Object-Oriented System Dvpl.

http://kickme.to/tiger/

http://kickme.to/tiger/

Ob ject- Oriented System Development fy Dennis de Champesnx, Doug Lea & Penelope Fanre

T
| HTML Edition
(JI:-]E&;'{E:JL_;J[J,EIIIHI The origina hardcover textbook edition (ISBN 0-201-56355-X) of
Syitern }1 Object-Oriented System Development by Dennis de Champeaux, Douglas
EL‘Elcfpﬁlﬂlt Lea, and Penel ope Faure was published by Addison Wesley, copyright ©
R 1993 by Hewlett-Packard Company. Y ou can purchase this book directly

from Addison-Wesley by phone at (800)822-6339, or order it through most
. = bookstores. All parties involved have graciously granted permission to create
AT thisHTML edition, maintained by Doug Lea. Mail comments to

Sl) B)es oswego.edu.
contents
Preface
1 Overview

Scope; Objects; Development Paradigms; Development Phases, Summary;
Part 1. Analysis
2 Introduction to Analysis

Purpose; Models; Process; Summary:
3 Object Statics
Instances; Classes; Attributes; Attribute Features, Constraints; |dentifying Objects and Classes;

Summary;
4 Object Relationships

Relationships; Collections; |dentifying Relationships; Summary;

5 Object Dynamics

Describing Behavior; Transition Networks, Examples;, Reducing Complexity: Summary;

6 Object Interaction

Transitions; Sending and Receiving Events; | nteraction Notations, Examples, Summary;
7 Class Relationships

Property | nheritance; Subclasses; Multiple I nheritance; Sibling Relationships; Set Operations;
Inheritance of Relations, Summary:

8 Instances

http://www.awl.com/
http://gee.cs.oswego.edu/dl/
mailto:[dl@cs.oswego.edu]

Subclasses and Instances; M etaclasses;, Parametric Instances ; Summary;

9 Ensembles
Ensembles; Other Decomposition Constructs; Ensembles as Systems; Summary;
10 Constructing a System Model
Requirements Fragment; Use Cases; Subsystems; Vocabulary; Classes; Ensembles; Model;

Summary;
11 Other Requirements

Resources; Timing; Other Constraints; Summary;

12 The Analysis Process

Software Development Process; Default Sequence of Steps, OO Analyss of the OO Analysis
Process; Alternative Processes; Tools, Summary;

13 Domain Analysis

Models; Reuse; Summary;
14 The Grady Experience

Part I1: Design
15 From Analysisto Design

Continuity; Transformation; Design Phases; Design Criteria; Managing Design; Summary;

16 Description and Computation

Trandating Analysis Models;, From Abstract to Concrete; Composing Classes; Controlling
Trangitions,; Generic Classes; Generating | nstances; Design for Testability; Transformation and
Composition; Summary;

17 Attributesin Design
Defining Attributes; Concrete Attributes; Views; Exports; Composition and Inheritance;
Summary;

18 Relationshipsin Design
Relationships; Collections; Coordinators; Relations versus Composites, Summary;

19 Designing Transitions

States and Guards; Atomicity; Timing Constraints; Concrete Transitions, Summary;

20 Interaction Designs

Callbacks; Replies; Invocations; Control Flow; Summary;
21 Dispatching

Selection; Resolution; Routing; Summary;
22 Coordination

Joint Actions; Controlling Groups; Open Systems, Summary;

23 Clustering Objects

Clustering; Cluster Objects; System Tools and Services; Persistence; Summary;

24 Designing Passive Objects

Transformations; Storage M anagement; Passive Objectsin C++; Summary:;

25 Performance Optimization

Optimization and Evolution; Algorithmic Optimization; Performance Transformations;

Optimization in C++; Summary;

26 From Design to | mplementation

Testing; Performance Assessment; Summary;

Appendix: Notation Summary
OAN; ODL,;

Sear ch:

Enter a search string (any case insensitive perl regexp) to produce an HTML index of all
occurrences in the book:

Submit| | Reset

Related information

« Erratafor thefirst printing of the hardcover book version.

