24:06 PM

Chapter 7: Building Windows Applications

229

 10. Select radCountWords in the Class Name combo box at the top of the code window and the
 Checked event in the Method Name combo box. Add the following highlighted code to
the event handler procedure:

 Private Sub radCountWords_Checked(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles radCountWords.Checked

 ‘Update the display
 UpdateDisplay()

 End Sub

 11. Repeat the previous step for the radCountChars radio button:

 Private Sub radCountChars_Checked(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles radCountChars.Checked

 ‘Update the display
 UpdateDisplay()

 End Sub

 12. Run the project and enter some text. Then select the Words radio button and notice that the
display changes to show the number of words as shown in Figure 7 - 14 .

 Figure 7 - 14

c07.indd 229c07.indd 229 4/1/08 6:24:06 PM4/1/08 6:24:06 PM

Chapter 7: Building Windows Applications

230

 How It Works
 Before you look at the technique that you used to put the form together, take a quick look at the
 CountWords function:

 ‘’’ < summary >
 ‘’’ Count the number of words in a block of text
 ‘’’ < /summary >
 ‘’’ < param name=”text” > The string containing the text to count < /param >
 ‘’’ < returns > The number of words in the string < /returns >
 ‘’’ < remarks > < /remarks >
 Private Function CountWords(ByVal text As String) As Integer
 ‘Is the text empty?
 If text.Trim.Length = 0 Then Return 0

 ‘Split the words
 Dim strWords() As String = text.Split(“ “c)

 ‘Return the number of words
 Return strWords.Length
 End Function

 You start by checking to see whether the string passed to this function is empty by first trimming the
blank spaces from the end of the string using the Trim method of the String class and then
comparing the Length property of the String class to a value of 0 . If no text has been passed to this
procedure, you immediately return from the function with a value of 0 indicating zero words counted.

 The Split method of the String class is used to take a string and turn it into an array of string
objects. There are several overloaded methods of the Split method and the parameter you passed here
is a Char data type. You want to split the string using the space character, so you specify a space in
double quotes and put a lower case c following the quotes to let the compiler know that this is a Char
data type and to let it convert the space. This means that Split returns an array containing each of the
words in the string. You then return the length of this array; in other words, the number of words back
to the caller.

 Note that because this code uses a single space character to split the text into words, you ’ ll get
unexpected behavior if you separate your words with more than one space character or use the Return
key to start a new line.

 One of the golden rules of programming is that you never write more code than you absolutely have
to. In particular, when you find yourself in a position where you are going to write the same piece of
code twice, try to find a workaround that requires that you write it only once. In this example, you
have to change the value displayed in lblResults from two different places. The most sensible way to
do this is to split the code that updates the label into a separate method; UpdateDisplay . You can
then easily set up the TextChanged and CheckedChanged event handlers to call this method in your
Windows Forms Word Counter project or the TextChanged and Checked event handlers in your WPF
Word Counter project. The upshot of this is that you only have to write the tricky get the text, find

c07.indd 230c07.indd 230 4/1/08 6:24:07 PM4/1/08 6:24:07 PM

Chapter 7: Building Windows Applications

231

the results, and update them routine once. This technique also creates code that is easier to change
in the future and easier to debug when a problem is found. Here is the code for the UpdateDisplay
method:

 Private Sub UpdateDisplay()
 ‘Do we want to count words?
 If radCountWords.Checked Then
 ‘Update the results with words
 lblResults.Text = CountWords(txtWords.Text) & “ words”
 Else
 ‘Update the results with characters
 lblResults.Text = CountCharacters(txtWords.Text) & “ characters”
 End If
 End Sub

 A WPF application starts a little differently from a Windows Forms application. A Windows Forms
application calls an InitializeComponent procedure, which is responsible for creating all of the
controls on the form. This procedure is executed before the code that you write so that all controls on
the form are built and initialized before your code accesses those controls.

 A WPF application builds and initializes the controls from the top down as defined in the XAML. This
causes a problem because events start to get fired on those controls as they are built. For example,
when the radCountChars radio button is built and initialized, it fires the Checked event which in
turn causes the UpdateDisplay method to be called when the IsChecked property is set to True on
this control.

 At this point, the radCountWords radio button has not been built by the application and a
 NullReferenceException is thrown when your code tries to access the radCountWords control. To
handle this behavior, you ’ ll want to check the IsInitialized property of the window. This property
returns a Boolean value indicating if the window has been completely initialized, and by using this
property you can exit this method if the controls in the window are still be built and initialized.

 Private Sub UpdateDisplay()
 ‘If the window has not completed initialization then exit
 ‘this procedure as the radCountWords radio button has not
 ‘been created yet
 If Not Me.IsInitialized Then Exit Sub

 ‘Do we want to count words?
 If radCountWords.IsChecked Then
 ‘Update the results with words
 lblResults.Content = CountWords(txtWords.Text) & “ words”
 Else
 ‘Update the results with characters
 lblResults.Content = CountCharacters(txtWords.Text) & “ characters”
 End If
 End Sub

 You ’ ll find as you build applications that this technique of breaking out the code for an event handler
is something you ’ ll do quite often.

c07.indd 231c07.indd 231 4/1/08 6:24:07 PM4/1/08 6:24:07 PM

Chapter 7: Building Windows Applications

232

 Creating More Complex Applications
 Normal applications generally have a number of common elements. Among these are toolbars and status
bars. Putting together an application that has these features is a fairly trivial task in Visual Basic 2008.

 In the next Try It Out, you build an application that allows you to make changes to the text entered into a
text box, such as changing its color and making it all uppercase or lowercase. You ’ ll be using a ToolBar
control to change the color of the text in your text box and also to change the case of the text to either all
uppercase letters or all lowercase letters.

 The StatusBar control will also be used in your project to display the status of your actions as a result of
clicking a button on the toolbar.

 The Text Editor Project
 Your first step on the road to building your application is to create a new project. You will be building
the Text Editor project using both Windows Forms and WPF.

Try It Out Creating the Text Editor Project
 1. Create a new Windows Forms Application project and name it Windows Forms Text Editor .

 2. Most of the time, Form1 isn ’ t a very appropriate name for a form, as it ’ s not very descriptive.
Right - click the form in the Solution Explorer, select Rename, and change its name to
 TextEditor.vb as shown in Figure 7 - 15 . Then press Enter to save the changes.

 Figure 7 - 15

 3. Now click the form in the Forms Designer, and in the Properties window change the Text
property to Text Editor .

 4. In the screenshots, we ’ re going to show the design window as quite small to save paper. You
should explicitly set the size of the form by going to the Properties window of the form and
setting the Size property to 600, 460 .

 5. Save your project by clicking the Save All button on the toolbar.

 6. Start a new instance of Visual Studio 2008. Create a new WPF Application project and name it
 WPF Text Editor .

 7. In the Solution Explorer, rename Window1.xaml to TextEditor.xaml as shown in Figure 7 - 16
and press enter to save the changes.

c07.indd 232c07.indd 232 4/1/08 6:24:07 PM4/1/08 6:24:07 PM

Chapter 7: Building Windows Applications

233

 8. Now click the form in the Forms Designer, and in the Properties window change the Title
property to Text Editor .

 9. Set the Width property to 600 and the Height property to 460 .

 10. Save your project by clicking on the Save All button on the toolbar.

 In the next section, you start building the user interface part of the application.

 Creating the Toolbar
 The toolbar you are building will contain a collection of buttons, like the toolbar in Visual Studio 2008.
In the following Try It Out , you will create the toolbar and add the buttons to it.

Try It Out Adding the Toolbar
 1. Return to the Forms Designer in the Windows Forms Text Editor project. Select the ToolStrip

control from the Toolbox and drag and drop it on the form. It will automatically dock at the
top of the form. Set the Stretch property to True to cause the toolbar to stretch across
the entire form at run time.

 2. To add buttons to the toolbar you use a built - in editor. Find the Items property in the
Properties window, select it, and left - click the ellipsis (…) to the right of (Collection).

 3. You ’ re going to add six buttons to the toolbar: Clear, Red, Blue, Uppercase, Lowercase, and
About.

 4. To add the first button, click the Add button in the Items Collection Editor. The Items
Collection Editor displays a properties palette much like the one that you ’ re used to using. For
each button you need to change its name, change its display style, give it an icon, clear its text,
and provide some explanatory tool tip text. Change the Name property to tbrClear as shown
in Figure 7 - 17 .

 Figure 7 - 16

c07.indd 233c07.indd 233 4/1/08 6:24:08 PM4/1/08 6:24:08 PM

Chapter 7: Building Windows Applications

234

 5. Locate the Image property and select it. Then click the ellipsis button for this property to
invoke the Select Resource editor. In the Select Resource editor, click the Import button. In the
Open dialog box, browse to the installation folder where Visual Studio 2008 was installed
(the default installation path is shown here) and locate the following folder:

C:\Program Files\Microsoft Visual Studio 9.0\Common7\ VS2008ImageLibrary\1033

 If you have not previously extracted the contents of the VS2008ImageLibrary.zip file you will
need to do so now.

 From the installation folder, browse to the VS2008ImageLibary\Actions\32bitcolor
bitmaps\16x16 folder. Select the New_DocumentHS.bmp file and then click the Open button
to import the resource. Next, click the OK button in Select Resource editor and you ’ ll be
returned to the Items Collection Editor.

 6. The background color of the bitmap is black so you ’ ll need to adjust the image transparency
color so the image displays correctly in the toolbar. Locate the ImageTransparentColor
property and click the drop - down arrow next the text Magenta. Then locate the color black
near the top of the list and select it.

 7. Now set the ToolTipText property to New . This completes the steps necessary to create the
first button.

 8. You want to create a separator between the Clear button and the Red button. In the combo
box in the Items Collection Editor, select Separator and then click the Add button. You can
accept all default properties for this button.

 Figure 7 - 17

c07.indd 234c07.indd 234 4/1/08 6:24:08 PM4/1/08 6:24:08 PM

Chapter 7: Building Windows Applications

235

 9. Repeat steps 4 through 7 to create the Red button and use the following properties for this
button. Before clicking the Add button, ensure you select Button in the combo box:

❑ Set Name to tbrRed .

❑ Use VS2008ImageLibary\Actions\32bitcolor bitmaps\16x16 \
Color_fontHS.bmp for the Image property.

❑ Set ImageTransparentColor to Black.

❑ Set the ToolTipText property to Red .

 10. Repeat steps 4 through 7 to create the Blue button and use the following properties for this
button:

❑ Set Name to tbrBlue .

❑ Use VS2008ImageLibary\Actions\32bitcolor bitmaps\16x16 \ Color_lineHS.
bmp for the Image property.

❑ Set ImageTransparentColor to Black.

❑ Set the ToolTipText property to Blue .

 11. You want to create a separator between the Blue button and the Uppercase button. In the
combo box in the Items Collection Editor, select Separator and then click the Add button. You
can accept all default properties for this button.

 12. Repeat steps 4 through 7 to create the Uppercase button and use the following properties for
this button. Before clicking the Add button, ensure you select Button in the combo box:

❑ Set Name to tbrUpperCase .

❑ Use VS2008ImageLibary\Actions\32bitcolor bitmaps\16x16 \ FillUpHS.bmp for
the Image property.

❑ Set ImageTransparentColor to Black.

❑ Set the ToolTipText property to Upper Case .

 13. Repeat steps 4 through 7 to create the Lowercase button and use the following properties for
this button:

❑ Set Name to tbrLowerCase .

❑ Use VS2008ImageLibary\Actions\32bitcolor bitmaps\16x16 \ FillDownHS.bmp
for the Image property.

❑ Set ImageTransparentColor to Black.

❑ Set the ToolTipText property to Lower Case .

 14. You want to create a separator between the Lowercase button and the Help button. In the
combo box in the Items Collection Editor, select Separator and then click the Add button. You
can accept all default properties for this button.

c07.indd 235c07.indd 235 4/1/08 6:24:08 PM4/1/08 6:24:08 PM

Chapter 7: Building Windows Applications

236

 15. Repeat steps 4 through 7 to create the Help button and use the following properties for this
button. Note the different image path for the help image. Before clicking the Add button,
ensure you select Button in the combo box:

❑ Set Name to tbrHelpAbout .

❑ Use VS2008ImageLibary\Annotation & Buttons\bmp_format\ Help.bmp for the Image
property.

❑ Set ImageTransparentColor to Magenta.

❑ Set the ToolTipText property to About .

 16. Click the OK button in the Items Collection Editor to close it.

 17. Save your project by clicking the Save All button on the toolbar.

 18. Switch to the WPF Text Editor project and click the Grid control in window in the Forms
Designer. Next, select the ToolBarPanel control from the Toolbox and drag it and drop it on
the Grid. Reposition the ToolBarPanel control to the upper left hand corner of the Grid. Drag
the right edge of the ToolBarPanel control to the right hand side of the Grid until it snaps into
place. The ToolBarPanel is now set to expand with the width of the window at runtime.

 19. Drag a ToolBar control from the toolbox and drop it on the ToolBarPanel control. Expand its
width until it completely fills the ToolBarPanel control.

 20. Click in the XAML editor on the definition for the ToolBar control and modify the code for
this control as follows:

 < ToolBar Height=”26” Name=”ToolBar1” Width=”575” >
 < /ToolBar >

 21. Add the following XAML code to create the toolbar buttons:

 < ToolBar Height=”26” Name=”ToolBar1” Width=”575” >

 < Button Name=”tbrClear” ToolTip=”Clear” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/NewDocumentHS.BMP” > < /Image >
 < /Button >
 < Separator Padding=”1” / >
 < Button Name=”tbrRed” ToolTip=”Red” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/Color_fontHS.bmp” > < /Image >
 < /Button >
 < Button Name=”tbrBlue” ToolTip=”Blue” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/Color_lineHS.bmp” > < /Image >
 < /Button >
 < Separator/ >
 < Button Name=”tbrUpperCase” ToolTip=”Upper Case” >
 < Image Source=”file:///C:/Program Files/Microsoft

c07.indd 236c07.indd 236 4/1/08 6:24:09 PM4/1/08 6:24:09 PM

Chapter 7: Building Windows Applications

237

Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/FillUpHS.BMP” > < /Image >
 < /Button >
 < Button Name=”tbrLowerCase” ToolTip=”Lower Case” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/FillDownHS.BMP” > < /Image >
 < /Button >
 < Separator/ >
 < Button Name=”tbrHelpAbout” ToolTip=”About” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Annotations & amp;Buttons/bmp_format/Help.BMP” > < /Image >
 < /Button >

 < /ToolBar >

 22. Save your project by clicking the Save All button on the toolbar.

 How It Works
 For Windows Forms Application projects, the ToolStrip control docks to a particular position on the
form. In this case, it docks itself to the top edge of the form.

 The six buttons and three separators that you added to the toolbar actually appear as full members of
the TextEditor class and have the usual events that you are accustomed to seeing. Later, you ’ ll see
how you can respond to the Click event for the various buttons.

 A toolbar button can display text only, an image only, or both text and an image. Your project displays
an image that is the default display style for toolbar buttons. Normally you would create your own
images or have a graphics designer create the images, but for this Try It Out you used images that ship
with Visual Studio 2008. At this point, your toolbar should look similar to the one shown in Figure 7 - 18 .

 Figure 7 - 18

 The ToolTipText property enables Visual Basic 2008 to display a tool tip for the button whenever the
user hovers the mouse over it. You don ’ t need to worry about actually creating or showing a tool tip;
Visual Basic 2008 does this for you.

 For WPF Application projects, you use the ToolBarPanel and ToolBar controls to create a toolbar. You
have to position these controls manually and adjust their width in order to have the toolbar expand to
fill the top of the window. Then you have to add some XAML control to create the tool bar buttons and
images as shown in the partial code fragment below.

c07.indd 237c07.indd 237 4/1/08 6:24:09 PM4/1/08 6:24:09 PM

Chapter 7: Building Windows Applications

238

 The ToolBarPanel control determines which buttons will fit in the toolbar and which buttons will need
to go into the overflow area as the form is resized smaller and larger. The ToolBarPanel and ToolBar
control work hand in hand to display a toolbar in a WPF application.

 Each button on the toolbar is created using the Button class as shown in the partial code listing below.
The Button class contains the Name and ToolTip properties to set the name of the button that is used
to access the button from code and to display the tooltip when the user hovers a mouse over the
button. The separator control is created using the Separator class and contains no properties that
need to be set. The remaining buttons for the toolbar are created in the same manner as the Clear
button.

 < Button Name=”tbrClear” ToolTip=”Clear” >
 < Image Source=”file:///C:/Program Files/Microsoft
Visual Studio 9.0/Common7/VS2008ImageLibrary/1033/VS2008ImageLibrary/
Actions/32bitcolor bitmaps/16x16/NewDocumentHS.BMP” > < /Image >
 < /Button >
 < Separator / >

 The toolbar in your WPF Text Editor project looks very similar to the one shown previously in
Figure 7 - 18 .

 Creating the Status Bar
 The status bar is a panel that sits at the bottom of an application window and tells the user what ’ s going
on. You create the status bar in the next Try It Out.

 Try It Out Adding a Status Bar
 1. Return to your Windows Forms Text Editor project, drag a StatusStrip control from the

Toolbox, and drop it onto your form. You ’ ll notice that it automatically docks itself to the
bottom edge of the form and you ’ ll only be able to change the height portion of its Size
property if desired.

 2. You need to add one StatusStripLabel to the Items collection of the StatusStrip so that you can
display text on the status bar. Click the ellipsis button in the Items property to invoke the
Items Collection Editor dialog box. In the Items Collection Editor dialog box, click the Add
button to add a StatusLabel.

 3. Set the following properties for the StatusStripLabel:

❑ Set Name to sslStatus .

❑ Set DisplayStyle to Text.

❑ Set Text to Ready .

c07.indd 238c07.indd 238 4/1/08 6:24:10 PM4/1/08 6:24:10 PM

Chapter 7: Building Windows Applications

239

 4. Click the OK button to close the Items Collection Editor dialog box.

 5. Open the Code Editor for the form and add the following code. You can quickly view the
Code Editor by right - clicking the form and choosing View Code from the context menu:

 ‘Get or set the text on the status bar
 Public Property StatusText() As String
 Get
 Return sslStatus.Text
 End Get
 Set(ByVal value As String)
 sslStatus.Text = value
 End Set
 End Property

 6. Switch over to your WPF Text Editor project. Drag a StatusBar control from the toolbox onto
the window. Position the control to the bottom left of the window and then expand the width
of the control until it snaps to the right margin of the Grid.

 7. In the properties window, click the ellipsis button in the Items property to invoke the Items
Collection Editor dialog box. In the Collection Editor: Items dialog box, click the Add button
to add a StatusBarItem.

 8. Set the Content property to Ready and then click the OK button to close the Collection
Editor: Items dialog box.

 9. Click the StatusBarItem in the window and then in the Properties window set the Name
property to sbiStatus .

 10. Right - click the window and choose View Code from the context menu and add the
following code:

 ‘Get or set the text on the status bar
 Public Property StatusText() As String
 Get
 Return sbiStatus.Content.ToString
 End Get
 Set(ByVal value As String)
 sbiStatus.Content = value
 End Set
 End Property

 There ’ s no need to run the projects at this point, so let ’ s just talk about what you ’ ve done here.

 How It Works
 Visual Studio 2008 has some neat features for making form design easier. One thing that was always
laborious in previous versions of Visual Basic and Visual C++ was to create a form that would
automatically adjust itself when the user changed its size.

 In Visual Studio 2008, controls have the capability to dock themselves to the edges of the form. By
default, the StatusStrip control sets itself to dock to the bottom of the form, but you can change the
docking location if so desired. So, when someone resizes the form, either at design time or at run time,
the status bar (StatusStrip control) stays where you put it.

c07.indd 239c07.indd 239 4/1/08 6:24:10 PM4/1/08 6:24:10 PM

Chapter 7: Building Windows Applications

240

 The StatusBar control in a WPF application behaves a little differently and does not automatically
dock itself to the bottom of the window. You have to manually drag and position the control to the
bottom left corner of the window and then expand the width of the control in order to have it
automatically stretch to fill the size of the window as it gets resized.

 You may be wondering why you built a StatusText property to get and set the text on the status bar.
This comes back to abstraction. Ideally, you want to make sure that anyone using this class doesn ’ t
have to worry about how you ’ ve implemented the status bar. You might want to replace the
.NET - supplied status bar with another control, and if you did, any users wanting to use your
 TextEditor class in their own applications (or developers wanting to add more functionality to this
application later) would have to change their code to make sure it continued to work properly.

 That ’ s why you defined this property as Public . This means that others creating an instance of
 TextEditor class to use its functionality in their own applications can change the status bar text if
they want. If you don ’ t want them to be able to change the text themselves, relying instead on other
methods and properties on the form to change the text on their behalf, you would mark the property
as Private .

 As you work through this example, you ’ ll see definitions of Public and Private . From this you ’ ll be
able to infer what functionality might be available to a developer using your TextEditor class.

 Creating an Edit Box
 The first thing you do in the next Try It Out is create a text box that can be used to edit the text entered.
The text box has a MultiLine property, which by default is set to False . This property determines
whether the text box should have only one line or can contain multiple lines. When you change this
property to True , the text box control can be resized to any size that you want, and you can enter
multiple lines of text in this control.

Try It Out Creating an Edit Box
 1. Return to the Forms Designer in the Windows Forms Text Editor project and drag a TextBox

control from the ToolBox, and drop it onto your form.

 2. Change the following properties of the TextBox control:

❑ Set Name to txtEdit .

❑ Set Dock to Fill.

❑ Set MultiLine to True.

❑ Set ScrollBars to Vertical.

 Your form should now look like Figure 7 - 19 .

c07.indd 240c07.indd 240 4/1/08 6:24:10 PM4/1/08 6:24:10 PM

Chapter 7: Building Windows Applications

241

 3. Switch over to the Forms Designer in your WPF Text Editor project and drag a TextBox control
from the ToolBox, and drop it onto your form.

 4. Align the text box to the left margin of the Grid directly beneath the toolbar. Now expand the
width of the text box until it snaps to the right border of the Grid. Then expand the height of
the text box until it touches the status bar.

 5. Change the following properties of the TextBox control:

❑ Set Name to txtEdit .

❑ Set VerticalAlignment to Stretch.

❑ Set VerticalScrollBarVisbility to Visible.

❑ Check AcceptsReturn .

❑ Set TextWrapping to Wrap.

 Your form should now look like Figure 7 - 20 .

 Figure 7 - 19

 Figure 7 - 20

c07.indd 241c07.indd 241 4/1/08 6:24:11 PM4/1/08 6:24:11 PM

Chapter 7: Building Windows Applications

242

 Clearing the Edit Box
 In the following Try It Out, you ’ re going to create a property called EditText that will get or set the text
you ’ re going to edit. Then, clearing the edit box will simply be a matter of setting the EditText property
to an empty string.

 Try It Out Clearing txtEdit
 1. Switch to the Code Editor in your Windows Forms Text Editor project and add this code:

 ‘Gets or sets the text that you’re editing
 Public Property EditText() As String
 Get
 Return txtEdit.Text
 End Get
 Set(ByVal value As String)
 txtEdit.Text = value
 End Set
 End Property

 As you have done earlier, when you created a property to abstract away the action of setting the
status bar text, you created this property to give developers using the TextEditor form the abil-
ity to get or set the text of the document irrespective of how you actually implement the editor.

 2. You can now build ClearEditBox , the method that actually clears your text box. Add the
following code:

 ‘Clears the txtEdit control
 Public Sub ClearEditBox()
 ‘Set the EditText property
 EditText = String.Empty

 ‘Reset the font color
 txtEdit.ForeColor = Color.Black

 ‘Set the status bar text
 StatusText = “Text box cleared”
 End Sub

 3. Select txtEdit in the Class Name combo box and the TextChanged event in the Method
Name combo box at the top of the code editor. Add this code:

 Private Sub txtEdit_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles txtEdit.TextChanged

 ‘Reset the status bar text
 StatusText = “Ready”

 End Sub

c07.indd 242c07.indd 242 4/1/08 6:24:11 PM4/1/08 6:24:11 PM

Chapter 7: Building Windows Applications

243

 4. Switch to the Code Editor in your WPF Text Editor project and add this code:

 ‘Gets or sets the text that you’re editing
 Public Property EditText() As String
 Get
 Return txtEdit.Text
 End Get
 Set(ByVal value As String)
 txtEdit.Text = value
 End Set
 End Property

 5. Add the following code to create the ClearEditBox method:

 ‘Clears the txtEdit control
 Public Sub ClearEditBox()
 ‘Set the EditText property
 EditText = String.Empty

 ‘Reset the font color
 txtEdit.Foreground = Brushes.Black

 ‘Set the status bar text
 StatusText = “Text box cleared”
 End Sub

 6. Finally, select txtEdit in the Class Name combo box and the TextChanged event in the
Method Name combo box at the top of the code editor. Add this code:

 Private Sub txtEdit_TextChanged(ByVal sender As Object, _
 ByVal e As System.Windows.Controls.TextChangedEventArgs) _
 Handles txtEdit.TextChanged

 ‘Reset the status bar text
 StatusText = “Ready”

 End Sub

 How It Works
 The first thing you want to do is clear your text box. In the next Try It Out, you see how you can call
 ClearEditBox from the toolbar.

 All this procedure does is set the EditText property to an empty string by using the Empty field of
the String class. Then it sets the ForeColor property of the text box (which is the color of the actual
text) to black and places the text Text box cleared in the status bar.

 ‘Clears the txtEdit control
 Public Sub ClearEditBox()
 ‘Set the EditText property
 EditText = String.Empty
 ‘Reset the font color
 txtEdit.ForeColor = Color.Black
 ‘Set the status bar text
 StatusText = “Text box cleared”
 End Sub

c07.indd 243c07.indd 243 4/1/08 6:24:11 PM4/1/08 6:24:11 PM

Chapter 7: Building Windows Applications

244

 The code in the EditText property of your WPF Text Editor project is slightly different in that you
need to set the Foreground property of the text box using the Black property from the Brushes class.

 ‘Reset the font color
 txtEdit.Foreground = Brushes.Black

 As mentioned, EditText abstracts the action of getting and setting the text in the box away from your
actual implementation. This makes it easier for other developers down the line to use your
 TextEditor form class in their own applications. This code is the same for both projects:

 ‘Gets or sets the text that you’re editing
 Public Property EditText() As String
 Get
 Return txtEdit.Text
 End Get
 Set(ByVal value As String)
 txtEdit.Text = value
 End Set
 End Property

 As you type, the TextChanged event handler will be repeatedly called. The actual code is the same in
both projects although the event handler is slightly different in the WPF Text Editor from the code
from the Windows Forms Text Editor shown below:

 Private Sub txtEdit_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles txtEdit.TextChanged

 ‘Reset the status bar text
 StatusText = “Ready”
 End Sub

 Changing the status bar text at this point resets any message that might have been set in the status bar.
For example, if the user has to type a lot of text and looks down to see Text box cleared , he or she may
be a little concerned. Setting it to Ready is a pretty standard way of informing the user that the
computer is doing something or waiting. It does not mean anything specific.

 Responding to Toolbar Buttons
 In the following Try It Out, you ’ ll start implementing the Click events for the various toolbar buttons
on your toolbar. When you look at building application menus in Chapter 9 , you ’ ll notice that most
menus provide the same functionality as your toolbar buttons, and thus you ’ ll want to implement the
code in your menu item Click event procedures and have the corresponding toolbar button procedures
call the menu item Click event procedures.

c07.indd 244c07.indd 244 4/1/08 6:24:12 PM4/1/08 6:24:12 PM

Chapter 7: Building Windows Applications

245

Try It Out Responding to Toolbar Button Click Events
 1. Return to the Code Editor in your Windows Forms Text Editor project and select tbrClear

from the Class Name combo box, and in the Method Name combo box, select the Click
event. Add the following highlighted code to the Click event handler:

 Private Sub tbrClear_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrClear.Click

 ‘Clear the edit box
 ClearEditBox()

 End Sub

 2. You need to create a procedure that will change the text in the edit box to red and update the
status bar. Add the following code:

 Public Sub RedText()
 ‘Make the text red
 txtEdit.ForeColor = Color.Red

 ‘Update the status bar text
 StatusText = “The text is read”
 End Sub

 3. Next, select tbrRed in the Class Name combo box, select the Click event in the Method
Name combo box, and add the following highlighted to the Click event handler:

 Private Sub tbrRed_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrRed.Click

 ‘Make the text red
 RedText()

 End Sub

 4. Run the project and enter some text. Click the Red button, and the text ’ s color will change
from black to red. Note that if you continue typing in the edit box, the new text will also be
red. Click the Clear button to remove the text and revert the color of any new text to black.

 5. Switch to the Code Editor in your WPF Text Editor project. Select tbrClear from the Class
Name combo box, and in the Method Name combo box, select the Click event and add the
following highlighted code:

 Private Sub tbrClear_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles tbrClear.Click

 ‘Clear the edit box
 ClearEditBox()

 End Sub

c07.indd 245c07.indd 245 4/1/08 6:24:12 PM4/1/08 6:24:12 PM

Chapter 7: Building Windows Applications

246

 6. Add the following code to change the text in the edit box to red and update the status bar:

 Public Sub RedText()
 ‘Make the text red
 txtEdit.Foreground = Brushes.Red

 ‘Update the status bar text
 StatusText = “The text is red”
 End Sub

 7. Select tbrRed in the Class Name combo box, select the Click event in the Method Name
combo box, and add the following highlighted code:

 Private Sub tbrRed_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles tbrRed.Click

 ‘Make the text red
 RedText()

 End Sub

 8. Run the project and enter some text. Click the Red button, and the text ’ s color will change
from black to red. Again, if you continue typing in the edit box, the new text will also be red.
Click the Clear button to remove the text and revert the color of any new text to black.

 9. Stop both projects if they are still running.

 10. Return to the Code Editor in the Windows Forms Text Editor project and add the following
 BlueText procedure to change the text in the edit box to blue:

 Public Sub BlueText()
 ‘Make the text blue
 txtEdit.ForeColor = Color.Blue

 ‘Update the status bar text
 StatusText = “The text is blue”
 End Sub

 11. Select tbrBlue in the Class Name combo box and the Click event in the Method Name
combo box. Add the following highlighted code to the Click event handler:

 Private Sub tbrBlue_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrBlue.Click

 ‘Make the text blue
 BlueText()

 End Sub

c07.indd 246c07.indd 246 4/1/08 6:24:12 PM4/1/08 6:24:12 PM

Chapter 7: Building Windows Applications

247

 12. You now need to create a procedure to change the text in the edit box to all uppercase. Add
the following code to your project:

 Public Sub UpperCaseText()
 ‘Make the text uppercase
 EditText = EditText.ToUpper

 ‘Update the status bar text
 StatusText = “The text is all uppercase”
 End Sub

 13. Select tbrUpperCase in the Class Name combo box and the Click event in the Method
Name combo box. Add the following highlighted code to the Click event handler:

 Private Sub tbrUpperCase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrUpperCase.Click

 ‘Make the text uppercase
 UpperCaseText()

 End Sub

 14. Add the following procedure to change the text to all lowercase:

 Public Sub LowerCaseText()
 ‘Make the text lowercase
 EditText = EditText.ToLower

 ‘Update the status bar text
 StatusText = “The text is all lowercase”
 End Sub

 15. Select tbrLowerCase in the Class Name combo box and the Click event in the Method
Name combo box. Add the following code to the Click event handler:

 Private Sub tbrLowerCase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrLowerCase.Click

 ‘Make the text lowercase
 LowerCaseText()

 End Sub

 16. Run the project and enter some text into the box in a mixture of lowercase and uppercase.
Then click the Uppercase button to make the text all uppercase, similar to the WPF Text Editor
shown in Figure 7 - 21 . Clicking the Lowercase button will convert the text to all lowercase, and
clicking on the Red or Blue buttons will cause the text to change color. Finally, clicking the
Clear button will cause all text to be cleared and the color and case to be restored to the
default.

c07.indd 247c07.indd 247 4/1/08 6:24:12 PM4/1/08 6:24:12 PM

Chapter 7: Building Windows Applications

248

 17. Return to the Code Editor in the WPF Text Editor project. Add the following BlueText
procedure to change the text in the edit box to blue:

 Public Sub BlueText()
 ‘Make the text blue
 txtEdit.Foreground = Brushes.Blue

 ‘Update the status bar text
 StatusText = “The text is blue”
 End Sub

 18. Select tbrBlue in the Class Name combo box and the Click event in the Method Name
combo box and add the following highlighted code:

 Private Sub tbrBlue_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles tbrBlue.Click

 ‘Make the text blue
 BlueText()

 End Sub

 19. Add the code below to create a procedure to change the text in the edit box to all uppercase:

 Public Sub UpperCaseText()
 ‘Make the text uppercase
 EditText = EditText.ToUpper

 ‘Update the status bar text
 StatusText = “The text is all uppercase”
 End Sub

 Figure 7 - 21

c07.indd 248c07.indd 248 4/1/08 6:24:13 PM4/1/08 6:24:13 PM

Chapter 7: Building Windows Applications

249

 20. Select tbrUpperCase in the Class Name combo box and the Click event in the Method
Name combo box. Add the following highlighted code to the Click event handler:

 Private Sub tbrUpperCase_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles tbrUpperCase.Click

 ‘Make the text uppercase
 UpperCaseText()

 End Sub

 21. Add the following procedure to change the text to all lowercase:

 Public Sub LowerCaseText()
 ‘Make the text lowercase
 EditText = EditText.ToLower

 ‘Update the status bar text
 StatusText = “The text is all lowercase”
 End Sub

 22. Finally, select tbrLowerCase in the Class Name combo box and the Click event in the
Method Name combo box. Add the following code to the Click event handler:

 Private Sub tbrLowerCase_Click(ByVal sender As Object, _
 ByVal e As System.Windows.RoutedEventArgs) _
 Handles tbrLowerCase.Click

 ‘Make the text lowercase
 LowerCaseText()

 End Sub

 23. Run the project and again enter some text into the box in a mixture of lowercase and
uppercase. Then click the Uppercase button to make the text all uppercase as shown in
Figure 7 - 21 . Exercise the code by clicking the Lowercase button to convert the text to all
lowercase, and clicking on the Red and Blue buttons to change the color of the text.

 How It Works
 This Try It Out was quite simple. By this time, you are quite adept at creating the Click event handler
for buttons on your form, and creating the Click event handler for a toolbar button is no different.
The first thing that you did was to create the Click event handler for the Clear toolbar button and
added the code to call the ClearEditBox procedure:

 Private Sub tbrClear_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrClear.Click

 ‘Clear the edit box
 ClearEditBox()
 End Sub

c07.indd 249c07.indd 249 4/1/08 6:24:13 PM4/1/08 6:24:13 PM

Chapter 7: Building Windows Applications

250

 Next, you created the RedText procedure to change the text in the edit box to red and to update the
status bar with the appropriate information. To change the color of the text in the edit box, you set
the ForeColor property of the edit box using the Red constant from the Color enumeration. (The
 Color enumeration contains an extensive list of named colors.) The ForeColor property remains red
until you set it to something else — so clicking the Clear button turns it back to black:

 Public Sub RedText()
 ‘Make the text red
 txtEdit.ForeColor = Color.Red

 ‘Update the status bar text
 StatusText = “The text is red”
 End Sub

 In your WPF Text Editor project you set the Foreground property to red using the Red property of the
 Brushes class:

 ‘Make the text red
 txtEdit.Foreground = Brushes.Red

 You also change the text in the status bar using the StatusText property to display a message
indicating the text color has changed. As soon as you start typing again, the message in the status bar
is changed to Ready, as set by the TextChanged event handler for the edit box.

 In order to call the RedText procedure you added code to the Click event for the Red button on the
toolbar:

 ‘Make the text red
 RedText()

 The code for the Blue button on the toolbar works in the same manner. You created the BlueText
procedure to set the ForeColor property of the edit box to Blue in your Windows Forms Text Editor
project and set the Foreground property to Blue in your WPF Text Editor project. Then update the
status bar with the appropriate message. You then call the BlueText procedure from the Click event
of the Blue toolbar button.

 If the user clicks the Uppercase button on the toolbar, you call UppercaseText , which uses the
 ToUpper method to convert all the text held in EditText to uppercase text:

 ‘Make the text uppercase
 EditText = EditText.ToUpper

 Likewise, if the user clicks the Lowercase button, you call LowercaseText , which uses the ToLower
method to convert all the text held in EditText to lowercase text:

 ‘Make the text lowercase
 EditText = EditText.ToLower

 Each of these procedures is called from the Click event of the appropriate toolbar buttons, and these
procedures also update the message in the status bar to reflect whether the text has been changed to
red, blue, uppercase, or lowercase.

c07.indd 250c07.indd 250 4/1/08 6:24:13 PM4/1/08 6:24:13 PM

Chapter 7: Building Windows Applications

251

 Using Multiple Forms
 All Windows applications have two types of windows: normal windows and dialog boxes. A normal
window provides the main user interface for an application. For example, if you use Microsoft Word,
you use a normal window for editing your documents.

 On occasion, the application will display a dialog box when you want to access a special feature. This
type of window hijacks the application and forces you to use just that window. For example, when you
select the Print option in Word, a dialog box appears, and from that point on, until you close the dialog
by clicking OK, Cancel, or the close box, you can ’ t go back and change the document — the only thing
you can use is the Print dialog box itself. Forms that do this are called modal . While they ’ re up, you ’ re in
that mode.

 Dialog boxes are discussed in more detail in Chapter 8 . For now, you can focus on adding additional
forms to your application. The form that you add in the next exercise is a simple modal form.

 The About Dialog Box
 Most applications have an About dialog box that describes the application ’ s name and copyright
information. As you already have a toolbar button for this feature, you ’ ll want to create this form now.

 Note that a standard About dialog exists for Windows Forms applications but does not exist for WPF
applications. Therefore, this next Try It Out will only apply to your Windows Forms Text Editor project.

Try It Out Adding an About Box
 1. To add a new form to the project, you need to use the Solution Explorer. Right click the

Windows Forms Text Editor project and select Add Windows Form. In the Add New
Item – Windows Forms Text Editor dialog box, shown in Figure 7 - 22 , select the About Box in
the Templates pane, enter About.vb in the Name field, and click the Add button to create the
new form.

 Figure 7 - 22

c07.indd 251c07.indd 251 4/1/08 6:24:14 PM4/1/08 6:24:14 PM

Chapter 7: Building Windows Applications

252

 2. When the form ’ s Designer appears, you ’ ll notice that all of the normal details that are shown
in an About dialog box are already on the form. This includes such items as the product name,
version number, copyright information, and so on.

 3. Right - click the form and choose View Code from the context menu. You ’ ll notice that the Load
event for the form already contains a significant amount of code to populate the details on the
About form. There is a TODO comment in the code that informs you that you need to update
the assembly information for the application.

 4. In the Solution Explorer, double - click My Project. Click the Assembly Information button in
the Application pane of the Windows Forms Text Editor properties to display the Assembly
Information dialog box. Edit the information in this dialog box as shown in Figure 7 - 23 and
then click OK to close this dialog box.

 Figure 7 - 23

 5. You need to write a procedure that will display the About dialog box, so add this code to the
TextEditor form:

 Public Sub ShowAboutBox()
 ‘Display the About dialog box
 Using objAbout As New About
 objAbout.ShowDialog(Me)
 End Using
 End Sub

 6. Finally, you need to call ShowAboutBox when the Help About button on the toolbar is clicked.
In the Class Name combo box at the top of the Code Editor, select tbrHelpAbout and in the
Method Name combo box, select the Click event. Add the following highlighted code to
the Click event handler:

c07.indd 252c07.indd 252 4/1/08 6:24:14 PM4/1/08 6:24:14 PM

Chapter 7: Building Windows Applications

253

 Private Sub tbrHelpAbout_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrHelpAbout.Click

 ‘Display the About dialog box
 ShowAboutBox()

 End Sub

 7. Run the project and click the Help About button. You should see the dialog box shown in
Figure 7 - 24 .

 Figure 7 - 24

 How It Works
 There are a variety of prebuilt forms provided in Visual Studio 2008, as was shown in Figure 7 - 22 . You
choose to add the About Box form to your project to display an About dialog box from your
application.

 When the About form starts, it will fire the Load event, and this event already has the appropriate
code written to load the fields on the form. You ’ ll notice that this code makes efficient use of the
My.Application.AssemblyInfo namespace to retrieve the appropriate information from your
application ’ s assembly for the About form:

 Private Sub About_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ‘ Set the title of the form.
 Dim ApplicationTitle As String
 If My.Application.Info.Title < > “” Then
 ApplicationTitle = My.Application.Info.Title
 Else
 ApplicationTitle = System.IO.Path.GetFileNameWithoutExtension(_
 My.Application.Info.AssemblyName)
 End If
 Me.Text = String.Format(“About {0}”, ApplicationTitle)
 ‘ Initialize all of the text displayed on the About Box.
 ‘ TODO: Customize the application’s assembly information in the
 ‘”Application” pane of the project
 ‘ properties dialog (under the “Project” menu).

c07.indd 253c07.indd 253 4/1/08 6:24:14 PM4/1/08 6:24:14 PM

Chapter 7: Building Windows Applications

254

 Me.LabelProductName.Text = My.Application.Info.ProductName
 Me.LabelVersion.Text = String.Format(“Version {0}”, _
 My.Application.Info.Version.ToString)
 Me.LabelCopyright.Text = My.Application.Info.Copyright
 Me.LabelCompanyName.Text = My.Application.Info.CompanyName
 Me.TextBoxDescription.Text = My.Application.Info.Description
 End Sub

 The assembly information that you modified in the Assembly Information dialog box is used to
populate the fields on your About form. If you added the text John Wiley & & Sons, Inc. to the Company
and Copyright fields in the Assembly Information dialog box as shown in Figure 7 - 23 , you ’ ll have
noticed that two consecutive ampersands were used in John Wiley & & Sons, Inc. The reason
behind this is that the labels on your About form treat a single ampersand as the start of a code
representing a special character. Two consecutive ampersands is then the code for the ampersand
character itself.

 To display another form, you have to create a new instance of it. That ’ s exactly what you do in the
 ShowAboutBox procedure. A Using ... End Using block will create a new instance of an object (in this
case the About form) and allow you to use the ShowDialog method to show the About form modally.
When you pass the Me keyword as a parameter to the ShowDialog method, you are specifying that the
 TextEditor form is the owner of the dialog being shown; in this case the About form:

 Public Sub ShowAboutBox()
 ‘Display the About dialog box
 Using objAbout As New About
 objAbout.ShowDialog(Me)
 End Using
 End Sub

 To call the ShowAboutBox procedure, you had to add code to the Click event of the HelpAbout
button on the toolbar:

 Private Sub tbrHelpAbout_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles tbrHelp.Click

 ‘Display the About dialog box
 ShowAboutBox()
 End Sub

 So, with very little effort and a minimal amount of code, you have added a lot of functionality to your
Windows Form Text Editor project. You can see firsthand how Visual Studio 2008 provides
productivity and time - saving features such as prebuilt forms.

c07.indd 254c07.indd 254 4/1/08 6:24:15 PM4/1/08 6:24:15 PM

Chapter 7: Building Windows Applications

255

 Summary
 This chapter discussed some of the more advanced features of Windows forms and WPF Windows as
well as the commonly used controls. It discussed the event - driven nature of Windows and showed three
events that can happen to a button (namely Click , MouseEnter , and MouseLeave).

 You created a simple application that allowed you to enter some text and then choose between counting
the number of characters or the number of words by using radio buttons.

 You then turned your attention to building a more complex application that allowed you to edit text by
changing its color or its case. This application showed how easy it was to build an application with
toolbars and status bars. You even added an About dialog box to display basic information about your
application such as the application title, description, version number, and copyright information.

 To summarize, you should now know how to:

 Write code to respond to control events

 Set properties on controls to customize their look and behavior

 Use the ToolStrip and StatusStrip controls

 Display other forms in your application

 Exercises
 1. Create a Windows Forms application with two buttons. Add code to the MouseUp event for the

first button to display a MessageBox with a message that the event has fired. Add code to the
 LostFocus event for the first button to also display a MessageBox with a message that the
 button has lost focus.

 2. Create a Windows Forms application with a toolbar and status bar. Right - click the ToolStrip
 control and select the Insert Standard Items menu item from the context menu to have the
 standard buttons added to the control. For the Click event for each of the ToolStripButton
 controls, display a message in the status bar indicating which button was clicked.

❑

❑

❑

❑

c07.indd 255c07.indd 255 4/1/08 6:24:15 PM4/1/08 6:24:15 PM

c07.indd 256c07.indd 256 4/1/08 6:24:15 PM4/1/08 6:24:15 PM

8
 Displaying Dialog Boxes

 Visual Basic 2008 provides several built - in dialog boxes that help you provide a rich user interface
in your front - end applications. These dialog boxes provide the same common user interface that is
found in most Windows applications. They also provide many properties and methods that allow
you to customize these dialog boxes to suit your needs while still maintaining the standard look of
Windows Forms applications.

 In this chapter, you will learn about the following:

 Creating a message box using different buttons and icons

 Creating an Open dialog box that enables you to open files

 Creating a Save dialog box that enables you to save files

 Creating a Font dialog box that enables you to apply the selected font to text

 Creating a Color dialog box that enables you to define and select custom colors

 Creating a Print dialog box that prints text from your application

 Creating a Browse dialog box that enables you to browse for folders

 This chapter explores these dialog boxes in depth and shows how you can use them in your Visual
Basic 2008 applications to help you build more professional - looking applications for your users.

 The MessageBox Dialog Box
 The MessageBox dialog box is one of those dialog boxes that you will use often as a developer.
This dialog box enables you to display custom messages to your users and accept their input
regarding the choice that they have made. This dialog box is very versatile; you can customize it
to display a variety of icons with your messages and choose which buttons to display.

 In your day - to - day operation of a computer, you have seen message boxes that display each of the
icons shown in Figure 8 - 1 . In this section, you learn how to create and display message boxes that
use these icons.

❑

❑

❑

❑

❑

❑

❑

c08.indd 257c08.indd 257 4/1/08 6:24:40 PM4/1/08 6:24:40 PM

Chapter 8: Displaying Dialog Boxes

258

 The first icon in Figure 8 - 1 has two names: Asterisk and Information. The second icon also has two
names: Exclamation and Warning. The third icon has three names: Error, Hand, and Stop. The final icon
in Figure 8 - 1 has only one name: Question.

 When building a Windows application, at times you need to prompt the user for information or display
a warning that something expected did not happen or that something unexpected did. For example,
suppose the user of your application modified some data and tried to close the application without
saving the data. You could display a message box that carries an information or warning icon and an
appropriate message — that all unsaved data will be lost. You could also provide OK and Cancel buttons
to allow the user to continue or cancel the operation.

 This is where the MessageBox dialog box comes in: It enables you to quickly build custom dialog boxes
that prompt the user for a decision while displaying your custom message, choice of icons, and choice of
buttons. All of this functionality also allows you to display a message box to inform users of validation
errors, and to display formatted system errors that are trapped by error handling.

 Before you jump into some code, take a look at the MessageBox class. The Show method is called to
display the MessageBox. The title, message, icons, and buttons displayed are determined by the
parameters you pass to this method. This may seem complicated, but actually using MessageBox is very
simple — as you have seen and will see in the following sections.

 Available Icons for MessageBox
 You saw the available icons in Figure 8 - 1 . The following table outlines those four standard icons that you
can display in a message box. The actual graphic displayed is a function of the operating system
constants, and there are four unique symbols with multiple field names assigned to them.

Figure 8-1

Member Name Description

Asterisk Specifies that the message box displays an information icon

Information Specifies that the message box displays an information icon

Error Specifies that the message box displays an error icon

Hand Specifies that the message box displays an error icon

Stop Specifies that the message box displays an error icon

Exclamation Specifies that the message box displays an exclamation icon

Warning Specifies that the message box displays an exclamation icon

Question Specifies that the message box displays a question mark icon

None Specifies the message box will not display any icon

c08.indd 258c08.indd 258 4/1/08 6:24:41 PM4/1/08 6:24:41 PM

Chapter 8: Displaying Dialog Boxes

259

 Available Buttons for MessageBox
 There are several combinations of buttons that you can display in a message box. The following table
outlines them.

 Setting the Default Button
 Along with displaying the appropriate buttons, you can instruct the message box to set a default button
for you. This allows the user to read the message and press the Enter key to invoke the action for the
default button without having to click the button itself with the mouse. The following table outlines the
available default button options.

 You set the default button relative to the MessageBox buttons, from left to right. Therefore, if you have
the Yes, No, and Cancel buttons displayed and you choose the third button to be the default, Cancel will
be the default button. Likewise, if you choose the third button to be the default and you have only OK
and Cancel buttons, the first button becomes the default. The default button will be highlighted until
you hover your mouse over another button.

Member Name Description

AbortRetryIgnore Specifies that the message box displays Abort, Retry, and Ignore buttons

OK Specifies that the message box displays an OK button

OKCancel Specifies that the message box displays OK and Cancel buttons

RetryCancel Specifies that the message box displays Retry and Cancel buttons

YesNo Specifies that the message box displays Yes and No buttons

YesNoCancel Specifies that the message box displays Yes, No, and Cancel buttons

Member Name Description

Button1 Specifies that the first button in the message box should be the default button

Button2 Specifies that the second button in the message box should be the default
button

Button3 Specifies that the third button in the message box should be the default button

c08.indd 259c08.indd 259 4/1/08 6:24:41 PM4/1/08 6:24:41 PM

Chapter 8: Displaying Dialog Boxes

260

 Miscellaneous Options
 A couple of other options are available in the MessageBoxOptions enumeration and can be used with
the message box. These are shown in the following table.

Figure 8-2

 The Show Method Syntax
 You call the Show method to display the message box. The following code example displays the message
box shown in Figure 8 - 2 . Notice that the code specifies the text that is displayed in the message box as
the first argument, followed by the text that is displayed in the title bar. Then you specify the buttons
that should be displayed, followed by the type of icon that should be displayed beside the text. Lastly,
you specify the button that you want to set as the default button — in this case Button1 .

If you want to run this code, start a new Windows Application project, double - click the form in the
Designer to generate the Form1_Load event, and place the following code inside that procedure:

 MessageBox.Show(“My Text”, “My Caption”, MessageBoxButtons.OKCancel, _
 MessageBoxIcon.Information, MessageBoxDefaultButton.Button1)

 Now that you have seen the available icons, buttons, and default button fields, take a look at the Show
method of the MessageBox class. You can specify the Show method in several ways; the more
common syntaxes are shown in the following list:

 MessageBox.Show(message text)

 MessageBox.Show(message text , caption)

❑

❑

Member Name Description

DefaultDesktopOnly Specifies that the message box be displayed on the active desktop

RightAlign Specifies that the text in a message box will be right-aligned,
as opposed to left-aligned, which is the default

RTLReading Specifies that the text in a message box be displayed with the RTL
(right-to-left) reading order; this applies only to languages that are
read from right to left

ServiceNotification Specifies that the message box be displayed on the active desktop.
The caller is a Windows service notifying the user of an event.

c08.indd 260c08.indd 260 4/1/08 6:24:42 PM4/1/08 6:24:42 PM

Chapter 8: Displaying Dialog Boxes

261

 MessageBox.Show(message text , caption , buttons)

 MessageBox.Show(message text , caption , buttons , icon)

 MessageBox.Show(message text , caption , buttons , icon , default button)

 In the previous examples, message text represents the message that displays in the message box. This text
can be static text (a literal string value) or supplied in the form of a string variable. The other
parameters are optional:

 caption represents either static text or a string variable that will be used to display text in the title
bar of the message box. If this parameter is omitted, no text is displayed in the title bar.

 buttons represents a value from the MessageBoxButtons enumeration. This parameter enables
you to specify which of the available buttons to display in the MessageBox dialog box. If you
omit this parameter, the OK button is displayed as the only button in the box.

 icon represents a value from the MessageBoxIcon enumeration. This parameter enables you to
specify which of the available icons displays in the MessageBox dialog box. If you omit this
parameter, no icon is displayed.

 default button represents a value from the MessageBoxDefaultButton enumeration. This
parameter enables you to specify which of the buttons is set as the default button in the
MessageBox dialog box. If you omit this parameter, the first button displayed becomes the
default button.

 All the syntax examples shown in the previous section return a value from the DialogResult
enumeration, which indicates which button in the MessageBox dialog box was chosen. The following
table shows the available members in the DialogResult enumeration.

❑

❑

❑

❑

❑

❑

❑

Member Name Description

Abort The return value is Abort and is the result of clicking the Abort button.

Cancel The return value is Cancel and is the result of clicking the Cancel button.

Ignore The return value is Ignore and is the result of clicking the Ignore button.

No The return value is No and is the result of clicking the No button.

None Nothing is returned, which means the dialog box continues running until a
button is clicked.

OK The return value is OK and is the result of clicking the OK button.

Retry The return value is Retry and is the result of clicking the Retry button.

Yes The return value is Yes and is the result of clicking the Yes button.

c08.indd 261c08.indd 261 4/1/08 6:24:42 PM4/1/08 6:24:42 PM

Chapter 8: Displaying Dialog Boxes

262

 Example Message Boxes
 Because multiple buttons can be displayed in a MessageBox dialog box, there are multiple ways to
display a dialog box and check the results. Of course, if you were displaying only one button using the
message box for notification, you would not have to check the results at all and could use a very simple
syntax. This Try It Out demonstrates how to display two buttons in a message box and then check for the
results from the message box to determine which button was clicked.

Try It Out Creating a Two Button MessageBox
1. Start Visual Studio 2008 and select File New Project from the menu. In the New Project

dialog box, select Windows Forms Application in the Templates pane and enter a project name
of MessageBox Buttons in the Name field. Click OK to have this project created.

2. Click the form in the Forms Designer and then set its Text property to MessageBox Buttons.

3. Add a Label control to the form to display results on which button in the message box a user
clicks. Set the Name property to lblResults and the Text property to Nothing Clicked.

4. Now add a Button control from the Toolbox to the form that will display a message box. Set
its Name property to btn2Buttons and its Text property to 2 Buttons.

5. Double-click the button and add the highlighted code in the Click event handler:

 Private Sub btn2Buttons_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btn2Buttons.Click

 If MessageBox.Show(“Your Internet connection will now be closed.”, _
 “Network Notification”, MessageBoxButtons.OKCancel, _
 MessageBoxIcon.Information, MessageBoxDefaultButton.Button1) _
 = Windows.Forms.DialogResult.OK Then

 lblResults.Text = “OK Clicked”
 ‘Call some method here
 Else
 lblResults.Text = “Cancel Clicked”
 ‘Call some method here
 End If

 End Sub

6. Save your project by clicking the Save All button on the toolbar.

7. Run the project and then click the 2 Buttons button. You should see a message box dialog box
like the one shown in Figure 8-3.

Figure 8-3

c08.indd 262c08.indd 262 4/1/08 6:24:43 PM4/1/08 6:24:43 PM

Chapter 8: Displaying Dialog Boxes

263

How It Works
The code uses the Show method of the MessageBox class and uses an If...End If statement to see
whether the user clicked the OK button:

 If MessageBox.Show(“Your Internet connection will now be closed.”, _
 “Network Notification”, MessageBoxButtons.OKCancel, _
 MessageBoxIcon.Information, MessageBoxDefaultButton.Button1) _
 = Windows.Forms.DialogResult.OK Then

The code specifies that the OK and Cancel buttons are to be displayed in the dialog box and also that
the OK button is to be the default button.

You have to specify something for the icon parameter, because this is required when you want to set
the default button parameter. If you did not want to display an icon, you could use the Nothing
keyword for that parameter.

Also notice that you check the results returned from MessageBox using Windows.Forms
.DialogResult.OK. You could have just as easily have checked for Windows.Forms.DialogResult
.Cancel and written the If...End If statement around that.

This is great if you want to test the results of only one or two buttons. But what happens when you
want to test the results from a message box that contains three buttons?

Try It Out Testing a Three Button MessageBox
1. Stop your project if it is still running and open the Forms Designer for Form1.

2. Add another Button control and set its Name property to btn3Buttons and its Text property to
3 Buttons. Double-click the button and add the highlighted code to its Click event handler:

 Private Sub btn3Buttons_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btn3Buttons.Click

 ‘Declare local variable
 Dim intResult As DialogResult

 ‘Get the results of the button clicked
 intResult = _
 MessageBox.Show(“Do you want to save changes to New Document?”, _
 “My Word Processor”, MessageBoxButtons.YesNoCancel, _
 MessageBoxIcon.Warning, MessageBoxDefaultButton.Button3)

 ‘Process the results of the button clicked
 Select Case intResult
 Case Windows.Forms.DialogResult.Yes
 lblResults.Text = “Yes Clicked”
 ‘Do yes processing here
 Case Windows.Forms.DialogResult.No
 lblResults.Text = “No Clicked”

c08.indd 263c08.indd 263 4/1/08 6:24:43 PM4/1/08 6:24:43 PM

Chapter 8: Displaying Dialog Boxes

264

 ‘Do no processing here
 Case Windows.Forms.DialogResult.Cancel
 lblResults.Text = “Cancel Clicked”
 ‘Do cancel processing here
 End Select

 End Sub

3. Run the project and click the 3 Buttons button. The message box dialog box shown in
Figure 8-4 will be displayed and shows an icon and three buttons. Note that the third button
is the default this time around.

Figure 8-4

How It Works
The Show method returns a DialogResult, which is an Integer value. What you need to do when
there are three buttons is capture the DialogResult in a variable and then test that variable.

In the following code, the first thing you do is declare a variable as a DialogResult to capture the
DialogResult returned from the message box dialog box. Remember that the results returned from
the dialog box are nothing more than an enumeration of Integer values. Next, you set the
DialogResult in the variable.

 ‘Declare local variable
 Dim intResult As DialogResult

 ‘Get the results of the button clicked
 intResult = _
 MessageBox.Show(“Do you want to save changes to New Document?”, _
 “My Word Processor”, MessageBoxButtons.YesNoCancel, _
 MessageBoxIcon.Warning, MessageBoxDefaultButton.Button3)

Finally, you test the value of the intResult in a Select Case statement and act on it accordingly:

 ‘Process the results of the button clicked
 Select Case intResult
 Case Windows.Forms.DialogResult.Yes
 lblResults.Text = “Yes Clicked”
 ‘Do yes processing here
 Case Windows.Forms.DialogResult.No
 lblResults.Text = “No Clicked”
 ‘Do no processing here
 Case Windows.Forms.DialogResult.Cancel
 lblResults.Text = “Cancel Clicked”
 ‘Do cancel processing here
 End Select

c08.indd 264c08.indd 264 4/1/08 6:24:44 PM4/1/08 6:24:44 PM

Chapter 8: Displaying Dialog Boxes

265

In each of the Case statements, you write the name of the button selected in the label to indicate which
button was clicked.

Now you have a better understanding of how the MessageBox dialog box works and you have a point
of reference for the syntax. To familiarize yourself further with the MessageBox, try altering the values
of the message text, caption, buttons, icon, and default button parameters in the previous examples.

Be careful not to overuse the MessageBox and display a message box for every little event. This can be a
real annoyance to the user. You must use common sense and good judgment on when a message box is
appropriate. You should display a MessageBox dialog box only when you absolutely need to inform the
users that some type of error has occurred or when you need to warn the users that an action that they
have requested is potentially damaging. An example of the latter is shutting down the application
without saving their work. You would want to prompt the users to let them know that if they continue
they will lose all unsaved work, and give them an option to continue or cancel the action of shutting
down the application.

 The OpenDialog Control
 A lot of Windows applications process data from files, so you need an interface to select files to open and
save. The .NET Framework provides the OpenFileDialog and SaveFileDialog classes to do just that.
In this section you ’ ll take a look at the OpenFileDialog control, and in the next section you ’ ll look at the
SaveFileDialog control.

 When you use Windows applications, such as Microsoft Word or Paint, you see the same basic Open
dialog box. This does not happen by accident. There is a standard set of application programming
interfaces (API) available to every developer that allows you to provide this type of standard interface;
however, using the API can be cumbersome and difficult for a beginner. Fortunately, all of this
functionality is already built into the .NET Framework, so you can use it as you develop with Visual
Basic 2008.

 The OpenFileDialog Control
 You can use OpenFileDialog as a .NET class by declaring a variable of that type in your code and
modifying its properties in code, or as a control by dragging the control from the Toolbox onto the form
at design time. In either case, the resulting objects will have the same methods, properties, and events.

 You can find the OpenFileDialog control in the Toolbox under the Dialogs tab, where you can drag and
drop it onto your form. Then, all you need to do is set the properties and execute the appropriate
method. To use OpenFileDialog as a class, you declare your own objects of this type in order to use the
dialog box. Then you have control over the scope of the dialog box and can declare an object for it when
needed, use it, and then destroy it, thereby using fewer resources.

 This section focuses on using OpenFileDialog as a control. Once you have a better understanding of this
dialog box and feel comfortable using it, you can then expand your skills and use OpenFileDialog as a
class by declaring your own objects for it. Using classes and objects is discussed in greater detail in
Chapter 11 .

c08.indd 265c08.indd 265 4/1/08 6:24:44 PM4/1/08 6:24:44 PM

Chapter 8: Displaying Dialog Boxes

266

 You can use OpenFileDialog by simply invoking its ShowDialog method, producing results similar to
those shown in Figure 8 - 5 .

Figure 8-5

 The Properties of OpenFileDialog
 Although the dialog box shown in Figure 8 - 5 is the standard Open dialog displayed in Windows Vista, it
provides no filtering. You see all file types listed in the window and are unable to specify a file type for
filtering, because no filters exist. This is where the properties of OpenFileDialog come in. You can set
some of the properties before the Open dialog box is displayed, thereby customizing the dialog box to
your needs.

 The following table lists some of the available properties for the OpenFileDialog control.

Property Description

AddExtension Indicates whether an extension is automatically added to a filename if
the user omits the extension. This is mainly used in the SaveFileDialog,
which you will see in the next section.

AutoUpgradeEnabled Indicates whether this dialog should automatically upgrade its
appearance and behavior when running on Windows Vista.

CheckFileExists Indicates whether the dialog box displays a warning if the user
specifies a filename that does not exist.

c08.indd 266c08.indd 266 4/1/08 6:24:44 PM4/1/08 6:24:44 PM

Chapter 8: Displaying Dialog Boxes

267

 The Methods of OpenFileDialog
 Although many methods are available in the OpenFileDialog class, you will be concentrating on the
 ShowDialog method in these examples. The following list contains some of the other available methods
in OpenFileDialog :

 Dispose releases the resources used by the Open dialog box.

 OpenFile opens the file selected by the user with read - only permission. The file is specified by
the FileName property.

 Reset resets all properties of the Open dialog box to their default values.

 ShowDialog shows the dialog box.

❑

❑

❑

❑

Property Description

CheckPathExists Indicates whether the dialog box displays a warning if the user
specifies a path that does not exist.

DefaultExt Indicates the default filename extension.

DereferenceLinks Used with shortcuts. Indicates whether the dialog box returns the
location of the file referenced by the shortcut (True) or whether it returns
only the location of the shortcut itself (False).

FileName Indicates the path and file name of the selected file in the dialog box.

FileNames Indicates the path and file names of all selected files in the dialog box.
This is a read-only property.

Filter Indicates the current file name filter string, which determines the
choices that appear in the Files of type: combo box in the dialog box.

FilterIndex Indicates the index of the filter currently selected in the dialog box.

InitialDirectory Indicates the initial directory displayed in the dialog box.

Multiselect Indicates whether the dialog box allows multiple files to be selected.

ReadOnlyChecked Indicates whether the read-only check box is selected.

SafeFileName Indicates the file name of the selected file in the dialog box.

SafeFileNames Indicates the file names of all selected files in the dialog box. This is a
read-only property.

ShowHelp Indicates whether the Help button is displayed in the dialog box.

ShowReadOnly Indicates whether the dialog box contains a read-only check box.

Title Indicates the title that is displayed in the title bar of the dialog box.

ValidateNames Indicates whether the dialog box should only accept valid WIN32 file
names.

c08.indd 267c08.indd 267 4/1/08 6:24:45 PM4/1/08 6:24:45 PM

Chapter 8: Displaying Dialog Boxes

268

 The ShowDialog method is straightforward, because it accepts either no parameters or the owner of the
dialog box in the form of the Me keyword. So, before calling the ShowDialog method, you must set all
the properties that you want to set. After the dialog box returns, you can query the properties to
determine which file was selected, the directory, and the type of file selected. An example of the
 ShowDialog method is shown in the following code fragment:

OpenFileDialog1.ShowDialog()

 The OpenFileDialog control returns a DialogResult of OK or Cancel , with OK corresponding to the
Open button on the dialog box. This control does not actually open and read a file for you; it is merely a
common interface that allows a user to locate and specify the file or files to be opened by the application.
You need to query the OpenFileDialog properties that have been set by the control after the user clicks
the Open button to determine which file or files should be opened.

 Using the OpenFileDialog Control
 Now that you have had a look at the OpenFileDialog control, you can put this knowledge to use by
writing a program that uses this control.

 The program in the next Try It Out uses the OpenFileDialog control to display the Open File dialog box.
You use the dialog box to locate and select a text file, and then you ’ ll read the contents of the file into a
text box on your form using the My.Computer.FileSystem namespace.

Try It Out Working with OpenFileDialog
1. Create a new Windows Forms Application project called Windows Forms Dialogs.

2. To give your form a new name, in the Solution Explorer, right-click Form1.vb and choose
Rename from the context menu. Then enter a new name of Dialogs.vb. Set the properties of
the form as shown in the following list:

❑ Set Size to 460, 300.

❑ Set StartPosition to CenterScreen.

❑ Set Text to Dialogs.

3. Because you are going to read the contents of a file into a text box, you want to add a text box
to the form. You also want to add a button to the form so that you can invoke the Open File
dialog box at will. Add these two controls to the form and set their properties according to the
following list:

❑ Name the text box txtFile and set the following properties: Anchor =
Top,Bottom,Left,Right; Location = 13, 13; MultiLine = True; ScrollBars = Vertical;
Size = 330, 232.

❑ Name the Button control btnOpen and set the following properties: Anchor = Top, Right;
Location = 349, 13; Text = Open.

c08.indd 268c08.indd 268 4/1/08 6:24:45 PM4/1/08 6:24:45 PM

Chapter 8: Displaying Dialog Boxes

269

4. When you have finished placing the controls on your form and setting their properties, your
form should look similar to Figure 8-6.

Figure 8-6

The reason you anchored your controls in this example is that, when you resize or maximize your form,
the text box is resized appropriately to the size of the form, and the button stays in the upper right
corner. You can test this at this point by running your project and resizing the form.

5. In the Toolbox, scroll down until you see the OpenFileDialog control in the Dialogs tab and
then drag it onto your form and drop it. The control will actually be added to the bottom on
the workspace in the IDE.

 At this point, you could click the control in the workspace and then set the various properties
for this control in the Properties window. However, accept the default name and properties for
this control since you’ll set the various properties in code later.

6. Switch to the Code Editor for the form. Then declare a string variable that will contain a file
name. You set this variable later in your code to the actual path and file name from the Open
File dialog box:

Public Class Dialogs
 ‘Declare variable
 Private strFileName As String

7. Now you need to write some code in the Click event for the btnOpen button. In the Class
Name combo box at the top of the Code Editor, select btnOpen, and in the Method Name
combo select the Click event. Add the following highlighted code to the Click event
handler:

 Private Sub btnOpen_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnOpen.Click

 ‘Set the Open dialog properties
 With OpenFileDialog1
 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”
 .FilterIndex = 1
 .Title = “Demo Open File Dialog”
 End With

 ‘Show the Open dialog and if the user clicks the Open button,

c08.indd 269c08.indd 269 4/1/08 6:24:46 PM4/1/08 6:24:46 PM

Chapter 8: Displaying Dialog Boxes

270

 ‘load the file
 If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 Try
 ‘Save the file path and name
 strFileName = OpenFileDialog1.FileName

 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End If

 End Sub

8. Now it’s time to use some of the prebuilt code snippets that come with Visual Studio 2008.
Right-click in the blank space inside the Try block statement right before the Catch block
statement and choose Insert Snippet from the context menu. In the drop-down menu that
appears, double-click Fundamentals – Collections, Data Types, File System, Math and then in
the new list double-click File System – Processing Drives, Folders, and Files and then finally,
scroll down the list and double-click Read Text from a File. Your code should now look like
this, and you’ll notice that the filename C:\Test.txt is highlighted, indicating that this code
needs to be changed:

 Try
 ‘Save the file path and name
 strFileName = OpenFileDialog1.FileName

 Dim fileContents As String
 fileContents = My.Computer.FileSystem.ReadAllText(“C:\Test.txt”)
 ‘Display the file contents in the text box
 txtFile.Text = fileContents
 Catch ex As Exception

9. Modify the code in the Try block as shown here:

 Try
 ‘Save the file path and name
 strFileName = OpenFileDialog1.FileName

 Dim fileContents As String

 fileContents = My.Computer.FileSystem.ReadAllText(strFileName)

 ‘Display the file contents in the text box
 txtFile.Text = fileContents
 Catch ex As Exception

10. Save your project by clicking the Save All button on the toolbar.

11. Now run your project, and when your form is displayed, click the Open button to have the
Open File dialog box displayed. Notice the custom caption in the title bar of the dialog box;
you specified this in your code. If you click the file filter combo box, you will see two filters.
Click the second filter to see all of the files in the current directory.

c08.indd 270c08.indd 270 4/1/08 6:24:46 PM4/1/08 6:24:46 PM

Chapter 8: Displaying Dialog Boxes

271

12. Now locate a text file on your computer and select it. Then click the Open button to have the file
opened and the contents of that file placed in the text box on the form as shown in Figure 8-7.

Figure 8-7

13. For the final test, close your application and then start it again. Click the Open button on the
form and notice that the Open File dialog box has opened in the same directory from which
you selected the last file. There was no code that you had to write to have the Open File dialog
box do this.

How It Works
Before displaying the Open File dialog box, you need to set some properties of OpenFileDialog1 so
that the dialog box is customized for your application. You can do this with a With...End With
statement. The With...End With statement allows you to make repeated references to a single object
without having to specify the object name over and over. You specify the object name once on the line
with the With statement and then add all references to the properties of that object before the
End With statement.

 With OpenFileDialog1

The first property that you set is the Filter property. This property enables you to define the filters
that are displayed in the file filter combo box at the bottom right hand of the dialog. When you define
a file extension filter, you specify the filter description followed by a vertical bar (|) followed by the
file extension. When you want the Filter property to contain multiple file extensions, as shown in
the following code, you separate each file filter with a vertical bar as follows:

 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”

The next property that you set is the FilterIndex property. This property determines which filter is
shown in the file filter combo box. The default value for this property is 1, which is the first filter:

 .FilterIndex = 1

Finally, you set the Title property. This is the caption that is displayed in the title bar of the
dialog box:

 .Title = “Demo Open File Dialog”

c08.indd 271c08.indd 271 4/1/08 6:24:46 PM4/1/08 6:24:46 PM

Chapter 8: Displaying Dialog Boxes

272

To show the Open File dialog box, you use the ShowDialog method. Remember that the ShowDialog
method returns a DialogResult value, there are only two possible results, and you can compare the
results from the ShowDialog method to Windows.Forms.DialogResult.OK and Windows.Forms
.DialogResult.Cancel. If the user clicks the Open button in the dialog box, the ShowDialog
method returns a value of OK, and if the user clicks the Cancel button, the ShowDialog method returns
Cancel:

 If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

Next, you add a Try...Catch block to handle any errors that may occur while opening a file. Inside
the Try block you retrieve the path and filename that the user has chosen in the Open File dialog box
and set it in your strFileName variable. The path and file name are contained in the FileName
property of the OpenFileDialog control:

 ‘Save the file name
 strFileName = OpenFileDialog1.FileName

Next, you use the built-in code snippets provided by Visual Studio 2008 to simplify your
programming tasks by using the Read Text from a File code snippet. This code snippet contains the
necessary code to read the contents from a text file and to place those contents in a string variable.

Then, you modify the code from the code snippet supplying the strFileName variable in
the highlighted section of code. This code will read the entire contents of the text file into the
fileContents variable:

 Dim fileContents As String
 fileContents = My.Computer.FileSystem.ReadAllText(strFileName)

The final line of code that you wrote takes the contents of the allText variable and sets it in the Text
property of the TextBox control, thereby populating the text box with the contents of your text file:

 ‘Display the file contents in the text box
 txtFile.Text = fileContents

The code in the Catch block uses the MessageBox class to display the contents of the Message
property of the exception thrown should an error occur. The caption parameter of the MessageBox
class retrieves the title of your application from the Title property of the My.Application.Info
object.

 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try

There are many properties in the OpenFileDialog control that haven’t been covered in this chapter,
and you should feel free to experiment on your own to see all of the possibilities that this dialog box
has to offer.

c08.indd 272c08.indd 272 4/1/08 6:24:47 PM4/1/08 6:24:47 PM

Chapter 8: Displaying Dialog Boxes

273

 The SaveDialog Control
 Now that you can open a file with the OpenFileDialog control, take a look at the SaveFileDialog control
so that you can save a file. Like the OpenFileDialog, the SaveFileDialog can be used as a control or a
class. Once you have mastered the SaveFileDialog as a control, you will not have any problems using
 SaveFileDialog as a class.

 After you open a file, you may need to make some modifications to it and then save it. The
SaveFileDialog control provides the same functionality as the OpenFileDialog control, except in reverse.
It allows you to choose the location and filename as you save a file. It is important to note that the
SaveFileDialog control does not actually save your file; it merely provides a dialog box to allow the user
to locate where the file should be saved and to provide a name for the file.

 The Properties of SaveFileDialog
 The following table lists some of the properties that are available in the SaveFileDialog control. As you
can see, this control, or class if you will, contains a wealth of properties that can be used to customize
how the dialog box will behave.

(continued)

Property Description

AddExtension Indicates whether an extension is automatically added to a
filename if the user omits the extension.

AutoUpgradeEnabled Indicates whether this dialog box should automatically
upgrade its appearance and behavior when running on
Windows Vista.

CheckFileExists Indicates whether the dialog box displays a warning if the
user specifies a filename that does not exist. This is useful
when you want the user to save a file to an existing name.

CheckPathExists Indicates whether the dialog box displays a warning if the
user specifies a path that does not exist.

CreatePrompt Indicates whether the dialog box prompts the user for
permission to create a file if the user specifies a file that
does not exist.

DefaultExt Indicates the default file extension.

DereferenceLinks Indicates whether the dialog box returns the location of the
file referenced by the shortcut or whether it returns the
location of the shortcut itself.

FileName Indicates the file name of the selected file in the dialog box.
This is a read-only property.

FileNames Indicates the file names of all selected files in the dialog box.
This is a read-only property that is returned as a string array.

c08.indd 273c08.indd 273 4/1/08 6:24:47 PM4/1/08 6:24:47 PM

Chapter 8: Displaying Dialog Boxes

274

 The Methods of SaveFileDialog
 The SaveFileDialog control exposes the same methods as the OpenFileDialog does. If you want to review
these methods, go back to the section “ The Methods of OpenFileDialog. ” All the examples will use the
ShowDialog method to show the Save File dialog.

 Using the SaveFileDialog Control
 To see how to include the SaveFileDialog control in your project, you begin with the Windows Forms
Dialogs project from the previous Try It Out as a starting point and build upon it. In this exercise, you
want to save the contents of the text box to a file.

 You use the SaveFileDialog control to display a Save File dialog box that allows you to specify the
location and name of the file. Then you write the contents of the text box on your form to the specified
file, again using a built - in code snippet provided by Visual Studio 2008.

Property Description

Filter Indicates the current file name filter string, which
determines the choices that appear in the Files of type:
combo box in the dialog box.

FilterIndex Indicates the index of the filter currently selected in the
dialog box.

InitialDirectory Indicates the initial directory displayed in the dialog box.

OverwritePrompt Indicates whether the dialog box displays a warning if the
user specifies a file name that already exists.

ShowHelp Indicates whether the Help button is displayed in the
dialog box.

SupportMultiDottedExtensions Indicates whether the dialog box supports displaying and
saving files that have multiple file name extensions.

Title Indicates the title that is displayed in the title bar of the
dialog box.

ValidateNames Indicates whether the dialog box should accept only valid
Win32 file names.

c08.indd 274c08.indd 274 4/1/08 6:24:47 PM4/1/08 6:24:47 PM

Chapter 8: Displaying Dialog Boxes

275

Try It Out Working with SaveFileDialog
1. Return to the Forms Designer in the Windows Forms Dialogs project.

2. Drag another Button control from the Toolbox and drop it beneath the Open button and set its
properties as follows:

❑ Set Name to btnSave.

❑ Set Anchor to Top, Right.

❑ Set Location to 350, 43.

❑ Set Text to Save.

3. In the Toolbox, scroll down until you see the SaveFileDialog control and then drag and drop it
onto your form. The control will be added to the bottom on the workspace in the IDE.

4. Double-click the Save button to bring up its Click event and add the highlighted code:

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ‘Set the Save dialog properties
 With SaveFileDialog1
 .DefaultExt = “txt”
 .FileName = strFileName
 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”
 .FilterIndex = 1
 .OverwritePrompt = True
 .Title = “Demo Save File Dialog”
 End With

 ‘Show the Save dialog and if the user clicks the Save button,
 ‘save the file
 If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 Try
 ‘Save the file path and name
 strFileName = SaveFileDialog1.FileName

 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End If

 End Sub

5. Right-click in the blank space inside the Try block statement right before the Catch block
statement and choose Insert Snippet from the context menu. In the drop-down menu that
appears, double-click Fundamentals – Collections, Data Types, File System, Math and then in
the new list double-click File System – Processing Drives, Folders, and Files and then finally,
scroll down the list and double-click Write Text to a File. Your code should now look like this,

c08.indd 275c08.indd 275 4/1/08 6:24:48 PM4/1/08 6:24:48 PM

Chapter 8: Displaying Dialog Boxes

276

and you’ll notice that the filename C:\Test.txt is highlighted as is the text string Text,
indicating that this code needs to be changed:

 Try
 ‘Save the file path and name
 strFileName = SaveFileDialog1.FileName

 My.Computer.FileSystem.WriteAllText(“C:\Test.txt”, “Text”, True)
 Catch ex As Exception

6. Modify the code in the Try block as shown here:

 Try
 ‘Save the file path and name
 strFileName = SaveFileDialog1.FileName

 My.Computer.FileSystem.WriteAllText(strFileName, txtFile.Text, _False)

 Catch ex As Exception

7. At this point, you are ready to test this code so run your project. Start with a simple test by
opening an existing text file. Type some text into the text box on the form and then click the
Save button. The Save dialog box will be displayed. Notice that the File name combo box
already has the complete path and file name in it. This is the path file name that was set in the
strFileName variable when you declared it in the previous Try It Out.

8. Enter a new file name, but do not put a file extension on it. Then click the Save button and the
file will be saved. To verify this, click the Open button on the form to invoke the Open File
dialog box; you will see your new file.

9. To test the OverwritePrompt property of the SaveFileDialog control, enter some more text in
the text box on the form and then click the Save button. In the Save File dialog box, choose an
existing file name and then click the Save button. You will be prompted to confirm
replacement of the existing file as shown in Figure 8-8. If you choose Yes, the dialog box will
return a DialogResult of OK, and the code inside your If ... End If statement will be
executed. If you choose No, you will be returned to the Save File dialog box so that you can
enter another file name.

Figure 8-8

When the Open File or Save File dialog box is displayed, the context menu is fully functional and you
can cut, copy, and paste files, as well as rename and delete them. There are other options in the context
menu that vary depending on what software you have installed. For example, if you have WinZip
installed, you will see the WinZip options on the context menu.

c08.indd 276c08.indd 276 4/1/08 6:24:48 PM4/1/08 6:24:48 PM

Chapter 8: Displaying Dialog Boxes

277

How It Works
Before displaying the Save File dialog box, you need to set some properties to customize the dialog
box to your application. The first property you set is the DefaultExt property. This property
automatically sets the file extension if one has not been specified. For example, if you specify a
filename of NewFile with no extension, the dialog box will automatically add .txt to the filename
when it returns, so that you end up with a filename of NewFile.txt.

 .DefaultExt = “txt”

The FileName property is set to the same path and filename as was returned from the Open File
dialog. This allows you to open a file, edit it, and then display the same filename when you show the
Save File dialog box. Of course, you can override this filename in the application’s Save File dialog box.

 .FileName = strFileName

The next two properties are the same as in the OpenFileDialog control. They set the file extension
filters to be displayed in the Save as type: combo box and set the initial filter:

 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”
 .FilterIndex = 1

The OverwritePrompt property accepts a Boolean value of True or False. When set to True, this
property prompts you with a MessageBox dialog box if you choose an existing filename. If you select
Yes, the Save File dialog box returns a DialogResult of OK; if you select No, you are returned to the
Save File dialog box to choose another filename. When the OverwritePrompt property is set to
False, the Save File dialog box does not prompt you to overwrite an existing file, and your code will
overwrite it without asking for the user’s permission.

 .OverwritePrompt = True

The Title property sets the caption in the title bar of the Save File dialog box:

 .Title = “Demo Save File Dialog”

After you have the properties set, you want to show the dialog box. The ShowDialog method of the
SaveFileDialog control also returns a DialogResult, so you can use the SaveFileDialog control in an
If...End If statement to test the return value.

If the user clicks the Save button in the Save File dialog box, the dialog box returns a DialogResult of
OK. If the user clicks the Cancel button in the dialog box, the dialog box returns a DialogResult of
Cancel. The following code tests for Windows.Forms.DialogResult.OK:

 If SaveFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

The first thing that you do here is save the path and filename chosen by the user in your strFileName
variable. This is done in case the user has chosen a new filename in the dialog box:

 Try
 ‘Save the file path and name
 strFileName = SaveFileDialog1.FileName

c08.indd 277c08.indd 277 4/1/08 6:24:48 PM4/1/08 6:24:48 PM

Chapter 8: Displaying Dialog Boxes

278

 The FontDialog Control
 Sometimes you may need to write an application that allows the user to choose the font in which they
want their data to be displayed or entered. Or perhaps you may want to see all available fonts installed
on a particular system. This is where the FontDialog control comes in; it displays a list of all available
fonts installed on your computer in a standard dialog that your users have become accustomed to.

 Like the OpenFileDialog and SaveFileDialog controls, the FontDialog class can be used as a control by
dragging it onto a form, or as a class by declaring it in code.

 The FontDialog control is really easy to use; you just set some properties, show the dialog box, and then
query the properties that you need.

 The Properties of FontDialog
 The following table lists some of its available properties.

Then you modify the code snippet generated by Visual Studio 2008 by replacing the highlighted text
with your variables. First you replace the text “C:\Test.txt” with your variable, strFileName. This
line of code opens the file for output. Then you replace the text “Text” with the Text property of the
text box on your form. This line of code reads the contents of your text box and writes it to the file.
The False parameter at the end of this line of code indicates whether text should be appended to the
file. A value of False indicates that the contents of the file should be overwritten.

 My.Computer.FileSystem.WriteAllText(strFileName, txtFile.Text, _
 False)

The final bit of code in this If...End If block merely wraps up the Try...Catch block and the
If...End If statement.

 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End If

Property Description

AllowScriptChange Indicates whether the user can change the character set specified in the
Script drop-down box to display a character set other than the one
currently displayed.

Color Indicates the selected font color.

Font Indicates the selected font.

FontMustExist Indicates whether the dialog box specifies an error condition if the user
attempts to enter a font or style that does not exist.

c08.indd 278c08.indd 278 4/1/08 6:24:49 PM4/1/08 6:24:49 PM

Chapter 8: Displaying Dialog Boxes

279

 The Methods of FontDialog
 You will only be using one method (ShowDialog) of FontDialog in the following Try It Out. Other
methods available include Reset , which allows you to reset all the properties to their default values.

 Using the FontDialog Control
 You can display the FontDialog control without setting any properties:

FontDialog1.ShowDialog()

 The dialog box would then look like Figure 8 - 9 .

Figure 8-9

Property Description

MaxSize Indicates the maximum size (in points) a user can select.

MinSize Indicates the minimum size (in points) a user can select.

ShowApply Indicates whether the dialog box contains an Apply button.

ShowColor Indicates whether the dialog box displays the color choice.

ShowEffects Indicates whether the dialog box contains controls that allow the user to
specify strikethrough, underline, and text color options.

ShowHelp Indicates whether the dialog box displays a Help button.

c08.indd 279c08.indd 279 4/1/08 6:24:49 PM4/1/08 6:24:49 PM

Chapter 8: Displaying Dialog Boxes

280

 Note that the Font dialog box contains an Effects section that enables you to check the options for
Strikeout and Underline. However, color selection of the font is not provided by default. If you want
this, you must set the ShowColor property before calling the ShowDialog method on the dialog box:

FontDialog1.ShowColor = True
FontDialog1.ShowDialog()

 The ShowDialog method of this dialog box, like all of the ones that you have examined thus far, returns
a DialogResult . This will be either DialogResult.OK or DialogResult.Cancel .

 When the dialog box returns, you can query for the Font and Color properties to see what font and
color the user has chosen. You can then apply these properties to a control on your form or store them to
a variable for later use.

 Now that you know what the Font dialog box looks like and how to call it, you can use it in a Try It Out.
You need to use the program from the last two Try It Outs to open a file, and have the contents of the file
read into the text box on the form. You then use the FontDialog control to display the Font dialog box,
which allows you to select a font. Then you change the font in the text box to the font that you
have chosen.

Try It Out Working with FontDialog
1. Return to the Forms Designer in the Windows Forms Dialogs project.

2. Add another button from the Toolbox and set its properties according to the values shown in
this list:

❑ Set Name to btnFont.

❑ Set Anchor to Top, Right.

❑ Set Location to 370, 73.

❑ Set Text to Font.

3. You now need to add the FontDialog control to your project, so locate this control in the
Toolbox and drag and drop it onto the form or in the workspace below the form; the control
will be automatically placed in the workspace below the form if dragged onto the form.
Accept all default properties for this control.

4. You want to add code to the Click event of the Font button, so double-click it and add the
following highlighted code:

 Private Sub btnFont_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnFont.Click

 ‘Set the Font dialog properties
 FontDialog1.ShowColor = True

 ‘Show the Font dialog and if the user clicks the OK button,
 ‘update the font and color in the text box

c08.indd 280c08.indd 280 4/1/08 6:24:49 PM4/1/08 6:24:49 PM

Chapter 8: Displaying Dialog Boxes

281

 If FontDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 txtFile.Font = FontDialog1.Font
 txtFile.ForeColor = FontDialog1.Color
 End If

 End Sub

5. Run your project and once your form has been displayed, click the Font button to display the
Font dialog box as shown in Figure 8-10. Choose a new font and color and then click OK.

Figure 8-10

6. Add some text in the text box on your form. The text will appear with the new font and color
that you have chosen.

7. This same font and color will also be applied to the text that is loaded from a file. To
demonstrate this, click the Open button on the form and open a text file. The text from the file
is displayed in the same font and color that you chose in the Font dialog box.

How It Works
You know that the Font dialog box does not show a Color box by default, so you begin by setting the
ShowColor property of the FontDialog control to True so that the Color box is displayed:

 ‘Set the Font dialog properties
 FontDialog1.ShowColor = True

Next, you actually show the Font dialog box. Remember the DialogResult returns a value of OK or
Cancel, so that you can compare the return value from the FontDialog control to Windows.Forms
.DialogResult.OK. If the button that the user clicked was OK, you execute the code within the
If...End If statement:

 ‘Show the Font dialog and if the user clicks the OK button,
 ‘update the font and color in the text box
 If FontDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 txtFile.Font = FontDialog1.Font
 txtFile.ForeColor = FontDialog1.Color
 End If

c08.indd 281c08.indd 281 4/1/08 6:24:50 PM4/1/08 6:24:50 PM

Chapter 8: Displaying Dialog Boxes

282

You set the Font property of the text box (txtFile) equal to the Font property of the FontDialog
control. This is the font that the user has chosen. Then you set the ForeColor property of the text box
equal to the Color property of the FontDialog control, as this will be the color that the user has
chosen. After these properties have been changed for the text box, the existing text in the text box is
automatically updated to reflect the new font and color. If the text box does not contain any text, any
new text that is typed or loaded into the text box will be of the new font and color.

 The ColorDialog Control
 Sometimes you may need to allow the user to customize the colors on their form. This may be the color
of the form itself, a control, or of text in a text box. Visual Basic 2008 provides the ColorDialog control for
all such requirements. Once again, the ColorDialog control can also be used as a class — declared in code
without dragging a control onto the Form Designer.

 The ColorDialog control, shown in Figure 8 - 11 , allows the user to choose from 48 basic colors.

Figure 8-11

 Note that the users can also define their own custom colors, adding more flexibility to your applications.
When the users click the Define Custom Colors button in the Color dialog box, they can adjust the color
to suit their needs (see Figure 8 - 12).

 Having this opportunity for customization and flexibility in your applications gives them a more
professional appearance, plus your users are happy because they are allowed to customize the
application to meet their own personal tastes.

c08.indd 282c08.indd 282 4/1/08 6:24:50 PM4/1/08 6:24:50 PM

Chapter 8: Displaying Dialog Boxes

283

Figure 8-12

 The Properties of ColorDialog
 Before you dive into more code, take a look at some of the available properties for the ColorDialog
control, shown in the following table.

 There aren ’ t many properties that you need to worry about for this dialog box, which makes it even
simpler to use than the other dialog boxes that you have examined so far.

 As with the other dialog box controls, ColorDialog contains a ShowDialog method. You have already
seen this method in the previous examples, and since it is the same, it does not need to be
discussed again.

Property Description

AllowFullOpen Indicates whether the user can use the dialog box to define custom colors.

AnyColor Indicates whether the dialog box displays all available colors in the set of
basic colors.

Color Indicates the color selected by the user.

CustomColors Indicates the set of custom colors shown in the dialog box.

FullOpen Indicates whether the controls used to create custom colors are visible
when the dialog box is opened.

ShowHelp Indicates whether a Help button appears in the dialog box.

SolidColorOnly Indicates whether the dialog box will restrict users to selecting solid
colors only.

c08.indd 283c08.indd 283 4/1/08 6:24:50 PM4/1/08 6:24:50 PM

Chapter 8: Displaying Dialog Boxes

284

 Using the ColorDialog Control
 All you need to do to display the Color Dialog box is to execute its ShowDialog method:

ColorDialog1.ShowDialog()

 The ColorDialog control will return a DialogResult of OK or Cancel . Hence, you can use the previous
statement in an If ... End If statement and test for a DialogResult of OK , as you have done in the
previous examples that you have coded.

 To retrieve the color that the user has chosen, you simply retrieve the value set in the Color property
and assign it to a variable or any property of a control that supports colors, such as the ForeColor
property of a text box:

txtFile.ForeColor = ColorDialog1.Color

 In the next Try It Out, you continue using the same project and make the ColorDialog control display the
Color dialog box. Then, if the dialog box returns a DialogResult of OK , you change the background
color of the form.

Try It Out Working with the ColorDialog Control
1. Return to the Forms Designer in the Windows Forms Dialogs project.

2. On the form, add another Button control from the Toolbox and set its properties according to
the values shown:

❑ Set Name to btnColor.

❑ Set Anchor to Top, Right.

❑ Set Location to 350, 103.

❑ Set Text to Color.

3. Add a ColorDialog control to your project from the Toolbox. It will be added to the workspace
below the form, and you will accept all default properties for this control.

4. Double-click the Color button to bring up its Click event handler and add the following
highlighted code:

 Private Sub btnColor_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnColor.Click

 ‘Show the Color dialog and if the user clicks the OK button,
 ‘update the background color of the form
 If ColorDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 Me.BackColor = ColorDialog1.Color
 End If

 End Sub

c08.indd 284c08.indd 284 4/1/08 6:24:51 PM4/1/08 6:24:51 PM

Chapter 8: Displaying Dialog Boxes

285

5. That’s all the code you need to add. Start your project to test your changes.

6. Once the form is displayed, click the Color button to display the Color dialog box. Choose any
color that you want, or create a custom color by clicking the Define Custom Colors button.
After you have chosen a color, click the OK button in the Color dialog box. The background
color of the form will be set to the color that you.

7. As with the Font dialog box, you do not have to set the Color property of the ColorDialog
control before displaying the Color dialog box again. It automatically remembers the color
chosen, and this will be the color that is selected when the dialog box is displayed again. To
test this, click the Color button again, and the color that you chose will be selected.

How It Works
This time you did not need to set any properties of the ColorDialog control, so you jumped right in
and displayed it in an If...End If statement to check the DialogResult returned by the
ShowDialog method of this dialog box:

 If ColorDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

Within the If...End If statement, you added the code necessary to change the BackColor property
of the form. If the user clicked OK in the Color dialog box, the background color of the form is
changed with this line of code:

 Me.BackColor = ColorDialog1.Color

 The PrintDialog Control
 Any application worth its salt will incorporate some kind of printing capabilities, whether it is basic
printing or more sophisticated printing, such as allowing a user to print only selected text or a range of
pages. In this next section of the chapter you explore basic printing. You take a look at several classes
that help you to print text from a file.

 Visual Basic 2008 provides the PrintDialog control. It does not actually do any printing but enables you
to select the printer that you want to use and set the printer properties such as page orientation and print
quality. It also enables you to specify the print range. You will not be using these features in this next
example, but it is worth noting that this functionality is available in the PrintDialog control as shown in
Figure 8 - 13 .

 Like the previous dialog boxes that you have examined, the Print dialog box provides Print
(corresponding to the OK buttons in the other dialogs) and Cancel buttons; thus, its ShowDialog method
returns a DialogResult of OK or Cancel . You can then use this result in an If ... End If statement and
test for the DialogResult . The Apply button merely applies changes made in the Print dialog but does
not close the dialog.

c08.indd 285c08.indd 285 4/1/08 6:24:51 PM4/1/08 6:24:51 PM

Chapter 8: Displaying Dialog Boxes

286

 The Properties of PrintDialog
 Take a quick look at some of the properties provided in PrintDialog shown in the following table. Just
like the other dialog boxes, PrintDialog exposes a ShowDialog method.

Figure 8-13

 Using the PrintDialog Control
 The only method that you will be using is the ShowDialog method, which will display the Print dialog
box shown in Figure 8 - 13 with only the All page range option button enabled. As mentioned earlier, the
PrintDialog control merely displays the Print dialog box; it does not actually do any printing. The
following code fragment shows how you display the Print dialog box:

PrintDialog1.ShowDialog()

Property Description

AllowCurrentPage Indicates whether the Current Page option button is enabled.

AllowPrintToFile Indicates whether the Print to file check box is enabled.

AllowSelection Indicates whether the Selection option button is enabled.

AllowSomePages Indicates whether the Pages option button is enabled.

Document Indicates the Print Document used to obtain the printer settings.

PrinterSettings Indicates the printer settings that the dialog box will be modifying.

PrintToFile Indicates whether the Print to file check box is checked.

ShowHelp Indicates whether the Help button is displayed.

ShowNetwork Indicates whether the Network button is displayed.

c08.indd 286c08.indd 286 4/1/08 6:24:51 PM4/1/08 6:24:51 PM

Chapter 8: Displaying Dialog Boxes

287

 The PrintDocument Class
 Before you can call the ShowDialog method of the PrintDialog control, you have to set the Document
property of the PrintDialog class. This property accepts a PrintDocument class, which is used to
obtain the printer settings and can send output to the printer. This class requires the System.Drawing
.Printing namespace, so you must include this namespace before attempting to define an object that
uses the PrintDocument class.

 The Properties of the PrintDocument Class
 Before you continue, take a look at some of the important properties of the PrintDocument class, listed
in the following table.

 Printing a Document
 The Print method of the PrintDocument class prints a document to the printer specified in the
 PrinterSettings property. When you call the Print method of the PrintDocument class, the
 PrintPage event is raised for each page as it prints. Therefore, you would need to create a procedure for
that event and add an event handler for it. The procedure that you would create for the PrintPage
event does the actual reading of the data to be printed.

 Printing using the PrintDocument class requires a lot of coding and knowledge of how actual printing
works. Fortunately, the help documentation provides some sample code in the PrintDocument class.
This can be used as a starting point to help you gain an understanding of the basics of printing. It should
be noted that the sample code in the help documentation assumes that a single line in the file to be
printed does not exceed the width of a printed page.

 The sample code in the help documentation demonstrates how to print from a file. In the next Try It Out,
you ’ ll examine how to print the contents of a text box.

Property Description

DefaultPageSettings Indicates the default page settings for the document.

DocumentName Indicates the document name that is displayed while printing the
document. This is also the name that appears in the Print Status
dialog box and printer queue.

PrintController Indicates the print controller that guides the printing process.

PrinterSettings Indicates the printer that prints the document.

c08.indd 287c08.indd 287 4/1/08 6:24:52 PM4/1/08 6:24:52 PM

Chapter 8: Displaying Dialog Boxes

288

Try It Out Working with the PrintDialog Control
1. Return to the Forms Designer in the Windows Forms Dialogs project.

2. Drag a Button control from the Toolbox. Position it beneath the Color button and set the
following properties of the new button:

❑ Set Name to btnPrint.

❑ Set Anchor to Top, Right.

❑ Set Location to 350, 133.

❑ Set Text to Print.

3. Now add a PrintDialog control to the project, dragging and dropping it from the Toolbox onto
the form. It will be added to the workspace below the form, and you will accept all default
properties for this control.

4. Now switch to the Code Editor so that you can add the required namespace for printing. Add
this namespace to the top of your class:

Imports System.Drawing.Printing

Public Class Dialogs

5. Now add the following variable declarations to the top of your class:

 ‘Declare variables and objects
 Private strFileName As String

 Private strPrintRecord As String

 Private WithEvents DialogsPrintDocument As PrintDocument

6. Select DialogsPrintDocument in the Class Name combo box and the PrintPage event in
the Method Name combo box. Add the following highlighted code to the
DialogsPrintDocument_PrintPage event procedure:

 Private Sub DialogsPrintDocument_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles DialogsPrintDocument.PrintPage

 ‘Declare variables
 Dim intCharactersToPrint As Integer
 Dim intLinesPerPage As Integer
 Dim strPrintData As String
 Dim objStringFormat As New StringFormat
 Dim objPrintFont As New Font(“Arial”, 10)
 Dim objPageBoundaries As RectangleF
 Dim objPrintArea As SizeF

 ‘Get the page boundaries

c08.indd 288c08.indd 288 4/1/08 6:24:52 PM4/1/08 6:24:52 PM

Chapter 8: Displaying Dialog Boxes

289

 objPageBoundaries = New RectangleF(e.MarginBounds.Left, _
 e.MarginBounds.Top, e.MarginBounds.Width, e.MarginBounds.Height)

 ‘Get the print area based on page margins and font used
 objPrintArea = New SizeF(e.MarginBounds.Width, _
 e.MarginBounds.Height - objPrintFont.GetHeight(e.Graphics))

 ‘Break in between words on a line
 objStringFormat.Trimming = StringTrimming.Word

 ‘Get the number of characters to print
 e.Graphics.MeasureString(strPrintRecord, objPrintFont, objPrintArea, _
 objStringFormat, intCharactersToPrint, intLinesPerPage)

 ‘Get the print data from the print record
 strPrintData = strPrintRecord.Substring(0, intCharactersToPrint)

 ‘Print the page
 e.Graphics.DrawString(strPrintData, objPrintFont, Brushes.Black, _
 objPageBoundaries, objStringFormat)

 ‘If more lines exist, print another page
 If intCharactersToPrint < strPrintRecord.Length Then
 ‘Remove printed text from print record
 strPrintRecord = strPrintRecord.Remove(0, intCharactersToPrint)
 e.HasMorePages = True
 Else
 e.HasMorePages = False
 End If

 End Sub

7. Select btnPrint in the Class Name combo box and the Click event in the Method Name
combo box. Add the following highlighted code to the btnPrint_Click event procedure:

 Private Sub btnPrint_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnPrint.Click

 ‘Instantiate a new instance of the PrintDocument
 DialogsPrintDocument = New PrintDocument

 ‘Set the PrintDialog properties
 With PrintDialog1
 .AllowCurrentPage = False
 .AllowPrintToFile = False
 .AllowSelection = False
 .AllowSomePages = False
 .Document = DialogsPrintDocument
 .PrinterSettings.DefaultPageSettings.Margins.Top = 25
 .PrinterSettings.DefaultPageSettings.Margins.Bottom = 25
 .PrinterSettings.DefaultPageSettings.Margins.Left = 25
 .PrinterSettings.DefaultPageSettings.Margins.Right = 25
 End With

 If PrintDialog1.ShowDialog = DialogResult.OK Then
 ‘Set the selected printer settings in the PrintDocument

c08.indd 289c08.indd 289 4/1/08 6:24:52 PM4/1/08 6:24:52 PM

Chapter 8: Displaying Dialog Boxes

290

 DialogsPrintDocument.PrinterSettings = _
 PrintDialog1.PrinterSettings

 ‘Get the print data
 strPrintRecord = txtFile.Text

 ‘Invoke the Print method on the PrintDocument
 DialogsPrintDocument.Print()
 End If

 End Sub

8. You are now ready to test your code, so run the project.

9. Click the Open button to open a file, and then click the Print button to display the Print dialog
box shown in Figure 8-14.

Figure 8-14

 Note that the Print to file check box as well as the Selection, Current Page, and Pages radio
buttons are disabled. This is because you set the AllowCurrentPage, AllowPrintToFile,
AllowSelection, and AllowSomePages properties in the PrintDialog control to False.

 If you have more than one printer installed, as shown in Figure 8-14, you can choose the name
of the printer that you want to use in the list.

10. Click the Print button in the Print dialog box to have your text printed.

How It Works
You begin by importing the System.Drawing.Printing namespace which is needed to support
printing. This is the namespace in which the PrintDocument class is defined.

c08.indd 290c08.indd 290 4/1/08 6:24:53 PM4/1/08 6:24:53 PM

Chapter 8: Displaying Dialog Boxes

291

You then declare a variable and object needed for printing. The strPrintRecord variable is a string
variable that will contain the data from the text box to be printed. The DialogsPrintDocument object
will actually be responsible for printing the text.

Notice the WithEvents keyword. This keyword is used to refer to a class that can raise events and
will cause Visual Studio 2008 to list those events in the Method Name combo box at the top of the
Code Editor:

 Private strPrintRecord As String

 Private WithEvents DialogsPrintDocument As PrintDocument

The DialogsPrintDocument_PrintPage event handler handles printing a page of output. This
event is initially called after you call the Print method on the object defined as the PrintDocument
class; in this case the DialogsPrintDocument.

This event handler is where you have to provide the code for actually printing a document and you
must determine if more pages exist to be printed. This procedure starts off with a number of variable
declarations. The first two variables are Integer data types and will contain the number of characters
to print to a page and the number of lines that can be printed on a page.

The strPrintData variable is a String data type that will contain all of the data to be printed on a
single page. The objStringFormat variable is declared as a StringFormat class and this class
encapsulates text layout information used to format the data to be printed. The StringFormat class is
used to trim the data on word boundaries so that the text does not overflow the print area of a page.

The objPrintFont object is defined as a Font class and sets the font used for the printed text while the
objPageBoundaries object is defined as a RectangleF structure. The RectangleF structure contains
four floating-point numbers defining the location and size of a rectangle and is used to define the top
and left coordinates of a page as well as its width and height. The objPrintArea object is defined as a
SizeF structure and contains the height and width of the print area of a page. This is the actual area that
you can print in and not the actual size of the page:

 Private Sub DialogsPrintDocument_PrintPage(ByVal sender As Object, _
 ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
 Handles DialogsPrintDocument.PrintPage

 ‘Declare variables
 Dim intCharactersToPrint As Integer
 Dim intLinesPerPage As Integer
 Dim strPrintData As String
 Dim objStringFormat As New StringFormat
 Dim objPrintFont As New Font(“Arial”, 10)
 Dim objPageBoundaries As RectangleF
 Dim objPrintArea As SizeF

The code in this procedure starts off by getting the page boundaries. The PrintPageEventArgs
passed to this procedure in the e parameter contains the top and left coordinates of the page as well as
the height and width of the page. These values are used to set the data in the objPageBoundaries
object.

c08.indd 291c08.indd 291 4/1/08 6:24:53 PM4/1/08 6:24:53 PM

Chapter 8: Displaying Dialog Boxes

292

The print area of the page is contained in the Width and Height properties of the
PrintPageEventArgs. The actual height of the page is calculated using the GetHeight method of the
Font class in the objPrintFont object as each font size will require more or less vertical space on
a page:

 ‘Get the page boundaries
 objPageBoundaries = New RectangleF(e.MarginBounds.Left, _
 e.MarginBounds.Top, e.MarginBounds.Width, e.MarginBounds.Height)

 ‘Get the print area based on page margins and font used
 objPrintArea = New SizeF(e.MarginBounds.Width, _
 e.MarginBounds.Height - objPrintFont.GetHeight(e.Graphics))

You now set the Trimming property of the objStringFormat object to instruct it to break the data on a
single line using word boundaries. This is done using the StringTrimming enumeration, which
contains the Word constant. This ensures that a print line does not exceed the margins of a printed page.

You then need to determine the number of characters that will fit on a page based on the print area of
the page, the font size used, and the data to be printed. This is done using the MeasureString
method of the Graphics class. This method will take the data to be printed, the font used on the page,
the print area of the page and the formatting to be applied and then determine the number of
characters that can be printed and the number of lines that will fit on a printed page. The number of
print characters and the number of lines will be set in the intCharactersToPrint and
intLinesPerPage variables which are passed to the MeasureString method.

Once you know the number of characters that will fit on a page, you get that data from the
strPrintRecord variable and set the data to be printed in the strPrintData variable. This is the
variable that will contain the data to actually be printed:

 ‘Break in between words on a line
 objStringFormat.Trimming = StringTrimming.Word

 ‘Get the number of characters to print
 e.Graphics.MeasureString(strPrintRecord, objPrintFont, objPrintArea, _
 objStringFormat, intCharactersToPrint, intLinesPerPage)

 ‘Get the print data from the print record
 strPrintData = strPrintRecord.Substring(0, intCharactersToPrint)

Now that you have the appropriate data to be printed in the strPrintData variable, you are ready to
actually send the data to be printed to the printer. This time you are going to use the DrawString
method of the Graphics class. This method will actually format and send the data to the printer.

The parameters that you pass to the DrawString method are the data to be printed, the font to be
used in printing, a Brushes object representing the font color of the text to print, the page boundaries,
and a StringFormat object used to format the printed output:

 ‘Print the page
 e.Graphics.DrawString(strPrintData, objPrintFont, Brushes.Black, _
 objPageBoundaries, objStringFormat)

c08.indd 292c08.indd 292 4/1/08 6:24:54 PM4/1/08 6:24:54 PM

Chapter 8: Displaying Dialog Boxes

293

The last section of code in this procedure determines if more data exist to be printed. You want to
compare the value contained in the intCharactersToPrint variable to the length of the
strPrintRecord variable using the Length property of the String class. The Length property
returns the number of characters in the string.

If the value contained in the intCharactersToPrint variable is less than the length of the
strPrintRecord variable, then more data exist to be printed. In this case you first want to remove
the data from the strPrintRecord that has already been printed using the Remove method of the
String class. The Remove method accepts the starting position in which to remove data and the
amount of data to remove. The amount of data to be removed is contained in the
intCharactersToPrint variable; the data that have already been printed.

Finally you set the HasMorePages property of the PrintPageEventArgs parameter to True
indicating more data exist to be printed. Setting this property to True will cause the PrintPage event
of the DialogsPrintDocument object to be raised once more and this event handler will be executed
again to continuing printing until all data have been printed.

If no more data exist to be printed you set the HasMorePages property to False:

 ‘If more lines exist, print another page
 If intCharactersToPrint < strPrintRecord.Length Then
 ‘Remove printed text from print record
 strPrintRecord = strPrintRecord.Remove(0, intCharactersToPrint)
 e.HasMorePages = True
 Else
 e.HasMorePages = False
 End If
 End Sub

The code in the Click event of the Print button is less complicated than the code in the
DialogsPrintDocument_PrintPage event handler. The code in this procedure starts out by
instantiating a new instance of the PrintDocument class in the DialogsPrintDocument object.

You then want to set the properties of the PrintDialog control before showing it. Since you have
only a simple method to print all pages in a document, you want to disable the features that allow
printing only the current page, printing to a file, printing a selection of text and printing specific
pages. This is all done by setting the first four properties in the code below to False.

Next, you need to set Document property of the PrintDialog to your PrintDocument object so that
the dialog can obtain the printer settings. The printer settings are set and retrieved in the
PrintDocument and can be changed through the PrintDialog through its PrinterSettings
property.

Finally, you set the default margins to be used when printing a document in the PrinterSettings
property. This can be set before the PrintDialog is shown to initially set the print margins for the
printer:

 ‘Instantiate a new instance of the PrintDocument
 DialogsPrintDocument = New PrintDocument

 ‘Set the PrintDialog properties
 With PrintDialog1
 .AllowCurrentPage = False
 .AllowPrintToFile = False

c08.indd 293c08.indd 293 4/1/08 6:24:54 PM4/1/08 6:24:54 PM

Chapter 8: Displaying Dialog Boxes

294

 .AllowSelection = False
 .AllowSomePages = False
 .Document = DialogsPrintDocument
 .PrinterSettings.DefaultPageSettings.Margins.Top = 25
 .PrinterSettings.DefaultPageSettings.Margins.Bottom = 25
 .PrinterSettings.DefaultPageSettings.Margins.Left = 25
 .PrinterSettings.DefaultPageSettings.Margins.Right = 25
 End With

The last thing you want to do in this procedure is to actually display the PrintDialog and check for a
DialogResult of OK. If the user clicks the Print button the PrintDialog will return a DialogResult
of OK and you want to actually invoke the printing of the data.

The first thing that you do in the If...Then block is to capture the printer settings from the
PrintDialog and set them in the DialogsPrintDocumnet. If the user changed any of the margins or
other printer settings you want to pass them on to the PrintDocument that is used to print the data.

You also want to set the data to be printed from the text box in the strPrintRecord variable. Finally,
you call the Print method on the DialogsPrintDocument object to start the printing process.
Calling the Print method will raise the PrintPage event on the DialogsPrintDocument object,
thus causing your code in the DialogsPrintDocument_PrintPage event handler to be executed:

 If PrintDialog1.ShowDialog = DialogResult.OK Then
 ‘Set the selected printer settings in the PrintDocument
 DialogsPrintDocument.PrinterSettings = _
 PrintDialog1.PrinterSettings

 ‘Get the print data
 strPrintRecord = txtFile.Text

 ‘Invoke the Print method on the PrintDocument
 DialogsPrintDocument.Print()
 End If

 The FolderBrowserDialog Control
 Occasionally, you ’ ll need to allow your users to select a folder instead of a file. Perhaps your application
performs backups, or perhaps you need a folder to save temporary files. The FolderBrowserDialog
control displays the Browse For Folder dialog box, which allows your users to select a folder. This dialog
box does not display files — only folders, which provides an obvious way to allow your users to select a
folder needed by your application.

 Like the other dialog boxes that you have examined thus far, the FolderBrowserDialog control can also
be used as a class declared in code. The Browse For Folder dialog box, shown in Figure 8 - 15 without any
customization, allows the user to browse for and select a folder. Notice that there is also a Make New
Folder button that allows a user to create and select a new folder.

c08.indd 294c08.indd 294 4/1/08 6:24:54 PM4/1/08 6:24:54 PM

Chapter 8: Displaying Dialog Boxes

295

 The Properties of FolderBrowserDialog
 Before you dive into some code, take a look at some of the available properties for the
FolderBrowserDialog control, shown in the following table.

Figure 8-15

 This is one dialog control where you ’ ll want to use all of the most common properties, as shown in the
preceding table, to customize the dialog box displayed.

 As with the other dialog controls, the FolderBrowserDialog contains a ShowDialog method. You have
already seen this method in the previous examples, and since it is the same, it does not need to be
discussed again.

 Using the FolderBrowserDialog Control
 Before showing the Browse For Folder dialog box, you ’ ll want to set some basic properties. The three
main properties that you are most likely to set are shown in the following code snippet. The first of these
properties is the Description property. This property allows you to provide a description or
instructions for your users.

 The next property is the RootFolder property and specifies the starting folder for the Browse For Folder
dialog box. This property uses one of the constants from the Environment.SpecialFolder
enumeration. Typically you would use the MyComputer constant to specify that browsing should start at

Property Description

Description Provides a descriptive message in the dialog box.

RootFolder Indicates the root folder where the dialog box should start browsing
from.

SelectedPath Indicates the folder selected by the user.

ShowNewFolderButton Indicates whether the Make New Folder button is shown in the
dialog box.

c08.indd 295c08.indd 295 4/1/08 6:24:55 PM4/1/08 6:24:55 PM

Chapter 8: Displaying Dialog Boxes

296

the My Computer level or sometimes you may want to use to the Personal constant to start browsing
at the My Documents level.

 The final property shown in the code snippet is the ShowNewFolderButton property. This property has
a default value of True , which indicates that the Make New Folder button should be displayed.
However, if you do not want this button displayed, you need to specify this property and set it to a value
of False :

 With FolderBrowserDialog1
 .Description = “Select a backup folder”
 .RootFolder = Environment.SpecialFolder.MyComputer
 .ShowNewFolderButton = False
 End With

 After you have set the necessary properties, you execute the ShowDialog method to display the
dialog box:

 FolderBrowserDialog1.ShowDialog()

 The FolderBrowserDialog control will return a DialogResult of OK or Cancel . Hence, you can use the
previous statement in an If ... End If statement and test for a DialogResult of OK , as you have done
in the previous examples that you have coded.

 To retrieve the folder that the user has chosen, you simply retrieve the value set in the SelectedPath
property and assign it to a variable. The folder that is returned is a fully qualified path name. For
example, if you chose a folder named Temp at the root of your C drive, the path returned would be
 C:\Temp :

 strFolder = FolderBrowserDialog1.SelectedPath

 In the next Try It Out, you continue using the same Windows Forms Dialogs project and have the
FolderBrowserDialog control display the Browse For Folder dialog box. Then, if the dialog box returns a
 DialogResult of OK , you ’ ll display the selected folder in the text box on your form.

Try It Out Working with the FolderBrowseDialog Control
1. Return to the Forms Designer in the Windows Forms Dialog project.

2. Add another Button control from the Toolbox to the form beneath the Print button and set its
properties as follows:

❑ Set Name to btnBrowse.

❑ Set Anchor to Top, Right.

❑ Set Location to 350, 163.

❑ Set Text to Browse.

c08.indd 296c08.indd 296 4/1/08 6:24:55 PM4/1/08 6:24:55 PM

Chapter 8: Displaying Dialog Boxes

297

3. Add a FolderBrowserDialog control to your project from the Toolbox. It will be added to the
workspace below the form. Accept all default properties for this control, because you’ll set the
necessary properties in your code.

4. Double-click the Browse button to bring up its Click event procedure, and add the following
code:

Private Sub btnBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnBrowse.Click

 ‘Set the FolderBrowser dialog properties
 With FolderBrowserDialog1
 .Description = “Select a backup folder”
 .RootFolder = Environment.SpecialFolder.MyComputer
 .ShowNewFolderButton = False
 End With

 ‘Show the FolderBrowser dialog and if the user clicks the
 ‘OK button, display the selected folder
 If FolderBrowserDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 txtFile.Text = FolderBrowserDialog1.SelectedPath
 End If

End Sub

5. That’s all the code you need to add. To test your changes to your project, click the Start button
on the toolbar.

6. When your form displays, click the Browse button, and you’ll see a Browse For Folder dialog
similar to the one shown in Figure 8-16.

Figure 8-16

7. Now browse your computer and select a folder. When you click the OK button, the selected
folder will be displayed in the text box on your form. Notice that the folder returned contains
a fully qualified path name.

c08.indd 297c08.indd 297 4/1/08 6:24:55 PM4/1/08 6:24:55 PM

Chapter 8: Displaying Dialog Boxes

298

How It Works
Before displaying the Browse For Folder dialog box, you needed to set some basic properties of the
FolderBrowserDialog control to customize the look for this dialog box. You start by setting the
Description property to provide some basic instructions for your user. Then you select the root
folder at which the Browse For Folder dialog box should start browsing. In this instance, you use the
MyComputer constant, which displayed all drives on your computer, as shown in Figure 8-16. Finally,
you set the ShowNewFolderButton property to False so as not to display the Make New Folder
button:

 ‘Set the FolderBrowser dialog properties
 With FolderBrowserDialog1
 .Description = “Select a backup folder”
 .RootFolder = Environment.SpecialFolder.MyComputer
 .ShowNewFolderButton = False
 End With

Then you display the dialog box in an If...End If statement to check the DialogResult returned
by the ShowDialog method of the FolderBrowserDialog control. Within the If...End If statement,
you add the code necessary to display the folder selected in the text box on your form, using the
SelectedPath property:

 ‘Show the FolderBrowser dialog and if the user clicks the
 ‘OK button, display the selected folder
 If FolderBrowserDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then
 txtFile.Text = FolderBrowserDialog1.SelectedPath
 End If

 Summary
 This chapter has taken a look at some of the dialog boxes that are provided in Visual Basic 2008. You
examined the MessageBox dialog box, and the OpenFileDialog, SaveFileDialog, FontDialog,
ColorDialog, PrintDialog, and FolderBrowserDialog controls. Each of these dialog boxes will help you
provide a common interface in your applications for their respective functions. They also hide a lot of the
complexities required to perform their tasks, allowing you to concentrate on the logic needed to make
your application functional and feature - rich.

 Although you used the controls from the Toolbox for all of these dialog boxes, except the MessageBox
dialog box, remember that these controls can also be used as normal classes. This means that the classes
that these dialog boxes use expose the same properties and methods that you ’ ve seen, whether you are
selecting a control visually or writing code using the class. You can define your own objects and set them
to these classes, and then use the objects to perform the tasks that you performed using the controls. This
provides better control over the scope of the objects. For example, you could define an object, set it to the
 OpenDialog class, use it, and then destroy it all in the same procedure. This method uses resources only
in the procedure that defines and uses the OpenDialog class, and reduces the size of your executable.

c08.indd 298c08.indd 298 4/1/08 6:24:56 PM4/1/08 6:24:56 PM

Chapter 8: Displaying Dialog Boxes

299

 To summarize, you should now know how to:

 Use the MessageBox dialog box to display messages

 Display icons and buttons in the MessageBox dialog box

 Use the OpenFileDialog control and read the contents of a file

 Use the SaveFileDialog control and save the contents of a text box to a file

 Use the FontDialog control to set the font and color of text in a text box

 Use the ColorDialog control to set the background color of your form

 Use the PrintDialog control to print text

 Use the FolderBrowserDialog control to get a selected folder

 Exercises
 1. Create a simple Windows application with a TextBox control and two Button controls. Set the

buttons to open a file and to save a file. Use the OpenFileDialog class (not the control) and the
 SaveFileDialog class to open and save your files.

 Hint: To use the corresponding classes for the controls use the following statements:

 Dim objOpenFileDialog As New OpenFileDialog
 Dim objSaveFileDialog As New SaveFileDialog

 2. Create a simple Windows application with a Label control and a Button control. Set the button
to display the Browse For Folder dialog box with the Make New Folder button displayed.
Use My Documents as the root folder at which the dialog starts browsing. Use the
FolderBrowserDialog class (not the control) and display the selected folder in the label
on your form.

❑

❑

❑

❑

❑

❑

❑

❑

c08.indd 299c08.indd 299 4/1/08 6:24:56 PM4/1/08 6:24:56 PM

c08.indd 300c08.indd 300 4/1/08 6:24:56 PM4/1/08 6:24:56 PM

9
 Creating Menus

 Menus are a part of every good application and provide not only an easy way to navigate within
an application but also useful tools for working with that application. Take, for example, Visual
Studio 2008. It provides menus for navigating the various windows that it displays and useful
tools for making the job of development easier through menus and context menus (also called
pop - up menus) for cutting, copying, and pasting code. It also provides menu items for searching
through code.

 This chapter takes a look at creating menus in your Visual Basic 2008 applications. You explore
how to create and manage menus and submenus and how to create context menus and override
the default context menus. Visual Studio 2008 provides two menu controls in the Toolbox, and you
explore both of these.

 In this chapter, you will:

 Create menus

 Create submenus

 Create context menus

 Understanding Menu Features
 The MenuStrip control in Visual Studio 2008 provides several key features. First and foremost,
it provides a quick and easy way to add menus, menu items, and submenu items to your
application. It also provides a built - in editor that allows you to add, edit, and delete menu items
at the drop of a hat.

 The menu items that you create may contain images, access keys, shortcut keys, and check marks
as well as text labels.

❑

❑

❑

c09.indd 301c09.indd 301 4/1/08 6:25:19 PM4/1/08 6:25:19 PM

Chapter 9: Creating Menus

302

 Images
 Everyone has seen images on the menus in applications such as Microsoft Outlook or Visual Studio 2008.
In earlier versions of Visual Basic, developers were unable to create menu items with images without
doing some custom programming or purchasing a third - party control. Visual Basic has come a long
way and now provides an Image property for a menu item that makes adding an image to your menu
items a breeze.

 Access Keys
 An access key (also known as an accelerator key) enables you to navigate the menus using the Alt key and a
letter that is underlined in the menu item. When the access key is pressed, the menu appears on the
screen, and the user can navigate through it using the arrow keys or the mouse.

 Shortcut Keys
 Shortcut keys enable you to invoke the menu item without displaying the menus at all. Shortcut keys
usually consist of a control key and a letter, such as Ctrl+X to cut text.

 Check Marks
 A check mark symbol can be placed next to a menu item in lieu of an image, typically to indicate that the
menu item is being used. For example, if you click the View menu in Visual Studio 2008 and then select
the Toolbars menu item, you see a submenu that has many submenu items, some of which have check
marks. The submenu items that have check marks indicate the toolbars that are currently displayed.

 Figure 9 - 1 shows many of the available features that you can incorporate into your menus. As you can
see, this sample menu provides all the features that were just mentioned plus a separator . A separator
looks like a raised ridge and provides a logical separation between groups of menu items.

Menu Menu Item

Shortcut Key

Separator

Check Mark

Access Key

Sub Menu Item

Figure 9-1

 Figure 9 - 1 shows the menu the way it looks when the project is being run. Figure 9 - 2 shows how the
menu looks in Design mode.

c09.indd 302c09.indd 302 4/1/08 6:25:21 PM4/1/08 6:25:21 PM

Chapter 9: Creating Menus

303

Figure 9-2

 The first thing that you ’ ll notice when using the MenuStrip control is that it provides a means to add
another menu, menu item, or submenu item quickly. Each time you add one of these, another blank text
area is added.

 The Properties Window
 While you are creating or editing a menu, the Properties window displays the available properties that
can be set for the menu being edited, as shown in Figure 9 - 3 which shows the properties for the Toolbars
menu item.

Figure 9-3

 You can create as many menus, menu items, and submenu items as you need. You can even go as deep
as you need to when creating submenu items by creating another submenu within a submenu.

 Keep in mind that if the menus are hard to navigate, or if it is hard for users to find the items they are
looking for, users will rapidly lose interest in your application.

c09.indd 303c09.indd 303 4/1/08 6:25:21 PM4/1/08 6:25:21 PM

Chapter 9: Creating Menus

304

 You should stick with the standard format for menus that you see in most Windows applications today.
These are the menus that you see in Visual Studio 2008 or Microsoft Outlook. For example, you always
have a File menu and an Exit menu item in the File menu to exit from the application. If your application
provides cut, copy, and paste functionality, you would place these menu items in the Edit menu, and
so on.

 The MSDN library that was installed with Visual Studio 2008 contains a section on Windows Vista
User Experience Guidelines. This section contains many topics that address the user interface and the
Windows user interface. You can explore these topics for more details on Windows user - interface
design - related topics.

 The key is to make your menus look and feel like the menus in other Windows applications so that the
users can feel comfortable using your application. This way they do not feel like they have to learn
the basics of Windows all over again. Some menu items will be specific to your application but the key to
incorporating them is to ensure that they fall into a general menu category that users are familiar with or
to place them in your own menu category. You would then place this new menu in the appropriate place
in the menu bar, generally in the middle.

 Creating Menus
 Now you move on and see how easy it is to create menus in your applications. In the following Try It
Out, you are going to create a form that contains a menu bar, two toolbars, and two text boxes. The menu
bar will contain five menus: File, Edit, View, Tools, and Help, and a few menu items and submenu items.
This enables you to fully exercise the features of the menu controls. Since there are several steps involved
in building this application, this process is broken down into several sections, starting with “ Designing
the Menus. ”

 Designing the Menus
 You will be implementing code behind the menu items to demonstrate the menu and how to add code to
your menu items, so let ’ s get started.

Try It Out Creating Menus
1. Start Visual Studio 2008 and click File New Project. In the New Project dialog box, select

Windows Forms Application in the Templates pane and enter the project name
Windows Forms Menus in the Name field. Click the OK button to have the project created.

2. Click the form in the Forms Designer and set the following properties of the form:

❑ Set Font to Segoe UI (on Windows Vista only).

❑ Set Size to 300, 180.

❑ Set StartPosition to CenterScreen.

❑ Set Text to Menu Demo.

c09.indd 304c09.indd 304 4/1/08 6:25:21 PM4/1/08 6:25:21 PM

Chapter 9: Creating Menus

305

3. Drag a MenuStrip control from the Toolbox and drop it on your form. It is automatically
positioned at the top of your form. The control is also added to the bottom of the development
environment, just like the dialog box controls discussed in Chapter 8.

4. In the Properties window, set the Font to Segoe UI, the Font Style to Regular, and the
Size to 8 only if you are running on Windows Vista.

5. Right-click the MenuStrip1 control on the form and select the Insert Standard Items context
menu item to have the standard menu items automatically inserted.

6. In the Properties window, click the ellipsis dots (…) button next to the Items property or right
click on the MenuStrip control in your form and choose Edit Items from the context menu. In
the Items Collection Editor dialog box, click the Add button to add a new menu item.

 To be consistent with the current naming standard already in use with the other menu items,
set the Name property for this new menu item to ViewToolStripMenuItem.

 Now set the Text property to &View. An ampersand (&) in the menu name provides an
access key for the menu or menu item. The letter before which the ampersand appears is the
letter used to access this menu item in combination with the Alt key. So for this menu, you
will be able to access and expand the View menu by pressing Alt+V. You’ll see this when you
run your project later.

 You want to position this menu between the Edit and Tools menu so click the up arrow to the
right of the menu items until the View menu is positioned between EditToolStripMenuItem
and ToolsToolStripMenuItem in the list.

7. Now locate the DropDownItems property and click the ellipsis dots button next to it so that
you can add menu items beneath the View menu. A second Items Collection Editor appears,
and its caption reads “Items Collection Editor (ViewToolStripMenuItem.DropDownItems)”.

 There is only one menu item under the View menu, and that is Toolbars. Click the Add button
in the Item Collections Editor to add a MenuItem.

 Again, you want to be consistent with the naming standard already being used so set the
Name property to ToolbarToolStripMenuItem. Then set the Text property to &Toolbars.

8. You want to add two submenu items under the Toolbars menu item, so locate the
DropDownItems property and click the ellipsis button next to it.

 In the Item Collections Editor, click the Add button to add a new menu item. Set the Name
property for this submenu item to MainToolStripMenuItem and the Text property to &Main.

 When you add a toolbar to this project, it is displayed by default, so this submenu item should be
checked to indicate that the toolbar is displayed. Set the Checked property to True to cause this
submenu item to be checked by default and the CheckOnClick property to True to allow the
check mark next to this submenu item to be toggled on and off.

9. The next submenu item that you add is Formatting. Click the Add button to add a new menu
item and set the Name property for this submenu item to FormattingToolStripMenuItem and
the Text property to &Formatting.

c09.indd 305c09.indd 305 4/1/08 6:25:22 PM4/1/08 6:25:22 PM

Chapter 9: Creating Menus

306

 Since this toolbar is not shown by default, you need to leave the Checked property set to
False. You do, however, need to set the CheckOnClick property to True so that the submenu
item can toggle the check mark on and off.

 Keep clicking the OK button in the Items Collection Editors until all of the editors are closed.

10. Save your project by clicking the Save All button on the toolbar.

11. If you run your project at this point and then enter Alt+V and ALT+T (without releasing the
Alt key), you will see the submenu items as shown in Figure 9-4. You can also click the other
menus and see their menu items.

Figure 9-4

 Adding Toolbars and Controls
 In this section, you add the toolbars and buttons for the toolbars that the application needs. The menus
created in the previous section will control the displaying and hiding of these toolbars. You also add a
couple of TextBox controls that are used in the application to cut, copy, and paste text using the toolbar
buttons and menu items.

How It Works
Visual Studio 2008 takes care of a lot of the details for you by providing the Insert Standard Items
context menu item in the MenuStrip control. You click this menu item to have Visual Studio 2008
create the standard menus and menu items found in most common applications. This allows you
to concentrate on only the menus and menu items that are custom to your application, which is what
you did by adding the View menu, Toolbars menu item, and Main and Formatting submenu items.

Try It Out Adding Toolbars and Controls
1. Return to the Forms Designer in your Windows Forms Menus project. You need to add two

toolbars to the form, so locate the ToolStrip control in the Toolbox and drag and drop it on
your form; it automatically aligns itself to the top of the form below the menu. Set the Name
property to tspMain.

2. The default toolbar buttons will be fine for this project, so right-click the ToolStrip control
on the form and select Insert Standard Items from the context menu to have the standard
toolbar buttons added.

c09.indd 306c09.indd 306 4/1/08 6:25:22 PM4/1/08 6:25:22 PM

Chapter 9: Creating Menus

307307

3. Next, add a second toolbar to the form in the same manner. It aligns itself below the first
toolbar. Set its Name property to tspFormatting and its Visible property to False, because
you don’t want this toolbar to be shown by default.

4. You want to add three buttons to this toolbar, so click the ellipsis dots button next to the Items
property in the Properties window or right-click the ToolStrip control on the form and select
Edit Items from the context menu.

 In the Items Collection Editor dialog box, click the Add button to add the first button. Since
you really won’t be using these buttons, you can accept the default name and ToolTip text for
these buttons. Ensure the DisplayStyle property is set to Image, and then click the ellipsis
dots button next to the Image property.

 In the Select Resource dialog box, click the Import button and browse to C:\Program Files\
Microsoft Visual Studio 9.0\Common7\VS2008ImageLibrary\1033\
VS2008ImageLibrary\Actions\pngformat folder. This path assumes a default installation
of Visual Studio 2008 and that you extracted the contents of the VS2008ImageLibrary zip file.
In the Open dialog box, select AlignTableCellMiddleLeftJustHS.png and then click the
Open button. Next, click the OK button in the Select Resource dialog box to close it.

5. In the Items Collection Editor dialog box, click the Add button again to add the second button.
Ensure the DisplayStyle property is set to Image and then set the Image property to the
AlignTableCellMiddleCenterHS.png file.

6. In the Items Collection Editor dialog box, click the Add button again to add the next button.
Ensure the DisplayStyle property is set to Image and then set the Image property to the
AlignTableCellMiddleRightHS.png file.

7. Click the OK button in the Items Collection Editor dialog box to close it.

8. Add a Panel control from the toolbox to your form and set its Dock property to Fill.

9. Add two TextBox controls to the Panel control and accept their default properties. Their
location and size are not important, but they should be wide enough to enter text in. Your
completed form should look similar to the one shown in Figure 9-5. Notice that your second
toolbar is not visible since you set its Visible property to False.

Figure 9-5

 If you run your project at this point you will see the menus, the main toolbar, and two text
boxes. The formatting toolbar is not visible at this point because the Visible property is set
to False.

c09.indd 307c09.indd 307 4/1/08 6:25:22 PM4/1/08 6:25:22 PM

Chapter 9: Creating Menus

308

How It Works
You took a look at toolbars in Chapter 7, so review the Text Editor project for details on how the
ToolStrip control works. The ToolStrip control, like the MenuStrip control, provides the Insert
Standard Items context menu item, which does a lot of the grunt work for you by inserting
the standard toolbar buttons, as was shown in Figure 9-5. This without a doubt provides the most
efficient means of having the standard toolbar buttons added to the ToolStrip control. You can, of
course, rearrange the buttons that have been added and even add new buttons and delete existing
buttons.

Because you set the Visible property to False for the tspFormatting ToolStrip control, that control
does not take up any space on your form at design time after the control loses focus.

 Coding Menus
 Now that you have finally added all of your controls to the form, it ’ s time to start writing some code to
make these controls work. First, you have to add functionality to make the menus work. Then you add
code to make some of the buttons on the main toolbar work.

Try It Out Coding the File Menu
1. Start by switching to the Code Editor for the form. In the Class Name combo box at the top of

the Code Editor, select NewToolStripMenuItem and select the Click event in the Method
Name combo box. Add the following highlighted code to the Click event handler:

 Private Sub NewToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles NewToolStripMenuItem.Click

 ‘Clear the text boxes
 TextBox1.Text = String.Empty
 TextBox2.Text = String.Empty

 ‘Set focus to the first text box
 TextBox1.Focus()

 End Sub

2. Add the procedure for the New button on the toolbar by selecting NewToolStripButton from
the Class Name combo box and the Click event from the Method Name combo box. Add the
following highlighted code to this procedure:

 Private Sub NewToolStripButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles NewToolStripButton.Click

 ‘Call the NewToolStripMenuItem_Click procedure
 NewToolStripMenuItem_Click(sender, e)

 End Sub

c09.indd 308c09.indd 308 4/1/08 6:25:23 PM4/1/08 6:25:23 PM

Chapter 9: Creating Menus

309

3. Select ExitToolStripMenuItem from the Class Name combo box and the Click event from the
Method Name combo box and add the following highlighted code to the procedure:

 Private Sub ExitToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ExitToolStripMenuItem.Click

 ‘Close the form and end
 Me.Close()

 End Sub

How It Works
To clear the text boxes on the form in the NewToolStripMenuItem_Click procedure, add the
following code. All you are doing here is setting the Text property of the text boxes to an empty
string. The next line of code sets focus to the first text box by calling the Focus method of that
text box:

 ‘Clear the text boxes
 TextBox1.Text = String.Empty
 TextBox2.Text = String.Empty

 ‘Set focus to the first text box
 TextBox1.Focus()

When you click the New menu item under the File menu, the text boxes on the form are cleared of all
text, and TextBox1 has the focus and is ready to accept text.

The New button on the toolbar should perform the same function, but you don’t want to write the
same code twice. You could put the text in the previous procedure in a separate procedure and call
that procedure from both the newToolStripMenuItem_Click and newToolStripButton_Click
procedures. Instead, you have the code in the newToolStripMenuItem_Click procedure and simply
call that procedure from within the newToolStripButton_Click procedure. Since both procedures
accept the same parameters, you simply pass the parameters received in this procedure to the
procedure you are calling:

 ‘Call the newToolStripMenuItem_Click procedure
 newToolStripMenuItem_Click(sender, e)

Now you can click the New button on the toolbar or click the New menu item on the File menu and
have the same results, clearing the text boxes on your form.

When you click the Exit menu item, you want the program to end. In the exitToolStripMenuItem_
Click procedure, you added the following code. The Me keyword refers to the class where the code is
executing and, in this case, refers to the form class. The Close method closes the form, releases all
resources, and ends the program:

 ‘Close the form and end
 Me.Close()

That takes care of the code for the File menu and its corresponding toolbar button, so you want to
move on to the Edit menu and add the code for those menu items.

c09.indd 309c09.indd 309 4/1/08 6:25:23 PM4/1/08 6:25:23 PM

Chapter 9: Creating Menus

310

Try It Out Coding the Edit Menu
1. The first menu item in the Edit menu is the Undo menu item. Select UndoToolStripMenuItem

in the Class Name combo box and select the Click event in the Method Name combo box.
Add the following highlighted code to the Click event handler:

 Private Sub UndoToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles UndoToolStripMenuItem.Click

 ‘Undo the last operation
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Undo()
 End If

 End Sub

2. The next menu item that you want to add code for is the Cut menu item. Select
CutToolStripMenuItem in the Class Name combo and the Click event in the Method Name
combo box. Add the highlighted code here:

 Private Sub CutToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CutToolStripMenuItem.Click

 ‘Copy the text to the clipboard and clear the field
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Cut()
 End If

 End Sub

3. You’ll want the Cut button on the toolbar to call the code for the Cut menu item. Select
CutToolStripButton in the Class Name combo and the Click event in the Method Name
combo box. Add the following highlighted code:

 Private Sub CutToolStripButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CutToolStripButton.Click

 ‘Call the CutToolStripMenuItem_Click procedure
 CutToolStripMenuItem_Click(sender, e)

 End Sub

4. The next menu item that you need to code is the Copy menu item. Select
CopyToolStripMenuItem in the Class Name combo and the Click event in the Method Name
combo box and then add the following highlighted code:

 Private Sub CopyToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CopyToolStripMenuItem.Click

 ‘Copy the text to the clipboard
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Copy()
 End If

 End Sub

c09.indd 310c09.indd 310 4/1/08 6:25:23 PM4/1/08 6:25:23 PM

Chapter 9: Creating Menus

311

5. You want the Copy button on the toolbar to call the procedure you just added. Select
CopyToolStripButton in the Class Name combo and the Click event in the Method Name
combo box and then add the following highlighted code:

 Private Sub CopyToolStripButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CopyToolStripButton.Click

 ‘Call the CopyToolStripMenuItem_Click procedure
 CopyToolStripMenuItem_Click(sender, e)

 End Sub

6. The Paste menu item is next so select PasteToolStripMenuItem in the Class Name combo box
and the Click event in the Method Name combo box. Add the following highlighted code to
the Click event handler:

 Private Sub PasteToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles PasteToolStripMenuItem.Click

 ‘Copy the text from the clipboard to the text box
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Paste()
 End If

 End Sub

7. The Paste toolbar button should execute the code in the PasteToolStripMenuItem_Click
procedure. Select PasteToolStripButton in the Class Name combo box and the Click event in
the Method Name combo box and add the following highlighted code:

 Private Sub PasteToolStripButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles PasteToolStripButton.Click

 ‘Call the PasteToolStripMenuItem_Click procedure
 PasteToolStripMenuItem_Click(sender, e)

 End Sub

8. The last menu item under the Edit menu that you’ll write code for is the Select All menu item.
Select SelectAllToolStripMenuItem in the Class Name combo box and the Click event in the
Method Name combo box and add the following highlighted code:

 Private Sub SelectAllToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles SelectAllToolStripMenuItem.Click

 ‘Select all the text in the text box
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).SelectAll()
 End If

 End Sub

How It Works
You added the code for the Edit menu starting with the Undo menu item. Since you have two text
boxes on your form, you need a way to determine which text box you are dealing with or a generic
way of handling an undo operation for both text boxes. In this example, you go with the latter option
and provide a generic way to handle both text boxes.

c09.indd 311c09.indd 311 4/1/08 6:25:23 PM4/1/08 6:25:23 PM

Chapter 9: Creating Menus

312

You do this by first determining whether the active control you are dealing with is a TextBox control.
The ActiveControl property of the Form class returns a reference to the active control on the form,
the control that has focus.

Then you want to check the active control to see if it is a TextBox control. This is done using the
TypeOf operator. This operator compares an object reference to a data type and in the code below you
are comparing the object reference returned in the ActiveControl property to a data type of
TextBox.

When you know you are dealing with a TextBox control, you use the CType function to convert the
object contained in the ActiveControl property to a TextBox control. This exposes the properties and
methods of the TextBox control in IntelliSense allowing you to choose the Undo method:

 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Undo()
 End If

The menu and toolbar are never set as the active control. This allows you to use the menus and toolbar
buttons and always reference the active control.

The ActiveControl property works fine in this small example, because all you are dealing with is two
text boxes. However, in a real-world application, you would need to test the active control to see whether
it supports the method that you were using (for example, Undo).

