

Open Source Systems
Security Certification

Open Source Systems
Security Certification

by

Ernesto Damiani
University of Milan, Milan

Italy

Claudio Agostino Ardagna
University of Milan, Milan

Italy

Nabil El Ioini
Free University of Bozen/Bolzano

Italy

Authors:
Ernesto Damiani
Università di Milano
Dipartimento di. Tecnologie dell’Informazione
via Bramante 65
26013 Crema, Italy
damiani@dti.unimi.it

Claudio Agostino Ardagna
Università di Milano
Dipartimento di. Tecnologie
dell’Informazione
via Bramante 65
26013 Crema, Italy
ardagna@dti.unimi.it

Nabil El Ioini
Free University of Bozen/Bolzano
Computer Science Faculty
Piazza Domenicani,3
39100 Bozen/Bolzano, Italy
nabil.elIoini@stud-inf.unibz.it

Library of Congress Control Number: 2008935406

ISBN-13: 978-0-387-77323-0 e-ISBN-13: 978-0-387-77324-7

© 2009 Springer Science+Business Media, LLC.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper.

springer.com

“There’s no reason to treat software any
differently from other products. Today
Firestone can produce a tire with a single
systemic flaw and they’re liable, but
Microsoft can produce an operating system
with multiple systemic flaws discovered per
week and not be liable. This makes no
sense, and it’s the primary reason security
is so bad today”.

Bruce Schneier, Cryptogram,
16/04/2002

Foreword

I predict that this book on the security certification of trusted open source
software will be a best-seller in the software industry as both public – govern-
ment and private sector software must rely more and more on the develop-
ment and maintenance of trustworthy open source software. The need for this
book material is urgent as adopters of open source solutions may currently
lack control on some crucial security-related properties of deployed systems.

In this book Ernesto Damiani, a pioneer in secure information systems,
Claudio Agostino Ardagna and Nabil El Ioini focus on certificates dealing
with properties of software products. In recent years, the increased demand
for certified IT products has driven the open source community to raise ques-
tions about the possibilities of certifying open source software. This book is
aimed at open source developers and users interested in software security
certification, as well as at security experts interested in bundling open source
software within certified software products. By certifying individual security
features, software suppliers give to their customers the possibility of choos-
ing systems that best match their security needs. Throughout the book, the
authors address the following questions:

• Which properties of a software system can be certified?
• How can we trust a certificate to be accurate, and how do we measure

such trust?
• What can be done at software design time to establish an acceptable level

of trust or, at run-time, to preserve or increase it?

Throughout the book, the authors build a solid case that the general solu-
tion to these challenges, more precisely barriers, is an intelligent, automated,
and highly customizable software certification process, fully integrated into
the open source development and maintenance. The authors focus on tech-
niques for test and model-based certification, and on their application to the
security properties of open source systems. The authors are particularly in-
terested in helping the reader study how open source software lends itself to
a combination of automatic test selection and formal verification methods. In

vii

viii Foreword

this context, the authors have, for example, investigated security evaluation
and certification of open source software by looking at two major security
evaluation standards as well as providing a partial application to two case
studies. The authors’ own 2008 research work on ‘Mapping Linux security
targets to existing test suites’ mainly deals with describing and automat-
ing open-source certification process, an issue which is also addressed in this
book.

The authors of this exciting and important new book find ways for the
reader to go far beyond earlier works in trying to break down the above-
mentioned long-standing barriers through more general customizable soft-
ware certification processes. The authors first lay out the historical context
by charting first attempts to create a standard for security certification of
software, as a basis for later software certification processes, dating back
to 1985, with the creation of the TCSEC standard in the U.S., commonly
referred to as the Orange Book (USDoD 1985). The authors review how ob-
taining a TCSEC security certification is a complex process, which involves
understanding the software product’s architecture and development method-
ology, analyzing its users’ security requirements, identifying and carrying out
the corresponding testing.

Then a related attempt at Certification and Accreditation (C&A) implied
by standards for Trusted Systems criteria of the U.S. Department of Defense,
began in 1985 and led to DoD AIR FORCE SYSTEMS SECURITY IN-
STRUCTIONS 5024, September 1997. This was a customizable system certifi-
cation process for DoD software and the trusted systems in which the software
was deployed. The focus, however, was not software specific but for systems
relying on computer and networked subsystems. It is important to notice that
this DoD standard requires checklists for C&A, of the kind the authors men-
tioned above. As the authors point out it is well-known that DoD Trusted Sys-
tems C&A generally requires much more than testing. And a further related
work is the DoD Information Technology Security Certification and Accredi-
tation Process (DITSCAP) https://infosec.navy.mil/Documents/top25.html.

The authors of this new book articulate how in general DoD C&A cus-
tomizable system certification process requires a combination of formal read-
ing (static checklists), formal executing (dynamic test cases-checklists) and
logical and mathematical proof of correctness, formal methods, just to verify
(compliance) that a DoD system is trusted, but not necessarily assurance
that it does so.

Within the enterprise systems, both government and private sector, that
software must be secure and trusted, systems engineering development and
maintenance compliance to the selected security requirements needs verifica-
tion of correctness methods (a combination of formal reading (static check-
lists), formal executing (dynamic test cases-checklists) and logical and math-
ematical proof of correctness, formal methods). But for the same group of
professionals, assurance for the selected requirements mandates continued
conformance to the systems users’ expectations.

Foreword ix

Since the 1970’s it has been well-known amongst security C&A profes-
sionals that there are certain certifying and accrediting security requirements
compliance problems that are either sufficiently difficult as to be either not
well understood or to be non-solvable. Let us consider a general problem
wherein one is given an arbitrary set of security policy requirements P for
a system S to be arbitrarily low risk C&A. Then is it possible to construct
or prescribe a technology M (combined software, hardware and human re-
sources), generally coined a protection mechanism, that (1) enforces a certi-
fied P against all threats or intruders to S with respect to P, and (2) certifies
permission that all required information needed as a result of S for stake-
holders will be allowed? Casually, (1) is the property of soundness for M (P)
and (2), plus (1), is the property of completeness for M (P).

Within the professional literature used by this new book, there have been
many characterizations of soundness (along with the absurd ‘police state’
where no communication may flow between any stakeholders), along with
some, but lesser, degrees of completeness characterization. Completeness is
much more difficult to characterize and prove than soundness. Both sound-
ness and completeness have been worked using a spectrum of Verification and
Validation (V&V) methods, including inspecting, testing and proving of cor-
rectness. The higher quality V&V work always tends to try to maximize the
reductions of defects or errors through inspecting first, before submitting to
follow on work with testing and formal methods (proof of correctness). If this
protocol is not spelled out within a prescribed C&A requirements compliance
approach, then the approach may possibly be suspect.

And, with so much of today’s software grounded in open source software,
an intelligent, automated, and highly customizable software certification pro-
cess, fully integrated into the open source development and maintenance is
mandatory within today’s global systems where the complexity of ethno-
graphic factors the correct identification and prevention of all threats and
intruders becomes arbitrarily difficult, especially when a fair balance between
soundness and correctness is required. This, along with an unknown mix of
explicit and tacit knowledge embedded in P, S and M, makes guaranteeing
C&A results either difficult or impossible. Therefore, clearly understanding
the details of security certification of open source software under development
and life cycle maintenance must always be viewed as ongoing.

Numerous important references have formed the bricks and mortar of this
new book. Consider, for example, Richard Baskerville, “Information systems
security design methods: implications for information systems development,”
ACM Computing Surveys, Vol. 25, No. 4, December 1993. This paper, based
upon standard practice that includes standards for Trusted Systems criteria
of the U.S. Department of Defense, beginning in 1985, specifies most common
ways for collecting systems requirements, selecting subsets of priority require-
ments for further analysis, analyzing such subsets of defects and errors, and
determining and assessing risks. The requirements, as units of analysis in this
paper, can be general but the authors limited the focus to systems security

x Foreword

requirements, such that defects and errors are interpreted as possible threats
based upon risks. Inspection, a general term in the paper including both the
reading (static inspecting) of requirements, designs and codes and the exe-
cuting (dynamic inspecting) of codes, is designed based upon both static and
dynamic reading (static) checklists and executing (dynamic) checklists, the
latter often coined testing (dynamic inspecting) using test cases (check lists
when testing).

I very highly recommend this book on the security certification of trusted
open source software to the software industry, both public – government and
private sector software developers and maintainers, relying more and more
on the development and maintenance of trustworthy open source software.
The need for this book by Dr. Damiani, Dr. Ardagna and El Ioini is urgent as
adopters of open source solutions may currently lack control on some crucial
security-related properties of deployed systems.

Fairfax, August 2008 David C. Rine
Professor Emeritus and Consultant

Volgenau School of Information Technology and Engineering
George Mason University

Acknowledgements

First of all we would like to thank all the friends and colleagues who accepted
to read one or more draft chapters of this book. Heartfelt thanks are due to
Moataz Ahmed (George Mason University), Massimo Banzi (Telecom Italia),
Chiara Braghin (Università Degli Studi di Milano), Sabrina De Capitani di
Vimercati (Università Degli Studi di Milano), Jan De Meer (smartspacelab.eu
GmbH), Enrico Fagnoni (Onion S.p.A.), Scott Hissam (Carnegie Mellon Uni-
versity), Bjorn Lundell (University of Skovde) and George Spanoudakis (City
University of London). Their valuable feedback greatly improved the book,
and any inaccuracies that remain are entirely our own.

Thanks also to Pietro Giovannini for his help with Chapter 8. A very
special thank you goes to Karl Reed (La Trobe University) for his comments
on Chapter 3 and to Peter Breuer (Universidad Carlos III de Madrid) for all
the discussions and comments on Chapter 4 (thanks again for your time and
help, Peter!).

The ideas in this book were greatly influenced by interactions with all
members of the IFIP WG 2.13 on Open Source Development during the IFIP
Open Source Software (OSS) conference series, as well as with many other
colleagues worldwide interested in how open source development is changing
the way software is designed, produced and deployed.

It is a pleasure to acknowledge the conceptual thread connecting the con-
tent of this book and the early discussions on reuse-oriented software descrip-
tions with David Rine and his students at George Mason University in the
late Nineties.

xi

Contents

1 Introduction . 1
1.1 Context and motivation . 1
1.2 Software certification . 4

1.2.1 Certification vs. standardization . 5
1.2.2 Certification authorities . 5

1.3 Software security certification . 6
1.3.1 The state of the art . 8
1.3.2 Changing scenarios . 9

1.4 Certifying Open source . 9
1.5 Conclusions . 12
References . 12

2 Basic Notions on Access Control . 15
2.1 Introduction . 15
2.2 Access Control . 17

2.2.1 Discretionary Access Control . 18
2.2.2 Mandatory Access Control . 19
2.2.3 Role Based Access Control . 24

2.3 Conclusions . 24
References . 25

3 Test based security certifications . 27
3.1 Basic Notions on Software Testing . 27

3.1.1 Types of Software Testing . 30
3.1.2 Automation of Test Activities . 34
3.1.3 Fault Terminology . 34
3.1.4 Test Coverage . 36

3.2 Test-based Security Certification . 37
3.2.1 The Trusted Computer System Evaluation Criteria

(TCSEC) standard . 39
3.2.2 CTCPEC . 46

xiii

xiv Contents

3.2.3 ITSEC . 46
3.3 The Common Criteria : A General Model for Test-based

Certification . 47
3.3.1 CC components . 48

3.4 Conclusions . 59
References . 60

4 Formal methods for software verification 63
4.1 Introduction . 63
4.2 Formal methods for software verification 65

4.2.1 Model Checking . 65
4.2.2 Static Analysis . 69
4.2.3 Untrusted code . 73
4.2.4 Security by contract . 74

4.3 Formal Methods for Error Detection in OS C-based Software . 75
4.3.1 Static Analysis for C code verification 76
4.3.2 Model Checking for large-scale C-based Software

verification . 81
4.3.3 Symbolic approximation for large-scale OS software

verification . 83
4.4 Conclusion . 86
References . 86

5 OSS security certification . 89
5.1 Open source software (OSS) . 89

5.1.1 Open Source Licenses . 90
5.1.2 Specificities of Open Source Development 93

5.2 OSS security . 97
5.3 OSS certification . 99

5.3.1 State of the art . 100
5.4 Security driven OSS development . 104
5.5 Security driven OSS development: A case study on Single

Sign-On . 105
5.5.1 Single Sign-On: Basic Concepts . 105
5.5.2 A ST-based definition of trust models and

requirements for SSO solutions . 107
5.5.3 Requirements . 116
5.5.4 A case study: CAS++ . 118

5.6 Conclusions . 121
References . 122

6 Case Study 1: Linux certification . 125
6.1 The Controlled Access Protection Profile and the SLES8

Security Target . 125
6.1.1 SLES8 Overview . 126

Contents xv

6.1.2 Target of Evaluation (TOE) . 127
6.1.3 Security environment . 128
6.1.4 Security objectives . 129
6.1.5 Security requirements . 130

6.2 Evaluation process . 132
6.2.1 Producing the Evidence . 133

6.3 The Linux Test Project . 134
6.3.1 Writing a LTP test case . 135

6.4 Evaluation Tests . 141
6.4.1 Running the LTP test suite . 141
6.4.2 Test suite mapping . 142
6.4.3 Automatic Test Selection Example Based on SLES8

Security Functions . 146
6.5 Evaluation Results . 148
6.6 Horizontal and Vertical reuse of SLES8 evaluation 149

6.6.1 Across distribution extension . 149
6.6.2 SLES8 certification within a composite product 151

6.7 Conclusions . 153
References . 153

7 Case Study 2: ICSA and CCHIT Certifications 155
7.1 Introduction . 155
7.2 ICSA Dynamic Certification Framework 157
7.3 A closer look to ICSA certification . 158

7.3.1 Certification process . 158
7.4 A case study: the ICSA certification of the Endian firewall . . 159
7.5 Endian Test Plan . 161

7.5.1 Hardware configuration . 161
7.5.2 Software configuration . 161
7.5.3 Features to test . 161
7.5.4 Testing tools . 163

7.6 Testing . 164
7.6.1 Configuration . 164
7.6.2 Logging . 165
7.6.3 Administration . 166
7.6.4 Security testing . 166

7.7 The CCHIT certification . 168
7.7.1 The CCHIT certification process 170

7.8 Conclusions . 170
References . 171

8 The role of virtual testing labs . 173
8.1 Introduction . 173
8.2 An Overview of Virtualization Internals 176

8.2.1 Virtualization Environments . 177

xvi Contents

8.2.2 Comparing technologies . 179
8.3 Virtual Testing Labs . 180

8.3.1 The Open Virtual Testing Lab . 180
8.3.2 Xen Overview . 181
8.3.3 OVL key aspects . 181
8.3.4 Hardware and Software Requirements 182
8.3.5 OVL Administration Interface . 184

8.4 Using OVL to perform LTP tests . 184
8.5 Conclusions . 186
References . 186

9 Long-term OSS security certifications: An Outlook 187
9.1 Introduction . 187
9.2 Long-term Certifications . 189

9.2.1 Long-lived systems . 189
9.2.2 Long-term certificates . 190

9.3 On-demand certificate checking . 192
9.4 The certificate composition problem . 194
9.5 Conclusions . 195
References . 196

A An example of a grep-based search/match phase 199

Index . 201

Acronyms

AAM Authentication and Authorization Model
ACL Access Control List
BRR Business Readiness Rating
BSD Berkeley Software Distribution
CA Certification Authority
CAPP Controlled Access Protection Profile
CAS Central Authentication Service
CC Common Criteria ISO/IEC 15408
CCHIT Certification Commission for Healthcare Information Technology
CERT Carnegie Mellon Computer Emergency Response Team
CFA Control Flow Analysis
CIM Centralized Identity Management
CMMI Capability Maturity Model Integration
COTS Components-Off-the-Shelf
CTCPEC Canadian Trusted Computer Product Evaluation Criteria
DAC Discretionary Access Control
EAL Evaluation Assurance Level
ETR Evaluation Technical Report
FIMM Full Identity Management Model
FM Federated Model
FOCSE Framework for OS Critical Systems Evaluation
FSA Finite State Automaton
FSF Free Software Foundation
GPL General Public License
HFT Health Information Technology
IETF Internet Engineering Task Force
IPR Intellectual Property Rights
ISO International Standard Organization
ISO International Organization of Standardization
ISO-SD 6 International Standard Organization SC 27 Standing Document

6

xvii

xviii Acronyms

ISSO Information Systems Security Organization
ITSEC Information Technology Security Evaluation Criteria
JVM Java Virtual Machine
LLS Long-Lived software Systems
LOC Lines Of Code
LSB Linux Standard Base
LTP Linux Test Project
LVM Logical Volume Management
MAC Mandatory Access Control
MCC Model-Carrying Code
MIT Massachusetts Institute of Technology
MPL Mozilla Public License
NCSC National Computer Security Center
NSA National Security Agency
OIN Open Invention Network
OS Operating system
OSD Open Source Definition
OSI Open Source Initiative
OSMM Open Source Maturity Model
OSP Organizational Security Policy
OSS Open Source Software
OSSTMM Open Source Security Testing Methodology Manual
OVL Open Virtual Lab
OWA Ordered Weighted Average
PCC Proof-Carrying Code
PGT Proxy-Granting Ticket
PKI Public Key Infrastructure
POSIX Portable Operating System Interface
PP Protection Profile
PT Proxy Ticket
QSOS Qualify and Select Open Source Software
RAV Risk Assessment Value
RBAC Role Based Access Control
RPM Red Hat Package Manage
SAR Security Assurance Requirement
SFP Security Functional Policy
SFR Security Functional Requirement
SLES Suse Linux Enterprise Server
SMP Symmetric Multi-Processing
SPICE Software Process Improvement and Capability dEtermination ISO15504
SQuaRE Software product Quality Requirements and Evaluation ISO25000
SSH Secure Shell
SSL Secure Socket Layer
SSO Single Sign-On
ST Security Target

Acronyms xix

SwA Software Assurance
TCSEC Trusted Computer System Evaluation Criteria
TFS TOE Security Function
TGC Ticket Granting Cookie
TLS Transport Layer Security
TOE Target Of Evaluation
USDoD U.S. Department of Defense
UTM Unified Threat Management
VM Virtual Machine
VMM Virtual Machine Monitor
VNL Virtual Networking Labs
XSS Cross-Site Scripting

Chapter 1

Introduction

Abstract Open source software (OSS) and components are playing an in-
creasingly important role in enterprise ICT infrastructures; also, OSS operat-
ing system and database platforms are often bundled into complex hardware-
software products. Still, OSS adopters often have only anecdotal evidence
of some crucial non-functional properties of open source systems, including
security-related ones. In this introduction, we provide some background on
software certification and discuss how it can be used to represent and inter-
change the security properties of open source software.

1.1 Context and motivation

Software is everywhere in our life. It plays a major role in highly critical
systems such as health care devices, cars and airplanes, telecommunication
equipments and in many other appliances in our workplaces and in our homes.
However, in spite of this pervasive presence of software in the modern soci-
ety, many users express little trust in the correctness and reliability of appli-
cations they use every day, be such applications commercial or open source
software. Disclaimers coming with some software licenses do not help to build
user confidence, as they explicitly proclaim software programs to be “unfit
to any specific purpose”. Not surprisingly, software users’ lack of trust has
triggered an increasing public demand for improving the security of mission
and safety-critical software. A huge interdisciplinary research effort is being
devoted to finding methods for creating security, safety and dependability
certificates to be delivered to users together with software systems.1 This
work is distinct but related to the ongoing one [14] to establish consistent
regulation to ensure that software in critical systems meets minimum safety,

1 Generally speaking, software certification may concern people (e.g., developers or
testers) skills, the development process or the software product itself. Here we focus
on the certification of software products.

1

2 1 Introduction

security and reliability standards. In parallel to these research efforts, interna-
tional governmental agencies and standards bodies have been busy devising
regulations and guidelines on the development and deployment of certified
software products. Software suppliers are also becoming interested in cer-
tification since under certain contractual obligations they may be liable for
security breaches resulting in the loss of confidential information, as well as in
business interruption. Software purchasers increasingly refuse full exclusion
of liability in software supply contracts. An interesting situation occurs when
software suppliers fail to address security threats for which countermeasures
are known, especially when these threats have been explicitly mentioned by
the purchasers. In some cases, software suppliers may be liable for all dam-
age suffered as a result of the security breach; claims may even be made
to the money needed to put the software purchaser in the same situation
had the failure not occurred. Independent certification of a software prod-
uct’s security features can provide a way to reduce such liability, e.g. limiting
insurance costs. Of course, different legal systems have different notions of
liability, and the extent of any liability reduction due to software certification
will depend on many factors, including where the organization using certified
software is based. From the software purchaser’s point of view, the certificate
provides a useful independent appraisal of a software product’s properties.
From the software supplier’s point of view, getting a prestigious certificate
can be a powerful marketing tool, while failing to do so can be an early
warning of something being wrong with the product. In this book, we focus
on the technological and scientific aspects of generating certificates dealing
with properties of open software products. The reader interested in the the
legal aspects of liability issues involving software suppliers is referred to the
seminal paper [4].

This book is aimed at open source developers and users interested in soft-
ware security certification, as well as at security experts interested in bundling
open source software within certified software products. Rather that provid-
ing ready-to-go recipes (which would be inevitably obsolete by the time the
book reaches its audience), we will try to provide the reader with the basic
notions and ideas needed to deal with open source certification. Throughout
the book, we shall address the following questions:

• Which properties of a software system can be certified?
• How can we trust a certificate to be accurate, and how do we measure

such trust?
• What can be done at software design time to establish an acceptable level

of trust or, at run-time, to preserve or increase it?

Before trying to answer these questions, however, we need to agree on some
basic terminology [5]. Let us start by reviewing some basic terms related to
certification taken from the International Standard Organization (ISO) SC
27 Standing Document 6 (SD 6), a document well-known to security experts

1.1 Context and motivation 3

worldwide as the Glossary of IT Security Terminology. ISO SD 6 provides
the following definitions:

• Accreditation: Procedure by which an authoritative body gives formal
recognition that a body or person is competent to carry out specific tasks
(see ISO/IEC Guide 2), such as certification or evaluation.

• Certification authority : an entity trusted by one or more users to create
and assign certificates.

• Certification: Procedure by which a third party gives written assurance
that a product, process or service conforms to a specified requirement
(see ISO/IEC Guide 2).

• Certificate: Declaration by a certification authority confirming that a
statement about a software product is valid. Usually issued on the basis
of the outcome of an evaluation.2

• Evaluation: Systematic assessment (e.g., by means of tests) of the extent
to which a software product is capable of fulfilling a set of requirements.

• Evaluation body : Accredited lab carrying out evaluations. The evaluation
outcome is a pre-requisite for issuing a certificate on the part of the
certification authority.

Although we shall do our best to adhere to this standard terminology
throughout the book, the above terms can be used in many practical situa-
tions, largely different from each other. Therefore, their meaning can depend
on the context. An important aspect to be clarified, when software certi-
fication is discussed, is the distinction between model-based and test-based
certification of software properties.

• Model-based certificates are formal proofs that an abstract model (e.g.,
a set of logic formulas, or a formal computational model such as a finite
state automaton) representing a software system holds a given property.
The model to be certified can be provided as a by-product of the software
design process, or be reverse-engineered from the software code.

• Test-based certificates are evidence-based proofs that a test carried out
on the software has given a certain result, which in turn shows (perhaps
with a certain level of uncertainty) that a given property holds for that
software. In particular, test-based certification of security-related proper-
ties is a complex process, identifying a set of high-level security properties
and linking them to a suitable set of white- and black-box software tests.

Of course, other certification techniques do exist, including system simu-
lation, code reviews and human sign offs; but they are less widespread than
the two major approaches outlined above.

2 Of course, the authority issuing the certificate is supposed to be operating in ac-
cordance with a well-specified standard procedure, such as ISO Guide 58, a.k.a.,
Calibration and testing laboratory accreditation systems.

4 1 Introduction

Today, test-based security certification is mostly applied when customers
need to have a reliable quantitative measure of the security level of their soft-
ware products. By certifying individual security features, software suppliers
give to their customers the possibility of choosing systems that best match
their security needs. A wide range of (test-)certified software products exist,
including operating systems, firewalls, and even smart cards. Only very few
of those certified products are open source systems, because certification of
open source is still a relatively new topic, and there are several challenges
specifically related to open source certification. For instance, guaranteeing
high reliability is difficult when a combination of diverse development tech-
niques is used, as it is often the case for open source communities. In the
remainder of the book, we (as well as, hopefully, the reader) are interested
in studying if and how open source software lends itself to a combination of
automatic test selection and formal verification methods. Also, we will dis-
cuss some open problems of the certification process. A major one is cost:
certification effort can be huge, and it must be correctly estimated and kept
under control. This can be done by reducing certification and re-certification
times, as well as by dynamically linking artifacts to certificates.

1.2 Software certification

As we anticipated above, software certification relies on a wide range of for-
mal and semi-formal techniques dealing with verification of software systems’
reliability, safety and security properties. In principle, a certificate should con-
tain all information necessary for an independent assessment of all properties
claimed for a software artifact. Obviously, then, the exact content of a certifi-
cate will depend on the software artifact it is about and the specific property it
claims to hold for that artifact. Certifiable artifacts include implementation-
level ones (such as entire software systems, individual software components,
or code fragments), but also analysis and design-level artifacts such as re-
quirements, UML diagrams, component interfaces, test suites, individual test
cases and others. A certificate has to represent all entities involved in the cer-
tification process, that is, (i) the certification authority making the assertion,
(ii) the software artifact being certified and (iii) the property being asserted.
Certificates for artifacts belonging to the same software system are not an
unstructured collection; rather, they exhibit some structure according to the
software system’s architecture and granularity. If the software system under
certification can be decomposed into a number of subsystems, and in turn
each subsystem is composed of a number of components, then the certificate
issued for the entire system depends hierarchically on the certificates of the
subsystems and on the certificates of all involved components. This certifi-
cate hierarchy can be used for auditing and incremental re-certification. The
certification authority can determine which certificates need to be inspected,

1.2 Software certification 5

recomputed, or revalidated after an artifact or a certificate has been (or would
be) modified.

Of course, much of the the value of a certificate is in the eye of the beholder
- i.e., of the purchaser. What precisely this value is will largely depend on
the customer’s specific perspective and on its trust in the authority issuing
the certificate.

1.2.1 Certification vs. standardization

The notion of certification is strictly intertwined with the one of standard-
ization. Historically, open standards have been the result of an agreement
between technology suppliers, customers and regulatory authorities at a na-
tional or international level. The emergence of open standards has been cru-
cial to ensure interoperability among different brands of software products or
services; the rapid development of the global Internet is probably the most
studied example of a growth and innovation process enabled by the “bottom-
up” open standardization process carried out within the Internet Engineering
Task Force (IETF). Certification bodies operate in the middle between the
requirements of the users and the industrial needs. In that sense, certificates
can be seen as trusted information given to potential customers about prod-
ucts and services available on the market.

Certificates are closely related to open standards inasmuch they give in-
formation about a software product’s properties to the potential customer
and to the general public, facilitating a comparison among competing soft-
ware products or services. Certified properties correspond to a set of require-
ments, which can coincide to those defining an open standard. For instance,
the Common Criteria (see below, as well as the detailed discussion in Chap-
ter 3) is a certification scheme where the security level of a software product
is assessed according to a set of requirements defined in the international
standard ISO/IEC 15408.

1.2.2 Certification authorities

In principle, any private or public body can issue certificates. In practice, cer-
tification authorities tend do be endorsed by governments [5]. For instance,
the European Standard EN 45011 specifies requirements for certification au-
thorities to be accredited by governments of EU member states. EN 45011
requirements on certification authorities mainly concerned how the no-profit

6 1 Introduction

nature of the certification activity.3 4 A major task of a certification au-
thority is the generation and interchange of (signed) certificates. In order to
obtain a certificate, a software product has to go through an evaluation pro-
cess, where a third party checks whether the product complies with a given
set of requirements. More specifically, given a software artifact and a set of
claimed properties the certification authority will attempt to execute tests
or perform model-based reasoning in order to generate and sign a certificate,
involving human agents when necessary. Also, the certification authority will
carry out intelligent re-certification when some changes take place in the
software artifacts to be certified. When computing re-certification, existing
(sub-)certificates will be reused where possible, especially where part-of com-
ponent hierarchies are available. Additional services managed by a certifica-
tion authority may include:

• Certificates revocation. An individual certification step is no longer valid
(e.g., a bug has been discovered in a test suite), leading to the revocation
of all certificates which depend on it.

• Certification history. A certification authority should be able to provide a
complete certification history with full information about all procedures
followed, so that comprehensive audits can be carried out.

In general, creating and promoting a certification scheme and providing the
generation and revocation services are distinct activities, which require differ-
ent skills. Therefore, certification authorities can delegate suitable evaluation
bodies who check compliance and provide the certification authority with
evidence, based on which the certification authority issues (or does not is-
sue) the certificate. Certification authorities have also some informal goals to
achieve, including (i) defining the process (and resources) needed for certi-
fication and (ii) improving the market awareness on the meaning and scope
of the certification program.

1.3 Software security certification

Historically, software certification has been more closely related to generic
quality assurance than to security issues [8, 14]. Again using ISO terminol-
ogy, quality is “the degree to which a set of inherent characteristics fulfills
requirements” (ISO9001:2000), and the step of bringing in someone to certify
the extent to which requirements are satisfied seems quite straightforward.
However, some requirements are easier to specify than others, and tracing
software quality requires an accurate definition of evaluation characteristics.

3 In some cases, a government directly empowers an organization.
4 In Germany, BSI in Germany is authorized by law to issue certificates and no
accreditation is required for the BSI Certification Body. A similar situation occurs in
France with DCSSI and its evaluation center (CESTI).

1.3 Software security certification 7

Quality certifications dealing with software products and the software devel-
opment process have been investigated since the early days of Software Engi-
neering. Both McCall’s and Boehm’s historical software quality models [3, 9]
date back to the late Seventies, and significant contributions to the formaliza-
tion of the general notion of software quality were given by industrial research
already in the Eighties (Boeing Aerospace Company published their Quality
Model for Software in 1985). Standardization of software quality requirements
started in 1991, when the first International Standard for Software Quality
was brought out as ISO9126 [12]; in 1994 the ISO9001 standard was issued.
In recent years, increased understanding of software product and process
quality requirements brought about the Capability Maturity Model Integra-
tion (CMMI) (CMMI version 1.0 was announced in 1997). Finally, in 1998
the Software Process Improvement and Capability dEtermination (SPICE)
was issued as ISO15504 standard. With these building blocks firmly in place,
work on software quality requirements has continued to this day; the first
Software product Quality Requirements and Evaluation (SQuaRE) document
was published in 2005 as ISO25000 and revised in 2007 [7, 13].

Like quality, the problem of software security is a time-honored one, and
can be traced back to the introduction of computers themselves. However, in
the early days of software engineering security was mainly an afterthought. In
the last few years, the fast pace of the technological evolution of computing
devices in terms of networking, speed and computing power, has dramatically
affected the way we look at software security. Software security has become
a great concern for many decision makers, who want to make sure that the
software products they buy possess security features needed to counteract all
known threats. Security-related certification is now one of the most important
and challenging branch of software certification, especially for component-
based architectures [1] where software coming from different sources must be
integrated.

However, software security does not affect software systems only once they
have been deployed; rather, it deals with the entire software life cycle, from its
conception and development till its usage and maintenance. For our purposes,
a key aspect is the damage that security threats can do to the perceived
quality of software products. For many years, it has been a common mistake
to underestimate the negative effects of threats on the acceptance of software
products. In the last few years, interest in understanding and preventing
security threats has been rising. According to Gary McGraw [11], the three
pillars of software security are applied risk management, software security
best practices, and knowledge sharing. In terms of applying risk management
to software purchases, a major problem is that many software suppliers still
consider security to be an additional feature, rather than a built-in property
of their products. In case of a security failure, many software suppliers still
hasten to release patches and quick fixes to the problem [10], rather than
considering which security properties their system failed to deliver and why.

8 1 Introduction

1.3.1 The state of the art

As we shall see throughout the book, obtaining independent security certifi-
cation of software products is becoming the preferred choice of many software
suppliers, especially those dealing with security-related software platforms,
who need to reduce their liability and prove the effectiveness and the ro-
bustness of their products. However, a security certification is an expensive
process in terms of time and effort. The first attempt to create a standard
for security certification of software dates back to 1985, with the creation of
the TCSEC standard in the U.S., commonly referred to as the Orange Book
(USDoD 1985). Obtaining a TCSEC security certification is a complex pro-
cess, which involves understanding the software product’s architecture and
development methodology, analyzing its users’ security requirements, identi-
fying and carrying out the corresponding testing. In the Nineties, the need for
software security certification also emerged outside the U.S., leading to the
creation of local security certifications, such as, ITSEC in Europe (ITSEC
1991) and CTCPEC in Canada (CSE 1993).

Since these national certifications were (and still are) totally independent
from each other, the cost of certifying a software system at an international
level has remained very high for a long time. Today, there is a lot of interest
in defining security benchmarks and platforms to automate fully or partially
the security certification process, speeding up products adoption and com-
mercialization.

Security certifications may reduce insurance costs, limit liability and even
pay off commercially: for instance, some governments afford advantages to
CMMI and ISO 9001-certified companies, and the same is happening with
security certifications. As we will see in the next chapters, cost is one of the
key factors that have led to the creation of international standards for soft-
ware security certification, leading to technical configuration standards for
operating systems, network devices and applications which correspond to a
set of desired security properties. We shall deal with these standard bench-
marks throughout the book. Some of them are user-originated and reflect
the consensus of expert users worldwide, while others have been defined by
suppliers to meet the security requirements of specific market niches.

Correspondingly, a number of testing platforms and tools have been devel-
oped in order to manage the level of compliance of computer configurations
with the properties corresponding to the technical settings defined in the
benchmarks. Many problems, however, remain to be solved. Fast obsoles-
cence of security certifications (see Chapter 9) is a major one: in order to
prevent it, long-term monitoring system security is needed to ensure that
benchmark security configurations remain in place over time and security
properties continue to hold.

1.4 Certifying Open source 9

1.3.2 Changing scenarios

Security certification process must be able to follow fast and agile software de-
velopment processes, including the ones relying on Commercial Off-The-Shelf
(COTS) components. This is not a trivial task: if COTS products change
every few months and the certification process requires a year, certified prod-
ucts may become obsolete by the time certificates are available. Often, users
have to decide whether to adopt a non-certified recent release of a system,
or settle for a previous version which completed the certification process.5 In
principle, many researchers agree that security certification should follow the
embedded software model; that is, it should deal with software products and
the environment in which they run at the same time [16]. Alternatively, a
divide-et-impera approach would decouple the certification of the execution
environment from the one of a given software product in the context of that
environment.

Another major challenge is the rapidly changing landscape of security
threats, which makes it difficult to maintain the set of desirable properties
against which products must be certified. The validity of a security certifi-
cate over time is essentially associated with the software product’s ability
to repeal new attacks. While a general technique for security certificates’ re-
computation or continuous monitoring is still an open challenge, some certi-
fication authorities do offer a certified product monitoring activity (Chapter
7) which consists of regularly recomputing the certificate including proper-
ties considered desirable in order to repeal or prevent emerging threats. As
long as the evaluation body in charge of this monitoring activity repeats this
procedure each time a new threat emerges, the certificate is considered to be
monitored.

1.4 Certifying Open source

An increasing number of software programs and applications are designated
with the term Open-Source Software (OSS). We shall not try to define the
term precisely in this introductory chapter, as those who employ it to describe
a software product may refer to one or more of a number of diverse properties
related to sourcing, licensing and development (see Chapter 5). Indeed, the
term “open source” itself is prone to misuse; being descriptive, it cannot be
protected as a trademark, so its actual meaning in terms of licensing needs
has to be carefully specified in any given context. However, clearly specifying
licensing issues is just a first step toward the needs of companies wishing to

5 Today, no general methodology is available for computing incremental, reusable
certificates. Research aimed at reusing the results of the previous evaluation may
reduce considerably the evaluation costs of new versions of certified products.

10 1 Introduction

bring OSS as a first-class citizen into critical products and appliances. Ac-
knowledged benefits of open-source software include lower development and
maintenance costs, as well as timely evolution to meet new requirements.
OSS adoption for complex mission-critical applications, such as telecommu-
nications and embedded systems, is still quantitatively and qualitatively less
successful than it could be, even in presence of detailed adoption guidelines.
Relatively few companies do not use open source products and technologies at
all, but project managers working on complex systems still perceive barriers
that limit their use, including support and license topics.

While complex software systems like mobile network services go through
highly structured production processes, including stringent certification of
performance, security and safety properties, OSS projects are functionality-
driven, collaborative, rapidly updated and rapidly released (see Chapter
5), and pushed by volunteers working with a diversity of interests, skills,
and hardware sets. Today, OSS integration into complex products is be-
coming increasingly dynamic, relying on mechanisms such as object wrap-
ping/delegation and stubbing/remote invocation. This evolution, partly due
to Intellectual Property Rights (IPR) concerns, has raised a number of issues
about compositional properties of complex systems dynamically integrating
(vs. statically bundling) OSS components and services. A major issue com-
panies producing complex systems and services face in incorporating OSS
into their products is lack of reliable knowledge on open source components
and their impact on the overall properties of systems they are dynamically
integrated in. Some OSS products are only useful as a source for develop-
ing requirements for internal software development, others can provide good
components for development projects and, finally, some OSS can be put in
enterprise production environments without hesitation. Also, OSS properties
are asserted by different sources at different levels of trustworthiness, and
some of them are left for the final adopter to discover. Many OSS prod-
ucts lack of stable and reliable information about functionalities and about
non-functional properties crucial for their dynamic integration in complex
systems, like security, dependability, safety, and code maturity. Often, when
companies have to decide which OSS components to integrate in their prod-
ucts and how to do it, there is little time for long evaluations and for scanning
a large technology landscape; even when detailed information is available, it
is difficult to assemble the specific set of information needed to assess a spe-
cific (e.g., dynamic) integration technique. Two major sources of problems
are:

• Unsuccessful proof-of-concept, due to the fact that a product including
an OSS solution does not meet non-functional requirements about per-
formance, code quality or security. Such failure can be systematic or
happen only occasionally (e.g., under specific load conditions). For in-
stance, a high-end network device can invoke the services of an open
source TCP/IP component that is not certified w.r.t. certain ICMP mal-
formed packet vulnerabilities. When the OSS component is used to receive

1.4 Certifying Open source 11

ICMP messages, the whole product will not meet the standards required
by certification, even if the software component is not faulty.

• Development of faulty, solution-driven requirements for final products,
that is, unwanted influence of “what is already available as OSS” over
the company’s product specifications. For instance, designing a net-
work switch based on Linux standard support for packet switching may
generate an unexpected performance ceiling, which can be overcome
in peak traffic conditions by dynamically integrating switching hard-
ware/software based on high-performance multiprocessor.

The impact of these issues can be effectively reduced by the use of virtu-
alized environments for testing and designing the properties of new solutions
dynamically including OSS, before inserting them in production systems.
Virtualization techniques allow creating isolated or interconnected systems
that totally simulate real systems. Virtual Networking Labs (VNL) has been
proposed and developed exploiting virtualization frameworks [6] in the field
of e-Learning, web-based services provision, and software testing. We shall
deal with the role of virtualization in certifying software products in Chap-
ter 8. Another important aspect is the one related to OSS IPR. Some initial
steps have been made: for instance, the Open Invention Network (OIN) ac-
quires patents and licenses them royalty-free to companies that agree not to
enforce their own patents against the Linux operating system and certain
Linux-related applications.

Today, OSS adopters and the open source community are raising questions
about the possibilities of certifying open source software. On the one hand, as
we said above, open source software development by large-scale communities
exhibits a number of features that make the certification process more awk-
ward than it is for traditionally developed proprietary software (Chapter 5).
For instance, not all open source communities provide reliable test data, and
even when they do, these data are seldom suitable for test-based certification
needs. Also, only a small number of definitions of desirable security properties
which can be certified via tests have been published for open source systems.

On the other hand, having a security assurance process leading to certifi-
cation is in the best interests of the open source community. Indeed, the mere
fact that a software product is open source does not limit its supplier’s liabil-
ity. Besides developers, potentially liable parties include systems integrators
and software maintenance companies. This situation has fostered several at-
tempts to understand the requirements of existing security certifications and
apply them to open source software .

The IBM Linuxr Technology Center has provided many contributions to
the development community on the topic of Linux security. In a seminal paper
by the IBM Linux group [15], the authors describe how they obtained Com-
mon Criteria security certification for Linux, the first open-source product to
receive such certification. The IBM group has also been extending the range
of Linux security properties to be certified. In March 2007, the same group
presented a work [17] that explores the evolution, rationale, and development

12 1 Introduction

of features to meet new profiles related to advanced access control models. We
have investigated security evaluation and certification of open source software
by looking at two major security evaluation standards as well as providing
a partial application to two case studies. Our own research work [2] mainly
deals with describing and automating open-source certification process, an
issue which is also addressed in this book.

1.5 Conclusions

Customer demand for independent security certification of software products
is increasing, as both software users and suppliers are usually not able to carry
out evaluations themselves. Also, independent security certificates may have
liability reduction effect and a commercial impact, especially for suppliers
taking part to international tenders of e-government products (e.g., smart
cards). However, a less expensive re-certification procedure is needed to make
certification affordable for small and medium enterprises. As we shall discuss
later in the book (see Chapter 7), “lightweight” certification schemes are also
gaining acceptance in the area of security-related software products such as
firewall and intrusion detection systems.

Open source security certification is a crucial step toward inserting OSS
integration in the critical path of the development of complex network and
hardware/software architectures. Providing techniques for compositional cer-
tification of security, dependability and safety properties across a number of
dynamic and static integration techniques, can pave the way to an exponen-
tial diffusion of open source paradigm. Well-designed certification schemes
can also help to configure safety-critical software products or services in or-
der to comply with external regulations.

References

1. A. Alvaro and E.S. de Almeida S.R. de Lemos Meira. Software component certi-
fication: A survey. In Proc. of 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications, Porto, Portugal, August-September 2005.

2. C.A. Ardagna, E. Damiani, N. El Ioini, F. Frati, P. Giovannini, and R. Tchokpon.
Mapping linux security targets to existing test suites. In Proc. of The Fourth
IFIP International Conference on Open Source Systems, Milan, Italy, September
2008.

3. B. Boehm, J. Brown, M. Lipow, and G. MacCleod. Characteristics of Software
Quality. NY, American Elsevier, 1978.

4. D. Callaghan and C. O’Sullivan. Who should bear the cost of software bugs?
Computer Law & Security Report, 21(1):56–60, February 2005.

5. C. Casper and A. Esterle. Information security certifications. a primer: Products,
people, processes. Technical report, December 2007.

References 13

6. E. Damiani, M. Anisetti, V. Bellandi, A. Colombo, M. Cremonini, F. Frati, J.T.
Hounsou, and D. Rebeccani. Learning computer networking on open para-virtual
labs. IEEE Transaction On Education, 50:302–311, November 2007.

7. Internal Document ISO/IEC JTC1/SC7. ISO25010-CD JTC1/SC7, Software
Engineering - Software product Quality Requirements and Evaluation (SQuaRE),
2007. State: CD Commision Draft.

8. B. Kitchenham and S.L. Pfleeger. Software quality: the elusive target. IEEE
Software, 13(1):12–21, Jan 1996.

9. J. McCall, P. Richards, and G. Walters. Factors in software quality, vol 1,2, & 3.
Technical report, November 1977.

10. G. McGraw. Managing software security risks. IEEE Computer, 35(4):99–101,
March 2002.

11. G. McGraw. Software security: Building security in. In Proc of the 17th Interna-
tional Symposium on Software Reliability Engineering (ISSRE 2006), November
2006.

12. International Standardization Organization. ISO9126:1991 JTC1/SC7, Infor-
mation Technology Software Product Quality, 1991.

13. International Standardization Organization. ISO25000:2005 JTC1/SC7, Soft-
ware Engineering - Software product Quality Requirements and Evaluation
(SQuaRE), 2005.

14. D. Parnas. Certification of software: What, how, and how confidently. In Inter-
national Workshop on Software Certification, Hamilton, ON, Canada, August
2006. Invited Talk.

15. K.S. Shankar and H. Kurth. Certifying open source: The linux experience. IEEE
Security & Privacy, 2(6):28–33, November-December 2004.

16. J. Voas and K. Miller. Software certification services: Encouraging trust and
reasonable expectations. IT Professional, 8:39–44, September-October 2006.

17. G. Wilson, K. Weidner, and L. Salem. Extending linux for multi-level security.
In SELinux Symposium, 2007.

Chapter 2

Basic Notions on Access Control

Abstract Security certifications deal with security-related properties and
features of software products. In this chapter we introduce some basic con-
cepts on software systems features related to security and dependability. Such
features are often designated with the acronym CIA: they include Confiden-
tiality features, ensuring that only authorized users can read data managed
by the software system, Integrity features, ensuring that only authorized users
can can modify the software system’s resources, and Availability features, en-
suring that only authorized users can use the software system. In this chapter
we shall introduce some concepts underlying some software security features
which are an important target for the software certification process. Specifi-
cally, we shall focus on access control subsystems, which are among the most
widespread security features added to operating systems, middleware and ap-
plication software platforms. Such subsystems will be among the targets of
certification discussed in this book.

2.1 Introduction

The software security field is a relatively recent one;1 but today software
security is so wide notion that has come to mean different things to different
people. For our purposes, we shall loosely define it as the set of techniques
aimed at designing, implementing and configuring software so that it will
function as intended, even under attack.

Security features, such as access control systems [6], are added to software
products in order to enforce some desired security properties. Although the
notion of specific security-related features and subsystems is an important
one, it is much easier for such features to protect a software product that

1 According to Gary McGraw [4], academic degrees on software security appeared as
recently as 2001. Our own online degree course on Systems and Network Security at
the University of Milan (http://cdlonline.unimi.it) was started in 2003.

15

16 2 Basic Notions on Access Control

is fault-free than one internally riddled with faults which may cause failures
which prevent security features from doing their job.

Our notion of software security is therefore twofold: firstly, software se-
curity is about protecting “plain” software systems by adding to them a
number of specific security features; secondly, software security is about pro-
gramming techniques for developing secure software systems, designing and
coding them to withstand (rather than prevent) attacks. The former notion
of software security follows naturally from a system-centric approach, where
access to software systems “from outside” must be controlled and regulated.
The second notion, instead, relies on the developers’ insight and focuses on
methods for identifying and correcting dangerous faults which may be present
in the software itself.

Most modern software systems do include some security features, but
adding such features does not guarantee security per se. Indeed, software
security is a system-wide issue that includes both adding security features
(such as an access control facility) and achieving security-by-coding (e.g., via
robust coding techniques that make attacks more difficult).

We can further clarify this distinction via a simple example. Let us assume
that a web server has a buffer overflow fault 2, and that we want to prevent
a remote attacker from overflowing the buffer by sending to the server an
oversize HTTP GET request. A way to prevent this buffer overflow attack
could be adding a software feature to the web server, a monitor function
that observes HTTP requests as they arrive over port 80, and drops them if
they are bigger than a pre-set threshold. Another way to achieve the same
result consists in fixing the web server source code to eliminate the buffer
overflow fault altogether. Clearly, the latter approach can only be adopted
when the server’s source code is available and its operation is well understood.

In most organizations, software security is managed by system adminis-
trators who set up and maintain security features such as access control and
intrusion detection systems, firewalls and perimeter defenses, as well as an-
tivirus engines. Usually, these system administrators are not programmers,
and their approach is more oriented to adding security features to protect
a faulty software than to correcting the faults in the software that allow
attackers to take advantage of it.

