Wrox }ngrdmmw to I’rf}yjmm merm

—

Beginning

Microsoft’

Visual Basic
2008

Thearon Willis, Bryan Newsome

Updates, source code, and Wrox technical support at Www.wroX.com

Beginning
Microsoft® Visual Basic® 2008

Acknowledgmentsccciieiiiiiiiirr s s r s r e nananannnnnns Xi
INtroduction..........oocoe i e nnnn XXVii
Chapter 1: Welcome to Visual Basic 2008..........ccccvevmrererrnmnmrerererssssssssnsannas 1
Chapter 2: The Microsoft .NET Framework...........ccccvireimiieimireinsnesnssesnssasnnnns 25
Chapter 3: Writing Software........cccciciimimiiiiiicii i s s s e 37
Chapter 4: Controlling the FIOW........c.cciiiimiiiiiiir s s s s e 87
Chapter 5: Working with Data Structurescccoeiiiiiiiiicr e, 133
Chapter 6: Extensible Application Markup Language (XAML)cccovveurnnnnns 185
Chapter 7: Building Windows Applications.......c.cccoiicviiimiiincnneissnsnaneae, 211
Chapter 8: Displaying Dialog BOXeS......ccccrmimrmimreimreimresmsresnssesssssssssnssnsnnss 257
Chapter 9: Creating Menus.........ccciciieimiiiiiirr s s s s s s s nm s ns 301
Chapter 10: Debugging and Error Handlingcccoviiiiiiiiinnessssesnssesnnnans 325
Chapter 11.: Building Objectscccocimimimiiiiiiii i s s s s e 363
Chapter 12: Advanced Object-Oriented Techniquesc.cevrimiiiiirreinannn. 403
Chapter 13: Building Class Libraries.......c.cccciciimimimiiriiiisssssessessssssasases 439
Chapter 14: Creating Windows Forms User Controlsc.ccvcveveimiennnereneees 457
Chapter 15: Programming Custom Graphicsc.ccccvveieimiiiinrreiecnsnnnnsaases 485
Chapter 16: Accessing Databases........c.covimireimireiirisrsr s sasss 535
Chapter 17: Database Programming with SQL Server and ADO.NET 555
Chapter 18: ASP.NET.......cccoiiiiiiiriir s s s s s s s s s s n s s e m e 617
Chapter 19: Web Projects.......ccciuiiiimiimimiiii s s s s sasssssns s sasasasas 653
Chapter 20: Visual Basic 2008 and XIVILccccciiiimimreimsresssressssessssessnsanes 677
Chapter 21.: Distributed Computing with Windows

Communication Foundation..........ccceciiiiiiiiiirisi s sssesnanans 717
Chapter 22: Building a Sequential Workflow Using the Windows

Workflow Foundationccccoiiimiiimirisrisre s s sasnsnas 737
Chapter 23: Building Mobile Applications........c.cccoiiiiiiiicrcr e, 755
Chapter 24: Deploying Your Application..........ccccviiiiiiirinirinr e, 775
Chapter 25: Where to NOW?.......cccecieimiiirr s s s s s re s s s s s snnnnnannss 793

(Continued)

Appendix A: Exercise Solutions...........ccevvvirirarnsimrsrr s re s s s na s 797

Appendix B: Using the Microsoft Solutions FrameworkK..........ccccrvrrminarnnnanes 827
Appendix C: An Introduction to Code Security and SSLccceemvmveverernress 835
Appendix D: An Introduction to Windows CardSpace..........ccicorirmirurminarnnnnnns 841
Appendix E: .NET Framework Differences.......c.c.ceeevmimvmvmrmrrrsrsmsmsmsesesesasasass 849

Beginning
Microsoft® Visual Basic® 2008

Thearon Willis
and

Bryan Newsome

WILEY
Wiley Publishing, Inc.

Beginning Microsoft® Visual Basic® 2008

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-19134-7

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data

Willis, Thearon.
Beginning Microsoft Visual basic 2008 / Thearon Willis and Bryan Newsome.
. cm.
Includes index.
ISBN 978-0-470-19134-7 (paper/website)
1. Microsoft Visual BASIC 2. BASIC (Computer program language)
I. Newsome, Bryan, 1971- 1L Title.
QA76.73.B3W45556 2008

005.2'762—dc22
2008004982

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission
of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at www.wiley.com/go/permissions.

Limit of Liability /Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all war-
ranties, including without limitation warranties of fitness for a particular purpose. No warranty may be cre-
ated or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or Website may provide or recommendations it may make. Further, readers
should be aware that Internet Websites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Microsoft and Visual
Basic are registered trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com
www.wiley.com

For my daughter, Stephanie, my most precious gift from God.
For Wendy, my love and friend in Christ.
—Thearon

To Jennifer and Katelyn.
—Love, Bryan

About the Authors

Thearon Willis currently works as a senior developer and builds Windows applications and add-ins for
Microsoft Office products using Microsoft Visual Basic 2008. Over the years, Thearon has worked on a
variety of systems from mainframe to client-server development.

Bryan Newsome works as a director for a custom software solutions company specializing in Microsoft
applications. Since starting his career building Visual Basic 5 solutions, he has embraced each new
version Visual Basic and now creates all new solutions leveraging the .NET platform and VB.NET.

He provides clients with solutions and mentoring on leading-edge Microsoft technologies. For VB.NET,
Bryan is a Microsoft Certified Application Developer.

Acquisitions Editor
Katie Mohr

Development Editors
Sara Shlaer
Sydney Jones

Technical Editor
Mark Lavoie

Production Editor
Kathryn Duggan

Copy Editor
Travis Henderson

Editorial Manager
Mary Beth Wakefield

Credits

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jeremy Bagai, Word One New York Editing &
Proofreading

Indexer
Johnna VanHoose Dinse

Acknowledgments

First and foremost I want to thank God for giving me the wisdom and knowledge to share with others
and for the many talents that he has blessed me with. I would also like to thank Katie Mohr for giving
me the opportunity to write this book and Sara Shlaer and Sydney Jones for their hard work in editing.
Also thanks to all the other people at Wiley who work so hard to bring this book to market. I'd be
remiss if I didn’t thank my good friend and co-author Bryan Newsome; thanks for your hard work
and dedication.

—Thearon

So many people put so much effort into publishing this work. Thank you all; this would not be possible
without your hard work and dedication. Special thanks to Katie Mohr, Sara Shlaer, Sydney Jones, and
Mark Lavoie for making my work readable and technically sound. It was a pleasure to work with you all
over the past months. Thank you Thearon; you were a terrific mentor for me and the reason I ever had
the opportunity to write.

—Bryan

Contents

Acknowledgments Xi
Introduction XXvii
Chapter 1: Welcome to Visual Basic 2008 1
Event-Driven Programming 2
Installing Visual Basic 2008 3
The Visual Basic 2008 IDE 7
The Profile Setup Page 7
The Menu 8
The Toolbars 9
Creating a Simple Application 10
The Toolbox 14
Modified Hungarian Notation 18
The Code Editor 19
Using the Help System 23
Summary 24
Exercise 24
Chapter 2: The Microsoft .NET Framework 25
Microsoft’s Reliance on Windows 25
MSN 1.0 26
The .NET Vision 27
This Sounds like Java 28
Where Now? 29
Writing Software for Windows 29
The .NET Framework Classes 30
Executing Code 31
Common Language Runtime 32
Code Loading and Execution 33
Application Isolation 33
Security 33
Interoperation 34
Exception Handling 34
The Common Type System and Common Language Specification 35
Summary 35

Contents

Chapter 3: Writing Software 37
Information and Data 37
Algorithms 38
What Is a Programming Language? 39
Working with Variables 39
Comments and Whitespace 42
Comments 42
Whitespace 44
Data Types 44
Working with Numbers 45
Common Integer Math Operations 45
Integer Math Shorthand 48
Working with Strings 52
Using Dates 61
Boolean 68
Storing Variables 69
Binary 69
Bits and Bytes 70
Representing Values 70
Converting Values 72
Methods 73
Why Use Methods? 74
Methods You've Already Seen 75
Building a Method 78
Choosing Method Names 81
Scope 82
Summary 84
Exercises 85
Chapter 4: Controlling the Flow 87
Making Decisions 87
The If Statement 88
The Else Statement 90
Allowing Multiple Alternatives with Elself 91
Nested If Statements 92
Single-Line If Statement 92
Comparison Operators 93
String Comparison 103