You use the same logic for the rest of the menu item procedures as the Undo menu item, checking the
type of active control to see if it is a TextBox control. Then you call the appropriate method on the
TextBox control to cut, copy, paste, and select all text

 Coding the View Menu and Toolbars
 Now that you have added the code to make the Edit menu items and the corresponding toolbar buttons
functional, the next step is to make the menu items under the View menu functional.

Try It Out Coding the View Menu
1. Return to the Code Editor in the Windows Forms Menus project and in the Class Name

combo box, select MainToolStripMenuItem and in the Method Name combo box select the
Click event. Add the following highlighted code to the Click event handler:

 Private Sub MainToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MainToolStripMenuItem.Click

 ‘Toggle the visibility of the Main toolbar
 ‘based on the menu item’s Checked property
 If MainToolStripMenuItem.Checked Then
 tspMain.Visible = True
 Else
 tspMain.Visible = False
 End If

 End Sub

c09.indd 312c09.indd 312 4/1/08 6:25:24 PM4/1/08 6:25:24 PM

Chapter 9: Creating Menus

313

2. You need to add the same type of code that you just added to the Formatting submenu item.
Select FormattingToolStripMenuItem in the Class Name combo box and the Click event in
the Method Name combo box and add the following highlighted code:

 Private Sub FormattingToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles FormattingToolStripMenuItem.Click

 ‘Toggle the visibility of the Formatting toolbar
 ‘based on the menu item’s Checked property
 If FormattingToolStripMenuItem.Checked Then
 tspFormatting.Visible = True
 Else
 tspFormatting.Visible = False
 End If

 End Sub

How It Works
When the Main submenu item under the Tools menu item is clicked, the submenu item either displays
a check mark or removes it based on the current state of the Checked property of the submenu item.
You add code in the Click event of this submenu item to either hide or show the Main toolbar by
setting its Visible property to True or False:

 ‘Toggle the visibility of the Main toolbar
 ‘based on this menu item’s Checked property
 If MainToolStripMenuItem.Checked Then
 tspMain.Visible = True
 Else
 tspMain.Visible = False
 End If

The same principle works for the Formatting submenu item, and its code is very similar to that of the
Main submenu item:

 ‘Toggle the visibility of the Formatting toolbar
 ‘based on this menu item’s Checked property
 If FormattingToolStripMenuItem.Checked Then
 tspFormatting.Visible = True
 Else
 tspFormatting.Visible = False
 End If

c09.indd 313c09.indd 313 4/1/08 6:25:24 PM4/1/08 6:25:24 PM

Chapter 9: Creating Menus

314

 Testing Your Code
 As your applications become more complex, testing your code becomes increasingly important. The
more errors that you find and fix during your testing, the better able you will be to implement an
application that is both stable and reliable for your users. This translates into satisfied users and earns a
good reputation for you for delivering a quality product.

 You need not only to test the functionality of your application but also to test various scenarios that a
user might encounter or perform. For example, suppose you have a database application that gathers
user input from a form and inserts it into a database. A good application validates all user input before
trying to insert the data into the database, and a good test plan tries to break the data validation code.
This will ensure that your validation code handles all possible scenarios and functions properly.

Try It Out Testing Your Code
1. It’s time to test your code. Click the Run toolbar button. When your form loads, the only

toolbar that you should see is the main toolbar, as shown in Figure 9-6.

Figure 9-6

2. Click the View menu and then click the Toolbars menu item. Note that the Main submenu
item is selected and the main toolbar is visible. Go ahead and click the Formatting submenu
item. The Formatting toolbar is displayed along with the main toolbar.

 Note also that the controls on your form shifted down when the Formatting toolbar was
displayed. The reason that this happened was that you placed a Panel control on your form,
set its Dock property to Fill, and then placed your TextBox controls on the Panel control.
Doing this allows the controls on your form to be repositioned, either to take up the space
when a toolbar is hidden or to make room for the toolbar when it is shown; much like the
behavior in Microsoft Outlook or Visual Studio 2008.

3. If you click the View menu again and then click the Toolbars menu item, you will see that
both the Main and Formatting submenu items are checked. The selected submenu items
indicate that the toolbar is visible, and an unchecked submenu item indicates that the toolbar
is not visible.

4. Now test the functionality of the Edit menu. Click in the first text box and type some text.
Then click the Edit menu and select the Select All menu item. Once you select the Select All
menu item, the text in the text box is highlighted.

c09.indd 314c09.indd 314 4/1/08 6:25:24 PM4/1/08 6:25:24 PM

Chapter 9: Creating Menus

315

5. You now want to copy the text in the first text box while the text is highlighted. Hover your
mouse over the Copy button on the toolbar to view the tool tip. Now either click on the Copy
button on the toolbar or select the Edit Copy menu item.

 Place your cursor in the second text box, and then either click the Paste button on the toolbar
or select Edit Paste. The text is pasted into the second text box, as shown in Figure 9-7.

Figure 9-7

6. Click the first text box and then click Edit Undo. Note that the changes you made to the first
text box have been undone. You might have expected that the text in the second text box
would be removed, but Windows keeps track of the cut, copy, and paste operations for each
control individually; so there’s nothing you need to do.

7. The last item on the Edit menu to test is the Cut menu item. Type some more text in the first
text box, and then highlight the text in the first text box by clicking the Edit menu and
selecting the Select All menu item. Then either click the Cut icon on the toolbar or select
Edit Cut. The text is copied to the Clipboard and is then removed from the text box.

 Place your cursor in the second text box at the end of the text there. Then paste the text in this
text box using the Paste shortcut key Ctrl+V. The text has been placed at the end of the existing
text in the text box. This is how Windows’ cut, copy, and paste operations work, and, as you
can see, there was very little code required to implement this functionality in your program.

8. Now click the File menu and choose the New menu item. The text in the text boxes is cleared.
The only menu item left to test is the Exit menu item under the File menu.

9. Before testing the Exit menu item, take a quick look at context menus. Type some text in one
of the text boxes. Now, right-click in that text box, and you will see a context menu pop up
similar to what is shown in Figure 9-8. Notice that this context menu appeared automatically;
there was no code that you needed to add to have this done. This is a feature of the Windows
operating system, and Visual Studio 2008 provides a way to override the default context
menus, as you will see in the next section.

c09.indd 315c09.indd 315 4/1/08 6:25:25 PM4/1/08 6:25:25 PM

Chapter 9: Creating Menus

316

10. To test the last bit of functionality of your program, select File Exit, and your program ends.

Figure 9-8

 Context Menus
 Context menus are menus that pop up when a user clicks the right mouse button on a control or window.
They provide the users with quick access to the most commonly used commands for the control that
they are working with. As you just saw, the context menu that appeared provides you with a way to
manage the text in a text box.

 Context menus are customized for the control that you are working with, and in more complex
applications, such as Visual Studio 2008 or Microsoft Word, they provide quick access to the commands
for the task that is being performed.

 You saw that Windows provides a default context menu for the TextBox control that you are working
with, and you can override the default context menu if your application ’ s needs dictate that you do so.
For example, suppose that you have an application in which you want the user to be able to copy the
text in a text box but not actually cut or paste text in that text box. This would be an ideal situation to
provide your own context menu to allow only the operations that you want.

 Visual Studio 2008 provides a ContextMenuStrip control that you can place on your form and customize,
just as you did the MenuStrip control. However, the main difference between the MenuStrip control and
the ContextMenuStrip control is that you can create only one top - level menu with the ContextMenuStrip
control. You can still create submenu items with the ContextMenuStrip if you need to.

 Most controls in the toolbox have a ContextMenuStrip property that can be set to the context menu
that you define. When you right - click that control, the context menu that you defined is displayed
instead of the default context menu.

c09.indd 316c09.indd 316 4/1/08 6:25:25 PM4/1/08 6:25:25 PM

Chapter 9: Creating Menus

317

 Some controls, such as the ComboBox and ListBox controls, do not have a default context menu. This is
because they contain a collection of items, not a single item like simple controls such as the TextBox.
They do, however, have a ContextMenuStrip property that can be set to a context menu that you
define.

The ComboBox control does not provide a context menu when its DropDownStyle property is set to
 DropDownList , but it does provide a context menu when its DropDownStyle property is set to
 Simple or DropDown

 Creating Context Menus
 Now that you know what context menus are, you are ready to learn how to create and use them in your
Visual Basic 2008 applications. In the next Try It Out, you expand the code from the previous Try It Out
section by adding a context menu to work with your text boxes. You add one context menu and use it for
both text boxes. You could just as easily create two context menus, one for each text box, and have the
context menus perform different functions.

Try It Out Creating Context Menus
1. Return to the Forms Designer in your Windows Forms Menus project and then click the

toolbox to locate the ContextMenuStrip control. Drag and drop it onto your form. It is added
at the bottom of the development environment just as the MenuStrip control was.

2. In the Properties window, click the ellipsis dots button next to the Items property. You’ll be
adding five menu items in your context menu in the next several steps.

3. Click the Add button in the Items Collection Editor dialog box to add the first menu item and
set the Name property to ContextUndoToolStripMenuItem. Click the ellipsis dots button next
to the Image property and then click the Import button in the Select Resource dialog box.
Locate an Undo bitmap or portable network graphics (png) file on your computer and click
the Open button. Click OK in the Select Resource dialog box to close it and to return to the
Items Collection Editor. Locate the Text property and set it to Undo.

4. You want to add a separator between the Undo menu item and the next menu item. Select
Separator in the List combo box in the Items Collection Editor dialog box and then click the
Add button. You’ll want to accept all default properties for the separator.

5. Select MenuItem in the combo box and click the Add button again to add the next menu item
and set the Name property to ContextCutToolStripMenuItem. Click the ellipsis dots button
next to the Image property and, in the Select Resource dialog box, locate a Cut bitmap or png
file. Finally, set the Text property to Cut.

6. Click the Add button again to add the next menu item and set the Name property to
ContextCopyToolStripMenuItem. Click the ellipsis dots button next to the Image property
and, in the Select Resource dialog box, locate a Copy bitmap or icon file. Finally, set the Text
property to Copy.

c09.indd 317c09.indd 317 4/1/08 6:25:26 PM4/1/08 6:25:26 PM

Chapter 9: Creating Menus

318

7. Click the Add button once again to add the next menu item and set the Name property to
ContextPasteToolStripMenuItem. Click the ellipse button next to the Image property and in
the Select Resource dialog box, import the PASTE.BMP file. Then set the Text property to Paste.

8. Now you want to add a separator between the Paste menu item and the next menu item.
Select Separator in the combo box in the Items Collection Editor dialog box and then click the
Add button. Again, you’ll want to accept all default properties for the separator.

9. Now select MenuItem in the combo box and click the Add button to add the final menu item.
Set the Name property to ContextSelectAllToolStripMenuItem and the Text property to
Select All. There is no image for this menu item. Finally, click OK in the Items Collection
Editor dialog box to close it.

10. When you are done, click any part of the form, and the context menu disappears. (You can
always make it reappear by clicking the ContextMenuStrip1 control at the bottom of the
development environment.)

11. Click the first text box on your form. In the Properties window, select ContextMenuStrip1 in
the drop-down list for the ContextMenuStrip property. Repeat the same action for the
second text box to assign a context menu in the ContextMenuStrip property.

12. Test your context menu for look and feel. At this point, you haven’t added any code to it, but
you can ensure that it looks visually correct. Run the application; then right-click in the first
text box, and you will see the context menu that you have just added, as shown in Figure 9-9.
The same context menu appears if you also right-click in the second text box.

Figure 9-9

13. Stop your program and switch to the Code Editor for your form so that you can add the code
for the context menus. The first procedure that you want to add is that for the Undo context
menu item. Select ContextUndoToolStripMenuItem in the Class Name combo box and the
Click event in the Method Name combo box and add the following highlighted code:

Private Sub ContextUndoToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ContextUndoToolStripMenuItem.Click

 ‘Call the UndoToolStripMenuItem_Click procedure
 UndoToolStripMenuItem_Click(sender, e)

End Sub

c09.indd 318c09.indd 318 4/1/08 6:25:26 PM4/1/08 6:25:26 PM

Chapter 9: Creating Menus

319

14. Select ContextCutToolStripMenuItem in the Class Name combo box and the Click event in
the Method Name combo box. Add the following highlighted code to the Click event
handler:

Private Sub ContextCutToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ContextCutToolStripMenuItem.Click

 ‘Call the CutToolStripMenuItem_Click procedure
 CutToolStripMenuItem_Click(sender, e)

End Sub

15. For the Copy context menu item, select ContextCopyToolStripMenuItem in the Class Name
combo box and the Click event in the Method Name combo box and then add the following
highlighted code:

Private Sub ContextCopyToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ContextCopyToolStripMenuItem.Click

 ‘Call the CopyToolStripMenuItem_Click procedure
 CopyToolStripMenuItem_Click(sender, e)

End Sub

16. Select ContextPasteToolStripMenuItem in the Class Name combo box for the Paste context
menu item and the Click event in the Method Name combo box. Then add the following
highlighted code:

Private Sub ContextPasteToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ContextPasteToolStripMenuItem.Click

 ‘Call the PasteToolStripMenuItem_Click procedure
 PasteToolStripMenuItem_Click(sender, e)

End Sub

17. The last procedure that you need to perform is for the Select All context menu item. Select
ContextSelectAllToolStripMenuItem in the Class Name combo box and the Click event in the
Method Name combo box and then add the following highlighted code:

Private Sub ContextSelectAllToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles ContextSelectAllToolStripMenuItem.Click

 ‘Call the SelectAllToolStripMenuItem_Click procedure
 SelectAllToolStripMenuItem_Click(sender, e)

End Sub

18. That’s all the code that you need to add to implement your own context menu. Pretty simple,
huh? Now run your project to see your context menu in action and test it. You can test the
context menu by clicking each of the context menu items shown. They perform the same
functions as their counterparts in the toolbar and Edit menu.

 Do you see the difference in your context menu from the one shown in Figure 9-8? Your
context menu has a cleaner look and shows the icons for the various menu items. There is one
other subtle difference: Your menu items are all enabled when some of them shouldn’t be.
You’ll rectify this in the next Try It Out.

c09.indd 319c09.indd 319 4/1/08 6:25:26 PM4/1/08 6:25:26 PM

Chapter 9: Creating Menus

320

How It Works
The ContextMenuStrip works in the same manner as the MenuStrip, and you should have been able to
follow along and create a context menu with ease. You may have noticed that you use a prefix of
Context for your context menu names in this exercise. This distinguishes these menu items as context
menu items and groups these menu items in the Class Name combo box in the Code Editor, as you
probably already noticed.

The code you added here was a no-brainer, as you have already written the code to perform undo, cut,
copy, paste, and select all operations. In this exercise, you merely call the corresponding menu item
procedures in your Click event handlers for the context menu items.

 Enabling and Disabling Menu Items and Toolbar Buttons
 Now that you have implemented a context menu and have it functioning, you are ready to write some
code to complete the functionality in your application. In the following Try It Out, you implement the
necessary code to enable and disable menu items, context menu items, and toolbar buttons.

Try It Out Creating Context Menus
1. You need to create a procedure that can be called to toggle all of the Edit menu items, toolbar

buttons, and context menu items, enabling and disabling them as needed. They are enabled
and disabled based upon what should be available to the user. You should call this procedure
ToggleMenus, so stop your program and add the following procedure at the end of your
existing code.

 Private Sub ToggleMenus()
 ‘Declare a TextBox object and set it to the ActiveControl
 Dim objTextBox As TextBox = CType(Me.ActiveControl, TextBox)

 ‘Declare and set a Boolean variable
 Dim blnEnabled As Boolean = CType(objTextBox.SelectionLength, Boolean)

 ‘Toggle the Undo menu items
 UndoToolStripMenuItem.Enabled = objTextBox.CanUndo
 ContextUndoToolStripMenuItem.Enabled = objTextBox.CanUndo

 ‘Toggle the Cut toolbar button and menu items
 CutToolStripButton.Enabled = blnEnabled
 CutToolStripMenuItem.Enabled = blnEnabled
 ContextCutToolStripMenuItem.Enabled = blnEnabled

 ‘Toggle the Copy toolbar button and menu items
 CopyToolStripButton.Enabled = blnEnabled
 CopyToolStripMenuItem.Enabled = blnEnabled
 ContextCopyToolStripMenuItem.Enabled = blnEnabled

 ‘Reset the blnEnabled variable
 blnEnabled = My.Computer.Clipboard.ContainsText

 ‘Toggle the Paste toolbar button and menu items
 PasteToolStripButton.Enabled = blnEnabled

c09.indd 320c09.indd 320 4/1/08 6:25:27 PM4/1/08 6:25:27 PM

Chapter 9: Creating Menus

321

 PasteToolStripMenuItem.Enabled = blnEnabled
 ContextPasteToolStripMenuItem.Enabled = blnEnabled

 ‘Reset the blnEnabled variable
 If objTextBox.SelectionLength < objTextBox.TextLength Then
 blnEnabled = True
 Else
 blnEnabled = False
 End If

 ‘Toggle the Select All menu items
 SelectAllToolStripMenuItem.Enabled = blnEnabled
 ContextSelectAllToolStripMenuItem.Enabled = blnEnabled
 End Sub

 That’s it! All of that code will toggle the Edit menu items, the context menu items, and the
toolbar buttons. Now all you need is to figure out when and where to call this procedure.

2. Return to the Forms Designer and locate the Timer control in the Toolbox. Drag this control to
your form and drop it. It is positioned at the bottom of the IDE. In the Properties window, set
the Enabled property to True and the Interval property to 250.

3. Double-click the Timer control at the bottom of the IDE to create the Tick event handler and
add this code:

 Private Sub Timer1_Tick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick

 ‘Toggle toolbar and menu items
 ToggleMenus()

 End Sub

4. Run your project again. After the form has been displayed, click in the first text box and enter
some text. Then, right-click in the text box to display your context menu. Now the context
menu has the appropriate menu items enabled as shown in Figure 9-10 as do the toolbar
buttons and Edit menu items.

Figure 9-10

c09.indd 321c09.indd 321 4/1/08 6:25:27 PM4/1/08 6:25:27 PM

Chapter 9: Creating Menus

322

How It Works
The first thing that you do in the ToggleMenus procedure is to declare an object and set it equal to the
active TextBox control. You saw the ActiveControl property in the “Coding the Edit Menu” Try It
Out exercise:

 ‘Declare a TextBox object and set it to the ActiveControl
 Dim objTextBox As TextBox = CType(Me.ActiveControl, TextBox)

Next you declare a Boolean variable that will be used to determine if a property should set to True
or False and initially set it based on the SelectionLength property of the active text box. The
SelectionLength property returns the number of characters selected in a text box. You can use this
number to act as a True or False value because a value of False in Visual Basic 2008 is zero and a
value of True is one. Since the value of False is always evaluated first, any number other than zero
evaluates to True.

In order to make this happen, you need to convert the SelectionLength property from an Integer
data type to a Boolean data type using the CType function as shown in the code below:

 ‘Declare and set a Boolean variable
 Dim blnEnabled As Boolean = CType(objTextBox.SelectionLength, Boolean)

The first Edit menu item is Undo, so you start with that one. The TextBox class has a property called
CanUndo, which returns a True or False value indicating whether or not the last operation performed
in the text box can be undone.

You use the CanUndo property to set the Enabled property of the Edit menu item. The Enabled
property is set using a Boolean value, which works out great, because the CanUndo property returns a
Boolean value. The following code shows how you set the Enabled property of the Undo menu item
and context menu item:

 ‘Toggle the Undo menu items
 undoToolStripMenuItem.Enabled = objTextBox.CanUndo
 contextUndoToolStripMenuItem.Enabled = objTextBox.CanUndo

The next menu item in the Edit menu that you wrote code for is the Cut menu item. You have already
set the blnEnabled variable so the following code merely uses the value contained in that variable to
set the Enabled property of the Cut menu item, toolbar button, and context menu item:

 ‘Toggle the Cut toolbar button and menu items
 CutToolStripButton.Enabled = blnEnabled
 CutToolStripMenuItem.Enabled = blnEnabled
 ContextCutToolStripMenuItem.Enabled = blnEnabled

The next menu item in the Edit menu is the Copy menu item. Again, you use the blnEnabled variable
to set the Enabled property appropriately:

 ‘Toggle the Copy toolbar button and menu items
 CopyToolStripButton.Enabled = blnEnabled
 CopyToolStripMenuItem.Enabled = blnEnabled
 ContextCopyToolStripMenuItem.Enabled = blnEnabled

c09.indd 322c09.indd 322 4/1/08 6:25:27 PM4/1/08 6:25:27 PM

Chapter 9: Creating Menus

323

The next menu item in the Edit menu is the Paste menu item. Setting the Enabled property of this
menu item requires a little more work. You query the ContainsText property of the My.Computer
.Clipboard object to receive a Boolean value indicating whether the Clipboard contains any text.
You then set that Boolean value in the blnEnabled variable which is used to set the Enabled
property of the Paste toolbar button, Paste menu item, and context menu item as shown in the
following code:

 ‘Reset the blnEnabled variable
 blnEnabled = My.Computer.Clipboard.ContainsText
 ‘Toggle the Paste toolbar button and menu items
 PasteToolStripButton.Enabled = blnEnabled
 PasteToolStripMenuItem.Enabled = blnEnabled
 ContextPasteToolStripMenuItem.Enabled = blnEnabled

The last Edit menu item is the Select All menu item. Again, you use the SelectionLength property to
determine whether any or all text has been selected. If the SelectionLength property is less than the
TextLength property you set the blnEnabled variable to True as not all text in the text box has been
selected, otherwise you set it to False. After the blnEnabled variable has been appropriately set, you
use that variable to set the Enabled property of the Select All menu item and context menu item:

 ‘Reset the blnEnabled variable
 If objTextBox.SelectionLength < objTextBox.TextLength Then
 blnEnabled = True
 Else
 blnEnabled = False
 End If

 ‘Toggle the Select All menu items
 SelectAllToolStripMenuItem.Enabled = blnEnabled
 ContextSelectAllToolStripMenuItem.Enabled = blnEnabled

To enable and disable the menu items, context menu items and toolbar buttons, you have to call the
ToggleMenus procedure. The best place to do this is in the Tick event of the Timer control that you
placed on your form. The Tick event is fired using the Interval property that you set to a value of
250. The Interval property is expressed in milliseconds where 1,000 milliseconds equals one second.
So basically, the Tick event of the Timer control is fired every quarter second:

 Private Sub Timer1_Tick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick

 ‘Toggle toolbar and menu items
 ToggleMenus()
 End Sub

c09.indd 323c09.indd 323 4/1/08 6:25:28 PM4/1/08 6:25:28 PM

Chapter 9: Creating Menus

324

 Summary
 This chapter covered how to implement menus, menu items, and submenu items. You also learned how
to implement multiple toolbars, although that was not the focus of the chapter. Through practical hands -
 on exercises you have seen how to create menus, menu items, and submenu items. You have also seen
how to add access keys, shortcut keys, and images to these menu items.

 Since you used the Edit menu in the Try It Outs, you have also seen how easy it is to implement basic
editing techniques in your application by using the properties of the TextBox control and the Clipboard
object. Now you know how easy it is to provide this functionality to your users — something users have
come to expect in every good Windows application.

 You also explored how to create and implement context menus and to override the default context
menus provided by Windows. Since you had already coded the procedure to implement undo, cut, copy,
and paste operations, you simply reused that code in your context menus.

 Now that you have completed this chapter, you should know how to:

 Add a MenuStrip control to your form and add menus, menu items, and submenu items.

 Customize the menu items with a check mark.

 Add access keys and shortcut keys to your menu items.

 Add a ContextMenuStrip control to your form and add menu items.

 Use the properties of the TextBox control to toggle the Enabled property of menu items.

 Exercise
 1. To give your Menus project the standard look of a typical Windows application, add a

StatusStrip control to the form and add the necessary code to display a message when text is cut,
copied, or pasted.

❑

❑

❑

❑

❑

c09.indd 324c09.indd 324 4/1/08 6:25:28 PM4/1/08 6:25:28 PM

 10
Debugging and Error

Handling

 Debugging is an essential part of any development project, as it helps you find errors in your code
and in your logic. Visual Studio 2008 has a sophisticated debugger built right into the development
environment. This debugger is the same for all languages that Visual Studio 2008 supports. When
you have mastered debugging in one language, you can debug in any language that you can write
in Visual Studio 2008.

 No matter how good your code is, there are always going to be some unexpected circumstances
that will cause your code to fail. If you do not anticipate and handle errors, your users will see a
default error message about an unhandled exception, which is provided by the common language
run - time package. This is not a user - friendly message and usually does not clearly inform the user
about what is going on or how to correct it.

 This is where error handling comes in. Visual Studio 2008 also provides common structured error -
 handling functions that are used across all languages. These functions allow you to test a block of
code and catch any errors that may occur. If an error does occur, you can display your own user -
 friendly message that informs the user of what happened and how to correct it, or you can simply
handle the error and continue processing.

 This chapter looks at some of the debugging features available in Visual Studio 2008 and provides
a walk - through of debugging a program. You examine how to set breakpoints in your code to stop
execution at any given point, how to watch the value of a variable change, and how to control the
number of times a loop can execute before stopping. All of these can help you determine just what
is going on inside your code. Finally, this chapter takes a look at the structured error - handling
functions provided by Visual Studio 2008.

 In this chapter, you will:

 Examine the major types of errors that you may encounter and how to correct them

 Examine and walk through debugging a program

 Examine and implement error handling in a program

❑

❑

❑

c10.indd 325c10.indd 325 4/1/08 6:26:05 PM4/1/08 6:26:05 PM

Chapter 10: Debugging and Error Handling

326

 Major Error Types
 Error types can be broken down into three major categories: syntax, execution, and logic. This section
shows you the important differences among these three types of errors and how to correct them.

 Knowing what type of errors are possible and how to correct them will significantly speed up the
 development process. Of course, sometimes you just can ’ t find the error on your own. Don ’ t waste too
much time trying to find errors in your code by yourself in these situations. Coming back to a nagging
problem after a short coffee break can often help you crack it. Otherwise, ask a colleague to have a look at
your code with you; two pairs of eyes are often better than one in these cases.

 Syntax Errors
 Syntax errors, the easiest type of errors to spot and fix, occur when the code you have written cannot be
understood by the compiler because instructions are incomplete, supplied in unexpected order, or
cannot be processed at all. An example of this would be declaring a variable of one name and
misspelling this name in your code when you set or query the variable.

 The development environment in Visual Studio 2008 has a really sophisticated syntax - checking
mechanism, making it hard, but not impossible, to have syntax errors in your code. It provides instant
syntax checking of variables and objects and lets you know immediately when you have a syntax error.

 Suppose you try to declare a variable as Private in a procedure. Visual Studio 2008 underlines the
declaration with a blue wavy line indicating that the declaration is in error. If the Integrated
Development Environment (IDE) can automatically correct the syntax error, you ’ ll see a little orange
rectangular box at the end of the blue wavy line, as shown in Figure 10 - 1 , indicating that AutoCorrect
options are available for this syntax error. AutoCorrect is a feature of Visual Studio 2008 that provides
error correction options that the IDE will suggest to correct the error.

Figure 10-1

Figure 10-2

 When you hover your mouse over the code in error, you ’ ll receive a tooltip, telling you what the error is,
and a small gray box with a red circle and a white exclamation point. If you then move your mouse into
the gray box, a down arrow appears, as shown in Figure 10 - 2 , to let you know that a dialog box is
available with some suggested error correction options.

c10.indd 326c10.indd 326 4/1/08 6:26:05 PM4/1/08 6:26:05 PM

Chapter 10: Debugging and Error Handling

327

 Clicking the down arrow or pressing Shift+Alt+F10 causes the Error Correction Options dialog box to
appear as shown in Figure 10 - 3 . This dialog box presents one or more choices to you for correcting the
error. In this instance, there is only one choice to correct the syntax error as shown in the dialog box in
Figure 10 - 3 .

 Note that the dialog box shows you how your code can be corrected: by replacing the Private keyword
with the Dim keyword. The sample code displayed in the dialog box has your offending statement in
strikethrough and the suggested correction preceding it. Above the code in the dialog box is a
hyperlink that will replace the Private keyword with the Dim keyword. Click this link to apply the fix
to your code.

Figure 10-3

 Another option available for reviewing all the errors in your code is the Error List window. This window
displays a grid with all the errors ’ descriptions, the files they exist in, and the line numbers and column
numbers of the error. If your solution contains multiple projects, it also displays the project that each
error exists in.

 The Error List can be accessed by clicking the Error List tab at the bottom of the IDE if it is already
displayed in the IDE or by clicking the View Error List menu item. When the Error List window is
displayed, you can double - click any error to be taken to that specific error in your code.

 Sometimes you ’ ll receive warnings, displayed with a green wavy line under the code in question. These
are just warnings and your code will compile. However, you should heed these warnings and try to
correct these errors if possible, because they may produce undesirable results at run time.

 As an example, a warning would occur in the line of code shown in Figure 10 - 3 once the Private
keyword was replaced with the Dim keyword. The IDE would give you a warning that the variable,
 strFileName , is unused in the procedure. Simply initializing the variable or referencing the variable in
code would cause this warning to go away.

 Keep in mind that you can hover your mouse over errors and warnings in your code to cause the
appropriate tooltip to be displayed informing you of the problem. As a reminder, if the IDE can provide
the AutoCorrect feature for an error, it will show an orange rectangular box at the end of the blue wavy line.

c10.indd 327c10.indd 327 4/1/08 6:26:06 PM4/1/08 6:26:06 PM

Chapter 10: Debugging and Error Handling

328

 The IDE also provides IntelliSense to assist in preventing syntax errors. IntelliSense provides a host of
features such as providing a drop - down list of members for classes, structures, and namespaces as
shown in Figure 10 - 4 . This enables you to choose the correct member for the class, structure, or
namespace that you are working with. It also provides tooltip information for the selected member or
method, also shown in Figure 10 - 4 . IntelliSense initially displays a list of all members for the object being
worked with, and as soon as you start typing one or more letters the list of members is shortened to
match the letters that you have typed as shown in Figure 10 - 4 .

Figure 10-4

 These IntelliSense features provide two major benefits. First, you do not have to remember all the
available members for the class. You simply scroll through the list to find the member that you want to
work with or you type the first letter or two of the member to have the list of members reduced to the
relevant members. To select the member in the list that you want to work with, you press the Tab or
Enter key or double - click the member. Second, the features help you prevent syntax errors because you
are less likely to misspell member names or try to use members that do not exist in the given class.

 Another great feature of IntelliSense is that it provides a parameter list for the method that you are
working with. IntelliSense lists the number, names, and types of the parameters required by the function,
as shown in Figure 10 - 4 . This is also a time saver, as you do not have to remember the required
parameters for every class member that you work with, or indeed search the product documentation for
what you need.

 If the method is overloaded — that is, there are several methods with the same name but different
parameters — the tooltip indicates this as shown in Figure 10 - 4 with the text “ (+ 1 overloads) ” . Also,
when you start to work with the member, a pop - up list enables you to scroll through the different
overloaded methods, as shown in Figure 10 - 5 for the Substring method of the String class, by simply
clicking the up and down arrows to view the different overloaded methods.

 Another IntelliSense list appears for the parameter that you are working with and again, this large list of
all classes and members is reduced after you start typing one or more letters as indicated in Figure 10.5 .
Here I started typing the letters my to have the list of available classes and namespaces to reduced to
classes and namespaces that begin with the letters my .

c10.indd 328c10.indd 328 4/1/08 6:26:06 PM4/1/08 6:26:06 PM

Chapter 10: Debugging and Error Handling

329

 Plenty of built - in features in the development environment can help prevent syntax errors. All you need
to do is to be aware of these features and take advantage of them to help prevent syntax errors in
your code.

 Execution Errors
 Execution errors (or run - time errors) occur while your program is executing. These errors are often caused
because something outside of the application, such as a user, database, or hard disk, does not behave
as expected.

 Developers need to anticipate the possibility of execution errors and build appropriate error - handling
logic. Implementing the appropriate error handling does not prevent execution errors, but does allow
you to handle them either by gracefully shutting down your application or bypassing the code that
failed and giving the user the opportunity to perform that action again. Error handling is covered later
in this chapter.

 The best way to prevent execution errors is to try anticipating the error before it occurs and to use error
handling to trap and handle the error. You must also thoroughly test your code before deploying it.

 Most execution errors can be found while you are testing your code in the development environment.
This allows you to handle the errors and debug your code at the same time. You can then see what type
of errors may occur and implement the appropriate error - handling logic. Debugging, where you find
and handle any execution errors that may crop up, is covered later in the “ Debugging ” section.

 Logic Errors
 Logic errors (or semantic errors) give unexpected or unwanted results because you did not fully understand
what the code you were writing did. Probably the most common logic error is an infinite loop:

 Private Sub PerformLoopExample()
 Dim intIndex As Integer
 Do While intIndex < 10
 ...perform some logic
 Loop
 End Sub

Figure 10-5

c10.indd 329c10.indd 329 4/1/08 6:26:06 PM4/1/08 6:26:06 PM

Chapter 10: Debugging and Error Handling

330

 If the code inside the loop does not set intIndex to 10 or above, this loop just keeps going forever. This
is a very simple example, but even experienced developers find themselves writing and executing loops
whose exit condition can never be satisfied.

 Logic errors can be the most difficult to find and troubleshoot, because it is very difficult to be sure that
your program is completely free from logic errors.

 Another type of logic error occurs when a comparison fails to give the result you expect. Say you made a
comparison between a string variable, set by your code from a database field or from the text in a file,
and the text entered by the user. You do not want the comparison to be case sensitive, so you might write
code like this:

 If strFileName = txtInput.Text Then
 ...perform some logic
 End If

 However, if strFileName is set to Index.HTML and txtInput.Text is set to index.html , the
comparison fails. One way to prevent this logic error is to convert both fields being compared to either
uppercase or lowercase. This way, the results of the comparison would be True if the user entered the
same text as that contained in the variable, even if the case was different. The next code fragment shows
how you can accomplish this:

 If strFileName.ToUpper = txtInput.Text.ToUpper Then
 ...perform some logic
 End If

 The ToUpper method of the String class converts the characters in the string to all uppercase and
returns the converted results. Since the Text property of a text box is also a string, you can use the same
method to convert the text to all uppercase. This would make the comparison in the previous
example equal.

 An alternative to using either the ToUpper or ToLower methods of the String class is to use the
 Compare method of the String class, as shown in the next example. This allows you to compare the two
strings ignoring the case of the strings. This is covered in the String Comparison section in Chapter 4 .

 If String.Compare(strFileName, txtInput.Text, True) Then
 ... perform some logic
 End If

 Since logic errors are the hardest errors to troubleshoot and can cause applications to fail or give
 unexpected and unwanted results, you must check the logic carefully as you code and try to plan for all
possible errors that may be encountered by a user. As you become more experienced you will encounter
and learn from the common errors that you and your users make.

 One of the best ways to identify and fix logic errors is to use the debugging features of Visual Studio
2008. Using these features, you can find loops that execute too many times or comparisons that do not
give the expected result.

c10.indd 330c10.indd 330 4/1/08 6:26:06 PM4/1/08 6:26:06 PM

Chapter 10: Debugging and Error Handling

331

 Debugging
 Debugging code is a part of life — even experienced developers will make mistakes and need to debug
their code. Knowing how to efficiently debug your code can make the difference between enjoying your
job as a developer and hating it.

 In the following sections, you ’ ll create and debug a sample project while learning about the Exception
Assistant, breakpoints, and how to step through your code and use the Watch and Locals windows to
examine variables and objects.

 Creating a Sample Project
 In this section, you take a look at some of the built - in debugging features in the Visual Studio 2008
development environment through various Try It Out exercises. You write a simple program and learn
how to use the most common and useful debugging features available.

 You begin this process by creating a program that uses three classes that you create. Classes and objects
are covered in greater detail in the next chapter, but by creating and using these classes, you ’ ll be able to
learn about some of the other features in Visual Basic 2008 as well as learn how to debug your programs.
These classes are used to provide data to be displayed in a list box on your form. These classes introduce
two powerful concepts in particular: the generic class with type constraints and the interface. These
concepts are explained in the following How It Works.

Try It Out Creating a Sample Project to Debug

 1. Create a new Windows Forms Application project and name it Debugging .

 2. In the Solution Explorer window, rename the form to Debug.vb by right - clicking the form
and choosing Rename from the context menu. Now click the form in the Forms Designer and
then set the form ’ s properties in the Properties window as shown:

 Set Size to 440, 300 .

 Set StartPosition to CenterScreen.

 Set Text to Debug Demo .

 3. Next, you want to add some basic controls to the form and set their properties, as shown in
the following list:

 Create a Button control named btnStart and set these properties: Anchor = Top, Right,
Location = 329, 12 ; Text = Start .

 Create a ListBox control named lstData , and set these properties: Anchor = Top, Bottom,
Left, Right; Integral Height = False; Location = 12, 41 ; Size = 391, 204 .

❏

❏

❏

❏

❏

331

c10.indd 331c10.indd 331 4/1/08 6:26:07 PM4/1/08 6:26:07 PM

Chapter 10: Debugging and Error Handling

332

 4. Right click the Debugging project in the Solution Explorer, choose Add from the context
menu, and then choose the Class submenu item. In the Add New Item – Debugging dialog
box, enter a class name of Customer in the Name field and then click the Add button. Add the
following highlighted code to the class:

Public Class Customer

 Private intCustomerID As Integer
 Private strName As String

 Public Sub New(ByVal customerID As Integer, ByVal name As String)
 intCustomerID = customerID
 strName = name
 End Sub

 Public ReadOnly Property CustomerID() As Integer
 Get
 Return intCustomerID
 End Get
 End Property

 Public Property CustomerName() As String
 Get
 Return strName
 End Get
 Set(ByVal value As String)
 strName = value
 End Set
 End Property

End Class

 5. Before moving on to create the next class, take a quick look at the AutoCorrect option in
Visual Studio 2008 so that you can get first - hand experience with this feature. The
 CustomerName property that you just created should really be a ReadOnly property. Insert
the ReadOnly keyword between Public and Property and then click the next line of code.

 6. You ’ ll notice that the Set statement in this property has a blue wavy line underneath it
indicating an error. If you hover your mouse over the line of code in error, you get a ToolTip
informing you that a ReadOnly property cannot have a Set statement.

 7. Click the small gray box with a red circle and white exclamation point to display the Error
Correction Options dialog box, shown in Figure 10 - 6 .

c10.indd 332c10.indd 332 4/1/08 6:26:07 PM4/1/08 6:26:07 PM

Chapter 10: Debugging and Error Handling

333

 8. You have two options to choose from. The option that you want is the second one, which is to
remove the Set method. Click the hyperlink to have the AutoCorrect feature remove the Set
statement from this property.

 9. Now add another class to the Debugging project, called Generics . Then modify the Class
statement as highlighted here:

Public Class Generics(Of elementType)

End Class

 10. Add the following highlighted code to the Generics class:

Public Class Generics(Of elementType)

 ‘This class provides a demonstration of Generics

 ‘Declare Private variables
 Private strKey() As String
 Private elmValue() As elementType

 Public Sub Add(ByVal key As String, ByVal value As elementType)
 ‘Check to see if the objects have been initialized
 If strKey IsNot Nothing Then
 ‘Objects have been initialized
 ReDim Preserve strKey(strKey.GetUpperBound(0) + 1)
 ReDim Preserve elmValue(elmValue.GetUpperBound(0) + 1)
 Else
 ‘Initialize the objects
 ReDim strKey(0)
 ReDim elmValue(0)
 End If

 ‘Set the values
 strKey(strKey.GetUpperBound(0)) = key
 elmValue(elmValue.GetUpperBound(0)) = value
 End Sub

Figure 10-6

c10.indd 333c10.indd 333 4/1/08 6:26:07 PM4/1/08 6:26:07 PM

Chapter 10: Debugging and Error Handling

334

 Public ReadOnly Property Key(ByVal Index As Integer) As String
 Get
 Return strKey(Index)
 End Get
 End Property

 Public ReadOnly Property Value(ByVal Index As Integer) As elementType
 Get
 Return elmValue(Index)
 End Get
 End Property

End Class

 11. Add one more class to the Debugging project, called Computer . This is an example of a class
that implements the IDisposable interface , which is explained in the How It Works. Enter the
following highlighted code. Once you press the Enter key, Visual Studio 2008 inserts the
remaining code listed here automatically.

Public Class Computer

 Implements IDisposable

 Private disposedValue As Boolean = False ‘ To detect redundant calls

 ‘ IDisposable
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ‘ TODO: free other state (managed objects).
 End If

 ‘ TODO: free your own state (unmanaged objects).
 ‘ TODO: set large fields to null.
 End If
 Me.disposedValue = True
 End Sub

#Region “ IDisposable Support “
 ‘ This code added by Visual Basic to correctly implement
 ‘ the disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ‘ Do not change this code. Put cleanup code in
 ‘ Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
#End Region

End Class

c10.indd 334c10.indd 334 4/1/08 6:26:08 PM4/1/08 6:26:08 PM

Chapter 10: Debugging and Error Handling

335

 12. Add the following two properties to the end of the Computer class:

 Public ReadOnly Property FreeMemory() As String
 Get
 ‘Using the My namespace
 Return Format((_
 My.Computer.Info.AvailablePhysicalMemory.ToString \ 1024), _
 “#,###,##0”) & “ K”
 End Get
 End Property

 Public ReadOnly Property TotalMemory() As String
 Get
 ‘Using the My namespace
 Return Format((_
 My.Computer.Info.TotalPhysicalMemory.ToString \ 1024), _
 “#,###,##0”) & “ K”
 End Get
 End Property

 13. Switch to the code for the Debug form and add the following highlighted Imports statement:

Imports System.Collections.Generic

Public Class Debug

 14. You need to add a few private variable declarations next. Add the following code:

Public Class Debug

 ‘Using the Generics class
 Private objStringValues As New Generics(Of String)
 Private objIntegerValues As New Generics(Of Integer)

 ‘Using the List < T > class
 Private objCustomerList As New List(Of Customer)

 15. Add the following ListCustomer procedure to add customers to the list box on your form:

 Private Sub ListCustomer(ByVal customerToList As Customer)
 lstData.Items.Add(customerToList.CustomerID & _
 “ - “ & customerToList.CustomerName)
 End Sub

 16. Next, you need to add the rest of the code to the Start button Click event handler. Select
btnStart in the Class Name combo box at the top of the Code Editor and then select the Click
event in the Method Name combo box. Add the following highlighted code to the Click
event handler:

Private Sub btnStart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnStart.Click

c10.indd 335c10.indd 335 4/1/08 6:26:08 PM4/1/08 6:26:08 PM

Chapter 10: Debugging and Error Handling

336

 ‘Declare variables
 Dim strData As String

 lstData.Items.Add(“String variable data:”)
 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of the List < T > class
 lstData.Items.Add(“Customers in the Customer Class:”)
 objCustomerList.Add(New Customer(1001, “Henry For”))
 objCustomerList.Add(New Customer(1002, “Orville Wright”))
 For Each objCustomer As Customer In objCustomerList
 ListCustomer(objCustomer)
 Next

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of Generics
 lstData.Items.Add(“Generics Class Key/Value Pairs using String Values:”)
 objStringValues.Add(“1001”, “Henry Ford”)
 lstData.Items.Add(objStringValues.Key(0) & “ = “ & _
 objStringValues.Value(0))

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of Generics
 lstData.Items.Add(“Generics Class Key/Value Pairs using Integer Values:”)
 objIntegerValues.Add(“Henry Ford”, 1001)
 lstData.Items.Add(objIntegerValues.Key(0) & “ = “ & _
 objIntegerValues.Value(0))

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of the Using statement
 ‘Allows acquisition, usage and disposal of the resource
 lstData.Items.Add(“Computer Class Properties:”)
 Using objMemory As New Computer
 lstData.Items.Add(“FreeMemory = “ & objMemory.FreeMemory)
 lstData.Items.Add(“TotalMemory = “ & objMemory.TotalMemory)
 End Using

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of the Continue statement
 Dim strPassword As String = “POpPassword”
 Dim strLowerCaseLetters As String = String.Empty
 ‘Extract lowercase characters from string

c10.indd 336c10.indd 336 4/1/08 6:26:08 PM4/1/08 6:26:08 PM

Chapter 10: Debugging and Error Handling

337

 For intIndex As Integer = 0 To strPassword.Length - 1
 ‘Demonstrates the use of the Continue statement
 ‘If no uppercase character is found, continue the loop
 If Not strPassword.Substring(intIndex, 1) Like “[a-z]” Then
 ‘No upper case character found, continue loop
 Continue For
 End If
 ‘Lowercase character found, save it
 strLowerCaseLetters & = strPassword.Substring(intIndex, 1)
 Next

 ‘Display lowercase characters
 lstData.Items.Add(“Password lower case characters:”)
 lstData.Items.Add(strLowerCaseLetters)

End Sub

 17. Before examining how the code works, hover your mouse over the Error List tab at the bottom
of the IDE so that the Error List window appears as shown in Figure 10 - 7 . If the Error List tab
is not visible, select View Error List from the menu bar. You have one warning about a
potential error in your code. The line in question causes an error when you run your project;
however, this is deliberate and is intended to demonstrate some of the debugging capabilities
of Visual Studio 2008. You can ignore this warning for now, because you ’ ll be correcting it
shortly.

Figure 10-7

 18. Save your project by clicking the Save All button on the toolbar.

 How It Works
 After building the user interface for the Debugging project, you add the Customer class. This class is
also straightforward and contains two private variables, a constructor, and two properties.

 The two variables in the Customer class are declared as Private, which means that these variables are
accessible only to the procedures in the class:

Public Class Customer
 Private intCustomerID As Integer
 Private strName As String

 The constructor for this class — a method called whenever a new object of this class is to be created —
 is defined as a Public procedure with a procedure name of New . All constructors for classes in the
.NET Framework must be declared with a procedure name of New .

c10.indd 337c10.indd 337 4/1/08 6:26:09 PM4/1/08 6:26:09 PM

Chapter 10: Debugging and Error Handling

338

 This constructor accepts two input parameters: customerID and name . The parameters are used to set
the values in the private variables defined for this class:

 Public Sub New(ByVal customerID As Integer, ByVal name As String)
 intCustomerID = customerID
 strName = name
 End Sub

 Two properties are defined: CustomerID and CustomerName . These are read - only properties,
meaning that the consumer of this class can use these properties only to read the Customer ID and
customer name; consumers cannot change them:

 Public ReadOnly Property CustomerID() As Integer
 Get
 Return intCustomerID
 End Get
 End Property

 Public Property CustomerName() As String
 Get
 Return strName
 End Get
 End Property
End Class

 The next class that you add to the Debugging project is the Generics class. This class will be used to
demonstrate the use of Generics in Visual Basic 2008.

 The Collections class in the .NET Framework allows you to store data in the collection in a key/
value pair. The key is always a string value that identifies the value, also known as an item . The item is
defined as an object, which allows you to use the Collection class to store any data type that you
want in the item. So, for example, you can use the Collection class to store Integer values or you
can use it to store String values. No type checking is performed. This lack of specificity can lead to
performance problems as well as run - time problems.

 Suppose you intend to use the Collection class to store Integer values. If (through poor coding
practices) you allowed a String value to be added to the collection, you would not receive a run - time
error when adding the item, but you could receive one when you tried to access the item.

 The performance problems that you will encounter are the conversion of the data going into the
collection and the data coming out of the collection. When you add an item to the collection, the data
must be converted from its native data type to an Object data type, since that is how the Item
property is defined. Likewise, when you retrieve an item from the collection, the item must be
converted from an Object data type to the data type that you are using.

 In Chapter 5 , when working with ArrayList s (which are a kind of collection), you solved the
problem of being able to store items of the wrong type by creating a strongly typed collection class.
This did not solve the performance problem. Both problems are solved through Generics and through
the introduction of type constraints . A type constraint is specified on a class such as Collection by
using the Of keyword followed by a list of type name placeholders that are replaced by actual type
names when an object of the class is created. This provides type safety by not allowing you to add an
item that is not of the same data type that was defined for the class. It also improves performance
because the item does not have to be converted to and from the Object data type. The data type for

c10.indd 338c10.indd 338 4/1/08 6:26:09 PM4/1/08 6:26:09 PM

Chapter 10: Debugging and Error Handling

339

the item is defined using the data type that was defined for the class. You ’ ll see how all of this works
in more detail as you explore the rest of the code and as you go through the debugging process.

 After adding the Generics class, you modify the class by adding a type constraint using the Of
keyword and defining a type list, which in this case contains only one type. This type name is a
placeholder that will be used throughout the class to represent the data type that this class is working
with. The actual data type is defined when an object of the class is created, as you ’ ll see later in your
code:

Public Class Generics(Of elementType)

End Class

 You add two private variables to this class, with both of these variables being defined as an array. The
first variable is a defined as a String data type, while the second variable is defined as a generic data
type, which is set when an object of the class is created. Note that you have used the type name
 elementType , which was defined at the class level. This type name is replaced automatically by the
data type that is used to create the Generics object.

Public Class Generics(Of elementType)
 ‘This class provides a demonstration of Generics

 ‘Declare Private variables
 Private strKey() As String
 Private elmValue() As elementType

 The Add method allows you to add items to your collection. This method accepts two parameters; one
for the key and the other for the value, making a key/value pair. The key parameter is always a string
value, and the value parameter is defined using the data type that is used when a Generics
collection is created.

 The first thing that you want to do in this procedure is to see whether the variable arrays have been
initialized. You do this by using the IsNot operator and comparing the strKey array to a value of
 Nothing . If the array is not equal to a value of Nothing , the array has already been initialized, and
you simply need to increment the array dimension by one. This is done by first getting the current
upper bounds of the array and then adding 1 to it.

 If the variable arrays have not been initialized, you need to initialize them using the ReDim statement
as shown in the Else statement in the code that follows.

 After the arrays have been expanded or initialized, you add the key and value to the arrays:

 Public Sub Add(ByVal key As String, ByVal value As elementType)
 ‘Check to see if the objects have been initialized
 If strKey IsNot Nothing Then
 ‘Objects have been initialized
 ReDim Preserve strKey(strKey.GetUpperBound(0) + 1)
 ReDim Preserve elmValue(elmValue.GetUpperBound(0) + 1)

c10.indd 339c10.indd 339 4/1/08 6:26:10 PM4/1/08 6:26:10 PM

Chapter 10: Debugging and Error Handling

340

 Else
 ‘Initialize the objects
 ReDim strKey(0)
 ReDim elmValue(0)
 End If

 ‘Set the values
 strKey(strKey.GetUpperBound(0)) = key
 elmValue(elmValue.GetUpperBound(0)) = value
 End Sub

 You add two read - only properties to this class to return the key and the value for a key/value pair.
Notice that the Value property is defined to return the data type that will be used when a Generics
object is created.

 Public ReadOnly Property Key(ByVal Index As Integer) As String
 Get
 Return strKey(Index)
 End Get
 End Property

 Public ReadOnly Property Value(ByVal Index As Integer) As elementType
 Get
 Return elmValue(Index)
 End Get
 End Property
End Class

 The final class that you added was the Computer class. This class implements the IDisposable
interface. An interface in this sense is a set of methods and properties common to all classes that
implement it. In this case, the IDisposable interface contains methods for releasing memory
resources when an object of the class is disposed of. Methods that use this class should call the
 Dispose method when they are through with a Computer object.

 To implement the interface, you add the Implements statement and specify the IDisposable
interface. When you press the Enter key, Visual Studio 2008 adds the code from the
IDisposable interface to your class, as shown in the following code:

Public Class Computer
 Implements IDisposable

 Private disposedValue As Boolean = False ‘ To detect redundant calls

 ‘ IDisposable
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ‘ TODO: free other state (managed objects).
 End If

 ‘ TODO: free your own state (unmanaged objects).
 ‘ TODO: set large fields to null.
 End If

c10.indd 340c10.indd 340 4/1/08 6:26:10 PM4/1/08 6:26:10 PM

Chapter 10: Debugging and Error Handling

341

 Me.disposedValue = True
 End Sub

#Region “ IDisposable Support “
 ‘ This code added by Visual Basic to correctly implement
 ‘ the disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ‘ Do not change this code. Put cleanup code in
 ‘ Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
#End Region

End Class

 You add two read - only properties to this class; FreeMemory and TotalMemory . These properties
return the available memory on your computer as well as the total amount of memory on your
computer. These properties use the My.Computer.Info namespace to access the amount of available
memory and the total amount of memory.

 The AvailablePhysicalMemory and TotalPhysicalMemory properties of the My.Computer.Info
namespace return the available and total memory in bytes. However, we as users are used to seeing
these numbers in kilobytes. Therefore you convert the number of bytes into kilobytes and then have
that number formatted using commas.

 Remember that there are 1024 bytes to a kilobyte, 1024 kilobytes to a megabyte, and so on. The number
that you pass to the Format function will be in kilobytes after you divide the number of bytes by 1024.

 You then add a space to the formatted number and then the letter K indicating that the available and
total memory figures are in kilobytes:

 Public ReadOnly Property FreeMemory() As String
 Get
 ‘Using the My namespace
 Return Format((_
 My.Computer.Info.AvailablePhysicalMemory.ToString \ 1024), _
 “#,###,##0”) & “ K”
 End Get
 End Property

 Public ReadOnly Property TotalMemory() As String
 Get
 ‘Using the My namespace
 Return Format((_
 My.Computer.Info.TotalPhysicalMemory.ToString \ 1024), _
 “#,###,##0”) & “ K”
 End Get
 End Property

c10.indd 341c10.indd 341 4/1/08 6:26:10 PM4/1/08 6:26:10 PM

Chapter 10: Debugging and Error Handling

342

 You add code to the Debug form class next. This class uses a class List < T > , which is a generic list
class. You ’ ll be using this class to hold a list of Customer objects created from your Customer class.
The List < T > class uses a dynamically sized array to hold the objects of the type that you specify: You
need to import the System.Collections.Generic namespace in order to access the List < T > class.
You accomplish that requirement by using an Imports statement.

Imports System.Collections.Generic

 Next you define three private objects at the class level; these objects are available to all procedures in
this class. The first two objects use your Generics class. Remember that the Generics class used the
 Of keyword to define a type list. In the declaration of your objects, you use similar Of clauses to
specify that the Generics class should be using a String data type in the type list for the first object
and an Integer data type for the second object. The data type specified here will be applied
throughout the Generics class.

 The last object that you define here is an object that holds an array of Customer objects created from
your Customer class:

 ‘Using the Generics class
 Private objStringValues As New Generics(Of String)
 Private objIntegerValues As New Generics(Of Integer)

 ‘Using the List < T > class
 Private objCustomerList As New List(Of Customer)

 The ListCustomer procedure simply accepts a Customer object as input and adds the Customer ID
and Customer Name to the list box on your form:

 Private Sub ListCustomer(ByVal customerToList As Customer)
 lstData.Items.Add(customerToList.CustomerID & _
 “ - “ & customerToList.CustomerName)
 End Sub

 The Click event handler for the Start button contains the rest of the code for your project. You start
this procedure by declaring a local String variable that will be used to demonstrate checking to see
whether a variable has been initialized.

 The code following the variable declaration checks the length of the variable and then adds the
contents of the variable to the list box on the form.

 Private Sub btnStart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnStart.Click

 ‘Declare variables
 Dim strData As String

 lstData.Items.Add(“String variable data:”)
 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If

c10.indd 342c10.indd 342 4/1/08 6:26:10 PM4/1/08 6:26:10 PM

Chapter 10: Debugging and Error Handling

343

 Since you will be writing the various results of your processing to the list box on your form, you ’ ll
want to add a blank entry to the list box to separate your results for aesthetic reasons, which is what
the next line of code does. Here you simply use the Empty method of the String class to return an
empty string to be added to the list box:

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 This next section of code demonstrates the use of the List < T > class, as the comment in the code
indicates. You add two new Customer objects to the objCustomerList object and then display those
customers in the list box. Using a For Each . . . Next loop to iterate through the collection of
 Customer objects, you add each customer to the list box by calling the ListCustomer function
passing that function the Customer object:

 ‘Demonstrates the use of the List < T > class
 lstData.Items.Add(“Customers in the Customer Class:”)
 objCustomerList.Add(New Customer(1001, “Henry For”))
 objCustomerList.Add(New Customer(1002, “Orville Wright”))
 For Each objCustomer As Customer In objCustomerList
 ListCustomer(objCustomer)
 Next

 Again you add a blank entry to the list box and use the objects that were defined using your Generics
class. The first object, objStringValues , uses the Generics class with a String data type, as the
object name indicates. Remember that the Add method in this class accepts a key/value pair and that
the key parameter is always a String value. The value parameter uses the data type that was used to
initialize this class, which in this case is also a string.

 When you add a key/value pair to your objStringValues object, you want to display that data in
the list box on your form. You do this by accessing the Key and Value properties in the Generics
class from which this object was derived:

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of Generics
 lstData.Items.Add(“Generics Class Key/Value Pairs using String Values:”)
 objStringValues.Add(“1001”, “Henry Ford”)
 lstData.Items.Add(objStringValues.Key(0) & “ = “ & _
 objStringValues.Value(0))

 Again you add another blank line to the list box and then add a key/value pair that uses an Integer
data type for the value parameter to the objIntegerValues object. Then you add that key/value
pair to the list box:

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of Generics
 lstData.Items.Add(“Generics Class Key/Value Pairs using Integer Values:”)
 objIntegerValues.Add(“Henry Ford”, 1001)
 lstData.Items.Add(objIntegerValues.Key(0) & “ = “ & _
 objIntegerValues.Value(0))

c10.indd 343c10.indd 343 4/1/08 6:26:11 PM4/1/08 6:26:11 PM

Chapter 10: Debugging and Error Handling

344

 After you add another blank line to the list box, you use a Using . . . End Using block to create a new
object of the Computer class, add the free memory and total memory of your computer to the list box,
and then dispose of the Computer class.

 When you use a class, you typically instantiate it using the New keyword as you did with your
 Generics class, use the class, and then dispose of the class by calling its Dispose method if it
implements one. The problem with that scenario is that when an exception occurs, the resource may or
may not be disposed of. Even if you implement the code using structure error handling, a topic I ’ ll
discuss later in this chapter, you are not always guaranteed to be able to dispose of the class.

 The Using statement is an efficient means of acquiring a resource, using it, and then disposing of it,
regardless of whether an exception occurs. There is one caveat to this: the class that you use in a
Using . . . End Using block must implement the IDisposable interface. This is why you added this
interface to your Computer class.

 In the following code, the object name, objMemory , has not been defined anywhere except in the
 Using statement. The Using statement takes care of declaring this object for you and sets it to a new
instance of the class that you specify, which in this case is the Computer class. Keep in mind that the
object, objMemory , is local to the Using . . . End Using block and you can only reference it within
this block.

 When the End Using statement is reached, the Common Language Runtime (CLR) automatically calls
the Dispose method on the Computer class, thereby releasing its reference to it, and the Computer
class executes any cleanup code that has been implemented in the Dispose method:

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of the Using statement
 ‘Allows acquisition, usage and disposal of the resource
 lstData.Items.Add(“Computer Class Properties:”)
 Using objMemory As New Computer
 lstData.Items.Add(“FreeMemory = “ & objMemory.FreeMemory)
 lstData.Items.Add(“TotalMemory = “ & objMemory.TotalMemory)
 End Using

 Once again you add another blank line to the list box, and then you get to the final bit of code in this
procedure. In this section of code we wanted to demonstrate the use of the Continue statement. The
 Continue statement is an efficient means of immediately transferring control to the next iteration of a
loop. Instead of coding a lot of If . . . Then statements in a loop, you can merely test to see whether a
condition is what you want and if it is not, you can call the Continue statement to pass control to the
next iteration of a Do , For , or While loop.

 Take a look at the code that you have here. First you declare a couple of variables and set their values.
The first variable, strPassword , is declared and set to a password that contains upper - and lowercase
letters. The second variable, strLowerCaseLetters , is declared and set to an empty string so that the
variable is initialized.

 Next, you set up a For . . . Next loop to check each character in the strPassword variable. The
 If . . . Then statement uses the Like operator to compare a character in the password variable to a
pattern of letters. If a match is found, the Like operator returns a value of True . However, you are
using a negative comparison here, because you have included the Not keyword in the If . . . Then

c10.indd 344c10.indd 344 4/1/08 6:26:11 PM4/1/08 6:26:11 PM

Chapter 10: Debugging and Error Handling

345

statement, so if the character in the password variable is not like one of the letters in the pattern,
[a - z] , you ’ ll execute the next statement, which is the Continue statement.

 If the character in the password variable is a lowercase letter, you concatenate the character to the
 strLowerCaseLetters variable, which is why you needed to initialize this variable to an empty
string when you declared it.

 Finally, after all lowercase letters have been extracted from the password variable, you display the
results of the strLowerCaseLetters variable in the list box on your form:

 ‘Add an empty string to the ListBox
 lstData.Items.Add(String.Empty)

 ‘Demonstrates the use of the Continue statement
 Dim strPassword As String = “POpPassword”
 Dim strLowerCaseLetters As String = String.Empty
 ‘Extract lowercase characters from string
 For intIndex As Integer = 0 To strPassword.Length - 1
 ‘Demonstrates the use of the Continue statement
 ‘If no uppercase character is found, continue the loop
 If Not strPassword.Substring(intIndex, 1) Like “[a-z]” Then
 ‘No uppercase character found, continue loop
 Continue For
 End If
 ‘Lowercase character found, save it
 strLowerCaseLetters & = strPassword.Substring(intIndex, 1)
 Next

 ‘Display lowercase characters
 lstData.Items.Add(“Password lower case characters:”)
 lstData.Items.Add(strLowerCaseLetters)
 End Sub

 At this point, you are probably pretty eager to run your project and test your code. In this next Try It
Out, you examine the Exception Assistant in Visual Studio 2008. This useful assistant provides help
when an unhandled exception occurs in your code.

 Try It Out Exception Assistant

 1. Start your project by clicking the Start button on the toolbar or by clicking the Debug menu
and choosing the Start menu item.

 2. When your form is displayed, click the Start button on your form to have your code in the
 Click event handler for the Start button executed. You ’ ll immediately see the Exception
Assistant shown in Figure 10 - 8 .

 Note that the Exception Assistant dialog box displays the type of exception that occurred in the
title bar of the dialog box. It also provides links to some basic troubleshooting tips and also a link
at the bottom that provides the details of the exception.

c10.indd 345c10.indd 345 4/1/08 6:26:12 PM4/1/08 6:26:12 PM

Chapter 10: Debugging and Error Handling

346

 3. Click the View Detail link in Exception Assistant dialog box to view the View Detail dialog
box shown in Figure 10 - 9 . You are mainly interested in the exception message, and, as you can
see, it informs you that the object reference has not been set to an instance of an object.
Basically, you have not initialized the variable strData .

Figure 10-8

Figure 10-9

 4. Click the OK button to close the View Detail dialog box and then click the Close button (�) in
the upper right - hand corner of the Exception Assistant dialog box to close it.

 5. Now click the Stop Debugging button on the toolbar or click the Debug menu and select the
Stop Debugging menu item.

 6. Locate the following section of code at the beginning of the btnStart_Click procedure:

 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If

c10.indd 346c10.indd 346 4/1/08 6:26:12 PM4/1/08 6:26:12 PM

Chapter 10: Debugging and Error Handling

347

 7. Modify that code as shown here:

 If strData IsNot Nothing Then

 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If
 Else
 strData = “String now initialized”
 lstData.Items.Add(strData)
 End If

 8. Now run your project and click the Start button on your form once it is displayed. All of your
code should have executed, and the list box should be populated with the various results of
the processing that took place in the btnStart_Click procedure.

 How It Works
 When an unhandled error occurs in your code while debugging, the Exception Assistant dialog box is
displayed and provides troubleshooting tips for the exception as well as a link to view the details of
the exception as was shown in Figure 10 - 8 . Figure 10 - 9 displayed the View Detail dialog box, which
provides the detailed information about the exception which can also be an invaluable tool for
determining the exact cause of the exception.

 You modified the code that caused the error as shown here. Because the string variable strData was
declared but never initialized, the variable is Nothing . This means that it has not been set to an
instance of the String class and therefore the properties and methods of the variable cannot be
referenced without causing a NullReferenceException as shown in Figure 10 - 8 .

 To rectify this problem, you first test the strData variable to see if it is not equal to Nothing by using
the IsNot operator as shown in the first line of code here. If the variable has been initialized, then you
can execute the code in the If statement. Otherwise, processing falls through to the Else statement and
here you set the variable to a string constant and then display the contents of the variable in the list box:

 If strData IsNot Nothing Then
 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If
 Else
 strData = “String now initialized”
 lstData.Items.Add(strData)
 End If

 An alternative to the previous code example would be to use a Try . . . Catch block to handle the
exception. This technique is demonstrated later in this chapter.

 Setting Breakpoints
 When trying to debug a large program, you may find that you want to debug only a section of code; that
is, you want your code to run up to a certain point and then stop. This is where breakpoints come in
handy; they cause execution of your code to stop anywhere a breakpoint is set. You can set breakpoints
anywhere in your code and your code runs up to that point and stops.

c10.indd 347c10.indd 347 4/1/08 6:26:12 PM4/1/08 6:26:12 PM

Chapter 10: Debugging and Error Handling

348

 Note that execution of the code stops before the line on which the breakpoint is set.

 You can set breakpoints when you write your code, and you can also set them at run time by switching
to your code and setting the breakpoint at the desired location. You cannot set a breakpoint while your
program is actually executing a section of code such as the code in a loop, but you can when the program
is idle and waiting for user input.

 When the development environment encounters a breakpoint, execution of your code halts, and your
program is considered to be in break mode. While your program is in break mode, a lot of debugging
features are available. In fact, a lot of debugging features are available to you only while your program is
in break mode.

 You can set breakpoints by clicking the gray margin next to the line of code on which you want to set the
breakpoint. When the breakpoint is set, you see a solid red circle in the gray margin and the line is
highlighted in red. When you are done with a particular breakpoint you can remove it by clicking the
solid red circle. You see more of this in the Try It Out exercise in this section.

 Sometimes you ’ ll want to debug code in a loop, such as one that reads data from a file. You know that
the first x number of records are good, and it is time - consuming to step through all the code repetitively
until you get to what you suspect is the bad record. A breakpoint can be set inside the loop and you can
set a hit counter on it. The code inside the loop executes the number of times that you specified in the hit
counter and then stops and places you in break mode. This can be a real time saver, and you will be
taking a look at breakpoint hit counts later in this section. You can also set a condition on a breakpoint,
such as when a variable contains a certain value or when the value of a variable changes. You also take a
look at this later in this section.

 Try It Out Working with Breakpoints

 1. The first thing that you want to do is to set a breakpoint in your code. Using Figure 10 - 10 as a
guide, set the breakpoint in your code by clicking the gray margin to the left of the line of
code shown.

Figure 10-10

c10.indd 348c10.indd 348 4/1/08 6:26:13 PM4/1/08 6:26:13 PM

Chapter 10: Debugging and Error Handling

349

 2. Run the project.

 3. To get to the code where the breakpoint is set, click the Start button on your form. The code
executes up to the breakpoint, and the development environment window receives focus,
making it the topmost window. The entire line should be highlighted in yellow and the
breakpoint circle in the margin should now contain a yellow arrow in it pointing to the line of
code where execution has been paused, which is the End If statement that was shown in
Figure 10 - 10 .

 Also note that there are a few new windows at the bottom of the development environment.
What you see will vary depending on which windows you have specified to be shown — you
can choose different ones using the tabs at the bottom.

 Take a pause in the Try It Out to learn about some of the features of the IDE in debug mode.

 The Breakpoints Window
 You can display the Breakpoints window, if the tab is not shown, in the bottom - right of the IDE by
clicking the Breakpoints icon on the Debug toolbar or by selecting Debug Windows Breakpoints.
The Breakpoints window shows what line of code the current breakpoint is at, any conditions it has, and
the hit count if applicable, as shown in Figure 10 - 11 .

Figure 10-11

 The Breakpoints window shows all the breakpoints you have set in your code. When a breakpoint is
encountered, it is highlighted in the code and also highlighted in the Breakpoint window, as shown in
Figure 10 - 11 . In this window, you can set new breakpoints, delete existing breakpoints, and change the
properties of the breakpoints. You will see more of this later in the chapter.

Useful Icons on the Toolbar
 In this Try It Out, you want to step through your code line by line. On the Standard toolbar in the IDE
there are three icons of particular interest to you as shown in Figure 10 - 12 .

 The first icon is the Step Into icon. When you click this icon, you can step through your code line
by line. This includes stepping into any function or procedure that the code calls and working
through it line by line.

 The second icon is the Step Over icon. This works in a similar way to Step Into, but you pass
straight over the procedures and functions — they still execute, but all in one go. You then
move straight on to the next line in the block of code that called the procedure.

❑

❑

c10.indd 349c10.indd 349 4/1/08 6:26:13 PM4/1/08 6:26:13 PM

Chapter 10: Debugging and Error Handling

350

 Last is the Step Out icon. This icon allows you to jump to the end of the procedure or function
that you are currently in and to move to the line of code after the line that called the procedure or
function. This is handy when you step into a long procedure and want to get out of it. The rest
of the code in the procedure still gets executed, but you do not step through it.

Figure 10-12

 There is one more really useful button worth adding to the toolbar: Run To Cursor. The Run To Cursor
icon enables you to place your cursor anywhere in the code following the current breakpoint where
execution has been paused and then click this icon. The code between the current breakpoint and where
the cursor is positioned is executed, and execution stops on the line of code where the cursor is located.

 To add this button, you right - click any empty area of the toolbar and choose Customize from the context
menu. In the Customize dialog box, click the Commands tab, and then select Debug in the Categories
list. In the Commands list, select Run To Cursor. After you select Run To Cursor, you drag its icon from
the Commands list onto the debug toolbar, to form a group of icons as shown in Figure 10 - 13 , and then
click the Close button to close the Customize dialog box.

Figure 10-13

 You are now ready to continue working through the Try It Out.

 Try It Out Working with Breakpoints (cont.)

 1. You ended the last step of the Try It Out at the breakpoint. Before continuing, you want to
examine the contents of the string variable, strData . Hover your mouse over the variable to
view a Data Tip, as shown in Figure 10 - 14 . Notice that the variable name is listed along with
its contents, a magnifying glass, and a down arrow.

 Clicking the contents of the variable in the Data Tip puts you in edit mode for the variable, and
you can actually change the contents of that variable. Clicking the magnifying glass will cause
the contents of the variable to be displayed automatically in the Text Visualizer dialog box, which
is a useful tool for displaying the data for string variables that contain a significant amount of
data. Clicking the down arrow provides you a drop - down list of options for viewing the
contents of the variable and contains an option for Text Visualizer, XML Visualizer, and
HTML Visualizer.

❑

Figure 10-14

 2. At this point, you ’ ll want to test the debugging icons on the toolbar, starting with the Run To
Cursor icon first. Place your cursor on the line of code that calls the ListCustomer procedure
as shown in Figure 10 - 15 .

c10.indd 350c10.indd 350 4/1/08 6:26:13 PM4/1/08 6:26:13 PM

Chapter 10: Debugging and Error Handling

351

 Click the Run To Cursor icon on the toolbar. The code between the breakpoint at the End If
statement shown in Figure 10 - 14 and the line of code that calls the ListCustomer procedure,
shown in Figure 10 - 15 , is executed. Your project stops execution on the line of code on which
you have your cursor.

Figure 10-15

 3. Click the Step Into icon next, and you should now be at the beginning of the ListCustomer
procedure. Data Tips can be displayed for objects that contain multiple values as well as
variables that contain only a single value.

 Hover your mouse over the customerToList parameter for this procedure to display the Data Tip for
this object. You ’ ll see a plus sign next to the object name in the Data Tip. Click the plus sign, or simply
hover your mouse over it, and the contents of the object are displayed as shown in Figure 10 - 16 .

 Note that this Data Tip not only displays the properties in the Customer class, the class that the
 customerToList object is derived from, but also the private variables in that class. You also
have the same options for viewing the contents of string variables, which is indicated by the
presence of the magnifying glass and down arrow icons.

 Since the text, which is supposed to read “ Henry Ford ” , is misspelled, you ’ ll want to correct it
in the Data Tip. This can be done by editing the strName variable in the Data Tip. Click the text
 “ Henry For ” in the Data Tip to put it into edit mode. Correct the text by adding the letter d at
the end of the text and then click the name or variable name in the Data Tip. Note that the text for
both the property and variable has been updated with your corrections.

 It should be noted that you can change the contents of Integer data types in the Data Tip as well.

Figure 10-16

 4. Click the Step Into icon once more and you should be at the first line of code in the
 ListCustomer procedure.

 5. Since you do not want to see any of this code at this time, you are going to step out of this
procedure. This places you back at the line of code that called this procedure. Click the Step
Out icon. Note that you are taken out of the ListCustomer procedure and back to where the
call originated.

 6. Now click the Step Into icon twice more so that you are back at the call to the ListCustomer
procedure once again.

 7. The final icon to be tested is the Step Over icon. Click this icon now and note that you have
totally stepped over the execution of the ListCustomer procedure. The procedure was
actually executed. However, since you chose to step over it, the debugger does not show you
that the procedure was executed.

c10.indd 351c10.indd 351 4/1/08 6:26:14 PM4/1/08 6:26:14 PM

Chapter 10: Debugging and Error Handling

352

 8. Continue processing as normal and have the rest of the code execute without interruption. If
you hover your mouse over the Start icon on the toolbar, you will notice that the tooltip has
been changed from Start to Continue. Click this icon to let the rest of the code run. You should
now see your completed form as shown in Figure 10 - 17 .

Figure 10-18

Figure 10-17

 In the following Try It Out, you examine the Breakpoint Hit Count dialog box. The Breakpoint Hit
Count dialog box allows you to define the number of executions of a loop should be performed before
the IDE stops execution of your code and puts it into break mode. As previously described, this is
useful for processing loops, because you can specify how many iterations the loop should make before
you encounter a breakpoint.

Try It Out Using the Breakpoint ’ s Hit Count
 1. Stop your project and set a breakpoint in the For loop as shown in Figure 10 - 18 . Remember

that to set a breakpoint, you need to click in the gray margin on the line of code where the
breakpoint should be.

 Start your project again by clicking the Start icon on the toolbar.

c10.indd 352c10.indd 352 4/1/08 6:26:14 PM4/1/08 6:26:14 PM

Chapter 10: Debugging and Error Handling

353

 2. In the Breakpoints window, right - click the second breakpoint and choose Hit Count from the
context menu to invoke the Breakpoint Hit Count dialog box.

 3. The breakpoint that you currently have set halts execution every time it is encountered.
Change it to break only when the loop enters its third execution. You do this by selecting the
option break when the hit count is equal to in the drop - down list and then entering the
number 3 in the text box displayed next to it, as shown in Figure 10 - 19 .

Figure 10-19

 Click the OK button to close this dialog box. Notice the Hit Count column in the Breakpoints
window in the IDE. The second breakpoint now displays the Hit Count condition that you just
defined.

 4. At this point, click the Start button on the form. By clicking the Start button you are again
stopped at your first breakpoint.

 5. This breakpoint is highlighted in the Breakpoints window. You no longer need this
breakpoint, so click it and then click the Delete icon in the Breakpoints window;
the breakpoint will be deleted. Your code is still paused at this point, so click the Continue
button on the Debug toolbar.

 6. You are now stopped at your breakpoint in the For loop as it enters its third execution. Notice
that the Breakpoints window shows the hit count criteria that you selected and also the
current hit count.

 As you can see, this is a handy way to have a loop execute a definite number of iterations before
breaking at a defined breakpoint.

 7. Now let your code continue executing by clicking the Continue button on the Debug toolbar.

 8. Stop your project once the form has been displayed.

 In the following Try It Out, you modify the properties of the only breakpoint that you have left.

c10.indd 353c10.indd 353 4/1/08 6:26:14 PM4/1/08 6:26:14 PM

Chapter 10: Debugging and Error Handling

354

Try It Out Changing Breakpoint Properties
 1. In the previous Try It Out, you modified the breakpoint while the project was running. This

time you modify the breakpoint while the project is stopped. To view the Breakpoints window,
click the Debug menu, choose Windows, and then choose the Breakpoints sub menu item.

 2. In the Breakpoints window right - click the breakpoint, and choose Hit Count from the context
menu to display the Breakpoint Hit Count dialog box. Notice the Reset button. When you
click this button, you reset the hit counter for the next execution, but this is not what you ’ ll do
at this point.

 3. Here you ’ ll change the hit count back to its original setting. Select break always in the drop -
 down box and then click the OK button to close this dialog box.

 4. To set a specific condition for this breakpoint, right - click the breakpoint and choose Condition
from the context menu to invoke Breakpoint Condition dialog box. Enter the condition as shown
in Figure 10 - 20 . This causes this breakpoint to break only when the variable intIndex is equal
to 3 . Note that you could also specify that the breakpoint would be activated when the value of a
variable changes. Click the OK button to close the dialog box and then start your project.

Figure 10-20

 5. Click the Start button on your form. Once the intIndex variable is equal to 3 , the breakpoint
is activated, and the execution of the code is paused at the line where the breakpoint is
specified. This is actually your fourth time into the loop, as the For . . . Next loop specifies a
starting index of 0 for the variable intIndex .

 6. Finally, go ahead and let your code finish executing by clicking the Continue button on the
Debug toolbar. Once your form is displayed, go ahead and stop your project.

 Debugging Using the Watch Window
 The Watch window provides a method for you to watch variables and expressions easily while the code
is executing — this can be invaluable when you are trying to debug unwanted results in a variable. You
can even change the values of variables in the Watch window. You can also add as many variables and
expressions as needed to debug your program. This provides a mechanism that allows you to watch the
values of your variables change without any intervention on your part.

c10.indd 354c10.indd 354 4/1/08 6:26:15 PM4/1/08 6:26:15 PM

Chapter 10: Debugging and Error Handling

355

 You can add and delete a variable or expression to the QuickWatch dialog box only when your program
is in break mode. Therefore, before you run your program, you need to set a breakpoint before the
variable or expression that you want to watch. When the breakpoint has been reached, you can add as
many Watch variables or expressions as needed.

 In the following Try It Out, you add the intIndex variable to the Watch window and also add an
expression using the intIndex variable. This enables you to observe this variable and expression as you
step through your code.

 Try It Out Using QuickWatch

 1. Start your program again. When your form displays, switch to the IDE and clear the current
breakpoint by deleting it in the Breakpoints window or by clicking it in the gray margin
where it is set. Then set a new breakpoint as shown in Figure 10 - 21 .

Figure 10-22

Figure 10-21

 2. You can add a QuickWatch variable or expression only while your program is paused. Click
the Start button on the form so the breakpoint will be encountered and your program paused.

 3. When the breakpoint has been encountered, right - click the variable, intIndex , in the
 For . . . Next loop and choose QuickWatch from the context menu to invoke the QuickWatch
dialog box. Note that this variable has not only been added to the Expression drop - down box
but has also been placed in the Current value grid in the dialog, as shown in Figure 10 - 22 .
Click the Add Watch button to add this variable to the Watch window.

 Since the variable is declared in the For . . . Next loop, you see an error here. You can safely ignore this
error, because once the loop has started processing, the variable will be declared.

c10.indd 355c10.indd 355 4/1/08 6:26:15 PM4/1/08 6:26:15 PM

Chapter 10: Debugging and Error Handling

356

 4. While you have the QuickWatch dialog box open, set an expression to be evaluated. Add the
expression intIndex = 1 in the Expression drop - down box. Then click the Add Watch button
to have this expression added to the Watch window. Now close the QuickWatch dialog box by
clicking the Close button.

 5. If you do not see the Watch window at the bottom of the IDE, select Debug Windows
 Watch Watch 1. You should see a variable and an expression in the Watch window, as
shown in Figure 10 - 23 .

 The second watch expression that you added here returns a value of True when the
intIndex variable equals 1 , so Visual Studio 2008 sets the type to Boolean once you enter the
 For . . . Next loop.

Figure 10-23

Figure 10-24

 6. Step through your code line by line so that you can watch the value of the variable and
expression change. Click the Step Into icon on the Debug toolbar to step to the next line of
code. Keep clicking the Step Into icon to see the values of the variable and expression in the
Watch window change.

 As you step through the loop in your code, you continue to see the value for the intIndex variable
change in the Watch window. When the value of the variable in the Watch window turns the color red,
as shown in Figure 10 - 24 , the value has just been changed. You can manually change the value anytime
by entering a new value in the Value column in the Watch window.

 7. When you are done, click the Continue icon on the Debug toolbar to let your code finish
executing. Then stop your project once the form has been displayed.

 Debugging with the Locals Window
 The Locals window is similar to the Watch window, except that it shows all variables and objects for the
current function or procedure. The Locals window also lets you change the value of a variable or object,
and the same rules that apply to the Watch window apply here (that is, the program must be paused
before a value can be changed). The text for a value that has just changed also turns red, making it easy
to spot the variable or object that has just changed.

c10.indd 356c10.indd 356 4/1/08 6:26:15 PM4/1/08 6:26:15 PM

Chapter 10: Debugging and Error Handling

357

 The Locals window is great if you want a quick glance at everything that is going on in a function or
procedure, but it is not very useful for watching the values of one or two variables or expressions. The
reason for this is that the Locals window contains all variables and objects in a procedure or function.
Therefore, if you have a lot of variables and objects, you have to scroll through the window constantly to
view the various variables and objects. This is where the Watch window comes in handy; it lets you
watch just the variables that you need. In this Try It Out, you examine the contents of the Locals window
in two different procedures. This demonstrates how the contents of the Locals window change from one
procedure to the next.

 Try It Out Using the Locals Window

 1. To prepare for this exercise, you need to have the current breakpoint set and set a new
breakpoint in the ListCustomer procedure. Locate the ListCustomer procedure and
set a breakpoint on the one line of code in that procedure:

 lstData.Items.Add(customerToList.CustomerID & _
 “ - “ & customerToList.CustomerName)

 2. Now start your program.

 3. If you do not see the Locals window at the bottom of the IDE, select Debug Windows
 Locals. Notice that at this point the Locals window contains no variables or objects. This is
because you have not entered a procedure or function. Click the Start button on the form, and
your breakpoint in the ListCustomer procedure is encountered first and execution is paused.

 4. Notice the various objects and their types listed in the Locals window. The first item in the list
is Me , which is the form itself. If you expand this item, you see all the objects and controls
associated with your form. If you expand the customerToList object, you ’ ll see the
properties and variables defined in the Customer class from which this object is derived as
shown in Figure 10 - 25 .

Figure 10-25

 5. Now click the Continue icon on the Debug toolbar until you encounter your second
breakpoint.

 6. Now take a look at the Locals window, and you see a different set of objects and variables.
The one constant item in both procedures is Me , which is associated with the form.

c10.indd 357c10.indd 357 4/1/08 6:26:16 PM4/1/08 6:26:16 PM

Chapter 10: Debugging and Error Handling

358

 7. If you step through a couple of lines of code in the loop where the breakpoint has paused your
program, you see the values in the Locals window change. You can continue to step through
your code, or you can click the Continue icon on the Debug toolbar to let your program run to
completion.

 After you change your build configuration from Debug to Release, debugging is no longer available;
even if you have breakpoints set in your code, they will not be encountered.

 8. To clear all breakpoints in your code, you can delete each breakpoint in the Breakpoints
window, or you can click the Debug menu and choose Delete All Breakpoints. When you are
done, stop your project.

 Error Handling
 Error handling is an essential part of any good code. In Visual Basic 2008 the error mechanism is based
on the concept of exceptions that can be thrown to raise an error and caught when the error is handled. If
you do not provide any type of error handling and an error occurs, your user receives a message about
an unhandled exception, which is provided by the CLR, and then the program may terminate,
depending on the type of error encountered. This is not a user - friendly message and does not inform the
user about the true nature of the error or how to resolve it. The unhandled error could also cause users to
lose the data that they were working with or leave the user and the data in an unknown state.

 Visual Studio 2008 provides structured error - handling statements that are common across all languages.
Structured error handling is a way to organize blocks of code in a structure that handles errors. In this
section you examine structured error handling and how it can be incorporated into your programs with
very little effort.

 Structured error handling in Visual Studio 2008 is incorporated with the Try . . . Catch . . . Finally
block. You execute the code that might throw an exception in the Try block, and you handle anticipated
errors in the Catch block. The Finally block, which is optional, is always executed, if present, and
allows you to place any cleanup code there regardless of whether an error has occurred. If an error
occurs that was not handled in the Catch block, the CLR displays its standard error message and
terminates your program. Therefore, it is important to try to anticipate all possible errors for the code
that is contained in the Try block.

 Take a look at the syntax for the Try . . . Catch . . . Finally statement:

Try
 [try statements]
 [Exit Try]
Catch exceptionvariable As exceptiontype
 [catch statements]
 [Exit Try]
 [Additional Catch blocks]
Finally
 [finally statements]
End Try

c10.indd 358c10.indd 358 4/1/08 6:26:16 PM4/1/08 6:26:16 PM

Chapter 10: Debugging and Error Handling

359

 The try statements are the statements to be executed that may cause an error.

 The exceptionvariable can be any variable name. It will be set to contain the value of the
error that is thrown.

 The exceptiontype specifies the exception class type that the exception belongs to. If this type
is not supplied, your Catch block handles any exception defined in the System.Exception
class. This argument allows you to specify the type of exception that you maybe looking for. An
example of a specific exception is IOException , which is used when performing any type of IO
(input/output) against a file.

 The catch statements handle and process the error that has occurred.

 The finally statements are executed after all other processing has occurred.

 The optional Exit Try statement allows you to completely break out of a Try . . .
Catch . . . Finally block and resume execution of code immediately following the
Try . . . Catch . . . Finally block.

 You can have multiple Catch blocks, meaning that you can test for multiple errors with different
exception types within the same Try block. When an error occurs among the try statements, control is
passed to the appropriate Catch block for processing.

 When you define a Catch block, you can specify a variable name for the exception and define the type of
exception you want to catch, as shown in the following code fragment. This code defines an exception
variable with a name of IOExceptionErr , and the type of exception is an IOException . This example
traps any type of IO exception that may occur when processing files and stores the error information in
an object named IOExceptionErr :

Catch IOExceptionErr As IOException
 ...
 code to handle the exception goes here
 ...

 When dealing with mathematical expressions, you can define and catch the various errors that you may
encounter such as a divide - by - zero exception. You can also catch errors such as overflow errors, which
may occur when multiplying two numbers and trying to place the result in a variable that is too small
for the result. However, in cases such as these, it may be better to check for problems in advance — you
should use exceptions only in exceptional circumstances.

 Using Structured Error Handling
 In the following Try It Out you add some structured error handling to the sample program with which
you have been working. When you first ran the Debugging project you received the
 NullReferenceException that was shown in Figure 10 - 8 , because you tried to access the properties of
the strData string variable before it had been set. This code is a prime candidate for structured error
handling. You temporarily bypassed the problem at that point by using an If . . . Then . . . Else
statement to first see whether the variable had been initialized. A cleaner way to handle such a case is in
a Try . . . Catch block.

❑

❑

❑

❑

❑

❑

c10.indd 359c10.indd 359 4/1/08 6:26:17 PM4/1/08 6:26:17 PM

Chapter 10: Debugging and Error Handling

360

 Try It Out Structured Error Handling

 1. Modify the code for the strData variable in the btnStart_Click procedure as shown:

 lstData.Items.Add(“String variable data:”)
 Try
 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If
 Catch NullReferenceExceptionErr As NullReferenceException
 strData = “String now initialized”
 lstData.Items.Add(strData)
 End Try

 How It Works
 The code you entered contains a Try block and a Catch block. You opted not to use the Finally block
in this error - handling routine because the Catch block performs the necessary code to set the strData
variable and have the contents of that variable added to the list box on your form:

 Try
 If strData.Length > 0 Then
 lstData.Items.Add(strData)
 End If
 Catch NullReferenceExceptionErr As NullReferenceException
 strData = “String now initialized”
 lstData.Items.Add(strData)
 End Try

 When you try to access the Length property of the strData variable in the Try block, a
 NullReferenceException exception is thrown because the variable has been declared but not set.

 The error that you want to trap is a NullReferenceException , and that exception is specified in the
 Catch block. You defined the variable NullReferenceExceptionErr for the exception variable
argument; the standard practice among most developers is to use the exception name along with a
suffix of Err . You then defined the type of exception that you want to test for and trap.

 You place your error - handling code within the Catch block, as you have done here. When a
 NullReferenceException occurs, you set the strData variable to a string constant and then add
the contents of that variable to the list box on your form.

Try It Out Testing Your Error Handler
 1. Set a breakpoint on the Try statement and then run your project. Once the form is displayed,

click the Start button.

 2. Once the breakpoint is encountered, right - click the variable strData and choose Add Watch
from the context menu. Click the Watch 1 window so that you can view the contents of the
variable.

c10.indd 360c10.indd 360 4/1/08 6:26:17 PM4/1/08 6:26:17 PM

Chapter 10: Debugging and Error Handling

361

 3. At this point, the strData variable has a value of Nothing . Click the Step Into icon on the
toolbar, and you ’ ll be taken to the first line of code in the Try block.

 4. Click the Step Into icon again. A NullReferenceException is thrown, and you are taken to
the Catch block.

 5. Note the value of the variable in the Watch 1 window, click the Step Into icon once more, and
note the value of the variable in the Watch 1 window, as shown in Figure 10 - 26 .

 Figure 10-26

 6. Click the Continue icon on the toolbar to allow the rest of your code to run.

 As you become more familiar with the types of errors that can occur, you will be able to write more
sophisticated structured error handlers. This comes only with experience and testing. You will discover
more errors and will be able to handle them only by thoroughly testing your code. The online
documentation for most methods that you use in Visual Studio 2008 will have Exceptions sections that
list and explain the possible exceptions that could occur by using the method.

 Summary
 This chapter covered some useful debugging tools that are built into the Visual Studio 2008 development
environment. You saw how easy it is to debug your programs as you stepped through the various Try It
Out sections.

 In our discussion of breakpoints, we showed you how to stop the execution of your program at any
given point. As useful as this is, setting breakpoints with a hit counter in a loop is even more useful,
because you are able to execute a loop several times before encountering a breakpoint in the loop.

 You also examined some of the various windows available while debugging your program, such as the
Locals window and the Watch window. These windows provide you with valuable information about
the variables and expressions in your program. You are able to watch the values change and are able to
change the values to control the execution of your code.

 You should know what types of major errors you may encounter while developing and debugging your
code. You should be able to recognize syntax and execution errors and possibly correct them. Although
debugging a program for logic errors may be difficult at first, it does become easier with time and
experience.

c10.indd 361c10.indd 361 4/1/08 6:26:17 PM4/1/08 6:26:17 PM

Chapter 10: Debugging and Error Handling

362

 This chapter also covered structured error handling, and you should incorporate this knowledge into
your programs at every opportunity. Structured error handling provides you with the opportunity to
handle and correct errors at runtime.

 In summary, you should know the following:

 How to recognize and correct major types of errors

 How to use breakpoints successfully to debug your program

 How to use the Locals and Watch windows to see and change variables and expressions

 How to use structured error handling

 Exercises
 1. Using your Debugging project, add a Try . . . Catch block to the ListCustomer procedure to

handle an Exception error. In the Catch block, add code to display a message box with the
error message.

 2. The Try . . . Catch block that you added in Exercise 1 should never throw an error. However,
you can throw your own error so that you can test your code in the Catch block. Add a Throw
statement as the first line of code in the Try block. Consult the online help for the syntax of the
 Throw statement.

❑

❑

❑

❑

c10.indd 362c10.indd 362 4/1/08 6:26:18 PM4/1/08 6:26:18 PM

 11
Building Objects

 You may have heard the term object oriented a lot since you first started using computers. You may
also have heard that it is a scary and tricky subject to understand. In its early years it was,
but today ’ s modern tools and languages make object orientation (OO) a wonderfully
easy - to - understand concept that brings massive benefits to software developers. This is mainly
because languages such as Visual Basic, C++, and, of course, Visual Basic 2008 and C# have
matured to a point where they make creating objects and the programs that use them very easy
indeed. With these development tools, you will have no problem understanding even the most
advanced object - oriented concepts and will be able to use them to build exciting object - based
applications.

 You have been using objects and classes throughout this book, but in this chapter you look at
object orientation in detail and build on the foundations of the previous chapters to start
producing some cool applications using Visual Basic 2008.

 In this chapter, you will:

 Build a reusable object with methods and properties

 Inherit the object that you build in another object

 Override methods and properties in your base object

 Create your own namespace

 Understanding Objects
 An object is almost anything you can think of. We work with physical objects all the time:
televisions, cars, customers, reports, light bulbs — anything. In computer terms, an object is a
representation of a thing that we want to manipulate in our application. Sometimes, the two
definitions map exactly onto each other. So, if you have a physical car object sitting in your
driveway and want to describe it in software terms, you build a software car object that sits in
your computer.

❑

❑

❑

❑

c11.indd 363c11.indd 363 4/1/08 6:26:41 PM4/1/08 6:26:41 PM

Chapter 11: Building Objects

364

 Likewise, if you need to write a piece of software that generates a bill for a customer, you may well have
a Bill object and a Customer object. The Customer object represents the customer and may be capable of
having a name, address, and also have the capability to generate the bill. The Bill object would represent
an instance of a bill for a customer and would be able to impart the details of the bill and may also have
the capability to print itself.

 What is important here is the concept that the object has the intelligence to produce actions related to
it — the Customer object can generate the bill. In effect, if you have a Customer object representing a
customer, you can simply say to it: “ Produce a bill for me. ” The Customer object would then go away
and do all the hard work related to creating the bill. Likewise, when you have a Bill object, you can say
to it: “ Print yourself. ” What you have here are two examples of object behavior.

 Objects are unbelievably useful because they turn software engineering into something conceptually
similar to wooden building blocks. You arrange the blocks (the objects) to build something greater than
the sum of the parts. The power of objects comes from the fact that, as someone using objects, you don ’ t
need to understand how they work behind the scenes. You ’ re familiar with this with real - world objects
too. When you use a mobile phone, you don ’ t need to understand how it works inside. Even if you do
understand how a mobile phone works inside — even if you made it yourself — it ’ s still much easier to
use the mobile phone ’ s simple interface. The interface can also prevent you from accidentally doing
something that breaks the phone. The same is true with computer objects. Even if you build all the
objects yourself, having the complicated workings hidden behind a simple interface can make your life
much easier and safer.

 Object orientation is perhaps best explained by using a television metaphor. Look at the television in
your home. There are several things you know how to do with it:

 Watch the image on the screen

 Change channel

 Change volume

 Switch it on or off

 What you don ’ t have to do is understand how everything works to allow you to carry out these
activities. If asked, most people couldn ’ t put together the components needed to make a modern
television. We could, with a little research and patience, come up with something fairly basic, but
nothing as complex as the one sitting in my home. However, we do understand how to use a television.
We know how to change the channel, change the volume, switch it on and off, and so on.

 Objects in software engineering work in basically the same way. When you have an object, you can use it
and ask it do things without having to understand how the internals of it actually work. This is
phenomenally powerful, as you ’ ll see soon.

 Software objects typically have the following characteristics:

 Identity — User: “ What are you? ” TV: “ I ’ m a TV. ”

 State — User: “ What channel am I watching? ” TV: “ You ’ re watching Channel 4. ”

 Behavior — User: “ Please turn up the volume to 50%. ” Then, we can use the State again.

User: “ How loud is the volume? ” TV: “ 50%. ”

❑

❑

❑

❑

❑

❑

❑

c11.indd 364c11.indd 364 4/1/08 6:26:41 PM4/1/08 6:26:41 PM

Chapter 11: Building Objects

365

 Encapsulation
 The core concept behind object - orientation is encapsulation . This is a big word, but it ’ s very simple to
understand. What this means is that the functionality is wrapped up in a self - contained manner and that
you don ’ t need to understand what it ’ s actually doing when you ask it to do something.

 If you remember in Chapter 3 , you built a function that calculated the area of a circle. In that function,
you encapsulated the logic of calculating the area in such a way that anyone using the function could
find the area without having to know how to perform the operation. This is the same concept but taken
to the next level.

 Objects are often referred to as black boxes. If you imagine software objects as small plastic boxes with
buttons on the top and connectors on the side, with a basic understanding of what the box does, together
with a general understanding of how boxes generally plug together, you can build up a complex system
with them without ever having to have the capability of building a box independently.

 Methods and Properties
 You interact with objects through methods and properties. These can be defined as:

 Methods are ways of instructing an object to do something.

 Properties are things that describe features of an object.

 A method was defined previously as a self - contained block of code that does something. This is true, but
it is a rather simplistic definition. In fact the strict definition of a method applies only to OO and is a way
to manipulate an object — a way to instruct it to perform certain behaviors. In previous chapters you
created methods that instructed an object — in most cases a form — to do something. When you create a
form in Visual Basic 2008, you are actually defining a new type of Form object.

 So, if you need to turn on the TV, you need to find a method that does this, because a method is
something you get the object to do. When you invoke the method, the object itself is supposed to
understand what to do to satisfy the request. To drive the point home, you don ’ t care what it actually
does; you just say, “ Switch on. ” It ’ s up to the TV to switch on relays to deliver power, boot up the
circuitry, warm up the electron gun, and all the other things that you don ’ t need to understand!

 Invoke means the same as call, but is more OO - friendly. It reminds us that we are invoking a method
on something, rather than just calling a chunk of code.

 On the other hand, if you need to change the channel, you might set the channel property. If you want to
tune into Channel 10, you set the channel property to the value 10. Again, the object is responsible for
reacting to the request, and you don ’ t care about the technical hoops it has to go through to do that.

 Events
 In Visual Basic 2008 you listen for events to determine when something has happened to a control on a
form. You can consider an event as something that an object does. In effect, someone using an object can
listen to events, like a Click event on a button or a PowerOn event on a TV. When the event is received,
the developer can take some action. In OO terms, there is the SwitchOn method that gets invoked on the

❑

❑

c11.indd 365c11.indd 365 4/1/08 6:26:42 PM4/1/08 6:26:42 PM

Chapter 11: Building Objects

366

TV object; when the TV has warmed up (some old TVs take ages to warm up), it raises a PowerOn event.
You could then respond to this event by adjusting the volume to the required level.

 An event might also be used when the performer of an action is not the only entity interested in the
action taking place. For example, when you have the TV on, you might go and get a drink during a
commercial break. However, while you ’ re in the kitchen, you keep your ears open for when the program
starts again. Effectively you are listening for a ProgramResume event. You do not cause the program to
resume, but you do want to know when it does.

 Visibility
 To build decent objects you have to make them easy for other developers to use. For example, internally
it might be really important for your TV object to know what frequency the tuner needs, but does the
person using the TV care? More importantly, do you actually want the developer to be able to change
this frequency directly? What you ’ re trying to do is make the object more abstract .

 Some parts of your object will be private, whereas other parts will be public. The public interface is
available for others to use. The private parts are what you expect the object itself to use internally. The
logic for the object exists in the private parts and may include methods and properties that are important
but won ’ t get called from outside the object. For example, a TV object might have methods for
 ConnectPower , WarmUp , and so on. These would be private and would all be called from the public
 SwitchOn method. Similarly, while there is a public Channel property there will probably be a private
 Frequency property. The TV could not work without knowing the signal frequency it was receiving, but
the users are only interested in the channel.

 Now that you understand the basics of object orientation, take look at how you can use objects within an
application.

 You ’ ll notice that some of the code samples you in previous chapters included a line that looked similar
to this:

lstData.Items.Add(strData)

 That ’ s a classic example of object orientation! lstData is, in fact, an object. Items is a property of the
 lstData object. The Items property is an object in its own right and has an Add method. The period (.)
tells Visual Basic 2008 that the word to the right is a member of the word to the left. So, Items is a
member of lstData and Add is a member of Items . Members are either properties or methods of an
object.

 lstData is an instance of a class called System.Windows.Forms.ListBox (or just ListBox). This class
is part of the .NET Framework you learned about in Chapter 2 .

 The ListBox class can display a list of items on the form and let a user choose a particular one. Again,
here ’ s the concept of encapsulation. You as a user of ListBox don ’ t need to know anything about
technologies involved in displaying the list or listening for input. You may not have even heard of GDI+,
stdin, keyboard drivers, display drivers, or anything else that goes into the complex action of displaying
a list on a form, yet you still have the capability to do it.

c11.indd 366c11.indd 366 4/1/08 6:26:42 PM4/1/08 6:26:42 PM

Chapter 11: Building Objects

367

 The ListBox is an example of an object that you can see. Users can look at a program running and know
that there is a ListBox involved. Most objects in OO programming are invisible and represent
something in memory.

 What Is a Class?
 A class is the definition of a particular kind of object. The class is made up of the software code needed to
store and retrieve the values of the properties, carry out the methods, and undergo the events pertaining
to that kind of object. This is effectively the circuitry inside the black box. If you want to build a software
object, you have to understand how the internals work. You express those internals with Visual Basic
2008 code. So, when the software developer using your object says, “ Turn up the volume, ” you have to
know how to instruct the amplifier to increase the output. (As a side note, remember that the amplifier is
just another object. You don ’ t necessarily need to know how it works inside. In OO programming, you
will often find that one object is made up of other objects with some code to link them — just as a TV is
made of standard components and a bit of custom circuitry.)

 Each object belonging to a class is an instance of the class. So, if you have 50 TV objects, you have 50
instances of the TV class. The action of creating an instance is called instantiation . From now on, we will
say that you create classes but instantiate objects . The difference is used to reduce ambiguity. Creating a
class is done at design time when you ’ re building your software and involves writing the actual code.
Instantiating an object is done at run time, when your program is being used.

 A classic analogy is the cookie cutter. You can go out to your workshop and shape a piece of metal in the
shape of a Christmas tree. You do this once and put the cutter in a drawer in your kitchen. Whenever
you need to create Christmas tree cookies, you roll some dough (the computer ’ s memory) and stamp out
however many you need. In effect you ’ re instantiating cookies. You can reuse the cutter later to create
more cookies, each the same shape as the ones before.

 When you ’ ve instantiated the objects, you can manipulate each object ’ s properties defined for the class,
and you can invoke the methods defined for the class on the object. For example, suppose you build a
class once at design time that represents a television. You can instantiate the class twice to make two
objects from that class — say, one to represent the TV in the living room and one to represent the TV in
the bedroom. Because both instances of the object share the same class, both instances have the same
properties and methods. To turn on either TV you invoke the SwitchOn method on it. To change the
channel you set its Channel property, and so on.

 Building Classes
 You have already started building classes, particularly in Chapters 5 and 10 . In general, when you design
an algorithm, you will discover certain objects described. You need to abstract these real - world objects
into a software representation. Here ’ s an example:

 1. Select a list of 10 customers from the database.

 2. Go through each customer and prepare a bill for each.

 3. When each bill has been prepared, print it.

c11.indd 367c11.indd 367 4/1/08 6:26:42 PM4/1/08 6:26:42 PM

Chapter 11: Building Objects

368

 For a pure object - oriented application (and with .NET you end up using objects to represent everything)
every real - world object need a software object. For example:

 Customer: An object that represents a customer

 Bill: An object that represents a bill that is produced

 Printer: An object that represents a hardware printer that can be used to print the bill

 When you write software in Visual Basic 2008, you are given a vast set of classes called the Microsoft
.NET Framework Classes. These classes describe virtually everything about the computing environment
that you ’ re trying to write software for. Writing object - oriented software for .NET is simply an issue of
using objects that fit your needs and creating new objects if required. Typically, while building an
application, some of the classes you need are included in the .NET Framework, whereas you have to
build others yourself.

 For example, some objects in the .NET Framework provide printing functionality and database access
functionality. As your algorithm calls for both kinds of functionality, you don ’ t need to write your own.
If you need to print something, you create an object that understands how to print, tell it what you want
to print, and then tell it to print it. Again, this is encapsulation — you don ’ t care how to turn your
document into PostScript commands and send it down the wire to the printer; the object knows how to
do this for itself. In this example, there are classes that deal with printing that you can use to print bills,
although there ’ s no specific Printer object.

 In some cases, objects that you need to represent do not exist in the .NET Framework. In this example,
you need a Customer object and a Bill object.

 Reusability
 Perhaps the hardest aspect of object - oriented programming is to understand how to divide responsibility
for the work. One of the most beautiful aspects of object orientation is code reuse . Imagine that your
company needs several different applications: one to display customer bills, one to register a new
customer, and one to track customer complaints. In each of those applications, you need to have a
 Customer object.

 To simplify the issue, those three projects are not going to be undertaken simultaneously. You start by
doing the first; when finished, you move on to the second; when you ’ ve finished that, you move on to
the third. Do you want to build a new Customer class for each project, or do you want to build the class
once and reuse it in each of the other two projects?

 Reuse is typically regarded as something that ’ s universally good, although there is a tradeoff. Ideally, if
you build a Customer class for one project, and another project you ’ re working on calls for another
 Customer class, you should use the same one. However, it may well be that you can ’ t just plug the class
into another project for some reason. We say “ for some reason ” because there are no hard and fast rules
when it comes to class design and reuse. It may also be easier or more cost - effective to build simple
classes for each project rather than try to create one complex object that does everything. This might
sound like it requires a degree in clairvoyance, but luckily it comes with experience! As you develop
more and more applications, you ’ ll gain a better understanding of how to design great, reusable objects.

❑

❑

❑

c11.indd 368c11.indd 368 4/1/08 6:26:43 PM4/1/08 6:26:43 PM

Chapter 11: Building Objects

369

 Each object should be responsible for activities involving itself and no more. We ’ ve discussed only two
objects — Bill and Customer — so you ’ ll look only at those.

 The activity of printing a bill (say, for telephone charges) follows this algorithm:

 For a given customer, find the call details for the last period.

 Go through each call and calculate the price of each one.

 Aggregate the cost of each call into a total.

 Apply tax charges.

 Print out the bill, with the customer ’ s name, address, and bill summary on the first page and
then the bill details on subsequent pages.

 You have only two places where you can code this algorithm: the Bill object or the Customer object.
Which one do you choose?

 The calls made are really a property of the Customer . Basically, you are using these details to create a
bill. Most of the functionality would be placed in the Bill object. A Customer is responsible for
representing a customer, not representing a bill. When you create a Bill object, you would associate it
with a particular customer by using a Cust property, like this:

myBill.Cust = myCustomer

 The Bill object would then know that it was a bill for a given customer (represented by the
 myCustomer object) and could use the customer ’ s details when creating a bill. You might want to change
some other properties of the Bill , such as where it will be mailed to, whether it should contain a
warning because it is overdue, and so on. Finally, the Bill would have a Print method:

myBill.Print()

 The Bill object would then use a Printer object in order to print the bill. The Bill object would be
said to be the user or consumer of the Printer object. It would even be said to consume the Printer
object, even though (at least you hope) the printer is not used up or destroyed in printing the bill.

 Designing an Object
 Contrary to what we ’ ve said so far, in this first project you ’ re not going to define an algorithm and then
build objects to support it. For this rather academic example, we ’ re going to walk you through some of
the features of a typical object — in this case, a car.

 There are certain facts you might want to know about the object:

 What it looks like: A car includes things like make, model, color, number of doors, and so on.
These aspects of the car rarely change during the object ’ s lifetime.

 Its capabilities: Horsepower, engine size, cylinder configuration, and so on.

❑

❑

❑

❑

❑

❑

❑

c11.indd 369c11.indd 369 4/1/08 6:26:43 PM4/1/08 6:26:43 PM

Chapter 11: Building Objects

370

 What it ’ s doing: Whether it ’ s stationary, moving forward or backwards, and its speed and
direction.

 Where it is: The Global Positioning System (GPS) coordinates of its current position. This is
effectively its position relative to another object (the planet Earth). Likewise, controls on forms
have coordinates that describe their location relative to the form (say, in pixels to the right of and
below the top left corner).

 You might also want to be able to control the object, for example:

 Tell it to accelerate.

 Tell it to decelerate.

 Tell it to turn left.

 Tell it to turn right.

 Tell it to straighten out of a turn.

 Tell it to do a three - point - turn.

 Tell it to stop completely.

 There are three concepts of an object that you need to be aware of: identity, state, and behavior. We ’ ll
assume that the identity aspect is covered because you know what the class is, so the state and behavior
are of interest here.

 State
 State describes facts about the object now. For example, a car ’ s location and speed are part of its state.
When designing objects, you need to think about what aspects of state you need to handle. It might not
be useful to know a customer ’ s speed, for example, but you might well want to know that customer ’ s
current address.

 State tends to be implemented as values inside an object. Some of these values are publicly available
through properties, and some are private. Also, some aspects of state might be publicly readable but not
changeable. For example, cars have a speedometer that is readable to anybody using the car. But you
can ’ t change the car ’ s speed by playing with the speedometer — you need to alter the car ’ s behavior by
using the brake or accelerator.

 Behavior
 While a car might have a read - only Speed property, it would have methods to accelerate and decelerate.
When you invoke an object ’ s method, you are telling your object to do something — so behavior is
usually associated with methods. Properties can also be associated with behavior. When you set a
property to a particular value (such as by changing the setting of a control), you can trigger behavior.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 370c11.indd 370 4/1/08 6:26:43 PM4/1/08 6:26:43 PM

Chapter 11: Building Objects

371

 Behavior is implemented as a set of Visual Basic 2008 statements that do something. This will usually
involve one or both of the following:

 Changing its own state: When you invoke the accelerate method on a car, it should get faster if
it is capable of doing so.

 Somehow affecting the world outside the object: This could be manipulating other objects in the
application, displaying something to the user, saving something to a disk, or printing a
document.

 In this chapter, you won ’ t build all of the properties and methods discussed. Instead, you ’ ll build a
handful of the more interesting ones. You begin in the following Try It Out by creating your new project
and the Car class.

 Try It Out Creating a New Project and the Car Class

 1. Start Visual Basic 2008 and select File New Project from the menu.

 2. When the New Project dialog box appears, select the Console Application template and enter
the name of the project as Objects . Click OK to create the project.

 3. You now need to create a new class. This is done through the Solution Explorer, so right - click
the Objects project and select Add Class. This prompts you for a new class name, so enter
 Car.vb as the class name and click Add. The new class has been added to the Solution
Explorer and the editor now shows the code listing for it, albeit empty.

 Storing State
 State describes what the object understands about itself, so if you give a car object some state, for
example, “ You are blue, ” you ’ re giving the car object a fact: “ The car I represent is blue. ”

 How do you actually manage state in your classes? State is typically held in variables, and you define
those variables within the class. You see how to do this in a moment.

 Usually, the methods and properties you build will either affect or use the state in some way. Imagine
you ’ ve built a property that changes the color of the car. When you set that property, the variable that ’ s
responsible for storing the state is changed to reflect the new value that it has been given. When
you retrieve (get) that property, the variable responsible for storing the state is read, and the current
value is returned to the caller.

 In a way, then, properties are behaviors. Under the hood, a public property has two methods: a Get
method and a Set method (defined by Get . . . End Get and Set . . . End Set blocks of code, as you
have already encountered in Chapter 5). A simple Get method for the Color property contains code to

❑

❑

c11.indd 371c11.indd 371 4/1/08 6:26:44 PM4/1/08 6:26:44 PM

Chapter 11: Building Objects

372

tell the caller what color the car is. A simple Set method for the Color property sets a value that
represents the car ’ s color. In a real application, though, Color would probably mean something more
than just remembering a value. In a driving game, for example, the Set method of the Color property
would need to make the screen display change the color in which the car is shown on the screen.

 When a property has no behavior at all, you can cheat. In the next Try It Out , you create a Color
property by declaring a Color variable and making it public. When a property is implemented like this,
it is also called a field . Although this can be a useful and very fast technique for adding properties,
declaring a field instead of the Property , Get , and Set blocks is not actually recommended, but for this
small example it is just fine.

 Try It Out Creating an Object and Adding a Color Property

 1. In the Car class, add this code:

 Public Color As String

 2. That ’ s it! However, you do need a way of consuming the class so that you can see it working.
Open Module1.vb and add this code:

 Sub Main()

 ‘Create a new car object
 Dim objCar As New Car

 ‘Set the Color property to Red
 objCar.Color = “Red”

 ‘Show what the value of the property is
 Console.WriteLine(“My car is this color:”)
 Console.WriteLine(objCar.Color)

 ‘Wait for input from the user
 Console.ReadLine()

 End Sub

 3. Save your project by clicking the Save All button on the toolbar.

 4. Now run the project. A new window similar to Figure 11 - 1 appears.

Figure 11-1

 5. Press Enter to end the program.

c11.indd 372c11.indd 372 4/1/08 6:26:44 PM4/1/08 6:26:44 PM

Chapter 11: Building Objects

373

 How It Works
 Defining the field is easy. The following line of code:

 Public Color As String

tells the class that you want to create a variable called Color and you want the field to hold a string
of text characters. The use of the Public keyword when you declare the Color variable tells the class
that the variable is accessible to developers using the Car class, not only from within the class itself.

 Variables defined in the location between the Public Class and End Class lines, but outside of any
functions, are known as member variables in the class itself and as fields to consumers of the class.

 Using the object is simple, and you do this from within Module1.vb . This process actually takes two
steps. First, you have to declare a variable to refer to an object for the class; second, you instantiate the
object. The following line of code creates an object variable called objCar and tells it that it ’ s going to
hold exclusively any objects created using the Car class:

Dim objCar As Car

 When you define the variable, it doesn ’ t yet have an object instance associated with it; you are simply
identifying the type of object. It ’ s a bit like telling the computer to give you a hook that you can hang a
 Car object on, and call the hook objCar . You haven ’ t hung anything on it yet — to do that you have to
create an instance of the class. This is done using the New keyword:

Set objCar = New Car

 But Visual Basic 2008 allows you to combine both steps into one line of code:

 ‘Create a new car object
 Dim objCar As New Car

 So, what you ’ re saying here is: “ let objCar refer to a newly created object instantiated from the class
 Car . ” In other words, “ create a new car and hang it on the hook called objCar . ” You now have a Car
object and can refer to it with the name objCar .

 Note that in OO programming, the same object can be hanging on several different hooks at the same
time and, therefore, have several different names. This might seem confusing, but in most cases it is a
really intuitive way to work. Imagine how cool it would be if your keys could be on several hooks at the
same time — they ’ d be so much easier to find!

 After you have an object instance, you can set its properties and call its methods. Here is how you set
the Color property:

 ‘Set the Color property to Red
 objCar.Color = “Red”

c11.indd 373c11.indd 373 4/1/08 6:26:44 PM4/1/08 6:26:44 PM

Chapter 11: Building Objects

374

 After the property has been set, it can be retrieved as many times as you want or its value changed at a
later point. Here, retrieval is illustrated by passing the Color property to the WriteLine method on
the Console class:

 ‘Show what the value of the property is
 Console.WriteLine(“My car is this color:”)
 Console.WriteLine(objCar.Color)

 The Console.ReadLine line means that the program does not continue until you press Enter.
Basically the console window is waiting for input from you.

 ‘Wait for input from the user
 Console.ReadLine()

 Console applications are a good way to test in - memory objects because you don ’ t need to worry about
setting up a user interface. You can just display lines of text whenever you want. The objects you build
work just as well in a Windows application, though.

 Even though this is not really a property from the point of view of a developer using the class, it
works just like one. In fact, real properties are methods that look like variables to users of the class.
Whether you use a method or a property really depends on what the users of your class find easier.
You ’ ll start to see this in the next section.

 Real Properties
 Now that you ’ ve seen how to cheat, let ’ s see how to do things properly. The property you saw can be set
to pretty much anything. As long as it ’ s a string, it will be accepted. Also, setting the property doesn ’ t do
anything except change the object ’ s internal state. Often you want to control what values a property can
be set to; for example, you might have a list of valid colors that a car can be. You might also want to
associate a change to a property with a particular action. For example, when you change a channel on
the TV, you want it to do a bit more than just change its mind about what channel it ’ s displaying. You
want the TV to show a different picture! Just changing the value of a variable won ’ t help here.

 Another reason to use real properties is that you want to prevent the user of the class from directly
changing the value. This is called a read - only property . The car ’ s speed is a good example of how a class
that models a real - world object should behave like that real - world object. If you are going 60 mph, you
cannot simply change the speed to a value you prefer. You can read the speed of a car from the
speedometer, but you cannot change (write) the speed of the car by physically moving the needle around
the dial with your finger. You have to control the car in another fashion, which you do by stepping
on the gas pedal to accelerate or on the brake pedal to decelerate. To model this feature in the Car class,
you use methods (Accelerate , Decelerate) that affect the speed and keep a read - only property
around called Speed that will report on the current speed of the vehicle.

 You ’ ll still need to keep the speed around in a member variable, but what you need is a member variable
that can be seen or manipulated only by the class itself. You accomplish this by using the Private keyword:

 Private intSpeed As Integer

c11.indd 374c11.indd 374 4/1/08 6:26:45 PM4/1/08 6:26:45 PM

Chapter 11: Building Objects

375

 The intSpeed variable is marked as Private and can, therefore, be accessed only by functions defined
inside the class itself. Users of Car will not even be aware of its presence.

 Now you ’ ll see how you can build a property that will give the user of the object read - only access to the
car ’ s speed.

 Try It Out Adding a Speed Property

 1. To define a private variable, use the Private instead of the Public keyword. Add this
statement to the Car class:

 Public Color As String

 Private intSpeed As Integer

 2. To report the speed, you need to build a read - only property. Add this code to your Car class:

 ‘Speed - read-only property to return the speed
 Public ReadOnly Property Speed() As Integer
 Get
 Return intSpeed
 End Get
 End Property

 3. Now, you build a method called Accelerate that adjusts the speed of the car by however
many miles - per - hour you give it. Add this code after the Speed property:

 ‘Accelerate - add mph to the speed
 Public Sub Accelerate(ByVal accelerateBy As Integer)
 ‘Adjust the speed
 intSpeed += accelerateBy
 End Sub

 4. To test the object, you need to make some changes to the Main procedure in Module1. Open
the file and modify the code as shown:

 Sub Main()
 ‘Create a new car object
 Dim objCar As New Car

 ‘Report the speed
 Console.WriteLine(“The car’s speed is:”)
 Console.WriteLine(objCar.Speed)

 ‘Accelerate
 objCar.Accelerate(5)

 ‘Report the new speed
 Console.WriteLine(“The car’s speed is now:”)
 Console.WriteLine(objCar.Speed)

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

c11.indd 375c11.indd 375 4/1/08 6:26:45 PM4/1/08 6:26:45 PM

Chapter 11: Building Objects

376

 5. Now run the project. A new window similar to Figure 11 - 2 appears.

Figure 11-2

 How It Works
 The first thing you do is define a private member variable called intSpeed in the Car class:

 Private intSpeed As Integer

 By default, when the object is created, intSpeed has a value of zero because this is the default value
for the Integer data type.

 You then define a read - only property that returns the current speed:

 ‘Speed - readonly property to return the speed
 Public ReadOnly Property Speed() As Integer
 Get
 Return intSpeed
 End Get
 End Property

 When you define properties, you can set them to be read - only (through the ReadOnly keyword),
write - only (through the WriteOnly keyword), or both readable and writable by using neither.
Reading a property is known as getting the value, whereas writing to a property is known as setting
the value. The code between Get and End Get is executed when the property is read. In this case, the
only thing you ’ re doing is returning the value currently stored in intSpeed .

 You also created a method called Accelerate . This method doesn ’ t have to return a value, so you use
the Sub keyword:

 ‘Accelerate - add mph to the speed
 Public Sub Accelerate(ByVal accelerateBy As Integer)
 ‘Adjust the speed
 intSpeed += accelerateBy
 End Sub

 The method takes a single parameter called accelerateBy , which you use to tell the method how
much to increase the speed by. The only action of the method is to adjust the internal member
 intSpeed . In real life, the pressure on the accelerator pedal, along with factors such as wind speed
and road surface, affect the speed. The speed is an outcome of several factors — not something you
can just change. You need some complex code to simulate this. Here you are just keeping things
simple and incrementing the intSpeed variable with the value passed to the method.

 Accelerating a car is another example of encapsulation. To accelerate the car in a real - world
implementation you need an actuator of some kind to open the throttle further until the required
speed is reached. As consumers of the object, you don ’ t care how this is done. All you care about is
how to tell the car to accelerate.

c11.indd 376c11.indd 376 4/1/08 6:26:45 PM4/1/08 6:26:45 PM

Chapter 11: Building Objects

377

 Consuming this new functionality is simple. First, you create the variable and instantiate the object as
you did in the previous exercise:

 ‘Create a new car object
 Dim objCar As New Car

 Next, you write the current speed:

 ‘Report the speed
 Console.WriteLine(“The car’s speed is:”)
 Console.WriteLine(objCar.Speed)

 Notice how you ’ re using the read - only Speed property to get the current speed of the car. When the
object is first created, the internal _speed member will be set at 0 .

 Now you call Accelerate and use it to increase the speed of the car:

 ‘Accelerate
 objCar.Accelerate(5)

Finally, you write out the new speed:

 ‘Report the new speed
 Console.WriteLine(“The car’s speed is now:”)
 Console.WriteLine(objCar.Speed)

 Read/Write Properties
 Why would you need to use the Property keyword to define properties that are both readable and
writable if you can achieve the same effect with a line like this?

 Public Color As String

 If you build the property manually using the Property keyword, you can write code that is executed
whenever the property is set or gotten. This is extremely powerful!

 For example, the Property keyword allows you to provide validation for new values. Imagine you had
a property called NumberOfDoors . You wouldn ’ t want this to be set to nonsense values like 0 or 23453 .
Rather, you would have some possible range. For modern cars this is going to range from 2 to 5 .

 This is an important consideration for developers building objects. It ’ s imperative that you make life as
easy as possible for a developer to consume your object. Dealing with problems like making sure a car
can ’ t have 10 million doors is an important aspect of object design.

 Likewise, you might not have the information to return to the consumer of your object when you are
asked to return the property; you might have to retrieve the value from somewhere, or otherwise
calculate it. You might have a property that describes the total number of orders a customer has ever

c11.indd 377c11.indd 377 4/1/08 6:26:46 PM4/1/08 6:26:46 PM

Chapter 11: Building Objects

378

made or the total number of chew toys a dog has destroyed in his life. If you build this as a property, you
can intercept the instruction to get the value and find the actual value you require on demand from some
other data store, such as a database or a web service. You ’ ll see this in later chapters.

 For now, let ’ s deal with the number - of - doors problem.

Try It Out Adding a NumberOfDoors Property

 1. The first thing you need to do is build a private member that will hold the number of doors.
You ’ re going to define this member as having a default of 5 . Add this code in the Car class as
highlighted here:

 Public Color As String
 Private intSpeed As Integer

 Private intNumberOfDoors As Integer = 5

 2. Now you can build a property that gets and sets the number of doors, provided the number of
doors is always between 2 and 5 . Add this code to your Car class directly beneath the
 Accelerate method:

 ‘NumberOfDoors - get/set the number of doors
 Public Property NumberOfDoors() As Integer
 ‘Called when the property is read
 Get
 Return intNumberOfDoors
 End Get
 ‘Called when the property is set
 Set(ByVal value As Integer)
 ‘Is the new value between two and five
 If value > = 2 And value < = 5 Then
 intNumberOfDoors = value
 End If
 End Set
 End Property

 In this chapter, you ’ re going to ignore the problem of telling the developer if the user has provided an
invalid value for a property. Ideally, whenever this happens, you need to throw an exception. The
developer will be able to detect this exception and behave accordingly. (For example, if the user typed the
number of doors as 9999 into a text box, the program could display a message box telling the user that
they have provided an invalid value for the number of doors, since no car has that many doors.) You
learned about exception handling in Chapter 10 .

 3. To test the property, you need to change the Main procedure in Module1 by modifying the
code as indicated here:

 Sub Main()
 ‘Create a new car object
 Dim objCar As New Car

 ‘Report the number of doors
 Console.WriteLine(“The number of doors is:”)

c11.indd 378c11.indd 378 4/1/08 6:26:46 PM4/1/08 6:26:46 PM

Chapter 11: Building Objects

379

 Console.WriteLine(objCar.NumberOfDoors)

 ‘Try changing the number of doors to 1000
 objCar.NumberOfDoors = 1000

 ‘Report the number of doors
 Console.WriteLine(“The number of doors is:”)
 Console.WriteLine(objCar.NumberOfDoors)

 ‘Now try changing the number of doors to 2
 objCar.NumberOfDoors = 2

 ‘Report the number of doors
 Console.WriteLine(“The number of doors is:”)
 Console.WriteLine(objCar.NumberOfDoors)

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

 Try running the project. You should see a screen like the one in Figure 11 - 3 .

Figure 11-3

 How It Works
 First you define a private member variable called intNumberOfDoors . You also assign the default
value of 5 to this variable.

 Private intNumberOfDoors As Integer = 5

 The motivation behind setting a value at this point is simple: You want intNumberOfDoors to always be
between 2 and 5 . When the object is created, the intNumberOfDoors will be assigned a value of 5 .
Without this assignment, intNumberOfDoors would have a default value of 0 . This would be
inconsistent with the understanding that the number of doors must always be between 2 and 5 , so you
guard against it.

 Next comes the property itself. The Get portion is simple — just return the value held in
 intNumberOfDoors — but the Set portion involves a check to ensure that the new value is valid. The
new value is passed in through a parameter called value :

 ‘NumberOfDoors - get/set the number of doors
 Public Property NumberOfDoors() As Integer
 ‘Called when the property is read
 Get
 Return intNumberOfDoors
 End Get

c11.indd 379c11.indd 379 4/1/08 6:26:46 PM4/1/08 6:26:46 PM

Chapter 11: Building Objects

380

 ‘Called when the property is set
 Set(ByVal value As Integer)
 ‘Is the new value between two and five
 If value > = 2 And value < = 5 Then
 intNumberOfDoors = value
 End If
 End Set
 End Property

 The test code you add to Module1 is not very complex. You simply display the initial value of
 intNumberOfDoors and then try to change it to 1000 . The validation code in the NumberOfDoors
property won ’ t change the intNumberOfDoors member variable if an inconsistent number is used, so
when you report the number of doors again, you find it hasn ’ t changed from 5 . Lastly, you try setting it
to 2 , which is a valid value, and this time, when you report the number of doors, you get an output of 2 .

 Even though read – write properties and public variables seem to work the same way, they are very
 different. When your Visual Basic 2008 code is compiled, the compiled code treats property calls as a call
to a method. Always using properties instead of public variables makes your objects more flexible and
extendable. Of course, using public variables is easier and quicker. You need to decide what is most
important in each case.

 The IsMoving Method
 When building objects you should always have the following question in the back of your mind. “ How
can I make this object easier to use? ” For example, if the consumer needs to know whether the car is
moving, what would be the easiest way to determine this?

 One way would be to look at the Speed property. If this is zero, it can be assumed that the car has
stopped. (On most cars the speed is not reported when the car is moving in reverse. So assume, for now,
that you have only forward gears!) However, relying on the developers using the object to understand
this relies on their having an understanding of whatever is being modeled. Common sense tells us that
an object with a speed of “ zero mph ” is stationary, but should you assume anyone consuming the object
shares your idea of common sense?

 Instead, it ’ s good practice to create methods that deal with these eventualities. One way you can solve
this problem is by creating an IsMoving method.

 Try It Out Adding an IsMoving Method

 1. All the IsMoving method needs in order to work is a simple test to look at the speed of the
car and make a True or False determination as to whether it ’ s moving. Add this code to the
 Car class after the NumberOfDoors property:

 ‘IsMoving - is the car moving?
 Public Function IsMoving() As Boolean
 ‘Is the car’s speed zero?
 If Speed = 0 Then
 Return False

c11.indd 380c11.indd 380 4/1/08 6:26:47 PM4/1/08 6:26:47 PM

Chapter 11: Building Objects

381

 Else
 Return True
 End If
 End Function

 2. To test this method, make these changes to the Main procedure in Module1 with this new
code as indicated:

 Sub Main()
 ‘Create a new car object
 Dim objCar As New Car

 ‘Accelerate the car to 25mph
 objCar.Accelerate(25)

 ‘Report whether or not the car is moving
 If objCar.IsMoving = True Then
 Console.WriteLine(“The car is moving.”)
 Else
 Console.WriteLine(“The car is stopped.”)
 End If

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

 3. Now try running the project. A new window similar to Figure 11 - 4 appears.

Figure 11-4

 How It Works
 You created a simple method that examines the value of the Speed property and returns True if the
speed is not zero, False if it is.

 ‘IsMoving - is the car moving?
 Public Function IsMoving() As Boolean
 ‘Is the car’s speed zero?
 If Speed = 0 Then
 Return False
 Else
 Return True
 End If
 End Function

 Although this method is simple, it removes the conceptual leap required on the part of the consumer
to understand whether the object is moving. There ’ s no confusion as to whether the car is moving

c11.indd 381c11.indd 381 4/1/08 6:26:47 PM4/1/08 6:26:47 PM

Chapter 11: Building Objects

382

based on interpreting the value of one or more properties; one simple method returns a definitive
answer.

 Of course, before you go off building hundreds of methods for every eventuality, remember that
ironically, the more methods and properties an object has, the harder it is to understand. Take care
while designing the object and try to strike the right balance between too few and too many methods
and properties.

 You may be wondering why you used a method here when this is actually a property. All you are
doing is reporting the object ’ s state without affecting its behavior. There is no reason for not using a
property here. However, using a method does remind users of the object that this value is calculated
and is not a simple report of an internal variable. It also adds a bit of variety to your examples and
reminds you how easy it is to add a method!

 Constructors
 One of the most important aspects of object design is the concept of a constructor . As mentioned in
Chapter 10 , this is a piece of initialization code that runs whenever an object is instantiated. It ’ s
extremely useful when you need the object to be set up in a particular way before you use it. For
example, it can be used to set up default values, just as you did for the number of doors earlier.

 In this Try It Out, you take a look at a simple constructor.

 Try It Out Creating a Constructor

 1. For the sake of this discussion, you ’ re going to remove the default value of 5 from the
 intNumberOfDoors member. Make this change to the Car class:

 Public Color As String
 Private intSpeed As Integer
 Private intNumberOfDoors As Integer

 2. Add this method, which forms the constructor. Any code within this method is executed
whenever an object is created from the Car class:

 ‘Constructor
 Public Sub New()
 ‘Set the default values
 Color = “White”
 intSpeed = 0
 intNumberOfDoors = 5
 End Sub

 Setting the intSpeed to 0 here is actually redundant, as it will have that value already (since all
 Integer variables are set to 0 when they are declared), but it ’ s included to make the example complete.

c11.indd 382c11.indd 382 4/1/08 6:26:47 PM4/1/08 6:26:47 PM

Chapter 11: Building Objects

383

 3. To test the action of the constructor, you create a separate procedure that displays the car ’ s
details. Add the DisplayCarDetails procedure in Module1:

 ‘DisplayCarDetails - procedure that displays a car’s details
 Sub DisplayCarDetails(ByVal theCar As Car)
 ‘Display the details of the car
 Console.WriteLine(“Color: “ & theCar.Color)
 Console.WriteLine(“Number of doors: “ & theCar.NumberOfDoors)
 Console.WriteLine(“Current speed: “ & theCar.Speed)
 End Sub

 4. Modify the Main procedure in Module1 to call the DisplayCarDetails procedure:

 Sub Main()
 ‘Create a new car object
 Dim objCar As New Car

 ‘Display the details of the car
 DisplayCarDetails(objCar)

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

 5. Try running the project, and you should see output similar to Figure 11 - 5 .

Figure 11-5

 How It Works
 The code in the constructor is called whenever an object is created. This is where you take an
opportunity to set the values for the members:

 ‘Constructor
 Public Sub New()
 ‘Set the default values
 Color = “White”
 intSpeed = 0
 intNumberOfDoors = 5
 End Sub

 You see the results of the changes made to the properties when you run the project and see the details
of the car displayed in the window. A constructor must always be a subroutine (defined with the Sub
keyword) and must always be called New . This provides consistency in the .NET Framework for all
class constructors and the framework will always execute this procedure when a class is instantiated.

When you test the object, you use a separate function called DisplayCarDetails in Module1. This is
useful when you need to see the details of more than one Car object or want to see the details of the
 Car object multiple times in your code.

c11.indd 383c11.indd 383 4/1/08 6:26:48 PM4/1/08 6:26:48 PM

Chapter 11: Building Objects

384

 Inheritance
 Although the subject of inheritance is quite an advanced object - oriented programming topic, it is really
useful. In fact, the .NET Framework itself makes heavy use of it, and you have already created classes
that inherit from another class — every Windows form that you write is a new class inherited from a
simple blank form (the starting point when you create a form).

 Inheritance is used to create objects that have everything another object has, but also some of their own
bits and pieces. It ’ s used to extend the functionality of objects, but it doesn ’ t require you to have an
understanding of how the internals of the object work. This is in line with your quest of building and
using objects without having to understand how the original programmers put them together.

 Inheritance enables you to, in effect, take another class and bolt on your own functionality, either by
adding new methods and properties or by replacing existing methods and properties. For example,
you can move from a general car class to more specific variations — for example, sports car, SUV, van,
and so on.

 So, if you wanted to model a sports car, it is likely that you would want to have a default number of
doors as 2 instead of 5, and you might also like to have properties and methods that help you
understand the performance of the car, such as Weight and PowerToWeightRatio , as shown in
Figure 11 - 6 .

Car

Properties

Speed

NumberOfDoors

Methods

Accelerate

Color

HorsePower

SportsCar

Properties

Speed

NumberOfDoors

Methods

Accelerate

Color

HorsePower

SportsCar “inherits” from car

Weight

GetPowerToWeightRatio

All of the methods and
properties implemented on
Car are now available
to consumers of SportsCar.
Plus, SportsCar has the
opportunity to add its own
methods and properties
to suit its own needs.

Figure 11-6

c11.indd 384c11.indd 384 4/1/08 6:26:48 PM4/1/08 6:26:48 PM

Chapter 11: Building Objects

385

 One thing that you need to understand about inheritance is the way that access to public and private
members is controlled. Any public member, such as Color , is accessible to inheriting classes. However,
private members such as intSpeed are not. This means that if SportsCar has to change the speed of the
car, it has to do so through the properties and methods provided in the Car class itself.

 In other commonly encountered terminology, the inheriting class is called a derived class , and the class
it inherits from is its base class . Car is the base class from which SportsCar is derived. The terms
 subclass and superclass are also used. SportsCar is a subclass of Car ; Car is the superclass of
 SportsCar . The sub and super prefixes mean the same as they do in speaking of subsets and supersets
in mathematics.

 Adding New Methods and Properties
 To illustrate inheritance, in the next Try It Out you create a new class called SportsCar , which inherits
from Car and enables you to see the power - to - weight ratio of your sports car.

Try It Out Inheriting from Car

 1. For this demonstration, you need to add an additional public variable to the Car class that
represents the horsepower of the car. Of course, if you want to make it really robust, you
would use a property and ensure a sensible range of values. But here, simplicity and speed
win out. Open the Car class and add this line of code as indicated:

 Public Color As String
 Public HorsePower As Integer

 Private intSpeed As Integer
 Private intNumberOfDoors As Integer

 2. Create a new class in the usual way by right - clicking the Objects project in the Solution
Explorer and selecting Add Class. Enter the name of the class as SportsCar.vb and
click Add.

 3. To tell SportsCar that it inherits from Car , you need to use the Inherits keyword. Add this
code to SportsCar :

Public Class SportsCar
 Inherits Car

End Class

 4. At this point, SportsCar has all the methods and properties that Car has. What you want to
do now is add a new public variable called Weight to the SportsCar class:

 Public Weight As Integer

c11.indd 385c11.indd 385 4/1/08 6:26:48 PM4/1/08 6:26:48 PM

Chapter 11: Building Objects

386

 5. To test the new class you need to add a new procedure to Module1. Add the following
procedure:

 ‘DisplaySportsCarDetails - procedure that displays a sports car’s details
 Sub DisplaySportsCarDetails(ByVal theCar As SportsCar)
 ‘Display the details of the sports car
 Console.WriteLine()
 Console.WriteLine(“Sports Car Horsepower: “ & theCar.HorsePower)
 Console.WriteLine(“Sports Car Weight: “ & theCar.Weight)
 End Sub

 6. Modify the Main procedure in Module1. Pay close attention to the fact that you need to create
a SportsCar object, not a Car object, in order to get at the Weight property. Add the new
code as indicated:

 Sub Main()

 ‘Create a new sports car object
 Dim objCar As New SportsCar

 ‘Modify the number of doors
 objCar.NumberOfDoors = 2

 ‘Set the horsepower and weight(kg)
 objCar.HorsePower = 240
 objCar.Weight = 1085

 ‘Display the details of the car
 DisplayCarDetails(objCar)

 DisplaySportsCarDetails(objCar)

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

 7. Try running the project and you ’ ll see an output similar to that shown in Figure 11 - 7 .

Figure 11-7

 How It Works
 The directive to make SportsCar inherit from Car is done with the Inherits keyword:

Public Class SportsCar
 Inherits Car

c11.indd 386c11.indd 386 4/1/08 6:26:49 PM4/1/08 6:26:49 PM

Chapter 11: Building Objects

387

 At this point, the new SportsCar class contains all the methods and properties in the Car class, but it
cannot see or modify the private member variables. When you add your new property:

 Public Weight As Integer

you have a new property that ’ s available only when you create instances of SportsCar and not
available to you if you are creating plain instances of Car . This is an important point to realize — if
you don ’ t create an instance of SportsCar , you ’ ll get a compile error if you try to access the Weight
property. Weight isn ’ t, and never has been, a property of Car (see Figure 11 - 6 for a clarification of this
situation).

 The new DisplaySportsCarDetails procedure displays the Horsepower property from the Car
class and the Weight property from the SportsCar class. Remember that, since the SportsCar class
inherits from the Car class, it contains all of the methods and properties in the Car class:

 ‘DisplaySportsCarDetails - procedure that displays a sports car’s details
 Sub DisplaySportsCarDetails(ByVal theCar As SportsCar)
 ‘Display the details of the sports car
 Console.WriteLine()
 Console.WriteLine(“Sports Car Horsepower: “ & theCar.HorsePower)
 Console.WriteLine(“Sports Car Weight: “ & theCar.Weight)
 End Sub

 You instantiate a new SportsCar object in your Main procedure, and this allows you to get and set
the value for the Weight property:

 ‘Create a new sports car object
 Dim objCar As New SportsCar

You are able to call the DisplayCarDetails procedure and pass it a SportsCar object, because
 SportsCar is a subclass of Car — that is, every SportsCar is also a Car . The DisplayCarDetails
procedure does not access any of the properties of the SportsCar class, so call this procedure passing
it the SportsCar object that you created. You then call the DisplaySportsCarDetails procedure to
display the properties of both the Car class and the SportsCar class:

 ‘Display the details of the car
 DisplayCarDetails(objCar)
 DisplaySportsCarDetails(objCar)

 Adding a GetPowerToWeightRatio Method
 A GetPowerToWeightRatio method could be implemented as a read - only property (in which case you
would probably call it PowerToWeightRatio instead), but for this discussion you ’ ll add it as a method
in the next Try It Out .

c11.indd 387c11.indd 387 4/1/08 6:26:49 PM4/1/08 6:26:49 PM

Chapter 11: Building Objects

388

 Try It Out Adding a GetPowerToWeightRatio Method

 1. For this method, all you need to do is divide the horsepower by the weight. Add this code to
the SportsCar class:

 ‘GetPowerToWeightRatio - work out the power to weight
 Public Function GetPowerToWeightRatio() As Double
 ‘Calculate the horsepower
 Return CType(HorsePower, Double) / CType(Weight, Double)
 End Function

 2. To see the results, add the highlighted code to the DisplaySportsCarDetails procedure in
Module1:

‘DisplaySportsCarDetails - procedure that displays a sports car’s details
Sub DisplaySportsCarDetails(ByVal theCar As SportsCar)
 ‘Display the details of the sports car
 Console.WriteLine()
 Console.WriteLine(“Sports Car Horsepower: “ & theCar.HorsePower)
 Console.WriteLine(“Sports Car Weight: “ & theCar.Weight)

 Console.WriteLine(“Power to Weight Ratio: “ & theCar.GetPowerToWeightRatio)

End Sub

Run the project and you ’ ll see something similar to Figure 11 - 8 .

