
Issue 4 September 2010

A Coder’s Guide To Coffee

2

Curator’s Note

HACKER MONTHLY FINALLY has subscriptions. You
can now subscribe and receive print and digital
editions of Hacker Monthly for 12 months. Every

print subscription includes a digital subscription.
I have also started charging for the digital format. It was not

an easy decision, but I figured it is one that is better to make
sooner rather than later. As I learned from the past 3 months,
an advertising-centric revenue model isn’t going to cut it. It
seems to me that the only way to move forward is to charge for
digital format.

If you are reading this, that means you have paid for Hacker
Monthly. I sincerely thank you for supporting, and for helping
us keep going for a very, very long time.

— Lim Cheng Soon

ContentsCurator
Lim Cheng Soon

Contributors
Clay Johnson
Tom Moertel
Gabriel Weinberg
Sachin Agarwal
Peter Cooper
Ray Grieselhuber
Jeff Bezos
William Shields
Mark McGranaghan
Mark O’Connor
Jeff Kreeftmeijer
Mike Malone

Proofreader
Ricky de Laveaga

Illustrator
Jaime G. Wong

Printer
MagCloud

E-book Conversion
Fifobooks.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

HACKER MONTHLY is the print magazine version of Hacker
News — news.ycombinator.com — a social news website wildly
popular among programmers and startup founders. The submis-
sion guidelines state that content can be “anything that gratifies
one’s intellectual curiosity.”
Every month, we select from the top voted articles on Hacker
News and print them in magazine format.
For more, visit hackermonthly.com.

Cover Illustration: Jaime G. Wong (http://retrazos.pe/)

http://fifobooks.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com
http://news.ycombinator.com
http://hackermonthly.com
http://retrazos.pe/

 3

Contents

STARTUP

12 Wannabe Entrepreneur Symptoms
And Cures
By GABRIEL WEINBERG

14 If You Can’t Buy Your Investor A Beer,
Don’t Take Their Money
By SACHIN AGARWAL

16 Three Years Ago, I Sold My Startup
Because I Was An Idiot
By PETER COOPER

18 The Royal We: Single Founder Startup
By RAY GRIESELHUBER

SPECIAL

22 We Are What We Choose
By JEFF BEZOS

PROGRAMMING

26 Plain English Explanation Of Big O
Notation
By WILLIAM SHIELDS

30 Developing And Deploying A Simple
Clojure Web Application
By MARK MCGRANAGHAN

36 Criminal Overengineering
By MARK O’CONNOR

38 Experimenting With Node.js
By JEFF KREEFTMEIJER

40 The Absolute Bare Minimum Every
Programmer Should Know About Regular
Expressions
BY MIKE MALONE

42 HACKER COMMENTS

43 TECH JOBS

FEATURES

04 How To Focus
By CLAY JOHNSON

08 A Coder’s Guide To Coffee
By TOM MOERTEL

Photo: Sierra Michels Slettvet, http://www.flickr.com/photos/sierrams/3437792169/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://creativecommons.org/licenses/by/2.0/deed.en

4 FEATURES

MOST OF THE
people who
click on this
article from

somewhere won’t finish reading it. So
says Nick Carr. The New York Times will
remind you that you’ll probably forget
reading it in a few minutes. The idea has
gotten so prevalent, even the Onion has
started to take its jabs.

There’s some truth to it. Posts like this
and search trends point to what we’re
after. Many people want the ability to
focus more and feel like they’re losing
the ability to focus on a particular task
for long periods of time. We feel like
we’re losing that ability. Getting Things
Done and all the other books out there
tend to give you some rituals to cope
with the problem — but only if you
could stick to them. Most of us, just a
few weeks after reading that book, sit

next to filing cabinets (virtual or other-
wise) and go about our merry way.

That’s because we’re focused on the
wrong thing. To get a longer attention
span — even a span long enough to read
this article — don’t worry about managing
the information. Worry about managing
your attention. Paying attention, for long
periods of time, is a form of endurance
athleticism. Like running a marathon, it
requires practice and training to get the
most out of it. It is as much Twitter’s fault
that you have a short attention span as it
is your closet’s fault it doesn’t have any
running shoes in it. If you want the ability
to focus on things for a long period of
time, you need attention fitness.

Neuroplasticity is how your brain
changes its organization over time to
deal with new experiences. It involves
physical changes inside of the brain based
on the particular tasks the brain is asked

to complete. It’s why the hippocampus of
a seasoned taxi driver in London is larger
than average, and how a meditating monk
grows grey matter. Your brain isn’t a
mythological deity but a physical part of
your body that needs to be taken care of
just like the rest of your body. And your
body responds to two things really well
— diet and exercise. Let’s presume your
brain, being a part of the body, also does.

Things like Inbox Zero or cutting
down on meetings may be handy tricks,
but they don’t take neuroplasticity into
account. The bet there is that you have
a finite amount of attention to spend,
and that attention range isn’t changeable.
That stuff is handy for making the best
use of your limited attention span, but
it’s not going to improve your attention
span. It’s not going to stop your brain
from being easily distracted or unfocused
if you’ve already trained it to be that way.

How To Focus
By CLAY JOHNSON

FEATURES

Photo: Pranav Sankar Yaddanapudi, http://www.flickr.com/photos/neychurluvr/3611966967/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

http://www.flickr.com/photos/neychurluvr/3611966967/
http://creativecommons.org/licenses/by/2.0/deed.en

 5

So how do you train to focus? I’ve
been using interval training with great
success. Modeled after how I trained to
run my first marathon using Jeff Gal-
loway’s technique, I practice attention
interval training. I got this timer installed
on my computer. It’s an excellent interval
timer based on a technique called the
Pomodoro technique — but I’m primar-
ily using it based on its ability to make
sound, set good intervals, and support
logging. I started small: 10 minutes
of work with two minute breaks. My
strategy has been to keep it so when the
timer goes off that tells me it’s time to
take a break, I feel like I can keep going.
I’m up to 35 minutes now with 2 minute
breaks. Interestingly enough — this is
about as far as I’ll get probably while still
being able to keep Instant Messaging on.
I’ve found that about 35 minutes is the
max response time for IM to be useful.

The timer isn’t the key part though,
that’s just a component of a system
like a good watch is a part of running a
marathon. Here’s how I set that up:

Ditched the Second Monitor
I’ve been using a second monitor for
nearly ten years, thinking that vast
amounts of space were key to productiv-
ity. The second monitor myth has been
around for quite some time. Yet the only
actual scientific study I could find linking
multiple monitors to productivity was
done in 2003 by a monitor manufacturer,
a video card manufacturer, and the
University of Utah. It’s actually kind of
a marketing document, not a study. I’ve
opted for one, large monitor. Two moni-
tors just allows me to put distractions on
one monitor, and actual work on another.

Set up Spaces in OS X

Spaces is virtual desktop software on
OS X. I never thought it was useful
before ditching the second monitor,
but now — instead of having always-on
distraction in one monitor on my desk,
I can put my email, twitter, and surfing
browser in one “Space” on OS X and
keep it there. When I start my pomodoro
timer, I hop into a “space” that has only
the tools I need to do whatever task I am
up for on the screen. In this case, I need
limited web browsing and a text editor
to write this blog post. Note the addition
of “about:blank” in my bookmark bar at
the top of the browser. While I’m writing
and don’t need to use the browser, I tend
to blank the screen out so I don’t get too
distracted by the browser.

My third space simply has Remember
the Milk running in full screen.

Turned the mouse off during
work-time
During the time that I’m working
(unless I’m editing) — my 35 minute
work intervals — I turn my mouse off.
I’ve found that I can focus much more
on the task at hand if I don’t touch or
use that mouse. For me, my mouse is a
gateway towards passive browsing and
web surfing. If I don’t have access to
it, I can’t begin the chain reaction of
getting sucked into the web. For me, it’d
be like running a marathon on a road
with 26.2 miles of chicken-wing stores.
I might make it a few miles, sure, but
around mile 20, I’m going to succumb to
temptation. I’ve found that Divvy helps
me manage windows without the mouse,
and that Vimium helps me use the web
for research without the mouse.

Created a proactive routine
Part of my 2 minute break-time is
used to set-up whatever tools I need to
accomplish my next task. I use that time
to figure out exactly what I need for my
next task, close-down all the things I
don’t need for that task, and set windows
up appropriately. There’s rarely a time
when I need more than two windows
open. The set-up generally involves clos-
ing all tabs in the browser, and starting
the browser fresh with an about:blank
page. The key here is, I don’t just hop
into doing work. I spend a minute or
two setting up an ideal environment for
me to be able to complete whatever my
next task is. When I leave my computer
for the day, there are no windows open.
I start with a blank slate to come back
to. No need getting bogged down in
yesterday’s set-up.

“Modeled after how I trained to run my first
marathon using Jeff Galloway’s technique,
I practice attention interval training.”

6 FEATURES

About those tabs
None of my web browsers — surfing or
otherwise, are allowed to have more than
5 tabs per browser window at any time.
I do this via the No More Tabs Chrome
extension. This extension is pretty brutal:
if you create a new tab and you’re over
your tab limit (defaults to 5) it’ll close
your oldest one. I’ve been running this
extension for over a month, and not once
have I had a serious problem. It’s forced
me to pay attention to a particular web
page and finish working with it if I’m
going to move on to something else.

The Environment Around Me
While I work primarily from home,
I’m still prone to distractions from my
environment. To conquer that, I have a
pair of noise-reducing headphones, and
I listen primarily to lyric-free music.
Just a bit of noise to keep me focused.
I sit at my desk, but I suspect that I’ll
be converting to a standing desk soon
because I don’t want to die early. I also
tend to keep some snacks (nuts) and
beverages around my desk so that food
and water don’t lower my focus thresh-
old. Though there’s one big anomaly
here: I’m not working in an office with
that many people in it. I don’t have a lot
of meetings to take. I’m not managing
anyone right now. For that though, I sug-
gest consolidating all meetings into the
afternoon and make them back to back.

That way, you’re getting them out of the
way and you have solid, long blocks of
time to focus on getting things done.

Synopsis
Like all exercise, different kinds of
workouts work differently for different
people. For me, interval training works
wonders — this blog post, for instance,
has taken me 70 minutes to research
and write — ordinarily a blog post like
this before I had this set-up would take
me nearly a full day’s worth of work.
More importantly though, I’m able to
do things like read long articles or even
academic papers — things I never used to
“have time for” which really meant “had
attention for.”

If you think you’re having focus
problems — if the concept of provigil
appeals to you, or you’ve thought “oh if I
could only get my hands on some ritalin,”
think about setting up an attention
fitness regimen for yourself instead. My
general advice:

1. Do slightly less than you think you’re
capable of.

2. Increase your capacity while staying
under that bar (#1).

3. You’re not going to run the attention
fitness equivalent of a marathon today.
Start slow.

Your brain, like your body, is only a
result of what you train it to do. Attention
fitness, like any other kind of fitness, takes
time even to get into a routine. But once
you make it a habit, it starts to pay off.

Clay Johnson is an open government advocate.
He is the former director of Sunlight Labs and
under his leadership, Sunlight Labs became a
community of 2000 developers and designers
working to open their government. Prior to Sun-
light, Clay was one of the four founders of Blue
State Digital, the organization that provided the
technology and online strategy behind Barack
Obama’s presidential campaign. He blogs at
infovegan.com.

Reprinted with permission of the original author. First appeared in http://hn.my/focus/.

“Do slightly less than you
think you’re capable of.”

http://infovegan.com
http://hn.my/focus/

Duck Duck Go

http://duckduckgo.com/

8 FEATURES

A Coder’s Guide To Coffee
By TOM MOERTEL

 9 9

AS MOST SOFTWARE
and creative profes-
sionals know, coffee
is an important

technology for boosting mental acuity
and maintaining peak on-the-job
performance. But did you also know that
coffee can be a damn tasty beverage?
It’s true. All you need is the appropriate
amount of disrespect for the mainstream
coffee industry and a desire to enjoy a
better beverage. So read on, and learn the
secrets to great coffee.

First things first. Mainstream coffee
sucks, and specialty coffee mostly sucks.
Mainstream coffee is primarily stale,
low-quality, high-yield beans, many
times cheap robustas, foisted on a largely
unknowing public in supermarkets
nationwide. Specialty coffee isn’t so
much coffee as it is flavorings, sweeten-
ers, and milk; what coffee is sold is often
neither “special” nor properly prepared
– it’s usually over-roasted to serve as a
background for sweet flavorings. A few
specialty coffee purveyors, however, do
sell good coffee, and I’ll show you how to
find them, but most are happy to sell you
stale beans whose dead taste is hidden
behind raspberry and caramel syrups.
Buyer beware.

Nevertheless, good coffee is good –
great even – all by itself. It’s also dirt
cheap and easy to make. Therefore, don’t
settle for a cup of crappy coffee: make a
cup of the good stuff for yourself.

The coffee quick course
If you follow these three guidelines and
do nothing more, you will enjoy coffee
better than you can find in most specialty
coffee shops:
1. Buy only whole-bean coffee roasted

within the last few days.
2. Grind it fresh, just before brewing.
3. Brew it in a French press or a pour-

over filter using fresh water, off the
boil.