Furthermore, software development projects (like any other type of project)
have schedules and deadlines to respect for each step of the development pro-
cess. The pressure put on development teams make many developers care
for little else than making the software work [2], neglecting verification of
security properties.

As we shall see, security certifications try to deal simultaneously with both
aspects of software security: they certify the presence of some security features
as well as the outcome of testing their functionality. From this point of view
security is an emergent property of the entire software system rather than

2 The reader who is unaware of what a buffer overflow fault is can skip this example
and come back to it after reading Chapter 4.

2.2 Access Control 17

a set of individual requirements. This is an important reason why software
security must be part of a full lifecycle-based approach to software develop-
ment. In this chapter we shall introduce some concepts underlying software
security features which are an important target for the security certification
process. Specifically, we shall focus on access control subsystems, which are
among the most important security features added to operating systems, mid-
dleware and application software platforms. Such subsystems will be among
the targets of certification we shall discuss in the next chapters.

2.2 Access Control

Access Control (AC) is the ability to allow or deny the use of resources. In
other words, access control decides who subject is authorized to perform cer-
tain operations on a given object and who is not. The notion of controlling
access is independent of the nature of objects and subjects; objects can be
physical resources (such as a conference room, to which only registered par-
ticipants should be admitted) or digital ones (for example, a private image
file on a computer, which only certain users should be able to display), while
subjects can be human users or software entities.

Generally speaking, computer users are subject to access control from the
moment they turn on their machines, even if they do not realize it. On a
computer system, electronic credentials are often used to identify subjects,
and the access control system grants or denies access based on the credential
presented. To prevent credentials being shared or passed around, a two-factor
authentication can be used. Where a second factor (besides the credentials)
is needed for access. The second factor can be a PIN, or a biometric input.
Often the factors to be made available by a subject for gaining access to an
object are described as

• something you have, such as a credential,
• something you know, e.g. a secret PIN, or
• something you are, typically a fingerprint/eye scan or another biometric

input.

Access control techniques are sometimes categorized as either discretionary
or non-discretionary. The three most widely recognized models are Discre-
tionary Access Control (DAC) , Mandatory Access Control (MAC), and Role
Based Access Control (RBAC). MAC and RBAC are both non-discretionary.

18 2 Basic Notions on Access Control

2.2.1 Discretionary Access Control

The Trusted Computer System Evaluation Criteria (TCSEC) [5] defines the
Discretionary Access Control (DAC) model “a means of restricting access to
objects based on the identity of subjects and/or groups to which they belong.
DAC is discretionary in the sense that a subject with a certain access per-
mission is capable of passing on that permission (perhaps indirectly) to any
other subject (unless explicitly restrained from doing so by mandatory access
control)”. The Orange Book also states that under DAC “an individual user,
or program operating on the user’s behalf, is allowed to specify explicitly
the types of access other users (or programs executing on their behalf) may
have to information under the user’s control”. DAC provides a very impor-
tant security property: subjects to have full control over their own objects.
Subjects can manipulate their objects in a variety of ways based on their
authorizations.

Authorization determines which actions a subject can do on the system;
the semantics of actions depends on the nature of the objects involved. For in-
stance, within an operating systems platform, actions are variations or exten-
sions of three basic types of access: Read (R), where the subject can read file
contents or list directory contents, Write (W), where the subject can change
the name or the contents of a file or directory, and Execute (X), where, if
the object is a program, the subject can cause it to be run. As we shall
see below, these permissions are implemented differently in systems based
on Discretionary Access Control (DAC) than in Mandatory Access Control
(MAC).

Throughout the book, we shall repeatedly mention DAC, because many
operating systems today, including Unix and Unix look-alikes like Linux, use
DAC as part of their file protection mechanisms. DAC has also been adopted
for controlling access to networking devices such as routers and switches.
DAC’s high flexibility enables users to have full control to specify the privi-
leges assigned to each object.

A widely used framework for implementing DAC is the Matrix access
model. Formalized by Harisson, Ruzzo, and Ullman (HRU) [3], the Matrix
access model provides a conceptual abstraction which specifies the access
rights that each subject s has over each object o. The Matrix access model
is composed of rows representing the subjects, and columns representing the
objects. Each intersection cell between a subject s and an object o represents
the access rights for s over o. In other words, the access rights specified by
the cell ensure what type of access a subject has over an object (e.g. write ac-
cess, read access, execution access). An example of an access matrix is shown
in Figure 2.1. In this example, the access rights that are considered are (R)
read, (W) write, and (X) execute. An empty cell means that a specific subject
s has no right on a specific object o, conversely if a cell is assigned all the
access rights, it means that a specific subject s has full control over a specific
object o.

2.2 Access Control 19

S1

S2

S3

Sn

O1 O2 O3 On

W

R W X

W R W

R W

WR

WR

R X

R W X

R W X

R W

Fig. 2.1: Access matrix

2.2.1.1 Access Control Lists

Access Control Lists (ACLs) are data structures widely used to implement
both discretionary and mandatory access control models. Often, operating
systems implement DAC by maintaining lists of access permissions to be
attached to system resources. Each object’s access list includes the subjects
allowed to access the object and the actions they are allowed to execute on the
object. For example, the entry (Bob, read) on the ACL for a file foo.dat gives
to subject Bob permission to read the file. In an ACL-based implementation
of DAC, when a subject tries to execute an action on an object, the system
first checks the object’s list to see whether it includes an entry authorizing
such action. if not, the action is denied.3

ACLs have been implemented in different ways in various operating sys-
tems, although a partial standardization was attempted in the (later with-
drawn) POSIX security drafts .1e and .2c, still known as POSIX ACLs. In
practice, ACLs can be visualized as tables, containing entries that specify
individual subjects or group permissions to access system objects, such as
processes, or a file. These entries are called access control entries (ACEs)
within Microsoft Windows, Linux and Mac OS X operating systems.

2.2.2 Mandatory Access Control

While in DAC subjects are in charge of setting and passing around access
rights, the Mandatory Access Control (MAC) model enforces access control
based on rules defined by a central authority [6]. This feature makes MAC
more suitable to setup enterprise-wide security policies spanning entire orga-
nizations. MAC has been defined by the TCSEC [5] as “a means of restricting

3 A key issue in the efficient implementation of ACLs is how they are represented,
indexed and modified. We will not deal with this issue in detail here, even if such
implementation details may well be a target for a software security certification.

20 2 Basic Notions on Access Control

access to objects based on the sensitivity (as represented by a label) of the
information contained in the objects and the formal authorization (i.e., clear-
ance) of subjects to access information of such sensitivity”.

In MAC access control system all subjects and objects are assigned dif-
ferent sensitivity labels to prevent subjects from accessing unauthorized in-
formation. The sensitivity labels assigned to the subjects indicate their level
of trust, whereas the sensitivity labels assigned to the objects indicate the
security clearance a subject needs to have acquired to access them. Generally
speaking, for a subject to be able to access an object, its sensitivity level
must be at least equal or higher than the objects’ sensitivity level.

One of the most common mandatory policies is Multilevel Security (MLS),
which introduces the notion of classification of subjects and objects and uses
a classification lattice. Each class of the lattice is composed of two entities,
namely:

• Security Level (L): which a hierarchical set of elements representing level
of data sensitivity

Examples:

Top Secret (TS), Secret (S), Confidential (C), Unclassified (U)

TS > S > C > U (2.1)

Essential (E), Significant (S), Not important (NI)

E > S > NI (2.2)

• Categories (C): a set of non-hierarchical elements that represent the dif-
ferent areas within the system

Example:

Accounting, Administrative, Management etc.

By combining the elements of the two components one obtains a par-
tial order operator on security classes, traditionally called dominates. The
dominates operator represents the relationship between each pair (L,C) with
the rest of the pairs. The dominates relation (whose notation is the sign º)
is defined as follows:

(L1, C1) º (L1, C2) ⇐⇒ L1 ≥ L2 ∧ C1 ⊇ C1 (2.3)

To better understand the relation among the different classes defined in
Eq. 2.3, let’s examine the structure created by the dominates relation º.
It is a lattice, often called classification lattice, which combines together the

2.2 Access Control 21

Security Classes (SC) and the relations between them. Being a lattice, the
classification structure satisfies the following properties:

Reflexivity of º ∀x ∈ SC : x º x
Transitivity of º ∀x, y, z ∈ SC : x º y, y º z =⇒ x º z
Antisymmetry of º ∀x, y ∈ SC : x º y, y º x =⇒ x = y
Least upper bound (lub) ∀x, y ∈ SC : ∃!z ∈ SC
• z º x and y º z
• ∀t ∈ SC : t º x and t º y =⇒ t º z

Greatest lower bound (glb) ∀x, y ∈ SC : ∃!z ∈ SC
• x º z and y º z
• ∀t ∈ SC : x º t and y º t =⇒ z º t

Figure 2.2 shows an example of a classification lattice with two security
levels: Classified (C), Unclassified (U), and two categories: Management and
Finance. By looking closely to the figure we can notice that the sensitivity and
the importance of the information increases as we move upward in the lattice.
For instance, starting from the bottom of the lattice, we have Unclassified
information U that does not belong to any category, and by moving along
any of the two side lines we find unclassified information. However, this time
the information belongs to a specific category, which gives this information
more importance. If we move upward in the lattice we get to more important
classified information.

C{Management, Finance}

C{Management } C{Finance}

U{Management, Finance}

U { }

C { }U{Managemen t } U{F inance}

Fig. 2.2: Classification Lattice

22 2 Basic Notions on Access Control

Two well-known security models that use a mandatory access control ap-
proach are the Bell-LaPadula, and the Biba model.

2.2.2.1 Bell-LaPadula Model

The Bell-LaPadula (BLP) model defines a mandatory security policy based
on information secrecy. It addresses the issue of confidential access to classi-
fied information by controlling the information flow between security classes.

BLP partitions the organizational domain into security levels and assigns
a security label to each level. Furthermore, each subject and object within
the system need to be associated with one of those predefined levels and
therefore associated with a security label. The security labels denominations
may change from one organization to another, based on the terminology used
in each organization. For instance in the context of military organizations, it
would make sense to have labels like Top secret, Secret, Classified, while in a
business organization we may find labels of the type Board Only which spec-
ifies the type of information that only the board of directors can access and
Managerial which specifies the information that can be accessed by managers
and so on.

A major goal of BLP is preventing the information to flow to lower or
incompatible security classes [6]. This is done by enforcing three properties:

• The Simple Security Property : A subject can only have read ac-
cess to objects of lower or equal security level (no read-up). For instance
looking at the example in Figure 2.3, we can see that Subject S1 can
read both objects O2 and O3, since they belong to a lower security level,
the same for subject S2, it can read object O2 since it belongs to the
same security level, whereas it is not authorized to read object O1, since
it belongs to a higher security level

• The *-property (star-property): A subject can only have write access
to objects of higher or equal security level (i.e, no write-down is allowed).
The example shown in Figure 2.4 depicts this property, where subject S2
can write both in object O1 and O2 since they belong respectively to a
higher and to the same security level, while subject S1 can write only to
object O1 since it belongs to the same security level.

• The Discretionary Security Property : This property allows a sub-
ject to grant access to another subject, maintaining the rules imposed by
the MAC. So subjects can only grant accesses for the objects over which
they have the necessary authorizations that satisfy the MAC rules.

2.2 Access Control 23

Low Security
Label

High Security
Label

Read Read

Read

S 1

S 2

O 1

O 2

O 3

Read

Fig. 2.3: BLP simple security property

Low Security
Label

High Security
Label

Write Write

Write

S 1

S 2

O 1

O 2

O 3

Write

Write

Fig. 2.4: BLP *-security property

2.2.2.2 Biba Model

Whereas the main goal of BLP is to ensure confidentiality, Biba’s similar
mechanism aims to ensure integrity. The basic idea behind Biba is to prevent
low-integrity information to flow to higher-integrity objects, while allowing
the opposite. Very often, the Biba model has been referred to as the reverse of
the BLP model, since it exactly reverses the rules defined by the BLP. Before
discussing the properties of the Biba model and looking to some examples,
we once again remind the reader that the approach used by Biba is explicitly
based on integrity rather than confidentiality or disclosure of information as
in BLP. As mentioned earlier integrity refers to the ability of altering data
objects. So the model prevents high integrity objects from being altered or
changed by an unauthorized subject.

In a military environment, the Biba model will allow a subject with a high
security label to insert mission-critical information like a military mission’s
target and its coordinates, whereas subjects with lower security labels can
only read this information. This way the integrity of the system can be pre-
served more efficiently since the flow of information goes only from higher to
lower levels [1]. The Biba model guarantees the following properties:

24 2 Basic Notions on Access Control

• Simple Integrity Property : A subject can only have read access to
objects of higher or equal security level (no read-down).

• Integrity *-property (star-property): A subject can only have write
access to objects of lower or equal security level (no write-up).

2.2.3 Role Based Access Control

Instead of providing access rights at user or group level as in DAC, Role-
Based Access Control (RBAC) uses the roles assigned to users as a criteria
to allow or deny access to system resources. Typically, RBAC models define
users as individuals with specific roles and responsibilities within an organiza-
tion. This relationship creates a natural mapping based on the organization’s
structure, and thus assigns access rights to each role rather than to each indi-
vidual. The relation between roles and individuals is many-to-many, like the
one between roles and system resources. A specific role may include one or
more individuals, and at the same time a specific role can have access rights
to one or more resources. Figure 2.5 depicts these relations.

The main idea behind RBAC is to group privileges in order to give or-
ganizations more control in enforcing their specific security polices. In other
words, within an organization, the access control system deals with the job
function of individuals rather than with their real identities. When permit-
ting or denying access to a specific resource, the access right is intended to
permit or deny access to a specific role and not to a specific individual.

Within the RBAC, a role is defined as “a set of actions and responsibilities
associated with a particular working activity” [6]. The scope or the extent of
the role can be limited to specific task or mission to accomplish, for instance
processing a client request, or preparing a report, or it can concern a user’s
job like for instance manager, director.

2.3 Conclusions

Today’s information systems and platforms include security features aimed
at protecting confidentiality and integrity of digital resources. Controlling ac-
cess to resources across an entire organization is a major security challenge.
Access control models address this challenge by defining a set of abstractions
capable of expressing access policy statements for a wide variety of infor-
mation resources and devices. Access control systems are among the most
widespread security features added to operating systems, middleware and
application software platforms; therefore, certification of their security prop-
erties is of paramount importance. Many operating systems today, including
Unix and Unix look-alikes like Linux, use DAC as part of their protection

References 25

Role 1 Role 2

Users

Resources

Fig. 2.5: Role-based access control users-roles-resources relations

mechanisms. DAC has also been adopted for controlling access to networking
devices such as routers and switches. DAC’s high flexibility enables resource
owners to specify privileges assigned to each object.

References

1. E.G. Amoroso. Fundamentals of Computer Security Technology. Prentice Hall
PTR, 1994.

2. M.G. Graff and K.R. Van Wyk. Secure Coding: Principles and Practices. O’Reilly,
2003.

3. M.A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, August 1976.

4. G. McGraw. From the ground up: The dimacs software security workshop. In
IEEE Security and Privacy, volume 1, pages 59–66, March 2003.

5. USA Department of Defense. DEPARTMENT OF DEFENSE TRUSTED COM-
PUTER SYSTEM EVALUATION CRITERIA. USA Department of Defence,
1985.

6. P. Samarati and S. De Capitani di Vimercati. Foundations of Security Analysis
and Design, chapter Access Control: Policies, Models, and Mechanisms, pages
137–196. Springer Berlin / Heidelberg, 2001.

Chapter 3

Test based security certifications

Abstract Test-based certifications are a powerful tool for software users to
assess the extent to which a software product satisfies their security require-
ments. To exploit the full potential of this idea, it is necessary to have a shared
way to describe the security properties to be tested, as well as to define the
tests to be carried out and the testing environment itself. Since the early
days of the US Department of Defense’s Trusted Computer System Evalu-
ation Criteria (TCSEC) [17], also known as Orange Book, several attempts
have been made to standardize such descriptions, especially for operating sys-
tem platforms; the trend has been toward increasing expressive power and
complexity. A major result of this standardization activity is the Common
Criteria (CC) , an ISO standard that defines a general test-based framework
to specify, design and evaluate the security properties of IT products [12].
The introduction of CC came after almost two decades of joint work of many
international organizations aimed at creating a common security standard
that can be recognized at an international level. The rationale behind CC is
to formalize the language used by customers, developers and security evalua-
tors to have the same understanding when security requirements are specified
and evaluated. In this chapter, after a brief primer to software testing, we
will focus on test-based security certification, looking at the milestones that
have led to the introduction of the CC standard; then, the general conceptual
model underlying the CC standard will be explained.

3.1 Basic Notions on Software Testing

Software certification (see Chapter 1) is aimed at generating certificates
demonstrating non-functional properties of software systems, such as the ones
linked to dependability, security and safety. While the notion of interoper-
able software certificates as metadata items is a relatively new one, certi-
fication techniques build on well-known software validation and verification

27

28 3 Test based security certifications

techniques. Therefore, an in-depth discussion of test-based security certifi-
cation requires some background knowledge on the software testing process.
This section will provide such a background, focusing on the notion of risk-
oriented testing. Experienced readers may safely skip it. Our main reference
here is the excellent book by Paul Ammann and Jeff Offutt [1] and its rich
bibliography, as well as the recent book by Pezzè and Young [19].1

Informally, software development can be defined as the process of designing
(and implementing) a software product which meets some (functional and
non-functional) user requirements. In turn, software testing can be defined as
the process of validating a software product’s functionality, and, even more
importantly from our point of view, of verifying that the software has all
the desired non-functional properties (performance, robustness, security and
the like) its users expect. Hopefully, the testing process will also reveal the
software product’s defects.

In practice, software testing is performed as an iterative process: in each
iteration, some tests are designed and executed to reveal software problems,
and the detected problems are fixed. One should not expect miracles from
this procedure: software testing can reveal the presence of failures, but it
cannot provide proof of their absence.2

In this book, we distinguish between test-based certification as proceeding
from testing, and model-based certification as proceeding from abstract mod-
els of the software such as automata or graphs. Some researchers, including
Ammann and Offutt [1] justifiably argue that testing is also driven by ab-
stract models, which can be developed to provide a black-box or a white-box
view. Occasionally, black-box testing is carried out by professional testers who
do not need to be acquainted with the code. The main purpose of black-box
testing is to assess the extent to which functional and non-functional user re-
quirements are satisfied;3 each requirement is checked by a set of test cases.4

The most important component of a test case is the test case value, that is,
the input values fed into the software under test during a test execution of it.
To evaluate the results of a black-box test case, we must know in advance its
expected results or, in other words, the result that will be produced executing
the test if (and only if) the program satisfies its requirements. Strictly speak-
ing, a test case is the combination of test case values and expected results,
plus two additional components: prefix and postfix values. Prefix values are
inputs that, while not technically test values, are necessary to put the soft-
ware into the appropriate state to feed it with the actual test case values.
Postfix values are inputs that need to be sent to the software after the test

1 We will follow references [1, 19] in the remaining of this chapter.
2 The original statement is “But: program testing can be a very effective way to show
the presence of bugs, but is hopelessly inadequate for showing their absence.” E. W.
Dijkstra, “The Humble Programmer”, Turing Award Lecture, 1972, Communications
of the ACM, 15(10).
3 Black-box tests can also be used to discover failures, such as crashes.
4 Test-related literature often uses the term test set to indicate a set of test cases.

3.1 Basic Notions on Software Testing 29

case values have been fed into it (e.g., for displaying results or terminating
the test execution). For the sake of conciseness, throughout this book we will
loosely use the term test case as a synonym of “test case value”. Determining
a software product’s expected behavior may well be easy for some toy func-
tion (what should a float squareroot(int) function output when fed with
a test case value of 4?), but it is a much harder nut to crack for more com-
plex programs (what should an image-enhancement software output when
fed with a test-case value like sampleimage.gif?)

White-box tests have a very different aim: to ensure that some aspects
of some code property are exercised in the hope that this will reveal any
errors not otherwise detected. Also, white-box test can be used to verify cod-
ing standards; for instance, those barring the interchangeable use of pointer
arithmetic and array reference in C. Therefore, they may consist of code
walkthroughs rather than of sample executions.5 In white-box testing , tests
are designed and validated by developers, or at least by people who know
well the code of the program under test.

Both white- and black-box testing can be risk-oriented. Risk orientation
simply means that when some pre-defined constraints to testing are specified,
(e.g., ones related to maximum test cost and available time for carrying out
the tests) both types of tests can be prioritized so that risks for the software
user are minimized as far as possible [10]. From the perspective of a software
user, we may define the risk of running a software product in a very simple
way, as follows:

R =
∑

{p}
PpIp (3.1)

where Pp is the probability of occurrence of a software failure p, and I is
the resulting impact of that problem, expressed in dollars of damage or profit
loss. Note that implicitly we are also defining the risk connected to each
specific problem p, that is, PpIp. The summation of Equation (3.1) ranges
over the entire set of problems the software may have. In general, not all of
these problems are known or can be forecasted at development time.

Of course, by using Equation (3.1) we are making the additional assump-
tion that software failures are independent from each other. Although this is
in general not the case, and often conditional probabilities must be used for
correctly quantifying total risk, Equation (3.1) is good enough for our present
purposes, that is, for illustrating the risks related to software delivery. Cur-
tailing the test on a problem or forgoing them altogether means that the
risk associated to that problem, not covered by the testing, will remain when
the software is used. Risk analysis consists in the identification of software
problems. It can be used for:

5 Of course, in many practical situations walkthroughs would not be acceptable as a
replacement for white-box execution tests.

30 3 Test based security certifications

• goal oriented testing : software failures having different risks will be cov-
ered by test procedures of different depths (and cost);

• prioritized (depth-first) testing : software areas with a higher risk receive
a higher priority in the testing process.

• comprehensive (width-first) testing : software testing will be carried out
to cover all rest categories at a pre-set minimum depth.

Risk-based testing consists of analyzing the software code and deriving a
test plan focusing on software modules most likely to experience a failure
that would have the highest impact. Both the impact and probability of each
failure must be assessed before risk-based test planning can proceed. The
impact Ip of the risk equation depends on the specific nature of the appli-
cation and can be determined by domain analysis. For instance, failures in
mission critical and safety critical modules may have assigned an higher im-
pact than failures in the rest of the code6. Impact assessment requires a thor-
ough understanding of failure costs, which is again highly domain-dependent.
Estimating the likelihood of failures Pp means determining how likely it is
that each component of the overall software product will fail. It has been
proven that code that is more complex has a higher incidence of errors or
problems [20]. For example, cyclomatic complexity is a well-known criterion
for ranking the complexity of source code [16]. Therefore, in procedural lan-
guages like C the prioritization of modules according to failures probability
can be done simply by sorting them by their cyclomatic complexity. Using
cyclomatic complexity rankings for estimating failure probabilities, together
with impact estimates from domain knowledge, analysts can pinpoint which
software modules should get the highest testing effort 7.

A fundamental way towards the reduction of product risks is the finding
and removal of errors in a software product. In the remainder of the chapter
we will connect the idea of removing errors with the one of certifying software
properties.

3.1.1 Types of Software Testing

Modern software products are often developed following processes composed
of pre-defined activities.8 The test process is also composed of several activi-
ties: during test planning, the test objects (e.g., the software functions to be
tested) are identified. In test case investigation, the test cases for these test

6 From a different point of view, software project management assigns highest impact
to failures in modules on the project’s critical path
7 Of course, different programming languages and paradigms may use different com-
plexity metrics than cyclomatic complexity for estimating failure probabilities.
8 Such processes do include agile ones. We shall discuss how testing is carried out
within community-based development process typical of open source software in
Chapter 6.

3.1 Basic Notions on Software Testing 31

objects are created and described in detail. Finally, during test execution, test
scripts are executed to feed the test cases to the software under test.

Most software products have modular architectures, and testing can be
done at different levels of granularity [19]:

• Unit Testing : tests the implementation of individual coding units.
• Module Testing : tests the detailed design of software modules
• Integration Testing tests each subsystem’s design.
• System Testing : tests the entire system’s architecture.
• Acceptance Testing : tests the extent to which the entire system meets

requirements.

We are particularly interested in acceptance tests, because they are often
related to non-functional requirements, that is, to properties the software
product should possess in order to be acceptable for the customer. In prin-
ciple, acceptance tests could be written by the end user herself; in practice,
they are often co-designed with the customer, so that passing them with flying
colors is guaranteed to satisfy both the software supplier and the purchaser
that the software has all the desired properties. In a sense, obtaining the
customer sign-off of a set of non-functional properties can be seen as equiva-
lent to providing the same customer with a certificate of the same properties,
signed by an authority she trusts.

Each of the above types of software testing involves one or more testing
techniques, each of which is applied for different purposes, and requires the
design and execution of specific test cases. Software testing techniques include
[1]:

• Functionality testing, to verify the proper functionality of the software
under test, including its meeting business requirements, correctly per-
forming algorithms and providing the expected user experience.

• Forced error testing, to try extreme test cases (oversized and malformed
inputs, erratic user behavior, etc.) in order to break (and fix) the software
during testing, preventing customers from doing so in production.9

• Compatibility testing, to ensure that software is compatible with various
operating systems platforms and other software packages.

• Performance testing, to see how the software product under test behaves
under specific levels of load. Performance testing includes stress testing
to see how the system performs under extreme conditions, such as a very
large number of simultaneous users.

• Regression testing, to ensure that code added to address a specific prob-
lem did not introduce new problems.

• Scalability testing, a form of performance testing which aims to ensure
that the software will function well as the number of users and size of
databases increase.

9 This can also be seen as a form of stress testing. See below.

32 3 Test based security certifications

• Usability and accessibility testing, to ensure that the software is accessible
to all categories of users (including for example visually impaired ones,)
and is intuitive to use. This kind of testing is traditionally the bailiwick
of human computer interaction [5].

• Security testing, to make sure that valuable and sensitive data cannot be
accessed inappropriately or compromised under concerted attack.

Of course the above list is not exhaustive: there are several other types
of testing, including one very relevant to our purposes: regulatory-compliance
testing, which verifies whether a software product complies with the regula-
tions of the industry where it will be used (e.g., for the software controlling
a manufacturing tool, one may test whether the user interface can be easily
operated without taking off protection gloves). These regulations, and the
corresponding testing procedure may vary depending on the type of software
and application domain.

Since this book focuses on security certification, it is important to high-
light the strict relationship we would like to establish between testing and
certification. A key concept goes under the acronym IV&V, which stands for
Independent Verification and Validation. Here, the term independent means
that the tests on a software product are performed by non-developers; indeed,
sometimes the IV&V team is recruited within the same project, other times
within the same company developing the software. Conceptually, however,
the step between this and outsourcing IV&V to an independently accredited
lab is a small one.

It is also important to clarify the relation between security certification
and security testing, which is less strict than one might expect. Security
testing verifies all software features, from the password checking to channel
encryption to making sure that information is not disclosed to unauthorized
users. It also includes testing for known vulnerabilities, e.g., assessing how
a software product responds to hostile attacks like feeding a software with
so much input data that an input buffer overflow failure is produced, and
the machine on which the software is run can be taken over by the attacker.
Buffer overflows are by far the most commonly exploited bug on Linux.

Buffer overflows are the result of putting more data into a programs buffer
or input device than is defined/allowed for in the program. A simple example
of a C program susceptible to buffer overflow is given below:

#include <stdio.h>
#include <string.h>

int main(int argc, char **argv)
{
char buf[20];
if(argc < 2)
{

3.1 Basic Notions on Software Testing 33

printf("Usage: \%s <echo>\n", argv[0]);
exit(0);
}
strcpy(buf, argv[1]);
printf("You typed: \%s\n", buf);
return 0;
}

The program (we will call vultest) copies the string argv[1] passed to it
on the command line into an internal buffer whose address is buf. The internal
buffer holds at most 20 chars, so if we pass a longer string on the command line
we expect something bad to happen. What we get is the following behavior:

M-10:˜ edamiani\$./vultest aaaaaaaaaaaaaaaaaaaaaaaa
<echo> aaaaaaaaaaaaaaaaaaaa
Segmentation fault (core dumped)

The segmentation fault error message says that the buffer was filled with
more data than it can hold. More specifically, vultest wrote too much data
on the program stack, which was supposed to hold the arguments passed
to strcpy (i.e., the buf array). These data overwrote the return address to
the caller code, which is stored in the stack below the local variables; when
strcpy tried to jump back to the caller using this return address, it found an
illegal address in its stead (most likely the ASCII code for aa, 0x6565) and
tried to use it as the target for a jump, causing a violation. Suppose now the
input string, rather than a sequence of a chars, contains the address of some
code supplied by the attacker e.g., the one of a sh shell. This would give to the
attacker the opportunity to seize vultest’s execution environment. There is
an additional difficulty here: the attacker’s code (let’s call it attack) must be
stored at a valid memory address on the system. In other words, the attacker
has to know how to store her code in a valid address, obtain the address,
and pass it (instead of aa) to vultest to overflow the buffer. For instance,
the attacker can write attack, translate it into hexadecimal figures and load
these figures into an array; then, he can use a memory copy system call like
memcpy to copy the content of this array to some valid location in memory10

keeping the address to pass it to vultest.11

10 We will discuss memcpy in some detail in the next Chapter
11 Some pre-processing (e.g., format conversion) is required before the address can
be passed to vultest.

34 3 Test based security certifications

3.1.2 Automation of Test Activities

All types of software testing described above can be performed manually or
automated.

Manual software testing usually consists of having a human tester feed
test cases to the software interface, and performing other types of manual
interaction, including trying to hack the software. There are some areas for
which manual software testing is most appropriate (or, rather, is the only
possibility), such as exploratory security testing where testers do not execute
a pre-defined script, but rather explore the application and use their expe-
rience and intuition to identify vulnerabilities. Manual software testing has
two major disadvantages: first of all, it requires a huge effort and remarkable
skills on the part of the tester. Secondly, it is not fully repeatable: manual
exploratory tests tend to show high variability of results depending on who
is performing them.

Automated software testing can be seen as a way of accelerating the soft-
ware testing process while minimizing the variability of results. Automation is
based on test scripts that can be run automatically, repetitively, and through
several iterations of the test process. Automated software testing can help
to minimize the variability of results, speed up the testing process, increase
test coverage, and ultimately provide greater confidence in the quality of the
software being tested. Many testing tasks that defied automation in the past
have now become candidates for such automation due to advances in tech-
nology. For example, generating test cases that satisfy a set of functional
requirements was typically a hard problem that required intervention from
an experienced test engineer. Today, however, many tools are available, both
commercial and open source, that automate this task to varying degrees,
e.g., generating Unix shell scripts to feed input files into the program under
test and produce a report. We shall mention again these testing platforms in
Chapter 6. The interested readers are however referred to [19].

3.1.3 Fault Terminology

The remainder of this section presents three terms that are important in soft-
ware certification as well as in testing and will be used later in this chapter.
Like terms about certification, terms about testing are defined by standard
glossaries such as the IEEE Standard Glossary of Software Engineering Ter-
minology, DOD-STD-2167A and MIL-STD-498 from the US Department of
Defense. We focus on the types of problems that using a software product
may involve. Throughout the book, following [1], we shall adopt the following
definitions of software fault, error, and failure.

Definition 3.1 (Software Fault). A static defect in the software.

3.1 Basic Notions on Software Testing 35

Definition 3.2 (Software Error). An incorrect internal state that is the
manifestation of some fault.

Definition 3.3 (Software Failure). External, incorrect behavior with re-
spect to the requirements or other description of the expected behavior.

In order to clarify the definitions of fault, error, and failure, we shall use
a revised version of an example presented in [1]. Namely, let us consider the
following C program:

int digitcount (char s[])
{
int digit = 0;
int i;
for (i = 1; s[i] != ’\0’; i++)

if(s[i] >= ’0’ && s[i] <= ’9’)
digit++;

return digit;
}

The software fault in the above sample function is of course the instruction
for, where the function starts counting digit characters at index 1 instead of
0, as would be correct for C character arrays.

For example, using the test case values [a, b, 0] and [0, 7, c] we no-
tice that digitcount([a, b, 0]) correctly evaluates to 1, while the test case
digitcount([0, 7, c]) incorrectly gives the same result. Note that only the
latter test execution of digitcount results in a software failure, although the
faulty instruction is executed the same number of times in both cases. Also,
both the execution with failure and the one without it involve a more elusive
concept, the one of software error. In order to fully understand it, we need
to execute our faulty function stepwise, meaning that we consider its state
(i.e., the content of the function’s local variables).

The state of digitcount consists of three memory locations, containing
values for the variables s, digit, i. For the first test case execution, the state
at the first iteration of the loop is (s = [a, b, 0], digit = 0, i = 1).
This execution state is a software error, because the value of the vari-
able i should be zero on the first iteration. However, since the value of
variable digit is (purely by chance!) correct, this time the error does
not cause a failure. In the second test case execution, the error state is
(s = [0, 7, c], digit = 0, i = 1). Here the error propagates to the vari-
able digit and causes a failure. Now, it is clear that when a software product
contains a fault, not all test cases will ensure that the corresponding error
will cause a failure, how it would be desirable in order to reveal and fix the
fault itself. In addition, even when a failure does occur, it is may be very
difficult to trace it back to the fault which caused it.

36 3 Test based security certifications

3.1.4 Test Coverage

Since the term “certification” has the same root as the term “certainty”,
one might be tempted to think that black-box tests can provide conclusive
evidence that a software product holds (or does not hold) a given property.
For instance, can we use black-box testing to prove to a software purchaser’s
satisfaction that the execution of the software product she is buying will
never require more than 1 MByte of user memory?

Unfortunately, this need for conclusive evidence clashes with a theoretical
limitation of software testing. Even for our simple digitcount function, using
8-bit ASCII character coding and excluding arrays of characters longer than
256 characters, one would require 264 executions to run all possible test cases.

We may understand better how the identification of the “right” test cases is
carried out via the notion of coverage criteria. In practice, coverage criteria
correspond to properties of test cases. The tester tries to select test cases
showing the whole range of their properties values, that is, providing the
maximum coverage.

Let us briefly examine some types of coverage that are relevant to our
purposes. A classic coverage criterion is to execute all if alternatives (i.e.,
cover all decisions) in the program. This criterion is called branch coverage.
The corresponding property of test cases we are interested in is which if
selectors (if any) they trigger. To satisfy this criterion, the tester will chose
test cases so that each of them causes the execution of one or more (non-
overlapping) branches controlled by if selectors in the program. Ideally, the
tester will obtain a test set which will cause the execution of all the program’s
branches, achieving full branch coverage. An analogous line of reasoning leads
us to the notion of full statement coverage criterion, that is, a set of test cases
which causes the execution of all the program’s statements.

Coverage criteria can be related to one another, in terms of a relation
called subsumption [11]. A coverage criterion C1 subsumes C2 if (and only
if) every test set that satisfies criterion C1 also satisfies C2. In the case of
branch and statement coverage, it is easy to see that if a test set covers every
branch in a program, then the same test set is guaranteed to have covered all
statements as well. In other words, the branch coverage criterion subsumes
the statement coverage criterion.12

It is important to realize that some coverage criteria cannot be satisfied
at all. For instance in the case of the following C function:

int digitcount (char s[])
{
int i;
int digit = 0;

12 Our intuition may tell us that if one coverage criterion subsumes another, it should
reveal more faults. However, this intuition is not supported by any theoretical result
[23].

3.2 Test-based Security Certification 37

if (digit) i=0;
for (i = 1; s[i] != ’\0’; i++)

if (s[i] >= ’0’ && s[i] <= ’9’)
digit++;

return digit;
}

there is no set of test cases ensuring full statement coverage, due to the
presence of dead code: the statement i = 0; can never be reached, regardless
of the input.

One may think to find an algorithm to decide whether such a test set
exists or not; unfortunately, there can be no algorithm for deciding whether
an arbitrary program can get full coverage with respect to an arbitrarily
chosen set of coverage criteria, even though some partial solutions (i.e., for
special classes of programs and/or criteria) have been proposed (see Chapter
4). In other words, achieving 100% coverage for any set of coverage criteria
is impossible in practice, and there is no way to design a test set that will
detect all faults.13.

Something can be done, anyway: coverage criteria can be used either to
generate test case values or to validate randomly generated or manually
picked ones. Both problems are in general (i.e., when the criteria are ar-
bitrary) undecidable; the latter technique, however, is the one adopted in
practice, because the validation problem turns out to be tractable much
more often than the generation one.14 There is however a drawback: vali-
dating randomly chosen test cases will allow us to assess the extent to which
a given test set provides coverage, but leave us clueless on how to increase it.
In terms of commercial automated test tools, a test case generator is a tool
that automatically creates test case values. A validator tool that takes a test
set and performs its coverage analysis with respect to some criterion. Both
types of tools are available as commercial and open source products. Some
well-known tools include xUnit (JUnit, CPPUnit, NUnit and so on), IBM
Rational Functional Tester, WinRunner, DejaGnu, SMARTS, QADirector,
Test Manager, T-Plan Professional, and Automated Test Designer (ATD).

3.2 Test-based Security Certification

For a long time, testing in general and security testing in particular have
been internal processes of software suppliers. Software purchasers had prac-

13 The result that finding all failures in a program is undecidable is due to Howden
[13]
14 More precisely, given a criterion checking whether some existing test cases satisfy,
it is feasible far more often than it is possible to generate tests for that criterion
starting from scratch.

38 3 Test based security certifications

tically no way to obtain an independent appraisal of a software product’s
security prior to buying it. Often, disclaimers coming with software prod-
ucts would exclude any guarantee, expressed or implied, of any security or
dependability property. This situation is now simply unacceptable for orga-
nizations purchasing safety and mission-critical systems. Generally speaking,
security certification standards have been devised to provide purchasers with
some guarantee of the security properties of their software.

Intuitively, the security certification process of a software product should
reveal all the problems and faults of the product’s security features, which
could lead to vulnerability to attacks. In the early days of security certifi-
cations software vendors would limit themselves to asserting (and testing)
the presence and functionality of security features, often as a part of non-
functional requirements elicitation, and left it to the user to make the link
between the support of a given security feature and the corresponding secu-
rity property. For instance, early certificates would state that a given software
system supported Access Control Lists (ACL) on data resources, leaving it
to the user to make the connection between the ACL mechanism and the
specific category of discretionary access control policies she was interested in.

Fig. 3.1: The conceptual model for test-based security certification

The software certification process has greatly evolved along the years. Fig-
ure 3.1 shows an abstract conceptual model for today’s test-based security
certification. The first phase of the security certification process is providing a
mapping between the security properties (in terms of security requirements)
the software purchaser is interested in and the security features the software
vendor has included in the product. Once a mapping has been specified be-
tween a set of security properties and the corresponding security features,
test-based security certifications provide test-backed proof that: (i) the soft-
ware product under certification actually possesses the required features and
(ii) such features perform exactly their intended functionalities and nothing
else. If the test process is carried out in a controlled environment and by

3.2 Test-based Security Certification 39

a trusted evaluation body, e.g., as mandated by an internationally accepted
assurance standard, this proof is usually acceptable enough to the software
purchaser.

In the next chapters, we shall use the term “assurance” to refer to all ac-
tivities necessary to provide enough confidence that a software product will
satisfy its users’ security requirements. In other words, security standards
specify which security requirements a product should satisfy, while assurance
standards specify how to collect and provide the evidence that it does. We
shall elaborate further on this issue in Section 3.3. Also, in this chapter we
shall use the term “proof” quite loosely: security feature testing (like any
other software test) can never be exhaustive, and the mapping between fea-
tures and properties may or may not have been formalized and proved. We
shall come back to these problems when dealing with model-based security
certification in Chapter 4.

In the remainder of this chapter, we shall briefly review some early security
certification standards adopted in the US, in Canada and in Europe. These
early mechanisms are still with us, providing much of the vocabulary shared
by software purchasers, vendors and security auditors.

3.2.1 The Trusted Computer System Evaluation
Criteria (TCSEC) standard

As one of the biggest software buyers worldwide, the U.S Department of De-
fense (DoD) has been understandably keen on addressing the issue of stan-
dardizing security certifications . The U.S. Department of Defense’s National
Computer Security Center (NCSC) has sponsored the introduction of what
is known as the Trusted Computer System Evaluation Criteria (TCSEC) or
Orange Book. Originally, the Orange Book was devised as a way of stan-
dardizing security requirements coming from both the government and the
industry [21]; although it was originally written with military systems and ap-
plications in mind, its security classifications have been broadly used within
the entire computer industry. According to its proposers, the Orange Book
was created with the following basic objectives in mind [17].

1. Provide sound security guidelines for manufacturers to be able to build
products that satisfy the security requirements of applications.

2. Define a systematic way to (qualitatively) measure the level of trust pro-
vided by computer systems for secure, classified and other sensitive in-
formation.

3. Allow software purchasers to specify their own security requirements,
rather than take or leave fixed sets of security features defined by suppli-
ers.

40 3 Test based security certifications

The classifications in the Orange Book provide a useful shorthand for the
basic security features of operating systems.15

In the course of time, the NCSC has published different “interpretations”
of the Orange Book . These interpretations have clarified the Orange Book
requirements with respect to specific families of operating system compo-
nents. For example, the NCSC’s Trusted Network Interpretation of the Or-
ange Book, also known as Red Book, is an interpretation of Orange Book
security requirements as they apply to the networking components of a se-
cure operating system. The Red Book does not change the Orange book
original requirements; it simply indicates how a networking system should
operate to meet them. Interpretations come in several colors: in the same
way as the Red Book is an interpretation of the Orange Book for network
systems, there is a Blue Book interpreting the Orange Book for subsystem
components, and other books for other component families. The NCSC has
made available a complete set of Orange Book interpretations (the so-called
Rainbow Series), to assist software vendors in ensuring that their systems
comply with Orange Book requirements.

Orange Book security certification goes one step further with respect to
the situation where suppliers agreed on non-functional requirements about
the presence of some security features. Provisions that need to be present
for considering a system to be “secure” are mapped to specific security re-
quirements, which must be provided by purchasers. To help software users in
defining their own security requirements, the Orange Book introduced four
fundamental requirement types, which are derived from the objectives stated
above [17]: Policy, Accountability, Assurance and Documentation.

Despite promoting a novel view in supporting software purchasers’ own
security requirements, the Orange Book ended up with severe limitations in
many aspects, which prevented its generalized adoption. These limitations are
mainly due to the Book’s lack of flexibility in expressing security requirements
and in mapping them to security features. The original users of the Orange
Book were military and governmental organizations having very specific se-
curity requirements, mostly related to preventing disclosure of classified data.
This brought families of security requirements which are of paramount im-
portance for business applications (e.g., requirements related to availability
and integrity) to be insufficiently considered, and the Orange Book failed to
adapt to the security requirements of a wider general market [2].

Today, the Orange Book’s main legacy consists in its classification of soft-
ware products (mainly operating systems) into pre-set categories based on
the security requirements they satisfy (and, correspondingly, on the features
they possess). TCSEC categories are identified by labels forming an ordinal

15 While the Orange Book security categories have played an important role in filling
the communication gap between vendors, evaluators, and customers, the Orange Book
itself [17] is notoriously difficult to read. Also, the Orange Book is not readily available
to non-US parties, which has made a full understanding of TCSEC security ratings
rather difficult to achieve for security experts outside the US.

3.2 Test-based Security Certification 41

scale, allowing for qualitative assessment of security and system comparison.
Verifying the actual functionality of security features via suitable tests is left
to an external evaulation body, who should be neither the software supplier
nor the purchaser. The Orange Book provides some high-level guidelines for
testing security requirements, but does not mandate a specific test process
or laboratory setting. Also, software products are only listed on the NCSC’s
Evaluated Products List after a long evaluation process culminating in a
Final Evaluation Report from NCSC. It is important to remark that the sys-
tem submitted to NCSC for certification can include additional modules (e.g.,
hardware ones) specifically added to comply with TCSEC requirements. This
means that users will have to install this additional hardware or software in
order to meet the security requirements.

3.2.1.1 TCSEC categories and requirements

The Orange Book security categories range from D (Minimal Protection)
to A (Verified Protection). To be classified in a given category, a software
system must provide all the security features corresponding to that category.
Namely, categories are defined as follows (see also Table 3.1).

Category Class Comment
D - Minimal Protection - Category D includes any system

that does not comply with any
other category, or has failed to re-
ceive a higher classification.

C - Discretionary Protection C1 - Discre-
tionary Security
Protection

Category C applies to Trusted
Computer Bases (TCBs) with
optional object (i.e., file, directory,
devices etc.) protection.C2 - Controlled

Access Protection
B - Mandatory Protection B1 - Labelled Se-

curity Protection
Category B specifies that the
TCB protection systems should be
mandatory, not discretionary.B2 - Structured

Protection
B3 - Security Do-
mains

A - Verified Protection A1 - Verified Pro-
tection

Category A is characterized by
the use of formal security
verification methods to assure
that the mandatory and
discretionary security controls are
correctly employed.

A1 and above

Table 3.1: Orange book categories and classes

42 3 Test based security certifications

• D - Minimal Protection. This category includes any system that does
not comply with any other category, or has failed to receive a higher
classification. D-level certification is very rare.

• C - Discretionary Protection. Discretionary protection applies to Trusted
Computer Bases (TCBs) with optional object (i.e., file, directory, devices
and the like) protection.

– C1 - Discretionary Security Protection. This category includes sys-
tems whose users are all on the same security level; however, the
systems have provisions for Discretionary Access Control by provid-
ing separation of users and data, as for example Access Control Lists
(ACLs) or User/Group/World protection. An example of C1 require-
ments is shown in Table 3.2. C1 certification is quite rare and has
been used for earlier versions of Unix.

– C2 - Controlled Access Protection. This category has the same fea-
tures as C1, except for the addition of object protection on a single-
user basis, e.g., through an ACL or a Trustee database. C2 is more
fine-grained of C1 and makes users individually accountable for their
actions. An example of C2 requirements is shown in Table 3.2. C2 is
one of the most common certifications. Some of the Operating Sys-
tems using C2 certification are: VMS, IBM OS/400, Windows NT,
Novell NetWare 4.11, Oracle 7, DG AOS/VS II.

Class Requirements
C1 Username and Password protection and secure authorisations database

(ADB)
Protected operating system and system operations mode
Periodic integrity checking of TCB
Tested security features with no obvious bypasses
Documentation for User Security
Documentation for Systems Administration Security
Documentation for Security Testing
TCB design documentation

C2 Authorisation for access may only be assigned by authorised users
Object reuse protection (i.e., to avoid reallocation of secure deleted ob-
jects)
Mandatory identification and authorisation procedures for users, e.g.,
Username/Password
Full auditing of security events (i.e., date/time, event, user, suc-
cess/failure, terminal ID)
Protected system mode of operation
Added protection for authorisation and audit data
Documentation as C1 plus information on examining audit information

Table 3.2: C classes’ requirements

3.2 Test-based Security Certification 43

• B - Mandatory Protection. It specifies that the TCB protection systems
should be mandatory, not discretionary. A major requirement here is
the protection of the integrity of sensitivity labels and their adoption to
enforce a set of mandatory access control rules.

– B1 - Labelled Security Protection. B1 systems require all the features
required for class C2 and the requirements provided in Table 3.3.
Some of the operating systems and environments using B1 certifica-
tion include: HP-UX BLS, Cray Research Trusted Unicos 8.0, Digital
SEVMS, Harris CS/SX, SGI Trusted IRIX, DEC ULTRIX, Trusted
Oracle 7.

– B2 - Structured Protection. B2 systems require all the features re-
quired for class B1 and the requirements provided in Table 3.3. Some
of the systems using B2 certification are: Honeywell Multics, Cryptek
VSLAN, Trusted XENIX 4.0.

– B3 - Security Domains. B3 systems require all the features required
for class B2 and the requirements provided in Table 3.3. The only
B3-certified OS is Getronics/Wang Federal XTS-300.