Figure 11-8

 How It Works
 Again, all you ’ ve done is add a new method to the new class called GetPowerToWeightRatio . This
method then becomes available to anyone working with an instance of SportsCar as shown in
Figure 11 - 9 .

c11.indd 388c11.indd 388 4/1/08 6:26:49 PM4/1/08 6:26:49 PM

Chapter 11: Building Objects

389

The only thing you have to be careful of is that if you divide an integer by an integer you get an
integer result, but what you actually want here is a floating - point number. You have to convert
the integer HorsePower and Weight properties to Double values in order to see the results:

 ‘Calculate the horsepower
 Return CType(HorsePower, Double) / CType(Weight, Double)

 Changing Defaults
 In addition to adding new properties and methods, you might want to change the way an existing
method or property works from that of the base class. To do this, you need to create your own
implementation of the method or property.

 Think back to the discussion on constructors. These are methods that are called whenever the object is
created and let you get the object into a state where it can be used by a developer. In this constructor you
set the default _numberOfDoors value to be 5 . However, in a sports car, this number should ideally be 2 ,
which is what you set using the NumberOfDoors property. But wouldn ’ t it be nice to have this
automatically done in the constructor of the SportsCar class?

A new method is added
and is only available to
consumers of SportsCar,
not consumers of Car.

Car

Properties

Speed

NumberOfDoors

Methods

Accelerate

Color

HorsePower

SportsCar

Properties

Speed

NumberOfDoors

Methods

Accelerate

Color

HorsePower

SportsCar “inherits” from car

Weight

GetPowerToWeightRatio

Figure 11-9

c11.indd 389c11.indd 389 4/1/08 6:26:50 PM4/1/08 6:26:50 PM

Chapter 11: Building Objects

390

 If you are creating a derived class want to replace a method or property existing in the base class with
your own, the process is called overriding. In this next Try It Out, you learn how to override the base
class ’ s constructor.

 Try It Out Overriding a Constructor

 1. To override the constructor in the base class, all you have to do is create your own constructor
in the SportsCar class. Add this code to SportsCar :

 ‘Constructor
 Public Sub New()
 ‘Change the default values
 Color = “Green”
 NumberOfDoors = 2
 End Sub

 2. Remove the following code from the Main procedure in Module1.

 ‘Modify the number of doors
 objCar.NumberOfDoors = 2

 3. Run your project to test your constructor in the SportsCar class. You should see output
similar to Figure 11 - 10 .

Figure 11-10

 How It Works
 The new constructor that you added to SportsCar runs after the existing one in Car . The .NET
Framework knows that it ’ s supposed to run the code in the constructor of the base class before
running the new constructor in the class that inherits from it, so in effect it runs this code first:

 ‘Constructor
 Public Sub New()
 ‘Set the default values
 Color = “White”
 intSpeed = 0
 intNumberOfDoors = 5
 End Sub

c11.indd 390c11.indd 390 4/1/08 6:26:50 PM4/1/08 6:26:50 PM

Chapter 11: Building Objects

391

 And then it runs this code:

 ‘Constructor
 Public Sub New()
 ‘Change the default values
 Color = “Green”
 NumberOfDoors = 2
 End Sub

 To summarize what happens:

 1. The constructor on the base class Car is called.

 2. Color is set to White .

 3. intSpeed is set to 0 .

 4. intNumberOfDoors is set to 5 .

 5. The constructor on the new class SportsCar is called.

 6. Color is set to Green .

 7. NumberOfDoors is set to 2 .

 Because you defined intNumberOfDoors as a private member in Car , you cannot directly access it
from inherited classes, just as you wouldn ’ t be able to access it directly from a consumer of the class.
Instead, you rely on being able to set an appropriate value through the NumberOfDoors property.

 Polymorphism: Scary Word, Simple Concept
 Another very common word mentioned when talking about object - oriented programming is
 polymorphism . This is, perhaps the scariest term, but one of the easiest to understand! In fact, you have
already done it in the previous example.

 Look again at the code for DisplayCarDetails :

 ‘DisplayCarDetails - procedure that displays a car’s details
 Sub DisplayCarDetails(ByVal theCar As Car)
 ‘Display the details of the car
 Console.WriteLine(“Color: “ & theCar.Color)
 Console.WriteLine(“Number of doors: “ & theCar.NumberOfDoors)
 Console.WriteLine(“Current speed: “ & theCar.Speed)
 End Sub

 The first line says that the parameter you want to accept is a Car object. But when you call the object,
you ’ re actually passing it a SportsCar object.

c11.indd 391c11.indd 391 4/1/08 6:26:50 PM4/1/08 6:26:50 PM

Chapter 11: Building Objects

392

 Look at how you create the object and call DisplayCarDetails :

 ‘Create a new sportscar object
 Dim objCar As New SportsCar

 ‘Display the details of the car
 DisplayCarDetails(objCar)

 How can it be that if the function takes a Car object, you ’ re allowed to pass it as a SportsCar object?

 Well, polymorphism (which comes from the Greek for many forms) means that an object can be treated as if
it were a different kind of object, provided common sense prevails. In this case, you can treat a
 SportsCar object like a Car object because SportsCar inherits from Car . This act of inheritance dictates
that what a SportsCar object can do must include everything that a Car object can do; therefore, you
can treat the two objects in the same way. If you need to call a method on Car , SportsCar must also
implement the method.

 This does not hold true the other way round. Your DisplaySportsCarDetails function, defined
like this:

 Sub DisplaySportsCarDetails(ByVal theCar As SportsCar)

cannot accept a Car object. Car is not guaranteed to be able to do everything a SportsCar can do,
because the extra methods and properties you add to SportsCar won ’ t exist on Car . SportsCar is a
more specific type of Car .

 To summarize, when people talk about polymorphism, this is the action they are referring to — the
principle that an object can behave as if it were another object without the developer having to go
through too many hoops to make it happen.

 Overriding More Methods
 Although you ’ ve overridden Car ’ s constructor, for completeness you should look at how to override a
normal method.

 To override a method you need to have the method in the base Car class. Because Accelerate shouldn ’ t
change depending on whether you have a sports car or a normal car, and IsMoving was added for ease
of use — and hence doesn ’ t really count in this instance as it isn ’ t a behavior of the object — you need to
add a new method called CalculateAccelerationRate . Assume that on a normal car this is a
constant, and on a sports car you change it so that it takes the power - to - weight ratio into consideration.
In the following Try It Out, you add another method to override.

c11.indd 392c11.indd 392 4/1/08 6:26:51 PM4/1/08 6:26:51 PM

Chapter 11: Building Objects

393

 Try It Out Adding and Overriding Another Method

 1. Add this method to the Car class:

 ‘CalculateAccelerationRate - assume a constant for a normal car
 Public Function CalculateAccelerationRate() As Double
 ‘If we assume a normal car goes from 0-60 in 14 seconds,
 ‘that’s an average rate of 4.2 mph/s
 Return 4.2
 End Function

 2. To test the method, change the DisplayCarDetails procedure in Module1 to read like this:

 ‘DisplayCarDetails - procedure that displays a car’s details
 Sub DisplayCarDetails(ByVal theCar As Car)
 ‘Display the details of the car
 Console.WriteLine(“Color: “ & theCar.Color)
 Console.WriteLine(“Number of doors: “ & theCar.NumberOfDoors)
 Console.WriteLine(“Current speed: “ & theCar.Speed)

 Console.WriteLine(“Acceleration rate: “ & _
 theCar.CalculateAccelerationRate)

 End Sub

 3. Run the project and you get an output similar to Figure 11 - 11 .

Figure 11-11

 You ’ ve built a method on Car as normal. This method always returns a value of 4.2 mph/s for the
acceleration rate.

 Of course, our acceleration calculation algorithm is pure fantasy — no car is going to accelerate at the
same rate irrespective of the gear, environment, current speed, and so on.

 4. To override the method, you just have to provide a new implementation in SportsCar .
However, there ’ s one thing you need to do first. To override a method you have to mark it as
 Overridable . To do this, open the Car class again and add the Overridable keyword to the
method:

 Public Overridable Function CalculateAccelerationRate() As Double

c11.indd 393c11.indd 393 4/1/08 6:26:51 PM4/1/08 6:26:51 PM

Chapter 11: Building Objects

394

 5. Now, you can create a method with the same name in the SportsCar class. To override the
method in the base class, you must add the Overrides keyword before the method type
(Function or Procedure):

 ‘CalculateAccelerationRate - take the power/weight into consideration
 Public Overrides Function CalculateAccelerationRate() As Double
 ‘You’ll assume the same 4.2 value, but you’ll multiply it
 ‘by the power/weight ratio
 Return 4.2 * GetPowerToWeightRatio()
 End Function

 You didn ’ t add the Overrides keyword when you overrode the constructor; you didn ’ t need to! Visual
Basic 2008 handled this for you.

 6. Run the project; you get an adjusted acceleration rate as shown in Figure 11 - 12 .

Figure 11-12

 How It Works
 Overriding the method lets you create your own implementation of an existing method on the object.
Again, coming back to this concept of encapsulation, the object consumers don ’ t have to know that
anything is different about the object — they just call the method in the same way as they would for a
normal Car object. This time, however, they get a result rather different than the constant value they
always got on the normal Car object.

 When you override a method, it ’ s quite different from overriding a constructor. When you override a
constructor, the original constructor still gets called first. When you override a method, the original
method gets called only if you specifically call it from inside the new overriding method using
MyBase.MethodName . For example, you could invoke MyBase.CalculateAccelerationRate
from SportsCar to return a value of 4.2 .

 Inheriting from the Object Class
 The final thing to look at, with respect to inheritance, is that if you create a class without using the
 Inherits clause, the class automatically inherits from a class called Object . This object provides
you with a few methods that you can guarantee are supported by every object you ’ ll ever have.
Most of these methods are beyond the scope of this book. However, the two most useful methods at
this level are:

c11.indd 394c11.indd 394 4/1/08 6:26:51 PM4/1/08 6:26:51 PM

Chapter 11: Building Objects

395

 ToString : This method returns a string representation of the object. You can override this to
provide a helpful string value for any object; for example, you might want a person object to
return that person ’ s name. If you do not override it, it will return the name of the class.

 GetType : This method returns a Type object that represents the data type of the object.

 Remember, you do not have to inherit explicitly from Object . This happens automatically.

 Objects and Structures
 You created a structure in Chapter 5 . Like a class, a structure provides a way to group several pieces of
information together that all refer to one thing. A structure can even have methods and properties as
well as member variables, just as a class can. Here are some of the differences between structures and
classes.

 In terms of semantics, structures are known as value types and classes are known as reference types . That
is, a variable representing a structure means the actual chunk of computer memory that stores the
contents of the structure itself, whereas a variable representing a class instance is actually, as you have
seen, a “ hook ” on which the object hangs.

 This explains the difference in instantiation — you don ’ t need to use the New keyword to instantiate a
structure before you use it, because it is a value type, just like an integer. You do have to use the New
keyword with a form or other complex object because it is a class instance — a reference type.

 You have seen that two different object variable hooks can be used to hang up the same object. If you set
a property in the object using one of the hooks, its value will be as you set it if you get it using the
other hook.

Dim objMyCar As New Car ‘objMyCar.Color is “White”
Set objThisCar = objMyCar ‘same object, different hooks
objThisCar.Color = “Beige” ‘now objMyCar.Color is also “Beige”

 Two different structure variables, on the other hand, always refer to different groups of pieces of
information.

Dim structMyCustomer As Customer, structThisCustomer As Customer
structMyCustomer.FirstName = “Victor”
structThisCustomer = structMyCustomer ‘different structures
structThisCustomer.FirstName = “Victoria”
‘structMyCustomer.FirstName is still “Victor”

 Also, you cannot inherit from a structure — another important consideration when choosing whether to
use a class or a structure.

❑

❑

c11.indd 395c11.indd 395 4/1/08 6:26:52 PM4/1/08 6:26:52 PM

Chapter 11: Building Objects

396

 The Framework Classes
 Although Chapter 2 included a general discussion of the .NET Framework in general, a more in - depth
look at some aspects of the .NET Framework ’ s construction can help you when building objects. In
particular, you want to take a look at namespaces and how you can create your own namespaces for use
within your objects.

 Namespaces
 The .NET Framework is actually a vast collection of classes. There are over 4,000 classes in the .NET
Framework all told, so how are you as a developer supposed to find the ones that you want?

 The .NET Framework is divided into a broad set of namespaces that group similar classes together. This
limits the number of classes that you have to hunt through if you ’ re looking for a specific piece of
functionality.

 These namespaces are also hierarchical in nature, meaning that a namespace can contain other
namespaces that further group classes together. Each class must belong to exactly one namespace — it
can ’ t belong to multiple namespaces.

 Most of the .NET Framework classes are lumped together in a namespace called System , or namespaces
that are also contained within System . For example:

 System.Data contains classes related to accessing data stored in a database.

 System.Xml contains classes used to read and write XML documents.

 System.Windows.Forms contains classes for drawing windows on the screen.

 System.Net contains classes for communicating over a network.

 The fact that namespaces exist means that all of the objects you ’ ve been using actually have longer
names than the ones used in your software code. Until this point, you ’ ve been using a shorthand
notation to refer to classes.

 In fact, earlier when we said that everything has to be derived from Object , we were stretching it a bit.
Because Object is contained within the System namespace, its full name is System.Object . Likewise,
 Console is actually shorthand for System.Console , meaning that this line:

Console.ReadLine()

 is actually the same as this line:

System.Console.ReadLine()

 This can get a little silly, especially when you end up with object names like
System.Web.Services.Description.ServiceDescription .

 .NET automatically creates a shorthand version of all the classes within System , so you don ’ t have to
type System all the time. Later, you ’ ll see how you can add shorthand references to other namespaces.

❑

❑

❑

❑

c11.indd 396c11.indd 396 4/1/08 6:26:52 PM4/1/08 6:26:52 PM

Chapter 11: Building Objects

397

 There is also the My namespace, which you ’ ve already seen in use in some of the earlier chapters. This
namespace provides access to the common classes that you ’ re most likely to need in your everyday
programming tasks.

 Like the System namespace, the My namespace contains a collection of other classes, which in turn
contain classes of their own. At the top level, there is the My.Application class, which provides a
wealth of information related to the currently executing application such as the application ’ s assembly
name, the current path to the application ’ s executable file, and so on. There is also the My.Computer
class, which provides detailed information about the computer the application is executing on, such as
the amount of free space on the hard drive and the amount of available memory.

 The My.Forms class provides access to the various forms in the application and allows you to
manipulate those forms easily; for example, you can show, hide, and close them. There is also the
My.Resources class, which provides quick and easy access to an application ’ s resource files if it
contains them. You can place localized text strings and images in a resource file and use the
My.Resources class to gain access to these resources for use in your application.

 The My.Settings class provides access to an application ’ s configuration file if it has one and allows you
to quickly read the settings needed by your application such as startup settings or database connection
information. It also allows you to create, persist, and save user settings for your application. Finally,
there is the My.User class, which provides a wealth of information related to the current user of your
application, such as login name and the domain name that the user is logged into.

 Every class must be in exactly one namespace, but what about the classes we ’ ve made so far? Well, this
project has a default namespace, and your new classes are placed into this namespace. In the next Try It
Out, you discover a current namespace.

 Try It Out Finding the Name of the Current Namespace

 1. To see the namespace that you ’ re using, double - click My Project in the Solution Explorer.

 2. The Root Namespace entry in the Objects Property Pages window gives the name of the
namespace that will be used for new classes, as shown in Figure 11 - 13 .

Figure 11-13

c11.indd 397c11.indd 397 4/1/08 6:26:52 PM4/1/08 6:26:52 PM

Chapter 11: Building Objects

398

 What this means is that your classes have the text Objects prefixed to them, like this:

❑ The Car class is actually called Objects.Car .

❑ The SportsCar class is actually called Objects.SportsCar .

 As you may have guessed, .NET automatically creates a shorthand version of your classes too, so you
can refer to SportsCar instead of having to type Objects.SportsCar .

 The motivation behind using namespaces is to make life easier for developers using your classes.
Imagine that you give this project to another developer for use and they have already built their own
class called Car . How do they tell the difference between their class and your class?

 Yours will actually be called Objects.Car , whereas theirs will have a name like MyOwnProject.Car
or YaddaYadda.Car . Namespaces remove the ambiguity of class names. (Of course, we didn ’ t choose
a very good namespace, because it doesn ’ t really describe the classes that the namespace contains —
 we just chose a namespace that illustrates the purpose of the chapter.)

 The Imports Statement
 Now you know you don ’ t need to prefix your classes with Car or System because .NET automatically
creates a shorthand version, but how do you do this yourself? The answer is the Imports statement!

 If you go back to Chapter 10 , you might remember this code from the top of the Debug form:

Imports System.Collections.Generic

Public Class Debug

 You may recall this code as well:

 ‘Using the List < T > class
 Private objCustomerList As New List(Of Customer)

 You used the Imports statement to import the System.Collections.Generic namespace into your
project. You needed to do this to access to the List < T > class. The full name of this class is
System.Collections.Generic.List(Of T) , but because you added a namespace import declaration,
you could just write List(Of Customer) instead, substituting the Customer class in place of
the T parameter.

 All Imports statements must be written at the top of the code file you want to use them in, before any
other code including the Class declaration.

 However, if you import two namespaces that have an identically named class or child namespace, Visual
Basic 2008 cannot tell what you are after (like Car.Car and MyOwnProject.Car). If this happens,
Visual Basic 2008 informs you that the name is ambiguous — in which case the quickest and easiest
thing to do is to specify the full name that you ’ re after.

c11.indd 398c11.indd 398 4/1/08 6:26:53 PM4/1/08 6:26:53 PM

Chapter 11: Building Objects

399

 Creating Your Own Namespace
 Namespaces are defined by wrapping the Class . . . End Class definition in a Namespace . . . End
Namespace definition. By default, classes created in Visual Basic 2008 are automatically assigned to a
root namespace. Visual Studio 2008 automatically names this root namespace based on the project name.
In the next Try It Out, you learn to create a namespace.

 Try It Out Creating a Namespace

 1. Using the Solution Explorer, double - click My Project. The Root Namespace field tells you the
name. In this case, the root namespace name is Objects .

 2. It ’ s often recommended that you build your namespaces such that the full names of the
classes you develop are prefixed with the name of your company. For example, if your
company were called MyCodeWidgets, ideally you would want the Car class called
 MyCodeWidgets.Car . To do this, change the Root Namespace field from Objects to
 MyCodeWidgets (see Figure 11 - 14). Then click the Save button on the toolbar to have this
change applied to your project.

Figure 11-14

 3. The Visual Studio 2008 Object Browser is a useful tool that allows you to see what classes you
have available in your project. You can find it by selecting View Object Browser from the
menu bar. When the Object Browser is displayed, the first item is usually All Components.
You can click My Solution in the Browse combo box and then navigate to find your Car class
(see Figure 11 - 15).

c11.indd 399c11.indd 399 4/1/08 6:26:53 PM4/1/08 6:26:53 PM

Chapter 11: Building Objects

400

 4. Note that you can also see the methods, properties, and member variables listed for the class.
Pertinent to this discussion, however, is the namespace. This is immediately above the class
and is indicated by the icon containing the open and closed brace symbols ({}).

 That ’ s fine, but imagine now that you have two projects both containing a class called Car . You
need to use namespaces to separate the Car class in one project from the Car class in another.
Open the Code Editor for Car and add Namespace CarPerformance before the class definition
and End Namespace after it. (I ’ ve omitted the code for brevity.)

Namespace CarPerformance
 Public Class Car
 ...
 End Class
End Namespace

 5. Open the Object Browser again and you ’ ll see a screen like the one in Figure 11 - 16 .

Figure 11-16

Figure 11-15

c11.indd 400c11.indd 400 4/1/08 6:26:53 PM4/1/08 6:26:53 PM

Chapter 11: Building Objects

401

 6. Since you added the CarPerformance namespace to the Car class, any code that references
the Car class needs to import that namespace to be able to access the shorthand methods of
the Car class.

 If you take a look at the SportsCar class, you ’ ll notice that Visual Studio 2008 is reporting an
error on the Inherits statement for Car . Hover your mouse over Car in your code and then
move your mouse into the gray box and then click it.

 You can see in Figure 11 - 17 that you have two options: Import the namespace, or prefix Car in
the Inherits statement with the namespace. You want to choose the first option so click Import
MyCodeWidget.CarPerformance. This causes the Imports statement to be added to the top of
the SportsCar class.

Figure 11-17

 7. If you click the Error List tab at the bottom of the IDE, you ’ ll notice that it is reporting one
remaining error. Double - click the error in the Error List, and the IDE takes you to the line of
code in error.

 8. You should now be at the DisplayCarDetails procedure in Module1 and see that the error
is on the Car class in the parameter to the procedure. Hover your mouse over Car in your
code, move your mouse into the gray box, and then click it.

 This time you have three options for correcting the error. Choose the second option, Change Car
to CarPerformance.Car.

 How It Works
 What you ’ ve done is put Car inside a namespace called CarPerformance . Because this namespace is
contained within MyCodeWidgets , the full name of the class becomes MyCodeWidgets
.CarPerformance.Car . If you put the classes of the other (imaginary) project into CarDiagnostics , it
would be called MyCodeWidgets.CarDiagnostics.Car . Note that Module1 still appears directly
inside MyCodeWidgets . That ’ s because you haven ’ t wrapped the definition for Module1 in a namespace
as you did with Car . Running your project at this point will produce the same results as before.

 Inheritance in the .NET Framework
 Inheritance is an advanced object - oriented topic. However, it ’ s really important to include this here
because the .NET Framework makes heavy use of inheritance.

c11.indd 401c11.indd 401 4/1/08 6:26:54 PM4/1/08 6:26:54 PM

Chapter 11: Building Objects

402

 One thing to understand about inheritance in .NET is that no class can inherit directly from more than
one class. As everything must inherit from System.Object , if a class does not specifically state that it
inherits from another class, it inherits directly from System.Object . The upshot of this is that everything
must inherit directly from exactly one class (everything, that is, except System.Object itself).

 When we say that each class must inherit directly from exactly one class, we mean that each class can
mention only one class in its Inherits statement. The class that it ’ s inheriting from can also inherit from
another class. So, for example, you could create a class called Porsche that is inherited from SportsCar .
You could then say that it indirectly inherits from Car , but it directly inherits from only one class —
 SportsCar . In fact, many classes indirectly inherit from lots of classes — but there is always a direct
ancestry, where each class has exactly one parent.

 You may want to have some functionality in different classes that are not related to each other by
inheritance. You can solve the problem by putting that functionality in an interface that both
classes implement, like the IDisposable interface you encountered in Chapter 10 .

 Summary
 In this chapter, you looked at how to start building your own objects. You kicked off by learning how to
design an object in terms of the properties and methods that it should support and then built a class that
represented a car. You then started adding properties and methods to that class and used it from within
your application.

 Before moving on to the subject of inheritance, you looked at how an object can be given a constructor —
 a block of code that ’ s executed whenever an object is created. The discussion of inheritance
demonstrated a number of key aspects of object - oriented design, including polymorphism and
overriding.

 To summarize, you should know how to:

 Create properties and methods in a class

 Provide a constructor for your class to initialize the state of your class

 Inherit another class

 Override properties and methods in the inheriting class

 Create your own namespace for a class

 Exercises
 1. Modify your Car class to implement the IDisposable interface. In the Main procedure in

 Module1, add code to dispose of the objCar object after calling the DisplaySportsCarDetails
procedure.

 2. Modify the code in the Main procedure in Module1 to encapsulate the declaration and usage of
the SportsCar class in a Using . . . End Using statement. Remember that the Using . . . End
Using statement automatically handles disposal of objects that implement the IDisposable
interface.

❑

❑

❑

❑

❑

c11.indd 402c11.indd 402 4/1/08 6:26:54 PM4/1/08 6:26:54 PM

 12
Advanced Object - Oriented

Techniques

 In Chapter 11 , you looked at how you can build your own objects. Prior to that, you had been
mostly using objects that already existed in the .NET Framework to build your applications.
In this chapter, you ’ ll take a look at some more object - oriented software development
techniques.

 In the first half of this chapter, you create your own classes. You will create a single - tier application
like the others we have discussed so far in this book. The idea of creating two - tier applications, as
opposed to single - tier applications, will be introduced in Chapter 14 . You then learn about creating
your own shared properties and methods. These are very useful when you want a method or
property to apply to a class as a whole rather than a specific instance of that class. Finally, you look
at memory management in Visual Studio 2008 and what you can do to clean up your objects
properly.

 In this chapter, you will:

 Create classes that can be used by multiple applications

 Learn about shared properties and methods

 Learn about memory management in the .NET Framework

 Building a Favorites Viewer
 In the first half of this chapter, you ’ re going to build a simple application that displays all your
Internet Explorer favorites and provides a button that you can click to open the URL in Internet
Explorer. This application illustrates a key point regarding code reuse and some of the reasons
why building code in an object - oriented fashion is so powerful.

❑

❑

❑

c12.indd 403c12.indd 403 4/1/08 6:36:12 PM4/1/08 6:36:12 PM

Chapter 12: Advanced Object - Oriented Techniques

404

 Internet Shortcuts and Favorites
 You ’ re most likely familiar with the concepts of favorites in Internet Explorer. What you may not know
is how Internet Explorer stores those favorites. In fact, the Favorites list is available to all other
applications — provided you know where to look.

 Windows applications have the option of storing data in separate user folders within a main folder. On
earlier Windows systems such as Windows XP this folder is called C:\Documents and Settings .
On Windows Vista this folder is called C:\Users . In Figure 12 - 1 you can see that my computer has two
user folders: Admin and Thearon .

 Admin is the default user that was specified on this computer when Windows Vista was set up. This
will most likely be different for you. For users who are using Windows XP, Administrator is the default
administrator on your computer and a folder called Administrator will be displayed. The Default folder
is a special folder that Windows uses whenever a new user logs onto the computer for the first time. The
Public folder is where public documents, downloads, music, videos, and pictures are stored that are
accessible to all users of that computer.

 Figure 12 - 1

 Depending on how the security of your computer is configured, you may not be able to access the
C:\Users folder. If you can, open the folder whose name matches the name that you supply when you
log on. In the screenshots throughout this chapter, I ’ ve used Thearon . (If you cannot consistently open
the folder, ask your system administrator to help you log in as a different user or give you the
appropriate permissions.) If you open this folder, you ’ ll find another group of folders. You ’ ll see
something like Figure 12 - 2 (though it may look different depending upon how your login is configured).

c12.indd 404c12.indd 404 4/1/08 6:36:13 PM4/1/08 6:36:13 PM

Chapter 12: Advanced Object - Oriented Techniques

405

 You ’ ll notice that in Figure 12 - 1 some of these folder icons appear as faint icons, whereas others appear
as normal folder icons. The computer is configured to show all folders, so you may find that on your
machine the faint folders do not appear because these are normally hidden. This doesn ’ t matter, because
the one you ’ re specifically looking for — Favorites — will appear whatever your system settings are.

 This folder (Thearon on this computer) is where Windows stores a lot of folders that are related to the
operation of your computer for your login account, for example:

 AppData stores application data related to the applications that you use.

 Contacts stores the Windows contacts similar to the contacts stored in Microsoft Outlook.

 Desktop stores the folders and links that appear on your desktop.

 Documents stores any folders or documents that you create.

 Downloads stores any downloaded files from the Web.

 Favorites stores a list of Internet Explorer favorites.

 It ’ s the Favorites folder that you ’ re interested in here, so open it. You ’ ll see something like Figure 12 - 3
(obviously, this list will be different on your computer, because you ’ ll have different favorites).

❑

❑

❑

❑

❑

❑

 Figure 12 - 2

c12.indd 405c12.indd 405 4/1/08 6:36:13 PM4/1/08 6:36:13 PM

Chapter 12: Advanced Object - Oriented Techniques

406

 You ’ ll notice that the links inside this folder relate to the links that appear in the Favorites menu in your
browser. If you double - click one of those links, you ’ ll see that Internet Explorer opens and navigates to
the URL that the favorite points to.

 You can be fairly confident at this stage that, if you have a folder of links that appear to be favorites, you
can create an application that opens this folder and can do something with the links — namely, iterate
through all of them, add each of them to a list, find out what URL it belongs to, and provide a way to
open that URL from your application. In the example that follows, you ’ re going to ignore the folders and
just deal with the favorites that appear in the root Favorites folder.

 Your final application will look like Figure 12 - 4 .

 Figure 12 - 3

 Figure 12 - 4

c12.indd 406c12.indd 406 4/1/08 6:36:13 PM4/1/08 6:36:13 PM

Chapter 12: Advanced Object - Oriented Techniques

407

 Using Classes
 So far in this book, you ’ ve built basic applications that do something, but most functionality that they
provide has been coded into the applications ’ forms. Here, you ’ re about to build some functionality that
can load a list of favorites from a user ’ s computer and provide a way to open Internet Explorer to show
the URL. However, you do it in a way that means you can use the list of favorites functionality elsewhere.

 The best way to build this application is to create a set that includes the following classes:

 WebFavorite, which represents a single favorite and has member variables such as
Name and Url

 Favorites , which can scan the favorites list on the user ’ s computer, creating a new
 WebFavorite object for each favorite

 WebFavoriteCollection , which contains a collection of WebFavorite objects

 These three classes provide the back - end functionality of the application — in other words, all classes that
do something but do not present the user with an interface. This isolates the code in the classes and
allows you to reuse the code from different parts of the application — code reuse . You also need a front end
to this application, which, in this case, will be a Windows form with a couple of controls on it.

 In the following sections, you build your classes and Windows application and come up with the
application shown in Figure 12 - 4 . You start by building the Windows Application project in the
following Try It Out.

 Try It Out Creating Favorites Viewer

 1. Open Visual Studio 2008 and create a new Windows Forms Application project called
 Favorites Viewer .

 2. Rename Form1.vb in the Solution Explorer to Viewer.vb and then modify the form properties
as follows:

 Set Font to Segoe UI, Regular, 8pt.

 Set Icon to C:\Program Files\Microsoft Visual Studio 9.0\Common7\VS2008
ImageLibrary\1033\VS2008ImageLibrary\Objects\ico_format\WinVista\
Favorites.ico .

 Set Size to 470, 300 .

 Set StartPosition to CenterScreen.

 Set Text to My Favorites .

 3. Add a ListView control to the form and size it to look similar to Figure 12 - 5 and set these
properties:

 Set Name to lvwFavorites .

 Set Anchor to Top, Bottom, Left, Right.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c12.indd 407c12.indd 407 4/1/08 6:36:14 PM4/1/08 6:36:14 PM

Chapter 12: Advanced Object - Oriented Techniques

408

 Set FullRowSelect to True.

 Set View to Details.

 4. Select the Columns property in the Properties window for the lstFavorites control. Click the
ellipsis dots (...) button to display the ColumnHeader Collection Editor dialog box.

 5. Click the Add button. Set these properties on the new column header:

 Set Name to hdrName .

 Set Text to Name .

 Set Width to 220 .

 6. Click the Add button again to add a second column. Set these properties on the new column
header:

 Set Name to hdrUrl .

 Set Text to URL .

 Set Width to 220 .

 7. Click OK to close the editor.

 8. Add a LinkLabel control to the bottom of the form and set these properties:

 Set Name to lnkUrl .

 Set Anchor to Bottom, Left, Right.

 Set TextAlign to MiddleLeft.

 9. Your completed form should now look similar to the one shown in Figure 12 - 5 .

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

 Figure 12 - 5

 10. Save your project by clicking the Save All button on the toolbar.

c12.indd 408c12.indd 408 4/1/08 6:36:14 PM4/1/08 6:36:14 PM

Chapter 12: Advanced Object - Oriented Techniques

409

 How It Works
 All that you ’ ve done here is to build the basic shell of the application, the form that will display the
results of the processing. You started by modifying some basic properties of the form and then added
two controls: a list view and a link label. The ListView control will be used to display the name and
URL of each favorite in your Favorites folder. The LinkLabel control will be used to launch a browser
with the selected favorite URL in the list.

 That ’ s the basics of the form put together. In the next Try It Out, you look at how you can add the
back - end classes. In previous chapters, you learned how to add classes to a Visual Studio 2008 project,
so you will use this knowledge to create the back end of your application.

Try It Out Building WebFavorite

 1. Using the Solution Explorer, right - click Favorites Viewer. Select Add Class from the menu
to display the Add New Item – Favorites Viewer dialog box. Enter a name of WebFavorite.vb
and then click the Add button.

 2. Add this namespace import declaration to the top of the code listing:

Imports System.IO

Public Class WebFavorite

 3. This class will need to implement the IDisposable interface, so add this Implements
statement. When you press Enter, Visual Studio 2008 inserts the members and methods
associated with the IDisposable interface:

Public Class WebFavorite

 Implements IDisposable

 4. Now add these two members after the IDisposable interface code inserted by Visual Studio
2008:

#End Region

 ‘Public Members
 Public Name As String
 Public Url As String

 5. Now add the Load method, which will load the member variables in this class:

 Public Sub Load(ByVal fileName As String)
 ‘Declare variables
 Dim strData As String
 Dim strLines() As String
 Dim strLine As String
 Dim objFileInfo As New FileInfo(fileName)

409

c12.indd 409c12.indd 409 4/1/08 6:36:14 PM4/1/08 6:36:14 PM

Chapter 12: Advanced Object - Oriented Techniques

410

 ‘Set the Name member to the file name minus the extension
 Name = objFileInfo.Name.Substring(0, _
 objFileInfo.Name.Length - objFileInfo.Extension.Length)

 Try
 ‘Read the entire contents of the file
 strData = My.Computer.FileSystem.ReadAllText(fileName)

 ‘Split the lines of data in the file
 strLines = strData.Split(New String() {ControlChars.CrLf}, _
 StringSplitOptions.RemoveEmptyEntries)

 ‘Process each line looking for the URL
 For Each strLine In strLines
 ‘Does the line of data start with URL=
 If strLine.StartsWith(“URL=”) Then
 ‘Yes, set the Url member to the actual URL
 Url = strLine.Substring(4)
 ‘Exit the For...Next loop
 Exit For
 End If
 Next
 Catch IOExceptionErr As IOException
 ‘Return the exception to the caller
 Throw New Exception(IOExceptionErr.Message)
 End Try
 End Sub

 How It Works
 It will be useful to examine how the WebFavorite class populates itself when the Load method is
invoked.

 The first thing you do is declare the variables needed by this method. The strData variable is used to
receive the entire contents of the favorite ’ s shortcut file. The strLines() variable is used to create an
array containing each individual line of data from the strData variable, and the strLine variable is
used to iterate through the array of lines. Finally, the objFileInfo object gets the file information
from the full path and file name passed to this method.

 Public Sub Load(ByVal fileName As String)
 ‘Declare variables
 Dim strData As String
 Dim strLines() As String
 Dim strLine As String
 Dim objFileInfo As New FileInfo(fileName)

 Next, the Name member is set to just the file name of the favorite ’ s shortcut file; for example Google .
This is the name of the favorite that shows up on the Favorites list in the browser. The fileName
parameter passed to this method will contain the complete path to the file, the filename, and the file
extension (for example, C:\Users\Thearon\Favorites\Google.url). What you have to do is
extract only the file name from the complete path.

c12.indd 410c12.indd 410 4/1/08 6:36:14 PM4/1/08 6:36:14 PM

Chapter 12: Advanced Object - Oriented Techniques

411

 You do this by using the objFileInfo object, which has been initialized to an instance of the
 FileInfo class with the fileName variable passed to it. The FileInfo class provides several
methods that return the various parts of the complete file path and name, such as only the file name
and only the file extension.

 You use the Name property of the objFileInfo object to get just the filename and extension of the file
without the path, and you use the Substring method of the Name property to extract the filename
minus the file extension. To supply the parameters to the Substring method, you also use the Length
property of the Name property in the objFileInfo object to determine how long the file name is and
the Length property of the Extension property to determine how long the file extension is.

 So basically what you ’ re saying here is, “ Take a substring, starting at the first character, and continue
for the complete length of the string minus the length of the Extension property. ” This, in effect,
removes the .url from the end. Remember that the array of characters that make up a string is
zero - based; thus you specify a starting position of 0 for the SubString method.

 ‘Set the Name member to the file name minus the extension
 Name = objFileInfo.Name.Substring(0, _
 objFileInfo.Name.Length - objFileInfo.Extension.Length)

 You read the entire contents of the file next into the strData . Because you are reading from a file,
you ’ ll want to encapsulate the logic in a Try . . . Catch block to handle any IO exceptions that
might occur.

 The first thing that you do in this Try . . . Catch block is read the entire contents of the file into the
 strData variable. This is done using the My.Computer namespace and the ReadAllText method of
the FileSystem class. This method handles all the details of opening the file, reading the entire
contents, closing the file, and releasing the resources used to perform these operations.

 Try
 ‘Read the entire contents of the file
 strData = My.Computer.FileSystem.ReadAllText(fileName)

 After the contents of the file have been read, the strData variable will contain something similar to the
data shown here. This is the data from the C:\Users\Thearon\Favorites\Google.url shortcut file.

[DEFAULT]
BASEURL=http://www.google.com/
[InternetShortcut]
URL=http://www.google.com/
IDList=
IconFile=http://www.google.com/favicon.ico
IconIndex=1
[{000214A0-0000-0000-c120-000000000046}]
Prop3=19,2

 Now that you have the entire contents of the favorite ’ s shortcut file in a single string variable, you split
the contents of the strData variable into separate lines. This is done using the Split method of the
 String class, from which the strData variable is derived. The Split method is an overloaded method,
and the version that you are using here accepts an array of strings as the first parameter and the split
options as the second parameter.

c12.indd 411c12.indd 411 4/1/08 6:36:15 PM4/1/08 6:36:15 PM

Chapter 12: Advanced Object - Oriented Techniques

412

 The data in the strData variable is separated with a carriage return and line feed character
combination, and thus you provide a string array containing only one entry, ControlChars.CrLf , as
the first parameter of the Split method. The split options parameter of the Split method is a value
in the StringSplitOptions enumeration that lets you specify how empty elements are handled.
Here you specify the RemoveEmptyEntries constant of that enumeration, to remove any empty
entries in the array that are returned.

 ‘Split the lines of data in the file
 strLines = strData.Split(New String() {ControlChars.CrLf}, _
 StringSplitOptions.RemoveEmptyEntries)

 Next you need to process each line of data in the strLines array using a For . . . Next loop. You are
looking for the line of data that begins with “ URL= ” . Using an If . . . Then statement, you check
the strLine variable to see whether it begins with the specified text. The StartsWith method of the
 String class, the class from which the strLine variable is derived, returns a Boolean value of True
if the string that is being tested contains the string that is passed to this method and a value of
False if it does not.

 If the line of data being tested starts with the text “ URL= ” , then it is the actual URL that you want to
save in the Url member of the class. To do so, you use the SubString method to get the URL in the
 strLine variable minus the beginning text. In order to do this, you pass a starting position of 4 to
the SubString method, telling it to start extracting data at position 4 , because positions 0 – 3
contain the text “ URL= ” . Once you find the data that you are looking for and set the Url member
there ’ s no need to process the rest of the strLines array, so you exit the For . . . Next loop.

 ‘Process each line looking for the URL
 For Each strLine In strLines
 ‘Does the line of data start with URL=
 If strLine.StartsWith(“URL=”) Then
 ‘Yes, set the Url member to the actual URL
 Url = strLine.Substring(4)
 ‘Exit the For...Next loop
 Exit For
 End If
 Next

 The Catch block handles any IO exception that might be thrown. Here you want to return the
exception to the caller of this method, so you throw a new Exception and pass it the Message
property of the IOExceptionErr variable. This gracefully handles any IO exceptions in this class and
returns the message of the exception to the caller.

 Catch IOExceptionErr As IOException
 ‘Return the exception to the caller
 Throw New Exception(IOExceptionErr.Message)
 End Try
 End Sub

c12.indd 412c12.indd 412 4/1/08 6:36:15 PM4/1/08 6:36:15 PM

Chapter 12: Advanced Object - Oriented Techniques

413

 Scanning Favorites
 So that you can scan the favorites, in the next Try It Out you add a couple of new classes to the project.
The first, WebFavoriteCollection , holds a collection of WebFavorite objects. The second,
 Favorites , physically scans the Favorites folder on the computer, creates new WebFavorite objects,
and adds them to the collection.

 Try It Out Scanning Favorites

 1. Using the Solution Explorer, create a new class called WebFavoriteCollection . This class will
be instantiated to an object that can hold a number of WebFavorite objects.

 2. Add the highlighted code in your class:

Public Class WebFavoriteCollection

 Inherits CollectionBase

 Public Sub Add(ByVal Favorite As WebFavorite)
 ‘Add item to the collection
 List.Add(Favorite)
 End Sub

 Public Sub Remove(ByVal Index As Integer)
 ‘Remove item from collection
 If Index > = 0 And Index < Count Then
 List.Remove(Index)
 End If
 End Sub

 Public ReadOnly Property Item(ByVal Index As Integer) As WebFavorite
 Get
 ‘Get an item from the collection by its index
 Return CType(List.Item(Index), WebFavorite)
 End Get
 End Property

End Class

 3. Create another new class called Favorites . This will be used to scan the Favorites folder and
return a WebFavoriteCollection containing a WebFavorite object for each favorite in the
folder. Like the WebFavorite class, this class implements the IDisposable interface. Enter
the following highlighted code and press Enter to add the properties and methods of the
 IDisposable interface to your class:

Public Class Favorites

 Implements IDisposable

 4. Next, add this member below the code for the IDisposable interface:

 ‘Public member
 Public FavoritesCollection As WebFavoriteCollection

c12.indd 413c12.indd 413 4/1/08 6:36:15 PM4/1/08 6:36:15 PM

Chapter 12: Advanced Object - Oriented Techniques

414

 5. You need a read - only property that can return the path to the user ’ s Favorites folder. Add the
following code to the Favorites class:

 Public ReadOnly Property FavoritesFolder() As String
 Get
 ‘Return the path to the user’s Favorites folder
 Return Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites)
 End Get
 End Property

 6. Finally, you need a method that ’ s capable of scanning through the Favorites folder looking for
files. When it finds one, it creates a WebFavorite object and adds it to the Favorites collection.
You provide two versions of this method — one that automatically determines the path of the
favorites by using the FavoritesFolder property and one that scans through a given folder.
To create this overloaded method, add the following code to the Favorites class:

 Public Sub ScanFavorites()
 ‘Scan the Favorites folder
 ScanFavorites(FavoritesFolder)
 End Sub

 Public Sub ScanFavorites(ByVal folderName As String)
 ‘If the FavoritesCollection member has not been instantiated
 ‘then instaniate it
 If FavoritesCollection Is Nothing Then
 FavoritesCollection = New WebFavoriteCollection
 End If

 ‘Process each file in the Favorites folder
 For Each strFile As String In _
 My.Computer.FileSystem.GetFiles(folderName)

 ‘If the file has a url extension...
 If strFile.EndsWith(“.url”, True, Nothing) Then

 Try
 ‘Create and use a new instanace of the
 ‘WebFavorite class
 Using objWebFavorite As New WebFavorite
 ‘Load the file information
 objWebFavorite.Load(strFile)

 ‘Add the object to the collection
 FavoritesCollection.Add(objWebFavorite)
 End Using
 Catch ExceptionErr As Exception
 ‘Return the exception to the caller
 Throw New Exception(ExceptionErr.Message)
 End Try

 End If

 Next
 End Sub

c12.indd 414c12.indd 414 4/1/08 6:36:15 PM4/1/08 6:36:15 PM

Chapter 12: Advanced Object - Oriented Techniques

415

 To make all of this work, you need to have the Favorites Viewer project create an instance of a Favorites
object, scan the favorites, and add each one it finds to the list. You do this in the next Try It Out.

 How It Works
 There ’ s a lot to take in there, but a good starting point is the WebFavoriteCollection class. This
illustrates an important best practice when working with lists of objects. As you saw in Chapter 5 , you
can hold lists of objects in one of two ways: in an array or in a collection.

 When building classes that work with lists, the best practice is to use a collection. You should build
collections that are also tied into using whatever types you ’ re working with, so in this example you
built a WebFavoriteCollection class that exclusively holds a collection of WebFavorite objects.

 You derived WebFavoriteCollection from CollectionBase . This provides the basic list that the
collection will use:

Public Class WebFavoriteCollection
 Inherits CollectionBase

 To fit in with the .NET Framework ’ s way of doing things, you need to define three methods on a
collection that you build. The Add method adds an item to the collection:

 Public Sub Add(ByVal Favorite As WebFavorite)
 ‘Add item to the collection
 List.Add(Favorite)
 End Sub

 The List property is a protected member of CollectionBase that only code within classes inheriting
from CollectionBase can access. You access this property to add, remove, and find items in the list.
You can see from the Add method here that you specified that the item must be a WebFavorite object.
This is why you ’ re supposed to build collections using this technique — because you can add objects
only of type WebFavorite ; anyone who has hold of a WebFavoriteCollection object knows
that it will contain objects only of type WebFavorite . This makes life much easier for users, because
they will not get nasty surprises when they discover it contains something else, and therefore it
reduces the chance of errors. The Remove method that you built removes an item from the list:

 Public Sub Remove(ByVal Index As Integer)
 ‘Remove item from collection
 If Index > = 0 And Index < Count Then
 List.Remove(Index)
 End If
 End Sub

 The Item method lets you get an item from the list when given a specific index:

 Public ReadOnly Property Item(ByVal Index As Integer) As WebFavorite
 Get
 ‘Get an item from the collection by its index
 Return CType(List.Item(Index), WebFavorite)
 End Get
 End Property

c12.indd 415c12.indd 415 4/1/08 6:36:16 PM4/1/08 6:36:16 PM

Chapter 12: Advanced Object - Oriented Techniques

416

 So how do you populate this collection? Well, in the Favorites class you built an overloaded method
called ScanFavorites . The second version of this method takes a folder and examines it for files that
end in .url . But before you look at that, you need to look at the FavoritesFolder property.

 Since the location of the Favorites folder can change depending on the currently logged - in user, you
have to ask Windows where this folder actually is. To do this, you use the shared GetFolderPath
method of the System.Environment class:

 Public ReadOnly Property FavoritesFolder() As String
 Get
 ‘Return the path to the user’s Favorites folder
 Return Environment.GetFolderPath(_
 Environment.SpecialFolder.Favorites)
 End Get
 End Property

 The GetFolderPath method uses one of the constants from the Environment.SpecialFolder
enumeration. This enumeration provides constants for many different special folders that you are
likely to need access to when writing applications.

 When the application asks this class to load in the favorites from the Favorites folder, it calls
 ScanFavorites . The first version of this method accepts no parameters. It looks up the location of the
user ’ s Favorites folder and passes that to the second version of this overloaded method:

 Public Sub ScanFavorites()
 ‘Scan the Favorites folder
 ScanFavorites(FavoritesFolder)
 End Sub

 The first thing that the second version of this overloaded method does is check to ensure that the
 FavoritesCollection member has been instantiated using the WebFavoriteCollection class. If it
hasn ’ t, it instantiates this member using that class:

 Public Sub ScanFavorites(ByVal folderName As String)
 ‘If the FavoritesCollection member has not been instantiated
 ‘then instaniate it
 If FavoritesCollection Is Nothing Then
 FavoritesCollection = New WebFavoriteCollection
 End If

 Next, you want to get a list of files in the Favorites folder and process them. You do this by calling the
 GetFiles method in the FileSystem class and passing it the path and name of the Favorites folder.
This class exists in the My.Computer namespace as indicated by the following code.

 The GetFiles method returns an array of filenames, and you process this array using a
For Each . . . Next loop. You declare the variable, strFile , inline in the For Each loop, as indicated
in the following code, and this variable will be set to a file name in the Favorites folder for each
iteration of the loop.

 ‘Process each file in the Favorites folder
 For Each strFile As String In _
 My.Computer.FileSystem.GetFiles(folderName)

c12.indd 416c12.indd 416 4/1/08 6:36:16 PM4/1/08 6:36:16 PM

Chapter 12: Advanced Object - Oriented Techniques

417

 Within the loop, you first test the file name to see whether it is a Favorites file by checking to see
whether it contains a .url file extension. The strFile variable is derived from the String class; thus
you can use the EndsWith method to determine whether the file name ends with the .url file
extension.

 The EndsWith method is an overloaded method, and the version that you are using here accepts three
parameters. The first parameter accepts the value to be compared to the end of the string, and here
you supply the text .url . The next parameter accepts a Boolean value indicating whether the
 EndsWith method should ignore the case of the text when making the comparison. You do want to
ignore the case when making the comparison, so you pass a value of True for this parameter. The final
parameter accepts the culture information that will be used when making the comparison. Passing a
value of Nothing here indicates that you want to use the current culture information defined on the
user ’ s computer:

 ‘If the file has a url extension...
 If strFile.EndsWith(“.url”, True, Nothing) Then

 If the file name being processed does contain the .url file extension, then you want to load the file
information and have it added to the Favorites collection. Since you are using the WebFavorite class
and this class reads the file, the potential for an exception exists. Therefore, you need to encapsulate
the next block of code in a Try . . . Catch block to handle any exceptions that might be thrown by the
 WebFavorite class.

 The first thing that you do in the Try block is use a Using . . . End Using block to declare, instantiate,
use, and destroy the WebFavorite class. Remember that you can use the Using statement only with a
class that implements the IDisposable interface, which is why you added that interface to the
 WebFavorite class.

 The first thing that you do in the Using . . . End Using block is call the Load method on the
 objWebFavorite object, passing it the file name of the favorite ’ s shortcut file. Then you
add the objWebFavorite to the Favorites collection.

 Try
 ‘Create and use a new instanace of the
 ‘WebFavorite class
 Using objWebFavorite As New WebFavorite
 ‘Load the file information
 objWebFavorite.Load(strFile)

 ‘Add the object to the collection
 FavoritesCollection.Add(objWebFavorite)
 End Using

 The Catch block contains the necessary code to handle an exception that might be thrown by the
 WebFavorite class and to return that exception to the caller of this method. This is done by throwing
a new Exception , passing it the message received in the ExceptionErr variable.

c12.indd 417c12.indd 417 4/1/08 6:36:16 PM4/1/08 6:36:16 PM

Chapter 12: Advanced Object - Oriented Techniques

418

 Catch ExceptionErr As Exception
 ‘Return the exception to the caller
 Throw New Exception(ExceptionErr.Message)
 End Try

 End If

 Next
 End Sub

 In the following Try It Out, you implement the functionality in your form to use the Favorites class
to gather all of your Internet Favorites and the WebFavorite class to load those shortcuts in the
ListView control on your form.

Try It Out Creating an Instance of a Favorites Object

 1. View the code for the Viewer form and select (Viewer Events) in the Class Name combo box
and select Load in the Method Name combo box. Add the highlighted code:

 Private Sub Viewer_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Try
 ‘Create and use a new instanace of the Favorites class
 Using objFavorites As New Favorites

 ‘Scan the Favorites folder
 objFavorites.ScanFavorites()

 ‘Process each objWebFavorite object in the
 ‘favorites collection
 For Each objWebFavorite As WebFavorite In _
 objFavorites.FavoritesCollection

 ‘Declare a ListViewItem object
 Dim objListViewItem As New ListViewItem

 ‘Set the properties of the ListViewItem object
 objListViewItem.Text = objWebFavorite.Name
 objListViewItem.SubItems.Add(objWebFavorite.Url)

 ‘Add the ListViewItem object to the ListView
 lvwFavorites.Items.Add(objListViewItem)
 Next

 End Using
 Catch ExceptionErr As Exception
 ‘Display the error
 MessageBox.Show(ExceptionErr.Message, “Favorites Viewer”, _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 End Try

 End Sub

c12.indd 418c12.indd 418 4/1/08 6:36:16 PM4/1/08 6:36:16 PM

Chapter 12: Advanced Object - Oriented Techniques

419

 2. Run the project and you should see something similar to Figure 12 - 6 .

 Figure 12 - 6

 How It Works
 Since both the Favorites and WebFavorite classes can throw an exception, you must handle any
exceptions that might be thrown. Therefore, all your code is encapsulated in a Try . . . Catch block.
You use a Using . . . End Using statement to declare, instantiate, and destroy the object created with
the Favorites class. Regardless of whether this class throws an exception, the Using statement
destroys the objFavorites object that it declares.

 Private Sub Viewer_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Try
 ‘Create and use a new instanace of the Favorites class
 Using objFavorites As New Favorites

 Inside the Using . . . End Using block the objFavorites object scans the users Favorites folder by
calling the ScanFavorites method. The effect here is that a new WebFavoritesCollection object is
created and filled and will be accessible through the FavoritesCollection property.

 ‘Scan the Favorites folder
 objFavorites.ScanFavorites()

 After the ScanFavorites method finishes, you take each WebFavorite in the
 FavoritesCollection and add it to the ListView control on your form. You do this by first declaring
a ListViewItem and then setting the Text property to the Favorite name. Then you add the URL of
the favorite to the SubItems collection, and finally you add the objListViewItem to the Items
collection of the ListView control.

 ‘Process each objWebFavorite object in the
 ‘favorites collection
 For Each objWebFavorite As WebFavorite In _
 objFavorites.FavoritesCollection

 ‘Declare a ListViewItem object
 Dim objListViewItem As New ListViewItem

c12.indd 419c12.indd 419 4/1/08 6:36:17 PM4/1/08 6:36:17 PM

Chapter 12: Advanced Object - Oriented Techniques

420

 ‘Set the properties of the ListViewItem object
 objListViewItem.Text = objWebFavorite.Name
 objListViewItem.SubItems.Add(objWebFavorite.Url)

 ‘Add the ListViewItem object to the ListView
 lvwFavorites.Items.Add(objListViewItem)
 Next

 End Using

 You wrap up this code with the Catch block, which handles any exceptions thrown and displays the
exception message in a message dialog box.

 Catch ExceptionErr As Exception
 ‘Display the error
 MessageBox.Show(ExceptionErr.Message, “Favorites Viewer”, _
 MessageBoxButtons.OK, MessageBoxIcon.Warning)
 End Try
 End Sub

 That ’ s it! Now you can display a list of the favorites installed on the user ’ s machine. However, you
can ’ t actually view favorites, so let ’ s look at that now.

 Viewing Favorites
 Now that all of your code is in place to retrieve and display a list of favorites, in the next Try It Out you
add some code to display the selected favorite in the LinkLabel control on your form and then add some
code to the control to process the selected link in Internet Explorer.

Try It Out Viewing Favorites

 1. In the Code Editor for Viewer, click lvwFavorites in the Class Name combo box and the Click
event in the Method Name combo box. Add the following highlighted code to the
Click event handler:

 Private Sub lvwFavorites_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lvwFavorites.Click

 ‘Update the link label control Text property
 lnkUrl.Text = “Visit “ & lvwFavorites.SelectedItems.Item(0).Text

 ‘Clear the default hyperlink
 lnkUrl.Links.Clear()

 ‘Add the selected hyperlink to the LinkCollection
 lnkUrl.Links.Add(6, lvwFavorites.SelectedItems.Item(0).Text.Length, _
 lvwFavorites.SelectedItems.Item(0).SubItems(1).Text)

 End Sub

c12.indd 420c12.indd 420 4/1/08 6:36:17 PM4/1/08 6:36:17 PM

Chapter 12: Advanced Object - Oriented Techniques

421

 2. Next, click lnkUrl in the Class Name combo box and select the LinkClicked event in the
Method Name combo box. Add the following highlighted code to the LinkClicked event:

 Private Sub lnkUrl_LinkClicked(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnkUrl.LinkClicked

 ‘Process the selected link
 Process.Start(e.Link.LinkData)

 End Sub

 3. Run the project. You should now see that when a URL is selected from the list, the LinkLabel
control changes to reflect the name of the selected item (refer to Figure 12 - 4). When you click
the link, Internet Explorer opens the URL in the LinkLabel control ’ s LinkCollection.

 How It Works
 When you click an item in the list view control, the Click event is fired for that control. You add code
to the Click event to load the LinkLabel control with the selected link. You start by first setting the
 Text property of the LinkLabel control. This is the text that will be displayed on the form as shown in
Figure 12 - 4 .

 You set the Text property using the static text Visit followed by the actual favorite name. The
Favorite name is retrieved from the list view control ’ s Item collection. Each row in the list view
control is called an item and the first column contains the text of the item. Each column past the first
column in a row is a subitem of the item (the text in the first column). The text that gets displayed in
the link label is taken from the Text property of the Item collection.

 Private Sub lvwFavorites_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles lvwFavorites.Click

 ‘Update the link label control Text property
 lnkUrl.Text = “Visit “ & lvwFavorites.SelectedItems.Item(0).Text

 The Links property of the LinkLabel control contains a LinkCollection that contains a default
hyperlink consisting of the text that is displayed in the LinkLabel control. You clear this collection and
set it using the correct hyperlink for the selected Favorite. You do this by calling the Clear method on
the Links property.

 ‘Clear the default hyperlink
 lnkUrl.Links.Clear()

 Finally, you add your hyperlink using the subitem of the selected item in the ListView control. The
 Add method of the Links property is an overloaded method, and the method that you are using here
expects three parameters: start , length , and linkdata . The start parameter specifies the starting
position of the text in the Text property that you want as the hyperlink, and the length parameter
specifies how long the hyperlink should be.

 You do not want the word Visit to be part of the hyperlink, so you specify the starting position to be 6 ,
which takes into account the space after the word Visit . Then you specify the length parameter using
the Length property of the Text property of the selected item in the list view control. Finally, you

c12.indd 421c12.indd 421 4/1/08 6:36:17 PM4/1/08 6:36:17 PM

Chapter 12: Advanced Object - Oriented Techniques

422

specify the linkdata parameter by specifying the selected subitem from the list view control. This
subitem contains the actual URL for the favorite.

 ‘Add the selected hyperlink to the LinkCollection
 lnkUrl.Links.Add(6, lvwFavorites.SelectedItems.Item(0).Text.Length, _
 lvwFavorites.SelectedItems.Item(0).SubItems(1).Text)
 End Sub

 When a hyperlink on the LinkLabel control is clicked, it fires the LinkClicked event, and this is
where you place your code to process the hyperlink of the favorite being displayed in this control. The
 LinkLabelLinkClickedEventArgs class contains information about the link label and, in particular,
the actual hyperlink in the LinkCollection .

 To retrieve the hyperlink, you access the LinkData property of the Link property. Then you pass this
data to the Start method of the Process class, which causes a browser to be open and display the
selected hyperlink:

 Private Sub lnkUrl_LinkClicked(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnkUrl.LinkClicked

 ‘Process the selected link
 Process.Start(e.Link.LinkData)
 End Sub

 An Alternative Favorite Viewer
 You know that building separate classes promotes code reuse, but let ’ s prove that. If code reuse is such a
hot idea, without having to rewrite or change any of the code you should be able to build another
application that can use the functionality in the classes to find and open favorites.

 In this case, you might have given a colleague the Favorites , WebFavorite , and
 WebFavoriteCollection classes, and that colleague should be able to build a new application that
uses this functionality without having to understand the internals of how Internet shortcuts work or
how Windows stores the user ’ s favorites.

 Building a Favorites Tray
 In this section, you build an application that displays a small icon on the system tray. Clicking this
icon opens a list of the user ’ s favorites as a menu, as shown in Figure 12 - 7 . Clicking a favorite
automatically opens Internet Explorer to the URL.

 Figure 12 - 7

c12.indd 422c12.indd 422 4/1/08 6:36:17 PM4/1/08 6:36:17 PM

Chapter 12: Advanced Object - Oriented Techniques

423

 To demonstrate this principle of code reuse, you need to create a new Visual Basic 2008 project.

 Try It Out Building a Favorites Tray

 1. Using Visual Studio 2008, select File Add New Project from the menu and create a new
Visual Basic 2008 Windows Forms Application project called Favorites Tray .

 2. When the Designer for Form1 appears, click the form in the Forms Designer and then change
the WindowState property to Minimized and change the ShowInTaskbar property to False.
This, effectively, prevents the form from being displayed.

 3. Using the Toolbox, drag a NotifyIcon control onto the form. Set the Name property of the new
control to icnNotify and set the Text property to Right - click me to view Favorites and set
the Icon property to C:\Program Files\Microsoft Visual Studio 9.0\Common7\
VS2008ImageLibrary\1033\VS2008ImageLibrary\Objects\ico_format\WinVista\
Favorites.ico .

 4. Next, open the Code Editor for Form1. In the Class Name combo box at the top of the Code
Editor, select (Form1 Events), and in the Method Name combo box select VisibleChanged.
Add this highlighted code to the event handler:

 Private Sub Form1_VisibleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.VisibleChanged

 ‘If the user can see us, hide us
 If Me.Visible = True Then Me.Visible = False

 End Sub

 5. Right - click the Favorites Tray project in the Solution Explorer and select Set As Startup Project.
Now try running the project. You should discover that the tray icon is added to your system
tray as shown in Figure 12 - 8 , but no form window will appear. If you hover your mouse over
the icon, you ’ ll see the message that you set in the Text property of the Notify Icon control.

 Figure 12 - 8

 6. Also, you ’ ll notice that there appears to be no way to stop the program! Flip back to Visual
Studio 2008 and select Debug Stop Debugging from the menu.

 7. When you do this, although the program stops, the icon remains in the tray. To get rid of it,
hover the mouse over it and it should disappear.

 Windows redraws the icons in the system tray only when necessary (for example, when the mouse is
passed over an icon).

c12.indd 423c12.indd 423 4/1/08 6:36:18 PM4/1/08 6:36:18 PM

Chapter 12: Advanced Object - Oriented Techniques

424

 How It Works
 Setting a form to appear minimized (WindowState = Minimized) and telling it not to appear in the
taskbar (ShowInTaskbar = False) has the effect of creating a window that ’ s hidden. You need a
form to support the tray icon, but you don ’ t need the form for any other reason. However, this is only
half the battle, because the form could appear in the Alt+ Tab application switching list, unless you
add the following code, which you already did:

 Private Sub Form1_VisibleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.VisibleChanged

 ‘If the user can see us, hide us
 If Me.Visible = True Then Me.Visible = False
 End Sub

 This event handler has a brute force approach that says, “ If the user can see me, hide me. ”

 Displaying Favorites
 In the next Try It Out, you look at how to display the favorites. The first thing you need to do is include
the classes built in Favorites Viewer in this Favorites Tray solution. You can then use the Favorites
object to get a list of favorites back and build a menu.

Try It Out Displaying Favorites

 1. To display favorites, you need to get hold of the classes defined in the Favorites Viewer
project. To do this you add the Favorites , WebFavorite , and WebFavoriteCollection
classes to this project.

 Using the Solution Explorer, right - click the Favorites Tray project and select Add Existing Item.
Browse to the classes in your Favorites Viewer project and find the Favorites class. After
clicking Add, the class appears in the Solution Explorer for this project. You can select multiple
files at once by holding down the Ctrl key.

 2. Repeat this for the WebFavorite and WebFavoriteCollection classes.

 3. Create a new class in Favorites Tray by clicking the project once more and selecting
Add Class. Call the new class WebFavoriteMenuItem.vb and then click the Add button to
add this class to the project.

 4. Set the new class to inherit from System.Windows.Forms.MenuItem by adding this code:

Public Class WebFavoriteMenuItem
 Inherits MenuItem

c12.indd 424c12.indd 424 4/1/08 6:36:18 PM4/1/08 6:36:18 PM

Chapter 12: Advanced Object - Oriented Techniques

425

 5. Add this member and method to the class:

 ‘Public member
 Public Favorite As WebFavorite

 ‘Constructor
 Public Sub New(ByVal newFavorite As WebFavorite)
 ‘Set the property
 Favorite = newFavorite

 ‘Update the text
 Text = Favorite.Name
 End Sub

 6. Unlike ListViewItem , MenuItem objects can react to themselves being clicked by
overloading the Click method. In the Class Name combo box at the top of the Code Editor,
select (WebFavoriteMenuItem Events) and then select the Click event in the Method Name
combo box. Add the following highlighted code to the Click event handler:

 Private Sub WebFavoriteMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click

 ‘Open the favorite
 If Not Favorite Is Nothing Then
 Process.Start(Favorite.Url)
 End If

 End Sub

 7. You need to do a similar trick to add an Exit option to your pop - up menu. Using the Solution
Explorer create a new class called ExitMenuItem.vb in the Favorites Tray project. Add the
following highlighted code to this class:

Public Class ExitMenuItem
 Inherits MenuItem

 ‘Constructor
 Public Sub New()
 Text = “Exit”
 End Sub

 Private Sub ExitMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click

 Application.Exit()
 End Sub

End Class

c12.indd 425c12.indd 425 4/1/08 6:36:18 PM4/1/08 6:36:18 PM

Chapter 12: Advanced Object - Oriented Techniques

426

 8. Finally, you ’ re in a position where you can load the favorites and create a menu for use with
the tray icon. Add these members to Form1:

Public Class Form1
 ‘Public member
 Public Favorites As New Favorites()

 ‘Private member
 Private blnLoadCalled As Boolean = False

 9. In the Class Name combo select (Form1 Events) and, in the Method Name combo box, select
the Load event. Then add the following highlighted code to this event handler:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ‘Load the favorites
 Favorites.ScanFavorites()

 ‘Create a new context menu
 Dim objMenu As New ContextMenu()

 ‘Process each favorite
 For Each objWebFavorite As WebFavorite In Favorites.FavoritesCollection
 ‘Create a menu item
 Dim objItem As New WebFavoriteMenuItem(objWebFavorite)
 ‘Add it to the menu
 objMenu.MenuItems.Add(objItem)
 Next

 ‘Add a separator menu item
 objMenu.MenuItems.Add(“-”)

 ‘Now add the Exit menu item
 objMenu.MenuItems.Add(New ExitMenuItem())

 ‘Finally, tell the tray icon to use this menu
 icnNotify.ContextMenu = objMenu

 ‘Set the load flag and hide ourselves
 blnLoadCalled = True
 Me.Hide()

 End Sub

 10. Modify the Form1_VisibleChanged procedure as follows:

 Private Sub Form1_VisibleChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.VisibleChanged

 ‘Don’t set the Visible property until the Load event has
 ‘been processed
 If blnLoadCalled = False Then
 Return

c12.indd 426c12.indd 426 4/1/08 6:36:18 PM4/1/08 6:36:18 PM

Chapter 12: Advanced Object - Oriented Techniques

427

 End If

 ‘If the user can see us, hide us
 If Me.Visible = True Then Me.Visible = False

 End Sub

 11. Run the project, and the icon will appear on the system tray. Right - click the icon, and you ’ ll
see a list of favorites as was shown in Figure 12 - 7 . Clicking one opens Internet Explorer;
clicking Exit closes the application.

 How It Works
 One thing to note is that, because of the order of events that are fired for your form, you have to create
a variable in Form1 called blnLoadCalled . This variable makes sure that your favorites get loaded in
the form ’ s Load event.

 The WebFavoriteMenuItem class accepts a WebFavorite object in its constructor, and it configures
itself as a menu item using the class. However, this class provides a Click method that you can
overload. So, when the user selects the item from the menu, you can immediately open the URL:

 Private Sub WebFavoriteMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click

 ‘Open the favorite
 If Not Favorite Is Nothing Then
 Process.Start(Favorite.Url)
 End If
 End Sub

 The ExitMenuItem class does a similar thing. When this item is clicked, you call the shared
 Application.Exit method to quit the program:

 Private Sub ExitMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Click

 Application.Exit()
 End Sub

 The important thing here is not the construction of the application itself but rather the fact that you
can reuse the functionality you built in a different project. This underlines the fundamental motive for
reuse; it means you don ’ t have to reinvent the wheel every time you want to do something.

 The method of reuse described here was to add the existing classes to your new project, hence making
a second copy of them. This isn ’ t efficient, because it takes double the amount of storage needed for
the classes; however, the classes are small, so the cost of memory is minimal. It did save you from
having to create the classes from scratch, allowing you to reuse the existing code, and it was very easy
to do.

 An alternative way of reusing classes is to create them in a class library. This class library is a separate
project that can be referenced by a number of different applications so that only one copy of the code
is required. This is discussed in Chapter 13 .

c12.indd 427c12.indd 427 4/1/08 6:36:19 PM4/1/08 6:36:19 PM

Chapter 12: Advanced Object - Oriented Techniques

428

 Using Shared Properties and Methods
 On occasion, you might find it useful to access methods and properties that are not tied to an instance of
an object but are still associated with a class.

 Imagine you have a class that stores the user name and password of a user for a computer program. You
might have something that looks like this:

Public Class User
 ‘Public members
 Public Username As String

 ‘Private members
 Private strPassword As String
End Class

 Now imagine that the password for a user has to be of a minimum length. You create a separate member
to store the length and implement a property like this:

Public Class User
 ‘Public members
 Public Username As String
 Public MinPasswordLength As Integer = 6

 ‘Private members
 Private strPassword As String

 ‘Password property
 Public Property Password() As String
 Get
 Return strPassword
 End Get
 Set(ByVal value As String)
 If value.Length > = MinPasswordLength Then
 strPassword = value
 End If
 End Set
 End Property
End Class

 That seems fairly straightforward. But now imagine that you have five thousand user objects in memory.
Each MinPasswordLength variable takes up 4 bytes of memory, meaning that 20 KB of memory is being
used to store the same value. Although 20 KB of memory isn ’ t a lot for modern computer systems, it ’ s
extremely inefficient, and there is a better way.

 Using Shared Procedures
 Ideally, you want to store the value for the minimum password length in memory against a specific class
once and share that memory between all of the objects created from that class, as you ’ ll do in the
following Try It Out.

c12.indd 428c12.indd 428 4/1/08 6:36:19 PM4/1/08 6:36:19 PM

Chapter 12: Advanced Object - Oriented Techniques

429

Try It Out Using Shared Properties

 1. Close the existing solution if it is still open and create a new Windows Forms Application
project called Shared Demo .

 2. When the Designer for Form1 appears, change the Text property of the form to Shared Demo
and then drag a ListBox, a Label, and a NumericUpDown control from the Toolbox onto the
form and arrange them as shown in Figure 12 - 9 .

 Figure 12 - 9

 3. Set the Name property of the ListBox control to lstUsers .

 4. Set the Name property of the NumericUpDown control to nudMinPasswordLength , set the
 Maximum property to 10 , and set the Value property to 6 .

 5. Using the Solution Explorer, create a new class named User . Add the highlighted code to the class:

Public Class User

 ‘Public members
 Public Username As String
 Public Shared MinPasswordLength As Integer = 6

 ‘Private members
 Private strPassword As String

 ‘Password property
 Public Property Password() As String
 Get
 Return strPassword
 End Get
 Set(ByVal value As String)
 If value.Length > = MinPasswordLength Then
 strPassword = value
 End If
 End Set
 End Property

End Class

c12.indd 429c12.indd 429 4/1/08 6:36:19 PM4/1/08 6:36:19 PM

Chapter 12: Advanced Object - Oriented Techniques

430

 6. View the code for Form1 and add this highlighted member:

Public Class Form1
 ‘Private member
 Private arrUserList As New ArrayList()

 7. Add this method to the Form1 class:

 Private Sub UpdateDisplay()
 ‘Clear the list
 lstUsers.Items.Clear()

 ‘Add the users to the list box
 For Each objUser As User In arrUserList
 lstUsers.Items.Add(objUser.Username & “, “ & objUser.Password & _
 “ (“ & User.MinPasswordLength & “)”)
 Next
 End Sub

 8. Select (Form1 Events) in the Class Name combo box at the top of the Code Editor and the
 Load event in the Method Name combo box. Add the highlighted code to the Load event:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ‘Load 100 users
 For intIndex As Integer = 1 To 100
 ‘Create a new user
 Dim objUser As New User
 objUser.Username = “Stephanie” & intIndex
 objUser.Password = “password15”

 ‘Add the user to the array list
 arrUserList.Add(objUser)
 Next

 ‘Update the display
 UpdateDisplay()

 End Sub

 9. Select nudMinPasswordLength in the Class Name combo box at the top of the Code Editor
and the ValueChanged event in the Method Name combo box. Add the highlighted code to
the ValueChanged event:

 Private Sub nudMinPasswordLength_ValueChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles nudMinPasswordLength.ValueChanged

 ‘Set the minimum password length
 User.MinPasswordLength = nudMinPasswordLength.Value
 ‘Update the display
 UpdateDisplay()

 End Sub

c12.indd 430c12.indd 430 4/1/08 6:36:19 PM4/1/08 6:36:19 PM

Chapter 12: Advanced Object - Oriented Techniques

431

 10. Save your project by clicking the Save All button on the toolbar.

 11. Run the project. You should see a screen like the one shown in Figure 12 - 10 .

 Figure 12 - 10

 12. Scroll the NumericUpDown control up or down, and the list updates and the number in
parentheses changes to correspond to the number shown in the NumericUpDown control.

 How It Works
 To create a member variable, property, or method on an object that is shared, you use the Shared
keyword.

 Public Shared MinPasswordLength As Integer = 6

 This tells Visual Basic 2008 that the item should be available to all instances of the class.

 Shared members can be accessed from within nonshared properties and methods as well as
from shared properties and methods. For example, here ’ s the Password property, which can access
the shared MinPasswordLength member:

 ‘Password property
 Public Property Password() As String
 Get
 Return strPassword
 End Get
 Set(ByVal value As String)
 If value.Length > = MinPasswordLength Then
 strPassword = value
 End If
 End Set
 End Property

 What ’ s important to realize here is that although the Password property and strPassword member
 belong to the particular instance of the User class, MinPasswordLength does not; therefore, if it is
changed the effect is felt throughout all the object instances built from the class in question.

c12.indd 431c12.indd 431 4/1/08 6:36:20 PM4/1/08 6:36:20 PM

Chapter 12: Advanced Object - Oriented Techniques

432

 In the form, UpdateDisplay is used to populate the list. You can gain access to MinPasswordLength
as if it were a normal, nonshared public member of the User object:

 Private Sub UpdateDisplay()
 ‘Clear the list
 lstUsers.Items.Clear()

 ‘Add the users to the list box
 For Each objUser As User In arrUserList
 lstUsers.Items.Add(objUser.Username & “, “ & objUser.Password & _
 “ (“ & User.MinPasswordLength & “)”)
 Next
 End Sub

 At this point, you have a listing of users that shows that the MinPasswordLength value of each is set
to 6 (refer to Figure 12 - 10).

 Things start to get interesting when you scroll the NumericUpDown control and change
 MinPasswordLength . As this is a shared member, you don ’ t specifically need an instance of the class.
Instead, you can set the property just by using the class name:

 Private Sub nudMinPasswordLength_ValueChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles nudMinPasswordLength.ValueChanged

 ‘Set the minimum password length
 User.MinPasswordLength = nudMinPasswordLength.Value

 ‘Update the display
 UpdateDisplay()
 End Sub

 When building this method, you may notice that after you type User ., Visual Studio 2008 ’ s
IntelliSense pops up a list of members, including the MinPasswordLength property, as shown in
Figure 12 - 11 .

 Figure 12 - 11

 Shared members, properties, and methods can all be accessed through the class directly — you don ’ t
specifically need an instance of the class.

 When you change this member with code in the ValueChanged event handler, you update the
display, and this time you can see that the perceived value of MinPasswordLength has seemingly
been changed for all instances of User , even though you changed it in only one place.

c12.indd 432c12.indd 432 4/1/08 6:36:20 PM4/1/08 6:36:20 PM

Chapter 12: Advanced Object - Oriented Techniques

433

 Using Shared Methods
 Although you ’ ve seen how to make a public member variable shared, you haven ’ t seen how to do this
with a method. In the following Try It Out, you look at an example of how to build a shared method that
can create new instances of User . The main limitation with a shared method is that you can access other
shared methods and shared properties only in the class in which it is defined.

 This is a hypothetical example of using a shared method, as you could do the same job here with a
 customized constructor.

Try It Out Using a Shared Method
 1. Open the Code Editor for User . Add the following code to the User class:

 Public Shared Function CreateUser(ByVal userName As String, _
 ByVal password As String) As User

 ‘Delcare a new User object
 Dim objUser As New User()

 ‘Set the User properties
 objUser.Username = userName
 objUser.Password = password

 ‘Return the new user
 Return objUser
 End Function

 2. Open the Code Editor for Form1 and locate the Load event handler. Change the code so that it
looks like this. You ’ ll notice that as you type in the code, as soon as you type User .,
IntelliSense offers CreateUser as an option:

 Private Sub Form1_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 ‘Load 100 users
 For intIndex As Integer = 1 To 100
 ‘Create a new user
 Dim objUser As New User

 objUser = User.CreateUser(“Stephanie” & intIndex, “password15”)

 ‘Add the user to the array list
 arrUserList.Add(objUser)
 Next

 ‘Update the display
 UpdateDisplay()
 End Sub

 3. If you run the project, you get the same results as the previous example.

c12.indd 433c12.indd 433 4/1/08 6:36:20 PM4/1/08 6:36:20 PM

Chapter 12: Advanced Object - Oriented Techniques

434

 How It Works
 The important thing to look at here is the fact that CreateUser appears in the IntelliSense list after
you type the class name. This is because it is shared and you do not need a specific instance of a class
to access it. You create the method as a shared method by using the Shared keyword:

 Public Shared Function CreateUser(ByVal userName As String, _
 ByVal password As String) As User

 One thing to consider with shared methods is that you can access only members of the class that are
also shared. You cannot access nonshared methods, simply because you don ’ t know what instance of
the class you ’ re actually running on. Likewise, you cannot access Me from within a shared method
for the same reason.

 Understanding Object - Oriented
Programming and Memory Management

 Object orientation has an impact on how memory is used in an operating system. .NET is heavily object
oriented, so it makes sense that .NET would have to optimize the way it uses memory to best suit the
way objects are used.

 Whenever you create an object, you ’ re using memory. Most of the objects you use have state , which
describes what an object knows. The methods and properties that an object has will either affect or work
with that state. For example, an object that describes a file on disk will have state that describes its name,
size, folder, and so on. Some of the state will be publicly accessible through properties. For example, a
property called Size returns the size of the file. Some state is private to the object and is used to keep
track of what the object has done or what it needs to do.

 Objects use memory in two ways. First, something needs to keep track of the objects that exist on the
system in memory. This is usually a task shared between you as an application developer and .NET ’ s
Common Language Runtime (CLR). If you create an object, you ’ ll have to hold a reference to it in your
program ’ s memory so that you know where it is when you need to use its methods and properties. The
CLR also needs to keep track of the object to determine when you no longer need it. Secondly, the CLR
needs to allocate memory to the object so that the object can store its state. The more state an object has,
the more memory it will need to use it.

 The most expensive resource on a computer is the memory. Expense here means in terms of what you get
for your money. For about $100, you can buy a 120 GB hard drive, but for the same amount of money
you can ’ t buy 1 GB of memory. Retrieving data from memory is thousands of times faster than retrieving
it from disk so there ’ s a tradeoff — if you need fast access, you have to store it in memory, but there isn ’ t
as much memory available as there is hard disk space.

 When building an application, you want to use as little memory as possible, so there ’ s an implication
that you want to have as few objects as possible and that those objects should have as little state as
possible. The upside is that, today, computers have a lot more memory than they used to have, so your

c12.indd 434c12.indd 434 4/1/08 6:36:20 PM4/1/08 6:36:20 PM

Chapter 12: Advanced Object - Oriented Techniques

435

programs can use more memory than their predecessors of 10 years ago. However, you still need to be
cognizant of your application ’ s memory usage.

 The CLR manages memory in several distinct ways. First, it ’ s responsible for creating objects at the
request of the application. With a heavily object - oriented programming platform like .NET, this is going
to happen all the time, so Microsoft has spent an enormous amount of time making sure that the CLR
creates objects in the most efficient way. The CLR, for example, can create objects far faster than its
Component Object Model (COM) predecessor could. Secondly, the CLR is responsible for cleaning up
memory when it ’ s no longer needed. In the developer community, the manner in which the CLR cleans
up objects is one of the most controversial.

 Imagine you ’ re writing a routine that opens a file from disk and displays the contents on the screen.
Well, with .NET you could use perhaps two .NET Framework objects to open the file and read
its contents — namely System.IO.FileStream and System.IO.StreamReader . However, after the
contents have been read, do you need these objects anymore? Probably not, so you remove your
references to the objects and make the memory the objects were using available for creating more objects.

 Imagine now that you don ’ t remove your references to the objects. In this situation, the memory that the
objects were using can ’ t be used by anyone else. Now imagine that happening several thousand times.
The amount of memory that ’ s being wasted keeps growing. In extreme circumstances, the computer
runs out of memory, meaning that other applications wouldn ’ t ever be able to create any objects. This is
a pretty catastrophic state of affairs.

 We describe an object that is no longer needed but that holds onto memory as a leak . Memory leaks are
one of the biggest causes of reliability problems on Windows, because when a program is no longer able
to obtain memory, it will crash.

 With .NET this should never happen, or, at the very least, to leak memory you would have to go to some
pretty extreme steps. This is because of a feature called garbage collection . When an object is no longer
being used, the Garbage Collector automatically removes the object from memory and makes the memory
it was using available to other programs.

 Garbage Collection
 The Garbage Collector (GC) works by keeping track of how many parts of a program have a reference to
an object. If it gets to the point where there are no open references to the object, it is deleted.

 To understand this, think back to the discussion of scope in Chapter 3 . Imagine you create a method and
at the top of that method you define a variable with local scope. That variable is used to store an object
(it doesn ’ t matter what kind of object is used for this discussion). At this point, one part of the program
 knows about the object ’ s existence — that is, the variable is holding a reference to the object. When you
return from the method, the variable goes out of scope, and therefore the variable forgets about the
object ’ s existence; in other words, the only reference to the object is lost. At this point, no one knows
about the object, and so it can be safely deleted.

 For an example, look at the following code:

Dim objObject As New MyObject
Console.WriteLine(objObject.GetType().FullName)
objObject = Nothing

c12.indd 435c12.indd 435 4/1/08 6:36:21 PM4/1/08 6:36:21 PM

Chapter 12: Advanced Object - Oriented Techniques

436

 This code snippet creates a new object from class MyObject , invokes a method on it, and then removes
the reference to the object. In this case, when you create the object, the objObject variable is the only
thing that holds a reference to it. In the last line, objObject is set to Nothing , hence removing the only
reference to the object. The GC is then free to remove the reference to the object.

 The GC does not run constantly. Instead, it runs periodically based on a complex algorithm that
measures the amount of work the computer is doing and how many objects might need to be deleted.
When the GC runs, it looks through the master list of all the objects the program has ever created for any
that can be deleted at this point.

 In old - school programming, programmers were responsible for deleting their own objects and had the
freedom to say to an object, “ You, now, clean yourself up and get out of memory. ” With .NET this ability
is gone. Rather, an object will be deleted at some indeterminate time in the future.

 Exactly when this happens is nondeterministic — in other words, as a developer you don ’ t know when
the GC is going to run. This means that there is no immediate connection between the removal of the last
reference to an object and the physical removal of that object from memory. This is known as
 nondeterministic finalization .

 Releasing Resources
 In some cases, objects that you build may need access to certain system and network resources, such as
files and database connections. Using these resources requires a certain discipline to ensure that you
don ’ t inadvertently cause problems.

 Here ’ s an example — if you create a new file, write some data to it, but forget to close it, no one else will
be able to read data from that file. This is because you have an exclusive lock on the file; it doesn ’ t make
sense for someone to be able to read from a file when it ’ s still being written to. You must take care to
release system resources should you open them.

 When an object has access to scarce system or network resources like this, it ’ s important that the caller
tell the object that it can release those resources as soon as they ’ re no longer needed. For example, here ’ s
some code that creates a file:

 ‘Open a file
 Dim objFileStream As New FileStream(“c:\myfile.txt”, FileMode.Create)
 ‘Do something with the file
 ...
 ‘Close the file
 objFileStream.Close()
 ‘Release your reference to the object
 objFileStream = Nothing

 As soon as you finish working with the file, you call Close . This tells .NET that the consumer is finished
with the file and Windows can make it available for other applications to use. This is known as releasing
the lock . When you release the object reference in the next line by setting objFileStream = Nothing ,
this is an entirely separate action from calling Close .

 The FileStream object releases the lock on the file when its Finalize method is called. However, as
you ’ ve just learned, the time period between the instance of the FileStream object becoming a

c12.indd 436c12.indd 436 4/1/08 6:36:21 PM4/1/08 6:36:21 PM

Chapter 12: Advanced Object - Oriented Techniques

437

candidate for garbage collection (which happens when objFileStream = Nothing) and Finalize
being called is nondeterministic. So, if you had not called Close , the file would have remained open for
a period of time, which would have caused problems for anyone else who needed to use the file.

 Another way to release resources within objects is to implement the IDisposable interface, which you
did with the WebFavorite and Favorites classes. This interface provides a Dispose method for your
objects, in which you can put code to clean up the resources used in that class.

 Ideally, the consumer of these objects would call the Dispose methods on these objects when they are
done using them, but if they do not, the Finalize method in these objects will when the GC runs.

 Defragmentation and Compaction
 As the last item in its bag of tricks, the GC is able to defragment and compact memory. In much the same
way that your computer ’ s hard disk needs periodic defragmentation to make it run more efficiently, so
does memory. Imagine you create 10 small objects in memory, each about 1 KB in size. Imagine that .NET
allocates them all on top of each other, so you end up taking up one 10 KB piece of memory. (In reality,
you don ’ t usually care where objects exist in memory, so this discussion is a bit academic.)

 Next, imagine you want to create another object and this object is of medium size, say about 3 KB. .NET
has to create this object at the end of the 10 KB block. This means that you ’ ll have allocated 13 KB in total.

 Then imagine that you delete every other small object, so now your 10 KB block of memory has holes in
it. Not much of a problem, but imagine you want to create another 3 KB object. Although there ’ s 5 KB of
space in the original block, you can ’ t put it there because no gap is big enough. Instead, it has to go on
the end, meaning your application is now taking up 16 KB of memory.

 What the GC can do is defragment memory, which means that it removes the gaps when objects have
been removed, as shown in Figure 12 - 12 . The upshot of this is that your application uses memory more
efficiently, so applications take up less memory.

1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB

10
KB

11
KB

12
KB

13
KB

14
KB

15
KB

16
KB

1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB 1KB

1KB 1KB 1KB 1KB 1KB 3KB

1KB 1KB 1KB 1KB 1KB

1KB 1KB 1KB 1KB 1KB 3KB 3KB

We create 10x 1KB objects...

New objects that won’t fit
in one of the gaps are
added to the end of the
block, increasing the
footprint.

When we create a new object,
it’s added to the end of
the available space.

When objects are
deleted, holes appear
in the available memory.

The GC compacts and
defragments the memory,
meaning that the program
uses memory more
efficiently.

3KB

3KB

3KB

 Figure 12 - 12

c12.indd 437c12.indd 437 4/1/08 6:36:21 PM4/1/08 6:36:21 PM

Chapter 12: Advanced Object - Oriented Techniques

438

 Although this may not seem like a big deal on a PC with 1 GB of memory available, consider that .NET
could potentially be running on much smaller devices where memory usage is a big deal, for example, a
mobile device with 32 MB of memory in total. Besides, imagine making three thousand 5 KB savings in
this example; then you ’ ve have saved over 15 MB of memory! Chapter 25 introduces you to writing
applications for mobile devices and to topics that you need to be aware of when coding for these devices.

 Summary
 In this chapter, you took a look at some more valuable techniques that you are able to use to assist the
building of object - oriented software. Initially, you examined the idea of reuse. Specifically, you looked at
classes that allow you to examine the Internet Explorer Favorites stored on the user ’ s computer. You
consumed these classes from two applications — one standard desktop application and also a mini -
 application that exists on the system tray.

 You then examined the idea of shared members, properties, and methods. Sharing these kinds of items is
a powerful way to make common functionality available to all classes in an application.

 Finally, you examined how consumers of objects should ensure that scarce systems resources are freed
whenever an object is deleted by the Garbage Collector using the Dispose and Finalize methods.

 To summarize, you should know how to:

 Build a class that inherits from the System.Collections.CollectionBase namespace, add
methods that allow you to add and remove objects from the collection, and provide a property
that allows an application to query for the number of items in the collection

 Use the collection class in your own application to create objects and add them to the collection

 Use shared properties and methods in a class that can be shared among all instantiated instances
of the class

 Properly dispose of resources to make efficient use of the Garbage Collector

 Exercise
 1. Modify the Favorites Viewer project to select the first favorite in the ListView control

automatically after it has been loaded so that the LinkLabel control displays the first item when
the form is displayed.

 You also need to modify the Load event in Form1, and ensure that the ListView control
contains one or more items before proceeding. You do this by querying the Count property of
the Items property of the ListView control. Then you select the first item in the ListView control
using the lstFavorites.Items(0).Selected property and call the Click event for the
ListBox control to update the LinkLabel control.

❑

❑

❑

❑

c12.indd 438c12.indd 438 4/1/08 6:36:21 PM4/1/08 6:36:21 PM

13
 Building Class Libraries

 In this chapter, you ’ re going to look at building libraries of classes, a process that gathers many of
the concepts covered in this book, so let ’ s have a quick review. So far, you ’ ve learned a lot about
developing Windows applications by dragging controls onto forms, editing their properties, and
adding code. When you edit a form in the Form Designer, you are actually designing a new class
that inherits from the System.Windows.Forms.Form class.

 When you make changes to the form in the designer, the designer works out what code needs to
be added to the class. You can view this code by clicking the Show All Files icon in the Solution
Explorer and then opening the designer - generated code for your form. When you run the
program, an instance of this class is created — an object. Like most objects, the form has state and
behavior — you can have variables and controls on the form (state) and you can perform actions
when, for example, the user clicks a button on the form (behavior). In theory, you could write your
forms without using the designer at all; very few programmers work this way while creating
Windows forms.

 Right from the start you ’ ve been creating classes. You ’ ve also looked at creating your own classes
from scratch. Recall what you studied about building objects in Chapter 11 , where you created a
project called Objects, which contained the classes Car and SportsCar . These classes were used in
a console application because it made the objects easier to test, but they would have worked just as
well in a Windows application. You could even have used them in a web application or web
service. In fact, one of the key benefits of using classes is that once you ’ ve designed a good one,
you can use it over and over again in different applications.

 In this chapter, you will:

 Create your own class libraries and learn how to get information about existing libraries
that are not part of the .NET Framework.

 Learn to assign strong - name assemblies (compiled files) to ensure that all assemblies have
a unique identity.

 Register assemblies in a repository called the Global Assembly Cache (GAC) so that they
can be shared between applications on the same computer.

❑

❑

❑

c13.indd 439c13.indd 439 4/1/08 6:37:38 PM4/1/08 6:37:38 PM

Chapter 13: Building Class Libraries

440

 Understanding Class Libraries
 In Chapter 12 you used the same classes in two different applications. You built a favorites viewer in
your application and a task bar application using the same underlying classes. You did this by creating
the class in one application and then adding a copy of that code to the second. This was a quick and easy
way of reusing code, but there were some problems with it:

 To use the class you needed to have access to the source code file. One of the advantages of
classes and objects is that they can be a black box. Developers should not need to know what
goes on inside the classes they use. It is often a good thing if they don ’ t. Also, if you ’ ve
developed a class, you might want to keep your source code secret. You might be happy to let
people use it, but not let them copy the way it works or improve it, or even claim it as their
own work.

 Every time the program that uses the class is compiled, the class needs to be compiled too. This
is not really a problem if the application uses a few simple classes, but if it ’ s using a lot of
complex classes, it will make compilation slower. It will also make the resulting program very
big because one .exe file will include all of the classes.

 If you realize that there is a bug in the class or that there is a way to make it faster or more
efficient, you need to make the change in lots of different places — in every application that uses
the class.

 The solution is class libraries. A class library is a collection of classes that compile to a file: a Windows
Dynamic Link Library (DLL, or .dll file). You cannot run a class library by itself, but you can use the
classes in it from your applications. You can use a class library without the source code; it does not need
to be recompiled when the application is compiled, and if the library changes, the applications using it
will automatically get the advantage of the improved code.

 Creating a Class Library
 These are instructions for creating a class library in Visual Studio.

❑

❑

❑

Try It Out Creating a Class Library
1. In Visual Studio 2008 select File New Project.

2. Select Visual Basic from the Project Types list and then choose the Class Library icon from the
Templates list as shown in Figure 13-1. Enter the name Internet Favorites.

3. Click OK. A new Class Library project will be created with a default class called Class1.vb.
Right-click Class1.vb in the Solution Explorer and choose Delete.

c13.indd 440c13.indd 440 4/1/08 6:37:39 PM4/1/08 6:37:39 PM

Chapter 13: Building Class Libraries

441

Figure 13-1

How It Works
That was really easy. Let’s just think about what Visual Studio 2008 is doing during these two steps.
First, you choose a Class Library project. The template that you choose controls how Visual Studio 2008
sets up the project and what type of file it compiles to. The most obvious difference is that when you
start a Windows Forms application you get a blank form in the Forms Designer. The blank form is called
Form1.vb. When you start a class library, you get no designer and a blank class called Class1.vb.

There are also more subtle differences. When you create a Windows Forms application, Visual Studio
2008 knows that you will be compiling it into a program that can run. When you choose a Class
Library, Visual Studio 2008 knows that the resulting library will not be run on its own — so the choices
you make here affect what Visual Studio 2008 does when you build the project. Selecting a Class
Library means that Visual Studio 2008 will build the project into a .dll (Dynamic Link Library) file
instead of an .exe (Executable) file.

After clicking OK, you delete the blank class that Visual Studio 2008 generates. Having classes with
the name Class1 is not very helpful — it’s much better to start from scratch with meaningful file and
class names.

In the previous chapter you created classes and used the same class in two projects: Favorites Viewer and
Favorites Tray. In the following sections you see how to convert these applications so that both of them
use a copy of the same compiled class library. Of course, this is a somewhat unrealistic situation. Usually,
you would build a class library and application rather than create an application and then split it into a
smaller application and a class library. However, this will give you a good idea of how you would create
a class library from scratch, and it will be much faster. First of all, open the Favorites Viewer project using
another instance of Visual Studio 2008. Remember that this project consists of the following files:

❑ Favorites.vb contains the Favorites class.

❑ WebFavorite.vb contains the WebFavorite class.

❑ WebFavoriteCollection.vb contains the WebFavoriteCollection class.

❑ Form1.vb contains the Form1 class, which represents the application’s main form.

c13.indd 441c13.indd 441 4/1/08 6:37:39 PM4/1/08 6:37:39 PM

Chapter 13: Building Class Libraries

442

 Of these, the first three listed are also used in the Favorites Tray. The remaining file is specific to this
particular application. You want to build a class library that contains Favorites , WebFavorite , and
 WebFavoriteCollection .

 Building a Class Library for Favorites Viewer
 When you ’ re writing Visual Basic 2008 applications, a solution can contain multiple projects. At the
moment you have two projects in the solution: the Favorites Viewer application and the Favorites Tray
application. In the next Try It Out, you add a Class Library project to this solution and then move the
classes from the Windows Forms Application project to the Class Library project.

Try It Out Adding a Class Library Project to an Existing Solution
1. Switch to the instance of Visual Studio 2008 containing the Internet Favorites project.

2. Save the project and then close Visual Studio 2008.

3. Switch to the instance of Visual Studio 2008 containing the Favorites Viewer project.

4. Click the File menu and select Add Existing Project.

5. Navigate to the where you saved your Internet Favorites project and then select the Internet
Favorites.vbproj file. Click Open to add this project to the solution.

6. Right-click the Favorites Viewer project in the Solution Explorer and select Set As StartUp
Project.

7. Now right-click the Favorites Tray project in the Solution Explorer and select Remove.

How It Works
Now you have two projects within your solution. You have a Windows Forms application and a class
library. Currently, the class library is empty; all the classes that you want to add to it are in the
Favorites Viewer project.

You have already seen how to add a new class to a Windows Forms application, and you can add new
classes to a class library in exactly the same way. You just right-click the Internet Favorites project and
select Add Class. You don’t want to do that, though, because the classes already exist. The quickest
way to move a class between two projects in the same solution is to drag and drop them, which is
what you do in the next Try It Out.

c13.indd 442c13.indd 442 4/1/08 6:37:40 PM4/1/08 6:37:40 PM

Chapter 13: Building Class Libraries

443

Try It Out Moving Classes Between Projects
1. Select the Favorites.vb file in the Solution Explorer, as shown in Figure 13-2, and drag it

onto the Internet Favorites project. This causes a copy of the Favorites class to be added to
the Internet Favorites project.

Figure 13-2

2. Follow the same procedure for WebFavorite.vb and WebFavoriteCollection.vb.

3. Right-click the Favorites.vb file in the Favorites Viewer project and select Delete from the
context menu to delete the file from that project.

4. Follow the same procedure for WebFavorite.vb and WebFavoriteCollection.vb.

You now have a Class Library project and a Windows Forms Application project. However, even
though they are both contained in the same solution, they cannot see each other. If you try running the
application now, you will see an error that type Favorites is not defined.

These errors occur because the code in Form1.vb cannot see the classes in the class library. There are
two stages to solving this problem:

❑ Add a reference to the Class Library project, so that the Windows Forms application knows to look
for the compiled Internet Favorites.dll file that contains the classes.
Previously, all code was compiled into one file, so you didn’t need to do this.

❑ Add an Imports statement to Form1, so that it can see the classes in the Internet_Favorites
namespace without giving a fully qualified name (that is, including the namespace as well as the
class name). Previously, all classes were in the same namespace, so you didn’t need to do this. As
discussed in Chapter 4, classes are by default given their project name as their namespace. When a
project contains a space in the name, Visual Studio 2008 replaces the blank space in the name with
an underscore (_) character.

If this doesn’t seem very clear — don’t worry! Both of these things are easy to do.

c13.indd 443c13.indd 443 4/1/08 6:37:41 PM4/1/08 6:37:41 PM

Chapter 13: Building Class Libraries

444

Try It Out Adding a Reference and Imports Statement
1. Right-click the Favorites Viewer project in the Solution Explorer and select Add Reference.

2. Select the Projects tab in the Add Reference dialog box and you’ll see that the Internet
Favorites project is already populated in the list, as shown in Figure 13-3. Click OK to have
this reference added to your Favorites Viewer project.

Figure 13-3

3. Right-click Viewer.vb in the Solution Explorer and select View Code. Add the following line
right at the very top of the code file:

Imports Internet_Favorites

How It Works
By adding a reference in steps 1 and 2, you tell Visual Studio 2008 that the Favorites Viewer.exe
file will require the Internet Favorites.dll file to run. Visual Studio 2008 can use the classes
exposed from Internet Favorites to check the syntax of the code, so the automatic underlining of errors
and so on will work correctly.

Whenever you want to use a class library you must add a reference to it. You can add references to
projects within the solution or to compiled DLLs.

However, if you try to run the application before you perform step 3, you still get errors, because the
classes in the Favorites Viewer application would be trying to use classes in the Internet
Favorites class library without giving a fully qualified name. Unless you specify otherwise, classes
are given the name of the project they are in as their namespace name. This means that the classes you
moved from Favorites Viewer to Internet Favorites changed namespace too.

c13.indd 444c13.indd 444 4/1/08 6:37:41 PM4/1/08 6:37:41 PM

Chapter 13: Building Class Libraries

445445

The easiest way to cope with this problem is to add an Imports statement to the top of the classes that
rely on this class library. This is what you did in Step 3, but remember that you have two other choices:

❑ You can use fully qualified names every time you want to access a class in the class library from a
class in the application. This requires quite a few changes.

❑ You can change the namespace of either the classes in the application or the classes in the class li-
brary. If the namespace was the same for both projects, you do not need to use fully qualified names
or have an Imports statement. However, because the two projects are quite different, it would not
really be sensible to give both of them the same namespace.

The Imports statement means that any time there is a reference to a class that is not qualified with a
namespace, the Visual Basic 2008 compiler will check the Internet_Favorites namespace to see
whether a matching class exists there. Therefore, the compiler will be able to resolve the class name
when you insert the Imports statement.

That’s it! You have converted your Windows Forms application into a small client application and a
class library. Run the application and it will work perfectly, and you’ll see the same results you saw in
the previous chapter; the application displays a list of your Internet Favorites shortcuts.

Note that when you run this application, Visual Studio 2008 compiles the class library to a DLL, then
compiles the application to an EXE, and then runs the EXE. It needs to compile the DLL first because
the compiler depends upon it while compiling the EXE.

 A Multitiered Application
 In the previous demonstration, you split your application into two tiers or layers. The class library is a
tier that handles the concept of a favorite and obtains a list of the user ’ s favorites from their computer.
The other tier presents the favorites to the user and enables the user to perform actions on them. Class
libraries are a powerful tool for creating tiered applications, because they enable you to completely
separate the code that exists in different tiers. You may often hear the term n - tier design . What this means
is that an application has at least three separate tiers. Usually, these three tiers are:

 A data tier is concerned with obtaining raw data from a data source such as a database, text file,
or, in this case, your Favorites folder and then writing data back. It generally is not concerned
with what the data means. It just enables data read and write operations.

 A business tier is concerned with applying certain business rules to the data retrieved from the
data source or ensuring that data that is being written to the data source obeys these rules. In
this case, there may be certain sites that you would not want to list in your Favorites viewer, or
you may want to ensure that URLs are valid before displaying them. The business tier may also
contain code for manipulating or working with data — for example, the code needed to open a
particular favorite.

 A presentation tier displays the data to the users and lets them interact with it in some way. In
this case, you have a Windows Form that displays a list of favorites and a link button that lets
users view them.

❑

❑

❑

c13.indd 445c13.indd 445 4/1/08 6:37:41 PM4/1/08 6:37:41 PM

Chapter 13: Building Class Libraries

446

 Your application is so small that there ’ s no practical need to separate the data tier and the business tier.
However, in a big application it can make the project far more manageable, even if it does mean
spending a bit more time on design before the coding starts.

 One of the great things about tiers is that you can mix and match them quite easily. For example, if a new
browser becomes popular, then you could change the data tier to read a different data format but still
use the same presentation tier and business tier. This would be much easier if the data tier and business
tier were separate.

 Soon, you are going to use your class library, which is really a combination of the business and data tiers,
in conjunction with a different presentation tier, namely the Favorites Tray application.

 In this chapter, you are working with existing projects so that you can concentrate specifically on class
libraries rather than on writing code. In most cases you would develop the class library first and then
develop applications to use that library. Of course, as you are building the application, you might decide
to modify the library slightly. Using Visual Studio 2008 you can do this very easily. When working in
Visual Studio 2008 you can make any changes you like to the code in the library, and the change will
instantly be available in the application.

 Using Strong Names
 Your complete solution now compiles to two files: a DLL and an EXE. You have written both files.
Nobody else is writing applications that rely on the DLL, and nobody else is going to change the DLL. In
real life, this is often not the case. Often you use off - the - shelf DLLs, or two separate developers are
working on the DLL and the EXE.

 For example, imagine that Matt is working on Internet Favorites.dll and Robbin is working on
 Favorites Viewer.exe . Matt decides that ScanFavorites is not a very good name for a method and
changes it to LoadFavorites . Then he recompiles the DLL. Later, Robbin runs Favorites Viewer
.exe. Favorites Viewer.exe tries to call ScanFavorites in the DLL, but the method no longer
exists. This generates an error and the program doesn ’ t work.

 Of course, Matt shouldn ’ t really have made the change to the DLL. He should have known that
applications existed that required the ScanFavorites method. All too often, however, developers of
libraries don ’ t realize this. They make changes to DLLs that render existing software unusable.

 Another possible scenario is that Jay is working on a system to manage favorites, and he creates a file
called Internet Favorites that is different from the one that Matt developed. There is a danger that
the two different DLLs will be confused, and once again Favorites Viewer will stop working.

 These DLL management problems have been a nightmare for Windows developers, and it spawned
the expression “ DLL Hell. ” However, Visual Basic 2008 goes a long way toward solving the problem. The
problem is connected with two things:

 There can be several versions of a DLL, and these can all work in different ways. It is not
possible to tell the version from the file name alone.

 Different people can write DLLs with the same file name.

❑

❑

c13.indd 446c13.indd 446 4/1/08 6:37:42 PM4/1/08 6:37:42 PM

Chapter 13: Building Class Libraries

447

 Strongly named assemblies store information about their version and their author within the assembly
itself. Because of this, it would be possible to tell the difference between the DLL used (when Favorites
Viewer compiled) and the changed version. It would also be possible to tell the difference between
Matt ’ s Internet Favorites.dll and Jay ’ s Internet Favorites.dll . Strong naming can also store
information about other properties that helps uniquely identify an assembly (for example, the culture for
which it was written), but you concentrate on version and author.

 Signing Assemblies
 One way to certify who wrote an assembly is to sign it. To do this, you generate a key pair and sign
the assembly with it. A key - pair is unique and, therefore, can identify the person or company who wrote an
assembly. The principles behind assembly signing are quite advanced, but the actual practice is quite simple.

 A strongly named assembly cannot reference a simply named assembly, because it would lose the
versioning control that it enjoys.

 Two steps are involved in creating a strongly named or signed assembly:

 Create a key pair that you can use to sign your assembly, as you do in the next Try It Out .

 Apply this key pair to your assembly, so that it will be used to sign the assembly at the time of
compilation.

❑

❑

Try It Out Creating a Key Pair
1. First, you create a new key pair. From the Windows Start menu select All Programs Microsoft

Visual Studio 2008 Visual Studio Tools Visual Studio 2008 Command Prompt.

If you are running on Windows Vista, you will most likely need to run the command prompt with
administrator privileges. To do this, instead of left-clicking the Visual Studio 2008 Command Prompt,
right-click it and choose Run as administrator from the context menu.

2. Type the following into the command prompt that appears:

 sn -k InternetFavoriteskey.snk

 This generates a key pair in the folder where the command is run (in this case, C:\Program
Files\Microsoft Visual Studio 9.0\VC).

How It Works
Running the Visual Studio 2008 command prompt opens a DOS-style command window with the
environment set up so that you can use the .NET command-line tools. You use this environment to run
the Visual Studio 2008 strong naming command, sn. The k switch means that the command generates
a new key pair and writes it to the specified file.

Now you have a key pair in the file C:\Program Files\Microsoft Visual Studio 9.0\VC\
InternetFavoriteskey.snk. If you want, you can move this to a more convenient location, such as
your project folder for the Internet Favorites project. After this, in the next Try It Out, you use it to
sign your assembly.

c13.indd 447c13.indd 447 4/1/08 6:37:42 PM4/1/08 6:37:42 PM

Chapter 13: Building Class Libraries

448

Try It Out Signing the FavoritesLib Assembly
1. In the Solution Explorer, double-click the My Project file in the Internet Favorites project.

2. Now click the Signing tab along the left side of the project file, as shown in Figure 13-4.

3. Select the Sign the assembly check box.

4. In the Choose a strong name key file combo box, select <Browse...> and then browse to the
location of your key file and select it.

5. Build your project, and the DLL will then be strongly named.

Figure 13-4

How It Works
When you compile an assembly with a key file, it adds a copy of your public key to the assembly. It
also adds a hash of the whole assembly, encrypted using the private key.

With public–private key cryptography, a message encrypted with one key can be decrypted only with
the other key. You can’t use the same key to encrypt and decrypt. You can give a public key to a lot of
people and they can encrypt messages with it. If you keep the private key secret, nobody else will be
able to read the encrypted messages — even if they have a copy of the public key.

You can also make this work the other way around. If you encrypt a message with the private key,
people can use the public key to decrypt it. If the decryption works and you haven’t let somebody else
get their hands on your private key, it proves that you wrote the message.

c13.indd 448c13.indd 448 4/1/08 6:37:42 PM4/1/08 6:37:42 PM

Chapter 13: Building Class Libraries

449

Part of the purpose of signing an assembly is to prove who wrote it and to prove that it has not been
tampered with. This could be done by encrypting the whole assembly using the private key and then
decrypting the whole assembly using the public key when it needs to be used. However, this would be
very slow. Instead, the Visual Basic 2008 compiler takes a hash of the assembly and encrypts that using
the private key. If anybody tries to tamper with the assembly, the hash will cease to be valid.

 Assembly Versions
 Visual Basic 2008 automatically keeps track of versions for you. When you build an assembly, a number
signifying the version is automatically updated. There are four elements of this number: major version,
minor version, build, and revision. If you click the Application tab of the project file and then click the
Assembly Information button, you see the assembly version near the bottom of the Assembly
Information dialog box.

 This means that when you compile this assembly, the major version will be 1, the minor version will be
0, and the build and revision number will be generated by Visual Studio 2008. Every time you recompile
the assembly, Visual Basic 2008 will adjust these numbers to ensure that every compilation has a unique
version number. You could choose to replace the build and revision numbers with your own hard - coded
numbers and increment them yourself, but if you ’ re happy with Visual Basic 2008 ’ s decision, then you
can just leave it. If you are changing an assembly significantly, you may want to change the major or
minor version — and, of course, you are free to do that.

 It is recommended that you set the entire version number manually, especially when you are releasing
the assembly formally, so that you have complete control. It will then be easier to manage different ver-
sions and bring in fewer unfortunate deployment problems.

 Registering Assemblies
 You ’ ve seen how an assembly can contain information to prove who wrote it (in the sense that a unique
identifier is unique per publisher) and information to prove its own version. This is really useful,
because it means that executables using these assemblies know what assembly author and version to
look for in place of just a file name. However, this doesn ’ t prevent Matt from overwriting an existing
DLL with a new version — it just means that applications using the DLL will be able to tell that it ’ s
changed.

 This is where the Global Assembly Cache (GAC) comes in. The GAC can ensure that several versions of
the same assembly are always available. If your application requires the InternetFavorites assembly
version 1 and Matt ’ s application requires the assembly version 2, both can go in the GAC and both can
be available. Moreover, assemblies with the same name but written by different people can go in the
GAC. You can guarantee that your applications will use the same assembly while running as they did
when they were compiled, provided the required assembly is in the GAC.

 To register an assembly into the GAC, you simply need to drag the relevant .dll file into the GAC
(located in the c:\windows\assembly folder on Windows XP and Windows Vista).

c13.indd 449c13.indd 449 4/1/08 6:37:43 PM4/1/08 6:37:43 PM

Chapter 13: Building Class Libraries

450

 Gacutil Utility
 Gacutil.exe is a utility provided with the .NET Framework for installing/uninstalling assemblies into
the GAC via a command line.

 From the Windows Start menu, select Programs Microsoft Visual Studio 2008 Visual Studio Tools
 Visual Studio 2008 Command Prompt. Navigate to the bin folder for your Internet Favorites project and
then enter the following command to install your assembly into the GAC:

Gacutil -i “internet favorites.dll”

 In the console window, you can use the i and u options to install and uninstall, respectively.

Gacutil -u “internet favorites”

 Why Is My Assembly Not Visible in the
References Dialog Box?

 It is important to understand that the GAC is not shown in the References dialog box within Visual
Studio. For this reason, after you add your assembly to the GAC, you will not see it in the References
dialog box and must browse for it.

 Visual Studio does, however, look for assemblies to load into the References dialog box by checking keys
in the Registry that map to physical paths on your drive. In the next Try It Out, you list your assembly in
the References dialog box.

Try It Out Getting Your Assembly Listed in the References Dialog Box
1. Click Start and Select Run.

2. Type regedit and press Enter.

3. In the Registry Editor locate the key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
.NETFramework\AssemblyFolders.

4. Right-click AssemblyFolders and select New Key.

5. Create the key with any name that you wish. We named ours Developer Assemblies.

6. Double-click (Default) value key in the pane and enter a path. We added C:\Developer
Assemblies. (See Figure 13-5.)

c13.indd 450c13.indd 450 4/1/08 6:37:43 PM4/1/08 6:37:43 PM

Chapter 13: Building Class Libraries

451

Figure 13-5

7. Open Windows Explorer and create the new directory that you specified in the previous step,
if it doesn’t exist, and then copy the InternetFavorites.dll into this directory

8. You may have to stop and start Visual Studio 2008 for this to take effect, but when you do, you
will see the assembly listed in this directory from within the References Dialog Box as shown
in Figure 13-6.

Figure 13-6

c13.indd 451c13.indd 451 4/1/08 6:37:43 PM4/1/08 6:37:43 PM

Chapter 13: Building Class Libraries

452

 Designing Class Libraries
 By now, you should be aware of how useful class libraries are and have an understanding of the nature
of classes, objects, and class libraries.

 When designing an application, it is best to understand what you are dealing with. Much like an
architect designing a house, you need to understand how things work (the rules, the regulations, and the
recommendations) in order to know how to draw the best plan.

 When software architects plan, draw out, and generate template code for components and applications,
they may use a drawing tool such as Microsoft Visio, which integrates with Visual Studio 2008. Visio
contains various types of symbol libraries that can be used for creating schematics, flowcharts, and other
diagrams. A very well - known set of descriptive symbols and diagram types is Unified Modeling
Language (UML), which has its own symbols and rules for drawing software and architecture models.
UML has various types of symbol libraries containing symbols that have different meaning and
functions. These symbols have been derived from previous modeling symbols to form something of a
fusion of styles. UML also has many types of diagrams. These diagrams range from deployment - type
diagrams to component definition diagrams.

If you want to learn more about UML, take a look at the UML Bible (Wiley, ISBN: 0 - 7645 - 2604 - 9)

 If the questions “ How many parameters and methods should an object expose? ” and “ Should an object
have properties rather than methods? ” are not answered correctly, your object would not be rendered
completely useless, although it may be ineffective. There are, however, some things to consider.

 Imagine a class library that contains over 40 methods and properties on each of its 20 or so classes. Also
imagine that each class ’ s methods contain at least 15 parameters. This component might be a little
daunting — in fact, a component should never be designed this way.

 Instead, when designing your objects, try to follow the golden rule: simplicity. Simplicity is probably the
most crucial element that you can have in your classes. While creating an extremely large class library is
not necessarily a bad thing, using a small number of related classes, aided by a few other class libraries,
is by far a better solution.

 When you ’ re dealing with a large, complex set of business rules for a large system, the code within the
library can be extremely complicated, often leading to debugging and maintenance nightmares. In many
situations, getting around the fact that many objects need to be created is a difficult task, but the point
that needs to come across is that many situations lend themselves to reuse. The more reusable the classes
are, the smaller the end - product will be and the easier it will be to create new applications that need the
same functionality provided by the components.

 Every developer who uses your class library should be able to do so successfully, without any major
effort or a tremendous amount of reading. You can achieve this in the following ways:

 Try to keep your methods to five or six parameters maximum, unless completely necessary. This
will make coding easier.

 Make sure that all of those parameters and your methods have meaningful names. Try to spell
out the function rather than keeping it short. As an example, it is not easy to identify the
meaning of StdNo as it is to identify the meaning of StudentNumber .

❑

❑

c13.indd 452c13.indd 452 4/1/08 6:37:44 PM4/1/08 6:37:44 PM

Chapter 13: Building Class Libraries

453

 Do not overexert yourself by adding every conceivable method and functional enhancement
that an object can have; rather think ahead but code later. You can easily complicate matters for
your developers by granting them too many choices, and, at the same time, you may be adding
functionality that will never be used.

 Try to keep classes within your library to a minimum, because better reuse comes from keeping
your libraries smaller.

 Properties are extremely useful in a class, and they enable it to be used more easily.

 Using Third - Party Class Libraries
 A class library compiles to a .dll file. To use the class library you need only the DLL, you don ’ t need the
source code. This means that you can give your DLL to other people to use and you can use other
people ’ s DLLs in your own applications. To demonstrate how to use a DLL, you ’ re going to use the
 Internet Favorites.dll file that you created in the next Try It Out.

 You ’ ve already seen how to create references to other projects in a solution. This is a really good way to
develop and test class libraries and applications at the same time. In this example you ’ re going to
pretend that you didn ’ t create Internet Favorites.dll . You ’ re going to modify the Favorites Tray
application so that it uses Internet Favorites.dll . This is a very quick way to demonstrate the use
of DLLs, but remember that in real life you would add a reference to the DLL early on in developing the
application and then write code to use the DLL.

❑

❑

❑

Try It Out Using Internet Favorites.dll in the Favorites Tray Application
1. Open the Favorites Tray project.

2. Delete the following files from the project: Favorites.vb, WebFavorite.vb, and
WebFavoriteCollection.vb.

3. Now you need to add a reference to Internet Favorites.dll. Right-click the Favorites
Tray project and select Add Reference. Scroll down the list of components in the .NET tab
until you find Internet Favorites. Select it and then click the OK button to close the Add
Reference dialog box.

4. Remember that the classes in the class library are in the Internet_Favorites namespace, so
you need to tell your code to look in that namespace for class names you use. Add the
following Imports statement to the top of Form1.vb and WebFavoriteMenuItem.vb:

Imports Internet_Favorites

 You do not need to add it to ExitMenuItem.vb because this class does not use any of the classes
in the library.

5. Run the program. It will work as normal, but will be using the class library now instead of
classes within the application’s .exe file.

c13.indd 453c13.indd 453 4/1/08 6:37:44 PM4/1/08 6:37:44 PM

Chapter 13: Building Class Libraries

454

 Viewing Classes with the Object Browser
 To view classes that can be used within Visual Basic 2008, you can use a quick and easy tool known as
the Object Browser. You can also use the Object Browser to view class names and method names on
objects. The Object Browser window can be viewed inside Visual Studio 2008 by pressing F2. It is also
available by clicking the View Object Browser menu or by clicking the Object Browser icon on the
toolbar.

 The Object Browser is basically used for a quick reference to the classes you need to see. The Object
Browser will show all assemblies that are used in the current Solution, including Visual Basic Projects
and compiled DLLs.

 The browser shows all members including methods, enumerations, and constants. Each member type is
shown with a different icon. Figure 13 - 7 shows the Internet_Favorites.Favorites class. You select
this class by choosing the Internet_Favorites assembly and then within that the Internet_
Favorites namespace and then within that the Favorites class.

How It Works
This process works more easily than adding a reference to another project does. You still use the
classes in the class library in exactly the same way regardless of whether you reference the Class
Library project or the compiled DLL. The main difference is that you cannot see or edit the
class library’s source code.

However, the Visual Studio 2008 environment can still tell a lot about the classes even without the
source code. For example, IntelliSense still works. This is because Visual Studio 2008 can tell from the
DLL itself what methods and properties are available on each class. You can investigate a class without
using IntelliSense but using the Object Browser.

Figure 13-7

c13.indd 454c13.indd 454 4/1/08 6:37:44 PM4/1/08 6:37:44 PM

Chapter 13: Building Class Libraries

455

Remember that an assembly can contain several namespaces and that the same namespace can be spread
across several assemblies. It just happens that in Visual Basic 2008 you normally have a single
namespace inside a single assembly of the same name.

 The MSDN Library documentation that gets installed with Visual Studio 2008 contains plenty of
information about classes in the .NET Framework, so you don ’ t often need to use the Object Browser
when you ’ re using only .NET Framework classes. It is really useful, however, when you are using a DLL
from a third party that does not come with documentation. Often the method and property names can
give you a clue about what ’ s happening. Of course, this underlines why it is necessary to choose good
names for your classes and their members.

 On other occasions, the DLL will provide short descriptions of each of its classes and members. This is
done using attributes, which is a subject outside the scope of this text.

 Summary
 Class libraries are an integral part of Visual Basic 2008; they are important to all of the languages in the
.NET Framework. They encompass what you use and what you need to know in terms of the common
language runtime and within your development projects.

 In this chapter, you have considered the nature of class libraries and how to view the properties and
methods contained within them using the Object Browser. You have also seen how the .NET Framework
allows developers to avoid DLL Hell through the use of keys and signatures, and you looked at some of
the broad issues regarding designing your own components.

 In Chapter 14 , you learn how to create Windows Forms controls that are components with a user
interface, as opposed to class library projects, which are purely code - based. There too, you will see the
importance of reusable and stable code.

 Exercise
 1. Modify the Favorites Viewer project to use the compiled InternetFavorites.dll instead of

the Internet Favorites project.

c13.indd 455c13.indd 455 4/1/08 6:37:45 PM4/1/08 6:37:45 PM

c13.indd 456c13.indd 456 4/1/08 6:37:45 PM4/1/08 6:37:45 PM

 14
Creating Windows Forms

User Controls

 In this book, you have used many of the controls that come with the .NET Framework, from the
Button and the TextBox controls to the ListBox control. You may even have tried to use some of the
more advanced controls such as the DataGrid and the TreeView controls. Although at first some of
them may be hard to use, they offer a lot of functionality. These controls make it easy to create a
user interface in your applications. Once you get to know how to use all their features, you will
find that creating user interfaces also becomes a faster experience. Another important aspect that
makes controls so useful is that they are reusable. You can drag and drop a Button control onto any
form in any new Windows project and it works as a button should. The reuse factor is an important
reason why Visual Basic, in general, became one of the most popular and is one of the most
powerful development languages in use today. Did you know that you owe much of what you
experience today in Visual Studio 2008, like Windows Forms Controls, to Visual Basic? The history
of Windows Forms Controls has roots in something known as controls Visual Basic Extension
(VBX). This later became more widely known as ActiveX, and today, revitalized and reborn into
the .NET Framework, it is known as Windows Forms Controls.

 In this chapter, you will:

 Learn what a Windows Forms Control is and how it works

 Create and use a Windows Forms Control

 Learn to add methods and events to your control

 Learn to code for design time and runtime

 These controls are best suited for Windows Forms rather than web applications. To learn about
Web Forms User Controls you should turn to Chapter 20 . This chapter concentrates on the
 Windows Forms version.

 Additionally, you will need Microsoft Visual Basic 2008 Professional Edition or above in order to
complete the Try It Out exercises in this chapter.

❑

❑

❑

❑

c14.indd 457c14.indd 457 4/1/08 6:38:07 PM4/1/08 6:38:07 PM

Chapter 14: Creating Windows Forms User Controls

458

 Windows Forms Controls
 Today, there are several good reasons for wanting to create Windows Forms Controls:

 You can use the same control throughout an application or in lot of different applications, thus
saving on code (reuse).

 You can keep code relating to a control within the control ’ s class, making the code cleaner and
easier to understand. For example, you could write a button that handles its own click
event — meaning you don ’ t need to handle the event in your form ’ s code.

 There are two main ways to reuse controls between applications. The first is to add the control ’ s source
file to every project in which you need the control. Then, when you build the application, the control is
compiled into the main executable. This is the approach you take in this chapter, because it is simpler
and allows you to concentrate on how it works.

 The second way is to build a control library. Control libraries are similar to the class libraries that you
examined in the previous chapter. In fact, they are class libraries that happen to contain UI - driven
classes. Like any other class library, a control library will compile to its own assembly, which you can use
in your applications. This method is attractive, because it means you can distribute the assembly to other
developers without giving away your source code. You can also make changes to the assembly, and these
will be reflected in the applications that use it — even without the applications being recompiled. The
techniques for building the controls are the same regardless of whether you are using a control library or
using a control only within your application project.

 Creating and Testing a User Control
 You might find in the applications that you build, that you have a common need for a control that goes
to a database to retrieve certain information, such as login information. If you want to build a robust
control, you need to make it as useful as possible to developers using it down the line, while requiring
the minimum amount of labor to get it working. You will probably want to encapsulate the functionality
of connecting to the database, querying the results, and populating the control with information, so that
subsequent developers using your control do not have to know how to do this. This is a key principle of
encapsulation — to make life easier for the next developer. In this way, you can also benefit from the
more tangible advantage of reducing costs through quality application development and code reuse.

 Creating a user control from scratch is not difficult. From one perspective, it is similar to building the
Windows forms. In this section, you create a Windows application that uses User Controls. In the first
Try It Out, you create a simple control that has three basic Button controls inside of it.

 When you create your own custom control that uses (hosts) existing controls inside of it, the control is
known as an aggregate control .

 A different message is displayed when each button is clicked. You then see how this control can be used
in a standard Windows Forms application.

❑

❑

c14.indd 458c14.indd 458 4/1/08 6:38:07 PM4/1/08 6:38:07 PM

Chapter 14: Creating Windows Forms User Controls

459

 Try It Out Building Your First Control
 1. Open Visual Studio 2008 and, on the File menu, select New Project. In the New Project dialog

box, select Visual Basic in the Project Types list and Windows Forms Control Library in the
Templates list. Enter MyNamespaceControl in the Name field and then click OK.

 2. Right - click UserControl1.vb in the Solution Explorer and choose Rename from the context
menu and change the name to MyNamespace.vb . You will have something that looks very
much like a form ’ s designer without the title bar or borders. Usually, when building a control,
you drag on other controls and define a way in which those controls interact. This extra
behavior defines a control ’ s purpose and makes it useful.

 3. Drag three Button controls from the Toolbox and drop them on the form and set their Text
properties using Figure 14 - 1 as a guide. Also resize the control so that it also looks similar to
Figure 14 - 1 .

Figure 14-1

 4. Set the Name properties of the Button controls to btnApplicationCopyright ,
 btnScreenBounds , and btnScreenWorkingArea , respectively.

 5. At the moment, this control won ’ t do anything when the buttons are clicked — you need to
wire up the event code behind the Click event for each button in order for it to work.
Double - click the ApplicationCopyright button and add the highlighted code:

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 MessageBox.Show(My.Application.Info.Copyright)

 End Sub

 6. Select btnScreenBounds in the Class Name combo box at the top of the Code Editor and select
the Click event in the Method Name combo box. Add the following highlighted code to the
 Click event handler:

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 MessageBox.Show(My.Computer.Screen.Bounds.ToString)

 End Sub

c14.indd 459c14.indd 459 4/1/08 6:38:08 PM4/1/08 6:38:08 PM

Chapter 14: Creating Windows Forms User Controls

460

 7. Finally, select btnScreenWorkingArea in the Class Name combo box and select the Click
event in the Method Name combo box. Add this code to the Click event handler:

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString)

 End Sub

 8. Save your project by clicking the Save All button on the toolbar.

 9. Now run your project. The user control will be displayed in a TestContainer dialog box as
shown in Figure 14 - 2 . From here, you can test your control by clicking each of the buttons and
the appropriate information will be displayed in a message box. When you are done, click the
Close button.

Figure 14-2

 How It Works
 Building the UI for the control is not at all different from building the UI for a Windows application.
You simply drag the necessary controls from the Toolbox and drop them on the control designer.
Then you wire up the events for the code using the same techniques that you ’ ve used all along when
building Windows applications.

 The code that you added for the btnApplicationCopyright button displays the copyright information
for your application. This is done by using the My.Application namespace and retrieving the
copyright information with the Copyright property of the Info class.

c14.indd 460c14.indd 460 4/1/08 6:38:08 PM4/1/08 6:38:08 PM

Chapter 14: Creating Windows Forms User Controls

461

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 MessageBox.Show(My.Application.Info.Copyright)
 End Sub

 The code that you added for the btnScreenBounds button will display the current boundaries of the
computer screen, which is determined from the screen resolution settings. This is done by using
the My.Computer namespace and retrieving the screen boundary information with the Bounds
property of the Screen class.

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 MessageBox.Show(My.Computer.Screen.Bounds.ToString)
 End Sub

 The code that you added for the btnScreenWorkingArea button will display the current working area
of the screen. This is the area of the screen that is available to your application ’ s forms. This is done by
using the My.Computer namespace and retrieving the screen working area information with the
 WorkingArea property of the Screen class.

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString)
 End Sub

 When you built the solution, the control was automatically added to the Toolbox in the
MyNamespaceControl Components tab. This will not become evident, however, until you add a
Windows application to this solution. This will allow you to use your user control in your application
just as you would with any other control in the toolbox.

 To test the control, you can ’ t just run the project. Instead, you have to put the control onto a form,
which will be covered in the following Try It Out.

Try It Out Adding Your New User Control to a Form
 1. Click the File menu and choose Add New Project.

 2. In the Add New Project dialog box, ensure that Windows Forms Application is selected in the
Templates pane, enter a project name of Controls , and then click OK.

 3. Click the MyNamespaceControl Components tab of the Toolbox and drag the MyNamespace
control onto Form1.

c14.indd 461c14.indd 461 4/1/08 6:38:08 PM4/1/08 6:38:08 PM

Chapter 14: Creating Windows Forms User Controls

462

 4. Right - click the Controls project in the Solution Explorer and choose Set as Startup Project from
the context menu.

 5. Run your project. The control appears on the form, and clicking the buttons has the same
effects as you tested the control in the TestContainer dialog box.

 How It Works
 A custom - built control works the same as any other control that you ’ ve used up until this point. You
simply drag the control from the Toolbox, drop it on your form, and run your project. You didn ’ t need
to wire up any code for the Click events of the buttons, because that functionality is part of the
control itself.

 Exposing Properties from User Controls
 A user control is implemented as a class. Therefore, anything that you can do with a class, you can also
do with a user control. This means that you can add properties, methods, and events to the user control
that can be manipulated by whoever is consuming it. First, take a look at adding a new property to your
control.

 Your control can have two sorts of properties: those that can be manipulated from the Properties window
at design time and those that have to be programmatically manipulated at runtime. For example, at
design time you might want to change properties pertaining to the color or the font used to draw the
control. But at runtime you might want to change properties that depend on the contents of a file that
the user selected, and so on. Usually, if the property is a fairly simple type such as String , Integer , or
 Boolean and doesn ’ t have parameters, it can be manipulated at design time. If the property is a complex
object, such as a database or file connection, or if it has parameters, you ’ ll have to manipulate the
property at runtime.

 Adding Properties
 In the following Try It Out, you take a look at adding a property to your control. The property you ’ re
going to add is called ApplicationName . This property will contain the name of your application. When
this property is changed, you ’ ll want to display the text in the title bar of the message boxes on the
control.

Try It Out Adding a New Property to the MyNamespace Control

 1. To add a new property you need a member variable that will store the value. Switch to the
Code Editor for MyNamespace and add the following highlighted code:

Public Class MyNamespace

 ‘Private members
 Private strApplicationName As String = String.Empty

c14.indd 462c14.indd 462 4/1/08 6:38:09 PM4/1/08 6:38:09 PM

Chapter 14: Creating Windows Forms User Controls

463

 2. When this property is set, you need to set the text in the private member that you just defined.
Add this code directly after the lines you added in step 1:

 Public Property ApplicationName() As String
 Get
 Return strApplicationName
 End Get
 Set(ByVal value As String)
 strApplicationName = value
 End Set
 End Property

 3. To have the message boxes display the application name in the title bar, you need to set the
 caption parameter of the Show method of the MessageBox class. Modify the Click events
for each of the buttons as shown:

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 MessageBox.Show(My.Application.Info.Copyright, _
 strApplicationName)

 End Sub

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 MessageBox.Show(My.Computer.Screen.Bounds.ToString, _
 strApplicationName)

 End Sub

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString, _
 strApplicationName)

 End Sub

 4. To expose the new property for this control to Form1, you need to build the project. Right -
 click the MyNamespaceControl project in the Solution Explorer and select Build from the
context menu. The new property will now be exposed.

 5. Switch to the Form Designer for Form1 and select the MyNamespace1 control and delete it.
Then drag a new MyNamespace control from the Toolbox and drop it on your form. In the
Properties window the new ApplicationName property will appear under the Misc category
(or in the usual place if you have the properties arranged alphabetically).

 6. Set the ApplicationName property to My Windows Application .

 7. Run your project and click any of the buttons on the form. Each message box will display the
text My Windows Application in the title bar of the message box.

463

c14.indd 463c14.indd 463 4/1/08 6:38:09 PM4/1/08 6:38:09 PM

Chapter 14: Creating Windows Forms User Controls

464

 How It Works
 You ’ ll notice that the default value of an empty string for the ApplicationName property has passed
through to the designer. If you change the property in the Properties window, the text displayed in
the title bar of the message boxes of the control will change.

 When the designer needs to update the Properties window, it calls into the object and requests the
 ApplicatioName property. Likewise, when you change the value, it calls into the object and sets the
property. This also happens when the form is loaded from disk when you start up the designer.

 Exposing Methods from User Controls
 As you ’ ve probably guessed, if you can expose new properties for your control, you can also expose new
methods. All that you need to do to make this happen is to add a public function or procedure to the
control, and then you ’ ll be able to call it from the form that ’ s hosting the control, which you do in the
next Try It Out.

Try It Out Adding a Method to the MyNamespace Control

 1. Switch to the Code Editor for MyNamespace.vb and add this function:

 Public Function TaskBarHeight() As Integer
 Return My.Computer.Screen.Bounds.Height - _
 My.Computer.Screen.WorkingArea.Height
 End Function

 2. Switch to the Forms Designer for Form1. Drag a Button control from the Toolbox and drop it
on your form. Set the Name property to btnTaskbarHeight and the Text property to Taskbar
Height .

 3. Double - click the button and add the following highlighted code to its Click event handler:

 Private Sub btnTaskbarHeight_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnTaskbarHeight.Click

 MessageBox.Show(“Taskbar Height = “ & _
 MyNamespace1.TaskBarHeight & “ pixels”, “Form1”)
 End Sub

 4. Run your project and click the Taskbar Height button on Form1. You ’ ll see a message box with
the calculated height of the taskbar.

 How It Works
 Exposing a function or procedure from a user control is no different from exposing a function or
procedure from a class. You just need to mark the function or procedure as Public so that it is
exposed to the user of the class.

c14.indd 464c14.indd 464 4/1/08 6:38:09 PM4/1/08 6:38:09 PM

Chapter 14: Creating Windows Forms User Controls

465

 The TaskBarHeight function calculates the height of the taskbar by subtracting the working area
height from the screen bounds height and returning the calculated value.

 Public Function TaskBarHeight() As Integer
 Return My.Computer.Screen.Bounds.Height - _
 My.Computer.Screen.WorkingArea.Height
 End Function

 When you call the TaskBarHeight function from your code in Form1, you specify the control name of
 MyNamespace1 and then choose the TaskBarHeight function from the drop - down list in IntelliSense.

 Private Sub btnTaskbarHeight_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnTaskbarHeight.Click

 MessageBox.Show(“Taskbar Height = “ & _
 MyNamespace1.TaskBarHeight & “ pixels”, “Form1”)
 End Sub

 There was no need to recompile the MyNamespaceControl control to expose this new function to
Form1, as it did not affect the control ’ s user interface or properties.

 Exposing Events from User Controls
 Now that you ’ ve seen how to expose your own properties and methods from your control, you need to
take a look at how to expose your own events from the control. When you add events to one of your own
controls, people who use your control can take action in their code when the event is raised.

 In the next Try It Out, you add three events that return the data that is displayed in the message boxes
that get displayed when the buttons are clicked.

Try It Out Defi ning and Raising Events
 1. Defining an event is as simple as adding an Event statement, the event name, and the

parameters that the event will return. Add the following highlighted code to the
 MyNamespace.vb file:

 ‘Private members
 Private strApplicationName As String = String.Empty

 ‘Public Events
 Public Event ApplicationCopyrightChanged(ByVal text As String)
 Public Event ScreenBoundsChanged(ByVal bounds As Rectangle)
 Public Event ScreenWorkingAreaChanged(ByVal bounds As Rectangle)

c14.indd 465c14.indd 465 4/1/08 6:38:10 PM4/1/08 6:38:10 PM

Chapter 14: Creating Windows Forms User Controls

466

 2. To raise an event you need to specify the RaiseEvent statement, passing it the event name as
well as the parameters for the event being raised. Modify the code in MyNamespace.vb as
follows:

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 RaiseEvent ApplicationCopyrightChanged(_
 My.Application.Info.Copyright)

 MessageBox.Show(My.Application.Info.Copyright, _
 strApplicationName)
 End Sub

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 RaiseEvent ScreenBoundsChanged(My.Computer.Screen.Bounds)

 MessageBox.Show(My.Computer.Screen.Bounds.ToString, _
 strApplicationName)
 End Sub

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 RaiseEvent ScreenWorkingAreaChanged(My.Computer.Screen.WorkingArea)

 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString, _
 strApplicationName)
 End Sub

 How It Works
 As mentioned earlier, to define an event, you specify the Event statement, the event name, and the
parameters that the event will return. Most events for controls are going to be Click or Changed; thus
you have specified the different button names suffixed with the word Changed .

 The Application Copyright button returns the application copyright as a string; thus, the parameter
for the ApplicationCopyrightChanged event is specified as a String data type. The Screen Bounds
and Screen Working Area buttons return the screen information in a Rectangle structure; thus you
specified the Rectangle structure as the data type for these events.

 ‘Public Events
 Public Event ApplicationCopyrightChanged(ByVal text As String)
 Public Event ScreenBoundsChanged(ByVal bounds As Rectangle)
 Public Event ScreenWorkingAreaChanged(ByVal bounds As Rectangle)

 To raise an event, you have to use the RaiseEvent statement. This looks after the tricky aspect of
actually telling the control ’ s owner what event has been raised and passes it the appropriate
parameters.

 You ’ ll have noticed that when you typed the word RaiseEvent , Visual Studio 2008 IntelliSense kicked
in and provided a drop - down list of the events that you defined. This is just another example of how
the IDE makes your life as a developer much easier.

c14.indd 466c14.indd 466 4/1/08 6:38:10 PM4/1/08 6:38:10 PM

Chapter 14: Creating Windows Forms User Controls

467

 In each instance of raising the events, you simply pass the event being raised; the data that will be
displayed in the message box when the appropriate button is clicked.

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 RaiseEvent ApplicationCopyrightChanged(_
 My.Application.Info.Copyright)
 MessageBox.Show(My.Application.Info.Copyright, _
 strApplicationName)
 End Sub

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 RaiseEvent ScreenBoundsChanged(My.Computer.Screen.Bounds)
 MessageBox.Show(My.Computer.Screen.Bounds.ToString, _
 strApplicationName)
 End Sub

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 RaiseEvent ScreenWorkingAreaChanged(My.Computer.Screen.WorkingArea)
 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString, _
 strApplicationName)
 End Sub

 All that remains now is to detect when the event has fired and do something. This is known as
 consuming an event. When a control fires an event, you can hook into the event handler. By doing this,
you receive notification that the event has fired and can do something with the data that the event
exposes. This is one of the core concepts of the control/event methodology that you have been using
throughout this book.

Try It Out Consuming Events
 1. Switch to the Forms Designer for Form1 and add three TextBox controls as shown in Figure

 14 - 3 . Set the Name properties to txtApplicationCopyright , txtScreenBounds , and
 txtScreenWorkingArea , respectively.

Figure 14-3

c14.indd 467c14.indd 467 4/1/08 6:38:10 PM4/1/08 6:38:10 PM

Chapter 14: Creating Windows Forms User Controls

468

 2. Switch to the Code Editor for Form1 and select MyNamespace1 in the Class Name combo box
at the top of the Code Editor. Click in the Method Name combo box, and you ’ ll see your
 ApplicationCopyrightChanged event in the Method Name combo box as shown in Figure
 14 - 4 . Remember, although you specifically defined three events for this control, you still get
all of the other events that were defined on the various base classes that your control class
inherits from:

Figure 14-4

 3. Of course, if you select the control and an event, you are automatically given a handler stub
into which you can add your event - handling code, just as you have been doing with the other
controls that you ’ ve used all along. Select the ApplicationCopyrightChanged event in the
Method Name combo box. Now add the following highlighted code to the
 ApplicationCopyrightChanged event handler:

 Private Sub MyNamespace1_ApplicationCopyrightChanged(ByVal text As String) _
 Handles MyNamespace1.ApplicationCopyrightChanged

 txtApplicationCopyright.Text = text

 End Sub

 4. Select MyNamespace1 in the Class Name combo box and the ScreenBoundsChanged event
in the Method Name combo box. Add the following highlighted code:

 Private Sub MyNamespace1_ScreenBoundsChanged(ByVal bounds As _
 System.Drawing.Rectangle) Handles MyNamespace1.ScreenBoundsChanged

 txtScreenBounds.Text = bounds.ToString

 End Sub

 5. Finally, select MyNamespace1 in the Class Name combo box and the
 ScreenWorkingAreaChanged event in the Method Name combo box. Add the following
highlighted code to the ScreenWorkingAreaChanged event handler:

 Private Sub MyNamespace1_ScreenWorkingAreaChanged(ByVal bounds As _
 System.Drawing.Rectangle) Handles MyNamespace1.ScreenWorkingAreaChanged

 txtScreenWorkingArea.Text = bounds.ToString

 End Sub

c14.indd 468c14.indd 468 4/1/08 6:38:11 PM4/1/08 6:38:11 PM

Chapter 14: Creating Windows Forms User Controls

469

 6. Run your project. When you click each of the buttons, the corresponding text box will be
populated with the data returned by the event, and then the message box will be displayed.