The first two guidelines strike at the
nemesis of good coffee – staleness. Stale
coffee is dead coffee. There is no way to
get a good cup from it.

Sadly, most of the coffee you buy in
stores is stale before you get it home.
While green (un-roasted) coffee beans can
stay fresh for 2 years, roasted coffee goes
stale in under 2 weeks, and ground coffee
goes stale in a few short hours because
of the immense surface area that grind-
ing exposes to the air. Special “freshness
preserving” packaging doesn’t help much
either; it’s mainly a marketing gimmick.

The only reliable way to get fresh
coffee is to know when it was roasted.
Therefore, when you buy coffee, buy it
from a purveyor who can tell you when
it was roasted. If a coffee purveyor can’t
or won’t tell you when their coffees were
roasted, find another purveyor. And when
you buy your coffee, buy it whole bean.
Store it away from heat and light (but
not in the refrigerator). Use it before it
goes stale. If it goes stale, throw it away
and get fresh beans.

Also, get a grinder. An inexpensive
($15) blade grinder (“whirly-bird”) is
sufficient for making drip coffee and lets
you grind just before brewing, which
is the key to avoiding staleness. At this
price, there is no reason to suffer stale,
pre-ground coffee. If you want to buy a
better grinder, that’s fine, but don’t think
you have to spend a lot of money to
enjoy fresh coffee.

The third guideline addresses another
common flavor-denial attack: Low-
temperature brewing. Most drip coffee
makers brew at a temperature too low
for proper flavor extraction. The most
frequent explanation that I’ve heard
for this sad yet pervasive flaw is that
“really hot” coffee is a lawsuit waiting to
happen, and thus manufacturers have
lowered brewing temperatures accord-
ingly. Whatever the reason, the effect is a
cup of lifeless coffee.

So what is the right temperature?
Off the boil works well. Put a kettle of
freshly drawn, cold water on the stove.
When it boils, take it off the heat, wait
a minute or so, and slowly pour it over
your freshly ground coffee. If you’re an
experimenter, a $10 instant-read ther-
mometer is all you need to “dial in” the
optimal temperatures for your coffees
and your taste-buds.

Since you’ll be using a “pour over”
technique, you’ll need a pour-over brew-
ing apparatus – either a French press or a
$5 pour-over filter holder, found in most
supermarkets. Use the French press if
you enjoy the stronger flavors of unfil-
tered coffee. Use the filter holder if you
prefer the convenience of a filter, which
makes clean-up easy. Both are small
enough to take to work, and the filter
holders are cheap enough to leave there.

And that’s how you make great coffee.
If you think that’s too much effort, at
least you can use your new knowledge
to find coffee shops that use fresh beans,
grind them just before brewing, and
brew them properly (most commercial
brewers do use proper temperatures,
thank goodness).

Oh, there’s more
If you follow the advice above, you will
drink great coffee for the rest of your life.
For some people, that’s enough. For other
folks (like me), that’s just the beginning.
It’s the first step toward a fun, inex-
pensive, and gastronomically rewarding
hobby. Even if you don’t want to make
coffee into your hobby, you do have the
opportunity – right now – to give up bad
coffee and start drinking the good stuff.
Why not seize the day?

Illustration: Jaime G. Wong (http://retrazos.pe/)

http://retrazos.pe/

10 FEATURES10 FEATURES

Home roasting
Roasting your own coffee is simple and
provides three major benefits. First, you
can buy your coffee green and store it
for over a year. Second, you can roast
your coffee as you need it, so you’ll
always have fresh beans. Third, you can
experiment with a wide variety of beans,
blends, and roasts to enjoy coffee that
you could never find in a store.

A further benefit is that green coffee
is less expensive than roasted coffee. By
home roasting you’ll not only have better
coffee and more control but also more
money in your pocket.

To roast your own coffee you will
need two things: green beans and a
roaster. The beans can be purchased
online at places like Sweet Maria’s
(where I get most of my beans) and
locally from the better coffee shops
in your neighborhood. A roaster can
be had for as little as $5 – buy an old
hot-air popcorn popper at a garage sale.
That’s what many folks on alt.coffee

use for their roasting. If you prefer a less
adventurous solution, there are many
home-use roasting machines now on the
market in the $100–$300 price range. I
use a $150 Hearthware Precision roaster,
and it works well. Just drop in a scoop of
beans, dial in the desired roast, and press
a button.

Yes, it’s that easy. And, yes, the results
are better than most pre-roasted coffees
you can buy. Nothing smells as good as
freshly roasted beans. Nothing tastes as
good when brewed. Once you try home
roasting for yourself, you will understand.

Espresso
If you want to experience the concen-
trated essence of coffee, you must drink
espresso. Good espresso. Unfortunately,
practically none of the specialty coffee
shops and chains in the United States
knows how to prepare espresso properly.
If you want good espresso, you’ll have to
make it yourself (or take a trip to Italy).

Unlike the advice I provided earlier,
which is simple and just plain works,
making good espresso is difficult. Finding
the right combination of beans, grind,
packing, pressure, temperature, and
exposure takes practice. It took me
months of gradual refinement to learn
how to make a truly good cup. After
years, I’m still seeking the perfect cup.

Since the perfect cup of espresso is a
never-ending quest, I can only point you
in the right direction. The rest is up to
you. Here is what I can tell you:

Plan on spending > $250 USD on a
good pump machine. “Steam toys”
aren’t capable of good espresso. Do
your homework: Read what people
who own the machines say in the
consumer reviews of brewing equip-
ment on on CoffeeGeek.com.
Plan on spending that amount again
on a good grinder. Many people buy an
expensive espresso machine but skimp
on the grinder. Big mistake. Since grind

Photo: GenBug, http://flickr.com/photos/genbug/3153754889/. Sierra Michels Slettvet, http://flickr.com/photos/sierrams/3437792169/. Alex, http://flickr.com/photos/eflon/4340500871/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

01 02

http://CoffeeGeek.com
http://flickr.com/photos/genbug/3153754889/
http://flickr.com/photos/sierrams/3437792169/
http://flickr.com/photos/eflon/4340500871/
http://creativecommons.org/licenses/by/2.0/deed.en

 11

is probably the single most impor-
tant variable under your control, a
grinder must be highly adjustable and
produce a consistent grind, and that
means high-quality burrs set in a rigid
enclosure. These features don’t come
cheap. When shopping for a grinder,
again, check out the consumer reviews
on CoffeeGeek before buying.
Read the alt.coffee wisdom on espresso,
ristretto, crema, and tampers. It’s also
a good idea in general to hang out on
alt.coffee. I’ve learned most of what I
know about coffee and espresso there.

If you want to dig a little deeper, you
can read my semi-rant about espresso on
Slashdot (http://hn.my/coffeerant/).

Brew well and drink well, my
friends
Although coffee is commonly considered
a utility beverage, it is an amazing drink
when well prepared. Given its ubiquity
in software and creative circles, it’s likely

that you will be drinking a lot of it. So
why not prepare it as it was meant to
be? Why not enjoy a cup of truly good
coffee? If you buy fresh, high-quality
beans, grind them on the spot, and brew
with hot water, you can’t go wrong.
And if you decide to try home roasting
or espresso, you will enter a whole new
world of flavor and nuance. The rewards
are worth the effort.

Whatever else you may do, please
don’t let the mainstream coffee indus-
tries convince you that bad coffee is all
there is. Good coffee is out there. Insist
on the good stuff.	

Tom Moertel designs and codes the core
messaging systems at Smash Technologies
(www.smashcode.com), a mobile-messaging
startup based in Pittsburgh. To make things go,
he uses Erlang, Haskell, Python, and a whole lot
of home-roasted coffee. You can read his blog
at blog.moertel.com.

Originally posted to Kuro5hin.org on Thu Apr 25th, 2002 at 02:29:34 PM EST. Reprinted here with minor corrections as it appears on http://hn.my/coffee/.

1. Coffee Beans
2. French Presses
3. La Pavoni Espresso

Machine

03

http://hn.my/coffeerant/
http://www.smashcode.com
http://blog.moertel.com
http://Kuro5hin.org
http://hn.my/coffee/

12 STARTUP

Wannabe
Entrepreneur
Symptoms
And Cures
By GABRIEL WEINBERG

STARTUP

 13

I WAS ONCE A wannabe entrepre-
neur. Fresh out of college and
a summer internship at a VC
firm, I thought I knew what I

was doing. Though this was 2000, and
all startup & VC blogs we’ve grown to
love didn’t exist yet, I did have mentors
available. I should have leaned on them
a lot more, but I didn’t, or at least not in
the right ways.

But all the ways I’ve failed, and there
are certainly many, is not the point. I
just want to let you know that I’ve been
there, and that I hope the rest of this
post doesn’t come off as annoyingly
condescending.

Since 2000, I’ve been doing and
thinking about startups constantly.
Even though I’m an introvert, I end up
meeting or otherwise crossing paths with
a lot of entrepreneurs. Unfortunately, I’d
classify a lot of them as wannabes.

What follows are some symptoms I’ve
seen over and over that usually (though
not always) indicate a wannabe entre-
preneur. If any of these describe you (or
someone you know), I’d take it as a sign
to step back and think hard about what
you’re doing (or have that conversation
with your friend).

There are cures. Usually it means what
you (or they) are working on now will
fail. But perhaps it is salvageable with a
few tweaks or a change in direction. And
if you/they are really in it for the long
term (as real entrepreneurs are), then
there will be other startups.

Symptom: a year has gone by and you
have nothing to show for it.
Cure: get stuff done. That’s what real
startup founders do. Customers don’t
care about excuses.

Symptom: you haven’t really talked to
any real customers/users.
Cure: read Steve Blank’s book. Get
out of the building. “No plan survives
first contact with customers.” A related
(non-wannabe but first-timer problem)
is confusing the user with the customer.
I did this on my first startup, and it was
one of my primary problems.

Symptom: you’re going around calling
yourself a CEO.
Cure: you’re a founder. You’re not pow-
erful. No one cares about what you’re
doing...yet.

Symptom: you aren’t knowledgeable
about startups, especially your own
space.
Cure: read stuff & regularly talk with the
smartest startup people you know. At the
very least, you should know the whole
history of your space--failures, acquisi-
tions, IPOs, reasons for such, etc.

Symptom: you just need 10-25K in
investment.
Cure: get your own 10-25K. Do consult-
ing. Maybe convince friends and family. If
you can’t raise that much from yourself
and your existing circle, you aren’t going
to be able to raise more from strangers.
I did consulting for a few years, max 4
hours a day, so I could focus the rest of
time on my startups.

Symptom: you have spent months
researching the right architecture to
build your site.
Cure: build it already. You seem like
someone more interested in technology
than startups.

Symptom: you don’t understand your
startup’s assumptions.
Cure: make a spreadsheet and try to
predict the key metrics of your business.
Yes, the financial projections that come
out of the spreadsheet are probably
worthless (or grossly inaccurate), but
not their underlying assumptions. Those
are the things you need to prove and the
first step is knowing what they are. As
a side note, this exercise will help you
understand how much money you need
to raise, if any.

Symptom: you’ve written more than a 5
page business plan (intended for others).
Cure: spend that time talking to real
customers or building your product. If
you think it will help you understand
your business, build a spreadsheet with
assumptions instead. If you think inves-
tors will read it, know that they won’t.
Note: I have no problem with people
analyzing their businesses internally
through brief writing; I do that too.

Symptom: you now just need a program-
mer to code up your site.
Cure: either convince a real tech co-
founder to join you, or learn how to code
yourself. It’s not that hard, and if you
think of startups as a career, it’s a great
skill to have even if you just manage tech
people. You don’t have to major in CS in
college to be a programmer, e.g. I was a
Physics major.

Gabriel Weinberg is the founder of Duck Duck
Go, a search engine. He is also an active angel
investor, based out of Valley Forge, PA. More info
at his homepage: http://ye.gg/ .

Reprinted with permission of the original author. First appeared in http://hn.my/wannabe/.

http://ye.gg/

14 STARTUP

WE JUST HAD our second
official board meeting.
Posterous has been

around for over two years, but I still
count this as number two. Because in the
past, a board meeting just meant Garry
and I were at a bar talking about the
future of our company.

But there were new faces at this meet-
ing. Satish Dharmaraj from Redpoint
Ventures, Gus Tai from Trinity Ventures,
and our lawyer, John Bautista from
Orrick. There was no beer. And I was
presenting the state of Posterous through
a Powerpoint presentation. I had barely
touched Powerpoint before starting
Posterous.

The guys around this table have a lot
of power over our company. They are on
the board. They have voting rights. They
can fire me.

So how do we know we picked the
right people for the job? Some of the
VCs we were pitching to, we met only
three or four times. Is that enough to
really get to know someone, to give them
power over your company and future?

Do they know me? Do they know
what my goals are, what kind of company
I’m trying to build, what gets me excited?

There are plenty of posts online about
valuations, term sheets, and how to
negotiate. I’m not going to get into that

stuff here. This post is about the personal
side of finding investors. These are tips
to make sure the people you let invest in
your company are a good fit.