• A - Verified Protection. It is the highest security category. Category A is
characterized by the use of formal security verification methods to assure
that the mandatory and discretionary access control models correctly
protect classified or other sensitive information stored or processed by
the system [17]. TCB must meet the security requirements in all aspects
of design, development and implementation.

– A1 - Verified Protection. A1 systems require all the features required
for class B3 and formal methods and proof of integrity of TCB. The
following are the only A1-certified systems: Boeing MLS LAN, Gem-
ini Trusted Network Processor, Honeywell SCOMP. All of them are
network components rather than operating systems.

– A1 and above. The Orange Book mentions future provisions for secu-
rity levels higher than A2, although these have never been formally
defined.

3.2.1.2 A closer look

We now take a closer look to the security features corresponding to the Orange
Book categories, in order to spell out the main innovation of the TCSEC
approach, that is, the mapping between security requirements and security
features. We shall focus on C2-level security, which is a requirement of many
U.S. government installations.16 Here, we shall consider four of the most
important requirements of TCSEC C2-level security:

16 In the European Union, government agencies usually refer to ITSEC categories,
introduced in the next Section. The corresponding ITSEC rating is E3.

44 3 Test based security certifications

Class Requirements
B1 Mandatory security and access labeling of all objects, e.g., files, processes,

devices and so on
Label integrity checking (e.g., maintenance of sensitivity labels when data
is exported)
Auditing of labelled objects
Mandatory access control for all operations
Ability to specify security level printed on human-readable output (e.g.,
printers)
Ability to specify security level on any machine-readable output
Enhanced auditing
Enhanced protection of Operating System
Improved documentation

B2 Notification of security level changes affecting interactive users
Hierarchical device labels
Mandatory access over all objects and devices
Trusted path communications between user and system
Tracking down of covert storage channels
Tighter system operations mode into multilevel independent units
Covert channel analysis
Improved security testing
Formal models of TCB
Version, update and patch analysis and auditing

B3 ACLs additionally based on groups and identifiers
Trusted path access and authentication
Automatic security analysis
TCB models more formal
Auditing of security auditing events
Trusted recovery after system down and relevant documentation
Zero design flaws in TCB, and minimum implementation flaws

Table 3.3: B classes’ requirements

• Discretionary Access Control (also in C1). The owner of a resource, such
as a file, must be able to control access to it.

• Secure Object Reuse (C2 specific). The operating system must protect
data stored in memory for one process so that it is not randomly reused by
other processes. For example, operating systems must swipe per-process
memory after use, including kernel-level data structures, so that (user
and kernel) per-process data cannot be peeked after the memory has
been freed.17

• Identification and Authentication (C2 specific). Each user must uniquely
identify himself or herself when logging onto the system. After login, the
system must be able to use this unique identification to keep track the
user’s activities. In many operating systems, this is achieved by typing a

17 This requirement applies to the entire memory hierarchy, including disk storage:
after a file has been deleted, users must no longer be able to access the file’s content.
This requires some protection to be applied when the disk space formerly used by a
file is re-allocated, e.g., for use by another file.

3.2 Test-based Security Certification 45

username and password pair before being allowed access. We shall further
explore this requirement in Chapter 5.

• Auditing (C2 specific). System administrators must be able to audit the
actions of individual users, as well as all security-related events. Access
to this audit data must be limited to authorized administrators.

Let us now describe the mapping between these requirements and the
security features.

• Discretionary Access Control. From a system management perspective,
the discretionary access control requirement involves the presence and
functionality of a number of security features. For example, a mechanism
such as Access Control Lists must be in place for the system administra-
tor to control which users have access rights to which system resources,
including files, directories, servers, printers, and applications. Rights must
be definable on each resource basis and managed centrally from any single
location. A user-group management tool must also be present, through
which the system administrator can specify group memberships and other
user account parameters.

• Secure Object Reuse. This requirement involves the presence and func-
tionality of a number of security features corresponding to the different
levels of the memory hierarchy. When a program accesses data, those
data are placed in main memory, from where they can be swapped to
disk by the virtual memory mechanism. This means that at the level of
main memory, two security features are required to satisfy this require-
ment: (i) a Memory Management Unit (MMU) level mechanism ensuring
the protection of data in the machine’s physical memory, so that only au-
thorized programs can access them, and (ii) a swap partition protection
memory to ensure that no process can access the disk portion hosting the
virtual memory used by another process. When these two mechanisms are
in place and work correctly, it is impossible for a rogue application to take
advantage of another application’s data.

• Identification and Authentication. A simple password-based log-on proce-
dure may suffice, provided it uses a system-level encryption of passwords
so that they are never passed over the wire. This encryption prevents
unauthorized discovery of a user’s password through eavesdropping.18

• Auditing. An encrypted log feature must exist supporting logging of all
security related events such as user access to files, directories, printers and
other resources and log-on attempts. A simple symmetric key encryption
mechanism is sufficient to guarantee the secure access to logs mentioned
by the requirement.

The mapping described above underlies the entire certification process .
When checking a security requirement, the evaluator checks that all the cor-

18 However, more complex system can be used to satisfy other requirements as well.
We shall further explore these mechanisms in Chapter 5.

46 3 Test based security certifications

responding security features are in place and test them (according to some
pre-set test guidelines) to verify they are working correctly. If all tests succeed,
the product certifiably satisfies the requirements and gets the corresponding
certificate. It is important to understand that there are a number of other
requirements, such as the usability of the security features, that the TCSEC
guidelines do not directly address. For example, the fact that a software prod-
uct has achieved the C2 certification guarantees that it includes a security
feature (e.g., an ACL-based one) capable of controlling which users have ac-
cess rights to which resources; but such a feature can be extremely awkward
to use without a GUI. Again, as far as user accounts and group member-
ships are concerned, having checked the presence and functionality of a bare-
bones security feature for managing users and groups will not guarantee the
possibility of displaying log-in times, account expirations, and other related
parameters which will substantially increase the feature usability. These ad-
ditional requirements are not covered by certifications and therefore remain
part of the negotiation between software system vendors and purchasers.

3.2.2 CTCPEC

The Canadian Trusted Computer Product Evaluation Criteria or the CTCPEC
was proposed as a revised, “demilitarized” version of the US Orange Book.
The CTCPEC goal was to define a wider set of types to accommodate diverse
security requirements. The original TCSEC security requirement types were
extended to deal with software integrity, assurance, accountability, confiden-
tiality and availability as well as the original types defined by the Orange
Book [2]. In other words, the CTCPEC addressed the commercial market
demands by supporting a richer classification of security requirements and
more expressive mapping of these requirements to security features. Under-
standably, and regardless of the efforts to ensure backward compatibility, the
wider scope of the CTCPEC caused a growing incompatibility with the Or-
ange Book [2]. This incompatibility, in turn, became a major driver toward
a unified, international security certification standard.

3.2.3 ITSEC

At the same time when Canada was trying to define its new security cer-
tification standard, on the other side of the Atlantic several countries like
France, Germany, UK and the Netherlands started working together to de-
velop a certification designed to satisfy the security needs of the European
industry. Learning from the US experience, the Information Technology Se-
curity Evaluation Criteria (ITSEC) authors tried also to define a set of goals

3.3 The Common Criteria : A General Model for Test-based Certification 47

to overcome the limitations of the Orange Book as well as defining new goals
that fit in the European context. Version 1.2 of the ITSEC standard was
released in 1991 and is still used today. The major goals of the ITSEC as
described in [15] are:

• Generality. ITSEC certification criteria are not limited to any category
of software products.

• Interoperability. ITSEC ensures compatibility with the national catalogs
of security evaluation criteria used by each European country, and defi-
nition of mappings from these national catalogs to ITSEC.

• Neutrality. ITSEC is supported by third parties, taking a neutral role
between software.

• Scalability. ITSEC contains guidelines for testing security features, aimed
at achieving full automatization of the certification process.

3.3 The Common Criteria : A General Model for
Test-based Certification

The work done within ITSEC identified two major extension areas to test-
based security certification techniques. The first area regarded increasing the
expressive power of the security requirements, extending and formalizing their
type systems and specifying matching from the requirement to the feature
space. The second extension area dealt with automation of feature testing.
Both issues were addressed by a standardization group including representa-
tives of the US, Canada and European Union, the latter with the exception
of Italy (the group included neither Japan nor Australia). This joint effort,
started in 1993 under the label Common Criteria for IT Security (CC) be-
came an ISO standard (ISO/IEC 15408) in 1998. The final version of ISO/IEC
15408 was released in 1999. The Common Criteria (CC) certification stan-
dard has been defined to fulfill the needs of an international standard for
affordable software security certification . Common Criteria provides an uni-
fied process and a flexible framework to specify, design, and evaluate the
security properties of IT products [12].

A major goal of CC evaluation is to certify that the security policies
claimed by the developers are correctly enforced by the security functions
of the product under evaluation. The Common Criteria model tries to cap-
ture all the security aspects of the product and uses the term Target Of
Evaluation (TOE) for the technological product under evaluation. A TOE
can be software, firmware, hardware or a combination of the three [6]; also,
it can be a subsystem rather than an entire software system. In this case
only the sub-system defined as the TOE will be certified and not the entire
product. Figure 3.2 depicts the general model of the CC evaluation.

48 3 Test based security certifications

TOE
Security requirements
TOE documentation
TOE tests

Common
Criteria

Evaluation

CC certified
TOE

Input Output

Fig. 3.2: The General Model of the CC evaluation process

In the following of this section, we start by surveying the CC terminology
and rationale; in Chapter 6, we will present a detailed case study.

3.3.1 CC components

The CC defines a set of components and specifies the way they interact with
each other. CC components can be divided into three categories.

• Catalogs of reusable security functional and assurance requirements.
• Evaluation Assurance Levels (EALs) , specifying the assurance level used

in the certification process (from 1 to 7).
• The Protection Profile (PP) and specification of Security Target (ST) ,

describing respectively the security requirements and the security features
of the product to be certified.

It is important to remark that CC Protection Profiles and specifications of
Security Targets are themselves software artifacts, potentially to be published
and exchanged among suppliers, purchasers and independent third parties
such as evaluators.

3.3.1.1 The Protection Profile

The introduction of the Protection Profile (PP) is an important innovation
of the CC, inasmuch it allows groups or consortia of software purchasers to
define and share their own sets of security requirements. Of course, PPs do
not mandate how (i.e., via which features) these requirements must be im-
plemented; rather, they contain high-level descriptions of users’ needs. Also,
PPs are not written in a formal or controlled language; indeed, when com-
paring the PP structure defined in CC part 1 [6] to the publicly available
instances of PPs, one may notice that even their structure changes slightly.
To get a better idea of what a real PP looks like, we shall use examples taken
from real-world PPs, considering their structure rather than the standard one
defined by [6]. The general structure of a PP contains the sections showed in
Figure 3.3 and discussed below.

3.3 The Common Criteria : A General Model for Test-based Certification 49

1. PP introduction

• The PP identification
• PP overview
• Conventions and document organization
• Terms and keywords
• EAL

2. TOE description
3. Security problem definition

• Threats
• Organizational security policies
• Assumptions

4. Security objectives

• Security objectives of the TOE
• Security objectives of the TOE environment
• Security objectives rationale

5. Security requirements

• Security functional requirements
• Security Assurance requirements
• Security requirements rationale

6. PP rationale

Fig. 3.3: PP general structure

The PP introduction section provides general information about the PP,
allowing it to be registered through the Protection Profile registry, searched
and shared. This section includes the PP identification, that is, a descriptive
information to identify, catalogue, register, and cross-reference a PP. The PP
overview describes the scope of the PP and provides the necessary informa-
tion for customers to decide if a particular PP is appropriate for their needs.
The two other subsections of the PP introduction section (conventions and
document organization, and terms and keywords) help the reader to under-
stand how the PP document is organized and provide basic definitions of
any domain specific-term used in the document. Furthermore, the EAL for
which the PP claims conformance is also mentioned [18]. Figure 3.4 shows
the introduction of a well-known PP , the Controlled Access Protection Pro-
file (CAPP) specifying desirable high-level security requirements related to
discretionary access control.

The TOE description describes the software product from the customer
point of view, which includes the purpose of the TOE, the security function-
alities needed and the intended operational environment. Other information
concerning some technical details could be added such as cryptographic re-
quirements, remote access requirements, and so on. Figure 3.5 shows an ex-

50 3 Test based security certifications

Example of PP Introduction section.

• PP identification:

– Title: Controlled Access Protection Profile (CAPP)
– Registration: Information Systems Security Organization (ISSO)
– Keywords: access control, discretionary access control, general-purpose op-

erating system, information protection

• PP overview : The Common Criteria (CC) Controlled Access Protection Profile
, hereafter called CAPP , specifies a set of security functional and assurance re-
quirements for Information Technology (IT) products. CAPP-conformant prod-
ucts support access controls that are capable of enforcing access limitations on
individual users and data objects. CAPP-conformant products also provide an
audit capability which records the security-relevant events which occur within
the system.

• Conventions: This document is organized based on Annex B of Part 1 of the
Common Criteria .There are several deviations in the organization of this pro-
file. First, rather than being a separate section, the application notes have been
integrated with requirements and indicated as notes. Likewise, the rationale has
been

• Terms:

– A user is an individual who attempts to invoke a service offered by the
TOE.

– An authorized user is a user who has been properly identified and authen-
ticated. These users are considered to be legitimate users of the TOE.

– An authorized administrator is an authorized user who has been granted
the authority to manage the TOE. These users are expected to use this
authority only in the manner prescribed by the guidance given them.

– The Discretionary Access Control policy, also referred to as DAC, is the ba-
sic policy that a CAPP conformant TOE enforces over users and resources.

• EAL

Fig. 3.4: Example of the PP introduction section [4]

ample of a TOE description regarding a general purpose operating system
including some Components-Off-the-Shelf (COTS) provided by third parties.

The security problem definition section describes the expected operational
environment of the TOE. More specifically, it defines the known security
threats, the security assumptions and the organizational security policies. It
is important to notice that it is not mandatory to have statements for all the
three subsections. In other words, there may well be cases in which there are
no assumptions, or no organizational policies to speak of. However, defining
the security threats in a clear and unambiguous way is important, because it
makes the construction of the PP easier.

The threats subsection describes the potential threats that may put at risk
the TOE assets. In other words this subsection states what we want to pro-
tect the TOE from, including violations by system administrators, hackers,

3.3 The Common Criteria : A General Model for Test-based Certification 51

TOE Description. This protection profile specifies requirements for multilevel
general-purpose, multi-user, COTS operating systems together with the underly-
ing hardware for use in National Security Systems. Such operating systems are
typically employed in a networked office automation environment containing file
systems, printing services, network services and data archival services and can host
other applications (e.g., mail, databases). This profile does not specify any security
characteristics of security-hardened devices (e.g., guards, firewalls) that provide en-
vironment protection at network boundaries. When this TOE is used in composition
with other products to make up a larger national security system, the boundary pro-
tection must provide the appropriate security mechanisms, cryptographic strengths
and assurances as approved by NSA to ensure adequate protection for the security
and integrity of this TOE and the information it protects.

Fig. 3.5: Example of PP TOE description [4]

unauthorized users, and so forth. Table 3.4 shows some examples of threats
definitions suitable for an operating system.

Threat Description
T.ADMIN ERROR An administrator may incorrectly install or config-

ure the TOE resulting in ineffective security mech-
anisms.

T.ADMIN ROGUE An authorized administrator’s intentions may be-
come malicious resulting in user or TSF data being
compromised.

T.SPOOFING A malicious user, process, or external IT entity may
misrepresent itself as the TOE to obtain authenti-
cation data.

Table 3.4: Threats definition [4]

Organizational Security Policies (OSPs) are the set of roles, rules and
procedures adopted by the organizations using the TOE to protect its assets.
OSPs can be defined either by the organization that controls the operational
environment of the TOE or by external regulatory bodies [6]. Table 3.5 shows
a fragment of an OSP definition specifying the administration roles which will
be involved in setting the TOE access control policies, and some separation
constraints on them.

During the certification process, some assumptions will inevitably have
to be made, purely and simply because it is almost impossible to adopt the
same set of requirements for all customers. When software purchasers write a
PP, they need to take in consideration their specific needs which may change
among different groups of customers, even regarding the same product. Fo-
cusing on the operating system example, we might well have two groups of
customers who define two different PPs for the same operating system. One
group may assume that the operating system will include features capable
of enforcing access control to classified information, while the other group

52 3 Test based security certifications

OSP description
P.ACCOUNTABILITY The users of the TOE shall be held accountable for

their actions within the TOE.
P.AUTHORIZED USERS Only those users who have been authorized to ac-

cess the information within the TOE may access
the TOE.

P.ROLES The TOE shall provide multiple administrative
roles for secure administration of the TOE. These
roles shall be separate and distinct from each other.

Table 3.5: PP Organizational security policies from [4]

may assume that access will be regulated by suitable organizational security
policies. Table 3.6 illustrates some assumptions [18].

Assumptions Description
A.LOCATE The processing resources of the TOE will be located

within controlled access facilities which will prevent
unauthorized physical access.

A.PROTECT The TOE hardware and software critical to security
policy enforcement will be protected from unautho-
rized physical modification.

A.MANAGE There will be one or more competent individuals
assigned to manage the TOE and the security of
the information it contains.

Table 3.6: PP assumptions from [18]

Based on the security problems defined in the previous sections of the
PP, the security objectives section provides a set of concise statements as
responses to those issues. Every problem definition must be adequately ad-
dressed by one or more security objectives. Determining the security objec-
tives is a crucial step in PP construction, since it consists the base for defining
the testing activities to satisfy those objectives, and because testing without
clear objectives may lead to waste of time and effort. The PP includes also a
mapping between the security objectives and security problems to help the
evaluator to recognize the relations between the different security objectives
and their corresponding security problems. Some security objectives which
address some of the security problems mentioned above are shown in Table
3.7. Table 3.8, instead, shows the mapping between the security objectives
and the corresponding security problems.

The security objectives rationale is usually a short description of how the
security objectives will address security problems. It can be either written as
a separate subsection or embedded in the mapping table. Having it embedded
in the table showing the mapping (security problems → security objectives)
makes it much easier to understand. For instance if we take the mapping

3.3 The Common Criteria : A General Model for Test-based Certification 53

Security objective Description
Objectives to counter Threats

O.ADMIN GUIDANCE The TOE will provide administrators with the nec-
essary information for secure management of the
TOE.

O.ADMIN ROLE The TOE will provide administrator role to isolate
administrative actions

Objectives to enforce OSP
O.AUDIT GENERATION The TOE will provide administrators with the nec-

essary information for secure management of the
TOE.

O.ACCESS The TOE will ensure that users gain only autho-
rized access to it and to resources that it controls.

Objectives to uphold assumptions
O.PHYSICAL Those responsible for the TOE must ensure that

those parts of the TOE critical to security pol-
icy are protected from physical attack which might
compromise IT security objectives.

O.INSTALL Those responsible for the TOE must ensure that
the TOE is delivered, installed, managed, and op-
erated in a manner which maintains IT security
objectives.

Table 3.7: Examples of Security objectives [18]

Security objective Security problem
Threats

O.ADMIN GUIDANCE T.ADMIN ERROR
O.ADMIN ROLE T.ADMIN ROGUE

OSP
O.AUDIT GENERATION P.ACCOUNTABILITY
O.ACCESS P.AUTHORIZED USERS

Assumptions
O.PHYSICAL A.LOCATE
O.INSTALL A.MANAGE

Table 3.8: Mapping security objectives to security problem definitions [18]

between the threat O.ADMIN ROLE and the objective T.ADMIN ROGUE,
the standard document [4] defines the rationale as in Figure 3.6.

The Security Requirements section represents the core part of the PP doc-
ument, that is, the one dealing with the desired security properties. To be
able to assess or evaluate the security level of a TOE, a PP needs to define
a set of requirements that would allow the evaluator to know which software
features should be tested. Compared to the other PP sections, the security
requirements section is usually much larger. The reason behind that security
requirements need to be described clearly, including all the needed details to
avoid any ambiguous interpretation. The CC certification defines two types of

54 3 Test based security certifications

TOE Description. It is important to limit the functionality of administrative
roles. If the intentions of an individual in an administrative role become mali-
cious, O.ADMIN ROLE mitigates this threat by isolating the administrative ac-
tions within that role and limiting the functions available to that individual. This
objective presumes that separate individuals will be assigned separate distinct roles
with no overlap of allowed operations among the roles. Separate roles include an
authorized administrator and a cryptographic administrator.

Fig. 3.6: Rationale of the mapping between O.ADMIN ROLE and
T.ADMIN ROGUE [4]

security requirements: Security Functional Requirements (SFRs) and Security
Assurance Requirements (SARs) .

SFRs define the requirements that the security features of the product
under evaluation should satisfy. In other words SFRs specify how the TOE
should work to preserve its expected behavior. The CC standard includes
a predefined extendable catalogue of security functional requirements “that
are known and agreed to be of value by the CC part 2 authors” [8]. How-
ever, the SFRs are flexible and can be extended for particular scenarios. The
CC authors have divided the set of the SFRs into four hierarchies depicted
in Figure 3.7 (i.e., Classes, Families, Components and Elements), each one
providing more fine-grained security requirements [12]. For instance, in our

C l a s s 1

F a m i l y 1 F a m i l y 2 F a m i l y 3 F a m i l y 4

C o m p o n e n t 1 C o m p o n e n t 2 C o m p o n e n t 3

E l e m e n t 1 E l e m e n t 2 E l e m e n t 2

Fig. 3.7: The hierarchical structure of the SFRs

operating system example it is important to limit the functionality of ad-
ministrative roles. If the intentions of an individual in an administrative role
become malicious, O.ADMIN ROLE mitigates this threat by isolating the
administrative actions within that role and limiting the functions available
to that individual. This objective presumes that separate individuals will be
assigned separate distinct roles with no overlap of allowed operations between

3.3 The Common Criteria : A General Model for Test-based Certification 55

the roles. Separate roles may include an authorized administrator and an en-
cryption administrator, as well as provisions for enforcing division of labor
between the two. Figure 3.8 shows an example of SFRs.

FAU GEN.2.1 The TSF shall be able to associate each auditable event with the
identity of the user that caused the event.

• Application Note: There are some auditable events which may not be associated
with a user, such as failed login attempts. It is acceptable that such events do not
include a user identity. In the case of failed login attempts it is also acceptable
not to record the attempted identity in cases where that attempted identity
could be misdirected authentication data; for example when the user may have
been out of sync and typed a password in place of a user identifier.

• Rationale: O.AUDITING calls for individual accountability (i.e., “TOE users”)
whenever security-relevant actions occur. This component requires every au-
ditable event to be associated with an individual user.

Fig. 3.8: An example of SFRs [4]

In the example in Figure 3.8, the name of the SFRs is represented by the
standard notation used by CC, namely (classes, families, components
and elements). The first letter F indicates that this is a Functional
requirement. The two following letters indicate the requirement class (AU =
Security audit); the next three letters represent the family name (GEN =
Security audit data generation); the first digit represents the component
number and the second digit indicates the element number. The application
note and the rationale provide some details which are specific to this partic-
ular PP, to help in interpreting the requirements correctly.

The SARs describe some practical ways to check the effectiveness of the
security features of the product under evaluation [22]. The SARs catalogue
includes predefined requirements focusing on different phases of the prod-
uct life cycle such as development, configuration management, testing and so
forth. SARs specify the actions deemed necessary to provide enough confi-
dence that the software product will satisfy the security requirements, that
is, how to investigate the efficiency of the security functions for the required
level of security [8]. Figure 3.9 shows an example of SARs.

Syntactically, SARs follow the same notation standard introduced for
SFRs. However, they have an additional letter at the end called the action
element type. Since the assurance elements are the most fine-grained enti-
ties used by the CC , dividing them to even smaller entities may not lead to
significant results. For this reason, the standard defines three different action
types that identify each of the assurance elements [9].

• Developer action elements (letter D): identify the tasks that shall be
performed by the developer.

56 3 Test based security certifications

• ADO DEL.1.1D The developer shall document procedures for delivery of the
TOE or parts of it to the user.

• ADO DEL.1.2D The developer shall use the delivery procedures.
• ADO DEL.1.1C The delivery documentation shall describe all procedures

that are necessary to maintain security when distributing versions of the TOE
to a user’s site.

Fig. 3.9: An example of SARs [4]

• Content and presentation of evidence elements (letter C): describe the
required evidence and what the evidence shall show.

• Evaluator action elements (letter E): identify the tasks that shall be
performed by the evaluator.

Finally the PP Rationale is the section where the mapping between secu-
rity problems and security objectives, and the mapping between SFRs and se-
curity objectives are formalized. Also, the PP rationale discusses how threats
will be addressed. This is a section where more details could be added to help
understand how the TOE shall meet the stated security objectives. Further
details can be added concerning SFRs and SARs classes, families, compo-
nents and elements to help the evaluator to fully understand how the CC
components should be applied [9].

3.3.1.2 Security Target

The Security Target (ST) is a security specification of a software product. ST
contains the security requirements of a given software product, to be achieved
by a set of specific security functions. Unlike PPs, STs are implementation
dependent, which means that it specifies the implementation details about
each SFR. The content of the ST is depicted in Figure 3.10.

The ST is a basis for agreement between the developers, evaluators and,
where appropriate, users on the TOE security properties and on the scope
of the evaluation. A ST can be derived from a given PP by instantiation; in
general, each ST corresponds to a particular PP definition. A ST may then
claim conformance to a PP by providing the implementation details concern-
ing the security requirements defined by that PP [14]. Also, ST may augment
the requirements derived from the PP. Indeed, there might be cases where
there is no PP that matches the security properties of a specific product. In
this case, the product developer can still create its own ST without claiming
conformance to any PP [14].

An important aspect of ST requirements specification is the definition of
the threats and security objectives of the TOE and its environment. Threats
identify situations that could compromise the system assets, while security

3.3 The Common Criteria : A General Model for Test-based Certification 57

1. ST introduction

• ST reference
• TOE reference
• TOE overview
• TOE description

2. Conformance claims

• CC conformance claim
• PP claim, Package claim
• Conformance rationale

3. Security problem definition

• Threats
• Organizational security policies
• Assumptions

4. Security objectives

• Security objectives for TOE
• Security objectives for the operational environment
• Security objectives rationale

5. Extended components definition

• Extended components definition

6. Security requirements

• Security functional requirements
• Security Assurance requirements
• Security requirements rationale

7. TOE summary specification

• TOE summary specification

Fig. 3.10: Content of a Security Target

objectives contain all the statements about the intents to counter identified
threats and/or satisfy identified organization security policies and assump-
tions. Based on threats and security objectives, the ST defines the security
requirements that the TOE security features need to satisfy to achieve the
security objectives.

To help establishing an association between the components of the CC and
the CC certification process, Figure 3.11 shows where the CC components are
used during the CC process. First, software developers need to decide whether
their ST will claim conformance to any PP, if yes the specified PP will be
included in the certification documents and the ST will be validated against
it. Additionally, a set of other documents including design documentation,
customer guidance, configuration management and testing must be made

58 3 Test based security certifications

T O E

E v a l u a t i o n L a b

C e r t i f i c a t i o n B o d y

- T O E
- P ro tec t i on P ro f i l e
- S e c u r i t y T a r g e t
- D o c u m e n t a t i o n
- T e s t s

D e v e l o p e r

D e v e l o p

E v i d e n c e

E v a l u a t i o n R e p o r t

Ce r t i f i ca te

Fig. 3.11: CC process scheme

available to the evaluation body. The role of CC evaluation body is to inspect
and analyze all evidence provided by developers.

A fundamental aspect that was taken into consideration when defining
the CC is the ability to repeat and reproduce the evaluation results. For
this reason, the CC authors have defined an additional document (Common
Certification Methodology) that specifies the minimum set of actions to be
performed by an evaluator during a CC evaluation [7].

3.3.1.3 Evaluation Assurance Levels

The Common Criteria standard defines seven hierarchical Evaluation Assur-
ance Levels (EAL), which balance the desired level of security and the cost of
deploying the corresponding degree of assurance [3]. EAL identifies different
sets of security assurance requirements, which are shown in Table 3.9. In case
the predefined requirements do not match the level of assurance required, the
EAL might be augmented by adding additional assurance requirements.

An example of EALs achieved by operating systems and other software
products are given in Figure 3.10.

3.4 Conclusions 59

EAL Description
EAL1 Functionally tested (black-box testing)
EAL2 Structurally tested
EAL3 Methodologically tested and checked
EAL4 Methodologically designed, tested and reviewed
EAL5 Semiformally designed and tested
EAL6 Semiformally verified design and tested
EAL7 Formally verified design and tested

Table 3.9: Evaluation Assurance Levels

Product Description
Apple No evaluations
Linux EAL 2, for Red Hat Enterprise Linux 3, February 2004
Linux EAL 3+, for SuSE Linux Enterprise Server V8, Service Pack 3,

RC4, January 2004
Solaris EAL 4, for Solaris 8, April 2003
Solaris EAL 4, for Trusted Solaris 8, March 2004

Windows EAL 4+, for Windows 2000 Professional, Server, and Advanced
Server with SP3 and Q326886, October 2002

Table 3.10: An example of Evaluation Assurance Levels achieved by software products

3.4 Conclusions

Test-based security certification approaches can provide some confidence (al-
though no certainty) that a software product will preserve its properties of
data confidentiality, integrity and availability even under hostile conditions.
Many high technology, safety-critical products like aircrafts, include large
distributed software systems. In such safety-critical systems, each computa-
tional node must be certified to perform its functions safely. As more and
more safety-critical and mission-critical software systems communicate with
other systems, malicious attempts to subvert those communications multiply,
and security concerns become increasingly important. The Common Criteria
defines seven Evaluation Assurance Levels (EALs) 1 (low) through 7 (high).
The threat level and the value of the information jointly determine the appro-
priate level of confidence in both the correctness of the security functionality
(EAL level) and the extent of the security functionality, specified in a Protec-
tion Profile. The consequences of some information being compromised may
range from negligible effects to severe damage.

It is important to remark that security certification standards are strictly
related to safety ones. The DO-178B standard for safety, like the Common
Criteria standard for security, is mostly concerned with program correctness.
The difference lies in the fact that DO-178B addresses post-certification qual-
ity assurance, while the Common Criteria covers topics such as vulnerability,
user documentation and software delivery. DO-178B defines Level A through
Level E.; there is no safety impact if Level E software fails, while if Level A

60 3 Test based security certifications

software fails, the safety impact is catastrophic. Another characteristic com-
mon to both safety and security is that earning certification is much more
difficult, risky, and therefore expensive if the certification was not an original
design goal. This occurs when certification requirements are extended as the
result of revised policies or regulations. Certifications are expensive, although
open source tools that analyze source code for faults are becoming available.

References

1. P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge Univer-
sity Press, New York, NY, USA, 2008.

2. E. Mate Bacic. The canadian trusted computer product evaluation criteria. In
Proc. of the Sixth Annual Computer Security Applications Conference, Tucson,
AZ, USA, December 1990.

3. K. Caplan and J.L. Sanders. Building an international security standard. IEEE
Educational Activities Department, 22(3):29–34, March 1999.

4. Information Assurance Directorate. US Government Protection Profile for Mul-
tilevel Operating Systems in Medium Robustness Environments, 2007.

5. A.J. Dix, J.E. Finlay, G.D. Abowd, and R. Beale. Human-Computer Interaction.
Prentice Hall, 2004.

6. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and general model, 2006.

7. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Evaluation methodology, 2007.

8. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 2: Security functional components, 2007.

9. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 3: Security assurance components, 2007.

10. P.G. Frankl, R.G. Hamlet, B. Littlewood, and L. Strigini. Evaluating testing
methods by delivered reliability. IEEE Transaction on Software Engineering,
24(8):586–601, August 1998.

11. P.G. Frankl and E.J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, October 1988.

12. D.S. Herrmann. Using the Common Criteria for IT security evaluation. Auer-
bach Publications, 2002.

13. W.E. Howden. Reliability of the path analysis testing strategy. IEEE Transac-
tions on Software Engineering, 2(3):208–215, September 1976.

14. ISO/IEC. Guide for the production of Protection Profiles and Security Targets,
2004.

15. C. Jahl. The information technology security evaluation criteria. In Proc. of the
13th International Conference on Software Engineering, Austin, TX, USA, May
1991.

16. Thomas J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, 1(2):308–320, 1976.

17. USA Department of Defense. DEPARTMENT OF DEFENSE TRUSTED COM-
PUTER SYSTEM EVALUATION CRITERIA. USA Department of Defence,
1985.

References 61

18. Information Systems Security Organization. Controlled Access Protection Profile
version 1.d, 1999.

19. M. Pezzè and Michal Young. Software Testing and Analysis: Process, Principles,
and Techniques. Wiley.

20. S.L. Pfleeger and J.D. Palmer. Software estimation for object oriented systems. In
Fall International Function Point Users Group Conference, San Antonio, Texas,
October 1990.

21. D. Russell and G.T. Gangemi. Computer Security Basics. O’REILLY, 1991.
22. K.S. Shankar, O. Kirch, and E. Ratliff. Achieving capp/eal3+ security certifica-

tion for linux. In Proc. of the Linux Symposium, volume 2, page 18, 2004.
23. H. Zhu. A formal analysis of the subsume relation between software test adequacy

criteria. IEEE Transactions on Software Engineering, 22(4):248–255, April 1996.

Chapter 4

Formal methods for software verification

Abstract The growing importance of software in every aspect of our life
has fostered the development of techniques aimed at certifying that a given
software product has a particular property. This is especially important in
critical application areas such as health care and telecommunications, where
software security certification can improve a software product’s appeal and
reduce users and adopters concern over the risks created by software faults.
In this chapter, we shall deal with a wide range of formal and semi-formal
techniques used for verifying software systems’ reliability, safety and security
properties. A central notion is the one of a certificate i.e. a metadata item
containing all information necessary for an independent assessment of all
properties claimed for a software artifact. Here we focus on the notion of
model-based certification, that is, on providing formal proofs that an abstract
model (e.g., a set of logic formulas, or a formal computational model, such
as a finite state automaton), representing a software system, has a particular
property. We start by laying out some of the work that has been done in
the context of formal method verification, including in particular the areas
of model checking, static analysis, and security-by-contract. Then, we go
on discuss the formal methods that have been used for analyzing/certifying
large-scale, C-based open source software.

4.1 Introduction

Software systems are trending towards increased size and increasingly com-
plex architectures. This is making it more and more difficult to achieve full
assurance of a software product’s non-functional properties by means of test-
based techniques alone (see Chapter 3). An important alternative option is
to use formal methods, that is, techniques based on logics, set theory and
algebra for the specification of software systems models and the verification
of the models’ properties. The use of formal methods has become widespread,

63

64 4 Formal methods for software verification

especially during the early phases of the development process. Indeed, an ab-
stract model of a software system can be used to understand if the software
under development satisfies a given set of functional requirements and guaran-
tees certain non-functional properties. Also, the increasing number of reports
of security-relevant faults in software shows that the problem of verifying
security-related properties cannot be ignored, especially in the development
of high-integrity systems where safety and security are paramount.

There are several case studies proving the applicability of formal meth-
ods to security certification [17, 30]. Some practitioners are, however, still
reluctant to adopt formal methods. This reluctance is mainly due to a lack
of theoretical understanding, and to the misconceived perception that formal
techniques are difficult to learn and apply. The detection and the prevention
of faults is indeed one of the main motivations for using formal methods.
Verifying a formal system specification can help to detect many design flaws;
furthermore, if the specification is given in an executable language, it may also
be exploited to simulate the execution of the system, making the verification
of properties easier (early prototyping). Over the last few years software veri-
fication using formal methods has become an active research area. Special at-
tention is being given to the verification of concurrent and parallel programs,
in which testing often fails to find faults that are revealed only through the
use of very specific test cases or timing windows. However, the problem of us-
ing models for checking a software product’s memory-related non-functional
properties, also known as pointer analysis, remains to be solved. To under-
stand why, let us consider a slight variation of the digitcount function we
introduced in Chapter 3.

int digitcount(char* s)
{
int digit = 0;
int i;
for (i = 1; *(s+i) != ’\0’; i++)

if (’0’ <= *(s+i) <= ’9’)
digit++;

return digit;
}

While this coding of digitcount is functionally equivalent to the one of
Chapter 3, switching the type of the input argument from the array of char-
acters of the original version (whose maximum size can be defined in the
calling program) to a pointer to char - that is, an address pointing to a
memory area whose maximum size is not known - has interesting effects.
Assuming that the calling program had originally limited the size of arrays
passed to digitcount to 256, the number of states (defined, as before, as the
possible contents of the function’s local variables) of our new version of the
sample function may have increased dramatically as a result of this alterna-
tive coding. In this example, the state space may change in size but remains

4.2 Formal methods for software verification 65

anyway finite; in general, because of the dynamic and unbounded nature of
C memory handling primitives (including allocations, deallocations, referenc-
ing, dereferencing etc.), models representing C programs with pointers must
take into account an infinite state space. With infinite state spaces,1 exhaus-
tive searches are no longer possible, and checking the properties of models
involving recursive pointer types may lead to undecidability [21].

4.2 Formal methods for software verification

Let us start with a survey on the categories of formal methods that are of
interest for security certification. Program verification techniques fall into
three broad categories: The first category involves non-formal or partially
formal methods such as testing, which we have discussed in some detail in
Chapter 3; the second category, known as model checking, involves formal
verification of software systems with respect to specifications expressed in a
logical framework, either using state space analysis or theorem proving; the
third category includes classic static program analysis techniques. We shall
now provide a brief introduction to both these categories.

4.2.1 Model Checking

Model checking [12] is a formal verification approach for detecting behavioral
anomalies (including safety, reliability and security-related ones) of software
systems based on suitable models of such systems. Model checking produces
valuable results, uncovering software faults that might otherwise go unde-
tected. Sometimes it has been extremely successful: in 1998, the SPIN model-
checker was used to verify the plan execution module in NASA’s DEEP
SPACE 1 mission and discovered five previously unknown concurrency er-
rors. However, model checking is not a panacea. Indeed, there are still several
barriers to its successful integration into software development processes. In
particular, model checking is hamstrung by scalability issues; also, there is
still a gap between model checking concepts and notations and the models
used by engineers to design large-scale systems.

Let us focus on the scalability problem, which is a major obstacle to using
model checking to verify (and certify) the security properties of software
products. Methods and tools to aid design and analysis of concurrent and
distributed software are often based on some form of a state reachability
analysis, which has the advantage of being conceptually simple. Basically,
the verifier states the non-functional properties she would like the program

1 In some cases, there are ways of representing infinite state spaces finitely, but this
would take us well outside the scope of this book.

66 4 Formal methods for software verification

to possess; then, by means of a model checker tool, she searches the program
state space looking for error states, where the specified properties do not hold.
If some error states are detected, the verifier removes the faults which made
them reachable, and repeats the procedure. The reader may detect a certain
likeness to the testing process: indeed, one can never be sure that all error
states have been eliminated. Usually, state analysis is not performed directly
on the code; rather, one represents the program to be verified as a state
transition system, where states are values of variables, and transitions are
the instructions of the program. Fig. 4.1 shows the transition system for the
instruction for (int i = 1; ∗ (s + i) ! = ‘n0′; i + +) in our digitcount
example.

* (s+ i)=h

i = 1

* (s+ i)=e

i = 2

* (s+ i)= l

i = 3

* (s+ i)= l

i = 4

* (s+ i)=o

i = 5

Fig. 4.1: Transition system of a digicount instruction

It is easy to see where the problem lies: the number of states may proliferate
even for relatively simple programs, making the model checking approach
computationally very expensive.

However, space search algorithms allowing more than 1020 states have
been available for several years now, and today’s model-checkers can easily
manage millions of state variables. Also, a number of techniques have been
developed to prevent state space explosion and to enable formal verification
of realistic programs and designs. Here, we will only recall an important
method in state space reduction, namely abstraction. Abstraction techniques
reduce the state space of a software system by mapping the set of states of the
actual system into an abstract, and much smaller, set of states in a way that
preserves all relevant system behaviors. Predicate abstraction [20] is one of
the most popular methods for systematic reduction of program state-spaces.
It abstracts program data by only keeping track of certain predicates on the
data, rather than of the data themselves. Each predicate is represented by a
Boolean variable in the abstract program, while the original data variables
are eliminated. The resulting Boolean program is an over-approximation of
the original program.

In practice, the verifier starts with a coarse abstraction of the system to
be checked, and checks this abstraction for errors. If checking reports an
unrealistic error-trace, the error-trace is used to refine the abstract program,
and the process proceeds iteratively until no spurious error traces can be
found. The actual steps of this iterative process follow an abstract-verify-
refine paradigm.

4.2 Formal methods for software verification 67

Automated theorem proving [15] is a well-developed subfield of automated
reasoning that aims at proving mathematical theorems by means of a com-
puter program. Commercial use of automated theorem proving is mostly
concentrated in integrated circuit design and verification, although many sig-
nificant problems have been solved using theorem proving. Some of the fields
where theorem proving has been successfully used are mathematics, software
creation and verification, and knowledge based systems.

When assessing the correctness of the program, two distinct approaches us-
ing properties are in use, namely pre/post-condition and invariant assertion.
Large programs should specify pre- and post-conditions for every one of their
major procedures.2 A pre-condition is a logical formula whose value is either
the Boolean true or false. It is a statement that a given routine should not
be entered unless its pre-condition is guaranteed3. Obviously, a pre-condition
does not involve variables that are local to the procedure; rather, it may
involve relevant global variables, and the procedure’s input arguments.

Ideally, a pre-condition is a Boolean expression, possibly using the for-all
(∀) or there-exists (∃) quantifiers.

The post-condition of a procedure is also a Boolean formula which de-
scribes the outcome of the procedure itself. The results described in a post-
condition are accomplished only if the procedure is called while its pre-
condition is satisfied. The post-condition talks about all relevant global vari-
ables and the input arguments and relates them to the output results. Like
a pre-condition, a post-condition is a strictly Boolean expression, possibly
using the for-all (∀) or there-exists (∃) quantifiers. Pre/post-condition -based
approaches to software verification formulate the software correctness prob-
lem as checking the relationship between the pre-condition Boolean formula
that is assumed to hold at the beginning of program execution and the post-
condition formula that should hold at the end of program execution.

The pre/post-condition based verification process goes as follows: again,
the verifier states the non-functional properties she would like the program
to possess. Then, she formulates relevant pre-conditions and post-conditions
known to hold for smaller parts of the program, and uses these properties
and additional axioms to derive the desired non-functional properties.

One might legitimately ask where do these axioms come from and how pre-
and post-conditions can be formulated. The prototype of each procedure -
or better, its signature - is an important source of pre- and post-conditions.
When a procedure declares a formal parameter as passed by value, this means
that the actual argument will remain unchanged at the end of the procedure:
a basic post-condition. Also, procedures may modify global variables whose
names are not listed as actual arguments. It is possible to generate pre- and

2 In this section we use the word “procedure” as a generic term for both procedures
and functions. A function returns a value to the caller but has no side effects on the
caller local memory, whereas the purpose of a procedure is exactly to have such a
side-effect.
3 If the procedure is entered anyway, its behavior is unpredictable

68 4 Formal methods for software verification

post-conditions by stating the global variables’ values before and after a call
to the procedure. As far as the axioms are concerned, they simply express
typical pre-conditions and post-conditions of the programming language’s
instructions. To further clarify this issue, let us use the elegant notation of
Hoare triplets [18], as follows: {P}S{Q}, where P is a precondition, S a
statement and Q a postcondition.

The meaning of a Hoare triplet is the one suggested by intuition: if P holds
before S is executed, then after the execution of S is executed, Q holds. For
example, {a > b} while (a > b) a−−{a = b} {(a, b : int)} means that
if the integer a is greater than b, the loop while (a > b) a−− will make them
equal. Let us now state the simplest possible axiom, the one corresponding
to the assignment instruction:

{Q(e/x)}x = e{Q} (4.1)

The axiom states the (rather intuitive) fact that if we have a pre-condition
which is true if e is substituted for x, and we execute the assignment x = e,
the same formula will hold as a post-condition. For example, if we want
to prove that {i = 0} i = i + 1 {i > 0}, we apply the assignment axiom to
obtain {i + 1 = 1} i = i + 1{i + 1 > 1}, from which the thesis is derived by
simple arithmetics.

Verification becomes more difficult when we consider loops, a basic control
structure in nearly all programming languages. Loops are executed repeat-
edly, and each iteration may involve a different set of pre- and post-conditions.
Therefore, verification needs to focus on assertions which remain constant be-
tween iterations rather than on pre- and post-conditions. These assertions are
known as loop invariants, and remain true throughout the loop. To clarify
this concept, let us consider the code fragment below, which computes the
minimum in an array of positive integers:

min = 0;
int j;
for (j = 0; j <= n; j++)
{
if(s[j] < min)

min=s[j];
}

The invariant of this loop is that, at any iteration, s[k] < min for
k = 0, 1, . . . , j.4. To prove that an assertion of interest still holds after a
loop terminates, the verifier must start by proving that the loop does indeed
terminate. The verifier needs to identify an invariant and use it together
with axioms to derive the theorem that the desired assertion is true after last
iteration. It is interesting to remark that identifying pre-conditions, post-

4 The invariant holds even for j = k = 0, since the array is made of positive integers.

4.2 Formal methods for software verification 69

conditions and invariants is useful even if the formal verification process is
not carried out. Consider the following code:

int digitcount (char s[])
{
if (!precond(s))

return -1;
/* .. rest of the digitcount code.. */

}

Here, the function digitcount is doing something unexpected: it is check-
ing its own precondition. If an input parameter violates the pre-condition,
that is, precond(s) is false, the function returns a value that is outside its ex-
pected range of return values, in this example −1. This precaution increases
the robustness of the function, preventing error conditions due to malformed
inputs. 5

A key difference between the model checking approach to software verifica-
tion and the theorem proving one we just explained, is that theorem provers
do not need to exhaustively visit the whole program state space in order to
verify properties, since the constraints are on states and not on instances of
states. Thus, theorem provers can reason about infinite state spaces and state
spaces involving complex datatypes and recursion.

A major drawback of theorem provers is that they require a great deal of
user expertise and effort: although theorem provers are supposed to support
fully automated analysis, only in restricted cases is an acceptable level of
automation is provided. This is mainly due to the fact that, depending on
the underlying logic, the problem of deciding the validity of a theorem varies
from trivial to impossible. For the case of propositional logic, the problem
is decidable but NP -complete, and hence only exponential-time algorithms
are believed to exist for general proofs. For the first order predicate calculus,
the theorem prover could even end up in non-termination. In practice, the
theoretical results require a human to be in the loop, to derive non-trivial
theorems and to guide the theorem prover in its search for a proof. Despite
these theoretical limits, practical theorem provers can solve many hard soft-
ware verification problems.

4.2.2 Static Analysis

Static program analysis aims to retrieve valuable information about a pro-
gram by analyzing its code. Static analysis of programs is a proven technology

5 Strictly speaking, here precond(x) is not a proper precondition of digitcount,
because digitcount is executed whether precond(x) is true or not; but the program-
mer can now be confident that the “real” digitcount code will be executed only if
precond(s) evaluates to true.

70 4 Formal methods for software verification

in the context of the implementation and optimization of compilers and in-
terpreters. The Syntactic analysis carried out by compilers is a first step in
this direction: many faults due to typing mistakes can be tracked by modi-
fying the C syntax specification on which the compiler is based to generate
appropriate warning messages. Let us consider the following code fragment:

int digit = 0;
if(*s = ’\0’)

return digit;
else

/* rest of the digitcount code */

It is easy to see that this code always returns 0; this is due to the pro-
grammer erroneously using an assignment instead of a comparison operator.
The C syntax analyzer can be modified to generate a warning whenever an
assignment statement appears in a conditional expression (where a compar-
ison would be expected). In the modified syntax specification, the compiler
action upon detecting an assignment in a conditional expression is specified
as “print a warning message”.