 How It Works
 Consuming control events in your application is very straightforward and something that you ’ ve been
doing all along with Button and TextBox controls. You merely select the control name in the Class
Name combo box in the Code Editor and the appropriate event in the Method Name combo box and
then write the appropriate code to consume, or handle, the event that has been raised by the control.
In the case of the MyNamespace control, you are consuming three different events:
 ApplicationCopyrightChanged , ScreenBoundsChanged , and ScreenWorkingAreaChanged .

 For the ApplicationCopyrightChanged event, you simply take the text returned from the event and
set it in the Text property of your text box.

 Private Sub MyNamespace1_ApplicationCopyrightChanged(ByVal text As String) _
 Handles MyNamespace1.ApplicationCopyrightChanged

 txtApplicationCopyright.Text = text
 End Sub

 The ScreenBoundsChanged event is a little different. This event returns data in a Rectangle
structure, which you must convert to a String data type in order to set it in the Text property of your
text box. This is done using the ToString method of the Rectangle structure.

 Private Sub MyNamespace1_ScreenBoundsChanged(ByVal bounds As _
 System.Drawing.Rectangle) Handles MyNamespace1.ScreenBoundsChanged

 txtScreenBounds.Text = bounds.ToString
 End Sub

 The ScreenWorkingAreaChanged event is like the ScreenBoundsChanged event. This event also
returns data in a Rectangle structure, which must be converted to a String data type before it can
be set in the Text property of your text box.

 Private Sub MyNamespace1_ScreenWorkingAreaChanged(ByVal bounds As _
 System.Drawing.Rectangle) Handles MyNamespace1.ScreenWorkingAreaChanged

 txtScreenWorkingArea.Text = bounds.ToString
 End Sub

c14.indd 469c14.indd 469 4/1/08 6:38:11 PM4/1/08 6:38:11 PM

Chapter 14: Creating Windows Forms User Controls

470

 Design Time or Runtime
 In certain circumstances, it ’ s useful to know whether your control is in design mode or run mode. The
control is in design mode when a form is being designed and the properties of the control are being set; it
is in run mode when the form is being run and the control is able to expose methods and events.

 As an example, imagine that you have a control that establishes a database connection when a certain
property is set. It might not be appropriate for that control to establish the connection when the form is
being designed, but you will want it to when the application is being run.

 Usually, a control itself has a Boolean property called DesignMode , which returns True if the control is
in design mode and False if it isn ’ t.

 In this next Try It Out, you ’ re going to modify the MyNamespace control by adding a Label and Timer
control to it. The Text property of the label will be updated with the text Design Mode when your
MyNamespace control is in design mode and updated with the current time when the control is in
run mode.

 Try It Out Creating a Control That Understands Design Mode
 1. Switch to the Control Designer for the MyNamespace control. Expand the height of the

control so that you can place a Label control underneath the last button.

 2. Drag a Label control from the Toolbox and center it underneath the last button control. Set the
Name property to lblTime .

 3. Drag and drop a Timer control from the Components tab of the Toolbox onto the Control
Designer. The timer will be added to the bottom of the IDE. Accept the default properties for
this control and ensure that the Enabled property is set to False and that Interval is set to 100 .

 4. Switch to the Code Editor for your MyNamespace control. You can detect when your control
has been added to a form through the InitLayout method, which is defined on System
.Windows.Forms.Control . This happens both at design time and at runtime. This is the best
point to determine which mode you ’ re in and, if appropriate, to start the timer. Add the
following code:

 Protected Overrides Sub InitLayout()

 MyBase.InitLayout()

 ‘Are we in design mode?
 If DesignMode Then
 lblTime.Text = “Design Mode”
 Else
 Timer1.Enabled = True
 End If
 End Sub

c14.indd 470c14.indd 470 4/1/08 6:38:11 PM4/1/08 6:38:11 PM

Chapter 14: Creating Windows Forms User Controls

471

 5. The last thing to do is to add code to the Tick event of the timer. Select Timer1 in the Class
Name combo box at the top of the Code Editor and the Tick event in the Method Name
combo box. Add the highlighted code to the Tick event handler:

 Private Sub Timer1_Tick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick

 ‘Display the time
 lblTime.Text = Now.ToLongTimeString

 End Sub

 6. You ’ ll need to build the project before the changes to the control can be picked up by your
Controls application. Build the project by right - clicking the MyNamespaceControl project in
the Solution Explorer and choosing Build from the context menu.

 7. Open the Forms Designer for Form1 in the Controls project. Delete the current MyNamespace
control from the form and drag a new one from the Toolbox and drop it on your form. You ’ ll
see the text Design Mode as shown in Figure 14 - 5 .

Figure 14-5

 8. Run the project. You will see that the Design Mode text is replaced by the current time.

 How It Works
 The InitLayout method is fired when the control is initialized, both at design time and at runtime. The
 DesignMode property of your control returns a Boolean value of True when the control is in design mode
and a value of False when the control is in run mode.

 If your control is in design mode, you simply want to display the text Design Mode on your label
control. When the control is in run mode, you want to enable the Timer control, and the Timer control
will update the label with the current time.

 Protected Overrides Sub InitLayout()
 MyBase.InitLayout()

 ‘Are we in design mode?
 If DesignMode Then
 lblTime.Text = “Design Mode”
 Else
 Timer1.Enabled = True
 End If
 End Sub

c14.indd 471c14.indd 471 4/1/08 6:38:11 PM4/1/08 6:38:11 PM

Chapter 14: Creating Windows Forms User Controls

472

 Of course, there are many other occasions when you might want your code to behave differently at
runtime than at design time. An example could be that validation rules for a property will be different.
In these cases, you would check the control ’ s DesignMode property in exactly the same way.

 The Tick event of the Timer control gets called at the specified interval of the Timer control, which in
this case is every 100 milliseconds. When the Tick event is fired, you want to update the Text
property of the label control with the current time. This is done by retrieving the current long time
from the ToLongTimeString property of the Now object.

 Private Sub Timer1_Tick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Timer1.Tick

 ‘Display the time
 lblTime.Text = Now.ToLongTimeString
 End Sub

 Because you made changes to the actual UI of the control, you had to rebuild the control and then
delete the current control from Form1 and get a new instance of it from the Toolbox. You don ’ t have to
do this when simply making code changes to the control, because those changes are automatically
picked up.

 Creating a Command Link Control
 Windows Vista introduced a lot of new controls in the operating system such as the Command Link
control shown in Figure 14 - 6 . Unfortunately, some of these controls are not available in the Visual Studio
2008 toolbox and are not available in the .NET Framework. To use those controls in your applications,
you need to create a Windows Forms Control that inherits the base control and then sets the appropriate
properties and parameters needed to create the control desired.

 In this next section, you create a Command Link control that can be used in your own applications. Since
this is a new control in the Windows Vista operating system, it is not available in previous Windows
operating systems. If you are not running Windows Vista, you can skip this section of the chapter.

Figure 14-6

c14.indd 472c14.indd 472 4/1/08 6:38:12 PM4/1/08 6:38:12 PM

Chapter 14: Creating Windows Forms User Controls

473

 Building the Command Link Control
 In this Try It Out, you build the Command Link control. The Command Link control is actually just a
Button control with a different style and additional properties. Since your control will inherit from the
 Windows.Forms.Button class, it may be worthwhile to review the section on Inheritance in Chapter 11 .

Try It Out Creating the Command Link Control

 1. In Visual Studio 2008, click the File menu and select New Project. In the New Project dialog
box, select Visual Basic in the Project Types list and Windows Forms Control Library in the
Templates list. Enter ButtonExtended in the Name field and then click OK.

 2. Right - click UserControl1.vb in the Solution Explorer and select Delete from the context menu.

 3. Right - click the ButtonExtended project in the Solution Explorer and select Add Class
from the context menu. In the Add New Item – ButtonExtended dialog box, enter
 CommandLink.vb and click Add.

 4. Add the following Imports statements at the top of the class:

Imports System.Windows.Forms
Imports System.Runtime.InteropServices
Imports System.ComponentModel

Public Class CommandLink

 5. Since this control inherits from the Windows.Forms.Button class, it should have the
standard Button icon in the Toolbox. Add the following code above the Class statement:

 < ToolboxBitmap(GetType(System.Windows.Forms.Button)) > _

Public Class CommandLink

 6. Add the following Inherits statement so that this control will inherit the base properties and
methods in the Button class:

Public Class CommandLink
 Inherits Button

 7. Add the following variables, objects, and constants:

 ‘Private variables and objects
 Private blnUACShield As Boolean = False
 Private strSupplementalExplanation As String = String.Empty
 Private objBitmap As Bitmap

 ‘Private constants
 Private Const BS_COMMANDLINK As Integer = 14
 Private Const BCM_SETNOTE As Integer = 5641
 Private Const BCM_SETSHIELD As Integer = 5644
 Private Const BM_SETIMAGE As Integer = 247

c14.indd 473c14.indd 473 4/1/08 6:38:12 PM4/1/08 6:38:12 PM

Chapter 14: Creating Windows Forms User Controls

474

 8. You ’ ll need to call some unmanaged code from your Visual Basic 2008 code to so add the
following shared functions:

 ‘SendMessage API
 < DllImport(“user32.dll”, CharSet:=CharSet.Unicode) > _
 Private Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As String) As Integer
 End Function

 < DllImport(“user32.dll”) > _
 Private Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As Boolean) As Integer
 End Function

 < DllImport(“user32.dll”) > _
 Public Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As Integer) As Integer
 End Function

 9. You need a constructor for your control to override the default Button style. Add this code to
your class:

 Public Sub New()
 ‘Set the FlatStyle property
 Me.FlatStyle = FlatStyle.System
 End Sub

 10. A Command Link button is larger than a standard Button control so you need to override the
default size of the Button control when a developer adds the control to their form. Add this
code:

 Protected Overrides ReadOnly Property DefaultSize() _
 As System.Drawing.Size
 Get
 ‘Set the new default size of the control
 ‘when placed on a form
 Return New Size(270, 60)
 End Get
 End Property

 11. The CreateParams property initializes the style of the button so add this code:

 Protected Overrides ReadOnly Property CreateParams() _
 As System.Windows.Forms.CreateParams
 Get
 ‘Set the style of the Button to CommandLink
 Dim objCreateParams As CreateParams = MyBase.CreateParams
 objCreateParams.Style = objCreateParams.Style Or BS_COMMANDLINK
 Return objCreateParams
 End Get
 End Property

c14.indd 474c14.indd 474 4/1/08 6:38:12 PM4/1/08 6:38:12 PM

Chapter 14: Creating Windows Forms User Controls

475

 12. After initializing the style of the Button class to create a Command Link button, the default
image on the button is a green arrow. You need to create a property to override the
default image and to display the User Access Control (UAC) shield image to indicate that
elevated user privileges will be needed to perform the actions associated with the Command
Link button. Add the following code to create the UACShield property:

 < Category(“Appearance”), _
 Description(“Indicates if the UAC shield icon will be displayed “ & _
 “on the control.”), _
 DefaultValue(False) > _
 Public Property UACShield() As Boolean
 Get
 Return blnUACShield
 End Get
 Set(ByVal value As Boolean)
 blnUACShield = value
 ‘Add the shield icon to the control
 SendMessage(Me.Handle, BCM_SETSHIELD, 0, blnUACShield)
 End Set
 End Property

 13. A supplemental explanation is used when a Command Link is not self - explanatory. Add the
following code to create the SupplementalExplanation property:

 < Category(“Appearance”), _
 Description(“The optional supplemental explanation for the control.”), _
 DefaultValue(“”) > _
 Public Property SupplementalExplanation() As String
 Get
 Return strSupplementalExplanation
 End Get
 Set(ByVal value As String)
 strSupplementalExplanation = value
 ‘Add the supplemental explanation to the control
 SendMessage(Me.Handle, BCM_SETNOTE, 0, value)
 End Set
 End Property

 14. The final bit of code needed will override the default Image property of the Button class to
allow you to display an image other than the default green arrow or UAC shield:

 < Category(“Appearance”), _
Description(“The image that will be displayed on the control.”), _
DefaultValue(GetType(Nullable)) > _
Public Shadows Property Image() As Bitmap
 Get
 Return objBitmap
 End Get
 Set(ByVal value As Bitmap)
 objBitmap = value
 UACShield = False
 If value IsNot Nothing Then
 ‘Add the image to the control instead of using the default image

c14.indd 475c14.indd 475 4/1/08 6:38:13 PM4/1/08 6:38:13 PM

Chapter 14: Creating Windows Forms User Controls

476

 SendMessage(Me.Handle, BM_SETIMAGE, 1, objBitmap.GetHicon.ToInt32)
 End If
 End Set
End Property

 15. Double - click My Project in the Solution Explorer. The property page for the project will open
to the Application tab.

 16. Click the Assembly Information button. In the Assembly Information dialog box, enter a
description in the Description field, a company name in the Company Name field and
copyright information in the Copyright field. Click OK to save your changes and close the
dialog box.

 17. Save your project by clicking the Save All button on the toolbar.

 18. Right - click the ButtonExtended project in the Solution Explorer and choose Build from the
context menu.

 19. In the Solution Explorer, double - click the CommandLink.vb file to open the Components
Designer. Hover your mouse over the Toolbox to open it and then right - click in the Common
Controls tab and select Choose Items from the context menu.

 20. In the Choose Toolbox Items dialog box, click the Browse button on the .NET Framework
Components tab and browse to the bin\Release folder for this project. In the Open dialog
box, select ButtonExtended.dll and then click Open. Then click OK in the Choose Toolbox
Items dialog box to close it.

 21. Your CommandLink control is now listed in the Toolbox at the bottom of the Common
Controls tab. You can move the control up in the list by dragging it to a new location.

 22. Close Visual Studio 2008.

 How It Works
 This code starts with three Imports statements. The Button class exists in three different namespaces
and you need your control to differentiate which namespace it belongs to which is why you include
the System.Windows.Forms namespace. The System.Runtime.InteropServices namespace is
needed to call unmanaged code from your Visual Basic 2008 managed code. The System
.ComponentModel namespace is needed to provide the attributes for the control properties that you
define:

Imports System.Windows.Forms
Imports System.Runtime.InteropServices
Imports System.ComponentModel

 Each control in the Toolbox has an associated icon. Since this control inherits and extends the Button
control, it only makes sense to use the Button controls icon in the Toolbox. The
 ToolboxBitmapAttribute class is used to specify the icon from the Button control. Note that
although you are using the ToolboxBitmapAttribute class, you specify only ToolboxBitmap in the
code. This is true for all types of attributes as you ’ ll discover later when we discuss the attributes used
on the properties that you defined. The constructor for the ToolboxBitmapAttribute class in this

c14.indd 476c14.indd 476 4/1/08 6:38:13 PM4/1/08 6:38:13 PM

Chapter 14: Creating Windows Forms User Controls

477

code uses an object with an embedded image to be used for the icon. You use the GetType operator to
return an object of the Button class:

 < ToolboxBitmap(GetType(System.Windows.Forms.Button)) > _
Public Class CommandLink

 Since the Button class is the base class for this control, you inherit the Button class through the use of
the Inherits statement:

Public Class CommandLink
 Inherits Button

 Next, you declare the variables, objects, and constants that will be used throughout the code. The
 blnUACShield variable is used to keep track of the UACShield property to determine if the UAC
Shield should be displayed or not. The strSupplementalExplanation variable is used to hold
the supplemental explanation text when set. The objBitmap object is used to hold the image set in the
 Image property.

 The following constants are used to set the Button style to Command Link, to set the supplemental
explanation text, set the UAC Shield icon, and to set an image that overrides the default green arrow
icon and UAC Shield icon:

 ‘Private variables and objects
 Private blnUACShield As Boolean = False
 Private strSupplementalExplanation As String = String.Empty
 Private objBitmap As Bitmap

 ‘Private constants
 Private Const BS_COMMANDLINK As Integer = 14
 Private Const BCM_SETNOTE As Integer = 5641
 Private Const BCM_SETSHIELD As Integer = 5644
 Private Const BM_SETIMAGE As Integer = 247

 The three functions that follow are calls to the SendMessage API in unmanaged code in the
user32.dll . The SendMessage API sends a message to a window and in this project the form
hosting the control. Notice that these are overloaded functions differing only in their last parameter.
The DllImportAttribute class is used to specify that the method defined is exposed through
unmanaged code. You pass the DLL name of the unmanaged code to the constructor of the DllImport
attribute. The first function also specifies the CharSet field to indicate to the compiler how to marshal
string parameters to the unmanaged code. Here you specify that strings should be sent as Unicode:

 ‘SendMessage API
 < DllImport(“user32.dll”, CharSet:=CharSet.Unicode) > _
 Private Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As String) As Integer
 End Function

 < DllImport(“user32.dll”) > _
 Private Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As Boolean) As Integer
 End Function

c14.indd 477c14.indd 477 4/1/08 6:38:13 PM4/1/08 6:38:13 PM

Chapter 14: Creating Windows Forms User Controls

478

 < DllImport(“user32.dll”) > _
 Public Shared Function SendMessage(ByVal hWnd As IntPtr, _
 ByVal msg As Integer, ByVal wParam As Integer, _
 ByVal lParam As Integer) As Integer
 End Function

 Now you get to the constructor for your class. You have seen the default style for a button in the
numerous projects that you have built. You want to override the default style of the button so you set
the FlatStyle property to the System constant from the FlatStyle enumeration. This indicates
that the operating system will determine the style to be used:

 When setting the FlatStyle property to System for a Button control, the Background ,
ImageAlign , Image , ImageIndex , ImageList and TextAlign properties will be ignored. You
have added code to override the Image property to allow an image to be set in the Command Link.

 Public Sub New()
 ‘Set the FlatStyle property
 Me.FlatStyle = FlatStyle.System
 End Sub

 The DefaultSize property is used to set the control ’ s initial size when it is created on a form. The
 DefaultSize property is defined as Overridable which allows you to specify the Overrides
keyword to override the default behavior of this property. Here you define a new default size for the
control when it is created on a form:

 Protected Overrides ReadOnly Property DefaultSize() _
 As System.Drawing.Size
 Get
 ‘Set the new default size of the control
 ‘when placed on a form
 Return New Size(270, 60)
 End Get
 End Property

 The CreateParams class is used to specify information about the initial state and appearance of a
control when it is created. You can also override the CreateParams property as shown in the
following code. However, it is important that you create a CreateParams object and set it to the base
class ’ s CreateParams object, which is what you have done in the first line of code. This ensures that
your control will use the CreateParams class defined for the base class that you are inheriting and
that your control will work the way it was initially intended in the base class and then allows you to
override the necessary properties to get the look and feel desired.

 After you create a CreateParams object that is set from the base class ’ s CreateParams property, you
can then proceed to override the properties of the CreateParams class. In the second line of code,
you set the Style property in the CreateParams class using a bitwise combination of the current
style plus the style defined in the BS_COMMANDLINK constant. This causes your normal button to
appear as a Command Link button. Since this is a read - only property, you return the CreateParams
object that you created here:

c14.indd 478c14.indd 478 4/1/08 6:38:14 PM4/1/08 6:38:14 PM

Chapter 14: Creating Windows Forms User Controls

479

 Protected Overrides ReadOnly Property CreateParams() _
 As System.Windows.Forms.CreateParams
 Get
 ‘Set the style of the Button to CommandLink
 Dim objCreateParams As CreateParams = MyBase.CreateParams
 objCreateParams.Style = objCreateParams.Style Or BS_COMMANDLINK
 Return objCreateParams
 End Get
 End Property

 Next, you want to add some additional properties for the new Command Link control that you are
creating. The green arrow shown in the first Command Link in Figure 14 - 6 is the default icon that is
displayed for a Command Link control. To display the user access control (UAC) shield icon (the icon
shown in the second Command Link in Figure 14 - 6) in the Command Link control, you need to create
a property to override the default icon. The UACShield property does just that.

 This property starts out by defining the CategoryAttribute class that specifies the category in the
Properties window that this property will be displayed under when the properties are sorted by
category. The DescriptionAttribute class provides the description for this property that gets
displayed at the bottom of the Properties window when this property is selected. Finally the
 DefaultValueAttribute class provides a default value for this property when the control is created.
Since this property gets and sets a Boolean data type, the DefaultValue has been specified as False ,
indicating that no UAC Shield should be displayed by default when the control is created.

 The Get portion of this property returns the value contained in the blnUACShield variable. The Set
portion of this property first stores the Boolean value set in this property in the blnUACShield
variable and then calls the SendMessage API passing it a number of parameters.

 The first parameter is the handle to this control and the second parameter is the BCM_SETSHIELD
constant indicating that the SendMessage API should set or remove a UAC Shield from the Command
Link control. The third parameter is not used so a value of 0 is passed. The final parameter is a
 Boolean value indicating whether to set the UAC Shield icon or to remove it. Here you pass the value
contained in the blnUACShield variable:

 < Category(“Appearance”), _
 Description(“Indicates if the UAC shield icon will be displayed “ & _
 “on the control.”), _
 DefaultValue(False) > _
 Public Property UACShield() As Boolean
 Get
 Return blnUACShield
 End Get
 Set(ByVal value As Boolean)
 blnUACShield = value
 ‘Add the shield icon to the control
 SendMessage(Me.Handle, BCM_SETSHIELD, 0, blnUACShield)
 End Set
 End Property

 The next property that you create is the SupplementalExplanation property. This property gets or
sets the supplemental explanation text that is displayed beneath the main text of the control. A
supplemental explanation is optional and thus the DefaultValueAttribute class is specified with
an empty string so that this control is initialized with no text set in the SupplementalExplanation
property.

c14.indd 479c14.indd 479 4/1/08 6:38:14 PM4/1/08 6:38:14 PM

Chapter 14: Creating Windows Forms User Controls

480

 The Get portion of this property returns the text contained in the strSupplementalExplanation
variable. The Set portion of this property sets the text passed to it in the
 strSupplementalExplanation variable and then calls the SendMessage API to set the
supplemental explanation for this control.

 Again, the handle to this control is passed as the first parameter to the SendMessage API and then the
 BCM_SETNOTE constant is passed as the second parameter. The third parameter is not used and a value
of 0 is passed for that parameter. The final parameter contains the supplemental text in the value
variable.

 < Category(“Appearance”), _
 Description(“The optional supplemental explanation for the control.”), _
 DefaultValue(“”) > _
 Public Property SupplementalExplanation() As String
 Get
 Return strSupplementalExplanation
 End Get
 Set(ByVal value As String)
 strSupplementalExplanation = value
 ‘Add the supplemental explanation to the control
 SendMessage(Me.Handle, BCM_SETNOTE, 0, value)
 End Set
 End Property

 The final property is the Image property and the code here shadows the Image property in the base
class. This means that this code redeclares that property and only this code will be executed. The
 CategoryAttribute and DescriptionAttribute class provide the category and description of this
property in the Properties window. Notice that the DefaultValueAttribute class for this property
has been set to the Nullable class. The Nullable class supports setting a value to nothing. Since this
property gets and sets a Bitmap object, you must set the Bitmap returned from this property to
nothing, hence the Nullable class. The GetType operator returns a Type object of the specified type
that is passed to it. Since you pass the Nullable class to the GetType operator, it returns a value of
 Nothing .

 The Get portion of this property returns the image stored in the objBitmap object. The Set portion of
this property is a little more involved. First, you set the image contained in the value parameter in
the objBitmap object. Then you call the UACShield property passing it a value of False to turn
off the UAC Shield icon if it is currently displayed.

 Finally, you make sure the value parameter is not Nothing , which indicates that the Image property is
being cleared. If the value parameter is not Nothing , then you call the SendMessage API passing it
the handle to this control and the BM_SETIMAGE constant. You pass a value of 1 for the wParam
parameter and the integer handle to the image.

 You get the handle to the image by calling the GetHicon method on the objBitmap object, which
returns the handle to the image as a IntPtr structure. Since the lParam parameter of the
 SendMessage API expects an Integer data type, you call the ToInt32 method of the IntPtr
structure to convert the handle to an Integer data type.

c14.indd 480c14.indd 480 4/1/08 6:38:14 PM4/1/08 6:38:14 PM

Chapter 14: Creating Windows Forms User Controls

481

 After the SendMessage API is called, it sets the image in the Command Link control overriding the
default green arrow with the image specified.

 < Category(“Appearance”), _
Description(“The image that will be displayed on the control.”), _
DefaultValue(GetType(Nullable)) > _
Public Shadows Property Image() As Bitmap
 Get
 Return objBitmap
 End Get
 Set(ByVal value As Bitmap)
 objBitmap = value
 UACShield = False
 If value IsNot Nothing Then
 ‘Add the image to the control instead of using the default image
 SendMessage(Me.Handle, BM_SETIMAGE, 1, objBitmap.GetHicon.ToInt32)
 End If
 End Set
End Property

 In Step 20 of the Try It Out, you add the new Command Link control to the Common Components tab
of the Toolbox. This makes this control always available in the Toolbox to other applications, as you ’ ll
see in the next Try It Out exercise.

 Using the Command Link Control
 In this Try It Out, you build a simple application that uses the new Command Link control and exercises
all of the properties that you added.

Try It Out Using the Command Link Control

 1. In Visual Studio 2008, click the File menu and select New Project. In the New Project dialog
box, select Visual Basic in the Project Types list and Windows Forms Application in the
Templates list. Enter Command Link Control Demo in the Name field and then click OK.

 2. Click Form1 in the Forms Designer and then set the form properties as follows:

❑ Set BackColor to White.

❑ Set ControlBox to False.

❑ Set Font to Segoe UI, Regular, 8pt.

❑ Set Size to 395, 300 .

❑ Set Text to Program Error .

c14.indd 481c14.indd 481 4/1/08 6:38:15 PM4/1/08 6:38:15 PM

Chapter 14: Creating Windows Forms User Controls

482

 3. Add a Label control to your form and align it to the upper - left corner of your form. Set the
following properties of the Label control:

❑ Set Font to Segoe UI, Regular, 12pt.

❑ Set ForeColor to Navy.

❑ Set Text to This program has discovered a problem with the installed device.dll file.

❑ Set AutoSize to False.

❑ Set Size to 350, 50 .

 4. In the Toolbox under the Common Controls tab, drag a CommanLink control and position it
beneath the Label control on your form. Set the following properties of this control:

❑ Set Size to 343, 45 .

❑ Set Text to Send a Report to Wrox.

 5. Drag another CommandLink control from the Toolbox and position it beneath the first one.
Set its properties as follows:

❑ Set Size to 343, 65 .

❑ Set SupplementalExplanation to You can reinstall the program to fix a corrupt
installation file.

❑ Set Text to Reinstall the Program.

❑ Set UACShield to True.

 6. Drag a third CommandLink control from the Toolbox and position it beneath the last one. Set
its properties as follows:

❑ Set Size to 343, 60 .

❑ Set SupplementalExplanation to Search the Internet for a solution to this problem.

❑ Set Text to Search for a Solution Online.

 7. Click the ellipse button in the Image property to invoke the Select Resource dialog box. Click
the Import button to invoke the Open dialog box and browse to C:\Program Files\
Microsoft Visual Studio 9.0\Common7\VS2008ImageLibrary\1033\
VS2008ImageLibrary\Objects\png_format\WinVista and select the mynet.png file.
Click Open in the Open dialog box and then click OK in the Select Resource dialog box.

 8. Double - click the CommandLink1 button and add the following code to the event handler:

 Private Sub CommandLink1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles CommandLink1.Click

 MessageBox.Show(“Sending a report to Wrox.”, _
 My.Application.Info.Title, MessageBoxButtons.OK)

 End Sub

c14.indd 482c14.indd 482 4/1/08 6:38:15 PM4/1/08 6:38:15 PM

Chapter 14: Creating Windows Forms User Controls

483

 9. In the Class Name combo box, select CommandLink2 and in the Method Name combo box,
select the Click event. Add the following code to the event handler:

 Private Sub CommandLink2_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CommandLink2.Click

 MessageBox.Show(“Reinstalling the program.”, _
 My.Application.Info.Title, MessageBoxButtons.OK)

 End Sub

 10. Select CommandLink3 in the Class Name combo box and select the Click event in the
Method Name combo box. Add the highlighted code to the event handler:

 Private Sub CommandLink3_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CommandLink3.Click

 MessageBox.Show(“Searching the Internet.”, _
 My.Application.Info.Title, MessageBoxButtons.OK)
 Me.Close()

 End Sub

 11. Save your project by clicking the Save All button on the toolbar.

 12. Run your project. When your form displays it should look similar to the one shown in Figure
 14 - 7 . The Command Link with the blue line around it is the default button. Simply pressing
the Enter key will invoke the Click event handler for it. Also note that as you hover your
mouse over each Command Link that the Command Link getting the focus fades in with a
gray background and the Command Link losing focus fades out from a gray background back
to a white background.

 Clicking the third Command Link displays the message dialog box and then closes the form.

Figure 14-7

 How It Works
 The CommandLink control works the same way as any other control in the Toolbox. You drag the
control onto your form, resize it if necessary, and then set the properties of the control. You then wire
up the appropriate event handler for the control to perform the actions needed.

c14.indd 483c14.indd 483 4/1/08 6:38:15 PM4/1/08 6:38:15 PM

Chapter 14: Creating Windows Forms User Controls

484

 You ’ ll notice that when you drag a CommandLink control from the Toolbox onto your form that the
green arrow is the default icon displayed. To change the default green arrow to the UAC Shield, you
set the UACShield property to True . To provide your own image, as shown in the third Command
Link in Figure 14 - 7 , you set the Image property to the image desired.

 Changing the Text property of the control changes the main label of the control providing a one - line
explanation of the controls function. Supplemental explanation text is not displayed since the
 SupplementalExplanation property has an empty string as its default value. If a supplemental
explanation is required for the control, you set the SupplementalExplanation property to provide
more details.

 The default event handler for the Command Link is the Click event just as it is for the Button control.
This is because this control inherits the Button class so it inherits all of its properties, events, and
methods. You merely change the style of the control through your implementation of this class and
provided additional properties to enhance the controls appearance.

 For design concepts, usage patterns, and guidelines for the Command Link, refer to the MSDN
Command Links article at http://msdn2.microsoft.com/en-us/library/aa511455.aspx .

 Summary
 This chapter showed two ways of creating Windows Forms controls with some encapsulated
functionality. You looked at building a user control that aggregated a number of existing controls
usefully. You extended the new control with properties, methods, and events. This control, once
compiled, was shown in the Toolbox under its own tab.

 You also took a look at how to create a control that inherits the base class of an existing control changing
it appearance and adding additional properties to enhance its appearance. This CommandLink control
was added to the Toolbox under the Common Controls tab making it available to all applications that
you create.

 To summarize, you should know:

 What a Windows Forms control is and how it works

 How to create a Windows Forms control

 How to add methods and events to your control

 How to code for design time and runtime

 How to create a create a control that inherits from an existing control

 Exercise
 1. Add a property to the MyNamespace control called SuppressMsgBox , which contains a

 Boolean value. Add code to the Click event handlers for each of the buttons on this control to
show the message box when the SuppressMsgBox property is False and to suppress the
message box when this property is True .

❑

❑

❑

❑

❑

c14.indd 484c14.indd 484 4/1/08 6:38:16 PM4/1/08 6:38:16 PM

 15
Programming Custom

Graphics

 So far, you have built user interfaces entirely from existing controls or controls that you created
based on other controls. When you are writing programs with Visual Basic 2008, you also have the
freedom to draw your own user interface. This gives you absolute freedom over the look and feel
of your programs, and makes certain programming tasks possible.

 In this chapter, you look at the graphics and drawing functionality available in Visual Basic 2008.
You will be introduced to the concepts by building a fairly complex drawing program, just to
illustrate how simple drawing your own user interface actually is. Toward the end of the chapter,
you will examine some of the multimedia features of Visual Basic 2008 and learn how you can
display common Internet file formats such as .gif , .jpg , and .png .

 In this chapter, you will:

 Learn about the System.Drawing namespace

 Use pens and brushes

 Learn how to select and use colors

 Size and stretch images

 Create your own Paint program

 Building a Simple Paint Program
 In this section, you create a simple Paint program by creating a new Windows application project
and building some user controls that you will wire up to provide functionality for the application.

❑

❑

❑

❑

❑

c15.indd 485c15.indd 485 4/1/08 6:38:43 PM4/1/08 6:38:43 PM

Chapter 15: Programming Custom Graphics

486

 Creating a Project with User Controls
 Your motivation for building user controls for this application is simple: its good practice to break the
application down into components. By following this technique, if you want to pull your paint
functionality out of this application and into another, you can do it relatively easily.

 What you are doing here with your controls is taking over the responsibility for painting them.
Whenever you do this, you are creating owner drawings. Therefore, the controls you build are known as
 owner - drawn user controls.

 Try It Out Creating the Project

 1. Create a new Visual Basic Windows Forms Application project. Call it Wrox Paint .

 2. In the Solution Explorer, right - click the WroxPaint project and select Add User Control. Set
the name to PaintCanvas.vb and click Add.

 3. Make sure the Form Designer for PaintCanvas is showing. Click the background of the
control, and from the Properties window, change the BackColor property to White. (To do
this, use the BackColor property ’ s drop - down list, change to the Custom tab, and click the
white box in the top - left corner.)

 4. Save your project by clicking the Save All button on the toolbar.

 5. Before you can use the control you need to build the project. From the menu select
Build Build WroxPaint. This will create the new PaintCanvas control and let you use it.

 6. Now, go back to the Forms Designer for Form1. Click the Toolbox, and then click the Wrox
Paint Components tab and select the new PaintCanvas control and drag it onto your form. Set
the Dock property of the PaintCanvas control to Fill.

 7. For the sake of neatness change the Text property of the form to Wrox Paint .

 How Drawing Programs Work
 Your computer screen is made up of pixels — hundreds of thousands of them. They are very small, but
when working together they make a display on the screen. Since pixels on any given display are always
of a uniform size, they are the common unit of measurement used in computer graphics.

 To find out how big your desktop is, minimize all your windows and right - click your Windows
desktop. Vista users should select Personalize from the context menu while everyone else should select
Properties. Vista users should then select Display Settings and all other users select the Settings tab in the
Display Properties dialog box. The slider in the bottom - left corner controls the size of your desktop — or,
rather, it controls the number of pixels on your display. In Figure 15 - 1 , you can see that the screen is set
to 1,280 pixels across and 768 pixels down.

c15.indd 486c15.indd 486 4/1/08 6:38:44 PM4/1/08 6:38:44 PM

Chapter 15: Programming Custom Graphics

487

 There are two very common computer graphics techniques: raster and vector. It is very useful to
understand the difference between the two.

 Raster Graphics
 Raster graphics work a little like a physical canvas: You have a space, and you fill it up with color using
various tools like brushes and pens. In a raster graphics program, the space is divided up into pixels.
Each pixel has a color, and it ’ s the drawing program ’ s responsibility to set the color of each one
depending on what kind of drawing tool you ’ re using and the position and movement of the mouse.

 The graphics program stores the image that you ’ ve drawn as a bitmap, this being a description of the
pixels that make up the image and the color of each. A bitmap is basically a two - dimensional array
of pixels. Each element in the array, accessed through a pair of (x , y) coordinates, stores a color value.

 The name bitmap comes from the days when computer displays were monochrome, so each pixel could
be only black or white and therefore could be stored in a single bit.

 If you draw a rectangle in a raster graphics package, that rectangle is abstracted to a set of pixels on the
bitmap. After it ’ s been drawn, you can ’ t change the rectangle at all, other than using other tools to draw
over it or draw another one.

 .jpg , .gif , and .png images use a variation of the bitmap format to save images. However, they are
compressed in particular ways to save space and download time when used in web pages.

 Vector Graphics
 Vector graphics packages work in a different way. When you draw a rectangle onto the canvas, they
physically record the fact that a rectangle exists at a given location. Vector graphics packages store a
blueprint of how to draw the image, rather than storing the image that ’ s been drawn. They do not

Figure 15-1

c15.indd 487c15.indd 487 4/1/08 6:38:44 PM4/1/08 6:38:44 PM

Chapter 15: Programming Custom Graphics

488

abstract the rectangle down to a set of pixels. What this means is that you can pick it up again and move
it, or change its shape or color later on, because the package has an understanding of what it is.

 A number of modern graphics packages, such as Abode Photoshop, offer a hybrid approach to this,
combining raster graphics with vector graphics.

 Even in a vector graphics program, the screen itself works in pixels and is a raster format. Therefore, for
the program to be able to display the drawing, the picture recorded by the package has to be converted
into a raster format for the display. This process is known as rendering .

 Your paint package is going to be a vector - based drawing package, for no other reason than it makes it
easier to understand how drawing works in the .NET Framework. You ’ re going to build a set of objects
that represent certain shapes — namely, circles and squares — and hold them in a list.

 The GraphicsItem Class
 In your application, you ’ re going to have two basic drawing types: circle and square. Each drawing type
will need to have an understanding of where it appears on the canvas (and ultimately, the screen), what
its color is, and whether it is filled. You ’ ll build a base class called GraphicsItem , from which you ’ ll
derive GraphicsCircle .

 Try It Out Building GraphicsItem and GraphicsCircle
 1. Create a new class by right - clicking Wrox Paint in the Solution Explorer and selecting

Add Class. Name the class GraphicsItem.vb and click Add.

 2. Add this code to GraphicsItem . Remember to add the MustInherit keyword to the first
line (that ’ s why we highlighted it). The MustInherit keyword tells Visual Basic 2008 that
you cannot create instances of GraphicsItem directly. Instead, you have to create classes that
inherit from it.

Public MustInherit Class GraphicsItem
‘Public members
Public Color As Color
Public IsFilled As Boolean
Public Rectangle As Rectangle

‘Public methods
Public MustOverride Sub Draw(ByVal graphics As Graphics)

‘Add an item at the given point
Public Sub SetPoint(ByVal x As Integer, ByVal y As Integer, _
 ByVal graphicSize As Integer, ByVal graphicColor As Color, _
 ByVal graphicIsFilled As Boolean)

 ‘Set the rectangle depending on the graphic and the size
 Rectangle = New Rectangle(x - (graphicSize / 2), y - (graphicSize / 2), _
 graphicSize, graphicSize)

c15.indd 488c15.indd 488 4/1/08 6:38:44 PM4/1/08 6:38:44 PM

Chapter 15: Programming Custom Graphics

489

 ‘Set the Color and IsFilled members
 Color = graphicColor
 IsFilled = graphicIsFilled
End Sub

End Class

 3. Create another class named GraphicsCircle.vb . Add the following highlighted code. After
you type Inherits GraphicsItem and press Enter, an empty Draw procedure will be added
to your class, and you can add the code shown here to it.

Public Class GraphicsCircle

 Inherits GraphicsItem

 Public Overrides Sub Draw(ByVal graphics As System.Drawing.Graphics)

 ‘Create a new pen
 Dim objSolidBrush As New SolidBrush(Me.Color)

 ‘Draw the circle
 graphics.FillEllipse(objSolidBrush, Me.Rectangle)

 End Sub
End Class

 How It Works
 When you created the GraphicsItem class, you added the MustInherit keyword to the Class
declaration. This instructs Visual Basic 2008 not to let developers create instances of this class but to
force them to inherit this class.

 When you created the Draw method in this class, you used the MustOverride keyword. This has a
similar meaning to MustInherit — you use it to force derived classes to add their own
implementation for a particular method without providing any implementation in the base class. The
 MustOverride keyword can be used only in MustInherit classes.

 The SetPoint method is used to populate an object depending on the position of the mouse and the
current graphic size and color. The first thing you need to do in this method is to set up the rectangle.

 When you want to draw a circle, you provide the center point, whereas .NET expects the position of
the top-left corner of the rectangle that encloses the circle. Therefore, the top-left corner of the
rectangle must be adjusted up and left depending on the size provided through graphicSize
parameter. You pass the top-left corner through as the first and second parameters to the rectangle ’ s
constructor. The third parameter supplied is the width, and the fourth provides the height.

 After you have the parameter, you need to store the color and also a flag that indicates whether the
circle is filled.

Public MustInherit Class GraphicsItem
‘Public members
Public Color As Color
Public IsFilled As Boolean
Public Rectangle As Rectangle

‘Public methods
Public MustOverride Sub Draw(ByVal graphics As Graphics)

c15.indd 489c15.indd 489 4/1/08 6:38:45 PM4/1/08 6:38:45 PM

Chapter 15: Programming Custom Graphics

490

‘Add an item at the given point
Public Sub SetPoint(ByVal x As Integer, ByVal y As Integer, _
 ByVal graphicSize As Integer, ByVal graphicColor As Color, _
 ByVal graphicIsFilled As Boolean)

 ‘Set the rectangle depending on the graphic and the size
 Rectangle = New Rectangle(x - (graphicSize / 2), y - (graphicSize / 2), _
 graphicSize, graphicSize)

 ‘Set the Color and IsFilled members
 Color = graphicColor
 IsFilled = graphicIsFilled
End Sub

End Class

 When you created the GraphicsCircle class, you inherited the GraphicsItem class. Once you typed
the Inherits GraphicsItem statement and pressed Enter, Visual Studio 2008 automatically added
an empty Draw method, and all you had to do was add your own code to this method.

 Painting is usually a matter of calling some simple methods on the Graphics object. This method
draws and fills an ellipse (or circle, depending on which parameters you provide). Note that there ’ s a
similar method called DrawEllipse , which doesn ’ t fill in the ellipse after it ’ s drawn.

You ’ ll also notice that at the top of the method you created a new SolidBrush object. You then pass
this brush through to the FillEllipse method. This SolidBrush object, as you have probably
guessed, describes the kind of brush you want to use.

Public Class GraphicsCircle
 Inherits GraphicsItem

 Public Overrides Sub Draw(ByVal graphics As System.Drawing.Graphics)
 ‘Create a new pen
 Dim objSolidBrush As New SolidBrush(Me.Color)

 ‘Draw the circle
 graphics.FillEllipse(objSolidBrush, Me.Rectangle)
 End Sub
End Class

 Screen and Client Coordinates
 When you get into the world of building your own painting code for your user interface, you usually
have to work a lot with the mouse. We have already mentioned that in Windows and the .NET
Framework, the base currency of drawing is the pixel. This means that when you ask the mouse for its
position (for example, when verifying that the user has moved the mouse across your control or clicked
one of the buttons), you get back a set of coordinates given in pixels. If the user clicks the mouse in the
very top-left pixel, you ’ ll get back coordinates of (0, 0). If you ’ re using a 1280 × 768 display and the user
clicks in the very bottom-right pixel, you ’ ll get back coordinates of (1280, 768).

c15.indd 490c15.indd 490 4/1/08 6:38:45 PM4/1/08 6:38:45 PM

Chapter 15: Programming Custom Graphics

491

 Although this seems straightforward, there is a wrinkle. When you click inside a window, the
coordinates are adjusted depending on where the window itself is on the screen.

 In Figure 15 - 2 , the WroxPaint program is shown towards the bottom-right corner of the screen. This
display is configured at 1280 pixels across and 786 pixels down, which means that the top-left corner of
WroxPaint itself is at approximately (600, 400), according to the screen.

Figure 15-2

 However, every window has a client area , which is the area the programmer can use to report the
program ’ s output. This client area is exclusive of the window border, the caption, menu, scrollbars, and
the toolbar. When you are drawing onto the control or form, you are always dealing with this client area.
The coordinates you use when drawing are adjusted so that the position of the window itself on the
screen becomes irrelevant. These coordinates are known as client coordinates .

 If you click the top - left corner of the WroxPaint paint area (the white part), there are actually two
different coordinates that you can get:

 The first one will be around (610, 435), a little in and down from the top - left corner of the
window. These are the screen coordinates , also known as the absolute position .

 The second pair will be around (0, 0), and these are the adjusted client coordinates. If you
click the same graphic in the client, you will get (0, 0) irrespective of where the window is
positioned on the screen. This is sometimes known as the relative position .

 Listening to the Mouse and Drawing
GraphicsCircle Objects

 For your graphics application to work, you ’ ll monitor what the user is doing with the mouse, create new
objects derived from GraphicsItem , and store them in a big list. When it is time for you to draw, you ’ ll
go through this list and ask each GraphicsItem in turn to render itself on the screen. You try drawing in
the next Try It Out.

❑

❑

c15.indd 491c15.indd 491 4/1/08 6:38:45 PM4/1/08 6:38:45 PM

Chapter 15: Programming Custom Graphics

492

 Try It Out Drawing

 1. In the Solution Explorer, right - click the PaintCanvas control and select View Code. Add these
enumerations to the class as highlighted. The first will be used to store the current graphics
mode/tool, while the second stores the size of the pen used for drawing:

Public Class PaintCanvas

 ‘Public enumerations
 Public Enum GraphicTools As Integer
 CirclePen = 0
 End Enum

 Public Enum GraphicSizes As Integer
 Small = 4
 Medium = 10
 Large = 20
 End Enum

End Class

 2. Next, add these members to this class:

 ‘Public members
 Public GraphicsItems As New ArrayList()
 Public GraphicTool As GraphicTools = GraphicTools.CirclePen
 Public GraphicSize As GraphicSizes = GraphicSizes.Medium
 Public GraphicColor As Color = Color.Black

 Here is what each member will do. Notice that you define a default value for these members to
make initialization of the application easier:

❑ GraphicItems will hold a list of the GraphicsItem objects that make up the drawing.

❑ GraphicsTool will keep track of which graphic tool is currently being used.

❑ GraphicsSize will keep track of how big you want each graphic to be.

❑ GraphicsColor will keep track of the color of the item that you want to draw.

 3. Drawing the items on the page is a two - phase process. When the user moves the mouse
around on the control, you want to create new GraphicsCircle objects and add them to the
 GraphicsItems list. At some point, Windows will ask you to paint the control, so you ’ ll need
to go through the GraphicsItems list and draw each one in turn. Add this method to
 PaintCanvas :

 Private Sub DoMousePaint(ByVal e As MouseEventArgs)
 ‘Store the new item somewhere
 Dim objGraphicsItem As GraphicsItem

 ‘What tool are you using?
 Select Case GraphicTool

 ‘CirclePen
 Case GraphicTools.CirclePen

c15.indd 492c15.indd 492 4/1/08 6:38:46 PM4/1/08 6:38:46 PM

Chapter 15: Programming Custom Graphics

493

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 GraphicColor, True)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 End Select

 ‘Were you given an item?
 If objGraphicsItem IsNot Nothing Then

 ‘Add it to the list
 GraphicsItems.Add(objGraphicsItem)

 ‘Invalidate the control
 Me.Invalidate()

 End If
 End Sub

 4. In the Class Name combo at the top of the Code Editor, select (PaintCanvas Events) and in the
Method Name combo box select the MouseDown event. Add the following highlighted code
to the new event handler:

 Private Sub PaintCanvas_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseDown

 ‘Is the left mouse button down?
 If e.Button = MouseButtons.Left Then
 DoMousePaint(e)
 End If

 End Sub

 5. Select (PaintCanvas Events) in the Class Name combo box and the MouseMove event in the
Method Name combo box. Add the following highlighted code to the MouseMove event
handler:

 Private Sub PaintCanvas_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

 ‘Is the left mouse button down?
 If e.Button = MouseButtons.Left Then
 DoMousePaint(e)
 End If

 End Sub

c15.indd 493c15.indd 493 4/1/08 6:38:46 PM4/1/08 6:38:46 PM

Chapter 15: Programming Custom Graphics

494

 6. Finally, select (PaintCanvas Events) in the Class Name combo box and the Paint event in the
Method Name combo box. Add the following highlighted code:

 Private Sub PaintCanvas_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ‘Go through the list
 For Each objGraphicsItem As GraphicsItem In GraphicsItems
 ‘Ask each item to draw itself
 objGraphicsItem.Draw(e.Graphics)
 Next

 End Sub

 7. Run the project and draw on the control by holding down the left mouse button and dragging
the mouse over the surface.

 You now have a working paint program, but you ’ ll notice that the more you paint the more it flickers.
This illustrates an important aspect of drawing, as you ’ ll see when you fix it. For now, look at what
you ’ ve done.

 How It Works
 When the user moves the mouse over the control, an event called MouseMove is fired. You have
hooked into this event by adding the event handler for the MouseMove event. When this event
handler is fired, you check to see whether the left mouse button is down, and if it is, you pass the
System.Windows.Forms.MouseEventArgs object that you were given over to your private
 DoMousePaint method.

 Private Sub PaintCanvas_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

 ‘Is the left mouse button down?
 If e.Button = MouseButtons.Left Then
 DoMousePaint(e)
 End If
 End Sub

 DoMousePaint is the method that you ’ ll use to handle the drawing process. In this case, whenever the
 MouseMove event is received, you want to create a new GraphicsCircle item and add it to the list of
vectors that make up your image.

 As DoMousePaint will ultimately do more than add circles to the vector list, you need to do things in
a (seemingly) counterintuitive order. The first thing you need is to declare an object to hold the new
 GraphicsItem class that will be created — so declare objGraphicsItem :

 Private Sub DoMousePaint(ByVal e As MouseEventArgs)
 ‘Store the new item somewhere
 Dim objGraphicsItem As GraphicsItem

c15.indd 494c15.indd 494 4/1/08 6:38:46 PM4/1/08 6:38:46 PM

Chapter 15: Programming Custom Graphics

495

 Then you look at your GraphicTool property to determine what you ’ re supposed to be drawing. At
this point, because you only have one tool defined, this will always be a circle:

 ‘What tool are you using?
 Select Case GraphicTool

 ‘CirclePen
 Case GraphicTools.CirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 After you have the GraphicsCircle , you call the SetPoint method, which, if you recall, was
defined on GraphicsItem . This method is responsible for determining the point on the canvas where
the item should appear. You give SetPoint the current drawing size and color, and tell it to draw a
filled shape.

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 GraphicColor, True)

 After you have called SetPoint , you store the GraphicsCircle in objGraphicsItem and close the
 Select . . . End Select statement.

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 End Select

 When a new GraphicsItem is stored in objGraphicsItem , you have to add it to the list.

 ‘Were you given an item?
 If objGraphicsItem IsNot Nothing Then

 ‘Add it to the list

 GraphicsItems.Add(objGraphicsItem)

 Finally, you have to invalidate the control. You have to do this to tell Windows that something about
the appearance of the control has changed. The program will not tell the control to paint itself unless
something has told Windows that the control needs painting. Calling Me.Invalidate in this way tells
Windows that the appearance of the control is invalid and therefore needs updating.

 ‘Invalidate the control
 Me.Invalidate()

 End If

 Although you can invalidate the control with the Invalidate method, the control will be invalidated
whenever Windows detects it needs redrawing. This may happen when the window is restored after
being minimized, another window obscures an area that ’ s been made visible, and so on.

c15.indd 495c15.indd 495 4/1/08 6:38:47 PM4/1/08 6:38:47 PM

Chapter 15: Programming Custom Graphics

496

 That covers everything from the user dragging the mouse over the control to adding a new
 GraphicsCircle item to the list. Now what?

 With the control marked as requiring painting, it ’ s up to Windows to choose a time for the window to
be painted. To increase the performance of the windowing subsystem, windows are drawn only when
the system has enough spare time to do it. Painting is not considered to be a crucial task to the
operating system. You cannot rely on painting being done immediately, or within a given time - span of
your marking something as invalid. At some point, the control will be asked to paint itself. You may
have noticed this effect when your computer is being used heavily — an image on the screen will
appear to freeze for a period before the display is updated.

 Do not try to force Windows to paint when it doesn ’ t want to. There are thousands of lines of
optimization code in the Windows operating system to make sure that things are painted at absolutely
the best time. Invalidate your control when you need to flag something as needing to be redrawn, and
let nature take its course.

 When it is ready, the Paint event will be called. You tap into this event by adding an event handler for
the Paint event. All that you have to do is loop through the entire array of GraphicsItem objects that
you ’ ve collected in GraphicsItems and ask each one to draw itself.

 Private Sub PaintCanvas_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ‘Go through the list
 For Each objGraphicsItem As GraphicsItem In GraphicsItems
 ‘Ask each item to draw itself
 objGraphicsItem.Draw(e.Graphics)
 Next
 End Sub

 The Paint event passes through its parameters as a PaintEventArgs object. This object, among other
things, contains a property called Graphics . This property returns a System.Drawing.Graphics
object.

 When you have hold of a graphics object, you are able to draw to the control, the form, the printer, or
whatever it is that ’ s given you as an object. This object contains a bundle of methods and properties
that are actually used for painting. To keep in line with the principle of only painting when needed, in
typical day - to - day work you shouldn ’ t try to create or otherwise obtain one of these objects. If you ’ re
given one, then it ’ s time to paint!

Now that you know how the painting works, let ’ s see whether you can get rid of the flickering!

 Invalidation
 The example you have been working on is designed to flicker and slow down to illustrate an important
consideration that you need to bear in mind when drawing controls: Do the least amount of work
possible! Drawing to the screen is slow. The less you draw, the faster the performance of your application
should be and the better it should look on the screen.

c15.indd 496c15.indd 496 4/1/08 6:38:47 PM4/1/08 6:38:47 PM

Chapter 15: Programming Custom Graphics

497

 The control flickers because painting is a two - stage process. Before you ’ re asked to paint, Windows
automatically erases the region behind the area that needs to be painted. This means the whole control
flashes white as everything is erased and then you fill in the details.

 What you want to do is to invalidate only the area that contains the new GraphicsItem . When you
invalidate the control, you don ’ t have to invalidate the whole thing. If you want, you can just invalidate
a small area, as you do in the next Try It Out.

 Try It Out Invalidating a Small Area

 1. In the PaintCanvas class, find the DoMousePaint method. Modify the Me.Invalidate
method at the end to include this parameter to invalidate just a Rectangle :

 ‘Invalidate the Control
 Me.Invalidate(objGraphicsItem.Rectangle)

 2. Run the project. You ’ ll notice now that when you paint it doesn ’ t flicker.

 How It Works
 After you call SetPoint on the new GraphicsCircle object, the Rectangle property is updated to
contain the bounding rectangle of the circle.

 This time, when you call the Me.Invalidate method, you pass this rectangle in. In this way, only a
tiny area of the control is invalidated, therefore, only that tiny area is erased. After it is erased, you get
the opportunity to draw your circle.

 Optimized Drawing
 You ’ ll notice that if you draw a lot on the control, after a while the edge of the line starts to become
almost jagged. What you ’ re experiencing here is that as the GraphicsItems list grows, more calls to
 FillEllipse are made. Because drawing on the screen is slow, the more you have to do this, the longer
the drawing process takes to aggregate. This lengthened drawing process prevents all of the MouseMove
events from being fired, and so the line appears to stutter. In the following Try It Out section you see
how you can avoid this problem.

Try It Out Optimized Drawing
 1. Find the PaintCanvas_Paint method on the PaintCanvas class. Add this code as

highlighted:

 Private Sub PaintCanvas_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ‘Go through the list
 For Each objGraphicsItem As GraphicsItem In GraphicsItems

 ‘Do we need to be drawn?
 If e.ClipRectangle.IntersectsWith(objGraphicsItem.Rectangle) Then

c15.indd 497c15.indd 497 4/1/08 6:38:47 PM4/1/08 6:38:47 PM

Chapter 15: Programming Custom Graphics

498

 ‘Ask each item to draw itself
 objGraphicsItem.Draw(e.Graphics)
 End If

 Next
 End Sub

 2. Run the project. You should now find that the drawing process is smoother.

 How It Works
 The PaintEventArgs object contains another property called ClipRectangle . This rectangle
describes the area of the control that has been invalidated and is known as the clipping rectangle . The
 Rectangle class contains a method called IntersectsWith that can tell whether two given
rectangles overlap and returns a Boolean value indicating whether they intersect.

 As you know, a rectangle describes the bounds of each of your GraphicsItem objects, so you can use
this rectangle with IntersectsWith . If the GraphicsItem overlaps, it needs drawing; otherwise, you
move on to the next control.

 The two techniques you ’ ve seen here — invalidating only what changes and drawing only what falls
into the invalidated region — are by far the two most important techniques you ’ ll come across when
painting. If you skip either of these, your control has a good chance of being sluggish and flickering.

 Choosing Colors
 Now that you can do some basic painting, you ’ ll build a control that lets you choose the color that you ’ re
painting in. Like a lot of graphics programs, you ’ ll build this so that you have a palette of different colors
and you ’ re able to choose two at a time — one for the left mouse button and one for the right.

 There are a number of different ways to build this control, and perhaps the most logical is to create a
control that contains a bundle of Button controls, each configured so that it displays the color that it
represents. However, this example shows you how to build a control completely from scratch. The
techniques that you ’ ll learn here will be really useful if you want to roll your own controls that display a
picture of something and have hot regions on them. Hot regions are regions that fire an event when you
click them. What you ’ re doing might seem a little obscure, but it ’ s a great example!

 Creating the ColorPalette Control and Sizing the Control
 To create the color palette control in the next Try It Out, you ’ re going to need two classes. One, named
 ColorPalette , is derived from UserControl and will provide the user interface (UI) for the palette
itself. The other, named ColorPaletteButton , will be used to display the actual color box on the palette.

 Since you are handling the layout of the buttons on the control, you need to respond to the Resize
event. This event is fired whenever the user changes the size of the control. You can hook into this event
by adding an event handler for the Resize event.

 When Resize is fired, you need to alter the position of each of the buttons, starting in the top-left corner
and continuing in strips across the whole width of the control. When you ’ ve filled up one row, you need
to start a new row.

c15.indd 498c15.indd 498 4/1/08 6:38:47 PM4/1/08 6:38:47 PM

Chapter 15: Programming Custom Graphics

499

 Try It Out Creating the ColorPalette Control

 1. In the Solution Explorer, add a new class to the Wrox Paint project named ColorPaletteButton
.vb and add the following highlighted code to it:

Public Class ColorPaletteButton
 ‘Public members
 Public Color As Color = System.Drawing.Color.Black
 Public Rectangle As Rectangle

 ‘Constructor
 Public Sub New(ByVal newColor As Color)
 Color = newColor
 End Sub

 ‘Move the button to the given position
 Public Sub SetPosition(ByVal x As Integer, ByVal y As Integer, _
 ByVal buttonSize As Integer)

 ‘Update the members
 Rectangle = New Rectangle(x, y, buttonSize, buttonSize)
 End Sub

 ‘Draw the button
 Public Sub Draw(ByVal graphics As Graphics)
 ‘Draw the color block
 Dim objSolidBrush As New SolidBrush(Color)
 graphics.FillRectangle(objSolidBrush, Rectangle)

 ‘Draw an edge around the control
 Dim objPen As New Pen(System.Drawing.Color.Black)
 graphics.DrawRectangle(objPen, Rectangle)
 End Sub

End Class

 2. Now add a user control to the Wrox Paint project named ColorPalette . Right - click the control
and choose View Code from the context menu. Add these members to the top of the class
definition:

Public Class ColorPalette
 ‘Public members
 Public Buttons As New ArrayList()
 Public ButtonSize As Integer = 15
 Public ButtonSpacing As Integer = 5
 Public LeftColor As Color = Color.Black
 Public RightColor As Color = Color.White

 Here is what the members will do:

❑ Buttons holds a list of the buttons on the palette.

❑ ButtonSize defines the size of each of the buttons on the palette.

❑ ButtonSpacing defines the gap between each button.

c15.indd 499c15.indd 499 4/1/08 6:38:48 PM4/1/08 6:38:48 PM

Chapter 15: Programming Custom Graphics

500

❑ LeftColor holds the current color that is assigned to the left mouse button.

❑ RightColor holds the current color that is assigned to the right mouse button.

 3. Next, add this method to the class:

 ‘Add a new color button to the control
 Public Sub AddColor(ByVal newColor As Color)
 ‘Create the button
 Dim objColorPaletteButton As New ColorPaletteButton(newColor)

 ‘Add it to the list
 Buttons.Add(objColorPaletteButton)
 End Sub

 4. When you create the control, you want a set of basic colors to be always available. Add this
code for the constructor to the class. This will create 10 basic colors. After you type Public Sub
New and press Enter, the unhighlighted code that follows will automatically be added to the
constructor. Add the following highlighted code to your constructor:

 Public Sub New()

 ‘ This call is required by the Windows Form Designer.
 InitializeComponent()

 ‘ Add any initialization after the InitializeComponent() call.

 ‘Add the colors
 AddColor(Color.Black)
 AddColor(Color.White)
 AddColor(Color.Red)
 AddColor(Color.Blue)
 AddColor(Color.Green)
 AddColor(Color.Gray)
 AddColor(Color.DarkRed)
 AddColor(Color.DarkBlue)
 AddColor(Color.DarkGreen)
 AddColor(Color.DarkGray)

 End Sub

 5. In the Code Editor for the ColorPalette class, select (ColorPalette Events) in the Class Name
combo box and the Resize event in the Method Name combo box. Add this highlighted code
to the Resize event handler:

 Private Sub ColorPalette_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize

 ‘Declare variables to hold the position
 Dim intX As Integer
 Dim intY As Integer

 ‘Go through the array and position the buttons
 For Each objColorPaletteButton As ColorPaletteButton In Buttons

c15.indd 500c15.indd 500 4/1/08 6:38:48 PM4/1/08 6:38:48 PM

Chapter 15: Programming Custom Graphics

501

 ‘Position the button
 objColorPaletteButton.SetPosition(intX, intY, ButtonSize)

 ‘Move to the next one
 intX += (ButtonSize + ButtonSpacing)

 ‘Do we need to go down to the next row
 If intX + ButtonSize > Width Then

 ‘Move y
 intY += (ButtonSize + ButtonSpacing)

 ‘Reset x
 intX = 0

 End If

 Next

 ‘Redraw
 Me.Invalidate()

 End Sub

 6. You still need to paint the control. Select (ColorPalette Events) in the Class Name combo box
and the Paint event in the Method Name combo box. Add this highlighted code:

 Private Sub ColorPalette_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles Me.Paint

 ‘Loop through the buttons
 For Each objColorPaletteButton As ColorPaletteButton In Buttons

 ‘Do we need to draw?
 If e.ClipRectangle.IntersectsWith(objColorPaletteButton.Rectangle) Then
 objColorPaletteButton.Draw(e.Graphics)
 End If

 Next

 End Sub

 7. Before you can draw the control onto Form1, you need to build the project. Select
Build Build Wrox Paint from the menu.

 8. After the project has been built, open the Designer for Form1. Click the PaintCanvas control
on Form1 and, in the Properties window, set the Dock property to None . Now resize the form
to add a little space at the bottom and make the form wider if so desired.

 9. In the ToolBox under the Wrox Paint Components tab, drag a ColorPalette control to the bottom of
you form and set its Name property to paletteColor . Now set its Dock property to Bottom .

 10. Now click the PaintCanvus control, resize it if necessary, and set its Anchor property to Top,
Bottom, Left, Right. Your form should now look similar to Figure 15 - 3 .

c15.indd 501c15.indd 501 4/1/08 6:38:48 PM4/1/08 6:38:48 PM

Chapter 15: Programming Custom Graphics

502

 11. If you now try to rearrange the form a little, you should see that your sizing code has proven
successful.

 How It Works
 Hopefully, the behavior of ColorPaletteButton shouldn ’ t be too much of a mystery. You have
members on the class that hold the color and a rectangle, and you also provide a constructor that
automatically populates the color:

Public Class ColorPaletteButton
 ‘Public members
 Public Color As Color = System.Drawing.Color.Black
 Public Rectangle As Rectangle

 ‘Constructor
 Public Sub New(ByVal newColor As Color)
 Color = newColor
 End Sub

 When the button is asked to paint itself, all you do is draw one filled rectangle of the color specified in
the Color property using the FillRectangle method, and for neatness you surround it with a black
border using the DrawRectangle method:

 ‘Draw the button
 Public Sub Draw(ByVal graphics As Graphics)
 ‘Draw the color block
 Dim objSolidBrush As New SolidBrush(Color)
 graphics.FillRectangle(objSolidBrush, Rectangle)

 ‘Draw an edge around the control
 Dim objPen As New Pen(System.Drawing.Color.Black)
 graphics.DrawRectangle(objPen, Rectangle)
 End Sub

Figure 15-3

c15.indd 502c15.indd 502 4/1/08 6:38:49 PM4/1/08 6:38:49 PM

Chapter 15: Programming Custom Graphics

503

 When you resize the form (a subject you ’ ll deal with soon), you pass the top-left corner of the button
through to SetPosition . All this method does is update the Rectangle property:

 ‘Move the button to the given position
 Public Sub SetPosition(ByVal x As Integer, ByVal y As Integer, _
 ByVal buttonSize As Integer)

 ‘Update the members
 Rectangle = New Rectangle(x, y, buttonSize, buttonSize)
 End Sub

 The ColorPalette_Resize method is perhaps the most interesting method here. This is a common
algorithm used whenever you need to manage the position of controls or other graphic objects. You
know the size of each object (in your case it ’ s a combination of ButtonSize and ButtonSpacing) and
you know the bounds of the control. All you do is start in the top left and keep moving right until you
have no more space, in which case you flip down to the next row. Here is how you start — you set up
a loop that iterates through all of the buttons:

 Private Sub ColorPalette_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize

 ‘Declare variables to hold the position
 Dim intX As Integer
 Dim intY As Integer

 ‘Go through the array and position the buttons
 For Each objColorPaletteButton As ColorPaletteButton In Buttons

 Throughout the loop, intX and intY hold the current coordinates of the top-left corner of the control.
When you start, this is (0,0) or, rather, the very top left of the client area of the control. For each
button, you call SetPosition , passing in the current coordinates together with the size of the button:

 ‘Position the button
 objColorPaletteButton.SetPosition(intX, intY, ButtonSize)

 After each button, you move intX to the right. In addition to adjusting by the size of the button, you
also add a small gap to make the control more esthetically pleasing:

 ‘Move to the next one
 intX += (ButtonSize + ButtonSpacing)

 If you detect that you don ’ t have enough space to fit the next control completely on the current row,
you adjust intY down to the next row and reset intX back to the beginning:

 ‘Do we need to go down to the next row
 If intX + ButtonSize > Width Then

 ‘Move y
 intY += (ButtonSize + ButtonSpacing)

c15.indd 503c15.indd 503 4/1/08 6:38:49 PM4/1/08 6:38:49 PM

Chapter 15: Programming Custom Graphics

504

 ‘Reset x
 intX = 0

 End If

 Next

Finally, after you ’ ve moved all of the buttons, you invalidate the control so that you can see the
changes.

 ‘Redraw
 Me.Invalidate()
 End Sub

 Responding to Clicks
 Your control is going to fire an event whenever the left or right mouse button is clicked on a color button.
To that end, in the next Try It Out you add some events to your ColorPalette control that the control will
raise. The application using this control will be able to add the event handlers and take action when the
event has been raised by this control.

 Try It Out Responding to Clicks

 1. Go back to the Code Editor for ColorPalette . Add these events to the top of the class after
your public members:

 ‘Public events
 Public Event LeftClick(ByVal sender As Object, ByVal e As EventArgs)
 Public Event RightClick(ByVal sender As Object, ByVal e As EventArgs)

 2. You need a general - purpose method that will return the button that ’ s positioned directly
beneath the mouse. Add this method:

 Public Function GetButtonAt(ByVal x As Integer, ByVal y As Integer) _
 As ColorPaletteButton

 ‘Set the default return value
 GetButtonAt = Nothing

 ‘Go through each button in the collection
 For Each objColorPaletteButton As ColorPaletteButton In Buttons
 ‘Is this button in the rectangle?
 If objColorPaletteButton.Rectangle.Contains(x, y) Then
 Return objColorPaletteButton
 End If
 Next
 End Function

c15.indd 504c15.indd 504 4/1/08 6:38:49 PM4/1/08 6:38:49 PM

Chapter 15: Programming Custom Graphics

505

 3. Now, select (ColorPalette Events) in the Class Name combo box and then select the MouseUp
event in the Method Name combo box. Your motivation for using MouseUp rather than
 MouseDown will become apparent soon. Add this highlighted code to the event handler:

 Private Sub ColorPalette_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp

 ‘Find the button that we clicked
 Dim objColorPaletteButton As ColorPaletteButton = GetButtonAt(e.X, e.Y)

 If Not objColorPaletteButton Is Nothing Then

 ‘Was the left button clicked
 If e.Button = MouseButtons.Left Then

 ‘Set the color
 LeftColor = objColorPaletteButton.Color

 ‘Raise the event
 RaiseEvent LeftClick(Me, New EventArgs())

 ElseIf e.Button = MouseButtons.Right Then

 ‘Set the color
 RightColor = objColorPaletteButton.Color

 ‘Raise the event
 RaiseEvent RightClick(Me, New EventArgs())

 End If

 End If

 End Sub

 4. To test the new method, open the Forms Designer for Form1. Select the PaintCanvas control
and set its Name property to Canvas .

 5. Open up the Code Editor for Form1. Select paletteColor in the Class Name combo box, and
select the LeftClick event in the Method Name combo box. Add this highlighted code to the
event handler:

 Private Sub paletteColor_LeftClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles paletteColor.LeftClick

 Canvas.GraphicColor = paletteColor.LeftColor

 End Sub

 6. Run your project. You should be able to use the color palette to change the color laid down by
the left mouse button.

c15.indd 505c15.indd 505 4/1/08 6:38:50 PM4/1/08 6:38:50 PM

Chapter 15: Programming Custom Graphics

506

 How It Works
 Although you ’ ve called your buttons ColorPaletteButton , they don ’ t behave in the way you ’ re
used to seeing buttons behave. Button controls, like the ones you have been using until now, have the
intelligence to detect when they ’ ve been clicked and fire an event to tell you what happened. Your
color palette buttons, on the other hand, have until now been areas on the control painted in a
pretty color. Now you actually need to write the logic to determine when a button is clicked.

 The key to this is the GetButtonAt method. This method takes a set of client coordinates and
returns the ColorPaletteButton object that contains the point you asked for. In this case, you use the
 Contains method of the Rectangle object to see whether the coordinates are contained within the
rectangle.

 Public Function GetButtonAt(ByVal x As Integer, ByVal y As Integer) _
 As ColorPaletteButton

 ‘Set the default return value
 GetButtonAt = Nothing

 ‘Go through each button in the collection
 For Each objColorPaletteButton As ColorPaletteButton In Buttons
 ‘Is this button in the rectangle?
 If objColorPaletteButton.Rectangle.Contains(x, y) Then
 Return objColorPaletteButton
 End If
 Next
 End Function

 Of course, it could be the case that there is no button under the coordinates if the user clicks the mouse
on a blank area of the control. If this is the case, GetButtonAt will return Nothing :

 As you know, the Button property of MouseEventArgs tells you which button was used, or in this
case, released. If it ’ s the left button, you update LeftColor and raise the LeftClick event:

 Private Sub ColorPalette_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp

 ‘Find the button that we clicked
 Dim objColorPaletteButton As ColorPaletteButton = GetButtonAt(e.X, e.Y)

 If Not objColorPaletteButton Is Nothing Then

 ‘Was the left button clicked
 If e.Button = MouseButtons.Left Then

 ‘Set the color
 LeftColor = objColorPaletteButton.Color

 ‘Raise the event
 RaiseEvent LeftClick(Me, New EventArgs())

 Alternatively, it could be the right mouse button:

 ElseIf e.Button = MouseButtons.Right Then

 ‘Set the color

c15.indd 506c15.indd 506 4/1/08 6:38:50 PM4/1/08 6:38:50 PM

Chapter 15: Programming Custom Graphics

507

 RightColor = objColorPaletteButton.Color

 ‘Raise the event
 RaiseEvent RightClick(Me, New EventArgs())

 End If

 End If
 End Sub

At the moment, PaintCanvas can deal with only one color, which is why you ’ ve only hooked up the
 LeftClick event. When you receive this event, you set the appropriate property on Canvas , and this
new color will be used when creating new GraphicsCircle objects:

 Private Sub paletteColor_LeftClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles paletteColor.LeftClick

 Canvas.GraphicColor = paletteColor.LeftColor
 End Sub

 Dealing with Two Colors
 In the next Try It Out you extend PaintCanvas so that it can deal with two colors. You ’ ll do this by
adding two public members that will track the color chosen for the left mouse button and the right
mouse button. You ’ ll also be modifying your existing code to determine whether the left mouse button
was clicked or whether the right mouse button was clicked.

 Try It Out Dealing with Two Colors

 1. You need an additional property in PaintCanvas that will let you store the alternative color.
For the sake of clarity, you ’ ll also change the name of the existing GraphicColor property to
 GraphicLeftColor . Open the Code Editor for the PaintCanvas class and make the
highlighted changes:

 ‘Public members
 Public GraphicsItems As New ArrayList()
 Public GraphicTool As GraphicTools = GraphicTools.CirclePen
 Public GraphicSize As GraphicSizes = GraphicSizes.Medium

 Public GraphicLeftColor As Color = Color.Black
 Public GraphicRightColor As Color = Color.White

c15.indd 507c15.indd 507 4/1/08 6:38:50 PM4/1/08 6:38:50 PM

Chapter 15: Programming Custom Graphics

508

 2. In the DoMousePaint method you need to examine the Button property of MouseEventArgs
to determine which color you want to use. Make these two changes to DoMousePaint as
highlighted:

 Private Sub DoMousePaint(ByVal e As MouseEventArgs)
 ‘Store the new item somewhere
 Dim objGraphicsItem As GraphicsItem

 ‘What color do we want to use?
 Dim objColor As Color = GraphicLeftColor

 If e.Button = MouseButtons.Right Then
 objColor = GraphicRightColor
 End If

 ‘What tool are you using?
 Select Case GraphicTool

 ‘Circlepen
 Case GraphicTools.CirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing

 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 objColor, True)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 End Select

 ‘Were you given an item?
 If objGraphicsItem IsNot Nothing Then

 ‘Add it to the list
 GraphicsItems.Add(objGraphicsItem)

 ‘Invalidate the Control
 Me.Invalidate(objGraphicsItem.Rectangle)

 End If
 End Sub

 3. At the moment, MouseDown and MouseMove events will call DoMousePaint only if the left
button is pressed. You need to change this so that it will accept either the left or right button.
Make the following highlighted changes:

c15.indd 508c15.indd 508 4/1/08 6:38:50 PM4/1/08 6:38:50 PM

Chapter 15: Programming Custom Graphics

509

 Private Sub PaintCanvas_MouseDown(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseDown

 ‘Is the left or right mouse button down?
 If e.Button = MouseButtons.Left Or e.Button = MouseButtons.Right Then

 DoMousePaint(e)
 End If
 End Sub

 Private Sub PaintCanvas_MouseMove(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove

 ‘Is the left or right mouse button down?
 If e.Button = MouseButtons.Left Or e.Button = MouseButtons.Right Then

 DoMousePaint(e)
 End If
 End Sub

 4. Next, you need to change the event handler in Form1 to set the GraphicLeftColor property
rather than the GraphicColor property. Open the Code Editor for Form1 and make this
change as highlighted:

 Private Sub paletteColor_LeftClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles paletteColor.LeftClick

 Canvas.GraphicLeftColor = paletteColor.LeftColor

 End Sub

 5. Finally, you need to add an event handler for the RightClick event. Select paletteColor in
the Class Name combo box and the RightClick event in the Method Name combo box. Add
this highlighted code:

 Private Sub paletteColor_RightClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles paletteColor.RightClick

 Canvas.GraphicRightColor = paletteColor.RightColor

 End Sub

 When you run the project, you should be able to assign different colors to the left and right mouse
buttons and use both of the buttons to paint on the form.

 Indicating the Assigned Buttons
 You ’ ve no doubt noticed that, at this point, using WroxPaint is a little confusing. There ’ s no indication as
to which color is assigned to which button. You need to resolve this issue, so in the next Try It Out you ’ ll
display the letter L on the color assigned to the left button and the letter R on the color assigned to the
right button.

c15.indd 509c15.indd 509 4/1/08 6:38:51 PM4/1/08 6:38:51 PM

Chapter 15: Programming Custom Graphics

510

 Try It Out Indicating the Assigned Buttons
 1. First, you ’ ll make the ColorPaletteButton objects aware of which button they ’ re

assigned to, if any. Open the Code Editor for the ColorPaletteButton class and add this
enumeration to the top of the class:

Public Class ColorPaletteButton

 ‘Public enumerations
 Public Enum ButtonAssignments As Integer
 None = 0
 LeftButton = 1
 RightButton = 2
 End Enum

 2. Next, add this new member (highlighted), which will keep track of the button ’ s assignment:

 ‘Public members
 Public Color As Color = System.Drawing.Color.Black
 Public Rectangle As Rectangle

 Public ButtonAssignment As ButtonAssignments = ButtonAssignments.None

 3. After the button has a way of storing what it ’ s assigned to, you can change the Draw method
to draw the L or R as appropriate. Add the following highlighted code to Draw :

 ‘Draw the button
 Public Sub Draw(ByVal graphics As Graphics)
 ‘Draw the color block
 Dim objSolidBrush As New SolidBrush(Color)
 graphics.FillRectangle(objSolidBrush, Rectangle)

 ‘Draw an edge around the control
 Dim objPen As New Pen(System.Drawing.Color.Black)
 graphics.DrawRectangle(objPen, Rectangle)

 ‘Are you selected?
 If ButtonAssignment < > ButtonAssignments.None Then

 ‘Create a font
 Dim objFont As New Font(“Segoe UI”, 8, FontStyle.Bold)

 ‘Set the default button assignment
 Dim strButtonText As String = “L”

 ‘Update the button assignment if necessary
 If ButtonAssignment = ButtonAssignments.RightButton Then
 strButtonText = “R”
 End If

 ‘What brush do you want?
 If Color.R < 100 Or Color.B < 100 Or Color.G < 100 Then
 objSolidBrush = New SolidBrush(System.Drawing.Color.White)
 Else
 objSolidBrush = New SolidBrush(System.Drawing.Color.Black)
 End If

c15.indd 510c15.indd 510 4/1/08 6:38:51 PM4/1/08 6:38:51 PM

Chapter 15: Programming Custom Graphics

511

 ‘Draw the text ‘L’ or ‘R’
 graphics.DrawString(strButtonText, objFont, objSolidBrush, _
 Rectangle.Left, Rectangle.Top)
 End If

 End Sub

 4. To keep track of which button is selected, you need to add some private members to the
 ColorPalette class. Open the Code Editor for this class and add this code:

 ‘Private members
 Private LeftButton As ColorPaletteButton
 Private RightButton As ColorPaletteButton

 5. The next wrinkle you have to fix is quite verbose but relatively straightforward. Basically, you
have to make sure that a button cannot be assigned to both the left and right buttons — for no
other reason than that you just don ’ t have a way of reporting that information to the user.
Also, you have to muddle with the invalidation code. You ’ ll detail that once you have the
example working. Make these changes to ColorPalette_MouseUp as highlighted:

 Private Sub ColorPalette_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp

 ‘Find the button that we clicked
 Dim objColorPaletteButton As ColorPaletteButton = GetButtonAt(e.X, e.Y)

 If Not objColorPaletteButton Is Nothing Then

 ‘Was the left button clicked
 If e.Button = MouseButtons.Left Then

 ‘Make sure that this button is not the current right button
 If objColorPaletteButton IsNot RightButton Then

 ‘Set the color
 LeftColor = objColorPaletteButton.Color

 ‘Clear the existing selection.
 If LeftButton IsNot Nothing Then

 LeftButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.None

 Me.Invalidate(LeftButton.Rectangle)

 End If

 ‘Mark the button
 objColorPaletteButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.LeftButton

 Me.Invalidate(objColorPaletteButton.Rectangle)

 LeftButton = objColorPaletteButton

c15.indd 511c15.indd 511 4/1/08 6:38:51 PM4/1/08 6:38:51 PM

Chapter 15: Programming Custom Graphics

512

 ‘Raise the event
 RaiseEvent LeftClick(Me, New EventArgs())

 End If

 ElseIf e.Button = MouseButtons.Right Then

 ‘Make sure this button is not the current left button
 If objColorPaletteButton IsNot LeftButton Then

 ‘Set the color
 RightColor = objColorPaletteButton.Color

 ‘Clear the existing selection
 If RightButton IsNot Nothing Then

 RightButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.None

 Me.Invalidate(RightButton.Rectangle)

 End If

 ‘Mark the button
 objColorPaletteButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.RightButton

 Me.Invalidate(objColorPaletteButton.Rectangle)

 RightButton = objColorPaletteButton

 ‘Raise the event
 RaiseEvent RightClick(Me, New EventArgs())

 End If

 End If

 End If
 End Sub

 6. Finally, you have to set up the first two colors added to the control as being the selected
buttons when the control is started. This involves updating your leftButton and
 rightButton members as well as setting the ButtonAssignment property on the button
itself. Add the highlighted code to AddColor :

 ‘Add a new color button to the control
 Public Sub AddColor(ByVal newColor As Color)
 ‘Create the button
 Dim objColorPaletteButton As New ColorPaletteButton(newColor)

 ‘Add it to the list
 Buttons.Add(objColorPaletteButton)

c15.indd 512c15.indd 512 4/1/08 6:38:52 PM4/1/08 6:38:52 PM

Chapter 15: Programming Custom Graphics

513

 ‘Do we have a button assigned to the left button yet?
 If LeftButton Is Nothing Then

 objColorPaletteButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.LeftButton

 LeftButton = objColorPaletteButton

 ElseIf RightButton Is Nothing Then ‘How about the right button?

 objColorPaletteButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.RightButton

 RightButton = objColorPaletteButton

 End If

 End Sub

 7. Run the project now, and you should see that when you change the color selection, an L and R
appear on the buttons, as shown in Figure 15 - 4 .

Figure 15-4

 How It Works
 The first thing you did was add an enumeration to the ControlPaletteButton class that could be
used to set the state of the button:

 ‘Public enumerations
 Public Enum ButtonAssignments As Integer
 None = 0
 LeftButton = 1
 RightButton = 2
 End Enum

 As you can see from the enumeration, a palette button can either be assigned to no mouse buttons, the left
mouse button, or the right mouse button. You also added members to the ControlPalette class to keep
track of which button was selected. This makes your life a little easier when it comes to changing the
selection. When you select a new palette button, you have to set the ButtonAssignment property of the
old button to ButtonAssignments.None . Just being able to look in the LeftButton or RightButton

c15.indd 513c15.indd 513 4/1/08 6:38:52 PM4/1/08 6:38:52 PM

Chapter 15: Programming Custom Graphics

514

member, as appropriate, saves you from having to look through the entire list of buttons to find the one
you need to change. The ColorPalette_MouseUp method starts to look a little more complex when you
add this new functionality. When you want to assign the left mouse button to a palette button, you have to
make sure that the palette button is not already assigned to the right mouse button:

 Private Sub ColorPalette_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp

 ‘Find the button that we clicked
 Dim objColorPaletteButton As ColorPaletteButton = GetButtonAt(e.X, e.Y)

 If Not objColorPaletteButton Is Nothing Then

 ‘Was the left button clicked
 If e.Button = MouseButtons.Left Then

 ‘Make sure that this button is not the current right button
 If objColorPaletteButton IsNot RightButton Then

 If you can set the color, you update the LeftColor property as you did before:

 ‘Set the color
 LeftColor = objColorPaletteButton.Color

 If another button is already assigned to the left mouse button, you need to set its ButtonAssignment
property back to None . You also have to invalidate this button so that the button is redrawn and the L
is removed:

 ‘Clear the existing selection.
 If LeftButton IsNot Nothing Then

 LeftButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.None

 Me.Invalidate(LeftButton.Rectangle)

 End If

 Next, you set the new button ’ s ButtonAssignment property to Left . You also invalidate the button
(so that you can draw the L on this one instead) and update the LeftButton property to point at the
new button:

 ‘Mark the button
 objColorPaletteButton.ButtonAssignment = _
 ColorPaletteButton.ButtonAssignments.LeftButton

 Me.Invalidate(objColorPaletteButton.Rectangle)

 LeftButton = objColorPaletteButton

 Finally, you fire the LeftClick event as you did before:

 ‘Raise the event
 RaiseEvent LeftClick(Me, New EventArgs())

c15.indd 514c15.indd 514 4/1/08 6:38:52 PM4/1/08 6:38:52 PM

Chapter 15: Programming Custom Graphics

515

 The remainder of ColorPalette_MouseUp is the same as this but is obviously reversed to deal with
the right - hand button.

 When it ’ s time to draw the button, you can check to see whether a button assignment is set. If it is, you
draw some text. (You ’ ve only fleetingly covered drawing text here, but you ’ ll deal with it in more
detail later in this chapter.) To draw the text, you need to create a new System.Drawing.Font object.
Here you ’ re creating a new object for 8 - point Segoe UI in bold:

 Public Sub Draw(ByVal graphics As Graphics)
 ‘Draw the color block
 Dim objSolidBrush As New SolidBrush(Color)
 graphics.FillRectangle(objSolidBrush, Rectangle)

 ‘Draw an edge around the control
 Dim objPen As New Pen(System.Drawing.Color.Black)
 graphics.DrawRectangle(objPen, Rectangle)

 ‘Are you selected?
 If ButtonAssignment < > ButtonAssignments.None Then

 ‘Create a font
 Dim objFont As New Font(“Segoe UI”, 8, FontStyle.Bold)

 Next, you choose the text to draw:

 ‘Set the default button assignment
 Dim strButtonText As String = “L”

 ‘Update the button assignment if necessary
 If ButtonAssignment = ButtonAssignments.RightButton Then
 strButtonText = “R”
 End If

 Choosing the brush you want is quite tricky. You can ’ t just choose a color, because there ’ s a chance it
won ’ t show up on the color that you ’ re drawing. Instead, you have to examine the color to see
whether it is a light color or a dark color. If it ’ s dark, you choose to draw the letter in white; otherwise,
you draw it in black:

 ‘What brush do you want?
 If Color.R < 100 Or Color.B < 100 Or Color.G < 100 Then
 objSolidBrush = New SolidBrush(System.Drawing.Color.White)
 Else
 objSolidBrush = New SolidBrush(System.Drawing.Color.Black)
 End If

Finally, you actually draw the text:

 ‘Draw the text ‘L’ or ‘R’
 graphics.DrawString(strButtonText, objFont, objSolidBrush, _
 Rectangle.Left, Rectangle.Top)
 End If
 End Sub

c15.indd 515c15.indd 515 4/1/08 6:38:53 PM4/1/08 6:38:53 PM

Chapter 15: Programming Custom Graphics

516

 Using Advanced Colors
 So far, the only colors you ’ ve used are the ones defined by the .NET Framework, such as Color.Black
and Color.Blue . The list of colors available to you on the Color structure is considerable, but you can
define your own colors if you want to.

 To find a list of predefined colors use the MSDN documentation to display “ all members ” of the “ Color
structure. ” Alternatively, you can use IntelliSense from within the code editor to display a list of possibilities.

 Windows defines a color as a 24 - bit number, with the three bytes of the 24 bits representing a red value, a
green value, and a blue value — this is commonly known as RGB. In effect, each component represents
one of a possible 256 shades of red, green, or blue. By combining these shades you can get any color from
a possible set of 16.7 million. For example, setting red to 255 and setting blue and green to 0 would result
in bright red. Setting all components to 255 would give white. Setting all to 0 would give black, and so on.

 If you ’ re used to mixing paints, these color combinations may seem strange. This is because you are
working with colored lights instead of colored paints — they combine in different ways.

 In the following Try It Out section, you see how you can choose a color and then manually add that color
as a button to the control palette.

 Try It Out Creating Custom Colors

 1. Open the Form Designer for the ColorPalette control. In the Properties window find the
 BackColor property.

 2. Drop down the list and change to the Custom tab. Right - click in one of the 16 blank squares at
the bottom. This will bring up the Color dialog box.

 3. Use the two controls at the top to find a color you like. In the bottom - right corner, you ’ ll see
three text boxes marked Red, Green, and Blue, as shown in Figure 15 - 5 . Write down the values
in these boxes.

Figure 15-5

c15.indd 516c15.indd 516 4/1/08 6:38:53 PM4/1/08 6:38:53 PM

Chapter 15: Programming Custom Graphics

517

 4. Close the Define Color dialog box.

 5. Open up the Code Editor for ColorPalette to access the constructor. In the constructor,
define a new button as in the following highlighted code, but replace the three values I ’ ve
used here with three values you noted. (Do this in order — the first value is the red
component, the second is green, and the third is blue.)

 Public Sub New()

 ‘ This call is required by the Windows Form Designer.
 InitializeComponent()

 ‘ Add any initialization after the InitializeComponent() call.
 ‘Add the colors
 AddColor(Color.Black)
 AddColor(Color.White)
 AddColor(Color.Red)
 AddColor(Color.Blue)
 AddColor(Color.Green)
 AddColor(Color.Gray)
 AddColor(Color.DarkRed)
 AddColor(Color.DarkBlue)
 AddColor(Color.DarkGreen)
 AddColor(Color.DarkGray)

 AddColor(Color.FromArgb(208, 112, 222))

 End Sub

 6. Now run the project; the color you selected should appear in the palette.

 The FromArgb method is a shared method on the Color class. You can use this to define any color that
you like, so long as you follow the “ red, green, blue ” convention Windows itself uses.

 Using the Color Dialog Box
 In this Try It Out, you use the Color dialog box that ’ s built into Windows to let the user add colors to the
palette.

Try It Out Using the Color Dialog Box
 1. Open the Form Designer for ColorPalette. From the toolbar, select a ColorDialog control and

drag it onto the form; the control will be positioned at the bottom of the IDE. Change the
name of the control to dlgColor .

 2. Now, open the Code Editor for ColorPalette. Find the ColorPalette_MouseUp method.
Whenever the user clicks the background of the control (in other words, doesn ’ t click a
button), you want to display the dialog box. Go to the bottom of the method and add an Else
clause along with this code. (I ’ ve omitted most of the existing code for brevity.)

c15.indd 517c15.indd 517 4/1/08 6:38:53 PM4/1/08 6:38:53 PM

Chapter 15: Programming Custom Graphics

518

 Private Sub ColorPalette_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp

 ‘Find the button that we clicked
 Dim objColorPaletteButton As ColorPaletteButton = GetButtonAt(e.X, e.Y)

 If Not objColorPaletteButton Is Nothing Then
 . . .
 RaiseEvent RightClick(Me, New EventArgs())

 End If

 End If

 Else
 ‘Display the color dialog
 If dlgColor.ShowDialog = DialogResult.OK Then

 ‘Add the new color
 AddColor(dlgColor.Color)

 ‘Resize the palette to show the dialog
 OnResize(New EventArgs())

 End If

 End If
 End Sub

 3. Run the project. When you click the background to the palette, you should have the
opportunity to add your own colors (see Figure 15 - 6).

Figure 15-6

c15.indd 518c15.indd 518 4/1/08 6:38:54 PM4/1/08 6:38:54 PM

Chapter 15: Programming Custom Graphics

519

 Using System Colors
 Now you know that you can choose colors from a list of possibilities as well as define your own. The
final thing you need to learn about colors is the idea of system colors.

 When using Windows, the user has the ability to define all of the colors that are used for things like
buttons, menus, captions, and so on. If you ’ re building the UI for your own controls, it ’ s reasonable to
assume that from time to time you ’ ll need to know what these colors are so that your controls have the
same look and feel as the existing controls in the system.

 System colors are exposed through the System.Drawing.SystemColors class. If you want to find a list
of all the system colors, look in the MSDN documentation under System.Drawing.SystemColors
class. Alternatively, use IntelliSense when in the Code Editor or the Object Browser.

 In this Try It Out, you ’ ll add a button to the control palette that is the same as the menu bar.

 Try It Out Adding System Colors
 1. Open the Code Editor for ColorPalette.Designer.vb . Find the constructor and add the

following highlighted code:

 Public Sub New()

 ‘ This call is required by the Windows Form Designer.
 InitializeComponent()

 ‘ Add any initialization after the InitializeComponent() call.
 ‘Add the colors
 AddColor(Color.Black)
 AddColor(Color.White)
 AddColor(Color.Red)
 AddColor(Color.Blue)
 AddColor(Color.Green)
 AddColor(Color.Gray)
 AddColor(Color.DarkRed)
 AddColor(Color.DarkBlue)
 AddColor(Color.DarkGreen)
 AddColor(Color.DarkGray)
 AddColor(Color.FromArgb(208, 112, 222))

 AddColor(Drawing.SystemColors.MenuBar)

 End Sub

 2. Run the project. You should see a new color that matches the menu bar color.

c15.indd 519c15.indd 519 4/1/08 6:38:54 PM4/1/08 6:38:54 PM

Chapter 15: Programming Custom Graphics

520

 Using Different Tools
 Now that you have successfully cracked the nut of drawing filled circles on the page, turn your attention
to building the other tools that you can use to put your applications together. In the next Try It Out, you
add a menu that lets you select the tool you want.

 If you need a refresher on how to use the Visual Basic 2008 Menu Designer, refer to Chapter 9 .

 Try It Out Adding a Tools Menu
 1. Open the Forms Designer for Form1 and change the Anchor property for Canvas to Bottom,

Right, Left.

 2. Click the title bar of the form and then resize the form so that there is enough room for a
MenuStrip control at the top.

 3. Drag a MenuStrip control onto the top of the form; then right - click MenuStrip1 and choose
Insert Standard Items from the context menu to have the standard menus inserted.

 4. Resize the form if necessary so that the Canvas control is just under the menu. Then click the
Canvas control and change the Anchor property to Top, Bottom, Right, Left.

 5. Click the Tools menu on the MenuStrip and then click in the white Type Here box that appears
at the bottom of the Tools menu and enter Ci & rcle . Using the Properties window set the
 Checked property to True and the CheckOnClick property to True .

 6. In the new Type Here box at the bottom, enter & Hollow Circle , and in the Properties window,
set the CheckOnClick property to True . You can see the results of these steps in Figure 15 - 7 .

Figure 15-7

c15.indd 520c15.indd 520 4/1/08 6:38:55 PM4/1/08 6:38:55 PM

Chapter 15: Programming Custom Graphics

521

 Implementing Hollow Circle
 Up until now, you have used a solid circle as the graphics pen to perform the drawing on your form. In
this Try It Out, you ’ ll be implementing the functionality to use the hollow circle graphics pen. You ’ ll also
be adding the necessary code that will allow you to select which pen you want to use from the
Tools menu.

 Try It Out Implementing Hollow Circle

 1. The first thing you need to do is change the GraphicTools enumeration defined in the
 PaintCanvas class to include the hollow circle tool. Open the Code Editor for PaintCanvas
and add the following highlighted code to the enumeration:

Public Class PaintCanvas
 ‘Public enumerations
 Public Enum GraphicTools As Integer
 CirclePen = 0

 HollowCirclePen = 1

 End Enum

 2. Switch to the Code Editor for Form1. In the Class Name combo box, select
 CircleToolStripMenuItem , and then select the Click event in the Method Name combo
box. Add the following highlighted code to the Click event handler:

 Private Sub CircleToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CircleToolStripMenuItem.Click

 ‘Set the tool
 Canvas.GraphicTool = PaintCanvas.GraphicTools.CirclePen

 ‘Uncheck the Hollow Circle menu item
 HollowCircleToolStripMenuItem.Checked = False

 End Sub

 3. Select HollowCircleToolStripMenuItem in the Class Name combo box and the Click
event in the Method Name combo box. Add the following highlighted code:

 Private Sub HollowCircleToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles HollowCircleToolStripMenuItem.Click

 ‘Set the tool
 Canvas.GraphicTool = PaintCanvas.GraphicTools.HollowCirclePen

 ‘Uncheck the Circle menu item
 CircleToolStripMenuItem.Checked = False

 End Sub

c15.indd 521c15.indd 521 4/1/08 6:38:55 PM4/1/08 6:38:55 PM

Chapter 15: Programming Custom Graphics

522

 4. It only makes sense that, since you ’ ve implemented a menu, you should add code to the Exit
menu item. Select exitToolStripMenuItem in the Class Name combo box and the Click
event in the Method Name combo. Then add the following highlighted code to the
Click event handler:

 Private Sub exitToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles exitToolStripMenuItem.Click

 ‘Close the application
 Me.Close()

 End Sub

 5. Open the Code Editor for PaintCanvas again and modify the Select Case GraphicTool
statement in the DoMousePaint method as follows:

 ‘What tool are you using?
 Select Case GraphicTool

 ‘CirclePen
 Case GraphicTools.CirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 objColor, True)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 ‘HollowCirclePen
 Case GraphicTools.HollowCirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 objColor, False)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 End Select

c15.indd 522c15.indd 522 4/1/08 6:38:55 PM4/1/08 6:38:55 PM

Chapter 15: Programming Custom Graphics

523

 6. Next, you need to change the GraphicsCircle class itself so that it knows when to draw a
filled circle and when to draw a hollow circle. Open the Code Editor for GraphicsCircle
and add the following highlighted code to the Draw method:

 Public Overrides Sub Draw(ByVal graphics As System.Drawing.Graphics)

 If IsFilled = True Then

 ‘Create a new pen
 Dim objSolidBrush As New SolidBrush(Me.Color)

 ‘Draw the circle
 graphics.FillEllipse(objSolidBrush, Me.Rectangle)

 Else

 ‘Create a pen
 Dim pen As New Pen(Me.Color)

 ‘Use DrawEllipse instead
 Dim objRectangle As Rectangle = Me.Rectangle
 objRectangle.Inflate(-1, -1)
 graphics.DrawEllipse(pen, objRectangle)

 End If

 End Sub

 7. Finally, run the program. You should be able to select a new graphic tool from the menu and
draw both filled and hollow circles, as shown in Figure 15 - 8 .

Figure 15-8

 How It Works
 When the menu options are selected, Click events get fired. You can respond to these messages and
set the GraphicsTool property on the PaintCanvas control to a new mode. When you change the
mode, you also need to change the check mark on the menu. The currently selected menu item will be
automatically checked, but you need to uncheck the menu item that isn ’ t selected. You do this by
setting the Checked property of the opposite menu item to False .

c15.indd 523c15.indd 523 4/1/08 6:38:55 PM4/1/08 6:38:55 PM

Chapter 15: Programming Custom Graphics

524

 Private Sub HollowCircleToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles HollowCircleToolStripMenuItem.Click

 ‘Set the tool
 Canvas.GraphicTool = PaintCanvas.GraphicTools.HollowCirclePen

 ‘Uncheck the Circle menu item
 CircleToolStripMenuItem.Checked = False
 End Sub

 Irrespective of the mode used, PaintCanvas.DoMousePaint still gets called whenever the mouse
draws on the control. However, you do need to accommodate the new tool by changing the Select
Case GraphicTool statement to look for HollowCirclePen as well as CirclePen . Depending on
which is selected, you pass True (filled) or False (not filled) through to SetPoint :

 ‘What tool are you using?
 Select Case GraphicTool

 ‘CirclePen
 Case GraphicTools.CirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 objColor, True)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 ‘HollowCirclePen
 Case GraphicTools.HollowCirclePen

 ‘Create a new graphics circle
 Dim objGraphicsCircle As New GraphicsCircle()

 ‘Set the point for drawing
 objGraphicsCircle.SetPoint(e.X, e.Y, GraphicSize, _
 objColor, False)

 ‘Store this for addition
 objGraphicsItem = objGraphicsCircle

 End Select

 In GraphicsCircle itself, choosing whether to use the FillEllipse method to draw a filled circle or
use the DrawEllipse method for a hollow one is a simple determination. The only wrinkle you have
to contend with is DrawEllipse ; the width and height of the bounding rectangle have to be one pixel
smaller than those used for FillEllipse . This is due to an idiosyncrasy in the way the Windows
graphics subsystem works. You ’ ll often find when working with graphics features that you have to
experiment a little!

c15.indd 524c15.indd 524 4/1/08 6:38:56 PM4/1/08 6:38:56 PM

Chapter 15: Programming Custom Graphics

525

 Public Overrides Sub Draw(ByVal graphics As System.Drawing.Graphics)
 If IsFilled = True Then

 ‘Create a new pen
 Dim objSolidBrush As New SolidBrush(Me.Color)

 ‘Draw the circle
 graphics.FillEllipse(objSolidBrush, Me.Rectangle)

 Else

 ‘Create a pen
 Dim pen As New Pen(Me.Color)

 ‘Use DrawEllipse instead
 Dim objRectangle As Rectangle = Me.Rectangle
 objRectangle.Inflate(-1, -1)
 graphics.DrawEllipse(pen, objRectangle)

 End If
 End Sub

 Now that you ’ ve learned the basics of building user controls that support their own user interface,
take a look at the image - handling capabilities in Visual Basic 2008.

 Working with Images
 The .NET Framework has very good support for loading and saving common image formats. In
particular, you ’ re able to load images of these types:

 .bmp : The standard Windows bitmap format

 .gif : The standard lossless common Internet file format for graphic files and small images

 .jpeg or .jpg : The standard lossy common Internet file format for photo - quality images

 .png : The competitor to .gif that doesn ’ t have the tricky licensing implications

 .tiff : The standard file format for storing and manipulated scanned documents

 .wmf / .emf : The standard file formats for saving Windows Metafiles

 .ico : The standard file format for program icons

 .exif : The preferred file format for storage used internally with digital cameras

 Prior to .NET, developers wanting to work with the most common Internet file formats (namely, .gif
and .jpeg) had to buy third - party libraries. Now, support is built directly into the .NET Framework, so
from day one you can start building applications that can handle these formats. What ’ s more surprising
is that the .NET Framework also supports saving these files. This allows you to load a .gif file and save

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd 525c15.indd 525 4/1/08 6:38:56 PM4/1/08 6:38:56 PM

Chapter 15: Programming Custom Graphics

526

it as, say, a .bmp or .png file. There are two ways in which you can use images with Visual Basic 2008.
First, you can use the PictureBox control that you can find in the Visual Studio 2008 Toolbox. This is a
control that you place on a form, set a reference to an image, either at design time or runtime and it deals
with painting itself. This is a quick way of getting a fixed image on a form. The second way in which you
can use images is inside your owner - draw controls. In the following exercise, you ’ ll see how you can
tweak WroxPaint so that, rather than drawing on a dull, white background, you ’ re actually drawing on
an image you load.

 Drawing Images
 The property on the control takes a System.Drawing.Image object. In addition to using the Image class
with PictureBox and a few other controls in the .NET Framework, you can also use it with your own
owner - draw controls.

 In the next Try It Out, you start by providing a way for your owner - drawn controls to display an image
loaded from one of the supported image formats.

 Try It Out Setting the BackgroundImage

 1. Open the Designer for Form1. Using the Toolbox drag an OpenFileDialog control onto the
form. Set the Name property of the control to dlgFileOpenBackground .

 2. Switch to the Code Editor for Form1. You are going to wire up the Open menu item under the
File menu to show the Open File dialog box. Select openToolStripMenuItem in the Class
Name combo box and then select the Click event in the Method Name combo box. Add the
following highlighted code to the Click event handler:

 Private Sub openToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles openToolStripMenuItem.Click

 ‘Set the open file dialog properties
 With dlgFileOpenBackground
 .Filter = “Image files (*.gif,*.jpg,*.jpeg,*.bmp,*.wmf,*.png)” & _
 “|*.gif;*.jpg;*.jpeg;*.bmp;*.wmf;*.png|All files (*.*)|*.*”
 .FilterIndex = 1
 .Title = “Open Picture Files”
 End With

 ‘Show the dialog
 If dlgFileOpenBackground.ShowDialog() = DialogResult.OK Then

 ‘Create a new image that references the file
 Dim backgroundImage As Image = _
 Image.FromFile(dlgFileOpenBackground.FileName)

 ‘Set the background of the canvas
 Canvas.BackgroundImage = backgroundImage

 End If

 End Sub

c15.indd 526c15.indd 526 4/1/08 6:38:56 PM4/1/08 6:38:56 PM

Chapter 15: Programming Custom Graphics

527

 3. Run the project. Select File Open from the menu and find a .bmp , .jpg , .jpeg , or .gif file
somewhere on your computer. (If you try to open a file from the network, you may get a
security exception.) The image will be displayed as shown in Figure 15 - 9 .

Figure 15-9

 How It Works
 If you said, “ But I didn ’ t do anything! ” you ’ re quite right — you didn ’ t have to write any code to
support the background image. By default, the Control class from which UserControl is ultimately
derived already supports a BackgroundImage property, and you ’ ve set this to the image you loaded.
Therefore, the base class is dealing with drawing the image.

 The loading is actually done with the shared FromFile method on the Image class. This method is the
easiest way of loading a file from a disk:

 ‘Show the dialog
 If dlgFileOpenBackground.ShowDialog() = DialogResult.OK Then

 ‘Create a new image that references the file
 Dim backgroundImage As Image = _
 Image.FromFile(dlgFileOpenBackground.FileName)

 ‘Set the background of the canvas
 Canvas.BackgroundImage = backgroundImage

 End If

 Finally, when you ’ re actually drawing on the image, you may find the paint process sluggish. This is
because the control is spending a lot of time drawing the image onto the control, and this slows
everything down. Try using a smaller image, or consider this Try It Out an illustration of how to
manipulate images rather than a neat paint package!

c15.indd 527c15.indd 527 4/1/08 6:38:57 PM4/1/08 6:38:57 PM

Chapter 15: Programming Custom Graphics

528

 Scaling Images
 If you resize the form, you ’ ll notice that the image is actually tiled. More importantly, if you make the
control too small to accommodate the whole image, the sides of the image are clipped. What you want is
for the image to be scaled so that it fits the control exactly. Therefore, in the next Try It Out, you take over
control of drawing the background image from the base Control class and provide a new
implementation of the BackgroundImage property.

 Try It Out Drawing the Image Yourself

 1. Open the Code Editor for PaintCanvas .

 2. Rather than adding your code to draw the image to the Paint method, you ’ re going to work
with a different event called OnPaintBackground . This method is called before the Paint
method. Add the following code:

 Protected Overrides Sub OnPaintBackground(_
 ByVal e As System.Windows.Forms.PaintEventArgs)

 ‘Paint the invalid region with the background brush
 Dim backgroundBrush As New SolidBrush(BackColor)
 e.Graphics.FillRectangle(backgroundBrush, e.ClipRectangle)

 ‘Paint the image
 If Not BackgroundImage Is Nothing Then

 ‘Find our client rectangle
 Dim clientRectangle As New Rectangle(0, 0, Width, Height)

 ‘Draw the image
 e.Graphics.DrawImage(BackgroundImage, clientRectangle)

 End If
 End Sub

 3. Now select (PaintCanvas Events) in the Class Name combo box and the Resize event in the
Method Name combo box. Add the following highlighted code to the Resize event handler:

 Private Sub PaintCanvas_Resize(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Resize

 ‘Invalidate the control
 Me.Invalidate()

 End Sub

c15.indd 528c15.indd 528 4/1/08 6:38:57 PM4/1/08 6:38:57 PM

Chapter 15: Programming Custom Graphics

529

 How It Works
 All you ’ re trying to do is take over the action of drawing the background image. As mentioned before,
painting is a two - phase process: First, the background is erased (the PaintBackground event), and
second, the control is given the opportunity to paint its user interface (the Paint event).

 With the BackgroundImage property set, when the base class needs to draw the background, it will
automatically draw the image. You should stop it from doing this; otherwise you ’ ll effectively be
drawing the image twice — in other words, it ’ ll draw the image and then you ’ ll draw your own image
on top of it.

 However, you do need to mimic the functionality that erases the background; otherwise things will
not work properly. To do this, you create a new SolidBrush that uses the current background color
(BackColor) and paint it on the area that ’ s marked as invalid (ClipRectangle):

 Protected Overrides Sub OnPaintBackground(_
 ByVal e As System.Windows.Forms.PaintEventArgs)

 ‘Paint the invalid region with the background brush
 Dim backgroundBrush As New SolidBrush(BackColor)
 e.Graphics.FillRectangle(backgroundBrush, e.ClipRectangle)

After you have painted the background, you then need to draw the image. You can do this easily by
using the DrawImage method of the Graphics object. But to stretch the image you need to provide a
rectangle that describes the bounds of the image. When you have that, you give DrawImage both the
image and the rectangle, and the image is drawn.

Figure 15-10

 4. Now run the project again. This time, when you open the image it will appear stretched or
shrunken to fit the whole screen and will adjust itself as you resize the form as shown in
Figure 15 - 10 .

c15.indd 529c15.indd 529 4/1/08 6:38:57 PM4/1/08 6:38:57 PM

Chapter 15: Programming Custom Graphics

530

 ‘Paint the image
 If Not BackgroundImage Is Nothing Then

 ‘Find our client rectangle
 Dim clientRectangle As New Rectangle(0, 0, Width, Height)

 ‘Draw the image
 e.Graphics.DrawImage(BackgroundImage, clientRectangle)

 End If
 End Sub

 Preserving the Aspect Ratio
 The problem you have now is that the image is stretched out of shape. Ideally, you want to make the
image bigger or smaller while preserving the aspect ratio, which is the ratio between the width and
the height, of the image. The aspect ratio describes the ratio between the width and height of the image.

 The .NET Framework does not have any support for preserving the aspect ratio when it stretches an
image. However, with a little work, you can do this yourself.

 Try It Out Preserving the Aspect Ratio

 1. Open the Code Editor for PaintCanvas again. Add the following highlighted code to
 OnPaintBackground .

Protected Overrides Sub OnPaintBackground(_
 ByVal e As System.Windows.Forms.PaintEventArgs)

 ‘Paint the invalid region with the background brush
 Dim backgroundBrush As New SolidBrush(BackColor)
 e.Graphics.FillRectangle(backgroundBrush, e.ClipRectangle)

 ‘Paint the image
 If Not BackgroundImage Is Nothing Then

 ‘Find our client rectangle
 Dim clientRectangle As New Rectangle(0, 0, Width, Height)

 ‘How big is the image?
 Dim intImageWidth As Integer = BackgroundImage.Width
 Dim intImageHeight As Integer = BackgroundImage.Height

 ‘What’s the aspect ratio?
 Dim ratio As Double = _
 CType(intImageHeight, Double) / CType(intImageWidth, Double)

c15.indd 530c15.indd 530 4/1/08 6:38:58 PM4/1/08 6:38:58 PM

Chapter 15: Programming Custom Graphics

531

 ‘Scale the image
 If intImageWidth > clientRectangle.Width Then
 intImageWidth = clientRectangle.Width
 intImageHeight = _
 CType(CType(intImageWidth, Double) * ratio, Integer)
 End If

 If intImageHeight > clientRectangle.Height Then
 intImageHeight = clientRectangle.Height
 intImageWidth = _
 CType(CType(intImageHeight, Double) / ratio, Integer)
 End If

 ‘You need to center the image
 Dim pntImageLocation As New Point(_
 (clientRectangle.Width / 2) - (intImageWidth / 2), _
 (clientRectangle.Height / 2) - (intImageHeight / 2))
 Dim sizImageSize As New Size(intImageWidth, intImageHeight)
 Dim recImageRectangle As New Rectangle(pntImageLocation, sizImageSize)

 ‘Draw the image
 e.Graphics.DrawImage(BackgroundImage, recImageRectangle)

 End If

End Sub

 2. Run the project. Now if you load an image, it will scale and preserve the aspect ratio.

 How It Works
 Preserving the aspect ratio is a bit of rudimentary math coupled with throwing a few rectangles
together. First, you need to know how big the area that you have to fit the image into actually is. You
call this clientRectangle .

 Protected Overrides Sub OnPaintBackground(_
 ByVal e As System.Windows.Forms.PaintEventArgs)

 ‘Paint the invalid region with the background brush
 Dim backgroundBrush As New SolidBrush(BackColor)
 e.Graphics.FillRectangle(backgroundBrush, e.ClipRectangle)

 ‘Paint the image
 If Not BackgroundImage Is Nothing Then

 ‘Find our client rectangle
 Dim clientRectangle As New Rectangle(0, 0, Width, Height)

 Next, you need to look at the image itself to see how big it is. You then need to know the aspect ratio.
If, for example, you had an aspect ratio of 2:1 (width:height), and you had an image that was 200
pixels wide, you would know that the height had to be 100 pixels. Alternatively, if it were 25 pixels
tall, it would be 50 pixels wide.

c15.indd 531c15.indd 531 4/1/08 6:38:58 PM4/1/08 6:38:58 PM

Chapter 15: Programming Custom Graphics

532

 ‘How big is the image?
 Dim intImageWidth As Integer = BackgroundImage.Width
 Dim intImageHeight As Integer = BackgroundImage.Height

 ‘What’s the aspect ratio?
 Dim ratio As Double = _
 CType(intImageHeight, Double) / CType(intImageWidth, Double)

 When you calculate the aspect ratio, you want a floating - point number, so you have to convert the
 Integer width and height values to Double .

 Next, you look at the shape of the client area compared to the shape of the image. If the native width
of the image (in other words the size before its scaled) is wider than the width of the window, you fix
the width of the image as being equal to the width of the client area. After you ’ ve done that, you
use the aspect ratio to work out how tall the image should be. (Again, you ’ ve used conversions to
 Double s to make sure that the calculations work properly.)

 ‘Scale the image
 If intImageWidth > clientRectangle.Width Then
 intImageWidth = clientRectangle.Width
 intImageHeight = _
 CType(CType(intImageWidth, Double) * ratio, Integer)
 End If

 Alternatively, if the height of the client area is taller than the height of the image, you need to do the
opposite — in other words, fix the height of the image and then work out the width:

 If intImageHeight > clientRectangle.Height Then
 intImageHeight = clientRectangle.Height
 intImageWidth = _
 CType(CType(intImageHeight, Double) / ratio, Integer)
 End If

 At this point you have an adjusted width and height of the image. When you have that, to start
drawing, you need to work out the upper - left corner. To do this, you divide the width of the client area
by two to get the exact middle and subtract half of the width of the image from it. This gives you the x
coordinate at which drawing should start. Then, you do the same for the height:

 ‘You need to center the image
 Dim pntImageLocation As New Point(_
 (clientRectangle.Width / 2) - (intImageWidth / 2), _
 (clientRectangle.Height / 2) - (intImageHeight / 2))

 When you have the location, you build a rectangle using the adjusted width and height:

 Dim sizImageSize As New Size(intImageWidth, intImageHeight)
 Dim recImageRectangle As New Rectangle(pntImageLocation, sizImageSize)

c15.indd 532c15.indd 532 4/1/08 6:38:58 PM4/1/08 6:38:58 PM

Chapter 15: Programming Custom Graphics

533

Finally, you use DrawImage to actually draw the image on the screen:

 ‘Draw the image
 e.Graphics.DrawImage(BackgroundImage, recImageRectangle)

 End If
 End Sub

 More Graphics Methods
 In this chapter, you have used a few of the graphics features available with the .NET Framework. There
are some commonly used methods on the Graphics object that we haven ’ t touched.

 Whenever you have a Graphics object, either when you ’ re building owner - draw controls or forms, try
using these methods:

 DrawLine draws a single line between two points.

 DrawCurve and DrawClosedCurve draw a curve between a set of points.

 DrawArc draws a portion of a circle.

 DrawBezier draws a cubic Bezier curve defined by four points.

 DrawPie draws a slice of a circle (like a pie chart).

 DrawPolygon draws regular and irregular polygons from an array of points.

 DrawIcon draws Windows icons.

 All of these methods use the Brush , Pen , Point , and Rectangle objects that you ’ ve seen used
throughout this chapter. Each of these methods has an associated Fill method that fills in the shape
after it ’ s drawn it.

 Summary
 In this chapter, you looked at how you could build your own user interface on your controls and forms.
Previously, you have been able to build your user interface only by plugging other people ’ s controls
together. Here you focused on building controls derived from System.Windows.Forms.UserControl ,
because you ’ re interested in building component - based software.

 After a discussion of the difference between vector and raster graphics, you proceeded to build a simple
application that allowed the user to draw dots on the screen using the mouse. You then looked at
building a separate control that provided the user with a set of colors that they could choose from when
drawing. You saw how to use the Color dialog box to add new colors and how to create new colors using
the Windows RGB (red, green, blue) color scheme.

❑

❑

❑

❑

❑

❑

❑

c15.indd 533c15.indd 533 4/1/08 6:38:58 PM4/1/08 6:38:58 PM

Chapter 15: Programming Custom Graphics

534

 Finally, you took a look at the Image class and saw how this could load a variety of file formats,
including Windows bitmap, .jpeg , and .gif . You also saw how to scale images and preserve their
aspect ratio.

 To summarize, you should know how to:

 Use the mouse events to capture the current x, y coordinates of the mouse on the screen.

 Invalidate only the rectangle that you are working in to prevent screen flicker.

 Add and use named system colors as well as custom defined colors using their RGB values.

 Use the different graphics tools such as circle and hollow circle.

 Load, resize, and preserve the aspect ratio of images.

❑

❑

❑

❑

❑

c15.indd 534c15.indd 534 4/1/08 6:38:59 PM4/1/08 6:38:59 PM

16
 Accessing Databases

 Most applications manipulate data in some way. Visual Basic 2008 applications often manipulate
data that come from relational databases. To do this, your application needs to interface with
relational database software such as Microsoft Access, Microsoft SQL Server, Oracle, or Sybase.

 Visual Studio 2008 provides the data access tools and wizards to connect to these databases and
retrieve and update their data. In this chapter, you will look at some of these tools and wizards
and use them to retrieve data from a database.

 In Chapter 17 , you will concentrate more on writing code directly, which gives you more flexibility
and control than relying on Visual Studio 2008 to create it for you. With practice, writing code will
also take less time than working through a wizard.

 In this chapter, you will:

 Learn what a database really is

 Examine the SQL SELECT statement

 Examine data access components

 Examine data binding in Windows Forms

 Use the data access wizards in Visual Studio 2008

 Note that in order to work through the exercises in this chapter, you will need Microsoft Access
2000 or later.

 What Is a Database?
 A database consists of one or more large, complex files that store data in a structured format.
The database engine, in your case Microsoft Access, manages the file or files and the data within
those files.

❑

❑

❑

❑

❑

c16.indd 535c16.indd 535 4/1/08 6:39:25 PM4/1/08 6:39:25 PM

536

Chapter 16: Accessing Databases

 Microsoft Access Objects
 A Microsoft Access database file, which has the extension mdb , contains tables, queries, forms, reports,
pages, macros, and modules, which are referred to as database objects. That ’ s a lot of information in one
large file, but Microsoft Access manages this data quite nicely. Forms, reports, pages, macros, and
modules are generally concerned with letting users work with and display data. You will be writing
Visual Basic 2008 applications to do this, so the only database objects you ’ re really concerned about at
the moment are tables and queries.

 Tables
 A table contains a collection of data, which is represented by one or more columns and one or more rows
of data. Columns are typically referred to as fields in Microsoft Access, and the rows are referred to as
records. Each field in a table represents an attribute of the data stored in that table. For example, a field
named First Name would represent the first name of an employee or customer. This field is an attribute
of an employee or customer. A record in a table contains a collection of fields that form a complete set of
attributes of one instance of the data stored in that table. For example, suppose a table contains two
fields: First Name and Last Name. These two fields in a single record describe the name of that one
person. This is illustrated in Figure 16 - 1 .

Figure 16-1

 Queries
 A query in a database is a group of Structured Query Language (SQL) statements that allow you to
retrieve and update data in your tables. Queries can be used to select or update all of the data in one or
more tables or to select or update specific data in one or more tables.

 Query objects in Microsoft Access are a hybrid of two types of objects in SQL Server: views and stored
procedures. Using database query objects can make your Visual Basic 2008 code simpler, because you
have fewer complex SQL queries included in your code. They can also make your programs faster,
because database engines can compile queries when you create them, whereas the SQL code in a Visual
Basic 2008 program needs to be reinterpreted every time it ’ s used.

c16.indd 536c16.indd 536 4/1/08 6:39:25 PM4/1/08 6:39:25 PM

537

Chapter 16: Accessing Databases

 To really understand the implications of queries, you need to learn some SQL. Fortunately, compared to
other programming languages, basic SQL is really simple.

 The SQL SELECT Statement
 The American National Standards Institute (ANSI) defines the standards for ANSI SQL. Most database
engines implement ANSI SQL to some extent and often add some features specific to the given
database engine.

 The benefit of ANSI SQL is that, once you learn the basic syntax for SQL, you have a solid grounding
from which you can code the SQL language in almost any database. All you need to learn is a new
interface for the database that you are working in. Many database vendors extended SQL to use
advanced features or optimizations for their particular database. It is best to stick with ANSI standard
SQL in your coding whenever possible, in case you want to change databases at some point.

 The SQL SELECT statement selects data from one or more fields in one or more records and from one or
more tables in your database. Note that the SELECT statement only selects data — it does not modify the
data in any way.

 The simplest allowable SELECT statement is like this:

SELECT * FROM Employees;

 This means “ retrieve every field for every record in the Employees table .” The * indicates “ every field. ”
Employees indicates the table name. Officially, SQL statements in Microsoft Access should end in a
semicolon. It usually doesn ’ t matter if you forget the semicolons, as Access will add them automatically.

 If you wanted to retrieve only first and last names, you can give a list of field names instead of a * :

SELECT [First Name], [Last Name] FROM Employees;

 You need to enclose these field names in square brackets because these field names contain spaces. The
square brackets indicate to the SQL interpreter that, even though there is a space in the name, it should
treat First Name as one object name and Last Name as another object name. Otherwise, the interpreter
would be unable to follow the syntax.

 SQL is a lot like plain English — even a nonprogrammer could probably understand what it means.
Now say you wanted to retrieve only the employees whose last names begin with D. To do this, you add
a WHERE clause to your SELECT statement:

SELECT [First Name], [Last Name] FROM Employees WHERE [Last Name] LIKE ‘D*’;

 A WHERE clause limits the selection of data to only those records that match the criteria in the WHERE
clause. The preceding SELECT statement would cause the database to look at the Last Name column and
only select those records where the employee ’ s last name begins with the letter D.

c16.indd 537c16.indd 537 4/1/08 6:39:26 PM4/1/08 6:39:26 PM

538

Chapter 16: Accessing Databases

 Last, if you want to retrieve these items in a particular order, you can, for example, order the results by
first name. You just need to add an ORDER BY clause to the end:

SELECT [First Name], [Last Name] FROM Employees
 WHERE [Last Name] LIKE ‘D*’ ORDER BY [First Name];

 This means that if you have employees called Angela Dunn, Zebedee Dean, and David Dunstan, you
will get the following result:

Angela Dunn
David Dunstan
Zebedee Dean

 You ’ re specifying a specific command here, but the syntax is pretty simple — and very similar to how
you would describe what you want to an English speaker. Usually, when ordering by a name, you want
to order in an ascending order so that A comes first and Z comes last. If you were ordering by a number,
though, you might want to have the bigger number at the top — for example, so that a product with the
highest price appears first. Doing this is really simple — just add DESC (short for descending) to the
 ORDER BY clause, which causes the results to be ordered in descending order:

SELECT [First Name], [Last Name] FROM Employees
 WHERE [Last Name] LIKE ‘D*’ ORDER BY [First Name] DESC;

 The D* means “ begins with a D followed by anything. ” If you had said *D* it would mean “ anything
followed by D followed by anything, ” basically, “ contains D. ” The preceding command would return the
following:

Zebedee Dean
David Dunstan
Angela Dunn

 If you want to make it clear that you want the results in an ascending order, you can add ASC to the
 ORDER BY clause instead of DESC . But you don ’ t really need to, since this is the default sort order.

 You can summarize this syntax in the following way:

SELECT select-list
 FROM table-name
 [WHERE search-condition]
 [ORDER BY order-by-expression [ASC | DESC]]

 This means that you must provide a list of fields to include or use a * to select them all. You must
provide a table - name. You can choose to provide a search - condition. You can choose to provide an
order - by - expression, and if you do, you can make it either ascending or descending.

 SQL gets considerably more complicated when you start working with several tables in the same query.
But, for various reasons, you don ’ t need to do this all that much when working with Visual Basic 2008.

c16.indd 538c16.indd 538 4/1/08 6:39:26 PM4/1/08 6:39:26 PM

539

Chapter 16: Accessing Databases

 Anyway, the best way to get SQL into your head is to practice. Before moving on, please try to answer
these questions in your head:

 How would you write a query to retrieve the Name , Description , and Price fields from a table
called Product ?

 What would you add to the query to retrieve only items with DVD in their description?

 How would you order the results so that the most expensive item comes first?

 Queries in Access
 SQL is really a basic programming language, and if you are a programmer who needs to access
databases, you will need to use it. However, Microsoft Access provides wizards and visual tools that
enable novice programmers to write queries without knowing SQL. Even for SQL programmers, these
can sometimes prove useful. These tools, demonstrated in this section, end up producing SQL statements
that you can view and modify if you wish, so they can be a good way to learn more about SQL.

 Creating a Customer Query
 In this Try It Out, you use Access to create a simple query that will select customer information from the
Customer table in the Northwind.mdb database. You ’ ll need to ensure that the sample databases were
installed when you installed Microsoft Access or Microsoft Office. You ’ ll create this query and then view
the SQL SELECT statement that gets generated by Access.

❑

❑

❑

1. For Access 2000: Open Microsoft Access and click the Open icon on the toolbar. In the Open
dialog box, navigate to C:\Program Files\Microsoft Office\Office11\Samples\ and
open Northwind.mdb. Then click the OK button.

 For Access 2003: Open Microsoft Access and click the Help menu. Next, choose Sample
Databases and then choose Northwind Sample Database. If the samples are not installed, you
will be prompted to install them. They are stored in the same location as the Access 2000
database based on the Office installation directory.

The path to Microsoft Office will vary depending on the version you have installed and the installation
path chosen at setup.

2. When the database opens, you will see two sections in the navigation bar on the left: Objects
and Groups. The Objects section lists all of your database object types, which were discussed
in the section on databases. You can also use Groups to gather related objects of any type, in
any way you want (see Figure 16-2).

Try It Out Creating a Customer Query

c16.indd 539c16.indd 539 4/1/08 6:39:26 PM4/1/08 6:39:26 PM

540

Chapter 16: Accessing Databases

3. Since you want to take a look at how an SQL SELECT statement is built by Access, click the
Queries icon under the Objects tab.

4. You are going to build a new query, so double-click Create query in Design view in the results
window (see Figure 16-3).

Figure 16-2

Figure 16-3

5. The Show Table dialog box appears and allows you to select one or more tables to be in your
query. You only want to select one table: Customers. Click the Customers table and then click
the Add button to have this table added to the Query Designer. Then click the Close button to
close the Show Table dialog box.

6. The Customers table is displayed with all available fields plus an asterisk. You can select the
fields that you want to be added to your query, or you can select the asterisk, which will select
all fields from the table. For this exercise just select a few fields for your query. Double-click

c16.indd 540c16.indd 540 4/1/08 6:39:27 PM4/1/08 6:39:27 PM

541

Chapter 16: Accessing Databases

CompanyName in the Customers table to add it to the first column in the grid below the
table. The Field and Table cells are automatically filled in. You also want to sort the data by
this field, so click in the Sort cell and choose Ascending to have the results of your query
sorted by this field. Your screen should now look like Figure 16-4. Notice that the primary key
for the table is in bold: CustomerID.

7. You now need to add the ContactName field to your grid. Double-click this field in the
Customers table and it will be automatically added to the next available column in the grid.
Then add ContactTitle in the same way. Your completed query should now look like the one
in Figure 16-5.

Figure 16-4

Figure 16-5

c16.indd 541c16.indd 541 4/1/08 6:39:27 PM4/1/08 6:39:27 PM

542

Chapter 16: Accessing Databases

8. Click the Save icon on the toolbar, enter the name CustomerQuery in the Save As dialog box,
and then click OK.

9. On the toolbar click the run icon, indicated by an exclamation point (!), and you will see
results similar to the ones shown in Figure 16-6. Notice that the results are sorted on the
CompanyName field in ascending order.

Figure 16-6

How It Works
From the choices you made, Access generates an SQL statement. To look at it, click the View menu and
select the SQL View menu item. This will display the SQL statements as shown in Figure 16-7.

Notice that you have the basic SQL SELECT statement followed by the field names. Access has
prefixed each field name with the table name. Remember that brackets are required only when the
field names contain spaces. The table name prefix is actually required only when selecting data from
multiple tables where both tables have a field with the same name. However, to reduce the chance of
errors, Access has prefixed all fields with the table name.

Figure 16-7

c16.indd 542c16.indd 542 4/1/08 6:39:28 PM4/1/08 6:39:28 PM

543

Chapter 16: Accessing Databases

The FROM clause in your SELECT statement specifies the table that data is being selected from (in this
case, the Customers table).

The ORDER BY clause specifies which fields should be used to sort the data, and in this case the
CompanyName field has been specified.

How does this SQL statement actually get built? When you first started creating this query you added a
table name. Before any fields were added to the grid, Access generated the following SQL statement:

SELECT
FROM Customers;

Of course, this on its own is not a valid SQL statement. When you added the first field and set the sort
order for that field, the following SQL statement was generated — which is valid:

SELECT Customer.CompanyName
FROM Customers
ORDER BY Customers.CompanyName;

As you continued to add fields, the rest of the field names were added to the SQL statement until the
complete SQL statement shown in Figure 16-7 was generated.

 The next section discusses the basic data access components that are needed in Windows Forms to
display data. Since you have been using Microsoft Access in your examples here, the focus is on the data
access components provided in Visual Studio 2008 that assist you in accessing the data in an Access
database.

 Data Access Components
 There are three main data access components in Visual Basic 2008 that you need for retrieving and
viewing data from the database: BindingSource, TableAdapter, and DataSet. The BindingSource
and DataSet components are located in the Toolbox under the Data tab, as shown in Figure 16 - 8 . The
TableAdapter can be automatically generated depending on the path you take when adding data access
components, as you ’ ll soon discover. Take a brief look at each one of these components in turn.

c16.indd 543c16.indd 543 4/1/08 6:39:28 PM4/1/08 6:39:28 PM

544

Chapter 16: Accessing Databases

Figure 16-8

 These components are known as data components and are simply classes, like everything else in the
.NET Framework. In this chapter, you will simply see how to use some of them in a Windows
application. Data components will be discussed as a whole in the next chapter.

 DataSet
 The DataSet component is a cache of data that is stored in memory. It ’ s a lot like a mini database engine,
but its data exists in memory. You can use it to store data in tables, and using the DataView component
(covered in Chapter 17), you can query the data in various ways.

 The DataSet is very powerful. In addition to storing data in tables, it stores a rich amount of metadata, or
 “ data about the data. ” This includes things like table and column names, data types, and the information
needed to manage and undo changes to the data. All of this data is represented in memory in Extensible
Markup Language (XML). A DataSet can be saved to an XML file and then loaded back into memory
very easily. It can also be passed in XML format over networks, including the Internet.

 Since the DataSet component stores all of the data in memory, you can scroll through the data both
forward and backward, and can also make updates to the data in memory. The DataSet component is
very powerful, and you will be exploring this component in more detail in the next chapter. In this
chapter, you will simply be using it to store data and bind it to a control on your form.

 DataGridView
 The DataGridView component is a container that allows you to bind data from your data source and
have it displayed in a spreadsheet - like format, displaying the columns of data horizontally and the rows
of data vertically.

c16.indd 544c16.indd 544 4/1/08 6:39:28 PM4/1/08 6:39:28 PM

545

Chapter 16: Accessing Databases

 The DataGridView component also provides many properties that allow you to customize the
appearance of the component itself, as well as properties that allow you to customize the column
headers and the display of data.

 More important, though, are the quick links at the bottom of the Properties window for the
DataGridView component, which allow you to customize the appearance of the DataGridView itself
through several predefined format styles. You ’ ll see this later in this chapter.

 BindingSource
 The BindingSource component acts like a bridge between your data source (DataSet) and your data - bound
controls (that is, controls that are bound to data components). Any interaction with the data from your
controls goes through the BindingSource component, which in turn communicates with your data source.

 For example, your DataGridView control will be initially filled with data. When you request that a
column be sorted, the DataGridView control will communicate that intention to the BindingSource,
which in turn communicates that intention to the data source.

 The BindingSource component is the component that you will bind to the DataSource property of your
controls, as you ’ ll see later in this chapter.

 BindingNavigator
 The BindingNavigator component provides a standard UI component that allows you to navigate
through the records that are in your data source. It looks very similar to the record navigator shown at
the bottom of Figure 16 - 6 .

 The BindingNavigator component is bound to your BindingSource component much as the
DataGridView component is. When you click the Next button in the BindingNavigator component, it in
turn sends a request to the BindingSource component for the next record, and the BindingSource
component in turn sends the request to the data source.

 TableAdapter
 There ’ s one last component to talk about: the TableAdapter. This component does not reside in the
ToolBox but can be automatically generated for you depending on how you add your data access
components to your project.

 The TableAdapter contains the query that is used to select data from your database as well as connection
information for connecting to your database. It also contains methods that will fill the DataSet in your
project with data from the database. You can also choose to have the TableAdapter generate INSERT ,
 UPDATE , and DELETE statements based on the query that is used to select data.

 The TableAdapter is covered in more detail in Chapter 17 .

c16.indd 545c16.indd 545 4/1/08 6:39:28 PM4/1/08 6:39:28 PM

546

Chapter 16: Accessing Databases

 Data Binding
 Data binding means taking data referenced by your BindingSource and binding it to a control. In other
words, the control will receive its data from your data access components, and the data will be
automatically displayed in the control for the user to see and manipulate. In Visual Basic 2008, most
controls support some level of data binding. Some are specifically designed for it, such as the
DataGridView and TextBox. In your next Try It Out, you will be binding data from a BindingSource
component to a DataGridView control, so this is where you want to focus your attention. Later in this
chapter you ’ ll bind data to a TextBox control.

 In this Try It Out, you will be using the data access wizards in Visual Studio 2008 to create the data
components necessary to bind data to a DataGridView control. You will be using the Northwind.mdb
sample database again as your data source.

 1. Create a new Windows Forms Application project called Northwind Customers
DataGridView.

 2. Click the Data tab in the toolbox and then drag a DataGridView control from the toolbox and
drop it on your form. The DataGridView control will display the Tasks dialog box as shown in
Figure 16-9.

Try It Out Binding Data to a DataGridView Control

Figure 16-9

 3. Click the drop-down arrow in the Choose Data Source combo box and then click the Add
Project Data Source link at the bottom of the list that is displayed. This displays the Data
Source Configuration Wizard.

 4. The Choose a Data Source Type screen allows you to choose the data source for your data. As
you can see from this screen, shown in Figure 16-10, you have several options for a data
source. You can click the Database icon for connecting to various databases such as SQL
Server, Oracle, and Access; the Web Service icon for connecting to a web service; or the Object
icon for connecting to your business logic components.

 Click the Database icon and click the Next button.

c16.indd 546c16.indd 546 4/1/08 6:39:29 PM4/1/08 6:39:29 PM

547

Chapter 16: Accessing Databases

Figure 16-10

 5. In the Choose Your Data Connection screen, click the New Connection button.

 6. In the Choose Data Source dialog box, select Microsoft Access Database File in the Data
Source list and then click the Continue button.

 7. In the Add Connection dialog box, click the Browse button and navigate to the samples folder
for Microsoft office. By default, this will be in the folder C:\Program Files\Microsoft
Office\Office11\Samples\ for a default installation of Microsoft Office 2003 (11 is the
version and will change based on your version of Office).

 Select the Northwind.mdb database in the Select Microsoft Access Database File dialog box
and click the Open button to have the path and file name added to the text field on the Add
Connection dialog box. You can click the Test Connection button to verify your choices. Click
the OK button when you are done to close the Add Connection dialog box and then click the
Next button on the Choose Your Data Connection screen.

 You will be prompted with a dialog box that informs you that the data file is not part of your
project and asks if you want to add it. Click the Yes button in this dialog box.

 8. Click the Next button on the Save the Connection String to the Application Configuration File
screen.

 9. The Choose Your Database Objects screen allows you to select the data that your application
needs. Here you have the option to select data directly from the tables in your database, data
generated from the execution of various views and stored procedures, or data generated from
the execution of functions.

 You’ll be using the query that you created in the last Try It Out exercise, so expand the Views
node in the Database objects list and then select the check box for CustomerQuery as shown

c16.indd 547c16.indd 547 4/1/08 6:39:29 PM4/1/08 6:39:29 PM

548

Chapter 16: Accessing Databases

in Figure 16-11. If you expand CustomerQuery, you’ll see the columns that are returned from
this query. Click the Finish button when you are done.

 At this point, the wizard will generate a DataSet object named NorthwindDataSet, a
BindingSource object named CustomerQueryBindingSource, and a TableAdapter object
named CustomerQueryTableAdapter.

Figure 16-11

10. Since you will not be adding, editing, or deleting records from this table, uncheck the check
box next to these options in the Tasks dialog box. You will, however, want to implement
sorting in your DataGridView component, so check the check box next to Enable Column
Reordering. When you are done, click the title bar of the form to hide the Actions dialog.

11. Click the DataGridView control and, in the Properties window, set the Dock property to Fill.

12. At this point you can run your project to see the results. Click the Start button on the toolbar,
and your form will be displayed with the DataGridView control populated with data.

 You can click the column headers to have the data in the DataGridView sorted in ascending
order. Clicking the same column header again will sort the data in descending order. Each sort
order will be indicated with an arrow pointing up for ascending and down for descending.

At this point you have not written a single line of code to achieve these results, which just goes to
prove how powerful the data wizards in Visual Basic 2008 are.

How It Works
The preceding approach is the easiest and most straightforward approach. You start by adding a
DataGridView control to your form, which prompts you with the Tasks dialog box for the DataGridView.

c16.indd 548c16.indd 548 4/1/08 6:39:29 PM4/1/08 6:39:29 PM

549

Chapter 16: Accessing Databases

This dialog box allowes you to create a new Data Source via the Data Source Configuration Wizard,
which walks you through a series of steps. First, you identify the type of data source that you wanted to
use. Then you specify the type of database object that you want to use to retrieve your data; in this step
you merely chose to use a specific table in your database and select specific columns from that table.

When you click the Finish button, several components are automatically generated and added to your
project. These include the TableAdapter, DataSet, and BindingSource. The BindingSource is the
component that is bound to the DataSource property of the DataGridView control.

Remember that the BindingSource’s job is to communicate the data needs of the control to the data
source, which in this case is the DataSet containing all of the data. The DataSet is populated with data by
the TableAdapter when your form is loaded.

The most important point of this exercise is to show the ease with which you are able to create a data-
bound application and the simple fact that you do not have to write a single line of code to achieve the
end results.

 In this next Try It Out exercise, you ’ ll be using several TextBox controls on your form and will bind each
text box to a certain field in your BindingSource. You ’ ll then be using a BindingNavigator control to
navigate through the records in your DataSet.

 1. Create a new Windows Forms Application project called Northwind Customers
BindingNavigator.

 2. Add three Label controls and three TextBox controls to your form. Arrange the controls so that
your form looks similar to Figure 16-12, and set the Text properties of the Label controls.

Try It Out Binding Data to TextBox Controls

Figure 16-12

 3. Click the first text box on your form and then expand the (DataBindings) property in the
Properties window by clicking the plus sign next to it. Then click the Text property under the
DataBindings property. Now click the drop-down arrow for the Text property.

c16.indd 549c16.indd 549 4/1/08 6:39:30 PM4/1/08 6:39:30 PM

550

Chapter 16: Accessing Databases

 At this point you’ll see the Data Source window shown in Figure 16-13. Click the Add Project
Data Source link to invoke the Data Source Configuration Wizard, which you saw in the
previous Try It Out exercise.