You need to trust your investor, and
you only have a short amount of time to
find out if you do. Here are some things
Posterous did to get to know our inves-
tors before letting them invest.

Get to know the VCs early. If you
need money, you are too late.
If you aren’t raising money, you have the
luxury of time. Use it to meet and get to
know as many VCs as possible.

1. Go to startup events and introduce
yourself to every VC in the room.
Don’t just do a five second hello. Tell
them who you are and what you’re
working on. Even if you aren’t looking for
money, they will appreciate meeting you.

2. Read VC blogs.
What VCs do you look up to? Find out
what every VC writes about, what his
beliefs are, and what he’s invested in.

3. Beware of associates.
We had some bad experiences. If an
associate sets up a meeting with you,
make sure a partner will also be there.

4. Get introductions to VCs from your angel
investors and other startup friends.
These go a long way. If you have
multiple connections to a VC, have them
all plug you. If a VC hears about your
company from 5 of his friends, he will
meet with you.

5. Don’t be shy.
Be proud of what you’re building. Your
competition will be. Highlight your
strengths, be confident.

6. A couple months before you’re going to
raise, schedule a coffee meeting with all
the VCs.
No pitching, no deck. We did this and it
was a great way to meet VC partners in a
more casual setting. If they like you, they
will even help you with your pitch.

7. Continue building a relationship with VCs
you meet.
Send them updates about your company,
news in TechCrunch, and updated stats.

8. Get them to use your product.
If they haven’t used it by the time you’re
pitching them, you’re wasting your time.

If You Can’t Buy
Your Investor a Beer,

Don’t Take Their Money
By SACHIN AGARWAL

 15

Let the pitching begin
You are not cattle. Make the VCs respect
you and your time.

1. Cram all your meetings in the shortest
amount of time possible.
You want to get this over with quickly.
(You also want your term sheets to come
at the same time).

2. Refine your pitch everyday.
Figure out what works and what doesn’t,
then change it.

3. Put your least desirable VCs up front.
You will learn a lot as you go. You will
figure out which questions are good, and
which are signs of interest.

4. Don’t read too many posts about what a
VC pitch deck should look like.
You know what it should contain? What-
ever you want it to. Because it should
be personal. It should convey what you
think it important. Otherwise you might
try to squeeze your pitch into a mold
that isn’t right for you.

5. Your pitch should be natural.
By the middle of our pitching calendar, I
could give our pitch by heart and it was
90% the same as the last time I gave it.
That’s not because it was memorized. It’s
because it was natural and automatic.

6. Before starting your pitch, make everyone
in the room introduce themselves.
Sometimes they don’t and it’s very odd.
They should be selling to you as well.

7. Get through your pitch and divert as many
questions as you can.
You should run the show.

8. Have one person speak, whoever is the
most confident.
It will flow better this way and you won’t
be repeating yourself as much.

9. When asked a question, have one person
ready to answer it.
Don’t look at each other, don’t hesitate.

10. Ask the VCs questions.
Have these ready beforehand. Ask them
about the firm structure, their funds, and
other investments.

11. Evaluate the VC’s questions.
Are they asking you smart things? You
can pretty accurately figure out if the VC
“gets” what you’re building and is excited
about it based on their questions. If they
don’t get it, don’t waste your time.

12. If they don’t get it, walk out.
Say, “no thanks.” I said “no” to a couple
VCs when I thought there was no fit.
I don’t want to waste their time, and
they shouldn’t waste mine. If you ask
me about barriers to entry, you don’t
understand the internet.

13. Follow up with a thank you email, and
additional questions.
This is your chance to ask anything.

So you got a term sheet.
But do you want their money?
If you’re fortunate enough to get mul-
tiple term sheets, here’s when you decide
which VC you want on your board.
Terms are important, but your fit with
the partner will mean much more at the
end of the day than a higher valuation.

1. Hang out with the partner over beer.
The more beer you have, the better. If
you are going to work with this person
for years to come, you have to be
comfortable around them.

2. Check up on references.
Talk to other companies they have
invested in. Ask friends who might know
people at those companies. Try to figure
out which references are honest and
which are just siding with the VC by
default.

3. Talk to CEOs that have been fired by this VC.
You’ll get a good story at least.

4. If the VCs are prepping their references for
your call, be afraid.
Our best offer to check references came
from Gus when he said, “Feel free to
contact any person I have ever worked
with through my entire career.”

Raising series A financing is one of
the most stressful, unique, and exciting
things I’ve done at Posterous. I had the
time of my life. It was a two month long
roller coaster of meetings, negotiations,
dinners, and eventually, money.

We couldn’t be happier with the
ways things turned out. We love having
Satish and Gus invest their money, time,
and expertise into Posterous. In fact, the
reason why we have two VCs is because
we wanted them both!

We have a long relationship with
Satish, and I trust him like he’s part
of my family. We often call him Uncle
Satish. The first time I met Gus, months
before we were ready to raise a VC
round, I was instantly impressed by him.
Kate met Gus at a Christmas party, and
after just a few minutes, commented
about how great of a guy he is. These
things matter.

So what are our board meetings like?
We rush through the legal and finance
business as quick as we can, and then we
talk product. We all love talking about
Posterous and what we should build
next. I love it.

Sachin Agarwal is the cofounder and CEO of
Posterous.com. Prior to starting Posterous,
Sachin spent 6 years working on Final Cut Pro
at Apple, Inc. Sachin graduated from Stanford
University in 2002 with a degree in Computer
Science. You can follow Sachin on twitter at
http://twitter.com/a4agarwal .

Reprinted with permission of the original author. First appeared in http://hn.my/investors/.

http://posterous.com
http://twitter.com/a4agarwal%20
http://hn.my/investors/

16 STARTUP

THREE YEARS AGO today, I sold the
assets forming Feed Digest to
Informer Technologies, Inc. It

has since been rebranded to Feed Informer
but is still operating mostly as it was.

I made a nice amount of money from it
and I don’t regret the sale, but, ultimately, I
was dumb for letting Feed Digest to get to
a position where it was better to sell than
not. I need to go into some background for
you to see why.

The genesis of Feed Digest
Feed Digest was a pioneer in “serious” RSS
(and Atom!) feed manipulation and syndi-
cation services. It wasn’t the first, but it was
the first to seriously try to capitalize on the
idea rather than offer these services as an
“extra” on something else.

Users included NASA, the Smithsonian
Institute, MIT, and, most importantly, the

Denver Post, one of America’s top 10 daily
newspapers, who used Feed Digest wid-
gets all over their site. About 250 million
“digests” were being served per month by
mid 2007 and from the outside, it looked
like a promising business.

Feed Digest spawned from a side project
called RSS Digest whose main goal was to
take my Delicious links and automatically
put them onto my blog. After hundreds of
others though it was a great idea, I started
to take donations (several thousand dol-
lars in a few months – not bad for 2005!)
and let people use the tool too. From this,
enough promise was shown that I decided
to “go pro” and a month before launch,
Kelly Smith structured a deal for Curious
Office to make an angel investment in my
idea (for this gamble on his part, I will
always be grateful).

A popular service, headed by a
business dunce
The nascent business had a problem though
– me. Though I’d been working for myself
for 7 years before launching Feed Digest,
it would be an understatement to say I was
naïve about the concerns of “running a busi-
ness.” Feed Digest’s pricing was ridiculously
low (even the biggest “enterprise” customer
was only paying $200 a month – most users
were $25-50 a YEAR) and while it was
in profit from the third week and had a
flood of customers throughout, it was only
making several thousand dollars a month
after 2 years. Enough to keep it going as a
“job” for me, but not a serious business that
warranted further investment.

As with most webapps, a lot of hope
was put into developing an all-magical
“version 2” and I made good progress with
it. In 2006 I got an e-mail from Michael

By PETER COOPER

 17

Arrington who wanted to write about Feed
Digest for TechCrunch (yes, one of the
biggest and most influential tech blogs in
the world). Being a closet perfectionist,
I asked if I could hold until the magical
version 2 was released. A crazy mistake.
Michael has been kind enough to follow
me on Twitter and occasionally throw a
comment my way in the years since, I hope
I can make up for my stupidity by giving
him a good story one day ;-)

Service was always a massive deal for me.
What I lacked in business acumen, I made
up for by delivering the best service I could.
Every e-mail got a response within hours,
every criticism either resolved or accepted
gracefully. I forget the exact numbers but in
well over 1000 transactions there were cer-
tainly fewer than 5 refunds ever requested
(and all were given). Users genuinely loved
the service.

The sale
Service is only one leg of the stool in any
business, and without a serious idea of how
to grow the business it was destined to stay
small fry unless someone else took notice.
In mid 2007, I got a terse e-mail from a
Russian guy asking if I wanted to sell Feed
Digest and, if I did, his company would
be interested in buying it. Negotiations
were quick and my angel investors – who
were supportive, but a little forlorn over
my inability to drive it as a “real” business
– gave the thumbs up, since the number
mentioned ensured they’d get a healthy
return on their investment. The deal was
sealed by the end of July 2007 (no big story
here, both sides did due diligence on each
other and a good escrow was used) and the
money hit my bank account in mid August.

It wasn’t a lot of money. Well, it was for
me. It wasn’t a million dollar acquisition, but
certainly more than most of the population
will earn in a couple of years. A low six
figure sale. For something merely making “a
living” and keeping me up all hours of the
night, I think it was a good deal. It turned
into some healthy savings, a wedding, a car,
and a chunk of the house we live in now, so
I can’t complain.

The contract I signed with the buyer
meant that I was contractually obliged to
defend them against any third party claims
over patents, copyrights, and the like, for
three years, ending July 30, 2010. Today,
then, is truly the day all ties with the service
are severed. It’s the final period on the last
page of the book.

What I’ve learned since
A benefit of having some savings is that
I’ve been free to do mostly whatever I like
since then. I’ve tried a lot of crazy ideas,
got into pro blogging (with Ruby Inside),
read a ton of books, worked on open source,
and devoted a lot of time to learning and
experimenting with business. I’ve got to
know a lot of people in business and get a
feel for how things really work, if just at
a high level.

One finding is that many people running
startups are no smarter than I was when I
started Feed Digest. The difference, though,
between me and the successful found-
ers are that they are good at delegating
responsibilities for areas they’re not strong
at, whereas I took a strong DIY approach,
building not only the technology, but keep-
ing books, design, marketing, and so forth.
Not only that, but I wasn’t brave enough
to charge a sensible rate for the product
and didn’t understand that I should define
my market rather than sell $11.99 annual
accounts to people adding widgets to their
personal homepages.

I’ve not become a Donald Trump, but I
can now see what I was doing wrong and
how I could have turned Feed Digest into
a “serious” business (where “serious”, at my
kindergarten level, means enough revenue
and growth to scale to multiple employ-
ees and make serious inroads to enterprise
deployments of our services).

Not quite the end
Despite my Feed Digest story ending, it has
caused me to reflect. I’ve written about the
business side of things here, but the techni-
cal opportunities have changed significantly
since early 2005 too. Building a Feed Digest
style service now is incredibly easy.

Making something seriously power-
ful and sellable at an enterprise level is
no longer prohibitively expensive, just
dependent on having the right know how.
Which... I have. I’ve been building feed
processing and manipulation systems in
the background for other projects (such as
coder.io) in the interim. This has only just
made me think: am I crazy for not getting
back into the feed processing and manipula-
tion industry again?

So, I’m investigating it – slowly. I know
what I’m doing tech side. I have enough con-
tacts now to get things rolling. And I have a
lot more grace and life experience to actually
ask for help and be brave in making business
decisions than the 23 year old me ever did.
The industry is still small but, importantly,
still growing (Superfeedr is a notable new
player) and still considered important by
the right people behind the scenes.

Should I get back to what I know and
build a “serious” high quality product or
service on my existing knowledge base?
Honestly, I don’t know, but it’s going to be
interesting trying to find out. After three
years, it no longer feels like an unethical
thing to consider.

Added: I want to take this opportunity
to thank Marshall Kirkpatrick – now of
ReadWriteWeb – who championed Feed
Digest quite a lot in its early days. He is
easily the most RSS-obsessed person I know
this side of Dave Winer.

Peter Cooper is a UK-based entrepreneur, author,
and founder of coder.io. His personal homepage
and blog is at peterc.org and you can follow him
on Twitter at @peterc.

Reprinted with permission of the original author. First appeared in http://hn.my/soldstartup/.

http://coder.io
http://peterc.org
http://twitter.com/peterc
http://hn.my/soldstartup/

18 STARTUP

IT HAS BECOME a common wisdom
of sorts in the startup world
that if you are running your
business without a co-founder

or partner, the odds are stacked against
you. I personally don’t believe we have
enough data to say whether the odds are
any worse as a single founder, but I do
know it comes with its own unique chal-
lenges. More and more, though, I meet
people running their businesses, quite
successfully, as solo founders. It is at least
partly related to the shifts we are seeing
in startups as a whole. I’ve learned quite
a bit over the last two years as a solo
founder myself, so I thought I’d share my
observations and some techniques that
I’ve found useful for making it work.