Xiv

Contents

Select Case
Case-Insensitive Select Case
Multiple Selections
The Case Else Statement
Different Data Types with Select Case
Loops
The For . . . Next Loop
The For Each . . . Next Loop
The Do . . . Loop Loops
Nested Loops
Quitting Early
Infinite Loops
Summary
Exercises

Chapter 5: Working with Data Structures

105
108
112
113
114

114
115
120
121
127
128
131

132

132

133

Understanding Arrays
Defining and Using Arrays
Using For Each . . . Next
Passing Arrays as Parameters
Sorting Arrays
Going Backwards
Initializing Arrays with Values

Understanding Enumerations
Using Enumerations
Determining the State
Setting Invalid Values

Understanding Constants
Using Constants
Different Constant Types

Structures
Building Structures
Adding Properties to Structures

Working with ArrayLists
Using an ArrayList
Deleting from an ArrayList
Showing Items in the ArrayList

Working with Collections
Creating CustomerCollection
Adding an Item Property

133
134
137
139
142
143
144

145
145
150
152

153
153
155

155
156
159

160
160
164
167

168
169
170

Xv

Contents

Building Lookup Tables with Hashtable 172
Using Hashtables 172
Cleaning Up: Remove, RemoveAt, and Clear 176
Case Sensitivity 178

Advanced Array Manipulation 180
Dynamic Arrays 180
Using Preserve 182

Summary 183

Exercises 184

Chapter 6: Extensible Application Markup Language (XAML) 185

What Is XAML? 185

XAML Syntax 187

Windows Presentation Foundation 190
Creating a Rich WPF User Interface 191
Using WPF Common Controls 197
Wiring Up Events 205

Summary 209

Exercise 209

Chapter 7: Building Windows Applications 211

Responding to Events 211
Setting Up a Button Event 212

Building a Simple Application 219
Building the Form 219
Counting Characters 223
Counting Words 226

Creating More Complex Applications 232
The Text Editor Project 232
Creating the Toolbar 233
Creating the Status Bar 238
Creating an Edit Box 240
Clearing the Edit Box 242
Responding to Toolbar Buttons 244

Using Multiple Forms 251
The About Dialog Box 251

Summary 255

Exercises 255

Xvi

Contents

Chapter 8: Displaying Dialog Boxes 257
The MessageBox Dialog Box 257
Available Icons for MessageBox 258
Available Buttons for MessageBox 259
Setting the Default Button 259
Miscellaneous Options 260
The Show Method Syntax 260
Example Message Boxes 262
The OpenDialog Control 265
The OpenFileDialog Control 265
The Properties of OpenFileDialog 266
The Methods of OpenFileDialog 267
Using the OpenFileDialog Control 268
The SaveDialog Control 273
The Properties of SaveFileDialog 273
The Methods of SaveFileDialog 274
Using the SaveFileDialog Control 274
The FontDialog Control 278
The Properties of FontDialog 278
The Methods of FontDialog 279
Using the FontDialog Control 279
The ColorDialog Control 282
The Properties of ColorDialog 283
Using the ColorDialog Control 284
The PrintDialog Control 285
The Properties of PrintDialog 286
Using the PrintDialog Control 286
The PrintDocument Class 287
Printing a Document 287
The FolderBrowserDialog Control 294
The Properties of FolderBrowserDialog 295
Using the FolderBrowserDialog Control 295
Summary 298
Exercises 299
Chapter 9: Creating Menus 301
Understanding Menu Features 301
Images 302
Access Keys 302
Shortcut Keys 302

xvii

Contents

Check Marks 302
The Properties Window 303
Creating Menus 304
Designing the Menus 304
Adding Toolbars and Controls 306
Coding Menus 308
Coding the View Menu and Toolbars 312
Testing Your Code 314
Context Menus 316
Creating Context Menus 317
Enabling and Disabling Menu Items and Toolbar Buttons 320
Summary 324
Exercise 324
Chapter 10: Debugging and Error Handling 325
Major Error Types 326
Syntax Errors 326
Execution Errors 329
Logic Errors 329
Debugging 331
Creating a Sample Project 331
Setting Breakpoints 347
Debugging Using the Watch Window 354
Debugging with the Locals Window 356
Error Handling 358
Using Structured Error Handling 359
Summary 361
Exercises 362
Chapter 11.: Building Objects 363
Understanding Objects 363
Encapsulation 365
Methods and Properties 365
Events 365
Visibility 366
What Is a Class? 367
Building Classes 367
Reusability 368

xviii

Contents

Designing an Object 369
State 370
Behavior 370
Storing State 371
Real Properties 374
Read/Write Properties 377
The IsMoving Method 380

Constructors 382

Inheritance 384
Adding New Methods and Properties 385
Adding a GetPowerToWeightRatio Method 387
Changing Defaults 389
Polymorphism: Scary Word, Simple Concept 391
Overriding More Methods 392
Inheriting from the Object Class 394

Objects and Structures 395

The Framework Classes 396
Namespaces 396
The Imports Statement 398
Creating Your Own Namespace 399
Inheritance in the .NET Framework 401

Summary 402

Exercises 402

Chapter 12: Advanced Object-Oriented Techniques 403

Building a Favorites Viewer 403
Internet Shortcuts and Favorites 404
Using Classes 407
Scanning Favorites 413
Viewing Favorites 420

An Alternative Favorite Viewer 422
Building a Favorites Tray 422
Displaying Favorites 424

Using Shared Properties and Methods 428
Using Shared Procedures 428
Using Shared Methods 433

Understanding Object-Oriented Programming and Memory Management 434
Garbage Collection 435
Releasing Resources 436
Defragmentation and Compaction 437

Summary 438

Exercise 438

Xix

Contents

Chapter 13: Building Class Libraries 439
Understanding Class Libraries 440
Creating a Class Library 440
Building a Class Library for Favorites Viewer 442

A Multitiered Application 445
Using Strong Names 446
Signing Assemblies 447
Assembly Versions 449
Registering Assemblies 449
Gacutil Utility 450
Why Is My Assembly Not Visible in the References Dialog Box? 450
Designing Class Libraries 452
Using Third-Party Class Libraries 453
Viewing Classes with the Object Browser 454
Summary 455
Exercise 455
Chapter 14: Creating Windows Forms User Controls 457
Windows Forms Controls 458
Creating and Testing a User Control 458
Exposing Properties from User Controls 462
Adding Properties 462
Exposing Methods from User Controls 464
Exposing Events from User Controls 465
Design Time or RunTime 470
Creating a Command Link Control 472
Building the Command Link Control 473
Using the Command Link Control 481
Summary 484
Exercise 484
Chapter 15: Programming Custom Graphics 485
Building a Simple Paint Program 485
Creating a Project with User Controls 486
How Drawing Programs Work 486
The Graphicsltem Class 488
Screen and Client Coordinates 490
Listening to the Mouse and Drawing GraphicsCircle Objects 491
Invalidation 496

XX

Contents

Optimized Drawing 497
Choosing Colors 498
Responding to Clicks 504
Dealing with Two Colors 507
Indicating the Assigned Buttons 509
Using Advanced Colors 516
Using Different Tools 520
Implementing Hollow Circle 521
Working with Images 525
Drawing Images 526
Scaling Images 528
Preserving the Aspect Ratio 530
More Graphics Methods 533
Summary 533
Chapter 16: Accessing Databases 535
What Is a Database? 535
Microsoft Access Objects 536
Tables 536
Queries 536
The SQL SELECT Statement 537
Queries in Access 539
Creating a Customer Query 539
Data Access Components 543
DataSet 544
DataGridView 544
BindingSource 545
BindingNavigator 545
TableAdapter 545
Data Binding 546
Summary 552
Exercises 553
Chapter 17: Database Programming with SQL Server and ADO.NET 555
ADO.NET 556
ADO.NET Data Namespaces 557
The SqglConnection Class 558
SqglCommand 560
SqglDataAdapter 562
The DataSet Class 566
DataView 567