Figure 16-13

 4. Select the Database icon in the Choose a Data Source Type screen and click the Next button.

 5. In the Choose Your Data Connection screen, click the New Connection button.

 6. In the Add Connection dialog box, click the Browse button and navigate to the samples folder
for Microsoft office. By default, this will be in the folder C:\Program Files\Microsoft
Office\Office11\Samples\ for a default installation of Microsoft Office 2003 (11 is the
version and will change based on your version of Office).

 Select the Northwind.mdb database in the Select Microsoft Access Database File dialog box
and click the Open button to have the path and file name added to the text field on the Add
Connection dialog box. Click the OK button when you are done to close the Add Connection
dialog box and then click the Next button on the Choose Your Data Connection screen.

 You will be prompted with a dialog box that informs you that the data file is not part of your
project and asks if you want to add it. Click the Yes button in this dialog box.

 7. Click the Next button on the Save the Connection String to the Application Configuration File
screen.

 8. In the Choose Your Database Objects screen, expand the Tables node in the Database objects
list and then expand the Customers table. Select the check box for CompanyName,
ContactName, and ContactTitle. Click Finish.

c16.indd 550c16.indd 550 4/1/08 6:39:30 PM4/1/08 6:39:30 PM

551

Chapter 16: Accessing Databases

 9. Click the drop-down arrow next to the Text property in the Properties Window. At this point,
you’ll see the Data Source window shown in Figure 16-14. Expand the Other Data Sources
node, the Project Data Sources node, the NorthwindDataSet node, and finally the Customers node.

 Now click the CompanyName field. The window will close, and the Text field under the
DataBindings property will be bound to the CompanyName field in your DataSet.

 If you look at the bottom of the IDE, you’ll notice that a NorthwindDataSet component,
CustomersBindingSource component, and CustomersTableAdapter component have been
automatically generated.

Figure 16-14

10. Click the second text box on your form, and then click the Text property under the
DataBindings property in the Properties window. Now click the drop-down arrow for the
Text property; then expand the CustomersBindingSource node in the Data Source window,
and then click the ContactName field.

11. Click the third text box on your form, and then click the Text property under the
DataBindings property in the Properties window. Click the drop-down arrow for the Text
property, expand the CustomersBindingSource node in the Data Source window, and then
click the ContactTitle field.

12. Return to the toolbox, drag a BindingNavigator control from the Data tab, and drop it on your
form. The BindingNavigator control will be automatically docked to the top of the form.

13. In the Properties window, locate the BindingSource property, and then click that field. Now
click the drop-down arrow for the BindingSource property and choose
CustomersBindingSource from the list.

14. Finally, click the Start button on the toolbar to run your project. Your form that is displayed
should look similar to the one shown in Figure 16-15. You’ll be able to navigate through the
records in your data source, navigating backward and forward as well as being able to go the
first and last record.

c16.indd 551c16.indd 551 4/1/08 6:39:30 PM4/1/08 6:39:30 PM

552

Chapter 16: Accessing Databases

Clicking the Delete button will delete records from your DataSet but will not delete records from the
database. Likewise, clicking the Add button will add an empty record to your DataSet but not to the
database. You would need to write some code to actually have the database updated with the changes
from your DataSet.

The beauty of using the DataNavigator control is that you’ve quickly built a form that will navigate
through the records of your database without you having to write a single line of code.

Figure 16-15

How It Works
First you add three Label and TextBox controls to your form. You then set the DataBindings properties of
the text boxes. When you set the Text DataBinding property of the first text box, you are prompted to add
a new data source, which again invokes the Data Source Configuration Wizard.

You use the Data Source Configuration Wizard in this exercise in the same manner as you did in the
previous exercise. When you complete the Data Source Configuration Wizard, it automatically generates
TableAdapter, DataSet, and BindingSource components. You are then able to choose which field in the
DataSet to bind to the DataBinding Text property.

When you add the BindingNavigator control to your form, setting it up is a matter of simply choosing
the BindingSource that is generated by the Data Source Configuration Wizard in the BindingSource
property in the Properties window.

Again, this exercise has demonstrated the simplicity with which you can create data-bound applications
without the need to write any code.

 Summary
 You started this chapter by exploring what a database actually is and then looked at the SQL SELECT
statement. You put this knowledge to use by creating a query in the Northwind.mdb database to see the
SQL statements that Access generated for you.

 You then took a look at the basics of binding data to controls on a form, specifically the DataGridView
control and TextBox controls. You have examined the necessary basic data access components required to

c16.indd 552c16.indd 552 4/1/08 6:39:31 PM4/1/08 6:39:31 PM

553

Chapter 16: Accessing Databases

retrieve data from an Access database and bind that data to your controls. You used the components
provided in the Data tab of the Toolbox for your data access, and used the wizards to generate the
necessary code to connect to the database and retrieve the data.

 After working through this chapter, you should know:

 What a database is and the basic objects that make up a database

 How to use the SQL SELECT statement to select data from a database

 How to use the Data Source Configuration Wizard to create the data access components needed
to perform data binding

 How to bind data to a DataGridView control

 How to bind data to TextBox controls and use the BindingNavigator control

 You have seen that the wizards provided in Visual Studio 2008 make it simple to bind data quickly to the
controls on a form. Sometimes, however, you need more control on how you interact with the data in a
database and how you bind the data to the controls on a form. Chapter 17 takes a different approach to
data binding by programmatically binding data to controls on a form. You will also be exploring the data
access components in more detail and will learn how to set their properties and to execute their methods
from your code.

 Exercises
 1. Create a new query in your Northwind database to select FirstName, LastName, and Title from

the Employees table. Order the results by the LastName column and save your query as
EmployeeQuery. Then create a Windows application with a DataGridView control that uses
the EmployeeQuery.

 2. Using the query created in Exercise 1, create a new Windows application that uses the
BindingNavigator control and bind the fields from your query to text boxes on your form.

❑

❑

❑

❑

❑

c16.indd 553c16.indd 553 4/1/08 6:39:31 PM4/1/08 6:39:31 PM

c16.indd 554c16.indd 554 4/1/08 6:39:31 PM4/1/08 6:39:31 PM

 17
Database Programming with

SQL Server and ADO.NET

 Chapter 16 introduced database programming. You obtained data from a single table in an Access
database and displayed it on a grid. You managed to give the user some cool features while
writing virtually no code.

 You used wizards that wrote most of the code for you — including setting up the connection,
configuring the data adapter, and generating a typed dataset. This works great for simple database
access using one or two tables, but writing the code yourself can give you a lot more control.

 This chapter dives much deeper into the topic of database access. The database access technologies
you used in the previous chapter, including components for retrieving data, storing data in
memory, and binding data to controls, are collectively called ADO.NET . You will explore how you
can use the built - in capabilities of ADO.NET to retrieve and update data from databases. You will
also learn to manipulate, filter, and edit data held in memory by the DataSet .

 The data you extract will be bound to controls on your form, so you will also need to explore
binding more thoroughly. You will see how you can use controls to view one record at a time (for
example, using text boxes) and how to navigate between records, using the CurrencyManager
object.

 In this chapter, you will:

 Learn about ADO.NET objects

 Bind data to controls

 Search for and sort in - memory data using ADO.NET DataView objects

 Select, insert, update, and delete data in a database using ADO.NET

 Learn how to use Language - Integrated Query (LINQ) to write VB code and select data
from different data sources and update a database

❑

❑

❑

❑

❑

c17.indd 555c17.indd 555 4/1/08 6:39:55 PM4/1/08 6:39:55 PM

556

Chapter 17: Database Programming with SQL Server and ADO.NET

 You will also learn how to access SQL Server databases using the SqlClient data provider. As
mentioned in the previous chapter, SqlClient is significantly faster than OleDb , but it works only with
SQL Server databases. To complete the exercises in this chapter, you need to have access to a version of
MSDE, SQL Server 2000, or SQL Server 2005, as well as full access to the Pubs database. If you do not
have a copy of the Pubs database, you can lookup where to find the Pubs database for your version on
your favorite search engine. Also, you may use the links in the list that follows to find a script to create
the database. When this chapter uses the term SQL Server , the term includes SQL Server 2000, as well as
MSDE and SQL Server 2005. The database can reside in SQL Server on your local machine or in SQL
Server on a network.

 Need help locating a copy of the SQL Server? You can download SQL Server 2005 Express for free.
The version used for this chapter is SQL Server Express with Advanced Services. You can get it from
 www.microsoft.com/ sql and choose editions from the menu. The direct url is http://msdn2
.microsoft.com/en-us/express/bb410792.aspx . This site also has links for downloading sample
2005 databases (not Pubs) and Books Online (SQL Help files).

 Need help locating a copy of the Pubs database? Go to the following resources:

 SQL Server 2000 scripts and instructions can be downloaded from www.microsoft.com/
downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034 &
displaylang=en . This script will work with 2005 versions. This is the easiest place to get
the database.

 If the links are hard to type, just go to www.microsoft.com/downloads and search for SQL
Server Sample Databases. The search results will contain the preceding link.

 The msi package you download and install will install to C:\SQL Server 2000 Sample
Databases (drive may change based on your configuration). You can then open the file
 instpubs.sql into SQL Management Studio and execute the code and the Pubs database will
be created and loaded with data.

 Here are some notes for installing SQL 2005 Express with Advanced Services:

 On the Feature Selection Screen, be sure to install all of the Client Components. This installs
Microsoft SQL Server Management Studio Express, which is a terrific tool for writing SQL and
managing your databases outside of Visual Studio.

 For Chapter 17 , you may install a named instance of WROX to avoid having to customize
the code.

 Chapter 17 uses mixed mode authentication to allow a user name and password to be passed
into SQL Server. The chapter uses the sa login with a password of wrox, which has system
administrator rights. This is not normally how you would login your application to SQL Server.
For production, create a login that has a few rights as possible to use or use windows
authentication where you can give rights to users or groups.

 ADO.NET
 ADO.NET is designed to provide a disconnected architecture . This means that applications connect to the
database to retrieve a load of data and store it in memory. They then disconnect from the database and
manipulate the in - memory copy of the data. If the database needs to be updated with changes made to

❑

❑

❑

❑

❑

❑

c17.indd 556c17.indd 556 4/1/08 6:39:56 PM4/1/08 6:39:56 PM

557

Chapter 17: Database Programming with SQL Server and ADO.NET

the in - memory copy, a new connection is made and the database is updated. The main in - memory data
store is the DataSet , which contains other in - memory data stores, such as DataTable objects. You can
filter and sort data in a DataSet using DataView objects, as you will see later in the chapter.

 Using a disconnected architecture provides many benefits, of which the most important to you is that it
allows your application to scale up . This means that your database will perform just as well supporting
hundreds of users as it does supporting ten users. This is possible because the application connects to the
database only long enough to retrieve or update data, thereby freeing available database connections for
other instances of your application or other applications using the same database.

 ADO.NET Data Namespaces
 The core ADO.NET classes exist in the System.Data namespace. This namespace, in turn, contains
some child namespaces. The most important of these are System.Data.SqlClient and System
.Data.OleDb . These provide classes for accessing SQL Server databases and OLE (Object Linking
and Embedding) DB - compliant databases, respectively. You ’ ve already used classes from the
 System.Data.OleDb namespace in the previous chapter, where you used OleDbConnection and
 OleDbDataAdapter . In this chapter, you use System.Data.SqlClient with its equivalent classes,
including SqlConnection and SqlDataAdapter .

 Another child namespace also exists in the System.Data namespace: System.Data.Odbc . The System.
Data.Odbc namespace provides access to older Open Database Connectivity (ODBC) data sources that
do not support the OleDb technology.

 The System.Data.SqlClient , System.Data.OleDb , and System.Data.Odbc namespaces are known
as data providers in ADO.NET. There are other data providers available; in this book, you concentrate on
only the first two.

 In this chapter, you access SQL Server databases using the SqlClient namespace. However, in ADO.
NET, the different data providers work in a very similar way. So the techniques you use here can be
easily transferred to the OleDb classes. Also, the techniques you learned in the previous chapter using
 OleDb apply to SqlClient classes. With ADO.NET, you use the data provider that best fits your data
source — you do not need to learn a whole new interface, because all data providers work in a very
similar way.

 As you start working with ADO.NET, you will soon learn how the pieces fit together, and this chapter
helps you in that reaching that goal.

 Since the space here is limited, you focus on the specific classes that are relevant to the example
programs in this chapter. The following list contains the ADO.NET classes that you will be using:

 SqlConnection

 SqlDataAdapter

 SqlCommand

 SqlParameter

 Remember that these are specifically SqlClient classes, but that the OleDb namespace has very close
equivalents. Whenever you want to use these classes, you must add a reference to the System.Data

❑

❑

❑

❑

c17.indd 557c17.indd 557 4/1/08 6:39:56 PM4/1/08 6:39:56 PM

558

Chapter 17: Database Programming with SQL Server and ADO.NET

namespace. You can use the Imports keyword, so you do not have to fully qualify members of the
 SqlClient namespace in your code, as shown in the following code fragment:

Imports System.Data.SqlClient

 If you want to use the core ADO.NET classes, such as DataSet and DataView without typing the full
name, you must import the System.Data namespace, as shown in the next code fragment:

Imports System.Data

 You should already be familiar with importing different namespaces in your project. However, to be
thorough, you also cover this when you go through the hands - on exercises.

 Next, we ’ ll take a look at the main classes that exist in the System.Data.SqlClient namespace.

 The SqlConnection Class
 The SqlConnection class is at the heart of the classes discussed in this section, because it provides a
connection to an SQL Server database. When you construct an SqlConnection object, you can
choose to specify a connection string as a parameter. The connection string contains all the information
required to open a connection to your database. If you don ’ t specify one in the constructor, you can
set it using the SqlConnection.ConnectionString property. In the previous chapter, Visual Studio
.NET built a connection string for you from the details you specified in the Data Link Properties
dialog box. However, it is often more useful or quicker to write a connection string manually — so
let ’ s take a look at how connection strings work.

 Working with the Connection String Parameters
 The way that the connection string is constructed depends on what data provider you are using. When
accessing SQL Server, you usually provide a Server and a Database parameter, as shown in the
following table.

 Parameter Description

 Server The name of the SQL Server that you want to access. This is usually the name of the
computer that is running SQL Server. You can use (local) or localhost if SQL
Server is on the same machine as the one running the application. If you are using
named instances of SQL Server, then this parameter would contain the computer
name followed by a backslash followed by the named instance of SQL Server.

 Database The name of the database that you want to connect to.

 You also need some form of authentication information, which you can provide in two ways: by using a
user name and password in the connection string or by connecting to SQL Server using the NT account
under which the application is running. If you want to connect to the server by specifying a user name
and password, you need to include additional parameters in your connection string, as shown in the
following table.

c17.indd 558c17.indd 558 4/1/08 6:39:56 PM4/1/08 6:39:56 PM

559

Chapter 17: Database Programming with SQL Server and ADO.NET

 Parameter Description

 User ID The user name for connecting to the database. An account with this user ID needs to
exist in SQL Server and have permission to access the specified database.

 Password The password for the specified user.

 However, SQL Server can be set up to use the Windows NT account of the user who is running the
program to open the connection. In this case, you don ’ t need to specify a user name and password. You
just need to specify that you are using integrated security . (The method is called integrated security
because SQL Server is integrating with Windows NT ’ s security system and provides the most secure
connection because the User ID and Password parameters need not be specified in the code.) You do
this using the Integrated Security parameter, which you set to True when you want the application
to connect to SQL Server using the current user ’ s NT account.

 Of course, for this to work, the user of the application must have permission to use the SQL Server
database. This is granted using the SQL Server Enterprise Manager.

 To see how these parameters function in a connection string to initialize a connection object, look at the
following code fragment. It uses the SqlConnection class to initialize a connection object that uses a
specific user ID and password in the connection string:

Dim objConnection As SqlConnection = New _
 SqlConnection(“Server=localhost\wrox;Database=pubs;” & _
 “User ID=sa;Password=wrox;”)

 This connection string connects to an SQL Server database. The Server parameter specifies that the
database resides on the local machine. The Database parameter specifies the database that you want to
access — in this case it is the pubs database. Finally, the User ID and Password parameters specify the
User ID and password of the user defined in the database. As you can see, each parameter has a value
assigned to it using =, and each parameter - value pair is separated by a semicolon.

 Opening and Closing the Connection
 After you initialize a connection object with a connection string, as shown previously, you can invoke the
methods of the SqlConnection object such as Open and Close , which actually open and close a
connection to the database specified in the connection string. An example of this is shown in the
following code fragment:

‘ Open the database connection...
objConnection.Open()
‘ ... Use the connection
‘ Close the database connection...
objConnection.Close()

 Although many more properties and methods are available in the SqlConnection class, the ones
mentioned so far are all you are really interested in to complete the hands - on exercises, and they should
be enough to get you started.

c17.indd 559c17.indd 559 4/1/08 6:39:57 PM4/1/08 6:39:57 PM

560

Chapter 17: Database Programming with SQL Server and ADO.NET

 SqlCommand
 The SqlCommand class represents an SQL command to execute against a data store. The command is
usually a select, insert, update, or delete query, and can be an SQL string or a call to a stored procedure.
The query being executed may contain parameters or it may not.

 In the example in Chapter 16 , the Data Adapter Configuration Wizard generated a command object for
you (although in that case it was an OleDbCommand). In that case, a data adapter used the command to
fill a dataset. You look at how to write code to do this later in the chapter. For the moment, look at
command objects alone. You learn how they relate to data adapters in the next section.

 The constructor for the SqlCommand class has several variations, but the simplest method is to initialize
an SqlCommand object with no parameters. Then, after the object has been initialized, you can set the
properties you need to perform the task at hand. The following code fragment shows how to initialize an
 SqlCommand object:

Dim objCommand As SqlCommand = New SqlCommand()

 When using data adapters and datasets, there isn ’ t much call for using command objects on their own.
They will mainly be used for executing a particular select, delete, insert, or update, so that is what you
do in this chapter. You can also use command objects with a data reader. A data reader is an alternative to
a DataSet that uses fewer system resources but provides far less flexibility. In this book, you will
concentrate on using the DataSet , because it is the more common and useful of the two.

 The Connection Property
 Certain properties must be set on the SqlCommand object before you can execute the query. The first of
these properties is the Connection property. This property is set to an SqlConnection object, as shown
in the next code fragment.

objCommand.Connection = objConnection

 For the command to execute successfully, the connection must be open at the time of execution.

 The CommandText Property
 The next property that must be set is the CommandText property. This property specifies the SQL string
or stored procedure to be executed. Most databases require that you place all string values in single
quote marks, as shown here:

Dim objConnection As SqlConnection = New _
 SqlConnection(“server=(local);database=pubs;user id=sa;password=”)
Dim objCommand As SqlCommand = New SqlCommand()
objCommand.Connection = objConnection

objCommand.CommandText = “INSERT INTO authors “ & _
 “(au_id, au_lname, au_fname, contract) “ & _
 “VALUES(‘123-45-6789’, ‘Barnes’, ‘David’, 1)”

 The INSERT statement is a very simple one that means, “ Insert a new row into the authors table. In the
 au_id column put ‘ 123 - 45 - 6789 ’ , in the au_lname column put ‘Barnes’ , in the au_fname column
put ‘David’ , and in the contract column put ‘ 1 ’ . ”

c17.indd 560c17.indd 560 4/1/08 6:39:57 PM4/1/08 6:39:57 PM

561

Chapter 17: Database Programming with SQL Server and ADO.NET

 This is the basic way that INSERT statements work in SQL. You have INSERT INTO followed by a table
name. You then have a series of column names, in parentheses. You then have the VALUES keyword
followed by a set of values, to be inserted into the columns that you ’ ve just named and in the same order.

 This assumes that you know the values to insert when you are writing the program, which is unlikely in
most cases. Fortunately, you can create commands with parameters and then set the values of these
parameters separately. Let ’ s have a look at how to use parameters.

 The Parameters Collection
 Placeholders are variables prefixed with an at (@) sign in the SQL statement; they get filled in by
parameters. So if you wanted to update the authors table as discussed in the previous section, but didn ’ t
know the values at design time, you would do this:

Dim objConnection As SqlConnection = New _
 SqlConnection(“server=(local);database=pubs;user id=sa;password=”)

Dim objCommand As SqlCommand = New SqlCommand()
objCommand.Connection = objConnection
objCommand.CommandText = “INSERT INTO authors “ & _
 “(au_id, au_lname, au_fname, contract) “ & _

 “VALUES(@au_id,@au_lname,@au_fname,@au_contract)”

 Here, instead of providing values, you provide placeholders. Placeholders, as mentioned, always start
with an @ symbol. They do not need to be named after the database column that they represent, but it is
often easier if they are, and it helps to self - document your code.

 Next, you need to create parameters that will be used to insert the values into the placeholders when the
SQL statement is executed. You need to create and add parameters to the Parameters collection of the
 SqlCommand object. The term parameters here refers to the parameters required to provide data to your
SQL statement or stored procedure, not to the parameters that are required to be passed to a Visual Basic
2008 method.

 You can access the Parameters collection of the SqlCommand object by specifying the Parameters
property. After you access the Parameters collection, you can use its properties and methods to create
one or more parameters in the collection. The easiest way to add a parameter to a command is
demonstrated in the following example:

Dim objConnection As SqlConnection = New _
 SqlConnection(“server=(local);database=pubs;user id=sa;password=”)
Dim objCommand As SqlCommand = New SqlCommand()
objCommand.Connection = objConnection
objCommand.CommandText = “INSERT INTO authors “ & _
 “(au_id, au_lname, au_fname, contract) “ & _
 “VALUES(@au_id,@au_lname,@au_fname,@au_contract)”

objCommand.Parameters.AddWithValue (“@au_id”, txtAuId.Text)
objCommand.Parameters.AddWithValue (“@au_lname”, txtLastName.Text)
objCommand.Parameters.AddWithValue (“@au_fname”, txtFirstName.Text)
objCommand.Parameters.AddWithValue (“@au_contract”, chkContract.Checked)

c17.indd 561c17.indd 561 4/1/08 6:39:57 PM4/1/08 6:39:57 PM

562

Chapter 17: Database Programming with SQL Server and ADO.NET

 The AddWithValue method here accepts the name of the parameter and the object that you want to add.
In this case, you are using the Text property of various Text box objects on a (fictitious) form for most
of the columns. For the Contract column you use the Checked property of a check box on the same
form. In previous versions of ADO.NET, you could use the add method to add a parameter with a value.
That overload is now obsolete.

 The ExecuteNonQuery Method
 Finally, you can execute the command. To do this, the connection needs to be opened. You can invoke the
 ExecuteNonQuery method of the SqlCommand object. This method executes the SQL statement and
causes the data to be inserted into the database. It then returns the number of rows that were affected by
the query, which can be a useful way to check that the command worked as expected. To complete your
code fragment, you need to open the connection, execute the query, and close the connection again:

Dim objConnection As SqlConnection = New _
 SqlConnection(“server=(local);database=pubs;user id=sa;password=”)
Dim objCommand As SqlCommand = New SqlCommand()
objCommand.Connection = objConnection
objCommand.CommandText = “INSERT INTO authors “ & _
 “(au_id, au_lname, au_fname, contract) “ & _
 “VALUES(@au_id,@au_lname,@au_fname,@au_contract)”
objCommand.Parameters.AddWithValue(“@au_id”, txtAuId.Text)
objCommand.Parameters.AddWithValue(“@au_lname”, txtLastName.Text)
objCommand.Parameters.AddWithValue(“@au_fname”, txtFirstName.Text)
objCommand.Parameters.AddWithValue(“@au_contract “, chkContract.Checked)

objConnection.Open()
objCommand.ExecuteNonQuery()
objConnection.Close()

 SqlDataAdapter
 The SqlDataAdapter class is similar to the OleDbDataAdapter that you configured with wizards in the
previous chapter. The main difference is that the OleDbDataAdapter can access any data source that
supports OLE DB, while the SqlDataAdapter supports only SQL Server databases. You can use them in
a similar way though; you can configure an SqlDataAdapter using wizards, just as you configured an
 OleDbDataAdapter in the previous chapter (provided you are accessing an SQL Server data source). In
this chapter, you look at how to configure and use an SqlDataAdapter in code, but these guidelines
also apply to the OleDbDataAdapter .

 Data adapters act as bridges between your data source and in - memory data objects such as the DataSet .
To access the data source, they use the command objects you ’ ve just looked at. These command objects
are associated with connections, so the data adapter relies on command and connection objects to access
and manipulate the data source.

 The SqlDataAdapter class ’ s SelectCommand property is used to hold an SqlCommand that retrieves
data from the data source. The data adapter then places the result of the query into a DataSet or
 DataTable . The SqlDataAdapter also has UpdateCommand , DeleteCommand , and InsertCommand
properties. These are also SqlCommand objects, used to write changes made to a DataSet or DataTable
back to the data source. This may all seem complicated, but in fact the tools are really easy to use. You
learned enough SQL in the previous chapter to write a SelectCommand , and there are tools called
 command builders that you can use to automatically create the other commands based on this.

c17.indd 562c17.indd 562 4/1/08 6:39:58 PM4/1/08 6:39:58 PM

563

Chapter 17: Database Programming with SQL Server and ADO.NET

 Take a look at the SelectCommand property, and then look at how you can create commands for
updating, deleting, and inserting records.

 The SelectCommand Property
 The SqlDataAdapter class ’ s SelectCommand property is used to fill a DataSet with data from an SQL
Server database, as shown in Figure 17 - 1 :

SqlDataAdapter DataSet

A collection of tables, relationships, and
constraints, consistent with the data read
from the data store.

SQL Server

Select Command

Figure 17-1

 When you want to read data from the data store, you must set the SelectCommand property of the
 SqlDataAdapter class first. This property is an SqlCommand object and is used to specify what data to
select and how to select that data. Therefore the SelectCommand property has properties of its own, and
you need to set them just as you would set properties on a normal command. You ’ ve already seen the
following properties of the SqlCommand object:

 Connection : Sets the SqlConnection object to be used to access the data store.

 CommandText : Sets the SQL statements or stored procedure name to be used to select the data.

 In the previous examples of SqlCommand objects, you used straight SQL statements. If you want to use
stored procedures, you need to be aware of an additional property, CommandType , which sets a value
that determines how the CommandText property is interpreted.

 In this chapter, you are going to concentrate on SQL statements, but stored procedures are often useful
too, particularly if they already exist in the database. If you want to use one, set the CommandText
property to the name of the stored procedure (remember to enclose it in quote marks because the
compiler treats this as a string), and set the CommandType property to CommandType.StoredProcedure .

❑

❑

c17.indd 563c17.indd 563 4/1/08 6:39:58 PM4/1/08 6:39:58 PM

564

Chapter 17: Database Programming with SQL Server and ADO.NET

Setting SelectCommand to SQL Text
 Take a look at how you set these properties in code. The code fragment that follows shows the typical
settings for these properties when executing SQL text:

‘ Declare SqlDataAdapter object...
Dim objDataAdapter As New SqlDataAdapter()

‘ Assign a new SqlCommand to the SelectCommand property
objDataAdapter.SelectCommand = New SqlCommand()

‘ Set the SelectCommand properties...
objDataAdapter.SelectCommand.Connection = objConnection
objDataAdapter.SelectCommand.CommandText = _
 “SELECT au_lname, au_fname FROM authors “ & _
 “ORDER BY au_lname, au_fname”

 The first thing that this code fragment does is declare the SqlDataAdapter object. This object has a
 SelectCommand property set to a new SqlCommand ; you just need to set that command ’ s properties. You
set the properties by first setting the Connection property to a valid connection object, one that will
already have been created before the code that you see here. Next, you set the CommandText property to
your SQL SELECT statement.

Setting SelectCommand to a Stored Procedure
 This next code fragment shows how you could set these properties when you want to execute a stored
procedure . A stored procedure is a group of SQL statements that are stored in the database under a unique
name and are executed as a unit. The stored procedure in this example (usp_select_author_titles)
uses the same SQL statement that you used in the previous code fragment:

‘ Declare SqlDataAdapter object...
Dim objDataAdapter As New SqlDataAdapter()

‘ Assign a new SqlCommand to the SelectCommand property
objDataAdapter.SelectCommand = New SqlCommand()

‘ Set the SelectCommand properties...
objDataAdapter.SelectCommand.Connection = objConnection
objDataAdapter.SelectCommand.CommandText = “usp_select_author_titles”
objDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure

 The CommandText property now specifies the name of the stored procedure that you want to execute
instead of the SQL string that was specified in the previous example. Also notice the CommandType
property. In the first example, you did not change this property, because its default value is
 CommandType.Text , which is what you need to execute SQL statements. In this example, it is set to a
value of CommandType.StoredProcedure , which indicates that the CommandText property contains the
name of a stored procedure to be executed.

 Using Command Builders to Create the Other Commands
 The SelectCommand is all you need to transfer data from the database into your DataSet . After you let
your users make changes to the DataSet , though, you will want to write the changes back to the
database. You can do this by setting up command objects with the SQL for inserting, deleting, and

c17.indd 564c17.indd 564 4/1/08 6:39:59 PM4/1/08 6:39:59 PM

565

Chapter 17: Database Programming with SQL Server and ADO.NET

updating. Alternatively, you can use stored procedures. Both of these solutions require knowledge of
SQL outside the scope of this book. Fortunately, there is an easier way; you can use command builders to
create these commands. It takes only one more line:

‘ Declare SqlDataAdapter object...
Dim objDataAdapter As New SqlDataAdapter()

‘ Assign a new SqlCommand to the SelectCommand property
objDataAdapter.SelectCommand = New SqlCommand()

‘ Set the SelectCommand properties...
objDataAdapter.SelectCommand.Connection = objConnection
objDataAdapter.SelectCommand.CommandText = “usp_select_author_titles”
objDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure

‘ automatically create update/delete/insert commands
Dim objCommandBuilder As SqlCommandBuilder = New SqlCommandBuilder
(objDataAdapter)

 Now you can use this SqlDataAdapter to write changes back to a database. You look more at this later
in the chapter. For know, look at the method that gets data from the database to the DataSet in the first
place: the Fill method.

 The Fill Method
 You use the Fill method to populate a DataSet object with the data that the SqlDataAdapter object
retrieves from the data store using its SelectCommand . However, before you do this you must first
initialize a DataSet object. To use the DataSet object in your project, you must add a reference to
 System.Xml .

‘ Declare SqlDataAdapter object...
Dim objDataAdapter As New SqlDataAdapter()

‘ Assign a new SqlCommand to the SelectCommand property
objDataAdapter.SelectCommand = New SqlCommand()

‘ Set the SelectCommand properties...
objDataAdapter.SelectCommand.Connection = objConnection
objDataAdapter.SelectCommand.CommandText = “usp_select_author_titles”
objDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure

Dim objDataSet as DataSet = New DataSet()

 Now that you have a DataSet and SqlDataAdapter , you can fill your DataSet with data. The Fill
method has several overloaded versions, but you will be discussing the one most commonly used. The
syntax for the Fill method is shown here:

SqlDataAdapter.Fill(DataSet , string)

 The DataSet argument specifies a valid DataSet object that will be populated with data. The string
argument gives the name you want the table to have in the DataSet . Remember that one DataSet can
contain many tables. You can use any name you like, but usually it ’ s best to use the name of the table
from which the data in the database has come. This helps you self - document your code and makes the
code easier to maintain.

c17.indd 565c17.indd 565 4/1/08 6:39:59 PM4/1/08 6:39:59 PM

566

Chapter 17: Database Programming with SQL Server and ADO.NET

 The following code fragment shows how you invoke the Fill method. The string “ authors ” is
specified as the string argument. This is the name you want to use when manipulating the in - memory
version of the table; it is also the name of the table in the data source.

‘ Declare SqlDataAdapter object...
Dim objDataAdapter As New SqlDataAdapter()

‘Create an instance of a new select command object
objDataAdapter.SelectCommand = New SqlCommand

‘ Set the SelectCommand properties...
objDataAdapter.SelectCommand.Connection = objConnection
objDataAdapter.SelectCommand.CommandText = “usp_select_author_titles”
objDataAdapter.SelectCommand.CommandType = CommandType.StoredProcedure
Dim objDataSet as DataSet = New DataSet()

‘ Fill the DataSet object with data...
objDataAdapter.Fill(objDataSet, “authors”)

 The Fill method uses the SelectCommand.Connection property to connect to the database. If the
connection is already open, the data adapter will use it to execute the SelectCommand and leave it open
after it ’ s finished. If the connection is closed, then the data adapter will open it, execute the
 SelectCommand , and then close it again.

 You now have data in memory and can start manipulating it independently of the data source. Notice
that the DataSet class does not have Sql at the start of its class name. This is because DataSet is not in
the System.Data.SqlClient namespace; it is in the parent System.Data namespace. The classes
in this namespace are primarily concerned with manipulating data in memory, rather than obtaining
data from any particular data source. Once you have the data loaded into a DataSet , it no longer
matters what data source it came from (unless you need to write it back). Let ’ s have a look at two of the
classes in this namespace: the DataSet and the DataView .

 The DataSet Class
 The DataSet class is used to store data retrieved from a data store and stores that data in memory on the
client. The DataSet object contains a collection of tables, relationships, and constraints that are consistent
with the data read from the data store. It acts as a lightweight database engine all by itself, enabling you
to store tables, edit data, and run queries against it using a DataView object.

 The data in a DataSet is disconnected from the data store, and you can operate on the data
independently from the data store. You can manipulate the data in a DataSet object by adding,
updating, and deleting the records. You can apply these changes back to the original data store
afterwards using a data adapter.

 The data in a DataSet object is maintained in Extensible Markup Language (XML, which is discussed in
detail in Chapter 18), meaning that you can save a DataSet as a file or easily pass it over a network. The
XML is shielded from you as a developer, and you should never need to edit the XML directly. All
editing of the XML is done through the properties and methods of the DataSet class. Many developers
like using XML and will sometimes choose to manipulate the XML representation of a DataSet directly,
but this is not essential.

c17.indd 566c17.indd 566 4/1/08 6:39:59 PM4/1/08 6:39:59 PM

567

Chapter 17: Database Programming with SQL Server and ADO.NET

 Like any XML document, a DataSet can have a schema (a file that describes the structure of the data in
one or more XML files). When you generated a typed DataSet in the previous chapter, an XML Schema
Definition (XSD) file was added to the Solution Explorer, as shown in Figure 17 - 2 .

Figure 17-2

 This file is an XML schema for the data that the CustomerDataSet would hold. From this, Visual Studio
.NET was able to create a class that inherited from the DataSet and that used this particular schema.
A DataSet schema contains information about the tables, relationships, and constraints stored in the
 DataSet . Again, this is shielded from you, and you do not need to know XML to work with a DataSet .

 Since the DataSet contains the actual data retrieved from a data store, you can bind the DataSet to a
control or controls to have them display (and allow editing of) the data in the DataSet . You did this a bit
in Chapter 16 , and you will see more later in this chapter.

 DataView
 The DataView class is typically used for sorting, filtering, searching, editing, and navigating the data
from a DataSet . A DataView is bindable , meaning that it can be bound to controls in the same way that
the DataSet can be bound to controls. Again, you learn more about data binding in code later in this
chapter.

 A DataSet can contain a number of DataTable objects; when you use the SqlDataAdapter class ’ s
 Fill method to add data to a DataSet , you are actually creating a DataTable object inside the
 DataSet . The DataView provides a custom view of a DataTable ; you can sort or filter the rows, for
example, as you can in an SQL query.

 You can create a DataView from the data contained in a DataTable that contains only the data that you
want to display. For example, if the data in a DataTable contains all authors sorted by last name and
first name, you can create a DataView that contains all authors sorted by first name and then last name.
Or, if you wanted, you could create a DataView that contained only last names or certain names.

 Although you can view the data in a DataView in ways different from the underlying DataTable , it is
still the same data. Changes made to a DataView affect the underlying DataTable automatically, and
changes made to the underlying DataTable automatically affect any DataView objects that are viewing
that DataTable .

c17.indd 567c17.indd 567 4/1/08 6:40:00 PM4/1/08 6:40:00 PM

568

Chapter 17: Database Programming with SQL Server and ADO.NET

 The constructor for the DataView class initializes a new instance of the DataView class and accepts the
 DataTable as an argument. The following code fragment declares a DataView object and initializes it
using the authors table from the DataSet named objDataSet . Notice that the code accesses the
 Tables collection of the DataSet object, by specifying the Tables property and the table name:

‘ Set the DataView object to the DataSet object...
Dim objDataView = New DataView(objDataSet.Tables(“authors”))

 The Sort Property
 Once a DataView has been initialized and is displaying data, you can alter the view of that data. For
example, suppose you want to sort the data in a different order than in the DataSet . To sort the data in a
 DataView , you set the Sort property and specify the column or columns that you want sorted. The
following code fragment sorts the data in a DataView by author ’ s first name and then last name:

objDataView.Sort = “au_fname, au_lname”

 Note that this is the same syntax as the ORDER BY clause in an SQL SELECT statement. As in the SQL
 ORDER BY clause, sorting operations on a DataView are always performed in an ascending order by
default. If you wanted to perform the sort in descending order, you would need to specify the DESC
keyword, as shown in the next code fragment:

objDataView.Sort = “au_fname, au_lname DESC”

 The RowFilter Property
 When you have an initialized DataView , you can filter the rows of data that it will contain. This is
similar to specifying a WHERE clause in an SQL SELECT statement; only rows that match the criteria will
remain in the view. The underlying data is not affected, though. The RowFilter property specifies the
criteria that should be applied on the DataView . The syntax is similar to the SQL WHERE clause. It
contains at least a column name followed by an operator and the value. If the value is a string, it must be
enclosed in single quote marks as shown in the following code fragment, which retrieves only the
authors whose last names are Green :

‘ Set the DataView object to the DataSet object...
objDataView = New DataView(objDataSet.Tables(“authors”))

objDataView.RowFilter = “au_lname = ‘Green’”

 If you want to retrieve all rows of authors except those with the last name of Green , you would specify
the not equal to operator as shown in this example:

‘ Set the DataView object to the DataSet object...
objDataView = New DataView(objDataSet.Tables(“authors”))

objDataView.RowFilter = “au_lname < > ‘Green’”

 You can also specify more complex filters, as you could in SQL. For example, you can combine several
criteria using an AND operator:

objDataView.RowFilter = “au_lname < > ‘Green’ AND au_fname LIKE ‘D*’”

 This returns authors whose last names are not Green and whose first names begin with D .

c17.indd 568c17.indd 568 4/1/08 6:40:00 PM4/1/08 6:40:00 PM

569

Chapter 17: Database Programming with SQL Server and ADO.NET

 The Find Method
 If you want to search for a specific row of data in a DataView , you invoke the Find method. The Find
method searches for data in the sort key column of the DataView . Therefore, before invoking the Find
method, you first need to sort the DataView on the column that contains the data that you want to find.
The column that the DataView is sorted on becomes the sort key column in a DataView object.

 For example, suppose you want to find the author who has a first name of Ann . You would need to
sort the DataView by first name to set this column as the sort key column in the DataView , and then
invoke the Find method, as shown in the following code fragment:

Dim intPosition as Integer
objDataView.Sort = “au_fname”
intPosition = objDataView.Find(“Ann”)

 If it finds a match, the Find method returns the position of the record within the DataView . Otherwise,
the DataView returns a null value, indicating that no match was found. If the Find method finds a
match, it stops looking and returns only the position of the first match. If you know there is more than
one match in your data store, you could filter the data in the DataView , which is a subject that is
covered shortly.

 The Find method is not case sensitive, meaning that to find the author who has a first name of Ann , you
could enter either the text Ann or the text ann .

 The Find method looks for an exact case - insensitive match, so this means that you must enter the whole
word or words of the text that you are looking for. For example, suppose you are looking for the author
who has the first name of Ann . You cannot enter An and expect to find a match; you must enter all the
characters or words that make up the author ’ s name. Notice that the following example specifies all
lowercase letters, which is perfectly fine:

Dim intPosition as Integer
objDataView.Sort = “au_fname”
intPosition = objDataView.Find(“ann”)

 You have seen that a DataView can be sorted on more than one column at a time. If you want to sort on
more than one column, you need to supply an array of values to the Find method instead of just a single
value. For example, you may want to find where Simon Watts appears in the DataView , if at all:

Dim intPosition As Integer
Dim arrValues(1) As Object
objDataView.Sort = “au_fname, au_lname”

‘ Find the author named “Simon Watts”.
arrValues(0)= “Simon”
arrValues(1) = “Watts”
intPosition = objDataView.Find(arrValues)

c17.indd 569c17.indd 569 4/1/08 6:40:00 PM4/1/08 6:40:00 PM

570

Chapter 17: Database Programming with SQL Server and ADO.NET

 The ADO.NET Classes in Action
 You ’ ve now looked at the basics of the ADO.NET classes and how they allow you to retrieve and insert
data into SQL Server. No doubt your head is spinning from information overload at this point, so the
best way to ensure that you understand how to use all of the objects, methods, and properties that you
have been looking at is to actually use them. In the next two Try It Outs, you ’ ll see how to exploit the
power of the DataSet object to expose data to your users. You may find that you ’ ll want to come back
and reread the previous section after you ’ ve completed the Try It Outs; this will help to clarify ADO.NET
in your mind.

 The first Try It Out implements the SqlConnection , SqlDataAdapter , and DataSet classes. You will
see firsthand how to use these classes in a simple example in which you need to retrieve read - only data
and display that data in a data grid. In fact, what you do here will be very similar to the example in the
previous chapter, but you will be doing it in code instead of using wizards.

 When writing your programs, you may often use a combination of wizards and coding to create
 powerful programs quickly and easily. The components created in the previous chapter by drag and drop
can be manipulated in code in exactly the same way as objects created in code. In the previous chapter,
you used wizards almost all the time. In this chapter you concentrate on code.

 Examining a DataSet Example
 Before you dive into the details of creating the program, take a look at the data and the relationships of
the data that you want to display. The data that you want comes from the Pubs database in SQL Server.
If you are using SQL Server 2000, SQL Server 2005 or MSDE, you should be seeing the exact same data.
Some versions SQL Server 2005 may not come with the Pubs database. The link to get the database is at
the beginning of the chapter.

 You want to display a list of authors, their book titles, and the price of their books. Figure 17 - 3 shows the
tables that this data resides in and also the relationship of the tables:

Figure 17-3

c17.indd 570c17.indd 570 4/1/08 6:40:01 PM4/1/08 6:40:01 PM

571

Chapter 17: Database Programming with SQL Server and ADO.NET

 You want to display the author ’ s first and last names, which reside in the authors table, and the
title and price of the book, which reside in the titles table. Because an author can have one or more
books and a book can have one or more authors, the titles table is joined to the authors table via a
 relationship table called titleauthor . This table contains the many - to - many relationship of authors to
books.

 Having looked at the relationship of the tables and knowing what data you want, take a look at the SQL
 SELECT statement that you need to create to get this data:

SELECT au_lname, au_fname, title, price
FROM authors
JOIN titleauthor ON authors.au_id = titleauthor.au_id
JOIN titles ON titleauthor.title_id = titles.title_id
ORDER BY au_lname, au_fname

 The first line of the SELECT statement shows the columns that you want to select. The second line
shows the main table that you are selecting data from, which is authors .

 The third line joins the titleauthor table to the authors table using the au_id column. Therefore,
when you select a row of data from the authors table, you also get every row in the titleauthor table
that matches the au_id in the selected row of the authors table. This join returns only authors who
have a record in the titleauthor table.

 The fourth line joins the titles table to the titleauthor table using the title_id column. Hence, for
every row of data that is selected from the titleauthor table, you select the corresponding row of data
(having the same title_id value) from the titles table. The last line of the SELECT statement sorts the
data by the author ’ s last name and first name using the ORDER BY clause. Now, create the project in the
next Try It Out .

 Try It Out DataSet Example

 1. Create a new Windows Forms application called DatasetExample .

 2. Set the following properties of the form:

 Set Size to 600, 230 .

 Set StartPosition to CenterScreen .

 Set Text to Bound DataSet .

 3. From the Toolbox, locate the DataGridView control under the Windows Forms tab and drag it
onto your form. Set the properties of the DataGridView as follows:

 Set Name to grdAuthorTitles.

 Set Anchor to Top, Bottom, Left, Right.

 Set Location to 0, 0 .

 Set Size to 592, 203 .

❑

❑

❑

❑

❑

❑

❑

c17.indd 571c17.indd 571 4/1/08 6:40:01 PM4/1/08 6:40:01 PM

572

Chapter 17: Database Programming with SQL Server and ADO.NET

 4. First, you add the Imports statements for the namespaces you will use. Open the code
window for your form and add these namespaces as highlighted at the very top of your code:

‘ Import Data and SqlClient namespaces...
Imports System.Data
Imports System.Data.SqlClient

Public Class Form1

End Class

 5. Next, you need to declare the objects necessary to retrieve the data from the database, so add
the following highlighted code. Ensure that you use a user ID and password that have been
defined in your installation of SQL Server:

Public Class Form1

 Dim objConnection As New SqlConnection _
 (“server=localhost\wrox;database=pubs;user id=sa;password=wrox”)

 Dim objDataAdapter As New SqlDataAdapter()
 Dim objDataSet As New DataSet()

End Class

 Notice your connection string in the constructor for this object. You need to change the server
p arameter to point to the machine where SQL Server is running if it is not running on your local
machine. You also need to change the user id and password parameters to use a valid login that has
been provided or that you set up yourself. If the user id that you use has no password assigned, then
specify the password argument but do not enter anything for the actual password. For example,
 password=; .

 6. To add a handler for the form ’ s Load event, select (Form1 Events) in first combo box the
 (General) and then select Load in the second combo box (Declarations) . Insert the
following highlighted code:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 ‘ Set the SelectCommand properties...
 objDataAdapter.SelectCommand = New SqlCommand()
 objDataAdapter.SelectCommand.Connection = objConnection
 objDataAdapter.SelectCommand.CommandText = _
 “SELECT au_lname, au_fname, title, price “ & _
 “FROM authors “ & _
 “JOIN titleauthor ON authors.au_id = titleauthor.au_id “ & _
 “JOIN titles ON titleauthor.title_id = titles.title_id “ & _
 “ORDER BY au_lname, au_fname”
 objDataAdapter.SelectCommand.CommandType = CommandType.Text

 ‘ Open the database connection...
 objConnection.Open()

 ‘ Fill the DataSet object with data...
 objDataAdapter.Fill(objDataSet, “authors”)

c17.indd 572c17.indd 572 4/1/08 6:40:01 PM4/1/08 6:40:01 PM

573

Chapter 17: Database Programming with SQL Server and ADO.NET

 ‘ Close the database connection...
 objConnection.Close()

 ‘ Set the DataGridView properties to bind it to our data...
 grdAuthorTitles.AutoGenerateColumns = True
 grdAuthorTitles.DataSource = objDataSet
 grdAuthorTitles.DataMember = “authors”

 ‘ Clean up
 objDataAdapter = Nothing
 objConnection = Nothing

End Sub

 7. Run the project to see what you get. You should see results similar to Figure 17 - 4 :

Figure 17-4

 8. Note that the DataGridView control has built - in sorting capabilities. If you click a column
header, the data in the grid will be sorted by that column in ascending order. If you click the
same column again, the data will be sorted in descending order.

 Note that error handling has been omitted from the exercise, to preserve space. You should always add
the appropriate error handling to your code. Review Chapter 10 for error - handling techniques.

 How It Works
 To begin with, you imported the following namespaces:

‘ Import Data and SqlClient namespaces...
Imports System.Data
Imports System.Data.SqlClient

 Remember that the System.Data namespace is required for the DataSet and DataView classes, and
that the System.Data.SqlClient namespace is required for the SqlConnection , SqlDataAdapter ,
 SqlCommand , and SqlParameter classes. You will be using only a subset of the classes just mentioned
in this example, but you do require both namespaces.

c17.indd 573c17.indd 573 4/1/08 6:40:02 PM4/1/08 6:40:02 PM

574

Chapter 17: Database Programming with SQL Server and ADO.NET

 Then you declared the objects that were necessary to retrieve the data from the database. These objects
were declared with class - level scope, so you placed those declarations just inside the class:

Public Class Form1
 Inherits System.Windows.Forms.Form

 Dim objConnection As New SqlConnection _
 (“server=localhost\wrox;database=pubs;user id=sa;password=wrox”)

 Dim objDataAdapter As New SqlDataAdapter()
 Dim objDataSet As DataSet = New DataSet()

 The first object that you declared was an SqlConnection object. Remember that this object establishes
a connection to your data store, which in this case is SQL Server.

 The next object that you declared was an SqlDataAdapter object. This object is used to read data
from the database and populate the DataSet object.

 The last object in your declarations was the DataSet object, which serves as the container for your
data. Remember that this object stores all data in memory and is not connected to the data store.

 In this particular example, there was no need to give these objects class - level scope. You use them in only
one method, and they could have been declared there. However, if your application enabled users to write
changes back to the database, you would want to use the same connection and data adapter objects for
reading and writing to the database. In that case, having class - level scope would be really useful.

 With your objects defined, you placed some code to populate the DataSet object in the initialization
section of the form. Your SqlDataAdapter object is responsible for retrieving the data from the
database. Therefore, you set the SelectCommand property of this object. This property is an
 SqlCommand object, so the SelectCommand has all the properties of an independent SqlCommand
object:

 ‘ Set the SelectCommand properties...
 objDataAdapter.SelectCommand = New SqlCommand()
 objDataAdapter.SelectCommand.Connection = objConnection
 objDataAdapter.SelectCommand.CommandText = _
 “SELECT au_lname, au_fname, title, price “ & _
 “FROM authors “ & _
 “JOIN titleauthor ON authors.au_id = titleauthor.au_id “ & _
 “JOIN titles ON titleauthor.title_id = titles.title_id “ & _
 “ORDER BY au_lname, au_fname”

 First, you initialize the SelectCommand by initializing an instance of the SqlCommand class and
assigning it to the SelectCommand property.

 Then you set the Connection property to your connection object. This property sets the connection to
be used to communicate with your data store.

 The CommandText property is then set to the SQL string that you wanted to execute. This property
contains the SQL string or stored procedure to be executed to retrieve your data. In this case you used
an SQL string, which was explained in detail in the SQLDataAdapter section earlier.

c17.indd 574c17.indd 574 4/1/08 6:40:02 PM4/1/08 6:40:02 PM

575

Chapter 17: Database Programming with SQL Server and ADO.NET

 After all of the properties are set, you open your connection, fill the dataset, and then close the
connection again. You open the connection by executing the Open method of your SqlConnection
object:

 ‘ Open the database connection...
 objConnection.Open()

 You then invoke the Fill method of the SqlDataAdapter object to retrieve the data and fill your
 DataSet object. In the parameters for the Fill method, you specify the DataSet object to use and the
table name. You set the table name to authors , even though you are actually retrieving data from
several tables in the data store:

 ‘ Fill the DataSet object with data...
 objDataAdapter.Fill(objDataSet, “authors”)

 After you fill your DataSet object with data, you need to close the database connection. You do that
by invoking the Close method of the SqlConnection object:

 ‘ Close the database connection...
 objConnection.Close()

 As you learned earlier, you do not have to open and close the connection explicitly. The Fill method
of the SqlDataAdapter executes the SelectCommand and leaves the connection in the same state as
when the method was invoked. In this case, the Fill method left the connection open. If you did not
explicitly write code to open and close the connection, the SqlDataAdapter.Fill method would
open and close the connection for you.

 Then you set some properties of the DataGridView to bind your data to it. The first of these
properties is the AutoGenerateColumns property. Here you let the control create all of the columns
you needed by setting the AutoGenerateColumns property to True . The next property is the
 DataSource property, which tells the DataGridView where to get its data:

 ‘ Set the DataGridView properties to bind it to our data...
 grdAuthorTitles.AutoGenerateColumns = True
 grdAuthorTitles.DataSource = objDataSet
 grdAuthorTitles.DataMember = “authors”

 The DataMember property selects the table in the data source, and here you set it to authors ,
which is the table used in your DataSet object.

 Then, to free memory, you clean up the objects that are no longer being used.

 ‘ Clean up
 objDataAdapter = Nothing
 objConnection = Nothing

 When you ran the example, the DataGridView control read the schema information from the
 DataSet object (which the DataSet object created when it was filled) and created the correct number
of columns for your data in the DataGridView control. It has also used the column names in the
schema as the column names for the grid, and each column had the same default width. The
 DataGridView also read the entire DataSet object and placed the contents into the grid.

c17.indd 575c17.indd 575 4/1/08 6:40:02 PM4/1/08 6:40:02 PM

576

Chapter 17: Database Programming with SQL Server and ADO.NET

 In the next Try It Out, you take a look at some of the DataGridView properties that you can use to make
this a more user - friendly display of data.

 Try It Out Changing the DataGridView Properties

 1. Here are some changes you can make to make your DataGridView more user - friendly:

 Add your own column header names.

 Adjust the width of the column that contains the book titles so that you can easily see the
full title.

 Change the color of every other row so that the data in each one stands out.

 Make the last column in the grid (which contains the price of the books) right - aligned.

 You can do all this by making the following highlighted modifications to your code in the
 Form1_Load method:

 ‘ Set the DataGridView properties to bind it to our data...
 grdAuthorTitles.DataSource = objDataSet
 grdAuthorTitles.DataMember = “authors”

 ‘ Declare and set the currency header alignment property...
 Dim objAlignRightCellStyle As New DataGridViewCellStyle
 objAlignRightCellStyle.Alignment = DataGridViewContentAlignment.MiddleRight

 ‘ Declare and set the alternating rows style...
 Dim objAlternatingCellStyle As New DataGridViewCellStyle()
 objAlternatingCellStyle.BackColor = Color.WhiteSmoke
 grdAuthorTitles.AlternatingRowsDefaultCellStyle = objAlternatingCellStyle

 ‘ Declare and set the style for currency cells ...
 Dim objCurrencyCellStyle As New DataGridViewCellStyle()
 objCurrencyCellStyle.Format = “c”
 objCurrencyCellStyle.Alignment = DataGridViewContentAlignment.MiddleRight

 ‘ Change column names and styles using the column index
 grdAuthorTitles.Columns(0).HeaderText = “Last Name”
 grdAuthorTitles.Columns(1).HeaderText = “First Name”
 grdAuthorTitles.Columns(2).HeaderText = “Book Title”
 grdAuthorTitles.Columns(2).Width = 225

 ‘ Change column names and styles using the column name
 grdAuthorTitles.Columns(“price”).HeaderCell.Value = “Retail Price”
 grdAuthorTitles.Columns(“price”).HeaderCell.Style = objAlignRightCellStyle
 grdAuthorTitles.Columns(“price”).DefaultCellStyle = objCurrencyCellStyle

❑

❑

❑

❑

c17.indd 576c17.indd 576 4/1/08 6:40:03 PM4/1/08 6:40:03 PM

577

Chapter 17: Database Programming with SQL Server and ADO.NET

 ‘ Clean up
 objDataAdapter = Nothing
 objConnection = Nothing

 objCurrencyCellStyle = Nothing
 objAlternatingCellStyle = Nothing
 objAlignRightCellStyle = Nothing

End Sub

 2. Run your project again. You should now see results similar to Figure 17 - 5 . You can compare
this figure to Figure 17 - 4 and see a world of difference. It ’ s amazing what setting a few
properties will do to create a more user - friendly display.

Figure 17-5

 How It Works
 The DataGridView uses inherited styles to format the output table the users see. Style inheritance
allows you to apply default styles that cascade to all cells, rows, columns, or headers under the parent
style. Then, you can change only individual items that do not match the default styles. The
architecture of styles is very powerful. You can set individual style properties or create your own
 DataGridViewCellStyle objects to set multiple style properties and reuse them.

 To start, you declare a DataGridViewCellStyle object. Then you change the alignment to middle
right. (This allows you to align the price column later.)

 ‘ Declare and set the currency header alignment property...
 Dim objAlignRightCellStyle As New DataGridViewCellStyle
 objAlignRightCellStyle.Alignment = DataGridViewContentAlignment.MiddleRight

 The first thing that you do here is alternate the background color of each row of data. This helps each
row of data stand out and makes it easier to see the data in each column for a single row. The Color
structure provides a large list of color constants, as well as a few methods that can be called to
generate colors:

 ‘ Declare and set the alternating rows style...
 Dim objAlternatingCellStyle As New DataGridViewCellStyle()
 objAlternatingCellStyle.BackColor = Color.WhiteSmoke
 grdAuthorTitles.AlternatingRowsDefaultCellStyle = objAlternatingCellStyle

c17.indd 577c17.indd 577 4/1/08 6:40:03 PM4/1/08 6:40:03 PM

578

Chapter 17: Database Programming with SQL Server and ADO.NET

 Next, changes to the currency cells for Retail Price are set up. You change the format to currency and
right - align the column.

 ‘ Declare and set the style for currency cells ...
 Dim objCurrencyCellStyle As New DataGridViewCellStyle()
 objCurrencyCellStyle.Format = “c”
 objCurrencyCellStyle.Alignment = DataGridViewContentAlignment.MiddleRight

 Some changes to the format of the DataGridView are easy to make at the property level. Column titles
can simply be changed by accessing the column and setting HeaderText or HeaderCell.Value
properties. You set both properties in the code that follows.

 You changed the book title column width to 225 to display the title in a more readable format. Next, you
set the styles on the price column based on the style objects above. What is great about using style objects
is you can apply the same styles to multiple objects. For example, if you have three columns that hold
dollar amounts, you would set up one style object and reuse this style on all three columns.

 ‘ Change column names and styles using the column index
 grdAuthorTitles.Columns(0).HeaderText = “Last Name”
 grdAuthorTitles.Columns(1).HeaderText = “First Name”
 grdAuthorTitles.Columns(2).HeaderText = “Book Title”
 grdAuthorTitles.Columns(2).Width = 225

 ‘ Change column names and styles using the column name
 grdAuthorTitles.Columns(“price”).HeaderCell.Value = “Retail Price”
 grdAuthorTitles.Columns(“price”).HeaderCell.Style = objAlignRightCellStyle
 grdAuthorTitles.Columns(“price”).DefaultCellStyle = objCurrencyCellStyle

 You have now seen how to bind the DataSet object to a control, in this case a DataGridView control.
In the next Try It Out, you expand on this knowledge by binding several controls to a DataView object
and by using the CurrencyManager object to navigate the data in the DataView object. However,
before you get to that point, read about data binding and how you can bind data to simple controls,
such as the TextBox control, and how to navigate the records.

 Data Binding
 The DataGridView control is a great tool for displaying all your data at one time. You can also use it for
editing, deleting, and inserting rows, provided you have the logic to write changes back to the data
source. However, you often want to use a control to display a single column value from one record at a
time. In cases like these, you need to bind individual pieces of data to simple controls, such as a TextBox,
and display only a single row of data at a time. This type of data binding gives you more control over the
data, but it also increases the complexity of your programs, because you must write the code to bind the
data to the controls and also write the code to navigate between records. This section takes a look at
what is involved in binding data to simple controls and also how to manage the data bindings.

 In this discussion, the term simple controls refers to controls that can display only one item of data at a
time, such as TextBox, a Button, a CheckBox, or a RadioCheck. Controls such as ComboBox, ListBox, and

c17.indd 578c17.indd 578 4/1/08 6:40:04 PM4/1/08 6:40:04 PM

579

Chapter 17: Database Programming with SQL Server and ADO.NET

 DataGridView can contain more than one item of data and are not considered simple controls when it
comes to data binding. Generally speaking, nonsimple controls have particular properties intended for
binding to a data object such as a DataTable or Array . When binding to simple controls, you are
actually binding a particular item of data to a particular property. This is usually the Text property, but
it does not need to be.

 BindingContext and CurrencyManager
 Each form has a built - in BindingContext object that manages the bindings of the controls on the
form. Since the BindingContext object is already built into each form, you don ’ t need to do anything to
set it up.

 The BindingContext object manages a collection of CurrencyManager objects. The CurrencyManager
is responsible for keeping the data - bound controls in sync with their data source and with other data -
 bound controls that use the same data source. This ensures that all controls on the form are showing data
from the same record. The CurrencyManager manages data from a variety of objects such as DataSet ,
 DataView , DataTable , and DataSetView . Whenever you add a data source to a form, a new
 CurrencyManager is automatically created. This makes working with data - bound controls very
convenient and simple.

 The CurrencyManager gets its name because it keeps the controls current with respect to the data in
the data source. The controls do not represent currency (monetary amounts).

 If you have multiple data sources in your form, you can declare a CurrencyManager variable and set it
to refer to the appropriate CurrencyManager object for a given data source in the collection managed by
the BindingContext object. You then have the capability to manage the data in the data - bound controls
explicitly.

 The following code fragment, using the DataSet object that you have been using in the previous
example, defines and sets a reference to the CurrencyManager that manages the data source that
contains the local authors table. First, the code declares a variable using the CurrencyManager class.
Then it sets this CurrencyManager variable to the currency manager for the DataSet object
(objDataSet) contained in the BindingContext object. The CType function is used to return an object
that is explicitly converted. The CType function accepts two arguments: the expression to be converted
and the type to which the expression is to be converted. Since the expression is to evaluate to a
 CurrencyManager object, CurrencyManager is specified for the type argument:

Dim objCurrencyManager As CurrencyManager
objCurrencyManager = _
 CType(Me.BindingContext(objDataSet), CurrencyManager)

 After you have a reference to the data source object, you can manage the position of the records using
the Position property, as shown in the following example. This example advances the current record
position in the objDataSet object by one record:

objCurrencyManager.Position += 1

 If you wanted to move backward one record, you would use the following code:

objCurrencyManager.Position -= 1

c17.indd 579c17.indd 579 4/1/08 6:40:04 PM4/1/08 6:40:04 PM

580

Chapter 17: Database Programming with SQL Server and ADO.NET

 To move to the first record contained in the DataSet object, you would use the following code:

objCurrencyManager.Position = 0

 The Count property of the CurrencyManager contains the number of records in the DataSet object
managed by the CurrencyManager . Therefore, to move to the very last record, you would use the
following code:

objCurrencyManager.Position = objCurrencyManager.Count - 1

 Note that this code specified the Count value minus one. Since the Count property contains the actual
number of records and the DataSet object has a base index of zero, you must subtract one from the
 Count value to get the index to the last record.

 Binding Controls
 When you want to bind a data source to a control, you set the DataBindings property for that control.
This property accesses the ControlBindingsCollection class. This class manages the bindings for
each control, and it has many properties and methods. The method of interest here is Add .

 The Add method creates a binding for the control and adds it to the ControlBindingsCollection . The
 Add method has three arguments, and its syntax is shown here:

 object .DataBindings.Add(propertyname , datasource , datamember)

 In this syntax, note the following:

 object represents a valid control on your form.

 The propertyname argument represents the property of the control to be bound.

 The datasource argument represents the data source to be bound and can be any valid object,
such as a DataSet , DataView , or DataTable, that contains data.

 The datamember argument represents the data field in the data source to be bound to this
control.

 An example of how the Add method works is shown in the following code. This example binds the column
name au_fname in the objDataView object to the Text property of a text box named txtFirstName :

txtFirstName.DataBindings.Add(“Text”, objDataView, “au_fname”)

 Sometimes, after a control has been bound, you may want to change the bindings for that control. To do
this, you can use the Clear method of the ControlBindingsCollection . The Clear method clears the
collection of all bindings for this control. Then you can make the change you need. An example of this
method is shown in the following code fragment:

txtFirstName.DataBindings.Clear()

 Now that you have had a look at the BindingContext , CurrencyManager , and
 ControlBindingsCollection objects, learn how all of these pieces fit and work together in a practical
hands - on exercise.

❑

❑

❑

❑

c17.indd 580c17.indd 580 4/1/08 6:40:04 PM4/1/08 6:40:04 PM

581

Chapter 17: Database Programming with SQL Server and ADO.NET

 Binding Example
 The following Try It Out demonstrates not only how to use the BindingContext , CurrencyManager ,
and ControlBindingsCollection objects but also how to use the DataView , SqlCommand , and
 SqlParameter classes.

 You will be using the query from the previous example as the base for your new query and will display
all authors ’ first and last names, as well as their book titles and the prices of their books. However, this
example differs from the last one in that it displays only one record at a time.

 You use the CurrencyManager object to navigate the records in the DataView object and provide the
functionality to move forward and backward as well as to the first and last records.

Try It Out Binding Simple Controls

 1. Create a new Windows Forms application project called BindingExample . Set the various
form properties as follows:

 Set FormBorderStyle to FixedDialog .

 Set MaximizeBox to False .

 Set MinimizeBox to False .

 Set Size to 430, 360 .

 Set StartPosition to CenterScreen .

 Set Text to Binding Controls .

 2. Drag a ToolTip control from the toolbox and drop it on your form to add it to the designer.

 3. You are going to add objects to the form, so that the form ends up looking like Figure 17 - 6 .

❑

❑

❑

❑

❑

❑

Figure 17-6

c17.indd 581c17.indd 581 4/1/08 6:40:05 PM4/1/08 6:40:05 PM

582

Chapter 17: Database Programming with SQL Server and ADO.NET

 The steps that follow provide property settings to produce an exact replica of this form.
 However, the cosmetic properties are not as important; if you wish, you can approximate the
 layout visually. It is crucial, however, to use the same control names as those used here in your
own application.

 4. Add a GroupBox control to the form. You can find the GroupBox controls under the
Containers node in the toolbox. Set the GroupBox1 properties according to the following list:

 Set Location to 8, 8 .

 Set Size to 408, 128 .

 Set Text to Authors & & Titles .

 Note that to have an ampersand (&) displayed in the GroupBox title you have to write & & ; because a
single & causes the character following it to be underlined.

 5. Using this list, add the required controls to GroupBox1 and set their properties:

 Add a Label control. Name it Label1 and set its Location to 8, 26 ; Text to Last Name .

 Add a Label control. Name it Label2 and set Location to 8, 50 ; Text to First Name .

 Add a Label contol. Name it Label3 and set Location to 8, 74 ; Text to Book Title .

 Add a Label control. Name it Label4 and set Location to 8, 98 ; Text to Price .

 Add a TextBox control. Name it txtLastName and set Location to 72, 24 ; Size to 88, 20 ;
 ReadOnly to True .

 Add a TextBox control. Name it txtFirstName and set Location to 72, 48 ; Size to 88, 20 ;
 ReadOnly to True .

 Add a TextBox control. Name it txtBookTitle and set Location to 72, 72 ; Size to 328, 20 .

 Add a TextBox control. Name it txtPrice and set Location to 72, 96 ; Size to 48, 20 .

 6. Now add a second GroupBox and set its properties according to this list:

 Set Location to 8, 144 .

 Set Size to 408, 168 .

 Set Text to Navigation .

 7. In GroupBox2, add the following controls:

 Add a Label control. Name it Label5 and set Location to 8, 23 ; Text to Field .

 Add a Label control. Name it Label6 and set Location to 8, 48 ; Text to Search Criteria .

 Add a ComboBox control. Name it cboField and set Location to 88, 21 ; Size to 88, 21 ;
DropDownStyle to DropDownList .

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c17.indd 582c17.indd 582 4/1/08 6:40:05 PM4/1/08 6:40:05 PM

583

Chapter 17: Database Programming with SQL Server and ADO.NET

 Add a TextBox control. Name it txtSearchCriteria and set Location to 88, 48 ; Size to 200, 20 .

 Add a TextBox control. Name it txtRecordPosition and set Location to 152, 130 ; Size to 85,
20 ; TabStop to False ; TextAlign to Center .

 Add a Button control. Name it btnPerformSort and set Location to 304, 16 ; Size to 96, 24 ;
Text to Perform Sort .

 Add a Button control. Name it btnPerformSearch and set Location to 304, 48 ; Size to 96,
24 ; Text to Perform Search .

 Add a Button control. Name it btnNew and set Location to 40, 88 ; Size to 72, 24 ;
Text to New .

 Add a Button control. Name it btnAdd and set Location to 120, 88 ; Size to 72, 24 ;
Text to Add .

 Add a Button control. Name it btnUpdate and set Location to 200, 88 ; Size to 72, 24 ; Text
to Update .

 Add a Button control. Name it btnDelete and set Location to 280, 88 ; Size to 72, 24 ; Text to
 Delete .

 Add a Button control. Name it btnMoveFirst and set Location to 88, 128 ; Size to 29, 24 ;
Text to | < ; ToolTip on ToolTip1 to Move First .

 Add a Button control. Name it btnMovePrevious and set Location to 120, 128 ; Size to 29,
24 ; Text to < ; ToolTip on ToolTip1 to Move Previous .

 Add a Button control. Name it btnMoveNext and set Location to 240, 128 ; Size to 29, 24 ;
Text to > ; ToolTip on ToolTip1 to Move Next .

 Add a Button control. Name it btnMoveLast and set Location to 272, 128 ; Size to 29, 24 ;
Text to > | ; ToolTip on ToolTip1 to Move Last .

 8. Finally, add a StatusStrip control. Leave its name as the default StatusStrip1, and its default
location and size. Click the new StatusStrip1 control on the form, and you have an option to
add a StatusLabel control in the menu. Select StatusLabel from the menu and leave the default
settings.

 9. When you are done, your completed form should look like the one shown in Figure 17 - 6 .

 10. Again, you need to add imports to the namespaces needed. To do this, switch to Code Editor
view and then insert the following lines of code at the very top:

‘ Import Data and SqlClient namespaces...
Imports System.Data
Imports System.Data.SqlClient

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c17.indd 583c17.indd 583 4/1/08 6:40:06 PM4/1/08 6:40:06 PM

584

Chapter 17: Database Programming with SQL Server and ADO.NET

 11. Next you need to declare the objects that are global in scope to this form, so add the following
highlighted code:

Public Class Form1

 ‘ Declare objects...
 Dim objConnection As New SqlConnection _
 (“server=localhost\wrox;database=pubs;user id=sa;password=wrox;”)
 Dim objDataAdapter As New SqlDataAdapter(_
 “SELECT authors.au_id, au_lname, au_fname, “ & _
 “titles.title_id, title, price “ & _
 “FROM authors “ & _
 “JOIN titleauthor ON authors.au_id = titleauthor.au_id “ & _
 “JOIN titles ON titleauthor.title_id = titles.title_id “ & _
 “ORDER BY au_lname, au_fname”, objConnection)
 Dim objDataSet As DataSet
 Dim objDataView As DataView
 Dim objCurrencyManager As CurrencyManager

 Be sure to update the connection string to match your settings for the user id and password , and
also set the Server to the machine where SQL Server is running if it is not your local machine.

 12. The first procedure you need to create is the FillDataSetAndView procedure. This
procedure, along with the following ones, is called in your initialization code. Add the
following code to the form ’ s class, just below your object declarations:

Private Sub FillDataSetAndView()
 ‘ Initialize a new instance of the DataSet object...
 objDataSet = New DataSet()

 ‘ Fill the DataSet object with data...
 objDataAdapter.Fill(objDataSet, “authors”)

 ‘ Set the DataView object to the DataSet object...
 objDataView = New DataView(objDataSet.Tables(“authors”))

 ‘ Set our CurrencyManager object to the DataView object...
 objCurrencyManager = CType(Me.BindingContext(objDataView), CurrencyManager)
End Sub

 13. The next procedure you need to create actually binds the controls on your form to your
 DataView object:

Private Sub BindFields()
 ‘ Clear any previous bindings...
 txtLastName.DataBindings.Clear()
 txtFirstName.DataBindings.Clear()
 txtBookTitle.DataBindings.Clear()

c17.indd 584c17.indd 584 4/1/08 6:40:06 PM4/1/08 6:40:06 PM

585

Chapter 17: Database Programming with SQL Server and ADO.NET

 txtPrice.DataBindings.Clear()

 ‘ Add new bindings to the DataView object...
 txtLastName.DataBindings.Add(“Text”, objDataView, “au_lname”)
 txtFirstName.DataBindings.Add(“Text”, objDataView, “au_fname”)
 txtBookTitle.DataBindings.Add(“Text”, objDataView, “title”)
 txtPrice.DataBindings.Add(“Text”, objDataView, “price”)

 ‘ Display a ready status...
 ToolStripStatusLabel1.Text = “Ready”
End Sub

 14. Now you need a procedure that displays the current record position on your form:

Private Sub ShowPosition()
 ‘Always format the number in the txtPrice field to include cents
 Try
 txtPrice.Text = Format(CType(txtPrice.Text, Decimal), “##0.00”)
 Catch e As System.Exception
 txtPrice.Text = “0”
 txtPrice.Text = Format(CType(txtPrice.Text, Decimal), “##0.00”)
 End Try
 ‘ Display the current position and the number of records
 txtRecordPosition.Text = objCurrencyManager.Position + 1 & _
 “ of “ & objCurrencyManager.Count()
End Sub

 15. You ’ ve added some powerful procedures to your form. But at the moment, there is no code to
call them. You want these procedures, as well as some other code, to execute every time
the form loads. So return to the Form Designer, double - click the Form Designer, and add the
following highlighted code to the Form_Load method. (Note that you must click an area
outside of the GroupBox controls.)

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ‘ Add items to the combo box...
 cboField.Items.Add(“Last Name”)
 cboField.Items.Add(“First Name”)
 cboField.Items.Add(“Book Title”)
 cboField.Items.Add(“Price”)

 ‘ Make the first item selected...
 cboField.SelectedIndex = 0

 ‘ Fill the DataSet and bind the fields...
 FillDataSetAndView()
 BindFields()

 ‘ Show the current record position...
 ShowPosition()

End Sub

 16. Next, you add the code for your navigation buttons. You need to switch back and forth
between the Design and Code views, double - clicking each button and then adding the code,

c17.indd 585c17.indd 585 4/1/08 6:40:06 PM4/1/08 6:40:06 PM

586

Chapter 17: Database Programming with SQL Server and ADO.NET

or you can select the buttons in the Class Name combo box and then select the Click event
in the Method Name combo box. Add the code as highlighted to the procedure for the
 btnMoveFirst button first:

Private Sub btnMoveFirst_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnMoveFirst.Click

 ‘ Set the record position to the first record...
 objCurrencyManager.Position = 0

 ‘ Show the current record position...
 ShowPosition()

End Sub

 17. Add code as highlighted to the btnMovePrevious button next:

Private Sub btnMovePrevious_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnMovePrevious.Click

 ‘ Move to the previous record...
 objCurrencyManager.Position -= 1

 ‘ Show the current record position...
 ShowPosition()

End Sub

 18. The next procedure you want to add code to is the btnMoveNext procedure:

Private Sub btnMoveNext_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnMoveNext.Click

 ‘ Move to the next record...
 objCurrencyManager.Position += 1

 ‘ Show the current record position...
 ShowPosition()

End Sub

 19. The final navigation procedure that you need to code is the btnMoveLast procedure:

Private Sub btnMoveLast_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnMoveLast.Click

 ‘ Set the record position to the last record...
 objCurrencyManager.Position = objCurrencyManager.Count - 1

 ‘ Show the current record position...
 ShowPosition()

End Sub

 20. At this point, you have entered a lot of code and are probably anxious to see the results of
your work. Run the project to see how your DataView object gets bound to the controls on the
form and to see the CurrencyManager object at work as you navigate through the records.

c17.indd 586c17.indd 586 4/1/08 6:40:07 PM4/1/08 6:40:07 PM

587

Chapter 17: Database Programming with SQL Server and ADO.NET

 After your form displays, you should see results similar to Figure 17 - 7 . The only buttons that
work are the navigation buttons, which change the current record position. Test your form by
navigating to the next and previous records and by moving to the last record and the first record.
Each time you move to a new record, the text box between the navigation buttons will be
updated to display the current record.

 While you are on the first record, you can try to move to the previous record, but nothing will
happen, because you are already on the first record. Likewise, you can move to the last record
and try to navigate to the next record, and nothing will happen, because you are already on the
last record.

 If you hover your mouse pointer over the navigation buttons, you will see a ToolTip indicating
what each button is for. This just provides a nicer interface for your users.

 Note that error handling has been omitted from the exercise to preserve space. You should always add
the appropriate error handling to your code. Please review Chapter 10 for error - handling techniques.

 How It Works: Namespaces and Object Declaration
 As usual, you import the System.Data and System.Data.SqlClient namespaces. Next, you
declare the objects on your form. The first three objects should be familiar to you, because you used
them in your last project.

 Take a closer look at the initialization of the SqlDataAdapter object. You use a constructor that
initializes this object with a string value for the SelectCommand property and an object that represents
a connection to the database. This constructor saves you from writing code to manipulate the
 SqlDataAdapter properties; it ’ s already set up.

 The SELECT statement that you use here is basically the same as in the previous project, except that
you add a couple more columns in the select list (the list of columns directly following the word
 SELECT).

 The au_id column in the select list is prefixed with the table name authors , because this column also
exists in the titleauthor table. Therefore, you must tell the database which table to get the data from

Figure 17-7

c17.indd 587c17.indd 587 4/1/08 6:40:07 PM4/1/08 6:40:07 PM

588

Chapter 17: Database Programming with SQL Server and ADO.NET

for this column. This is the same for the title_id column, except that this column exists in the
 titles and titleauthor tables:

Dim objConnection As New SqlConnection _
 (“server=bnewsome;database=pubs;user id=sa;password=!p@ssw0rd!;”)
Dim objDataAdapter As New SqlDataAdapter(_
 “SELECT authors.au_id, au_lname, au_fname, “ & _
 “titles.title_id, title, price “ & _
 “FROM authors “ & _
 “JOIN titleauthor ON authors.au_id = titleauthor.au_id “ & _
 “JOIN titles ON titleauthor.title_id = titles.title_id “ & _
 “ORDER BY au_lname, au_fname”, objConnection)
Dim objDataSet As DataSet
Dim objDataView As DataView
Dim objCurrencyManager As CurrencyManager

 The last two objects are new but were discussed in the section on binding. You use the DataView to
customize your view of the records returned from the database, and stored in the dataset . The
 CurrencyManager object controls the movement of your bound data, as you saw in the previous
section.

 How It Works: FillDataSetAndView
 The first procedure you create is the FillDataSetAndView procedure. This procedure will be called
several times throughout your code and will get the latest data from the database and populate your
 DataView object.

 First, you need to initialize a new instance of the DataSet object. You do this here because this
procedure might be called more than once during the lifetime of the form. If it is, you do not want to
add new records to the records already in the dataset ; you always want to start afresh:

Private Sub FillDataSetAndView()
 ‘ Initialize a new instance of the DataSet object...
 objDataSet = New DataSet()

 Next, you invoke the Fill method on objDataAdapter to populate the objDataSet object. Then
you specify that your DataView object will be viewing data from the authors table in the DataSet
object. Remember that the DataView object allows you to sort, search, and navigate through the
records in the dataset :

 ‘ Fill the DataSet object with data...
 objDataAdapter.Fill(objDataSet, “authors”)

 ‘ Set the DataView object to the DataSet object...
 objDataView = New DataView(objDataSet.Tables(“authors”))

 After you initialize your DataView object, you want to initialize the CurrencyManager object.
Remember that the BindingContext object is built into every Windows form and contains a
collection of CurrencyManager s. The collection contains the available data sources, and you choose
the DataView object:

 ‘ Set our CurrencyManager object to the DataView object...
 objCurrencyManager = _
 CType(Me.BindingContext(objDataView), CurrencyManager)

c17.indd 588c17.indd 588 4/1/08 6:40:07 PM4/1/08 6:40:07 PM

589

Chapter 17: Database Programming with SQL Server and ADO.NET

 How It Works: BindFields
 The next procedure that you create (BindFields) binds the controls on your form to your DataView
object. This procedure first clears any previous bindings for the controls and then sets them to your
 DataView object.

 It is important to clear the bindings first because, after you modify the DataView object by adding,
updating, or deleting a row of data, the DataView object will show only the changed data. Therefore,
after you update the database with your changes, you must repopulate our DataView object and rebind
your controls. If you didn ’ t do this, the data that would actually be in the database and the data in the
 DataView may not be the same.

 Using the DataBindings property of the controls on you form, you execute the Clear method of the
 ControlBindingsCollection class to remove the bindings from them. Notice that the controls that
you bound are all the text boxes on your form that will contain data from the DataView object:

Private Sub BindFields()
 ‘ Clear any previous bindings to the DataView object...
 txtLastName.DataBindings.Clear()
 txtFirstName.DataBindings.Clear()
 txtBookTitle.DataBindings.Clear()
 txtPrice.DataBindings.Clear()

 After you clear the previous bindings, you can set the new bindings back to the same data source, our
 DataView object. You do this by executing the Add method of the ControlBindingsCollection
object returned by the DataBindings property. As described earlier, the Add method has three
arguments, which are shown in the code that follows:

❑ The first argument is propertyname and specifies the property of the control to be bound. Since
you want to bind your data to the Text property of the text boxes, you have specified “ Text ” for
this argument.

❑ The next argument is the datasource argument and specifies the data source to be bound.
Remember that this can be any valid object, such as a DataSet , DataView , or DataTable, that
contains data. In this case, you are using a DataView object.

❑ The last argument specifies the datamember . This is the data field in the data source that contains
the data to be bound to this control. Note that you have specified the various column names from
your SELECT statement that you executed in the previous procedure.

 ‘ Add new bindings to the DataView object...
 txtLastName.DataBindings.Add(“Text”, objDataView, “au_lname”)
 txtFirstName.DataBindings.Add(“Text”, objDataView, “au_fname”)
 txtBookTitle.DataBindings.Add(“Text”, objDataView, “title”)
 txtPrice.DataBindings.Add(“Text”, objDataView, “price”)

 The last thing you do in this procedure is set a message in the status bar using the Text property of
 ToolStripStatusLabel1 :

 ‘ Display a ready status...
 ToolStripStatusLabel1.Text = “Ready”
End Sub

c17.indd 589c17.indd 589 4/1/08 6:40:08 PM4/1/08 6:40:08 PM

590

Chapter 17: Database Programming with SQL Server and ADO.NET

 How It Works: ShowPosition
 The CurrencyManager object keeps track of the current record position within the DataView object.

 The price column in the titles table in Pubs is defined as a Currency data type. Therefore, if a
book is priced at 40.00 dollars, the number that you get is 40 ; the decimal portion is dropped. The
 ShowPosition procedure seems like a good place to format the data in the txtPrice text box,
because this procedure is called whenever you move to a new record:

Private Sub ShowPosition()
 ‘Always format the number in the txtPrice field to include cents
 Try
 txtPrice.Text = Format(CType(txtPrice.Text, Decimal), “##0.00”)
 Catch e As System.Exception
 txtPrice.Text = “0”
 txtPrice.Text = Format(CType(txtPrice.Text, Decimal), “##0.00”)
 End Try

 ‘ Display the current position and the number of records
 txtRecordPosition.Text = objCurrencyManager.Position + 1 & _
 “ of “ & objCurrencyManager.Count()
End Sub

 This part of the function is enclosed in a Try ... Catch block in case the txtPrice is empty. If
 txtPrice is empty, the Format function throws a handled exception, and the exception handler
defaults the price to 0. The second line of code in this procedure uses the Format function to format
the price in the txtPrice text box. This function accepts the numeric data to be formatted as the first
argument and a format string as the second argument. For the format function to work correctly, you
need to convert the string value in the txtPrice field to a decimal value using the CType function.

 The last line of code displays the current record position and the total number of records that you
have. Using the Position property of the CurrencyManager object, you can determine which
record you are on. The Position property uses a zero - based index, so the first record is always 0 .
Therefore, you specified the Position property plus 1 to display the true number.

 The CurrencyManager class ’ s Count property returns the actual number of items in the list, and you
are using this property to display the total number of records in the DataView object.

 How It Works: Form_Load
 Now that you ’ ve looked at the code for the main procedures, you need to go back and look at your
initialization code.

 You have a combo box on your form that will be used when sorting or searching for data. This combo
box needs be populated with data representing the columns in the DataView object. You specify the
 Add method of the Items property of the combo box to add items to it. Here you are specifying text
that represents the columns in the DataView object in the same order that they appear in the
 DataView object:

 ‘Add any initialization after the InitializeComponent() call

 ‘ Add items to the combo box...
 cboField.Items.Add(“Last Name”)
 cboField.Items.Add(“First Name”)
 cboField.Items.Add(“Book Title”)
 cboField.Items.Add(“Price”)

c17.indd 590c17.indd 590 4/1/08 6:40:08 PM4/1/08 6:40:08 PM

591

Chapter 17: Database Programming with SQL Server and ADO.NET

 After you have loaded all of the items into your combo box, you want to select the first item. You do
this by setting the SelectedIndex property to 0 . The SelectedIndex property is zero - based, so the
first item in the list is item 0.

 ‘ Make the first item selected...
 cboField.SelectedIndex = 0

 Next, you call the FillDataSetAndView procedure to retrieve the data, and then call the BindFields
procedure to bind the controls on your form to your DataView object. Finally, you call the
 ShowPosition procedure to display the current record position and the total number of records
contained in your DataView object:

 ‘ Fill the DataSet and bind the fields...
 FillDataSetAndView()
 BindFields()

 ‘ Show the current record position...
 ShowPosition()

 How It Works: Navigation Buttons
 The procedure for the btnMoveFirst button causes the first record in the DataView object to be
displayed. This is accomplished using the Position property of the CurrencyManager object. Here
you set the Position property to 0 , indicating that the CurrencyManager should move to the first
record:

 ‘ Set the record position to the first record...
 objCurrencyManager.Position = 0

 Because your controls are bound to the DataView object, they always stay in sync with the current
record in the DataView object and display the appropriate data.

 After you reposition the current record, you need to call the ShowPosition procedure to update the
display of the current record on your form:

 ‘ Show the current record position...
 ShowPosition()

 Next, you add the code for the btnMovePrevious button. You move to the prior record by subtracting
 1 from the Position property. The CurrencyManager object automatically detects and handles the
beginning position of the DataView object. It will not let you move to a position prior to the first
record; it just quietly keeps its position at 0:

 ‘ Move to the previous record...
 objCurrencyManager.Position -= 1

 Again, after you have repositioned the current record being displayed, you need to call the
 ShowPosition procedure to display the current position on the form.

c17.indd 591c17.indd 591 4/1/08 6:40:08 PM4/1/08 6:40:08 PM

592

Chapter 17: Database Programming with SQL Server and ADO.NET

 In the btnMoveNext procedure, you want to increment the Position property by 1. Again, the
 CurrencyManager automatically detects the last record in the DataView object and will not let you
move past it:

 ‘ Move to the next record...
 objCurrencyManager.Position += 1

 You call the ShowPosition procedure to display the current record position.

When the btnMoveLast procedure is called, you want to move to the last record in the DataView
object. You do accomplish this by setting the Position property equal to the Count property minus
one. Then you call the ShowPosition procedure to display the current record:

 ‘ Set the record position to the last record...
 objCurrencyManager.Position = objCurrencyManager.Count - 1

 ‘ Show the current record position...
 ShowPosition()

 Now that you have built the navigation, you move on to add sorting functionality to this project in the
next Try It Out.

 Try It Out Including Sorting Functionality
 1. Double - click the Perform Sort button on the form in design mode to have the empty

procedure added to the form class, or select the button in the Class Name combo box and
then select the Click event in the Method Name combo box. Insert the following highlighted
code in the btnPerformSort_Click event procedure:

Private Sub btnPerformSort_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnPerformSort.Click

 ‘ Determine the appropriate item selected and set the
 ‘ Sort property of the DataView object...
 Select Case cboField.SelectedIndex
 Case 0 ‘Last Name
 objDataView.Sort = “au_lname”
 Case 1 ‘First Name
 objDataView.Sort = “au_fname”
 Case 2 ‘Book Title
 objDataView.Sort = “title”
 Case 3 ‘Price
 objDataView.Sort = “price”
 End Select

 ‘ Call the click event for the MoveFirst button...
 btnMoveFirst_Click(Nothing, Nothing)

 ‘ Display a message that the records have been sorted...
 ToolStripStatusLabel1.Text = “Records Sorted”

End Sub

c17.indd 592c17.indd 592 4/1/08 6:40:09 PM4/1/08 6:40:09 PM

593

Chapter 17: Database Programming with SQL Server and ADO.NET

 2. Test the new functionality by running it; click the Start button to compile and run it. Select
a column to sort and then click the Perform Sort button. You should see the data sorted by the
column that you have chosen. Figure 17 - 8 shows the data sorted by book price:

Figure 17-8

 How It Works
 First, you determine which field you should sort on. This information is contained in the cboField
combo box.

 ‘ Determine the appropriate item selected and set the
 ‘ Sort property of the DataView object...
 Select Case cboField.SelectedIndex
 Case 0 ‘Last Name
 objDataView.Sort = “au_lname”
 Case 1 ‘First Name
 objDataView.Sort = “au_fname”
 Case 2 ‘Book Title
 objDataView.Sort = “title”
 Case 3 ‘Price
 objDataView.Sort = “price”
 End Select

 Using a Select Case statement to examine the SelectedIndex property of the combo box, you can
determine which field the user has chosen. After you have determined the correct entry in the combo
box, you can set the Sort property of the DataView object using the column name of the column that
you want sorted. After the Sort property has been set, the data is sorted.

 After the data has been sorted, you want to move to the first record, and there are a couple of ways
you can do this. You could set the Position property of the CurrencyManager object and then call
the ShowPosition procedure, or you can simply call the btnMoveFirst_Click procedure, passing it
 Nothing for both arguments. This is the procedure that would be executed had you actually clicked
the Move First button on the form.

c17.indd 593c17.indd 593 4/1/08 6:40:09 PM4/1/08 6:40:09 PM

594

Chapter 17: Database Programming with SQL Server and ADO.NET

 The btnMoveFirst_Click procedure has two arguments: ByVal sender As Object and ByVal e
As System.EventArgs . Since these arguments are required (even though they ’ re not actually used in
the procedure), you need to pass something to them, so you pass the Nothing keyword. The Nothing
keyword is used to disassociate an object variable from an object. Thus by using the Nothing keyword,
you satisfy the requirement of passing an argument to the procedure, but have not passed any actual
value:

 ‘ Call the click event for the MoveFirst button...
 btnMoveFirst_Click(Nothing, Nothing)

 After the first record has been displayed, you want to display a message in the status bar indicating
that the records have been sorted. You did this by setting the Text property of the status bar as you
have done before.

 Note that another way to accomplish this is to have a procedure called MoveFirst , and to call that
from here and from the btnMoveFirst_Click procedure. Some developers would opt for this method
instead of passing Nothing to a procedure.

 In the next Try It Out, you take a look at what ’ s involved in searching for a record.

 Try It Out Including Searching Functionality

 1. Double - click the Perform Search button or select the button in the Class Name combo box
and then select the Click event in the Method Name combo box, and add the following
highlighted code to the btnPerformSearch_Click event procedure:

Private Sub btnPerformSearch_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnPerformSearch.Click

 ‘ Declare local variables...
 Dim intPosition As Integer

 ‘ Determine the appropriate item selected and set the
 ‘ Sort property of the DataView object...
 Select Case cboField.SelectedIndex
 Case 0 ‘Last Name
 objDataView.Sort = “au_lname”
 Case 1 ‘First Name
 objDataView.Sort = “au_fname”
 Case 2 ‘Book Title
 objDataView.Sort = “title”
 Case 3 ‘Price
 objDataView.Sort = “price”
 End Select

 ‘ If the search field is not price then...
 If cboField.SelectedIndex < 3 Then
 ‘ Find the last name, first name, or title...
 intPosition = objDataView.Find(txtSearchCriteria.Text)
 Else

c17.indd 594c17.indd 594 4/1/08 6:40:09 PM4/1/08 6:40:09 PM

595

Chapter 17: Database Programming with SQL Server and ADO.NET

 ‘ otherwise find the price...
 intPosition = objDataView.Find(CType(txtSearchCriteria.Text, Decimal))
 End If
 If intPosition = -1 Then
 ‘ Display a message that the record was not found...
 ToolStripStatusLabel1.Text = “Record Not Found”
 Else
 ‘ Otherwise display a message that the record was
 ‘ found and reposition the CurrencyManager to that
 ‘ record...
 ToolStripStatusLabel1.Text = “Record Found”
 objCurrencyManager.Position = intPosition
 End If

 ‘ Show the current record position...
 ShowPosition()

End Sub

 2. Test the searching functionality that you added. Run the project and select a field in the Field
combo box that you want to search on, and then enter the search criteria in the Search Criteria
text box. Finally, click the Perform Search button.

 If a match is found, you see the first matched record displayed, along with a message in the
 status bar indicating that the record was found, as shown in Figure 17 - 9 . If no record was found,
you see a message in the status bar indicating the record was not found.

Figure 17-9

 How It Works
 This is a little more involved than previous Try It Outs, because there are multiple conditions that you
must test for and handle, such as a record that was not found. The first thing that you do in this
procedure is declare a variable that will receive the record position of the record that has been found
or not found.

 ‘ Declare local variables...
 Dim intPosition As Integer

c17.indd 595c17.indd 595 4/1/08 6:40:10 PM4/1/08 6:40:10 PM

596

Chapter 17: Database Programming with SQL Server and ADO.NET

 Next, you sort the data based on the column used in the search. The Find method searches for data in
the sort key. Therefore, by setting the Sort property, the column that is sorted on becomes the sort key
in the DataView object. You use a Select Case statement, just as you did in the previous procedure:

 ‘ Determine the appropriate item selected and set the
 ‘ Sort property of the DataView object...
 Select Case cboField.SelectedIndex
 Case 0 ‘Last Name
 objDataView.Sort = “au_lname”
 Case 1 ‘First Name
 objDataView.Sort = “au_fname”
 Case 2 ‘Book Title
 objDataView.Sort = “title”
 Case 3 ‘Price
 objDataView.Sort = “price”
 End Select

 The columns for the authors ’ first and last names, as well as the column for the book titles, all contain
text data. However, the column for the book price contains data that is in a currency format. Therefore,
you need to determine which column you are searching on, and if that column is the price
column, you need to format the data in the txtSearchCriteria text box to a decimal value.

 Again, you use the SelectedIndex property of the cboField combo box to determine which item
has been selected. If the SelectedIndex property is less than 3 , you know that you want to search on
a column that contains text data.

 You then set the intPosition variable to the results returned by the Find method of the DataView
object. The Find method accepts the data to search for as the only argument. Here you pass it the data
contained in the Text property of the txtSearchCriteria text box.

 If the SelectedIndex equals 3, you are searching for a book with a specific price, and this requires
you to convert the value contained in the txtSearchCriteria text box to a decimal value. The CType
function accepts an expression and the data type that you want to convert that expression to and
returns a value, in this case a decimal value. This value is then used as the search criterion by the Find
method.

 ‘ If the search field is not price then...
 If cboField.SelectedIndex < 3 Then
 ‘ Find the last name, first name or title...
 intPosition = objDataView.Find(txtSearchCriteria.Text)
 Else
 ‘ otherwise find the price...
 intPosition = objDataView.Find(CType(txtSearchCriteria.Text, Decimal))
 End If

 After you execute the Find method of the DataView object, you need to check the value contained in
the intPosition variable. If this variable contains a value of – 1, no match was found. Any value
other than – 1 points to the record position of the record that contains the data. So, if the value in this
variable is – 1, you want to display a message in the status bar that says that no record was found.

c17.indd 596c17.indd 596 4/1/08 6:40:10 PM4/1/08 6:40:10 PM

597

Chapter 17: Database Programming with SQL Server and ADO.NET

If the value is greater than – 1, you want to display a message that the record was found and position
the DataView object to that record using the Position property of the CurrencyManager object:

 ToolStripStatusLabel1.Text = “Record Found”
 objCurrencyManager.Position = intPosition

 It is worth noting that the Find method of the DataView object performs a search looking for an exact
match of characters. There is no wildcard search method here, so you must enter the entire text string
that you want to search for. The case, however, does not matter, so the name Ann is the same as ann , and
you do not need to be concerned with entering proper case when you enter your search criteria.

 Last, you want to show the current record position, which you do by calling the ShowPosition
procedure.

 Now all that is left is to add the functionality to add, update, and delete records. Take a look at what is
required to add a record first.

Try It Out Adding Records

 1. Add just two lines of code to the btnNew_Click procedure:

Private Sub btnNew_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnNew.Click

 ‘ Clear the book title and price fields...
 txtBookTitle.Text = “”
 txtPrice.Text = “”

End Sub

 2. Add code to the btnAdd_Click procedure. This procedure is responsible for adding a new
record. This procedure has the largest amount of code by far of any of the procedures you
have coded or will code in this project. The reason for this is the relationship of book titles to
authors and the primary key used for book titles:

Private Sub btnAdd_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnAdd.Click

 ‘ Declare local variables and objects...
 Dim intPosition As Integer, intMaxID As Integer
 Dim strID As String
 Dim objCommand As SqlCommand = New SqlCommand()

 ‘ Save the current record position...
 intPosition = objCurrencyManager.Position
 ‘ Create a new SqlCommand object...
 Dim maxIdCommand As SqlCommand = New SqlCommand _
 (“SELECT MAX(title_id) AS MaxID “ & _
 “FROM titles WHERE title_id LIKE ‘DM%’”, objConnection)

 ‘ Open the connection, execute the command
 objConnection.Open()

c17.indd 597c17.indd 597 4/1/08 6:40:11 PM4/1/08 6:40:11 PM

598

Chapter 17: Database Programming with SQL Server and ADO.NET

 Dim maxId As Object = maxIdCommand.ExecuteScalar()

 ‘ If the MaxID column is null...
 If maxId Is DBNull.Value Then
 ‘ Set a default value of 1000...
 intMaxID = 1000
 Else
 ‘ otherwise set the strID variable to the value in MaxID...
 strID = CType(maxId, String)
 ‘ Get the integer part of the string...
 intMaxID = CType(strID.Remove(0, 2), Integer)
 ‘ Increment the value...
 intMaxID += 1
 End If

 ‘ Finally, set the new ID...
 strID = “DM” & intMaxID.ToString

 ‘ Set the SqlCommand object properties...
 objCommand.Connection = objConnection
 objCommand.CommandText = “INSERT INTO titles “ & _
 “(title_id, title, type, price, pubdate) “ & _
 “VALUES(@title_id,@title,@type,@price,@pubdate);” & _
 “INSERT INTO titleauthor (au_id, title_id) VALUES(@au_id,@title_id)”

 ‘ Add parameters for the placeholders in the SQL in the
 ‘ CommandText property...

 ‘ Parameter for the title_id column...
 objCommand.Parameters.AddWithValue (“@title_id”, strID)

 ‘ Parameter for the title column...
 objCommand.Parameters.AddWithValue (“@title”, txtBookTitle.Text)

 ‘ Parameter for the type column
 objCommand.Parameters.AddWithValue (“@type”, “Demo”)
 ‘ Parameter for the price column...
 objCommand.Parameters.AddWithValue (“@price”, txtPrice.Text).DbType _
 = DbType.Currency

 ‘ Parameter for the pubdate column
 objCommand.Parameters.AddWithValue (“@pubdate”, Date.Now)

 ‘ Parameter for the au_id column...
 objCommand.Parameters.AddWithValue _
 (“@au_id”, BindingContext(objDataView).Current(“au_id”))

 ‘ Execute the SqlCommand object to insert the new data...
 Try
 objCommand.ExecuteNonQuery()
 Catch SqlExceptionErr As SqlException

c17.indd 598c17.indd 598 4/1/08 6:40:11 PM4/1/08 6:40:11 PM

599

Chapter 17: Database Programming with SQL Server and ADO.NET

 MessageBox.Show(SqlExceptionErr.Message)
 End Try

 ‘ Close the connection...
 objConnection.Close()

 ‘ Fill the dataset and bind the fields...
 FillDataSetAndView()
 BindFields()

 ‘ Set the record position to the one that you saved...
 objCurrencyManager.Position = intPosition

 ‘ Show the current record position...
 ShowPosition()

 ‘ Display a message that the record was added...
 ToolStripStatusLabel1.Text = “Record Added”

End Sub

 3. Run your project. Find an author that you want to add a new title for and then click the New
button. The Book Title and Price fields will be cleared, and you are ready to enter new data to
be added as shown in Figure 17 - 10 . Take note of the number of records in the DataView
(25 in Figure 17 - 10).

Figure 17-10

 4. Enter a title and price for the new book and click the Add button. You will see a message in
the status bar indicating that the record has been added, and you will also see that the number
of records has changed (to 26) as shown in Figure 17 - 11 :

c17.indd 599c17.indd 599 4/1/08 6:40:11 PM4/1/08 6:40:11 PM

600

Chapter 17: Database Programming with SQL Server and ADO.NET

 Now that you have added a record, examine what you actually did.

 How It Works
 Remember that the only data that you can add is a new book title and its price. So instead of selecting
the data in each of these fields, deleting it, and then entering the new data, you want to be able to
simply click the New button. The job of the New button is to clear the book title and price fields for
you. All you need to do is set the Text properties of these text boxes to an empty string as shown here:

 ‘ Clear the book title and price fields...
 txtBookTitle.Text = “”
 txtPrice.Text = “”

 When you click the New button, the fields are cleared. If you are updating or editing a record, those
changes are lost. You would normally put logic into your application to prevent that problem, but for
this example that type of validation was left out.

 The primary key used in the titles table is not the database ’ s Identity column. Identity columns
use a sequential number and automatically increment the number for you when a new row is inserted.
Instead of an Identity column, the primary key is made up of a category prefix and a sequential
number. This means that you must first determine the maximum number used in a category and then
increment that number by 1 and use the new number and category prefix for the new key.

 The first thing that you want to do in the btnAdd_Click event procedure is declare your local
variables and objects that will be used here. The intPosition variable will be used to save the
current record position, and the intMaxID variable will be used to set and increment the maximum
sequential number for a category. The strID will be used to store the primary key from the authors
table and to set the new key for the authors table. Finally, the objCommand object will be used to
build a query to insert a new record into the titleauthor and titles tables.

 Before you do anything, you want to save the position of the current record that you are on. This
enables you to go back to this record once you reload the DataView object, which will contain the new
record that you add in this procedure:

 intPosition = objCurrencyManager.Position

Figure 17-11

c17.indd 600c17.indd 600 4/1/08 6:40:11 PM4/1/08 6:40:11 PM

601

Chapter 17: Database Programming with SQL Server and ADO.NET

 You need to execute a command on the database to work out what ID to give your new title. You use
an SqlCommand object to do this. You pass in an SQL string and the connection that you use
throughout your program. This SQL string selects the maximum value in the title_id column,
where the title_id value begins with the prefix of DM .

 There is no category for demo, so you add all of the test records under this category and use the
category prefix of DM , enabling you to identify quickly the records that you have inserted just in case
you want to get rid of them manually later.

 Because the MAX function you use is an aggregate function (meaning that it is a function that works on
groups of data), the data is returned without a column name. Therefore, you use the AS keyword in
the SELECT statement and tell SQL Server to assign a column name to the value, in this case MaxID .
You use a LIKE clause in the SELECT statement to tell SQL Server to search for all values that begin
with DM :

 Dim maxIdCommand As SqlCommand = New SqlCommand(_
 “SELECT MAX(title_id) AS MaxID “ & _
 “FROM titles WHERE title_id LIKE ‘DM%’”, objConnection)

 This sets up your command object but doesn ’ t execute it. To execute it, you need to open the
connection and then call one of the SqlCommand execute methods. In this case you use
 ExecuteScalar :

 ‘ Open the connection, execute the command
 objConnection.Open()
 Dim maxId As Object = maxIdCommand.ExecuteScalar()

 ExecuteScalar is a useful method when you have a database command that returns a single value.
Other commands you ’ ve used so far have returned a whole table of values (you have used these as the
 SelectCommand of a data adapter), or no values at all (you have executed these with
 ExecuteNonQuery). In this case, you are interested in only one number, so you can use
 ExecuteScalar . This returns the first column of the first row in the result set. In this case, there is
only one column and one row, so that is what you get.

 You want to check for a Null value returned from the command, so you compare the resulting
 Object against the Value property of the DBNull class:

 ‘ If the MaxID column is null...
 If maxId Is DBNull.Value Then

 If the expression evaluates to True , you have no primary key in the titles table that begins with DM ,
so you set the initial value of the intMaxID variable to a value of 1000 . You choose 1000 because all of
the other primary keys contain a numeric value of less than 1000 :

 ‘ Set a default value of 1000...
 intMaxID = 1000

c17.indd 601c17.indd 601 4/1/08 6:40:12 PM4/1/08 6:40:12 PM

602

Chapter 17: Database Programming with SQL Server and ADO.NET

 If the column value evaluates to False , then you have at least one primary key in the titles table
that begins with DM . In this case, you need to obtain the integer portion of this ID to work out which
integer to use for your ID. To do this, you must convert your maxId object to a String :

 Else
 ‘ otherwise set the strID variable to the value in MaxID...
 strID = CType(maxId, String)

 Then you can extract the integer portion of the key by using the Remove method of the string variable,
 strID . The Remove method removes the specified number of characters from a string. You specify the
offset at which to begin removing characters and the number of characters to be removed. This
method returns a new string with the removed characters. In this line of code, you are removing the
prefix of DM from the string so that all you end up with is the integer portion of the string. You then
use the CType function to convert the string value, which contains a number, to an Integer value,
which you place in the intMaxID variable. Finally, you increment it by one to get the integer portion
of the ID that you will use:

 ‘ Get the integer part of the string...
 intMaxID = CType(strID.Remove(0, 2), Integer)
 ‘ Increment the value...
 intMaxID += 1
 End If

 After you get the integer part, you build a new primary key in the strID variable by concatenating
the numeric value contained in the intMaxID variable with the prefix DM :

 ‘ Finally, set the new ID...
 strID = “DM” & intMaxID.ToString

 Next, you build the SQL statements to insert a new row of data into the titles and titleauthor
tables. If you look closely, there are two separate INSERT statements in the CommandText property
of your objCommand object. The two INSERT statements are separated by a semicolon, which enables
you to concatenate multiple SQL statements. The SQL statements that you build use placeholders that
get filled in by the SqlParameter objects.

 Note that because of the relationship between the titles table and the authors table, you must first
insert a new title for an author into the titles table and then insert the relationship between the title
and the author in the titleauthor table. You ’ ll notice that your INSERT statements are specifying
the columns that you want to insert data into and then the values that are to be inserted, some of which
are represented by placeholders.

 You have seen the properties of the SqlCommand object before. This time, however, you are using
properties rather than the constructor. You set the Connection property to an SqlConnection object
and then set the CommandText property to the SQL string that you want executed, in this case, the two
separate INSERT statements:

 objCommand.Connection = objConnection
 objCommand.CommandText = “INSERT INTO titles “ & _
 “(title_id, title, type, price, pubdate) “ & _
 “VALUES(@title_id,@title,@type,@price,@pubdate);” & _
 “INSERT INTO titleauthor (au_id, title_id) VALUES(@au_id,@title_id)”

c17.indd 602c17.indd 602 4/1/08 6:40:12 PM4/1/08 6:40:12 PM

603

Chapter 17: Database Programming with SQL Server and ADO.NET

 You then add entries to the Parameters collection property for each of your placeholders in the
preceding SQL statements. Where the same parameter name is used twice in the CommandText
property — as title_id is here — you need only one SqlParameter object:

 ‘ Add parameters for the placeholders in the SQL in the
 ‘ CommandText property...

 ‘ Parameter for the title_id column...
 objCommand.Parameters.AddWithValue (“@title_id”, strID)

 ‘ Parameter for the title column...
 objCommand.Parameters.AddWithValue (“@title”, txtBookTitle.Text)

 ‘ Parameter for the type column
 objCommand.Parameters.AddWithValue (“@type”, “Demo”)

 ‘ Parameter for the price column...
 objCommand.Parameters.AddWithValue _
 (“@price”, txtPrice.Text).DbType = DbType.Currency

 ‘ Parameter for the pubdate column
 objCommand.Parameters.AddWithValue (“@pubdate”, Date.Now)

 ‘ Parameter for the au_id column...
 objCommand.Parameters.AddWithValue (“@au_id”, BindingContext _
 (objDataView).Current(“au_id”))

 For the @title_id parameter, you use the strID variable that you created and set earlier in this
method. For the @title parameter, you use the text in the Book Title text box entered by the user. For
the @price parameter, you use the text in the Price text box. However, the Text property is a String .
SQL Server cannot automatically convert between a String and a Currency data type, so you specify
that the parameter is of the DbType.Currency data type.

 For @au_id you need to use the ID of the currently selected author. There are no bound controls for
the au_id column, so you need to use some code to obtain the value. Take a close look at that
particular statement:

BindingContext(objDataView).Current(“au_id”)

 Here you are getting the form ’ s BindingContext for the objDataView data source, which is the one
you ’ re using for all of your bound controls. When you ’ re accessing a DataView through
 BindingContext , the Current property returns a DataRowView object. This object represents the view
of the particular row that the user is currently looking at. You are then able to select a particular column
from that row, thus giving you a specific value. Here, of course, you are obtaining the au_id column.

 The remaining parameters mark that the new record is a Demo record and timestamp the record with
the current date and time:

 ‘ Parameter for the type column
 objCommand.Parameters.AddWithValue (“@type”, “Demo”)

 ‘ Parameter for the pubdate column
 objCommand.Parameters.AddWithValue (“@pubdate”, Date.Now)

c17.indd 603c17.indd 603 4/1/08 6:40:13 PM4/1/08 6:40:13 PM

604

Chapter 17: Database Programming with SQL Server and ADO.NET

 After you add all your parameters, you execute the command using the ExecuteNonQuery method.
This causes your SQL statements to be executed and the data inserted. After your new data is inserted,
you close the database connection.

 This is the one spot in your code that is really subject to failure, so very basic error handling is
included here. You execute your INSERT statement inside the Try block of your error handler, and if
an error is encountered, the code in the Catch block will be executed. The code there simply displays
a message box that shows the error encountered:

 ‘ Execute the SqlCommand object to insert the new data...
 Try
 objCommand.ExecuteNonQuery()
 Catch SqlExceptionErr As SqlException
 MessageBox.Show(SqlExceptionErr.Message)
 Finally
 ‘ Close the connection...
 objConnection.Close()
 End Try

 Then the FillDataSetAndView and BindFields procedures are called to reload the DataView object
and to clear and rebind your controls. This ensures that you get all new data added, updated, or
deleted in the tables in SQL Server.

 You then reposition the DataView object back to the record that was being displayed by setting the
 Position property of the CurrencyManager using the intPosition variable. This variable was set
using the current record position at the beginning of this procedure.

 The position that you set here is only approximate. It does not take into account any records that have
been inserted or deleted by someone else or you. It is possible that the title you just inserted for a specific
author could be returned prior to the title that was displayed before. If you need more detailed control
over the actual record position, you need to add more code to handle finding and displaying the exact
record that was displayed; however, this is beyond the scope of this book.

 After you reposition the record that is being displayed, you call the ShowPosition procedure to show
the current record position.

 Finally, you display a message in the status bar indicating that the record has been added.

 In the next Try It Out, you code the btnUpdate_Click procedure. This procedure is a little simpler
because all you need to do is update existing records in the titles table. You do not have to add any
new records, so you do not have to select any data to build a primary key.

c17.indd 604c17.indd 604 4/1/08 6:40:13 PM4/1/08 6:40:13 PM

605

Chapter 17: Database Programming with SQL Server and ADO.NET

Try It Out Updating Records
 1. To the btnUpdate_Click event procedure, add the following highlighted code:

Private Sub btnUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnUpdate.Click

 ‘ Declare local variables and objects...
 Dim intPosition As Integer
 Dim objCommand As SqlCommand = New SqlCommand()

 ‘ Save the current record position...
 intPosition = objCurrencyManager.Position

 ‘ Set the SqlCommand object properties...
 objCommand.Connection = objConnection
 objCommand.CommandText = “UPDATE titles “ & _
 “SET title = @title, price = @price WHERE title_id = @title_id”
 objCommand.CommandType = CommandType.Text

 ‘ Add parameters for the placeholders in the SQL in the
 ‘ CommandText property...

 ‘ Parameter for the title field...
 objCommand.Parameters.AddWithValue (“@title”, txtBookTitle.Text)

 ‘ Parameter for the price field...
 objCommand.Parameters.AddWithValue (“@price”, txtPrice.Text).DbType _
 = DbType.Currency

 ‘ Parameter for the title_id field...
 objCommand.Parameters.AddWithValue _
 (“@title_id”, BindingContext(objDataView).Current(“title_id”))

 ‘ Open the connection...
 objConnection.Open()

 ‘ Execute the SqlCommand object to update the data...
 objCommand.ExecuteNonQuery()

 ‘ Close the connection...
 objConnection.Close()

 ‘ Fill the DataSet and bind the fields...
 FillDataSetAndView()
 BindFields()
 ‘ Set the record position to the one that you saved...
 objCurrencyManager.Position = intPosition

 ‘ Show the current record position...
 ShowPosition()

 ‘ Display a message that the record was updated...
 ToolStripStatusLabel1.Text = “Record Updated”

End Sub

c17.indd 605c17.indd 605 4/1/08 6:40:13 PM4/1/08 6:40:13 PM

606

Chapter 17: Database Programming with SQL Server and ADO.NET

 2. Run your project. You can update the price of the book that you have just added, or you can
update the price of another book. Choose a book, change the price in the Price field, and then
click the Update button.

 When the record has been updated, you see the appropriate message in the status bar and the
record will still be the current record, as shown in Figure 17 - 12 :

Figure 17-12

 How It Works
 As always, the first thing that you want to do is declare your variables and objects. You need one
variable to save the current record position and one object for the SqlCommand object . Next, you
save the current record position just as you did in the last procedure.

 By adding the following code, you set the Connection property of the SqlCommand object using your
 objConnection object. Then you set the CommandText property using an SQL string. The SQL string
here contains an UPDATE statement to update the title and price columns in the titles table. Note
that there are three placeholders in this UPDATE statement. Two placeholders are for the title and
 price , and one is for the title_id in the WHERE clause:

 ‘ Set the SqlCommand object properties...
 objCommand.Connection = objConnection
 objCommand.CommandText = “UPDATE titles “ & _
 “SET title = @title, price = @price WHERE title_id = @title_id”
 objCommand.CommandType = CommandType.Text

 Again, after you set the CommandText property, you set the CommandType property to indicate that
this is an SQL string.

 You need to add the appropriate parameters to the Parameters collection. The first parameter
that you add is for the title column in your UPDATE statement. The title of the book is coming from
the Text property of the txtBookTitle text box on your form.

c17.indd 606c17.indd 606 4/1/08 6:40:14 PM4/1/08 6:40:14 PM

607

Chapter 17: Database Programming with SQL Server and ADO.NET

 The second parameter is for the price in your UPDATE statement. This parameter is used to update
the price of a book, and the data is coming from the txtPrice text box on your form. Once again, you
need to set the DbType explicitly for this parameter.

 This last parameter was for your WHERE clause in the UPDATE statement. The data for the Value
property comes directly from the form ’ s BindingContext , as the au_id did in the Adding Records
example.

 The rest of the procedure is similar to the btnAdd_Click event procedure.

 You code the final procedure, btnDelete_Click , in the next Try It Out.

 Try It Out Deleting Records

 1. To include delete functionality in your project, add the following highlighted code to the
 btnDelete_Click event procedure:

Private Sub btnDelete_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnDelete.Click

 ‘ Declare local variables and objects...
 Dim intPosition As Integer
 Dim objCommand As SqlCommand = New SqlCommand()

 ‘ Save the current record position - 1 for the one to be
 ‘ deleted...
 intPosition = Me.BindingContext(objDataView).Position - 1

 ‘ If the position is less than 0 set it to 0...
 If intPosition < 0 Then
 intPosition = 0
 End If

 ‘ Set the Command object properties...
 objCommand.Connection = objConnection
 objCommand.CommandText = “DELETE FROM titleauthor “ & _
 “WHERE title_id = @title_id;” & _
 “DELETE FROM titles WHERE title_id = @title_id”
 ‘ Parameter for the title_id field...
 objCommand.Parameters.AddWithValue _
 (“@title_id”, BindingContext(objDataView).Current(“title_id”))

 ‘ Open the database connection...
 objConnection.Open()

 ‘ Execute the SqlCommand object to update the data...
 objCommand.ExecuteNonQuery()

 ‘ Close the connection...
 objConnection.Close()

 ‘ Fill the DataSet and bind the fields...

c17.indd 607c17.indd 607 4/1/08 6:40:14 PM4/1/08 6:40:14 PM

608

Chapter 17: Database Programming with SQL Server and ADO.NET

 FillDataSetAndView()
 BindFields()

 ‘ Set the record position to the one that you saved...
 Me.BindingContext(objDataView).Position = intPosition

 ‘ Show the current record position...
 ShowPosition()

 ‘ Display a message that the record was deleted...
 ToolStripStatusLabel1.Text = “Record Deleted”

End Sub

 2. To test this functionality, run your project, choose any book that you want to delete, and then
click the Delete button. Keep in mind, however, that the Pubs database is a sample database
for everyone to use, and it ’ s probably a good idea to delete a book that you have added.
Before you delete a book, however, take note of the record count that is displayed on the form
(see Figure 17 - 13). You may see an error because of a constraint in the database. This is
because there is sales data for this book. Find the book you added and it will not have sales
data associated with it.

Figure 17-13

 After the delete has been performed, you will see one less record in the record count on the form.

 How It Works
 This procedure is a little more involved than the btnUpdate_Click procedure, because of the
relationship of titles to authors . Remember that there is a relationship table to join authors and
 titles . You must delete the row in the titleauthor relationship table before you can delete the row
of data in the titles table. Therefore, you need two DELETE statements in your SQL string.

 Note that this time after you declare your variables, you specify the Position property minus 1. This
allows the user to be on the last record and delete it. You also allowed the user to be on the first record
as you check the value of the intPosition variable. If it is less than 0, you know that the user was on

c17.indd 608c17.indd 608 4/1/08 6:40:14 PM4/1/08 6:40:14 PM

609

Chapter 17: Database Programming with SQL Server and ADO.NET

the first record, so you set it to 0; this means that when you restore the record position later, it is once
again on the first record.

 Note also that you did not use the CurrencyManager object this time. Instead, you used the
 BindingContext object and specified the objDataView object as the object to be manipulated.
Remember that the BindingContext object is automatically part of the form, and there is nothing you
need to do to add it. The reason for using the BindingContext object here is to demonstrate how to
use it and so that you know that you do not have to use the CurrencyManager object to navigate the
records contained in the objDataView :

 ‘ Declare local variables and objects...
 Dim intPosition As Integer
 Dim objCommand As SqlCommand = New SqlCommand()

 ‘ Save the current record position - 1 for the one to be
 ‘ deleted...
 intPosition = Me.BindingContext(objDataView).Position - 1

 ‘ If the position is less than 0 set it to 0...
 If intPosition < 0 Then
 intPosition = 0
 End If

 When you set the properties of your SqlCommand object, the SQL string specified in the CommandText
property contains two DELETE statements separated by a semicolon. The first DELETE statement
deletes the relationship between the titles and authors tables for the book being deleted. The
second DELETE statement deletes the book from the titles table:

 ‘ Set the Command object properties...
 objCommand.Connection = objConnection
 objCommand.CommandText = “DELETE FROM titleauthor “ & _
 “WHERE title_id = @title_id;” & _
 “DELETE FROM titles WHERE title_id = @title_id”

 Again, you use placeholders for the primary keys in WHERE clauses of your DELETE statements.

 This statement uses only one parameter. The next line sets it up in the normal way:

 ‘ Parameter for the title_id field...
 objCommand.Parameters.AddWithValue (“@title_id”, _
BindingContext(objDataView).Current(“title_id”))

 The rest of the code is the same as the code for the previous two methods, and should be familiar by
now. That wraps up this project. Hopefully you will walk away with some valuable knowledge about
data binding and how to perform inserts, updates, and deletes using SQL to access a database.

 Remember that error handling is a major part of any project. Except for one place in your code, it was
omitted to conserve space. You also omitted data validation, so trying to insert a new record with no
values could cause unexpected results and errors. Now, let ’ s take a look at a terrific new feature,
LINQ to SQL.

c17.indd 609c17.indd 609 4/1/08 6:40:15 PM4/1/08 6:40:15 PM

610

Chapter 17: Database Programming with SQL Server and ADO.NET

 LINQ to SQL
 One of the new features in Visual Studio 2008 is Language - Integrated Query (LINQ). At its heart, LINQ
is a simple Object Relational Mapping (ORM) implantation. LINQ allows you, the programmer, to
quickly design objects that are mapped to your SQL relational data and program against them in your
favorite .NET language. You get the benefits of full IntelliSense and a structure similar to one you are
used to when dealing with objects. With LINQ to SQL, you can query, update, insert, and delete your
data. Also, you can call stored procedures. As you will see in just a bit, this is amazing.

 LINQ can be used to query more than databases. In fact, LINQ can be used to integrate any object that
supports the IEnumerable < T > interface. This means any array, collection, dictionary, and so on can be
queried by LINQ. LINQ to SQL includes the designer for mapping tables, views and other database
objects to .NET classes called Entity classes. When you instantiate an Entity class in your code it is called
an Entity.

 This book just brushes the surface of what LINQ can do. With no SQL at all, you populate a
DataGridView with data from the Pubs database. Let ’ s get to it.

Try It Out Query a database with LINQ
 1. Create a new Windows Forms application called LinqToSQL .

 2. Next, add a new LINQ to SQL Classes item to the project. Name it Pubs.dbml . To add this,
right - click the project in Solution Explorer, choose Add New Item, and select LINQ to SQL
Classes under Common Items.

 3. Use the Object Relational Designer to create the Entity classes you need. To do this, open
Server Explorer and click the icon to Connect to a Database and complete the Add Connection
Wizard shown in Figure 17 - 14 .

 If you move this to another server, you will need to change the Connection String of the DataContext
Object the wizard creates. To do this, double - click the dbml file the wizard creates and select the
PubsDataContext object. In the Connection, you can change the server to point to the new server
and make other adjustments such as user name and password.

c17.indd 610c17.indd 610 4/1/08 6:40:15 PM4/1/08 6:40:15 PM

611

Chapter 17: Database Programming with SQL Server and ADO.NET

 4. Change the Data Source to Microsoft SQL Server (SqlClient). Put in your server name. Choose
the type of authentication and user information to login to your database server. For database
name, enter pubs . Click the Test Connection button to verify your choices. When you get a
valid connection, click OK.

 5. Now, expand the new Data Connection in Server Explorer and view the tables as shown in
Figure 17 - 15 . Drag the authors table and the titleauthor table on to the designer. You will
not use the titleauthor table in this Try It Out, but notice the relationship created for you
by the Designer.

Figure 17-14

Figure 17-15

c17.indd 611c17.indd 611 4/1/08 6:40:15 PM4/1/08 6:40:15 PM

612

Chapter 17: Database Programming with SQL Server and ADO.NET

 6. Save the project.

 7. On the form add a DataGridView with the default properties. Increase the width of the form
and DataGridView so you can display more fields on the form.

 8. Go to the code behind next. In the form1 load sub, add the following code.

 Dim PubsDB As New PubsDataContext
 Dim authors = From author In PubsDB.authors _
 Where author.state = “CA”
 DataGridView1.DataSource = authors

 9. Run the application to see all authors in California. You should see a form like Figure 17 - 16 .

Figure 17-16

Figure 17-17

 10. Add the following code to form load. Here you are selecting a single row from the database.
Run the application and notice the new form title as shown in Figure 17 - 17 .

Dim author1 = PubsDB.authors.SingleOrDefault(Function(au) au.au_id = “172-32-1176”)
Me.Text = author1.au_fname + “ “ + author1.au_lname

c17.indd 612c17.indd 612 4/1/08 6:40:16 PM4/1/08 6:40:16 PM

613

Chapter 17: Database Programming with SQL Server and ADO.NET

 11. Add the following code to form load between the last two lines you added. Here you are
selecting a single row from the database and then changing it. Run the application and note
the new form title and the updated grid last name as shown in Figure 17 - 18 .

Dim author1 = PubsDB.authors.SingleOrDefault(Function(au) au.au_id = “172-32-1176”)

author1.au_lname = “Test”
PubsDB.SubmitChanges()

Me.Text = author1.au_fname + “ “ + author1.au_lname

Figure 17-18

 How It Works
 This application shows just how amazing LINQ is to developers. By writing one simple VB query and
binding to a DataGridView, you were able to filter records from an object. In this case, it was an Entity
class representing a database table. First, you declare a new instance of the PubsDataContext as
 PubsDB . PubsDB is now considered an entity.

Dim PubsDB As New PubsDataContext

 Next, you declare an object named authors to hold the results of the query against the authors table.
The query is a simple where clause for all authors in the state “ CA ” .

Dim authors = From author In PubsDB.authors _
 Where author.state = “CA”

 The third line simply binds the result of the LINQ query to the DataGridView.

DataGridView1.DataSource = authors

c17.indd 613c17.indd 613 4/1/08 6:40:16 PM4/1/08 6:40:16 PM

614

Chapter 17: Database Programming with SQL Server and ADO.NET

 The last four lines were added to allow data updates. First, you selected a single row using the
 SingleOrDefault method. If the database might return nothing, you need to use this method
otherwise you can use the method Single . Once you get an instance of a single author, you can
update any column. You updated the last name to “ Test ” . To push the changes to the database, just
call SubmitChanges() . Finally, you put the new value in the title of the form:

Dim author1 = PubsDB.authors.SingleOrDefault(Function(au) au.au_id = “172-32-1176”)
author1.au_lname = “Test”
PubsDB.SubmitChanges()
Me.Text = author1.au_fname + “ “ + author1.

 Now, that was what you call easy. You should use the IntelliSense to view the objects, properties, and
methods available to you with LINQ. It is a simple way to work with your data. In the chapter exercises,
you get to research LINQ to Objects and write a query against a dictionary object.

 Summary
 This chapter covers a few very important ADO.NET classes, particularly the SqlConnection ,
 SqlDataAdapter , SqlCommand , and SqlParameter classes. You saw firsthand how valuable these
classes can be when selecting, inserting, updating, and deleting data. These particular classes are
specifically for accessing SQL Server, but similar principles apply to the OLE DB counterparts.

 You also saw the DataSet and DataView classes from the System.Data namespace put to use, and you
used both of these classes to create objects that were bound to the controls on your forms. Of particular
interest to this discussion is the DataView object, as it provides the functionality to perform sorting and
searching of data. The DataView class provides the most flexibility between the two classes, because you
can also present a subset of data from the DataSet in the DataView .

 You saw how easy it is to bind the controls on your form to the data contained in either the DataSet or
the DataView . You also saw how to manage the navigation of the data in these objects with the
 CurrencyManager class. This class provides quick and easy control over the navigation.

 This chapter has demonstrated using manual control over the navigation of data on the form and
manual control over the insertion, update, and deletion of data in a data store. You should use the
techniques that you learned in this chapter when you need finer control of the data, especially when
dealing with complex table relationships such as you have dealt with here.

 You also got a taste of LINQ. LINQ is a topic that deserves an entire book, but you saw how powerful it
is. In a few lines of code (no SQL), you were able to write a query to filter a group of objects like you can
in SQL.

c17.indd 614c17.indd 614 4/1/08 6:40:17 PM4/1/08 6:40:17 PM

615

Chapter 17: Database Programming with SQL Server and ADO.NET

 To summarize, after reading this chapter you should:

 Feel comfortable using the ADO.NET classes discussed in this chapter

 Know when to use the DataSet class and when to use the DataView class

 Know how to bind controls on your form manually to either a DataSet or a DataView object

 Know how to use the CurrencyManager class to navigate the data in a DataSet or DataView
object

 Know how to sort and search for data in a DataView object

 Be familiar with the Object Relational Desiner in Visual Studio

 Know how to use LINQ to query an Entity Class

 Exercises
 1. Create a Windows Forms application that will display data to the user from the Authors table in

the Pubs database. Use a DataGridView object to display the data. Use the simple select state-
ment here to get the data:

Select * From Authors

 2. Looking at the DataGridView, it is not very user - friendly. Update the column headings to make
more sense. If you know SQL, you can give each column an alias. The current column header
names are au_id , au_lname , au_fname , phone , address , city , state , zip , and contract .
The solution to this exercise will give each column an alias in SQL.

 3. Create a Windows Forms application. On form1, add a ListBox named ListBox1. On form load,
create a dictionary object with key/value pairs of names and states of your friends. Now, write a
query to return all of your friends in a certain state. Take your result and bind it to the ListBox
using a for each loop. You may need to add a reference to System.Data.Linq .

❑

❑

❑

❑

❑

❑

❑

c17.indd 615c17.indd 615 4/1/08 6:40:17 PM4/1/08 6:40:17 PM

c17.indd 616c17.indd 616 4/1/08 6:40:17 PM4/1/08 6:40:17 PM

18
 ASP.NET

 As we look to the future, the Internet is sure to increase its presence in business. Developers need
to gain knowledge of building robust, dynamic web sites. In this chapter, you will learn about
building Web Forms applications. You will focus on the basics for web site development and move
to database - driven applications. With Visual Studio 2008, you will be building data - driven sites in
no time.

 Visual Studio 2008 is the best tool for creating ASP.NET sites on the market today. It provides you
with the best Intellisense, debugging, and control library to create web sites written in Visual Basic.
You can build ASP.NET web sites (sometimes referred to as Web Forms applications), web services
and even sites targeted for mobile devices in VS 2008. Also, you do not need IIS or any web server
to host your site with VS 2008; ASP.NET Development Server is a built - in web server you can use
to host your sites while developing them.

 In this chapter, you will:

 Look at a basic overview of web applications (thin - client applications)

 See the advantages of Web Forms versus Windows Forms

 Understand the control toolbox

 Explore client and server processing

 Assess the possible locations for web sites in VS 2008 (IIS and ASP.NET Development
Server)

 Error handling has been omitted from all of the Try It Outs in this chapter to save space. You
should always add the appropriate error handling to your code. Review Chapter 10 for
error - handling techniques.

 Before you get your first look at the code, you will have a short lesson on the building blocks
developers use to create web applications.

❑

❑

❑

❑

❑

c18.indd 617c18.indd 617 4/1/08 6:40:45 PM4/1/08 6:40:45 PM

618

Chapter 18: ASP .NET

 Thin - Client Architecture
 In previous chapters, you have seen thick - client applications in the type of Windows Forms applications.
Most of the processing is completed by the client application you built earlier, and many of the
applications stood on their own and needed no other applications or servers. In web development, on
the other hand, most of the processing is completed on the server and then the result is sent to the
browser.

 When you develop Web Forms applications, you do not have to distribute anything to the user. Any user
who can access your web server and has a web browser can be a user. You must be careful with the
amount of processing you place on the client. When you design a thin - client system, you must be aware
that your users or customers will use different clients to access your application. If you try to use too
much processing on the client, it may cause problems for some users. This is one of the major differences
between Windows and Web Forms applications. You will learn about the major difference between these
two types of Visual Studio 2008 applications later in this chapter.

 When dealing with a Windows Forms application, you have a compiled program that must be
distributed to the user ’ s desktop before they can use it. Depending upon the application, there may also
be one or more supporting DLLs or other executables that also need to be distributed along with the
application.

 In thin - client architecture, there is typically no program or DLL to be distributed. Users merely need to
start their browsers and enter the URL of the application web site. The server hosting the web site is
responsible for allocating all resources the web application requires. The client is a navigation tool that
displays the results the server returns.

 All code required in a thin - client application stays in one central location: the server hosting the web site.
Any updates to the code are immediately available the next time a user requests a web page.

 Thin - client architecture provides several key benefits. First and foremost is the cost of initial distribution
of the application — there is none. In traditional client/server architecture, the program would have to
be distributed to every client who wanted to use it, which could be quite a time - consuming task if the
application is used in offices throughout the world.

 Another major benefit is the cost of distributing updates to the application — again, there is none. All
updates to the web site and its components are distributed to the web server. Once an update is made, it
is immediately available to all users the next time they access the updated web page. In traditional
client/server architecture, the updated program would have to be distributed to every client, and the
updates could take days or weeks to roll out. Thin-client architecture allows a new version of an
application to be distributed instantly to all the users without having to touch a single desktop.

 Another major benefit is that you can make changes to the back - end architecture and not have to worry
about the client. Suppose, for example, that you want to change the location of the database from a
low - end server to a new high - end server. The new server would typically have a new machine name. In
a traditional client/server application, the machine name of the database server is stored in the code or
Registry setting. You would need to modify either the code or the Registry setting for every person who
uses the application. In thin - client architecture, you simply need to update the setting of the web server
to point to the new database server and you are in business, and so are all of the clients.

c18.indd 618c18.indd 618 4/1/08 6:40:46 PM4/1/08 6:40:46 PM

619

Chapter 18: ASP .NET

 You can see that in a thin - client architecture model, any client with a browser can access your web site
and immediately have access to updates. In fact, if your changes were transparent to the user, the client
wouldn ’ t even know that changes had been made.

 Now that you have a basic understanding of thin - client architecture, look at how Web Forms work.

 Web Forms versus Windows Forms
 In this section, you will get an overview of the advantages of both Windows Forms and Web Forms. This
will give you an idea of when you build each type of application to solve a customer ’ s problem. You will
almost always have to choose between these two types of architecture when building solutions. It is
important to understand some of the advantages of both.

 Windows Forms Advantages
 Windows Forms applications have advantages in some types of systems. Typically, applications that
require a responsive interface, such as a point - of - sale system at a retail store, are Windows Forms
applications. Also, in most cases, processor - intensive applications such as games or graphics programs
are better suited to a Windows Forms program.

 A major advantage for Windows Forms is trust. When a user installs the application, it is given trust in
the current zone. With this high-enough level of trust, you can store data and state about the current
session on the local computer. The user can run the application and it can interact with the local file
system or Registry seamlessly. Trust is very limited, however, for an Internet application.

 Another advantage is having control over the client application. This allows you to build a very
powerful, rich, user interface. You will see that there are numerous controls not available to a Web Form
(although this is becoming less of a difference) that permit the developer to create user - friendly
applications. Windows Forms allow for a more ample user interface.

 Also, application responsiveness is an advantage with Windows Forms. With most or all of the
processing being done on the client, the need to send data over the wire can be reduced. Any amount of
data sent to servers can cause latency. For an application running locally on a computer, the normal
events are handled more quickly. Also, the speed of data transmission over a local network is much
faster than the typical Internet connection. This speed will allow data to move across the wire faster and
create less of a bottleneck for the user.

 Web Forms Advantages
 The advantages of Web Forms may seem to be greater than the advantages of Windows Forms. Do not
permit this to transform you into a full - time web developer for every project. There will always be times
when Windows Forms are a better solution.

 The greatest advantage for a web application is distribution. To distribute a Web Forms application, just
install it on the web server. That is it. No need to create an installation for every version of Windows and
ship CDs. When you make a change, just publish the change to the web server, and the next time a
customer comes to the site, he or she will use the latest application.

c18.indd 619c18.indd 619 4/1/08 6:40:46 PM4/1/08 6:40:46 PM

620

Chapter 18: ASP .NET

 Version control, or change control, is another advantage. With all of your application code at the same
location, making changes is a breeze. You never have to worry about one user on version 8 and another
on version 10; all users access the same application. As soon as you publish the change, all users see the
update with no user intervention necessary.

 Have you heard the term platform independence ? Web applications have it. It doesn ’ t matter what type of
computer the user has — as long as there is a browser and a connection to your web server, the user can
access your application. There is no need to build application versions for different operating systems.

 These advantages can add up to millions of dollars of savings over a Windows application. Being able to
make quick changes and maintain one code base are great advantages. Still, there are times when a web
application will not provide an adequate user experience. Make sure you evaluate both options for every
project. Now, let ’ s look more closely at Web Forms development.

 Web Applications: The Basic Pieces
 In its simplest form, a web application is just a number of web pages. For the user to access the web
pages, there must be a web server and browser. A request is made by the browser for the page on the
server. The server then processes the web page and returns the output to the browser. The user sees
the page inside the browser window. The pages that the users see may contain HyperText Markup
Language (HTML), cascading style sheets (CSS), and client - side script. Finally, the page displays in the
browser for the user.

 In this section, you will receive a basic overview of each piece of the system.

 Web Servers
 There are many web servers on the market today. The most well known web servers in use today are
Microsoft Internet Information Services (IIS) and Apache. For this book, you will focus exclusively on IIS.

 Browsers
 Every user of a Web Forms application must have a browser. The four most popular browsers are
Microsoft Internet Explorer (IE), Mozilla Firefox, Netscape, and Opera. When you develop public web
sites, you must be aware that the site may render differently in each browser. You will find that IE is the
most lenient when it comes to valid HTML. We will focus on IE 7 for this book.

 HyperText Markup Language
 Also known as HTML, this is the presentation or design layout of the web page. HTML is a tag - based
language that allows you to change the presentation of information. For example, to make text bold in
HTML, just place the < b > tag around the text. The following text is an example of HTML.

This is < b > bold < /b > in HTML.

c18.indd 620c18.indd 620 4/1/08 6:40:47 PM4/1/08 6:40:47 PM

621

Chapter 18: ASP .NET

 If the previous text is then rendered by a browser, it would be displayed like this:

This is bold in HTML.

 Browsers will interpret HTML and should conform to the standards from the World Wide Web
Consortium (W3C). The W3C was created to develop common protocols for the Web in the 1990s. You
can read more about the W3C at their web site, at www.w3.org/ .

 Although VS 2008 allows you to design ASP.NET web sites without firsthand knowledge of HTML, you
gain have hands - on exercises creating web pages with HTML later in the chapter.

 VBScript and JavaScript
 A major part of web development is client - side script. If you are creating an application for the public
that uses client - side script, you will need to use JavaScript for support in all browsers. VBScript is a
Microsoft - centric language that is more like Visual Basic syntax, so when developing an intranet site
where you can control which version of IE the user uses, you can use VBScript.

 Client - side scripting is typically used for data validation and dynamic HTML (DHTML). Validation
scripts enforce rules that may require the user to complete a field on the screen before continuing.
DHTML scripts allow the page to change programmatically after it is in memory on the browser.
Expanding menus is an example of DHTML. Currently, IE supports more DHTML than is required by
the W3C. This may cause you to have to create DHTML for each target browser.

 One of the great features of Visual Studio 2008 is the validation and navigation controls. You can drag
these controls onto your web page without writing any client - side script. In most instances, these
controls will manage, but for others, you will need to be self - sufficient in the creation of client - side script.
For this reason, you will write some of your own scripts later in this chapter.

 Cascading Style Sheets
 Cascading style sheets (CSS) allows for the separation of layout and style from the content of a web
page. You can use CSS to change fonts, colors, alignment, and many other aspects of web page
presentation. The best part of CSS is it can be applied to entire site. By using a master CSS page, you can
easily maintain and quickly change the look and feel of the entire web site by changing one page. You
will learn more about CSS in this chapter.

 Active Server Pages
 With Visual Studio 2008, a new version of Active Server Pages is here: ASP.NET. This new version makes
it even easier to create dynamic, data - driven web sites. This section will explain the features and benefits
of ASPX or Web Forms.

c18.indd 621c18.indd 621 4/1/08 6:40:47 PM4/1/08 6:40:47 PM

622

Chapter 18: ASP .NET

 Benefits of ASP.NET Web Pages
 When you create web applications, you could use many solutions. The most common types of pages are
Active Server Pages (.asp and .aspx), JavaServer Pages (.jsp), Cold Fusion Pages (.cfm) and basic
HTML (.htm or .html). In this book, you will mainly focus on ASPX, but you will see some HTML also.

 Execution time is one benefit in which ASP.NET stands out above the rest. When an ASP.NET page is
requested the first time, a compiled copy is placed into memory on the server for the next request. This
provides for great performance gains over interpreted languages.