But first, let me provide some back-
ground. If you happen to follow the
world of startups, especially web startups,
you’ll know that venture capital is
undergoing a change and more startups
are being run on less initial investment
and that the size of each investment is

getting smaller. At first glance, this may
not seem like a good thing but it is for
the following reasons.

First, it creates an environment that
selects for do-ers and makers — people
who have the ability to create entirely
new businesses literally with their own
hands. In many sectors, the startup world
consisted of all-star executive teams and
millions of dollars in venture capital. We
are now discovering that this is a danger-
ous model for many reasons (which I
won’t discuss here.) But now, as compa-
nies raise less money early on, this forces
them to spend more time discovering
what works as a business model before
they build out their product.

Second, the earlier a startup raises
money, the more risk they are asking
investors to shoulder. As a reward for
bearing this risk, investors generally get
more control of the company. By being
able to build an initial product and
discover a working business model with
less investment, this shifts the balance of

power (and the risk, of course) back to
startup founders.

One of the key enablers for this shift
is the dropping cost of building busi-
nesses in the first place. Paul Graham is
well-known for articulating this as being
due to open source software and the
cloud. I also think it’s fair to say that the
tumultuous economy we’ve experienced
over the last 10 years has contributed
to the creation of a generation of frugal,
scrappy entrepreneurs.

If we take everything above into con-
sideration and look honestly at the differ-
ence between single founder startups and
startups run by cofounders, we can see
that these forces are relevant to anyone
building a new company, regardless of
team size. In fact, one could probably
argue that if startups are going to keep
getting cheaper to build, then it only
makes sense that the minimum size of
a team necessary to build a new startup
should continue to approach zero. One is
closer to zero than two or three.

The Royal We: Single Founder Startups
By RAY GRIESELHUBER

 19

Kidding aside, if we can agree that
these factors apply for any company,
then there must be a different set of
reasons why people think the odds are
better for startups with co-founders.

The three that I think are most
relevant are 1) emotional fortitude, 2)
having more hands to do the work and 3)
a richer source of new ideas. Working as a
solo founder means that you need to get
creative about how to make these three
factors work for you, despite your status.
It may be more difficult to do so, but if
you can learn to do this on your own,
then you will probably emerge stronger
and better than many other startups,
even if they are bigger than you.

For #1, there is no getting around the
fact that running a startup is hard. It will
test everything you know and believe
about yourself. You will feel stupid,
under-appreciated, underpaid and both
emotionally and physically drained. And
that’s just what happens when things are
going well. (If you’re not feeling those

things at least some of the time, you’re
probably not to the stage of validating
your business model.) So, perhaps the
best reason for having a co-founder is for
moral support, someone to help you get
through those dark nights of the soul.

As a single founder, I can’t argue that
having the right co-founder would not
make this much easier. But there are
ways of making it work, even if you are
alone. The key is to not be alone in other,
even more important areas of your life. In
my case, my wife helps me get through.
In many ways, although she is not techni-
cally a co-founder, she helps with a ton
of admin work and, more importantly,
has helped me stay positive. She has been
as much a part of this startup as I have,
and has suffered through the same things.
If you’re not with somebody, it might be
harder or easier, depending on where you
are in life. I know lots of single people in
their 20s building successful companies
on their own.

At the end of the day, it comes down
to how you answer two questions: are
you ever going to quit and can you
adapt? You may not know this before
starting, but if you do it long enough,
you will have to figure out the answer.
I’ve had to do this over the last year
myself, and I’ve found the answer. (Hint:
I’m still here.)

I could probably simplify this even
further. The degree to which you are
successful is a function of your ability
to mold reality to your needs. This is
something I learn a little more about
the longer I’m in the game, because the
work involved in developing that ability
is significant.

In my opinion, #2 (having more hands
to do the work) is the least important,
although it is probably the one that most
people think of as being hardest when
they hear about people doing startups on
their own. You could have 20 people on
your team and there will always be more
work than you can handle at any time.

The Royal We: Single Founder Startups

20 STARTUP

In many early stage startups, having too
many people can be a kiss of death (not
that 2-4 is too many, necessarily.)

Any capable person on a small team
wants to contribute to its success and
it’s very easy for people to create busy
work (or worse, spend money) far too
early. When a company is trying to
figure out what customers will pay for,
it can be a handicap to build too much
without knowing the answer to that
question. We’ve learned from people
like DHH the value of constraints and,
from this perspective, there are few
more constrained environments than a
single person team trying to bootstrap a
company into profitability.

Finally, #3 (a richer source of new
ideas) may be even more important than
#1 (emotional support). It is possible to
engage in a variety of human relation-
ships in order to get the support you
need. But ideas (aside from leads) are
the lifeblood of the entrepreneur. I know
that it is fashionable these days to say
that ideas are worth nothing and that
it’s all about the execution. I don’t agree
with that statement because it puts the

focus on the wrong part of the idea. It
may be true that each individual idea
is worth less than the execution of that
idea (although they are never worthless),
what is really valuable is the ability to
generate ideas. A surprising number of
people just draw blanks when faced with
challenges and those people who can
deliver creative, new ideas about any
given situation are pure gold.

In general, as the saying goes, two (or
more) heads are better than one. So how
does a solo founder get better at coming
up with new ideas? I personally do it by
trying learn about as many businesses as
I can. I am fascinated by business models.
I’ve done quite a bit of B2B sales over
the last few years, selling the earliest
versions of Ginzametrics. In my sales
meetings, I always try to understand the
intricacies of the customer’s business,
down to the small details of what makes
it tick. Almost always, I walk out of
those meetings with more ideas of my
own than I ever would have otherwise
(and the sales process tends to go better
to the degree that I understand their
businesses.) There are many ways of

getting new ideas. Talk to other startups.
Read more books. Do little side projects
that are completely unrelated to your
product. I personally never feel at a loss
for ideas (and have more than I know
what to do with).

The last thing I want to write about
is an observation I’ve made. Think about
all of the successful companies we know.
Isn’t it true in many cases (though not
all, of course) that even in companies
that were started by co-founders, there is
usually The One?

The One is that person who really
makes the company work. The other
founders no doubt contribute a great
deal, but if it really came down to it,
the company would survive and flourish
in much the same way as long as The
One was running it. In some cases, this
actually happens. Evan Williams, when
he was working on Blogger, was reduced
to being a single founder for awhile when
his co-founders split. He is the reason
that company worked. In the case of
Mint.com, I believe Aaron Patzer actually
was a solo founder and he is certainly the
person that everyone in the Valley talks

Photo: Gopal Vijayaraghavan, http://www.flickr.com/photos/t3rmin4t0r/3923451419/.
Licensed under Creative Commons Attribution 2.0 Generic licence. Full terms available at http://creativecommons.org/licenses/by/2.0/deed.en.

“Any capable person on a small team
wants to contribute to its success and it’s
very easy for people to create busy work
far too early. ”

http://creativecommons.org/licenses/by/2.0/deed.en

“
”

 21

about as the one who made Mint.com
work. Whenever I meet other startups,
I’m always trying to figure out how they
work. Is there one person in the company
who really makes it work, or are they
really a symbiotic team? In my own
experience, it turns out to be half and
half. Many of the startups I meet would
work just fine with just The One, because
they have that right mixture of charisma,
determination and product vision.

This is important to note because,
even if you start out on your own, it
doesn’t mean you won’t someday be
able to hire employees and recruit
strong players for your executive team.
Being a single founder is just a starting
place. If you decide to raise money or
achieve profitability on your own, you
can hire the people you need to come
up with new ideas and do more work.
You’ve already demonstrated to yourself
that you have or can find the emotional
fortitude to survive. So what else do you
need? It’s not for everyone, but if you
have an idea and want to do a startup
but find yourself alone, just start doing
it. You’ll know soon enough if you’re cut

out for it, and if you are, it won’t matter
how many people you have on your
team.

Ray Grieselhuber is the founder of Ginzametrics,
which provides an easy way for companies to
manage and improve their search engine opti-
mization (SEO) campaigns. He blogs about his
experiences and observations as an analytics
startup at http://ginzametrics.com/blog.html.

Reprinted with permission of the original author. First appeared in http://hn.my/singlefounder/.

It’s not for everyone, but if you have an
idea and want to do a startup but find
yourself alone, just start doing it.

http://ginzametrics.com/blog.html
http://hn.my/singlefounder/

22 SPECIAL

AS A KID, I spent my summers
with my grandparents on their
ranch in Texas. I helped fix
windmills, vaccinate cattle,

and do other chores. We also watched soap operas
every afternoon, especially “Days of our Lives.” My
grandparents belonged to a Caravan Club, a group of
Airstream trailer owners who travel together around
the U.S. and Canada. And every few summers, we’d
join the caravan. We’d hitch up the Airstream trailer
to my grandfather’s car, and off we’d go, in a line
with 300 other Airstream adventurers. I loved and
worshipped my grandparents and I really looked
forward to these trips. On one particular trip, I was
about 10 years old. I was rolling around in the big
bench seat in the back of the car. My grandfather
was driving. And my grandmother had the passenger
seat. She smoked throughout these trips, and I hated
the smell.

At that age, I’d take any excuse to make estimates
and do minor arithmetic. I’d calculate our gas mile-
age – figure out useless statistics on things like grocery
spending. I’d been hearing an ad campaign about smok-
ing. I can’t remember the details, but basically the ad
said, every puff of a cigarette takes some number of
minutes off of your life: I think it might have been
two minutes per puff. At any rate, I decided to do the
math for my grandmother. I estimated the number of

cigarettes per days, estimated the number of puffs per
cigarette and so on. When I was satisfied that I’d come
up with a reasonable number, I poked my head into
the front of the car, tapped my grandmother on the
shoulder, and proudly proclaimed, “At two minutes per
puff, you’ve taken nine years off your life!”

I have a vivid memory of what happened, and it
was not what I expected. I expected to be applauded
for my cleverness and arithmetic skills. “Jeff, you’re so
smart. You had to have made some tricky estimates,
figure out the number of minutes in a year and do
some division.” That’s not what happened. Instead,
my grandmother burst into tears. I sat in the backseat
and did not know what to do. While my grandmother
sat crying, my grandfather, who had been driving in
silence, pulled over onto the shoulder of the highway.
He got out of the car and came around and opened
my door and waited for me to follow. Was I in trouble?
My grandfather was a highly intelligent, quiet man. He
had never said a harsh word to me, and maybe this was
to be the first time? Or maybe he would ask that I get
back in the car and apologize to my grandmother. I
had no experience in this realm with my grandparents
and no way to gauge what the consequences might be.
We stopped beside the trailer. My grandfather looked
at me, and after a bit of silence, he gently and calmly
said, “Jeff, one day you’ll understand that it’s harder
to be kind than clever.”

We Are What We Choose

SPECIAL

Remarks by Jeff Bezos, as delivered to the Princeton Class of 2010
Princeton University Baccalaureate
May 30, 2010

 23

What I want to talk to you about today is the dif-
ference between gifts and choices. Cleverness is a gift,
kindness is a choice. Gifts are easy – they’re given
after all. Choices can be hard. You can seduce yourself
with your gifts if you’re not careful, and if you do, it’ll
probably be to the detriment of your choices.

This is a group with many gifts. I’m sure one of
your gifts is the gift of a smart and capable brain. I’m
confident that’s the case because admission is competi-
tive and if there weren’t some signs that you’re clever,
the dean of admission wouldn’t have let you in.

Your smarts will come in handy because you will
travel in a land of marvels. We humans – plodding as
we are – will astonish ourselves. We’ll invent ways to
generate clean energy and a lot of it. Atom by atom,
we’ll assemble tiny machines that will enter cell walls
and make repairs. This month comes the extraordinary
but also inevitable news that we’ve synthesized life.
In the coming years, we’ll not only synthesize it, but
we’ll engineer it to specifications. I believe you’ll even
see us understand the human brain. Jules Verne, Mark

Twain, Galileo, Newton – all the curious from the
ages would have wanted to be alive most of all right
now. As a civilization, we will have so many gifts, just
as you as individuals have so many individual gifts as
you sit before me.

How will you use these gifts? And will you take
pride in your gifts or pride in your choices?

I got the idea to start Amazon 16 years ago. I came
across the fact that Web usage was growing at 2,300
percent per year. I’d never seen or heard of anything
that grew that fast, and the idea of building an online
bookstore with millions of titles – something that
simply couldn’t exist in the physical world – was very
exciting to me. I had just turned 30 years old, and I’d
been married for a year. I told my wife MacKenzie
that I wanted to quit my job and go do this crazy
thing that probably wouldn’t work since most startups
don’t, and I wasn’t sure what would happen after that.
MacKenzie (also a Princeton grad and sitting here
in the second row) told me I should go for it. As a
young boy, I’d been a garage inventor. I’d invented an

Photo: Princeton University, Office of Communications, Denise Applewhite

Jeff Bezos, speaking to the class of 2010 at Princeton’s Baccalaureate service May 30.

24 SPECIAL

automatic gate closer out of cement-filled tires, a solar
cooker that didn’t work very well out of an umbrella
and tinfoil, baking-pan alarms to entrap my siblings.
I’d always wanted to be an inventor, and she wanted
me to follow my passion.