XXi

Contents

The ADO.NET Classes in Action 570
Examining a DataSet Example 570
Data Binding 578
BindingContext and CurrencyManager 579
Binding Controls 580
LINQ to SQL 610
Summary 614
Exercises 615
Chapter 18: ASP.NET 617
Thin-Client Architecture 618
Web Forms versus Windows Forms 619
Windows Forms Advantages 619
Web Forms Advantages 619
Web Applications: The Basic Pieces 620
Web Servers 620
Browsers 620
HyperText Markup Language 620
VBScript and JavaScript 621
Cascading Style Sheets 621
Active Server Pages 621
Benefits of ASP.NET Web Pages 622
Special Web Site Files 622
Development 622
Controls: The Toolbox 623
Building Web Applications 623
Creating a Web Form for Client- and Server-Side Processing 623
Web Site Locations with VS 2008 628
Performing Data Entry and Validation 630
Designing the Site’s Look and Feel 635
Using the GridView to Build a Data-Driven Web Form 645
Summary 651
Exercises 651
Chapter 19: Web Projects 653
Web Site Authentication 653
Windows Authentication 654
Forms Authentication 654

xxXii

Contents

Web Site Administration Tool (WAT) 654
Login Controls 662
Summary 675
Exercises 675
Chapter 20: Visual Basic 2008 and XML 677
Understanding XML 677
What Does XML Look Like? 678
XML for Visual Basic Newcomers 680
The Address Book Project 681
Creating the Project 681
The SerializableData Class 682
Loading the XML File 688
Changing the Data 691
Sending E-mail 692
Creating a List of Addresses 694
Ignoring Members 698
Loading Addresses 701
Adding New Addresses 702
Navigating Addresses 704
Deleting Addresses 705
Integrating with the Address Book Application 707
Demonstrating the Principle of Integration 708
Reading the Address Book from Another Application 709
Summary 714
Exercises 715

Chapter 21.: Distributed Computing with Windows

Communication Foundation 717

What Is a Web Service? 717
How Does a Web Service Work? 718
SOAP 719
Building a Web Service 721
A Web Services Demonstration 721
Adding More Methods 724
Understanding WCF Services 726
WCF services 726
Summary 735
Exercises 735

xxiii

Contents

Chapter 22: Building a Sequential Workflow Using the Windows

Workflow Foundation 737

Visual Studio Workflow Templates 739
Workflow Foundation Components 740
Sequential Workflow Activities 740
Creating a Sequential Worklow 741
Property Tax Listing Form Workflow 744
Summary 753
Exercises 753
Chapter 23: Building Mobile Applications 755
Understanding the Environment 755
Common Language Runtime 756
ActiveSync and Windows Mobile Device Center 756
Common Types in the Compact Framework 758
The Compact Framework Classes 759
Building a Pocket PC Game 761
Summary 773
Exercise 773
Chapter 24: Deploying Your Application 775
What Is Deployment? 775
ClickOnce Deployment 776
XCOPY Deployment 781
Creating a Visual Studio 2008 Setup Application 781
User Interface Editor 785
Deploying Different Solutions 788
Private Assemblies 789
Shared Assemblies 789
Deploying Desktop Applications 790
Deploying Web Applications 790
Deploying XML Web Services 790
Useful Tools 791
Summary 791
Exercises 792

XXiv

Contents

Chapter 25: Where to Now? 793
Online Resources 794
P2P.Wrox.com 794
Microsoft Resources 794
Other Resources 795
Offline Resources (Books) 795
Professional Visual Basic 2008 795
Visual Basic 2008 Programmer’s Reference 796
Appendix A: Exercise Solutions 797
Appendix B: Using the Microsoft Solutions Framework 827
Appendix C: An Introduction to Code Security and SSL 835
Appendix D: An Introduction to Windows CardSpace 841
Appendix E: .NET Framework Differences 849
Index 853

XXV

Introduction

Visual Basic 2008 is Microsoft’s latest version of the highly popular Visual Basic .NET programming
language, one of the many languages supported in Visual Studio 2008. Visual Basic 2008’s strength lies in
its ease of use and the speed at which you can create Windows Forms applications, WPF Windows
applications, web applications, WPF Browser applications, mobile device applications, and web services.

In this book, we introduce you to programming with Visual Basic 2008 and show you how to create these
types of applications and services. Along the way you'll also learn about object-oriented techniques and
learn how to create your own business objects and Windows controls.

Microsoft .NET Framework provides Visual Basic 2008 programmers with the capability to create full
object-oriented programs, just like the ones created using C# or C++. The INET Framework provides a
set of base classes that are common to all programming languages in Visual Studio 2008, which provides
you with the same capability to create object-oriented programs as a programmer using C# or C++.

This book will give you a thorough grounding in the basics of programming using Visual Basic 2008;
from there the world is your oyster.

Who Is This Book For?

This book is designed to teach you how to write useful programs in Visual Basic 2008 as quickly and
easily as possible.

There are two kinds of beginners for whom this book is ideal:

Q You're a beginner to programming and you’ve chosen Visual Basic 2008 as the place to start.
That'’s a great choice! Visual Basic 2008 is not only easy to learn, it’s also fun to use and very
powerful.

O You can program in another language but you're a beginner to .NET programming. Again,
you’'ve made a great choice! Whether you’ve come from Fortran or Visual Basic 6, you'll find
that this book quickly gets you up to speed on what you need to know to get the most from
Visual Basic 2008.

What Does This Book Cover?

Visual Basic 2008 offers a great deal of functionality in both tools and language. No one book could ever
cover Visual Basic 2008 in its entirety — you would need a library of books. What this book aims to do is
to get you started as quickly and easily as possible. It shows you the roadmap, so to speak, of what there
is and where to go. Once we’ve taught you the basics of creating working applications (creating the
windows and controls, how your code should handle unexpected events, what object-oriented

Introduction

programming is, how to use it in your applications, and so on), we’ll show you some of the areas you
might want to try your hand at next. To this end, the book is organized as follows:

XXViii

a

U 0O

U 00 0 O

Chapters 1 through 9 provide an introduction to Visual Studio 2008 and Windows
programming.

Chapter 6 provides an introduction to XAML and Windows Presentation Foundation (WPF)
programming.

Chapter 10 provides an introduction to application debugging and error handling.

Chapters 11 through 13 provide an introduction to object-oriented programming and
building objects.

Chapter 14 provides an introduction to creating Windows Forms user controls.
Chapter 15 provides an introduction to graphics in Windows applications.

Chapters 16 and 17 provide an introduction to programming with databases and covers Access,
SQL Server, ADO.NET and LINQ.

Chapters 18 and 19 provide an introduction to ASPNET and show you how to write
applications for the Web.

Chapter 20 provides a brief introduction to XML, a powerful tool for integrating your
applications—regardless of the language they were written in.

Chapter 21 introduces you to web services and the Windows Communication
Foundation (WCEF).

Chapter 22 introduces you to sequential workflows using the Windows Workflow
Foundation (WF).

Chapter 23 introduces you to building applications for mobile devices using the Compact
Framework classes.

Chapter 24 introduces you to deploying applications using ClickOnce technology.

Chapter 25 provides some insight on where to go next in your journey to learn about
Visual Basic 2008.

Appendix A provides the answers to chapter exercises.
Appendix B introduces the Microsoft Solution Framework.
Appendix C provides some background on security.
Appendix D provides insight into Windows CardSpace.

Appendix E compares the differences between the latest versions of the NET Framework.

Introduction

What Do | Need to Run Visual Basic 2008?

Apart from a willingness to learn, all you'll need for the first 13 chapters are a PC running Windows
Vista (preferred), Windows XP (Home or Professional Edition), or Windows Server 2003; Internet
Explorer; and of course, one of the following:

Q Microsoft Visual Basic 2008 Express
0 Microsoft Visual Basic 2008 Profession Edition
Q Microsoft Visual Basic 2008 Team System
As the later chapters cover more advanced subject areas, you will need other software to get the most

out of them. Also note that Visual Basic 2008 Express does not support creating web applications, mobile
applications, or deployment projects.

Q Chapter 14 requires Microsoft Visual Basic 2008 Professional Edition or above in order to create
Windows Forms User Controls.

Q Chapter 16 requires Microsoft Access 2000.

Q For Chapter 17, you will need to have access to SQL Server 2005, SQL Server 2005 Express
Edition, or SQL Server 2008.

Don’t worry if you don’t have these products yet and want to wait a while before you purchase them.
You should still find that you get a lot out of this book.

Conventions

We've used a number of different styles of text and layout in this book to help differentiate between
the different kinds of information. Here are examples of the styles we used and an explanation of
what they mean.

Try It Out How Do They Work?

1. Each step has a number.

2. Follow the steps in sequence.

How It Works

If there’s more that you need to understand about what’s going on as you complete the steps, you will
find a subsequent “How It Works” section that explains what’s going on behind the scenes.

Background information, asides, and references appear in text like this.