 Using Visual Studio 2008 to design your applications also makes a big difference in productivity. The
.NET Framework supplies thousands of namespaces, objects, and controls for use developing Web
Forms applications. Also, ASP.NET also supports all .NET - compatible languages. By default, Visual
Basic 2008, C#, and JScript.NET are all available in Visual Studio 2008.

 Special Web Site Files
 When you work with ASP.NET, you will see many special files. These files are very important and each
could have an entire chapter written about it. The two files discussed here, global.asax and web.config,
enable you to make sitewide changes from one location. There is much more to learn about these, and
you can do research at http://msdn2.microsoft.com/ .

 Global.asax
 The global.asax file allows you to add code to certain application - level events. The most common events
are Application_Start , Application_End , Session_Start , Session_End , and Application_
Error . Application start and end events fire when the actual web application inside of IIS changes state.
This event will fire with the first request to a web site after the server or IIS is restarted. The session
events fire on a per user/browser session on the web server. When you save data to the user ’ s session,
you must be careful. This data will be saved for every user/browser that is browsing the application.
This can create an extra load on the server. The final event is Application_Error . You can use this to
log all unhandled events in one common place. Make sure to redirect users to a friendly error page after
logging the error.

 Web.config
 Web.config is exactly what it appears to be — a configuration file for the web application; it is an XML
document. You can update many application settings for security, errors, and much, much more. In most
production apps, you will store your connection string to the database here.

 Development
 As you build Web Forms applications in Visual Studio 2008, you will work in the IDE you are familiar
with from Windows Forms applications. As you work with web pages, you will have the option of using
what is known as a code - behind page. This will allow you to keep your application logic separate from the
presentation code. You will have three views to work from: Design, Source, and Code view, the common
ways to build applications. Design and Source view are for the .aspx page that contains the user
interface and data validation. The Code view is the .vb file that is the code - behind page. Visual Studio
2008 makes creating web applications an easy task.

c18.indd 622c18.indd 622 4/1/08 6:40:47 PM4/1/08 6:40:47 PM

623

Chapter 18: ASP .NET

 Controls: The Toolbox
 The default controls you will use to build web applications are all in the Toolbox. If you do not see the
Toolbox, press Ctrl+Alt+X to view it. The controls are organized by category. The categories along with
some controls are shown in Figure 18 - 1 . At left, the Toolbox is shown with just the categories; at center,
the Standard controls tab is expanded to show the list of controls; at right, the Data tab has been
expanded.

Figure 18-1

 The Toolbox is fully customizable. You can add, remove, or rearrange any tab or control by right - clicking the
Toolbox and using the context menu options. Also, you can copy common code snippets to the Toolbox
as a shortcut. To copy code to the Toolbox, highlight the text and drag it onto the tab where you want to
add the shortcut. Next, right - click the shortcut and rename it so that it makes sense. To insert code onto a
page, just drag the shortcut to the location where you want the code. In this chapter, you will gain
hands - on experience working with controls on many tabs.

 Building Web Applications
 In this section, you will create a small web application demonstrating different aspects of web
development. In accomplishing this, you will see how the basics of Web Forms applications work.

 Creating a Web Form for Client - and Server - Side
Processing

 The Web Form in this Try It Out will contain HTML and server controls. The HTML controls will have
client - side processing, and the server controls will process the code on the server.

c18.indd 623c18.indd 623 4/1/08 6:40:47 PM4/1/08 6:40:47 PM

624

Chapter 18: ASP .NET

 Try It Out Server and Client - Side Processing

 1. Start this project by choosing File New Web Site. Make sure Visual Basic is the language, and
select ASP.NET web site on the Templates pane. For the Location, change the drop - down box to
File System and enter [The default path for VS 2008] \Client_ServerProcessing . A default path
for Vista will look like C:\Users\Bryan\Documents\Visual Studio 2008\WebSites\
Client_ServerProcessing . Click OK to create a file system site that will use the built - in
development web server for testing. The New Web Site dialog box will look like Figure 18 - 2 .

Figure 18-2

 2. Visual Studio will create the default folders and files for the web site. Take a look at the Solution
Explorer window, shown in Figure 18 - 3 . The Default.aspx page will be open in the IDE.

Figure 18-3

 3. Add the following standard controls to Default.aspx while in Design mode. (To get to
Design mode, while viewing the .aspx page click the Design option on the lower left of the
pane, or simply press Shift+F7.) Do not worry about the position of the controls for now, but
make sure you use controls from the Standard and HTML tabs on the toolbox.

c18.indd 624c18.indd 624 4/1/08 6:40:48 PM4/1/08 6:40:48 PM

625

Chapter 18: ASP .NET

 The area at the bottom of the Default.aspx page that has Design, Split, Source, and other
HTML tags to the right is known as the tag navigator .

 First, add the controls to the form. You can arrange them in any order for now.

❑ From the Standard controls tab, add one Button and two Label controls.

❑ From the HTML controls tab, add one Input (Button) control.

 4. Now, change the properties of the controls. Refer to Figure 18 - 4 as a guide.

❑ Set the ID of the Standard:Button to btnServer and the Text to Server .

❑ Set the ID of the HTML:Input (Button) to btnClient and the Value to Client .

❑ Set the ID of the upper Standard:Label to lblServer and the Text to Server .

❑ Set the ID of the lower Standard:Label to lblClient and the Text to Client .

 5. You will have to enter line breaks and spaces on the page to move the controls around. This is
called relative positioning ; each control is placed relative to the previous control. You can also use
 absolute positioning , which is like what you are used to in Windows Forms applications. Arrange
the controls so they resemble Figure 18 - 4 . When you finish, press Ctrl+F5 to run the project
without debugging and see the page in the browser.

 6. Close the browser and go back to Visual Studio 2008. Double - click the btnServer to jump to
the btnServer_Click event handler. Depending on your settings, you will be either on the
code - behind page or working in the source of the .aspx page. Add the following
highlighted code to the event:

 Sub btnServer_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 lblServer.Text = “Changed”

 End Sub

Figure 18-4

c18.indd 625c18.indd 625 4/1/08 6:40:48 PM4/1/08 6:40:48 PM

626

Chapter 18: ASP .NET

 Run the program again by pressing Ctrl+F5 and test the button ’ s Click event. The label will
display Changed after you click the Server button.

 7. Create an event handler for the HTML Input (Button) and add a title to the page. (Make sure
you have the Default.aspx page open in the IDE and the Properties Window has DOCUMENT
selected.) To add a title, find the Title property and set it to My First Page . On the tag
navigator, click Source to change to HTML view. In the Client Object & Events combo box,
choose btnClient . Next, select onclick in the event combo box and add this highlighted code
to the event VS 2008 creates. Note: JavaScript is case sensitive.

function btnClient_onclick() {

 document.getElementById(“lblclient”).innerText = “Changed”;
 document.getElementById(“lblServer”).innerText = “Server”;

}

 8. Run the project again by pressing Ctrl+F5. Test both buttons.

 How It Works
 Now you can see that Web Forms development is very similar to Windows Forms development. This
is one of the benefits of .NET development and Visual Studio 2008. Microsoft has made it easy for any
developer to switch from device to web to Windows development with only a small learning curve.

 First, look at the HTML source. The first line of code is the Page directive:

 < %@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
 Inherits=”_Default” % >

 Depending on the mode you develop in, you may see different default attributes set by Visual Studio
2008. If you work with code in the .aspx page, only the Language attribute is set by Visual Studio 2008.

 The Page directive has over 30 attributes that can be set. I will discuss only the default attributes. If
you want to explore the rest, search for @Page in the help files for VS 2008 or on http://msdn2
.microsoft.com/ .

 Take a look at the default attributes in the Default.aspx page. First, you see the Language attribute.
This is set to the language that all server code will compile into. AutoEventWireup is the second
attribute. Visual Studio 2008 sets this attribute to false . If you leave this attribute out of the Page
directive, the default value is true , and certain events can be executed twice. Microsoft recommends
always setting the AutoEventWireup attribute to false . Next, you have the CodeFile attribute. This
is the page that contains the code when using a separate code file or the code - behind page. Finally,
there is the Inherits attribute. This is simply the class name the page will inherit from.

 The next line in the source code is the !DOCTYPE element. This tells IE 6 and later that the document
conforms to the XHTML 1.0 Document Type Definition (DTD) specified by the W3C for English:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd” >

 The actual HTML root element is next. You will see this element with no attributes set in many instances.
Here VS has specified that the namespace for custom tags will be http://www.w3.org/1999/xhtml .
If you browse to this site, you will see that this is the XHTML namespace defined by the W3C.

 < html xmlns=”http://www.w3.org/1999/xhtml” >

c18.indd 626c18.indd 626 4/1/08 6:40:49 PM4/1/08 6:40:49 PM

627

Chapter 18: ASP .NET

 After the root HTML element is the HEAD element. Children of this element are items that are not
rendered, but may affect how the page displays. You will place SCRIPT , META , TITLE , LINK , STYLE , and
other elements here to define the page ’ s look and feel. LINK and STYLE elements are both used for CSS.

 The first element is TITLE . This is the title the browser displays for the page. Next, there is a META
object that defines the client scripting language as VBScript . After the META object is the client script
you created.

 The root script tags define the section of the page that is available to add procedures. The only event
is the onclick event of the btnClient control. When you click the client button, this procedure
executes. The first line of the subroutine uses the getElementById function to find the object in the
document that has an ID of lblclient . Once it is found, the innerText is set to Changed . The same
function is used to find the lblServer object on the next line. The innerText is then changed to
 Server . This is added to reset the Server button ’ s label.

 < head runat=”server” >
 < title > My First Page < /title >

 < script language=”javascript” type=”text/javascript” >
// < !CDATA[

function btnClient_onclick() {
 document.getElementById(“lblclient”).innerText = “Changed”;
 document.getElementById(“lblServer”).innerText = “Server”;
}

//]] >
 < /script >
 < /head >

 What you may not notice is the difference in the way each button performs event handling. It is hard
to notice running locally, but go back to the web page and watch the status bar of the browser while
you click each button. When you click the Server button, the page actually calls the web server to
process the event. The Client button did not call back to the server; the browser handled the
event itself.

 Now, you are at the BODY tag. This is where Visual Studio adds the controls. All objects inside the FORM
tag are sent back to the server for processing.

 < body >
 < form id=”form1” runat=”server” >

 When you click the Server button, the form is actually submitted to the server. Here are two lines of
HTML that are sent to the browser from the ASP.NET DLL.

 < form name=”form1” method=”post” action=”Default.aspx” id=”form1” >
 < input type=”submit” name=”btnServer” value=”Server” id=”btnServer” / >

 You can look at the HTML source set to the browser by choosing View Source from the IE menu.

c18.indd 627c18.indd 627 4/1/08 6:40:49 PM4/1/08 6:40:49 PM

628

Chapter 18: ASP .NET

 The browser knows that btnServer is a submit button. The function of a submit button is to pass
form data back to a web server. In this case, the action is set to Default.aspx . The form uses the post
method to send data to Default.aspx . For most pages you will create, you can stay in design mode
and never look at the HTML if you are not comfortable with it.

 The final portion of the code displayed on the Default.aspx page was the markup for the controls.
These are the controls you placed onto the design area of the form.

 < div >
 < asp:Button ID=”btnServer” runat=”server” Text=”Server” / >
 & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
 < asp:Label ID=”lblServer” runat=”server”
Text=”Server” > < /asp:Label >
 < br / >
 < br / >
 < input id=”btnClient” type=”button” value=”Client” onclick=”return
btnClient_onclick()” / > [{[SPACE]}] & nbsp; & nbsp; & nbsp; & nbsp;
 < asp:Label ID=”lblClient” runat=”server”
Text=”Client” > < /asp:Label >
 < br / >
 < /div >
 < /form >
 < /body >
 < /html >

 Finally, look at the Default.aspx.vb page. In the code for the OnClick event of the btnServer
control, you set the text of the label to Changed .

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnServer_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles btnServer.Click
 lblServer.Text = “Changed”
 End Sub
End Class

 You have completed your first ASP.NET page. In this exercise, you saw a few basic controls and
learned that client and server code are handled differently. In the next section, you will learn where
you can host web sites with Visual Studio 2008.

 Web Site Locations with VS 2008
 When you create a new site, you will have a choice of locations for the site. The example in this chapter
uses the File System location for the web site, as shown in Figure 18 - 5 . One advantage of this location is
that the web server is not accessible to external users.

 Always make sure you test your site on the actual version of IIS running on the production server before
going live.

c18.indd 628c18.indd 628 4/1/08 6:40:50 PM4/1/08 6:40:50 PM

629

Chapter 18: ASP .NET

Figure 18-5

 There are three other ways to work with web site projects, as you can see in left panel of the Choose
Location window. The first is using local IIS (see Figure 18 - 6).

Figure 18-6

 If you have a local web server, you can host your application there. This allows others to see the site and
test it. The second option is to use an FTP site. In this case, you are most likely using a hosting company.
All you have to do is add the location and authentication information, and you can code your application
on the production server. You can see the setup screen for an FTP site in Figure 18 - 7 .

c18.indd 629c18.indd 629 4/1/08 6:40:50 PM4/1/08 6:40:50 PM

630

Chapter 18: ASP .NET

Figure 18-7

 The final option is a Remote Site. Again, this also may be used when you use a hosting company. If your
hosting company supports FrontPage Extensions, you can use this option as shown in Figure 18 - 8 .

Figure 18-8

 Performing Data Entry and Validation
 One of the basic functions of almost every web site is to gather some kind of information from the user. You
probably have seen screens that have links such as Contact us or Create an account. Any place you see a text
box on a web page, data entry and validation are probably taking place. In this Try It Out, you will learn the
basics of using built in validation controls and accessing the data the user enters into the web page.

c18.indd 630c18.indd 630 4/1/08 6:40:51 PM4/1/08 6:40:51 PM

631

Chapter 18: ASP .NET

Try It Out Data Entry and Validation

 1. Create a new web site and name it DataEntry by choosing File New Web Site from the menu.

 2. Add four labels, three text boxes, and one button to the Default.aspx page. Make sure you
use server controls from the Standard tab of the Toolbox. Using the format menu, set each
control ’ s positioning to absolute. Finally, align the controls to resemble Figure 18 - 9 .

Figure 18-9

 3. Set the properties of the eight controls and the document.

❑ Set the Title of the Document to Data Entry and Validation .

❑ Set the ID of the Button to btnComplete and the Text to Complete .

❑ Set the ID of the upper-left TextBox to txtFirstName .

❑ Set the ID of the upper-right TextBox to txtLastName .

❑ Set the ID of the lower TextBox to txtEmail .

❑ Set the ID of the upper-left Label to lblFirstName and the Text to First Name .

❑ Set the ID of the upper-right Label to lblLastName and the Text to Last Name .

❑ Set the ID of the middle Label to lblEmail and the Text to Email .

❑ Set the ID of the lower Label to lblWelcome and Text to Welcome .

c18.indd 631c18.indd 631 4/1/08 6:40:51 PM4/1/08 6:40:51 PM

632

Chapter 18: ASP .NET

 4. Test the page by pressing Ctrl+F5. When the page opens, you will test three items. First, enter
your name and e - mail and then click the Complete button. The page will post back to the
server, and the HTML returned will still have your data in the textboxes. This is default
behavior known as view state . Second, type the text < SCRIPT > alert “ Hi “ < /SCRIPT > into the
First Name text box and click Complete. You will see the error message shown in Figure 18 - 10 .
ASP.NET 3.5 has a feature called request validation that will check for any dangerous input
from the user unless you explicitly turn it off. Finally, test the tab order. You can control the
tab order by the order the controls appear in the HTML source or by the TabIndex property
on each control. Change the tab order if it is not correct.

Figure 18-10

 5. It is time to do something with the data the user enters. First, you need to open the code - behind
page. The easiest way to do this is press F7. Next, add an event handler for page load. To do
this, select _Default Events from the Objects combo box on the left and Load from the Events
combo box. Add the following highlighted code to update lblWelcome with the data input.

Protected Sub _Default_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If Page.IsPostBack Then
 ‘If this is a postback and not the initial page load
 ‘Display the data to the user
 Me.lblWelcome.Text = “Hello “ + Me.txtFirstName.Text + “ “ + _
 Me.txtLastName.Text + “ < BR > ” + “Your email address is “ + _
 Me.txtEmail.Text
 End If

End Sub

c18.indd 632c18.indd 632 4/1/08 6:40:51 PM4/1/08 6:40:51 PM

633

Chapter 18: ASP .NET

 6. Add validation to the input. Visual Studio has built - in controls just for this. To see the
controls, switch to Design mode by clicking the View Designer icon on the Solution Explorer.
Go to the Toolbox and find the Validation tab, which includes prebuilt controls to assist with
data validation. Add two RequiredFieldValidator controls and one ValidationSummary
control to the form. Use the layout menu to set each control ’ s positioning to absolute.

 Set the following properties for RequiredFieldValidator:

❑ Set ID to rfvFirstName.

❑ Set Display to None.

❑ Set ControlToValidate to txtFirstName.

❑ Set ErrorMessage to First name is required.

 Set the following properties for RequiredFieldValidator:

❑ Set ID to rfvEmail .

❑ Set Display to None.

❑ Set ControlToValidate to txtEmail.

❑ Set ErrorMessage to Email is required .

 Set ValidationSummary ’ s ID to ValidationSummary . Your page should look like Figure 18 - 11
when you finish.

Figure 18-11

c18.indd 633c18.indd 633 4/1/08 6:40:52 PM4/1/08 6:40:52 PM

634

Chapter 18: ASP .NET

 7. Run your project and try to submit blank entries for first name and e - mail. You will see two
error messages similar to those displayed in Figure 18 - 12 .

Figure 18-12

 This quick example explains how easy data validation is in ASP 3.5. Other controls are available for
enforcing data validation. The CompareValidator control tests a control to make sure it matches a value.
This value can be a constant, another control, or even a value from a data store. RangeValidator tests
that a value is within a specified range. For example, you can test to make sure a person is between 18
and 35 years old.

 How It Works
 Without writing any code, you are able to require that data entry fields are completed on a web page.
You take advantage of controls already created for quick and hearty data validation.

 You use the RequiredFieldValidator control to make sure the user entered data. You set a couple of
properties on the control. You set the ErrorMessage to a string that displays in the
ValidationSummary control. Setting Display= “ None ” causes the error message not to be shown
inside of the RequiredFieldValidator control. The required property, ControlToValidate, is set to the ID
of the control that was required.

 < asp:RequiredFieldValidator ID=”rfvFirstName” runat=”server”
ErrorMessage=”First name is required” Display=”None”
ControlToValidate=”txtFirstName” style=”z-index: 1;left: 272px;
top: 325px;position: absolute” >
 < /asp:RequiredFieldValidator >

c18.indd 634c18.indd 634 4/1/08 6:40:52 PM4/1/08 6:40:52 PM

635

Chapter 18: ASP .NET

 The style attribute is added by Visual Studio when using absolute positioning. With absolute
positioning, you can drag and drop controls basically where you want them.

 You use the ValidationSummary control as a central location for displaying all error messages. If you
decide not to use a summary object, you could set the display property of the individual validation
controls to true . Then, the error messages are displayed within the validation control. No property
changes are needed to use the ValidationSummary control. You just add it to the form at the location
you wanted to display validation messages.

 < asp:ValidationSummary ID=”ValidationSummary1” runat=”server”
style=”z-index: 1;
left: 9px;top: 313px;position: absolute;height: 38px;width: 882px” / >

The only code you write is added to the Page_Load event named _Default_Load . Here, you tested for a
postback using the IsPostBack property of the Page object. If it was a postback, you display the name
and e - mail entered by the user. You can still use the Page_Load event in VS 2008. To insert the event
automatically, go into design view on the aspx page and double - click on the page (not on any controls).
The event will be generated and you will be brought to the new event in the code behind.

If Page.IsPostBack Then
 ‘If this is a post back and not the initial page load
 ‘Display the data to the user
 Me.lblWelcome.Text = “Hello “ + Me.txtFirstName.Text + “ “ + _
 Me.txtLastName.Text + “ < BR > ” + “Your email address is “ + _
 Me.txtEmail.Text
End If

 Designing the Site ’ s Look and Feel
 In the past, a major drawback of web development was maintaining a consistent look and feel across
an entire site in a manageable way. Developers created user controls and inserted server - side includes
in every page to try and accomplish this. For the most part, this worked. The hard part was making
sure the opening tags that were in certain include files were closed in the pages that included them.
Another cause of frustration for the designer was making sure all user controls or include files
displayed in the same location. This took time, and with every changed page, someone had to make
sure the entire site looked OK. Today, Visual Studio 2008 has the tools that can be used to maintain a
consistent look and feel.

 Themes, navigation controls, and master pages are the tools to accomplish a consistent look and feel. You
will learn about all three in the next Try It Out.

c18.indd 635c18.indd 635 4/1/08 6:40:52 PM4/1/08 6:40:52 PM

636

Chapter 18: ASP .NET

Try It Out Building Your First Web Site
 1. Create a new site and name the project SiteLookAndFeel .

 2. To start the project, you add many files and folders. First, add a master page by right - clicking
the project name in Solution Explorer and selecting Add New Item from the context menu.
In the dialog box that opens, choose Master Page and click Add.

 3. Change the page directive on the Default.aspx page to reference the new master page:

 < %@ Page Language=”VB” AutoEventWireup=”false”
CodeFile=”Default.aspx.vb”
Inherits=”_Default” MasterPageFile=”~/MasterPage.master” % >

 4. Add the following new files and folders.

❑ Add a new Theme Folder under the root and name it Red . To do this, right - click the
solution in Solution Explorer and choose Add ASP.Net Folder Theme. This creates a
main folder named App_Themes and a subfolder. Name the subfolder Red. Under
App_Themes, add another ASP.Net folder named Brown . Next, add a new skin file
(Brown.skin) to the Brown subfolder. Also, add a new style sheet to the Brown folder and
name it Brown.css . To the Red subfolder, add three new text files. Name them Button.
Skin , TextBox.Skin , and Red.Skin .

❑ Under the root directory for the site, add five new Web Forms: News.aspx , NewsYesterday
.aspx , NewsToday.aspx , Events.aspx , and Contact.aspx . Make sure you select the check
box to choose a master page for each new Web Form. Place code in a separate file. After
you click Add, you will see a dialog box for choosing a master page with one option;
 MasterPage.master . Select MasterPage.master and continue for each new page.
If you forget to add the master page, you can add to the page declarations in Source view.

❑ Finally, add a new site map. Right - click the project in Solution Explorer and add a new
item. In the dialog box, select Site Map and click Add. You can leave the default name of
 Web.sitemap . When you finish, the Solution Explorer window will look like Figure 18 - 13 .

Figure 18-13

c18.indd 636c18.indd 636 4/1/08 6:40:53 PM4/1/08 6:40:53 PM

637

Chapter 18: ASP .NET

 5. Open the Web.sitemap file and update the code to match this code as highlighted:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < siteMap xmlns=”http://schemas.microsoft.com/AspNet/SiteMap-File-1.0” >

 < siteMapNode url=”Default.aspx” title=”Home”
 description=”Back to the main page” roles=”” >
 < siteMapNode url=”News.aspx” title=”News”
 description=”Your front page news.” roles=”” >
 < siteMapNode url=”NewsToday.aspx” title=”Today’s News”
 description=”Today’s top stories” roles=”” / >
 < siteMapNode url=”NewsYesterday.aspx” title=”Yesterday’s News”
 description=”Yesterday’s top stories” roles=”” / >
 < /siteMapNode >
 < siteMapNode url=”Events.aspx” title=”Upcoming Events”
 description=”Today’s top stories” roles=”” / >
 < siteMapNode url=”Contact.aspx” title=”Contact Us”
 description=”Today’s top stories” roles=”” / >
 < /siteMapNode >

 < /siteMap >

 6. Double - click the Brown.css style sheet in Solution Explorer to open the file. By default, it has
a blank definition for the BODY element in the file. To add a definition, you can hand - code it
after you learn the syntax, but for now use the built - in designer. Right - click anywhere on the
page and select Add Style Rule from the context menu. The Add Style Rule dialog box opens
as shown in Figure 18 - 14 . Select the HR element and add it to the style rule hierarchy by
clicking the right arrow button. When you click OK, an empty element with no style
definitions is added to the page.

Figure 18-14

 To add the style definitions you want to modify, you can use the Designer again or use
IntelliSense. To use the Designer, right - click inside of the element definition start and end tags
and select Build Style from the context menu. Open the Designer. The designer looks like
Figure 18 - 15 . To use IntelliSense, start typing inside any element and you will see all styles for
that element.

c18.indd 637c18.indd 637 4/1/08 6:40:53 PM4/1/08 6:40:53 PM

638

Chapter 18: ASP .NET

 Now, close the designer and add the following highlighted code to the HR definition by typing
the code, and you will see the IntelliSense feature:

HR
{

 color:#cc1800;
 height:12px;

}

Figure 18-15

 7. Define the master page layout. Double - click the MasterPage.master file in the root directory
to open the file. While in Source view, update the HTML code for the master page as
highlighted:

<%@ Master Language=”VB” CodeFile=”MasterPage.master.vb”
 Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>Untitled Page</title>

 <Style>
 .TableLayout {width: 700px; background-color:#ffcc66;}
 .border{border-style:solid; border-color:black;
 border-width:thin;}
 </Style>

</head>

<body bgcolor=”#cc0000”>

 <form id=”form1” runat=”server”>
 <div>

c18.indd 638c18.indd 638 4/1/08 6:40:54 PM4/1/08 6:40:54 PM

639

Chapter 18: ASP .NET

 <table id=”tblMasterLayoutHeader” class=”TableLayout”
 cellpadding=”0” cellspacing=”0” align=”center”
 height=”450”>
 <tr>
 <td style=”width: 100px” rowspan=2 class=”border”>
 <!-- Add the menu to the page -->
 <asp:Menu ID=”Menu1” Runat=”server” >
 <Items>
 <asp:MenuItem Value=”Home” Text=”Home”
 NavigateUrl=”Default.aspx”> </asp:MenuItem>
 <asp:MenuItem Value=”News” Text=”News”
 NavigateUrl=”News.aspx”>
 <asp:MenuItem Value=”Today” Text=”Today”
 NavigateUrl=”NewsToday.aspx”></asp:MenuItem>
 <asp:MenuItem Value=”Yesterday” Text =
 “Yesterday” NavigateUrl=”NewsYesterday.aspx”>
 </asp:MenuItem>
 </asp:MenuItem>
 <asp:MenuItem Value=”Events” Text=”Events”
 NavigateUrl=”Events.aspx”> </asp:MenuItem>
 <asp:MenuItem Value=”Contact Us” Text=”Contact Us”
 NavigateUrl=”Contact.aspx”> </asp:MenuItem>
 </Items>
 </asp:Menu>
 </td>
 <td bgcolor=”#000000” class=”border” >
 <!-- Main title -->
 <asp:Label ID=”Label1” Runat=”server” Text=”Beginning Visual
 Basic 2008” Font-Names=”Arial” Font-Bold=”true”
 ForeColor=”#ffcc33” Font-Size=”28pt” />
 </td>
 </tr>
 <tr>
 <td class=”border”>
 <!-- Site map path under Title -->
 <asp:SiteMapPath ID=”smpMain” Runat=”server”>
 </asp:SiteMapPath>
 </td>
 </tr>
 <tr>
 <td class=”border” colspan=”2” height=”100%” valign=”top”
 align=”center”>
 <!-- All site content will go here -->
 <asp:contentplaceholder id=”ContentPlaceHolder1”
 runat=”server”>
 </asp:contentplaceholder>

 </td>
 </tr>
 <tr>
 <td class=”border” align=”center” colspan=”2”>
 <!-- Footer -->
 <asp:Label ID=”Label2” Runat=”server” Text=”©2008, All rights
 reserved.” Font-Names=”Arial” Font-Bold=”true”
 ForeColor=”black” Font-Size=”10pt” ></asp:Label>

c18.indd 639c18.indd 639 4/1/08 6:40:54 PM4/1/08 6:40:54 PM

640

Chapter 18: ASP .NET

 </td>
 </tr>
 </table>

 </div>
 </form>
</body>
</html>

 8. Open the Default.aspx page. Make sure the Page declarations match these and add the
following.

 < %@ Page Language=”VB” MasterPageFile=”~/MasterPage.master”
 AutoEventWireup=”false”
ClassName=”Default_aspx” title=”Untitled Page” Theme=”Red”% >
 < asp:Content ContentPlaceHolderID=”ContentPlaceHolder1” Runat=”Server” >
 < asp:TextBox ID=”txtTest” Runat=”server” > Just some text < /asp:TextBox >
 < hr / > < br / >
 < asp:Button ID=”btnTest” Runat=”server” Text=”Button” / >
< /asp:Content >

 9. Change the News.aspx page to match the code here.

 < %@ Page Language=”VB” MasterPageFile=”~/MasterPage.master”
 AutoEventWireup=”false”
ClassName=”News_aspx” title=”Untitled Page” theme=”Brown”% >
 < asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server” >
 < asp:TextBox ID=”txtTest” Runat=”server” > Just some text < /asp:TextBox >
 < asp:Button ID=”btnTest” Runat=”server” Text=”Button” / >
< /asp:Content >

 10. Here is the code listing for the Button.Skin page under the Red theme. Open this page and
add the code listed here.

 < asp:Button runat=”server” ForeColor=”Red” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

 11. Open TextBox.Skin under the Red theme folder and add the code listed here.

 < asp:TextBox runat=”server” ForeColor=”Red” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

 12. Open Brown.Skin under the Brown theme folder and add the code listed here.

 < asp:Button runat=”server” ForeColor=”Brown” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >
 < asp:TextBox runat=”server” ForeColor=”Brown” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

 13. On the other Web Forms, you may need to change the ContentPlaceHolderID to
ContentPlaceHolder1. This is because you changed the master page after adding these forms.

c18.indd 640c18.indd 640 4/1/08 6:40:54 PM4/1/08 6:40:54 PM

641

Chapter 18: ASP .NET

So the second line of code for Contact.aspx, Events.aspx, NewsToday.aspx, and
NewsYesterday will be changed to the listing here:

 < asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server” > < /asp:Content >

 14. Run the application and test the navigation and layout. Play around; the site has a lot of
functionality. Pay close attention to the navigation controls. Your site will resemble Figure 18 - 16 .

Figure 18-16

 How It Works
 You are able to take advantage of some of the newest controls to ASP.NET 2.0 in this Try It Out. The
combination of these controls allows you to create a simple, yet powerful example of proper site
design and layout. The master page maintains the same page layout across the entire site. You add the
HTML used to lay out the look and feel of the site. All of the navigation for the entire site is located in
this one page. If you ever need to change the menu or site map, you could change one page and that
change would cascade across the entire site.

 ContentPlaceHolder offers a mistake - free way to add logic to each additional page. If you work in a
team, a designer would create the site layout and the master page.

c18.indd 641c18.indd 641 4/1/08 6:40:55 PM4/1/08 6:40:55 PM

642

Chapter 18: ASP .NET

 Another element you add is the reusable styles. You use styles to apply a class name to objects that
you want to modify. Styles are very powerful and play a huge role in web site design.

 The final item used for the layout of the master page is the Menu control. You use XML format to build
a hierarchy of parent/child menu items that render the site navigation main menu. Here is the full
code listing for MasterPage.master .

<%@ Master Language=”VB” CodeFile=”MasterPage.master.vb”
 Inherits=”MasterPage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>
 <title>Untitled Page</title>
 <Style>
 .TableLayout {width: 700px; background-color:#ffcc66;}
 .border{border-style:solid; border-color:black;
 border-width:thin;}
 </Style>
</head>
<body bgcolor=”#cc0000”>
 <form id=”form1” runat=”server”>
 <div>
 <table id=”tblMasterLayoutHeader” class=”TableLayout”
 cellpadding=”0” cellspacing=”0” align=”center”
 height=”450”>
 <tr>
 <td style=”width: 100px” rowspan=2 class=”border”>
 <!-- Add the menu to the page -->
 <asp:Menu ID=”Menu1” Runat=”server” >
 <Items>
 <asp:MenuItem Value=”Home” Text=”Home”
 NavigateUrl=”Default.aspx”> </asp:MenuItem>
 <asp:MenuItem Value=”News” Text=”News”
 NavigateUrl=”News.aspx”>
 <asp:MenuItem Value=”Today” Text=”Today”
 NavigateUrl=”NewsToday.aspx”></asp:MenuItem>
 <asp:MenuItem Value=”Yesterday” Text =
 “Yesterday” NavigateUrl=”NewsYesterday.aspx”>
 </asp:MenuItem>
 </asp:MenuItem>
 <asp:MenuItem Value=”Events” Text=”Events”
 NavigateUrl=”Events.aspx”> </asp:MenuItem>
 <asp:MenuItem Value=”Contact Us” Text=”Contact Us”
 NavigateUrl=”Contact.aspx”> </asp:MenuItem>
 </Items>
 </asp:Menu>
 </td>
 <td bgcolor=”#000000” class=”border” >
 <!-- Main title -->

c18.indd 642c18.indd 642 4/1/08 6:40:55 PM4/1/08 6:40:55 PM

643

Chapter 18: ASP .NET

 <asp:Label ID=”Label1” Runat=”server” Text=”Beginning Visual
 Basic 2008” Font-Names=”Arial” Font-Bold=”true”
 ForeColor=”#ffcc33” Font-Size=”28pt” />
 </td>
 </tr>
 <tr>
 <td class=”border”>
 <!-- Site map path under Title -->
 <asp:SiteMapPath ID=”smpMain” Runat=”server”>
 </asp:SiteMapPath>
 </td>
 </tr>
 <tr>
 <td class=”border” colspan=”2” height=”100%” valign=”top”
 align=”center”>
 <!-- All site content will go here -->
 <asp:contentplaceholder id=”ContentPlaceHolder1”
 runat=”server”>
 </asp:contentplaceholder>

 </td>
 </tr>
 <tr>
 <td class=”border” align=”center” colspan=”2”>
 <!-- Footer -->
 <asp:Label ID=”Label2” Runat=”server” Text=”©2008, All rights
 reserved.” Font-Names=”Arial” Font-Bold=”true”
 ForeColor=”black” Font-Size=”10pt” ></asp:Label>
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

 The Menu control is very customizable. Instead of hard - coding the menu, you could bind the menu to
a dataset. You could also change the orientation. The menu displays vertically for the site, but you
could use a horizontal format by changing the Orientation property. The other items you could
change are the styles of the menu items. You could change the look of the menu using styles or
themes.

 You leave the Red.Skin page blank. You will change this later in the chapter.

 The Button.Skin page defines the styles for a Button control when the Red theme was applied.

 < asp:Button runat=”server” ForeColor=”Red” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

 This TextBox.skin page defines the styles for a TextBox control when the Red theme is applied.

 < asp:TextBox runat=”server” ForeColor=”Red” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

c18.indd 643c18.indd 643 4/1/08 6:40:55 PM4/1/08 6:40:55 PM

644

Chapter 18: ASP .NET

 For the Default.aspx page, you add a reference to the master page and set the theme to Red in the
 Page directive. Then, inside the Content control, you add a text box, horizontal rule, line break, and
button. When you see the page, the text is red, bold, and large just as the theme (see Figure 18 - 16).

 <%@ Page Language=”VB” AutoEventWireup=”false”
 CodeFile=”Default.aspx.vb” Inherits=”_Default”
 MasterPageFile=”~/MasterPage.master” Theme=”Red” %>

<asp:Content ID=”Content1” ContentPlaceHolderID=”ContentPlaceHolder1”
 runat=”server”>
 <asp:TextBox ID=”txtTest” Runat=”server”>Just some text</asp:TextBox>
 <hr />

 <asp:Button ID=”btnTest” Runat=”server” Text=”Button” />
</asp:Content>

 You apply the Brown.css style sheet to the theme. The only element you modify in the style sheet
was the horizontal rule. You change the color (red) and height. You can update any object using the
style sheet. Your output should display the updated styles shown in Figure 18 - 17 .

body {}
HR
{
 color:#cc1800;
 height:12px;
}

 The Brown.skin page defines the styles for Button and TextBox controls when the Brown theme is
applied.

 < asp:Button runat=”server” ForeColor=”Brown” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >
 < asp:TextBox runat=”server” ForeColor=”Brown” Font-Name=”Arial”
 Font-Size=”28px” Font-Weight=”Bold” / >

 On News.aspx you add a reference to the master page and set the theme to Brown in the Page
directive. Then, inside the Content control, you add a textbox, horizontal rule, line break, and button.
When you see the page, the text is red, bold, and large just as the theme defined. You should see a
page like Figure 18 - 17 in your browser.

 < %@ Page Language=”VB” MasterPageFile=”~/MasterPage.master” AutoEventWireup=
 ”false” ClassName=”News_aspx” title=”Untitled Page” theme=”Brown”% >
 < asp:Content ID=”Content1” ContentPlaceHolderID=cphPageContent Runat=Server >
 < asp:TextBox ID=”txtTest” Runat=”server” > Just some text < /asp:TextBox >
 < hr / > < br / >
 < asp:Button ID=”btnTest” Runat=”server” Text=”Button” / >
 < /asp:Content >

c18.indd 644c18.indd 644 4/1/08 6:40:56 PM4/1/08 6:40:56 PM

645

Chapter 18: ASP .NET

Figure 18-17

The sitemap file is used by the SiteMap control. This control allows you to see what level you are on
at the site. You could easily navigate up one level at a time or all the way to the home page. The control
gives you an easy interface for navigating through the site. The outermost level of the SiteMap control is
displayed on the Today ’ s News page as shown in Figure 18 - 18

Figure 18-18

 Using the GridView to Build a Data - Driven Web Form
 The data controls in ASP.NET 2.0 add the ability to program declaratively . This no-code architecture
allows you to look at the source of the Web Form and see your layout and design along with attributes
that allow for data access and data manipulation. If you have any experience with HTML or ASP.NET 1.1,
you will find this new method of data access compact and astoundingly simple.

 In this Try It Out, you will see two of the best controls in ASP.NET 3.5. The first is the SqlDataSource
control, and the second is the GridView control. You will set properties and attributes of these controls
and also the child elements of them. Without writing any server - side or client - side code, you will create a
web application to display data in the pubs database and update it.

c18.indd 645c18.indd 645 4/1/08 6:40:56 PM4/1/08 6:40:56 PM

646

Chapter 18: ASP .NET

 The following Try It Out requires access to SQL Server with the pubs database installed.

Try It Out No - Code Data Viewing and Updating

 1. Create a new web site and name it DataGridView .

 2. Use the Source view and add the changes highlighted here to the Default.aspx page. Make
sure to change the values of the ConnectionString to match your development
environment.

<%@ Page Language=”VB” AutoEventWireup=”false”
 CodeFile=”Default.aspx.vb” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

 <title>Grid View</title>

</head>
<body>
<form id=”form1” runat=”server”>
<div>

 <asp:SqlDataSource ID=”sdsAuthors” Runat=”server”
 ProviderName = “System.Data.SqlClient”
 ConnectionString = “Server=bnewsome; User ID=sa;
 Password=!p@ssw0rd!;Database=pubs; “
 SelectCommand = “SELECT au_id, au_lname,
 au_fname, phone,
 address, city, state, zip FROM authors”
 UpdateCommand = “UPDATE authors
 SET au_lname = @au_lname,
 au_fname = @au_fname, phone = @phone,
 address = @address,
 city = @city, state = @state, zip = @zip
 WHERE au_id = @original_au_id” >
 <UpdateParameters>
 <asp:Parameter Type=”String” Name=”au_lname”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”au_fname”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”phone”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”address”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”city”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”state”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”zip”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”au_id”></asp:Parameter>
 </UpdateParameters>
 </asp:SqlDataSource>

 <asp:GridView ID=”gdvAuthors” Runat=”server”
 DataSourceID=”sdsAuthors” AllowPaging=”True” AllowSorting=”True”
 AutoGenerateColumns=False DataKeyNames=”au_id” >
 <PagerStyle BackColor=”Gray” ForeColor=”White”
 HorizontalAlign=”Center” />

c18.indd 646c18.indd 646 4/1/08 6:40:56 PM4/1/08 6:40:56 PM

647

Chapter 18: ASP .NET

 <HeaderStyle BackColor=”Black” ForeColor=”White” />
 <AlternatingRowStyle BackColor=”LightGray” />
 <Columns>
 <asp:CommandField ButtonType=”Button” ShowEditButton=”true” />
 <asp:BoundField Visible=”false” HeaderText=”au_id”
 DataField=”au_id” SortExpression=”au_id”>
 </asp:BoundField>
 <asp:BoundField HeaderText=”Last Name” DataField=”au_lname”
 SortExpression=”au_lname”></asp:BoundField>
 <asp:BoundField HeaderText=”First Name” DataField=”au_fname”
 SortExpression=”au_fname”></asp:BoundField>
 <asp:BoundField HeaderText=”Phone” DataField=”phone”
 SortExpression=”phone”></asp:BoundField>
 <asp:BoundField HeaderText=”Address” DataField=”address”
 SortExpression=”address”></asp:BoundField>
 <asp:BoundField HeaderText=”City” DataField=”city”
 SortExpression=”city”></asp:BoundField>
 <asp:BoundField HeaderText=”State” DataField=”state”
 SortExpression=”state”></asp:BoundField>
 <asp:BoundField HeaderText=”Zip Code” DataField=”zip”
 SortExpression=”zip”></asp:BoundField>
 </Columns>
 </asp:GridView>

</div>
</form>
</body>
</html>

 3. Run the application without debugging by pressing Ctrl+F5. You will see the data grid
display similar to Figure 18 - 19 .

Figure 18-19

c18.indd 647c18.indd 647 4/1/08 6:40:57 PM4/1/08 6:40:57 PM

648

Chapter 18: ASP .NET

 Test the functions of the grid. At the bottom, you can move to any page of the data. Also, sorting
is available by clicking any of the column headers. After trying both of these, update a row. To
edit an author ’ s data, click the Edit button on the left of the author ’ s row. The screen refreshes,
and you will see a new grid that looks like Figure 18 - 20 .

Figure 18-20

 Change any field and click the update button to make the change permanent. You can cancel
a change by clicking any link or button other than the Update button.

 How It Works
 Now that was easy. By adding two controls, you created a fairly robust data access page. We ’ ll explain
how this happened.

 First, you create the SqlDataSource control. The following table explains each attribute you add or
change for the SqlDataSource control. The code follows.

Attribute or Element Description

ID The control’s identifier.

Runat Defines that the code for the control is run at the server before the
page is sent to the browser.

ProviderName Used to set the provider to access the data store. In this case, it is
SQLClient, the managed provider for SQL Server.

ConnectionString This string value is used to gain access to the database resource,
pubs.

c18.indd 648c18.indd 648 4/1/08 6:40:57 PM4/1/08 6:40:57 PM

649

Chapter 18: ASP .NET

Attribute or Element Description

SelectCommand The SQL statement passed to the database to retrieve the data that is
displayed in the grid. This could be a stored procedure name.

UpdateCommand The SQL statement that is used to update the data. You could use a
stored procedure name in place of the SQL statement in this case.

UpdateParameters and
Parameter objects

The update parameters object is a collection of parameters the
application uses to fill in the blanks in the update statement. For
example, the parameter @city in the update statement passes a value
to the database so that the Author’s record is updated. This parameter,
@city, is replaced with the actual value you enter into the city text box.
In the future, when you use parameters, the database will determine
the syntax. Some databases will just use a question mark for each
parameter name. Also, in some cases the order of the parameter
object matters. For this application, the names are the only part that
makes a difference, not the order.
Another common property not used here is DefaultValue. The
DefaultValue property would replace a null value with the value
set in the property itself.

Parameter: Type This is the string for every parameter. This value is determined based
on the data type on each column in the database.

Parameter: Name The name property is the actual name used by the UpdateCommand
for each parameter.

 <asp:SqlDataSource ID=”sdsAuthors” Runat=”server”
 ProviderName = “System.Data.SqlClient”
 ConnectionString = “Server=bnewsome; User ID=sa;
 Password=!p@ssw0rd!;Database=pubs; “
 SelectCommand = “SELECT au_id, au_lname,
 au_fname, phone,
 address, city, state, zip FROM authors”
 UpdateCommand = “UPDATE authors
 SET au_lname = @au_lname,
 au_fname = @au_fname, phone = @phone,
 address = @address,
 city = @city, state = @state, zip = @zip
 WHERE au_id = @original_au_id” >
 <UpdateParameters>
 <asp:Parameter Type=”String” Name=”au_lname”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”au_fname”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”phone”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”address”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”city”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”state”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”zip”></asp:Parameter>
 <asp:Parameter Type=”String” Name=”au_id”></asp:Parameter>
 </UpdateParameters>
 </asp:SqlDataSource>

c18.indd 649c18.indd 649 4/1/08 6:40:57 PM4/1/08 6:40:57 PM

650

Chapter 18: ASP .NET

 The second control you add to the form is the GridView. Its attributes are described in the
following table.

Attribute or Element Description

ID The control’s identifier.

Runat Defines that the code for the control is run at the server before the
page is sent to the browser.

DataSourceID The ID of the SqlDataSource object is used here.

AllowPaging Can be set to TRUE or FALSE. Turns on sorting features of the grid.

AllowSorting Can be set to TRUE or FALSE. Turns on sorting features of the grid.

AutoGenerateColumns Can be set to TRUE or FALSE. Turns on sorting features of the grid.

DataKeyNames The primary key used by the database table.

PagerStyle This element defines the style of the paging area of the grid.

HeaderStyle This element defines the style of the header row area of the grid.

AlternatingRowStyle This element defines the style of the every other row of the grid.

Columns A collection of column objects.

CommandField Two properties of this object are used. The first is ButtonType. This
is set to a type of button. You can insert a button, image, or link as a
value. If left blank, the default is link.

BoundField This element allows for the binding of the data to the grid. For a
better user interface, you use the Visible property to hide the
primary key column. Also, you set the SortExpression of each
column. This converts every column header to a link. When clicked,
the data is sorted by that column. Next, you change the column
headers with the HeaderText property. If this is blank, the column
names are used as headers. Finally, the field to bind to is set using the
DataField property.

 <asp:GridView ID=”gdvAuthors” Runat=”server”
 DataSourceID=”sdsAuthors”
 AllowPaging=”True” AllowSorting=”True”
 AutoGenerateColumns=False
 DataKeyNames=”au_id” >
 <PagerStyle BackColor=”Gray” ForeColor=”White”
 HorizontalAlign=”Center” />
 <HeaderStyle BackColor=”Black” ForeColor=”White” />
 <AlternatingRowStyle BackColor=”LightGray” />
 <Columns>
 <asp:CommandField ButtonType=”Button” ShowEditButton=”true” />
 <asp:BoundField Visible=”false” HeaderText=”au_id”
 DataField=”au_id” SortExpression=”au_id”>
 </asp:BoundField>

c18.indd 650c18.indd 650 4/1/08 6:40:58 PM4/1/08 6:40:58 PM

651

Chapter 18: ASP .NET

 <asp:BoundField HeaderText=”Last Name” DataField=”au_lname”
 SortExpression=”au_lname”></asp:BoundField>
 <asp:BoundField HeaderText=”First Name” DataField=”au_fname”
 SortExpression=”au_fname”></asp:BoundField>
 <asp:BoundField HeaderText=”Phone” DataField=”phone”
 SortExpression=”phone”></asp:BoundField>
 <asp:BoundField HeaderText=”Address” DataField=”address”
 SortExpression=”address”></asp:BoundField>
 <asp:BoundField HeaderText=”City” DataField=”city”
 SortExpression=”city”></asp:BoundField>
 <asp:BoundField HeaderText=”State” DataField=”state”
 SortExpression=”state”></asp:BoundField>
 <asp:BoundField HeaderText=”Zip Code” DataField=”zip”
 SortExpression=”zip”></asp:BoundField>
 </Columns>
 </asp:GridView>

 Summary
 In this chapter, you learned what thin - client development is. You saw the advantages of Web Forms and
Windows Forms and why you would choose one type of application over the other. Maybe the low
distribution cost of web applications is a major factor in your decision to create a web application over a
Windows application. Also, you read about the basic pieces that constitute a typical web application. From
layout and formatting to database integration, you gained knowledge of the best features of ASP.NET and
how they are implemented. Finally, you designed a code - free page that updated data in a database.

 If you like web development, there is much more than can be explained in this chapter. To continue
learning, we recommend navigating to Wrox.com and clicking on the ASP.NET link to find more
resources to take you to the next level of web development.

Y ou should know how to:

 Choose between Web Forms and Windows Forms applications to suit your purpose

 Use the toolbox for ASP.NET

 Create a web site project in Visual Studio 2008

 Choose between the possible locations for web sites in Visual Studio 2008

 Exercises
 1. Create a new web site, name it ExerciseOne , and create it as a local site using the file system

and ASP.NET Development Server. Run the web site to make sure it is running in ASP.NET
Development Server.

 2. Create a new web site, name it ExerciseTwo , and create it as a local IIS. Run the web site to make
sure it is not running in ASP.NET Development Server. (You will need IIS on your local machine
to complete this exercise.) Note that Vista requires you to run Visual Studio as an administrator
for this to work.

❑

❑

❑

❑

c18.indd 651c18.indd 651 4/1/08 6:40:58 PM4/1/08 6:40:58 PM

c18.indd 652c18.indd 652 4/1/08 6:40:58 PM4/1/08 6:40:58 PM

19
Web Projects

 In Chapter 18 , you learned how to implement many pieces of the puzzle that is web development.
Now, you put it all together to build the foundation for a secure public web site. You create a skeleton
web site in this chapter, with security that is ready for content. Although you won ’ t be writing any
Visual Basic code, you end up with a consistent look and feel and role - based forms authentication.
You will be amazed at the ease of creation and the flexibility built into ASP.NET.

 In this chapter, you will:

 Have an overview of the two most popular methods of web site security

 Learn about the Web Site Administration Tool

 Implement web site security using forms authentication

 Add rules and roles to a security scheme

 Create a secure web site with little or no code written

 Error handling has been omitted from all of the Try It Outs in this chapter to save space. You
should always add the appropriate error handling to your code. Review Chapter 9 for error -
handling techniques.

 Web Site Authentication
 As you design web applications, you need to consider security at an early point in the project.
Always understand who will have access to your site and who will not. In many cases, parts of the
site will be open to the public and parts will be secure and for members only. This may require mul-
tiple methods of security. There are two standard types of web authentication strategies: windows
and forms authentication.

❑

❑

❑

❑

❑

c19.indd 653c19.indd 653 4/2/08 5:34:36 PM4/2/08 5:34:36 PM

654

Chapter 19: Web Projects

 Windows Authentication
 The simplest type of authentication is windows authentication. This type of authentication is perfect for
intranet sites. It is actually implemented by IIS and keeps the authentication mechanisms separate from
the tasks of developing the actual intranet site. What happens is that IIS requires the user either to be
logged into the server ’ s domain or to log in with a valid domain account. If the user is already authenti-
cated with a valid domain account, access to the site is seamless with no interruption to the user experi-
ence. When the user is not logged into the server ’ s domain, a valid login is required. This method of
 authentication is set up via the IIS Management Console.

 Forms Authentication
 For a public web site, forms authentication is an easy solution to implement. Users who try to visit the
site must provide credentials to gain access to the site. When an unauthorized user requests a web page,
the user is redirected to the login page. From here, a current user can log in, or new users can click a link
to create an account. Without a valid user name or password, the visitor cannot browse secured areas
of the site. With ASP.NET 2.0, built - in controls make forms authentication quick and easy to implement
as a security model.

 Web Site Administration Tool (WAT)
 ASP.NET is driven by web.config files. In the past, developers had to hand - code the XML configuration
files to set up functionality such as debugging, security, or tracing. Now, there is an interface to set up
these configuration files for web applications: the Web Site Administration Tool (WAT).

 When you use the WAT, you will see five tabs (Home, Security, Profile, Application, and Provider). You
will set site security using the Security tab in this chapter, and we give you a brief summary of the others.
The first tab is Home. Home is the main tab and displays info on your other options. Next is the Profile
tab. You use this tab to collect and store data on your site ’ s visitors. Application is another tab, enabling
application configuration. Here you can set up site attributes such as counters, tracing, and Simple Mail
Transfer Protocol (SMTP). The final tab is Provider. Use this tab to change the default data provider for
the site. The default provider is AspNetAccessProvider for Microsoft Access. You use the WAT to set
up the web site in the next Try It Out.

 In this Try It Out, you set up the files for a new web site and use the WAT to implement forms authentication.

Try It Out Forms Authentication Confi guration

In this exercise, you start the web site that you will work on during this chapter. First, you add the file
structure to the new site. Then you set up the forms authentication security model.

1. Create a new web site project named TheClub. Be sure to use the file system for the site
location.

2. Make the following changes to the site using Solution Explorer. To add items to a site using
Solution Explorer, right-click the root folder or project and choose Add new item. In the dialog
box, select the type of item (Web Form, text file, and so on) and supply the name. When you
finish with step 2, your site will look like Figure 19-1. For all of the pages you add, clear the
check box to place code in a separate file.

c19.indd 654c19.indd 654 4/2/08 5:34:37 PM4/2/08 5:34:37 PM

655

Chapter 19: Web Projects

 Add a master page and name it Main.master. Set all Web Forms you add to use this master page.
You have an option to select a master page when you add the forms by selecting a box to Select
Master Page.

 Add the following regular folders to the site:

❑ Admin

❑ Members

 Add the following theme folder to the site: You should right-click the project name in Solution
Explorer and then choose Add ASP.NET Folder Theme Folder. The folder you add will be
placed under a new App_Themes directory.

❑ MainTheme

 Add the following Web Forms to the site’s root folder (and remember to check the box to select a
master page):

❑ Login.aspx

❑ ChangePassword.aspx

❑ CreateNewUser.aspx

 Set the Login.aspx page to the start page.

 Right-click the page in Solution Explorer and choose Set As Start Page.

 Add the following Web Forms to the Admin folder (and remember to check the box to select a
master page):

❑ Default.aspx

❑ ViewUsers.aspx

 Add the following Web Forms to the Members folder (and remember to select the box to select a
master page):

❑ Default.aspx

❑ ViewAuthors.aspx

❑ ViewTitles.aspx

 Add the following text file to the MainTheme folder:

❑ Main.skin

c19.indd 655c19.indd 655 4/2/08 5:34:37 PM4/2/08 5:34:37 PM

656

Chapter 19: Web Projects

3. Next, choose Website ASP.NET Configuration under the Main menu to use the WAT. The
menu is shown in Figure 19-2.

Figure 19-1

Figure 19-2

c19.indd 656c19.indd 656 4/2/08 5:34:37 PM4/2/08 5:34:37 PM

657

Chapter 19: Web Projects

The Visual Web Developer Web Server starts and opens the Web Site Administration Tool. Figure 19-3
shows the default page for the tool. You use this tool to set up security for the site.

Figure 19-3

4. Now, click the Security link to set up the site security.

5. We walk you through the wizard. Know that you can make any changes using the wizard
from the main security page. Click the link on the security home page to use the Security
Setup Wizard.

6. The Security Setup Wizard has seven steps. The first is the Welcome screen, which gives you
an overview of the entire process. At the lower right of each step, you see options to navigate
through the wizard. On the Welcome screen, move to step 2 by clicking Next.

7. Step 2 allows you to select the access method. You have two options here, as shown in Figure
19-4. The first option is From the internet. If you choose this option, the wizard sets up the site
for forms authentication. This method uses a data source to store user account information
and allow the public to access the site. The second option is From a local area network, and it
sets the site to use windows authentication. You can use this option for an intranet application
within a private network. For TheClub web site, choose From the internet and click Next to
move to step 3.

c19.indd 657c19.indd 657 4/2/08 5:34:38 PM4/2/08 5:34:38 PM

658

Chapter 19: Web Projects

8. The third step is for data store information. You will see the default data provider for the site.
To change this, you have to quit the wizard and make the change on the Provider tab. Just
click Next to keep the default and move to step 4. The default data store uses Microsoft Access
behind the scenes.

9. You can enable roles-based security on step 4. With roles-based security, you can manage site
access for many users in a role quickly. Select the box to enable roles, and then click Next to
add a new role. Figure 19-5 shows the Create New Role screen. Type the role name Admin
into the text box and click Add Role. On the next screen, you can edit or add roles. For this
site, you will have just one role, Admin. Click Next.

Figure 19-4

Figure 19-5

c19.indd 658c19.indd 658 4/2/08 5:34:38 PM4/2/08 5:34:38 PM

659

Chapter 19: Web Projects

659

Figure 19-6

11. The last step prior to completing the wizard is step 6, Add New Access Rules. This is where
you set up the users who will have access to areas of the site. You add three rules. You need to
remember that rules are applied to web folders. Always make sure the correct folder is
highlighted when you add a rule.

 As shown in Figure 19-7, the default rule is to allow anonymous users to access the site. Now,
add a new rule. Make sure the Admin directory is highlighted, and click the Role radio button.
Select the Admin role and then, under the Permission heading, turn on the radio button for
Allow and click Add This Rule. You add the two other rules after completing the wizard. To
finish the wizard, click Next to move to the final confirmation and then click Finish. You are
taken back to the main security page, where you will complete the rest of the rules.

10. Step 5 allows you to create new users. You do not have to create users here, but it is an easy
interface if you have a few to create. For this project, add the Admin user as shown in Figure
19-6. Set the User Name to Admin. You can set the rest of the fields to any values you can
remember. When you finish, click the Create User button. You see a successful creation note
on the next screen. Since you are only adding one user, click Next.

c19.indd 659c19.indd 659 4/2/08 5:34:39 PM4/2/08 5:34:39 PM

660

Chapter 19: Web Projects

Figure 19-7

Figure 19-8

12. From the main security page, click the Manage Access Rules link. On the next screen, click the
Admin folder to see the new rule. Now click the Add New Access Rule link. You add a rule to
deny all-user access to this folder. Move the rules up or down so that they match Figure 19-8.

c19.indd 660c19.indd 660 4/2/08 5:34:42 PM4/2/08 5:34:42 PM

661

Chapter 19: Web Projects

13. Next, click the Members directory and add a rule to deny anonymous users. The rules for the
Members folder look like Figure 19-9.

Figure 19-9

14. Now, you test the security settings. Do not worry that the Web Forms are blank. This test is
just for the security settings.

 Run the web site and you are taken to the home page of the root directory. The URL is
http://localhost:(port#)/TheClub/Login.aspx. You are prompted to enable
debugging. Select Modify the Web.Config file to enable debugging and then click OK to run
the site. You may be prompted that script debugging is disabled. Just continue through this if
you see the message box. Note: You should turn on script debugging while developing. So if
you see the prompt, go back and follow the instructions to turn on script debugging later).
Now, close the browser or stop debugging.

 In Solution Explorer, right-click the ViewAuthors.aspx under the folder Members and chose
View in Browser. The security should return you to the Login.asp page. The URL should
look like http://localhost:51220/TheClub/login.aspx?ReturnUrl=%
2fTheClub%2fMembers%2fViewAuthors.aspx.

15. Test the Admin directory and you will see the same result.

How It Works
So what did the wizard do? Take a look at the project’s Solution Explorer. Make sure you refresh the
view. It resembles Figure 19-10. Look closely and you will see new web.config files and an Access
database. These new additions manage the security options you set using the wizard.

c19.indd 661c19.indd 661 4/2/08 5:34:43 PM4/2/08 5:34:43 PM

662

Chapter 19: Web Projects

 A site can be changed with settings in a web.config file. When you step through the wizard,
settings are configured in web.config files per folder. If you opened one of the config files,
you would see the settings that are added. Also, an Access database is created to manage the
users and roles. That’s it. To manage the security of the site, you do not need to know how to
manipulate the web.config files manually.

 Take a closer look at this URL, which sent you to the login page while testing
(http://localhost:51220/TheClub/login.aspx?ReturnUrl=%2fTheClub%2fadmin%2
fdefault.aspx) and you will see a question mark. The question mark represents the
beginning of the query string. The query string is one way to pass data between the browser
and server to maintain state. In this case, a variable (ReturnUrl) has a value from the web
server. The value has some encoded characters that may seem confusing. The forward slash is
encoded in the query string and represented by %2f. So if you replace the characters %
2f with a forward slash, then the value of ReturnUrl is /TheClub/admin/default.aspx.
When your login is successful, the sever uses the ReturnUrl to send you back to the place
you were trying to visit — in this case, theAdminfolder.

Figure 19-10

 Okay, so now you have a secure site. Next, take a look at the built - in login controls available in ASP.NET 3.5.

 Login Controls
 The Microsoft ASP team has encapsulated the most common functionality for authentication into a
group of login controls that make your job as a developer easier. You can take the default behavior of
these controls or customize almost every aspect of their functionality and design. The following table
lists the available login controls. You are not required to use these controls. If you prefer, you can
hand - code your own logic to use the same membership APIs to enforce forms authentication.

c19.indd 662c19.indd 662 4/2/08 5:34:45 PM4/2/08 5:34:45 PM

663

Chapter 19: Web Projects

 In the next Try It Out, you use most of the login controls to implement a membership strategy.

Control Name Description

Login Contains all of the elements necessary to provide a login area for a
web site.

LoginView Allows for templates to display the correct information to a user
based on authentication and roles.

LoginStatus Displays a link to log in or log out based on the user’s status.

LoginName Displays the current user’s name.

ChangePassword Allows users to change their password.

CreateUserWizard Creates an area for new users to create a new account on the web site.

PasswordRecovery Sends a user’s forgotten or new password via e-mail.
Note: E-mail is not a secure means of data transmission. The security
risks of this control should be considered before it is implemented on
your web site.

Try It Out Layout and Login Controls

Now that you have security set up, you need to add the layout and functionality to allow visitors to
log in. In this Try It Out, you gain knowledge about most of the Login controls in ASP.NET 3.5.

To complete this exercise, make the following changes to the pages of the site. As you make these
changes, type the HTML markup into the pages as highlighted. You get firsthand experience working
with the IntelliSense for ASP.NET 3.5. As you type, you will be able to set properties and attributes
quickly. You may find it faster than dragging controls from the Toolbox onto the form.

1. Start by opening Main.master and adding the highlighted code:

<%@ Master Language=”VB” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<script runat=”server”>
</script>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Untitled Page</title>
</head>

<body bgcolor=”black”>
 <form id=”form1” runat=”server”>
 <div>
 <table cellpadding=”5” cellspacing=”0” width=”600” height=”400”

c19.indd 663c19.indd 663 4/2/08 5:34:49 PM4/2/08 5:34:49 PM

664

Chapter 19: Web Projects

 bgcolor=”white” border=”1” bordercolor=”black”>
 <tr>
 <td width=”150” valign=”top”>
 <!-- Menu Column -->
 <asp:Menu ID=”Menu1” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/Default.aspx”
Text=”Home”></asp:MenuItem>
 <asp:MenuItem Text=”Members”>
 <asp:MenuItem NavigateUrl=”Members/ViewAuthors.aspx”
Text=”View Authors”></asp:MenuItem>
 <asp:MenuItem NavigateUrl=”Members/ViewTitles.aspx”
Text=”View Titles”></asp:MenuItem>
 </asp:MenuItem>
 <asp:MenuItem Text=”Admin”>
 <asp:MenuItem NavigateUrl=”Admin/ViewUsers.aspx”
Text=”View Users”></asp:MenuItem>
 </asp:MenuItem>
 </Items>
 </asp:Menu>

 <asp:LoginView ID=”LoginView1” Runat=”server”>
 <AnonymousTemplate>
 <asp:Menu ID=”Menu2” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/CreateNewUser.aspx”
Text=”Create Account”></asp:MenuItem>
 </Items>
 </asp:Menu>
 </AnonymousTemplate>
 <LoggedInTemplate>
 <asp:Menu ID=”Menu3” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/ChangePassword.aspx”
Text=”Change Password”></asp:MenuItem>
 </Items>
 </asp:Menu>
 </LoggedInTemplate>
 </asp:LoginView>
 </td>
 <td valign=”top”>
 <table cellpadding=”0” cellspacing=”0” width=”100%” border=”0”>
 <tr>
 <td width=”85%”>
 <asp:Label ID=”Label1” Runat=”server” Text=”My First
 Company Site” Font-Bold=”true” Font-Size=”24px”></asp:Label>
 </td>
 <td width=”15%”>

 <!-- Login Status Area -->
 <asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
 </td>
 </tr>
 <tr>

c19.indd 664c19.indd 664 4/2/08 5:34:49 PM4/2/08 5:34:49 PM

665

Chapter 19: Web Projects

 <td colspan=”2”>
 <hr color=”black” size=”2” />
 </td>
 </tr>
 <tr>
 <td colspan=”2”>
 User:
 <asp:LoginView ID=”LoginView2” Runat=”server”>
 <AnonymousTemplate>Guest, Please log in</
AnonymousTemplate>
 <LoggedInTemplate><asp:LoginName ID=”LoginName1”
Runat=”server” /></LoggedInTemplate>
 </asp:LoginView>
 </td>
 </tr>
 <tr>
 <td colspan=”2”>
 <hr color=”black” size=”2” />
 </td>
 </tr>
 <tr>
 <td colspan=”2” valign=”top” height=”100%”>
 <asp:contentplaceholder id=”ContentPlaceHolder1”
runat=”server”>
 </asp:contentplaceholder>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>

</html>

2. In Default.aspx (under the root folder), delete the default code and insert the following
code (see Figure 19-11):

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” MasterPageFile=”~/Main.master” Title=”Home” %>

c19.indd 665c19.indd 665 4/2/08 5:34:49 PM4/2/08 5:34:49 PM

666

Chapter 19: Web Projects

3. In Login.aspx (see Figure 19-12), delete the default code and add the following code:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Login” %>
<asp:content ContentPlaceHolderID=”ContentPlaceHolder1” Runat=”server”>
 <asp:Login ID=”Login1” runat=”server”>
 </asp:Login>
</asp:content>

Figure 19-11

Figure 19-12

c19.indd 666c19.indd 666 4/2/08 5:34:50 PM4/2/08 5:34:50 PM

667

Chapter 19: Web Projects

Figure 19-13

4. In ChangePassword.aspx (see Figure 19-13), delete the default code and add the following code:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Change Password” %>
<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
 <asp:ChangePassword ID=”ChangePassword1” Runat=”server”>
 </asp:ChangePassword>
</asp:Content>

5. In CreateNewUser.aspx (see Figure 19-14), delete the default code and add the following code:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Create New
Account” %>
<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
<asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”>
 </asp:CreateUserWizard>
</asp:Content>

c19.indd 667c19.indd 667 4/2/08 5:34:51 PM4/2/08 5:34:51 PM

668

Chapter 19: Web Projects

Figure 19-14

6. In ViewAuthors.aspx, delete the default code and add the following:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Authors” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View Author Info
Later”></asp:Label>
</asp:Content>

7. In ViewTitles.aspx, delete the default code and add the following:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Titles” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View Title Info
Later”></asp:Label>
</asp:Content>

8. In ViewUsers.aspx, delete the default code and add the following:

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Users” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View User Info
Later”></asp:Label>
</asp:Content>

c19.indd 668c19.indd 668 4/2/08 5:34:52 PM4/2/08 5:34:52 PM

669

Chapter 19: Web Projects

9. Now test the site. You can add a new account and then log in. Test the new pages to make sure
they all work correctly. All of the authentication functionality will work. As you test the site
using IIS and work with the configuration tool, you may see errors where the Access database
is locked by another process. You can shut down the web servers to free the lock.

How It Works
As you play with the new site, you should be amazed. In older technologies, that level of functionality
would have taken days to complete.

All your work on the site layout is on the master page. The first change sets the background color for the
page to black:

<body bgcolor=”black”>

The next change involves the table layout for the page. Tables are a common layout tool in web develop-
ment. To set up the table layout, you add rows and cells and, in some cases, nested tables inside of cells.
Table layout is an art you will learn with experience. First, take a look at the tags used to format a table
in the following table.

Tag Description

<table> The root tag for a table.

<tr> A row in a table.

<td> A cell in a row in a table.

When you set up the table layout, the cells by default are spaced apart. Setting the cellpadding
and cellspacing properties makes it easier to lay out the page the way you want it. The colspan
attribute of the cell tag allows the cell to span 2 columns. Basically, both columns were merged into
one in that row.

The main table is set to a size of 600 by 400 with a white background. This allows for the table to maintain
a standard size even when no content is present. The main table contains one row and two columns. The
first column is used for the menu. The second column has a nested table with five rows that contain one
or two columns each. This table is set to a width of 100% to force the table to fill up the second column.
This allows the HR controls to span the entire length of the parent column. The second table is for the site
title, user name, and content placeholder.

<table cellpadding=”5” cellspacing=”0” width=”600” height=”400”
bgcolor=”white” border=”1” bordercolor=”black”>
 <tr>
 <td width=”150” valign=”top”>
 </td>
 <td valign=”top”>
 <table cellpadding=”0” cellspacing=”0” width=”100%” border=”0”>
 <tr>
 <td width=”85%”>
 </td>
 <td width=”15%”>
 </td>
 </tr>

c19.indd 669c19.indd 669 4/2/08 5:34:52 PM4/2/08 5:34:52 PM

670

Chapter 19: Web Projects

 <tr>
 <td colspan=”2”>
 <hr color=”black” size=”2” />
 </td>
 </tr>
 <tr>
 <td colspan=”2”>
 </td>
 </tr>
 <tr>
 <td colspan=”2”>
 <hr color=”black” size=”2” />
 </td>
 </tr>
 <tr>
 <td colspan=”2” valign=”top” height=”100%”>
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>

The next part of the master page is the menu. Just as in Chapter 18, you add the menu control for
site navigation. The difference is that you add multiple menu controls based on the login status. The
LoginView control templates you work with allow the user to see a validate menu based on the
authentication status of the user.

<asp:Menu ID=”Menu1” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/Default.aspx” Text=”Home”></asp:MenuItem>
 <asp:MenuItem Text=”Members”>
 <asp:MenuItem NavigateUrl=”Members/ViewAuthors.aspx” Text=”View
Authors” />
 <asp:MenuItem NavigateUrl=”Members/ViewTitles.aspx” Text=”View Titles”>
 </asp:MenuItem>
 <asp:MenuItem Text=”Admin”>
 <asp:MenuItem NavigateUrl=”Admin/ViewUser.aspx” Text=”View Users” />
 </asp:MenuItem>
 </Items>
</asp:Menu>

<asp:LoginView ID=”LoginView1” Runat=”server”>
 <AnonymousTemplate>
 <asp:Menu ID=”Menu2” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/CreateNewUser.aspx” Text=”Create
Account” />
 </Items>
 </asp:Menu>
 </AnonymousTemplate>
 <LoggedInTemplate>
 <asp:Menu ID=”Menu3” Runat=”server”>
 <Items>
 <asp:MenuItem NavigateUrl=”~/ChangePassword.aspx” Text=”Change
Password” />

c19.indd 670c19.indd 670 4/2/08 5:34:53 PM4/2/08 5:34:53 PM

671

Chapter 19: Web Projects

 </Items>
 </asp:Menu>
 </LoggedInTemplate>
</asp:LoginView>

The web site title is added with a Label control:

<asp:Label ID=”Label1” Runat=”server” Text=”My First Company Site”
 Font-Bold=”true” Font-Size=”24px”></asp:Label>

Under the title, you add a section to display the user name. Again, you use the LoginView control and
display the name when the user is logged in. For anonymous users, you display: Guest, Please log in.

<!-- Login Status Area -->
<asp:LoginStatus ID=”LoginStatus1” Runat=”server” />
User:
<asp:LoginView ID=”LoginView2” Runat=”server”>
 <AnonymousTemplate>Guest, Please log in</AnonymousTemplate>
 <LoggedInTemplate>
 <asp:LoginName ID=”LoginName1” Runat=”server” />
 </LoggedInTemplate>
</asp:LoginView>

Finally, to validate the site layout, you add a contentplaceholder control. This control is where the
actual content will appear on other pages.

<asp:contentplaceholder id=”ContentPlaceHolder1”
runat=”server”></asp:contentplaceholder>

The change you make to the default page is to add the hookup to the master page and change the title
to Home.

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” MasterPageFile=”~/Main.master” Title=”Home” %>

For the Login page, you change the title, add the Content control, and hook it up with the
contentplaceholder you add on the master page. This is where you allow content to be added
throughout the site.

Inside the Content control, you place a Login control, and it is displayed in the appropriate location on
the page. The Login control has all of the logic you need built in.

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Change Password” %>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
 <asp:ChangePassword ID=”ChangePassword1” Runat=”server”>
 </asp:ChangePassword>
</asp:Content>

For the Change Password page, you change the title, add the Content control, and hook it up with the
contentplaceholder you add on the master page.

Inside the Content control, you place the ChangePassword control, and it is displayed in the
appropriate location on the page. The ChangePassword control has all of the logic you need built in.

c19.indd 671c19.indd 671 4/2/08 5:34:53 PM4/2/08 5:34:53 PM

672

Chapter 19: Web Projects

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Change Password”
%>
<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
 <asp:ChangePassword ID=”ChangePassword1” Runat=”server”>
 </asp:ChangePassword>
</asp:Content>

For the Create New User page, you change the title, add the Content control, and hook it up with the
contentplaceholder you add on the master page.

Inside the Content control, you place the CreateUserWizard control, and it is displayed in the
appropriate location on the page. The CreateUserWizard control has all of the logic you need built in.

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”Create New
Account” %>

<asp:Content ID=”Content2” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”Server”>
 <asp:CreateUserWizard ID=”CreateUserWizard1” Runat=”server”>
 </asp:CreateUserWizard>
</asp:Content>

For the View Authors page, you change the title, add the Content control, and hook it up with the
contentplaceholder you add on the master page.

Inside the Content control you place the Label control, and it is displayed in the appropriate location
on the page. This page is left without functionality for this project.

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Authors” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View Author Info
Later”></asp:Label>
</asp:Content>

For the View Titles page, you change the title, add the Content control, and hook it up with the con-
tentplaceholder you add on the master page.

You place the Label control inside of the Content control, and it is displayed in the appropriate loca-
tion on the page. This page is left without functionality for this project.

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Titles” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View Title Info
Later”></asp:Label>
</asp:Content>

For the View Users page, you change the title, add the Content control, and hook it up with the
contentplaceholder you add on the master page.

Inside the Content control, you place the Label control, and it is displayed in the appropriate
location on the page. This page is left without functionality for this project.

c19.indd 672c19.indd 672 4/2/08 5:34:53 PM4/2/08 5:34:53 PM

673

Chapter 19: Web Projects

<%@ Page Language=”VB” MasterPageFile=”~/Main.master” Title=”View Users” %>
<asp:Content ID=”Cnt1” ContentPlaceHolderID=”ContentPlaceHolder1”
Runat=”server”>
 <asp:Label ID=”Label1” Runat=”server” Text=”Add Code to View User Info
Later”></asp:Label>
</asp:Content>

You cannot access the View Users page yet. When you try, you are sent to the Login.aspx page,
because you are not a member of the Admin role. You add the Admin user to the Admin role in the
next Try It Out.

Figure 19-15

Try It Out Managing Roles

The Web Site Administration Tool has an interface to manage roles.

1. To open the tool, click Website ASP.NET Configuration. From the home page, choose the
Security tab. On the bottom half of the screen, you will see a table of options for Roles. Click
the link to Create or Manage Roles (see Figure 19-15).

2. On the next screen, you will see a list of roles for the web site. The only role will be Admin.
Click Manage for the Admin role, as shown in Figure 19-16.

c19.indd 673c19.indd 673 4/2/08 5:34:54 PM4/2/08 5:34:54 PM

674

Chapter 19: Web Projects

Figure 19-17

3. Click the link for user names starting with the letter A. All of the users that match your criteria
will be available to add to the Admin role. Select the check box User Is In Role to add the
Admin user to the role, as shown in Figure 19-17. Clicking the box adds the user to the role.
After you click the check box, close the browser and see whether you can access the View
Users page. You should be able to access the page now.

Figure 19-16

c19.indd 674c19.indd 674 4/2/08 5:34:54 PM4/2/08 5:34:54 PM

675

Chapter 19: Web Projects

 Summary
 In this chapter, you built the skeleton for a functional web site with security. You used built - in controls
and what you learned in Chapter 17 to complete a site with no Visual Basic code. The controls were self -
 contained, and the default values worked well.

 You were able to set up security using the WAT. You saw how easy it was to enforce forms authentication
in ASP.NET. After you completed the work in this chapter, you should have been flabbergasted. The
amount of code required to implement these features in ASP.NET was reduced to almost nothing. You
saw the future of web development in this chapter.

 To summarize, you should know how to:

 Use the Web Site Administration Tool

 Define site layout using master pages

 Implement site security using forms authentication

 Apply role management to site security

 Work with the built - in Login controls

 Exercises
 1. Change the font to appear red for an asp:label control using the Main.skin page (created in

TheClub site already) for every page under the Members directory. To do this, you can change
the theme attribute on every page or change the web.config file for the directory. For this exer-
cise, change the web.config file. You have not seen the web.config file syntax for this, so I
will show it to you. Add the change to the web.config file that will apply the theme to the Web
Forms under the Members folder. Use the code snippet here as a guide:

 < configuration >
 < system.web >

 < pages theme=”MainTheme” / >

 < authorization >
 < deny users=”?” / >
 < /authorization >
 < /system.web >
 < /configuration >

❑

❑

❑

❑

❑

How It Works
When you make the change to the Admin folder, which contains the View Users page, only users that are
part of the Admin role are allowed access. The tool allows you to add the Admin user to the Admin role.
When this is done, the Admin user can access the Admin folder and therefore the View Users page.

c19.indd 675c19.indd 675 4/2/08 5:34:55 PM4/2/08 5:34:55 PM

676

Chapter 19: Web Projects

 2. The Login controls you used in this chapter are fully customizable. In this exercise, you will
make some a change to the look of the login control on the Login.aspx page. Change the font
color of the Login control to red by adding the tag and font color properties to the Main.skin
file. Point the web.config file under the root folder to use the MainTheme . (You did this in
Exercise 1 under a different directory.)

c19.indd 676c19.indd 676 4/2/08 5:34:55 PM4/2/08 5:34:55 PM

 20
Visual Basic 2008 and XML

 Put simply, Extensible Markup Language (XML) is used for exchanging data between
applications. Although it has been around for some time, XML has established itself as the de facto
data exchange standard for Internet applications. Today, XML is used not only on the Internet but
to exchange data between many different platforms and applications.

 In this chapter, you are not going to get bogged down in the details regarding XML such as its
validation and well - formedness. Instead, you get a general introduction to XML, and then you
look at its role with Visual Basic 2008. After that, you focus on using XML inside an application.

 In this chapter, you:

 Gain a deeper understanding of XML and what it looks like

 Learn how to read and write XML files

 Learn how to serialize and deserialize XML data

 Learn how to navigate through an XML document

 Learn how to change existing XML data and add new data to an XML document

 Understanding XML
 The need for XML is simple: In commercial environments, applications need to exchange
information in order to integrate. This integration is more applicable to the line - of - business
software that a company may have rather than to desktop productivity applications such as
Microsoft Office. For example, a company may have invested in a piece of software that allows
it to track the stock in its warehouse — that piece of software would be an example of
line - of - business software.

 Integration has traditionally been very difficult to do, and XML, together with web services are
technologies designed to reduce the difficulty and cost involved in software integration. In
reducing the difficulty of software integration, there is a knock - on benefit in terms of the ease
with which more general data/information exchange can occur.

❑

❑

❑

❑

❑

c20.indd 677c20.indd 677 4/1/08 6:41:56 PM4/1/08 6:41:56 PM

Chapter 20: Visual Basic 2008 and XML

678

 For example, imagine you are a coffee retailer who wants to place an order with a supplier. The old -
 school technique of doing this is to phone or fax your order. However, this introduces a human element
into the equation. It is likely that your own line - of - business applications (telling you what products you
have sold) are suggesting that you buy more of a certain machine or certain blend of coffee. From that
suggestion, you formulate an order and transmit it to your supplier. In the case of phone or fax orders, a
human being at the supplier then has to transcribe the order into his or her own line - of - business system
for processing.

 An alternative way of carrying out this order would be to get the suggestion that has been raised by
your line - of - business system to create an order automatically in the remote system of your supplier. This
makes life easier and more efficient for both you and the management of your chosen supplier. However,
getting to a point where the two systems are integrated in this way requires a lot of negotiation,
coordination, and cost. Thus, it is relevant only for people doing a lot of business with each other.

 Before the Internet, for two companies to integrate in this way, specific negotiations had to be
undertaken to set up some sort of proprietary connection between the two companies. With the
connection in place, data is exchanged not only in order to place the order with the supplier, but also
for the supplier to report the status of the order back to the customer. With the Internet, this proprietary
connection is no longer required. As long as both parties are on the Internet, data exchange can
take place.

 However, without a common language for this data exchange to be based on, the problem is only half
solved. XML is this common language. As the customer, you can create an XML document that contains
the details of the order. You can use the Internet to transmit that order written in XML to the supplier,
either over the Web, through e - mail, or by using web services. The supplier receives the XML document,
decodes it, and raises the order in their system. Likewise, if the supplier needs to report anything back to
the customer, they can construct a different document (again using XML), and use the Internet to
transmit it back again.

 The actual structure of the data contained within the XML document is up to the customer and supplier
to decide. (Usually it ’ s for the supplier to decide upon and the customer to adhere to.) This is where the
 extensible in XML comes in. Any two parties who wish to exchange data using XML are completely free
to decide exactly what the documents should look like.

 This does not sound amazing, because companies in the past and even today still use comma - separated
files. These files had a format and worked similarly. So what does XML have that the previous formats
did not?

 XML is a lot more descriptive, and it can be validated against a schema. A schema defines what the XML
document or fragment should look like. Even without a schema, XML can potentially describe itself well
enough for others to ascertain what the data is. In line with the benefits of previous file formats, XML is also
a text - based format. This means that XML can be moved between platforms using Internet technologies
such as e - mail, the Web, FTP, and other file copy techniques. Traditional software integration was difficult
when binary data had to be moved between platforms such as Windows, Unix, Macintosh, AS/400, or
OS/390, so the fact that XML is text - based makes it easier to send data across platforms.

 What Does XML Look Like?
 If you have any experience with HTML, XML is going to look familiar to you. In fact, both have a
common ancestor in Standard Generalized Markup Language (SGML). In many ways, XML is not a
language, as the name suggests, but is rather a set of rules for defining your own markup languages that

c20.indd 678c20.indd 678 4/1/08 6:41:57 PM4/1/08 6:41:57 PM

Chapter 20: Visual Basic 2008 and XML

679

allow the exchange of data. XML is not a stand - alone technology either; in fact, a whole lot of different
related specifications dictate what you can and cannot do with XML. Such specifications include the
following (not the best late - night reading, at least if you want to be an alert and attentive reader):

 URI (Uniform Resource Identifiers): www.ietf.org/rfc/rfc2396.txt

 UTF - 8 (Unicode Transformation Format): www.utf-8.com/

 XML (Extensible Markup Language): www.w3.org/TR/REC-xml

 XML Schema: www.w3.org/XML/Schema

 XML Information Set: www.w3.org/TR/xml-infoset/

 Although the specifications may not beat a book such as this in terms of format, layout, and ease of
understanding, they have a whole lot to offer the XML fan. If you feel up to it, you can read more about
XML after this introduction.

 XML is tag based, meaning that the document is made up of tags that contain data. Here is how you
might choose to describe this book in XML:

 < Book >
 < Title > Beginning VB 2008 < /Title >
 < ISBN > xxxx191347 < /ISBN >
 < Publisher > Wrox < /Publisher >
 < /Book >

 In XML, you delimit tags using the < and > symbols. There are two sorts of tags: start tags such as
 < Title > and end tags such as < /Title > . Together, the tags and the content between them are known as
an element . In the previous example, the Title element is written like this:

 < Title > Beginning VB 2008 < /Title >

 The ISBN element looks like this:

 < ISBN > xxxx191347 < /ISBN >

 And the Publisher element looks like this:

 < Publisher > Wrox < /Publisher >

 Note that elements can contain other elements. In this case, for example, the Book element contains
three subelements:

 < Book >

 < Title > Beginning VB 2008 < /Title >
 < ISBN > xxxx191347 < /ISBN >
 < Publisher > Wrox < /Publisher >
 < /Book >

 The structure formed by elements nested inside other elements can also be represented as a tree with, for
example, Title , ISBN , and Publisher as branches from the root Book. Therefore, many use terms
such as node , parent , and child instead of element .

❑

❑

❑

❑

❑

c20.indd 679c20.indd 679 4/1/08 6:41:57 PM4/1/08 6:41:57 PM

Chapter 20: Visual Basic 2008 and XML

680

 If you were given this XML document, you would need to have an understanding of its structure.
Usually, the company that designed the structure of the document will tell you what it looks like. In this
case, someone might tell you that if you first look for the Book element and then the Title element, you
will determine the title of the book. The value between the < Title > start tag and the < /Title > end tag
is the title (in this case, Beginning VB 2008 .)

 As in HTML, XML can also use what are known as attributes. An attribute is a named piece of
information descriptive to the node (element) wherein it is located. When you use attributes, you
must enclose them in quotes. Here is the same XML fragment as the previous one, but this time using
attributes:

 < Book >

 < Title ISBN= ”xxxx191347” > Beginning VB 2008 < /Title >
< Publisher > Wrox < /Publisher >

 < /Book >

 XML is largely common sense, which is one of the things that make it so simple. For example, you can
probably guess what this document represents, even though you may have only just started thinking
about XML:

 < Books >
 < Book >
 < Title > Beginning VB 2008 < /Title >
 < ISBN > xxxx191347 < /ISBN >
 < Publisher > Wrox < /Publisher >
 < /Book >
 < Book >
 < Title > Professional Visual Basic.Net < /Title >
 < ISBN > 1861005555 < /ISBN >
 < Publisher > Wrox < /Publisher >
 < /Book >
 < /Books >

 XML for Visual Basic Newcomers
 As a newcomer to programming and Visual Basic, it is unlikely that you will be undertaking projects
that involve complex integration work. If XML is so popular because it makes systems integration so
much easier, how is it relevant to a newcomer?

 The answer to this question is that, in addition to being a great tool for integration, XML is also a great
tool for storage and general data organization. Before XML, the two ways that an application could store
its data were by using a separate database or by having its own proprietary file format with code that
could save into and read from it.

 In many cases, a database is absolutely the right tool for the job, because you need the fast access, shared
storage, and advanced searching facilities that a database such as Access or SQL Server gives you. In
other cases, such as with a graphics package or word processor, building your own proprietary format is
the right way to go. The reasons for this may be you want the application to be light and do not want to
have the hassle of showing the user how to set up and maintain a database, or simply do not want to
deal with the licensing implications of needing a separate application to support yours.

c20.indd 680c20.indd 680 4/1/08 6:41:57 PM4/1/08 6:41:57 PM

Chapter 20: Visual Basic 2008 and XML

681

 XML gives you a new way of storing application data, although it is still based on the concept of
defining your own proprietary application storage format. The key difference, in contrast to formats
such as .doc files for Word documents, however, is that the XML storage format is a universal standard.

 The Address Book Project
 You ’ re going to build a demonstration application that allows you to create an XML file format for an
address book. You ’ ll be able to create a list of new addresses and save the whole lot as an XML file on
your local disk. You ’ ll also be able to load the XML file and walk through the addresses one by one.

 Creating the Project
 As always, the first thing you have to do is to create a new project.

 Try It Out Creating the Project

 1. Open Visual Studio 2008 and select File New Project from the menu. Create a new Visual
Basic .NET Windows Forms Application project and name it Address Book .

 2. The Form Designer for Form1 will open. Change its Text property to Address Book . Now
add 10 text boxes, 12 labels, and a button to the form so that it looks like Figure 20 - 1 . Note that
you have grid alignment bars to help align the controls on the form. Another option for
aligning controls is to use the Format menu.

Figure 20-1

c20.indd 681c20.indd 681 4/1/08 6:41:58 PM4/1/08 6:41:58 PM

Chapter 20: Visual Basic 2008 and XML

682

 3. The text boxes should be named as follows:

 1. txtFirstName

 2. txtLastName

 3. txtCompanyName

 4. txtAddress1

 5. txtAddress2

 6. txtCity

 7. txtRegion

 8. txtPostalCode

 9. txtCountry

 10. txtEmail

 4. Set the text properties of the labels and button to match Figure 20 - 1 .

 5. The button should be named btnSave . Finally, the Label control marked (number) should be
called lblAddressNumber .

 That ’ s all you need to do with respect to form design. Let ’ s move on and write some code to save the
data as an XML file.

The SerializableData Class
 Your application is going to have two classes: Address and AddressBook . Address will be used to store
a single instance of a contact in the address book. AddressBook will store your entire list of addresses
and provide ways for you to navigate through the book.

 Both of these classes will be inherited from another class called SerializableData . This base class will
contain the logic needed for saving the addresses to disk and loading them back again. In XML parlance,
the saving process is known as serialization and the loading process is known as deserialization . In this
next Try It Out, you ’ re going to build the SerializableData and Address classes so that you can
demonstrate saving a new address record to disk.

Try It Out Building SerializableData

 1. The first class you need to build is the base SerializableData class. Using the Solution
Explorer, right - click the Address Book project and select Add Class. Call the new class
 SerializableData and click Add.

c20.indd 682c20.indd 682 4/1/08 6:41:58 PM4/1/08 6:41:58 PM

Chapter 20: Visual Basic 2008 and XML

683

 2. Right - click the project in Solution Explorer and choose Add Reference. Click the . NET tab and
then select System.XML.dll . Next, add these namespace import directives at the top of the
class definition:

Imports System.IO
Imports System.Xml.Serialization

Public Class SerializableData
End Class

 3. Next, add these two methods to the class:

‘ Save - serialize the object to disk...
Public Sub Save(ByVal filename As String)
 ‘ make a temporary filename...
 Dim tempFilename As String
 tempFilename = filename & “.tmp”
 ‘ does the file exist?
 Dim tempFileInfo As New FileInfo(tempFilename)
 If tempFileInfo.Exists = True Then tempFileInfo.Delete()
 ‘ open the file...
 Dim stream As New FileStream(tempFilename, FileMode.Create)
 ‘ save the object...
 Save(stream)
 ‘ close the file...
 stream.Close()
 ‘ remove the existing data file and
 ‘ rename the temp file...
 tempFileInfo.CopyTo(filename, True)
 tempFileInfo.Delete()
End Sub
‘ Save - actually perform the serialization...
Public Sub Save(ByVal stream As Stream)
 ‘ create a serializer...
 Dim serializer As New XmlSerializer(Me.GetType)
 ‘ save the file...
 serializer.Serialize(stream, Me)
End Sub

 4. Add a new class called Address . Set the class to derive from SerializableData , like this:

Public Class Address

 Inherits SerializableData

End Class

 5. Next, add the members to the class that will be used to store the address details:

Public Class Address
 Inherits SerializableData

 ‘ members...
 Public FirstName As String
 Public LastName As String

c20.indd 683c20.indd 683 4/1/08 6:41:58 PM4/1/08 6:41:58 PM

Chapter 20: Visual Basic 2008 and XML

684

 Public CompanyName As String
 Public Address1 As String
 Public Address2 As String
 Public City As String
 Public Region As String
 Public PostalCode As String
 Public Country As String
 Public Email As String

End Class

 6. Go back to the Form Designer for Form1 and double - click the Save button to have the Click
event handler created. Add this highlighted code to it:

Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ‘ create a new address object...
 Dim address As New Address()
 ‘ copy the values from the form into the address...
 PopulateAddressFromForm(address)
 ‘ save the address...
 Dim filename As String = DataFilename
 address.Save(filename)
 ‘ tell the user...
 MsgBox(“The address was saved to “ & filename)

End Sub

 7. Visual Studio highlights the fact that you haven ’ t defined the DataFilename property or the
 PopulateAddressFromForm method by underlining these respective names. To remove these
underlines, first add the DataFileName property to the Form1 code:

‘ DataFilename - where should we store our data?
Public ReadOnly Property DataFilename() As String
 Get
 ‘ get our working folder...
 Dim folder As String
 folder = Environment.CurrentDirectory
 ‘ return the folder with the name “Addressbook.xml”...
 Return folder & “\AddressBook.xml”
 End Get
End Property

 8. Now you need to add the PopulateAddressFromForm method to your Form1 code:

‘ PopulateAddressFromForm - populates Address from the form fields...
Public Sub PopulateAddressFromForm(ByVal address As Address)
 ‘ copy the values...
 address.FirstName = txtFirstName.Text
 address.LastName = txtLastName.Text
 address.CompanyName = txtCompanyName.Text
 address.Address1 = txtAddress1.Text

c20.indd 684c20.indd 684 4/1/08 6:41:59 PM4/1/08 6:41:59 PM

Chapter 20: Visual Basic 2008 and XML

685

 address.Address2 = txtAddress2.Text
 address.City = txtCity.Text
 address.Region = txtRegion.Text
 address.PostalCode = txtPostalCode.Text
 address.Country = txtCountry.Text
 address.Email = txtEmail.Text
End Sub

 9. Run the project and fill in an address.

 10. Click the Save button. A message box lets you know where the file has been saved.

 11. Use Windows Explorer to navigate to the folder that this XML file has been saved into.
Double - click it, and Internet Explorer should open and list the contents. What you see should
be similar to the contents listed here:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < Address xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley Publishing < /CompanyName >
 < Address1 > 11 First Avenue < /Address1 >
 < Address2 / >
 < City > No where < /City >
 < Region > South East < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >

 How It Works
 Look at the XML that ’ s been returned. For this discussion, you can ignore the first line, starting < ?xml ,
because all that ’ s doing is saying, “ Here is an XML version 1.0 document. ” You can also ignore the
 xmlns attributes on the first and second lines, because all they are doing is providing some extra
information about the file, which at this level is something that you can let .NET worry about and
don ’ t need to get involved with. With those two parts removed, this is what you get:

 < Address >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley Publishing < /CompanyName >
 < Address1 > 11 First Avenue < /Address1 >
 < Address2 / >
 < City > No where < /City >
 < Region > South East < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >

c20.indd 685c20.indd 685 4/1/08 6:41:59 PM4/1/08 6:41:59 PM

Chapter 20: Visual Basic 2008 and XML

686

 You can see how this is pretty similar to the code described previously in this chapter — you have
start tags and end tags, and when taken together these tags form an element. Each element contains
data, and it ’ s pretty obvious that, for example, the CompanyName element contains Bryan ’ s
company name.

 You ’ ll notice as well that there are Address start and end tags at the top and at the bottom of the
document. All of the other elements are enclosed by these tags, and this means that each of the
elements in the middle belongs to the Address element. The Address element is the first element in
the document and is therefore known as the top - level element or root element .

 It ’ s worth noting that an XML document can only have one root element; all other elements in the
 document are child elements of this root.

 Look at the < Address2 / > line. By placing the slash at the end of the tag, what you ’ re saying is that
the element is empty. You could have written this as < Address2 > < /Address2 > , but this would have
used more storage space in the file. The XmlSerializer class itself chooses the naming of the tags,
which is discussed later in this chapter.

 So now you know what was created; but how did you get there? Follow the path of the application
from the clicking of the Save button.

 The first thing this method did was create a new Address object and call the
 PopulateAddressFromForm method. (This method just reads the Text property for every text box on
the form and populates the matching property on the Address object.)

Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 ‘ create a new address object...
 Dim address As New Address()
 ‘ copy the values from the form into the address...
 PopulateAddressFromForm(address)

 Then, you ask the DataFilename property (which you wrote in step 7 of this Try It Out)
to give you the name of a file that you can save the data to. You do this by using the
Environment.CurrentDirectory property to return the folder that the address book is executing
in and then tacking “ \AddressBook.xml ” to the end of this directory pathway. This is going to be the
convention you use when saving and loading files with your application — you won ’ t bother with
giving the user the opportunity to save a specific file. Rather, you ’ ll just assume that the file you want
always has the same name and is always in the same place:

 ‘ save the address...
 Dim filename As String = DataFilename

 You then call the Save method on the Address object. This method is inherited from
 SerializableData , and in a moment you ’ ll take a look at what this method actually does. After
you ’ ve saved the file, you tell the user where it is:

 address.Save(filename)
 ‘ tell the user...
 MsgBox (“The address was saved to “ & filename)
End Sub

 It ’ s the two Save methods on SerializableData that are the really interesting part of this project.
The first version of the method takes a file name and opens the file. The second version of the method

c20.indd 686c20.indd 686 4/1/08 6:41:59 PM4/1/08 6:41:59 PM

Chapter 20: Visual Basic 2008 and XML

687

actually saves the data using the System.Xml.Serialization.XmlSerializer class, as you ’ ll
soon see.

 When you save the file, you want to be careful. You have to save over the top of an existing file, but
you also want to make sure that, if the file save fails for any reason, you don ’ t end up trashing the only
good copy of the data the user has. This is a fairly common problem with a fairly common solution:
You save the file to a different file, wait until you know that everything has been saved properly, and
then replace the existing file with the new one.

 To get the name of the new file, you just tack .tmp onto the end. So, if you had the file name given as
 C:\MyPrograms\AddressBook\AddressBook.xml , you ’ d actually try and save to C:\MyPrograms\
AddressBook\AddressBook.xml.tmp . If this file exists, you delete it by calling the Delete method:

‘ Save - serialize the object to disk...
Public Sub Save(ByVal filename As String)
 ‘ make a temporary filename...
 Dim tempFilename As String
 tempFilename = filename & “.tmp”
 ‘ does the file exist?
 Dim tempFileInfo As New FileInfo(tempFilename)
 If tempFileInfo.Exists = True Then tempFileInfo.Delete()

 When the existing .tmp file is gone, you can create a new file. This returns a System.IO.FileStream
object:

 ‘ open the file...
 Dim stream As New FileStream(tempFilename, FileMode.Create)

 You then pass this stream to another overloaded Save method. You ’ ll go through this method in a
moment, but for now all you need to know is that this method does the actual serialization of the data.

 Then, you close the file:

 ‘ close the file...
 stream.Close()

 Finally, you replace the existing file with the new file. You have to do this with CopyTo (the True
parameter you pass to this method means: overwrite any existing file) and finally delete the
temporary file:

 ‘ remove the existing data file and
 ‘ rename the temp file...
 tempFileInfo.CopyTo(filename, True)
 tempFileInfo.Delete()
End Sub

 The other version of Save takes a Stream argument instead of a String and looks like this:

‘ Save - actually perform the serialization...
Public Sub Save(ByVal stream As Stream)
 ‘ create a serializer...
 Dim serializer As New XmlSerializer(Me.GetType)
 ‘ save the file...
 serializer.Serialize(stream, Me)
End Sub

c20.indd 687c20.indd 687 4/1/08 6:41:59 PM4/1/08 6:41:59 PM

Chapter 20: Visual Basic 2008 and XML

688

 The System.Xml.Serialization.XmlSerializer class is what you use to actually serialize the
object to the stream that you specify. In this case, you ’ re using a stream that points to a file, but later in
this chapter you ’ ll use a different kind of file.

 XmlSerializer needs to know ahead of time what type of object it ’ s saving. You use the GetType
method to return a System.Type object that references the class that you actually are saving, which in
this case is Address . The reason XmlSerializer needs to know the type is because it works by iterating
through all of the properties on the object, looking for ones that are both readable and writable (in other
words, ones that are not flagged as read - only or write - only). Every time it finds such a property,
 XmlSerializer writes the property to the stream, which in this case means that the property
subsequently gets written to the AddressBook.xml file.

 XmlSerializer bases the name of the element in the XML document on the name of the matching
property. For example, the FirstName element in the document matches the FirstName property on
 Address . In addition, the top - level element of Address matches the name of the Address class; in other
words, the root element name matches the class name. XmlSerializer is a great way of using XML in
your programs because you don ’ t need to mess around creating and manually reading XML
documents — it does all the work for you.

 Loading the XML File
 Now you can load the address back from the XML file on the disk. In this next Try It Out, you ’ ll be
adding the methods necessary to deserialize the XML back into data that you can work with in your
application.

Try It Out Loading the XML File

 1. Using the Solution Explorer, open the code editor for SerializableData . Add these two
methods:

‘ Load - deserialize from disk...
Public Shared Function Load(ByVal filename As String, _
 ByVal newType As Type) As Object
 ‘ does the file exist?
 Dim fileInfo As New FileInfo(filename)
 If fileInfo.Exists = False Then
 ‘ create a blank version of the object and return that...
 Return System.Activator.CreateInstance(newType)
 End If
 ‘ open the file...
 Dim stream As New FileStream(filename, FileMode.Open)
 ‘ load the object from the stream...
 Dim newObject As Object = Load(stream, newType)
 ‘ close the stream...
 stream.Close()
 ‘ return the object...

c20.indd 688c20.indd 688 4/1/08 6:42:00 PM4/1/08 6:42:00 PM

Chapter 20: Visual Basic 2008 and XML

689

 Return newObject
End Function
Public Shared Function Load(ByVal stream As Stream, _
 ByVal newType As Type) As Object
 ‘ create a serializer and load the object....
 Dim serializer As New XmlSerializer(newType)
 Dim newObject As Object = serializer.Deserialize(stream)
 ‘ return the new object...
 Return newobject
End Function

 2. Go back to the Form Designer for Form1. Add a new button. Set the Text property of the new
button to & Load and the Name to btnLoad .

 3. Double - click the Load button and add the following highlighted code to the event handler:

Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click

 ‘ load the address using a shared method on SerializableData...
 Dim newAddress As Address = _
 SerializableData.Load(DataFilename, GetType(Address))
 ‘ update the display...
 PopulateFormFromAddress(newAddress)

End Sub

 4. You ’ ll also need to add this method to Form1:

‘ PopulateFormFromAddress - populates the form from an
‘ address object...
Public Sub PopulateFormFromAddress(ByVal address As Address)
 ‘ copy the values...
 txtFirstName.Text = address.FirstName
 txtLastName.Text = address.LastName
 txtCompanyName.Text = address.CompanyName
 txtAddress1.Text = address.Address1
 txtAddress2.Text = address.Address2
 txtCity.Text = address.City
 txtRegion.Text = address.Region
 txtPostalCode.Text = address.PostalCode
 txtCountry.Text = address.Country
 txtEmail.Text = address.Email
End Sub

 5. Run the project and click the Load button or press Alt + L. The address should be loaded from
the XML file and displayed on the screen. After clicking the Load button, you should see what
you typed and saved previously as shown in Figure 20 - 2 .

c20.indd 689c20.indd 689 4/1/08 6:42:00 PM4/1/08 6:42:00 PM

Chapter 20: Visual Basic 2008 and XML

690

 How It Works
 Deserialization is the opposite of serialization. It can be used to load the XML data from the file,
whereas before you saved the XML data to the file. (Note that here I ’ m using the word file for
simplification. In fact, you can serialize to and deserialize from any kind of stream.)

 Whenever you ask XmlSerializer to deserialize an object for you, it creates a new object. You can
use this functionality to get XmlSerializer to create a new object for you rather than having to create
one yourself. This is a good candidate for an overloaded method on the SerializableData object.
You create an overloaded method called Load , the first version of which takes a file name and also a
 System.Type object. This Type object represents the type of object you ultimately want to end up
with. Specifically, you ’ ll need to pass in a Type object that tells XmlSerializer where to find a list of
properties that exist on your Address object.

 Since XmlSerializer doesn ’ t save .NET class namespaces or assembly information into the XML file,
it relies on an explicit statement saying which class the file contains; otherwise things get ambiguous.
(Imagine you had a hundred assemblies on your machine, each containing a class called Address .
How could XmlSerializer know which one you mean?)

 Obviously, when the method is called, the first thing you do is check to see whether the file exists. If it
doesn ’ t, you ’ ll return a blank version of the object that you asked for.

‘ Load - deserialize from disk...
Public Shared Function Load(ByVal filename As String, _
 ByVal newType As Type) As Object
 ‘ does the file exist?
 Dim fileInfo As New FileInfo(filename)
 If fileInfo.Exists = False Then
 ‘ create a blank version of the object and return that...
 Return System.Activator.CreateInstance(newType)
 End If

Figure 20-2

c20.indd 690c20.indd 690 4/1/08 6:42:00 PM4/1/08 6:42:00 PM

Chapter 20: Visual Basic 2008 and XML

691

 If the file does exist, you open it and pass it to the other version of Load , which you ’ ll see in a moment.
You then close the file and return the new object to the caller:

 ‘ open the file...
 Dim stream As New FileStream(filename, FileMode.Open)
 ‘ load the object from the stream...
 Dim newObject As Object = Load(stream, newType)
 ‘ close the stream...
 stream.Close()
 ‘ return the object...
 Return newObject
End Function

 The other version of Load uses the XmlSerializer again and, as you can see, it ’ s no more
complicated than when you used it last time. Except, of course, that the Deserialize method returns
a new object to you:

Public Shared Function Load(ByVal stream As Stream, _
 ByVal newType As Type) As Object
 ‘ create a serializer and load the object....
 Dim serializer As New XmlSerializer(newType)
 Dim newObject As Object = serializer.Deserialize(stream)
 ‘ return the new object...
 Return newobject
End Function

 When it ’ s deserializing, XmlSerializer goes through each of the properties on the new object that it
has created, again looking for ones that are both readable and writable. When it finds one, it takes the
value stored against it in the XML document and sets the property. The result: You are given a new
object, fully populated with the data from the XML document.

 Once you ’ ve called Load and have gotten a new Address object back, you pass the new object to
 PopulateFormFromAddress :

Private Sub btnLoad_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnLoad.Click
 ‘ load the address using a shared method on SerializableData...
 Dim newAddress As Address = _
 SerializableData.Load(DataFilename, GetType(Address))
 ‘ update the display...
 PopulateFormFromAddress(newAddress)
End Sub

Changing the Data
 To prove that nothing funny is going on, in the next Try It Out you ’ ll change the XML file using Notepad
and try clicking the Load button again.

c20.indd 691c20.indd 691 4/1/08 6:42:01 PM4/1/08 6:42:01 PM

Chapter 20: Visual Basic 2008 and XML

692

 Try It Out Changing the Data

 1. Open Windows Notepad and load the XML file into it. Inside the FirstName element, change
the name that you entered to something else. Then save the file and exit Notepad.

 2. Go back to the Address Book program. Click the Load button again. The new name that you
entered will be loaded.

 How It Works
 What you ’ ve done here is proven that XmlSerializer does indeed use the AddressBook.xml file as
the source of its data. You changed the data, and when you loaded the Address object again, the
 FirstName property had indeed been changed to the new name that you entered.

 Sending E - mail
 For the following Try It Out, you ’ ll see how you can integrate this application with an e - mail client such
as Outlook or Outlook Express using the e - mail data from your addresses. You ’ ll be using the Process
class to start the e - mail client associated with the mailto protocol, as you will see in a few moments.

Try It Out Sending E - mail from the Client

 1. Go back to the Form1 designer and, using the Toolbox, draw a LinkLabel control underneath
the Email label. Set its Text property to Send Email and change its Name property to
 lnkSendEmail as shown in Figure 20 - 3 .

Figure 20-3

c20.indd 692c20.indd 692 4/1/08 6:42:01 PM4/1/08 6:42:01 PM

Chapter 20: Visual Basic 2008 and XML

693

 Note that this will work with a normal Button control, too.

 2. Double - click the LinkLabel control. This creates an event handler for the LinkClicked event.
Add this code:

Private Sub lnkSendEmail_LinkClicked(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnkSendEmail.LinkClicked

 ‘ start the e-mail client...
 System.Diagnostics.Process.Start(“mailto:” & txtEmail.Text)

End Sub

 3. Run the project and click the Load button. Ensure you have an e - mail address entered in the
Email field and then click the Send Email link. Your e - mail client should display a new mail
message with the To: field filled in with your e - mail address.

 How It Works
 Windows has a built - in capability to decode Internet addresses and fire up the programs that are
associated with them.

 When an e - mail client such as Outlook or Outlook Express is installed, it registers a protocol called
 mailto with Windows, just as, when a web browser such as Internet Explorer is installed, it registers
the protocol HTTP, familiar to anyone who browses the Web.

 If you were to close the mail message, click the Start button from the Windows task bar, select Run,
enter mailto: followed by the e - mail address from your program, and then click OK, the same mail
message would appear.

 In your code, you take the current value of the txtEmail field and put mailto: at the beginning. This
turns the e - mail address into a URL. You then call the shared Start method on the System.
Diagnostics.Process class, passing it this URL:

Private Sub lnkSendEmail_LinkClicked(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.LinkLabelLinkClickedEventArgs) _
 Handles lnkSendEmail.LinkClicked
 ‘ start the e-mail client...
 System.Diagnostics.Process.Start(“mailto:” & txtEmail.Text)
End Sub

 The Start method behaves in exactly the same way as the Run dialog box does. Both tap into
Windows ’ built - in URL - decoding functionality. In this case, you ’ ve used this functionality to
integrate your application with Outlook. However, if you ’ d specified a protocol of http: rather than
 mailto: , your application could have opened a web page. Likewise, if you had supplied a path to a
Word document, or Excel spreadsheet, the application could open those too. Note that when you ’ re
working with a file, you don ’ t need to supply a protocol — for example, you only need to do this:

c:\My Files\My Budget.xls

c20.indd 693c20.indd 693 4/1/08 6:42:01 PM4/1/08 6:42:01 PM

Chapter 20: Visual Basic 2008 and XML

694

 Creating a List of Addresses
 The purpose of this Try It Out is to build an application that allows you to store a list of addresses in
XML. At the moment you can successfully load just one address, so now you have to turn your attention
to managing a list of addresses.

 The class you ’ re going to build to do this is called AddressBook . This class will inherit from
 SerializableData because ultimately you want to get to a point where you can tell the AddressBook
object to load and save itself to the XML file without you having to do anything.

 Try It Out Creating AddressBook

 1. Using Solution Explorer, create a new class called AddressBook .

 2. Add this namespace declaration:

Imports System.Xml.Serialization

Public Class AddressBook
End Class

 3. Set the class to inherit from SerializableData as shown in the highlighted code:

Imports System.Xml.Serialization
Public Class AddressBook

 Inherits SerializableData

End Class

 4. To store the addresses, you ’ re going to use a System.Collections.ArrayList object. You
also need a method that you can use to create new addresses in the list. Add the following
highlighted member and method to the class:

Imports System.Xml.Serialization
Public Class AddressBook
 Inherits SerializableData

 ‘ members...
 Public Items As New ArrayList()
 ‘ AddAddress - add a new address to the book...
 Public Function AddAddress() As Address
 ‘ create one...
 Dim newAddress As New Address()
 ‘ add it to the list...
 Items.Add(newAddress)
 ‘ return the address...
 Return newAddress
 End Function

End Class

c20.indd 694c20.indd 694 4/1/08 6:42:02 PM4/1/08 6:42:02 PM

Chapter 20: Visual Basic 2008 and XML

695

 5. Open the Code Editor for Form1. Add these members to the top of the class:

Public Class Form1

 ‘ members...
 Public AddressBook As AddressBook
 Private _currentAddressIndex As Integer

 6. Next, add this property to Form1:

‘ CurrentAddress - property for the current address...
ReadOnly Property CurrentAddress() As Address
 Get
 Return AddressBook.Items(CurrentAddressIndex - 1)
 End Get
End Property

 7. Then add this property to Form1:

‘ CurrentAddressIndex - property for the current address...
Property CurrentAddressIndex() As Integer
 Get
 Return _currentAddressIndex
 End Get
 Set(ByVal Value As Integer)
 ‘ set the address...
 _currentAddressIndex = Value
 ‘ update the display...
 PopulateFormFromAddress(CurrentAddress)
 ‘ set the label...
 lblAddressNumber.Text = _
 _currentAddressIndex & “ of “ & AddressBook.Items.Count
 End Set
End Property

 8. Double - click the form to create the Load event for Form1 and add this highlighted code to
the handler:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ‘ load the address book...
 AddressBook = _
 SerializableData.Load(DataFilename, GetType(AddressBook))
 ‘ if the address book only contains one item, add a new one...
 If AddressBook.Items.Count = 0 Then AddressBook.AddAddress()
 ‘ select the first item in the list...
 CurrentAddressIndex = 1

End Sub

c20.indd 695c20.indd 695 4/1/08 6:42:02 PM4/1/08 6:42:02 PM

Chapter 20: Visual Basic 2008 and XML

696

 9. Now that you can load the address book, you need to be able to save the changes. From
the left drop - down list, select (Form1 Events). From the right list, select FormClosed. Add the
highlighted code to the event handler, and also add the SaveChanges and
 UpdateCurrentAddress methods:

Private Sub Form1_FormClosed(ByVal sender As Object, ByVal e As _
 System.Windows.Forms.FormClosedEventArgs) Handles Me.FormClosed

 ‘ save the changes...
 UpdateCurrentAddress()
 SaveChanges()

End Sub

‘ SaveChanges - save the address book to an XML file...
Public Sub SaveChanges()
 ‘ tell the address book to save itself...
 AddressBook.Save(DataFilename)
End Sub
‘ UpdateCurrentAddress - make sure the book has the current
‘ values currently entered into the form...
Private Sub UpdateCurrentAddress()
 PopulateAddressFromForm(CurrentAddress)
End Sub

 Before you run the project, it ’ s very important that you delete the existing AddressBook.xml file.
If you don ’ t, XmlSerializer will try to load an AddressBook object from a file containing an
 Address object, and an exception will be thrown.

 10. Run the project. Don ’ t bother entering any information into the form, because the save
routine won ’ t work — we ’ ve deliberately introduced a bug to illustrate an issue with
 XmlSerializer . Close the form, and you should see the exception thrown as shown in
Figure 20 - 4 :

Figure 20-4

 How It Works (or Why It Doesn ’ t!)
 When the form is loaded, the first thing you do is ask SerializableData to create a new
 AddressBook object from the AddressBook.xml file. Because you deleted this before you ran the
project, this file won ’ t exist, and, as you recall, you rigged the Load method so that if the file didn ’ t

c20.indd 696c20.indd 696 4/1/08 6:42:02 PM4/1/08 6:42:02 PM

Chapter 20: Visual Basic 2008 and XML

697

exist it would just create an instance of whatever class you asked for. In this case, you get an
 AddressBook :

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ‘ load the address book...
 AddressBook = _
 SerializableData.Load(DataFilename, GetType(AddressBook))

 However, the new address book won ’ t have any addresses in it. You ask AddressBook to create a new
address if the list is empty:

 ‘ if the address book only contains one item, add a new one...
 If AddressBook.Items.Count = 0 Then AddressBook.AddAddress()

 At this point, either you ’ ll have an AddressBook object that ’ s been loaded from the file and therefore
contains a set of Address objects, or you ’ ll have a new AddressBook object that contains one, blank
address. You set the CurrentAddressIndex property to 1, meaning the first item in the list:

 ‘ select the first item in the list...
 CurrentAddressIndex = 1
End Sub

 The setter for the CurrentAddressIndex property does a number of things. First, it updates the
private _currentAddressIndex member:

‘ CurrentAddressIndex - property for the current address...
Property CurrentAddressIndex() As Integer
 Get
 Return _currentAddressIndex
 End Get
 Set(ByVal Value As Integer)
 ‘ set the address...
 _currentAddressIndex = Value

 Then the setter uses the CurrentAddress property to get the Address object that corresponds to
whatever _currentAddressIndex is set to. This Address object is passed to
 PopulateFormFromAddress , whose job it is to update the display:

 ‘ update the display...
 PopulateFormFromAddress(CurrentAddress)

 Finally, it changes the lblAddressNumber control so that it displays the current record number:

 ‘ set the label...
 lblAddressNumber.Text = _
 _currentAddressIndex & “ of “ & AddressBook.Items.Count
 End Set
End Property

c20.indd 697c20.indd 697 4/1/08 6:42:03 PM4/1/08 6:42:03 PM

Chapter 20: Visual Basic 2008 and XML

698

 You ’ ll just quickly look at CurrentAddress . This property ’ s job is to turn an integer index into the
corresponding Address object stored in AddressBook . However, because AddressBook works on the
basis of an ArrayList object that numbers items from 0, and your application starts numbering items
at 1, you have to decrement your index value by 1 to get the matching value from AddressBook :

‘ CurrentAddress - property for the current address...
ReadOnly Property CurrentAddress() As Address
 Get
 Return AddressBook.Items(CurrentAddressIndex - 1)
 End Get
End Property

 All good so far, but why is XmlSerializer throwing an exception? Well the problems occur when
you close the application. This fires the FormClosed method, which ultimately calls the Save method
of AddressBook .

 As you know, to save an object to disk, XmlSerializer walks through each of the properties
looking for ones that are readable and writable. So far, you ’ ve used XmlSerializer only with
 System.String , but when the object comes across a property that uses a complex type, such as
 Address , it uses the same principle — in other words, it looks through all of the properties that the
complex type has. If properties on that that object return complex types, it will drill down again. What
it ’ s doing is looking for simple types that it knows how to turn into text and write to the XML
document.

 However, some types cannot be turned into text, and at this point XmlSerializer chokes. The
 ArrayList object that you ’ re using to store a list of addresses had some properties that cannot be
converted to text, which is the reason the exception is being thrown. What you need to do is provide
an alternative property that XmlSerializer can hook into in order to get a list of addresses and tell it
not to bother trying to serialize the ArrayList .

 Ignoring Members
 Although XmlSerializer cannot cope with certain data types, it has no problems with arrays. You ’ ve
also seen that XmlSerializer has no problems with your Address class, simply because this object
doesn ’ t have any properties of a type that XmlSerializer cannot support. In the next Try It Out, you ’ ll
provide an alternative property that returns an array of Address objects and tells XmlSerializer to
keep away from the Items property because XmlSerializer cannot deal with ArrayList objects.

Try It Out Ignoring Members

 1. Open the Code Editor for AddressBook . Find the Items property and prefix it with the
 System.Xml.Serialization.XmlIgnore attribute:

Public Class AddressBook
 Inherits SerializableData

 < XmlIgnore() > Public Items As New ArrayList

c20.indd 698c20.indd 698 4/1/08 6:42:03 PM4/1/08 6:42:03 PM

Chapter 20: Visual Basic 2008 and XML

699

 2. Now, add this new property to the AddressBook class:

‘ Addresses - property that works with the items
‘ collection as an array...
Public Property Addresses() As Address()
 Get
 ‘ create a new array...
 Dim addressArray(Items.Count - 1) As Address
 Items.CopyTo(addressArray)
 Return addressArray
 End Get
 Set(ByVal Value As Address())
 ‘ reset the arraylist...
 Items.Clear()
 ‘ did you get anything?
 If Not Value Is Nothing Then
 ‘ go through the array and populate items...
 Dim address As Address
 For Each address In Value
 Items.Add(address)
 Next
 End If
 End Set
End Property

 3. Run the project and then close the application; this time everything functions correctly. Run
the project again, and then enter some data into the address fields. Close the application and
you should find that AddressBook.xml does contain data. (We ’ ve removed the xmlns
and ?xml values for clarity here.)

 < AddressBook >
 < Addresses >
 < Address >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley < /CompanyName >
 < Address1 > 123 Main St < /Address1 >
 < Address2 / >
 < City > Big City < /City >
 < Region > SE < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >
 < /Addresses >
 < /AddressBook >

 How It Works
 The XML that got saved into your file proves that your approach works, but why?

c20.indd 699c20.indd 699 4/1/08 6:42:03 PM4/1/08 6:42:03 PM

Chapter 20: Visual Basic 2008 and XML

700

 At this point, your AddressBook object has two properties: Items and Addresses . Both are read/
write properties, so both are going to be examined as candidates for serialization by XmlSerializer .
As you know, Items returns an ArrayList object, and Addresses returns an array of
 Address objects.

 However, you have now marked Items with the XmlIgnore attribute. This means, not surprisingly,
that XmlSerializer ignores the property, despite the fact that it is readable and writable. Instead, the
serializer moves on to the Addresses property.

 The Get portion of the Addresses property is what interests you. All you do is create a new array of
 Address objects and use the CopyTo method on the ArrayList to populate it:

‘ Addresses - property that works with the items
‘ collection as an array...
Public Property Addresses() As Address()
 Get
 ‘ create a new array...
 Dim addressArray(Items.Count - 1) As Address
 Items.CopyTo(addressArray)
 Return addressArray
 End Get
 Set(ByVal Value As Address())
 ...
 End Set
End Property

 When XmlSerializer gets an array of objects that it can deal with, all it does is iterate through the
array, serializing each of these contained objects in turn. You can see this in the XML that you received:
The structure of the XML contained within the Addresses element exactly matches the structure
of the XML you saw when you tested the process and wrote a single Address object to the file:

 < AddressBook >
 < Addresses >
 < Address >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley < /CompanyName >
 < Address1 > 123 Main St < /Address1 >
 < Address2 / >
 < City > Big City < /City >
 < Region > SE < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >
 < /Addresses >
 < /AddressBook >

c20.indd 700c20.indd 700 4/1/08 6:42:03 PM4/1/08 6:42:03 PM

Chapter 20: Visual Basic 2008 and XML

701

 Loading Addresses
 If you ’ re lucky, loading addresses should just work! Close the program and run the project again. You
will see a record as shown in Figure 20 - 5 : The Load button does not work at this point. Don ’ t worry,
you don ’ t need it anymore.

 You already set up the project to load the address book the first time you ran the project after creating the
 AddressBook class itself. This time, however, AddressBook.Load can find a file on the disk, and so,
rather than creating a blank object, it ’ s getting XmlSerializer to deserialize the lot. As XmlSerializer
has no problems writing arrays, you can assume that it has no problem reading them.

 It ’ s the Set portion of the Addresses property that does the magic this time. When working with this
property, be careful if you are passed a blank array (in other words, Nothing); you want to prevent
exceptions being thrown:

‘ Addresses - property that works with the items
‘ collection as an array...
Public Property Addresses() As Address()
 Get
 ...
 End Get
 Set(ByVal Value As Address())
 ‘ reset the arraylist...
 Items.Clear()
 ‘ did you get anything?
 If Not Value Is Nothing Then

Figure 20-5

c20.indd 701c20.indd 701 4/1/08 6:42:04 PM4/1/08 6:42:04 PM

Chapter 20: Visual Basic 2008 and XML

702

 ‘ go through the array and populate items...
 Dim address As Address
 For Each address In Value
 Items.Add(address)
 Next
 End If
 End Set
End Property

For each of the values in the array, all you have to do is take each one in turn and add it to the list.

 Adding New Addresses
 Next, you ’ ll look at how you can add new addresses to the list. In this Try It Out, you ’ ll be adding four
new buttons to your form. Two buttons allow you to navigate through the list of addresses, and two
buttons allow you to add and delete addresses.

 Try It Out Adding New Addresses

 1. Open the Form Designer for Form1 and disable the Load and Save buttons before adding the
four new buttons shown in Figure 20 - 6 .

Figure 20-6

 2. Name the buttons in turn btnPrevious , btnNext , btnNew , and btnDelete and set their Text
properties to Previous , Next , New , and Delete , respectively.

c20.indd 702c20.indd 702 4/1/08 6:42:04 PM4/1/08 6:42:04 PM

Chapter 20: Visual Basic 2008 and XML

703

 3. Double - click the New button to create a Click handler. Add the highlighted line to the event
handler, and also add the AddNewAddress method:

Private Sub btnNew_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnNew.Click

 AddNewAddress()

End Sub

Public Function AddNewAddress() As Address
 ‘ save the current address...
 UpdateCurrentAddress()

 ‘ create a new address...
 Dim newAddress As Address = AddressBook.AddAddress
 ‘ update the display...
 CurrentAddressIndex = AddressBook.Items.Count
 ‘ return the new address...
 Return newAddress
End Function

 4. Run the project. Click New and a new address record is created. Enter a new address:

 5. Close the program and the changes will be saved. Open up AddressBook.xml , and you
should see the new address.

 How It Works
 This time you have a new Address object added to the XML document. It is contained within the
 Addresses element, so you know that it is part of the same array.

 The implementation was very simple — all you had to do was ask AddressBook to create a new
address, and then you updated the CurrentAddressIndex property so that it equaled the number
of items in the AddressBook . This had the effect of changing the display so that it went to record
2 of 2, ready for editing.

 However, it is important that, before you actually do this, you save any changes that the user might
have made. With this application, you are ensuring that any changes the user makes will always be
persisted into the XML file. Whenever the user closes the application, creates a new record, or moves
backward or forward in the list, you want to call UpdateCurrentAddress so that any changes
are saved:

Public Function AddNewAddress() As Address
 ‘ save the current address...
 UpdateCurrentAddress()

 After you ’ ve saved any changes, it is safe to create the new record and show the new record to
the user:

 ‘ create a new address...
 Dim newAddress As Address = AddressBook.AddAddress
 ‘ update the display...
 CurrentAddressIndex = AddressBook.Items.Count
 ‘ return the new address...
 Return newAddress
End Function

c20.indd 703c20.indd 703 4/1/08 6:42:04 PM4/1/08 6:42:04 PM

Chapter 20: Visual Basic 2008 and XML

704

 Navigating Addresses
 Now that you can add new addresses to the address book, you need to wire up the Next and Previous
buttons so that you can move through the list. In this Try It Out, you ’ ll be adding the code that reads the
next or previous address from the array of addresses maintained by the AddressBook class. Before
reading the next or previous address, however, you ’ ll also want to ensure that any changes made to the
current address are updated, and you ’ ll be calling the appropriate procedures to update the current
address before navigating to a new address.

 Try It Out Navigating Addresses

 1. Open the Form Designer for Form1. Double - click the Next button to create a new Click
handler. Add this code and the associated MoveNext method:

Private Sub btnNext_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnNext.Click

 MoveNext()

End Sub

Public Sub MoveNext()
 ‘ get the next index...
 Dim newIndex As Integer = CurrentAddressIndex + 1
 If newIndex > AddressBook.Items.Count Then
 newIndex = 1
 End If
 ‘ save any changes...
 UpdateCurrentAddress()
 ‘ move the record...
 CurrentAddressIndex = newIndex
End Sub

 2. Next, flip back to the Form Designer and double - click the Previous button. Add the
highlighted code:

Private Sub btnPrevious_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnPrevious.Click

 MovePrevious()

End Sub

Public Sub MovePrevious()
 ‘ get the previous index...
 Dim newIndex As Integer = CurrentAddressIndex - 1
 If newIndex = 0 Then
 newIndex = AddressBook.Items.Count
 End If
 ‘ save changes...
 UpdateCurrentAddress()
 ‘ move the record...
 CurrentAddressIndex = newIndex
End Sub

 3. Run the project. You should now be able to move between addresses.

c20.indd 704c20.indd 704 4/1/08 6:42:05 PM4/1/08 6:42:05 PM

Chapter 20: Visual Basic 2008 and XML

705

 How It Works
 All you ’ ve done here is wire up the buttons so that each one changes the current index. By
incrementing the current index, you move forward in the list. By decrementing it, you move
backward.

 However, it ’ s very important that you don ’ t move outside the bounds of the list (in other words, try to
move to a position before the first record or to a position after the last record), which is why you check
the value and adjust it as appropriate. When you move forward (MoveNext), you flip to the beginning
of the list if you go off the end. When you move backward (MovePrevious), you flip to the end if you
go off the start.

 In both cases, you make sure that before you actually change the CurrentAddressIndex property,
you call UpdateCurrentAddress to save any changes:

Public Sub MoveNext()
 ‘ get the next index...
 Dim newIndex As Integer = CurrentAddressIndex + 1
 If newIndex > AddressBook.Items.Count Then
 newIndex = 1
 End If

 ‘ save any changes...
 UpdateCurrentAddress()

 ‘ move the record...
 CurrentAddressIndex = newIndex
End Sub

 Deleting Addresses
 To finish the functionality of your address book, you ’ ll deal with deleting items. When deleting items,
you must take into account that the item you are deleting is the last remaining item. In this case, you
have to provide the appropriate code to add a new blank address. This Try It Out provides this and all
necessary functionality to delete an address properly.

 Try It Out Deleting Addresses

 1. Go back to the Form Designer for Form1 and double - click the Delete button. Add this code to
the event handler, and also add the DeleteAddress method:

Private Sub btnDelete_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDelete.Click

 ‘ ask the user if they are ok with this?
 If MsgBox (“Are you sure you want to delete this address?”, _
 MsgBoxStyle.Question Or MsgBoxStyle.YesNo) = _
 MsgBoxResult.Yes Then
 DeleteAddress(CurrentAddressIndex)
 End If

End Sub

c20.indd 705c20.indd 705 4/1/08 6:42:05 PM4/1/08 6:42:05 PM

Chapter 20: Visual Basic 2008 and XML

706

‘ DeleteAddress - delete an address from the list...
Public Sub DeleteAddress(ByVal index As Integer)
 ‘ delete the item from the list...
 AddressBook.Items.RemoveAt(index - 1)
 ‘ was that the last address?
 If AddressBook.Items.Count = 0 Then
 ‘ add a new address?
 AddressBook.AddAddress()
 Else
 ‘ make sure you have something to show...
 If index > AddressBook.Items.Count Then
 index = AddressBook.Items.Count
 End If
 End If
 ‘ display the record...
 CurrentAddressIndex = index
End Sub

 2. Run the project. You should be able to delete records from the address book. Note that if you
delete the last record, a new record is automatically created.

 How It Works
 The algorithm you ’ ve used here to delete the records is an example of how to solve another classic
programming problem.

 Your application is set up so that it always has to display a record. That ’ s why, when the program is
first run and there is no AddressBook.xml , you automatically create a new record. Likewise, when an
item is deleted from the address book, you have to find something to present to the user.

 To physically delete an address from the disk, you use the RemoveAt method on the ArrayList that
holds the Address objects.

‘ DeleteAddress - delete an address from the list...
Public Sub DeleteAddress(ByVal index As Integer)
 ‘ delete the item from the list...
 AddressBook.Items.RemoveAt(index - 1)

 Again, notice here that, because you ’ re working with a zero - based array, when you ask to delete the
address with an index of 3, you actually have to delete the address at position 2 in the array.

 The problems start after you ’ ve done that. It could be that you ’ ve deleted the one remaining address
in the book. In this case, because you always have to display an address, you create a new one:

 ‘ was that the last address?
 If AddressBook.Items.Count = 0 Then
 ‘ add a new address?
 AddressBook.AddAddress()

 Alternatively, if there are items in the address book, you have to change the display. In some cases, the
value that ’ s currently stored in CurrentAddressIndex will be valid. For example, if you had five
records and are looking at the third one, _currentAddressIndex will be 3. If you delete that record,
you have four records, but the third one as reported by _currentAddressIndex is still 3 and is still
valid. However, as 4 has now shuffled into 3 ’ s place, you need to update the display.

c20.indd 706c20.indd 706 4/1/08 6:42:05 PM4/1/08 6:42:05 PM

Chapter 20: Visual Basic 2008 and XML

707

 It could be the case that you ’ ve deleted the last item in the list. When this happens, the index isn ’ t
valid, because the index would be positioned over the end of the list. (Suppose you have four items in
the list; delete the fourth one, and you only have three, but _currentAddressIndex would be 4,
which isn ’ t valid.) So, when the last item is deleted, the index will be over the end of the list, so you set
it to be the last item in the list:

 Else
 ‘ make sure you have something to show...
 If index > AddressBook.Items.Count Then
 index = AddressBook.Items.Count
 End If
 End If

 Whatever actually happens, you still need to update the display. As you know, the
 CurrentAddressIndex property can do this for you:

 ‘ display the record...
 CurrentAddressIndex = index
End Sub

Testing at the Edges
 This brings us to a programming technique that can greatly help you test your applications. When writing
software, things usually go wrong at the edge. For example, you have a function that takes an integer
value, but in order for the method to work properly, the value supplied must lie between 0 and 99.

 When your algorithm works properly when you give it a valid value, test some values at the boundaries
of the valid data. For example: – 1, 0, 99, and 100. In most cases, if your method works properly for one
or two of the possible valid values, it works properly for the entire set of valid values. Testing a few
values at the edge shows you where potential problems with the method lie.

 A classic example of this is with your MoveNext and MovePrevious methods. If you had a hundred
addresses in your address book and tested only that MoveNext and MovePrevious worked between
numbers 10 and 20, it most likely would have worked between 1 and 100. However, the moment you
move past 100 (in other words “ go over the edge ”), problems can occur. If you hadn ’ t handled this case
properly by flipping back to 1, your program would have crashed.

 Integrating with the Address
Book Application

 So far, you ’ ve built an application that is able to save and load its data as an XML document. You ’ ve also
taken a look at the document as it ’ s been changing over the course of the chapter, so by now you should
have a pretty good idea of what an XML document looks like and how it works.

c20.indd 707c20.indd 707 4/1/08 6:42:06 PM4/1/08 6:42:06 PM

Chapter 20: Visual Basic 2008 and XML

708

 The beginning of this chapter pitched XML as a technology for integrating software applications. It then
went on to say that for newcomers to Visual Basic, using XML for integration is unlikely to be something
that you would do on a day - to - day basis, and so you ’ ve been using XML to store data. In the rest of this
chapter, we ’ re going to demonstrate why XML is such a good technology for integration. What you ’ ll do
is build a separate application that, with very little work, is able to read in and understand the
proprietary data format that you ’ ve used in AddressBook.xml .

 Using XML is an advanced topic, so, if you would like to learn more about the technology and its
application, try the following books:

 Beginning XML, 2nd Edition (ISBN 1 - 86100 - 559 - 8)

 Visual Basic .NET and XML: Harness the Power of XML in VB.NET Applications
(ISBN 0 - 471 - 26509 - 8)

 Demonstrating the Principle of Integration
 Before you build the application that can integrate with your address book application, you should try to
understand the principles involved. Basically, XML documents are good for integration because they can
be easily read, understood, and changed by other people. Old - school file formats require detailed
documentation to understand and often don ’ t evolve well — that is, when new versions of the format
are released, software that worked with the old formats often breaks.

 XML documents are typically easily understood. Imagine you ’ d never seen or heard of your address
book before, and look at this XML document:

 < Addresses >
 < Address >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley < /CompanyName >
 < Address1 > 123 Main St < /Address1 >
 < Address2 / >
 < City > Big City < /City >
 < Region > SE < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >
 < /Addresses >

 Common sense tells you what this document represents. You can also perceive how the program that
generated it uses it. In addition, you can use the various tools in .NET to load, manipulate, and work
with this document. To an extent, you still need to work with the people that designed the structure of
the document, especially when more esoteric elements come into play, but you can use this document to
some meaningful effect without too much stress.

 Provided that you know what structure the document takes, you can build your own document or add
new things to it. For example, if you know that the Addresses element contains a list of Address
elements, and that each Address element contains a bunch of elements that describe the address, you
can add your own Address element using your own application.

❑

❑

c20.indd 708c20.indd 708 4/1/08 6:42:06 PM4/1/08 6:42:06 PM

Chapter 20: Visual Basic 2008 and XML

709

 To see this happening, you can open the AddressBook.xml file in Notepad. You need to copy the last
 Address element (complete with the contents) to the bottom of the document, but make sure it remains
inside the Addresses element. Change the address data to something else. Here ’ s mine:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < AddressBook xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < Addresses >
 < Address >
 < FirstName > Bryan < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName > Wiley < /CompanyName >
 < Address1 > 123 Main St < /Address1 >
 < Address2 / >
 < City > Big City < /City >
 < Region > SE < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email > Bryan@email.com < /Email >
 < /Address >

 < Address >
 < FirstName > Jennifer < /FirstName >
 < LastName > Newsome < /LastName >
 < CompanyName / >
 < Address1 > 123 Main St < /Address1 >
 < Address2 / >
 < City > Big City < /City >
 < Region > SE < /Region >
 < PostalCode > 28222 < /PostalCode >
 < Country > USA < /Country >
 < Email / >
 < /Address >

 < /Addresses >
 < /AddressBook >

 Finally, if you save the file and run the address book application, you should find that you have two
addresses and that the last one is the new one that you added. What this shows is that you can
manipulate the document and gain some level of integration.

 Reading the Address Book from Another Application
 To further the illustration, what you do in the next Try It Out is build a completely separate application
from Address Book that ’ s able to load in the XML file that Address Book uses and do something useful
with it. Specifically, you ’ ll extract all of the addresses in the file and display a list of names with their
matching e - mail addresses.

c20.indd 709c20.indd 709 4/1/08 6:42:06 PM4/1/08 6:42:06 PM

Chapter 20: Visual Basic 2008 and XML

710

 Try It Out Reading Address Book Data

 1. Create a new Windows Forms Application project. Call it Address List .

 2. On Form1, draw a ListBox control. Change its IntegralHeight property to False, its Dock
property to Fill, and its Name to lstEmails , as shown in Figure 20 - 7 .

Figure 20-7

 3. Double - click the form ’ s title bar. Add this code to the Load event handler. Remember to add a
reference to System.Xml.dll this namespace declaration:

Imports System.Xml
Public Class Form1
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 ‘ where do we want to get the XML from...
 Dim filename As String = _
 “C:\Users\Bryan\Documents\Visual Studio 2008\Projects\Address _
Book\bin\Debug\AddressBook.xml”
 ‘ open the document...
 Dim reader As New XmlTextReader(filename)
 ‘ move to the start of the document...
 reader.MoveToContent()
 ‘ start working through the document...

 Dim addressData As Collection = Nothing
 Dim elementName As String = Nothing
 Do While reader.Read
 ‘ what kind of node to we have?
 Select Case reader.NodeType
 ‘ is it the start of an element?
 Case XmlNodeType.Element
 ‘ if it’s an element start, is it “Address”?
 If reader.Name = “Address” Then
 ‘ if so, create a new collection...
 addressData = New Collection()
 Else
 ‘ if not, record the name of the element...
 elementName = reader.Name

c20.indd 710c20.indd 710 4/1/08 6:42:07 PM4/1/08 6:42:07 PM

Chapter 20: Visual Basic 2008 and XML

711

 End If
 ‘ if we have some text, try storing it in the
 ‘ collection...
 Case XmlNodeType.Text
 ‘ do we have an address?
 If Not addressData Is Nothing Then
 addressData.Add(reader.Value, elementName)
 End If
 ‘ is it the end of an element?
 Case XmlNodeType.EndElement
 ‘ if it is, we should have an entire address stored...
 If reader.Name = “Address” Then
 ‘ try to create a new listview item...
 Dim item As String = Nothing
 Try
 item = addressData(“firstname”) & _
 “ “ & addressData(“lastname”)
 item & = “ (“ & addressData(“email”) & “)”
 Catch
 End Try
 ‘ add the item to the list...
 lstEmails.Items.Add(item)
 ‘ reset...
 addressData = Nothing
 End If
 End Select
 Loop

End Sub
End Class

 We ’ ve assumed in this code listing that your AddressBook.xml will be in C:\Users\Bryan\
Documents\Visual Studio 2008\Projects\Address Book\bin\Debug . If yours isn ’ t,
change the file name value specified at the top of the code.

 4. Run the project; you should see something like what is shown in Figure 20 - 8 . Notice that
addresses that don ’ t have an e - mail address display without problems, as the Email element
in your XML file contains an empty string value instead of a null value as is typically found in
databases.

Figure 20-8

c20.indd 711c20.indd 711 4/1/08 6:42:07 PM4/1/08 6:42:07 PM

Chapter 20: Visual Basic 2008 and XML

712

 How It Works
 To fully appreciate the benefit of this exercise (and therefore the benefit of XML), imagine that before
writing the application you ’ d never seen the XML format used by the Address Book application.
Since XML is a text - based format, you ’ re able to open it in a normal text editor, read it, and make
assumptions about how it works. You know that you want to get a list of names and e - mail addresses,
and you understand that you have an array of Address elements, each one containing the three
elements you need: FirstName , LastName , and Email . All that remains is to extract and present the
information.

 Since announcing .NET, Microsoft has a made a big deal about how it is built on XML. This shows in
the .NET Framework support for XML — there is a dazzling array of classes for reading and writing
XML documents. The XmlSerializer object that you ’ ve been using up until now is by far the easiest
one to use, but it relies on your having classes that match the document structure exactly. Therefore, if
you are given a document from a business partner, you won ’ t have a set of classes that matches the
document. As a result, you need some other way to read the document and fit it into whatever classes
you do have.