I was working at a financial firm in New York City
with a bunch of very smart people, and I had a brilliant

boss that I much admired. I went to my boss and told
him I wanted to start a company selling books on the
Internet. He took me on a long walk in Central Park,
listened carefully to me, and finally said, “That sounds
like a really good idea, but it would be an even better
idea for someone who didn’t already have a good job.”
That logic made some sense to me, and he convinced

“After much consideration, I took the less
safe path to follow my passion, and I’m
proud of that choice.”

 25

me to think about it for 48 hours before making a
final decision. Seen in that light, it really was a difficult
choice, but ultimately, I decided I had to give it a shot.
I didn’t think I’d regret trying and failing. And I suspected
I would always be haunted by a decision to not try at all.
After much consideration, I took the less safe path to
follow my passion, and I’m proud of that choice.

Reprinted with permission. First appeared in: http://www.princeton.edu/main/news/archive/S27/52/51O99/index.xml.
Photo: Princeton University, Office of Communications, Denise Applewhite

TOMORROW, IN A very real sense, your life — the life
you author from scratch on your own — begins.

How will you use your gifts? What choices will you
make?

Will inertia be your guide, or will you follow your
passions?

Will you follow dogma, or will you be original?

Will you choose a life of ease, or a life of service and
adventure?

Will you wilt under criticism, or will you follow your
convictions?

Will you bluff it out when you’re wrong, or will you
apologize?

Will you guard your heart against rejection, or will you
act when you fall in love?

Will you play it safe, or will you be a little bit
swashbuckling?

When it’s tough, will you give up, or will you be
relentless?

Will you be a cynic, or will you be a builder?

Will you be clever at the expense of others, or will
you be kind?

I will hazard a prediction. When you are 80 years old,
and in a quiet moment of reflection narrating for only
yourself the most personal version of your life story, the
telling that will be most compact and meaningful will be
the series of choices you have made. In the end, we are
our choices. Build yourself a great story. Thank you and
good luck!

http://www.princeton.edu/main/news/archive/S27/52/51O99/index.xml

26 PROGRAMMING

I RECENTLY READ A Beginners’
Guide to Big O Notation and
while I appreciate such efforts I
don’t think it went far enough.

I’m a huge fan of “plain English” explana-
tions to, well, anything. Just look at the
formal definition of Big O. The only
people who can understand that already
know what it means (and probably have
a higher degree in mathematics and/or
computer science).

On StackOverflow you often get com-
ments like “you should do X because it’s
O(2n) and Y is O(3n)”. Such statements
originate from a basic misunderstanding
of what Big O is and how to apply it. The
material in this post is basically a rehash
and expansion of what I’ve previously
written on the subject.

What is Big O?
Big O notation seeks to describe the
relative complexity of an algorithm by
reducing the growth rate to the key fac-
tors when the key factor tends towards
infinity. For this reason, you will often
hear the phrase asymptotic complexity. In
doing so, all other factors are ignored. It
is a relative representation of complexity.

What Isn’t Big O?
Big O isn’t a performance test of an
algorithm. It is also notional or abstract
in that it tends to ignore other factors.
Sorting algorithm complexity is typically
reduced to the number of elements being
sorted as being the key factor. This is fine
but it doesn’t take into account issues
such as:

Memory Usage: one algorithm might
use much more memory than another.
Depending on the situation this could
be anything from completely irrel-
evant to critical;
Cost of Comparison: It may be that
comparing elements is really expen-
sive, which will potentially change
any real-world comparison between
algorithms;
Cost of Moving Elements: copying
elements is typically cheap but this
isn’t necessarily the case;
etc.

Plain English
Explanation Of
Big O Notation

By WILLIAM SHIELDS

PROGRAMMING

 27

Arithmetic
The best example of Big-O I can think
of is doing arithmetic. Take two numbers
(123456 and 789012). The basic arithme-
tic operations we learnt in school were:

addition;
subtraction;
multiplication; and
division.

Each of these is an operation or a
problem. A method of solving these is
called an algorithm.

Addition is the simplest. You line
the numbers up (to the right) and add
the digits in a column writing the last
number of that addition in the result.
The ‘tens’ part of that number is carried
over to the next column.

Let’s assume that the addition of these
numbers is the most expensive operation
in this algorithm. It stands to reason
that to add these two numbers together
we have to add together 6 digits (and
possibly carry a 7th). If we add two 100
digit numbers together we have to do
100 additions. If we add two 10,000 digit
numbers we have to do 10,000 additions.

See the pattern? The complexity
(being the number of operations) is
directly proportional to the number
of digits. We call this O(n) or linear
complexity. Some argue that this is in
fact O(log n) or logarithmic complexity.
Why? Because adding 10,000,000 to
itself takes twice as long as adding 1,000
to itself as there are 8 digits instead of 4.
But 10,000,000 is 10,000 times as large
so depending on your application it may
be appropriate to define the problem in
terms of number of digits (ie order of
magnitude) of the input. In others, the
number itself may be appropriate.

Subtraction is similar (except you may
need to borrow instead of carry).

Multiplication is different. You line
the numbers up, take the first digit in the
bottom number and multiply it in turn
against each digit in the top number and
so on through each digit. So to multiply
our two 6 digit numbers we must do 36
multiplications. We may need to do as
many as 10 or 11 column adds to get the
end result too.

If we have 2 100 digit numbers we
need to do 10,000 multiplications and
200 adds. For two one million digit num-
bers we need to do one trillion (1012)
multiplications and two million adds.
As the algorithm scales with n-squared,
this is O(n2) or quadratic complexity.
This is a good time to introduce another
important concept:

We only care about the most signifi-
cant portion of complexity.

The astute may have realized that we
could express the number of opera-
tions as: n2 + 2n. But as you saw from
our example with two numbers of a
million digits apiece, the second term
(2n) becomes insignificant (accounting
for 0.00002% of the total operations by
that stage).

The Telephone Book
The next best example I can think of is
the telephone book, normally called the
White Pages or similar but it’ll vary from
country to country. But I’m talking about
the one that lists people by surname
and then initials or first name, possibly
address and then telephone numbers.

Now if you were instructing a
computer to look up the phone number
for “John Smith”, what would you do?
Ignoring the fact that you could guess
how far in the S’s started (let’s assume
you can’t), what would you do?

A typical implementation might

be to open up to the middle, take the
500,000th and compare it to “Smith”. If
it happens to be “Smith, John”, we just
got real lucky. Far more likely is that
“John Smith” will be before or after that
name. If it’s after we then divide the
last half of the phone book in half and
repeat. If it’s before then we divide the
first half of the phone book in half and
repeat. And so on.

This is called a bisection search and is
used every day in programming whether
you realize it or not.

So if you want to find a name in a
phone book of a million names you can
actually find any name by doing this at
most 21 or so times (I might be off by
1). In comparing search algorithms we
decide that this comparison is our ‘n’.

For a phone book of 3 names it takes
2 comparisons (at most). For 7 it takes
at most 3. For 15 it takes 4. ... For
1,000,000 it takes 21 or so.

That is staggeringly good isn’t it?
In Big-O terms this is O(log n) or loga-
rithmic complexity. Now the logarithm
in question could be ln (base e), log10,
log2 or some other base. It doesn’t matter
it’s still O(log n) just like O(2n2) and
O(100n2) are still both O(n2).

It’s worthwhile at this point to explain
that Big O can be used to determine
three cases with an algorithm:

Best Case: In the telephone book
search, the best case is that we find the
name in one comparison. This is O(1)
or constant complexity;
Expected Case: As discussed above
this is O(log n); and
Worst Case: This is also O(log n).

Normally we don’t care about the best
case. We’re interested in the expected
and worst case. Sometimes one or the
other of these will be more important.

28 PROGRAMMING

Back to the telephone book.
What if you have a phone number and

want to find a name? The police have a
reverse phone book but such lookups are
denied to the general public. Or are they?
Technically you can reverse lookup a
number in an ordinary phone book. How?

You start at the first name and com-
pare the number. If it’s a match, great,
if not, you move on to the next. You
have to do it this way because the phone
book is unordered (by phone number
anyway).

So to find a name:

Best Case: O(1);
Expected Case: O(n) (for 500,000);
and
Worst Case: O(n) (for 1,000,000).

The Travelling Salesman
This is quite a famous problem in com-
puter science and deserves a mention. In
this problem you have N towns. Each of
those towns is linked to 1 or more other
towns by a road of a certain distance. The
Travelling Salesman problem is to find
the shortest tour that visits every town.

Sounds simple? Think again.
If you have 3 towns A, B and C with

roads between all pairs then you could go:

A -> B -> C
A -> C -> B
B -> C -> A
B -> A -> C
C -> A -> B
C -> B -> A

Well actually there’s less than that
because some of these are equivalent (A
-> B -> C and C -> B -> A are equivalent,
for example, because they use the same
roads, just in reverse).

In actuality there are 3 possibilities.
Take this to 4 towns and you have

(iirc) 12 possibilities. With 5 it’s 60. 6
becomes 360.

This is a function of a mathematical
operation called a factorial. Basically:

5! = 5 * 4 * 3 * 2 * 1 - 120
6! = 6 * 5 * 4 * 3 * 2 * 1 = 720
7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040
...
25! = 25 * 24 * ... * 2 * 1 = 15,511,210,0
43,330,985,984,000,000
...
50! = 50 * 49 * ... * 2 * 1 = 3.04140932...
× 10^64

So far, the only way known of solving
the Travelling Salesman problem is
by brute force. Unfortunately, such a
technique has O(n!) complexity to solve.

By the time you get to 200 towns
there isn’t enough time left in the
universe to solve the problem with tradi-
tional computers.

Something to think about.

Polynomial Time
Another point I wanted to make quick
mention of is that any algorithm that has
a complexity of O(nk) for any constant k
is said to have polynomial complexity or
is solvable in polynomial time.

Traditional computers can solve
problems in polynomial time. Certain
things are used in the world because of
this. Public Key Cryptography is a prime
example. It is computationally hard to
find two prime factors of a very large
number. If it wasn’t, we couldn’t use the
public key systems we use.

Big Greek Letters
Big O is often misused. Big O or Big
Oh is actually short for Big Omicron. It
represents the upper bound of asymptotic
complexity. So if an algorithm is O(n log
n) there exists a constant c such that the
upper bound is cn log n.

(n log n) (Big Theta) is more tightly
bound than that. Such an algorithm
means there exists two constants c1 and
c2 such that c1n log n < f(n) < c2n log n.

Ω(n log n) (Big Omega) says that the
algorithm has a lower bound of cn log n.
There are others but these are the most

common and Big O is the most common
of all. Such a distinction is typically
unimportant but it is worth noting. The
correct notation is the correct notation,
after all.

Determinism
Algorithms can also be classified as being
either deterministic or probabilistic.It’s
important to understand the difference.
Sometimes requirements or constraints
may dictate the choice of one over the
other even if the expected case is worse.
You should be able to classify an algo-
rithm as one or the other.
A good example of this is comparing
files. Say you have two files A and B and
you want to determine if they are the
same. The simple implementation for
this is:

1. If the sizes are different, the files are
different; else

2. Compare each file byte-for-byte. If
two different bytes are found, the files
are different; else

3. The files are the same.

This is a deterministic algorithm
because the probability of a false positive
(the algorithm saying the files are the
same when they aren’t) and a false nega-
tive (saying they are different when they
aren’t) is 0 in both cases.

For various reasons however it might
be impractical or undesirable to imple-
ment the algorithm this way. Many file
comparisons may be required making the
operation potentially very expensive on
large files. Also the files might be remote
to each other and it might be impracti-
cal to send a complete copy just so the
remote system can see if its changed.

A more common approach is to use a
hash function. A hash function basically
just converts a large piece of data into
a smaller piece of data (called a hash),
usually a 32-128 bit integer. A good hash
function will distribute values in the new
(smaller) data range as evenly as possible.

Reprinted with permission of the original author. First appeared in http://hn.my/bigo/.

http://hn.my/bigo/

 29

A common hash function is an MD5
hash, which generates a 128-bit hash.
Let’s say files A and B were on different
servers. One could send an MD5 hash of
the file to the other, which could com-
pare it to its own MD5 hash. If they’re
different, the files are different. If they’re
the same, the files are highly likely to be
the same.

An MD5 hash comparison is a
probabilistic comparison algorithm for
this reason.

And before you say that the chance
is so remote it’ll never happen, think
again. A malicious exploit has been

demonstrated of generating two files
with the same MD5 hash.

Algorithms such as this that only have
brute force approaches age relatively
quickly. Where once MD5 was consid-
ered safe, creating two messages with
the same MD5 hash is now feasible (in
a matter of days with not unreasonable
hardware) such that the more secure
SHA-1 algorithm has largely replaced
it’s usage.

Conclusion
Anyway, that’s it for my (hopefully plain
English) explanation of Big O. I intend to
follow this up with applications to some
common scenarios in weeks to come.