XXiX

Introduction

Code has several styles. If it's a word that we’re talking about in the text — for example, when
discussing a For. . .Next loop, it’s in this font.If it’s a block of code that can be typed as a program
and run, it looks like this:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnAdd.Click
Dim n As Integer
n = 27
MessageBox.Show (n)
End Sub

Sometimes you'll see code in a mixture of styles, like this:

Private Sub btnAdd_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnaAdd.Click
Dim n As Integer
n = 27
n=n+2
MessageBox.Show (n)
End Sub

In cases like this, the code with a white background is code that Visual Studio 2008 has automatically
generated (in a Try It Out) or code you are already familiar with (in a How It Works); the lines
highlighted in gray show a change or a new addition to the code.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is
available for download at www . wrox.com. When at the site, locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest fo search by ISBN; this book’s ISBN is
978-0-470-19134-7.

After you have downloaded the code, decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www . wrox.com/dynamic/books/download. aspx
to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher

quality information.

XXX

Introduction

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view
all errata that have been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox . com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At p2p.wrox.com you will find a number of different forums that will help you not only as you read
this book, but also as you develop your own applications. To join the forums, just follow these steps:
1. Gotop2p.wrox.comand click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

After you've joined, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to

questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXXi

Welcome to
Visual Basic 2008

This is an exciting time to enter the world of programming with Visual Basic 2008 and Windows
Vista. Windows Vista represents the first Windows operating system upgrade since Windows XP
was first released in 2002. A lot has changed in the Windows user interface and Visual Basic 2008
makes it easy to write professional-looking Windows applications as well as web applications and
web services. Haven't upgraded to Windows Vista yet? No worries, Visual Basic 2008 also allows
you to write professional-looking applications for Windows XP as well.

The goal of this book is to help you use the Visual Basic 2008 programming language, even if you
have never programmed before. You will start slowly and build on what you have learned in
subsequent chapters. So take a deep breath, let it out slowly, and tell yourself you can do this.

No sweat! No kidding!

Programming a computer is a lot like teaching a child to tie his shoes. Until you find the correct
way of giving the instructions, not much is accomplished. Visual Basic 2008 is a language you can
use to tell your computer how to do things. But, like a child, the computer will understand only if
you explain things very clearly. If you have never programmed before, this sounds like an arduous
task, and sometimes it can be. However, Visual Basic 2008 gives you an easy-to-use language to
explain some complex tasks. Although it never hurts to have an understanding of what is
happening at the lowest levels, Visual Basic 2008 frees the programmer from having to deal with
the mundane complexities of writing Windows applications. You are free to concentrate on solving
real problems.

Visual Basic 2008 helps you create solutions that run on the Microsoft Windows operating systems,
such as Windows Vista, Windows Server 2008, and Windows Mobile 6. If you are looking at this
book, you might have already felt the need or desire to create such programs. Even if you have
never written a computer program before, as you progress through the Try It Out exercises in this
book, you will become familiar with the various aspects of the Visual Basic 2008 language, as well
as its foundations in the Microsoft .NET Framework. You will find that it is not nearly as difficult
as you had imagined. Before you know it, you will feel quite comfortable creating a variety of
different types of programs with Visual Basic 2008.

Chapter 1: Welcome to Visual Basic 2008

Visual Basic 2008 can also be used to create web applications and web services as well as mobile
applications that can run on Pocket PCs or SmartPhones. However, you will begin by focusing on
Windows applications before extending your boundaries to other platforms.

This chapter covers the following topics:

O Event-driven programming
The installation of Visual Basic 2008
A tour of the Visual Basic 2008 Integrated Development Environment (IDE)

How to create a simple Windows program

0O 0O 00

How to use the integrated Help system

Event-Driven Programming

A Windows program is quite different from yesteryear’s MS-DOS program. A DOS program follows a
relatively strict path from beginning to end. Although this does not necessarily limit the functionality of
the program, it does limit the road the user has to take to get to it. A DOS program is like walking down
a hallway; to get to the end you have to walk down the hallway, passing any obstacles that you may
encounter. A DOS program would only let you open certain doors along your stroll.

Windows, on the other hand, opened up the world of event-driven programming. Events in this context
include clicking a button, resizing a window, or changing an entry in a text box. The code that you write
responds to these events. In terms of the hallway analogy: In a Windows program, to get to the end of
the hall, you just click the end of the hall. The hallway can be ignored. If you get to the end and realize
that is not where you wanted to be, you can just set off for the new destination without returning to your
starting point. The program reacts to your movements and takes the necessary actions to complete your
desired tasks.

Another big advantage in a Windows program is the abstraction of the hardware; which means that
Windows takes care of communicating with the hardware for you. You do not need to know the inner
workings of every laser printer on the market just to create output. You do not need to study the
schematics for graphics cards to write your game. Windows wraps up this functionality by providing
generic routines that communicate with the drivers written by hardware manufacturers. This is probably
the main reason that Windows has been so successful. The generic routines are referred to as the
Windows application programming interface (API), and the classes in the NET Framework take care of
communicating with those APIs.

Before Visual Basic 1.0 was introduced to the world in 1991, developers had to be well versed in C and
C++ programming, as well as the building blocks of the Windows system itself, the Windows API. This
complexity meant that only dedicated and properly trained individuals were capable of turning out
software that could run on Windows. Visual Basic changed all of that, and it has been estimated that
there are now as many lines of production code written in Visual Basic as in any other language.

Visual Basic changed the face of Windows programming by removing the complex burden of

writing code for the user interface (UI). By allowing programmers to draw their own U], it freed them to
concentrate on the business problems they were trying to solve. When the Ul is drawn, the programmer
can then add the code to react to events.

Chapter 1: Welcome to Visual Basic 2008

Visual Basic has also been extensible from the very beginning. Third-party vendors quickly saw the
market for reusable modules to aid developers. These modules, or controls, were originally referred to as
VBXs (named after their file extension). Prior to Visual Basic 5.0, if you did not like the way a button
behaved, you could either buy or create your own, but those controls had to be written in C or C++.
Database access utilities were some of the first controls available. Version 5 of Visual Basic introduced the
concept of ActiveX, which allowed developers to create their own ActiveX controls.

When Microsoft introduced Visual Basic 3.0, the programming world changed significantly. Now you
could build database applications directly accessible to users (so-called front-end applications) completely
with Visual Basic. There was no need to rely on third-party controls. Microsoft accomplished this

task with the introduction of Data Access Objects (DAO), which allowed programmers to manipulate
data with the same ease as manipulating the user interface.

Versions 4.0 and 5.0 extended the capabilities of Version 3.0 to allow developers to target the new Windows
95 platform. They also made it easier for developers to write code, which could then be manipulated to
make it usable to other language developers. Version 6.0 provided a new way to access databases with the
integration of ActiveX Data Objects (ADO). The ADO feature was developed by Microsoft to aid web
developers using Active Server Pages (ASP) to access databases. All of the improvements to Visual Basic
over the years have ensured its dominant place in the programming world — it helps developers write
robust and maintainable applications in record time.

With the release of Visual Basic .NET in February 2002, most of the restrictions that used to exist have
been obliterated. In the past, Visual Basic was criticized and maligned as a “toy” language, because it did
not provide all of the features of more sophisticated languages such as C++ and Java. Now, Microsoft has
removed these restrictions and made Visual Basic .NET a very powerful development tool. This trend
has continued with the release of Visual Basic 2003, Visual Basic 2005, and the latest release, Visual Basic
2008. Each new release of the Visual Basic .NET programming language brings about many new trends,
features, and improvements, making it a great choice for programmers of all levels.

Installing Visual Basic 2008

You may own Visual Basic 2008 in one of the following forms:

QO As part of Visual Studio 2008, a suite of tools and languages that also includes C# (pronounced
C-sharp) and Visual C++. The Visual Studio 2008 product line includes Visual Studio
Professional Edition or Visual Studio Tools Team Editions. The Team Edition versions come
with progressively more tools for building and managing the development of larger, enterprise-
wide applications.

QO As Visual Basic 2008 Express Edition, which includes the Visual Basic 2008 language, and a
reduced set of the tools and features that are available with Visual Studio 2008.

Both of these products enable you to create your own applications for the Windows platform.
The installation procedure is straightforward. In fact, the Visual Studio Installer is smart enough to figure
out exactly what your computer requires to make it work.

The descriptions in the following Try It Out exercise are based on installing Visual Studio 2008
Professional Edition. Most of the installation processes are straightforward, and you can accept the

Chapter 1: Welcome to Visual Basic 2008

default installation options for most environments. So, regardless of which edition you are installing, the
installation process should be smooth when accepting the default installation options.