 In your Address List project, you don ’ t have applicable AddressBook or Address classes, so you had
to use some classes to step through a file. The one you ’ re using is System.Xml.XmlTextReader . This
class provides a pointer that starts at the top of the document and, on command, moves to the next
part of the document. (Each of these parts is called a node .) The pointer will stop at anything, and this
includes start tags, end tags, data values, and whitespace.

 So, when you start, the first thing XmlTextReader tells you about is this node:

 < ?xml version=”1.0” encoding=”utf-8”? >

 When you ask it to move on, it tells you about this node:

 < AddressBook xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

 Then, when you ask it to move on again, it tells you about this node:

 < Addresses >

 Then it tells you about < Address > , < FirstName > , - Bryan , < /FirstName > , and < LastName > , and so
on until it gets to the end of the document. In between each one of these, you may or may not get told
about whitespace nodes. By and large, you can ignore these.

 What your algorithm has to do, then, is get hold of an XmlTextReader and start moving through
the document one piece at a time. When you first start, the pointer is set ahead of the first node in the
document. Each call to Read moves the pointer along one node, so the first call to Read that you see at
the start of the Do . . . While loop actually sets the pointer to the first node:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ‘ where do you want to get the XML from...
 Dim filename As String = _
“C:\Documents and Settings\Administrator\My Documents\” & _
“Visual Studio\Projects\Address Book\Address Book\bin\Debug\” & _

c20.indd 712c20.indd 712 4/1/08 6:42:07 PM4/1/08 6:42:07 PM

Chapter 20: Visual Basic 2008 and XML

713

“AddressBook.xml”

 ‘ open the document...
 Dim reader As New XmlTextReader(filename)
 ‘ move to the start of the document...
 reader.MoveToContent()
 ‘ start working through the document...
 Dim addressData As Collection, elementName As String
 Do While reader.Read

 You can use the NodeType property of XmlTextReader to find out what kind of node you ’ re looking
at. If you have an Element node, this maps directly onto a start tag in the document. You can use the
 Name property to get the name of the tag. When you find the < Address > start tag, you create a new
collection called addressData . If the start tag that you ’ re looking at isn ’ t the < Address > tag, you
store the name in elementName for later use:

 ‘ what kind of node to we have?
 Select Case reader.NodeType
 ‘ is it the start of an element?
 Case XmlNodeType.Element
 ‘ if it’s an element start, is it “Address”?
 If reader.Name = “Address” Then
 ‘ if so, create a new collection...
 addressData = New Collection()
 Else
 ‘ if not, record the name of the element...
 elementName = reader.Name
 End If

 Alternatively, the node you get might be a lump of text. If this is the case, you check to see whether
 addressData points to a Collection object. If it does, you know that you are inside an Address
element. Remember, you ’ ve also stored the name of the element that you are looking at inside
 elementName . This means that if elementName is set to FirstName , you know you ’ re in the
 FirstName element, and therefore the text element you ’ re looking at must be the first name in the
address. You then add this element name and the value into the collection for later use:

 ‘ if we have some text, try storing it in the
 ‘ collection...
 Case XmlNodeType.Text
 ‘ do we have an address?
 If Not addressData Is Nothing Then
 addressData.Add(reader.Value, elementName)
 End If

 As you work through the file, you ’ ll get to this point for each of the elements stored in the Address
element. Effectively, by the time you reach < /Address > , addressData will contain entries for each
value stored against the address in the document.

 To detect when you get to the < /Address > tag, you need to look for EndElement nodes:

 ‘ is it the end of an element?
 Case XmlNodeType.EndElement

c20.indd 713c20.indd 713 4/1/08 6:42:08 PM4/1/08 6:42:08 PM

Chapter 20: Visual Basic 2008 and XML

714

 When you get one of these, if Name is equal to Address , you know that you have reached
< /Address > , and this means that addressData should be fully populated. You form a string and
add it to the list:

 ‘ if it is, you should have an entire address stored...
 If reader.Name = “Address” Then
 ‘ try to create a new listview item...
 Dim item As String
 Try
 item = addressData(“firstname”) & _
 “ “ & addressData(“lastname”)
 item & = “ (“ & addressData(“email”) & “)”
 Catch
 End Try
 ‘ add the item to the list...
 lstEmails.Items.Add(item)
 ‘ reset...
 addressData = Nothing
 End If

 You ’ ll notice that in your Try . . . Catch you won ’ t do anything if an exception does occur. To keep this
example simple, you ’ re going to ignore any problems that do occur. Specifically, you ’ ll run into
problems if the Address element you ’ re looking through has subelements missing — for example,
you might not always have an e - mail address for each address, as was shown in Figure 20 - 8 .

 You then continue the loop. On each iteration of the loop, XmlTextReader.Read is called, which
advances the pointer to the next node. If there are no more nodes in the document, Read returns
 False , and the loop stops:

 End Select
 Loop
End Sub

 I hope that this example has illustrated the power of XML from a software integration perspective.
With very little work, you ’ ve managed to integrate the Address Book and Address List
applications together.

 If you want to experiment with this a little, try adding and deleting addresses from the Address Book.
You ’ ll need to close the program to save the changes to AddressBook.xml , but each time you start
Address List, you should see the changes you made.

 Summary
 This chapter introduced the concept of XML. XML is a language based on open standards and can be
used as a tool for software integration. Within a single organization, XML can be used to transport data
across platforms easily. It also allows two organizations to define a common format for data exchange
and, because XML is text - based, it can easily be moved around using Internet technologies such as
e - mail, the Web, and FTP. XML is based on building up a document constructed of tags and data.

c20.indd 714c20.indd 714 4/1/08 6:42:08 PM4/1/08 6:42:08 PM

Chapter 20: Visual Basic 2008 and XML

715

 XML is primarily used for integration work to make the tasks of data transportation and exchange easier,
and you, as a newcomer to Visual Basic and programming in general, are unlikely to do integration work
(as it ’ s typically done by developers with lots of experience). Nevertheless, this chapter helped you get
an idea of what this is all about by focusing on using the System.Xml.Serialization.
XmlSerializer class to save entire objects to disk (known as serialization). This same object was used to
load objects from disk (known as deserialization). You built a fully functional address book application
that was able to use an XML file stored on the local computer as its primary source of data.

 To round off the chapter and to demonstrate that XML is great for software integration work, you wrote
a separate application that was able to load and make sense of the XML document used by the Address
Book application.

Y ou should:

 Have a better understanding of XML and know what it looks like

 Be able to serialize and deserialize XML data into objects

Be able to manipulate XML data in your applications

Be able to use the XMLTextReader class to walk through an XML document

 Exercises
 1. Create an XML document that describes a table lamp. You can describe the lamp using a number

of different attributes. You should describe items such as shade, bulbs and base. You can validate
your XML at a site such as www.w3schools.com/dom/dom_validate.asp that offers a free
validator.

 2. Expand on what you learned in the chapter by investigating how to place comments in an XML
file. As a beginner, one of the most important tasks you can learn is how to research and find
 answers to questions. For this exercise, search the Web using your favorite search engine and try
to find the syntax for inserting comments in XML. When you find the answer, test the comment
in the same XML validator you used to test Exercise 1.

❑

❑

❑

❑

c20.indd 715c20.indd 715 4/1/08 6:42:08 PM4/1/08 6:42:08 PM

c20.indd 716c20.indd 716 4/1/08 6:42:08 PM4/1/08 6:42:08 PM

 21
Distributed Computing

with Windows
Communication Foundation

 With the release of the .NET Framework 3.0, came Windows Communication Foundation (WCF).
WCF was the integration of distributed technologies like web services, MSMQ, and .NET Remoting
into the same framework. WCF creates a baseline so all of your distributing programming is
similar. Now, developers can use all of these technologies without having to completely learn each
of them as new. This chapter focuses on the Web.

 In this chapter, you will:

 Get an overview of SOAP, the method used to exchange data with web services

 Build a web service

 Get an overview of WCF

 Learn how to build WCF services and learn how to consume them

 What Is a Web Service?
 When you use the Internet, the two things you most likely use it for are sending (and receiving)
e - mail and surfing the Web. These two applications are, by far, the most popular uses of the
Internet.

 However, from time to time as Internet usage grows, new technologies and applications that have
the potential to change forever the way you use the Internet are released. In recent times, Napster
was a commercial product that grew from nothing to ridiculously huge in a very short space of

❑

❑

❑

❑

c21.indd 717c21.indd 717 4/2/08 5:35:21 PM4/2/08 5:35:21 PM

Chapter 21: Distributed Computing with WCF

718

time. (In fact, the rate of growth of Napster, until the various court decisions that clipped its wings
took hold, was far in excess of the rate of growth of the Web itself!) Naturally, its fall from grace was
just as fast.

 Building upon the success of the World Wide Web as you know it today, web services have the potential
to be the next big thing. The Web is a great way to share information. However, the problem with the
Web as it is today is that to use it you have to be a human. Web sites are built to be read with human eyes
and interpreted with the human mind. Web services, on the other hand, are built to be read and
interpreted by computer programs, not by humans. Web services are, in effect, web sites for computers
to use. These web sites tend to be dynamic in nature, so they don ’ t contain static unchanging content but
can react and adapt to choices and selections. For example, you might want to use a web service that
accepts a quantity in U.S. dollars and returns the number of equivalent euros.

 Why is this a good thing? When building computer systems in a commercial information technology
environment, the most costly factor is integrating disparate computer systems. Imagine you have two
pieces of software: one used to keep track of stock in your warehouse, the other used to capture
customer orders. These two pieces of software were developed by different companies and bought at
different times. However, when an order is placed using the second piece of software, that software
should be able to tell the warehousing software that a quantity of a particular product has been sold.
This may trigger some autonomous action in the warehousing software, such as placing an order to
replenish the stock or asking someone to go and pick it off the shelf.

 When two pieces of software work together, you call it integration . Integration is rarely easy, and on large
installations it often involves hiring teams of consultants and spending thousands of dollars on custom -
 written integration software.

 Without going into too much detail, web services make integration far, far easier. By making something
that much easier, you inevitably make it far, far cheaper, and that ’ s why it ’ s predicted to be the next big
thing. Not only will companies who are already integrating have a more cost - effective option than
before, but companies will also be able to integrate their computer systems in previously unseen ways.
Web services will also provide opportunities for new businesses wanting to introduce specialized
services with relative ease.

 The commercial pros and cons of web services, together with a discussion of the movers and shakers in
this particular space, are beyond the scope of this book. However, if you would like to learn more, take a
look at http://msdn.microsoft.com/webservices .

 How Does a Web Service Work?
 First of all, web services are based upon completely open standards that are not tied to any particular
platform or any particular company. Part of their attraction is that it doesn ’ t matter whether you deploy
your web service on Solaris, Unix, Macintosh, or Windows; anyone will be able to connect to and
use your web service. This is the same with normal web sites; you do not care what platform the web
sites you visit every day actually run on, as long as they work.

c21.indd 718c21.indd 718 4/2/08 5:35:22 PM4/2/08 5:35:22 PM

Chapter 21: Distributed Computing with WCF

719

 Second, the .NET implementation of web services is entirely based on a programming paradigm
with which developers have been falling in love for years: object orientation. If you ’ re used to using
objects (and by Chapter 21 of this book, you should be!), you ’ ll have absolutely no problems with web
services.

 The principle behind a web service is that you build a class that has methods. However, the traditional
system of deployment and instantiation does not apply. Here is what happens traditionally:

 1. A developer builds a class.

 2. That class is installed (copied onto a computer).

 3. A piece of software running on that same computer creates an instance of the class (the object).

 4. The piece of software calls a method on the object.

 5. The object does something and returns a value.

 6. The piece of software receives the value and does something with it.

 Here is what happens with a web service:

 1. A developer builds a class.

 2. That class is copied onto a server computer running a web server such as Microsoft IIS.

 3. A piece of software running on a different, remote computer (usually located somewhere on the
Internet) asks the web server to run a particular method on the class.

 4. The server creates an instance of the class and calls the method.

 5. The server returns the results of the method to the calling computer.

 6. The piece of software on the remote computer receives the value and does something with it.

 You can see that the technique is very similar, but there ’ s a disconnection between the server that the
object is actually installed on and the computer that wants to use the object. In fact, with a web service,
there is a huge process gulf (namely, the Internet) between the client of the object and the object itself.
A solution to handle this disconnection is provided by the standards used by and specifically developed
for web services.

 SOAP
 As web services are, in effect, web sites for computers to use, they ’ ve been built on the same technology
that made the World Wide Web so popular — specifically, the Hypertext Transfer Protocol (HTTP)
standard that powers all web servers.

c21.indd 719c21.indd 719 4/2/08 5:35:22 PM4/2/08 5:35:22 PM

Chapter 21: Distributed Computing with WCF

720

 When you ’ re dealing with web sites for people to read, the client (browser) and server usually exchange
a mixture of documents. HTML documents, and their extension technologies like Dynamic HTML and
JavaScript, describe the page layout and text on the page, and common image formats like GIF and JPEG
are used to exchange images.

 However, when you ’ re dealing with web sites for computers to use, you exchange only one kind of
document. These are known as SOAP documents.

 SOAP was originally an acronym for Simple Object Access Protocol, but the current standard at W3C
has removed this terminology.

 When a client application wants to ask the web service for some information, such as the current stock
level for a product or the status of an order, or to get the computer at the end of the connection to do
something such as convert currencies or place an order, the application constructs a SOAP request
document. Using HTTP, this document is sent over the Internet to the web server that powers the web
service. This document contains all the information that the web service needs to determine what has
been asked for. As web services work on the common object/method paradigm, the request document
includes such things the name of the method and any data that should be passed through to the method
as parameters.

 At the server end, the web service receives the SOAP request, deserializes it, and runs the appropriate
piece of software. (You ’ re going to build some of these appropriate pieces of software in this chapter.)
During the call, the method generates a SOAP response document that contains the information to be
passed back to the caller. Like the request document, this new document is transferred using HTTP
through the web server.

 SOAP documents are constructed with XML. This means that if you read a SOAP document, it ’ ll look
very similar to the sort of document that you saw in Chapter 20 . However, at the level of Visual Basic,
you don ’ t need to look too hard at the SOAP documents. As you work through the chapter, you ’ ll see
some of the SOAP response documents that come back from the server, but you won ’ t be seeing any of
the request documents.

 You know that web service technology is not tied to a specific platform, so from a developer ’ s
perspective the value of choosing one platform over another is determined by how transparent this
SOAP document construction and transfer work actually is or what is available at the site where
development will take place. .NET is very good for building and using web services; you don ’ t have to
go within a hundred yards of a SOAP document. (This is why in this chapter you ’ re not going to dwell
on SOAP too much, even though without SOAP you wouldn ’ t be able to do anything you can do in this
chapter.) On some other platforms that are equally good for building web services, you need to jump
through a few more hoops to create powerful web services.

 Obviously, this chapter is concerned with how web services work with .NET. But first, have a close look
at Figure 21 - 1 , as it provides a simple form of the architecture behind web services.

c21.indd 720c21.indd 720 4/2/08 5:35:22 PM4/2/08 5:35:22 PM

Chapter 21: Distributed Computing with WCF

721

 Building a Web Service
 Building web services with Visual Studio 2008 is a breeze. In this section, you build a simple web service
and are introduced to some of the concepts involved. Specifically, you see how to include the appropriate
attributes to expose a method as a web service method. You also learn how to test your web methods
using the test harness built into web services.

 A Web Services Demonstration
 A web service is basically a class that sits on the server. Some of the methods on that class are marked in
a special way, and it ’ s by looking for these special marks that .NET knows which methods to publish on
the service. You ’ ll see how this works as you go through the first Try It Out. Anyone wishing to use the
web service can then call these methods on the remote web service, as if the method existed in a class
installed on their local computer. You ’ ll also see a method that allows you to test the web service from
within Internet Explorer.

The customer’s computer receives
the SOAP response and passes
the stock level to the customer.

The web service (running on the
web server) receives the SOAP
request and passes the request
on the object.

The web server packages
the stock level into a SOAP
response and sends it back
to the customer’s computer.

The code inside the
CheckStockLevel
method connects to a
database, determines
the level, and returns
the quantity.

The customer needs to check the stock
levels of a product with the supplier.

The customer’s application formulates
a SOAP request asking for the
CheckStockLevel method and
provides a product ID.

Internet

Customer’s computer

Supplier’s web server

GetCustomerDetailsMethods

CreateOrder

CheckStockLevel

Object

1

2

34

5

Figure 21-1

c21.indd 721c21.indd 721 4/2/08 5:35:23 PM4/2/08 5:35:23 PM

Chapter 21: Distributed Computing with WCF

722

Try It Out A Demonstration Web Service

 1. Open Visual Studio and select File New Web Site from the menu.

 2. Make sure Visual Basic is selected in the Language box, and File System in the Location box,
and select ASP.NET Web Service from the upper list. Enter the name as DemoService and
click OK (see Figure 21 - 2).

Figure 21-2

 Web services are based on ASP.NET technology, so the project is created in the same way as
the web applications you worked with in Chapter 18 . If you have problems creating the project,
refer to that chapter for troubleshooting information.

 Visual Studio 2008 creates a new virtual directory and create a new page called Service.asmx ,
where .asmx stands for Active Server Methods. (The extra x comes from the original name of
ASP.NET: ASP+. The x is the plus sign turned through 45 degrees.) This page represents one
 service, and a web service project (or site) can contain many different services.

 3. If the service.vb page is not open, use the Solution Explorer to open it. It is located in the
 App_Code folder. When Visual Studio 2008 created the page, it put an example method on the
service called HelloWorld . The code looks like the code shown here:

 < WebMethod() > _
 Public Function HelloWorld() As String
 Return “Hello World”
 End Function

 Run the project by selecting Debug Start Debugging from the menu. You will be asked to either
run the project without debugging or add a config file to enable debugging. Choose to create a
config file with debugging enabled, and continue. For security reasons, you would turn off

c21.indd 722c21.indd 722 4/2/08 5:35:23 PM4/2/08 5:35:23 PM

Chapter 21: Distributed Computing with WCF

723

 debugging before releasing an application into production. The project is compiled and the
ASP.NET Development Server starts. You may be shown a warning about script debugging. You
can continue or follow the instructions to allow script debugging if it is turned off in your
 Internet Explorer settings.

 In the task bar, right - click the icon for the ASP.NET Development Server and choose Open In
Web Browser. Internet Explorer opens and displays the pages in the site. Click the link for the
 Service.asmx page. This is the test interface. On this initial page, all of the methods supported
by the service appear in a bulleted list at the top of the page.

 You use the web.config file to make numerous changes to your site configuration in the real
world. For the purposes of this example, we will not go into detail on this file, but know that you
can make sitewide changes to security, caching, custom settings, and more. You can learn more
about using the web.config file by searching for web.config at http://msdn2.microsoft.com .

 4. Click the HelloWorld link. This opens another page that lets you run the method. This page
contains the web method name, a button to invoke the web method for testing, and the
protocols supported for this web method. Note that two protocols are listed: SOAP and HTTP
POST.

 5. Click the Invoke button. This opens another browser window. This window contains the
SOAP response from the server, as shown in the following code:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < string xmlns=”http://tempuri.org/” > Hello World < /string >

 How It Works
 Just as Web Forms have a class behind the .aspx page, web services have a class behind each .asmx
page. This class is the one that you enabled the HelloWorld method on. If you look at the definition
for the class, you ’ ll see that it ’ s inherited from System.Web.Services.WebService :

Public Class Service
 Inherits System.Web.Services.WebService

 The WebService class is responsible for presenting the pages that you clicked through in Internet
Explorer to invoke the HelloWorld method. (You can use another browser to test the service, but
Visual Studio 2008 chooses Internet Explorer by default.) These pages are known as the test interface .
Methods on the class that you want exposed to the web service must be marked with the WebMethod
attribute. You can see this attribute defined at the beginning of the method (note that it must be
encased in a fashion similar to HTML tags):

 < WebMethod() > __
Public Function HelloWorld() As String
 Return “Hello World”
End Function

 Before the test page opens, you are asked to add a config file to enable debugging or continue
without debugging. If you plan to test the web service, choose to add a config file. A new file, named
 web.config , is added to the project. Remember always to disable debugging before releasing
your web service to a production environment. When the test interface starts, it displays the methods
flagged to be exposed on the server. When you click through to the page tied to a specific method, the
test interface presents a form that you can use to invoke it.

c21.indd 723c21.indd 723 4/2/08 5:35:24 PM4/2/08 5:35:24 PM

Chapter 21: Distributed Computing with WCF

724

 When the method is invoked, to the method it is just like a normal call — in other words, there ’ s
nothing special about writing web services, and everything that you ’ ve learned so far still applies.

 You already know that web services are powered by SOAP. When you click the Invoke button, the
SOAP message that ’ s returned to the caller (in this case, your Internet Explorer) contains the response.
You can see that this is indeed the value you returned from the method buried within a block of XML:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < string xmlns=”http://tempuri.org/” > Hello World < /string >

The structure of the XML that makes up the SOAP message, by and large, is not important. However,
when you ’ re working through more examples, we ’ ll point out where the actual results can be found.

 Adding More Methods
 Now you build some methods that illustrate your web service actually doing something. In this next Try
It Out exercise, you add a web method that calculates the square root of the number that you pass into it.
You ’ ll be adding the web method and writing the code to calculate the square root, as well as testing this
new web method.

 Try It Out Adding a SquareRoot Method

 1. Open the Code Editor for Service.vb . Add this new method to the Service class below the
existing HelloWorld method:

Public Function GetSquareRoot(ByVal number As Double) As Double
 Return Math.Sqrt(number)
End Function

 If you can ’ t type into the code window, it means that the instance of Internet Explorer that Visual
Studio 2008 opened is still running. Close down the test interface windows and any extra
 windows displaying the SOAP responses, and the project should stop running. Alternatively,
 select Debug Stop Debugging from the menu.

 2. Run the project. You ’ ll notice that the new method does not appear in the list at the top of the
page. In fact, you will see the same screen that was shown previously. This is due to the fact
that you didn ’ t mark the method with the WebMethod attribute. I did this to show you that a
class can contain methods that, although public, are not exposed on the web service. Close the
browser and add the WebMethod attribute:

 < WebMethod() > _
Public Function GetSquareRoot(ByVal number As Double) As Double
 Return Math.Sqrt(number)
End Function

c21.indd 724c21.indd 724 4/2/08 5:35:25 PM4/2/08 5:35:25 PM

Chapter 21: Distributed Computing with WCF

725

 3. Run the project again and you should see the new method at the top of the page. Next, you
are going to cause an error to see what error messages look like.

 4. To see the correct error message for this example, you may have to change a setting in your
browser. Make sure you uncheck Show friendly HTTP error messages under the Advanced
tab from the Tools Internet Options menu in Internet Explorer.

 5. Click the GetSquareRoot link. This time, the Invoke form should offer a way to enter a
number because of the WebMethod parameter. Without entering a number, click Invoke.

 6. When the new browser appears, you won ’ t see a SOAP response; instead you ’ ll see something
that looks like this:

System.ArgumentException: Cannot convert to System.Double.
Parameter name: type --- > System.FormatException: Input string was not in a
 correct format.

 You ’ ll see this kind of message whenever you enter invalid information into the Invoke form. In
this case, it ’ s telling you that it cannot convert to System.Double , which should be a big give-
away that it can ’ t convert an empty string to a floating - point value.

 7. Close the browser window and enter 2 into the number field. Click Invoke and you ’ ll get this
response:

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < double xmlns=”http://tempuri.org/” > 1.4142135623730952 < /double >

 How It Works
 If you look in the SOAP message that was returned, you ’ ll find a double value that ’ s as close as you
can get to the square root of 2.

 < ?xml version=”1.0” encoding=”utf-8” ? >
 < double xmlns=”http://tempuri.org/” > 1.4142135623730952 < /double >

 So you know that the method works. You should have also seen by now that building simple web
services is not hard. This is Microsoft ’ s intent with the web services support in .NET — the plumbing
to build a service is remarkably easy. Everything you ’ ve learned about creating classes, building
methods with parameters, and returning values is paying dividends here, because there ’ s virtually no
learning curve. You can concentrate on building the logic behind the web service, which, after all, is
the bit you get paid to do!

c21.indd 725c21.indd 725 4/2/08 5:35:25 PM4/2/08 5:35:25 PM

Chapter 21: Distributed Computing with WCF

726

 Understanding WCF Services
 One of the goals of WCF is to create a platform where developers can choose between different types of
distributed services without having to make a single choice between the main technologies: Web Services,
Microsoft Message Queue, .NET Remoting, and Enterprise Services. This means you can now build
applications with any one or any mix of these distributed applications that work together seamlessly
in the framework. To make this happen, WCF services have common attributes.

 The following list defines some of the common parts of WCF.

 Service Contract: This attribute tells the CLR that the interface or class needs to maintain
WCF metadata. You can work with this programmatically, as you will see in the next Try It Out,
and the CLR handles all the behind - the - scenes stuff for you.

 Operation Contract: This attribute specifies which methods are available via WCF. Only
methods explicitly marked will be available.

 End Point: The end point contains all the required information on the address, bindings, and
contract that the client needs to communicate with the service.

 Address: This is where the end point is expressed as a Uri.

 Binding: How to communicate with the service. Soap and HTTP Get are possible binding types
you will see in the next try it out.

 Service Host: The service host is used to expose a WCF service to a client application.

 Messages: WCF communicates by exchanging messages.

 When designing applications in a service oriented or distributed environment you should look to WCF
for your platform. To implement the technology, you can build in security and transactions and pass
messages via many technologies with similar code. As a developer, it will be easy to write code to host a
message queue and then write code to host a web service in the application. Typically, that application
would have specialists to handle each type of communication.

 WCF is a very broad topic and this chapter demonstrates only a couple of common uses for it. To learn
more, you can visit the main web site for WCF at http://wcf.netfx3.com . Now, let ’ s build an
application to take advantage of WCF.

 WCF Services
 The previous example showed how simple a web service can be to create. Now, let ’ s look at another way
to create the same GetSquareRoot Web Service from inside a console application. Using features of the
WCF, this is also pretty easy.

❑

❑

❑

❑

❑

❑

❑

c21.indd 726c21.indd 726 4/2/08 5:35:25 PM4/2/08 5:35:25 PM

Chapter 21: Distributed Computing with WCF

727

Try It Out Creating Services in a Console Application

 1. To start, create a new console application named GetSquareRoot . See Figure 21 - 3 for the
correct settings.

Figure 21-3

Figure 21-4

 2. Next, add references to System.ServiceModel and System.ServiceModel.Web . See
Figure 21 - 4 .

c21.indd 727c21.indd 727 4/2/08 5:35:26 PM4/2/08 5:35:26 PM

Chapter 21: Distributed Computing with WCF

728

 3. Now, to the code. Open the page module1.vb . At the top of the module1.vb page, add three
imports.

Imports System.ServiceModel
Imports System.ServiceModel.Description
Imports System.ServiceModel.Web

 4. Add the service contract, ISquareRoot .

 < ServiceContract() > _
Public Interface ISquareRoot
 < OperationContract() > _
 < WebGet() > _
 Function GetSquareRoot(ByVal dblNumber As Double) As Double
End Interface

 5. Add a class to implement it. Add the SquareRoot class as follows:

Public Class SquareRoot
 Implements ISquareRoot
 Public Function GetSquareRoot(ByVal dblNumber As Double) As Double Implements _
ISquareRoot.GetSquareRoot
 Return Math.Sqrt(dblNumber)
 End Function
End Class

 6. Inside of module1 add the procedure for using HTTP to communicate between the console
application and the service. In this example, you add error handling so the services can be
closed properly in case of an error.

Module Module1

 Public Sub HttpChannel()
 Dim dblNumber As Double
 Dim dblInput As Double
 Try
 Dim wcfSquareRootHTTP As New WebChannelFactory(Of ISquareRoot) _
(New Uri(“http://localhost/SquareRoot/Web”))
 Dim channelHTTP As ISquareRoot = wcfSquareRootHTTP.CreateChannel()

 Console.WriteLine(“Enter a number to get the square root via http? “)
 dblInput = Console.ReadLine()
 Console.WriteLine(“Calling GetSquareRoot over http:”)
 dblNumber = channelHTTP.GetSquareRoot(dblInput)
 Console.WriteLine(“The square root of “ + dblInput.ToString + “ is “ _
+ dblNumber.ToString)

 Console.WriteLine(“Press enter to continue and close the HTTP channel”)
 Console.ReadLine()

 wcfSquareRootHTTP.Close()

c21.indd 728c21.indd 728 4/2/08 5:35:26 PM4/2/08 5:35:26 PM

Chapter 21: Distributed Computing with WCF

729

 Catch ex As Exception
 Throw ex
 End Try
 End Sub

 7. Add the procedure for SOAP communication.

Public Sub SoapChannel()
 Dim dblNumber As Double
 Dim dblInput As Double
 Try

 Dim wcfSquareRootSoap As New ChannelFactory(Of ISquareRoot) _
(New BasicHttpBinding(), “http://localhost/SquareRoot/Soap”)
 Dim channelSoap As ISquareRoot = wcfSquareRootSoap.CreateChannel()

 Console.WriteLine(“Enter a number to get the square root via soap? “)
 dblInput = Console.ReadLine()
 Console.WriteLine(“Calling GetSquareRoot over soap:”)
 dblNumber = channelSoap.GetSquareRoot(dblInput)
 Console.WriteLine(“The square root of “ + dblInput.ToString + “ is “ + _
 dblNumber.ToString)
 Console.WriteLine(“Press enter to continue and close the SOAP channel”)
 Console.ReadLine()
 Console.WriteLine(“”)

 wcfSquareRootSoap.Close()
 Catch ex As Exception
 Throw ex
 End Try

End Sub

 8. Finally, add the code to the main subroutine

 Sub Main()

 Dim shSquareRoot As New ServiceHost(GetType(SquareRoot), _
New Uri(“http://localhost/SquareRoot”))

 Dim epSquareRoot As ServiceEndpoint
 epSquareRoot = shSquareRoot.AddServiceEndpoint(GetType(ISquareRoot), _
New WebHttpBinding(), “Web”)
 epSquareRoot.Behaviors.Add(New WebHttpBehavior())

 shSquareRoot.AddServiceEndpoint(GetType(ISquareRoot), _
New BasicHttpBinding(), “Soap”)

 Try
 shSquareRoot.Open()

 SoapChannel()
 HttpChannel()

 Console.WriteLine(“Done. Press any key to exit and close the host”)

c21.indd 729c21.indd 729 4/2/08 5:35:26 PM4/2/08 5:35:26 PM

Chapter 21: Distributed Computing with WCF

730

 Console.ReadLine()
 shSquareRoot.Close()

 Catch ex As Exception
 Console.WriteLine(“Application Error: “ + ex.Message)
 Console.ReadLine()
 shSquareRoot.Abort()
 End Try

 End Sub
End Module

 9. Run the project. Enter some values and test the application. You see output as shown in
Figures 21 - 5 and 21 - 6 .

Figure 21-5

Figure 21-6

c21.indd 730c21.indd 730 4/2/08 5:35:27 PM4/2/08 5:35:27 PM

Chapter 21: Distributed Computing with WCF

731

 How It Works
 This time, you create an application to communicate with a service via different communication
channels. The service SquareRoot provides the same functionality as it did in the previous Try It Out
but you don ’ t create a Web Service project. Within the code, you create a WCF service that can accept
communication via SOAP and HTTP. This is how the code breaks down.

 To start, you add references to System.ServiceModel and System.ServiceModel.Web . These
namespaces contain core functionality for WCF. Then, you add imports to three namespaces you used
to save a few keystrokes.

Imports System.ServiceModel
Imports System.ServiceModel.Description
Imports System.ServiceModel.Web

 Next, you define the service contract. To do this, you create an interface that will later be implemented
in the SquareRoot class. Creating a separate interface was not a requirement, but it is the
recommended model for creating contracts programmatically. Another way to create a contract is by
using svcutil.exe , but why not just add the attribute labels and let the framework handle all of the
behind the scenes items?

 To the interface, you add the < ServiceContract() > , < OperationContract() > and < WebGet() >
attributes. This tells .NET that the interface marked with < ServiceContract() > carries a WCF
contract and public methods were marked with the < OperationContract() > attribute. The
 < WebGet() > attribute tells the Framework that the method would be made available via HTTP Get :

 < ServiceContract() > _
Public Interface ISquareRoot
 < OperationContract() > _
 < WebGet() > _
 Function GetSquareRoot(ByVal dblNumber As Double) As Double
End Interface

 After you create the interface, you need to implement it. To do that, you create a new class named
 SquareRoot . The class implements the ISquareRoot interface and is available for use as a WCF
service. The simple class has one method. The GetSquareRoot method accepts a number, performs
the operation to calculate the square root and then returns the answer to the caller:

Public Class SquareRoot
 Implements ISquareRoot
 Public Function GetSquareRoot(ByVal dblNumber As Double) As Double Implements _
ISquareRoot.GetSquareRoot
 Return Math.Sqrt(dblNumber)
 End Function
End Class

 Next, you write the code to do all of the work. The first subroutine you add is HttpChannel . This
procedure sets up the service to be called over HTTP, hooks the client up and makes the
communication work. To start, you declare a couple of storage variables dblNumber and dblInput for
use later. Then, you start a try/catch . This is very important, even in a test; to make sure errors are
handled so you can close the objects properly in case of an error.

c21.indd 731c21.indd 731 4/2/08 5:35:27 PM4/2/08 5:35:27 PM

Chapter 21: Distributed Computing with WCF

732

Module Module1

 Public Sub HttpChannel()
 Dim dblNumber As Double
 Dim dblInput As Double
 Try

 Inside of the try/catch , you create an instance of WebChannelFactory with the Uri of
http://localhost/SquareRoot/Web . This allows you to call the service over HTTP. Actually, while
the HTTP channel is open you can open a browser and navigate to http://localhost/
SquareRoot/Web/getsquareroot?dblnumber=16 (see Figure 21 - 7) and see the service in action via
HTTP in your browser. To make more sense of this, take a look at the main procedure. You create the
HTTP service endpoint at the same Uri. You will see that in detail later.

Figure 21-7

 Dim wcfSquareRootHTTP As New WebChannelFactory(Of ISquareRoot) _
(New Uri(“http://localhost/SquareRoot/Web”))

 You create the channel next. This channel allows you to call any public methods available at the other
end of the channel.

 Dim channelHTTP As ISquareRoot = wcfSquareRootHTTP.CreateChannel()

 Next, you add the interaction with the user through the console application. In the midst of the
interaction, you call channelHTTP.GetSquareRoot(dblInput) to run the method and return the
square root from the service. That one line of code is where the actual work was completed.

 Console.WriteLine(“Enter a number to get the square root via http? “)
 dblInput = Console.ReadLine()
 Console.WriteLine(“Calling GetSquareRoot over http:”)
 dblNumber = channelHTTP.GetSquareRoot(dblInput)
 Console.WriteLine(“The square root of “ + dblInput.ToString + “ is “ _

+ dblNumber.ToString)

 Console.WriteLine(“Press enter to continue and close the HTTP channel”)
 Console.ReadLine()

c21.indd 732c21.indd 732 4/2/08 5:35:28 PM4/2/08 5:35:28 PM

Chapter 21: Distributed Computing with WCF

733

 At the end of the procedure, you add code that closes the HTTP channel and handles errors. The error
handler you add gracefully passes the error to the caller to be handled.

 wcfSquareRootHTTP.Close()
 Catch ex As Exception
 Throw ex
 End Try
 End Sub

 The second subroutine you add is SoapChannel . This procedure sets up the service to be called over
SOAP, hooks the client up and makes the communication work. To start, you declare a couple of
storage variables dblNumber and dblInput for use later. Then, you start a try/catch :

 Public Sub SoapChannel()
 Dim dblNumber As Double
 Dim dblInput As Double
 Try

 Inside of the try/catch , you create an instance ChannelFactory with the Uri of http://
localhost/SquareRoot/Soap . This allows you to call the service SOAP. Take a look back at where
you created the webChannelFactory . The code you created is almost identical. That is part of the
design of WCF. No matter how you communicate using WCF, the code will be very similar.

 Dim wcfSquareRootSoap As New ChannelFactory(Of ISquareRoot) _
(New BasicHttpBinding(), “http://localhost/SquareRoot/Soap”)

 You create the channel next. This channel allows you to call any public methods available at the other
end of the channel.

 Dim channelSoap As ISquareRoot = wcfSquareRootSoap.CreateChannel()

 Next, you add the interaction with the user through the console application. In the midst of the
interaction, you call channelSoap.GetSquareRoot(dblInput) to run the method and return the
square root from the service. That one line of code is where the actual work is completed:

 Console.WriteLine(“Enter a number to get the square root via soap? “)
 dblInput = Console.ReadLine()
 Console.WriteLine(“Calling GetSquareRoot over soap:”)
 dblNumber = channelSoap.GetSquareRoot(dblInput)
 Console.WriteLine(“The square root of “ + dblInput.ToString + “ is “ _

+ dblNumber.ToString)
 Console.WriteLine(“Press enter to continue and close the SOAP channel”)
 Console.ReadLine()
 Console.WriteLine(“”)

 At the end of the procedure, you add code that closes the HTTP channel and handles errors. The error
handler you add gracefully passes the error to the caller to be handled:

 wcfSquareRootSoap.Close()
 Catch ex As Exception
 Throw ex
 End Try
 End Sub

c21.indd 733c21.indd 733 4/2/08 5:35:28 PM4/2/08 5:35:28 PM

Chapter 21: Distributed Computing with WCF

734

 Finally, you add code to Sub Main .

 Sub Main()

 To begin Sub Main , you created a WCF service host. The service host allowes you to configure a
service and expose it for consumption by client applications.

 Dim shSquareRoot As New ServiceHost(GetType(SquareRoot), _
New Uri(“http://localhost/SquareRoot”))

 Next, you create the end points. For this application, you need two end points. One is for the HTTP
 Get and one is for SOAP requests. To set up the end points, you pass in parameters to specify the
contract, the bindings, and the address.

 Dim epSquareRoot As ServiceEndpoint
 epSquareRoot = shSquareRoot.AddServiceEndpoint(GetType(ISquareRoot), _
New WebHttpBinding(), “Web”)
 epSquareRoot.Behaviors.Add(New WebHttpBehavior())

 shSquareRoot.AddServiceEndpoint(GetType(ISquareRoot), _
New BasicHttpBinding(), “Soap”)

 Try

 Now that you have set up the service host, you add one line of code to open the host.

 shSquareRoot.Open()

 Finally, you call the sub procedures to interact with the user and the service method to get the square
root. After those procedures complete, you tell the user that the application is done, close the host, and
handle any errors that occurred:

 SoapChannel()
 HttpChannel()

 Console.WriteLine(“Done. Press any key to exit and close the host”)
 Console.ReadLine()
 shSquareRoot.Close()

 Catch ex As Exception
 Console.WriteLine(“Application Error: “ + ex.Message)
 Console.ReadLine()
 shSquareRoot.Abort()
 End Try

 End Sub
End Module

c21.indd 734c21.indd 734 4/2/08 5:35:28 PM4/2/08 5:35:28 PM

Chapter 21: Distributed Computing with WCF

735

 Summary
 In this chapter, you were introduced to web services and .NET Remoting. Web services work by allowing
a developer to expose an object that is accessible through a web server. Web services are based on open
standards such as SOAP and WSDL and are based on tried and tested technologies such as HTTP
and XML.

 You started this chapter by building a basic web service that could return some information and also do
something useful — namely, return the square root of a number that you gave it. Then you jumped into
WCF and built some services. Inside WCF, you saw how to use channels and end points to make a
service available to clients. With WCF, you were able to call the same code two different ways. This
provided the baseline you needed to understand the basics of WCF.

 In addition to having a basic understanding of WCF, you should know:

 How to use SOAP, the method used to exchange data with web services

 How to build a web service

 How to build WCF services and how to consume them

 Exercises
 1. Create a web service that returns information about the web server. Add three methods that

 return the web server date, web server time, and web server name, respectively. Run the project
to test the three methods.

 2. Add more math functions to the WCF service you created in the last Try It Out. Create methods
to add two numbers, subtract two numbers, multiply two numbers and divide two numbers. To
make this work, you have to add code to two places.

❑

❑

❑

c21.indd 735c21.indd 735 4/2/08 5:35:28 PM4/2/08 5:35:28 PM

c21.indd 736c21.indd 736 4/2/08 5:35:29 PM4/2/08 5:35:29 PM

22
 Building a Sequential
Workflow Using the
Windows Workflow

Foundation

 According to Wikipedia (http://en.wikipedia.org/wiki/Workflow): “ A workflow is a reliably
repeatable pattern of activity enabled by a systematic organization of resources, defined roles and
mass, energy and information flows, into a work process that can be documented and learned.
Workflows are always designed to achieve processing intents of some sort, such as physical trans-
formation, service provision, or information processing. ” That sounds like workflow is pretty
important stuff. In today ’ s business world you will hear the term workflow over and over again.

 As you build programs, you will need to integrate some type of workflow support. For example,
when a new customer signs up for an account you may want the program to handle some type of
workflow. In Windows Workflow Foundation (WF), there are two basic types of workflows:
sequential (also referred to as system) and state machine (also known as human/event - driven).
A sequential workflow is designed in a manner where one process happens after another until the
workflow is complete. A state machine workflow is designed to handle external events; it does not
typically have a set start and end. Take a look at two scenarios, each involving processes used by a
cell phone.

 Here ’ s a breakdown of some of the phone events and states of a cell phone:

 Letter key pressed

 Function key pressed

 Phone call received

 Text message received

 Battery critically low

❑

❑

❑

❑

❑

c22.indd 737c22.indd 737 4/2/08 5:36:01 PM4/2/08 5:36:01 PM

Chapter 22: Building a Sequential Workfl ow Using WF

738

 No service found

 Dialing

 Call in progress

 First, consider a process that would be a good candidate for a state machine workflow: entering a series
of key presses into your cell phone. If you have a phone that can text message and e - mail, the phone
probably goes through many decisions as you start pressing the keys.

 As you press keys, the phone responds to the events. Imagine you have a smartphone with a qwerty
keypad and the number pad is mixed into the keys, so when you type DE it could also be 52 . The phone
will make decisions as you type. If the phone finds a match in your address book for Dennis Smith, it
might display that as a choice along with Dennis ’ phone number. As you keep typing, you move off of
the number pad by typing DENNI and now the phone selects Dennis Smith for you and gives you a
menu of items. Would you like to call, email, or text? Then, as an incoming call interrupts the flow, the
screen goes blank, and the phone rings. You answer the phone. In this case, the workflow to place a call
was stopped by the incoming call. A process that can be interrupted by an external event is not a good
choice for a sequential workflow, so this process calls for a state machine workflow.

 Now consider a scenario that ’ s a better candidate for implementing a sequential workflow: using speed
dial. To make a call using speed dial, you hold down the 1 key for several seconds. Once the key press
has lasted two seconds, the speed dial sequential flow is started. The process flow and decisions might
look like these for a complete speed dial call:

 1. Number 1 key pressed and held for two seconds.

 2. Start speed dial process.

 3. Does phone have service?

 4. If yes, set phone in dialing state (this locks phone from external interruptions).

 5. Retrieve number stored for speed dial key pressed.

 6. Dial number.

 7. Connect call.

 Why is this a good candidate for a sequential workflow? First, the process does not accept interruptions
from external sources. Therefore, this process must complete once started. A speed dial call will always
start when a key is held for two seconds, even if an incoming call attempts to come through. This means
that a speed dial call has a defined start and end. These two items make it a good candidate for a
sequential workflow.

 In these simple examples, the two workflows are very similar. As you design and lay out the events,
processes, and states of an application, you should be able to see if it is a good candidate for a sequential
or state machine workflow. Remember the rules:

 When you have a workflow that has a well - defined start and end and that does not have to
respond to external events, you should choose a sequential workflow implementation.

 When the steps of a workflow can happen in any order and external applications can change the
state of the workflow then use a state machine workflow.

❑

❑

❑

❑

❑

c22.indd 738c22.indd 738 4/2/08 5:36:02 PM4/2/08 5:36:02 PM

Chapter 22: Building a Sequential Workfl ow Using WF

739

 In this chapter, you will work with sequential workflows.

 WF includes a graphical designer that enables you to lay out the workflow visually. The designer allows
you to lay out your code as in a Visio program. When you are satisfied with the layout, you can then
place the logic into the code pages to finish the workflow. It is a very intuitive design and easy to use.

 One of the key pieces to WF is the built - in ability to create long - running transactions. You can create
workflows that wait for decisions from people and systems, taking into account possible waits from
systems being down or message delivery that is delayed. WF also includes the capability to roll back
these long - running workflows if errors occur. In this chapter, you will:

 Look at a basic overview of sequential workflows

 Review the different workflow project types

 Take a look at workflow activities

 Create sequential workflows

 Now, let ’ s take a look at some pieces, start putting them together, and build a couple of workflows.

 Error handling has been omitted from all of the Try It Out exercises in this chapter to save space. You
should always add the appropriate error handling to your code. Review Chapter 10 for error - handling
techniques.

 Visual Studio Workflow Templates
 When starting your workflow project, you first have to choose the type of project you want to create.
Visual Studio 2008 includes eight project templates for workflows. Figure 22 - 1 shows the Workflow Tem-
plates Form in Visual Studio with the template choices:

 Empty Workflow Project: An empty project for all of your custom workflow needs.

 Sequential Workflow Console Application: A project to build a sequential workflow with a
console application interface or host.

 Sequential Workflow Library: A project to create a sequential workflow assembly to host in a
.NET application such as a WinFom or WebForm application.

 SharePoint 2007 Sequential Workflow: A sequential workflow to host inside of SharePoint.

 SharePoint 2007 State Machine Workflow: A state workflow to host inside of SharePoint.

 State Machine Workflow Console Application: A project to build a state machine workflow
with a console application interface.

 State Machine Workflow Library: A project to create a state machine workflow assembly to
host in a .NET application such as a Windows Forms or Web Forms application.

 Workflow Activity Library: A project to create your own custom activities to use in any
workflow.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 739c22.indd 739 4/2/08 5:36:02 PM4/2/08 5:36:02 PM

Chapter 22: Building a Sequential Workfl ow Using WF

740

 In the Try It Out exercises in this chapter, you will use the Sequential Workflow Console Application
template.

 Workflow Foundation Components
 Windows Workflow is made up of many components. Putting these components together into a cohesive
unit allows you to create robust and flexible workflow applications. Some of the main components
include:

 Activity: A base unit of work. An activity can range from custom code, a web service call, or
delay you add to the processing. Programmers can create custom activities and add them to a
workflow. WF includes many pre - built activities (as detailed in the following section); you will
be able to complete most if not all of your work using these components.

 Workflow: Activities that are grouped together to complete a specific process.

 WF designers: Tools programmers can use to graphically create workflows and activities.

 WF runtime engine: The runtime engine executes workflows and provides services, such as
communicating with external programs.

 Host process: An application that hosts the runtime and manages the process used in the
workflows like transactions and state.

 Sequential Workflow Activities
 Visual Studio 2008 includes many pre - built activities for use in your workflow. These activities are the
building blocks to your workflows. In the visual designer, you can drag activities onto the designer and
configure the sequential workflow. The following list describes some of the common activities. If these
activities do not give you what you need, you can always create your own custom versions.

❑

❑

❑

❑

❑

Figure 22-1

c22.indd 740c22.indd 740 4/2/08 5:36:02 PM4/2/08 5:36:02 PM

Chapter 22: Building a Sequential Workfl ow Using WF

741

 IfElse: Tests multiple conditions and execute only the path where the condition is true. The
activity defaults to two conditions, called branches. You can add as many branches as you need
for your workflow.

 While: Loops until a condition is met to break out of the loop. The while loop is one of a few
controls that can host only one other activity for your custom code or logic. For activities like
this one, you can use the Sequential activity, which itself can host multiple activities that process
in a sequential nature.

 Code: Executes custom logic written in the workflow.

 Listen: Causes the workflow to wait for an external event to happen and then execute code or
activities based on the event.

 Delay: Causes the workflow to wait or sleep for a specified time period.

 InvokeMethod: Calls code (a method) in this project.

 InvokeWorkflow: Calls a different workflow.

 InvokeWebService: Calls a web service method.

 Terminate: Workflow execution is stopped by this activity.

 Sequential: Acting as a single activity, this control can host many other activities and still be

viewed as a single activity.

 Creating a Sequential Worklow
 Now that you have learned about workflows and activities, it ’ s time to put that knowledge to use.
Creating workflows using the Visual Designer is straightforward. In the following Try It Out, you will
create a simple workflow.

 Try It Out Basic Sequential Workfl ow — Greeting
 In this Try It Out, you will create a Hello World type of workflow. A console application will receive
text input from a user, evaluate it, and possibly return a greeting to the user based on the input
received.

 1. Choose File New Project. Choose Workflow as the project type and Sequential Workflow
Console Application as the template. Name the project WorkflowGreeting . Click OK to create
the project.

 2. When the project opens, you will see the designer for a sequential workflow, as shown in
Figure 22 - 2 . If you do not see this, choose Designer from the View menu to show it.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c22.indd 741c22.indd 741 4/2/08 5:36:03 PM4/2/08 5:36:03 PM

Chapter 22: Building a Sequential Workfl ow Using WF

742

Figure 22-2

 3. Now, drag a code activity (named Code) from the toolbox to the workflow. Your workflow
will look like Figure 22 - 3 .

Figure 22-3

 4. To insert the code, double - click the codeActivity1 activity. In the codeActivity1_
ExecuteCode subroutine, add the following code:

 Dim strInput As String
 Console.WriteLine(“Welcome ...”)
 strInput = Console.ReadLine()

 Select Case strInput.ToUpper
 Case “HELLO”
 Console.WriteLine(“Hi”)
 Case “BYE”
 Console.WriteLine(“Good Bye”)
 End Select

 Console.WriteLine(“Done ...”)
 Console.ReadLine()

c22.indd 742c22.indd 742 4/2/08 5:36:03 PM4/2/08 5:36:03 PM

Chapter 22: Building a Sequential Workfl ow Using WF

743

 5. That is it. You have created the simplest workflow ever. Now press F5 and see it run. Type
 hello or bye to see the workflow respond with the appropriate greeting. Figure 22 - 4 displays
the console application that hosts the workflow.

Figure 22-4

 How It Works
 This is a very simple example of the console application for a sequential workflow. Note that the
designer has a similar interface to other projects in Visual Studio. The designer is mainly a visual way
to design the workflow in the same way you would design your Windows Form. You drag controls
onto the workspace and organize them in structured fashion just like you do in a web or Windows
application.

 Using a simple control to run custom code, you are able to evaluate input and respond in an
appropriate fashion. At the beginning of the following code you see the class and event handler
declarations. Note that the code generated for WorkFlow1 inherits SequentialWorkflowActivity .
The event handler for the code control named codeActivity1_ExecuteCode is what handles all of
the work in the code activity you added.

Public class Workflow1
 Inherits SequentialWorkflowActivity
 Private Sub codeActivity1_ExecuteCode(ByVal sender As System.Object, _
 ByVal e As System.EventArgs)

 To do the work, you create a string variable to accept the input from the console application. Next, you
call the WriteLine method for a console application. This displays the Welcome note to the screen.
After that, you call the ReadLine method to read input from the console application and store that
input in the string variable you created.

 Dim strInput As String
 Console.WriteLine(“Welcome ...”)
 strInput = Console.ReadLine()

743

c22.indd 743c22.indd 743 4/2/08 5:36:04 PM4/2/08 5:36:04 PM

Chapter 22: Building a Sequential Workfl ow Using WF

744

 Next, you write a Case statement to evaluate the input and respond to the console application.

 Select Case strInput.ToUpper
 Case “HELLO”
 Console.WriteLine(“Hi”)
 Case “BYE”
 Console.WriteLine(“Good Bye”)
 End Select

 Finally, you complete the workflow by passing the text output to the console application and calling
 ReadLine to have the console application wait for the user before closing the application. This
last ReadLine call gives you time to review the output and test for any logic errors.

 Console.WriteLine(“Done ...”)
 Console.ReadLine()
 End Sub
End Class

 The workflow foundation and designer can be be really useful. Next, you ’ ll implement a workflow of
a possible business process.

 Property Tax Listing Form Workflow
 In this example, you design the workflow using a sequential workflow. The project revolves around
annual property taxes. In this situation, the taxing authority (TA) receives thousands of property listing
forms at the beginning of each year. These forms are scanned and named based on where changes were
made to the form. There are three possible places on the form where changes can be made. The scanned
form can take on any of the following states: Property Sold, Address Change, New Property Added, or
No Change.

 The TA receives scanned PDF documents with file names that can be parsed to retrieve form changes and
an ID to identify the property owner on the form. The forms are delivered to a folder via FTP and a
Windows service. The service picks up the file and then passes the location and filename into the workflow.

 When activated, the workflow first moves the file. Next, the file name is parsed. In the file name,
the types of changes are evaluated and the appropriate workflow item(s) are added to the database.
The final process is to assign the new item(s) to the appropriate user, and then the process is complete.
Figure 22 - 5 displays a diagram from the TA to define the rough workflow. You will convert this diagram
into WF workflow in the next Try It Out.

c22.indd 744c22.indd 744 4/2/08 5:36:04 PM4/2/08 5:36:04 PM

Chapter 22: Building a Sequential Workfl ow Using WF

745

 Now that you have a little background you will build this using a console application as the host. You
will leave out calls to the database, calls to the file system processes, and other items not essential to
understanding WF. You will gain the base knowledge of how to put this all together and when you are
done you will be ready to explore this new technology on your own.

 Try It Out Listing Form Sequential Workfl ow

 In this Try It Out, you will program the workflow diagram just presented, using a console application.

 As you are working with the controls, be sure to name them such that they can be identified easily.
If you leave the default names, controls like IfElse1 and IfElse2 are very difficult to manage on more
complex applications. Creating self - documenting names is always a good practice.

 1. To start, create a new sequential workflow console application. Name it
WorkflowPropertyListing.

 2. Add the following declaration and public property named strFileName to the code. This
code goes into the class Workflow1 .

Figure 22-5

c22.indd 745c22.indd 745 4/2/08 5:36:04 PM4/2/08 5:36:04 PM

Chapter 22: Building a Sequential Workfl ow Using WF

746

 Private _strFileName As String

 Public Property strFileName() As String
 Get
 Return _strFileName
 End Get
 Set(ByVal value As String)
 _strFileName = value
 End Set
 End Property

 3. On the workflow designer, place a code control to create a codeActivity activity. Name this
 CodePickUpPDF .

 4. Double - click the control to create a CodePickUpPDF_ExecuteCode subroutine. In this
subroutine, you write the code to pick up a PDF file in a specified directory from the
configuration file. For this example, you will use console writes for these code blocks so you
can see the workflow ’ s path in the host application.

 Private Sub CodePickUpPDF_ExecuteCode(ByVal sender As System.Object, _

ByVal e As System.EventArgs)

 Console.WriteLine(“What is the file name?”)
 ‘Set the file name property
 ‘This could be done by an external application
 strFileName = Console.ReadLine()

 End Sub

 5. On the workflow designer, place a second code control after CodePickUpPDF. Name this con-
trol CodeMoveFile.

 6. Double - click the CodeMoveFile and add the following code to the execute code subroutine.

 ‘This is where you would move the file to the network share for storage
 Console.WriteLine(“File has been moved successfully”)

 7. On the workflow designer, add a third code control and place it in line after CodeMoveFile.
Name this control CodeParseFileName .

 8. Now that you have the hang of adding the controls to your design, refer to Figure 22 - 6 to
complete the workflow. Just drag the controls onto the workflow and change the control names
to match Figure 22 - 6 . The visual designer makes it easy to create a workflow from a visual
image since they are so similar. When you finish, you will have a complete sequential
workflow design.

c22.indd 746c22.indd 746 4/2/08 5:36:05 PM4/2/08 5:36:05 PM

Chapter 22: Building a Sequential Workfl ow Using WF

747

 9. After completing the diagram, add the following code. This code will display the activity and
path of the workflow in the host application.

 When you double - click the code activities, a property is wired to the subroutine created. If you enter
the procedures for _ExecuteCode , you will need to manually set the code activities property
ExecuteCode to the procedure you create.

 Private Sub codeParseFileName_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File name has been parsed successfully”)
 End Sub

 Private Sub codeProcessChange_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File address change found”)
 Console.WriteLine(“Address change workflow item added”)
 End Sub

 Private Sub codeAddRemove_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File item added or removed found”)
 Console.WriteLine(“Address change workflow item added”)

 End Sub

Figure 22-6

c22.indd 747c22.indd 747 4/2/08 5:36:05 PM4/2/08 5:36:05 PM

Chapter 22: Building a Sequential Workfl ow Using WF

748

 Private Sub codeAssign_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“Workflow item assigned”)
 Console.WriteLine(“”)
 Console.WriteLine(“Workflow complete”)
 Console.ReadLine()
 End Sub

 10. Add the last two procedures (AnyChange and WasAddressChange) that you will wire to the
ifElseBranch with the following code:

 Private Sub AnyChange(ByVal sender As System.Object, _
ByVal e As System.Workflow.Activities.ConditionalEventArgs)
 If strFileName.ToUpper.Contains(“_ADDRESS”) _
 Or strFileName.ToUpper.Contains(“_NEW”) _
 Or strFileName.ToUpper.Contains(“_REMOVE”) Then
 e.Result = True
 End If
 End Sub
 Private Sub WasAddressChange(ByVal sender As System.Object, _
ByVal e As System.Workflow.Activities.ConditionalEventArgs)
 If strFileName.ToUpper.Contains(“_ADDRESS”) Then
 e.Result = True
 End If
 End Sub

 11. Next, you will wire up the left side of the ifElseBranches. Click ifElseBranchFormChanged
and change the condition property to Code Condition . Expand the property and you will
be able to select from procedures that can handle this event. In this case, the drop - down
under Code Condition should contain the last two procedures you added: AnyChange
and WasAddressChange . Select AnyChange .

 12. Select ifElseBranchAddressChange and repeat step 11, this time selecting WasAddressChange .

 13. That is all. Go ahead and run the application. Enter some file names and review the output
to see the flow and test if it is correct or not. Enter names like 1990_NEW.PDF , 0001_REMOVE
.PDF , 9878_ADDRESS.PDF , 88877_NO.PDF and then just enter random text. Those will take
you through each path of the workflow. On the no change path, the workflow will terminate
and that will cause the console application to exit. See Figure 22 - 7 for a sample of the output
you will see when you run the application.

Figure 22-7

c22.indd 748c22.indd 748 4/2/08 5:36:05 PM4/2/08 5:36:05 PM

Chapter 22: Building a Sequential Workfl ow Using WF

749

 How It Works
 This example shows a more complex workflow. You are able to use some of the most used activities in
the WF toolbox: ifElse and Code. Figure 22 - 8 shows the ifElse control you add. In this control, you could
copy and paste more ifElseBranches into the ifElse. This flexibility would make a workflow easier to see
visually, so you create the branches to use only yes/no or true/false answers. Imagine if inside the
ifElse you had five case statements with different code running for each. That code would be hidden
on the visual designer and hard to see. By adding five ifEsleBranches, you could see on the designer
that there was special code for each of the five conditions. In a large workflow, that would make
maintaining and changing the workflow much easier. Now, let ’ s review in more detail how this works.

Figure 22-8

 First, look at the public property. For enterprise workflows, you would normally have a more robust
host application than this console application. Think about a forms application that creates an instance
of the workflow and needs to pass in data. This is where the property would normally be used, and
the forms application would set the strFileName property and then start the workflow.

 Public Property strFileName() As String
 Get
 Return _strFileName
 End Get
 Set(ByVal value As String)
 _strFileName = value
 End Set
 End Property

 All of the rest of the code can be considered event handlers for the controls you added. Figure 22 - 9
shows the first three activities in the workflow.

Figure 22-9

c22.indd 749c22.indd 749 4/2/08 5:36:06 PM4/2/08 5:36:06 PM

Chapter 22: Building a Sequential Workfl ow Using WF

750

 Now look at the activity to pick up the PDF file. Here you ask for the file name and set the property
for file name to the input from the user. This requires some file I/O logic to grab the file from the file
system. To test the flow, you add output to the console application using the writeline method.

 Private Sub CodePickUpPDF_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“What is the file name?”)
 ‘Set the file name property
 ‘This could be done by an external application
 strFileName = Console.ReadLine()
 End Sub

 The next code activity is to move the file. In this activity, you add code to move the file to the appro-
priate file server. To test the flow, output is added again:

 Private Sub codeMoveFile_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 ‘This is where you would move the file to the network share for
storage
 Console.WriteLine(“File has been moved successfully”)
 End Sub

 The third activity is similar to the first two. Here you add the logic to output the workflow activity. In
a true workflow application, this would have probably parsed the file name and set a property.

 Private Sub codeParseFileName_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File name has been parsed successfully”)
 End Sub

 Next up is the activity you create for an address change. In this handler, you write code to output the
flow to the console application. This activity only handles one true condition. You could easily use a
code activity to handle all of the if conditions at once. That would mean that all the conditions would
be hidden from you in the Visual Basic code. Try to remember not to hide many conditions in one
activity. You should code your conditions using ifElse branches that handle just one case each, so that
you will be able to see the true flow visually.

 Private Sub codeProcessChange_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File address change found”)
 Console.WriteLine(“Address change workflow item added”)
 End Sub

 Next, the workflow steps into the if/else conditions. Figure 22 - 10 shows the conditions you add.

c22.indd 750c22.indd 750 4/2/08 5:36:06 PM4/2/08 5:36:06 PM

Chapter 22: Building a Sequential Workfl ow Using WF

751

 At this point, the workflow evaluates whether or not a change was made. The first branch you created
calls the handler named AnyChange . The properties on ifElseBranchFormChanged look like
Figure 22 - 11 . The condition drop - down displays all procedures that can handle ifElseBranches.

Figure 22-10

Figure 22-11

 Inside the procedure, AnyChange , you write the code to determine whether a change was made. To
determine a change, the file name is tested for the characters _ADDRESS , _NEW , or _REMOVE . When you
test strings, you should use forced upper or lower case unless case sensitivity is required. Here, the
magic happens by setting the result property of e to true . The parameter e is what the ifElse branch
uses to determine the outcome of the code and is of type System.Workflow.Activities
.ConditionalEventArgs . When setting e.Result = True you tell ifElse to proceed down the cur-
rent path and not evaluate the other branches. Note that for the branches, you only test the condition.
You could have put the code here for the true condition, but it is much cleaner to keep everything
separated by using the code activity on the path to handle the actions of the workflow.

c22.indd 751c22.indd 751 4/2/08 5:36:06 PM4/2/08 5:36:06 PM

Chapter 22: Building a Sequential Workfl ow Using WF

752

 Private Sub AnyChange(ByVal sender As System.Object, _
ByVal e As System.Workflow.Activities.ConditionalEventArgs)
 If strFileName.ToUpper.Contains(“_ADDRESS”) _
 Or strFileName.ToUpper.Contains(“_NEW”) _
 Or strFileName.ToUpper.Contains(“_REMOVE”) Then
 e.Result = True
 End If
 End Sub

 For ifElseBranches, the last one does not need a handler as it is considered the else clause. Compare
the properties for ifElseBranchFormSame to ifElseBranchFormChanged. Figure 22 - 12 shows the prop-
erties window of ifElseBranchFormSame. Notice no condition is set for the last branch,
ifElseBranchFormSame.

Figure 22-12

 If the workflow finds no change, it travels down the same branch to a terminator. The terminator ends
the process. In the console application, you need to look quickly to see the message displayed
before the console application closes.

 If the workflow finds a change, another ifElse branch is encountered. Again, there are two conditions:
one for an address change and one for an insert/delete. For this ifElse, first you test for an address
change. If found, you set e.Result to true to tell the workflow to proceed:

 Private Sub WasAddressChange(ByVal sender As System.Object, _
ByVal e As System.Workflow.Activities.ConditionalEventArgs)
 If strFileName.ToUpper.Contains(“_ADDRESS”) Then
 e.Result = True
 End If
 End Sub

 If the change was not an address change you knew that it was a new record or sold record, so the catch
 all else branch ifElseBranchNewOrSold determined what to do next. You write output to the con-
sole application so you could see the flow was followed correctly when the workflow runs.

 Private Sub codeAddRemove_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“File item added or removed found”)
 Console.WriteLine(“New or removed workflow item added”)

 End Sub

c22.indd 752c22.indd 752 4/2/08 5:36:07 PM4/2/08 5:36:07 PM

Chapter 22: Building a Sequential Workfl ow Using WF

753

 Finally, when the workflow has a change it will eventually go to the codeAssign activity. The code you
write here is for the console application. The final readline pauses the console application so you
can review the results. In a production workflow, this most likely would have interacted with the
database to assign the new work to users.

 Private Sub codeAssign_ExecuteCode(ByVal sender As System.Object, _
ByVal e As System.EventArgs)
 Console.WriteLine(“Workflow item assigned”)
 Console.WriteLine(“”)
 Console.WriteLine(“Workflow complete”)
 Console.ReadLine()
 End Sub

 Summary
 This chapter showed how to set up a workflow and map the application code to follow the flow. You saw
how to use some activities: Terminators, ifElse, and code activities. There are many more activities for
you to explore, along with other types of hosts for the workflows. As a beginner, you most likely will not
be asked to create many workflows, but now you know that you can use the technology to add
functionality to your other applications.

 Using workflows, you will be able to accomplish many complex tasks easily. You may want to set up
your workflow to have a web service interface, for example. That way other applications can easily call
into the workflow and start it from just about anywhere. Workflow Foundation can already be integrated
in SharePoint, and soon you will be able to easily integrate with BizTalk Server and Office applications.
Just remember to create your workflow so that it is visually represented correctly before adding the code.
Try not to hide many complex pieces of logic inside one activity. And most importantly, keep it simple by
having one test per ifElse branch. You should be able to tell what is happening in the process just by
looking at the visual designer.

 You should know how to:

 Create sequential workflows

 Determine which type of workflow project to use

 Use code activities and ifElse logic

 Set properties to be used inside the workflow

 Exercises
 1. Add a third ifElseBranch to the WorkflowPropertyListing Try It Out. Split the branch for

NewOrSold into two branches.

 Figure 22 - 13 shows what your workflow should look like.

❑

❑

❑

❑

c22.indd 753c22.indd 753 4/2/08 5:36:07 PM4/2/08 5:36:07 PM

Chapter 22: Building a Sequential Workfl ow Using WF

754

 2. In the WorkflowPropertyListing project, add a while activity before the first ifElse activity. You
will need to create a code condition handler and then set the code condition property. This is
where the while loop determines if it should continue or not. Next, add a code activity that tests
for a change found and then asks the user to enter a new file name if no change is found. The
 while loop will continue if e.result = true in the condition handler.

Figure 22-13

c22.indd 754c22.indd 754 4/2/08 5:36:07 PM4/2/08 5:36:07 PM

 23
Building Mobile Applications

 Mobile devices — more specifically, personal digital assistants (PDAs) — are being shipped to
more and more people around the world. A market once owned by Palm ’ s Operating System is
now a market full of devices running Microsoft Windows CE. According to a report published
November 12, 2004, by the Associated Press, Windows CE first took the top place over Palm in
number of PDAs shipped in the third quarter 2004. Of the 2.8 million PDAs shipped worldwide,
Windows CE was the operating system on 48.1 percent. According to a summary of the Gartner
PDA Report for Q1 2006 (www.palminfocenter.com/news/8564/gartner-pda-report-for-
q1-2006/), Windows Mobile OS is now running on over 50 percent of the PDA ’ s shipped. This
represents over 1.8 million devices shipped in that three - month period. The demand for
applications to make PDAs and other smart devices valuable to companies is growing with the
number of PDAs in use by corporations. As you build skills in Visual Studio 2008, know that
building applications for smart devices is definitely a skill many employers are and will be looking
for in their developers.

 Designing mobile applications for Windows CE, Pocket PC, and Smartphone devices is simplified
using Visual Studio 2008. This chapter focuses on applications built for PDAs running Microsoft
Windows Mobile operating system.

 In this chapter you learn:

 The differences between the full .NET framework and the Compact Framework

 How to use ActiveSync and Windows Mobile Device Center to connect to smart devices

 How to create mobile applications

 How to use the built - in emulator to test mobile applications

 Understanding the Environment
 If you have never used a PDA, it is a small version of a stripped - down PC. A typical Pocket PC
may have 64 MB of internal memory and a 312 - MHz processor. It weighs less than a pound and
has a 3.5 inch screen that supports 240 � 320 pixels and 65K colors. Compare that to a desktop

❑

❑

❑

❑

c23.indd 755c23.indd 755 4/1/08 6:43:42 PM4/1/08 6:43:42 PM

Chapter 23: Building Mobile Applications

756

computer. A normal PC may have a spec sheet like this: 3 GHz processor, 120 GB hard drive, 1 GB RAM
and a 19 - inch monitor that supports 1600 � 1200 pixels and 32 - bit color (over 4 billion colors). Another
important difference is that the screen on a Pocket PC is tall, whereas a desktop monitor is wide. One
more issue to consider is that when the battery dies, you lose all data and applications stored in memory.
The user must add a storage device, such as a compact Flash card, to avoid having to reinstall
applications when the battery loses power. Keep these differences in mind as you build applications for
mobile devices.

 Now that you know the basics of a PDA, I will try to outline what Visual Studio 2008 has for you to work
with when you create mobile applications. To start, you have the .NET Compact Framework (CF). The
best part of the CF is that it is a subset of the .NET Framework you know about from earlier chapters.
Most of what you know is part of the CF, and this knowledge will allow you to start creating mobile
applications with a small learning curve. Just like the parent Framework, the CF is based on the
Common Language Runtime (CLR) and executes Microsoft Intermediate Language (MSIL) to maintain
platform independence. The greatest difference you will see is the number of controls that are missing
and the number of overloaded methods, properties, and constructors that are not present for controls.
Application deployment is different also. Deploying applications to a PDA is not going to be done via
CD or floppy disk. You will use Microsoft ActiveSync to facilitate deploying applications to a Pocket PC.
Next, we elaborate on what you need to know before you create your first mobile application.

 Common Language Runtime
 One goal of the CLR, also known as the execution engine , is to allow multiple languages to run side by
side. The CLR manages the following items:

 Memory and garbage collection

 Platform independence via Microsoft Intermediate Language

 Common type system

 Exception handling

 Just - In - Time compilation

 ActiveSync and Windows Mobile Device Center
 To connect your mobile device to your desktop, you will most likely use ActiveSync for Windows XP or
Windows Mobile Device Center (version 6.1 was the latest version at time of writing) for Windows Vista.
The software quickly connects you to your PC, your network resources, and even a shared Internet
connection. You can use the software connection to synchronize your application data, access web
services, or even replicate data to an SQL Server machine on your network. All you need is to download
the latest software and connect your device to your desktop. The interface for Windows Mobile Device
Center is shown in Figure 23 - 1 . When you are connected using ActiveSync, you have options such as
those shown in Figure 23 - 2 .

❑

❑

❑

❑

❑

c23.indd 756c23.indd 756 4/1/08 6:43:43 PM4/1/08 6:43:43 PM

Chapter 23: Building Mobile Applications

757

 Since most of you do not have Pocket PCs, I will briefly explain the ease of deploying a smart device
application to a Pocket PC. To deploy a smart device application, Visual Studio 2008 includes a smart
device .cab file template under setup and deployment projects. For deploying, add the .cab file project
to your device application project. When you build the project, just copy the output to the device using
your mobile device software. Next, double - click the .cab file using the device, and it installs the
application. That is all it takes to deploy your applications.

Figure 23-1

Figure 23-2

c23.indd 757c23.indd 757 4/1/08 6:43:43 PM4/1/08 6:43:43 PM

Chapter 23: Building Mobile Applications

758

 You can download the latest version of Microsoft ActiveSync from Microsoft. The .exe for ActiveSync
version 3.7.1, used here, was a 3.77MB download. Search for ActiveSync at the Microsoft download site
 www.microsoft.com/downloads/).

 You can download version 6.1 of Windows Mobile Device Center for Vista at
www.microsoft.com/downloads/details.aspx?familyid=46F72DF1-E46A-4A5F-A791-
09F07AAA1914 & displaylang=en .

 Common Types in the Compact Framework
 The type of system available in the Compact Framework should look familiar to you when you start to
program mobile applications. The following table lists the types available in the CF. As you allocate
memory with variables in your applications, remember this chapter and the fact that you are working
with very limited resources. Refer to this table for a quick reference to ensure you use the smallest data
type possible to store data.

 VB type CLR type Size Value range

 Boolean Boolean Depends True or False

 Byte Byte 1 byte 0 through 255 (unsigned)

 Char Char 2 bytes Single unicode character

 Date DateTime 8 bytes 0:00:00 (midnight) on January 1, 0001 through 11:59:59
PM on December 31, 9999

 Decimal Decimal 16 bytes 0 through +/ � 79,228,162,514,264,337,593,543,950,335
(+/ � 7.9. . . E+28) with no decimal point; 0 through
+/ � 7.9228162514264337593543950335 with 28 places to
the right of the decimal; smallest nonzero number is
+/ � 0.0000000000000000000000000001 (+/ � 1E - 28)

 Double Double 8 bytes � 1.79769313486231570E+308 through
 � 4.94065645841246544E - 324 for negative values;
4.94065645841246544E - 324 through
1.79769313486231570E+308 for positive values

 Integer Int32 4 bytes � 2,147,483,648 through 2,147,483,647 (signed)

 Long Int64 8 bytes � 9,223,372,036,854,775,808 through
9,223,372,036,854,775,807 (9.2 . . . E+18) (signed)

 Object Object 4 bytes Any type can be stored in a variable of type Object

 SByte SByte 1 byte � 128 through 127 (signed)

 Short Int16 2 bytes � 32,768 through 32,767 (signed)

 Single Single 4 bytes � 3.4028235E+38 through � 1.401298E - 45 for negative
values; 1.401298E - 45 through 3.4028235E+38 for
positive values

c23.indd 758c23.indd 758 4/1/08 6:43:44 PM4/1/08 6:43:44 PM

Chapter 23: Building Mobile Applications

759

 VB type CLR type Size Value range

 String String Depends 0 to approximately 2 billion Unicode characters

 UInteger UInt32 4 bytes 0 through 4,294,967,295 (unsigned)

 ULong UInt64 8 bytes 0 through 18,446,744,073,709,551,615 (1.8. . . E+19)
(unsigned)

 UShort UInt16 2 bytes 0 through 65,535 (unsigned)

 The Compact Framework Classes
 The .NET Compact Framework classes are a subset of the .NET Framework classes plus a few inclusions
that you do not need for desktop applications. Overall, you will not be surprised by the controls you find
in the CF.

 The .NET Compact Framework is approximately 12 percent of the size of the full framework. That makes
it easy to see that, although many of the common controls and namespaces are included, the functionality
has been greatly reduced. You will notice quickly that controls like the Label control are missing
properties. Take a look at Figure 23 - 3 to see the differences between label properties available in both
frameworks. The Properties window on the right is smaller and that represents the Compact Framework.

Figure 23-3

c23.indd 759c23.indd 759 4/1/08 6:43:44 PM4/1/08 6:43:44 PM

Chapter 23: Building Mobile Applications

760

 Two other missing pieces are method overrides and events. Figure 23 - 4 compares the events of the
Button control in both frameworks. The events listed from the full framework on the right of Figure 23 - 4
are just a partial list and represent about half of the available events.

Figure 23-4

 How many overloaded methods have been removed? Based on the size of the CF, you can estimate that
more than 75 percent are missing. When you look at the System.IO.FileStream constructors, you will
see that the full Framework boasts 15 overloaded constructors, while the CF has been whittled down to
only five. When you write applications that will be used on smart devices and desktops, you will have
to adjust certain parts of your code to address these differences.

 The following table shows a partial list of the default controls available to a Pocket PC application.

 Name Name

 Button NumericUpDown

 CheckBox OpenFileDialog

 ComboBox Panel

 ContextMenu PictureBox

c23.indd 760c23.indd 760 4/1/08 6:43:45 PM4/1/08 6:43:45 PM

Chapter 23: Building Mobile Applications

761

 Name Name

 DataGrid ProgressBar

 DateTimePicker RadioButton

 DocumentList SaveFileDialog

 DomainUpDown Splitter

 HScrollBar StatusBar

 ImageList TabControl

 InputPanel TextBox

 Label Timer

 LinkLabel ToolBar

 ListBox TrackBar

 ListView TreeView

 MainMenu VScrollBar

 MonthCalendar WebBrowser

 Notification

 Building a Pocket PC Game
 For your first mobile application, you build a simple game of tic - tac - toe. You will see how different the
screen is and design a user interface that is simple for the user.

 Try It Out Tic Tac Toe

 1. In Visual Studio 2008, select the File New Project menu. This displays the New Project
dialog box.

 2. Select Visual Basic from the Project Types pane on the left. Next, expand the Visual Basic label
and then select Smart Device. In the templates pane on the right, choose Smart Device Project.
Change the project name to TicTacToe and click the OK button (Figure 23 - 5 shows the dialog
box). After clicking OK you see a screen for selecting the target device and the CF version. On
this screen, shown in Figure 23 - 6 , choose Windows Mobile 5.0 Pocket PC SDK for version 3.5
of the Compact Framework and select the template for Device Application.

c23.indd 761c23.indd 761 4/1/08 6:43:45 PM4/1/08 6:43:45 PM

Chapter 23: Building Mobile Applications

762

 3. The project opens to a view of a Pocket PC, as shown in Figure 23 - 7 . This is the design
environment. As you build the application, you will see the screen and be able to design
the graphical interface on a replica of the actual device screen. You will know exactly how the
application will look when the user installs it.

Figure 23-5

Figure 23-6

c23.indd 762c23.indd 762 4/1/08 6:43:45 PM4/1/08 6:43:45 PM

Chapter 23: Building Mobile Applications

763

 4. Build the user interface. Add 10 buttons to the form as shown in Figure 23 - 8 . The three rows
of three buttons represent the tic - tac - toe board. Set the Size to 40, 40 for the nine buttons that
make up the board. Starting with the button in the upper left of the board, move left to right,
down a row, left to right, down a row, and then left to right again, and name the buttons on
the board btn00 , btn01 , btn02 , btn10 , btn11 , btn12 , btn20 , btn21 , btn22 . The name begins
with btn followed by the row (0, 1 or 2) and column (0, 1 or 2) of the button. So btn02 is on the
first row (Row 0) and the third column (Column 2). When you use these names in code, you
will know the location on the board. Next, set the Font for all of the board buttons to Tahoma,
24pt, Bold. Finally, set the Text property to X and the Anchor property to None for the board
buttons. The final button is the New Game button. Set the Name to btnNewGame and the
Text to & New Game . Below the board, add a label named lblMessages . Make the label tall
enough to display two lines of text. Now, change the Text property of Form1 to TicTacToe ,
and the user interface is complete.

Figure 23-7

c23.indd 763c23.indd 763 4/1/08 6:43:46 PM4/1/08 6:43:46 PM

Chapter 23: Building Mobile Applications

764

 5. Switch to the code behind view and add the following highlighted code to the Form1 class:

Public Class Form1

‘Get the game ready to start again
Sub ResetGame()
 Dim ctrl As Control
 ‘Loop through the board controls and set them to “”
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 ctrl.Text = String.Empty
 End If
 Next
 lblMessages.Text = “”
 ‘Enable the board buttons
 CorrectEnabledState(True)
End Sub

Private Sub CorrectEnabledState(ByVal ButtonEnabledState As Boolean)
 Dim ctrl As Control
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 ctrl.Enabled = ButtonEnabledState
 End If
 Next
End Sub

Figure 23-8

c23.indd 764c23.indd 764 4/1/08 6:43:46 PM4/1/08 6:43:46 PM

Chapter 23: Building Mobile Applications

765

Private Sub CorrectEnabledState()
 Dim ctrl As Control
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 If ctrl.Text = String.Empty Then
 ctrl.Enabled = True
 Else
 ctrl.Enabled = False
 End If
 End If
 Next
End Sub

Sub ComputerPlay()
 Dim RandomGenerator As New Random()
 Dim intRandom As Integer
 Dim intCount As Integer = 0
 Dim ctrl As Control
 intRandom = RandomGenerator.Next(20, 100)
 While intCount < intRandom
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 If ctrl.Text = String.Empty Then
 intCount += 1
 If intCount = intRandom Then
 ctrl.Text = “O”
 ctrl.Enabled = False
 Exit For
 End If
 End If
 End If
 Next
 End While
End Sub

Private Sub TicTacToe_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btn00.Click, btn20.Click, btn10.Click, _
btn01.Click, btn21.Click, btn11.Click, btn02.Click, btn22.Click, btn12.Click
 CorrectEnabledState(False)
 Application.DoEvents() ‘Allows the screen to refresh
 CType(sender, Button).Text = “X”
 If IsGameOver() Then
 MsgBox(“Game Over”)
 Else
 lblMessages.Text = “Computer selecting ...”
 Application.DoEvents() ‘Allows the screen to refresh
 ComputerPlay()
 If IsGameOver() Then
 MsgBox(“Game Over”)
 Else
 lblMessages.Text = “Select your next position ...”
 CorrectEnabledState()
 End If
 End If
End Sub

c23.indd 765c23.indd 765 4/1/08 6:43:47 PM4/1/08 6:43:47 PM

Chapter 23: Building Mobile Applications

766

Sub Winner(ByVal strWinner As String)
 Dim strMessage As String
 If strWinner = “X” Then
 strMessage = “You win!!”
 ElseIf strWinner = “O” Then
 strMessage = “Computer wins!!”
 Else
 strMessage = strWinner
 End If
 lblMessages.Text = strMessage
End Sub

Function IsGameOver() As Boolean
 If btn00.Text = btn01.Text And btn01.Text = btn02.Text And _
 btn02.Text < > String.Empty Then
 ‘Winner on top Row
 Call Winner(btn00.Text)
 Return True
 End If

 If btn10.Text = btn11.Text And btn11.Text = btn12.Text And _
 btn12.Text < > String.Empty Then
 ‘Winner on middle Row
 Call Winner(btn10.Text)
 Return True
 End If

 If btn20.Text = btn21.Text And btn21.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on bottom Row
 Call Winner(btn20.Text)
 Return True
 End If

 If btn00.Text = btn10.Text And btn10.Text = btn20.Text And _
 btn20.Text < > String.Empty Then
 ‘Winner on first column
 Call Winner(btn00.Text)
 Return True
 End If

 If btn01.Text = btn11.Text And btn11.Text = btn21.Text And _
 btn21.Text < > String.Empty Then
 ‘Winner on second column
 Call Winner(btn01.Text)
 Return True
 End If

 If btn02.Text = btn12.Text And btn12.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on third column
 Call Winner(btn02.Text)
 Return True
 End If

c23.indd 766c23.indd 766 4/1/08 6:43:47 PM4/1/08 6:43:47 PM

Chapter 23: Building Mobile Applications

767

 If btn00.Text = btn11.Text And btn11.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on diagonal top left to bottom right
 Call Winner(btn00.Text)
 Return True
 End If

 If btn20.Text = btn11.Text And btn11.Text = btn02.Text And _
 btn02.Text < > String.Empty Then
 ‘Winner on diagonal bottom left to top right
 Call Winner(btn20.Text)
 Return True
 End If

 ‘Test for a tie, all square full
 Dim ctrl As Control
 Dim intOpenings As Integer = 0
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 If ctrl.Text = String.Empty Then
 intOpenings = intOpenings + 1
 End If
 End If
 Next
 If intOpenings = 0 Then
 Call Winner(“It’s a tie.”)
 Return True
 End If
 Return False
End Function

End Class

 6. Add the highlighted code to the Form1_Load event handler:

Private Sub Form1_Load(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles
Me.Load

 CorrectEnabledState(False)
 lblMessages.Text = “Click new game to begin.”

End Sub

 7. Add the following highlighted code to the btnNewGame_Click event handler:

Private Sub btnNewGame_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnNewGame.Click

 ResetGame()

End Sub

 8. Run the program in debug mode to see how it works. You will be asked how to deploy the
application. Choose one of the emulators to use for testing and click the Deploy button shown
in Figure 23 - 9 . Be patient, because it takes some time to start the entire process. In the release
process, the emulator displays very quickly and then the software takes time to deploy so you
might think it is not working.

c23.indd 767c23.indd 767 4/1/08 6:43:47 PM4/1/08 6:43:47 PM

Chapter 23: Building Mobile Applications

768

 9. When the application starts, the Pocket PC emulator displays, and the TicTacToe program will
be running. Wait for the application to start. The emulator will look like Figure 23 - 10 . You
may be prompted with an Establishing Connection dialog box. Choose Internet to continue.

Figure 23-9

Figure 23-10

 10. Click New Game and play against the computer. The computer player chooses a random play
and is easy to defeat.

c23.indd 768c23.indd 768 4/1/08 6:43:47 PM4/1/08 6:43:47 PM

Chapter 23: Building Mobile Applications

769

 How It Works
 This game gives you a basic understanding of smart device development. It is relatively the same as
the work you completed in earlier chapters. The first thing you may notice is the screen size. You have
limited real estate to design the user interface. The screen is the perfect size for a simple game of
tic - tac - toe.

 To start, you create the user interface. When you add the buttons and labels, it is just like building a
desktop application. The controls have many of the same properties you are familiar with from
previous chapters. You should have no problem with the user interface.

 Most of the work you did for the game was with code. Again, everything you learned earlier in the
book applies to smart device applications. You saw the functions and subroutines created to run the
game, and you should have remembered most of this logic from previous chapters. We will go
through the code one routine at a time to explain what happened.

 After a game ends, you need a standard way to get the board and screen ready for a new game. This is
accomplished with the ResetGame procedure. This procedure uses the collection of controls on the
form and iterates through each control that is a button. If the button is a part of the board, the text
property will be reset to an empty string. After all buttons have been reset, the message label text is set
to blank and all board buttons are enabled.

‘Get the game ready to start again
Sub ResetGame()
 Dim ctrl As Control
 ‘Loop through the board controls and set them to “”
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 ctrl.Text = String.Empty
 End If
 Next
 lblMessages.Text = “”
 ‘Enable the board buttons
 CorrectEnabledState(True)
End Sub

 The CorrectEnabledState subroutine has two signatures. This is an example of an overloaded
method. When you call CorrectEnabledState with one Boolean argument, the procedure sets the
 Enabled property of all buttons on the board to the value of the parameter you pass. The other
method signature expects no parameters. So when it is called, that procedure tests every button on the
board. If a button is blank, it is enabled. Otherwise, the button is disabled.

Private Sub CorrectEnabledState(ByVal ButtonEnabledState As Boolean)
 Dim ctrl As Control
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 ctrl.Enabled = ButtonEnabledState
 End If
 Next
End Sub
Private Sub CorrectEnabledState()
 Dim ctrl As Control
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then

c23.indd 769c23.indd 769 4/1/08 6:43:48 PM4/1/08 6:43:48 PM

Chapter 23: Building Mobile Applications

770

 If ctrl.Text = String.Empty Then
 ctrl.Enabled = True
 Else
 ctrl.Enabled = False
 End If
 End If
 Next
End Sub

 Another procedure that is created is ComputerPlay . This procedure enables play for the computer. At
the top of the code, declarations are made for local variables. The meat of the logic started before the
 while loop. The Next method of the Random class generated a random number between 20 and 100.
The program loops through every open square on the board, counting each one, until the lucky
random number square is found and it is marked with an O.

Sub ComputerPlay()
 Dim RandomGenerator As New Random()
 Dim intRandom As Integer
 Dim intCount As Integer = 0
 Dim ctrl As Control
 intRandom = RandomGenerator.Next(20, 100)
 While intCount < intRandom
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 If ctrl.Text = String.Empty Then
 intCount += 1
 If intCount = intRandom Then
 ctrl.Text = “O”
 ctrl.Enabled = False
 Exit For
 End If
 End If
 End If
 Next
 End While
End Sub

 When you click any square, the TicTacToe_Click procedure is called. Take a look at the
 Handles keyword in the declaration of the subroutine. The Click event from every button on the
board has been added to the comma - delimited list. So when you click any square, this procedure
handles the event. The first step of the procedure disables all squares, followed by a call to
 Application.DoEvents . The DoEvents method allowes all waiting events in the queue to complete.
This is placed here to avoid the problems associated with clicking more than one button in a turn. If
you remove these two lines of code, you can quickly click three squares in a row before the computer
made one pick. Next, the button that is clicked, the sender , is marked with an X . After the square is
marked, the board is checked for a winner. If no winner is found, the computer makes the next move.
Again, the board is checked for a winner. If no winner is found, the player is asked to select again.

Private Sub TicTacToe_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btn00.Click, btn20.Click, btn10.Click, _
btn01.Click, btn21.Click, btn11.Click, btn02.Click, btn22.Click, btn12.Click
 CorrectEnabledState(False)
 Application.DoEvents() ‘Allows the screen to refresh

c23.indd 770c23.indd 770 4/1/08 6:43:48 PM4/1/08 6:43:48 PM

Chapter 23: Building Mobile Applications

771

 CType(sender, Button).Text = “X”
 If IsGameOver() Then
 MsgBox(“Game Over”)
 Else
 lblMessages.Text = “Computer selecting ...”
 Application.DoEvents() ‘Allows the screen to refresh
 ComputerPlay()
 If IsGameOver() Then
 MsgBox(“Game Over”)
 Else
 lblMessages.Text = “Select your next position ...”
 CorrectEnabledState()
 End If
 End If
End Sub

 The Winner procedure is called when a winner is found. The outcome of the game is displayed on the
message label.

Sub Winner(ByVal strWinner As String)
 Dim strMessage As String
 If strWinner = “X” Then
 strMessage = “You win!!”
 ElseIf strWinner = “O” Then
 strMessage = “Computer wins!!”
 Else
 strMessage = strWinner
 End If
 lblMessages.Text = strMessage
End Sub

 After every move, IsGameOver is called to look for a winner. Every possible combination of squares is
tested. If three squares in a row are marked by the same player, the Winner procedure is called and
 True is returned from the function. If no winner is found, the board is tested to see whether all
squares are marked. When all squares are marked, the game is a tie.

Function IsGameOver() As Boolean
 If btn00.Text = btn01.Text And btn01.Text = btn02.Text And _
 btn02.Text < > String.Empty Then
 ‘Winner on top Row
 Call Winner(btn00.Text)
 Return True
 End If

 If btn10.Text = btn11.Text And btn11.Text = btn12.Text And _
 btn12.Text < > String.Empty Then
 ‘Winner on middle Row
 Call Winner(btn10.Text)
 Return True
 End If

 If btn20.Text = btn21.Text And btn21.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on bottom Row

c23.indd 771c23.indd 771 4/1/08 6:43:48 PM4/1/08 6:43:48 PM

Chapter 23: Building Mobile Applications

772

 Call Winner(btn20.Text)
 Return True
 End If

 If btn00.Text = btn10.Text And btn10.Text = btn20.Text And _
 btn20.Text < > String.Empty Then
 ‘Winner on first column
 Call Winner(btn00.Text)
 Return True
 End If

 If btn01.Text = btn11.Text And btn11.Text = btn21.Text And _
 btn21.Text < > String.Empty Then
 ‘Winner on second column
 Call Winner(btn01.Text)
 Return True
 End If

 If btn02.Text = btn12.Text And btn12.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on third column
 Call Winner(btn02.Text)
 Return True
 End If

 If btn00.Text = btn11.Text And btn11.Text = btn22.Text And _
 btn22.Text < > String.Empty Then
 ‘Winner on diagonal top left to bottom right
 Call Winner(btn00.Text)
 Return True
 End If

 If btn20.Text = btn11.Text And btn11.Text = btn02.Text And _
 btn02.Text < > String.Empty Then
 ‘Winner on diagonal bottom left to top right
 Call Winner(btn20.Text)
 Return True
 End If

 ‘Test for a tie, all square full
 Dim ctrl As Control
 Dim intOpenings As Integer = 0
 For Each ctrl In Me.Controls
 If TypeOf (ctrl) Is Button And ctrl.Name < > “btnNewGame” Then
 If ctrl.Text = String.Empty Then
 intOpenings = intOpenings + 1
 End If
 End If
 Next
 If intOpenings = 0 Then
 Call Winner(“It’s a tie.”)
 Return True
 End If
 Return False
End Function

c23.indd 772c23.indd 772 4/1/08 6:43:49 PM4/1/08 6:43:49 PM

Chapter 23: Building Mobile Applications

773

 The remaining code is part of the handlers for the form ’ s Load event and the New Game button Click
event. On form load, the overloaded method CorrectEnabledState is called and all buttons are
disabled. When you click the New Game button, ResetGame is called to set up the board to start a
new game.

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load
 CorrectEnabledState(False)
 lblMessages.Text = “Click new game to begin.”
End Sub

Private Sub btnNewGame_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnNewGame.Click
 ResetGame()
End Sub

 Summary
 Visual Studio 2008 and the Compact Framework make developing mobile applications very similar to
desktop application development. This small learning curve for .NET developers is one of the reasons
more PDAs are shipping with a Windows operating system than with any other competitor. The trend
has been growing, and companies are starting to value the developer with mobile application skills. Take
advantage of your knowledge and leverage it to start developing mobile applications.

 In this chapter, you learned the basics of mobile development. You saw what is similar and what is
different between the full version of the .NET Framework and the Compact Framework. You were
shown examples of the missing pieces that explain how the CF has been shrunk by over 80 percent.
Finally, you built your first application, tic - tac - toe.

Y ou should know how to:

 Find differences between the full .NET framework and the Compact Framework

 Use ActiveSync and Windows Mobile Device Center to connect to smart devices

 Create mobile applications

 Use the built - in emulator to test mobile applications

 Exercise
 1. The computer player is a random picker. Give the computer player some brains. Add at least

one function named ComputerPlayToWin to the application. When the computer moves, call
 ComputerPlayToWin and check for a spot on the board that will create a win for the computer.
If it exists, the computer should play that move rather than a random move. You can add other
procedures if needed.

❑

❑

❑

❑

c23.indd 773c23.indd 773 4/1/08 6:43:49 PM4/1/08 6:43:49 PM

c23.indd 774c23.indd 774 4/1/08 6:43:49 PM4/1/08 6:43:49 PM

 24
Deploying Your Application

 Deploying an application can be a complicated process, especially when dealing with large,
complex applications. A wealth of knowledge is required on nearly every aspect of a development.
A large software installation for Windows requires knowledge ranging from Registry settings,
MIME types, and configuration files to database creation and manipulation. Companies tend to
rely on dedicated deployment software for these large installations, together with key people who
understand the processes involved. However, Visual Studio 2008 does provide some basic
deployment functionality, which is tremendously helpful for the standard developer and smaller
installations.

 Under the Visual Studio 2008 banner, you can create many different types of applications, from
desktop to web applications and services. All of these have varying degrees of complexity or
peculiarities when it comes to installation time.

 Since this is a beginner ’ s guide, this chapter will not go into depth on specifics regarding the
deployment of the different applications; rather, it provides an overview of deployment.

 In this chapter, you will:

 Learn concepts and terminology

 Deploy a ClickOnce Application with Visual Studio 2008

 Create a setup program with Visual Studio 2008

 Edit the installer user interface

 What Is Deployment?
 Deployment is the activity of delivering copies of an application to other machines so that the
application runs in the new environment. It is the larger, architectural view for what you may
know as installation or setup. There is a subtle difference between deployment and installation.

❑

❑

❑

❑

c24.indd 775c24.indd 775 4/1/08 6:44:10 PM4/1/08 6:44:10 PM

Chapter 24: Deploying Your Application

776

 Deployment is the art of distribution. In other words, deployment is the way in which software is
delivered.

 The installation or setup is a process, where you load, configure, and install the software. So an
 installation is what you do to configure the software, and deployment is how you get it where you want it.

 With this terminology, a CD is a deployment mechanism, as is the Internet. The two deployment
mechanisms may have different installation requirements. For example, if an installation is on a CD, you
may have all the additional dependent software on that CD. Delivery of the same application via the
Internet might require users to visit additional sites to gather all the dependent software. Another
example that may affect the installation option is where you may have written an installation in
JavaScript. This may work fine when executed on a machine by the user having the correct Windows
User Rights, but would not work through Internet Explorer. These kinds of considerations are important
when deciding upon your best deployment option. The type of installations you require could also be
different per application.

 Now that you have an understanding of the terminology, let me show you how to deploy applications
using Visual Studio 2008.

 ClickOnce Deployment
 ClickOnce deployment is the concept of sending an application or its referenced assemblies to the client
in a way that allows self - updating applications. You have three distribution options for a ClickOnce
application: file share, web page, or external media (CD, DVD, and so on). ClickOnce deployment has
benefits with limitations. It is a useful deployment option for small - to medium - sized applications.

 The benefits of ClickOnce deployment include three major factors. First, using this deployment option
allows for self - updating Windows applications. You can post the latest version of the application at the
original location, and the next time the user runs the application, it will install the latest version and run
it. Next, any user can install most ClickOnce applications with only basic user security. With other
technologies, administrator privileges are required. Finally, the installation has little impact on the user ’ s
computer. The application is run from a secure per - user cache and adds entries only to the Start menu
and the Add/Remove Programs list. For programs that can run in the Internet or intranet zones that do
not need to access the Global Assembly Cache (GAC), this is a terrific deployment solution for
distribution via the web or a file share. If you distribute the ClickOnce application through external
media, the application will be run with full trust.

 In the following Try It Out, you learn how to deploy a ClickOnce application from the Web.

 Try It Out Deploying a ClickOnce Application from the Web
 1. Create a new Windows Forms Application named ClickOnce .

 2. On Form1, add a button and label. Change the button ’ s Name property to btnVersion and
 Text to Version . Change the label Name to lblVersion and set Text to “ ” .

c24.indd 776c24.indd 776 4/1/08 6:44:10 PM4/1/08 6:44:10 PM

Chapter 24: Deploying Your Application

777

 3. Add the following highlighted code to the Click event for btnVersion :

Private Sub btnVersion_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnVersion.Click

 lblVersion.Text = “Version 1.0”

End Sub

 4. Test the form. When the user clicks the button, the label should display Version 1.0. Your form
should look like Figure 24 - 1 . Next, build the project. To build the project, click the Build menu
and choose Build ClickOnce in the submenu.

Figure 24-1

 5. Now, publish the assembly to the Web. If you do not have IIS installed, you can publish the file
to a local or network drive. Just remember how you chose to publish the assembly. You will need
to be running Visual Studio with elevated privileges to complete this. You may need to close
Visual Studio, right - click the shortcut, and choose Run as administrator to launch the software.

 6. Right - click the ClickOnce project in the Solution Explorer and choose Publish from the context
menu. The Publish Wizard opens (see Figure 24 - 2). Choose a location to publish the file.
In this example, we chose the default location for IIS.

Figure 24-2

c24.indd 777c24.indd 777 4/1/08 6:44:11 PM4/1/08 6:44:11 PM

Chapter 24: Deploying Your Application

778

 7. Click Next. In this step you can choose whether to install a shortcut on the Start menu and
add a listing in Add/Remove Programs. Select Yes as shown in Figure 24 - 3 .

Figure 24-3

Figure 24-4

 8. Next, you will see the summary of your choices. Click Finish to complete the wizard. This
wizard will complete and open the default web page that users will use to install the
application. Click Install to install the application (see Figure 24 - 4).

c24.indd 778c24.indd 778 4/1/08 6:44:11 PM4/1/08 6:44:11 PM

Chapter 24: Deploying Your Application

779

 9. When you run the install from the Web, you may see a few security warnings (see
Figure 24 - 5). If you see this, just click Install to continue. The form you created will open.
Click the Version button and you will see Version 1.0. You can close the form.

Figure 24-5

 10. Check the Program Files directory, and you will see firsthand that no files were added. A new
shortcut has been added to the Start menu.

 Now, you will update the application and see the self - updating capabilities in action.

 11. Go back to the ClickOnce Windows application in Visual Studio and change the button Click
event to update the label to Version 1.1 . Your Click event handler should look like this:

Private Sub btnVersion_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles btnVersion.Click

 lblVersion.Text = “Version 1.1”

End Sub

 12. Test and build the application.

 13. Right - click the project in Solution Explorer and choose Properties from the context menu. This
time you will not use the wizard to publish the assembly. Click the Publish tab on the left side
of the main window.

 14. Take a look at the options. You can see all the choices you made using the wizard. Make sure
to set the action for updates. To do this, click the Updates button and select the check box for
The application should check for updates. Click the radio button to check before the
application starts. All you have to do is scroll down to the bottom right of the Publish window
and click Publish Now.

 15. The Install page will be displayed, but do not click Install. Just close the window.

 16. Now, run the application using the shortcut on the Start menu. You will be prompted to
update the application. Click OK (see Figure 24 - 6). After the form opens, click the Version
button, and you will see by the text of the label that the application is updated.

c24.indd 779c24.indd 779 4/1/08 6:44:11 PM4/1/08 6:44:11 PM

Chapter 24: Deploying Your Application

780

 How It Works
 That was easy, but what happened? After a few clicks, you deployed a Windows Forms application
that was self - updating. Behind the scenes, Visual Studio completed many tasks that make this
deployment strategy easy to implement.

 First, you chose the location to publish the assembly. http://localhost/ClickOnce was created as
a virtual directory to host the deployment files for you. If you open the IIS MMC to investigate the
virtual directory, you will see what was published. Your console will look like Figure 24 - 7 . Note that
each version of the assembly has its own directory. By default, the .NET Framework would be
installed if the user does not have the correct version of the Framework. The installer would download
it from Microsoft. Feel free to browse around the web directory. We will discuss the other files later.

Figure 24-6

Figure 24-7

c24.indd 780c24.indd 780 4/1/08 6:44:12 PM4/1/08 6:44:12 PM

Chapter 24: Deploying Your Application

781

 The next step of the wizard allows you to specify whether offline access is allowed. A shortcut is
added to Add/Remove Program files and the Start menu based on your choice to allow offline access.
The application also installed to a secure cache on your computer. If you decide not to allow offline
access, the user must return to the publishing location to launch the application on each use. In this
case, the user would be required to have access to the web site to launch the application.

 That ’ s it. When you click Finish, Visual Studio 2008 goes to work. What happens behind the scenes is
not magic. Actually, you could manually complete everything without Visual Studio if you ever
needed to do so.

 Now, take another look at IIS (see Figure 24 - 7). Here ’ s what happened: First, a virtual directory was
added to IIS. This is where the application was deployed. Then a subdirectory was created for the
current version ’ s files. Also, required manifest files were generated and placed under the root and
version subdirectory.

 Other files were part of the deployment. A web page (publish.htm) was created for the user
interface. Finally, a setup.exe file for deployment was created. Both the setup.exe and publish
.htm files were added to the root virtual directory.

 To install the application, you navigated to the publish.htm web page. Each time you launched the
installed application, a check was made to see whether a newer version was available. When a new
version was available, you were notified and presented with the option to install the update.
 ClickOnce deployment has an almost unlimited number of deployment options. You just scratched
the surface in this exercise.

 XCOPY Deployment
 XCOPY deployment gets its name from the MS DOS XCOPY command. XCOPY is a copy procedure that
simply copies a directory and all files including subfolders. This is commonly associated with web
applications, but with Visual Studio 2008 it can also apply to a desktop application. Since a standard
.NET assembly does not need any form of registration, it fully supports this option. XCOPY does not
work with shared assemblies because they require installation (if they are used from the Global
Assembly Cache). You learn more about shared assemblies later in this chapter. When you use XCOPY
for desktop applications, you will have to create any shortcuts or menu items via a script or manually.
You would typically use XCopy for web site deployment and for testing and prototypes of Windows
Forms applications.

 Creating a Visual Studio 2008 Setup
Application

 Visual Studio 2008 supports the Windows Installer. But what is it? The Windows Installer service, which
gets installed with Visual Studio 2008, is a general platform for installing applications in Windows. It
provides a lot of functionality, such as uninstall capabilities and transactional installation options (the
ability to roll back if something fails) as well as other general features. Many of these features either are
built in (so that you do not have to do anything) or are configurable or extensible or both.

c24.indd 781c24.indd 781 4/1/08 6:44:12 PM4/1/08 6:44:12 PM

Chapter 24: Deploying Your Application

782

 The Visual Studio 2008 Windows Installer support has made it easier to create a simple installation.
Visual Studio has provided templates in the New Project dialog box for this purpose.

 Visual Studio 2008 exposes four main templates for creating Windows installer projects:

 Setup Project for desktop or general setup

 Web Setup Project for web applications or web services

 Merge Module, a package that can only be merged into another setup

 Cab Project, which creates a package that can be used as a type of install

 Finally, Visual Studio 2008 also has a Setup Wizard Project, which aids you in creating one of the
Windows Installer templates listed here.

 When you are creating setup applications, always be aware of the user. All of the applications you will
create with Visual Studio 2008 require version 3.5 of the .NET Framework on the installation system. For
internal applications, you will know what prerequisites are installed on each computer, but in many
cases you will deliver your application to users with no idea of the target system configuration. When
you are not sure of the user ’ s configuration, it is up to you to make all required components available.

 Visual Studio 2008 makes the process of including prerequisites easy. Most common requirements can be
included (bootstrapping) by selecting a check box. By default, the .NET Framework is automatically
bootstrapped. Any setup application that is created with the default settings will prompt the end user to
install the Version 3.5 of the Framework if it is not installed prior to setup.

 In the following Try It Out, you create a setup application.

Try It Out Creating a Setup Application

 1. Open Visual Studio and create a New Windows Forms Application named Prerequisite . You
will not make any changes to the form design or code.

 2. Save All and then build the project.

 3. Add a setup project to the solution, named Installer as shown in Figure 24 - 8 . To add a new
project, choose File Add New Project from the main menu bar.

❑

❑

❑

❑

c24.indd 782c24.indd 782 4/1/08 6:44:12 PM4/1/08 6:44:12 PM

Chapter 24: Deploying Your Application

783

 When Visual Studio creates the project, it adds a Designer. There are three main folders in the left pane
of the Designer: Application Folder, User ’ s Desktop, and User ’ s Program Menu (see Figure 24 - 9).

Figure 24-8

Figure 24-9

 4. In the Solution Explorer, right - click the Installer project and choose Properties.

c24.indd 783c24.indd 783 4/1/08 6:44:13 PM4/1/08 6:44:13 PM

Chapter 24: Deploying Your Application

784

 5. Find the Prerequisite button to the right and click it. You will see the Prerequisite form as
shown in Figure 24 - 10 . Notice that, by default, the .NET Framework 3.5 is selected, along with
Windows Installer 3.1.

Figure 24-11

 6. Select the check box beside Microsoft Data Access Components 2.8 and click OK twice to both
dialog boxes. Note that by default, the components are set to download from the vendor ’ s
web site.

 7. Right - click the Application Folder node in the Designer (left pane) and select Add Project
Output. The form will look like Figure 24 - 11 .

Figure 24-10

 8. Next, select Primary output from the Add Project Output Group form and click OK.

c24.indd 784c24.indd 784 4/1/08 6:44:13 PM4/1/08 6:44:13 PM

Chapter 24: Deploying Your Application

785

 9. Right - click Primary output from Prerequisite, which you just added. From the context menu,
select Create a Shortcut to Primary Output from Prerequisite. Rename the shortcut
 Prerequisite . Right - click the newly created shortcut and select Cut from the context menu. On
the left pane, right - click User ’ s Program Menu and click Paste.

 10. Save and build the Installer project.

 11. Right - click the Installer project in the Solution Explorer and select Install. A Windows Installer
will be loaded. This is the Setup project you have just created. Remember the shortcut you
added to the user ’ s program menu. Take a peek at your menu, and you will see the shortcut.

 How It Works
 When you create the setup application, Visual Studio creates a Windows Installer application.
 Changes you make, such as adding the ClickOnce program to the project, are included in the Installer
database file.

 In this example, you add one executable. It is also possible to add many other types of files including
text files, help files, and other assemblies.

 When you build the project, two files are created:

 The msi file

 An installation loader named setup.exe

 When you look, you see these files in your < solution directory > \Installer\Release folder.
You can find the path by selecting the Solution and looking at the Path property in the Properties
window of Visual Studio. If the user does not have MDAC 2.8 or the correct version of the .NET
Framework (3.5), it will be downloaded from the vendor. You can change that under the settings
where you add the dependency for MDAC 2.8.

User Interface Editor
 Installations can be configured to meet almost any need with Visual Studio 2008. One of the easiest ways
to make your installation look professional is to customize the interface the user sees during installation.
A tool, User Interface Editor, is available to do just this.

 With the User Interface Editor, you can configure the installation to do just about anything you want.
You can add prebuilt dialog boxes such as a license agreement. Also, a number of customizable dialog
boxes are available. You can even add a custom dialog box to ensure that a valid serial number is entered
during installation.

 In the following Try It Out, you will customize the installation of a setup application. We will show you
some of the options, but know that almost every aspect of the installation is customizable.

❑

❑

c24.indd 785c24.indd 785 4/1/08 6:44:13 PM4/1/08 6:44:13 PM

Chapter 24: Deploying Your Application

786

Try It Out Customizing the User Interface

 1. Open Visual Studio and create a New Setup Project. Name the project UserInterface .

 2. Now, select View Editor User Interface from the menu.

 3. The editor will open as shown in Figure 24 - 12 .

Figure 24-13

Figure 24-12

 4. You will see two main items. Install and Administrative Install both have customizable
interfaces. The administrative install is for a special type of installation that we will not
explain in detail; it is used when an administrator installs an application image to a
network share.

 5. Under the Install node at the top, right - click Start and choose Add Dialog from the context
menu (see Figure 24 - 13).

c24.indd 786c24.indd 786 4/1/08 6:44:13 PM4/1/08 6:44:13 PM

Chapter 24: Deploying Your Application

787

 6. Select the License Agreement dialog box and click OK. By default, the dialog box will be
added as the last dialog box under the Start node. You will make the dialog box the second
window the user will see by moving it up the tree node. Right - click the License Agreement
dialog box and choose Move Up until it is the second dialog box. Your project will look similar
to Figure 24 - 14 .

Figure 24-14

 7. This is where you would normally add a license agreement file using the LicenseFile
property. The only requirement is that is it must be in Rich Text Format (RTF). For this
example, leave this property blank.

 8. Next, add a Customer Information dialog box and make it the third step under the Start
process. Change the SerialNumberTemplate property to %% - ### - %%% and the
 ShowSerialNumber to True .

 9. That is all it takes. Just build the application and install. You will see the license agreement
dialog box as the second screen of the installation. The third step is the customer information
screen.

 10. The third step is the customer information screen. Enter 77 - 000 - 777 for the serial number
(see Figure 24 - 15).

c24.indd 787c24.indd 787 4/1/08 6:44:14 PM4/1/08 6:44:14 PM

Chapter 24: Deploying Your Application

788

 11. Now, complete the installation by clicking Next through the rest of the steps.

 How It Works
 Wow. How easy is that? You customize the installation package with just a few clicks of the mouse.
Visual Studio makes this easy. You have complete control over the installation interface.

 The second step of the installation is the license agreement you add. You are forced to agree to
install the application. Visual Studio adds the dialog boxes in the order you choose.

 The third dialog box is the customer information screen. Without a valid serial number, the installation
would abort. You create a valid serial number based on the SerialNumberTemplate property you
changed to %% - ### - %%% . The % character signifies that a required digit is included in the algorithm,
and the # character is entered for digits that are not included. The serial number algorithm sums up all
required digits and then divides the sum by 7. If the remainder is 0, the serial number entered passed
validation. So, the first two and the last three digits are added together for a total of 35. Then 35 is
divided by 7 for a remainder of 0, and you are allowed to install the application.

 Deploying Different Solutions
 Deploying applications is actually a large and complex task, made easier by various tools. However, if
you consider a large suite of applications such as Microsoft Office, you will notice that there can be a vast
number of files. All these files require explicit locations or Registry entries. They all tie together to make
the application work. In addition to size, there can also be many other complexities, such as database
creation: What happens if the database already exists? What happens with the data that is already there?
This kind of activity, commonly referred to as migration , could potentially mean a lot of work for an
installation expert.

Figure 24-15

c24.indd 788c24.indd 788 4/1/08 6:44:14 PM4/1/08 6:44:14 PM

Chapter 24: Deploying Your Application

789

 Having multiple application types can also make an installation complex, and detailed knowledge of the
different applications is required for a successful installation. The following sections discuss some items
related to different deployment scenarios surrounding the different types of applications that can be
created with Visual Studio 2008.

 Private Assemblies
 Private assemblies are installed in a directory named bin located under the application directory. These
files are private to the application. There are a few benefits in using private assemblies:

 No versioning is required, as long as it is the same version as the one with which the application
was built.

 The private assembly is not a shared assembly, and therefore it cannot be updated by another
application (at least it is not meant to be).

 You can manually replace the assembly as long as it is the same version.

 It enables XCOPY deployment (the ability simply to copy and paste files to a location and have
it work).

 You can make changes to the assembly, and if two different applications use it, you could update
one independently from the other.

 There is no configuration or signing (see the following section) to do. It just works.

 It is great for small utility assemblies or application - specific code.

 Private assemblies have the following negatives:

 When you have multiple applications using one assembly, you have to deploy the assembly to
the bin directory of each application.

 You would normally have to include the assembly in each setup project where it is used.

 Versioning is not enforced as it is in a shared assembly.

 It is not strongly named, which means someone could spoof your assembly.

 Spoofing an assembly is when someone creates an assembly that looks identical to yours and
replaces yours with the spoof copy. This spoof copy could behave in malicious ways.

 Shared Assemblies
 Shared assemblies are actually more stable than private assemblies, and they have a thorough approach
to assembly deployment. A shared assembly can also behave like a private assembly, so all the benefits of
that approach apply here too. The traditional shared assembly is different because of the extra work you
need to do and the extra capabilities it then gains.

 A shared assembly is like going back in time. In Windows 3.1, the main deployment location for these
kinds of DLLs was the Windows\System directory. Then you were advised to have these files in the local
application path, because it made for easier installation and uninstallation. Today, the System directory
concept returns in a new guise named the Global Assembly Cache (GAC). However, the strong naming
of assemblies is a definite step up.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c24.indd 789c24.indd 789 4/1/08 6:44:15 PM4/1/08 6:44:15 PM

Chapter 24: Deploying Your Application

790

 To install a shared assembly, you have to add the file to a new folder named Global Assembly Cache .
By default, this folder is not visible in the three default folders that are listed. To add the GAC folder you
must right - click the node named File System on Target Machine and select Add Special Folder Global
Assembly Cache.

 Note that any project type can use a shared assembly, including a web application.

The following is a list of the main benefits of a shared assembly:

 It is signed and cannot be spoofed.

 It has strong versioning support and configuration options.

 It is stored in one central location and does not need to be copied to the bin directory of every
application that uses it.

 You can have many different versions running side by side.

 Shared assemblies have the following negatives:

 You have to sign the assembly.

 You have to be careful not to break compatibility with existing applications, or else you have to
configure the different versions.

 Configuration can be a nightmare depending on the requirements.

 Deploying Desktop Applications
 In the second project, you created a setup for a desktop application. All that you installed was the one
executable. It had no dependencies other than the .NET Framework, which is always required. In a more
complete application, you may have various assemblies, WinForm controls, or other files that you
created for the application. Installing a private assembly with the Setup project means that you include
the file by adding it to the setup application.

 Deploying Web Applications
 A web application, when using private assemblies, can be simple to deploy. You can use the Visual
Studio 2008 Web Application setup project to create a simple web setup. The setup creates a
virtual directory and copies the files you specify to the physical directory location.

 Deploying XML Web Services
 A web service is deployed in much the same way as a web application. It also has a virtual directory.
The files that it requires are somewhat different, though. You need to deploy the asmx and discovery
files together with the assembly.

❑

❑

❑

❑

❑

❑

❑

c24.indd 790c24.indd 790 4/1/08 6:44:15 PM4/1/08 6:44:15 PM

Chapter 24: Deploying Your Application

791

 Useful Tools
 There are a few tools that either come with .NET or are in Windows already for you to use. This section
briefly points to these tools. When creating an installation, you need to test it by installing it on various
machines. Sometimes, when things do not go according to plan, you may need to do some or all of the
activities by hand to see which one was the cause of the problem. As an example, perhaps you suspect
that the ASPNET_WP.dll process has become unstable or broken in some fashion and has affected the
installation. In this scenario, you may want to restart IIS before you run the install. In a similar vein,
perhaps an assembly that was supposed to be registered in the GAC as a shared assembly cannot be
found by the client; you may want to register it manually to check whether there was a problem with the
registration. The following list briefly describes the tools you may need to use:

 ASPNET_RegIIS: The aspnet_regiis.exe command line tool can be found in the
< sysdir > \Microsoft.NET\ Framework\ < version > directory. This tool makes it an easy
task to reinstall various aspects of the ASP.NET runtime.

 IISReset: IISReset simply restarts IIS without requiring you to open the IIS management
console. Simply open a DOS prompt and type IISReset , and it will immediately restart IIS.

 ILDasm: If you want to inspect the metadata of an assembly, ILDASM is the tool for the job.
With the tool, you can inspect everything from the Namespaces to the version. Start ILDasm by
typing ILDasm at a Visual Studio command prompt.

 GACUtil: This is a Visual Studio command line tool for registering/unregistering assemblies
from the Global Assembly Cache. The /I option is for registering the assembly, and the /u
option is for unregistering.

 RegAsm: This Visual Studio command line utility is used for creating the necessary Component
Object Model (COM) information from an assembly. This is used when you need to expose an
assembly for COM Interop. The regasm tool includes switches for registering/unregistering
type libraries.

 InstallUtil: This is a Visual Studio command line tool for executing the Installer classes within
an assembly. This can execute the InstallerHelper sample you did earlier in this chapter.

 MageUI (Manifest Generation and Editing Tool): This is a graphical tool for generating,
editing, and signing the application and deployment manifest for ClickOnce applications. Run
MageUI from a Visual Studio command prompt to start the tool. A command line tool is
available if you prefer to not have the user interface. Mage.exe is the command line version
of the tool.

 Summary
 We hope you enjoyed looking at some general aspects of deployment. In the first section of this chapter,
you were introduced to some terminology, and then you saw how to create a ClickOnce Application and
a simple Setup application inside Visual Studio. You also learned the positives and negatives of private
versus shared assemblies. Ultimately, we hope you learned that there is potentially a lot to learn in this
area, from getting to know more about the features of the Windows Installer templates to learning how
to do more with ClickOnce deployment.

❑

❑

❑

❑

❑

❑

❑

c24.indd 791c24.indd 791 4/1/08 6:44:15 PM4/1/08 6:44:15 PM

Chapter 24: Deploying Your Application

792

 Now that you have finished this chapter, you should know how to:

 Create a ClickOnce deployment application

 Create a Visual Studio 2008 setup application

 Use general deployment terms such as XCOPY, shared versus private assemblies

 Edit the installer user interface

 Exercises
 1. Create a setup project for Notepad and install the program. You should be able to find the

 notepad.exe file in your Windows System directory. Hint: You will need to add the file to a
setup project. Have the setup application add a shortcut to the Start menu. Deploy the
 notepad.exe file to the Program Files directory. For extra work, change the Manufacturer
property of the project from Default Company Name to Wrox . Also, change the
 Author property to your name.

 2. Using the setup application created in Exercise 1, add a splash screen dialog box that is
displayed first during the installation. We have included a bitmap in the code for the book
named Wrox_Logo.bmp . This bitmap is the correct size, 480 × 320, and you can use this image
for the dialog box. Hint: You have to add the image you use to the setup application before
you can add it to the splash dialog box.

❑

❑

❑

❑

c24.indd 792c24.indd 792 4/1/08 6:44:15 PM4/1/08 6:44:15 PM

 25
 Where to Now?

 Now that you have come to the end of this book, you should have a relatively good idea of how to
write code using Visual Basic 2008. The topics and example code covered in this book have been
designed to provide you with a firm foundation, but that foundation is just the beginning of your
journey. In fact, this book is just one of the many steps you are going to take on your road to
becoming a full - fledged Visual Basic 2008 programmer. Although you have come a long way, there
is still a lot farther to go, and you will certainly have many more questions on the way.

Where will you get these questions answered? And then, what next?

 This appendix offers you some advice on what your possible next steps could be. As you can
imagine, a number of different routes are open to any one person. The path you choose will
probably depend on what your goals are, and what you are being asked to do by your employer.
Some will want to continue at a more general level with some knowledge about all aspects of
Visual Basic 2008, while others may want to drill down into more specific areas.

 Well, it is extremely important not to take a long break before carrying on with Visual Basic 2008.
If you do so, you will find that you will quickly forget what you have learned. The trick is to
practice. You can do this in a number of ways:

 Continue with the examples from this book. Try to add more features and more code to
extend the examples. Try to merge and blend different samples together.

 You may have an idea for a new program. Go on and write it.

 Try to get a firm understanding of the terminology.

 Read as many articles as you can. Even if you do not understand them at first, bits and
pieces will come together.

 Make sure you communicate your knowledge. If you know other programmers, get
talking and ask questions.

 Consult our online and offline resources for more information.

 The rest of this chapter lists available resources, both online and offline, to help you decide where
to go next.

❑

❑

❑

❑

❑

❑

c25.indd 793c25.indd 793 4/1/08 6:45:36 PM4/1/08 6:45:36 PM

Chapter 25: Where to Now?

794

 Online Resources
 Basically, there are thousands of places you can go online for help with any problems you may have. The
good news is that many of them are free. Whenever you come across a problem — and, unfortunately,
you will — there are always loads of people out there willing to help. These unknown souls include
others who were at the same stage as you and may have had a similar problem, or experts with a great
deal of knowledge. The key is not to be intimidated and to use these resources as much as you like.
Remember, everyone was a complete beginner at some point and has had many of the same experiences
as you.

 In this section, we begin by examining the P2P site provided by Wrox and then follow on with some of
the more general sites around. If you can ’ t find what you want through any of the sites listed here or if
you have some time and want to explore, just search for Visual Basic 2008 and you will be on your way!

 P2P.Wrox.com
 P2P provides programmer - to - programmer support on mailing lists, forums, and newsgroups in addition
to a one - to - one e - mail system. You can join any of the mailing lists for author and peer support in Visual
Basic 2008 (plus any others you may be interested in).

 You can choose to join the mailing lists, and you can receive a weekly digest of the list. If you don ’ t have
the time or facilities to receive mailing lists, you can search the online archives using subject areas or
keywords.

 Should you wish to use P2P for online support, go to http://p2p.wrox.com . On P2P, you can view the
groups without becoming a member. These lists are moderated, so you can be confident of the
information presented. Also, junk mail and spam are deleted, and your e - mail is protected by the unique
Lyris system from web - bots, which can automatically cover up newsgroup mailing list addresses.

 Microsoft Resources
 Probably one of the first sites you ’ ll intuitively turn to is the Microsoft site (www.microsoft.com). That
makes sense, because it is full of information, including support, tips, hints, downloads, and newsgroups
(news://msnews.microsoft.com/microsoft.public.dotnet.languages.vb). To see more
newsgroups, navigate to http://communities2.microsoft.com/communities/newsgroups/
en-us/default.aspx .

 There are also a number of sites on MSDN that you may find to be very helpful, including the following:

 Visual Studio: http://msdn2.microsoft.com/en-us/vstudio/

 Classic MSDN Library: http://msdn.microsoft.com/library/

 MSDN Library(2005): http://msdn2.microsoft.com/en-us/library/

 MSDN Library(2008): http://msdn2.microsoft.com/en-us/library/
52f3sw5c(vs.90).aspx

 Microsoft Developer Network: http://msdn.microsoft.com

 Microsoft Visual Basic: http://msdn2.microsoft.com/en-us/vbasic/

 . NET Framework download site: http://msdn.microsoft.com/netframework/downloads/

❑

❑

❑

❑

❑

❑

❑

c25.indd 794c25.indd 794 4/1/08 6:45:37 PM4/1/08 6:45:37 PM

Chapter 25: Where to Now?

795

 Microsoft CodePlex: www.codeplex.com

 ASP .NET 2.0: www.asp.net

 Other Resources
 As mentioned earlier, there are hundreds of sites online that discuss both Visual Basic .NET and Visual
Basic 2008. These sites give everything from news on moving from Visual Basic .NET to Visual Basic
2008, to listings of up and coming conferences worldwide. Although you can do a search for Visual
Basic 2008, the number of sites returned can be extremely overwhelming. Let ’ s look at two of these
possible sites, one for the United Kingdom and another for the United States.

 In the United Kingdom, www.vbug.co.uk offers a wealth of information on Visual Basic. This is the web
site for the Visual Basic Users Group (VBUG), which you can join. Besides the web site, this group holds
meetings and an annual conference, plus provides a magazine. There is a listing of further links on the
web site, and you may want to use this to start your search over the Internet.

 In the United States you can get a journal, The Visual Studio Magazine , from a similar user group. Again,
this journal is backed by meetings and four yearly conferences along with a web site, www.devx.com/
vb/ , which can give e - mail updates. On the web site, you have access to a number of different areas both
in Visual Basic and other related and nonrelated Visual Studio areas.

 Of course, these are just two among the many out there to try to get you started. Remember, however,
that the Internet is not the only place to find information, so we will go on to look at some resources not
found on the Web.

 Offline Resources (Books)
 Wrox Press is committed to providing books that will help you develop your programming skills in the
direction that you want. We have a selection of tutorial - style books that build on the Visual Basic 2008
knowledge gained here. These will help you to specialize in particular areas. Here are the details of a
couple of key titles.

 Professional Visual Basic 2008
 (Wrox Press, ISBN 978 - 0 - 470 - 19136 - 1)

 This book is different than other Visual Basic books because it explains intermediate to advanced topics in
an easily understood and concise model. The comprehensive coverage provides detailed information on
how to use Visual Basic in the ever - expanding .NET world, using not only explanations of the topics, but
demonstrations of code. It effectively shows developers how to get tasks accomplished. This book is written
to show readers what they need to know to take their abilities to new levels. The book shows developers
exactly how to build everything from traditional console applications, ASP.NET applications, and XML web
services. Along with these various applications, the book deals with the issues of security, data access
(ADO.NET), and the latest Visual Studio .NET IDE, as well as introducing developers to everything they
need to know to fully understand the new .NET 3.5 Framework. Topics include the following:

 Visual Studio 2008

 Web services and .NET remoting

❑

❑

❑

❑

c25.indd 795c25.indd 795 4/1/08 6:45:37 PM4/1/08 6:45:37 PM

Chapter 25: Where to Now?

796

 Deploying applications

 Windows Workflow Foundation

 Windows Presentation Foundation

 Windows Communication Foundation.

 .NET 3.5 Framework

 Common Language Runtime

 Applying objects and components

 Namespaces

 Error handling and debugging

 XML with VB.NET

 ASP.NET advanced features and much more!

 Visual Basic 2008 Programmer ’ s Reference
 (Wrox Press, 978 - 0 - 470 - 18262 - 8)

 Visual Basic 2008 Programmer ’ s Reference is a language tutorial and a reference guide to the 2008 release of
Visual Basic. The tutorial provides basic material suitable for beginners but also includes in - depth
content for more advanced developers.

 The second part of the book is a reference that quickly allows programmers to locate information for
specific language features. The entries in these appendixes allow the reader to quickly review the details
of important programming, objects, properties, methods, and events.

 Visual Basic 2008 Programmer ’ s Reference covers the latest features of the 2008 release, including:

 Changes to variable declaration and initialization

 XLinq support for XML data types; query comprehensions for using SQL - like syntax to extract
data from arrays and other data structures

 Extension methods for adding new features to existing classes

 Nested subroutines and functions

 Anonymous subroutines and functions (lambda expressions)

 Nullable types

 Relaxed delegates

 Dynamic interfaces

 Dynamic identifiers

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c25.indd 796c25.indd 796 4/1/08 6:45:37 PM4/1/08 6:45:37 PM

 A
Exercise Solutions

 Chapter 1
 1. Create a Windows Application with a Textbox and Button control that will display

whatever is typed in the text box when the user clicks on the button.

 A. To display the text from a text box on a form when the user clicks the button, you add
code as highlighted here to the button ’ s Click event handler:

 Private Sub btnDisplay_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnDisplay.Click

 ‘Display the contents of the text box
 MessageBox.Show(txtInput.Text, “Exercise 1”)

 End Sub

 Chapter 3
 1. Create a Windows application with two button controls. In the Click event for the first

button, declare two Integer variables and set their values to any number that you like.
Perform any math operation on these variables and display the results in a message box.

 In the Click event for the second button, declare two String variables and set their
values to anything that you like. Perform a string concatenation on these variables and
display the results in a message box.

 A. The first part of this exercise requires you to declare two Integer variables and set their
values and then to perform a math operation of these variables and display the results in a
message box. The variables can be declared and set as:

 ‘Declare variables and set their values
 Dim intX As Integer = 5
 Dim intY As Integer = 10

bapp01.indd 797bapp01.indd 797 4/1/08 6:47:52 PM4/1/08 6:47:52 PM

Appendix A: Exercise Solutions

798

 To perform a math operation and display the results can be performed as:

 ‘Multiply the numbers and display the results
 MessageBox.Show(“The sum of “ & intX.ToString & “ * “ & _
 intY.ToString & “ = “ & intX * intY, “Exercise 1”)

 The second part of this exercise requires you to declare two String variables and set their
values and then to concatenate the variables and display the results in a message box. The
 String variables can be declared and set as:

 ‘Declare variables and set their values
 Dim strOne As String = “Visual Basic “
 Dim strTwo As String = “2008”

 To concatenate the variables and display the results, you could write code such as:

 ‘Concatenate the strings and display the results
 MessageBox.Show(strOne & strTwo, “Exercise 1”)

 2. Create a Windows application with a text box and a button control. In the button ’ s Click event,
display three message boxes. The first message box should display the length of the string that
was entered into the text box. The second message box should display the first half of the string,
and the third message box should display the last half of the string.

 A. This exercise requires you to display the length of the string entered into a text box and then to
display the first half of the string and the last half of the string. To display the length of the
string, you can use the Length property of the Text property of the text box as shown here:

 ‘Display the length of the string from the TextBox
 MessageBox.Show(“The length of the string in the TextBox is “ & _
 txtInput.Text.Length, “Exercise 2”)

 To display the first half of the string, you need to use the Substring method with a starting
index of 0 and for the length you use the length of the string divided by 2 as shown here. Don ’ t
forget that with the Option Strict option turned on, you must convert the results of a division
operation to an Integer data type for use in the SubString method:

 ‘Display the first half of the string from the TextBox
 MessageBox.Show(txtInput.Text.Substring(0, _
 CType(txtInput.Text.Length / 2, Integer)), “Exercise 2”)

 To display the last half of the string you again use the Substring method but this time you
simply give it a starting index of the length of the string divided by 2 as shown here:

 ‘Display the last half of the string from the TextBox
 MessageBox.Show(txtInput.Text.Substring(_
 CType(txtInput.Text.Length / 2, Integer)), “Exercise 2”)

bapp01.indd 798bapp01.indd 798 4/1/08 6:47:52 PM4/1/08 6:47:52 PM

Appendix A: Exercise Solutions

799

 Chapter 4
 1. Create a Windows Forms Application with a text box and a Button control. In the Click event of

the Button, extract the number from the text box and use a Select Case statement with the
numbers 1 through 5. In the Case statement for each number, display the number in a message
box. Ensure that you provide code to handle numbers that are not in the range of 1 through 5.

 A. This exercise requires you to create a Select Case statement to select and display the numbers
1 through 5 from the text box on the form. The code to do this is shown here:

 ‘Determine which number was entered
 Select Case CType(txtNumber.Text, Integer)
 Case 1
 MessageBox.Show(“The number 1 was entered”, “Exercise 1”)
 Case 2
 MessageBox.Show(“The number 2 was entered”, “Exercise 1”)
 Case 3
 MessageBox.Show(“The number 3 was entered”, “Exercise 1”)
 Case 4
 MessageBox.Show(“The number 4 was entered”, “Exercise 1”)
 Case 5
 MessageBox.Show(“The number 5 was entered”, “Exercise 1”)

 To handle numbers other than 1 through 5 you need to provide a Case Else statement as
shown here:

 Case Else
 MessageBox.Show(“A number other that 1 - 5 was entered”, _
 “Exercise 1”)
 End Select

 2. Create a Windows Forms Application that contains a ListBox control and a Button control.
In the Click event for the button, create a For . . . Next loop that will count from 1 to 10 and
display the results in the list box. Then create another For . . . Next loop that will count
backwards from 10 to 1 and also display those results in the list box.

 A. In this exercise, you are tasked with creating two For . . . Next loops. The first loop should count
from 1 to 10 and display the numbers in a list box. The code to execute this loop is shown here:

 ‘Count from 1 to 10
 For intCount As Integer = 1 To 10
 lstData.Items.Add(intCount)
 Next

 The second For ... Next loop should count backward from 10 to 1 and display those
numbers in the same list box. The code to execute this loop is shown here:

 ‘Count backwards from 10 to 1
 For intCount As Integer = 10 To 1 Step -1
 lstData.Items.Add(intCount)
 Next

bapp01.indd 799bapp01.indd 799 4/1/08 6:47:53 PM4/1/08 6:47:53 PM

Appendix A: Exercise Solutions

800

 Chapter 5
 1. Create a Windows Forms Application that contains three buttons. Add an enumeration of three

names to your code. For the Click event for each button, display a message box containing a
member name and value from the enumeration.

 A. This exercise requires you to create an enumeration of three names and to display the member
string value as well as the numeric value when a button was clicked. To create an enumeration
of names you would use code similar to this:

Public Class Form1

 Private Enum Names As Integer
 Jeannie = 1
 Delinda = 2
 Harry = 3
 End Enum

 In order to display the member names and values from the enumeration, you would use code
like this:

 Private Sub btnName1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnName1.Click

 MessageBox.Show(Names.Jeannie.ToString & “ = “ & Names.Jeannie, _
 “Exercise 1”)
 End Sub

 Private Sub btnName2_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnName2.Click

 MessageBox.Show(Names.Delinda.ToString & “ = “ & Names.Delinda, _
 “Exercise 1”)
 End Sub

 Private Sub btnName3_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnName3.Click

 MessageBox.Show(Names.Harry.ToString & “ = “ & Names.Harry, _
 “Exercise 1”)
 End Sub

 2. Create a Windows Forms Application that contains a TextBox control and a Button control. At
the form level, create a names array initialized with a single name. In the Click event for the
button control, add the code to redimension the array by one element while preserving the
existing data, add the new name from the text box to the array, and display the last name added
to the array in a message box.

 Hint: To determine the upper boundary of the array, use the GetUpperBound(0) method.

 A. You are tasked with creating an application that would redimension an array, preserving its
current elements, add a new element to the array, and display the new element in a message
box. To create and initialize an array at the form level with just one name, you would code
like this:

bapp01.indd 800bapp01.indd 800 4/1/08 6:47:53 PM4/1/08 6:47:53 PM

Appendix A: Exercise Solutions

801

Public Class Form1

 Private strNames() As String = {“Jeannie”}

 To redimension the array preserving the existing data you would use code like this. Notice that
you use the GetUpperBound(0) method to get the upper boundary of the array and then add 1
to it to increase the array by one element:

 ReDim Preserve strNames(strNames.GetUpperBound(0) + 1)

 To add the new name from the text box you would use code like this. Again you are using
 GetUpperBound(0) to determine the upper boundary of the array:

 strNames(strNames.GetUpperBound(0)) = txtName.Text

 Finally, to display the last name added to the array in a message box you would use code
like this:

 MessageBox.Show(strNames(strNames.GetUpperBound(0)), “Exercise 2”)

 Chapter 6
 1. Add code to the Credit Card application to display a message box containing the user ’ s state

selection when they select a state in the State combo box.

 Hint: to access a control ’ s default event handler, double - click the control in the Forms Designer.

 A. This exercise requires you to create an event handler when the user makes a selection in the
State combo box using the default event handler. To create this event handler, you should have
double - clicked on the cboState control in the Forms Designer to create the SelectionChanged
event handler.

 The code that you added to this event handler should resemble the highlighted code shown
following. Here you display a simple message box that displays the text Selected state: and
then the selected state contained in the combo box ’ s SelectedItem property.

 Private Sub cboState_SelectionChanged(ByVal sender As System.Object, _
 ByVal e As System.Windows.Controls.SelectionChangedEventArgs) _
 Handles cboState.SelectionChanged

 MessageBox.Show(“Selected state: “ & cboState.SelectedItem)

 End Sub

 Chapter 7
 1. Create a Windows Forms application with two buttons. Add code to the MouseUp event for the

first button to display a MessageBox with a message that the event has fired. Add code to the
 LostFocus event for the first button to also display a MessageBox with a message that the
button has lost focus.

bapp01.indd 801bapp01.indd 801 4/1/08 6:47:53 PM4/1/08 6:47:53 PM

Appendix A: Exercise Solutions

802

 A. For this exercise, you are required to create a Windows Forms application with two button
controls. You were to wire up the MouseUp and LostFocus events for the first button. The code
for the MouseUp event should look similar to this:

 Private Sub btnMouseEvents_MouseUp(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.MouseEventArgs) _
 Handles btnMouseEvents.MouseUp

 ‘Display a MessageBox
 MessageBox.Show(“The MouseUp event has been fired.”, “Exercise 1”)
 End Sub

 And the code for the LostFocus event should look similar to this:

 Private Sub btnMouseEvents_LostFocus(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnMouseEvents.LostFocus

 ‘Display a MessageBox
 MessageBox.Show(“Mouse Events button has lost focus.”, “Exercise 1”)
 End Sub

 When you ran this application, you may have noticed some unexpected behavior when you
clicked the first button. As soon as you let the mouse button up, you saw the message box
indicating that the button had lost focus, and then immediately after that, you saw the message
box indicating that the MouseUp event had been fired.

 What has actually happened here is that the code in the MouseUp event was fired, but the code
in that event causes a message box to be displayed. In the course of seeing that code, Visual
Basic 2008 has determined that the Button control will lose focus and has fired the LostFocus
event, which displays the message box in that event handler first.

 2. Create a Windows Forms application with a toolbar and status bar. Right - click the ToolStrip
control and select the Insert Standard Items menu item from the context menu to have the
standard buttons added to the control. For the Click event for each of the ToolStripButton
controls, display a message in the status bar indicating which button was clicked.

 A. This exercise tasks you with creating an application that has a toolbar and status bar. You were
to insert the standard buttons for the toolbar, create event handlers for the Click event of each
button, and display a message in the status bar when any of the buttons was clicked. Here is the
code for the event handlers:

 Private Sub NewToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles NewToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The New button was clicked.”
 End Sub

 Private Sub OpenToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles OpenToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Open button was clicked.”

bapp01.indd 802bapp01.indd 802 4/1/08 6:47:54 PM4/1/08 6:47:54 PM

Appendix A: Exercise Solutions

803

 End Sub

 Private Sub SaveToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SaveToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Save button was clicked.”
 End Sub

 Private Sub PrintToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PrintToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Print button was clicked.”
 End Sub

 Private Sub CutToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles CutToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Cut button was clicked.”
 End Sub

 Private Sub CopyToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles CopyToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Copy button was clicked.”
 End Sub

 Private Sub PasteToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles PasteToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Paste button was clicked.”
 End Sub

 Private Sub HelpToolStripButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles HelpToolStripButton.Click

 ‘Update the status bar
 sslStatus.Text = “The Help button was clicked.”
 End Sub

 Chapter 8
 1. Create a simple Windows application with a TextBox control and two Button controls. Set the

buttons to open a file and to save a file. Use the OpenFileDialog class (not the control) and the
 SaveFileDialog class to open and save your files.