In recent years static analysis techniques have been applied to novel ar-
eas such as software validation, software re-engineering, and verification of
computer and network security. Giving a way of statically verifying a secu-
rity property has, in principle, the advantage of making the checking of the
property more efficient; moreover it allows the writing of programs which are
secure-by-construction (e.g., when the performed analysis is proved to imply
some behavioural security properties). As most non-trivial properties of the
run-time behaviour of a program are either undecidable or NP -hard, it is
not possible to detect them accurately, and some form of approximation is
needed. In general, we expect static analysis to produce a possibly larger set
of possibilities than what will ever happen during execution of the program.
From a practical perspective, however, static analysis is not a replacement
for testing nor can it completely eliminate manual review. Static analysis is
effective only when operating on the source code of programs, whereas code
consumers typically deal with binary code which makes it difficult (if not
impossible) for them to statically verify whether the code satisfies their pol-
icy. This is not the case with open source, though; and this remark alone
would be sufficient to make static analysis an important topic for our pur-
poses. But there is more: static analysis has a proven record of effectiveness
for dealing with security-related faults. Often attackers do not even bother
to find new faults but try and exploit well-known ones, such as buffer over-
flow, which could have been detected and removed using static code analysis.
When performing static analysis of a program, the verifier uses tools like
lint and splint, which perform error checking of C source, to scan the
program’s source code for various vulnerabilities. Such scanning involves two
steps: control flow and data flow analysis.

4.2 Formal methods for software verification 71

Control Flow Analysis (CFA) [24] is an application of Abstract Interpreta-
tion technologies. The purpose of CFA is to statically predict safe and com-
putable approximations to the dynamic behaviour of programs. The approach
is related to Data Flow Analysis and can be seen as an auxiliary analysis
needed to establish the information about the intra- and inter-procedural flow
of control assumed when specifying the familiar equations of data flow anal-
ysis. It can be expressed using different formulations such as the constraint-
based formalism popular for the analysis of functional and object-oriented
languages, or the Flow Logic style. Flow Logic is an approach to static anal-
ysis that separates the specification of when a solution proposed by analysis
is acceptable form the actual computation of the analysis information. By
predicting the behaviour of a software system, it leads to positive informa-
tion even when the system under evaluation does not satisfy the property of
interest, whereas the type-system approach is binary-prescriptive (a system
is either accepted or discarded). Moreover, it is a semantics-based approach
- meaning that the information obtained from the analysis can be proved
correct with respect to the semantics of the programming language, that is,
the result reflects an appropriate aspect of the program’s dynamic behaviour.
The formalization of Control Flow Analysis is due to Shivers in [29], where
the analysis is developed in the context of functional languages. The CFA
technique has been used extensively in the optimization of compilers, but
over the last few years it has also been used for verification purposes. In the
case of the Flow Logic approach, there is an extensive literature, showing
how it has been specified for a variety of programming language paradigms.
Moreover, this technique has been used to verify non-trivial security proper-
ties, such as stack inspection and a store authorization in a broadcast process
algebra. To fix our ideas, let us consider the simplest case [16], where control
flow analysis involves setting up a control flow graph, i.e., a Directed Acyclic
Graph (DAG) which represents the program’s control flow. Each node in the
DAG corresponds to a program instruction and the edges from one node to
another represent the possible flow of control. Control flow graphs for basic
instructions are shown in Figure 4.2.

Control flow graphs for more complex statements can be constructed in-
ductively from the control flow graphs of simple statements. Function calls
are also represented as nodes in a control flow graph. When traversing a pro-
gram’s control flow graph if one comes across a node representing a function
call then the control flow graph of the corresponding function (if it exists) is
also traversed.

Data flow analysis determines the different properties a variable can have
through taking different paths in the program, in order to identify for poten-
tial faults. The nodes in the CFG are used to store information about certain
properties of data such as initialization of variables, references to variables,
and so forth.

For example, let us consider the following code fragment:

int digitcount (char* s)

72 4 Formal methods for software verification

S1

S2

(a) S1, S2

E

S1

(c) If E then S1 else S2

S2

E

S

(d) While E do S

E

S

(b) If E then S

Fig. 4.2: Control flow graphs for basic instructions

{
int digit;
if (*s != ’\0’)
{
digit =0;
for (int i = 1; *(s+i) !=’ \0’; i++)

if (’0’ <= *(s+i) <= ’9’)
digit++;

4.2 Formal methods for software verification 73

}
return digit;
}

Though the variable digit is initialized within the if statement, it is
not always guaranteed that digit will actually be initialized before being
accessed (when ∗s ==′ n0′, digit is uninitialized). Static analysis will point
out that variable digit is not initialized in one of the paths, a fact that may
escape testing unless the void string is used as a test case. Analysis of the
control flow graph can also be used for detecting memory-related faults like
dereferencing uninitialized pointers, forgetting to free allocated memory, and
so on.

To carry out this analysis, the verifier needs to use flow analysis and build
the control flow graph, adding memory-related information to nodes. For each
variable, such information will say whether at the execution of the instruction
corresponding to the node the variable is initialized or not (remember that
the variable will be considered as possibly not being initialized if there exists
at least a path through the graph on which the initialization is skipped).
As a formal notation, we can associate to each node S on the control graph
a set (let’s call it NonInit) consisting all variables for which a path exists
which terminates in S and does not include initialization. Similarly, we can
associate to S other sets such as NullPointer, including all pointers whose
value may be null at S. This way, the instruction corresponding to S can
be checked w.r.t. the sets associated to it. For instance if S dereferences a
pointer which is in NullPointer, or accesses a variable belonging NonInit, the
verifier receives a warning.

A major drawback of these analysis techniques is that they may generate
false positives. In general, the verifier has no idea of the semantics of the
program, and may consider faulty some code that the programmer has written
intentionally.

4.2.3 Untrusted code

Significant steps forward have been made in the use of software from sources
that are not fully trusted, or in the usage of the same software in different
platforms or environments. The lack of OS-level support for safe execution
of untrusted code has motivated a number of researchers to develop alterna-
tive approaches. The problem of untrusted binary code is solved when using
certified code (both proof-carrying code (PCC) [22, 23] and model-carrying
code (MCC) [27, 28]), which is a general mechanism for enforcing security
properties (see Chapter 9).

In this paradigm, untrusted mobile code carries annotations that allow a
host to verify its trustworthiness. Before running the guest software, the host
checks its annotations and proves that they imply the host’s security policy.

74 4 Formal methods for software verification

Despite the flexibility of this scheme, so far, compilers that generate certified
code have focused on simple type safety properties rather than more general
security policies. A major difficulty is that automated theorem provers are not
powerful enough to infer properties of arbitrary programs and constructing
proofs by hand is prohibitively expensive. Moreover the security policy needs
to be shared and known a priori by both code producer and consumer. Unable
to prove security properties statically, real-world security systems such as the
Java Virtual Machine (JVM) have fallen back on run-time checking. Dynamic
security checks are scattered throughout the Java libraries and are intended
to ensure that applets do not access protected resources inappropriately. This
situation is unsatisfactory for a number of reasons: (i) dynamic checks are
not exhaustive; (ii) tests rely on the implementation of monitors, which are
error-prone; and (iii) system execution is delayed during the execution of the
monitor.

4.2.4 Security by contract

The security-by-contract mechanism [13, 14] draws ideas from both the above
approaches: firstly, it distinguishes between the notion of contract, containing
a description of the relevant features and semantics of the code, and the
policy, describing the contractual requirements of the platform/environment
where the code is supposed to be run; secondly, it verifies at run-time if the
contract and the policy match. This approach derives from the “design by
contract” idea used to design computer software. It prescribes that software
designers should define precise verifiable interface specifications for software
components based upon the theory of abstract data types and the conceptual
metaphor of a business contract.

The key idea of security-by-contract derives from the growing diffusion of
mobile computing and nomadic devices. Since the demand for mobile ser-
vices, which are dynamically downloaded by users carrying mobile devices, is
growing, there is a need for mechanisms for certifying security properties of
the downloaded application and for certifying how the application interacts
with the host device. The contract accompanying the application specifies
the relevant security actions while the policy defines the host’s requirements
i.e. the expected behaviour of applications when executed on the platform.
Contracts and policies are defined as a list of disjoint rules as follows.

<RULE> :=
SCOPE [OBJECT <class> |

SESSION |
MULTISESSION]
RULEID <identifier>
<formal specification>

where:

4.3 Static Analysis and Formal Methods for Errors Detection 75

• SCOPE defines at which level the specified contract will be applied [13]:
(i) object, the obligation must be fulfilled by objects of a given type,
(ii) session, the obligation must be fulfilled by each run of the applica-
tion, (iii) multisession, the obligation must be fulfilled by all runs of the
application;

• RULEID identifies the area at which the contract applies, as for instance,
files or connections;

• <formal specification> provides a rigorous and not ambiguous definition
of the rule semantics based on different techniques, such as, standard
process algebra, security automata, Petri Nets and the like.

Based on contract and policy definition, the matching algorithm verifies
if contracts and policies are compatible. A matching will succeed if for each
behaviour happening during the code execution both contract and policy
are satisfied. In Table 4.1, we present a simple example of a contract/policy
matching taken from [13].

Contract/Policy Rule Object can use one type of Object can use every type of
connection only connection only

Object can use HTTP
connection only

X X

Object can use HTTP
and SMS connections

X

Table 4.1: Contract/Policy Matching.

The matching algorithm is defined in a generic way, that is, independently
from the formal model used for specifying the rules. In [13] an example of
how the matching algorithm can be used with rules specified as Finite State
Automaton (FSA) is also provided. Differently from the model checking tech-
niques introduced in Section 4.3.2, which use finite state automaton to define
syntactic patterns the program should not contain, contracts/policies define
the expected behaviour of the application.

4.3 Formal Methods for Error Detection in OS C-based
Software

As we have seen in the previous sections, formal methods have been intro-
duced in the past to answer a simple question: “What should the code do?’.
In other words, formal methods were aimed at specifying some functional or
non-functional properties the software should possess. Although the response
to this question may seem trivial when looking at a toy function consisting of
a few lines of code, it is much more difficult to answer in the case of huge soft-
ware products (million of Lines Of Code (LOC)). In the previous sections, we

76 4 Formal methods for software verification

outlined how formal methods can be used to compare what the code should
do, with what the code actually does.

The scenario described in this section is even more critical, because we
need to consider open source software. The application of formal methods to
open source software is somewhat difficult and it has sometimes been consid-
ered as a wrong choice. The open source paradigm is based on a cooperative
community-based code development, where code changes rapidly over time
and unambiguous specifications may simply not be available (see Chapter 5).
The code itself, in fact, is considered the first-line specification of an open
source system. This explains the problems faced by practitioners trying to
apply formal methods to huge undocumented open source software, such as
Linux. Usually open source software is not developed from a stable specifi-
cation and is based on programming languages which do not readily support
formal methods, like the C language used for coding Linux.

4.3.1 Static Analysis for C code verification

Much effort has been put into designing and implementing static analysis
techniques for the verification of security-critical software. The need for solu-
tion to the problem of finding potential vulnerabilities is especially acute in
the context of security-critical software written in C. As we have seen, the C
language is inherently unsafe, since the responsibility for checking the safety
of array and pointer references is entirely left to the programmer. Program-
mers are also responsible for checking buffer overflows. This scenario is even
more poignant in the context of an open source development community,
where different developers with heterogeneous skills and profiles contribute
to the software.

Software faults spotlighted in the last few years, the ones related to buffer
overflows have been the most frequently exploited. A notorious attack (the
so-called Morris worm) in November 1988, which infected about 10% of all the
computers connected to the Internet, exploited a buffer overflow in the finger
daemon of Sun 3 systems and VAX computers running variants of Berkeley
UNIX. This attack is often quoted as the first one that caused a widespread
infection, captured the attention of the world, resisted expert analysis, and
finally resulted in FBI investigations and legal actions. The Morris worm had
at least one positive effect: it increased the awareness of the software industry
about the dangers produced by Internet-based attacks. Also, as a result of
the Morris worm, the Carnegie Mellon Computer Emergency Response Team
(CERT) [8] was formed. Currently, the CERT institution represents the main
reporting center for Internet security problems.

Wagner et al. [31] describe an approach based on static analysis to de-
tect buffer overflow vulnerabilities. They start from the assumption that C
is insecure and developers, including expert ones, are themselves sources of

4.3 Static Analysis and Formal Methods for Errors Detection 77

vulnerabilities. Their solution applies static analysis to identify and fix se-
curity flaws before these can be exploited by a malicious adversary. In par-
ticular, the problem of detecting a buffer overflow is modeled as an integer
range constraint problem, which is solved by means of an algorithm based on
graph theoretic techniques. Also the authors focus on balancing precision and
scalability. The trade-off between precision and scalability introduces some
imprecision in the detection software, causing the identification of wrong
vulnerabilities (false positives) and the non-identification of real ones (false
negatives).

Wagner’s solution is based on two major ideas: (i) since most buffer over-
flows happen in string buffers, C strings are modeled as an abstract data
type; (ii) buffers are modeled as a pair (as,l) where as is the allocated size
for the string buffer, and l is the length, that is, the number of bytes used.

In summary, the authors provide a conceptual framework modeling string
operations as integer range constraints and then solving the constraint sys-
tem. The implementation of the framework is achieved via three main steps,
which are described below.

Constraint language definition. This step carries out the definition of a lan-
guage of constraints to model string operations. To this end, the concepts
of range, range closure, and arithmetic operations over ranges are intro-
duced. An integer range expression is defined as:

e ::= v‖n‖n× v‖e+ e‖e− e‖max(e · · · e)‖min(e · · · e)
where n is an integer and v is a set of range variables. From the range
expression a range constraint is then defined as e ⊆ v and an assignment
as α : v 7−→ α(v) ⊆ Z∞. An assignment α satisfies system of constraints
if all the assertions are verified when the variables are replaced with the
corresponding values α(v) in the assignment.

Constraint generation. In this step, after parsing the source code and
traversing the obtained parse tree, a system of integer range constraints
is generated. Each integer variable is associated with a range variable,
whereas a string variable is associated with two variables (the string’s al-
located size and the actual string length) plus a safety property len(s) ≤
alloc(s), where len(s) includes the terminating ‘\0’. For each statement
an integer range constraint is then generated. The safety property for each
string will be checked later.

Constraint resolution. Finally, an algorithm is used to find a bounding box
solution to the system of constraints defined by the previous steps. This is
guided by the fact that a program with k variables generates a statespace
Zk where the i -th component is the value of the i -th variable. The program
execution is modeled as a path and the goal becomes to find a minimal
bounding box including all possible paths in the k -dim space. To this end
a graph is built where each node represents a variable and an edge between
two nodes in the graph represents a constraint involving the two variables.

78 4 Formal methods for software verification

The constraint solver works by propagating information along the paths
and finding a solution to the constraint system.

Although this technique provides a way to detect buffer overflow, it cannot
handle C pointers and aliasing. Other researchers working in static analysis
have focused on pointer analysis [1, 19] (see also Chapter 3). In order to
understand the notion of a pointer-related software fault, let us consider the
memcpy system call, whose prototype is:

void memcpy(void dest, const void source, sizet n).

memcpy copies the content of the memory pointed to by source (an address
within the caller’s address space) to the area, again in the caller’s address
space, pointed to by dest.6

Intuition suggests that a program failure may occur if the dest address
passed to memcpy is invalid. This type of pointer-related faults are known
to be difficult to detect through testing alone; even static analysis tends to
perform rather poorly, because pointer-related faults concern specific pointer
values rather than its type. Of course, one could wrap memcpy to check the
destination address before calling it; but this might introduce a non-negligible
overhead. The problem becomes more intricate if kernel pointers are involved
[19], because user space and kernel space addresses cannot be mixed without
undesirable results being produced. Let us consider the function

int var;
void getint(int *buf)
{
memcpy(buf, &var, sizeof(var))
}

which uses memcpy to copy the content of the variable var into the buffer
pointed to by buf. Let us assume that some malicious code initializes buf
with a value corresponding to some user space address before calling getint.
If the kernel blindly executes the copy using buf as the destination, a kernel
failure may occur. For instance, if the destination address were a typical
user space address like 0xbf824e60, it would simply not be in the range of
kernel space addresses (which start at 0xc0000000 and trying to write to it
within the kernel would provoke a kernel oops. If the kernel were configured
to panic on oops, then the machine would crash. At this point, the reader
might object that memcpy is surely coded in such a way to prevent this attack.
Unfortunately, this is not the case. Here is the implementation of memcpy in
linux− 2.6.24.2/lib/string.c:7

6 The behavior of memcpy is undefined when destination and source overlap
7 Note that this implementation handles overlapping source and destination areas
correctly, provided the target address is below the source address.

4.3 Static Analysis and Formal Methods for Errors Detection 79

/**
* memcpy - Copy one area of memory to another

* @dest: Where to copy to

* @src: Where to copy from

* @count: The size of the area.

*
* You should not use this function to access IO

* space, use memcpy_toio() or memcpy_fromio()

* instead.

*/
void *memcpy(void *dest, const void *src,

size_t count)
{
char *tmp = dest;
const char *s = src;

while (count--)

*tmp++ = *s++;
return dest;
}
EXPORT_SYMBOL(memcpy);

The memcpy implementation was kept as simple as possible, and for a good
reason: one cannot risk memcpy going to sleep, as it could happen if memcpy
was coded in a more sophisticated way.

Since memcpy includes no run-time checks for pointer-related faults, we
can only hope that a priori pointer analysis can be used to pinpoint the fact
that getint code can be unsafe. This can be done by annotating the pointer
type declarations with additional information supporting program analysis.
In [19], some qualifiers of pointer types are used to highlight pointers which
contain kernel addresses. The code calling getint can be annotated using
two qualifiers user and kernel as follows:

int memcpy(void * kernel to, void * kernel from,
int len);

int var;
void getint(int * user buf)
{
memcpy(buf, &var, sizeof(var))
}

When the above code is analyzed, the analyzer notices that getint receives
a user pointer buf, which is then passed to memcpy as a first parameter. A
type error is then raised and the potential fault identified. Of course, an
annotation-based technique like this one will generate some false positives,
i.e. cases in which the function was purposefully designed to handle both
kernel and user space addresses. However, the interesting experimental results

80 4 Formal methods for software verification

reported by [19] show that the analysis of Linux kernel 2.4.20 and 2.4.23 has
identified 17 previously unknown faults due to mixing user space and kernel
space addresses.

Faults like writes via unchecked pointer dereferences are often exploited
by malicious code. A classic attack (often called stack smashing [31]) uses
unchecked string copy to cause a buffer overflow.

We have described this attack in Chapter 3; however, to recall this point,
let us consider the following C procedure that uses a pointer to copy an input
string into a buffer stored on the stack, incrementing the pointer after copying
each character without checking whether the pointer is past the end of the
buffer.

void bufcopy(char *src)
{
char buf[256];
char *dst = buf;
do

*dst = *src;
dst++; src++;

while (*src != "\0")
}

By providing a string longer than 256, an attacker can cause the above
procedure to write after the end of the buffer, overwriting other locations
on the stack, including the procedure’s own return address. In Chapter 3
we have seen how crafting the input string, the attacker can replace the
procedure’s return address with the address of malicious code stored, say,
in an environment variable, so that when the procedure returns, control is
transferred to the attacker’s code. Context-sensitive pointer analysis is used
to detect faults due to lack of bounds checking like the one above [1]. Two
types of pointer analysis have been defined: (i) CONServative pointer analysis
(CONS), which is suitable for C programs following the C99 standard and
(ii) Practical C Pointer (PCP), which imposes additional restrictions that
make it suitable also for programs that do not follow the C99 standard [7].

PCP includes several assumptions that model typical C usage. First of all,
PCP allows arithmetic applied to pointers of an array, such as buf + + in
the example above, only if the result points to another element of the same
array. When pointers to user-defined struct types are used, PCP applies
the notion of structural equivalence: two user defined types are structurally
equivalent if their physical layout is exactly the same. PCP allows assignments
(such as ∗dst = ∗ src) and type casts (such as dst = (atype ∗)src) only
between structurally equivalent types. For this reason, PCP has been shown
to provide a better accuracy in detection of format string vulnerabilities; also,
pointer analysis substantially reduces the overhead produced by dynamic
string-buffer overflow tools (30%-100%) [1].

4.3 Static Analysis and Formal Methods for Errors Detection 81

More advanced techniques mark all information coming from the outside
world as tainted. A potentially vulnerable procedure should be written to raise
an error if passed a tainted parameter. Chen and Wagner [10] introduced a
static analysis technique that can find taint violations. The provided solution
has been tested using the Debian 3.1 Linux distribution. The experiments
considered the 66% of Debian packages and found 1533 format string taint
warnings, 75% of which are real faults.

Static analysis can be complemented with run-time techniques, such as
white lists of memory addresses pointers are allowed to contain. An instruc-
tion modifying the value of a pointer can only be executed within a procedure
which checks whether the modified value will be in the white list. Ringen-
burg and Grossman [25] used white lists together with static analysis for
preventing format string attacks, Their solution takes advantage of the dy-
namic nature of white-lists of %n-writable address changes, which are used
to improve flexibility and encode specific security policies.

4.3.2 Model Checking for large-scale C-based Software
verification

After introducing pointer analysis techniques, let us now survey some tools
supporting automatic discovering of security flaws. We are particularly inter-
ested in model checking tools able to analyze huge software products such as
an entire Linux distribution.

In [26], the MOPS static analyzer [9] is used to check security properties of
a Linux distribution. MOPS relies on Finite State Automaton (FSA), whose
state transitions correspond to syntactic patterns the program should not
contain. For instance, syntactic patterns can express violations on pointer
usage, structural type compatibility, and the like. The MOPS analysis pro-
cess starts by letting users encode all the sequences of operations that do
not respect the security properties they are interested in as paths leading to
error states within FSAs. Program execution is then monitored against the
FSAs; if an error state is reached, the program violates the security prop-
erty. MOPS monitor takes a conservative view: potentially false positives are
always reported, and then users have to manually check if an error trace is
really a security vulnerability. MOPS-based experiments have been applied to
the entire Red Hat Linux 9 distribution, which consists of 839 packages with
about 60 millions of lines of code, and required the definition of new security
properties to be model checked. To extend pattern expressiveness, [26] intro-
duces pattern variables, which can describe different occurrences of the same
expression. To improve scalability the concept of compaction is used, that is,
simplifying the program to be analyzed by checking the relevant operations
only, and MOPS is integrated with existing build processes and interposed
with gcc. Error reporting in MOPS is then enhanced by dividing error traces

82 4 Formal methods for software verification

in groups and selecting a representative used by the users to determine if a
bug has been discovered. With this extension, MOPS shows all programming
errors and at the same time reduces the number of traces to be analyzed by
the users by hand.

Below, we describe four main security properties defined in [26] and the
results of the analysis of Red Hat Linux (see Table 4.2). The results show the
feasibility of using MOPS for large scale security analysis.

Property Warnings Bugs
TOCTTOU 790 41

Standard File Descriptors 56 22
Temporary Files 108 34

strncpy 53 11

Table 4.2: Model-Checking Results

Time-To-Check-To-Time-Of-Use (TTCTTOU). This technique checks whether
access rights to an object have expired at the time it is used. A classic ap-
plication is to find vulnerabilities of file systems due to race conditions.
Let us consider the classic example of a process P that tries to access a
file system object O and, once access has been granted, passes a refer-
ence to O as an argument of a system call, say, to display information
in O. If a context switch takes place after P ’s access rights to O have
been checked but before P executes of the system call, permissions may
be changed while P is suspended. When P is scheduled again, it no longer
has the right to access O; however, it goes on to pass the reference to O
it already holds to the system call. Of this reference still allows displaying
O, a vulnerability has been detected. In practice, three different types of
vulnerabilities have been found: (i) Access Checks, discussed in the above
example, (ii) Ownership Stealing, where an attacker creates a file where
a program inadvertently writes, (iii) Symlinks, where the file a program
is writing to gets changed by manipulating symbolic links. As shown in
Table 4.2, 41 of 790 warnings (i.e., traces violating the security property)
have been found to be real software faults.

Standard file descriptor. This attack uses the three standard file descrip-
tors of Unix (i.e., stdin, stdout, stderr) to exploit system vulnerabilities.
Attackers can be able to append data to important files and then gain
privileges, or read data from files that they are not supposed to access, by
manipulating the standard file descriptors. As shown in Table 4.2, 22 of
56 warnings have been found to be real faults.

Secure Temporary Files. An attacker exploits the practice of using tempo-
rary files to exchange data with other applications, writing logs, or storing
temporary information. In Unix-like systems, these data are usually writ-
ten to the /tmp directory, where each process can read/write. Also, the

4.3 Static Analysis and Formal Methods for Errors Detection 83

functions to create temporary files are unsecure since they return a file
name rather than a descriptor. An attacker guessing the file name is able
to create a file with the same name and then access the information that
will be stored in. As shown in Table 4.2, 34 of 108 warnings have been
found to be real faults.

strncpy. String copying is a classic source of potential attacks leading to
buffer overflow attacks. strncpy is not safe since it leaves to the devel-
oper the responsibility of manually appending the null character (‘n′) that
should terminate every C string. Both scenarios have been modeled with
a FSA. However, this security property produced a set composed by 1378
unique warnings, which makes a complete manual analysis burdensome.
An alternative to a complete analysis is selecting semi-randomly set of
packages that contain at least one warning. In the experiments, 19 pack-
ages have been selected with 53 warnings, 11 of which have been identified
as faults. If all warnings have the same probability of being faults, there
are about 268 bugs among the 1378 unique warnings.

4.3.3 Symbolic approximation for large-scale OS
software verification

A recent software solution aimed at the verification of large-scale software
systems is based on an approach called symbolic approximation [2, 3, 4, 5, 6].
Symbolic approximation mitigates the state space explosion problem of model
checking techniques (see Section 4.2.1), by defining an approximate logical
semantics of C programs. The approach models program states as logical de-
scriptions of what is true at each node in the program execution graph. These
descriptions are compared with a program specification in order to identify
those situations in which the program may do something bad. The seminal
works in this field are the ones by Peter Breuer et al. [2, 4, 6]. These works
were aimed at providing a formal solution for detecting deadlock, double-
free and other errors in the several million lines of code in the Linux kernel.
The application of their formal analysis to the Linux code detected faults
and errors never identified by thousands of developers who had reviewed the
Linux code. The analyzer, written in C, is based on a general compositional
program logic called NRBG (the acronym comes from “Normal”, “Return”,
“Break”, “Goto”, which represent different types of control flow).8 A pro-
gram fragment analyzed in NRBG terms is considered as operating in three
phases: i) initial, a condition p holds at start of the execution of the fragment,
ii) during, the fragment is executed, and iii) final, a condition q holds at the
end of the execution of the fragment. Based on this logic, individual program

8 NRBG logic is also defined for the treatment of loops, conditional statements and
other functions such as lock, unlock, and sleep. Component G is used to represent
the goto statement.

84 4 Formal methods for software verification

fragments are modeled in Hoare triplets. For instance, a normal exit from a
program fragment is modeled as follows:

p N(a; b) q = p N(a) r ∧ r N(b) q

To exit normally with q, the program flows normally through fragment a,
achieve an intermediate condition r, enter fragment b, and exit it normally.

A return exit (R) from a program fragment (i.e., the way code flows out
of the parts of a routine through a “return” path) is modeled as follows:

p R(a; b) q = p R(a) q ∨ r R(b) q

Here, two paths are possible: (i) return from program fragment a, or (ii)
terminate a normally, enter fragment b, and return from b.

A static analyzer tool allows the detail of the logic above to be specified
by the user for the different program constructs and library function calls of
C, giving rise to different logics for different problem analysis. The tool in-
corporates a just-in-time compiler for the program logic used in each analysis
run. Logic specifications have the following form:

ctx precontext, precondition :: name(arguments)[subspecs] = postconditions

with ctx postcontext

Here, precondition is the input condition for the code fragment, while
postconditions is a triple of conditions applying to the standard exit paths
(N,R,B) for the program name. The precontext and postcontext contain the
conditions pertaining to the additional exit paths provided by the gotos in
the program. As an example, let us consider the forever while loop logic.

ctx e, p :: while(1)[body] = (b,r,F) with ctx f

where ctx f, p :: fix(body) = (n,r,b) with ctx f

A normal exit occurs when the loop body hits a break statement with the
condition (b) holding. The normal loop body termination condition (n) and
the associated loop body return (r), and the break (b) conditions are defined
to be the fixpoint (‘fix(body)’) of the loop body, above the start condition
(p). That is:

n ≥ p ∧ n :: body = (n,r,b)

in the specification language terminology, or

p ⇐ n ∧ n N(body) n ∧ n R(body) r ∧ n B(body) b

in the abstract logic. A return exit happens when a return statement is ex-
ecuted from within the body of the while (r). The post-context f contains
the ways to exit the loop through a goto, as determined by the logic for the
loop body.

4.3 Static Analysis and Formal Methods for Errors Detection 85

Each logic specification for the analyser covers the full C language. Be-
low, we briefly discuss how the solution by Breuer et al. [2, 4, 6] can be
used to locate instances of a well-known fault in programming for Symmetric
Multi-Processing (SMP) systems called “sleep under spinlock”. A spinlock is
a well-known classical SMP resource-locking mechanism in which a thread
waiting to obtain a lock continuously checks if the lock is available or not
(a situation called busy waiting). The waiting thread occupies the CPU en-
tirely until the spinlock is released by another thread on another CPU in
the SMP system. Suppose now that, in a 2-CPU SMP system, the thread
holding the lock (turns off interrupts and) calls a sleepy function (one which
may be interrupted and scheduled out of the CPU for some time) and then
is scheduled out of its CPU. If two new threads end up busy-waiting for the
same spinlock before the spinlock holder can be rescheduled, the system is
deadlocked: the two threads occupy both CPUs entirely and interrupts are
off. This vulnerability is critical since an adversary can exploit it to bring a
denial of service attack [11].

To identify the calls to sleepy functions under spinlock, the logic speci-
fication in [6] provided a single unlock logic pattern for all the variants of
spin-unlock calls in the Linux kernel. The logic decrements a spinlock total
counter (see Figure 4.3). Similarly, the specification provided a single lock
logic pattern for all the variants of spinlock calls of Linux.

ctx e, p :: unlock(label l) = (p[n+1/n],F,F) with ctx e
ctx e, p :: lock(label l) = (p[n-1/n],F,F) with ctx e

Fig. 4.3: Logic specification of unlock and lock function

A logical objective function was specified for this analysis which gauges
the maximum upper limit of the spinlock counter at each node of the syntax
tree. A set of trigger/action rules creates the sleepy call graph. When a new
function is marked as sleepy, all callers of the function plus all callers of its
aliases are marked as sleepy as well. The analysis creates a list with all the
calls that may sleep under a spinlock.

files checked 1055
alarms raised 18 (5/1055 files)
false positives 16/18

real errors 2/18 (2/1055 files)
time taken about 24h (Intel P3M,

733 MHz, 256M RAM)
LoC about 700K

Table 4.3: Linux Kernel 2.6.3: testing for sleep under spinlock

86 4 Formal methods for software verification

The Linux kernel 2.6.3 was tested to find occurrences of sleep under spin-
lock (see Table 4.3 for more details); 1055 files of about 700K LOC were
considered and 18 alarms raised. The real faults found amounted to 2 of the
18 alarms. The fact that many of the alarms were false positives should not
necessarily be seen as a problem when the effort of analyzing false positives
is considered in relation to the effort involved in finding faults manually.

4.4 Conclusion

Formal method verification is an important aspect of software security aimed
at reducing risks caused by software faults and vulnerabilities. Model-based
certification gathers a variety of formal and semi-formal techniques, dealing
with verification of software systems’ reliability, safety and security proper-
ties. In particular, model-based techniques provide formal proofs that an ab-
stract model (e.g., a set of logic formulas, or a formal computational model
such as a finite state automaton), representing a software system, holds a
given property. As discussed in this chapter, much work has been done in
the context of static analysis, formal methods and model checking. These
solutions have gained a considerable boost in the recent years and are now
suitable for software verification in critical security contexts and for verifica-
tion of large scale software systems such as a Linux distribution. However,
some drawbacks still need to be addressed. Firstly, these techniques produce
a non-negligible rate of false positives, which require a considerable effort for
understanding which warnings correspond to real faults. Secondly, model-
based techniques do not support configuration evolution: it is not guaranteed
that a certification obtained for one configuration will still holds when the
configuration changes.

References

1. D. Avots, M. Dalton, V. Livshits, and M. Lam. Improving software security with
a c pointer analysis. In Proc. of the 27th International Conference on Software
Engineering (ICSE 2005), St. Louis, Missouri, USA, May 2005.

2. P.T. Breuer and S. Pickin. Checking for deadlock, double-free and other abuses
in the linux kernel source code. In Proc. of the Workshop on Computational
Science in Software Engineering, Reading, UK, May 2006.

3. P.T. Breuer and S. Pickin. One million (loc) and counting: static analysis for
errors and vulnerabilites in the linux kernel source code. In Proc. of the Reliable
Software Technologies-Ada-Europe 2006, Porto, Portugal, June 2006.

4. P.T. Breuer and S. Pickin. Symbolic approximation: an approach to verification
in the large. Innovations in Systems and Software Engineering, 2(3–4):147–163,
December 2006.

5. P.T. Breuer and S. Pickin. Verification in the light and large: Large-scale ver-
ification for fast-moving open source c projects. In Proc. of the 31st Annual

References 87

IEEE/NASA Software Engineering Workshop, Baltimore, MD, USA, March
2007.

6. P.T. Breuer, S. Pickin, and M. Larrondo Petrie. Detecting deadlock, double-free
and other abuses in a million lines of linux kernel source. In Proc. of the 30th An-
nual IEEE/NASA Software Engineering Workshop, Columbia, MD, USA, April
2006.

7. C - Approved standards. http://www.open-std.org/jtc1/sc22/wg14/www/
standards.

8. Carnegie Mellon University’s Computer Emergency Response Team. http://
www.cert.org/.

9. H. Chen and D. Wagner. Mops: an infrastructure for examining security prop-
erties of software. In Proc. of the 9th ACM Computer and Communications
Security Conference (ACM CCS 2002), Washington, DC, USA, November 2002.

10. K. Chen and D. Wagner. Large-scale analysis of format string vulnerabilities in
debian linux. In Proc. of the 2007 Workshop on Programming Languages and
Analysis for Security (PLAS 2007), San Diego, California, USA, June 2007.

11. W. Cheswick and S. Bellovin. Firewalls and Internet Security; Repelling the Wily
Hacker. Addison Wesley, 1994.

12. E. Clarke, O. Grumberg, and D. Peled. Model Checking, December 1999. MIT
Press.

13. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract: To-
ward a semantics for digital signatures on mobile code. In Proc. of the Fourth
European PKI Workshop: Theory and Practice (EUROPKI 2007), Mallorca,
Balearic Islands, Spain, June 2007.

14. N. Dragoni, F. Massacci, C. Schaefer, T. Walter, , and E. Vetillard. A security-
by-contracts architecture for pervasive services. In Proc. of the 3rd International
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Comput-
ing, Istanbul, Turkey, July 2007.

15. D.A. Duffy. Principles of Automated Theorem Proving. John Wiley & Sons,
1991.

16. D. Evans and D. Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42–51, January-February 2002.

17. U. Glasser, R. Gotzhein, and A. Prinz. Formal semantics of sdl-2000: Status and
perspectives. Computer Networks, 42(3):343–358, June 2003.

18. C. A. R. Hoare and C. B. Jones (eds.). Essays in computing science. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1989.

19. R. Johnson and D. Wagner. Finding user/kernel pointer bugs with type inference.
In Proc. of the 13th conference on USENIX Security Symposium, San Diego, CA,
USA, August 2004.

20. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994.

21. W. Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems, 1(4):323–337, December 1992.

22. G. Necula. Proof-carrying code. In Proc. of the ACM Principles of Programming
Languages (POPL 1997), Paris, France, January 1997.

23. G.C. Necula and P. Lee. The design and implementation of a certifying compiler.
In Proc. of the ACM SIGPLAN ’98 Conference on Programming Language De-
sign and Implementation (PLDI 1998), Montreal, Canada, May 1998.

24. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, Berlin, 1999.

25. M.F. Ringenburg and D. Grossman. Preventing format-string attacks via au-
tomatic and efficient dynamic checking. In Proc. of the 12th ACM conference
on Computer and Communications Security (CCS 2005), Alexandria, VA, USA,
November 2005.

88 4 Formal methods for software verification

26. B. Schwarz, H. Chen, D. Wagner, J. Lin, W. Tu, G. Morrison, and J. West.
Model checking an entire linux distribution for security violations. In Proc. of
the 21st Annual Computer Security Applications Conference (ACSAC 2005),
Tucson, Arizona, USA, December 2005.

27. R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan, and S.A. Smolka. Model-
carrying code (mcc): A new paradigm for mobile-code security. In Proc. of the
New Security Paradigms Workshop (NSPW 2001), New Mexico, USA, Septem-
ber 2001.

28. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: A practical approach for safe execution of untrusted applications.
In Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP
2003), New York, USA, October 2003.

29. O. Shivers. Control-flow analysis in scheme. In Proc. of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI 1988),
Atlanta, Georgia, USA, June 1988.

30. R.F. Staerk, J. Schmid, and E. Boerger. Java and the java virtual machine:
Definition, verification, validation. Springer-Verlag, 2001.

31. D. Wagner, J. Foster, E. Brewer, and A. Aiken. A first step towards automated de-
tection of buffer overrun vulnerabilities. In Proc. of the Network and Distributed
Systems Security Symposium (NDSS 2000), pages 3–17, San Diego, California,
USA, February 2000.

Chapter 5

OSS security certification

Abstract Open source software is being increasingly adopted for mission and
even for safety-critical applications. Experience has shwon that many open
source software products have achieved adequate functionality and scalability.
Security, however, requires a specific analysis, since open source software
development does not usually follow security best practices. Indeed, the lower
number of security events involving open source software may be ascribed to
its smaller market share rather than to its robustness. In this chapter we start
by taking a closer look to the meaning of the open source label, discuss the
connection between licenses and certificates. Then, we summarize the debate
on open source security and discuss some issues pertaining to open-source
assurance activity and to open source security certification.

5.1 Open source software (OSS)

The debate between open source and closed source supporters dates back to
the origin of software and is still far away from a conclusion. The advent
of the Internet has made this contraposition even more harsh. The closed
software model was originally introduced in the 1970s, when software com-
mercialization became a reality. Computer software was treated as a com-
pany asset, to be protected from competitors who might otherwise repro-
duce, study or modify the code, to resell, use, or learn from the product.
The closed source paradigm allowed software houses to protect their prod-
ucts from piracy or misuse, reverse engineering and duplication. Also, the
closed source paradigms allowed software suppliers to preserve competitive
advantage and vendor lock-in.

By contrast, the concept of free software was born as a social movement
(1983) aimed to protect user’s rights to freely access and modify software. In
1985, Richard Stallman founded the Free Software Foundation [20] (FSF) to
support such a movement. In 1998, a group of members of the FSF replaced

89

90 5 OSS security certification

the term free software with open source, in response to Netscape’s January
1998 announcement of a source code release for their Netscape Navigator
browser.

As Stallman himself pointed out, OSS development departs radically from
commercial software form the very beginning: an open source software so-
lution is not planned as a product to be offered to the market to achieve
a profit. Often, the initial idea and the design do not take place within the
boundaries of a traditional business organization. Some OSS projects, such as
business applications or middleware, are entirely autonomous. Others exist as
components, as for instance, part of the Linux kernel. Large, mature projects
such as the Apache Web server have they own autonomous evolution strategy,
although benefiting from the contributions of hundreds of outside submitters.
Whatever the status (component or application) of an open source project,
it will remain useful only as long as it has a well-specified assurance pro-
cess, that is, its maintainers properly update and test it. In this Chapter we
shall discuss when and how software certification can become a part of the
assurance effort of open source projects.

5.1.1 Open Source Licenses

The action of the FSF was instrumental for clarifying the semantics of the
open source label: an open source software product is a software product
made available under an open source license. Today, open source licenses are
not just declarations which grant to the user unlimited rights of accessing
and modifying the software product’s source code. Rather, licenses specify in
detail who is entitled to access the source code, and the allowed actions to
be performed on it. The reader should not miss the conceptual link between
a software license and a certificate: both of them assert some properties of
a software product, and both may be distributed and checked in a digital
format. A major difference between licenses and certificates is that the for-
mer seldom deals with software properties but, rather, the assertions made in
a software license focus on the rights and obligations of both purchaser and
supplier concerning the software product’s usage or redistribution. The word-
ing of the license may be such that the software supplier has no obligation
whatsoever, not even that the software program will be useful for any specific
particular purpose. In the license, however, the purchaser may get permission
from the supplier to use one or more copies of software in ways where such a
use would otherwise constitute infringement of the software supplier’s rights
under copyright law.1

1 Such use (e.g., creating archival copies of the software) may be permitted by law in
some countries, making it unnecessary to explicitly mention it in the license. In effect,
this part of a proprietary software license amounts to little more than a promise from
the software supplier not to sue the purchaser for engaging in activities that, under

5.1 Open source software (OSS) 91

Some licenses give very limited rights to the purchaser. Many proprietary
licenses are non-concurrent, that is, do not allow the software product to be
executed simultaneously on multiple CPUs, or set a limit to the number of
CPUs that can be used. Also, the right of transferring the license to another
purchaser, or to move the program from one computer to another may be
limited in the license.2 Finally, proprietary software licenses usually have an
expiration date. The license validity may range from perpetual to a monthly
lease. A time-limited license can be self enforcing: the supplier may insert
into the software product a security mechanism that, once the license has
expired, will disable the software product. An interesting by-product of time-
limited licenses is the emerging need for certifying that security mechanism
used to enforce license expiration do not impair the software performance or
dependability while the license is still valid.

Software suppliers have traditionally been lax on license enforcement and
then individual purchasers of proprietary software tend to pay little attention
to compliance. However, most large companies and organizations, including
universities, have established strong license compliance policies.

Open source is sometimes seen (or presented) as a way out from the com-
plex problem of guaranteeing compliance to proprietary software licenses.
However, OSS is itself distributed under a license and more than 30 licenses
actually exist [30]. To help in establishing some degree of uniformity, the Open
Source Initiative (OSI) [36], jointly founded by Eric Raymond and Bruce
Perens in February 1998, has promoted since long a specification (called Open
Source Definition (OSD)) of what must appear in a license in order for the
software covered by it to be considered open source. Licensers are however
free to use licenses that go beyond OSD minimum requirements, in the sense
of providing more rights to the user. Thus, OSD-compatible licenses are not
all the same.

OSI’s open source definition mandates that the license of an open source
software product must comply with ten criteria [26], described as follow.

1. Free redistribution. An open source license must permit anyone who ob-
tains and uses the covered software to give it away to others without
having to pay a royalty or other fee to the original copyright owner(s).

2. Access to source code. All types of open source licenses require everyone
who distributes the software to provide access to the program source code.
Often, distributors provide the source code along with the executable
form of the program, but the license does not bind them to do so; for
instance, they could make the code available via Internet download, or
on other media, free or for a reasonable fee to cover the media cost.

the law of the country where the purchase is made, would be considered exclusive
rights belonging to the supplier itself.
2 For instance, OEM Windows licenses are not transferable. When the purchaser
does not longer use the computer where the Windows software is pre-installed, the
Windows license must be retired.

92 5 OSS security certification

3. Derivative works. An open source license must allow users to modify the
software and to create new works (called derivatives) based upon it. An
open source license must permit the distribution of derivative works under
the same terms as the original software. This provision, together with the
requirement to provide source code, fosters the rapid evolution pace of
open source software.

4. Integrity of the author’s source code must be preserved.
5. No discrimination on users. An open source license does not discrimi-

nate against persons or groups. Everybody can use open source software,
provided they comply with the terms of the open source license.

6. No discrimination on purpose. An open source license does not discrim-
inate against application domains. In other words, the license may not
restrict anyone from using the software based on the purpose of such
usage. Specifically, it may not restrict the program from being used for
commercial purposes. This permits business users to take advantage of
open source products for commercial purposes.

7. License Distribution. The wording of an open source license must be made
available to all interested parties, and not to the purchaser alone.

8. Product Neutrality. An open source license must not be specific to a single
software product.

9. No transfer of restrictions. An open source license on a software product
must not restrict the use of other software products, both open source
and proprietary. In other words, an open source license must not mandate
that all other programs distributed together with the one the license is
attached to are themselves open source. This clause allows software sup-
pliers to distribute open source and proprietary software in the same
package. Some widespread licenses, including the GPL (General Public
License) presented below, require that all software components “consti-
tuting a single work” to fall to under the GPL if anyone of them is dis-
tributed under GPL. This requirement may seem to have been spelled out
clearly, but wrapping and dynamic invocation techniques have sometimes
been used as a work-around to it.

10. Technology Neutrality. An open source license must not prescribe or sup-
ply a specific technology.

It is beyond the scope of this book to provide a detailed analysis of all open
source licenses. Here, we shall limit ourselves to outlining the main features of
some widespread ones. The interested reader is referred to our main reference,
the classic book [30]. However, it is important to remark that organizations
and individuals supporting the open source paradigm (including the authors
of this book) firmly believe that the benefits given by a community of gifted
and enthusiastic software developers working at the evolution of a software
product are much more important than the (often illusory) advantages of
protecting the intellectual property rights on it.

5.1 Open source software (OSS) 93

• GNU General Public License (GPL) is one of the first open source licenses
and still by far the most widely used. It is considered a liberal license
inasmuch the original programmer does not retain any right on modified
versions of the software. Richard Stallman and Eben Moglen created the
GPL and started the Free Software Foundation to promote its use. For
instance, Linux is distributed under a GPL license.

• The Mozilla Public License (MPL) is another popular open source license.
It came about to distribute the original Mozilla open source web browser.
It is less liberal than GPL, inasmuch it requires the inclusion or publishing
of the source code within one year (or six months, depending on the
specific situation) for all publicly distributed modifications.

• The Berkeley Software Distribution (BSD) License was one of the earliest
non-proprietary licenses, and follows a very different philosophy than
GPL. BSD permits users to distribute BSD-licensed software for free or
commercially, without providing the source code; they also may modify
the software and distribute the changes without providing the source
code. A major difference between BSD and GPL is that organizations or
individuals who create modified versions of software originally licensed
under BSD can distribute them as proprietary software, provided that
they credit the developers of the original version. Two other widespread
open source licenses, the Apache Software License and the MIT License,
are very similar to the BSD License.

The differences between GPL and other open source licenses become very
relevant when a user creates a derivative from existing open source code. In
this case, with GPL the license is inherited. The new code must be distributed
under the same license as the original version. This may not be true for other
licenses.

5.1.2 Specificities of Open Source Development

The rapid pace of evolution and the multi-party development fostered by
the open-source licensing policies described above make open source soft-
ware products very different from proprietary ones. Generally speaking, open
source software is developed and modified by programmers who devote their
time, energy and skills without receiving any direct compensation for their
work [24]. In this context, the whole relation between software purchasers and
software suppliers changes dramatically. Open source gives much more power
to customers who need customized products that fit their business activities.
If a customer chooses to use open source software, say, for human resource
management, a software supplier can offer to customize the software for that
individual customer. In this case the customer will be charged a fee not for
using the software itself, but for the service of customizing it.

94 5 OSS security certification

Before discussing OSS security certification, it is therefore important to
look at the process of developing OSS [43]. OSS has fostered a new software
development style based on a heterogeneous mixture of existing methodolo-
gies and development processes. It does not provide any standard criteria to
select activities for the different projects; instead, it is up to developers to
agree on which methodology is more suitable for them [16]. Rather than by
a specific set of activities, the OSS development process is characterized by
its rapid release cycle, for teams that put together developers with diverse
skills and competences, for fast rate of code change over time and for the
use of readable code as a way to satisfy the need of a clear and unambiguous
documentation.3 Code is seen as the first specification of open source systems
and, as a result, those systems are often otherwise undocumented.