William Shields is a software developer from
Perth, Western Australia who has been program-
ming for over 20 years in Java, C/C++, Python,
JavaScript and may things in between for finan-
cial trading and Web-based applications. He is a
regular contributor to StackOverflow as cletus
and blogs at http://www.cforcoding.com.

http://www.cforcoding.com
http://coder.io

30 PROGRAMMING

THE POST WALKS through the process of developing and
deploying a simple web application in Clojure. After
reading this you should be able to build your own

app and deploy it to a production server.
Our sample app performs addition for the user. The user

enters a value in each of two text fields, the values are submit-
ted to the app, and the app returns the corresponding sum.
Eventually it will look like this:

Before beginning on the app, make sure that you have
Leiningen installed.

We’ll start with a minimal first version of the app. In a new
directory adder, create a file project.clj with the following
contents:

(defproject adder "0.0.1"
 :description "Add two numbers."
 :dependencies
 [[org.clojure/clojure "1.2.0-beta1"]
 [org.clojure/clojure-contrib "1.2.0-beta1"]
 [ring/ring-core "0.2.5"]
 [ring/ring-devel "0.2.5"]
 [ring/ring-jetty-adapter "0.2.5"]
 [compojure "0.4.0"]
 [hiccup "0.2.6"]]
 :dev-dependencies
 [[lein-run "1.0.0-SNAPSHOT"]])

We’ll put the main app logic in the namespace adder.core.
Create a file at src/adder/core.clj with this code:

(ns adder.core
 (:use compojure.core)
 (:use hiccup.core)
 (:use hiccup.page-helpers))

(defn view-layout [& content]
 (html
 (doctype :xhtml-strict)
 (xhtml-tag "en"
 [:head
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]
 [:title "adder"]]
 [:body content])))

Developing And Deploying A
Simple Clojure Web Application

By MARK MCGRANAGHAN

 31

(defn view-input []
 (view-layout
 [:h2 "add two numbers"]
 [:form {:method "post" :action "/"}
 [:input.math {:type "text" :name "a"}] [:span.math "
+ "]
 [:input.math {:type "text" :name "b"}] [:br]
 [:input.action {:type "submit" :value "add"}]]))

(defn view-output [a b sum]
 (view-layout
 [:h2 "two numbers added"]
 [:p.math a " + " b " = " sum]
 [:a.action {:href "/"} "add more numbers"]))

(defn parse-input [a b]
 [(Integer/parseInt a) (Integer/parseInt b)])

(defroutes app
 (GET "/" []
 (view-input))

 (POST "/" [a b]
 (let [[a b] (parse-input a b)
 sum (+ a b)]
 (view-output a b sum))))

Also, put the following in script/run.clj:

(use 'ring.adapter.jetty)
(require 'adder.core)

(run-jetty #'adder.core/app {:port 8080})

Now you’re ready to test the first version of the app:

lein deps
lein run script/run.clj
open http://localhost:8080/

Check out your app in the browser. You should be to
perform the simple addition described above.

As you use the app you’ll probably notice changes that you’d
like to make. You might also notice that errors like giving foo
as an input are not handled well. To fix this let’s apply some
reloading and stacktrace middleware.

Start by including the appropriate Ring middlewares into the
adder.core namespace definition:

(:use ring.middleware.reload)
(:use ring.middleware.stacktrace)

We’ll want to separate out the main app logic that we
wrote earlier from the full, middleware wrapped application,
so change (defroutes app to (defroutes handler and add the
following at the bottom of the file:

(def app
 (-> #'handler
 (wrap-reload '[adder.core])
 (wrap-stacktrace)))

After stopping your running server and restarting it with
lein run script/run.clj, you should be able to see changes
to your code in adder.core reflected immediately in the web
interface. Also, if your application encounters any errors you
will see a stacktrace indicating what went wrong:

Speaking of errors, we may want to address some of those in
our application. If a user enters something other than a number
into one of the fields, we should respond with a useful error
message. Update the view-input function to:

(defn view-input [& [a b]]
 (view-layout
 [:h2 "add two numbers"]
 [:form {:method "post" :action "/"}
 (if (and a b)
 [:p "those are not both numbers!"])
 [:input.math {:type "text" :name "a" :value a}]
[:span.math " + "]
 [:input.math {:type "text" :name "b" :value b}] [:br]
 [:input.action {:type "submit" :value "add"}]]))

32 PROGRAMMING

and update the POST route to:

(POST "/" [a b]
 (try
 (let [[a b] (parse-input a b)
 sum (+ a b)]
 (view-output a b sum))
 (catch NumberFormatException e
 (view-input a b))))

You can immediately verify that your changes worked by
trying some invalid input:

We should also handle the case where the user enters an
unrecognized URL. To do that, require the Ring response
middleware with:

(:use ring.util.response)

and then add a catchall route to the bottom of the routes list:

(ANY "/*" [path]
 (redirect "/"))

Now when you visit e.g. /foo, you should be redirected back
to the app’s main page at /.

Our app is starting to shape up, but we’re missing some
necessary application infrastructure. For one, the application is
not doing any logging, which makes it hard to understand what
it is doing. Lets fix that with some request logging middle-
ware. Create a new file src/adder/middleware.clj with these
contents:

(ns adder.middleware)

(defn- log [msg & vals]
 (let [line (apply format msg vals)]
 (locking System/out (println line))))

(defn wrap-request-logging [handler]
 (fn [{:keys [request-method uri] :as req}]
 (let [start (System/currentTimeMillis)
 resp (handler req)

 (log "request %s %s (%dms)" request-method uri total)
 resp)))

Then pull this middleware into core with:

(:use adder.middleware)

and add it to the app by updating the middleware
stack to look like:

(def app
 (-> #'handler
 (wrap-request-logging)
 (wrap-reload '[adder.middleware adder.
core])
 (wrap-stacktrace)))

Now each request will be noted in the app’s
logs, along with the time it takes.

As soon as you try out the logging you’ll probably
notice requests to /favicon.ico. Since our simple app
doesn’t have a favicon, let’s let the browser know with a
404 response. Add a wrap-bounce-favicon function to the adder.
middleware namespace:

(defn wrap-bounce-favicon [handler]
 (fn [req]
 (if (= [:get "/favicon.ico"] [(:request-method req)
(:uri req)])
 {:status 404
 :headers {}
 :body ""}
 (handler req))))

and then include it in the middleware stack by adding (wrap-
bounce-favicon) immediately above (wrap-stacktrace).

Now let’s add a bit of styling to our utilitarian app. To do this
we’ll create and apply a CSS file that is served statically by the
application. Put the following in public/adder.css:

 33

.math {
 font-family: Monaco, monospace; }

.action {
 margin-top: 2em; }

and update the :head markup in view-layout to look like:

[:head
 [:meta {:http-equiv "Content-type"
 :content "text/html; charset=utf-8"}]
 [:title "adder"]
 [:link {:href "/adder.css" :rel "stylesheet" :type "text/
css"}]]

Next, include the necessary Ring middleware:

and update the middleware stack to look like:

(def app
 (-> #'handler

 (wrap-request-logging)
 (wrap-reload '[adder.middleware adder.
core])
 (wrap-bounce-favicon)

 (wrap-stacktrace)))

We should also write a few tests for our newly devel-
oped application. Create a file at test/adder/core_test.clj

with the following contents:

(ns adder.core-test
 (:use clojure.test)
 (:use adder.core))

(deftest parse-input-valid
 (is (= [1 2] (parse-input "1" "2"))))

(deftest parse-input-invalid
 (is (thrown? NumberFormatException
 (parse-input "foo" "bar"))))

(deftest view-output-valid
 (let [html (view-output 1 2 3)]

(deftest handle-input-valid
 (let [resp (handler {:uri "/" :request-method :get})]
 (is (= 200 (:status resp)))

(deftest handle-add-valid
 (let [resp (handler {:uri "/" :request-method :post
 :params {"a" "1" "b" "2"}})]
 (is (= 200 (:status resp)))

(deftest handle-add-invalid
 (let [resp (handler {:uri "/" :request-method :post
 :params {"a" "foo" "b" "bar"}})]
 (is (= 200 (:status resp)))

resp)))))

(deftest handle-catchall
 (let [resp (handler {:uri "/foo" :request-method :get})]
 (is (= 302 (:status resp)))
 (is (= "/" (get-in resp [:headers "Location"])))))

You can verify that they all pass by running lein test.
Now that we have some tests we’re ready to start thinking

about deploying this app to production. We’ll want the app
to behave slightly differently in production and develop-
ment, so we’ll need a way to differentiate between the two
environments. I’ll use the environment variable APP_ENV to
define production? and development? vars in the adder.core
namespace:

(def production?
 (= "production" (get (System/getenv) "APP_ENV")))

(def development?
 (not production?))

Use this var to update the middleware stack to look like:

(def app
 (-> #'handler

 (wrap-request-logging)
 (wrap-if development? wrap-reload '[adder.middleware
adder.core])
 (wrap-bounce-favicon)
 (wrap-exception-logging)
 (wrap-if production? wrap-failsafe)
 (wrap-if development? wrap-stacktrace)))

34 PROGRAMMING

This code will enable a public-facing failsafe middleware
in production while keeping the stacktrace middleware in
development. We’ll also limit code reloading to development.
Finally, we’ll add exception logging in both cases for additional
visibility. This updated stack relies on several new functions in
adder.middleware. Add the following to the adder.middleware
namespace declaration:

(:require [clj-stacktrace.repl :as strp])

and to the adder.middleware body:

(defn wrap-if [handler pred wrapper & args]
 (if pred
 (apply wrapper handler args)
 handler))

(defn wrap-exception-logging [handler]
 (fn [req]
 (try
 (handler req)
 (catch Exception e

 (throw e)))))

(defn wrap-failsafe [handler]
 (fn [req]
 (try
 (handler req)
 (catch Exception e
 {:status 500
 :headers {"Content-Type" "text/plain"}
 :body "We're sorry, something went wrong."}))))

The site will not run on port 8080 in production, so we’ll
need a way to specify the port to the run script. We’ll use the
PORT environment variable. Update the body of script/run.clj
to the following:

(let [port (Integer/parseInt (get (System/getenv) "PORT"
"8080"))]
 (run-jetty #'adder.core/app {:port port}))

Now we’re ready to put this app into production. I’ll walk
through the steps needed for to deploying to EC2 using the
standard EC2 command line tools, but the process would be
similar for other hosting providers.

Start be allocating by setting up a security group and SSH
keypair for the application:

ec2-add-group adder -d "adder deployment"
ec2-authorize adder -P tcp -p 22
ec2-authorize adder -P tcp -p 80

mkdir -p dev
ec2-add-keypair adder | tail -n +2 > dev/adder.pem
chmod 600 dev/adder.pem

Then allocate a server based on a public Ubunut AMI and wait
for it to come up:

 -n 1 -t m1.small -z us-east-1a
watch ec2-describe-instances

Set some local environment variables to make subsequent
commands easier:

export ADDER_PEM=dev/adder.pem
export ADDER_HOST=<ec2-public-ip>

To set up the server, SSH in

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST

and run a few commands to install Java and set up the directory
structure:

sudo su root
curl -L -o install-java.sh http://bit.ly/b5lesP
bash install-java.sh
mkdir -p /var/log/adder /var/adder
chown -R ubuntu:ubuntu /var/adder

We’ll control the server process using Ubuntu’s upstart. Put
the following upstart configuration file in deploy/adder.conf:

script
 export PORT=80
 export APP_ENV=production
 cd /var/adder

 >> /var/log/adder/adder.log 2>&1
end script

and then place it in the appropriate spot on the server with:

 ubuntu@$ADDER_HOST:/tmp/adder.conf

 "sudo mv /tmp/adder.conf /etc/init/adder.conf"

Reprinted with permission of the original author. First appeared in http://hn.my/clojure/.

http://hn.my/clojure/

writing a tech book?

Kindle iPad Android Blackberry iPhone fobooks

(map 'sell)

Create a list in deploy/exclude.txt of files that should not be
deployed to the production server:

.git

.gitignore
deploy
test
classes

Now install the app’s files on the server with:

 ./ ubuntu@$ADDER_HOST:/var/adder/

After the first rsync completes, start the server with:

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST "sudo start adder"

and check that it works by opening the production site from
your local machine:

open http://$ADDER_HOST/

If you want to deploy a change, rsync up your code and then
run:

ssh -i $ADDER_PEM ubuntu@$ADDER_HOST "sudo restart adder"

I hope this post helps you develop and deploy your own
Clojure web applications. If you have any questions about this
post or about Clojure web development in general, feel feel to
leave them in the comments. I’m also interested in hearing how
others have approached the end-to-end Clojure web develop-
ment and deployment process; please let me know what you
think in in the comments as well.

The source code for this app is available on
http://github.com/mmcgrana/adder.

Mark McGranaghan is an engineer at Heroku, where he works on web
application infrastructure. He maintains several open source Clojure projects
at http://github.com/mmcgrana.

http://fifobooks.com
http://github.com/mmcgrana/adder
http://github.com/mmcgrana

36 PROGRAMMING

AS PROGRAMMERS WE’RE continually accused of doing
a sloppy job. There are countless programs in the
wild, crashing, locking up and accidentally writing

“I am a fish” a million times over someone’s mid-term essay.
The effect? Something like this:

This damn computer and excel r fuckin my life up!
Hatin life right now
– MissAlauren (and everyone else at one time or another)

It’s experiences like this that cause people to rant about
Microsoft and curse the anonymous programmers who sud-
denly (yet inevitably) betrayed them. We all know this; it’s
burned into our very souls by countless hours of tech support
provided to family and friends. Time after time we see that
programmers who do quick, sloppy work make other people
suffer. And so we try, we try so damn hard not to be like that.
We try to be the good programmer who checks every return
value and handles every exception.