Try It Out Installing Visual Basic 2008

1. The Visual Studio 2008 DVD has an auto-run feature, but if the Setup screen does not appear
after inserting the DVD, you need to run Setup.exe from the root directory of the DVD. To do
this, click the Windows Start menu at the bottom left of your screen and then select the Run
start menu item or browse to the Setup program on the DVD. In the Run dialog box, you can
click the Browse button to locate the setup. exe program on your DVD. Then click the OK
button in the Run dialog box to start the setup program. After the setup program initializes,
you will see the initial screen as shown in Figure 1-1.

[N

Visual Studlo 2008 Sctup

g Ins al Studiv 2008
m Inctall Visual Studio 2008 features and required
componenls,
rr'sdn Install Product Documentation

3

Figure 1-1

2. The dialog box shown in Figure 1-1 shows the order in which the installation will occur. To
function properly, Visual Studio 2008 requires various updates to be installed depending on
the operating system that you have (for example, Service Pack 2 on Windows XP). The setup
program will automatically inform you of these updates if they are not installed. You should
install those updates first and then return to the Visual Studio 2008 setup program. The
individual updates required are different from the service releases listed as the third option in
Figure 1-1. Step 1 of the setup program will install Visual Studio 2008 so click the Install Visual
Studio 2008 link shown in Figure 1-1.

3. The next step in the installation process asks you if you want to send the setup information from
the installation of Visual Studio 2008 to Microsoft. This is a good idea to help streamline the
installation process of future editions of Visual Studio, and no personal information will be sent.
You can click the Next button at this screen after you have selected or cleared the check box
indicating whether or not you want this information sent.

Chapter 1: Welcome to Visual Basic 2008

The third step in the installation process is the license agreement. Read the license agreement
and then select the option button indicating your acceptance of the licensing terms. Then click
the Next button to continue.

As with most setup programs, you are presented with a choice of options to be installed

as shown in Figure 1-2. The default installation installs the recommended product features as
determined by Microsoft. You have the option to choose the default installation, a full
installation, or to customize the installation. When choosing the custom installation feature, you
will be presented with a dialog box allowing you to choose the languages and features of each
language to be installed. If disk space allows, it is recommended that you choose a full
installation. However, if you choose to customize the installation and omit some features from
being installed, you can always install those features later by rerunning the setup program.
After choosing your installation option, click the Install button to have those features installed.

5 Microsoft Visual Studlo 2008 Selup Optlons Page e

_i. Microsaft*
a

Visual Studio 2008 setup

Select features to install: Feature descripbon:
) Default

Tnatalle tha edf o ths - Thus option installs all of the teatures available tor the

product.

Inetalle all faatures for the product

o ‘

) Custom -
Selectfeatunes o include and ekl from the Pt ot pelle : [
prochad C\Program Fllee’ Microeoft Vieual Studio 5.0% | | Browse..
i Volume Drale Siz forailable Requrcd Remaining |
| ¢ T45GE 454 0GB 35GB 413GB

[<Prowous | [st] [Concat]

Figure 1-2

The first component that is installed is the Microsoft .NET Framework version 3.5. During the
installation of this component you will be required to restart your computer. After your com-
puter has restarted and you log back in, the setup program will continue. Note to Windows
Vista users: you will be prompted that the setup program needs to run and will need to grant
permission to let the setup program continue. After the setup program continues, you can sit
back and relax while all of the features are being installed. The setup program can take any-
where from 20 minutes on up depending on the installation features chosen and the speed of
your computer.

Chapter 1: Welcome to Visual Basic 2008

7.

10.

11.

Once the installation has been completed, you will be presented with a dialog box informing
you of the status of the installation. Here you can see any problems that the setup program
encountered. At this point you are encouraged to update your computer with the latest secu-
rity patches and a link is provided in the notes to Windows Update. When you have finished
reviewing the setup status, click the Finish button to move on to the next step.

If you chose to have your setup information sent to Microsoft, the next step will be a dialog
box sending the setup information. This dialog box requires no action on your part and it will
automatically close when finished. The next dialog box is the one shown earlier in Figure 1-1
with the option to install the production documentation enabled. Click the Install Product
Documentation link to install the MSDN library.

The first step in installing the MSDN library is choosing whether to send the setup informa-
tion to Microsoft. Make the appropriate choice and then click the Next button to continue.
Again, it is recommended to send this information to help streamline future MSDN library
installations.

Next, read and accept the license agreement. After you click the option button to accept the
license agreement, click the Next button to continue.

Like the installation of Visual Studio 2008, the MSDN library installation provides you with
the options to choose the installation that best suits your needs, as shown in Figure 1-3. If you
chose to install the complete Visual Studio 2008 product set then you'll most likely want

to choose the full installation of the MSDN library. After making your installation option
choice, click the Install button to begin the installation.

2 Microsolt MSDN Library for Visual Studlo 2008 Setup - Optloms Page rjiel

msdn_library

| Select features to install: Feature desription:

o Full
Inetalle il featuree for the product ';Pr\tl‘sdsgt‘lun installs all of the teatures available tor the
() Hinimurm
Inetalle the recommended featurae for the product ‘
1) Custom)
Seect fatues o include and exchudle from the FARL el et . [
prechd € \Program Filse\MSDN\MSDNS 0\ | [Browse...
| volme DukSze Mvalsble Roqured Remamng [
o] T45GE 421GB 21GB 401GB
[<rovous.] [t] [canoa] |
Figure 1-3

Chapter 1: Welcome to Visual Basic 2008

If you have the spare hard drive space, it is a very good idea to install the full documentation. That way
you have access to the full library, which will be important if you choose a limited set of options during
the install and later add more features.

12. After the MSDN documentation has been installed, you are presented with a dialog box informing
you of the status of the installation. Click the Finish button to be returned to the initial setup screen
again. The Check for Service Releases option is now available.

It is a good idea to select Service Releases to check for updates. Microsoft has done a good job of making
software updates available through the Internet. These updates can include anything from additional
documentation to bug fixes. You will be given the choice to install any updates through a Service Pack
CD or the Internet. Obviously, the Internet option requires an active connection. Since updates can be
quite large, a fast connection is highly recommended.

After you have performed the update process, Visual Studio 2008 is ready to use. Now the real fun can
begin! So get comfortable, relax, and enter the world of Visual Basic 2008.

The Visual Basic 2008 IDE

You don’t need Visual Basic 2008 to write applications in the Visual Basic .NET language. The ability to
run Visual Basic .NET code is included with the .NET Framework. You could write all of your Visual
Basic .NET code using a text editor such as Notepad. You could also hammer nails using your shoe as a
hammer, but that slick pneumatic nailer sitting there is a lot more efficient. In the same way, by far the
easiest way to write in Visual Basic .NET code is by using the Visual Studio 2008 IDE. This is what you
see when working with Visual Basic 2008 — the windows, boxes, and so on. The IDE provides a wealth
of features unavailable in ordinary text editors — such as code checking, visual representations of the
finished application, and an explorer that displays all of the files that make up your project.

The Profile Setup Page

An IDE is a way of bringing together a suite of tools that makes developing software a lot easier. Fire up
Visual Studio 2008 and see what you've got. If you used the default installation, go to your Windows
Start menu and then select All Programs = Microsoft Visual Studio 2008 > Microsoft Visual Studio 2008.
A splash screen will briefly appear, and then you see the Choose Default Environment Settings dialog
box. Select the Visual Basic Development Settings option and click Start Visual Studio. After Visual
Studio configures the environment based on the chosen settings, the Microsoft Development
Environment will appear, as shown in Figure 1-4.

Chapter 1: Welcome to Visual Basic 2008

&0 Start Page - Microsolt Visual Studlo [y |

Eoe fat Yiew Josls Tet Window Melp

HeEE -4 B8589 DD i @A RRRARYOT

Sndutson Expieter =

Reeent Prajecty MEDIN: Visual Rasie

Map LING: Create Dynaméc Maps with Visual Basic 9.0 and WiF
Mon, 3 De 2007 13:60:06 0800 - Leam how te use LNQ and the newoal | |
Teatures in Visual Basic to easdy vivualioe map data and dynamically diaw 'q
them with Windows Presentation Foundation. !
Viestial Barkic 008 Lapiess Lamion Now Avadable

Mo, 19 Mow 2007 14:52:32 «0000 - The Visusl Banic 2008 Bpress Eamion i

the igeal seal tool far abject-arie for
Windews on the NET Framework.