The above description may convey the idea that OSS “emerges” from a
Wikipedia-style “democratic” cooperation rather than from a disciplined de-
velopment process. This is however not the case for some major OSS projects.
In particular, here we are interested in the level of coordination which is cru-
cial for testing and security assurance.

As an example, let us briefly consider the Linux development process. We
will come to certifying Linux distributions in Chapter 6. Bill Weinberg4 de-
scribes the Linux kernel development and maintenance process as a “benev-
olent dictatorship”. It is probably more like feudalism: while contributions
to the kernel come from developers worldwide, the authority of including
and integrating them in the Linux kernel belongs to around 80 maintainers,
each responsible of a subsystem of the Linux kernel. Each subsystem has
its own versioning; sets of subsystems are integrated into patch sets that, in
turn, are used to set up “experimental” kernel versions (in the past, these
corresponded to odd-numbered kernel releases like 2.3.x and 2.5.x). When
the highest authority (Linus Torvalds and his team) considers an experimen-
tal kernel ready for deployment, a new production kernel is generated and
handed off for testing to the production kernel maintainers, who are responsi-
ble for the entire testing process. Starting from production kernels, companies
and consortia create Linux distributions aimed at the business or embedded
systems domain.

Linux kernel maintainers can also select external OSS projects, such as
device drivers, to be integrated into a Linux subsystem. Some examples are
security-related; for instance, the National Security Agency (NSA) Secure
Linux was adopted as a standard build option in the 2.6 Linux kernel.

3 OSS is seldom developed from a stable specification and a priori software requisites
are usually vague.
4 The description below is partly based on his contribution “The Open Source Devel-
opment Process”, originally published on the Embedded Computing Design magazine,
http://www.embedded-computing.com/departments/osdl/2005/1/.

5.1 Open source software (OSS) 95

5.1.2.1 The Open Source Code Assurance

Understanding the general quality assurance of OSS code is particularly im-
portant for the integration of the security certification process into OSS devel-
opment. Let us start with a formal definition of Software Assurance (SwA):
an activity aimed at increasing the level of confidence that a software prod-
uct operates as intended and is free of faults. In a traditional, lifecycle-based
software development process, assurance includes a number of tasks to be
carried out by developers and testers along the software lifecycle.

Feedback from
the Field

Requirements
and Use Cases

Architecture
and Design

Test Plans Code Tests and
Test Results

Abuse cases

Security
Requirements

Risk Analysis

External
Review

Risk-based
Security Tests

Code Review
(tools) Risk Analysis

Penetration
Testing

Security
Operations

Fig. 5.1: Assurance tasks in a traditional, lifecycle-based development process

Security assurance activities for OSS code could be performed at several
points in the code life cycle. Contributions to major OSS projects like Linux
are strictly monitored and must meet quality standards; here, we are in-
terested in the assurance process used to keep these standards. Of course,
different OSS projects will use different assurance procedures, but some con-
ditions are verified for all OSS projects. Upon submission, a contribution to
an OSS project must be well-formed, that is, coded and packaged according
to well-established OSS conventions. The first assurance activity is usually
checking for novelty and interest of the contribution, that is, the properties
(either functional or non-functional) it would add to the project. These checks
are usually made by core members of the community (in the case of the Linux
kernel, by the subsystem maintainers). Once a contribution makes is accepted
into a OSS project, it will be tested, and reviewed by the project’s commu-
nity to become part of the project’s mainstream code. In the specific case of
Linux, the process is two-tiered: if the subsystem or project containing the
new contribution is then picked up by a Linux distribution like SuSE, it will
be subject to that distribution-specific assurance procedure. Typical assur-
ance activities performed at distribution level include standards-compliance
testing (for example, LSB and POSIX), stability and robustness testing. To-
day, Linux security certification is also carried out at the distribution level
(Chapter 6).

It should be noted that the assurance process described above (see Figure
5.2) can be made three-tiered by adding a user-specific assurance activity
at adoption time. In the case of Linux, this assurance procedure is coarser-
grained, as adopters retain control over the inclusion of each specific sub-

96 5 OSS security certification

Fig. 5.2: The two- and three-tiered assurance process of OSS

system in the distribution, but of course not of individual contributions to
subsystems. However, regression is always possible, that is, the adopter can
always return to a previous version of the subsystem if an update does not
meet the adopter’s quality or dependability standards. Some adopters prefer
to entirely delegate security and quality assurance to their preferred distri-
bution; others try and influence the OSS product evolution at both design
and assurance time.5 We are now ready to summarize the set of properties
that distinguish OSS development from a traditional development processes
from the point of view of security assurance.

• Large distributed community of developers. It is one of strongest points of
OSS development. No matter how a big a company can be, it will never
have as many developers as some well known open source projects.

• Fast feedback from users. Fault reports, usability problems, security vul-
nerabilities reports are some examples of the feedback the open source
community receives constantly from the users. This communication tends
to be more frequent and intense, and above all more direct, than the one
taking place for proprietary software products. This feedback allow open
source developers to locate and fix reported faults very rapidly.

• Users are an integral part of the development process. Users have been
always considered part of the OSS development cycle. Keeping the users
involved helps them to express their point of views about functional re-

5 A notable example is the telecommunication sector, where Carrier Grade Linux
(CGL) defines a set of specifications as well as some assurance criteria which must
be met in order for Linux to be considered “carrier grade” (i.e., ready for use within
the telecommunications industry).

5.2 OSS security 97

quirements, security, usability, write documentation, and other tasks that
developers may neglect.

• Talented and highly motivated developers. The idea of having their code
reviewed by a member of the core group of an open source software, or
knowing that their code would be part of the next release of a widespread
software product attracts many motivated developers to contribute to
open source projects [16].

• Rapid release cycles. Thanks to a large, active and high motivated com-
munity of developers working around the clock, many open source soft-
ware provide more rapid release cycle and updates compared to software
developed inside companies. For example, in 1991 there was more than
one release per day for the Linux kernel [16].

• Terseness of analysis documentation. OSS is not based on the definition
of a set of formal and stable specifications and requisites to be used in
the development process; rather, community-wide discussions are used as
a kind of implicit specifications that drive the developers contribution to
the software.

The above properties of OSS development correspond to many advan-
tages (as well as to some disadvantages) compared to other types of software
development processes. In Section 5.2, we shall discuss in detail how these
advantages and disadvantages affect the adoption of OSS in critical security
areas and the certification of OSS security properties. However, we can an-
ticipate some interesting facts. First of all, while the open source specificity
in terms of development process and licenses may still play a marginal role
in the decisions of individual users, it has already a huge impact on adoption
patterns of companies and organizations. Sometimes companies do not have
the time and resources for a complete pre-adoption analysis of OSS and just
“go and use it”. This pattern of OSS adoption is often seen as a leverage
against vendors of proprietary software products. Other times, companies
rely on internal adoption guidelines, and look at the exploitation of OSS
community-based development as a way to reduce development costs and ac-
celerate the availability of new features. This opportunistic strategy does not
come for free, because it requires creating internal competence groups able to
influence the relevant development communities. Alternatively, brokers (often
individual consultants or small companies) familiar with the OSS develop-
ment process can be hired to manage partially or totally the interaction with
the development community.

5.2 OSS security

In the last few years, security has not been a major driver for open source
assurance [4]. Possible reasons include some reluctance by the OSS commu-
nity to set up a separate security assurance process, as opposed to a general

98 5 OSS security certification

quality assurance one. On Tuesday July 15th 2008, posting to the gmane dis-
cussion group, Linus Torvalds wrote:
“...one reason I refuse to bother with the whole security circus is that I think
it glorifies - and thus encourages - the wrong behavior.
It makes “heroes” out of security people, as if the people who don’t just fix
normal bugs aren’t as important.
In fact, all the boring normal bugs are way more important, just because
there’s a lot more of them. I don’t think some spectacular security hole should
be glorified or cared about as being any more “special” than a random spec-
tacular crash due to bad locking”.

In turn, some security experts do not completely trust the open source
communities and consider open source middleware a potential “backdoor”
for attackers, potentially affecting overall system security. However, propri-
etary security solutions have their own drawbacks such as vendor lock-in,
interoperability limitations, and lack of flexibility. Recent research suggests
that the open source approach can overcome these limitations [3, 41].

A long debate has been going on in the security research community,
whether open source software should be considered more or less secure than
closed source software. A classical analysis is the one done by Wheeler
in [52]. This debate has not led to any definitive conclusion so far [13],
and it is unlikely to do so in the near future. It is however interesting
to note that the discussion has been mainly confined to software imple-
menting security solutions rather than extended to general system-level
software products or to software applications, although it is widely recog-
nized that most new threats to security are emerging at the application
level. According to another essay published by David Wheeler, the author
of “Secure Programming for Linux and Unix” [51] on his book’s website
(http://www.dwheeler.com/secure-programs): “There has been a
lot of debate by security practitioners about the impact of open source ap-
proaches on security. One of the key issues is that open source exposes the
source code to examination by everyone, including both attackers and defend-
ers, and reasonable people disagree about the ultimate impact of this situa-
tion”. Wheeler’s interesting essay contains a number of contending opinions
by leading security experts, but no conclusion is reached.

Probably, the only non-questionable fact is that open source software gives
both attackers and defenders greater control over software security properties.
Let us summarize Wheeler’s arguments in favor and against the notion that
a software being open source has a positive impact on its security-related
properties.

• Open source is less secure. The availability of source code may increase
the chances that an attacker will detect and exploit a software fault. Also,
the informality and flexibility of the open source development process
have been known to backfire. For instance, not all open source projects
provide documentation on the secure deployment of the software they
develop. This lack of information may cause faulty installations, which in

5.3 OSS certification 99

turn may result in security holes. Some open source development com-
munities do not bother with hardening their products against well-known
security vulnerabilities and do not provide any report on fault detec-
tion, even though some simple open source tools, such as FindBugs, are
available (see Chapter 4 for more details). Delay in implementing well-
understood security patches is a clear indication that security best prac-
tices are a low priority issue for some open source projects. This may
be understandable in some cases, because security requirements may be
quite different for different applications, but it could also indicate a lower
level of security awareness on the part of the OSS community.

• Open source is more secure. The greater visibility of software faults [13]
typical of open source products may also be exploited by defenders. Well
trained defenders, taking advantage of knowledge normally not available
with closed source software, have been known to ensure a short response
time, fixing software vulnerabilities as soon as the corresponding threats
are described. Defenders can also rely on the independent work of the
open source community to identify new security threats, since open source
software is usually subject to a community-wide review and validation
process.

Whatever the merits of these positions, this controversy is bound to remain
somehow academic. Open source projects largely differ from one another, and
the same arguments can be brought in favor or against the thesis depending
on the specific situation considered. In their paper “Trust and Vulnerability
in Open Source Software” [25], Scott A. Hissam and Daniel Plakosh rightly
observe that “just because a software is open to review, it should not auto-
matically follow that such a review has actually been performed”.6

Hopefully, however, the above discussion has clarified the need of some
form of security certification based on a rigorous and in-depth analysis. What
is still missing is a security certification framework allowing, on the one side,
suppliers to certify the security properties of their software and, on the other
side, users to evaluate the level of suitability of different open source security
solutions. We shall discuss the requirements for such a framework in the next
section.

5.3 OSS certification

In principle, the standard certification processes described in this book can
be employed to certify OSS products, as they are for proprietary ones. The
obstacle posed by the peculiar nature of OSS development process can in
fact be overcame, since some certification standards accept applications from
organizations adopting nearly every type of development process. Therefore

6 Incidentally, we remark that the same comment can be made for testing.

100 5 OSS security certification

forges, consortia or foundations promoting open source product development
do in principle qualify as applicants for obtaining the certification of OSS
products. For example, the norm ISO 9126 (see Chapter 1) explicitly men-
tions an application to OSS projects. Any OSS project compliant to these
standards can in theory acquire the same status as a conventional project.
This is also true for other certifications we described or mentioned in the
previous Chapters, like ISO 9000 for software suppliers, ITSEC (European),
or CC (international). The evaluation body will examine a software product’s
specified functionality, the quality of its implementation, and the compliance
with security standards.

However, some other obstacles do exist in terms of laboratory techniques.
In fact, an important prerequisite to most certifications is the availability
of a testing framework to support all controls required by the certification
process. We shall deal with this problem in Chapter 8

5.3.1 State of the art

Comparative evaluation of OSS non-functional properties, including security-
related ones is a time-honored subject. Much work has been done on open
source security testing: for instance, the Open Source Security Testing Method-
ology Manual (OSSTMM) (http://www.isecom.org/osstmm/) is a peer-
reviewed methodology for performing security tests and metrics. The OS-
STMM test cases are divided into five sections which collectively test: infor-
mation and data controls, personnel security awareness levels, fraud and so-
cial engineering control levels, computer and telecommunications networks,
wireless devices, mobile devices, physical security access controls, security
processes, and physical locations such as buildings, perimeters, and military
bases. OSSTMM focuses on the technical details of exactly which items need
to be tested, what to do before, during, and after a security test, and how
to measure the results. New tests for international best practices, laws, regu-
lations, and ethical concerns are regularly added and updated. The method-
ology refers to risk-oriented metrics such as Risk Assessment Values (RAVs)
and defines and quantifies three areas (operations, controls, limitations) as
its relevance to the current and real state of security.

The Qualify and Select Open Source Software (QSOS) is a methodology
designed to qualify, select and compare free and open source software in
an objective, traceable and argued way (http://www.qsos.org/). QSOS
aims to compare solutions against formalized requirements and weighted cri-
teria, and to select the most suitable product set available. QSOS is based on
an iterative approach where the evaluation step is based on metrics defining,
on the one hand, the risks from the customer perspective and, on the other
hand, the extent to which these risks are addressed by OSS solutions. In
general, all selection techniques require information that many open source

5.3 OSS certification 101

projects fail to make available. The Software Quality Observatory for Open
Source Software project (http://www.sqo-oss.eu/) includes techniques
computing account quality indicators from data that is present in a project’s
repository. However, such metadata need to take into account the specific
domain of the application. For instance, the dependency of loop execution
times on hardware features is a relevant quality indicator for time-critical
control loops, but has little interest for business application developers.

Several researchers [10] have proposed complex methodologies dealing with
the evaluation of open source products from different perspectives, such
as code quality, development flow and community composition and partic-
ipation. General-purpose open source evaluation models, such as Bernard
Golden’s Open Source Maturity Model (OSMM) [21] do not address the spe-
cific requirements of security software selection. However, these models as-
sess open source products based on their maturity, that is, their present
production-readiness, while evaluating security solutions also involves trying
to predict how fast (and how well) a security component will keep abreast
of new attacks and threats. Several other OSS adoption methodologies have
been proposed and developed into practical guidelines defining methodology-
(or enterprise-) specific benchmarks in terms of functionality, community
backing as well as maturity. Most of these methodologies, however, are bi-
ased toward business-related software systems and toward static integration.
Therefore, they are of limited use for complex products like telecommunica-
tion devices, which bundle or dynamically integrate hardware and software
components. For example, the Business Readiness Rating (BRR) method [40]
supports quantitative evaluation of open source software identifying seven
categories: functionality, software quality, service and support, documenta-
tion, development process, community, and licensing issues. However, addi-
tional work is required to deal with OSS non-functional properties (perfor-
mance, security, safety) across the different integration mechanisms, and with
white-box ones (terseness/sparseness, readability), which are crucial to OSS
bundling within complex products [49]. Focusing on security area, a security-
oriented software evaluation framework should provide potential adopters
with a way to compare open source solutions identifying the one which (i)
best suits their current non-functional requirements and (ii) is likely to evolve
fast enough to counter emerging threats. Our own works in [2, 5] are aimed at
providing a specific technique for evaluating open source security software, in-
cluding access control and authentication systems. Namely, a Framework for
OS Critical Systems Evaluation (FOCSE) [2] has been defined and is based
on a set of metrics aimed at supporting open source evaluation, through
a formal process of adoption. FOCSE evaluates an open source project in
its entirety, assessing the community composition, responsiveness to change,
software quality, user support, and so forth. FOCSE criteria and metrics are
also aimed at highlighting the promptness of reacting against newly discov-
ered vulnerabilities or incidents. Applications success, in fact, depends on the
above principle because a low reaction rate to new vulnerabilities or incidents

102 5 OSS security certification

Metrics Putty WinSCP ClusterSSH
Age (GA) 2911 days 1470 days 1582 days

Last Update Age (GA) 636 days 238 days 159 days

Project Core Group (GA,DC) Yes Yes Yes

Number of Core Developers (DC) 4 2 2

Number of Releases (SQ,IA) 15 32 15

Bug Fixing Rate (SQ,IA) 0.67 N/A 0.85

Update Average Time (SQ,IA) 194 days 46 days 105 days

Forum and Mailing List Support N/A Forum Yes

(GA,DIS) Only

RSS Support (GA,DIS) No Yes Yes

Number of Users (UC) N/A 344K 927

Documentation Level (DIS) 1.39 MB 10 MB N/A

Community Vitality (DC,UC) N/A 3.73 5.72

Table 5.1: Comparison of open source SSH implementations at 31 December 2006

implies higher risk for users that adopt the software, potentially causing loss
of information and money. Finally, to generate a single estimation, FOCSE
exploits an aggregator often used in multi-criteria decision techniques, the Or-
dered Weighted Average (OWA) operator [50, 54], to aggregate the metrics
evaluation results. This way, two or more OSS projects, each one described by
its set of attributes, can be ranked by looking at their FOCSE estimations. In
[2], some examples of the application of FOCSE framework to existing criti-
cal applications are provided. Here, we provide a sketch of the FOCSE-based
evaluation of security applications that implement the Secure Shell (SSH)
approach. SSH is a communication protocol widely adopted in the Internet
environment that provides important services like secure login connections,
tunneling, file transfers and secure forwarding of X11 connections [55]. The
FOCSE framework has been applied for evaluating the following SSH clients:
Putty [39], WinSCP [53], ClusterSSH [48]. First, the evaluation of SSH client
implementations based on the security metrics and information gathered by
FLOSSmole database [17] is provided and summarized in Table 5.1.

Putty WinSCP ClusterSSH
fOW A 0.23 0.51 0.47

Table 5.2: OWA-based comparison of SSH clients

Then, an OWA operator is applied to provide a single estimation of each
evaluated solution. Finally, the FOCSE estimations are generated (see Table
5.2), showing that the solution more likely to be adopted is WinSCP. In
summary, FOCSE evaluation framework gives a support to the adoption of
open source solutions in mission critical environments.

5.3 OSS certification 103

As far as model-based certification is concerned, some ad hoc projects to-
ward applying model- and test-based certification techniques to individual
OSS products have been taken. For instance, the U.S. Department of Home-
land Security has funded a project called “Vulnerability Discovery and Re-
mediation, Open Source Hardening”, involving Stanford University, Coverity
and Symantec. The project was aimed at hunting for security-related faults in
open-source software, finding and correct the corresponding security vulner-
abilities, and to improve Coverity’s commercial tool for source code analysis.
This effort resulted in a system that does daily scans of code contributed
to popular open-source projects, and produces and maintains a database of
faults accessible to developers.

Looking at test-based certification, some major players developed and
published anecdotal experience in certifying open source platforms, includ-
ing Linux itself [44], achieving the Common Criteria (CC) EAL-4 security
certification. The work in [44] describes the IBM experience in certifying
Open Source and illustrates how the authors obtained the Common Crite-
ria security certification evaluating the security functions of Linux, the first
open-source product receiving such certification. We shall discuss the Linux
certification process in more detail in the following Chapters.

General frameworks are needed to provide a methodology for functional
and non-functional testing of OSS. Referring to the terminology we intro-
duced in Chapter 3, no widely accepted OSS-specific methodology is available
supporting white-box testing in terms of code terseness/sparseness, readabil-
ity and programming discipline. As far as black-box testing is concerned,
description of tests carried out on OSS at unit or component level are some-
times made available by the development communities or as independent
projects (see Chapter 6). However, complex systems whose components have
been developed independently may require additional support for integration
and system testing. Furthermore, to obtain a genuine certification, in terms of
inward security and outward protection of a complex software system which
includes open source, it is not sufficient that all elements of the system are
certified: the composition of security properties across the integration tech-
nique must also be taken into account. When OSS is introduced into the
context of complex modular architectures, certifying the overall security of
the product is a particularly critical point [13, 37].

The issues to be addressed in the context of a security assurance and cer-
tification involving an OSS software product can be classified in the following
four areas.

• Functional test and certification. Provide test and certification of func-
tionalities, supporting the use of OSS within critical platforms and envi-
ronments for operating and business support systems, gateway, signaling
and management servers, and for the future generations of voice, data
and wireless components; define a comprehensive approach to certifica-
tion of products dynamically integrating OSS, creating an OSS specific

104 5 OSS security certification

path to certify typical functionalities of complex networking systems like
routing, switching, memory management and the like.

• Integration support. Complement existing approaches providing the spe-
cific design tools needed to bring OSS into the design and implementation
path of advanced European products, providing the research effort needed
for successful OSS integration within complex systems and for using OSS
as a certified tool for complex systems development.

• Advanced description. Provide novel description techniques, suitable for
asserting the relevant properties of OSS also integrated in telecommuni-
cation devices and other embedded systems. Properties expressed should
include specific ones such as timing dependencies, usage of memory and
other resources.

• Governance and IPR issues. Develop variety of across-project indicators
on OSS dynamic integration and static bundling. Indicators will provide
company management (as opposed to the leaders of individual develop-
ment projects) with quantitative and value-related percentages of OSS
adoption (e.g., within product lines), so that company wide governance
policies regarding OSS adoption, as well as the integration techniques, can
be monitored and enforced. Also, it will guarantee IPR peace of mind by
providing support for assessing the IPR nature of products embedding
OSS.

5.4 Security driven OSS development

Although the lack of a formal software development process is usually not
seen as a drawback by OSS communities, it may become a problem in the
security area, because security assurance techniques often assume a stable
design and development process. Focusing on security aspects, discussions
in OSS communities rarely state formal security requirements; rather they
mention informal requirements (e.g., “the software must not crash due to
buffer overflow”). However, these informal specifications are difficult to certify
as such. In this context, the need arises for a mechanism for defining security
requirements in a simply and unambiguous way.

The CC’s Security Target (ST) can become a fundamental input to OS
communities, improving the OSS software development process by provid-
ing clear indications of the contributions expected by the developers to the
project [29, 31, 34]. The ST in fact describes the security problems that
could compromise the system and identifies the objectives which explain how
to counter the security problems. Also, the ST identifies the security require-
ments that need to be satisfied to achieve the objectives.

Intuitively, the ST assumes a twofold role as a community input: (i) it
provides guidelines (ST’s objectives and requirements), the developers need
to follow when contributing to the community; (ii) it supports CC-based

5.5 Security driven OSS development: A case study on Single Sign-On 105

evaluation and certification of the OSS. This is due to the fact that, thanks
to point (i), OSS systems can be designed and developed by already consid-
ering the ST to be used in a subsequent certification. Community developers
will then be asked to provide, during the software development process, all
documentations and tests required for certification during the software de-
velopment phase. This solution results in a scenario where security targets
become high-level specification documents to be jointly developed by the
communities, driving OSS security assurance and security certification pro-
cesses.

In the next section we illustrate through an example how an ad-hoc se-
curity target can be used to provide security specification and requirements.
These requirements can then be used to manage the development process of
OSS community contributing to the system under development.

5.5 Security driven OSS development: A case study on
Single Sign-On

The use case we provide is on an open source Single Sign-On [8] solution,
which allows users to enter a single username and password to access sys-
tems and resources, to be used in the framework of an open source e-service
scenario. Single Sign-On (SSO) systems are aimed at providing functionalities
for managing multiple credentials of each user and presenting these creden-
tials to network applications for authentication (see Chapter 2).

Starting from a definition of the ST for a SSO system, we identify different
trust models and the related set of requirements to be satisfied during the de-
velopment phase. Then, we turn to the community for the development and
informally evaluation of a fully functional SSO system. The ST-based solu-
tions ensures that the software product will be developed with certification
in mind.

5.5.1 Single Sign-On: Basic Concepts

Applications running on the Internet are increasingly designed by composing
individual e-services such as e-Government services, remote banking, and air-
line reservation systems [15], providing various kind of functionalities, such as,
paying fines, renting a car, releasing authorizations, and so on. This situation
is causing a proliferation of user accounts: users typically have to log-on to
multiple systems, each of which may require different usernames and authen-
tication information. All these accounts may be managed independently by
local administrators within each individual system [22]. In other words, users
have multiple credentials and a solution is needed to give them the illusion

106 5 OSS security certification

of having a single identity and a single set of credentials. In the multi-service
scenario, each system acts as an independent domain. The user first inter-
acts with a primary domain to establish a session with that domain. This
transaction requires the user to provide a set of credentials applicable to the
domain. The primary domain session is usually represented by an operating
system shell executed on the user’s workstation. From this primary domain
session shell, the user can require services from other secondary domains . For
each of such requests the user has to provide a set of credentials applicable
to the secondary domain she is connecting to.

From the account management point of view, this approach requires in-
dependent management of accounts in each domain and use of different au-
thentication mechanisms. In the course of time, several usability and security
concerns have been raised leading to a rethinking of the log-on process aimed
at co-ordinating and, where possible, integrating user log-on mechanisms of
the different domains.

A service that provides such a co-ordination and integration of multiple
log-on systems is called Single Sign-On [14] platform. In the SSO approach
the primary domain is responsible for collecting and managing all user cre-
dentials and information used during the authentication process, both to the
primary domain and to each of the secondary domains that the user may
potentially require to interact with. This information is then used by ser-
vices within the primary domain to support the transparent authentication
to each of the secondary domains with which the user requests to interact.
The advantages of the SSO approach include [12, 22]:

• reduction of i) the time spent by the users during log-on operations to
individual domains, ii) failed log-on transactions, iii) the time used to
log-on to secondary domains, iv) costs and time used for users profiles
administration;

• improvement to users security since the number of username/password
each user has to manage is reduced;7

• secure and simplified administration because with a centralized admin-
istration point, system administrators reduce the time spent to add and
remove users or modify their rights;

• improved system security through the enhanced ability of system admin-
istrators to maintain the integrity of user account configuration including
the ability to change an individual user’s access to all system resources
in a co-ordinated and consistent manner;

• improvement to services usability because the user has to interact with
the same login interface.

7 It is important to note that, while improving security since the user has less accounts
to manage, SSO solutions imply also a greater exposure from attacks; an attacker
getting hold of a single credential can in principle compromise the whole system.

5.5 Security driven OSS development: A case study on Single Sign-On 107

Also, SSO provides a uniform interface to user accounts management,
enabling a coordinated and synchronized management of authentication in
all domains.

5.5.2 A ST-based definition of trust models and
requirements for SSO solutions

Open source requirements for a SSO are unlikely to be much more detailed
than the informal description made in the previous section. Such informal
requirements can correspond to different SSO solutions, which could slightly
differ in their purposes, depending on the business and trust scenario where
they are deployed. In a traditional development process, formal specifica-
tions would be used in order to disambiguate this description and lead the
development to the desired outcome. As an OSS-targeted alternative, let us
show how this can be obtained by the definition of a community-wide Se-
curity Target. Namely, we will generate the Single Sign-On Security Target
(SSO ST) starting by the informal requirements followed in the development
of the Central Authentication Service (CAS) [6, 11] and by the Computer
Associates eTrust Single Sign-On V7.0 [46] Security Target.

5.5.2.1 Central Authentication Service (CAS)

Central Authentication Service (CAS) [6, 11] is an open source framework
developed by Yale University. It implements a SSO mechanism to provide
a Centralized Authentication to a single server and HTTP redirections. The
CAS authentication model is loosely based on classic Kerberos-style authen-
tication [35]. When an unauthenticated user sends a service request, this
request is redirected from the application to the authentication server (CAS
Server), and then back to the application after the user has been authenti-
cated. The CAS Server is therefore the only entity that manages passwords
to authenticate users and transmits and certifies their identities. The infor-
mation is forwarded to the application by the authentication server during
redirections by using session cookies.

CAS is composed of pure-Java servlets running over any servlet engine
and provides a very basic web-based authentication service. In particular, its
major security features are:

1. passwords travel from browsers to the authentication server via an en-
crypted channel;

2. re-authentications are transparent to users if they accept a single cookie,
called Ticket Granting Cookie (TGC). This cookie is opaque (i.e., TGC

108 5 OSS security certification

contains no personal information), protected (it uses SSL) and private (it
is only presented to the CAS server);

3. applications know the user’s identity through an opaque one-time Service
Ticket (ST) created and authenticated by the CAS Server, which contains
the result of a hash function applied to a randomly generated value.

Also, CAS credentials are proxiable. At start-up, distributed applications
get a Proxy-Granting Ticket (PGT) from CAS When the application needs
access to a resource, it uses the PGT to get a proxy ticket (PT). Then, the
application sends the PT to a back-end application. The back-end application
confirms the PT with CAS, and also gains information about who proxied
the authentication. This mechanism allows “proxy” authentication for Web
portals, letting users to authenticate securely to untrusted sites (e.g., student-
run sites and third-party vendors) without supplying a password. CAS works
seamlessly with existing Kerberos authentication infrastructures and can be
used by nearly any Web-application development environment (JSP, Servlets,
ASP, Perl, mod perl, PHP, Python, PL/SQL, and so forth) or as a server-
wide Apache module.

5.5.2.2 Single Sign-On Security Target (SSO ST)

The SSO ST can be used to define security requirements for SSO solutions
and to drive a certification-oriented SSO implementation (i.e., CAS++ [9]).8

As shown in Section 3.10, a security target is composed of 7 sections, each
of which needs to be defined for a specific Target Of Evaluation (TOE). Since
we have already explained the content of each ST section, here we shall focus
on the specificities of the TOE and on the different parts of the SSO ST. The
first section of the SSO ST we analyze is the TOE overview, which provides
the reader with some initial insight about the context we are dealing with,
and the type of product we are considering. The SSO ST defines the TOE
overview in Figure 5.3.

Example of TOE overview.

• TOE overview. This Security Target (ST) defines the Information Technology
(IT) security requirements for Single Sign-On secure e-Services. Single Sign-
On for secure e-services implements a SSO mechanism to provide a Centralized
Authentication to a single server and HTTP redirections. SSO system integrates
an authentication mechanism with a Public Key Infrastructure (PKI).

Fig. 5.3: TOE overview

8 The SSO ST presented here is defined starting from the Computer Associates eTrust
Single Sign-On V7.0 ST [46] and represents a proof of concept only. It has not been
subject to any formal certification process, neither created by any evaluation body.

5.5 Security driven OSS development: A case study on Single Sign-On 109

To gain a better understanding of the TOE, we split the TOE description
into two subsections where we describe the TOE type and architecture. Fig-
ure 5.4 illustrates the TOE description section and Figure 5.5 depicts CAS
architecture which is taken from [27] and used as a template for describing a
SSO architecture.

Example of TOE overview.

• Product type. While there is an increasing need for authenticating clients to
applications before granting them access to services and resources, individual
e-services are rarely designed in such a way to handle the authentication pro-
cess. The reason e-services do not include functionality for checking the client’s
credentials is that they assume a unified directory system to be present, making
suitable authentication interfaces available to client components of network ap-
plications. On some corporate networks, all users have a single identity across
all services and all applications are directory enabled.
As a result, users only log in once to the network, and all applications across the
network are able to check their unified identities and credentials when granting
access to their services. However, on most Intranet and on the open network
users have multiple identities, and a solution is needed to give them the illusion
of having a single identity and a single set of credentials. Single Sign-On (SSO)
systems are aimed at providing this functionality, managing the multiple iden-
tities of each user and presenting their credentials to network applications for
authentication.

• TOE architecture. The Central Authentication Server (CAS) is designed as a
standalone web application. It is currently implemented as several Java servlets
and runs through the HTTPS server on secure.its.yale.edu. It is accessed via
the three URLs described in Figure 5.5 below: the login URL, the validation
URL, and the optional logout URL.

Fig. 5.4: TOE description

In the security problem definition section of the ST document, we describe
the expected operational environment of the TOE, defining the threats and
the security assumptions.9 Table 5.3 shows the threats that may be addressed
either by the TOE or its environments, and Table 5.4 shows our assumptions
concerning the TOE environment. For the sake of conciseness, we assume
that no organizational security policies apply to our case, leaving it to the
interested reader to come up with one as an exercise.

Based on the security problems defined in Tables 5.3 and 5.4, the security
objectives section of the ST document contains a set of concise statements
as a response to those problems. The security objectives we defined for a
SSO application are listed in Table 5.5. We have also defined the security
objectives for the TOE environment listed in Table 5.6.

9 Since we consider the same security functionalities as in [46], many of the threats
and assumptions defined here are taken from [46]

110 5 OSS security certification

Web
Browser

General
Authenticat ion

Server

Arbitrary Web
Service

Back end (non
web) service

1. Init ial request

2. Authentication

3. Ticket transfer

4. Validation

4a. Ticket proxy 5a. Validation

Fig. 5.5: CAS architecture

Threat ID Threat Description
T.WeakCredentials Users may select bad passwords, which make the

system vulnerable for attackers to guess their pass-
words and gain access to the TOE.

T.Access Attackers may attempt to copy or reuse authenti-
cation information to gain unauthorized access to
resources protected by the TOE.

T.Impersonate Attackers may impersonate other users to gain
unauthorized access to resources protected by the
TOE.

T.Mismanage Administrators may make errors in the manage-
ment and configuration of security functions of the
TOE. Those errors may permit attackers to gain
unauthorized access to resources protected by the
TOE.

T.BlockSystem Attacker may attempt to login as an authorized
user and gain unauthorized access to resources pro-
tected by the TOE. The attacker may login multi-
ple times, thus locking out the authorized user.

T.Reuse An attacker may attempt to reuse authentication
data, allowing the attacker to gain unauthorized
access to resources protected by the TOE.

T.Undetected Attempts by an attacker to violate the security pol-
icy and tamper with TSF data may go undetected.

T.NotLogout A logged-in user may leave a workstation without
logging out, which could enable an unauthorized
user to gain access to the resources protected by
the TOE.

T.CredentialsTransfer An Attacker may listen to the communication traf-
fic to find any authentication information.

Table 5.3: TOE threats

5.5 Security driven OSS development: A case study on Single Sign-On 111

Assumption ID Assumption Description
A.Admin Administrator is trusted to correctly configure the

TOE.
A.Trust It is assumed that there will be no untrusted users

and no untrusted software on the Policy Server
host.

A.TrustedNetwork It is assumed that the TOE components commu-
nicate over a physically protected Local Area Net-
work.

A.Users It is assumed that users will protect their authen-
tication data.

Table 5.4: TOE security assmptions

Objective ID Objective Description
O.Audit The TOE must provide ways to track unexpected

behaviors
O.Authentication The TOE must identify and authenticate all users

before providing them with application authentica-
tion information.

O.DenySession The TOE must be able to deny session establish-
ment based the maximum number of sessions a user
can have open simultaneously and an idle time-out.

O.Reauthenticate The TOE must be able to require the user to be
re-authenticated under specified conditions.

O.StrongAuthentication The TOE must integrate strong authentication
mechanism based on two-factor authentication
such as a smartcard and biometric properties of
the user.

O.Authorization The TOE shall determine the level of informa-
tion/services the requester can see/use.

O.AUthoManagement The TOE shall provide support for authorization
management.

O.Provisioning Before sending any request the TOE shall ensure
that it satisfies all the required pre-conditions de-
fined by the administrators.

O.Centralization User profiles should be maintained within the TOE.
O.SafeTransport The TOE architecture implies the exchange of

user information between the TOE server and ser-
vices to fulfill authentication and authorization
processes. Secure data transfer shall be assured.

O.Control The TOE shall provide a unique access control
point for users who want to request a service.

Table 5.5: TOE security objectives

112 5 OSS security certification

Objective ID Objective Description
OE.Admin Those responsible for the administration of the

TOE are competent and trustworthy individuals,
capable of managing the TOE and the security of
the information it contains.

OE.Install Those responsible for the TOE must establish and
implement procedures to ensure that the hardware,
software and firmware components that comprise
the system are distributed, installed and configured
in a secure manner.

OE.Operation There must be procedures in place in order to en-
sure that the TOE will be managed and operated
in a secure manner.

OE.Auth The users must ensure that their authentication
data is held securely and not disclosed to unau-
thorized persons.

Table 5.6: Security objectives for TOE environment

We can finally define the security requirements that need to be satisfied by
the TOE in order to reach the defined objectives. This is a crucial step; in a
OSS community, it is very important to put in charge of requirements defini-
tion someone having a deep understanding of the security objectives. The set
of requirements is divided into security functional requirements (SFRs) and
security assurance requirements (SARs), which have been taken respectively
from CC Part2 [18], and Part3 [19].

The SFRs we defined for the TOE are listed in Table 5.7. For the sake
of simplicity, we shall show only one example of SFR description (see Figure
5.6).

Component Name
FAU GEN.1 Audit data generation
FAU GEN.2 User identity association
FIA SOS.1 Verification of secrets
FIA UAU.1 Timing of authentication
FIA UAU.2 User authentication before any action [Primary Au-

thentication]
FIA UAU.5 Multiple authentication mechanisms
FIA UAU.6 Re-authenticating [Primary Authentication]
FIA UID.2 User identification before any action [Primary Au-

thentication]
FTA SSL.3 TSF-initiated termination
FTA TSE.1 TOE session establishment
FTP ITC.1 Inter-TSF trusted channel

Table 5.7: Security Functional Requirements for the TOE

5.5 Security driven OSS development: A case study on Single Sign-On 113

FAU GEN.1 Audit data generation
Hierarchical to: No other components.
FAU GEN.1.1 The TSF shall be able to generate an audit record of the following
auditable events:

a) Start-up and shutdown of the audit functions;
b) All auditable events for the [not specified] level of audit; and
c) [the following auditable events:

• User login/logout
• Failed attempts to login
• User session timeout].

Fig. 5.6: Example of SFR

Looking at the original requirement defined by CC Part2 [18] for the ex-
ample in Figure 5.6, it is clear that we need to change FAU GEN.1.1 before
being able to adopt it in our ST. The first operation is a selection operation.
CC Part2 [18] defines the point (b) of FAU GEN.1.1 as follows: “All auditable
events for the [selection, choose one of: minimum, basic, detailed, not speci-
fied] level of audit”. To adapt it to our case, we had to select one of the given
alternatives. The second operation is an assignment operation in which more
parameters can be specified. The original version of point (c) in CC part2
[18] is defined as [assignment: other specifically defined auditable events]. To
use it in our ST, we need to specify the auditable events of our interest.

The security assurance requirements in SSO ST are the assurance com-
ponents of Evaluation Assurance Level 2 (EAL2) taken from CC Part3 [19].
None of the assurance components has been refined. The EAL2 assurance
requirements are listed in Table 5.8.

We are now ready to consider another important section of the SSO ST,
namely the TOE specification summary, where more details about the secu-
rity functions of the TOE are given. This section also provides also a mapping
between the security functions of the TOE and the SFRs. The example in
Figure 5.7 describes the auditing mechanism of a SSO solution taken from
[27].

5.5.2.3 Trust Models

Trust models are the basis for designing interoperable systems. A trust model
describes a software system by defining its underlying environment as well as
its components, and the rules governing their interactions. Here, we focus on
the definition of trust models for SSO environments, based on the function-
alities that these environments support. We do not only consider the security
functionalities and requirements in SSO ST (described in the previous sec-

114 5 OSS security certification

Assurance Class Assurance components

ADV: Development
ADV ARC.1 Security architecture description
ADV FSP.2 Security-enforcing functional specifica-
tion
ADV TDS.1 Basic design

AGD: Guidance documents
AGD OPE.1 Operational user guidance
AGD PRE.1 Preparative procedures

ALC: Life-cycle support
ALC CMC.2 Use of a CM system
ALC CMS.2 Parts of the TOE CM coverage
ALC DEL.1 Delivery procedures

ASE: Security Target evaluation

ASE CCL.1 Conformance claims
ASE ECD.1 Extended components definition
ASE INT.1 ST introduction
ASE OBJ.2 Security objectives
ASE REQ.2 Derived security requirements
ASE SPD.1 Security problem definition
ASE TSS.1 TOE summary specification

ATE: Tests
ATE COV.1 Evidence of coverage
ATE FUN.1 Functional testing
ATE IND.2 Independent testing - sample

AVA: Vulnerability assessment AVA VAN.2 Vulnerability analysis

Table 5.8: EAL2 Security Assurance Requirements

tion), but adopt a wider perspective, including also functional aspects of the
SSO solutions. We identify three models.

Authentication and Authorization Model (AAM). This model is one of
the traditional security/trust models describing all frameworks that pro-
vide authentication and authorization features [42]. It represents the basic
mechanism in which a user requires an access to a service that checks
the users’ credentials to decide whether access should be granted or de-
nied. The AAM model identifies two major entities: users, which request
accesses to resources, and services, potentially composed by a set of intra-
domain services, which share these resources. This model is based on the
classic client-server architecture and provides a generic protocol for au-
thentication and authorization processes.

Federated Model (FM). This model represents one of the emergent secu-
rity/trust models in which several homogeneous entities interact to pro-
vide security services, such as identity privacy and authentication. The
FM model identifies two major entities: users, which request accesses to
resources, and services, which share these resources. The major difference
with the previous model resides in the service definition and composition:
in federated systems the services are distributed on different domains and
they are built on the same level allowing mutual trust and providing func-
tionalities as cross-authentication [32].

Full Identity Management Model (FIMM). This model represents one of
the most challenging security and privacy/trust models. Besides dealing

5.5 Security driven OSS development: A case study on Single Sign-On 115

AU.1: Auditing generation
CAS uses Log4J to write event logs to either flat files or to an Oracle table (source=
http://ja-sig.org/wiki/pages/viewpagesrc.action?pageId=969).
The logged events include:

1. sees login screen
2. successful authentication
3. requested warnings
4. unsuccessful authentication
5. authentication warning screen presented
6. inactivity timeout
7. wall clock timeout (TGT)
8. bad attempt lockout
9. logout

AU.2: Auditing information

Each log entry includes:

• date / time
• event type (e.g., TICKET GRANT, TICKET VALIDATE)
• username (if applicable)
• client IP address (if applicable)
• result (SUCCESS/FAILURE)
• service url (if applicable)
• service ticket (if applicable)

These logs are used mainly for usage reports and for security reviews and incident
response. The requirements of the security group are:

• ability to identify who was logged on based on IP address
• ability to identify who was logged on based on date and time
• online logs retained for at least two weeks
• archived logs retained for at least one quarter

This function contributes to satisfy the security requirements FAU GEN.1 and
FAU GEN.2

Fig. 5.7: Example TOE specification summary describing the Logs mechanism of CAS

with all the security aspects covered by the previous two models, it pro-
vides mechanisms for identity and account management and privacy pro-
tection [1, 38]. The FIMM model identifies three major entities: users,
which request accesses to resources, services, which share these resources,
and identity manager, which gives functionalities to manage users identi-
ties.

116 5 OSS security certification

Requirement AAM Model FM Model FIMM Model

Authentication X X X
Strong Authentication X X X
Authorization X X
Provisioning X X
Federation X X
C.I.M. (Centralized Identity) X X
Management
Client Status Info X X X
Single Point of Control X
Standard Compliance X X X
Cross-Language availability X X X
Password Proliferation Prevention X X X
Scalability X X X

Table 5.9: Requirements categorization basing on the specific trust model.

5.5.3 Requirements

In order to compare our ST with a traditional analysis document, we need a
requirement list for a Single Sign-On solution. The requirements that a SSO
should satisfy are more or less well known within the security community, and
several SSO projects published partial lists.10 However, as is typical of the
OSS development source, the requirements elicitation phase has been infor-
mal and no complete list of requirements has been published. A comparative
analysis of the available lists brought us to formulating the following require-
ments (including the security ones). Focusing on security requirements, this
informal list of requirements can be substituted by a ST-based requirements
definition, which makes the development process stable and unambiguous.
For each requirement we also report the trust model (AMM, FM, FIMM) to
which it refers.11

Authentication (AAM,FM,FIMM). A major requirement of a SSO system
is to provide an authentication mechanism. Usually authentication is per-
formed by means of a classic username/password log-in, whereby a user
can be unambiguously identified. Authentication mechanisms should usu-
ally be coupled with a logging and auditing process to prevent and, eventu-
ally, discover malicious attacks and unexpected behaviors. From a purely

10 For an early attempt at a SSO requirements list, see
middleware.internet2.edu/webiso/docs/draft-internet2-webiso
-requirements-07.html.
11 Note that different trust models fulfill a different set of requirements (see Table
5.9). SSO solution, therefore, should be evaluated by taking into consideration only
the requirements supported by the corresponding trust model.

5.5 Security driven OSS development: A case study on Single Sign-On 117

software engineering point of view, authentication is the only “necessary
and sufficient” functional requisite for a SSO architecture.

Strong Authentication (AAM,FM,FIMM). For highly secure environments,
the traditional username/password authentication mechanism is not enough.
Malicious users can steal a password and impersonate the user. New ap-
proaches are therefore required to better protect services against unautho-
rized accesses. A good solution to this problem integrates username/password
check with a strong authentication mechanism based on two-factor authen-
tication such as a smartcard and biometric properties of the user (finger-
prints, retina scans, and so on).

Authorization (AAM,FIMM). After the authentication process, the system
can determine the level of information/services the requester can see/use.
While applications based on domain specific authorizations can be defined
and managed locally at each system, the SSO system can provide support
for managing authorizations (e.g., role or profile acquisitions) that apply
to multiple domains.

Provisioning (AAM,FIMM). Provisions are those conditions that need to
be satisfied or actions that must be performed before a decision is taken [7].
A provision is similar to a pre-condition (see Chapter 4) it is responsibility
of the user to ensure that a request is sent in an environment satisfying all
the pre-conditions. The non-satisfaction of a provision implies a request
to the user to perform some actions.

Federation (FM,FIMM). The concept of federation is strictly related to the
concept of trust. A user should be able to select the services that she wants
to federate and de-federate to protect her privacy and to select the services
to which she will disclose her own authorization assertions.

C.I.M. (Centralized Identity Management) (AAM,FIMM). The centraliza-
tion of authentication and authorization mechanisms and, more generally,
the centralization of identity management implies a simplification of the
user profile management task. User profiles should be maintained within
the SSO server thus removing such a burden from local administrators.
This allows a reduction of costs and effort of user-profile maintenance and
improves the administrators’ control on user profiles and authorization
policies.

Client Status Info (AAM,FM,FIMM). The SSO system architecture im-
plies the exchange of user information between SSO server and services
to fulfill authentication and authorization processes. In particular, when
the two entities communicate, they have to be synchronized on what con-
cern the user identity; privacy and security issues need to be addressed.
Different solutions of this problem could be adopted involving either the
transport (e.g., communication can be encrypted) or the application layer.

Single Point of Control (AAM). The main objectives of a SSO implemen-
tation are to provide a unique access control point for users who want
to request a service, and, for applications, to delegate some features from
business components to an authentication server. This point of control

118 5 OSS security certification

should be unique in order to clearly separate the authentication point from
business implementations, avoiding the replication and the ad-hoc imple-
mentation of authentication mechanisms for each domain. Note that every
service provider will eventually develop its own authentication mechanism.

Standard Compliance (AAM,FM,FIMM). It is important for a wide range
of applications to support well-known and reliable communication pro-
tocols. In a SSO scenario, there are protocols for exchanging messages
between authentication servers and service providers, and between tech-
nologies, within the same system, that can be different. Hence, every entity
can use standard technologies (e.g., X.509, SAML for expressing and ex-
changing authentication information and SOAP for data transmission) to
interoperate with different environments.