If we stopped at competent error handling and sufficient
testing, all would be well. In truth, we actually go too far and, it
has to be said, largely in the wrong direction.

A vast proportion of software at work today is horribly over-
engineered for its task. And I’m not talking about the inter-
faces, about having too many controls or options for the users.
These are, indeed, terrible sins but they are the visible ones.
The worst of the overengineering goes on under the surface, in
the code itself.

You’re Doing It Wrong
Have you ever seen someone using the strategy pattern when
they should’ve used a 5 line switch statement? There are a
million ways to turn something like this:

switch(operation)
{
 case OP_ADD: return a + b;
 case OP_SUBTRACT: return a - b;
 case OP_MULTIPLY: return a * b;
 default: throw new UnknownOperationException(operation,
a, b);
}

… into a hideous, malformed mutant beast like this one http://
en.wikipedia.org/wiki/Strategy_pattern#Java, which I haven’t
inlined because it’s far too long.

The most insidious cause of overengineering is over-gener-
alizing. We will over-generalize anything given half a chance.
Writing code to work with a list of students? Well, we might
want to work with teachers and the general public someday,
better add a base People class and subclass Student from that.
Or Person and then EducationPerson and then Student. Yes,
that’s better, right?

Only, now we have three classes to maintain each with their
own virtual methods and interfaces and probably split across
three different files plus the one we were working in when a
one-line dictionary would have been fine.

Perhaps we do it because it’s relaxing to rattle off three
classes worth of code without needing to pause and think. It
feels productive. It looks solid, bulletproof, professional. We
look back on it with a comforting little glow of self-satisfaction
– we’re a good programmer, no messy hacks in our code.

Except, this doesn’t make us good programmers. Overen-
gineering like this isn’t making anyone’s lives better; it’s just
making our code longer, more difficult to read and work with
and more likely to contain or develop bugs. We just made the
world a slightly worse place. It lies somewhere between tossing
an empty drinks bottle on the street and grand theft auto.

Criminal Overengineering
By MARK O’CONNOR

 37

The extra effort caused by our overengineering carries a
hefty opportunity cost:

1. Less time spent refining the user experience
2. Less time spent thinking about the meaningful implications

of the feature we’re working on
3. Less time available to look for bugs and – with harder-to-

read code – more time spent debugging them

Yes, by overengineering the Student class you indirectly
ruined MissAlauren’s day.

We have to stop championing each ridiculous feat of over-
engineering and call it what it is. It’s not ‘future-proof’, because
we can’t see the future. It’s not robust, it’s hard to read. Apply-
ing a generic solution to a single case isn’t good programming,
it’s criminal overengineering because like it or not somebody,
somewhere will pay for it.

Don’t Worry, Be Happy
I suspect all the best programmers have already realized this,
but they’re not shouting about it loudly enough for everyone
else to hear. Paul Graham is completely right when he suggests
that succinctness is valuable:

Use the length of the program as an approximation for how
much work it is to write. Not the length in characters, of
course, but the length in distinct syntactic elements –
basically, the size of the parse tree. It may not be quite true
that the shortest program is the least work to write, but it’s
close enough… look at a program and ask, is there any
way to write this that’s shorter?
– Paul Graham, The Hundred Year Language

He’s actually talking about language design here; indeed,
in Succinctness is Power he’s careful to note that it’s clearly
possible to write a program that’s too succinct. This is because,
these days, Paul Graham is more a language designer than a
working programmer. Otherwise he might have said:

If you’re about to take a hundred lines to write what you
could in ten, stop and ask yourself this: what the fuck?
– Mark, Criminal Overengineering

When I feel tempted to over-generalize or over-engineer a bit
of code, it’s often because of fear. Fear that someone will find a
really good reason I shouldn’t have done it the easy way. Fear
that I’ll have to rewrite the code again. Fear of finding myself
on the wrong side of an argument about the merits of the
visitor pattern. But fear does not naturally lead us to the most
elegant solutions.

Next time you feel the compulsion to write a nice, general
solution to a simple case, stop and ask yourself what’s stopping
you just writing it the simple, specific, succinct way:

1. Am I worried I’ll have to rewrite it?
2. Am I worried someone will criticize it or that I’ll look bad?
3. Am I worried that it’s not professional enough?

Are any of these true? Then relax. Don’t worry. You worry,
you call me, I make you happy.

Just write the code the simple, specific way and then add
a short comment, something like: Replace with the Strategy
pattern if this gets any bigger.

This is the perfect solution. It’s a great reminder to you next
time you come here about what you wanted to do. It shows
other programmers on your team that you considered the
‘correct’ way to do it and have a good reason not to do it just
yet. It’s very hard to argue with a comment like that, because
you’re not arguing about the strategy pattern vs the switch
statement, you’re arguing about whether to use the strategy
pattern after 3 cases or after 4 cases – not a discussion that can
reflect badly on you, in any case.

A few months later you can go back and look at how many
of your comments eventually turn into more complicated,
engineering code. I’ll bet you it’s not very many. That’s how
much time and effort you’ve saved, right there. That’s setting
yourself free to pursue the solution and that’s making the
world a slightly better place.

Mark O’Connor is a programmer, occasional writer and part-time startup
founder. Since 2008 he’s been living in Munich with his wife and children.
He believes in dynamic typing, first-class functions and the immortal
essence of the human soul. He also likes tea.

Reprinted with permission of the original author. First appeared in http://hn.my/overengineering/.

http://hn.my/overengineering/

38 PROGRAMMING

THIS IS AN experiment I did to play around with Node.
js and web sockets. I’ve put everything in a Gist in
case you want to try it out yourself. I’ll explain how

it works in this article.

Web socket server
Using @miksago‘s node-websocket-server made it extremely
easy to send and receive messages from a web socket. Here’s
the code that runs the server:

var ws = require(__dirname + '/lib/ws'),
 server = ws.createServer();

server.addListener("connection", function(conn){
 conn.addListener("message", function(message){
 message = JSON.parse(message);
 message['id'] = conn.id
 conn.broadcast(JSON.stringify(message));
 });
});

server.addListener("close", function(conn){
 conn.broadcast(JSON.stringify({'id': conn.id, 'action':
'close'}));
});

server.listen(8000);

After including the node-websocket-server library and
creating the server, I add some listeners to know when clients
disconnect or send a message and make sure messages get sent
to the other clients. Whenever it receives a JSON message, it
includes the connection’s id before broadcasting it to the clients
to make it possible to find out which cursor we need to move.

I saved it as server.js, so starting the server is as simple
as running node server.js. To make sure it keeps running, I
daemonized it with God, using the same config file I used in
the “Daemonizing Navvy with God” article.

Receiving messages
Now, in a regular javascript file — with some jQuery — I
included into this page, I connect to the web socket like this:

var conn;
var connect = function() {
 if (window["WebSocket"]) {
 conn = new WebSocket("ws://jeffkreeftmeijer.com:8000");
 conn.onmessage = function(evt) {
 data = JSON.parse(evt.data);
 if(data['action'] == 'close'){
 $('#mouse_'+data['id']).remove();
 } else if(data['action'] == 'move'){
 move(data);
 };
 };
 }
};

window.onload = connect;

As you can see, this connects to the server we just started.
When a message is received, it checks the action it’s supposed
to perform. If the action is “move”, it’ll move a mouse cursor on
the screen using the move() function I’ll show you later. If it’s
“close”, it means that the client disconnected and his cursor has
to be removed from the screen.

Experimenting With
By JEFF KREEFTMEIJER

 39

Sending messages
Now we’re able to receive messages, move and delete cursors.
The last thing we need is the client to be able to send out
messages:

$(document).mousemove(
 ratelimit(function(e){
 if (conn) {
 conn.send(JSON.stringify({
 'action': 'move',
 'x': e.pageX,
 'y': e.pageY,
 'w': $(window).width(),
 'h': $(window).height()
 }));
 }
 }, 40)
);

Whenever you move your mouse, the .mousemouse()
function gets triggered that sends some JSON with the mouse
position and screen size to the socket. The ratelimit method
makes sure that there’s a forty millisecond interval between
messages.

Moving the cursors
So, when the other clients receive a “move” message, it calls the
move() function, like I showed you before. It looks like this:

function move(mouse){
 if($('#mouse_'+mouse['id']).length == 0) {
 $('body').append(
 '<div class="mouse" id="mouse_'+mouse['id']+'"/>'
);
 }

 $('#mouse_'+mouse['id']).css({
 'left' : (($(window).width() - mouse['w']) / 2 +
mouse['x']) + 'px',
 'top' : mouse['y'] + 'px'
 })

It creates a div for the new mouse if it doesn’t exist yet and
moves it to the right position. Also, the x-position of the mouse
gets calculated while keeping the difference in screen size in
mind. This way it gets calculated from the center of the page,
instead of from the left.

Blew your mind?
Tracking mouse movement and showing cursors to other clients
is cool, but not useful in any way (although you could think of
some cool use-cases for this). What this example does show is
that you can do pretty impressive things using web sockets and
Node.js. And it was a great excuse to play around with it.

This was the first thing I did using Node.js, so the code is
probably far from perfect. If you know a way to improve it,
please fork the Gist and show me how it should be done. I’ll
update the article.

I’m excited about Node.js and I’ll probably write and play
around with it some more in the future, so stay tuned.

Notes
1. Gist at http://gist.github.com/488562
2. Live demo - http://hn.my/nodejs/
3. If you see extra mouse cursors moving around: don’t worry,

they’re part of the demo. You can always disable them if you
want. These are actually other people also looking at the
page right now, live, as we speak. If you don’t see anything,
try to open up this page in another browser window and
move your mouse in it.

4. I’ve written a follow-up on this article, in which I improved a
lot of the code. Be sure to read that one too!
http://hn.my/nodejs2/

Jeff Kreeftmeijer is an open source enthusiast and Ruby (on Rails) pro-
grammer at 80beans in Amsterdam. He publishes weekly programming
articles on jeffkreeftmeijer.com, writing about Ruby or anything else that
seems interesting. As of late, that has mostly been JavaScript and Node.js.

Reprinted with permission of the original author. First appeared in http://hn.my/nodejs/.

http://gist.github.com/488562
http://hn.my/nodejs/
http://hn.my/nodejs/
http://jeffkreeftmeijer.com
http://hn.my/nodejs/

40 PROGRAMMING

REGULAR EXPRESSIONS ARE strings
formatted using a special pat-
tern notation that allow you to

describe and parse text. Many program-
mers (even some good ones) disregard
regular expressions as line noise, and it’s
a damned shame because they come in
handy so often. Once you’ve gotten the
hang of them, regular expressions can
be used to solve countless real world
problems.

Regular expressions work a lot like
the filename “globs” in Windows or *nix
that allow you to specify a number of
files by using the special * or ? characters
(oops, did I just use a glob while defining
a glob?). But with regular expressions the
special characters, or metacharacters, are
far more expressive.

Like globs, regular expressions treat
most characters as literal text. The
regular expression mike, for example,
will only match the letters m - i - k - e, in
that order. But regular expressions sport
an extensive set of metacharacters that
make the simple glob look downright
primitive.

Meet the metacharacters:
^[](){}.*?\|+$ and sometimes -
I know, they look intimidating, but
they’re really nice characters once you
get to know them.

The Line Anchors: ‘^’ and ‘$’
The ‘^’ (caret) and ‘$’ (dollar) metacha-
racters represent the start and end of a
line of text, respectively. As I mentioned
earlier, the regular expression mike will
match the letters m - i - k - e, but it will
match anywhere in a line (e.g. it would
match “I’m mike”, or even “carmike”).
The ‘^’ character is used to anchor the
match to the start of the line, so ^mike
would only find words that start with
mike. Similarly, the expression mike$
would only find m - i - k - e at the end of
a line (but would still match ‘carmike’).

If we combine the two line anchor
characters we can search for lines of text
that contain a specific sequence of char-
acters. The expression ^mike$ will only
match the word mike on a line by itself -
nothing more, nothing less. Similarly the
expression ^$ is useful for finding empty

lines, where the beginning of the line is
promptly followed by the end.

The Character Class: ‘[]’
Square brackets, called a character class,
let you match any one of several char-
acters. Suppose you want to match the
word ‘gray’, but also want to find it if it
was spelled ‘grey’. A character class will
allow you to match either. The regular
expression gr[ea]y is interpreted as “g,
followed by r, followed by either an e or
an a, followed by y.”

If you use [^ ...] instead of [...], the
class matches any character that isn’t
listed. The leading ^ “negates” the list.
Instead of listing all of the characters you
want to included in the class, you list the
characters you don’t want included. Note
that the ^ (caret) character used here
has a different meaning when it’s used
outside of a character class, where it is
used to match the beginning of a line.