« A brief overview of some of the book (mainly topics from Part 11 dealing with distributed objects)
Isavailable asaset of HTML-ized or Postscript slides from a 1993 presentation.

o FAQ answers.

O

Dennis wrote most of Part | with the assistance of Penelope; Doug wrote Part [1. A few
sections of chapters 6, 7, 8, and 15 were written jointly. It was written in 1991-3.

You can read Parts | and |1 pretty much independently. Some people like to start with
chapter 16.

Many of the pages were generated mechanically from the book form. They are not laid out
or hyperlinked together as well as they would be if they were written originally in HTML.
Sorry.

While the book is mostly self-contained, people report that it does not serve as an
introductory OO text. It helps to have had some previous exposure to basic OO concepts.

The main differences between the accounts in this book and most other OO textsliein (1)
its non-commital stance about particular OO "methods' and languages (2) its focus on the
analysis and logical design of potentially distributed OO systems. However, it does not
address many nuts-and-bolts issues surrounding the use of real OO languages, tools, and

http://www.cs.cmu.edu/Web/People/rgs/pl-regex.html
ftp://g.oswego.edu/pub/OOSD/errata
ftp://g.oswego.edu/pub/slides/cenet93.ps

systems for distribution in part because so few of them (of appropriate production quality)
were available at the time of writing.

o WhilePart 1l consistslargely of OO Design Patterns, they are not phrased as such, mainly
because this was written before now-common ideas about presenting, structuring and
documenting patterns arose.

o While there are many things we'd do differently if we were rewriting this book, there are no
current plans for a second edition. However, Dennis and Penlope have written a book on OO

Development Process and Metrics, and Doug has written one on Concurrent Programming
in Java.

o No, there are not postscript versions or any other copyable files available. If you want your
own copy, you'll have to buy the book. Also, please do not mirror these pages. (We don't
even have rightsto give you permission to do so.)

History

May95 Created.

Jan96 Changed background color to off-white for easier reading.
Mar96 Expanded and reformatted this page.

Aug96 Killed an annoying example.

Jan97 Reformatted to one chapter per file, restored searchable index, transformed gif-versions of
tables to html tables.

g s wbdhpeE

This document was generated with the help of the LaTeX2HTM. translator Version 95.1 (Fri Jan 20
1995) Copyright © 1993, 1994, Nikos Drakos, Computer Based Learning Unit, University of Leeds.

http://www.prenhall.com/allbooks/esm_0130997552.html
http://www.prenhall.com/allbooks/esm_0130997552.html
http://g.oswego.edu/dl/cpj
http://g.oswego.edu/dl/cpj
http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html
http://cbl.leeds.ac.uk/nikos/personal.html

Object-Bciented
Syistedd

b ¢
Sepment b eface

[i e AL b e can
Damaplas Lea
Perelaps Feurs

Object-oriented (OO) programming has a growing number of converts. Many people believe that object
orientation will put adent in the software crisis. Thereis aglimmer of hope that OO software
development will become more like engineering. Objects, whatever they are now, may become for
software what nuts, bolts and beams are for construction design, what 2-by-4s and 2-by-6s are for home
construction, and what chips are for computer hardware construction.

However, before making this quantum leap, object-oriented methods still have to prove themselves with
respect to more established software development paradigms. True, for small tasks the war is over.
Object-oriented programs are more compact than classic structured programs. It is easier to whip them
together using powerful class libraries. Inheritance allows " differential programming", the modification
in a descendant class of what iswrong with a parent class, while inheriting all of its good stuff. User
interfaces, which are often sizable fractions of small systems, can be put together easily from
object-oriented libraries.

Delivering large object-oriented software systems routinely and cost effectively is still a significant
challenge. To quote Ed Yourdon: A system composed of 100,000 lines of C++ is not to be sneezed at,
but we don't have that much trouble developing 100,000 lines of COBOL today. The real test of OOP

will come when systems of 1 to 10 million lines of code are developed.1",

1 Footnote:
To befair and accurate, systems of 100,000 lines of C++ and those of 1,000,000 lines of
COBOL are often of the same order of magnitude in complexity.