Cross-Language availability (AAM,FM,FIMM). The widespread adoption
of the global Internet as an infrastructure for accessing services has con-
sequently influenced the definition of different languages and technolo-
gies used to develop these applications. In this scenario, a requisite of
paramount importance is integrating authentication to service implemen-
tations written in different languages, without substantial changes to ser-
vice code. The first step in this direction is the adoption of standard com-
munication protocols based on XML.

Password Proliferation Prevention (AAM,FM,FIMM). A well-known mo-
tivation for the adoption of SSO systems is the prevention of password
proliferation so to improve security and simplify user log-on actions and
system profile management.

Scalability (AAM,FM,FIMM). An important requirement for SSO systems
is to support and correctly manage a continuous growth of users and sub-
domains that rely on them, without substantial changes to system archi-
tecture.

5.5.4 A case study: CAS++

Our SSO ST is meant to drive the development of open source SSO systems.
As a case study, let us it as a guide to extend the Central Authentication
Service (CAS) [6, 11] to an enhanced version we will call CAS++.12. Our
extension integrates the CAS system with the authentication mechanism im-
plemented by a Public Key Infrastructure (PKI) [33]. CAS++ implements a
fully multi-domain stand-alone server that provides a simple, efficient, and
reliable SSO mechanism through HTTP redirections, focused on user privacy
(opaque cookies) and security protection. CAS++ permits a centralized man-

12 Of course CAS++ is not the only implementation available on the Net. In par-
ticular, SourceID [47], an Open Source implementation of the SSO Liberty Alliance,
Java Open Single Sign-On (JOSSO) [28], and Shibboleth [45] are other available SSO
solutions.

5.5 Security driven OSS development: A case study on Single Sign-On 119

Fig. 5.8: CAS++ certificate-based authentication flow

agement of user profiles granting access to all services in the system with a
unique pair username/password. The profiles repository is stored inside the
SSO server application and is the only point where users credentials/profiles
are accessed, thus reducing information scattering. In our implementation,
services do not need an authentication layer because this feature is managed
by CAS++ itself.

CAS++ relies on standard protocols such as SSL, for secure communi-
cations between the parties, and on X.509 digital certificates for credentials
exchange. Besides being a “pure-Java” module like its predecessor, CAS++
is a fully J2EE compliant application integrable with services coded with
every web-based implementation language. It enriches the traditional CAS
authentication process through the integration of biometric identification (by
fingerprints readers) and smart card technologies in addition to traditional
username/password mechanism, enabling two authentication levels.

CAS++ strong authentication process flow is composed of the following
steps (see Figure 5.8):13

1. the user requests an identity certificate to the CA (Certification Author-
ity);

2. the user receives from the CA a smart card that contains a X.509 identity
certificate, signed with the private key of the CA, that certifies the user
identity. The corresponding user private key is encrypted with a sym-
metric algorithm (e.g., 3DES) and the key contained inside the smart
card can be decrypted only with a key represented by user fingerprint
(KFingerprintUser) [23];

13 Note that, the first two actions are performed only once when the user requests
the smart card along with an identity certificate.

120 5 OSS security certification

Fig. 5.9: CAS++ information flow for service request evaluation

3. to access a service the public key certificate, along with the pair user-
name/password, is encrypted with the CAS++ public key (KPuCAS++)
and sent to CAS++;

4. CAS++ decrypts the certificate with its private key, verifies the signature
on the certificate with the CA public key, and verifies the validity of this
certificate by interacting with the CA;

5. CAS++ retrieves from the CA information about the validity of the user
certificate encrypted with KPuCAS++;

6. if the certificate is valid, CAS++ extracts the information related to the
user, creates the ticket (TGC, Ticket Granting Cookie) and returns it to
the user encrypted with the public key of the user (KPuUser). At this
point, to decrypts the TGC, the user must retrieve the private key stored
inside the smart card by mean of her fingerprint. As soon as the card
is unlocked, the private key is extracted and the TGC decrypted. This
ticket will be used for every further access, in the same session, to any
application managed by the CAS++ Single Sign-On server.

At this point, for every further access in the session, the user can be
authenticated by the service providing only the received TGC without any
additional authentication action.14

The service access flow, that takes place over secure channels and is similar
to the one in CAS, is composed of the following steps (see Figure 5.9):

1. the user, via a web browser, requests access to the service provider;
2. the service provider requests authentication information through a HTTP

redirection to the CAS++ Server;

14 Note that the TGC lifetime should be relatively short to avoid conflicts with the
CA’s certificate revocation process, which could cause unauthorized accesses.

5.6 Conclusions 121

3. the CAS++ Server retrieves the user TGC and the service requested
URL. If the user has been previously authenticated by CAS++ and has
the privilege to access the service a Service Ticket is created;

4. the CAS++ Server redirects the user browser to the requested service
along with the ST;

5. service receives the ST and check its validity sending it to the CAS++
Server;

6. if the ST is valid the CAS++ Server sends to the Service an XML file
with User’s credentials;

7. the user gains access to the desired service.

5.5.4.1 Evaluating CAS++ Against the ST Document

CAS++ is based on the Authentication and Authorization Model. Also,
CAS++ fulfills most of our ST requirements; specifically, it provides a central
point of control to manage authentication, authorization, and user profiles.15

Furthermore, CAS++ enriches the traditional CAS authentication process
with the integration of biometric identification (via fingerprints readers) and
smart card technologies and it is planned to include provisioning features
in future releases. Note that, the lower level of CAS++ system is language
independent and relies on traditional established standards, such as HTTP,
SSL and X.509, without adopting emerging ones, such as SOAP and SAML.
Focusing on client status info, all communications between user browser, ser-
vices providers and authentication server in CAS++ scenario are managed
by the exchange of opaque cookies and by the use of encrypted channels.
Finally, since CAS++ development has been driven by SSO ST, the process
of certifying CAS++ based on the CC standards, becomes straightforward.

5.6 Conclusions

Software Assurance (SwA) relates to the level of confidence that software
functions as intended and is free of faults. In open source development, many
stakeholders have a vested interest in the finalization of a standard assurance
process for open source encompassing the areas of functionality, reliability,
security, and interoperability. Most major OSS projects have some kind of
assurance process in place which includes specific code reviews, and in some
cases code analysis. Indeed, anecdotal evidence shows that code review is

15 The centralization of users profiles affects system scalability. A solution that pro-
vides a balance between centralization and scalability needs is under study.

122 5 OSS security certification

provenly faster and more effective in large communities.16 As far as security
certification is concerned, the process must be as public as possible, involving
academia, the private sector, nonprofit organizations, and government agen-
cies. Since no formal requirements elicitation is normally done in the OSS
development process, the CC ST document can be used to collect and focus
the stakeholders’ view on the software product’s desired security features.

References

1. C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati. To-
wards privacy-enhanced authorization policies and languages. In Proc. of the
19th IFIP WG11.3 Working Conference on Data and Application Security.

2. C.A. Ardagna, E. Damiani, and F. Frati. Focse: An owa-based evaluation frame-
work for os adoption in critical environments. In Proc. of the 3rd IFIP Working
Group 2.13 Foundation on Open Source Software, Limerick, Ireland, June 2007.

3. C.A. Ardagna, E. Damiani, F. Frati, and M. Madravio. Open source solution to
secure e-government services. Encyclopedia of Digital Government, Idea Group
Inc., 2006.

4. C.A. Ardagna, E. Damiani, F. Frati, and M. Montel. Using open source middle-
ware for securing e-gov applications. In Proc. of The First International Con-
ference on Open Source Systems, Genova, Italy, July 2005.

5. C.A. Ardagna, E. Damiani, F. Frati, and S. Reale. Adopting open source for
mission-critical applications: A case study on single sign-on. In Proc. of the 2nd
IFIP Working Group 2.13 Foundation on Open Source Software, Como, Italy,
June 2006.

6. P. Aubry, V. Mathieu, and J. Marchal. Esup-portal: open source single sign-
on with cas (central authentication service). In Proc. of the EUNIS04 - IT
Innovation in a Changing World.

7. C. Bettini, S. Jajodia, X. Sean Wang, and D. Wijesekera. Provisions and obli-
gations in policy management and security applications. In Proc. of the 28th
Conference on Very Large Data Bases (VLDB 2002), Honk Kong, China, Au-
gust 2002.

8. D.A. Buell and R. Sandhu. Identity management. IEEE Internet Computing,
7(6).

9. S. De Capitani di Vimercati F. Frati P. Samarati C.A. Ardagna, E. Damiani.
Cas++: an open source single sign-on solution for secure e-services. In Proc. of
the 21st IFIP TC-11 International Information Security Conference, Karlstad,
Sweden, May 2006.

10. A. Capiluppi, P. Lago, and M. Morisio. Characterizing the oss process: a hori-
zontal study. In Proc. of the 7th European Conference on Software Maintenance
and Reengineering, Benevento, Italy, March 2003.

11. Central Authentication Service.
12. J. De Clercq. Single sign-on architectures. In Proc. of the International Confer-

ence on Infrastructure Security (InfraSec 2002).
13. C. Cowan. Software security for open-source systems. IEEE Security & Privacy,

1(1):38–45, January-February 2003.

16 The Interbase database software contained a backdoor access (username
politically and password correct) which was found soon after it was released as
open source, thanks to large-scale code review by the interested community.

References 123

14. B. Galbraith et al. Professional Web Services Security. Wrox Press, 2002.
15. S. Feldman. The changing face of e-commerce. IEEE Internet Computing, 4(3).
16. J. Feller and B. Fitzgerald. Understand Open Source Software Development.

Addison-Wesley, 2002.
17. FLOSSmole. Collaborative collection and analysis of free/libre/open source

project data. ossmole.sourceforge.net/.
18. The International Organization for Standardization and the International Elec-

trotechnical Commission. Common Criteria for Information Technology Secu-
rity Evaluation, Part 2: Security functional components, 2007. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R2.pdf.

19. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Secu-
rity Evaluation, Part 3: Security assurance components, 2007. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R2.pdf.

20. Free Software Foundation. www.fsf.org/.
21. B. Golden. Succeeding with Open Source. Addison-Wesley, 2004.
22. The Open Group. Single Sign-On.
23. F. Hao, R. Anderson, and J. Daugman. Combining cryptography with biometrics

effectively. In Technical report, Cambridge University - Computer Laboratory
Technical Report UCAM-CL-TR-640.

24. A. Hars and O. Shaosong. Working for free? motivations of participating in open
source projects. In Proc. of the 34th Annual Hawaii International Conference
on System Sciences, Maui, Hawaii, USA, January 2001.

25. S.A. Hissam, D. Plakosh, and C. Weinstock. Trust and vulnerability in open
source software. In IEE Proceedings - Software, volume 149, pages 47–51, Febru-
ary 2002.

26. Open Source Initiative. The Open Source Definition, July 2006. opensource.
org/docs/osd/.

27. JA-SIG. Ja-sig central authentication service. www.ja-sig.org/products/
cas/.

28. Java Open Single Sign-On (JOSSO).
29. F. Keblawi and D. Sullivan. Applying the common criteria in systems engineering.

IEEE Security and Privacy, 4(2):50–55, March 2007.
30. A.M. St. Laurent. Understanding Open Source and Free Software Licensing.

O’Reilly Media, Inc., 2004.
31. J. Lee, S. Lee, and B. Choi. A cc-based security engineering process evalua-

tion model. In Proc. of the 27th Annual international Conference on Computer
Software and Applications (COMPSAC 2003), Dallas, Texas, USA, November
2003.

32. Liberty Alliance Project.
33. U.M. Maurer. Modelling a public-key infrastructure. In Proc. of the 4th European

Symposium on Research in Computer Security (ESORICS 1996), Rome, Italy,
September 1996.

34. D. Mellado, E. Fernandez-Medina, and M. Piattini. A common criteria based se-
curity requirements engineering process for the development of secure information
systems. Computer Standards & Interfaces, 29(2):244–253, February 2007.

35. B.C. Neuman and T. Ts’o. Kerberos: an authentication service for computer
networks. IEEE Communications Magazine, 32(9):33–38, September 1995.

36. Open Source Initiative (OSI). opensource.org/.
37. C. Payne. On the security of open source software. Info Systems Journal, 12:61–

78, 2002.
38. PRIME (Privacy and Identity Management for Europe).
39. PuTTY. A free telnet/ssh client. www.chiark.greenend.org.uk/$\

sim$sgtatham/putty/.

124 5 OSS security certification

40. Business Readiness Rating. Business Readiness Rating for Open Source, 2005.
www.openbrr.org/wiki/images/d/da/BRR_whitepaper_2005RFC1.
pdf.

41. E.S. Raymond. The cathedral and the bazaar. Available at:
www.openresources.com/documents/cathedral-bazaar/, August 1998.

42. P. Samarati and S. De Capitani di Vimercati. Foundations of Security Analysis
and Design, chapter Access Control: Policies, Models, and Mechanisms, pages
137–196. Springer Berlin / Heidelberg, 2001.

43. W. Scacchi, J. Feller, B. Fitzgerald, S.A. Hissam, and K. Lakhani. Understanding
free/open source software development processes. Software Process: Improvement
and Practice, 11(2):95–105, 2006.

44. K.S. Shankar and H. Kurth. Certifying open source: The linux experience. IEEE
Security & Privacy, 2(6):28–33, November-December 2004.

45. Shibboleth Project.
46. Sygnacom solutions. Computer Associates eTrust Single Sign-On V7.0 Secu-

rity Target V2.0, October 2005. www.commoncriteriaportal.org/files/
epfiles/ST_VID3007-ST.pdf.

47. SourceID Open Source Federated Identity Management.
48. Cluster SSH. Cluster admin via ssh. sourceforge.net/projects/

clusterssh.
49. I. Stamelos, L. Angelis, A. Oikonomou, and G.L. Bleris. Code quality analysis in

open source software development. Info Systems Journal, 12:43–60, 2002.
50. V. Torra. The weighted owa operator. International Journal of Intelligent Sys-

tems, 12(2).
51. D.A. Wheeler. Secure Programming for Linux and Unix HOWTO. Available :

http://www.dwheeler.com/secure-programs/, 2003.
52. D.A. Wheeler. Free-Libre/Open Source Software (FLOSS) and Software As-

surance/Software Security, December 2006. www.dwheeler.com/essays/oss\
_software_assurance.pdf.

53. WinSCP. Free sftp and scp client for windows. winscp.net/eng/index.php.
54. R.R. Yager. On ordered weighted averaging aggregation operators in multi-

criteria decision making. IEEE Transaction Systems, Man, Cybernetics, 18(1).
55. T. Ylönen. Ssh - secure login connections over the internet. In Proc. of the Sixth

USENIX Security Symposium, July.

Chapter 6

Case Study 1: Linux certification

Abstract In this chapter we examine the SuSE Linux Enterprise Server
(SLES) CC certification process in detail. SLES was one of the first open
source operating systems to be certified with EAL 2, 3 and 4. Throughout
the chapter, we use SuSE Linux Enterprise Server version 8 with Service Pack
3 for our practical experiments. The certification of SLES8 was a joint effort
between IBM and SuSE [16]. As a by-product of this case study, we shall
discuss the matching techniques for associating the ST security functions
to tests, discussing the mapping of SLES8 security functions to Linux Test
Project (LTP) test suites. We rely on an extended set of test suites that have
been used for SLES8 EAL3 certification [8].

6.1 The Controlled Access Protection Profile and the
SLES8 Security Target

As we have seen in the previous chapters, the Common Criteria certification
is based on the notion that security is context dependent. In other terms, CC
(rather sensibly) assumes that any meaningful statement about the security
level of a software product can be made only by considering the context
in which the software product will be operating. Based on this idea, CC
certification cannot be sought for a software product line, and even less for a
family of heterogeneous products; rather, it must be obtained for a specific
software distribution.

As a consequence, in the past, there has been no attempt to get a certi-
fication for Linux as such. By contrast, conformance to a Controlled Access
Protection Profile (CAPP) has been claimed for specific distributions, such
as, the SuSE Linux Enterprise Server v8 (SLES8). In other words, the authors
of a SLES8-specific Security Target (ST) claimed that SLES8 fully satisfies
the security requirements of CAPP.

125

126 6 Case Study 1: Linux certification

The CAPP profile itself was released by the Information Systems Security
Organization (ISSO) as part of its program to promote security standards for
information systems [14]. According to ISSO, “CAPP-conformant products
support access controls that are capable of enforcing access limitations on
individual users and data objects. CAPP-conformant products also provide
an audit capability which records the security-relevant events which occur
within the system” [14]. Below, we shall analyze both the CAPP protec-
tion profile and SLES8 security target, to highlight the strict correspondence
between the different sections of these two documents. Establishing a clear
mapping between the requirements of the Protection Profile and the features
of the Security Target is indeed a key point in the CC certification procedure.
Before focusing on the mapping, however, let us take a closer look to SLES8
features.

6.1.1 SLES8 Overview

SuSE SLES8 is based on UnitedLinux v1.0. UnitedLinux is an effort of a con-
sortium including SuSE, SCO, Turbolinux and Conectiva, whose main goals
were to stop the proliferation of distributions within the Linux community
and give application developers a larger target of common Linux features
and functions. In the Spring of 2002, the UnitedLinux board put together
a base technical specification, which resulted in the release of UnitedLinux
v1.0 on November 19th, 2002. The technical requirements for UnitedLinux
v 1.0 included, among others, a Linux kernel 2.4.18 or higher, the GNU C
Library 2.2.5, the C compiler GCC 3.1, window environment and GUI based
on XFree86 4.2 and KDE 3.0.1

The SLES family of servers share many features with the other Linux
based operating systems, such as, providing services for several users at the
same time, file access mechanisms, users data protection, privileged mode to
administrative users and so forth. SuSE Linux has a reputation for technical
excellence and it stands out in the area of systems management. In particular,
SuSE YaST2 (Yet Another Setup Tool) administrative tool is a GUI installer
that has gained wide acceptance thanks to its good support of cluster-wide
Logical Volume Management (LVM). SuSE also includes an advanced event
logging system.

In summary, the SLES8 includes the following features:

• A complete set of software and tools to build clusters and server farms.
• Some enhancements to the scheduler to improve process scheduling on

multiprocessor systems.

1 The SLES8 we use to reproduce the certification testing includes a Linux kernel
v2.4.

6.1 The Controlled Access Protection Profile and the SLES8 Security Target 127

• Asynchronous Input/Output, to minimize waiting on I/O on large, heavy-
duty systems.

and a number of enhancements aimed at improving Linux’s reliability and
avoiding downtime. SLES8 reliability-related features include:

• A standard POSIX-compliant event logging and notification capability.
• Dynamic probes for profiling and debugging, supporting dynamic inser-

tion of breakpoints in code.
• Non-disruptive and tailored dumping of system data.
• Advanced toolkit to record and trace system events.
• Hotplug PCI support, enabling the addition or removal of attached de-

vices without system restart.

Among the SLES8 features, we are mainly interested in SLES8 security
features regarding access control. SLES, in fact, has added considerable se-
curity extensions to accommodate the security needs of its users [7]. Much
effort has been devoted to making SLES8 suitable for sectors where security
is critical. SLES8 security features include: (i) Kerberos (TM), a strong net-
work authentication protocol originally developed at MIT, and (ii) Bastille,
a system hardening application and firewall support to separate secure areas
of the system from less restricted areas. More importantly to our purposes,
SLES8 includes robust and scalable file systems, with full support for file sys-
tem Access Control Lists (ACLs), where each data object stored on a SLES8
system is assigned a description of the access rights related to it. As a con-
sequence, ACLs enable SLES8 to support advanced access control models,
such as, Discretionary Access Control (DAC) (see Chapter 2).

6.1.2 Target of Evaluation (TOE)

SLES8 has several advanced security features, which allow it to be com-
petitive with proprietary server solutions, including some enabling advanced
access control models. However, listing such features is not enough to gain
user acceptance, especially if a server must host mission- or safety-critical
applications. To demonstrate the quality of the implementation of its access
control features and their suitability to achieve the security goals related to
access control, SuSE needed to certify that SLES8 satisfies the security re-
quirements of a Protection Profile specific to access control, the Controlled
Access Protection Profile (CAPP).2

2 SLES8 was not able to satisfy the CAPP requirements “out of the box”; however
only some minor modifications were required.

128 6 Case Study 1: Linux certification

6.1.3 Security environment

The security environment sets by the PP and ST documents specifies all the
security concerns that a software product has to deal with. This includes
threats, organizational security policy and security assumptions. The exam-
ples used here are taken from CAPP [14] and SLES8 ST [7]. Based on the
intended use of SLES8 and the security environment defined in CAPP, SLES8
ST has identified its specific security environment.

6.1.3.1 Threats

Threats generally identify any danger that could compromise a system’s as-
sets. The CAPP, however, does not specify any explicit threats, because
threats can be defined only by knowing how the TOE will be used. Based on
the intended usage of SLES8 ST, the assets to be protected include the in-
formation stored, processed or transmitted by the TOE (SLES8) [7]. Threats
can be classified in two categories:

• Threats to be countered by the TOE, that is, threats which exploit weak-
nesses in the TOE itself.
Example: T.UAACCESS An authorized user of the TOE may access
information resources without having permission from the person who
owns, or is responsible for, the information resource for the type of ac-
cess.

• Threats to be countered by the TOE environment, that is, threats which
exploit the weaknesses of the TOE environment.
Example: TE.HW SEP An attacker (possibly, but not necessarily, an
unauthorized user of the TOE) with legitimate physical access to the
hardware the TOE is running on; alternatively, some environmental con-
ditions may cause the underlying hardware functions of the hardware the
TOE is running on to not provide sufficient capabilities to support the
self protection of the TSF from unauthorized programs. Note that, this
also covers people with legitimate access to the TOE hardware causing
such a problem accidentally without malicious intent.

The first example provided deals with a threat which affects the TOE di-
rectly, since it concerns the access mechanisms of the TOE itself. The second
threat, instead, affects the TOE indirectly, because it concerns the organiza-
tional policy of who has access to the TOE itself.

6.1.3.2 Organizational Security Policies

The Organizational Security Policies (OSPs) are all the procedures defined by
the organization deploying the certified software product to protect sensitive

6.1 The Controlled Access Protection Profile and the SLES8 Security Target 129

data [14]. In the following example, we show how the CAPP defines an OSP
and how the ST responds to it.

CAPP P.NEED TO KNOW: The system must limit access to, modification, and
deletion of the information contained in protected resources to those au-
thorized users which have a real need to know for that information.

SLES8 P.NEED TO KNOW: The organization must define a discretionary access
control [12] policy on a need-to-know basis which can be modeled based
on:
• the owner of the object; and
• the identity of the subject attempting the access; and
• the implicit and explicit access rights to the object granted to the subject
by the object owner or an administrative user.

Table 6.1: Example of an Organizational Security Policy defined in the CAPP and
SLES8 ST

Table 6.1 shows the difference between the PP and the ST definition of the
OSPs. Specifically, the CAPP mentions a generic access control mechanism;
any system that implements an access control mechanism with the needed
features will qualify. By contrast, the ST responds providing more detailed
information that is largely SLES8 dependent.

6.1.3.3 Assumptions

The CAPP considers three types of assumptions, related to different aspects
physical, personnel and connectivity. SLES8 ST reports the assumptions as
they are in the CAPP, because they are not part of the TOE itself. An
example of assumption related to available expertise is reported below:

A.MANAGE It is assumed that there are one or more competent individ-
uals in charge of managing the TOE and the security of the information it
contains.

6.1.4 Security objectives

Based on the statements defined in the security environment, the security
objectives provide statements to address and counter the identified threats
and maintain the OSP. CAPP distinguishes between two types of security
objectives: (i) security objectives for the TOE that are linked directly to it,
and (ii) security objectives related to the TOE’s environment. Security objec-
tives listed in the CAPP and the ST are generally identical. To appreciate the
difference, let us now spell out an example of a security objective for the TOE:

130 6 Case Study 1: Linux certification

O.AUTHORIZATION The TOE must ensure that only authorized users
gain access to the TOE and its resources

and an example of a security objective for the TOE environment:

OE.ADMIN Those responsible for the administration of the TOE are com-
petent and trustworthy individuals, fully capable of managing the TOE and
the security of the information it contains.

6.1.5 Security requirements

In the security environment and security objectives sections both CAPP and
SLES8 ST were discussed and compared to demonstrate the close similarity
between their contents. However, from now on we will refer to the SLES8 ST
only. In case the CAPP is needed, it will be stated explicitly.

The security requirements section is perhaps the one that occupies the
largest portion of SLES8 ST. The rationale behind this choice is that security
requirements need to be described clearly, including all the needed details to
avoid any ambiguous interpretations. As we have seen throughout the book,
security requirements can be classified in two categories, namely SFRs and
SARs. SLES8 ST defines some SFRs and SARs that are not mentioned in
the CAPP, because SLES8 needed some specific extensions [7]. Namely, the
SLES8 ST identifies the set of SFRs from six SFR classes.

• Security Audit (FAU).
• Cryptographic Support (FCS).
• User Data Protection (FDP).
• Identification and authentication (FIA).
• Security Management (FMT).
• Protection of the TOE Security Functions (FPT).

Whereas the SFRs defined in Part 2 of CC provide a generic set of SFRs,
the ST needs to describe the SFRs of a product-specific code base. To help
doing so, the CC standard includes a list of operations which are used to
refine SFRs and SARs. The following example shows how a SFR defined in
Part 2 of CC has been refined first by CAPP and then by SLES8 ST to fit
the required functionality.

FDP ACF.1.1 is the first element of the Discretionary Access Control
[12] Functions component. It has been defined in the Part 2 of CC as follows:

The TSF shall enforce the [assignment: access control SFP (Security Func-
tional Policy)] to objects based on the following: [assignment: list of sub-

6.1 The Controlled Access Protection Profile and the SLES8 Security Target 131

jects and objects controlled under the indicated SFP, and for each, the SFP-
relevant security attributes, or named groups of SFP-relevant security at-
tributes].

The assignment operation allows the authors of the PP and ST to ex-
plicitly assign parameters that are relevant to the context of the TOE. The
CAPP authors have assigned the FDP ACF.1.1 parameters as follows:

The TSF shall enforce the Discretionary Access Control [12] Policy to
objects based on the following:

1. The user identity and group membership(s) associated with a subject; and
2. The following access control attributes associated with an object:

[assignment: List access control attributes. The attributes must provide
permission attributes with:

2.1. the ability to associate allowed or denied operations with one or more
user identities;

2.2. the ability to associate allowed or denied operations with one or more
group identities; and

2.3. defaults for allowed or denied operations.]

Notice that in this improved definition of CAPP, some new parameters
have been added to FDP ACF.1.1. Namely, the access control SFP was
substituted with the type of access control required by CAPP, which is the
Discretionary Access Control [12]. The second parameter is the list of
subjects and objects controlled by the chosen SFP. In this case, the CAPP
specifies several alternatives such as user identity and group memberships,
as well as defining a new assignment that needs to be solved by the ST.
Correspondingly, the SLES8 ST has specified new parameters to handle the
assignment as follows.

The TSF shall enforce the Discretionary Access Control Policy to system
objects based on the following information:

1. The effective user identity and group membership(s) associated with a
subject, and

2. The following access control attributes associated with an object:

132 6 Case Study 1: Linux certification

File system objects • POSIX ACLs and permission bits.
• (ACLs can be used to grant or deny access to
the granularity of a single user or group using
Access Control Entries. Those ACL entries in-
clude the standard Unix permission bits. Posix
ACLs can be used for file system objects within
the ext3 file system).

Access rights for file
system objects are

• read

• write
• execute (ordinary files)
• search (directories)

IPC objects • permission bits
Access rights for IPC
objects are

• read

• write

When FDP ACF.1.1 was used in SLES8 ST, the authors have added some
new parameters that are specific to SLES8. Those parameters concerned the
types of objects supported by SLES8 and the access control attributes asso-
ciated with each one of them.

To conclude, the goal of SLES8 is to receive an EAL3 augmented by
ALC FLR. EAL3 requires the TOE to be “methodologically tested and
checked” [3]. In practice, it provides a moderate level of security assurance by
investigating the ST content from different prospectives. EAL3 analyzes the
TOE using functional and interfaces specifications, design documentation,
as well as all security related documentation. To increase the level of assur-
ance EAL3 looks also to aspects related to the development environment,
configuration management and delivery procedures [4].

6.2 Evaluation process

An important question that we might ask ourselves after looking at SLES8
ST is: how did the certifiers manage to obtain all the required documents
to construct the SLES8 ST? If we were looking at some commercial, closed-
source software this question would probably not arise, because most software
suppliers adopt a structured development process and generate the corre-
sponding documentation concerning the whole life cycle of their products,
including requirement, analysis, design, tests and so forth. However, the less
structured nature of the open source development process (see Chapter 5)
makes this task much more difficult. According to ATSEC’s EAL3 security

6.2 Evaluation process 133

feature Criteria Developer Evidence [1], the EAL3 requires the sponsor and
the developer to jointly provide the following evidence:

• Security Target.
• Configuration Management (ACM).
• Life-cycle support Activity (ALC).
• Delivery and Operation (ADO).
• Customer Guidance (ADO, AGD).
• Design Documentation (ADV).
• High-level Design.
• Testing (ATE).
• Vulnerability assessment (AVA).

This evidence is then used by the evaluation body to understand and
analyze the security functional specification of the TOE.

6.2.1 Producing the Evidence

A major challenge that was faced at this stage of the Linux SLES8 certifi-
cation process was producing accurate and updated versions of the required
documents for the certification. Being an open source system developed by
a large distributed community, SLES8 simply lacked some of the documen-
tation required by CC. Among the missing documents there was an high
level design document that describes the security functions implementation.
Indeed, most open software products lack this type of high level documenta-
tion, and Linux is no exception. Despite the fact there are many documents
and books discussing the implementation details of Linux kernel in general,
few of them discuss security related aspects in detail. As a result, SLES8
did not have a document describing the high level security implementation.
To comply with CC specification, IBM had to develop a new high level de-
sign document describing the security functions of SLES8, including the ones
defined in the ST [16].

As a part of customer documentation, IBM has developed another impor-
tant piece of evidence: a security guide, which provides all the details to install
and configure a version of SLES8 for evaluation. The security guide specifies
all installation procedures, packages to remove, network configuration and
all the modifications of the configuration files necessary to bring SLES8 to
the state for which the CC certification holds.3 IBM also developed a vul-

3 Of course, IBM did not have to create all evidence mentioned here from scratch
for CC EAL3. Since SLES8 had previously been certified with EAL2, most of the
documents were taken from it and then adapted to fit the EAL3 requirements. The
documents that were reused from EAL2 included the man pages, part of the test cases,
and the ST previously used for SLES8 EAL2.

134 6 Case Study 1: Linux certification

nerability analysis for SLES8 to discover any residual exploits that were not
discovered by SuSE developers’ tests.

When SLES8 was certified at level EAL3, many documents were sub-
stantially improved upon the initial ones. This improvement included fixing
some minor omissions or inaccuracies that were not identified earlier. The
later evaluation reports also contained a “functional specification mapping”
spreadsheet which explicitly listed the associations between the TSF/TSFI
and the corresponding test cases.

As we shall see, IBM did a great effort to enrich the test cases suite that
was used to test the security functions of SLES8. This effort includes the
preparation of a spreadsheet containing the mapping between the interfaces
to be tested and the actual TSF. The construction of this spreadsheet was
performed manually, since some test cases (mostly belonging to the Linux
Test Project (LTP), see below) had been written long before the evaluation
and did not provide enough information for easy automated mapping.

However, although originally the test cases and test scripts of open source
products were created by development communities independently of the
certification process, the LTP evolution is leading to defining the CC certi-
fication test plans entirely in terms LTP test cases [13]. This reliance on an
externally defined test base is an important trend to be taken into account
for the certification of Linux-based software systems.

In the next sections, after briefly discussing the evolution and structure
of LTP, we will discuss how to compute the mapping between the security
functions and the LTP test cases.

6.3 The Linux Test Project

For many years, testing the Linux kernel was done informally; Linux users
and developers would simply run the latest version of the Linux kernel on
their desktop and server computers, and the kernel was tested executing real
applications. Performance or correctness regression were observed and re-
ported on by the user community. Also, some Linux developers autonomously
performed unit testing, but there was little community-wide system and in-
tegration testing (see Chapter 3).

The Linux Test Project [11] was originally started by Silicon Graphics to
bring organized testing to Linux. LTP aims to provide a complete test suite
allowing to validate the stability and robustness of the Linux kernel. It has
represented a real “revolution” in Linux testing and assurance, since no for-
mal testing environment was previously available to Linux developers. The
major advantage provided by the development of LTP was not the definition
of batteries of test cases in itself, but the provisioning of a framework for
systematic integration of testing activities. Thanks to recent, massive main-
tenance and cleanup [13], LTP has been developed to improve the Linux

6.3 The Linux Test Project 135

kernel by providing automated testing of kernel functionalities [6]. Further-
more, LTP has included an environment for defining new tests, integrating
existing benchmarks and analyzing test results. Nowadays, the latest version
of LTP test suite contains more than three thousands tests.4 In terms of the
test types introduced in Chapter 3, LTP currently deals with functional, sys-
tem and stress testing. In addition to the test suites, LTP also provides test
results, a test tools matrix, technical papers and HowTos on Linux testing,
and a code coverage analysis tool [11].

LTP is now an integral part of the daily activity of several developers
involved with Linux kernel testing. It contains system tests for various sub-
systems of the kernel, such as, the memory management code, the scheduler,
system calls, file systems, real time features, networking, resource manage-
ment, containers, IPC, security, timer subsystem and much more. Several
users of LTP use it to validate their entire Linux system.

The increasingly strict link between certification and the LTP test base
is documented by the addition to LTP of a sample SGI Common Criteria
EAL4 certification test suite for the distribution RHEL5.1 o systems SGI
Altix 4700 (ia64) and Altix XE (x86 64) systems. Also, LTP output logs are
now provided in HTML format. Figure 6.1 depicts the HTML output format
for LTP with clear distinction between FAILED, PASSED, WARNED and BROKEN
test cases.

LTP support for test automation was improved by removing bugs that
prevented concurrent execution of tests and by adding discrete sequential
run capability [13], which allows test to execute as many loops as specified
by the tester, irrespective of the time consumed.

Much work has also been done to increase LTP code coverage (see Chapter
3). Results are encouraging [13], although the average value of statement
coverage for LTP subsystems tests is still around 50%.

6.3.1 Writing a LTP test case

Different ST will require different tests, and there is no guarantee that the
desired test will be available as part of the current LTP packages. For this
reason, following [9, 13, 15], we shall now examine the construction of a test
case to be added to LTP.

Since its conception, a major goal of LTP was being easy to use in order to
encourage Linux developers to integrate it into their development process. To
this end, LTP provides developers with basic templates for developing new
test cases to keep a uniform coding standards throughout the LTP. As the
predominant programming language used to develop LTP test cases is ANSI-

4 When version 2.3 of the Linux kernel was released, LTP included only 100 tests [6].

136 6 Case Study 1: Linux certification

Fig. 6.1: The HTML format of LTP Output

C [9], in this example we shall use the ANSI-C basic template to illustrate
how test cases are created.

To successfully write and execute a new testcase under LTP, a test case
needs to satisfy the criteria listed below [9].

1. A testcase shall be self-contained, so that it can be executed indepen-
dently.

6.3 The Linux Test Project 137

2. The outcome of a testcase (pass/fail) shall be detected within the testcase
itself.

3. The return value of a successful testcase shall be 0 and anything other-
wise.

A typical ANSI-C testcase using LTP APIs should look like the following
code, with the few modifications needed to fit the intended purpose of the
example.5

// Standard Include Files
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

// Harness Specific Include Files
#include "test.h"
#include "usctest.h"

#define TRUE 1
#define FALSE 0

// Extern Global Variables
extern int Tst_count; //counter for tst_xxx routines.
extern char *TESTDIR; //temporary dir created by tst_tmpdir()

// Global Variables
char *TCID = "dummy_syscall_test01"; //program identifier
int TST_TOTAL = 1; // total number of tests in this file

//****************** cleanup *******************************
extern void cleanup()
{

// Close all open file descriptors

In case an unexpected failure occurs report it and exit

// Remove all temporary directories used by this test

// kill child processes if any

// Exit with appropriate return code

tst_exit();
}

//****************** setup *******************************
void setup()
{

// Capture signals

5 For the sake of conciseness, some comments have been omitted. The complete
template can be found on the LTP website (http://ltp.sourceforge.net/).

138 6 Case Study 1: Linux certification

// Create temporary directories

// Create temporary files

In case an unexpected failure occurs
report it and exit

}

//****************** main *******************************
int main(int argc, char **argv)
{

// parse options

LTP test harness provides a function called
parse_opts() that may be used to parse standard
options. For a list of standard option that are
available refer on-line man page at the LTP web-site

// perform global test setup, call setup() function
setup();

// Test Case Body

In case of unexpected failure, or failure not
directly related to the entity being tested report
using tst_brk() or tst_brkm() functions.

if (something bad happened)
{
// cleanup and exist

}

// print results and exit test-case
if(results are favorable)
tst_resm(TPASS, "test worked as designed\n");

else
tst_resm(TFAIL, "test failed to work as designed\n");

tst_exit()
}

The three main functions in this code are the main, setup and cleanup
functions. The main function is the entry point of the test case, where the
test of some specific functionality is performed and the return value of the
test (either success or failure) is returned. The setup function is used to create
and initialize all needed resources, such as signals to be captured, as well as
temporary files and directories. As the name suggests, the cleanup function
releases all the resources that were used by the test, removing all temporary
files and directories. Note that the cleanup function can be excluded from
some tests, depending on whether there is actually something to delete after

6.3 The Linux Test Project 139

the test is done or not. Some additional global variables are also defined inside
the testcase; they are listed with their respective meanings in Table 6.2.

Variable Description
extern int Tst count It is used to report the number of test cases being

executed.
extern char *TESTDIR In case a directory is created during the test, the

name of that directory will be saved in TESTDIR.
char *TCID It contains the test name. The convention used in

other test cases is to have the test name followed
by two digits number.

int TST TOTAL Specifies the number of test cases included in the
program.

Table 6.2: Some of the global variables used in LTP

The following example presents a real test case taken from LTP. The test
case checks the result of the nextafter(double x, double y) function, which is
a math function that returns the next representable number of x in direction
y. The test checks the result of nextafter against different expected values.
Several comments have been omitted from the example, but the complete test
case can be found at LTP-folder/testcases/misc/math/nextafter/nextafter.c.

#include <stdio.h>
#include <math.h>
#include <errno.h>
#include <stdlib.h>
#include "test.h"
#include "usctest.h"

#define FAILED 0
#define PASSED 1

char *TCID = "nextafter01";

int local_flag = PASSED;
int block_number;
int errno;
FILE *temp;
int TST_TOTAL = 1;
extern int Tst_count;

void setup();
int blenter();
int blexit();

/*---*/
int main()
{

double answer;
double check; /* tmp variable */

140 6 Case Study 1: Linux certification

setup(); /* temp file is now open */
/*---*/
blenter();

answer = nextafter(1.0, 1.1);
check = (answer + 1.0) / 2;
if ((check != answer) && ((float)check != 1.0))
{
fprintf(temp, "nextafter returned \%e, expected answer or

1.0\n", answer);
local_flag = FAILED;

}

blexit();
/*---*/

blenter();

answer = nextafter(1.0, 0.9);
if ((check != answer) && (check != 1.0))
{
fprintf(temp, "nextafter returned \%e, expected answer or

1.0\n", answer);
local_flag = FAILED;

}

blexit();
/*---*/

blenter();

answer = nextafter(1.0, 1.0);
if (answer != 1.0)
{
fprintf(temp, "nextafter 3 returned \%e, expected 1.0\n",
answer);

local_flag = FAILED;
}

blexit();
/*---*/

tst_exit(); /* THIS CALL DOES NOT RETURN - EXITS!! */
return(0);

}
/*---*/

/***** ***** LTP Port *****/

/* FUNCTIONS */

void setup()
{
temp = stderr;

}

6.4 Evaluation Tests 141

int blenter()
{

local_flag = PASSED;
return(0);

}

int blexit()
{

(local_flag == PASSED) ? tst_resm(TPASS, "Test passed") :
tst_resm(TFAIL, "Test failed");

return(0);
}

In this example the nextafter function is tested with different test values.
By comparing this example with the template we discussed above, we can
see that there is no cleanup function. The reason is that there is nothing to
delete (e.g., no files or directories have been created). After every call of the
function the test checks the value of the answer, which shows if the test was
passed successfully or not.

6.4 Evaluation Tests

One of the main responsibilities of a CC accredited evaluation body is to
ensure that the security functions claimed by the ST are implemented and are
correctly enforced. To this end, evaluation bodies must run series of tests to
verify each security function of the TOE. The tests used during the evaluation
process include the functional test cases provided by the developers, as well
as additional tests developed by the evaluation body as needed.

As we have seen, the SLES8 certification relies on existing LTP tests to
test most of the system’s security function. LTP includes three scripts for
executing three different suites of automatic tests [9]: i) runalltests.sh, ii)
network.sh, and iii) diskio.sh. To give a clear understanding of a LTP test
suite evaluation, in Table 6.3 we provide the summary report of the evaluation
of Linux kernel 2.6 on a 64 bit Intel Itanium architecture (formerly called IA-
64).

6.4.1 Running the LTP test suite

Software virtualization provides a robust framework for running different
types of tests in a single or few virtual machines (see Chapter 8)). During our
tests we have then used a virtual machine with the following configuration:

142 6 Case Study 1: Linux certification

Test Summary Pan reported some tests FAIL
LTP Version LTP-20071130
Start Time Tue Dec 4 02:11:29 PST 2007
End Time Tue Dec 4 03:11:52 PST 2007
Log Result /root/subrata/ltp/ltp-full-20071130/results
Output/Failed Result /root/subrata/ltp/ltp-full-20071130/output
Total Tests 849
Total Failures 0
Kernel Version 2.6.16.21-0.8-default
Machine Architecture ia64
Hostname elm3b159

Table 6.3: LTP summary report of Linux kernel evaluation

• Host OS: Windows XP SP2.
• VMware Server 1.4 as the Virtual machine console.
• 256 RAM memory.
• 4 GB of Hard drive space.
• CD drive since the test virtual machine is not connected to the Internet.
• One CPU.

During the installation we followed the Security Guide instructions of
Sles test suite, with the following variations.

• The Sles8 Installation CDs have been downloaded from Novell web site.
• The Virtual machine does not have any network device installed.

Since the installation straight from the SLES8 CDs does not meet the
required level of security, some packages must be upgraded as described in
the security guide. Novell provides an RPM package that contains all the
necessary packages, as well as all the scripts to bring up the base installation
to the level needed for running in an evaluated configuration.6

6.4.2 Test suite mapping

One of the main responsibilities of an evaluation body is to ensure that
the security functions claimed by the software supplier have been correctly
implemented. To this end, security evaluation bodies perform a series of tests
to check each security function of the TOE. To be able to carry out these
tests successfully, security evaluation bodies need to plan the tests to use for
each security function or, in other words, to establish a mapping between
the SFRs and the test cases. In the case of software products developed

6 However, the RPM package is not available for free. An alternative solution would
be to do all the job manually, which is what we did in this case study.

6.4 Evaluation Tests 143

with the CC certification in mind, there are usually no problems, since the
developers can create a mapping between the SFRs and some test cases “as
they go”, in the course of the product development life cycle [10]. However,
if the software product (an the corresponding test cases) already exist, the
certification authority will have to find out which tests can be used for which
SFRs. For SLES8 or Linux in general, finding the right mapping even harder
because it is very difficult to track the activities of the developers of a large
open code base like Linux (see Chapter 5. In many cases, the developers of
the system functionalities are not the same people who provide the test cases
for the same functionalities. Therefore, finding the right mappings becomes
a very time consuming and error-prone task.

As far as security features are concerned, a major problem to be faced
in security testing is that no framework for automatic linking between tests
and security features is available. The developers are then forced to associate
tests to security functions based on their experience only.

In the case of SLES8, this task has been done manually by creating two
types of mappings. The first mapping connects each SFR with the security
function or set of security functions that implement that SFR. For instance
the security function User Identity Changing (IA.4) contributes to satisfy the
SFR User-Subject Binding (FIA USB.1) [7]. The second mapping instead is
established between the security functions and the actual testcases. Figure
6.2 depicts the two mappings. In the case of SLES8 the first mapping is part
of the TOE security specification section of the ST, since it is the developer
who knows what are the security functions that satisfy each SFR. On the
other hand, the second mapping is not part of the ST, because it is the
responsibility of the evaluation body to create the mapping [3].

Fig. 6.2: The mapping between SFRs, security functions and testcases

144 6 Case Study 1: Linux certification

Fig. 6.3: Matching engine

We will now describe a solution consisting of a generic framework for an
automatic selection of test suites for the evaluation of the security functions.
Our framework, depicted in Figure 6.3, is composed of three main compo-
nents:

• Certification Test Suites, which represents a hierarchical structure con-
taining the set of test suites to be used in the certification process. Each
node of the structure is assumed to be labeled using a self-explaining
name and enriched of metadata describing its semantics. Each leaf-node
represents a single test;

• Security Functions, which include the functions description of the TOE
to be evaluated;

• Matching Engine, which is the component responsible for associating tests
to security functions.

The first step toward the development of a matching engine for automatic
test selection is the introduction of a security feature vocabulary. To our pur-

6.4 Evaluation Tests 145

poses, a vocabulary can be defined as a set of keywords {k1, . . . , kn} to be
used in the definition of test suites metadata and name, and for the descrip-
tion of the security functions to be evaluated.

Vocabulary V allows to define both certification test suites and security
functions based on a security feature grammar, which simplify the matching
engine process. Our matching engine can be defined as a function f that takes
in input the vocabulary V , the security functions SF and the test suites TS,
and produces in output the association between the security functions SF
and the test suites TS. The mapping process is composed of three phases:
Keyword extraction, Semantic expansion and Search/Match.

In the first phase, given a security function sf ∈ SF , the matching engine
searches inside sf all keywords {k1, . . . , kn} ∈ V extracting a set K ⊆ V
of all the keywords used in the security function description. Then, each
keyword ki ∈ K is expanded by means of a suitable thesaurus. After that,
each ki in the expanded set is searched in the certification test suites paths
and in each node metadata. All nodes that contain at least one matching,
that is, where at least one keyword ki is found, are selected and used by the
matching engine as the root of a subtree to be considered in the final step.
Finally, the matching engine returns all the selected subtrees, which are used
to test security function sf .

Although general enough to be adopted in a generic CC certification pro-
cess, our solution was tested in the context of the certification of the SLES8
Linux distribution. In particular, our framework relies on an extended version
of LTP, which has been used for SLES8 EAL3 certification [8], and on the
security functions specification used for the definition of the security target of
SLES8. Since no formal metadata describing the test suites for SLES8 EAL3
certification are available and no agreement between security functions and
test suites vocabulary is in place for this application, the vocabulary used
by our matching engine is composed by the set of node names used in the
hierarchical structure of the certification test suites. For instance, the cer-
tification test suites used in SLES8 EAL3 certification contains the node
path network/nsfv4/acl that includes a huge set of tests among which: cre-
ate users, test acl, and many others. All the node names in the path and the
test names are used as keywords for searching inside the security functions
description in order to find the association security functions/test suites.

In the following, we present a real example based on SLES8 EAL3 test
suite and Security Target. The selected set of security functions belong to
Identification and Authentication (IA) security functional area. We used our
engine to select the set of tests to be used to validate the requirements of
each security function.

146 6 Case Study 1: Linux certification

6.4.3 Automatic Test Selection Example Based on
SLES8 Security Functions

The SLES8-based example is summarized in Figure 6.4 and the results are
provided in Table 6.4. During the keyword extraction phase, all the security-
related vocabulary keywords are extracted by security functions description
(see underlined words in second column of Table 6.4). In the second phase,
keywords are semantically expanded using an ad-hoc security related the-
saurus, generating the column tree of Table 6.4. Finally, in the search/match
phase, the expanded set of keywords is searched in the LTP testcases directory
hierarchy.7 If a node matches at least one keyword, it will be automatically
mapped to the security function to which that keyword belongs (see column
four in Table 6.4).