Open: Prjedl. | Wb Site MO Subscribers: Gel Visual Shsdio 7008 RIM Now

Create- Projed... | Web Stte MAOn, 19 Mow 2007 14:52:78 ~0000 - Get i here first With Visusl Studic 2008,

you tan P cted, compelling far Windows Virta, the
2007 Office system, mobile devices, and the Web.

Microsofl NET Framework 1.5 Rurdime Now Availabile

Maon, 19 Mov 2007 212338 ~0000 - NET Framework 1.5 builds incrementally
on the mew leatures agded in NET Framewerk 3.0 and i now avadable 35 3
sepmate downivad.

Banix Inatina b Eatenason Methody in Visual Banic 2008

Tue, 30 Oct 007 20:48:H4 0000 - Learn how extersion methods el you
extend sy eniling trpe s FUNCHonainy, even when a Bype i not inhernable.
Extensian methads play a crusial role in the implemertation of LING in Visual
Batit,

|ch kavoa List
Ready

Figure 1-4

The Menu

By now, you may be eager to start writing some code. Begin your exploration of the IDE by looking at
the menu and toolbar, which are not really all that different from the toolbars and menus you have seen
in Microsoft Office 2003 (although they differ from the ribbon bars in Microsoft Office 2007).

The Visual Studio 2008 menu is dynamic, which means items will be added or removed depending on
what you are trying to do. When looking at the blank IDE, the menu bar consists only of the File, Edit,
View, Tools, Window, and Help menus. When you start working on a project, however, the full Visual
Studio 2008 menu appears as shown in Figure 1-5.

| File Edit View Project Build Debug Data Tools Test Window Help ‘

Figure 1-5

At this point, there is no need to cover each menu topic in detail. You will become familiar with each of
them as you progress through the book. Here is a quick rundown of what activities each menu item
pertains to:

O File: Most software programs have a File menu. It has become the standard where you should
find, if nothing else, a way to exit the application. In this case, you can also find ways of opening
and closing single files and whole projects.

U Edit: The Edit menu provides access to the common items you would expect: Undo, Redo, Cut,
Copy, Paste, and Delete.

O View: The View menu provides quick access to the windows that exist in the IDE, such as the
Solution Explorer, Properties window, Output window, Toolbox, and so on.

Chapter 1: Welcome to Visual Basic 2008

QO Project: The Project menu allows you to add various files to your application such as forms and
classes.

QO Build: The Build menu becomes important when you have completed your application and
want to run it without the use of the Visual Basic 2008 environment (perhaps running it directly
from your Windows Start menu, as you would any other application such as Word or Access).

U Debug: The Debug menu allows you to start and stop running your application within the
Visual Basic 2008 IDE. It also gives you access to the Visual Studio 2008 debugger. The debugger
allows you to step through your code while it is running to see how it is behaving.

QO Data: The Data menu enables you to use information that comes from a database. It allows you
to view and add data sources, and preview data. Chapters 16 and 17 will introduce you to work-
ing with databases.

QO Tools: The Tools menu has commands to configure the Visual Studio 2008 IDE, as well as links
to other external tools that may have been installed.

QO Test: The Test menu provides options that allow you to create and view unit tests for your appli-
cation to exercise the source code in various scenarios.

O Window: The Window menu has become standard for any application that allows more than
one window to be open at a time, such as Word or Excel. The commands on this menu allow you
to switch between the windows in the IDE.

QO Help: The Help menu provides access to the Visual Studio 2008 documentation. There are many
different ways to access this information (for example, through the help contents, an index, or a
search). The Help menu also has options that connect to the Microsoft web site to obtain updates
or report problems.

The Toolbars

Many toolbars are available within the IDE, including Formatting, Image Editor, and Text Editor, which
you can add to and remove from the IDE through the View => Toolbars menu option. Each one provides
quick access to often-used commands, preventing you from having to navigate through a series of menu
options. For example, the leftmost icon (New Project) on the default toolbar (called the Standard toolbar),
shown in Figure 1-6, is available from the menu by navigating to File & New = Project.

Uncomment Step Into
HNew 'Web Add New the selected Navigate Break Step Uver Properties

ine /Il:lﬂ Save Al ;_ony Fna IL?S Heao Forwara ANl I|r fl(DUul :.\nnanw I1I}0|I’lI?l:/lllﬂ"{ﬂh}l(
. . — ; / - / A

T N RN - AR TR -YIE YRl R R RV NN A e B R IR - e e W R

NN A" s 5 — \ .

Hew Open Swe Cut Patte Comment aut Unda Havigate tart Stap Salution Object Frror

Project File the selected Batkward Debugging Debugging Fplores Browser List

lines

Figure 1-6

The toolbar is segmented into groups of related options, which are separated by vertical bars. The first
six icons provide access to the commonly used project and file manipulation options available through
the File and Project menus, such as opening and saving files.

Chapter 1: Welcome to Visual Basic 2008

C

The next group of icons is for editing (Cut, Copy, and Paste). The next icon is for finding and replacing
items in your code.

The third group of icons is used for commenting out and un-commenting sections of code. This can be
useful in debugging when you want to comment out a section of code to determine what results the
program might produce by not executing those lines of code.

The fourth group of icons is for undoing and redoing edits and for navigating through your code.

The fifth group of icons provides the ability to start (via the green triangle), pause, and stop your
application. You can also use the last three icons in this group to step into your code line by line, step over
entire sections of code, and step out of a procedure. These icons will be covered in depth in Chapter 10.

The final group of icons provides quick links to the Solution Explorer, Properties window, Object
Browser, Toolbox, Error List, and the Inmediate window. If any of these windows is closed, clicking the
appropriate icon will bring it back into view.

If you forget what a particular icon does, you can hover your mouse pointer over it so that a tooltip
appears displaying the name of the toolbar option.

You could continue to look at each of the windows in the IDE by clicking on the View menu and
choosing the appropriate window. But, as you can see, they are all empty at this stage and therefore not
too revealing. The best way to look at the capabilities of the IDE is to use it while writing some code.

reating a Simple Application

To finish your exploration of the IDE, you need to create a project, so that the windows shown earlier in
Figure 1-4 have some interesting content for you to look at. In the following Try It Out exercise, you are
going to create a very simple application called HelloUser that will allow you to enter a person’s name
and display a greeting to that person in a message box.

Try It Out Creating a HelloUser Project

10

1. Click the New Project button on the toolbar.

2. In the the New Project dialog box, select Visual Basic in the Project Types tree-view box to
the left and then select Windows beneath it. The Templates box on the right will display all of the
available templates for the project type chosen. Select the Windows Forms Application template.
Finally, type Hello User in the Name text box and click OK. Your New Project dialog box
should look like Figure 1-7.

Chapter 1: Welcome to Visual Basic 2008

r i T 2]
New Project - g) (L5 o]
Biejact fypass Templates: [:NET Framework 3.5 -[E=
Visual Basic Visual Studio installed templates 7=
Windows == =
(i g s 1 L
Olflice =] 5;\"5 | (erld ;1
smart Devee
™ Datab, Windows Class Library WPF WFPF Browszer Con:zole
Hahase Forms Ap... i pplicati Applicati
Test o
WCF = =
i Vg K7 P !
Web ; I!]]“ _E L —
Workflow Crystal Fmpty Froject Windows WEF Custom WEF Liser
Olher Languages Reports A.. Semnvice Control Ll... Contral...
Other Project lypes
Test Projects My =V
[il
Windows Reports
Forms ... Application

™ .A project for creating an ication with a Wil user interface NCT I 2.5
I HName: Hello User

)
LY B S —— —_ __B]
Figure 1-7

Visual Studio 2008 allows you to target your application to a specific version of the Microsoft NET
Framework. The combo box in the upper right corner of the New Project dialog box has version 3.5
selected, but you can target your application to version 3.0 or even version 2.0 of the NET
Framework.

The IDE will then create an empty Windows application for you. So far, your Hello User
program consists of one blank window;, called a Windows Form (or sometimes just a form),
with the default name of Forml . vb, as shown in Figure 1-8.

Whenever Visual Studio 2008 creates a new file, either as part of the project creation process or
when you create a new file, it will use a name that describes what it is (in this case, a form)
followed by a number.