The Absolute Bare Minimum
Every Programmer Should Know

About Regular Expressions
By MIKE MALONE

 41

The Character Class Metacharacter: ‘-’
Within a character-class, the character-
class metacharacter ‘-’ (dash) indicates
a range of characters. Instead of
[01234567890abcdefABCDEF] we can
write [0-9a-fA-F]. How convenient.
The dash is a metacharacter only within
a character class, elsewhere it simply
matches the normal dash character.

But wait, there’s a catch. If a dash is
the first character in a character class
it is not considered a metacharacter (it
can’t possibly represent a range, since a
range requires a beginning and an end),
and will match a normal dash character.
Similarly, the question mark and period
are usually regex metacharacters, but not
when they’re inside a class (in the class
[-0-9.?] the only special character is the
dash between the 0 and 9).

Matching Any Character With a Dot: ‘.’
The ‘.’ metacharacter (called a dot or
point) is shorthand for a character class
that matches any character. It’s very
convenient when you want to match
any character at a particular position in a
string. Once again, the dot metacharacter
is not a metacharacter when it’s inside
of a character class. Are you beginning
to see a pattern? The list of metacharac-
ters is different inside and outside of a
character class.

The Alternation Metacharacter: ‘|’
The ‘|’ metacharacter, (pipe) means
“or.” It allows you to combine multiple
expressions into a single expression that
matches any of the individual ones. The
subexpressions are called alternatives.

For example, Mike and Michael are
separate expressions, but Mike|Michael is
one expression that matches either.

Parenthesis can be used to limit the
scope of the alternatives. I could shorten
our previous expression that matched
Mike or Michael with creative use of
parenthesis. The expression Mi(ke|chael)
matches the same thing. I probably
would use the first expression in practice,
however, as it is more legible and there-
fore more maintainable.

Matching Optional Items: ‘?’
The ‘?’ metacharacter (question mark)
means optional. It is placed after a char-
acter that is allowed, but not required,
at a certain point in an expression. The
question mark attaches only to the
immediately preceding character.

If I wanted to match the english or
american versions of the word ‘flavor’
I could use the regex flavou?r, which is
interpreted as “f, followed by l, followed
by a, followed by v, followed by o, fol-
lowed by an optional u, followed by r.”

The Other Quantifiers: ‘+’ and ‘*’
Like the question mark, the ‘+’ (plus)
and ‘*’ (star) metacharacters affect the
number of times the preceding character
can appear in the expression (with ‘?’ the
preceding character could appear 0 or 1
times). The metacharacter ‘+’ matches
one or more of the immediately preced-
ing item, while ‘*’ matches any number
of the preceding item, including 0.

If I was trying to determine the
score of a soccer match by counting
the number of times the announcer
said the word ‘goal’ in a transcript, I
might use the regular expression go+al,
which would match ‘goal’, as well as
‘gooooooooooooooooal’ (but not ‘gal’).

The three metacharacters, question
mark, plus, and star are called quantifiers
because they influence the quantity of
the item they’re attached to.

The Interval Quantifier: ‘{}’
The ‘{min, max}’ metasequence allows
you to specify the number of times a
particular item can match by providing
your own minimum and maximum. The
regex go{1,5}al would limit our previous
example to matching between one and
five o’s. The sequence {0,1} is identical to
a question mark.

The Escape Character: ‘\’
The ‘\’ metacharacter (backslash) is used
to escape metacharacters that have spe-
cial meaning so you can match them in
patterns. For example, if you would like
to match the ‘?’ or ‘\’ characters, you can

precede them with a backslash, which
removes their meaning: ‘\?’ or ‘\\’.

When used before a non-metacha-
racter a backslash can have a different
meaning depending on the flavor of
regular expression you’re using. For
perl compatible regular expressions
(PCREs) you can check out the perldoc
page for perl regular expressions. PCREs
are extremely common, this flavor of
regexes can be used in PHP, Ruby, and
ECMAScript/Javascript, and many other
languages.

Using Parenthesis for Matching: ‘()’
Most regular expression tools will allow
you to capture a particular subset of
an expression with parenthesis. I could
match the domain portion of a URL by
using an expression like http://([^/]+).
Let’s break this expression down into it’s
components to see how it works.

The beginning of the expression is
fairly straightforward: it matches the
sequence “h - t - t - p - : - / - /”. This ini-
tial sequence is followed by parenthesis,
which are used to capture the characters
that match the subexpression they
surround. In this case the subexpression
is ‘[^/]+’, which matches any character
except for ‘/’ one or more times. For a
URL like http://immike.net/blog/Some-
blog-post, ‘immike.net’ will be captured
by the parenthesis.

Want to know more?
I’ve only touched the surface on what
can be done with regular expressions.
If want to learn more, check out Jeffrey
Friedl’s book Mastering Regular Expres-
sions. Friedl did an outstanding job with
this book, it’s accessible and a surpris-
ingly fun and interesting read, consider-
ing the dry subject matter.

Mike Malone is an infrastructure engineer at
SimpleGeo where he works on building and
integrating scalable systems that power the
company’s location platform. In his spare time
Mike enjoys tinkering with new technologies.
When he’s not on the computer, you can probably
find him hanging out with his girlfriend, Katie,
and their friends at a good bar.

Reprinted with permission of the original author. First appeared in http://hn.my/regex/.

http://hn.my/regex/

42 HACKER COMMENTS

HACKER COMMENTS

On: Developing And Deploying A Simple Clojure
Web Application

From MAHMUD MOHAMED (mahmud)
In Common Lisp (without cheating or handwaving; this is it):

 (defpackage :add-nums
 (:use :cl :hunchentoot :cl-who))

 (in-package :add-nums)

 (defmacro with-html (&body body)
 `(with-html-output-to-string (*standard-output* nil
:prologue t :indent t)
 ,@body))

 ((a :parameter-type 'integer)
 (b :parameter-type 'integer))
 (with-html
 (:html
 (:head (:title "Add two numbers"))
 (:body
 (if (and a b)
 (htm (:p (str (+ a b)))))
 (:form :method :get
 (:input :type :text :name "a")
 (:input :type :text :name "b")
 (:input :type :submit))))))

 (defparameter *site* (make-instance 'acceptor :port
8080))

 (start *site*)

On: Criminal
Overengineering

From PETER ARONOFF
(telemachos)
Argh.

Apparently there are two
very popular types of article
in the software blog world:

Type 1: YAGNI (like this
example): Do less now. Refac-
tor later as needed. It won’t
be needed, most likely. Chill
out. (All driven by the ques-
tion, “Dude, wtf? 100 lines of
boilerplate for a 5 line case
statement? Snap out of it.”)

Type 2: Architect astro-
nautics: Do more now. Build
for the next version. You will
need more then, so why not
prepare now? Decouple that
code. Use more patterns.
Hoist that jib. (All driven by
the question, “What will your
code/software/app do if...?”)

I read type 1, and it (often)
sounds convincing. I read
type 2, and it (often) sounds
convincing. I get a fucking
headache from the cognitive
dissonance. I make more
coffee and get back to work,
no wiser than before.

On: If You Can’t Buy Your
Investor A Beer, Don’t
Take Their Money

From MARK MAUNDER
(mmaunder)
“If you need money, you are
too late.” really means
“If you appear to need money,
you are too late.” And restated
the way one of my investors
once put it: “If you have the
stench of death about you it’s
impossible to raise.”

If you don’t need money,
don’t raise.

I used to use techniques like this to
maintain my focus. Let me toss some-
thing out though that might be a bit
controversial. Perhaps having to do this is
a sign of ADHD. For me it was. There are
many signs and symptoms, and unfor-
tunately many people have heard that
people are over medicated on things like
Ritalin and Adderral. However, the thing
to consider is that people with strong
ADHD actually have a different brain
structure. It turns out that the focus
benefits of being on the medication only
works for people who genuinely do have
ADHD, and does not work for “regular”
people (if there even is such a thing).

Let me just say, that Adderral changed
my life. I used to have what I termed
“Reddit seeking behavior”. I could work
on tasks that were interesting, but if
it got a little rough or boring - what’s
happening on Reddit, or HN or Digg?
However when I got on Adderral that
entirely changed. I still check HN, but
much less frequently because I’m busy
getting things done. I don’t have to resort
to extreme changes in my environment
to resist distractions. It comes naturally
now.

I don’t discount or disagree that focus
can be improved. I know it first hand,
but I would also argue that people with
ADHD have some additional things
going on that are much harder to train.
If you are one of those people, getting
on the appropriate medication could
well change your life. I know it changed
mine. That’s a big statement, and often
over-used, but for me, it changed the way
I experience every day life in substantial
and dramatic ways.

Take it for what it’s worth, YMMV.

On: A Coder’s Guide To
Coffee

From JOHN FORSYTHE
(chaosmachine)
If you find “mainstream”
coffee enjoyable, is it really
in your best interest to raise
your expectations? If you
suddenly find normal coffee
lacking, have you really
improved your life?

On: How To Focus

From DOUG TOLTON (NyxWulf)

 43

On: The Royal We: Single
Founder Startups

From PATRICK MCKENZIE
(patio11)
I think that the (increasing
but by no means new) viabil-
ity of single-founder startups
is an inevitable consequence
of the environment for all
startups continuing to get
radically better. If two guys
could make non-trivial web
services back when making
a web service started with,
quite literally, programming
your own HTTP server since
you didn’t have a hundred
thousand to buy one, that
implies very good things for
a “team” which has a decade
and change of OSS to lean on.

In addition to OSS, the
huge existing distribution
channels like organic SEO,
AdWords, and all those things
you cool people use are also
a major draw. Infrastructure
has improved by orders of
magnitude. APIs and snap-in
services are getting better all
the time — ten years ago, pay-
ment processing was a multi-
week endeavor, now you can
do voice calls in about ten
minutes of work. Scaling is...
is solved too strong a word?
There has been huge diffusion
of the black magic of how to
setup and architect things,
both in the n-tier server
architecture sense of the word
and in the “here’s how you get
capital without slicing open
chicken entrails” and “here’s
how you get users” senses of
the word.

It is a great time to be alive.

On: Three Years Ago,
I Sold My Startup
Because I Was An Idiot

From JACQUES MATTHEIJ
(jacquesm)
I’m going to take the contrary
view here and I’ll say that you
did fine.

Starting a business,
operating it for a while and a
successful exit are the whole
meal, if you had continued to
run it you might have crashed
it or you might have been in
debt now.

There is no way to know
what would have happened
in an alternative universe, and
it’s a pretty good thing on
your resume to say that you
ran a startup that made you
and your investors money.
That puts you in the < 5%
bracket of the entrepreneurs.

Now you simply need to do
that all again, with the lessons
learned and your newfound
energy, capital and the success
story behind you.

You’ll do very well indeed
if you play your cards right.

Don’t be so hard on your-
self, don’t compare with the
‘could have been’ from the
perspective of it could have
been more, it could have been
a whole lot less too!

TECH JOBS

Backend Engineer
Dropbox (http://www.dropbox.com)
San Francisco
Dropbox is looking for an engineer to scale our
increasingly complicated backend. We’re a multi-
petabyte distributed filesystem with tens of billions
of files serving millions. You will design and maintain
core software components – using C/C++. You will
have expertise navigating shell environments and
significant experience with databases.
To Apply: http://hn.my/dropbox1/

Technical Support Engineer
Dropbox (http://www.dropbox.com)
San Francisco
Supporting Dropbox requires crazy technical
kung-fu. You’ll need a working knowledge of almost
all operating systems, mobile devices, and the web.
You’ll be tasked with not only knowing the product
inside and out, but escalating good suggestions and
critical bugs straight to the product team. Most of
our support is via email, forums and phone.
To Apply: http://hn.my/dropbox2/

Senior Developer
youDevise, Ltd. (https://dev.youdevise.com)

London, England
60-person agile financial software company in
London committed to learning and quality (dojos,
TDD, continuous integration, exploratory test-
ing). Under 10 revenue-affecting production bugs
last year. Release every 2 weeks. Mainly Java, also
Groovy, Scala; no prior knowledge of any language
needed.
To Apply: Send CV to jobs@youdevise.com.

All comments are reprinted with permission of their original author.

http://www.dropbox.com
http://hn.my/dropbox1/
http://www.dropbox.com
http://hn.my/dropbox2/
https://dev.youdevise.com
mailto:jobs@youdevise.com

Dream. Design. Print.

25% O! the First Issue You Publish
HACKER

http://www.magcloud.com

	Curator’s Note
	Contents
	FEATURES
	How To Focus
	A Coder's Guide To Coffee

	STARTUP
	Wannabe Entrepreneur Symptoms And Cures
	If You Can't Buy Your Investor A Beer, Don't Take Their Money
	Three Years Ago, I Sold My Startup Because I Was An Idiot
	The Royal We: Single Founder Startups

	SPECIAL
	We Are What We Choose

	PROGRAMMING
	Plain English Explanation Of Big O Notation
	Developing And Deploying A Simple Clojure Web Application
	Criminal Overengineering
	Experimenting With Node.js
	The Absolute Bare Minimum Every Programmer Should Know About Regular Expressions

	HACKER COMMENTS
	TECH JOBS