Fig. 6.4: The automated mapping approach between security functions and testcases

In our approach, the search/match phase relies on the Linux command
grep, which is applied to the extended LTP tree structure. The grep com-
mand, developed within the GNU project, searches one or more input strings
and returns any line containing a match to a specified pattern. Based on
grep command, scripts are generated automatically starting from the key-
words retrieved in the semantic expansion phase. These scripts search the
keywords retrieved during the keyword extraction and semantic expansion
phases, inside the directory structure of extended LTP tree and inside the
comments in the testcases. Figure 6.5 presents a sample script, which is ex-
ecuted to retrieve the set of tests for the SC.1 security function described in
Table 6.4.8

7 Search process considers also the comments inside the testcases files.
8 The complete output produced by the execution of the grep command is summarized
in Appendix A.

6.4 Evaluation Tests 147

grep -l -i -e ’tunneling’ -e ’port 22’
-e ’secure channel’ -e ’secure socket layer’
-e ’ssl’ -e ’ssh’ -e ’secure shell’
-r linux_security_test_suite_EAL3

Fig. 6.5: Example of search/match script applied to the SC.1 security function. The
-l and -i options allow to print the list of matching files ignoring case distinctions.

Note that our matching engine has perfect recall: it always returns all
the relevant test cases selected manually by developers during SLES8 certifi-
cation. Of course, our matching is not entirely precise, and some redundant
tests are also selected. However, here the point is achieving total recall rather
than high precision, even at the price of carrying out some unnecessary tests.

Security
Function

Description Semantic Ex-
pansion

Tests

User
Identification and
Authentication
Data
management
(IA.1)

... user may have
different usernames,
different user IDs ...
users are allowed to
change their passwords
using the passwd
command ... the read the
content of /etc/shadow

credential,
certificate,
authorization,
identity,
encryption,
encoding,
identification

group01, pam01,
test login.c,
passwd01, shadow01,
etc.

security feature
authentication
mechanism (IA.2)

SLES includes a security
feature authentication
mechanism...including all
the interactive login
activities, bash jobs, and
authentication for the
SU command...password
authentication...check
password expiration

credential,
PAM,
username, root,
access

pam01, test login.c,
test sshd.c,
test vsftp.c,
passwd01, passwd02,
etc.

Interactive login
and related
mechanisms
(IA.3)

The ssh and ftp as the su
command used to change
the real, filesystem and
effective user ID all use
the same authentication
mechanism in the
evaluated configuration...
to protect the user’s
entry of a password
correctly...as long as the
remote system is also an
evaluated version of the
TOE

PAM, login,
passwd, remote

group01, pam01,
test login.c,
passwd01, shadow01,
etc.

148 6 Case Study 1: Linux certification

User identity
changing (IA.4)

Users can change their
identity...using the su
command ...the su
command within the
SLES is to allow
appropriately authorized
individuals the ability to
assume the root
identity...to switch to
root has been restricted
to users belonging to the
trusted group

impersonate,
super user,
login,
authorization

setfsgid01.c,
setsgfid02.c,
setfsuid01.c,
setgid01.c, etc.

Login processing
(IA.5)

At the login process the
login, real, filesystem,
and effective user ID are
set to the ID of the user
that has logged in.

authentication,
credential,
identify, pam,
password

pam01, test login.c,
test sshd.c,
test vsftp.c,
passwd01, passwd02,
etc.

Table 6.4: Automatic test selection results. For sake of conciseness, the table only re-
ports a part of each security function and a partial list of tests. A complete description
of the functions can be found in [7].

6.5 Evaluation Results

The results of the SLES8 TOE evaluation are documented in an evaluation
technical report (ETR) which presents the overall findings and their justifi-
cations [3]. It is produced by the evaluation body and then submitted to a
validation body to validate it. Most of the time, two versions of the ETR
are produced: i) a complete version that includes proprietary and confiden-
tial information and ii) a lightweight version that excludes proprietary and
confidential information. The minimum content of an ETR is shown in Fig-
ure 6.6. For SLES8, as reported in SLES8 certification report, the ETR is a
confidential document, so we cannot reproduce it here. However, all publicly
accessible contents are described in the certification report itself.

Another important document produced by the SLES8 evaluation body
is the observation report (OR) which contains all problems that have been
identified during the TOE evaluation [3]. Based on this documentation, the
evaluator verifies all the documents produced by the evaluation body and
issues the certification report (CR). The CR is a publicly available document;
it targets mainly the potential customers of the TOE. It summarizes the TOE
security functions, the evaluator testing effort, the evaluated configuration as
well as the results of the evaluation, by showing all the assurance components
that have passed the certification requirements.

SLES8 has been certified with EAL3+. The evaluation has proven that

• The TOE conforms to the CAPP protection profile.

6.6 Horizontal and Vertical reuse of SLES8 evaluation 149

Evaluation Technical Report

1. Introduction
2. Evaluation
3. Result of the evaluation
4. Conclusions and recommendations
5. List of evaluation evidences
6. List of acronyms/glossary of terms
7. Observation reports

Fig. 6.6: The content of the Evaluation Technical Report

• That the SFRs specified in SLES8 ST conform to CC part 2 extended.
• That the SARs specified in SLES8 ST conform to CC part 3 augmented.
• The security functions satisfy the required level of security.

6.6 Horizontal and Vertical reuse of SLES8 evaluation

6.6.1 Across distribution extension

Let us now pose ourselves a question that the reader may have anticipated:
how can we reuse what has been done for SLES8 to certify other distribu-
tions? To answer this question, we had to analyze and isolate the portion
of SLES8 that has actually been certified, then compare it with other dis-
tributions. According to SLES8 certification report [5] SLES8 provides the
security functions depicted in Table 6.5.

By taking a closer look at Table 6.5, we found that the security functions
that were considered in SLES8 fall in one of three categories: Kernel syscalls,
programs/processes with root privileges and configurations files for security
functions. Let us now check the level of compatibility between SLES8 and
other distributions. As a starting point for testing this we consider the fol-
lowing experiment.

We install another Linux distribution (i.e., Fedora 7) and we ran part of
EAL3 test suite on top of it. The part of EAL3 considered was LTP testcases,
since the other testcases were more specific to SLES. The EAL3 automated
tests are divided into six separate testcases packages presented in Table 6.6.
For our experiments, we used Test suite mapping and ltp OpenSSL testcases,
because they are LTP compliant. An interesting point to mention here is that
ltp EAL2 was reused from the previous certification of SLES8 with EAL2,
which reduces time and effort of the certification process.

During our testing activities, total of 860 test cases were executed on
Fedora 7 running on top of the Xen virtual environment (see Chapter 8 for

150 6 Case Study 1: Linux certification

Name Function
Identification and Authentication (IA)
IA.1 User Identification and Authentication Data Management
IA.2 User security feature Authentication Mechanism
IA.3 Interactive Login and Related Mechanisms
IA.4 User Identity Changing
IA.5 Login Processing
Audit (AU)
UA.1 Audit Configuration
UA.2 Audit Processing
UA.3 Audit Record Format
UA.4 Audit Post-Processing
Discretionary Access Control (DA)
DA.1 General DAC Policy
DA.2 Permission Bits
DA.3 Access Control Lists supported by SLES
DA.4 Discretionary Access Control: IPC Objects
Object Reuse (OR)
OR.1 Object Reuse: File System Objects
OR.2 Object Reuse: IPC Objects
OR.3 Object Reuse: Memory Objects
Security Management (SM)
SM.1 Roles
SM.2 Access Control Configuration and Management
SM.3 Management of User, Group and Authentication Data
SM.4 Management of Audit Configuration
SM.5 Reliable Time Stamps
Secure Communication (SC)
SC.1 Secure Protocols
TSF Protection (TP)
TP.1 TSF Invocation Guarantees
TP.2 Kernel
TP.3 Kernel Modules
TP.4 Trusted Processes
TP.5 TSF Databases
TP.4 Internal TOE Protection Mechanisms
TP.5 Testing the TOE Protection Mechanisms

Table 6.5: SLES8 security functions

Testcases packages
at test EAL
ext3 ACLs tests
laus test
ltp EAL2
ltp OpenSSL

Table 6.6: SLES8 EAL3 Testcases packages

6.6 Horizontal and Vertical reuse of SLES8 evaluation 151

the details on the virtual testing environment we used).9 The result was that
only 14 tests failed, and none of them was security related. This result shows a
high degree of compatibility between the different Linux distributions, which
can be used as a starting point to extend the range of certified open source
products.

6.6.2 SLES8 certification within a composite product

A modular TOE is composed of two or more components which need to be in-
dividually compliant to security criteria. There are several scenarios in which
splitting a TOE into small TOE components proves to be more efficient than
consider a monolithic one. For example in the case of a firmware which needs
to be evaluated on different hardware platforms, using a composite TOE
will distinguish a firmware component and a hardware component. At every
evaluation the hardware component can be changed. The CC Composition
Assurance Class (CAC) defines activities to determine a secure integration
between the different components of the composite TOE. During the com-
posite TOE testing, the evaluators need to test the TOE SFRs at composed
level, as well as for the base components [3].

Again, we need to take into account the fact that the Linux kernel and
the applications running on top of it are developed by different parties. Many
companies and communities contribute different components (see Chapter 5
which are loosely bound to the operating system. Such components use Linux
as an execution environment but they do not depend heavily on specific im-
plementations details. Many Linux applications can be installed and executed
independently on the kernel version or the used distribution. Figure 6.7 de-
picts some Linux based environments in which Linux kernel is considered to
be an integral part of the product. When certifying such products, the ex-
isting SLES certification can help ST authors to reduce the time and effort
required to analyze the operating system part. In this scenario, however, the
focus will be on the application running on top of the operating system as
well as the communication interfaces between the OS and the application.
The objective is to integrate an already certified product in the process of a
new product certification as depicted in Figure 6.8.

9 For this experiment, we have used the latest LTP package available at the time (i.e,
the one released on January 31st 2008) and we have checked manually that the latest
LTP includes all the security tests that were used in EAL3. Some of the files such
as fileperm01, procperm01, object reuse01 are missing from LTP since they were
developed specifically for Suse during the certification process.

152 6 Case Study 1: Linux certification

Fig. 6.7: Linux-based environments

Fig. 6.8: Integrate an evaluated platform in the certification of a new TOE

References 153

6.7 Conclusions

The aim of the CC standard is to develop and provide a standard security
evaluation process to be used by software suppliers to validate the level of
confidence for their products. However, many software vendors and security
experts do not share this definition. Whereas vendors see CC as an expensive
process both in terms of time and effort, security experts consider CC to be
nothing more than validating the paperwork related to a software.

Many software suppliers do not consider CC as a methodology for soft-
ware security assessment; rather they treat it as an additional requirement
to be able to sell their products to governmental organizations. An argument
made by Jonathan S. Shapiro [17] when Windows 2000 received the EAL4
certificate goes as follows: “The certification applies to an existing product.
It was the same product on 29 October that it was on 28 October: no more
secure and no less” [17]. Shapiro argued that even if Windows 2000 had been
certified with EAL4, this did not change what it was known about it, such
as the fact of it being the target of many threats and exploits.

Another issue regards the TOE. It is stated in the CC part 1 that “In gen-
eral, IT products can be configured in many ways: installed in different ways,
with different options enabled or disabled. As, during a CC evaluation, it will
be determined whether a TOE meets certain requirements, this flexibility in
configuration may lead to problems, as all possible configurations of the TOE
must meet the requirements. For these reasons, it is often the case that the
guidance part of the TOE strongly constrains the possible configurations of
the TOE, that is, “the guidance of the TOE may be different from the general
guidance of the IT product” [2]. This statement makes the TOE bound to
the configurations that have been used during the certification. This strict
connection between security and configuration changes the way we look to
the TOE from being a certified product to a certified configuration. Once
again, this reminds us that we never certify a product line or even a specific
product, but only specific configurations of it. Also, current certifications be-
come obsolete when the context in which they were obtained changes. This
poses a research problem which we shall describe in more detail in Chapter
9.

References

1. atsec information security corporation. EAL3 Common Criteria Developer Evi-
dence.

2. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and general model, 2006.

3. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Security

154 6 Case Study 1: Linux certification

Evaluation, Evaluation methodology, 2007.
4. The International Organization for Standardization and the International Elec-

trotechnical Commission. Common Criteria for Information Technology Security
Evaluation, Part 3: Security assurance components, 2007.

5. BSI Bundesamt fr Sicherheit in der Informationstechnik. Certification report for
SUSE Linux Enterprise Server V 8 with Service Pack 3, 2006.

6. N. Hinds. Kernel korner: The linux test project. Linux Journal, December 2004.
7. IBM and SuSE. SuSE Linux Enterprise Server V8 with Service Pack 3 Security

Target for CAPP Compliance, November 2003.
8. SuSE IBM and atsec. SuSE Linux Enterprise Server 8 w/SP3 CAPP/EAL3+

Certification Test Suite.
9. P. Larson. Testing linux with the linux test project. In Proc. of the Ottawa Linux

Symposium, Ottawa, Ontario, Canada, June 2002.
10. C. Lennerholt, B. Lings, and B. Lundell. Architectural issues in opening up the

advantages of open source in product development companies. In Proc. of the
32nd Annual IEEE International Computer Software and Applications Confer-
ence (COMPSAC 2008), Turku, Finland, July-August 2008.

11. Linux Test Project. ltp.sourceforge.net.
12. P.A. Loscocco, S.D. Smalley, P.A. Muckelbauer, R.C. Taylor, S.J. Turner, and

J.F. Farrell. The inevitability of failure: The flawed assumption of security in
modern computing environments. In Proc. of the 21st National Information
Systems Security Conference, Arlington, Virginia, USA, October 1998.

13. S. Modak and B. Singh. A building a robust linux kernel piggybacking the linux
test project. In Proc. of the 2008 Linux Symposium, Ottawa, Canada, July 2008.

14. Information Systems Security Organization. Controlled Access Protection Profile
version 1.d, 1999.

15. Hubertus Franke Rajan Ravindran Paul Larson, Nigel Hinds. Improving the
linux test project with kernel code coverage analysis. In Proc. of the Ottawa
Linux Symposium, Ottawa, Canada, July 2003.

16. K.S. Shankar and H. Kurth. Certifying open source: The linux experience. IEEE
Security & Privacy, 2(6):28–33, November-December 2004.

17. J.S. Shapiro. Understanding the windows eal4 evaluation. Computer, 36(2):103–
105, February 2003.

Chapter 7

Case Study 2: ICSA and CCHIT
Certifications

Abstract In this chapter we briefly examine some “lightweight” software
certification processes, starting with the ICSA security certification. Unlike
Common Criteria (CC), the ICSA scheme is not aimed at relating protec-
tion requirement to the presence of specific security-related features; rather,
it intended to provide a simple yet rigorous security assurance procedure for
network and Internet-related software products. The ICSA certification goal
is to alleviate certification costs, certifying software products across multiple
versions and configurations. We start by describing how ICSA can be applied
to an open source software firewall. Then, we outline the notion of domain
specific certifications aimed at Iliability reduction, such as the CCHIT certi-
fication for healthcare-related software products.

7.1 Introduction

A major motivation for an open source software product to be certified is
to reduce both real risk (see Chapter 3) and perceived risk. Thanks to cer-
tification, software purchasers gain reassurance that the software product
they are using meets industry-accepted standards and that the software sup-
plier has taken due care, having addressed all known security issues. Some
lightweight test-based security certification can achieve the goal of reassuring
the users without the complexities of CC. As an example, we shall exam-
ine a “lightweight” certification process, totally different from the CC one:
the ICSA security certification.1 The ICSA certification goal is to support a
simple yet rigorous assurance process for security-related software products.

ICSA applies the same set of certification plans to each product type, based
on a set of certification criteria yielding a pass-fail result. These certification

1 ICSA Labs (www.icsalabs.com) is an independent division of Verizon Business.
It has certified a large portion of the well known security related software products,
including anti-virus, anti-spyware and firewalls.

155

156 7 Case Study 2: ICSA and CCHIT Certifications

criteria are based on testing the immunity degree of the systems under eval-
uation against a set of threats and risks, rather than on the system’s design,
architecture, or any attempt to assess the underlying technology. Generally
speaking, this is what we refer to as black-box test-based approach (Chapter
3) [5].

An important aspect of the ICSA certification is consistency. ICSA certi-
fication criteria are based on how software products react to a list of threats,
rather than on a mapping between protection requirements and specific fea-
tures. Therefore, ICSA criteria support comparative analysis and product
ranking. To keep the list of threats used during the evalution up-to-date,
ICSA Labs relies on the data and views collected from different sources in-
cluding users, software suppliers, security experts and academic researchers.
As a result, a draft of the new set of criteria, called notice of proposed cer-
tification criteria, is created and then circulated for further reviews before
making the criteria final and publicly posted [5].

Another important feature of ICSA certificates is genericity : “the ICSA
certification criteria and process are designed so that once a software product
is certified, all future versions of the product (as applicable) are inherently
certified” [5]. This is achieved by a three-steps assurance process [5], aimed
at making the ICSA certification relatively independent of product updates
and version changes. Here is a summary of the ICSA assurance process:

1. ICSA Labs gain a contractual commitment from the software vendor,
agreeing that the software product will be consistently maintained at the
current ICSA Labs Certification standard. In other words, the vendor’s
own quality assurance programs must incorporate current ICSA certifica-
tion criteria into their product development processes. Thus, evaluation
bodies play a lesser role in ICSA than in CC: a significant part of the
ICSA certification process consists of self-checking by the organization
whose product is certified.

2. ICSA Labs reserve the right to perform random assessments of the soft-
ware products against current criteria for that certification category. If a
product fails an assessment, the responsible party is requested to rectify
the problem(s). If the product still does not meet certification criteria by
the end of a short grace period, the certification is revoked.

3. ICSA certification expires after one year, so that the certification process
is repeated yearly.

Since manual testing requires additional time and effort, especially in case
of re-certification, the ICSA Labs approach to testing is based on a battery of
automated tests aimed at reducing the evaluation process time and increasing
the tests quality. When automated testing is not possible, ICSA Labs advises
a checklist oriented approach where skilled security analysts - either from
ICSA Labs or a third-party lab specialists trained and authorized by ICSA
Labs - perform the tests [5].

7.2 ICSA Dynamic Certification Framework 157

As the reader may already have noticed, there is absolutely nothing in the
ICSA assurance process that prevents it from being applied to open source
software. As an example, in the remainder of the chapter we shall discuss
the ICSA certification of an open source firewall product, the Endian fire-
wall. However, ICSA is not the only lightweight software certification process
available today; several domain specific certifications have been proposed. As
an example of a domain-specific certification, in this chapter we shall briefly
describe how certifications are awarded by the Certification Commission for
Healthcare Information Technology (CCHIT). The rationale of CCHIT soft-
ware certification is the reduction of the software supplier’s liability (Chapter
1). Healthcare organization welcome all means of reducing their liability, and
security certifications are considered by some as an important step in this
direction.2 Today, open source stakeholders seldom see the need for going
through the process of achieving domain-specific certifications, this situation
may change soon and healthcare related IT products bundling OSS become
widespread.

7.2 ICSA Dynamic Certification Framework

Let us now briefly describe the ICSA certification process. The ICSA cer-
tification is based on what is called the ICSA Labs Dynamic Certification
Framework, defining the activities composing the process. ICSA defines a
dynamic certification process that starts by analyzing risks, identifying po-
tential threats to the software product under evaluation. The first activity is
a complete analysis of the potential failures of the software product for which
certification is contemplated, assessing their probability and impact. In other
words, a complete risk analysis and prioritization is performed as illustrated
in Chapter 3).

This risk analysis activity brings out failures with the least impact and
lowest probability, allowing to filter out small risks; for all other risks, this
activity identifies a set of safeguards aimed at mitigating them. Next, the
safeguards are converted into practical ICSA certification criteria, which are
submitted to vendor groups, end-user groups, and the software market at
large. The ICSA certification will actually assert the presence of such safe-
guards [5].

When a sufficient number of certifications have been performed, ICSA Labs
develop and apply metrics to confirm the actual risk-reduction accomplished
through the certification process. These analysis lead to updating the criteria

2 Of course, different legal systems have different notions of liability, and the extent of
any liability reduction due to software certification would of course depend on where
the organization using certified software is based. Dealing with the legal implications
of liability issues is beyond the scope of this book.

158 7 Case Study 2: ICSA and CCHIT Certifications

and the corresponding set of safeguards, triggering a new iteration of the
certification framework cycle [5].

7.3 A closer look to ICSA certification

We are now ready to take a closer look to ICSA certification process. In the
following, to fix our ideas, we shall focus on the certification of firewalls.

As their name suggest, firewalls generally refer to a set of technologies and
devices designed to stop unauthorized network activities. A firewall typically
behaves as a bottleneck between the internal and the external network, and
it uses a set of defined rules to allow or reject certain types of traffic to pass
through it [3]. Generally, firewall systems operate on the principle packet
filtering, in which the header of each data packet traversing the firewall is
analyzed and compared with a defined set of rules, to decide whether it should
be allowed or rejected.

The ICSA firewall evaluation adopts the same certification criteria for all
firewalls under evaluation. All the firewalls are evaluated against the same
set of functional and assurance criteria. Version 4.1 of the modular firewall
certification criteria contains the following documents.

• The Baseline module: it defines the requirements that all firewall products
must satisfy in order to be certified.

• 4.1a Logging criteria: an update of the 4.1 baseline Logging criteria
• Residential, Small/Medium Business, Corporate: the firewall vendor may

choose one of these modules depending on the target customer
• Glossary : definitions of terms used in 4.1 criteria documents

ICSA has grouped the security criteria that a candidate firewall must satisfy
into six wide categories, depicted in Table 7.1.

To obtain ICSA Labs certification, a software firewall needs to provide
evidence of implementing all the safeguards corresponding to known threats
in the six areas listed above.

7.3.1 Certification process

As stated in Section 7.1, ICSA Labs certification process differs from the
CC one in many respects. Specifically, ICSA certification criteria are based
on functional black-box tests (Chapter 3), verifying if all the safeguards to
threats identified during the risk analysis are in place and work correctly. The
evaluation body uses the test cases outcome to assess the extent to which the
software product can resist to such threats [5].

ICSA Labs certification testing methodology relies on a combination of:

7.4 A case study: the ICSA certification of the Endian firewall 159

Category Description
Logging The candidate Firewall Product must provide the

capability to log various types of events
Administration The candidate Firewall must provide all the nec-

essary configuration tools and administrative func-
tions

Persistence The candidate Firewall must be persistent after a
lost of power

Functional testing Assures that during the tests only the services in
the security policy pass through the candidate Fire-
wall and no other services pass

Security testing Administrative access testing, Vulnerability test-
ing, and other types of security tests

Documentation The candidate Firewall needs to have Installa-
tion Documentation, Administrative Documenta-
tion, Additional documented coverage, Accurate
Documentation and Log event dispositions defined

Table 7.1: ICSA security criteria categories

• Automated testing.
• Checklist oriented where no automated.
• Objective testing.
• Ability of tests reproduction.

After the risk identification phase, a set of safeguards to overcome such
risks is created. Then, the controls are converted to attainable criteria that
are examined by vendor and user groups for correctness, consistency and
completeness. Finally, metrics for each criteria are developed [5]. During this
process all the activities may need to be adjusted or re-examined, which
improves the quality of the criteria.

7.4 A case study: the ICSA certification of the Endian
firewall

ICSA Labs have certified different IT security products including anti-Spams,
anti-spywares, anti-viruses, firewalls, network intrusion prevention, PC fire-
walls, Secure Socket Layer - Transport Layer Security (SSL-TLS), web ap-
plication firewalls and wireless products. Here we will present the actual
certification process3 for a specific open source software product, the Endian
firewall. Endian is a software development company based in Bozen/ Bolzano,
in South Tyrol, Italy. It is specialized in developing firewalls over the Linux

3 The certification process presented here represents a proof of concept only, which has
not been subject to any formal certification process, neither created by an accredited
evaluation body.

160 7 Case Study 2: ICSA and CCHIT Certifications

Risks analysis

Define controls

Convert contorls to
practical criteria

Metr ics development

Continuous update

Fig. 7.1: ICSA Labs Dynamic Certification Framework

platform. Endian has released all its software as open source, and has encour-
aged independent developers to join its community in order to benefit from
the community’s efforts to test and optimize the firewall’s capabilities.

Endian Firewall comes in two versions: (i) the open-source community
version freely distributed, and (ii) a firewall appliance that comes as a Uni-
fied Threat Management (UTM) [4] to protect and improve the network’s
connectivity. Here we shall focus on the former. Endian firewall supports a
variety of features showed in Table 7.3.

We will now discuss the detailed test plan for testing the functionality of
the Endian firewall safeguards corresponding to known threats in each area
of ICSA firewall certification procedure.

7.5 Endian Test Plan 161

Features supported by Endian firewall
Stateful packet inspection
Application-level proxies for various protocols (HTTP, POP3, SMTP, SIP)
Antivirus support
Virus and spamfiltering for email traffic (POP and SMTP)
Content filtering of Web traffic
VPN solution (based on OpenVPN)
Event log management
HTTPS Web Interface
Detailed network traffic graphs

Table 7.2: Some of the features supported by Endian firewall

7.5 Endian Test Plan

7.5.1 Hardware configuration

To be able to test all the aspects of the Endian firewall, the hardware con-
figuration needs to be adapted for each type of tests. For the sake of agility,
the tests have been performed in our virtual testing lab (see Chapter 8) us-
ing Xen [7] as the virtual machine monitor. Xen allows multiple instances of
Linux to run on top of another instance acting as a host operating system.

7.5.2 Software configuration

• Firewall Machine: Only the Endian Community Edition is running.
• Attacker Machine(s): We use Debian distribution as operating system,

and some security testing tools described below.
• Victim Machine(s): They use Debian distribution as operating system,

and depending on the type of test, other components will be added, for
instance web servers, ftp servers, and the like.

7.5.3 Features to test

The following are the features to tests required by ICSA Baseline module.

7.5.3.1 Logging

The specific functionalities we are interested in testing are the ones defined
by the ICSA list of safeguards about logging. According to the ICSA base-

162 7 Case Study 2: ICSA and CCHIT Certifications

line module, the candidate firewall must have “extensive capabilities” of log-
ging events. Also, it must provide detailed information for each logged event.
Therefore, tests will be carried out in two steps: the first step to check which
events the firewall is actually able to log, and the second to analyze the log’s
data.

7.5.3.2 Administration

The Administration area includes the actions that an authenticated admin-
istrator is allowed to perform. The first aspect to identify here is the Admin-
istrative interface provided by the firewall, since the authentication mecha-
nism could be different from the one used to connect for each interface. Only
users with the appropriate credentials can authenticate to the Administrative
functions. Here, we will test if the Administrative functions provided by the
Endian firewall comply with the ICSA Baseline Module.

7.5.3.3 Persistence

We deal with what happens when a power failure occurs, e.g., if the electrical
plug of the computer running the firewall is suddenly removed. We would like
to make sure that, once the power returns, the firewall security policy will
be exactly the same that was being applied when the failure occurred. This
property is called policy persistence, and corresponds to a software safeguard
that guarantees persistence whenever the firewall is rebooted. To test this
feature we need to compare: (i) security policy before and after the power
removal, (ii) logs data before and after the power removal, and (iii) what
happens while the firewall is booting up.

7.5.3.4 Functional and Security testing

This area corresponds to the firewall basic operations, that is, packet filtering
according to a security policy. Once a security policy has been defined, the
firewall must allow the authorized services to pass and block all the others.
Also, the firewall must be able to detect any anomaly in the services operation
and block them to prevent and repel attacks.

To test the firewall security the following tests as reported in ICSA baseline
module are performed.

• Administrative Access Testing. The Candidate Firewall Product must
demonstrate through testing that no unauthorized control of its Admin-
istrative Functions can be obtained.

• Vulnerability Testing. When enforcing a security policy, the Candidate
Firewall Product must demonstrate through testing that it is not vulner-

7.5 Endian Test Plan 163

able to the evolving set of vulnerabilities known in the Internet commu-
nity, which are capable of being remotely tested.

• No Vulnerabilities Introduced. When enforcing a security policy, the Can-
didate Firewall Product must demonstrate through testing that it does
not introduce new vulnerabilities to private and service network servers.

• No Other Traffic. The Candidate Firewall Product must demonstrate
through testing that nothing other than that specified in the security
policy traverses the Candidate Firewall Product.

• Denial of Service. The Candidate Firewall Product must demonstrate
through testing that:

– its operation is not disrupted or disabled by any trivial denial of
service type attacks; and

– it shuts down gracefully if its operation is disrupted or disabled by
any denial of service type attack for which there is no known defense.

• Fragmented Packets. The Candidate Firewall Product must demonstrate
through testing that fragmented packets can be denied from traversing
the Candidate Firewall Product.

7.5.4 Testing tools

We are now ready to describe, with the help of some examples, how the ICSA
testing actually takes place. Let us start by listing the test generation tool
and the test drivers used in the certification process.

• Linux Test Project (LTP) (see Chapter 6).
• Nessus (http://www.nessus.org/). One of the widest adopted open

source security scanners [1]. Its extensible plug-in model allows the de-
velopers to work independently and concentrate their effort on different
types of vulnerabilities. During our tests we enabled different types of
plugins which are suitable for testing product, such as, Denial of service
plugins, Firewalls plugins and port scanners plugins.

• Nmap (http://nmap.org/). An open source utility for network explo-
ration or security auditing. The power of Nmap lies in its flexibility in
creating and manupulating IP packets. Using Nmap, we performed many
types of scans including packet fragmentation, IP address spoofing, TCP
scans with customized flags.

• Hping3 (http://www.hping.org/). A command-line oriented TCP/IP
packet assembler/analyzer. It allows the creation of TCP, UDP and ICMP
payloads and the manipulation of all their attributes. We have used
Hping3 as a port scanner and a DoS tool (see Figure 7.6).

164 7 Case Study 2: ICSA and CCHIT Certifications

7.6 Testing

7.6.1 Configuration

In our test, we use Endian firewall version EFW− 2.1.2, installed in our virtual
environment based on Xen [7] (see Chapter 8 for a discussion on the testing
environment). One of the main issues of ICSA certification is deciding which
configuration of the firewall should be tested, to carry over the certification
to most practical cases. The Endian firewall (like many firewall products)
includes many configuration options to accommodate different needs. De-
scribing the testing of all possible configurations is of course not a viable
option, because the number of possible configurations is very large. We will
therefore discuss testing the default configuration only, which is typical for
many scenarios.

Figure 7.2 depicts the network configuration we used to install the Endian
firewall:

Debian 1

10.0.1.2

10.0.3.2

XENBR 1

10.0.1.1

Endian

10.0.1.5 10.0.2.5
XENBR 2

10.0.2.1

Debian 2

10.0.2.3

10.0.3.3

XENBR 3

10.0.3.1

Internet

Fig. 7.2: Network configuration for Endian firewall testing

The table below contains the services running on Endian firewall

Services
CRON server
DNS proxy server
E-Mail scanner (POP3)
Kernel logging server
Logging server
NTP Server
Secure shell server
Web server

Table 7.3: Running services in a default installation

7.6 Testing 165

7.6.2 Logging

ICSA certification requires the Candidate Firewall to have extensive capabil-
ities of events logging. The Endian firewall provides several different types of
logs concerning different functionalities. Table 7.6.2 lists some of the those
logs.

Log Description
Proxy logs Logs all the files cached by the web proxy

server of Endian firewall
Firewall logs Logs all the traffic that passes through the

firewall. Table 7.6.2 shows an example of
firewall log data

IDS logs Logs all the anomalies and incidents discov-
ered by the IDS

Content Filter logs Logs the pages that have been blocked by
the HTTP content filter

System logs Logs other system activities

Table 7.4: Examples of Endian firewall logging capabilities

All logs share the same administration interface, through which the fire-
wall administrator specifies the number of lines to display, remote logging,
the details to be logged, and so forth. Below, we provide two examples of the
the required logs.

Example: Each startup of the system itself or of the security policy en-
forcement component(s)

endian10 0 1 5.localdomain - 22:31:27 up 74 days, 5:07, 0 users, load av-
erage: 0.10, 0.09, 0.02

Example: All dropped or denied access requests from private, service and
public network clients to traverse the CFP that violate the security policy.
The test was carried by starting a port scanner from another host (10.0.2.3)
to check if there are any open ports on the firewall host (10.0.2.5). Table 7.6.2
shows an example of the logged data.

Time Chain Proto Source Src Port Destination Dst Port
Mar 11 22:16:04 PORTSCAN TCP 10.0.2.3 51548 10.0.2.5 80
Mar 11 22:16:04 PORTSCAN TCP 10.0.2.3 51548 10.0.2.5 443
Mar 11 22:16:05 PORTSCAN TCP 10.0.2.3 51549 10.0.2.5 443

Table 7.5: Part of Endian Firewall’s logs for denied access requests

166 7 Case Study 2: ICSA and CCHIT Certifications

7.6.3 Administration

Endian firewall can be administered using the web browser based interface
provided by Endian and accessible through HTTPS on port 4443. The firewall
can also be accessed using SSH. The sample tests we used have failed to
bypass the authentication mechanism.

As an example of the administrative requirements, the Administrative In-
terface Authentication to access the Administrative Functions states that,
the candidate firewall product must have the capability to require authen-
tication through an administrative interface using an authentication mech-
anism. The Endian firewall meets this requirement by providing a simple
username/password based authentication mechanism.

7.6.4 Security testing

The first step in security testing is to check whether the Endian firewall
is able to enforce a default security policy. We started by testing whether
the Endian firewall can stand well known security exploits such as the ping
of death, flooding attacks and other Denial Of Service (DOS) attacks [2].
Examples of the tests we conducted are shown in the next subsections.

7.6.4.1 Using Nmap and Hping3

The test has been carried out as follow. First, the nmap tool has been used to
ping the firewall machine and scan for open ports. Figures 7.3 and 7.4 depict
the two operations. Once the open ports had been detected, we used Nmap to
check the services running on those ports (see Figure 7.5).

Fig. 7.3: Nmap ping

As shown on Figure 7.5, the port 4333, used by Apache Web server, was
found open by this test. As a consequence, as the next step of the test, we
launch a SYN flooding DOS attack on that port. Using Hping3, one can cre-
ate and send TCP messages to the Apache Web server using the following

7.6 Testing 167

Fig. 7.4: nmap scan the open ports

Fig. 7.5: Nmap checking the running services

command:

hping3 − S − i u10 − p 4443 − a 10.0.1.2 10.0.2.5

The first argument -S sets the SYN flag; the second argument -i specifies
the time interval between the messages sent to the open port (in micro sec-
onds); -p specifies the destination port; and -a is the source IP address which
could be also spoofed. After launching the attack, no output was returned
for several minutes (see Figure 7.6). The test result suggested that the En-
dian firewall had detected and stopped the attack. Supporting this intuition,
the Endian firewall’s logs show that the requests generated during the attack
were all blocked.

7.6.4.2 Using Nessus

These tests were conducted using the Nessus tool version 3.0 [6]. The Nessus
configuration was as follows:

168 7 Case Study 2: ICSA and CCHIT Certifications

Fig. 7.6: Hping3 SYN flooding attack

• Port scanners used

Nessus SNMP scanner
Nessus TCP scanner
Netstat scanner
Ping to remote host
SYN scan

• Some of Nessus plugins used

backdoors
CGI abuses
CGI abuses: XSS
Debian local security checks
Default Unix accounts
firewalls
Gain a shell remotely
gain root remotely
general
Misc
Web servers
Settings
Service detection
Remote file access

Some of the tests results are reported below in Table 7.6. The overall test
results show that the Endian firewall meets the criteria of ICSA certification.

7.7 The CCHIT certification

Lightweight certifications have also been gaining acceptance as far as safety
critical software is concerned. In particular, healthcare organizations welcome
all means of reducing their liability, and security certifications are considered
by some as a step in this direction. Open source stakeholders seldom see the
need for going through the process of achieving domain-specific certifications.

7.7 The CCHIT certification 169

Port ssh (22/tcp)
Synopsis An SSH server is listening on this port.
Description It is possible to obtain information about the remote SSH server

by sending an empty authentication request.
Risk factor None
Port general/tcp
Synopsis The physical network is set up in a potentially insecure way.
Description The remote host is on a different logical network. However, it is on

the same physical subnet. An attacker connecting from the same
network as your Nessus scanner is on could reconfigure his system
to force it to belong to the subnet of the remote host. This makes
any filtering between the two subnets useless.

Risk factor Low
Solution Use VLANs to separate different logical networks.
Usable remote name server
Synopsis The remote name server allows recursive queries to be performed

by the host running nessusd.
Description It is possible to query the remote name server for third party

names. If this is your internal nameserver, then forget this warn-
ing. If you are probing a remote nameserver, then it allows anyone
to use it to resolve third parties names (e.g., www.nessus.org).
This allows hackers to do cache poisoning attacks against this
nameserver. If the host allows these recursive queries via UDP,
then the host can be used to ‘bounce’ Denial of Service attacks
against another network or system.

Risk factor Medium
Solution Restrict recursive queries to the hosts that should use this name-

server (e.g., those of the LAN connected to it). If you are using
bind 8, you can do this by using the instruction ‘allow-recursion’
in the ‘options’ section of your named.conf. If you are using bind
9, you can define a grouping of internal addresses using the ‘acl’
command.

Table 7.6: Part of the output generated by Nessus during the Endian firewall testing

This situation may change soon as healthcare related IT products bundling
OSS become widespread, and interested stakeholders may emerge in reducing
their liability as suppliers or users of healthcare related products bundling
OSS. Also, domain-specific certification processes are lightweight and require
only a fraction of the effort of complex certifications like CC.

As an example of a domain-specific certification, we shall briefly describe
how certifications are awarded by the Certification Commission for Health-
care Information Technology (CCHIT). CCHIT has been officially recognized
by the US federal government as a certification body for Health Information
Technology (HIT) products. The Commission certification criteria represent
basic requirements that software products must satisfy to deliver acceptable
levels of functionality, interoperability and security. CCHIT certificates are
released in three separate subdomains: Ambulatory, Inpatient, and Emergency
Department. CCHIT certification goals include the following ones.

170 7 Case Study 2: ICSA and CCHIT Certifications

• Risk reduction. Reduce risk of physician and provider investment in
healthcare related IT.

• Interoperability. Facilitate interoperability between EHRs, health infor-
mation exchanges, and other entities.

• Incentives. Enhance availability of incentives to the adoption of certified
products.

• Privacy. Protect the privacy of personal health information.

Here, we will briefly discuss some CCHIT certification requirements, following
the Handbook published by the Commission.4

7.7.1 The CCHIT certification process

The CCHIT certification process includes three phases: a demonstration
phase, a document inspection phase and a technical testing phase. In the lat-
ter, test scripts are used to simulate realistic clinical use scenarios, with each
step in the script mapped against one or more of the certification criteria.
The CCHIT inspection process employs a combination of several method-
ologies, including Documentation review, Jury-observed demonstrations and
Technical testing. All CCHIT evaluation processes are accomplished virtually
using a combination of online forms, electronic mail, telephone and Web-
conferencing tools to allow jury observation of demonstrations, and online
and downloadable technical testing tools.

CCHIT certification requires 100% compliance with all applicable crite-
ria. If an applicant is able to demonstrate that the product meets 100% of
the criteria, the evaluation body will take the final step of verifying that
the software product is in use at least one production site. When this final
step of the evaluation process is complete, the software product becomes offi-
cially CCHIT Certified for the specific certification domain and version (e.g.,
CCHIT Certified Ambulatory EHR 08). Like ICSA, CCHIT is trying to en-
sure portability of the certification across software versions. Once software
products are certified, software suppliers are required to notify CCHIT when
new versions are released.

7.8 Conclusions

In this chapter we have discussed some “lightweight” approaches to security
certification, such as ICSA. Also, we outlined the notion of domain specific

4 The interested reader can find the complete handbook, together with the Certifi-
cation Criteria, Test Scripts, and CCHIT Interoperability Test Guide documents at
http://www.cchit.org/files/certification/08/Forms/
CCHITCertified08Handbook.pdf.

References 171

certifications aimed at liability reduction, such as the CCHIT certification
for healthcare-related software products. Unlike CC, the ICSA Labs certifi-
cations are based on a single set of criteria (corresponding to known threats)
that all products of the same type should satisfy. During the certification
process, the software product under evaluation is tested against each of these
criteria, in order to verify whether it includes a suitable safeguard. While it is
much narrower in scope than CC, being specifically aimed at security-related
software products, the ICSA Labs certification has the major advantage of
being clear and unambiguous, supporting ranking and comparison of security
products.

References

1. Jay Beale, Renaud Deraison, Haroon Meer, Roelof Temmingh, and Charl Van Der
Walt. Nessus Network Auditing. Syngress Publishing, 2004.

2. W. Cheswick and S. Bellovin. Firewalls and Internet Security; Repelling the Wily
Hacker. Addison Wesley, 1994.

3. B. Dempster and J. Eaton-Lee. IPCOP Firewalls. PACKT Publishing, 2006.
4. C.J. Kolodgy. The rise of the unified threat management security appliance. In

Worldwide Threat Management Security Appliances 2004-2008 Forecast and 2003
Vendor Shares.

5. ICSA Labs. ICSA Labs Product Certification Goals and Objectives.
6. Nessus 3.0 Advanced User Guide. www.nessus.org/documentation/.
7. Xen users’ manual v3.0. bits.xensource.com/Xen/docs/user.pdf.

Chapter 8

The role of virtual testing labs

Abstract Security certification involves expensive testing challenges that
require innovative solutions. In this chapter we discuss how to address this
problem by using a virtual testing environment early on and throughout
the testing process. Recent technological advances in open source virtual
environments in fact satisfy the demands of test-based software certification,
since virtual testing environments can run the actual binary that ships in
the final product. Also, a virtual test laboratory can simulate not only the
system being tested but also the other systems it interacts with.

8.1 Introduction

The term virtualization can be used for any software technology that hides
the physical characteristics of computing resources from the software exe-
cuted on them, be it an application or an operating system. A virtual exe-
cution environment can run software programs written for different physical
environments, giving to each program the illusion of being executed on the
platform it was originally written for.

The potentiality of such an environment for carrying out testing and test-
based certification come immediately to mind. Thanks to virtualization, it
looks possible to set up multiple test environments on the same physical
machine, saving both time and money. However, how easy is it to set up
a virtual testing environment to support the security certification process?
More importantly, can we trust test results obtained on the virtual platform
to be equivalent to those obtained on a native one?

To answer these questions, we need to take a look at the basic principles
on which the idea of virtualization is based. Let us consider the typical dual-
state organization of a computer processing unit (CPU). A CPU can operate

173

174 8 The role of virtual testing labs

either in privileged kernel or non-privileged (user) mode.1 In kernel mode, all
instructions belonging to the CPU instruction set are available to software,
whereas in user mode, I/O and other privileged instructions are not available
(i.e., they would generate an exception if attempted). User programs can
execute the user mode hardware instructions or make system calls to the OS
kernel in order to request privileged functions (e.g., I/O) performed on their
behalf by kernel code.

It is clear that in this dual-state any software that requires direct access to
I/O instructions cannot be run alongside the kernel. So how can we execute
one operating system kernel on top of another? The answer is by executing
on the first (host) kernel a simulated computer environment, called virtual
machine, where the second (guest) kernel can be run just as if it was installed
on a stand-alone hardware platform. To allow access to specific peripheral
devices, the simulation must support the guest’s interfaces to those devices
(see Figure 8.1).

Although the beginning of virtualization dates back to the 1960s,2 when
it was employed to allow application environments to share the same under-
lying mainframe hardware, it was only in recent years that it reached out
to the public market as a way to decouple physical computing facilities from
the execution environment expected by applications [5]. Today, many virtual
machines are simulated on a single physical machine and their number is lim-
ited only by the hosts hardware resources. Also, there is no requirement for
a guest OS to be the same as the host one. Furthermore, since the operating
systems are running on top of virtual, rather than physical, hardware, we can
easily change the physical hardware without affecting the operating systems’
drivers or function [17].

There are several approaches to platform virtualization: Hardware Emula-
tion/Simulation, Native/Full Virtulization, Paravirtualization, and Operat-
ing System (OS) Level Virtualization (container/jail system).

• Hardware Emulation/Simulation. In this method, one or more VMs are
created on a host system. Each virtual machine emulates some real or
fictional hardware, which in turn requires real resources from the host
machine. In principle, the emulator can run one or more arbitrary guest
operating system without modifications, since the underlying hardware is
completely simulated; however, kernel-mode CPU instructions executed
by the guest OS will need to be trapped by a virtual machine monitor
(VMM) to avoid interference with other guests. Specifically, the virtu-
alization safe instructions are executed directly in the processor, while
the unsafe ones (typically privileged instructions) get intercepted and

1 Actually, some CPUs have as many as four or even six states. Most operating
systems, however, would only use two, so we will not deal with multiple levels of
privileges here.
2 In the mid 1960s, the IBM Watson Research Center started the M44/44X Project,
whose architecture was based on virtual machines. The main machine was an IBM
7044 (M44) and each virtual machine was an image of the main machine (44X).

8.1 Introduction 175

trapped by the VMM.3 The VMM can be run directly on the real hard-
ware, without requiring a host operating system, or it can be hosted,
that is, run as an application on top of a host operating system. Full em-
ulation has a substantial computational overhead and can be very slow.
Emulation’s main advantage is the ability to simulate hardware which is
not yet available.

• Full Virtualization. This approach creates a virtual execution environ-
ment for running unmodified operating system images, fully replicating
the original guest operating system behavior and facilities on the host
system. The paravirtualization approach is used by the most currently
well-established virtualization platforms, such as VMWare [16].

• Paravirtualization . The full virtualization approach outlined above uses
the virtual machine to mediate between the guest operating systems and
the native hardware. Since (guest) VMs run in unprivileged mode, mode-
sensitive instructions that require a privileged mode do not work properly,
while other kernel-mode instructions need to be trapped by the VM, slow-
ing down execution. The Paravirtualization approach tackles this prob-
lem using a simplified VMM called hypervisor. Paravirtualization relies
on dynamic modification of the guest OS code to avoid unnecessary use of
kernel-mode instructions. It enables running different OSs in a single host
environment, but requires them to be patched to know they are running
under the hypervisor rather than on real hardware. In other words, the
host environment presents a software interface with dedicated APIs that
can be used by a modified OS. As a consequence, the virtualization-unsafe
privileged instructions can be identified and trapped by the hypervisor,
and translated into virtualization-safe directly from the guest modified
OS. Paravirtualization offers performance close to the one of an unvirtu-
alized system, and, like full virtualization, can support multiple different
OSs concurrently. The paravirtualization approach is used by some open
source virtualization platforms, such as, Xen [18].

• OS Level Virtualization The notion of operating system-level virtualiza-
tion was originally introduced with the Mach operating system [14]. OS
Level Virtualization supports a single OS. Different copies of the same
operating systems are executed as user-mode servers isolated from one
another. Applications running in a given guest environment view it as a
stand-alone system. When a guest program is executed on a server tries
to make a system call, the guest OS in the server maps it out to the
host system. Both the servers and the host must therefore run the same
OS kernel, but different Linux distributions on the different servers are
allowed.

All the above virtualization approaches have become widespread thanks
to the variety of applications areas in which virtual environments can be

3 In a variation of this approach, unsafe privileged instructions are executed directly
via hardware, achieving a better performance level.

176 8 The role of virtual testing labs

deployed. The scenarios in which virtual machines can be used are many,
and testing toward multiple platform is clearly an important one [8], since
virtualization can be used to combine on the same server different operating
systems.