Windows in the Visual Studio 2008 IDE

At this point, you can see that the various windows in the IDE are beginning to show their purposes, and
you should take a brief look at them now before you come back to the Try It Out exercise. Note that if any
of these windows are not visible on your screen, you can use the View menu to show them. Also, if you
do not like the location of any particular window, you can move it by clicking its title bar (the blue bar at

11

Chapter 1: Welcome to Visual Basic 2008

the top) and dragging it to a new location. The windows in the IDE can float (stand out on their own) or
be docked (as they appear in Figure 1-8). The following list introduces the most common windows:

@ Hella User . Microsoft Visual Studlo =
Fée [dit Yeew Project Build Debug Dpla Fgmal Jools Teyl Window Heip
P W AR " R SR R ST YRR N, R A R B N e e Wl
Toolbex < 0% romiw [Design] | saat Page| = % [Sonsion Expsorer .
+ Al Windows Formn = (=) j [z : e‘
= Common Conirols | i e (5 Hello ser
il Sl My Project
(=] sutton 0 Femi b
[checaBas
B3 CheckedtictBes
o comboBox
T OateTimeficker
A Label
A Unklabel
¥ LnBox
12 itview | g sonation Expio (G700 Saurcer
=] MaskedTention (Popetien — TE
I Momncatendar f
= Motifylcan FormLvb File Propertes .
- [
o | tlusd Aien Compile
T Progrestiar Copy t Output D1 Da rat opy
) Radisfuston Custom Tool
B3 RichTentBox Custom Tool Name
5l Tothou Fomiss
g, Tootmp
U Teeview Fibe Mame:
EJ wentrowser Hame of the fibe of Tolder.
£ Containers
Reagy
Figure 1-8

U Toolbox: The Toolbox contains reusable controls and components that can be added to your
application. These range from buttons to data connectors to customized controls that you have
either purchased or developed.

QO Design window: The Design window is where a lot of the action takes place. This is where you
will draw your user interface on your forms. This window is sometimes referred to as the
Designer.

U Solution Explorer: The Solution Explorer window contains a hierarchical view of your solution.
A solution can contain many projects, whereas a project contains forms, classes, modules, and
components that solve a particular problem.

O Data Sources: The Data Sources window allows you to connect to a database and choose the
database objects for your application.

U Properties: The Properties window shows what properties the selected object makes available.
Although you can set these properties in your code, sometimes it is much easier to set them
while you are designing your application (for example, drawing the controls on your form). You
will notice that the File Name property has the value Forml . vb. This is the physical file name
for the form’s code and layout information.

12

Chapter 1: Welcome to Visual Basic 2008

Try It Out Creating a HelloUser Project (cont.)

Next you'll give your form a name and set a few properties for it.

1. Change the name of your form to something more indicative of what your application is.
Click Forml . vb in the Solution Explorer window. Then, in the Properties window, change the
File Name property from Forml.vb to HelloUser.vb and press Enter, as shown in Figure 1-9.
When changing properties you must either press Enter or click on another property for it to
take effect.

|
i HelloUser.wb File Propertics -

Ruild Action Compile
Copy to Output Dire Do not copy
‘ Custom Tool

Custom Tool Hames)

== —
| File Name
| Hame of the file or fulder,

|
Figure 1-9

2. Note that the form’s file name has also been updated in the Solution Explorer to read
HelloUser.vb.

3. Click the form displayed in the Design window. The Properties window will change to
display the form’s Form properties (instead of the File properties, which you have just been
looking at). You will notice that the Properties window is dramatically different. The differ-
ence is the result of two different views of the same file. When the form name is highlighted in
the Solution Explorer window, the physical file properties of the form are displayed. When the
form in the Design window is highlighted, the visual properties and logical properties of
the form are displayed.

The Properties window allows you to set a control’s properties easily. Properties are a
particular object’s set of internal data; they usually describe appearance or behavior. In
Figure 1-10 you can see that properties are displayed alphabetically. The properties can also
be grouped together in categories — Accessibility, Appearance, Behavior, Data, Design,
Focus, Layout, Misc, and Window Style.

13

Chapter 1: Welcome to Visual Basic 2008

B e

HelloUser System.Windows.Forms.t -

HINEIEA=!

| RightTaleft ™ [
RightToleftlayov Falze
Showlcon True

ShowlnTaskbar True

@ Size 300, 300
SizeGripstyle Auto
StartFosition WindowsDetan
Tag

Formi
TopMost Falze

UseWaitCursor False
WindowS5tate Naormal

Tranzparencyley l:l H

L 1k}
Texl
The Leal assudialed wilh Lhe wonliol.

Figure 1-10

4. Right now, the title (Text property) of your form (displayed in the bar at the top) is Form.
This is not very descriptive, so change it to reflect the purpose of this application. Locate the
Text property in the Properties window. Change the Text property’s value to Hello from
Visual Basic 2008 and press Enter. Note that the form’s title has been updated to reflect the
change.

If you have trouble finding properties, click the little AZ icon on the toolbar toward the top of the
Properties window. This changes the property listing from being ordered by category to being
ordered by name.

5. You are now finished with the procedure. Click the Start button on the Visual Studio 2008
toolbar (the green triangle) to run the application. As you work through the book, whenever
we say “run the project” or “start the project,” just click the Start button. An empty window
with the title Hello from Visual Basic 2008 is displayed.

That was simple, but your little application isn’t doing much at the moment. Let’s make it a little more
interactive. To do this, you are going to add some controls — a label, a text box, and two buttons to the
form. This will let you see how the Toolbox makes adding functionality quite simple. You may be
wondering at this point when you will actually look at some code. Soon! The great thing about Visual
Basic 2008 is that you can develop a fair amount of your application without writing any code. Sure, the
code is still there, behind the scenes, but, as you will see, Visual Basic 2008 writes a lot of it for you.

The Toolbox

14

The Toolbox is accessed through the View = Toolbox menu option, by clicking the Toolbox icon on the
Standard menu bar, or by pressing Ctrl+Alt+X. Alternatively, the Toolbox tab is displayed on the left of
the IDE; hovering your mouse over this tab will cause the Toolbox window to fly out, partially covering
your form.

Chapter 1: Welcome to Visual Basic 2008

The Toolbox contains a Node type view of the various controls and components that can be placed onto
your form. Controls such as text boxes, buttons, radio buttons, and combo boxes can be selected and
then drawn onto your form. For the HelloUser application, you will be using only the controls in the
Common Controls node. Figure 1-11 shows a listing of common controls for Windows Forms.

e
| @ Anwinows rorms]
| El Commaon Controls
| M Pointer

Button

E| ChewkBuox
| BB checkedListBox

'?? ComboBox

"'-E DaleTimePicker

A label

A Linklabel

3 ListBox

2] v

i

| 227 Listview
| ?-.. MonthCalendar
=] Motitylcon

| 1£3 MumericUpDown

|j PictureDox
| Wil Progressbar
(& RadioButton
| B5 RichTextDox

| faod Texttion
L Toollip
| = TreeView
| jﬂ Webbrowser
| 1# Containers

Figure 1-11

Controls can be added to your forms in any order, so it does not matter if you add the label control after
the text box or the buttons before the label. In the following Try It Out exercise, you start adding controls.

Try It Out Adding Controls to the HelloUser Application

1. Stop the project if it is still running, because you now want to add some controls to your form.
The simplest way to stop your project is to click the close (X) button in the top-right corner of
the form. Alternatively, you can click the blue square on the toolbar (which displays a ToolTip
that says “Stop Debugging” if you hover over it with your mouse pointer).

2. Add aLabel control to the form. Click Label in the Toolbox, drag it over to the form’s
Designer and drop it in the desired location. (You can also place controls on your form by
double-clicking the required control in the Toolbox or clicking the control in the Toolbox and
then drawing it on the form.)

3. If the Label control you have just drawn is not in the desired location, it really isn’t a problem.
When the control is on the form, you can resize it or move it around. Figure 1-12 shows what

15

Chapter 1: Welcome to Visual Basic 2008

16

the control looks like after you place it on the form. To move it, click the dotted border and
drag it to the desired location. The label will automatically resize itself to fit the text that you
enter in the Text property.

| 2! Hello from Visual Basic 2008 (== /e2)
5

Labell :

Figure 1-12

After drawing a control on the form, you should at least configure its name and the text that
it will display. You will see that the Properties window to the right of the Designer has
changed to Labell, telling you that you are currently examining the properties for the label.
In the Properties window, set your new label’s Text property to Enter Your Name. Note that,
once you press Enter or click on another property, the label on the form has automatically
resized itself to fit the text in the Text property. Now set the Name property to IbIName.