 Hint: To use the corresponding classes for the controls use the following statements:

 Dim objOpenFileDialog As New OpenFileDialog
 Dim objSaveFileDialog As New SaveFileDialog

bapp01.indd 803bapp01.indd 803 4/1/08 6:47:54 PM4/1/08 6:47:54 PM

Appendix A: Exercise Solutions

804

 A. The exercise requires you to create a simple application that uses the OpenFileDialog and
 SaveFileDialog classes.

 The code for the Open button starts by declaring an object using the OpenFileDialog class:

 Private Sub btnOpen_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnOpen.Click

 ‘Declare a OpenFileDialog object
 Dim objOpenFileDialog As New OpenFileDialog

 The bulk of the code to display the contents of the file in your text box remains the same as the
code in the Dialogs project but uses the objOpenFileDialog object versus the OpenFileDialog
control:

 ‘Set the Open dialog properties
 With objOpenFileDialog
 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”
 .FilterIndex = 1
 .Title = “Exercise 1 Open File Dialog”
 End With

 ‘Show the Open dialog and if the user clicks the Open button,
 ‘load the file
 If objOpenFileDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 Try
 ‘Save the file path and name
 strFileName = objOpenFileDialog.FileName

 Dim fileContents As String
 fileContents = My.Computer.FileSystem.ReadAllText(strFileName)

 ‘Display the file contents in the text box
 txtFile.Text = fileContents
 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End If

 Since you are using an object, you need to perform the necessary cleanup to have the object you
created release its resources. You do this by calling the Dispose method on your object, and
then you release your reference to the object by setting it to Nothing :

 ‘Clean up
 objOpenFileDialog.Dispose()
 objOpenFileDialog = Nothing

 End Sub

bapp01.indd 804bapp01.indd 804 4/1/08 6:47:54 PM4/1/08 6:47:54 PM

Appendix A: Exercise Solutions

805

 The code for the Save button starts by declaring an object using the SaveFileDialog class, and
the rest of the code is pretty much the same as the code in the Dialogs project. The code at the
end of this procedure also performs the necessary cleanup of your object:

 Private Sub btnSave_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click

 ‘Declare a SaveFileDialog object
 Dim objSaveFileDialog As New SaveFileDialog

 ‘Set the Save dialog properties
 With objSaveFileDialog
 .DefaultExt = “txt”
 .FileName = strFileName
 .Filter = “Text Documents (*.txt)|*.txt|All Files (*.*)|*.*”
 .FilterIndex = 1
 .OverwritePrompt = True
 .Title = “Exercise 1 Save File Dialog”
 End With

 ‘Show the Save dialog and if the user clicks the Save button,
 ‘save the file
 If objSaveFileDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 Try
 ‘Save the file path and name
 strFileName = objSaveFileDialog.FileName

 My.Computer.FileSystem.WriteAllText(strFileName, txtFile.Text, _
 False)
 Catch ex As Exception
 MessageBox.Show(ex.Message, My.Application.Info.Title, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End If

 ‘Clean up
 objSaveFileDialog.Dispose()
 objSaveFileDialog = Nothing

 End Sub

 2. Create a simple Windows application with a Label control and a Button control. Set the button
to display the Browse For Folder dialog box with the Make New Folder button displayed. Use
My Documents as the root folder at which the dialog starts browsing. Use the
 FolderBrowserDialog class (not the control) and display the selected folder in the label on
your form.

 A. This exercise requires you to display the Browse For Folder dialog box with the Make New
Folder button displayed and to set My Documents as the root folder for the browse operation.
You start your procedure off by declaring an object using the FolderBrowserDialog class:

 Private Sub btnBrowse_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnBrowse.Click

 ‘Declare a FolderBrowserDialog object
 Dim objFolderBrowserDialog As New FolderBrowserDialog

bapp01.indd 805bapp01.indd 805 4/1/08 6:47:55 PM4/1/08 6:47:55 PM

Appendix A: Exercise Solutions

806

 Next, you set the various properties of your objFolderBrowserDialog object to customize the
Browse For Folder dialog box. Note that you need to use the Personal constant to have the
dialog start browsing at the My Documents root folder:

 ‘Set the Folder Browser dialog properties
 With objFolderBrowserDialog
 .Description = “Select your favorite folder:”
 .RootFolder = Environment.SpecialFolder.MyDocuments
 .ShowNewFolderButton = True
 End With

 You then display the dialog box, and when the user clicks the OK button in the dialog box, you
display the folder chosen in the label control on your form:

 ‘Show the Folder Browser dialog and if the user clicks the
 ‘OK button, display the selected folder
 If objFolderBrowserDialog.ShowDialog = Windows.Forms.DialogResult.OK Then
 lblFolder.Text = objFolderBrowserDialog.SelectedPath
 End If

 You end this procedure by performing the necessary cleanup of your object:

 ‘Clean up
 objFolderBrowserDialog.Dispose()
 objFolderBrowserDialog = Nothing

 End Sub

 Chapter 9
 1. To give your Menus project the standard look of a typical Windows application, add a

StatusStrip control to the form and add the necessary code to display a message when text is cut,
copied, or pasted.

 A. This exercise asks you to complete your Menus application by adding a StatusStrip control and
writing the necessary code to display a message when text was cut, copied, and pasted in your
text boxes. If you followed the same basic procedures to add a StatusStrip control as you did in
the Windows Forms Text Editor project in Chapter 7 , you will have added the control and added
one panel named sspStatus . You will also have added the StatusText property in code to set
the text in the label on the StatusStrip control.

 All that is required at this point is to add code to the procedures that actually perform the cut,
copy, and paste operations. Starting with the CutToolStripMenuItem_Click procedure, you
should have added a single line of code similar to the following:

 Private Sub CutToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CutToolStripMenuItem.Click

 ‘Copy the text to the clipboard and clear the field
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Cut()

bapp01.indd 806bapp01.indd 806 4/1/08 6:47:55 PM4/1/08 6:47:55 PM

Appendix A: Exercise Solutions

807

 End If

 ‘Display a message in the status bar
 StatusText = “Text Cut”

 End Sub

 And the code for the CopyToolStripMenuItem_Click procedure should be similar to this:

 Private Sub CopyToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles CopyToolStripMenuItem.Click

 ‘Copy the text to the clipboard
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Copy()
 End If

 ‘Display a message in the status bar
 StatusText = “Text Copied”

 End Sub

 And finally, the code for the PasteToolStripMenuItem_Click procedure should be
similar to this:

 Private Sub PasteToolStripMenuItem_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles PasteToolStripMenuItem.Click

 ‘Copy the text from the clipboard to the text box
 If TypeOf Me.ActiveControl Is TextBox Then
 CType(Me.ActiveControl, TextBox).Paste()
 End If

 ‘Display a message in the status bar
 StatusText = “Text Pasted”

 End Sub

 Chapter 10
 1. Using your Debugging project, add a Try . . . Catch block to the ListCustomer procedure to

handle an Exception error. In the Catch block, add code to display a message box with the
error message.

 A. The Try . . . Catch block that you add is very simple, as shown here:

 Private Sub ListCusto mer(ByVal customerToList As Customer)

 Try
 lstData.Items.Add(customerToList.CustomerID & _
 “ - “ & customerToList.CustomerName)
 Catch ExceptionErr As Exception
 MessageBox.Show(ExceptionErr.Message, “Debugging”, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try

 End Sub

bapp01.indd 807bapp01.indd 807 4/1/08 6:47:55 PM4/1/08 6:47:55 PM

Appendix A: Exercise Solutions

808

 2. The Try . . . Catch block that you added in Exercise 1 should never throw an error. However,
you can throw your own error so that you can test your code in the Catch block. Add a Throw
statement as the first line of code in the Try block. Consult the online help for the syntax of the
 Throw statement.

 A. Your modified Try block should look similar to the following code. When you run your project
and click the Start button, you should see a message box with the message that you added to
your Throw statement.

 Try
 Throw New Exception(“Customer object not initialized.”)
 lstData.Items.Add(customerToList.CustomerID & _
 “ - “ & customerToList.CustomerName)
 Catch ExceptionErr As Exception
 MessageBox.Show(ExceptionErr.Message, “Debugging”, _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try

 Chapter 11
 1. Modify your Car class to implement the IDisposable interface. In the Main procedure in

Module1, add code to dispose of the objCar object after calling the
 DisplaySportsCarDetails procedure.

 A. After you add the Implements statement highlighted as follows and press Enter, the rest of the
following code shown it is automatically inserted by Visual Studio 2008 to handle disposing of
your class.

Namespace CarPerformance
 Public Class Car

 Implements IDisposable

.

.

.
 Private disposedValue As Boolean = False ‘ To detect redundant calls

 ‘ IDisposable
 Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ‘ TODO: free other state (managed objects).
 End If

 ‘ TODO: free your own state (unmanaged objects).
 ‘ TODO: set large fields to null.
 End If
 Me.disposedValue = True
 End Sub

#Region “ IDisposable Support “
‘ This code added by Visual Basic to correctly implement the disposable pattern.

bapp01.indd 808bapp01.indd 808 4/1/08 6:47:56 PM4/1/08 6:47:56 PM

Appendix A: Exercise Solutions

809

 Public Sub Dispose() Implements IDisposable.Dispose
‘ Do not change this code. Put cleanup code in Dispose(ByVal disposing As
‘ Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
#End Region

 End Class
End Namespace

 The code modifications needed in the Main procedure in Module1 are shown in the highlighted
section that follows. Even though you did not implement the IDisposable interface in the
 SportsCar class, it is available to this class through inheritance. Remember that the SportsCar
class inherits from the Car class; thus, all of the methods available in the Car class are available
to the SportsCar class.

 ‘Display the details of the car
 DisplayCarDetails(objCar)
 DisplaySportsCarDetails(objCar)

 ‘Dispose of the object
 objCar.Dispose()
 objCar = Nothing

 ‘Wait for input from the user
 Console.ReadLine()

 2. Modify the code in the Main procedure in Module1 to encapsulate the declaration and usage of
the SportsCar class in a Using . . . End Using statement. Remember that the Using . . . End
Using statement automatically handles disposal of objects that implement the IDisposable
interface.

 A. This exercise requires you to encapsulate the declaration and usage of the SportsCar class in a
 Using . . . End Using statement. Keeping in mind that the Using . . . End Using statement
automatically handles disposal of objects that implement the IDisposable interface; the code
can be implemented as highlighted here:

 Sub Main()

 Using objCar As New SportsCar

 ‘Set the horsepower and weight(kg)
 objCar.HorsePower = 240
 objCar.Weight = 1085

 ‘Display the details of the car
 DisplayCarDetails(objCar)
 DisplaySportsCarDetails(objCar)

 End Using

 ‘Wait for input from the user
 Console.ReadLine()
 End Sub

bapp01.indd 809bapp01.indd 809 4/1/08 6:47:56 PM4/1/08 6:47:56 PM

Appendix A: Exercise Solutions

810

 Chapter 12
 1. Modify the Favorites Viewer project to select the first favorite in the ListView control

automatically after it has been loaded so that the LinkLabel control displays the first item when
the form is displayed.

 You also need to modify the Load event in Form1, and ensure that the ListView control contains
one or more items before proceeding. You do this by querying the Count property of the Items
property of the ListView control. Then you select the first item in the ListView control using the
 lstFavorites.Items(0).Selected property and call the Click event for the ListBox control
to update the LinkLabel control.

 A. You should have added code similar to this at the end of the Viewer_Load event after the
 Try...Catch block. First you use the Count property of the Items property to ensure that one
or more items exist in the list view control before proceeding. Then you select the first item in
the list view control by setting the Selected property to True for the first item in the Items
collection. Finally, you call the Click event of the list view control, passing it a value of
 Nothing for the Object and System.EventArgs parameters.

 ‘If one or more items exist...
 If lvwFavorites.Items.Count > 1 Then
 ‘Select the first item
 lvwFavorites.Items(0).Selected = True
 lvwFavorites_Click(Nothing, Nothing)
 End If

 Chapter 13
 1. Modify the Favorites Viewer project to use the compiled InternetFavorites.dll instead of

the Internet Favorites project.

 A. Modifying the Favorites Viewer project requires two steps. First, you right - click the Internet
Favorites project in the Solution Explorer and choose Remove from the context menu. Then you
right - click the Favorites Viewer project in the Solution Explorer and choose Add Reference from
the context menu. You scroll down the list of components in the .NET tab, select Internet
Favorites, and then click OK. Then you run your project as normal with no code changes
required.

 Chapter 14
 1. Add a property to the MyNamespace control called SuppressMsgBox , which contains a

 Boolean value. Add code to the Click event handlers for each of the buttons on this control to
show the message box when the SuppressMsgBox property is False and to suppress the
message box when this property is True .

 A. You start by adding a Private Boolean variable to hold the value that determines whether a
message box is shown. Since this is a Boolean variable, you also provide a default value of True
so that when the control is dragged onto a form, the SuppressMsgBox property will have a
default value set.

bapp01.indd 810bapp01.indd 810 4/1/08 6:47:57 PM4/1/08 6:47:57 PM

Appendix A: Exercise Solutions

811

Public Class MyNamespace
 ‘Private members
 Private strApplicationName As String = String.Empty

 Private blnSuppressMsgBox As Boolean = True

 Next, you add a Public property to get and set the private variable blnSuppressMsgBox . This
property will be exposed by the MyNamespace control in the Properties Window.

 Public Property SuppressMsgBox() As Boolean
 Get
 Return blnSuppressMsgBox
 End Get
 Set(ByVal value As Boolean)
 blnSuppressMsgBox = value
 End Set
 End Property

 Now you add code to each of the button to show the message box if the property is not set
to True .

 Private Sub btnApplicationCopyright_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnApplicationCopyright.Click

 RaiseEvent ApplicationCopyrightChanged(_
 My.Application.Info.Copyright)

 If Not blnSuppressMsgBox Then

 MessageBox.Show(My.Application.Info.Copyright, _
 strApplicationName)

 End If

 End Sub

 Private Sub btnScreenBounds_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenBounds.Click

 RaiseEvent ScreenBoundsChanged(My.Computer.Screen.Bounds)

 If Not blnSuppressMsgBox Then

 MessageBox.Show(My.Computer.Screen.Bounds.ToString, _
 strApplicationName)

 End If

 End Sub

 Private Sub btnScreenWorkingArea_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnScreenWorkingArea.Click

 RaiseEvent ScreenWorkingAreaChanged(My.Computer.Screen.WorkingArea)

 If Not blnSuppressMsgBox Then

 MessageBox.Show(My.Computer.Screen.WorkingArea.ToString, _
 strApplicationName)

 End If

 End Sub

bapp01.indd 811bapp01.indd 811 4/1/08 6:47:57 PM4/1/08 6:47:57 PM

Appendix A: Exercise Solutions

812

 Next, you need to rebuild the control so that it can pick up the code changes in order to display
the SuppressMsgBox property in the Properties window. After that, you switch to the Controls
project and can select a True/False value for the SuppressMsgBox property in the Properties
window.

 Chapter 16
 1. Create a new query in your Northwind database to select FirstName, LastName, and Title from

the Employees table. Order the results by the LastName column and save your query as
 EmployeeQuery . Then create a Windows application with a DataGridView control that uses the
EmployeeQuery.

 A. The SQL statements for your EmployeeQuery should look like this:

SELECT Employees.FirstName, Employees.LastName, Employees.Title
FROM Employees
ORDER BY Employees.LastName;

 You should have followed most of the steps in the “ Binding Data to a DataGridView Control ”
Try It Out exercise and used the EmployeeQuery above in the Choose Your Database Objects
screen of the Data Source Configuration Wizard. Your results should look similar to those shown
in Figure A - 1 .

 2. Using the query created in Exercise 1, create a new Windows application that uses the
BindingNavigator control and bind the fields from your query to text boxes on your form.

 A. To create this application, you should have followed most of the steps in the “ Binding Data to
TextBox Controls ” Try It Out exercise. Your completed form should look similar to the one
shown in Figure A - 2 , and you should be able to navigate through the records in the database.

Figure A-1

bapp01.indd 812bapp01.indd 812 4/1/08 6:47:57 PM4/1/08 6:47:57 PM

Appendix A: Exercise Solutions

813

 Chapter 17
 1. Create a Windows Forms application that will display data to the user from the Authors table in

the Pubs database. Use a DataGridView object to display the data. Use the simple select
statement here to get the data:

Select * From Authors

 A. To complete this exercise, use a DataGridView object to display the data from the Pubs database.
First, you create a Windows application and add two references, one to the System.Data
namespace and one to the System.XML namespace. Next, you need to add a DataGridView
control to your form. That is all you need to do before adding the code listed here:

Imports System.Data
Imports System.Data.SqlClient

Public Class Form1

 Dim strConnectionString As String = “server=bnewsome;” & _
 “database=pubs;uid=sa;pwd=!p@ssw0rd!”
 Dim cnnAuthors As New SqlConnection(strConnectionString)
 Dim daAuthors As New SqlDataAdapter
 Dim dsAuthors As New DataSet

 Private Sub Form1_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 daAuthors.SelectCommand = New SqlCommand
 daAuthors.SelectCommand.Connection = cnnAuthors
 daAuthors.SelectCommand.CommandText = “Select * From Authors”
 daAuthors.SelectCommand.CommandType = CommandType.Text

 cnnAuthors.Open()

 daAuthors.Fill(dsAuthors, “authors”)

 cnnAuthors.Close()

 dgvAuthors.AutoGenerateColumns = True
 dgvAuthors.DataSource = dsAuthors

Figure A-2

bapp01.indd 813bapp01.indd 813 4/1/08 6:47:59 PM4/1/08 6:47:59 PM

Appendix A: Exercise Solutions

814

 dgvAuthors.DataMember = “authors”

 daAuthors = Nothing
 cnnAuthors = Nothing
 End Sub

End Class

 2. Looking at the DataGridView, it is not very user - friendly. Update the column headings to make
more sense. If you know SQL, you can give each column an alias. The current column header
names are au_id , au_lname , au_fname , phone , address , city , state , zip , and contract .
The solution to this exercise will give each column an alias in SQL.

 A. To complete this exercise, use a DataGridView object to display the data from the Pubs database.
First, you create a Windows application and add two references, one to the System.Data
namespace and one to the System.XML namespace. Next, you need to add a DataGridView
control to your form. Now you can add the code listed here. You will notice the difference from
the first solution is just the SQL.

Imports System.Data
Imports System.Data.SqlClient

Public Class Form1

 Dim strConnectionString As String = “server=bnewsome;” & _
 “database=pubs;uid=sa;pwd=!p@ssw0rd!”
 Dim cnnAuthors As New SqlConnection(strConnectionString)
 Dim daAuthors As New SqlDataAdapter
 Dim dsAuthors As New DataSet

 Private Sub Form1_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 Dim strSQL As String
 strSQL = “Select au_id as ID, au_lname as [Last Name], “ & _
 “au_fname as [First Name], Phone, Address, City, State, “ & _
 “Zip, Contract From Authors”
 daAuthors.SelectCommand = New SqlCommand
 daAuthors.SelectCommand.Connection = cnnAuthors
 daAuthors.SelectCommand.CommandText = strSQL
 daAuthors.SelectCommand.CommandType = CommandType.Text

 cnnAuthors.Open()

 daAuthors.Fill(dsAuthors, “authors”)

 cnnAuthors.Close()

 dgvAuthors.AutoGenerateColumns = True
 dgvAuthors.DataSource = dsAuthors
 dgvAuthors.DataMember = “authors”

 daAuthors = Nothing
 cnnAuthors = Nothing
 End Sub

End Class

bapp01.indd 814bapp01.indd 814 4/1/08 6:48:01 PM4/1/08 6:48:01 PM

Appendix A: Exercise Solutions

815

 3. Create a Windows Forms Application. On form1, add a ListBox named ListBox1. On form load,
create a dictionary object with key/value pairs of names and states of your friends. Now, write a
query to return all of your friends in a certain state. Take your result and bind it to the ListBox
using a for each loop. You may need to add a reference to System.Data.Linq .

 A. To complete this exercise, you need to bind a ListBox to a result from a LINQ to Object query.
The query is basically the same as in the try it out. On the form, add a ListBox named ListBox1.

 First, create a dictionary object of your friends like the one here in your form load sub.

 Dim objFriends As New Dictionary(Of String, String)
 objFriends.Add(“Bryan Newsome”, “CA”)
 objFriends.Add(“Jennifer Newsome”, “CA”)
 objFriends.Add(“Latelyn Newsome”, “CA”)
 objFriends.Add(“Chuck Owens”, “NC”)
 objFriends.Add(“Tim Moris”, “NC”)
 objFriends.Add(“Valan Burgess”, “NC”)
 objFriends.Add(“Holly Keeler”, “NC”)
 objFriends.Add(“Bill Money”, “CA”)
 objFriends.Add(“Bernie Perry”, “CA”)
 objFriends.Add(“Richard Clark”, “CA”)
 objFriends.Add(“Naresh Clegg”, “CA”)

 Next, write the LINQ statement to filter the results based on who lives in CA.

 Dim authors = From dictKey In objFriends _
 Where dictKey.Value.ToString = “NC”

 Finally, bind the results to the ListBox by addng each item returned.

 For Each selectedItem In authors
 ListBox1.Items.Add(selectedItem)
 Next

 Chapter 18
 1. Create a new web site, name it ExerciseOne, and create it as a local site using the file system and

ASP.NET Development Server. Run the web site to make sure it is running in ASP.NET
Development Server.

 A. When you create your site and run it using F5, you should notice the ASP.NET Development
Server start up and then stay in the task bar. When you double - click the icon in the taskbar,
you should see a dialog box similar to Figure A - 3 .

bapp01.indd 815bapp01.indd 815 4/1/08 6:48:02 PM4/1/08 6:48:02 PM

Appendix A: Exercise Solutions

816

Figure A-4

 2. Create a new web site, name it ExerciseTwo , and create it as a local IIS. Run the Web site to
make sure it is not running in ASP.NET Development Server. (You will need IIS on your local
machine to complete this exercise.) Note that Vista requires you to run Visual Studio as an
administrator for this to work.

 A. To create a site on your local IIS, you must run as administrator first. Then, you have to click the
Create New Virtual Directory icon or the icon to create a new site. It is typical to use virtual
directories on local IIS sites. You would see Figure A - 4 when you click Create New Virtual
Directory and enter the name and location.

Figure A-3

bapp01.indd 816bapp01.indd 816 4/1/08 6:48:02 PM4/1/08 6:48:02 PM

Appendix A: Exercise Solutions

817

 Your web site location in the New Web Site dialog box should look like Figure A - 5 .

Figure A-5

 Chapter 19
 1. Change the font to appear red for an asp:label control using the Main.skin page (created in

TheClub site already) for every page under the Members directory. To do this, you can change
the theme attribute on every page or change the web.config file for the directory. For this
exercise, change the web.config file. You have not seen the web.config file syntax for this,
so I will show it to you. Add the change to the web.config file that will apply the theme to the
Web Forms under the Members folder. Use the code snippet here as a guide:

 < configuration >
 < system.web >

 < pages theme=”MainTheme” / >

 < authorization >
 < deny users=”?” / >
 < /authorization >
 < /system.web >
 < /configuration >

 A. Your web.config file in the Members folder should look like this:

 < configuration >
 < system.web >
 < pages theme=”MainTheme” / >
 < authorization >
 < deny users=”?” / >
 < /authorization >
 < /system.web >
 < /configuration >

bapp01.indd 817bapp01.indd 817 4/1/08 6:48:05 PM4/1/08 6:48:05 PM

Appendix A: Exercise Solutions

818

 The Main.skin file should look like this (only one line of code in file):

 < asp:Label runat=”server” ForeColor=”Red” / >

 2. The Login controls you use in this chapter are fully customizable. In this exercise, you will
make some a change to the look of the login control on the Login.aspx page. Change the font
color of the Login control to red by adding the tag and font color properties to the Main.skin
file. Point the web.config file under the root folder to use the MainTheme . (You did this in
Exercise 1 under a different directory.)

 A. Your web.config file in the Root folder should look like this (although you will find some
additional items and comments):

 < ?xml version=”1.0” encoding=”utf-8”? >
 < configuration >
 < system.web >
 < pages theme=”MainTheme” / >
 < roleManager enabled=”true” / >
 < authentication mode=”Forms” / >
 < /system.web >
 < /configuration >

 The Main.skin file should look like this:

 < asp:Label runat=”server” ForeColor=”Red” / >
 < asp:Login runat=”server” ForeColor=”Red” / >

 Chapter 20
 1. Create an XML document that describes a table lamp. You can describe the lamp using a number

of different attributes. You should describe items such as shade, bulbs and base. You can validate
your XML at a site such as www.w3schools.com/dom/dom_validate.asp that offers a free
validator.

 A. For this exercise, you are required to create an XML document that described a table lamp. There
are a number of ways to correctly describe a lamp. You could have used child elements and no
attributes. Or, you could have used different language to describe a lamp. Either way, you
should have used the same case and closed your elements.

 You can validate your XML at a site like http://www.w3schools.com/dom/dom_validate
.asp that offers a free validator. The code for the document should look similar to this:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < lamps xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >
 < lamp type=”table” desing=”modern” price=”269” >
 < base shape=”square” color=”black” height_inches=”24” > < /base >
 < bulbs max_watts=”60” number_of_bulbs=”3” type=”soft white” > < /bulbs >
 < shade color=”white” shape=”oval” size_inches=”18 X 8” > < /shade >
 < /lamp >
 < /lamps >

bapp01.indd 818bapp01.indd 818 4/1/08 6:48:06 PM4/1/08 6:48:06 PM

Appendix A: Exercise Solutions

819

 2. Expand on what you learned in the chapter by investigating how to place comments in an XML
file. As a beginner, one of the most important tasks you can learn is how to research and find
answers to questions. For this exercise, search the Web using your favorite search engine and try
to find the syntax for inserting comments in XML Once you find the answer, test the comment in
the same XML validator you used to test Exercise 1.

 A. For this exercise, you have to find the syntax for a valid XML comment. The comment is like a
HTML comment and starts with < ! - - and ends with - - > . Your comment should look similar to
this:

 < !-- This is a valid XML comment -- >

 Chapter 21
 1. Create a web service that returns information about the web server. Add three methods that

return the web server date, web server time, and web server name, respectively. Run the project
to test the three methods.

 A. For this exercise, you are required to create a web service with three methods. The three
methods should have individually returned the server date, time, and name. First, you had to
create a new web site project and then add the web service methods. The code for the methods
should look similar to these:

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

 < WebService(Namespace := “http://tempuri.org/”) > _
 < WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1) > _
Public Class WebService
 Inherits System.Web.Services.WebService

 Public Sub WebService

 End Sub

 < WebMethod() > _
 Public Function ServerName() As String
 Return My.Computer.Name
 End Function

 < WebMethod() > _
 Public Function ServerDate() As Date
 Return Now().Date
 End Function

 < WebMethod() > _
 Public Function ServerTime() As String
 Return Now().ToShortTimeString
 End Function

End Class

bapp01.indd 819bapp01.indd 819 4/1/08 6:48:07 PM4/1/08 6:48:07 PM

Appendix A: Exercise Solutions

820

 When you run the web service, you may be asked to add a web.config file for debugging. You
could choose either to add the file or to continue without debugging. When you tested each
method, you should have seen the date, time, and name of your server.

 2. Add more math functions to the WCF service you created in the last Try It Out. Create methods
to add two numbers, subtract two numbers, multiply two numbers, and divide two numbers. To
make this work, you have to add code to two places.

 A. To complete exercise 2, you need to add code to the interface and class. The new code should be
similar to this:

 < ServiceContract() > _
Public Interface ISquareRoot
 < OperationContract() > _
 < WebGet() > _
 Function GetSquareRoot(ByVal dblNumber As Double) As Double
 Function Add(ByVal dblNumber1 As Double, ByVal dblNumber2 As Double) _
As Double
 Function Subtract(ByVal dblNumber1 As Double, ByVal dblNumber2 As Double) _
As Double
 Function Multiply(ByVal dblNumber1 As Double, ByVal dblNumber2 As Double) _
As Double
 Function Divide(ByVal dblNumber1 As Double, ByVal dblNumber2 As Double) _
As Double
End Interface

Public Class SquareRoot
 Implements ISquareRoot
 Public Function GetSquareRoot(ByVal dblNumber As Double) As Double _
Implements ISquareRoot.GetSquareRoot
 Return Math.Sqrt(dblNumber)
 End Function
Public Function Add(ByVal dblNumber1 As Double, ByVal dblNumber2 As Double) _
As Double Implements ISquareRoot.Add
 Return dblNumber1 + dblNumber2
 End Function
 Public Function Subtract(ByVal dblNumber1 As Double, ByVal dblNumber2 _
As Double) As Double Implements ISquareRoot.Subtract
 Return dblNumber1 - dblNumber2
 End Function
 Public Function Multiply(ByVal dblNumber1 As Double, ByVal dblNumber2 _
As Double) As Double Implements ISquareRoot.Multiply
 Return dblNumber1 * dblNumber2
 End Function
 Public Function Divide(ByVal dblNumber1 As Double, ByVal dblNumber2 _
As Double) As Double Implements ISquareRoot.Divide
 Return dblNumber1 / dblNumber2
 End Function
End Class

bapp01.indd 820bapp01.indd 820 4/1/08 6:48:07 PM4/1/08 6:48:07 PM

Appendix A: Exercise Solutions

821

 Chapter 22
 1. Add a third ifElseBranch to the “ WorkflowPropertyListing ” Try It Out. Split the branch for

 NewOrSold into two branches.

 Figure A - 6 shows what your workflow should look like.

Figure A-6

 A. In the project, start by clicking the ifElseBranchNewOrSold or selecting it in the Properties
window and copying it. Next, select the ifElseAddToQueue activity and paste the branch into
it. This action will create a third branch. Next, update the code to function correctly as the newly
added branch is the third one and should be considered the else branch. Also, notice that a code
activity was added and that a red circle with an exclamation point was added to show that you
must set the condition property of the second branch.

 2. In the WorkflowPropertyListing project, add a while activity before the first ifElse activity.
You will need to create a code condition handler and then set the code condition property. This
is where the while loop determines if it should continue or not. Next, add a code activity that
tests for a change found and then asks the user to enter a new file name if no change is found.
The while loop will continue if e.result = true in the condition handler.

 A. To complete Exercise 2 you need to add the following controls to the project, set the properties
as shown, and add the following code. Figures A - 7 , A - 8 , A - 9 , and A - 10 show you what the
visual designer and output will look like.

 For later projects, remember that the while activity allows only one activity to be executed
during the loop. When using this activity, it is common to use the Sequence activity to host
multiple activities. The while activity can accept a Sequence activity, so you might use it to get
around this limitation.

bapp01.indd 821bapp01.indd 821 4/1/08 6:48:07 PM4/1/08 6:48:07 PM

Appendix A: Exercise Solutions

822

Figure A-7

Figure A-8

Figure A-9

Figure A-10

bapp01.indd 822bapp01.indd 822 4/1/08 6:48:08 PM4/1/08 6:48:08 PM

Appendix A: Exercise Solutions

823

 Private Sub codeActivityWhileNoChangeFound_ExecuteCode(ByVal _
sender As System.Object, ByVal e As System.EventArgs)

 Console.WriteLine(“while loop executed” & _
 “codeActivityWhileNoChangeFound_ExecuteCode”)
 End Sub
 Private Sub WhileLoop(ByVal sender As System.Object, ByVal e As _
 System.Workflow.Activities.ConditionalEventArgs)
 If strFileName.ToUpper.Contains(“_ADDRESS”) _
 Or strFileName.ToUpper.Contains(“_NEW”) _
 Or strFileName.ToUpper.Contains(“_REMOVE”) Then
 e.Result = False
 Else
 Console.WriteLine(“No Change Found”)
 Console.WriteLine(“What is the file name?”)
 strFileName = Console.ReadLine()
 e.Result = True
 End If
 End Sub

 Chapter 23
 1. The computer player is a random picker. Give the computer player some brains. Add at least

one function named ComputerPlayToWin to the application. When the computer moves, call
 ComputerPlayToWin and check for a spot on the board that will create a win for the computer.
If it exists, the computer should play that move rather than a random move. You can add other
procedures if needed.

 A. This exercise has numerous correct answers. If you ask 10 programmers to complete it, you will
get 10 different answers. So, if your changes work, you have a valid answer. The following is
what we came up with to solve the problem.

 You need to add a call to the new function, ComputerPlayToWin , from ComputerPlay . It
should be the first call in the procedure. If you find a win here and make a move, you can exit
the subroutine without allocating any of the local variables in ComputerPlay .

 Sub ComputerPlay()
 If ComputerPlayToWin() Then Exit Sub

 Your solution will look different from ours. Compare your solution to ours and think about
which one is better and why. The first function, CheckForWin , allows you to check an entire row
or column of buttons for a chance to win. If two squares are marked and the third is empty, the
computer will make this move by changing the text for all buttons. This is done by passing
the buttons ByRef to the function. ComputerPlayToWin calls this function for every row,
column, or diagonal win possibility on the board.

Private Function CheckForWin(ByRef btnFirst As Windows.Forms.Button, _
 ByRef btnSecond As Windows.Forms.Button, ByRef btnThird As _
 Windows.Forms.Button, ByVal stringToFind As String, _
 ByVal strOpponentsMark As String) As Boolean

bapp01.indd 823bapp01.indd 823 4/1/08 6:48:09 PM4/1/08 6:48:09 PM

Appendix A: Exercise Solutions

824

 Dim intSum As Int16 = 0S

 ‘Check to see if we can win on this row
 ‘We can win if we have two marks and no opponent marks on the row
 ‘If there is an opponents mark we are blocked so return false

 If btnFirst.Text = stringToFind Then
 intSum += 1S
 ElseIf btnFirst.Text = strOpponentsMark Then
 Return False
 End If

 If btnSecond.Text = stringToFind Then
 intSum += 1S
 ElseIf btnSecond.Text = strOpponentsMark Then
 Return False
 End If

 If btnThird.Text = stringToFind Then
 intSum += 1S
 ElseIf btnThird.Text = strOpponentsMark Then
 Return False
 End If

 ‘We will win on this turn
 ‘so just mark the entire row to save some resources

 If intSum = 2 Then
 btnFirst.Text = stringToFind
 btnSecond.Text = stringToFind
 btnThird.Text = stringToFind
 Return True
 Else
 Return False
 End If
 End Function

 All that the ComputerPlayToWin function does is pass the buttons and strings to check
 CheckForWin for each possible win. If a win is found, the game is over. The computer will not
make a random play if it can win.

 Private Function ComputerPlayToWin() As Boolean
 If CheckForWin(btn00, btn01, btn02, “O”, “X”) Then
 ‘Winner on top Row
 Call Winner(“0”)
 Return True
 End If
 If CheckForWin(btn10, btn11, btn12, “O”, “X”) Then
 ‘Winner on middle Row
 Call Winner(“O”)
 Return True
 End If
 If CheckForWin(btn20, btn21, btn22, “O”, “X”) Then
 ‘Winner on third Row

bapp01.indd 824bapp01.indd 824 4/1/08 6:48:09 PM4/1/08 6:48:09 PM

Appendix A: Exercise Solutions

825

 Call Winner(“O”)
 Return True
 End If
 If CheckForWin(btn00, btn10, btn20, “O”, “X”) Then
 ‘Winner on first column
 Call Winner(“O”)
 Return True
 End If
 If CheckForWin(btn01, btn11, btn21, “O”, “X”) Then
 ‘Winner on second column
 Call Winner(“O”)
 Return True
 End If
 If CheckForWin(btn02, btn12, btn22, “O”, “X”) Then
 ‘Winner on third column
 Call Winner(“O”)
 Return True
 End If

 If CheckForWin(btn00, btn11, btn22, “O”, “X”) Then
 ‘Winner on diagonal top left to bottom right
 Call Winner(“O”)
 Return True
 End If
 If CheckForWin(btn20, btn11, btn02, “O”, “X”) Then
 ‘Winner on diagonal bottom left to top right
 Call Winner(“O”)
 Return True
 End If
 End Function

 Chapter 24
 1. Create a setup project for Notepad and install the program. You should be able to find the

 notepad.exe file in your Windows System directory. Hint: You will need to add the file to a
setup project. Have the setup application add a shortcut to the Start menu. Deploy the
 notepad.exe file to the Program Files directory. For extra work, change the Manufacturer
property of the project from Default Company Name to Wrox . Also, change the Author property
to your name.

 A. For this example, you create a setup project for Notepad. You create a new setup project
named Chapter24Exercise1 . Under the Application folder, you browse for and add the
 notepad.exe file. After adding the file, you create a shortcut to the executable and moved
the shortcut to User ’ s Program. Menu. Next, you select the project in Solution Explorer and then
find and change the Author and Manufacturer properties in the Properties window. Finally,
you build and then run the setup.exe file.

 You may be asking why we asked you to change the Author and Manufacturer properties. The
manufacturer is used to determine the default location for the installed application. When you
installed the application, C:\Program Files\Wrox\Chapter24Exercise1\ was the default
installation directory. Without updating the manufacturer, the default directory would have

bapp01.indd 825bapp01.indd 825 4/1/08 6:48:09 PM4/1/08 6:48:09 PM

Appendix A: Exercise Solutions

826

been C:\Program Files\Default Company Name\Chapter24Exercise1\ . The second
reason to change the manufacturer is the support info screen under Add/Remove Programs.
When you look at your application ’ s support info screen, you ’ ll see that the publisher is Wrox.

 2. Using the setup application created in Exercise 1, add a splash screen dialog box that is
displayed first during the installation. We have included a bitmap in the code for the book
named Wrox_Logo.bmp . This bitmap is the correct size, 480 × 320, and you can use this image
for the dialog box.

 Hint: You have to add the image you use to the setup application before you can add it to the
splash dialog box.

 A. In the completed exercise, you add a bitmap image to the application. You add the image to the
application folder or a subfolder of the application folder. Next, you add a splash screen via
the user interface editor. The SplashBitmap property of the Splash dialog box is changed to the
bitmap you added, and the dialog box is moved up to the first screen shown. When you run
the installation, you see the splash screen as the first dialog box.

bapp01.indd 826bapp01.indd 826 4/1/08 6:48:10 PM4/1/08 6:48:10 PM

 B
Using the Microsoft

Solutions Framework

 So here you are, ready to go out into the world and build applications with Visual Basic 2008.
Congratulate yourself; you should be excited at having worked your way through all the chapters
of the book. Soon, creating applications will become second nature to you. As you work in IT, you
will play many roles on teams. In some cases, your manager will only ask you to write code. The
main portion of this book provides a strong understanding of what you will need to do in that
situation. Other times, management will ask you to wear many hats on a project and be
responsible for delivering an entire solution. This appendix introduces you to what it takes to
create a successful solution.

 Let ’ s start with a basic question. How is a solution different from an application? A solution is the
entire process of creating a system for a customer. The solution includes planning, documenting,
testing, releasing, training, and supporting the application. The application is just one part of the
solution.

 Microsoft has a set of processes and models that to some is the standard for solution delivery in
the IT industry: Microsoft Solutions Framework (MSF). Software developers around the globe
apply this framework to internal strategies to ensure best practices when building software. The
MSF is a recent interpretation of the classic software development life cycle and provides guidance
to project management. In this appendix, you will

 Learn about the software development life cycle.

 Get an overview of the MSF and how it relates to the software development life cycle.

 See how to manage trade - offs.

 Learn how to define success for a project.

 A detailed explanation of the Framework would take two or three hundred pages. This appendix is
just a concise summary. Keep this in mind as you begin to explore this tool. To get more info
online, you can visit www.microsoft.com/technet/solutionaccelerators/msf/
default.mspx .

❑

❑

❑

❑

bapp02.indd 827bapp02.indd 827 4/1/08 6:48:35 PM4/1/08 6:48:35 PM

Appendix B: Using the Microsoft Solutions Framework

828

 Software Development Life Cycle
 The software development life cycle (SDLC) is a set of building blocks for software design. Microsoft and
others in the industry continue to develop methodologies to interpret the SDLC into a set of steps or
milestones. Depending on whom you ask, you may get five steps or even seven steps in an SDLC
implementation. Here is one interpretation of the SDLC steps:

 Defining the problem

 Gathering requirements

 Analysis and design

 Development

 Testing

 Installation

 Maintenance

 Theoretically, the work progresses in a linear fashion from each of these steps to the next. In practice,
it is often the case that the need for further design work, more specific requirements, or a clearer defini-
tion of the problem is discovered during development or testing, and the process loops back to the
earlier stage.

 Microsoft Solutions Framework
 The Microsoft Framework Solution is built for the implementation of large software projects. Two
distinct models (Team Model and Process Model) define the entire framework. To set up a large project
team, you will need to use the Team Model. As you begin your career, you will most likely work on
smaller projects. Because of this, we will not go into detail about the Team Model. The Process Model
defines how to successfully complete the solutions using a specific sequence of activities. In this
appendix, we will show you how to use the principles of the Process Model in smaller projects.

 In the Team Model, a developer is only one role in a large project and generally works on only one task:
developing the application code. As you work on small solutions, be aware that you will take on many
roles. One day you may be gathering requirements, and the next week you may be developing code for
the application. You need to recognize that it is difficult to write the code and simultaneously take on
other project roles. As a developer, it will be easy to focus your efforts on the code writing and put the
analysis, testing, and documentation on the back burner. This will almost always result in an unsuc-
cessful project. Although the code may work, the documentation may not be good enough to maintain or
change the application. You may not understand this concept yet, but in my opinion writing the code is
the easy part of the solution. When your manager asks you to play many roles on a project, remember
that in most cases you will need to spend more time designing, testing, and documenting code than
writing it.

 The Process Model, consisting of five phases, is the portion of the MSF that puts the SDLC into practice.
It describes the order in which you should complete each phase of the SDLC. Also, this model involves
iterations of all phases, known as versions . If you are familiar with MS software, you know that Microsoft

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 828bapp02.indd 828 4/1/08 6:48:36 PM4/1/08 6:48:36 PM

Appendix B: Using the Microsoft Solutions Framework

829

updates software via new versions. The Process Model is a continuous loop of milestones that
incorporates deploying multiple versions of software. Each version of the software will go through all
phases of the Framework:

 Envisioning

 Planning

 Developing

Testing

 Deploying

 The following sections lead you through each of these phases in turn.

 The Envisioning Phase
 To start the MSF, you begin in the envisioning phase. The success of the project starts here. Make sure
you take the time to nail down all loose ends before moving forward with the project. Your customers
expect and deserve to understand how the project is going to proceed and the scope document at the end
of this phase will do that. After completing the envisioning phase, everyone with a stake in the project
will be on the same page. There are five goals of the envisioning phase that you need to accomplish
before moving on to the planning phase.

 Problem Statement
 Why is the customer willing to spend $ 80,000 on a new system? Although there is an obvious answer
this question, don ’ t take this step lightly — all of your decisions will be driven by the problem statement.
Here is an example of a problem definition:

 As government regulations change, the current system cannot meet the time requirements to implement
changes and stay in compliance. To compete in our industry, we must have a system that is flexible
enough to make changes easily so as to maintain governmental compliance.

 Goals
 You need to agree on measurable goals with the customer. These will be used to help define the success
of the project. The keyword is measurable . The following statements express the same goal, but the second
version offers a measurable standard:

 The system should improve customer service by being able to complete a phone order quickly.

 The system will improve customer service by allowing a phone order to be completed in less
than 60 seconds.

 The first goal is vague and is not measurable. If you base the system on goals like the first one, it is easy
for the customer to believe the system is not fast enough at the end, when you feel the system is much
faster than it had been. You may think the system is a success, but the customer thinks it is a failure.
Remember to make sure that you can measure system goals.

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 829bapp02.indd 829 4/1/08 6:48:36 PM4/1/08 6:48:36 PM

Appendix B: Using the Microsoft Solutions Framework

830

 Define Roles
 Here is an easy one. On smaller projects, only a few people will be working on the project. You will need
to determine who is responsible for planning, development, testing, documentation, and releasing the
system. For large projects, you would use the Team Model to define roles.

 Create a Scope Document
 The scope document will be a blueprint of the solution. All stakeholders in the project should sign off on
the final version of the scope document. Sections of the scope document include the following:

 An initial list of user requirements

 The problem statement

 Definition of team roles

 A set of measurable goals

 A brief statement defining the upcoming planning process

 Risk Analysis
 Your customer will need to know any risks that may cause problems for the project. These risks may be
that you are working with new, unproven technologies, that system bandwidth requirements may
exceed available network resources, that legacy data may not import correctly, or new technology
coming out may make the new software obsolete.

 The Planning Phase
 During the planning stage, you will create documents to validate that the project can succeed. The
documents you create will be transformed through feedback from the customer and project stakeholders.
Make sure that all project stakeholders have time to review and validate each document. Even for a
small project, this process can take many rounds of changes to gain sign - off from all parties. Finally, you
will create a project schedule and cost estimate before moving to the developing stage. Listed here are
the documents you need to create.

 Conceptual, logical, and physical design documents

 Use cases and usage scenarios

 System specification

 Project schedule

 Cost estimate

 The Developing Phase
 This is the stage you are most familiar with. The MSF encapsulates everything from actually building the
development environment to completing documentation into the development stage. The milestone for
this phase is a complete application ready for testing.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 830bapp02.indd 830 4/1/08 6:48:36 PM4/1/08 6:48:36 PM

Appendix B: Using the Microsoft Solutions Framework

831

 Setup: Building Staging Areas for Development and Testing
 For any project, you need a development and test environment that matches the production
environment. Take precautions to build the staging areas so that they are the same as the
production environment. Something as simple as different printer drivers between test staging
and production areas can cause unanticipated results during release of the application.

 Completing the Prototype
 You must allow the customer to approve a prototype. Do not underestimate the value of this. Imagine
you were building a car. Without proper models, how hard is it to determine the proper location of the
steering wheel or how to add six inches of leg room for rear passengers? Take this time to let the
customer make changes to the design. You will find that it is easy to change a prototype. Once you have
three months of coding under way, changes to the user interface can be costly.

 Completing the Code
 The application is ready for testing. Validate modules through unit testing.

 Supply Application Documentation
 The documentation from prior phases is compiled and included with a user manual and system
documentation. The test team will rely on this data for testing.

 The Testing Phase
 As a beginner, you may not understand the importance of this phase. There is no better way to make a
small project over budget and late than to find 500 bugs while testing. Make sure you have adequate
time in your schedule to test and make test plans. Like everything else in the MSF, testing is an iterative
process. You will need test plans that you can repeat and validate after bug fixes. After each round of
testing, complete your test plans. Remember to document your result. When bugs arise in the
application after release, you will want to see why the test plan did not uncover the bug and then adjust
the test plan. After the customer has signed off on the test results, complete any documentation changes
and package all files for deployment.

 You should plan for the following subphases during the testing process:

 Application tier testing

 Security testing

 Performance testing

 User acceptance testing

 System integration testing

 The Deployment Phase
 Now, you are ready for production. If you are on time and within budget, your customer will be happy
with the project. With all of the planning and customer interaction, there will be few surprises at this
point. You will put the solution into production and have a small team available to train and support the

❑

❑

❑

❑

❑

bapp02.indd 831bapp02.indd 831 4/1/08 6:48:37 PM4/1/08 6:48:37 PM

Appendix B: Using the Microsoft Solutions Framework

832

users. After the agreed - upon amount of time, the application will be turned over to the support staff. You
will need to train them and turn over system documentation. That is it. You have managed a successful
implementation of a project.

 There is one item left: How to handle changes using tradeoffs. To have any chance of getting to the end
of a project successfully, you must be able to manage tradeoffs. The following section explains this in
more detail.

 Managing Tradeoffs
 To complete a successful project, you must be able to manage tradeoffs. You will find very quickly that
your customer will ask you questions of the form “ . . . Can you do that? ” And your answer should be in
almost every instance, “ Yes, we can. ” You will find that you can do just about anything. The problem is
that it takes a certain amount of time and money for every project or change request. What your
customer means to say is, “ Can you do that for $ 50,000 by the end of this year? ” So when you answer the
 “ can it be done ” question, make sure the customer knows that you can do it for the right price with
enough time.

 When you work with clients, internal or external, you have to make them aware of project tradeoffs.
There are three tradeoff values to consider: budget, deadlines, and functionality. A fourth tradeoff could
be quality. You should not consider reducing quality to lower price, finish sooner, or add features to
make a project successful. Although you define the project scope, make sure that the project team and
customers understand the priorities of tradeoffs. As you make changes involving one of the tradeoff
values, you will have to compensate by adjusting at least one of the others.

 For example, suppose you are working with the marketing department on a small application. You are
the only resource available to work on the solution for the next two weeks during planning. While you
are gathering the system requirements, you speak to the marketing vice - president, Tina, about the
priorities of the solution. Very quickly she makes it clear that she needs the application by the end of the
year and for a cost of under $ 50,000. As you pry more, you find that Tina cannot spend more than
 $ 50,000 this year. She wants the system to be live in three months with at least the core functionality in
the first version. Next year, she may be able free up more money in her budget to finish the lower -
 priority features.

 You quickly write down the tradeoffs and the priorities. In order of priority, you write budget, deadline,
and features. Take a look at the project priorities listed in the following table. You and Tina sign off on
the tradeoff priorities, and now you know how to make the solution a success. Meeting the budget and
deadline are required for success. For example, some functionality will be moved to the next version if
the project gets behind schedule.

 Tradeoff Priority

 Under Budget First

 Meet Deadline Second

 Deliver Functionality Third

bapp02.indd 832bapp02.indd 832 4/1/08 6:48:37 PM4/1/08 6:48:37 PM

Appendix B: Using the Microsoft Solutions Framework

833

 Halfway through the project, Tina wants to add more core functionality to the system. You look at the
budget and see that if you add more functionality to this release, you will need more resources to make
the deadline. Adding another developer to meet the deadline will cost an extra $ 10,000. Looking back
at the project priorities, you see that Tina cannot spend more than $ 50,000. You have set aside the entire
 $ 50,000 budget, and $ 10,000 more is too much. It is time to call Tina and explain the situation.

 While talking to Tina, you explain the top priority for the project is budget. Adding the extra
functionality will cost an additional $ 10,000, bringing the budget estimate to $ 60,000. During the
discussion, you mention that the only way to add more functionality without increasing the deadline or
budget is to drop some of the functionality already planned. After 30 minutes, she agrees that $ 50,000 is
all she can spend, and the additional functionality can be part of a later version.

 By understanding and agreeing on tradeoff priorities, you are able to work with customers to manage
change. If a customer wants to change any of the tradeoff priorities, you will have to adjust one or both
of the others.

 Defining Success with the MSF
 A successful project is hard to achieve. If you follow the framework, success can be achieved more easily.
It all comes down to customer satisfaction and one simple question: Did you make the customer happy?
This simple question can be hard to answer. Let me clarify how to find the answer to this question. To
make the customer happy, you must succeed in most of these four areas: achieve system goals, meet the
release date, stay within budget, and manage tradeoffs.

 With the Framework implementation, you will find defining success possible. The two milestones that
are straightforward are meeting the budget and release date. Take a look at the project plan and make
sure these milestones were met. System goals are also straightforward if you defined measurable goals.
Test the system against the project goals to verify the system meets the standards agreed upon. The final
milestone is change or tradeoff management. Pull out the final tradeoff chart and review it. For the
project to be successful, you must have met the top priority of your customer. Changes may have caused
you to miss the other milestones, but if you managed tradeoffs with the customer, the project will still be
successful. Success can be that simple if you follow the game plan.

 Summary
 As you grow in the information technology field, you will work on larger projects and have more
responsibility. Use this appendix as a basis for further study. Always keep in mind how many steps you
have to take to be successful managing a project. When you do get into a position to lead a project, take
the time to plan and test, and always work toward making the customer happy. You will not always be
successful by following the framework, so take misfortunes in stride and learn from them. As you
complete projects, you will come up with your own interpretation of the SDLC or the MSF, and you will
be a success.

bapp02.indd 833bapp02.indd 833 4/1/08 6:48:37 PM4/1/08 6:48:37 PM

bapp02.indd 834bapp02.indd 834 4/1/08 6:48:37 PM4/1/08 6:48:37 PM

 C
An Introduction to Code

Security and SSL

 In today ’ s electronic world, consumers are bombarded with scams via the Internet and e - mail.
If you plan to write applications that take advantage of these technologies, you must be aware of
fraudulent activity of others. The most rampant activity today is a tactic known as phishing . In this
scam, a fraudulent e - mail or pop - up message lures a user to a fake web site on the pretext that a
breach in bank security or unwanted account activity has made it necessary to verify the user ’ s
account information. Tricked users will see a site that looks like their bank ’ s site but is actually
being hosted by criminals in an attempt to bait users into entering their personal and financial
information. In these schemes, it is easy for concerned customers to be tricked and enter their card
number, social security number, or PIN into the web forms to avoid their accounts being frozen.
Little do they know they are giving away their private information to thieves.

 Phishing is not the only scam consumers must deal with, but it is one of the most prevalent. As a
developer, it is your job to make applications safe. The use of certain features in your application
can make it easier for criminals to impersonate you. If your application avoids asking for personal
information that you do not need over e - mail or the Web, users may be more alert to a scam when
it occurs. You can never assume that e - mail will not be intercepted over the Internet. Make sure
you never treat e - mail as a secure means of data transmission.

 You must also be aware of security for your Windows applications and assemblies. It seems as though
a new hole is found every week in some browser or operating system that allows a hacker to run code
on a user ’ s machine. One way in which this type of attack is commonly accomplished is by a buffer
overflow . To give a simple explanation, hackers discover that a program has memory allocated to
store data only up to a certain size. The attacker sends a larger object than the memory allocated. The
extra data is not discarded, but instead it gets written to adjacent areas of memory that are intended to
store code or the addresses of code. This may corrupt valid allocations of memory, but more important,
it installs the attacker ’ s malicious code in memory. The victim’s program runs the attacker ’ s code as if
it were its own, and the damage is done. The root cause of this problem is not one most Visual Basic
developers will encounter, but it should make you aware that people may use your functions in ways
you did not intend including malicious ways.

bapp03.indd 835bapp03.indd 835 4/1/08 6:48:57 PM4/1/08 6:48:57 PM

Appendix C: An Introduction to Code Security and SSL

836

 Take a look at another example of a software bug that might be a security risk. Say you write an
assembly or web service that would upload files to your company ’ s web site. This application is for
salespeople to upload comma - separated files of current sales data each night. The code allows the path
and file name to be passed as parameters, and it can be used by numerous departments because of this
flexibility. The problem is that this same flexibility allows a hacker to upload a Web page, place it into
the root web directory, and do almost anything to the server or network. You should change this web
service to store files in a locked - down directory and modify the file name so that an attacker would not
be able to access the file by name. Functions like this one are prevalent in many companies ’ code libraries
and create most of the security holes these companies will face.

 In this appendix you will learn about security issues and how to handle them within the following
topics:

 Understanding code access security

 Secure Sockets Layer (SSL)

 Where to look for security answers

 Code Access Security
 The goal of code access security (CAS) is simple: Stop unwanted code from running or accessing
resources. This is accomplished by the runtime ’ s security system. When an assembly needs access to a
resource, all assemblies on the call stack should have permission to access that resource. Take a look at
the following example.

 An assembly is run from the Internet. By default, it is granted access to a permission set (explained in the
next subsection) based on the Internet zone. The application has no access to the local file system. If that
assembly were to call a public method on an assembly that did have access to the file system, the
runtime would throw a security exception. When the permissions of each assembly on the stack are
tested, the assembly that was run from the Internet will fail the permission check.

 On the other hand, an administrator could grant a signed assembly more permissions. So, if this
assembly had the correct digital signature, it could be granted access to a larger set of permissions.

 CAS allows the system administrator to apply permissions to code rather than to users. Before CAS, if a
hacker could get a user to run code or an attachment that contained a virus, it was granted security
based on the user ’ s security level. If that user was an administrator on the machine, the virus had full
access to do its dirty work. Now, a virus may be stopped by the Common Language Runtime and not
have access to corrupt the file system, even if the user has permissions.

 The way this works is through permissions, security policy, and evidence. When an assembly requests a
file, for example, the runtime makes sure that file is available from a security aspect by checking
permissions, security levels, and evidence. Let ’ s start with permissions.

❑

❑

❑

bapp03.indd 836bapp03.indd 836 4/1/08 6:48:58 PM4/1/08 6:48:58 PM

Appendix C: An Introduction to Code Security and SSL

837

 Permissions
 Permissions are granted to resources based on trust and origination. Administrators can grant higher or
lower levels of access to individual assemblies or zones. Here is a list of four common permissions used
by the runtime:

 EnvironmentPermission : Access control for system and user environment variables

 FileDialogPermission : File system access control for file dialogs

 FileIOPermission : File system access control

 RegistryPermission : Control access to the Registry

 It would be hard to manage a large group of permissions without a way of grouping them. Grouping
permissions is accomplished by using permission sets . The .NET Framework has six predefined
permission sets. You can use any of the sets in the following list in your code.

 Nothing : This named permission set will not allow code to run.

 Execution : The Execution set allows the code to run, but no access is granted to protected
resources.

 FullTrust : The most forgiving permission set. Access to all resources is granted.

 Internet : You can think of this as the access you would permit when browsing. This would be
used when running code from the Internet or any nontrusted source.

 LocalIntranet : This is for trusted code running on a trusted network.

 Everything : This is a set of all standard permissions. The permission to skip verification is not
granted to this set.

 Your code can request any level of permission, and the runtime will verify before running the code that
these permissions will be granted.

 Security Policy
 The runtime enforces policy based on the identity or evidence of the assembly. When loading an
assembly, the assembly is inspected for evidence of its origin. Based on the origin, the runtime
determines what permissions to grant the assembly.

 Evidence
 To determine the origin of an assembly, the CLR looks at many attributes of the assembly. This is known
as the evidence . Table C - 1 has a list of evidence types. The runtime may use any or all of these to
determine the permissions to grant the assembly.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp03.indd 837bapp03.indd 837 4/1/08 6:48:58 PM4/1/08 6:48:58 PM

Appendix C: An Introduction to Code Security and SSL

838

 When permissions are tested, an intersection of zones and permissions is evaluated to verify that all
permissions for every zone and assembly on the stack are met. If permission is not granted to the code,
the zone, or the user, an exception is thrown and access is denied.

 Secure Sockets Layer
 The Secure Sockets Layer (SSL) protocol was developed to secure communication between a web server
and a browser. Today, 128 - bit SSL encryption is the standard for secure data transmission over the
Internet. If you need to secure parts of a Web site, your customers will expect this type of encryption.
To promote the level of security to the end user, Internet Explorer and Firefox display a lock similar to
Figure C - 1 at the bottom of the browser window.

 Figure C - 1

 Another way users know a site is secure is by the URL. The URL of an SSL site shows https:// instead
of the standard http:// . The user can also look at details of the certificate by double - clicking the lock
icon or viewing the page ’ s properties or info. Figure C - 2 is an actual certificate info screen from a large
web site. We have removed the company ’ s name from the image.

 Table C - 1: Types of Evidence

 Evidence Type Description

 Application directory Installation directory

 Hash Assembly hash

 Publisher The Authenticode signature

 Site Web site — for example, wrox.com .

 Strong name Assembly ’ s Strong name

 URL URL of the assembly

 Zone Origination zone

bapp03.indd 838bapp03.indd 838 4/1/08 6:48:58 PM4/1/08 6:48:58 PM

Appendix C: An Introduction to Code Security and SSL

839

 Two of the largest companies that issue SSL certificates are Thawte and VeriSign. They are both well
respected in the industry and offer free trial certificates for you to test.

 Trial certificates can be found at the following sites:

 verisign.com/products-services/security-services/ssl/index.html : Click the Try
link for the certificate type you wish to try.

 thawte.com/ : Click the link for a 21 - day trial.

 You should keep in mind that encryption slows down the experience for the user and creates more load
for the server. Keep marketing and nonessential areas of your site unencrypted. Only encrypt pages that
communicate data that would be considered private.

 Finding Information and Answers
 This appendix offers only a brief introduction to the vast topic of security. The following list offers some
web sites that may help you with further research and finding answers to your security - related
questions.

 microsoft.com/security/ : Microsoft ’ s security home page. Read the latest in security notes
about Microsoft products.

 www.microsoft.com/technet/security/default.mspx/ : Microsoft ’ s TechNet Security
Center. Here you can get info on the latest security bulletins and security help from Microsoft.

❑

❑

❑

❑

 Figure C - 2

bapp03.indd 839bapp03.indd 839 4/1/08 6:48:59 PM4/1/08 6:48:59 PM

Appendix C: An Introduction to Code Security and SSL

840

 ftc.gov : The Federal Trade Commission Web site. Here you can see what types of scams are
being reported.

 owasp.org : Open Web Application Security Project (OWASP). This site offers free tools,
documentation, and standards.

 sans.org/rr/ : The SANS Institute Information Security Reading Room. Read thousands of
white papers on security issues.

 webappsec.org : The Web Application Security Consortium. Read white papers on the latest
news about web site security.

 Summary
 Security is the hottest topic in the information technology industry. Making applications 100 percent
secure is not possible with the openness of the Internet, but minimizing risks to vital data should be a
top priority in application design. As you build applications with VS 2008, know that you have the best
tool available to create secure Windows applications, but it is your responsibility to maintain the security
of the applications you write.

 Administrators will be able to use CAS to stop many types of attacks. Being able to apply permissions to
assemblies and validate the origination of the code makes implementing a secure network easier. The
widespread use of certificates and code signing will make spoofing applications more difficult and keep
users ’ computers safer.

 The world of application security is by no means perfect. You will probably have to design your
applications around security risks forever. But you can win by keeping security at the top of the priority
list in your application design. Soon you will begin to develop applications for wireless access, and more
security implications will need to be understood. Keeping applications secure in a world where
information access is expanding will continue to be a challenge.

 Just make sure you keep your head up and pay attention. Security holes are announced throughout the
media, and, as a developer, you should pay attention and learn from the mistakes of the past. One of
your applications may one day be under attack.

❑

❑

❑

❑

bapp03.indd 840bapp03.indd 840 4/1/08 6:48:59 PM4/1/08 6:48:59 PM

 D
 An Introduction to Windows

CardSpace

 Microsoft has added a new feature to the .NET Framework 3.0: Windows CardSpace. (Formerly,
this software was known as InfoCard.) This is a new type of identity management system that
removes the old user name and password you are used to on the Web. The overall idea is that the
users creates your cards and then you can choose which cards to assign to different sites. These
cards can contain varying amounts of personal info, so for a very public site you can use a card
that includes the minimum requirement for that site. For more personal information like a banking
site, you can create a card with more data or even have a card issued to you from a bank that is a
card provider. For some users, this will be a great solution.

 Using CardSpace
 To use CardSpace, there are some limitations for both the web site and user. First, the web site you
are registering with must support it. For this emerging technology, that will mean that limited sites
support it for now. But you should expect more sites to begin to offer this type of identity
technology soon. On the user side, you will be required to use IE 7 or Firefox 2.0 (with a plug - in) as
your browser. If you have Microsoft Vista, the CardSpace feature is included with the OS. If not,
you can install the .NET Framework 3.0 on Windows XP or Windows Server 2003 to get the client
tools needed to use CardSpace.

 CardSpace is a very easy way to log into sites on the Internet. When you go to a site that accepts
Windows CardSpace, just click the button or link to create an account or log in with a card. If this
is your first time at the site, create an account. You may be asked if you want to send a card
to this site, and may be shown site information so you can verify the site identity (see Figure D - 1).

bapp04.indd 841bapp04.indd 841 4/1/08 6:49:24 PM4/1/08 6:49:24 PM

Appendix D: An Introduction to Windows CardSpace

842

 Next, you will see all of the cards stored on your computer. Here you will be able to see cards that meet
the site requirements and cards you have sent to this site before (see Figure D - 2). This makes it easy to
keep sending the same card to each site.

 Figure D - 2

 Figure D - 1

bapp04.indd 842bapp04.indd 842 4/1/08 6:49:25 PM4/1/08 6:49:25 PM

Appendix D: An Introduction to Windows CardSpace

843

 Before sending a card, you can preview the data on the card. To do this, just click preview. Figure D - 3
shows you this interface.

 Figure D - 3

 Figure D - 4

 The next time you go to log into the same site, CardSpace will show that you used this card before so
you can easily see which card you should send. You will see a screen similar to Figure D - 4 .

bapp04.indd 843bapp04.indd 843 4/1/08 6:49:25 PM4/1/08 6:49:25 PM

Appendix D: An Introduction to Windows CardSpace

844

 That is it. Every time you need to log into the same site, just send the card you have assigned to it. You
can assign this card to many sites and you will not need to keep up with the user name and password for
the site.

 Inside of the CardSpace interface in Windows you can manage your cards. You can add, edit and delete
cards by going to the CardSpace program in the Control Panel. Be careful about deleting cards. Unless
you have a backup, a deleted card is not replaceable. Figure D - 5 shows the card editing screen.

 Figure D - 5

 You can go to the Control Panel and run the Windows CardSpace program to handle all of your card
maintenance tasks, including backing up and restoring. It is easy to back up and restore your cards. To
create a backup, go to the Control Panel and run the Windows CardSpace program. Choose the link to
back up your cards. Next, enter a location to store the encrypted backup file. On the next screen, enter a
password for the card. You will need this to restore the card on a computer later. Now you can put the
file on a CD or thumb drive and store it. Also, you can take the file on the road and use your cards on
another computer after you restore them.

 If you delete a card or lose your hard drive it is easy to restore your cards. To restore a card, just go to the
main Windows CardSpace program and choose Restore Cards. You will have to pick the backup file,
enter a password, and that ’ s all. Your cards are back. This is the same process you will use when you
travel and take your card files with you.

bapp04.indd 844bapp04.indd 844 4/1/08 6:49:26 PM4/1/08 6:49:26 PM

Appendix D: An Introduction to Windows CardSpace

845

 Some financial web sites and other trusted Internet businesses may become card providers. In this case,
your bank can send you a card. This is known as a managed card . Here, your personal information is
stored at the card provider and not on your computer. These cards come with expiration dates and will
either be replaced or eventually expire. Managed cards will be seen in the same interfaces you have seen
before for Personal Cards.

 Although this is a great idea and for the average user, and a huge security benefit, there are a couple of
things to remember. The cards are stored on your computer so if you travel without your computer, you
will need to export your cards and take them with you. Then, on a public computer, you will need to
import them, use them, and remember to delete them. The cards must be backed up or they cannot be
replaced if deleted. If your computer crashes, you can only recover your cards if you backed them up.
If you do export your cards, you must find a computer with Windows CardSpace and a compatible
browser before you can use them. These are minor issues in the overall scheme of Identity Management
and Security. You will most likely see this type of technology throughout the Internet in the very
near future.

 What about the Linux and MacIntosh operating systems? This technology is not Microsoft - specific.
There is documentation available from Microsoft on how to provide this on other platforms and you can
bet if it gains any traction at all you will see plug - ins for other browsers and client programs for other
operating systems. There are rumors that a plug - in for Firefox on the Mac exists already, although this
could not be confirmed at the time of writing.

 As you can see, this is a huge improvement over having to remember many user name and password
combinations. For the average user, this will be an easy way to secure and manage Internet accounts.
This type of technology will be the big push in the future to help users build trust in the Internet. As a
developer, you will have to choose if you want to support this technology. If you use the free controls,
you may be able to add this to your own sites in a matter of minutes. This is something you should
consider when designing your next site.

 Adding Cardspace to Your Site
 To include support for Cardspace, just download the server controls from Microsoft at
 http://cardspace.netfx3.com/files/folders/tools-july-ctp/entry12065.aspx and add
them to your site. You just have to set the properties to wire them up and go. The controls, created by
Microsoft Gold partner Quality Data are free to use. If you don ’ t want to use the pre - built controls, you
can create your own controls to manage cards. To host a site that accepts cards, you will need to provide
SSL transmission. You will also need to provide read access to the private key for your SSL Certificate to
the appropriate security account.

 To use the pre - built controls, download and install CardSpaceSetup.msi . A dll is added to your
machine with the installation. Next, open Visual Studio, right - click on the toolbox, and click
Choose Items. In the Choose Toolbox Items dialog box, browse to the install folder and choose
 QualityData.CardSpace.dll . It will be in the directory where you told the installer to install the files.
Five new controls will be in your toolbox. Figure D - 6 shows the five new controls added to a new tab in
the toolbox.

bapp04.indd 845bapp04.indd 845 4/1/08 6:49:26 PM4/1/08 6:49:26 PM

Appendix D: An Introduction to Windows CardSpace

846

 After adding the controls, just drag the appropriate control onto your page, set the properties, and you
have added support for CardSpace to your site. Figure D - 7 shows the CardSpace Control at the top and
the Login Control below. After dragging the controls to the page, you can run the site and pull up the
CardSpace screen to select a card.

 Figure D - 6

 Figure D - 7

 Info on the Internet
 For more information on this new technology, see CardSpace info on the following sites:

 CardSpace Controls for ASP.NET (http://cardspace.netfx3.com/files/folders/
tools-july-ctp/entry12065.aspx): This site contains free ASP.NET controls to make your
web site able to consume cards from Windows CardSpace. These controls have been tested and
are from a trusted source so you can speed up your implementation by using them. As of this
writing, you can get the following controls from this site: CardSpace Control, CardSpace Button,
CardSpace Login and CardSpace Manage. Soon they will be adding a CardSpace NewAccount
control. Note: To use these tools, you may need to update permissions to allow the decrypting of
information.

❑

bapp04.indd 846bapp04.indd 846 4/1/08 6:49:26 PM4/1/08 6:49:26 PM

Appendix D: An Introduction to Windows CardSpace

847

 The NetFx3.com Sandbox (https://sandbox.netfx3.com/): Here, you can create an account
and see CardSpace in action. When you have met all of the requirements, give it a try.

 Wikipedia (http://en.wikipedia.org/wiki/Windows_CardSpace): Wikipedia provides
broad info on CardSpace and where it is going along with information on competing and
complementary identity solutions.

 Channel 9: Watch a great 20 - minute video explaining CardSpace (http://channel9.msdn
.com/Showpost.aspx?postid=291878), or see an hour - long version with much more detail
(http://channel9.msdn.com/showpost.aspx?postid=181080).

 Summary
 CardSpace and similar technologies are being supported by huge corporations like Microsoft and IBM.
You might even assume that information cards are the next big thing in the web development world.
If you create programs for sites that allow users to log in, you should investigate this technology and see
how hard it would be to integrate into your current site security. To keep your skills ahead of the game,
you should understand what CardSpace is and how to integrate it into your site.

❑

❑

❑

bapp04.indd 847bapp04.indd 847 4/1/08 6:49:26 PM4/1/08 6:49:26 PM

bapp04.indd 848bapp04.indd 848 4/1/08 6:49:27 PM4/1/08 6:49:27 PM

 E
 .NET Framework Differences

 In this appendix we discuss two new versions of the .NET Framework: versions 3.0 and 3.5.
Visual Studio 2005 was based on version 2.0 of the .NET Framework. Visual Studio 2008 is
based on the .NET Framework 3.5. With the release of Vista, .NET Framework 3.0 was released.
Version 3.0 included broad new features to support Vista and version 3.5 included smaller
incremental changes.

 What ’ s New in the .NET Framework:
Major Additions since Version 2.0

 The .NET Framework 3.0 introduces four main features. These features are discussed in detail in
Chapter 6 , Chapter 21 , Chapter 22 , and Appendix D of the book. Here is a brief summary of each.

 Windows Presentation Foundation (WPF): Introduced with Vista, WPF is the latest
graphical subsystem that is used with Visual Studio 2008 WPF applications. With WPF,
you can build richer applications with true separation between user interfaces and
business and data logic layers. Technologies like 3D graphics, video, audio and animation
are greatly improved in WPF applications.

 Windows Communication Foundation (WCF): This messaging subsystem allows
programs to interface similar to web services. WCF was designed to support service -
 oriented architecture (SOA). As a developer, this means that now .NET Remoting, web
services, message queues, and others can now be built with a single SOA
programming model.

 Windows Workflow Foundation (WWF): This feature introduces the ability to manage
task using workflows in any application. WWF includes a workflow engine and designer
to build workflow applications in .NET.

 Windows CardSpace (WCS): This is a client - side application for securely managing
electronic identities. WCF adds the ability to interact with these identities on the Internet.
Users would not need to keep up with user names and passwords if this technology
takes hold.

❑

❑

❑

❑

bapp05.indd 849bapp05.indd 849 4/1/08 6:49:48 PM4/1/08 6:49:48 PM

Appendix E: .NET Framework Differences

850

 What ’ s New in the .NET Framework: Minor
Additions since Version 2.0

 Released with Visual Studio 2008, version 3.5 of the Framework introduces many new features and
improvements. Version 3.0 was introduced alongside of Vista. Here is a list of many of these changes.
Some of the changes were available in .NET Framework 3.0 and some not until 3.5:

 New ASP.NET ListView control

 Language Integrated Query (LINQ) is a new query language for C# and VB.NET. With LINQ,
developers can query and transform data in many different types of data sources.

 Paging support for ADO.NET

 Support for RSS

 ASP.NET AJAX controls and support built - in

 ClickOnce deployment, which provides improved support for more browsers and XCopy
publishing.

 Access to ASP.NET authentication information from WPF and Windows Forms applications.

 Common file dialog boxes offer support for Windows Vista appearance.

 Hosting for WPF controls on a Windows Form and WPF windows from a Windows Form.

 What ’ s New in Visual Studio 2008
 The release of Visual Studio 2005 a few years ago represented perhaps the largest leap forward in the
way a Visual Basic programmer writes code. In November 2007, the bar was raised even higher with
the release of Visual Studio 2008. Visual Studio 2008 provides the Visual Basic developer with more tools
than ever to increase productivity, reduce errors, and integrate with a team to produce high quality
software. Here are a few reasons why you should upgrade and write VB code using Visual Studio 2008.

 Project Designer Multitargeting Support allows you to set up VS to be configured to target
different versions of the Framework. The IDE allows you to use only controls included in that
version.

 Windows Installer Deployment provides improved features for smoother release on Vista
machines.

 IntelliSense added for JavaScript.

 Integrated support for AJAX and Office development

 Support for LINQ

 A better web designer includes split view, improved CSS support and support of nested
master pages.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp05.indd 850bapp05.indd 850 4/1/08 6:49:48 PM4/1/08 6:49:48 PM

Appendix E: .NET Framework Differences

851

 Info on the Internet
 Here is a list of sites to get more information on the .NET Framework.

 MSDN — .NET Framework (http://msdn2.microsoft.com/en-us/netframework/
default.aspx): MSDN, short for Microsoft Developer Network, is one of the best places for
beginning developers. This is a great place to start when working with a new Microsoft
Technology or if you are having a problem getting your program to work and need some
examples.

 Microsoft .NET Framework 3.0 Community (http://netfx3.com/default.aspx): A new
site for info on WPF, WCF, WWF, WCS and other features added to .NET Framework 3.0.

 Wikipedia, the Free Encyclopedia (http://en.wikipedia.org/wiki/.NET_Framework):
Wikipedia provides broad info on the .NET Framework versions both previously released and
future releases.

❑

❑

❑

bapp05.indd 851bapp05.indd 851 4/1/08 6:49:49 PM4/1/08 6:49:49 PM

bapp05.indd 852bapp05.indd 852 4/1/08 6:49:49 PM4/1/08 6:49:49 PM

In
de

x

Symbols
{ } braces, 145

array values and, 145

A
About box, 251–254
About.vb, 251
abstraction of hardware, 2
accelerator keys, menus, 302
Access

objects, 536
queries, creating, 539–543

ActiveControl property, 312
ActiveSync, 756–758
ActiveX controls, 3
Add method, 168, 169
AddExtension property, 266, 273
adding class libraries, 442
adding records to databases, 597–604
AddItemsToList method, 139
Address Book project (XML), 681–682
AddressBook

creating, 694–698
deleting addresses, 705–707
ignoring members, 698–700
navigating, 704–705

AddressBook class, 694
ADO (ActiveX Data Objects), 3, 29
ADO.NET, 556–557
aggregate functions, 601
algorithms, 38–39

decision making and, 87
strings and, 52

AllowCurrentPage property, 286
AllowFullOpen property, 283
AllowPrintToFile property, 286
AllowScriptChange property, 278
AllowSelection property, 286
AllowSomePages property, 286

And operator, 100–102
AnyColor property, 283
API (application programming interface), 2
apostrophes in comments, 43
AppendLine method, 208
ApplicationCopyrightChanged event, 466
Application.Exit method, 427
ApplicationName property, 462
applications

creating
HelloUser project, 10–11, 13–14, 19–22
Toolbox, 14–15
windows, 11–12

deploying, 790
multitiered, 445–446

Array Demo, 134
ArrayLists, 160–162

deleting from, 164–166
items in, 167
ToString, overriding, 162–163

arrays, 133
defining, 134–137
dynamic, 180

ReDim keyword, 180–182
For Each . . . Next loop and, 137–139
elements, 136
index bound, 136
indexes, 136
initializing, with values, 144–145
passing as parameters, 139–140
Preserve keyword, 182–183
reversing, 143–144
sorting, 142
strStates, 206
using, 134–137

As String keyword, 139
ASP (Active Server Pages), 3, 621

global.asax, 622
Toolbox, 623
Web.config, 622

aspect ratio, 530–533

Index

bindex.indd 853bindex.indd 853 4/2/08 9:02:19 AM4/2/08 9:02:19 AM

854

ASP.NET
thin-client architecture, 618–619
Web Forms, 619
web pages, benefits of, 622
Windows Forms, 619

ASPNET_RegIIS, 791
assemblies

private, 789
registering, 449

Gacutil utility, 450
References dialog box, 450–451

shared, 789–790
signing, 447–449
versions, 447

assigned buttons, drawing programs,
509–515

attributes
AllowPaging, 650
AllowSorting, 650
AlternatingRowStyle, 650
AutoGenerateColumns, 650
BoundField, 650
Columns, 650
CommandField, 650
DataKeyNames, 650
DataSourceID, 650
HeaderStyle, 650
ID, 650
PagerStyle, 650
Runat, 650
x:Class, 187

authentication
forms, 654

configuration, 654–662
Windows, 654

AutoCorrect options, IDE, 326
AutoUpgradeEnabled property, 266, 273
AvailablePhysicalMemory property, 341

B
back-end functionality, 407
BackColor property, 516
BackgroundImage property, 526–527, 527
backward looping, 119–120
BASIC language, 42
behavior of objects, 370–371
BindFields, 589
BindingContext object, 579
BindingNavigator component, 545

BindingSource component, 545
BitmapEffect property, 192
bits, 70
blnLoadCalled variable, 427
.bmp images, 525
books, 795–796
Boolean data type, 68–69
Boolean variables, declaring, 322
Border element (XAML), 194
braces, 145
branching, 87
break mode, 348
Breakpoint Hit Count dialog box, 352
breakpoints, 347–349, 351–352

Breakpoints window, 349
hit count, 352–353
icons, 349–350
loops and, 348
properties, 354
setting, 348
toolbar icons, 349–350

Breakpoints window, 349
browsers, 620
btnAdd_Click event handler, 41
btnAndCheck, 101
btnAnotherIf, 89
btnAnotherIf_Click procedure, 90
btnApplyNow, 206
btnArrayElement, 134
btnArraysAsParameters, 139
btnBackwardsForNextLoop, 119
btnCheck, 93
btnCheckNumbers, 95
btnCheckNumbers_Click event handler, 97
btnConcatenation, 54
btnDateLiterals, 66
btnDateManipulation, 67
btnDateNames, 65
btnDateProperties, 64
btnDelete_Click event procedure, 607
btnDeleteCustomer, 164
btnDoUntilLoop, 122
btnDoWhileLoop, 124
btnEnumerateArray, 137
btnFloatMath, 50
btnForEachLoop, 120
btnForNextLoopWithStep, 118
btnIf, 88
btnInitializingArraysWithValues, 144
btnInitializingArraysWithValues_Click method, 181

ASP.NET

bindex.indd 854bindex.indd 854 4/2/08 9:02:20 AM4/2/08 9:02:20 AM

855

In
de

x

btnIntMath, 45
btnLength, 56
btnListCustomer_Click procedure, 158
btnLookup, 173
btnMoreArrayParameters, 140
btnMoveFirst_Click procedure, 594
btnNestedLoops, 127
btnPerformSort_Click event procedure, 592
btnPrint, 289
btnQuittingADoLoop, 130
btnQuittingAForLoop, 128
btnReplace, 61
btnReversingAnArray, 143
btnSayHello, 212
btnScope, 83
btnServer_Click event handler, 625
btnShowDate, 62
btnSortingArrays, 142
btnStringCompare, 101
btnStrings, 53
btnSubStrings, 57
btnUpdate_Click event procedure, 605
btnVersion, 777
Build menu, 9
building

classes, 367–368
forms, 219–223
methods, 78–81

business tier, 445
Button class, 238
Button element, 189
button events, 212–219
ButtonAssignment property,

512, 514
buttons

radio buttons, 221
toolbars

enabling/disabling, 320–323
responding to, 244–250

bytes, 70

C
C#, 3
CalculateAreaFromRadius method, 80
camel casing, 82
CanUndo property, 322
CardSpace, 841–845, 849

adding to site, 845–846
Internet information, 846–847

CAS (code access security), 836–838
evidence, 837–838
permissions, 837
security policy, 837

Case Else statement, 113–114, 114
case-insensitive comparisons, strings, 103–104
case-insensitive Select Case, 108–111
case sensitivity, 82, 178–180

hashtables, 179
Case statement, 109
CategoryAttribute class, 479
cellpadding property, 669
cellspacing property, 669
ChangePassword control, 663
characters, counting, 223–225
check marks in menus, 302
CheckFileExists property, 266, 273
CheckNumbers_Click event handler, 96
CheckOnClick property, 306
CheckPathExists property, 267, 273
class libraries, 439–440

adding, 442
creating, 440–441
designing, 452–453
Favorites viewer, 442
moving classes between projects, 443
third-party, 453–454

Class Name combo box, 214
Class . . . End Class block, 399
classes, 367

AddressBook, 694
building, 367–368
Button, 238
CategoryAttribute, 479
CollectionBase, 170
Collections, 338
ColorPalette, 498
ColorPaletteButton, 498
Compact Framework, 759–761
Computer, 334
ControlBindingsCollection, 580
ControlPaletteButton, 513
CreateParams, 478
DataSet, 566–567
DataView, 567–569
derived, 385
DescriptionAttribute, 479
EventArgs, 217
ExitMenuItem, 427
FavoriteCollection, 415

classes

bindex.indd 855bindex.indd 855 4/2/08 9:02:20 AM4/2/08 9:02:20 AM

856

classes (continued)
Favorites, 407
Favorites viewer, 407–409
FileInfo, 411
Generics, 333
GraphicsCircle, 488–490
GraphicsItem, 488–490
Info, 460
inheritance, 394–395
instances, 367
instantiation, 367
List<T>, 342
MessageBox, 208, 463
moving between projects, 443
My.Application, 397
My.Computer, 397
My.Forms, 397
My.Settings, 397
.NET Framework, 30–31
Object, 394
PaintCanvas, 507, 521
Rectangle, 498
reference types, 395
RoutedEventArgs, 218
Service, 724
SqlCommand, 560–562
SqlConnection, 558–559
SqlDataAdapter, 562–566
SquareRoot, 728
StringBuilder, 208
subclass, 385
superclass, 385
System.Array, 142
System.Drawing.SystemColors, 519
System.Xml.Serialization.XmlSerializer, 688
TextEditor, 237
ToolboxBitmapAttribute, 476
User, 433
viewing, Object Browser, 454–455
WebFavorite, 407
WebFavoriteCollection, 407
WebFavoriteMenuItem, 427
XML, SerializableData class, 682–688
XmlSerializer, 686

Clear method, 176
ClearEditBox method, 242
clearing edit box, 242–244
ClearList method, 116, 135
Click event, firing, 212
ClickOnce deployment, 776–781

clicks, drawing programs, 504–507
client coordinates, 490–491
client coordinates

drawing programs, 490–491
graphics, 490–491

client-side processing web applications,
624–628

clipping rectangle, 498
ClipRectangle property, 498
Close method, 309
CLR (Common Language Runtime), 32–34, 434

code execution, 33
code loading, 33
Dispose method, 344
mobile applications, 756
security, 33–34

CLS (Common Language Specification), CTS
(Common Type System) and, 34

code
managed code, 34
menus, testing, 314–316
reusability, 73, 368–369

code editor, 19–22
code execution, 31–32

CLR (Common Language Runtime), 33
code loading, CLR (Common Language

Runtime), 33
coding

Edit menu, 310–312
File menu, 308–309
View menu, 312–313

CollectionBase class, 170
hashtable and, 178

collections, 168
ad hoc groups, 168
Add method, 339
adding items, 339
CustomerCollection, 169–170
strongly typed, 168

Collections class, 338
Integer values, 338
items, 338
key/value pairs, 338
String values, 338
type constraints, 338

color, drawing and
ColorPalette control, 498–504
custom, 516–517
system colors, 519
two, 507–509

classes (continued)

bindex.indd 856bindex.indd 856 4/2/08 9:02:21 AM4/2/08 9:02:21 AM

857

In
de

x

Color dialog box, 516, 517–518
Color property, 278, 283,

372–374, 373
ColorDialog control, 282

properties
AllowFullOpen, 283
AnyColor, 283
Color, 283
CustomColors, 283
FullOpen, 283
ShowHelp, 283
SolidColorOnly, 283

using, 284–285
ColorPalette class, 498
ColorPalette control, 498–504, 516
ColorPaletteButton class, 498
ColorPalette_MouseUp method, 514
ColorPalette_Resize method, 503
COM (Component Object Model), 29

interoperation and, 34
combo boxes

Class Name, 214
Method Name, 214

ComboBox class
ItemsSource property, 207

command builders, 564–565
Command Link control, 472

creating, 473–481
using, 481–484

CommandText property, 560–561
comments, 42–44

apostrophes, 43
when do you need, 43

Compact Framework
classes, 759–761
types, 758–759

compaction, 437–438
Compare method, 104
comparison operators, 93

And, 100–102
Greater Than, 97–98
Greater Than or Equal To, 97–98
Less Than, 95–96
Less Than or Equal To, 96–97
Not Equal To, 93–94
Or, 98–100

Computer class, 334
IDisposable interface, 340

concatenation, 54–55
operator, inline, 55

connecting strings as parameters, 558
Connection property, 560
connection strings, as parameters, 558
constants, 153–155

dates, 65
types, 155

Constants Demo, 153
constructors

creating, 382–383
declaring, 337
input parameters, 338
instantiation and, 382
overriding, 390–391
subroutines, 383

consuming events, 467–469
Content control, 671
contentplaceholder control, 671
context menus, 316–317

controls and, 316
creating, 317–320, 320–323

ContextMenuStrip control, 316
ContextMenuStrip property, 316
control libraries, 458
control variables, 117
ControlBindingsCollection class, 580
ControlPaletteButton class, 513
controls, 3

ColorPalette, 498–504, 516
Command Link, 472

creating, 473–481
using, 481–484

Content, 671
contentplaceholder, 671
context menus and, 316
ContextMenuStrip, 316
DateTimePicker, 146
design mode, 470–472
invalidating, 495
lblAddressNumber, 697
LoginView, 671
NotifyIcon, 423
StatusStrip, 238
TextBox, 240
ToolBarPanel, 238
user controls, 458

adding to forms, 461–462
building, 459–461
events, 465–467
methods, 464–465
Paint program, 485–486

controls

bindex.indd 857bindex.indd 857 4/2/08 9:02:21 AM4/2/08 9:02:21 AM

858

controls (continued)
properties, 462–464

ValidationSummary, 635
converting values, 72–73
Copyright property, 460
counting characters, 223–225

user entered, 221
counting words, 226–231

user entered, 221
CountWords function, 230
CreateCustomer method, 168
CreateParams class, 478
CreateParams property, 474
CreatePrompt property, 273
CreateUserWizard control, 663
CSS (cascading style sheets), 620, 621
CTS (Common Type System), 34

CLS (Common Language Specification) and, 34
CType function, 96
CurrencyManager object, 579
CurrentAddressIndex property, 697, 703
CustomColors property, 283
CustomerCollection class, 169–170

hashtables, 175
Item property, 170–172

CustomerID property, 338
CustomerName property, 338

D
DAO (Data Access Objects), 3
data, definition, 37
data access components

BindingNavigator component, 545
BindingSource component, 545
DataGridView component, 544–545
DataSet component, 544
TableAdapter component, 545

data binding, 578–579
BindingContext, 579–580
controls, 580–592
CurrencyManager, 579–580
DataGridView control, 546–549
TextBox controls, 549–552

data entry, web sites, 630–635
Data menu, 9
data namespaces in ADO.NET, 557–558
data providers, 557
Data Sources window, 12

data tier, 445
data types, 42, 44

numbers, 45
String, 107

data validation, web sites, 630–635
Database parameter (SQL), 558
databases, 535

Access, 536
navigation buttons, 591–592
queries, 536

creating, 539–543
LINQ and, 610–614

records
adding, 597–604
deleting, 607–609
updating, 605–607

search functionality, 594–597
sort functionality, 592–594
tables, 536

DataBindings property, 580
DataFilename property, 684
DataGridView component, 544–545

data binding, 546–549
properties, 576–578

DataSet class, 557, 566–567, 571–575
DataSet component, 544
DataSet object, 579
DataSetView object, 579
DataTable object, 579
DataView class, 567–568, 573

Find method, 569
RowFilter property, 568
Sort property, 568

DataView object, 579
Date data type, 62
dates, 61–62

constants, 65
literals, 66–67
manipulating, 67–68
month names, 65–66

DateTimePicker control, 146
DayOfWeek property, 65
dblNumber, 51
Debug form, adding code, 342
Debug menu, 9
debugging, 325

break mode, 348
breakpoints, 347–349, 351–352

Breakpoints window, 349

controls (continued)

bindex.indd 858bindex.indd 858 4/2/08 9:02:22 AM4/2/08 9:02:22 AM

859

In
de

x

hit count, 352–353
properties, 354
toolbar icons, 349–350

icons, 349–350
Locals window, 356–358
sample project, 331–345
Watch window, 354–355

QuickWatch, 355–356
Debug.vb, 331
decision making, algorithms and, 87
DefaultExt property, 267, 273
DefaultPageSettings property, 287
defaults, changing, 389–391
defining arrays, 134–137
defragmentation, 437–438
DeleteAddress method, 705
deleting

addresses from AddressBook, 705–707
from ArrayLists, 164–166
records from databases, 607–609

delimiting strings, 54
deployment, 775–776

ClickOnce, 776–781
desktop applications, 790
User Interface Editor, 785–788
web applications, 790
XCOPY, 781
XML web services, 790

DereferenceLinks property, 267, 273
derived classes, 385
Description property, 295
DescriptionAttribute class, 479
deserialization, 690
design mode, 470

controls, 470–472
design time, 218
Design window, 12
designing class libraries, 452–453
DesignMode property, 470, 471
dialog boxes

Breakpoint Hit Count, 352
Color, 516, 517–518
Error Correction Options, 327
MessageBox, 257–265

DialogsPrintDocument_PrintPage event
handler, 291

Dialogs.vb, 268
Dim keyword, 41
disconnected architecture, 556

DisplayCustomer procedure, 159
displaying Favorites, 424–427
Dispose method, 215, 344
Do loop, 121

expressions, 125
versions, 125–126

Do Until loop, 122–123
Do While loop, 124–125
docked windows, 12
Document property, 286
DocumentName property, 287
DoMousePaint method, 494, 508
double-precision floating-point numbers, 52
double quotes in strings, 52
DrawArc method, 533
DrawBezier method, 533
DrawCurve method, 533
DrawIcon method, 533
drawing, 492–496

color, ColorPalette control, 498–504
Color dialog box, 517–518
hollow circle tool, 521–525
images, 526–527
optimized, 497–498

drawing programs, 486–487
assigned buttons, 509–515
clicks, 504–507
client coordinates, 490–491
color

custom, 516–517
system colors, 519
two, 507–509

invalidation areas, 496–497
optimized drawing, 497–498
raster graphics, 487
screen coordinates, 490–491
Tools menu, 520
vector graphics, 487–488

DrawLine method, 533
DrawPie method, 533
DrawPolygon method, 533
DrawRectangle method, 502
DrawString method, 292
DropDownItems property, 305
DropShadowBitmapEffect property, 192
dynamic arrays, 180

ReDim keyword, 180–182
Dynamic Help, 23
dynamic menu, 8

dynamic menu

bindex.indd 859bindex.indd 859 4/2/08 9:02:22 AM4/2/08 9:02:22 AM

860

E
e-mail, sending, 692–693
edit box

clearing, 242–244
creating, 240–241

Edit menu, 8
coding, 310–312

EditText property, 242
Else statement, 90–91
ElseIf statement, 91–92
EmailHashtable.Add method, 175
Empty Workflow Project, 739
Enabled property, 322
encapsulation, 365
EndsWith method, 417
enumerations, 145–149

invalid values, 152
state, 150–152

Error Correction Options dialog box, 327
error handling, 325, 358

exceptions, 358
structured, 359–360
structured error-handling statements, 358
testing error handler, 360–361

Error List tab, 327
Error List window, 327
errors

execution, 329
logic, 329–330
run-time, 329
semantic, 329–330
syntax errors, 326–329
unhandled, 347

event-driven programming, 2–3, 211
event handlers

btnAdd_Click, 41
btnCheckNumbers_Click, 97
btnServer_Click, 625
CheckNumbers_Click, 96
DialogsPrintDocument_PrintPage, 291
Load, 138
lstData_SelectedIndexChanged, 113
SelectedIndexChanged, 106

event procedures
btnDelete_Click, 607
btnPerformSort_Click, 592
btnUpdate_Click, 605

Event statement, 465
EventArgs class, 217

events, 2
ApplicationCopyrightChanged, 466
button events, 212–219
Click, 212
consuming, 467–469
firing, 212
LinkClicked, 421
MouseEnter, 216
MouseLeave, 216
MouseMove, 494
objects, 365
OnPaintBackground, 528
PrintPage, 287
Resize, 498, 528
responding to, 211–219
ScreenBoundsChanged, 468
ScreenWorkingAreaChanged, 469
TextChanged, 224
Tick, 472
user controls, 465–467

evidence, CAS (code access security), 837–838
Exception Assistant, 345–347
exception handlers, 96
exception handling, 34
exceptions, 358
ExecuteNonQuery method, SqlCommand class, 562
ExecuteScalar method, 601
executing errors, 329
execution engine, 756
execution errors, 329
.exif images, 525
ExitMenuItem class, 427
Expression Blend, 185
Expression Design, 185
extensibility, 3
Extension property, 411

F
FavoriteCollection class, 415
Favorites, 404–406

displaying, 424–427
instances, 418–420
viewing, 420–422

Favorites class, 407
Favorites folder, scanning, 413–418
Favorites tray, building, 422–424
Favorites viewer, 403

class libraries, 442
class library, 442

e-mail, sending

bindex.indd 860bindex.indd 860 4/2/08 9:02:23 AM4/2/08 9:02:23 AM

861

In
de

x

classes, 407–409
Favorites folder, 413–418
WebFavorite, 409–412

FavoritesFolder property, 414
File menu, 8

coding, 308–309
FileInfo class, 411
FileName property, 267, 273
FileNames property, 267, 273
files, XML, loading, 688–691
Fill method, 565–566
FillDataSetAndView, 588
FillDataSetAndView method, 588
FillEllipse method, 490
FillRectangle method, 502
Filter property, 267, 274
FilterIndex property, 267, 274
Finalize method, 214
firing events, 212
floating-point numbers, 45

double-precision, 52
floating windows, 12
FolderBrowserDialog control, 294

properties
Description, 295
RootFolder, 295
SelectedPath, 295
ShowNewFolderButton, 295

using, 295–298
Font property, 278
FontDialog control

properties
AllowScriptChange, 278
Color, 278
Font, 278
FontMustExist, 278
MaxSize, 279
MinSize, 279
ShowApply, 279
ShowColor, 279
ShowEffects, 279
ShowHelp, 279
using, 279–282

ShowDialog method, 279
FontFamily property, 205
FontMustExist property, 278
For Each . . . Next loop, 120–121

arrays and, 137–139
ForeColor property, 243
Foreground property, 250

formatting, strings, 59–60
localized, 60

formatting strings, 59–60
Form_Load, 590–591
forms

building, 219–223
multiple, About box, 251–254
user controls, adding, 461–462

forms authentication, 654
configuration, 654–662

For...Next loop, 115–117
FreeMemory property, 341
French locale settings, 60
front-end applications, 3
FullOpen property, 283
functions

aggregate, 601
CountWords, 230
CType, 96
getElementById, 627
TaskBarHeight, 465

G
GACUtil, 791
Gacutil utility, 450
garbage collection, 435–436
GC (Garbage Collection), 435–436
Generics class, 333

type constraints, 339
GetButtonAt method, 506
GetDirectories method, 121
getElementById function, 627
GetFolderPath method, 416
GetHashCode method, 172
GetHicon method, 480
GetSquareRoot method, 731
.gif images, 525
gigabytes, 70
global.asax, 622
GraphicColor property, 507
graphics

client coordinates, 490–491
raster graphics, 487
screen coordinates, 490–491
vector graphics, 487–488

Graphics class
DrawString method, 292
MeasureString method, 292

GraphicsCircle class, 488–490

GraphicsCircle class

bindex.indd 861bindex.indd 861 4/2/08 9:02:23 AM4/2/08 9:02:23 AM

862

GraphicsItem class, 488–490
GraphicTool property, 495
Greater Than operator, 97–98
Greater Than or Equal To operator, 97–98
Grid element (XAML), 188

HorizontalAlignment attribute, 188
VerticalAlignment attribute, 188

GridView, 645–651
GridView control, attributes

AllowPaging, 650
AllowSorting, 650
AlternatingRowStyle, 650
AutoGenerateColumns, 650
BoundField, 650
Columns, 650
CommandField, 650
DataKeyNames, 650
DataSourceID, 650
HeaderStyle, 650
ID, 650
PagerStyle, 650
Runat, 650

H
Handles Button1.Click statement, 76
Handles keyword, 218
hardware, abstraction, 2
hashtables, 172–176

case sensitivity, 179
Clear method, 176
CollectionBase class and, 178
CustomerCollection class, 175
keys, 172
objects, adding, 172
Remove method, 176
RemoveAt method, 176

HelloUser project, 10–11, 13–14
code, adding, 19–22
controls, adding, 15–18

Help menu, 9
Help system, 23–24
hierarchical nature of namespaces, 396
hit count, breakpoints, 352–353
hollow circle tool, 521–525
Hour property, 64, 149
HTML (HyperText Markup Language),

620–621
Hungarian notation, 18

I
.ico images, 525
icons

breakpoints, 349–350
lists, 214
MessageBox dialog box, 258

IDE (Integrated Development Environment)
menu, 8–9
profile setup page, 7–8
syntax errors and, 326
toolbars, 9–10

IDisposable interface, 340, 413
implementing, 334

If statement
nested, 92
single-line, 92–93

If . . . Then statement, 88–89
ignoring members from AddressBook, 698–700
IIS (Internet Information Services), 620
IISReset, 791
ILDasm, 791
Image property, 234, 475
images, 525–526

aspect ratio, 530–533
drawing, 526–527
menus, 302
scaling, 528–530

ImageTransparentColor property, 234
Implements statement, 340
Imports statement, 398, 445

StringBuilder class and, 207
infinite loops, 126, 329

intIndex and, 330
Info class, 460
inheritance, 169, 384–385

classes, 394–395
methods, 385–387
.NET Framework, 401–402
properties, 385–387

Inherits keyword, 385
Inherits statement, 473
InitialDirectory property, 267, 274
InitializeComponent method, 215, 231
initializing arrays, with values, 144–145
initializing arrays with values, 144–145
InitLayout method, 471
InstallUtil, 791
instances of classes, 367

GraphicsItem class

bindex.indd 862bindex.indd 862 4/2/08 9:02:23 AM4/2/08 9:02:23 AM

863

In
de

x

instantiation, 367
constructors and, 382

intCharactersToPrint variable, 292
value, 293

intCount variable, 118
integers, 45

integer math, 45–48
floating-point math, 50–52
shorthand, 48–50

IntegralHeight property, 160
integrating Address Book project (XML),

707–714
IntelliSense, syntax errors and, 328
Internet

Favorites, 404–406
shortcuts, 404–406

intIndex
infinite loops and, 330

intInnerLoop, incrementing, 128
intLinesPerPage variable, 292
intNumber variable, 40
intRandomNumber, 123
invalid values, enumerations, 152
invalidation areas, drawing programs, 496–497
IsMoving method, 380–382
ISquareRoot interface, 731
Items collection, 107
items in ArrayLists, 167
Items property, 239
ItemsSource property

ComboBox class, 207

J
Java, 28
JavaScript, 621
.jpeg images, 525

K
key pairs, creating, 447
keywords

Dim, 41
Handles, 218
Inherits, 385
Me, 309
MustInherit, 488
MustOverride, 489
Overridable, 393

Preserve, 182–183
Property, 377
Public, 158
ReadOnly, 332
ReDim, 180–182, 182
Shadows, 178
Step, 117–119
As String, 139
Sub, 75
WithEvents, 291
WriteOnly, 376

kilobytes, 70

L
Label element (XAML), 188

Height attribute, 188
HorizontalAlignment attribute, 188
Margin attribute, 188
Name attribute, 188
VerticalAlignment attribute, 188
Width attribute, 188

lblAddressNumber control, 697
lblResults, 221
length of strings, 56–57
Length property, 411
Less Than operator, 95–96
Less Than or Equal To operator, 96–97
libraries

class libraries
adding, 442
creating, 440–441
designing, 452–453
Favorites viewer, 442
moving classes between projects, 443
third-party, 453–454

control libraries, 458
LinkClicked event, 421
Links property, 421
LINQ (Language-Integrated Query), 610
ListBox class, Items collection, 107
ListCustomer method, 335
List<T> class, 342
ListViewItem object, 425
literals, dates, 66–67
Load event, 137
Load event handler, 138
loading addresses in AddressBook, 701–702
localized formatting, strings, 60

localized formatting, strings

bindex.indd 863bindex.indd 863 4/2/08 9:02:24 AM4/2/08 9:02:24 AM

864

Locals window, debugging, 356–358
Location property, 205
logic errors, 329–330

comparisons and, 330
Login control, 663
login controls, 662–673
LoginName control, 663
LoginStatus control, 663
LoginView control, 663, 671
lookup tables

hashtables and, 172
looping, 87, 114

backward, 119–120
breakpoints and, 348
Do loop, 121
Do loops, 114
Do Until loop, 122–123
Do While loop, 124–125
For Each . . . Next loop, 120–121
For . . . Next loop, 115–117
infinite, 126, 131–132, 329
For loops, 114
nested loops, 127–128
quitting loops early, 128–131
Step keyword, 117–119

lstCustomers, 160
lstData_SelectedIndexChanged event handler, 113
lstFriends, 134

M
MageUI, 791
managed code, 34
managed data, 34
manipulating dates, 67–68
MaxSize property, 279
Me keyword, 309
MeasureString method, 292
megabytes, 70
memory

FreeMemory property, 341
TotalMemory property, 341

memory management, 434–435
garbage collection, 435–436

menu, 8–9
MenuItem object, 425
menus, 301

& (ampersand) in name, 305
access keys, 302
Build, 9

check marks, 302
coding, 308–309
context menus, 316–317

creating, 317–320
controls, 306–308
creating, 304–306
Data, 9
Debug, 9
DropDownIItems property, 305
Edit, 8
EditToolStripMenuItem, 305
File, 8
FormattingToolStripMenuItem, 305
Help, 9
images, 302
items, enabling/disabling, 320–323
MainToolStripMenuItem, 305
Project, 9
Properties window and, 303–304
separators, 302
shortcut keys, 302
Test, 9
toolbars, 306–308
ToolbarToolStripMenuItem, 305
Tools, 9
ToolsToolStripMenuITem, 305
View, 8
Window, 9

MenuStrip control, 301
ContextMenuStrip control and, 316

MessageBox class, 258, 463
Show method, 208, 258

MessageBox dialog box, 257–258
Asterisk icon, 258
buttons

AbortRetryIgnore, 259
default, 259
OK, 259
OKCancel, 259
RetryCancel, 259
YesNo, 259
YesNoCancel, 259

DefaultDesktopOnly option, 260
Error icon, 258
examples, 262–265
Exclamation icon, 258
Hand icon, 258
Information icon, 258
None icon, 258
Question icon, 258

Locals window, debugging

bindex.indd 864bindex.indd 864 4/2/08 9:02:24 AM4/2/08 9:02:24 AM

865

In
de

x

RightAlign option, 260
RTLReading option, 260
ServiceNotification option, 260
Show method, 260–261
Stop icon, 258
three button, 263–265
two-button, 262–263
Warning icon, 258

Method Name combo box, 214
methods, 73–74, 76–77. See also procedures

Add, 168, 169
AddItemsToList, 139
AppendLine, 208
Application.Exit, 427
btnAnotherIf_Click, 90
btnInitializingArraysWithValues_Click, 181
btnMoveFirst_Click, 594
building, 78–81
CalculateAreaFromRadius, 80
Clear, 176
ClearEditBox, 242
ClearList, 116, 135
Close, 309
ColorPalette_MouseUp, 514
ColorPalette_Resize, 503
Compare, 104
CreateCustomer, 168
DeleteAddress, 705
Dispose, 215, 267, 344
DoMousePaint, 494, 508
DrawArc, 533
DrawBezier, 533
DrawCurve, 533
DrawIcon, 533
DrawLine, 533
DrawPie, 533
DrawPolygon, 533
DrawRectangle, 502
DrawString, 292
EmailHashtable.Add, 175
EndsWith, 417
ExecuteNonQuery, 562
ExecuteScalar, 601
Fill, 565–566
FillEllipse, 490
FillRectangle, 502
Finalize, 214
FontDialog control, 279
GetButtonAt, 506
GetDirectories, 121

GetFolderPath, 416
GetHashCode, 172
GetHicon, 480
GetSquareRoot, 731
implementations, creating, 389
inheritance, 385–387
InitializeComponent, 215
InitLayout, 471
IsMoving, 380–382
ListCustomer, 335
MeasureString, 292
MoveNext, 707
MovePrevious, 707
names, 81–82
New, 214
NewToolStripMenuItem_Click, 309
objects, 365
OpenFile, 267
OpenFileDialog

Dispose, 267
OpenFile, 267
Reset, 267
ShowDialog, 267

overloading, 142
tooltips and, 328

overriding, 392–394
parameters, 74
passing data, 74
PopulateAddressFormFromAddress, 697
PopulateAddressFromForm, 684
Print, 287
ReadAllText, 411
reasons to use, 74
RedText, 250
Remove, 169, 176
RemoveAt, 176, 706
Reset, 267
reusing, 77–78
Reverse, 144
SaveFileDialog control, 274
ScanFavorites, 419
self-contained, 82
SetPoint, 489
shared, 428, 433–434
Show, 208
ShowDialog, 267, 272, 284
Sort, 142
Split, 230
SquareRoot, 724–725
Substring, 58

methods

bindex.indd 865bindex.indd 865 4/2/08 9:02:25 AM4/2/08 9:02:25 AM

866

methods (continued)
System.Object.GetHashcode, 172
ToggleMenus, 322
ToLower, 111
ToString, 53, 107, 163
ToUpper, 330
Trim, 230
UpdateDisplay, 226
user controls, 464–465
WriteLine, 743

Microsoft
Java, 28
MSN, 26–27
.NET, 27–28
reliance on Windows, 25–26
resources, 794–795

MinPasswordLength variable, 428
MinSize property, 279
mobile applications, 755

ActiveSync, 756–758
CLR, 756
CLR (Common Language Runtime), 756
Compact Framework, types, 758–759
Pocket PC game, building, 761–773
Windows Mobile Device Center, 756–758

mouse, GraphicsCircle object, 491–496
MouseEnter event, 216
MouseLeave event, 216
MouseMove event, 494
MoveNext method, 707
MovePrevious method, 707
MSF (Microsoft Solutions Framework), 827

deployment phase, 831–832
developing phase, 830–831
envisioning phase, 829–830
planning phase, 830
Process Model, 828
success, 833
Team Model, 828
testing phase, 831
tradeoffs, 832–833

MultiLine property, 240
multiple forms, About dialog box,

251–254
multiple selections, 112–113
Multiselect property, 267
multitiered applications, 445–446
MustInherit keyword, 488
MustOverride keyword, 489

My namespace, 121, 397
My.Application class, 397
My.Computer class, 397
My.Computer.Info namespace, 341
My.Forms class, 397
My.Settings class, 397

N
Name property, 238
namespaces, 396–397, 587–588

ADO.NET data namespaces, 557–558
creating, 399–401
hierarchical nature of, 396
My, 397
My.Computer.Info, 341
names, 397–398
System, 396
System.Data, 557
System.Data.OleDb, 557
System.Data.SqlClient, 557
System.Drawing.Printing, 290

NaN (not a number), 52
navigating AddressBook, 704–705
navigation buttons, 591–592
negative infinity, 52
nested loops, 127–128
.NET Framework, 27–28

classes, 30–31
base classes, 31

exception handling, 34
inheritance, 401–402
interoperation, 34
new additions, 849–850
WCF (Windows Communication Foundation), 849
WCS (Windows CardSpace), 849
WPF (Windows Presentation Foundation), 849
WWF (Windows Workflow Foundation), 849

new addresses in AddressBook,
702–703

New method, 214
NewToolStripMenuItem_Click method, 309
NodeType property, 713
Not Equal To operator, 93–94
NotifyIcon control, 423
numbers

data types, 45
floating-point, 45
integers, 45

methods (continued)

bindex.indd 866bindex.indd 866 4/2/08 9:02:25 AM4/2/08 9:02:25 AM

867

In
de

x

O
Object Browser, viewing classes,

454–455
Object class, 394
object-oriented programming

compaction, 437–438
defragmentation, 437–438
memory management and, 434–435
polymorphism, 391–392
releasing resources, 436–437

objects, 363–364
abstract, 366
Access, 536
behavior, 364, 370–371
code reusability, 368–369
Color property, 372–374
declaring, 587–588
designing, 369–370
encapsulation, 365
events, 365
identity, 364
inheritance, 384
instances, 373
instantiation, 373
methods, 365
Microsoft Access, 536
polymorphism, 391–392
properties, 365
SolidBrush, 490
state, 364, 370
structures and, 395
System.Collections.ArrayList, 168
System.Windows.Forms.ListBox

.ObjectCollection, 168
visibility, 366–367

objFileInfo object, 410
objStringFormat object

Trimming property, 292
ODBC (Open Database Connectivity), 557
online resources

Microsoft, 794–795
P2P.Wrox.com, 794

OnPaintBackground event, 528
OpenFileDialog control, 265–266

methods
Dispose, 267
OpenFile, 267
Reset, 267

ShowDialog, 267
properties

AddExtension, 266
AutoUpgradeEnabled, 266
CheckFileExists, 266
CheckPathExists, 267
DefaultExt, 267
DereferenceLinks, 267
FileName, 267
FileNames, 267
Filter, 267
FilterIndex, 267
InitialDirectory, 267
Multiselect, 267
ReadOnlyChecked, 267
SafeFileName, 267
SafeFileNames, 267
ShowHelp, 267
ShowReadOnly, 267
Title, 267
ValidateNames, 267

using, 268–272
operators

comparison, 93
And, 100–102
Greater Than, 97–98
Greater Than or Equal To, 97–98
Less Than, 95–96
Less Than or Equal To, 96–97
Not Equal To, 93–94
Or, 98–100

division (/), 47
multiplication (*), 47
Or, 100
shorthand, 48
subtraction (�), 47

optimized drawing, 497–498
optimized drawing, drawing programs,

497–498
Or operator, 98–100
ORDER BY clause (SQL), 538
Orientation property, 643
overloading methods, 142

tooltips and, 328
Overridable keyword, 393
overriding

constructors, 390–391
methods, 392–394

OverwritePrompt property, 274, 277

OverwritePrompt property

bindex.indd 867bindex.indd 867 4/2/08 9:02:25 AM4/2/08 9:02:25 AM

868

P
Paint program, user controls, 485–486
PaintCanvas class, 507, 521
PaintEventArgs object, ClipRectangle

property, 498
parameters

connection strings as, 558
passing arrays as, 139–140
passing by value, 80

Parameters collection, SqlCommand class,
561–562

Pascal casing, 81
passing

arrays as parameters, 139–140
parameters by value, 80

Password property, 431
PasswordRecovery control, 663
PDAs (personal digital assistants), 755

environment, 755–756
permissions, CAS (code access security), 837
petabytes, 70
platform independence, 620
.png images, 525
Pocket PC game, building, 761–773
polymorphism, 391–392
PopulateAddressFormFromAddress

method, 697
PopulateAddressFromForm method, 684
Position property, 597
positive infinity, 52
P2P.Wrox.com, 794
presentation tier, 445
Preserve keyword, 182–183

arrays and, 182–183
Print dialog box, 285
Print method, 287
PrintController property, 287
PrintDialog control, 285

properties
AllowCurrentPage, 286
AllowPrintToFile, 286
AllowSelection, 286
AllowSomePages, 286
Document, 286
PrinterSettings, 286
PrintToFile, 286
ShowHelp, 286
ShowNetwork, 286

using, 286, 288–294

PrintDocument class, 287
Print method, 287
properties

DefaultPageSettings, 287
DocumentName, 287
PrintController, 287
PrinterSettings, 287

printer properties, 285
printer selection, 285
PrinterSettings property, 286, 287
printing documents, 287

number of characters on page, 292
print area, 292
StringFormat object and, 292

PrintPage event, 287
PrintToFile property, 286
private assemblies, 789
Private Function . . . End Function block, 80
procedures, 73. See also methods

DisplayCustomer, 159
shared procedures, 428

Professional Visual Basic 2008, 795–796
programming declaratively, 645–651
programming languages, 39
Project menu, 9
properties, 64

ActiveControl, 312
AddExtension, 266, 273
AllowCurrentPage, 286
AllowFullOpen, 283
AllowPrintToFile, 286
AllowScriptChange, 278
AllowSelection, 286
AllowSomePages, 286
AnyColor, 283
ApplicationName, 462
AutoUpgradeEnabled, 266, 273
AvailablePhysicalMemory, 341
BackColor, 516
BackgroundImage, 526–527, 527
BitmapEffect, 192
breakpoints, 354
ButtonAssignment, 512, 514
CanUndo, 322
cellpadding, 669
cellspacing, 669
CheckFileExists, 266, 273
CheckOnClick, 306
CheckPathExists, 267, 273
ClipRectangle, 498

Paint program, user controls

bindex.indd 868bindex.indd 868 4/2/08 9:02:26 AM4/2/08 9:02:26 AM

869

In
de

x

Color, 278, 283, 373
ColorDialog control, 283

AllowFullOpen, 283
AnyColor, 283
Color, 283
CustomColors, 283
FullOpen, 283
ShowHelp, 283
SolidColorOnly, 283

ContextMenuStrip, 316
Copyright, 460
CreateParams, 474
CreatePrompt, 273
CurrentAddressIndex, 697, 703
CustomColors, 283
CustomerID, 338
CustomerName, 338
DataBindings, 580
DataFilename, 684
DayOfWeek, 65
DefaultExt, 267, 273
DefaultPageSettings, 287
DereferenceLinks, 267, 273
Description, 295
DesignMode, 470, 471
Document, 286
DocumentName, 287
DropDownItems, 305
DropShadowBitmapEffect, 192
EditText, 242
Enabled, 322
Extension, 411
FavoritesFolder, 414
FileName, 267, 273
FileNames, 267, 273
Filter, 267, 274
FilterIndex, 267, 274
FolderBrowserDialog control, 295

Description, 295
RootFolder, 295
SelectedPath, 295
ShowNewFolderButton, 295

Font, 278
FontDialog control, 278–279

AllowScriptChange, 278
Color, 278
Font, 278
FontMustExist, 278
MaxSize, 279
MinSize, 279

ShowApply, 279
ShowColor, 279
ShowEffects, 279
ShowHelp, 279

FontFamily, 205
FontMustExist, 278
ForeColor, 243
Foreground, 250
FreeMemory, 341
FullOpen, 283
GraphicColor, 507
GraphicTool, 495
Hour, 64, 149
Image, 234, 475
ImageTransparentColor, 234
implementations, creating, 389
inheritance, 385–387
InitialDirectory, 267, 274
IntegralHeight, 160
Items, 239
ItemsSource, 207
Length, 411
Links, 421
Location, 205
MaxSize, 279
MinSize, 279
MultiLine, 240
Multiselect, 267
Name, 238
NodeType, 713
objects, 365
OpenFileDialog control

AddExtension, 266
AutoUpgradeEnabled, 266
CheckFileExists, 266
CheckPathExists, 267
DefaultExt, 267
DereferenceLinks, 267
FileName, 267
FileNames, 267
Filter, 267
FilterIndex, 267
InitialDirectory, 267
Multiselect, 267
ReadOnlyChecked, 267
SafeFileName, 267
SafeFileNames, 267
ShowHelp, 267
ShowReadOnly, 267
Title, 267

properties

bindex.indd 869bindex.indd 869 4/2/08 9:02:26 AM4/2/08 9:02:26 AM

870

properties (continued)
ValidateNames, 267

Orientation, 643
OverwritePrompt, 274
Password, 431
Position, 597
PrintController, 287
PrintDialog control, 286

AllowCurrentPage, 286
AllowPrintToFile, 286
AllowSelection, 286
AllowSomePages, 286
Document, 286
PrinterSettings, 286
PrintToFile, 286
ShowHelp, 286
ShowNetwork, 286

PrintDocument class, 287
DefaultPageSettings, 287
DocumentName, 287
PrintController, 287
PrinterSettings, 287

PrinterSettings, 286, 287
PrintToFile, 286
read-only, 374
read/write, 377–380
reading, 376
ReadOnly, 332
ReadOnlyChecked, 267
Replace, 61
RootFolder, 295
SafeFileName, 267
SafeFileNames, 267
SaveFileDialog control, 273–274

AddExtension, 273
AutoUpgradeEnabled, 273
CheckFileExists, 273
CheckPathExists, 273
CreatePrompt, 273
DefaultExt, 273
DereferenceLinks, 273
FileName, 273
FileNames, 273
Filter, 274
FilterIndex, 274
InitialDirectory, 274
OverwritePrompt, 274
ShowHelp, 274
SupportMultiDottedExtensions, 274
Title, 274

ValidateNames, 274
SelectedIndex, 107
SelectedPath, 295
SelectionLength, 322
shared, 428, 429–132
ShowApply, 279
ShowColor, 279
ShowEffects, 279
ShowHelp, 267, 274, 279, 283, 286
ShowNetwork, 286
ShowNewFolderButton, 295
ShowReadOnly, 267
Size, 219
SolidColorOnly, 283
Speed, 375
SqlConnection.ConnectionString, 558
StartPosition, 219
StatusText, 240
Stretch, 233
structures, 159
SupplementalExplanation, 475, 479
SupportMultiDottedExtensions, 274
Title, 267, 274
ToolTip, 238
ToolTipText, 234
TotalMemory, 341
TotalPhysicalMemory, 341
Trimming, 292
user controls, 462–464
ValidateNames, 267, 274
Visible, 307
WindowState, 423

Properties window, 12, 303–304
menus and, 303–304

Property keyword, 377
property tax listing form workflow, 744–753
Property . . . End Property statement, 148
Public keyword, 158

Q
queries (databases), 536

creating, 539–543
LINQ and, 610–614

QuickWatch, 355–356

R
radCountChars radio button, 227
radio buttons, 221

properties (continued)

bindex.indd 870bindex.indd 870 4/2/08 9:02:27 AM4/2/08 9:02:27 AM

871

In
de

x

RaiseEvent statement, 466
raster graphics, 487
read-only properties, 374
read/write properties, 377–380
ReadAllText method, 411
reading properties, 376
ReadOnly keyword, 332
ReadOnly property, 332
ReadOnlyChecked property, 267
records (databases)

adding, 597–604
deleting, 607–609
updating, 605–607

Rectangle class, 498
ReDim keyword, 180–182, 182
redimension, 180
RedText method, 250
reference types, 395
References dialog box, registered assemblies,

450–451
RegAsm, 791
registering assemblies, 449

Gacutil utility, 450
References dialog box, 450–451

releasing resources, 436–437
Remove method, 169, 176
RemoveAt method, 176, 706
Replace property, 61
request validation, 632
Resize event, 498, 528
resources, releasing, 436–437
reusing code, 73, 368–369
reusing methods, 77–78
Reverse method, 144
reversing arrays, 143–144
roles, WAT and, 673–675
RootFolder property, 295
RoutedEventArgs class, 218
RowFilter property, 568
run mode, 470
run time, 218
run-time errors, 329
Run To Cursor icon, 350

S
SafeFileName property, 267
SafeFileNames property, 267
SaveFileDialog control, 273,

274–278

methods, 274
properties

AddExtension, 273
AutoUpgradeEnabled, 273
CheckFileExists, 273
CheckPathExists, 273
CreatePrompt, 273
DefaultExt, 273
DereferenceLinks, 273
FileName, 273
FileNames, 273
Filter, 274
FilterIndex, 274
InitialDirectory, 274
OverwritePrompt, 274
ShowHelp, 274
SupportMultiDottedExtensions, 274
Title, 274
ValidateNames, 274

scaling images, 528–530
ScanFavorites method, 419
scope, 82–84
screen coordinates, 490–491
screen coordinates, drawing programs, 490–491
screen coordinates, graphics, 490–491
ScreenBoundsChanged event, 468
ScreenWorkingAreaChanged event, 469
SDLC (software development life cycle), 828
search functionality, 594–597
security, CLR (Common Language Runtime),

33–34
security policy, CAS (code access security), 837
Select Case, 105–108

case-insensitive, 108–111
data types, 114

Select Case . . . End Select block, 107
Select Resource dialog box, 307
SELECT statement (SQL), 537–539
SelectCommand property, 563–564
SelectedIndex property, 107
SelectedIndexChanged event handler, 106
SelectedPath property, 295
SelectionLength property, 322
selections, multiple, 112–113
self-contained methods, 80
semantic errors, 329–330
sending e-mail, 692–693
SendMessage API, 477
separators in menus, 302
Sequential Workflow Console Application, 739

Sequential Workfl ow Console Application

bindex.indd 871bindex.indd 871 4/2/08 9:02:27 AM4/2/08 9:02:27 AM

872

Sequential Workflow Library, 739
SerializableData class (XML), 682–688
Server parameter (SQL), 558
server-side processing web applications,

624–628
Service class, 724
SetPoint method, 489
setup application, creating, 782–785
Shadows keyword, 178
shared assemblies, 789–790
shared methods, 433–434
shared procedures, 428
shared properties, 429–432
SharePoint 2007 State Machine Workflow, 739
SharePoint 2007 Sequential Workflow, 739
shortcut keys, 302
shortcuts, Internet, 404–406
shorthand operators, 48
Show method, 208

MessageBox class, 260–261
ShowAboutBox, 252
ShowApply property, 279
ShowColor property, 279
ShowDialog method, 272, 284
ShowEffects property, 279
ShowHelp property, 267, 274, 279, 283, 286
ShowNetwork property, 286
ShowNewFolderButton property, 295
ShowPosition, 590
ShowReadOnly property, 267
signing assemblies, 447–449
single-line if statement, 92–93
Size property, 219
SkewTransform element (XAML), 195
SOAP, 719–721
SoapChannel subroutine, 733
SolidBrush object, 490
SolidColorOnly property, 283
Solution Explorer, 12
Sort method, 142
Sort property, 568
sorting, arrays, 142
sorting functionality, 592–594
Speed property, 375
Split method, 230
splitting strings, 230
SQL (Structured Query Language)

Database parameter, 558
ORDER BY clause, 538
SELECT statement, 537–539

Server parameter, 558
WHERE clause, 537

SqlCommand class, 560–562
CommandText property, 560–561
Connection property, 560
ExecuteNonQuery method, 562
Parameters collection, 561–562

SqlConnection class
connection string parameters, 558–559
opening/closing connection, 559

SqlConnection.ConnectionString property, 558
SqlDataAdapater class, 562–563

Fill method, 565–566
SelectCommand property, 563–564

SqlDataSource control, attributes
ConnectionString, 648
ID, 648
Parameter: Name, 649
Parameter: Type, 649
ProviderName, 648
Runat, 648
SelectCommand, 649
UpdateCommand, 649
UpdateParameters, 649

SquareRoot class, 728
SquareRoot method, 724–725
SSL (Secure Sockets Layer), 838–839
StartPosition property, 219
state, 150–152
State Machine Workflow Console

Application, 739
State Machine Workflow Library, 739
state of objects, 370

storing, 371–372
statements

Case, 109
Case Else, 113–114, 114
Else, 90
ElseIf, 91
Event, 465
Handles Button1.Click, 76
Imports, 398
Inherits, 473
Property . . . End Property, 148
RaiseEvent, 466
Structure . . . End Structure, 158
Using, 344
With . . . End With, 271

status bar, adding, 238–240
StatusStrip control, 238

Sequential Workfl ow Library

bindex.indd 872bindex.indd 872 4/2/08 9:02:27 AM4/2/08 9:02:27 AM

873

In
de

x

StatusStripLabel, 238
StatusText property, 240
Step Into icon, 349
Step keyword, 117–119
Step Out icon, 350
Step Over icon, 349
strData variable, 410
Stretch property, 233
stretching toolbar, 233
strFileName variable, 272
String class

Compare method, 330
Split method, 230
Trim method, 230

String data type, 107
string literals, 55
StringBuilder class, 208

AppendLine method, 208
Imports statement and, 207

StringBuilder object, declaring, 208
String.Format, 59–60
StringFormat object

printed output and, 292
strings, 52–54

algorithms and, 52
comparisons, case-insensitive, 103–104
concatenation, 54–55

operator, 55
delimiting, 54
double quotes, 52
formatting, 59–60, 63–64

localized, 60
length, 56–57
splitting, 230
substrings, 57–58

replacing, 60–61
trimming, 230

strLines variable, 410
strLowerCaseLetters variable, 344
strName variable, 82
strongly typed collections, 168
strPassword variable, 344
strPrintData variable, 292
strPrintRecord variable, 291, 292
strResults, 54
strStates array, 206
structured error handling, 359–360
Structure . . . End Structure statement, 158
structures, 155–156, 395

building, 156–159

Name properties, 156
Text properties, 156

properties, 159
value types, 395

Sub keyword, 75
subclasses, 385
subroutines, constructors, 383
Substring method, 58
substrings, 57–58

replacing, 60–61
subsystems approach, 29
superclasses, 385
SupplementalExplanation property, 475, 479
SupportMultiDottedExtensions property, 274
syntax errors, 326–329

AutoCorrect options, 326
IDE, 326
IntelliSense and, 328
tooltips, 326

System namespace, 396
System.Array class, 142
System.Collections.ArrayList object, 168
System.Collections.CollectionBase, 168
System.Data namespace, 557
System.Data.OleDb namespace, 557
System.Data.SqlClient namespace, 557
System.Drawing.Printing namespace, 290
System.Drawing.SystemColors class, 519
System.Object.GetHashcode method, 172
System.Windows.Forms.ListBox.ObjectCollection

object, 168
System.Xml.Serialization.XmlSerializer

class, 688

T
TableAdapter component, 545
tables (databases), 536
TaskBarHeight function, 465
terabytes, 70
Test menu, 9
text, tooltips, 234
text boxes, txtSearchCriteria, 596
Text Editor project, 232–233
Text property, 219
TextBox controls, 240, 549

data binding, 546–549
TextBox element, 189
TextBox element (XAML), 189
TextChanged event, 224

TextChanged event

bindex.indd 873bindex.indd 873 4/2/08 9:02:28 AM4/2/08 9:02:28 AM

874

TextEditor class, 237
TextEditor.vb, 232
TextEditor.xaml, 232
third-party class libraries, 453–454
three button MessageBox dialog box,

263–265
Tic Tac Toe game, 761–773
Tick event, 472
.tiff images, 525
Title property, 267, 274
ToggleMenus method, 322
ToLower method, 111
ToolBarPanel control, 238
toolbars, 9–10

adding, 233–238
buttons

adding, 233
enabling/disabling, 320–323
responding to, 244–250

coding, 312–313
creating, 306
stretching, 233
tbrClear, 245

Toolbox, 12, 14–15, 623
ToolboxBitmapAttribute class, 476
Tools menu, 9
ToolStrip control, docking, 237
ToolTip property, 238
tooltips

overloaded methods, 328
syntax errors, 326
text, 234

ToolTipText property, 234
ToString method, 53, 107, 163
TotalMemory property, 341
TotalPhysicalMemory property, 341
ToUpper method, 330
tradeoffs, 832–833
Trim method, 230
Trimming property, 292
trimming strings, 230
Try . . . Catch . . . Finally block, 358
two-button MessageBox,

262–263
txtEdit, clearing, 242–244
txtName, 93
txtSearchCriteria text box, 596
txtValue, 95
type constraints, 338

U
UAC (User Access Control), 475
UI (user interface), 2
unhandled errors, 347
UpdateDisplay method, 226
updating database records databases, 605–607
User class, 433
user controls, 458

adding to forms, 461–462
building, 459–461
events, 465–467
methods, 464–465
Paint program, 485–486
properties, 462–464

User Interface Editor, 785–788
Using statement, 344
Using . . . End Using block, 254, 344

V
ValidateNames property, 267, 274
ValidationSummary control, 635
value conversion, 72–73
value representation, 70–72
value types, 395
values, converting, 72–73
variables, 39–42

binary, 69–70
bits, 70
blnLoadCalled, 427
bytes, 70
commas and, 100
control variables, 117
intCharactersToPrint, 292
intCount, 118
intLinesPerPage, 292
intNumber, 40
MinPasswordLength, 428
strData, 410
strFileName, 272
strLines, 410
strLowerCaseLetters, 344
strPassword, 344
strPrintRecord, 291

VBScript, 621
vector graphics, 487–488
View menu, 8

coding, 312–313

TextEditor class

bindex.indd 874bindex.indd 874 4/2/08 9:02:28 AM4/2/08 9:02:28 AM

875

In
de

x

view state, 632
Visible property, 307
Visual Basic 2008

IDE
menu, 8–9
profile setup page, 7–8
toolbars, 9–10

installing, 3–7
Visual Basic 2008 Programmer’s Reference, 796
Visual C++, 3
Visual Studio 2008, 3

new additions, 850
workflow templates, 739–740

W
WAT (Web Site Administration Tool), 654

roles, 673–675
Watch window, 354–355

QuickWatch, 355–356
WCF (Windows Communication Foundation),

717, 849
services, 726–734

WCS (Windows CardSpace), 849
web applications

browsers, 620
building, 623
client-side processing, 624–628
CSS (cascading style sheets), 621
deploying, 790
HTML, 620–621
JavaScript, 621
server-side processing, 624–628
VBScript, 621
web servers, 620

Web Forms, 619
ASP.NET, 619

web servers, 620
Web services, 717–719

building, 721–725
demonstration, 722–724
SOAP, 719–721

web sites
authentication

forms, 654–662
Windows, 654

building, 636–645
data entry, 630–635
data validation, 630–635

locations, 628–630
login controls, 662–673
look and feel, 635–645
Microsoft resources, 794–795
P2P.Wrox.com, 794

WebFavorite, 409–412
WebFavorite class, 407
WebFavoriteCollection class, 407
WebFavoriteMenuItem class, 427
weekday names, 65–66
WHERE clause (SQL), 537
whitespace, 44
Window element, 187
Window menu, 9
Windows

Microsoft’s reliance on, 25–26
Java, 28
MSN, 26–27
.NET, 27–28

writing software for, 29–32
windows

Breakpoints, 349
Data Sources, 12
Design, 12
docked, 12
Error List, 327
floating, 12
Locals, debugging, 356–358
Properties, 12, 303–304
Solution Explorer, 12
Toolbox, 12

Windows authentication, 654
Windows Forms, 619
Windows Forms Controls, 458
Windows Mobile Device Center,

756–758
Windows Workflow, 740
WindowState property, 423
With . . . End With statement, 271
WithEvents keyword, 291
.wnf images, 525
words, counting, 226–231
workflow

property tax listing form, 744–753
sequential, creating, 741–744
sequential activities, 740–741
Visual Studio templates, 739–740

Workflow Activity Library, 739
WPF Button Events, 212

WPF Button Events

bindex.indd 875bindex.indd 875 4/2/08 9:02:28 AM4/2/08 9:02:28 AM

876

WPF (Windows Presentation Foundation),
190–191, 849

Button control, 203
ComboBox control, 199
controls, 197–205
events, 205–209
Label control, 197
Location Property, 205
Properties window, 197
TextBox control, 198
user interface, 191–197

WriteLine method, 743
WriteOnly keyword, 376
Wrox Paint, 486
WWF (Windows Workflow Foundation), 849

X–Y–Z
XAML (Extensible Application Markup

Language), 185–187
AngleX attribute, 195
AngleY attribute, 196
Background property, 196
BitmapEffect property, 195
Border control, 195
Border element, 194
CenterX attribute, 195
CenterY attribute, 195
GradientStop element, 196

Height property, 195
OpacityMask element, 196
RenderTransform property, 195
SkewTransform element, 195
syntax, 187–190
Transform property, 196
Width property, 195
WPF user interface, 192–197
xmlns attribute, 187

x:Class XAML attribute, 187
XCOPY deployment, 781
XML Documentation Comment, 43
XML (Extensible Markup Language),

677–680
Address Book project, 681–682
AddressBook

creating, 694–698
deleting addresses, 705–707
ignoring members, 698–700
loading addresses, 701–702
navigating, 704–705
new addresses, 702–703

changing data, 691–692
files, loading, 688–691
sending e-mail, 692–693
SerializableData class, 682–688
web services, deploying, 790

XmlSerializer class, 686, 699–700
XmlTextReader, 713

WPF (Windows Presentation Foundation)

bindex.indd 876bindex.indd 876 4/2/08 9:02:29 AM4/2/08 9:02:29 AM

bindex.indd 877bindex.indd 877 4/2/08 9:02:29 AM4/2/08 9:02:29 AM

bindex.indd 878bindex.indd 878 4/2/08 9:02:29 AM4/2/08 9:02:29 AM

Get more
fromWrox.

Available wherever books are sold or visit wrox.com

978-0-470-18757-9 978-0-470-19137-8 978-0-470-19136-1

badvert.indd 879badvert.indd 879 4/1/08 6:51:34 PM4/1/08 6:51:34 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 880badvert.indd 880 4/1/08 6:51:35 PM4/1/08 6:51:35 PM

	Beginning Microsoft Visual Basic 2008
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who Is This Book For?
	What Does This Book Cover?
	What Do I Need to Run Visual Basic 2008?
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Welcome to Visual Basic 2008
	Event-Driven Programming
	Installing Visual Basic 2008
	The Visual Basic 2008 IDE
	Creating a Simple Application
	Using the Help System
	Summary
	Exercise

	Chapter 2: The Microsoft .NET Framework
	Microsoft's Reliance on Windows
	Writing Software for Windows
	Common Language Runtime
	The Common Type System and Common Language Specification
	Summary

	Chapter 3: Writing Software
	Information and Data
	Working with Variables
	Comments and Whitespace
	Data Types
	Storing Variables
	Methods
	Summary
	Exercises

	Chapter 4: Controlling the Flow
	Making Decisions
	The If Statement
	Select Case
	Loops
	Summary
	Exercises

	Chapter 5: Working with Data Structures
	Understanding Arrays
	Understanding Enumerations
	Understanding Constants
	Structures
	Working with ArrayLists
	Working with Collections
	Building Lookup Tables with Hashtable
	Advanced Array Manipulation
	Summary
	Exercises

	Chapter 6: Extensible Application Markup Language (XAML)
	What Is XAML?
	XAML Syntax
	Windows Presentation Foundation
	Summary
	Exercise

	Chapter 7: Building Windows Applications
	Responding to Events
	Building a Simple Application
	Creating More Complex Applications
	Using Multiple Forms
	Summary
	Exercises

	Chapter 8: Displaying Dialog Boxes
	The MessageBox Dialog Box
	The OpenDialog Control
	The SaveDialog Control
	The FontDialog Control
	The ColorDialog Control
	The PrintDialog Control
	The FolderBrowserDialog Control
	Summary
	Exercises

	Chapter 9: Creating Menus
	Understanding Menu Features
	Creating Menus
	Context Menus
	Summary
	Exercise

	Chapter 10: Debugging and Error Handling
	Major Error Types
	Debugging
	Error Handling
	Summary
	Exercises

	Chapter 11: Building Objects
	Understanding Objects
	Building Classes
	Reusability
	Designing an Object
	Constructors
	Inheritance
	Objects and Structures
	The Framework Classes
	Summary
	Exercises

	Chapter 12: Advanced Object-Oriented Techniques
	Building a Favorites Viewer
	An Alternative Favorite Viewer
	Using Shared Properties and Methods
	Understanding Object-Oriented Programming and Memory Management
	Summary
	Exercise

	Chapter 13: Building Class Libraries
	Understanding Class Libraries
	Using Strong Names
	Registering Assemblies
	Designing Class Libraries
	Using Third-Party Class Libraries
	Viewing Classes with the Object Browser
	Summary
	Exercise

	Chapter 14: Creating Windows Forms User Controls
	Windows Forms Controls
	Creating and Testing a User Control
	Exposing Properties from User Controls
	Design Time or Runtime
	Creating a Command Link Control
	Summary
	Exercise

	Chapter 15: Programming Custom Graphics
	Building a Simple Paint Program
	Dealing with Two Colors
	Working with Images
	More Graphics Methods
	Summary

	Chapter 16: Accessing Databases
	What Is a Database?
	The SQL SELECT Statement
	Queries in Access
	Creating a Customer Query
	Data Access Components
	Data Binding
	Summary
	Exercises

	Chapter 17: Database Programming with SQL Server and ADO.NET
	ADO.NET
	The ADO.NET Classes in Action
	Data Binding
	LINQ to SQL
	Summary
	Exercises

	Chapter 18: ASP.NET
	Thin-Client Architecture
	Web Forms versus Windows Forms
	Web Applications: The Basic Pieces
	Active Server Pages
	Building Web Applications
	Summary
	Exercises

	Chapter 19: Web Projects
	Web Site Authentication
	Summary
	Exercises

	Chapter 20: Visual Basic 2008 and XML
	Understanding XML
	The Address Book Project
	Integrating with the Address Book Application
	Summary
	Exercises

	Chapter 21: Distributed Computing with Windows Communication Foundation
	What Is a Web Service?
	Building a Web Service
	Understanding WCF Services
	Summary
	Exercises

	Chapter 22: Building a Sequential Workflow Using the Windows Workflow Foundation
	Visual Studio Workflow Templates
	Workflow Foundation Components
	Sequential Workflow Activities
	Creating a Sequential Worklow
	Property Tax Listing Form Workflow
	Summary
	Exercises

	Chapter 23: Building Mobile Applications
	Understanding the Environment
	Building a Pocket PC Game
	Summary
	Exercise

	Chapter 24: Deploying Your Application
	What Is Deployment?
	Creating a Visual Studio 2008 Setup Application
	User Interface Editor
	Deploying Different Solutions
	Summary
	Exercises

	Chapter 25: Where to Now?
	Online Resources
	Offline Resources (Books)

	Appendix A: Exercise Solutions
	Chapter 1
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24

	Appendix B: Using the Microsoft Solutions Framework
	Software Development Life Cycle
	Microsoft Solutions Framework
	Managing Tradeoffs
	Defining Success with the MSF
	Summary

	Appendix C: An Introduction to Code Security and SSL
	Code Access Security
	Secure Sockets Layer
	Finding Information and Answers
	Summary

	Appendix D: An Introduction to Windows CardSpace
	Using CardSpace
	Adding Cardspace to Your Site
	Info on the Internet
	Summary

	Appendix E: .NET Framework Differences
	What's New in the .NET Framework: Major Additions since Version 2.0
	What's New in the .NET Framework: Minor Additions since Version 2.0
	What's New in Visual Studio 2008
	Info on the Internet

	Index