Fig. 8.1: General model of virtualization infrastructure.

In this chapter we provide a brief, informal overview of virtualization in-
ternals, aimed at understanding the role of virtual environments in software
testing and certification.

8.2 An Overview of Virtualization Internals

To understand how a virtual platform can be used for security testing and
certification, let us start by providing a very simplified yet hopefully accu-
rate description of how virtualization actually works. For a more detailed
discussion, the interested reader can consult [11].

As mentioned above, most CPU architectures have two levels of privilege:
kernel and user-mode instructions. One might envision a VMM as a user
mode program which receives in input the binaries of the guest software it is
supposed to run. This way, the guest software’s user mode instructions can be
executed directly on the physical CPU (without involving the VMM), while
the kernel mode instructions will cause a trap intercepted and simulated by
the VMM in software. In principle, the VMM could completely reproduce
the behavior of a real CPU (in this case, the guest software would feature a
complete operating system, including a whole set of device drivers). In prac-

8.2 An Overview of Virtualization Internals 177

tice, the VMM usually maps some of the I/O functions to the host operating
system 4.

Problems arise from the fact that many CPU instruction sets include mode
sensitive instructions that belong to both user and kernel-mode instruction
sets. The behavior of mode sensitive instructions depends on the processor
current execution mode, and they cannot be trapped like kernel mode ones.5

For this reason, the original Intel x86 hardware is not straightforwardly virtu-
alizable. Many techniques have been proposed to address the virtualization-
unfriendliness due to mode-sensitive instructions. A basic technique to handle
double mode instructions is scanning code dynamically and inserting before
each mode-sensitive instruction an illegal instruction, which causes a shift to
kernel mode and triggers a trap. A related issue is the one of system calls.
When a process belonging to a guest system running on a VMM enters kernel
mode in order to invoke a system call, the shift to kernel mode is trapped by
the VMM, which in turn should invoke the guest (and not the host) operat-
ing system. A solution is the VMM to use a host system call like ptrace()
to identify system call invocation on the part of the guest software. When
trapping the corresponding shift to kernel mode, the VMM will not execute
the call on the host system; rathe,r it will notify the guest system kernel (e.g.,
by sending a signal), in order to trigger the appropriate action.

8.2.1 Virtualization Environments

Recent CPUs are capable of running all instructions in an unprivileged hard-
ware subsystem, and virtualization software can take advantage of this fea-
ture (often called hardware assisted virtualization) to eliminate the need
for execution-time code scanning. Figuring out efficient virtualization mech-
anisms, particularly when the underlying hardware is not virtualization-
friendly, is still an active area of research; however, the above description
should have clarified the basic trapping mechanism through which a virtual
machine can operate as a user program under a host kernel, and still look like
a “real” machine to its guest software. Software virtualization platforms can
set up multiple virtual machines, each of which can be identical to the un-
derlying computer. This section provides a list of some existing virtualization
platforms relevant to our purposes.

• User-Mode Linux. User-Mode Linux, or simply UML, is a port of the
Linux kernel to become a user mode program. In other words, UML is
the Linux kernel ported to run on itself. UML runs as a set of Linux

4 Alternatively, some I/O devices can be stubbed by means of NULL drivers, i.e.
device drivers that do nothing.
5 In the Intel 32 bit architecture, mode sensitive instructions like STR can be executed
both in user and kernel-mode level, but retrieve different values.

178 8 The role of virtual testing labs

user processes, which run normally until they trap to the kernel. UML
originally ran in what is now referred to as the tt (trace thread) mode,
where a special trace thread uses the ptrace call to check when UML
threads try and execute a system call. Then the trace thread converts the
original call to an effectless one (e.g., getpid()), and notifies the UML
user-mode kernel to execute the original system call.

• VMware. VMware Workstation [16] was introduced in 1999, while the
GSX Server and ESX Server products were announced in 2001. VMware
Workstation (as well as the GSX Server) runs on top of a host operating
system (such as Windows or Linux). It acts as both a VMM (talking
directly to the hardware), and as an application that runs on top of
the host operating system. VMWare Workstation’s architecture includes
three main components: a user-level application (VMApp), a device driver
(VMDriver) for the host system, and a virtual machine monitor (VMM).
As a program runs, its execution context can switch from native (that is,
the host’s) to virtual (that is, belonging to a virtual machine). The VM-
Driver is responsible for this switching; for instance, an I/O instruction
attempted by a guest system is trapped by the VMDriver and forwarded
to the VMApp, which executes in the host’s context and performs the
I/O using the “regular” system calls of the host operating system [13].
VMware includes numerous optimizations that reduce virtualization over-
head. One of the key features for using VMWare for software testing is
VMWares non-persistent mode. In non-persistent mode, any disk actions
are forgotten when the machine is halted and the guest OS image returns
to its original state. This is a relevant feature in an environment for soft-
ware testing, because tests need to start in a known state. VMware ESX
Server enables a physical computer to look like a pool of secure virtual
servers, each with its own operating systems. Unlike VMware worksta-
tion, ESX Server does not need a host operating system, as it runs di-
rectly on host hardware. This introduces the problem of mode-sensitive
instructions we mentioned earlier. When a guest program tries to execute
a mode sensitive instruction it is difficult to call in the VMM, because
these instructions have a user mode version and do not cause an exception
when run in user mode. VMware ESX Server catches mode-sensitive in-
structions by rewriting portions of the guest kernel’s code to insert traps
at appropriate places.

• z/VM. z/VM [19], a multiple-access operating system that implements
IBM virtualization technology, is the successor to IBM’s historical VM/ESA
operating system. z/VM can support multiple guest operating systems
(there may be version, architecture, or other constraints), such as Linux,
OS/390, TPF, VSE/ESA, z/OS, and z/VM itself. z/VM includes compre-
hensive system management API’s for managing virtual images. The real
machine’s resources are managed by the z/VM Control Program (CP),
which also provides the multiple virtual machines. A virtual machine can
be defined by its architecture (ESA, XA, and XC, that refer to specific

8.2 An Overview of Virtualization Internals 179

IBM architectures), and its storage configuration (V=R, V=F, and V=V,
refers to how the virtual machine’s storage is related to the real storage
on the host).

• Xen. Xen is a virtual environment developed by the University of Cam-
bridge [6, 2, 18] and released under the GNU GPL license. Xen’s VMM,
called hypervisor, embraces the paravirtualization approach, in that it
supports x86/32 and x86/64 hardware platforms, but requires the guest
operating system kernel to be ported to the x86-xenon architecture [6].
However, when hardware support for virtualization is available, Xen can
run unmodified guest kernels, coming closer to the full virtualization ap-
proach. We shall discuss Xen in more detail in section 8.3.2.

8.2.2 Comparing technologies

Let us briefly discuss how the different approaches to virtualization suit the
needs of software testing and certification. Full emulation can provide an
exact replica of hardware for testing, development, or running code written
for a different CPU. This technique is of paramount importance for running
proprietary operating systems which can not be modified. It is however com-
putationally very expensive. OS Level Virtualization is a technique aimed at
supporting production sites (e.g., Web server farms), rather than software
testing or development, since the individual kernels that run as servers are
not completely independent from each other. Paravirtualization addresses
the performance problem of full virtualization, while preserving good isola-
tion between virtual machines. However, the mediation by the hypervisor
requires a level of patching or dynamic modification of the guest OS which
is best suited to open source platforms like Linux. Paravirtualization is most
useful for testing and distributing software, and for stress tests (Chapter 3)
trying to crash the software under test without affecting the host computer.
Individual users can be satisfied with emulation or full virtualization prod-
ucts, such as, VMware Player, and VMWare Server for Linux and Windows,
and with free products for Linux, such as, Qemu [10] and Bochs [3].

Of course, emulation (full virtualization) has practically no alternative
when deploying, on a hardware platform, software originally written for a
different hardware architecture. Paravirtualization is an interesting alterna-
tive to full virtualization for automating software testing activities. Using
paravirtualization, a single machine can be used to test applications in mul-
tiple configurations and on different OSs. Often, development is done on one
platform or distribution, but has to be verified in other environments. Also,
it is possible to quickly create all combinations, and assign them to testers.
Another benefit is performing tests on multiple platforms in parallel: a failure
in one VM does not stop testing in others.

180 8 The role of virtual testing labs

8.3 Virtual Testing Labs

Since they were introduced, virtualization platforms have caputred the in-
terest of software suppliers as a way to reduce testing costs. Testing is one
of the most expensive activities that software suppliers must incorporate in
their development process. Many of the testing methodologies we described
in Chapter 3 are the result of years of collaborative work by academics and
researchers. In a typical software development project, around 30 % of the
project’s effort is used for testing. Instead, in a mission critical project, soft-
ware testing is known to take between 50 to 80 % of projects effort [4]. Being
able to provide the right testing infrastructure in a short time and at a rea-
sonable cost is a major issue in reducing the impact of testing on software
projects. Historically, however, the only option for comprehensively testing a
software system, required replicating the system execution environment in a
test lab.

Today, many suppliers have adopted alternative approaches including full-
system simulation early on and throughout the software development process.
Paravirtualization provides an efficient and flexible environment for software
testing. More tests can be executed in parallel without affecting the outcome
of each other, since they are running in different environments. For example,
if two operating systems are installed in two virtual environments, running a
test on the first one would not affect the second.

In terms of test-based certification, virtualization offers a new prospective
for security testing. Before releasing any software product, typically it has
to pass all the functional and security tests designed for it. However, in cer-
tification related security testing (Chapter 3), testers need to run the tests
on different configurations with different input parameters to check all possi-
ble sources of vulnerabilities. In such cases, virtualization offers an effective
environment to run certification-related security tests. Testers can simulate
different hacking scenarios on different virtual machines, or create an entire
virtual network to simulate networks attacks such as flooding attacks. Let us
now describe how a testing environment can be set up based on Xen open
source virtualization platform. Then, we will briefly discuss how CC tests can
be conducted in a Xen-based virtual execution environment.

8.3.1 The Open Virtual Testing Lab

We now present our Xen-based open virtual lab (OVL) and its usage for
carrying out the testing required by CC certification. An OVL is composed
by different OVL virtual machines, each one consisting of an image of the
Linux operating system and application-level software. OVL administrators
can interact with the OVL virtual machines via a user-friendly administration
interface (OVL-AI) [1] presented in Section 8.3.5.

8.3 Virtual Testing Labs 181

Fig. 8.2: Xen system layers.

8.3.2 Xen Overview

A Xen virtualization system is composed of multiple software layers (see
Figure 8.2). Individual virtual execution environments are called domains.
Xen’s hypervisor [6] manages the scheduling operation related to the exe-
cution of each domain, while each guest operating system manages the VM
application scheduling. During system initialization, a domain with special
privileges, called Domain 0, is automatically created. Domain 0 can initialize
other domains (DomUs) and manage their virtual devices. Most management
and administration tasks are performed through this special domain.

Xen’s current usage scenarios include kernel development, operating sys-
tem and network configuration testing, server consolidation, and server re-
sources allocation. Several hosting companies have recently adopted Xen to
create public virtual computing facilities, that is, Web farms capable of flex-
ibly increasing or decreasing their computing capacity. On a public virtual
computing facility, customers can commission one, hundreds, or even thou-
sands of server instances simultaneously, enabling Web applications to auto-
matically scale up or down depending on computational needs.

8.3.3 OVL key aspects

The Open Virtual Lab provides each user with a complete Linux-based sys-
tem image. Also, OVL allows for setting up virtual internet networks, by
connecting multiple virtual machines, to perform network tests. This feature
allows testers to set up their own client-server applications in a virtual net-
work environment. OVL’s full support for network programming and middle-
ware is a distinctive feature with respect to commercial virtual laboratories,
which focus more on network equipment configuration than on distributed
application development.

182 8 The role of virtual testing labs

OVL supports two adoption models: OVL as a product, that is, OVL dis-
tributed and adopted as a Xen-based open source environment; and OVL as
a service, showing how OVL can be shared with testers from partner insti-
tutions. In both models, costs are mostly related to hosting the environment
or purchasing the hardware for running it, since OVL is entirely open source
software licensed under the GPL license.

In OVL, each virtual machine is represented by an image of its operating
system and application-level software. When configuration changes on a set
of virtual machines are needed, OVL administrators can operate via the OVL
Administration Interface (OVL-AI). In particular, OVL’s design is focused
on supporting scale-up operations [1]. In a scale-up approach, the system is
expanded by adding more devices to an existing node. This action consists
in modifying the configuration of every single virtual machine adding, for
example, more processors, storage and memory space, or network interfaces,
depending on testers needs in a particular situation. Instead, in a scale-out
approach, the system is expanded by adding more nodes. In this case, the
number of available virtual machines can again be increased (or reduced)
easily by OVL-AI. This operation will be beneficial, for example, when new
testers join or leave the virtual testing environment.

8.3.4 Hardware and Software Requirements

Intuitively, OVL hardware requirements are essentially two: a storage unit
large enough to give a complete software environment to all testers, and
enough RAM memory to manage hundreds of virtual machines at the same
time. Fortunately, both these requirements can be met remaining within the
limits of a tight budget.

The implementation of OVL’s virtual machines required some additional
considerations.

• Protection. Under OVL, each virtual machine has to be an efficient, iso-
lated duplicate of a real machine [9]. In other words, every virtual ma-
chine must work in a sealed environment, insulating its disks and memory
address space and protecting its system integrity from VM failures.

• Uniformity. All virtual machines support a complete and up-to-date op-
erating system to provide the testers with all the instruments needed to
carry out administration tasks and test programs. While paravirtualized
VMM can, in principle, support a diverse set of guest operating systems,
some hardware constraints, in particular the 64-bit server architecture,
restrict the range of acceptable guest kernels.

By default, OVLs virtual machines are implemented on the Gentoo Gen-
too Linux distribution. Gentoo [15] has some distinctive characteristics that
fit the requirements of a virtual testing environment. First, a major feature

8.3 Virtual Testing Labs 183

Fig. 8.3: Communications between virtual machines and the external net.

of Gentoo distribution is its high adaptability, because of a technology called
Portage. Portage performs several key functions: software distribution, that
permits developers to install and compile only the needed packages that can
be added at any time without reinstalling the entire system; package build-
ing and installation, that allows building a custom version of the package
optimized for the underlying hardware; and automatic updating of the entire
system. Second, Gentoo supports 64 bit hardware architectures and imple-
ments the Xen environment in full. Finally, Gentoo is an open source system,
distributed under GNU General Public License.

In the current OVL environment, each tester accesses his or her own virtual
machine using a secure ssh client connected directly to the OVL firewall
on a specific port number (computed as tester id + 10000) (see Figure
8.3). Based on the source port, the OVL firewall forwards the connection
to the corresponding virtual machine. Figure 8.3 shows how the tester whose
tester id is equal to 1 gains access to the firewall. Based on the tester’s port
number (10001), firewall rules forward the incoming connection to the local
IP that identifies the tester’s own virtual machine. Looking at the example in
Figure 8.3, the incoming communication on port 10001 is forwarded to the
local IP address 10.0.0.1 on port 22, and then to the virtual machine 1.

184 8 The role of virtual testing labs

Fig. 8.4: The OVL Administration Interface (OVL-AI).

8.3.5 OVL Administration Interface

The Administration Interface (OVL-AI) module lies at the core of the OVL
environment. OVL-AI enables simple management of the entire system via a
straightforward Web interface (see Figure 8.4). OVL-AI provides a simplified
procedure for the creation, configuration, and disposal of single virtual ma-
chines, or pools of virtual machines. Configuration is performed by choosing
visually the simulated hardware cards to be inserted in each virtual machine.
OVL-AI has been implemented following a multi-tiered approach. Namely,
OVL-AI relies on AJAX on the client-side, on PHP on the server-side, and
on Bash, for the interaction with the OVL server’s operating system.

8.4 Using OVL to perform LTP tests

We now describe how the set of LPT tests used in CC certification process
can be executed over a Xen-based virtualization platform like OVL.

8.4 Using OVL to perform LTP tests 185

Our experiments used a Xen virtual environment based on a Fedora Core
7 distribution, a general purpose Linux distribution developed by Fedora
community and sponsored by Red Hat, which supports the Xen hypervisor
in a native way. In addition, the Fedora distribution fully embraces the Open
Source philosophy and wants “to be on the leading edge of free and open
source technology, by adopting and helping develop new features and version
upgrades” [7].

The main purposes of our experiments was to investigate and prove the
reliability of a virtual environment as a base for the CC certification pro-
cess. Today, in fact, the CC certification of a system or a product is strictly
bounded to the TOE, that is, the precise HW configuration and the OS
running over it (see Chapter 3). OS virtualization represents a key factor
in limiting this drawbacks, if it provides the same security strength of an
OS running on a physical machine. This would also make the testing and
certification of an OS less costly, in terms of required hardware.

We then tested the OVL-based environment to prove that the LTP results
under a virtualized system are the same of traditional testing, or at least
have negligible variations.6

Machine Type Kernel Type Total failures over 860 tests

Fedora 7

2.6.20-2925.9.fc7xen 14
2.6.21.7.fc7xen 14
2.6.21-1.3194.fc7 9
2.6.22.1-41.fc7 9

Fedora 8
2.6.21-2950.fc8xen 6
2.6.21.7-2.fc8xen 6
2.6.23.1-42.fc8 1

Table 8.1: LTP Test Results

Table 8.1 presents our results based on more than 860 tests. The discrep-
ancies between physical and virtual results are 0.6% for Fedora 7, and 0.5%
for Fedora 8, and are mostly caused by test growfiles having more than 13
repetitions. It is then probable that such discrepancies are not caused by
security issues, but rather by tests generating a lot of I/O processes that
cause failure due to the expiration timeout. Also, our experimental results
show a minimal discrepancy between the LTP failures in the virtual and in
the real machine (less then 1%) due to the kernel version, but no false nega-
tives. In conclusion, our experiments prove that although a perfect matching
between real and virtual environments is not possible, the Xen paravirtual-
ization technique provides a reliable environment suitable for CC certification
process.

6 As discussed in Section 8.2.1, it is not possible to have exactly the same kernel
version running on virtual and real systems, since the modified kernel version must
be prepared to be integrated with Xen.

186 8 The role of virtual testing labs

8.5 Conclusions

The availability of a testing infrastructure is a major factor in keeping soft-
ware testing costs under control, especially as a part of test-based certifica-
tion processes [12]. Linux SLES 8 CC certification tests showed practically
no discrepancies when re-executed under a virtual Xen-based environment.

References

1. M. Anisetti, V. Bellandi, A. Colombo, M. Cremonini, E. Damiani, F. Frati, J.T.
Hounsou, and D. Rebeccani. Learning computer networking on open paravirtual
laboratories. IEEE Transactions on Education, 50(4):302–311, November 2007.

2. M. Anisetti, V. Bellandi, E. Damiani, F. Frati, U. Raimondi, and D. Rebeccani.
The open source virtual lab: a case study. In Proc. of the Workshop on Free and
Open Source Learning Environments and Tools (FOSLET 2006), Como, Italy,
June 2006.

3. Bochs. http://bochs.sourceforge.net/.
4. J. Collofello and K. Vehathiri. An environment for training computer science

students on software testing. In Proc. of the 35th Annual Conference Frontiers
in Education (FIE 2005), Indianapolis, Indiana, USA, October.

5. D. Dobrilovic and Z. Stojanov. Using virtualization software in operating systems
course. In Proc. of the 4th IEEE International Conference on Information Tech-
nology: Research and Education (ITRE 2006), Tel Aviv, Israel, October 2006.

6. B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer. Xen and the art of virtualization. In Proc.
of the 19th ACM Symposium on Operating Systems Principles (SOSP 2003),
Bolton Landing, NY, USA, October 2003.

7. Red Hat. Inc. Fedora objectives. http://fedoraproject.org/wiki/
Objectives.

8. P.S. Magnusson. The virtual test lab. Computer, 5(95–97):38, May 2005.
9. G.J. Popek and R.P. Goldberg. Formal requirements for virtualizable third gen-

eration architectures. Communications of the ACM, 17(7):412–421, July 1974.
10. Qemu open source processor emulator. http://bellard.org/qemu/.
11. M. Rosenblum and T. Garfinkel. Virtual machine monitors: Current technologies

and future trends. Computer, 5(39–47):38, May 2005.
12. S. Seetharama and K. Murthy. Test optimization using software virtualization.

IEEE Software, 5(66–69):23, September-October 2006.
13. J. Sugerman, G. Venkitachalam, and L. Beng-Hong. Virtualizing i/o devices on

vmware workstation’s hosted virtual machine monitor. In Proc. of the USENIX
Annual Technical Conference 2002, Monterey, CA, USA, June 2002.

14. The mach project home page. http://www.cs.cmu.edu/afs/cs.cmu.edu/
project/mach/public/www/mach.html/.

15. G.K. Thiruvathukal. Gentoo linux: The next generation of linux. Computing in
Science & Engineering, 6(5):66–74, September-October 2004.

16. Vmware. http://www.vmware.com/.
17. C. Wolf and E.M. Halter. Virtualization from the Desktop to the Enterprise.

Apress, 2005.
18. Xen. http://www.xen.org/.
19. z/VM. http://www.vm.ibm.com/.

Chapter 9

Long-term OSS security certifications: An
Outlook

9.1 Introduction

Throughout the book, we have seen that certifying security features of soft-
ware products is a core requirement for commercial software suppliers. A ma-
jor challenge for software vendors is to produce software that certifiably holds
some security-related properties, such as, supporting discretionary access con-
trol or a lightweight security policy administration. In the case of open source
communities, building more secure open source software involves several fac-
tors including: a repeatable assurance process, a higher security awareness of
individuals and organizations contributing to open source communities, and
above all the identification of an actor who, by requesting an open source
certification, will bear some limited degree of accountability for the open
software declared security features. Actors who may become involved in this
process belong to the following five categories [1].

• Chartered OSS Communities. Today, most open source communities do
not have formal charters enabling them to be held accountable, morally
if not legally, for any specific claimed feature of their software products.
There are however some notable exceptions, which correspond to the
Linux distributions and to a relatively small number of major open source
products.

• OSS Forges. Other potentially crucial actors are OSS forges, themselves
emerging from the status of informally delivered services to the one
of chartered consortia. Besides SourceForge (http://sourceforge.
net/), which rightly claims to be “the global technology community’s
hub for information exchange, open source software distribution and ser-
vices, and goods for geeks”, other chartered subjects are emerging, such
as the OW2 consortium (http://www.ow2.org), a non-profit organi-
zation whose role is to provide the governance and service framework
through which suppliers and users of OSS platforms can work together.

187

188 9 Long-term OSS security certifications: An Outlook

• OSS Consultants. Companies whose business model includes administra-
tion, training and other services on OSS products.

• OSS Corporate adopters. Organizations bundling OSS into their products
or adopting OSS for mission-critical applications. Such organizations may
adopt different strategies when adopting OSS. A basic one (“just use it”)
is opportunistic OSS adoption, used as a leverage against commercial
software vendors. A second strategy, more interesting for our purposes is
managed adoption, which requires stable relationship with other actors
(forges and/or communities), the creation and management of internal
OSS skills and a necessity to keep some degree of involvement in the
evolution of the OSS products. Experience has shown that when an OSS
product becomes (under whatever license) an integral part of a company’s
products portfolio, the company is held accountable by its customers of
the features of the entire portfolio, including the OSS part. Integrating
security testing and security certification as part of open source soft-
ware development process is therefore only a major priority for corporate
adopters strategic effort towards build high quality products.

• Software market. The fact that OSS is distributed under an open source
license does not mean it has no market. Users are forming their own
communities, and customer groups and organizations increasingly show
interest in extending the scope of certifications to include the application
layer.

All these stakeholders have a vested interest in certifying OSS security
features, and their cooperation (or lack thereof) will undoubtedly shape the
future of OSS security certifications. Adoption of Common Criteria (CC)
for the Linux operating system platform and more lightweight certification
schemes like ICSA for security-related products are important steps toward
building a collective awareness on this issue. However, as we have seen in
Chapter 3, the CC security certification has the Achilles heel of a high context
dependence. When a user receives a certificate on a software product, it may
well be that the certificate was obtained (and therefore is valid) under lab
conditions very different from the ones the user will encounter in practice.
Another issue of CC (already discussed in Chapter 6) and stated in CC
part 1 [6] regards the very notion of TOE: “In general, IT products can be
configured in many ways: installed in different ways, with different options
enabled or disabled. During a CC evaluation, it will be determined whether
a TOE meets certain requirements, therefore, this flexibility in configuration
may lead to problems, as all possible configurations of the TOE must meet the
requirements. It is often the case that the guidance part of the TOE strongly
constrains the possible configurations of the TOE. That is: the guidance of the
TOE may be different from the general guidance of the IT product”. This
statement makes the TOE strictly bound to the configurations that have
been used during the certification. This strong connection between security
and configuration changes the way users look at the TOE, from the notion of
a “certified product” to the one of a “certified configuration”. So, evaluation

9.2 Long-term Certifications 189

bodies do not really certify a software product but only specific configurations
of it. In this chapter we shall examine the advantages and the issues of moving
from today’s context dependent, test-based certifications to hybrid, long-term
certification of OSS. In the chapter’s conclusions, we shall briefly discuss the
role of the actors listed above in this evolution.

9.2 Long-term Certifications

While software platforms are heterogeneous in size and nature, many of them
share an important feature: they are costly to develop and, therefore, must
stay in service for a long time. Operating systems are increasingly expected to
accommodate changes in underlying hardware; middleware and applications
are expected to do the same w.r.t. modifications in the operating system con-
figuration. In general, software is expected to preserve across configuration
changes its original non-functional properties, including security, safety and
dependability. When this expectation is not supported by a sound verifica-
tion procedure, users get into a dangerous situation: while their reliance on
software systems grows with the systems’ service time, so does their vulner-
ability.

9.2.1 Long-lived systems

A software product’s security features, and its corresponding resilience against
threats, can be certified for the original deployment configuration only. In
other words, CC-style, test-based certificates become invalid when the soft-
ware configuration changes, since changes in the execution environment and
in the overall context may compromise the certified system’s security and re-
liability, creating problems that range from a decrease in the software users’
productivity to dangerous vulnerabilities to external attacks.

On the other hand, software platforms such as banking, health-care, trans-
portation and e-government systems (which we shall call collectively Long-
Lived Systems (LLS)) tend to remain in service for a long time. Therefore,
they need specific development-time and run-time techniques to certify their
security, safety and dependability properties, possibly checking them against
formal requirements contained in a contract (see Chapter 4) between the
system and its users.

As far as open source development is concerned, the research problem
underlying LLS is twofold.

• Even more than commercial software, open source platforms need to be
verifiably secure (as opposed to informally claimed security), measurably
secure (as opposed to vague best-effort security), and withstand not only

190 9 Long-term OSS security certifications: An Outlook

threats but also context changes and ageing. To really trust open source
components in long-lived mission-critical applications, users must be able
to determine, reliably and in advance, how they will behave. Such behav-
ior can be certified using a combination of model and test based tech-
niques. However, current OSS adoption and deployment practice come
nowhere near this.

• At run-time, users should be provided with a mechanism and a solu-
tion that allows re-checking a system’s properties when the system con-
text changes. This way, security and dependability properties can be re-
computed on demand, for instance, after a change in the context or on
the execution environment.

In a nutshell, techniques for long-term OSS certification should provide a
hybrid way of expressing security properties, which supports their dynamic
re-checking with respect to security and dependability contracts, to toler-
ate changes in their deployment environment and configuration. Dynamic
re-check is especially important when we consider changes for which function
is preserved, but performance objectives or hardware technology are required
to be different. Such changes are typical of two types of systems: (i) LLS that
must be in service for very long time, which must evolve (in many cases, at
least partly automatically) to remain in use when their context also evolves;
and (ii) systems for emergent computing scenarios such as ubiquitous com-
puting or ambient intelligence where it is not possible to foresee all possible
situations that may arise at runtime. Both types share the difficulty that the
knowledge needed for taking security and dependability-related design deci-
sion is either not available at development time, or is subject to change and
evolution during the software system lifetime.

9.2.2 Long-term certificates

The functional, safety and dependability characteristics of every LLS module
should be certified on the basis of integrated formal verification and testing. A
fundamental aspect of this notion stating security and dependability proper-
ties in a uniform declarative format, and at a fine granularity level. Long-term
certificates rely on three categories of properties, respectively derived from:

1. an abstract model-based specification of each module based on logics or
a computational model such as an abstract infinite-state automaton (see
Chapter 4);

2. a model reverse-engineered from the module code;
3. a set of tests associated to it (having a status of possibility: “the tests T

do not disprove that property P holds”).

The three categories of properties may not be all present for a given certifi-
cate; also they need not be disjoint; for instance, test cases can be automati-

9.2 Long-term Certifications 191

cally generated from the abstract model and executed on a black-box imple-
mentation of the module. Properties of individual modules will be composed
using automatic techniques based on approximated state-space exploration
(see Chapter 4), to derive the properties of the overall system. The proper-
ties of the overall system will then be compared with the desired security and
dependability profile.

The reader interested in the computational aspects of certifications should
note that the techniques, which are sound for such a computation, may not be
complete for a specific class of properties. Lack of completeness is a reasonable
price to pay for efficient on-demand computation. However, the impossibility
of proving a certain set of system-level properties is much less a concern when
re-checking a set of properties already proved in the past; also, no erroneous
validation of security and dependability profile is possible.

Long-term certificates should allow fast re-evaluation of security properties
on demand, whenever the system configuration evolves. In particular, the
definition of fine-grained security and dependability properties facilitates run-
time composition of properties belonging to components in different systems
configurations and coexisting in the same environment. Also, it will support
discovery of relationships (e.g., subsumption, see Chapter 4) between the
properties of a component in presence of evolving systems configurations.

The main idea and objective behind long-term certificates can be formu-
lated as “permanently predictable systems”. A major research problem is
reducing current context dependency of certificates, making them hold even
when software systems evolve or are moved to new computing platforms.

Let us now briefly review the goals to be attained by long-term security
certification.

• Enhancement of confidence. Today, users of long-lived systems may get
into a dangerous situation: while their reliance on software systems grows
with the systems’ service time, so does their vulnerability, due to accumu-
lation of changes in the overall execution context and to the emergence
of new attacks. A sound solution should provide a mechanism for con-
tinuous assessment of security and dependability properties, supporting
long-term confidence in long-lived systems.

• Long-term protection from threats. Fast checking of security and depend-
ability properties involving single components and entire systems should
be supported, allowing for detecting breaches potentially exploitable on
the part of attackers. Continuous evaluation of security and dependabil-
ity contracts will allow protection against attacks or faults which were
unknown at system design time.

• Support for diverse development and deployment practices. Capability of
flexibly integrating code, model and test-based properties should ensure
the methodology applicability to a diverse set of development processes.
These processes include highly decentralized and incremental develop-
ment and deployment practices, such as, those prevalent for large-scale
and open source platforms.

192 9 Long-term OSS security certifications: An Outlook

A key aspect which must be dealt with in order to achieve the above
goals is full integration of test-based and model-based certification. Open
research issues related to this integration can be classified in the following
two categories.

• Predictable Systems Engineering. Integration of test-based and formal
methods for complex systems engineering, with special emphasis on se-
curity and dependability engineering, into a development process which
seamlessly integrates test- and formal model-based properties. The major
issue here is on formal methods application and tool-supported engineer-
ing activities, that is, requirements capturing, model analysis (validation
and verification by model checking and theorem proving), test case gener-
ation, test case execution, refinement, abstraction, model transformation,
safety assessment, metrics and certification.

• Support for Dynamic System Evolution. Support for the dynamic evolu-
tion of systems (time mobility), especially with regard to the provision
of security and dependability, by means of mechanisms that are built-in
in the system at development time, but work throughout the system’s
lifecycle. The work on this line will introduce important innovations with
regards to the semantic specification of security and dependability re-
quirements, dynamic re-check of such requirements after reconfiguration,
self-* capabilities, automated adaptation, and runtime monitoring.

9.3 On-demand certificate checking

An important distinction that needs to be made at this point in the one be-
tween our notion of long-term certificates and the one of proofs. The latter
term, as discussed in Chapter 4, is used to designate the concept introduced
by G.C. Necula et al. [7, 8] of run-time demonstrations of program code prop-
erties. Obtaining such proofs at runtime is especially important in mobile
applications, where some untrusted programs downloaded from the network
might damage the host system or use too many local resources (CPU, mem-
ory, bandwidth). From a security point of view, executing untrusted code
poses many threats, as it may reveal confidential data to an attacker, or
disrupt the host system functionality.

Computing proofs carried by code can be seen as the runtime counter-
part of computing model-based certificates, much in the same way as a trial
execution in controlled execution environments (often called sandboxes) can
be seen as a runtime counterpart of computing test-based certificates. The
runtime proof-checking procedure usually goes as follows:

1. a software supplier, e.g., a remote Web site, provides a candidate program
P for execution on an host environment H,

9.3 On-demand certificate checking 193

2. H produces a logic formula ψ that, if true, guarantees that P has the
properties required for its execution,

3. a trusted external certifier C, receives P and ψ, computes a proof object
π which establishes the validity of ψ, that is, proves ψ(P),

4. H receives π and, using a trusted verifier V , checks to its satisfaction
that π is a valid proof of ψ(P). If this is the case, P can be executed on
H.

The proof π(P) can be seen as a certificate that the non-functional prop-
erties corresponding to ψ actually hold; the external certifier plays a role
analogous to the one of the evaluation body producing a model-based cer-
tificate on a piece of code. Of course in principle the two vital modules C
and V could be compromised by an attacker; therefore proof-checking system
must define a notion of minimum trusted computing base,minimum trusted
computing base composed by the modules that are required to be trusted
for the entire construction to work [3]. Within this trusted computing base,
proof systems can rely on encryption-based protocols for the establishment
of a trust relationship. The logical model used for expressing the conditions
(and computing their proof) is another crucial factor, as of course ψ(P) must
be decidable and the proof must be efficiently computed. In their seminal
work [7], Necula and Lee used LFi, a logical framework which allows to
define logic systems with their proof rules and provide an efficient generic
proof checker. By contrast, the corresponding certificates tend to be very big
(sometimes even 1000 times bigger than the program they are supposed to
certify). Finally, sometimes computing a proof is not enough, since H may
adopt a skeptical attitude and inquire on the decision procedure used by
C and a detailed proof must be generated showing the decision procedures.
Classically, proof-checking was expected to ensure soundness and complete-
ness. The active research trend has however focused on soundness; as we
anticipated above, soundness is also a crucial point for long-term certificates.

The model-carrying code (MCC) paradigm [9, 10]) offers a general mech-
anism for enforcing security properties. In this paradigm, untrusted mobile
code carries annotations that allow a host execution environment to verify its
trustworthiness. Before running the code, the host environment checks the
annotations and proves that they imply the host’s security policy. Although
the flexibility of the provided scheme, in the past compilers focused on simple
type safety properties rather than more general security policies. Here, the
main problem is that automated theorem provers cannot generate properties
of arbitrary programs. Also, constructing proofs by hand is prohibitively ex-
pensive and the security policy needs to be shared and known a priori by
both code producer and consumer.

The scenario we envision for long-term certificates is related but distinct to
the proof and model-carrying code one. In particular, long-term certificates
have the following characteristics:

194 9 Long-term OSS security certifications: An Outlook

• Hybrid nature. Long-term certificates need integrate test-based and model-
based aspects [2]. They will include properties which can be proved on
the basis of the program source code and others which require testing,
and can be proved to an extent only.

• Delayed verification. In the case of certificates, proofs of assertions are
computed by trusted external entities at an independently set verification
(rather than at execution) time. Also, while certificates are verified on-
demand, there is no need to link the verification to a specific program
execution.

Furthermore, long-term certificates must be able to express and enforce
more complex security policies while conciliating many other features, in-
cluding small certificates, efficient verifiers, and effective tools to produce
and distribute the certificates. The framework should be expressive enough
to describe all different aspects of LLS, such as possible failure modes, fault-
tolerance provided, security and dependability properties. Currently, formal
techniques are not capable to deal with all these aspects: some are more eas-
ily expressed by properties derived from code analysis, while others are the
traditional bailiwick of model checking.

9.4 The certificate composition problem

Traditionally, formal methods have focused on software verification, formal-
izing requirements into a specification, and using those specifications to get
early and regular feedback, as to whether the implementation actually meets
the requirements. Some efforts have been done to support design-time veri-
fication, as for instance, in design environments dedicated to safety-critical
embedded software applications. As far as security and dependability require-
ments are concerned, however, design time verification is not enough, as new
threats can emerge during the system lifetime. When this happens, usually
it is too late to even try reproducing the formal verification procedure. This
situation is closely related to the one of testing. In principle, a testing process
can be repeated to support system (or context) evolution; however, the test-
ing environment is (or becomes) forcibly different from the deployment one,
making the lifespan of current test-based (e.g., CC) and model- based certifi-
cations much shorter than the one of the software system they are supposed
to certify. Both formal verification and test-based techniques for assessing se-
curity and dependability properties are known to have additional weaknesses.
Security models based on formal specification are a lot harder for developers
to deal with than working prototypes, while unit tests offer, at best, rough
case-wise specifications and leave plenty of scope for unforeseen corner cases,
and unexpected behaviour. At the component development level, the usual
“verification via unit testing” should be augmented with lightweight fine-
grained formal specification coming from design models, as well as from code

9.5 Conclusions 195

analysis. Later, and even at run-time, composition can be applied to achieve
the far more powerful security and dependability verification that becomes
possible.

Long-term certificates must support agile and loose development processes
which, like the OSS one, include rapid and regular customer feedback (see
Chapter 5), while getting all the strength of formal methods for verification.
The first source of security and dependability properties will be design mod-
els or specification. Instead of just adding new unit tests, the developer will
add or refine a specification, much in the same way as she currently does
when using standard languages and tools, like JML for Java, Spec# with
C#, or Eiffel. Such component-level, fine-grained specifications are hopefully
not harder to write than a unit test, but potentially very effective for prevent-
ing security attacks (e.g. the ones based on parameter passing). The second
major feature of component-level operation is extracting models from auto-
matic analysis of program code, and using these models to derive additional
security and dependability properties. Properties coming from specifications
and code analysis should then be integrated with other properties derived
from automated testing. A hybrid strategy is also possible, exploiting formal
specification as a test oracle and generate random test data. Test data can
be generated by many different schemes, from purely random, to genetic al-
gorithms, to schemes designed to provide maximal search space coverage. At
the system level, properties of individual components need to be composed
in a context-aware fashion. This is really the core of the problem, as security
and dependability properties can be derived on-demand and checked against
suitable, system-level security contracts. The notion of “security-by-contract”
(see Chapter 4) is aimed at supporting long-lived systems, context evolution
and the emergence of threats unexpected at the time of design should finally
be integrated [4, 5].

9.5 Conclusions

As we have seen in Chapter 5, OSS development is based on a paradigm by
which coding and debugging efforts are shared among the greatest possible
number of developers, thus keeping individual effort at an acceptable level and
improving the quality of the code. Open source is also a business development
strategy. In some segments of the software market, such as operating systems,
databases and middleware platforms, open source licensing was instrumental
to breaking through existing entry barriers posed by commercial software
vendors. The need of Corporate adopters for a physical counterpart to be held
accountable for OSS products has been gradually fulfilled by Consultants,
companies whose business model includes administration, training and other
services on OSS products.

196 9 Long-term OSS security certifications: An Outlook

However, Corporate adopters and the Software market will look to other
actors for certified security and dependability properties. Both Chartered
Communities and OSS Forges need to actively support the development of
an open source security assurance process. In particular, Corporate adopters
have both technical and business expectations from OSS ass. On the technical
side they need to support communities in achieving and keeping acceptable
security and dependability levels, e.g., via technical expertise sharing. On the
business side, they expect to be able to guarantee to their own customers and
to the Software market that the security and dependability of their products
and services will stay the same or improve due to OSS adoption. In principle,
certificates and OSS go together well, as long-term certificates can repre-
sent and carry the information of software security and dependability needed
throughout the open source ecosystem.

A potentially crucial role is to be played by OSS Forges. Forges provide
trusted locations for other actors to gather information, download OSS pro-
grams and applications, and share knowledge and experience on open source
software and other open technologies. Specifically, forges role is twofold: (i)
Information Aggregator ; and (ii) Open Source Resource Repository.

In the latter case, forges serve as a vendor-neutral, non-exclusive liaison
node between Corporate adopters and numerous open source communities.
Here we are interested in forges operating in the former capacity. Some of
them are already active in the security area, by providing security and vul-
nerability alerts. In the fullness of time forges may play a normative role in
a collaborative security assurance process for OSS, based on the notions of
collaborative production, interchange and checking of long-term certificates.

References

1. S.A. Ajilaa and D. Wub. Empirical study of the effects of open source adoption on
software development economics. Journal of Systems and Software, 80(9):1517–
1529, September 2007.

2. E. Albert, G. Puebla, and M.V. Hermenegildo. Abstraction-carrying code. In
Proc. of the 11th International Conference on Logic for Programming Artificial
Intelligence and Reasoning (LPAR 2004), Montevideo, Uruguay, March 2004.

3. A.W. Appel. Foundational proof-carrying code. In Proc. of the 16th Annual
IEEE Symposium on Logic in Computer Science (LICS 2001), Boston, MA,
USA, June 2001.

4. N. Dragoni and F. Massacci. Security-by-contract for web services. In Proc. of
the ACM Workshop on Secure Web Services (SWS 2007), Fairfax, VA, USA,
November 2007.

5. N. Dragoni, F. Massacci, K. Naliuka, and I. Siahaan. Security-by-contract: To-
ward a semantics for digital signatures on mobile code. In Proc. of the Fourth Eu-
ropean PKI Workshop: Theory and Practice (EuroPKI 2007), Mallorca, Balearic
Islands, Spain, June 2007.

6. The International Organization for Standardization and the International Elec-
trotechnical Commission. Common Criteria for Information Technology Secu-

References 197

rity Evaluation, Part 1: Introduction and general model, 2006. http://www.
commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf.

7. G.C. Necula and P. Lee. Efficient representation and validation of proofs. In
Proc. of the Thirteenth Annual IEEE Symposium on Logic in Computer Science
(LICS 1998), Indianapolis, IN, USA, June 1998.

8. G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In
Proc. of the 28th Annual ACM SIGPLAN - SIGACT Symposium on Principles
of Programming Languages (POPL 2001), London, UK, January 2001.

9. R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan, and S.A. Smolka. Model-
carrying code (mcc): A new paradigm for mobile-code security. In Proc. of the
New Security Paradigms Workshop (NSPW 2001), New Mexico, USA, Septem-
ber 2001.

10. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-
carrying code: A practical approach for safe execution of untrusted applications.
In Proc. of the 19th ACM Symposium on Operating Systems Principles (SOSP
2003), New York, USA, October 2003.

Appendix A

An example of a grep-based search/match
phase

We provide the complete output produced by our matching engine when
mapping between security function SC.1 and testcases is searched. Based on
the following grep-based script

grep -l -i -e ’tunneling’ -e ’port 22’ -e ’secure channel’
-e ’secure socket layer’ -e ’ssl’ -e ’ssh’
-e ’secure shell’ -r linux_security_test_suite_EAL3

the set of testcases to be used in the evaluation of security function SC.1 is
retrieved.

linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh04
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh01_s1
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh03
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh03_s1
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh02_s1
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh02
linux_security_test_suite_EAL3/ltp_EAL2/testcases/network/tcp_cmds/ssh/ssh01
linux_security_test_suite_EAL3/ltp_EAL2/testcases/user_databases/lastlog01
linux_security_test_suite_EAL3/ltp_EAL2/testcases/user_databases/faillog01
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/send_new_rsa_key.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/restore_date.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/rsa_login.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/rsa_test.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/dsatest.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/aestest.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/delete_accounts.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/sha1test.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/setup_date.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/rsa_auth.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/server.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/setup_accounts.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/rc4test.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/dsa_auth.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/stunnel_dsa.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/dhtest.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/password_auth.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/send_new_dsa_key.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/stunnel_rsa.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/dsa_login.sh
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/client.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/destest.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/test/randtest.c
linux_security_test_suite_EAL3/ltp_OpenSSL/testcases/openssl/openssl01
linux_security_test_suite_EAL3/laus_test/audit_tools/ssh01_s1
linux_security_test_suite_EAL3/laus_test/audit_tools/au_login
linux_security_test_suite_EAL3/laus_test/audit_tools/ssh01
linux_security_test_suite_EAL3/laus_test/libpam/tests/test_sshd.c
linux_security_test_suite_EAL3/laus_test/libpam/libpam.c
linux_security_test_suite_EAL3/laus_test/pam_laus/pam_laus.c
linux_security_test_suite_EAL3/laus_test/pam_laus/tests/test_sshd.c

199

Index

Access control list (ACL), 19
Authentication, 116
Authentication and Authorization

Model (AAM), 114
Authorization, 117

Bell-LaPadula Model (BLP), 22
black-box testing, 28, 29, 36, 59
branch coverage, 36

Carrier Grade Linux, 96
CAS++, 118
CC components, 48, 56, 57
CCHIT, 168
Centralized Identity Management, 117
certification authority, 6
client status info, 117
Common Criteria (CC), 5, 11, 27, 47,

48, 50, 54, 55, 58, 59
Common Criteria process, 45, 51, 57
Composition Assurance Class, 151
Controlled Access Protection Profile

(CAPP), 49, 50, 126
cross-language availability, 118
CTCPEC, 8, 46

derivative works, 92
Discretionary Access Control (DAC),

17, 18

Endian firewall, 159
Evaluation assurance levels (EALs), 48,

49, 59
evaluation body, 3, 9, 58
Evaluation process, 132

Federated Model (FM), 114

Federation, 117
formal methods, 43, 63, 65, 75
Free redistribution, 91
Full Identity Management Model

(FIMM), 114

General Public License (GPL), 92

ICSA, 155, 157, 159
ITSEC, 8, 43, 46, 47

Linux Test Project (LTP), 134, 135
Long-lived systems (LLS), 189, 191
Long-term certification/certificate, 189

Mandatory Access Control (MAC), 19,
22

model checking, 65, 69, 81
model-based certification, 28, 63, 86

observation report, 148
Open Source Development, 93
Open Source Maturity Model, 101
open source software (OSS), 1, 2, 4,

10–12, 30, 76, 89
open virtual lab (OVL), 180
orange book, 8, 39–41, 43, 47
OSS certification, 99
OSS Security, 97
OSS security certification, 89

paravirtualization, 175
password proliferation prevention, 118
Protection Profile (PP), 48–52, 56, 59,

125
Provisioning, 117

Qualify and Select Open Source
Software, 100

201

202 Index

risk, 7, 29, 30

scalability, 118
Security Assurance Requirements

(SARs), 49, 54–57
security by contract, 74
security certification, 11, 12, 15, 16, 32,

38–40, 46, 47, 59
Security Functional Requirements

(SFRs), 49, 54, 55, 57
Security Target (ST), 125, 145
Security target (ST), 48, 56, 57
single point of control, 117
SLES8, 125–127
Software Assurance, 95
software certification, 1–4, 6, 7, 15, 17,

27, 34, 38
software error, 35

software failure, 35
software fault, 34, 35
software testing, 11, 27, 28, 30, 31, 34,

36
standard compliance, 118
static analysis, 69
Strong Authentication, 117

Target of evaluation (TOE), 47, 56, 57
TCSEC, 8, 27, 39–41, 43, 46
Technology Neutrality, 92
test case generator, 37
test-based certification, 3, 27, 28, 47
Trust Models, 113

virtualization, 173–177

white-box testing, 29

	Cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_2.pdf
	fulltext_3.pdf
	fulltext_4.pdf
	fulltext_5.pdf
	fulltext_6.pdf
	fulltext_7.pdf
	fulltext_8.pdf
	fulltext_9.pdf
	back-matter.pdf