Now, directly beneath the label, you want to add a text box, so that you can enter a name. You
are going to repeat the procedure you followed for adding the label, but this time make sure
you select the TextBox control from the toolbar. After you have dragged and dropped

(or double-clicked) the control into the appropriate position as shown in Figure 1-13, use

the Properties window to set its Name property to txtName.

Notice the sizing handles on the left and right side of the control. You can use these handles to
resize the text box horizontally.

%! Hello from Visual Basic 2008 [1= |25)

Enter Your Nr.mvem ;
Lu] u]

=

Figure 1-13

Chapter 1: Welcome to Visual Basic 2008

In the bottom left corner of the form, add a Button control in exactly the same manner as you
added the label and text box. Set its Name property to btnOK and its Text property to &OK.
Your form should now look similar to the one shown in Figure 1-14.

The ampersand (&) is used in the Text property of buttons to create a keyboard shortcut (known
as a hot key). The letter with the & sign placed in front of it will become underlined (as shown in
Figure 1-14) to signal users that they can select that button by pressing the Alt+letter key combi-
nation, instead of using the mouse (on some configurations the underline doesn’t appear until the
user presses Alt). In this particular instance, pressing Alt+O would be the same as clicking the
OK button. There is no need to write code to accomplish this.

& Hello from Visual Hasic 2008 [=152

Enter Your Name:

Figure 1-14

Now add a second Button control to the bottom right corner of the form by dragging the But-
ton control from the Toolbox onto your form. Notice that, as you get close to the bottom right
of the form, a blue snap line appears, as shown in Figure 1-15. This snap line allows you to
align this new Button control with the existing Button control on the form. The snap lines
assist you in aligning controls to the left, right, top, or bottom of each other, depending on
where you are trying to position the new control. The light blue line provides you with a consis-
tent margin between the edge of your control and the edge of the form. Set the Name property
to binExit and the Text property to E&xit. Your form should look similar to Figure 1-16.

5! Hello from Visual Hasic 72008 (=125 52 Hollo trom Visual Basie 7008 (S =ee |
[Cnter Your Name [Cnter Your Name
oK [1 OK U Eg :
Figure 1-15 Figure 1-16

17

Chapter 1: Welcome to Visual Basic 2008

Now before you finish your sample application, let us briefly discuss some coding practices that you
should be using.

Modified Hungarian Notation

You may have noticed that the names given to the controls look a little funny. Each name is prefixed with a
shorthand identifier describing the type of control it is. This makes it much easier to understand what type
of control you are working with when you are looking through the code. For example, say you had a control
called simply Name, without a prefix of 1b1 or txt. You would not know whether you were working with a
text box that accepted a name or with a label that displayed a name. Imagine if, in the previous Try It Out
exercise, you had named your label Namel and your text box Name2 — you would very quickly become
confused. What if you left your application for a month or two and then came back to it to make some changes?

When working with other developers, it is very important to keep the coding style consistent. One of the
most commonly used styles for control names within application development in many languages was
designed by Dr. Charles Simonyi, who worked for the Xerox Palo Alto Research Center (XPARC) before
joining Microsoft. He came up with short prefix mnemonics that allowed programmers to easily identify
the type of information a variable might contain. Because Simonyi is from Hungary, and the prefixes
make the names look a little foreign, the name Hungarian Notation came into use for this system. Because
the original notation was used in C/C++ development, the notation for Visual Basic 2008 is termed
Modified. Table 1-1 shows some of the commonly used prefixes that you will be using in this book.

Table 1-1: Common Prefixes in
Visual Basic 2008

Control Prefix
Button btn
ComboBox cbo
CheckBox chk
Label 1bl
ListBox 1st
MainMenu mnu
RadioButton rdb
PictureBox pic
TextBox txt

Hungarian Notation can be a real time-saver when you are looking at code someone else wrote or at
code that you wrote months earlier. However, by far the most important thing is to be consistent in your
naming. When you start coding, choose a convention for your naming. It is recommended that you use
the de facto standard Modified-Hungarian for Visual Basic 2008, but it is not required. After you pick a
convention, stick to it. When modifying others” code, use theirs. A standard naming convention followed
throughout a project will save countless hours when the application is maintained. Now let’s get back to
the application. It's now time to write some code.

18

Chapter 1: Welcome to Visual Basic 2008

The Code Editor

Now that you have the HelloUser form defined, you have to add some code to make it actually do
something interesting. You have already seen how easy it is to add controls to a form. Providing the
functionality behind those on-screen elements is no more difficult. To add the code for a control, you just
double-click the control in question. This opens the code editor in the main window, shown in Figure 1-17.

@ Hello User . Microsalt Visual Studla =[]]
e fat Yew Project fQuild Debug Dpta Jook Tegl Windew Help |
R N=RERN - AR N Y 2 AR < RN) i 1A% QS EZE DO

e Start Page| 1 e} | » %[5
- 5
§ S BtnoK - F Cher B

Public Class HellolUses |
Private Sub bLsOK_Click(ByVal sender Rs System.Cbject, ByVal e As System.Eventhrgs) Handles brnOR.Click H

| F End 3Juk 3

| LEnd Class &

Figure 1-17

Note that an additional tab has been created in the main window. Now you have the Design tab and the
Code tab, each containing the name of the form you are working on. You draw the controls on your form
in the Design tab, and you write code for your form in the Code tab. One thing to note here is that Visual
Studio 2008 has created a separate file for the code. The visual definition and the code behind it exist in
separate files: HelloUser.Designer.vb and HelloUser.vb. This is actually the reason why building
applications with Visual Basic 2008 is so slick and easy. Using the Design view you can visually lay out
your application, and then, using Code view, you add just the bits of code to implement your desired
functionality.

Note also that there are two combo boxes at the top of the window. These provide shortcuts to the
various parts of your code. Hover your mouse on the combo box on the left, and you’ll see a tooltip
appear, telling you that it is the Class Name combo box. If you expand this combo box, you will see a list
of all the objects within your application. If you hover your mouse on the combo box on the right, you'll
see a tooltip telling you that this is the Method Name combo box. If you expand this combo box, you
will see a list of all defined functions and subroutines for the object selected in the Class Name combo
box. If this particular form had a lot of code behind it, these combo boxes would make navigating to the
desired code area very quick — jumping to the selected area in your code. However, since all of the code
for this project so far fits in the window, there are not a lot of places to get lost.

Try It Out Adding Code to the HelloUser Project

1. Tobegin adding the necessary code, click the Design tab to show the form again. Then
double-click the OK button. The code window will open with the following code. This is the
shell of the button’s C1ick event and is the place where you enter the code that you want to
run when you click the button. This code is known as an event handler and sometimes is also
referred to as an event procedure:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

End Sub

19

Chapter 1: Welcome to Visual Basic 2008

20

As a result of the typographic constraints in publishing, it is not possible to put the Sub
declaration on one line. Visual Basic 2008 allows you to break up lines of code by using the
underscore character (_) to signify a line continuation. The space before the underscore is
required. Any whitespace preceding the code on the following line is ignored.

Sub is an example of a keyword. In programming terms, a keyword is a special word that is
used to tell Visual Basic 2008 to do something special. In this case, it tells Visual Basic 2008
that this is a subroutine, a procedure that does not return a value. Anything that you type be-
tween the lines Private Suband End Sub will make up the event procedure for the OK
button.

Now add the highlighted code into the procedure:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
'Display a message box greeting to the user
MessageBox.Show("Hello, " & txtName.Text & _

"! Welcome to Visual Basic 2008.", _
"Hello User Message")
End Sub

Throughout this book, you will be presented with code that you should enter into your program if
you are following along. Usually, we will make it pretty obvious where you put the code, but as
we go, we will explain anything that looks out of the ordinary. The code with the gray background
is code that you should enter.

After you have added the preceding code, go back to the Design tab, and double-click the Exit
button. Add the following highlighted code to the btnExit_Click event procedure:

Private Sub btnExit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnExit.Click
'End the program and close the form
Me.Close()

End Sub

You may be wondering what Me is. Me is a keyword that refers to the form. Just like the pro-
noun me, it is just shorthand for referring to one’s self.

Now that the code is finished, the moment of truth has arrived and you can see your creation.
First, however, save your work by using File = Save All from the menu or by clicking the Save
All button on the toolbar. The Save Project dialog box is displayed as shown in Figure 1-18,
prompting you for a name and location for saving the project.

By default, a project is saved in a folder with the project name; in this case Hello User. Since
this is the only project in the solution, there is no need to create a separate folder for the
solution which contains the same name as the project, thus the Create directory for solution
check box has been unchecked.