The development of large systems is qualitatively different from that of small systems. For instance, a
multinational banking conglomerate may want a system supporting around-the-clock access to the major
stock markets in the world. They may additionally want to integrate accounts for al worldwide
customers, providing fault-tolerant distributed transaction services. The banking conglomerate cannot
realize this system by relying exclusively on a bundle of smart programmers. Instead, as enshrined by the
structured paradigm, analysis and design must precede pure implementation activities. OO methods are
known by experience to scale up to such large systems. For example, Hazeltine [2] reports a project with

““about 1000 classes, 10 methods per class, involving an average of 40 persons over 2 years.”

This book is intended to help the reader better understand the role of analysis and design in the
object-oriented software development process. Experiments to use structured analysis and design as

http://g.oswego.edu/dl/oosd/node1.html#hazeltine

precursors to an object-oriented implementation have failed. The descriptions produced by the structured
methods partition reality along the wrong dimensions. Classes are not recognized and inheritance as an
abstraction mechanism is not exploited. However, we are fortunate that a multitude of object-oriented
analysis and design methods have emerged and are still under development. Core OO notions have found
their home place in the analysis phase. Abstraction and specialization via inheritance, originally
advertised as key ingredients of OO programming, have been abstracted into key ingredients of OO
analysis (OOA). Analysis-level property inheritance maps smoothly on the behavior inheritance of the
programming realm.

A common selling point of the OO paradigm isthat it is more ""natural” to traverse from analysis to
implementation. For example, as described in [1], devel opers at Hewlett-Packard who were well versed
in the structured paradigm reported that the ~"conceptual distances" between the phases of their project
were smaller using OO methods. Classes identified in the analysis phase carried over into the
Implementation. They observed as well that the defect density in their C++ code was only 50% of that of
their C code.

However, more precise characterizations of why this might be so and how best to exploit it are still
underdeveloped. The black art mystique of OO methodsis amajor inhibitor to the widespread
acceptance of the OO paradigm. Hence we have devoted ampl e attention to the process aspects of
development methods.

Will this book be the last word on this topic? We hope not. The object-oriented paradigm is still
developing. At the same time, new challenges arise. Class libraries will have to be managed. Libraries for
classic computer science concepts can be traversed using our shared, common knowledge. But access to
application specific domain libraries seemsto be tougher. Deciding that a particular entry is adequate for
a particular task without having to “"look inside" the entry is a challenge. Will the man-page style of
annotations be sufficient? Our experience with man-pages makes us doubt that it will be.

Further horizons in OO are still too poorly understood to be exploited in the construction of reliable
systems. For example, some day methods may exist for routinely developing = open systems' of ~ smart”
active objects inspired by the pioneering work of Hewitt.2 While active object models do indeed form
much of the foundation of this book, their furthest-reaching aspects currently remain the focus of
research and experimental study.

2Footnote :

Some quotes from this manifesto paper [3]: ~ This paper proposes amodular ACTOR
architecture and definitional method for Al that is conceptually based on asingle kind of
object: actors... The formalism makes no presuppositions about the representation of
primitive data structures and control structures. Such structures can be programmed,
micro-coded or hard-wired in auniform modular fashion. In fact it isimpossible to
determine whether a given object is ‘really’ represented as alist, avector, a hash table, a
function or a process. Our formalism shows how all of the modes of behavior can be defined
in terms of one kind of behavior: sending messages to actors." We briefly discuss open
systems of actors in Chapter 22.

The object oriented paradigm, and this book, may impact different software professionals in different
ways:

Analysts.

OO0 analysisisafairly new enterprise. There is an abundance of unexplored territory to exploit. On
the other hand there are few gurus to rely on when the going gets tough. The OO paradigm is
tough going when one has been inundated with the structured way of thinking. While structured
analysisis supposed to be implementation technique independent, it turns out to have abuilt-in
bias toward classical implementation languages. Its core abstraction mechanism is derived from
the procedure/function construct. Letting structured abstractions play second violin to object and
inheritance takes some effort.

Designers.

OO designisas novel as OO analysis. By virtue of object orientation, more activities in the design
phase and links to both analysis and implementation can be distinguished than has been previousy
possible. Our treatment focuses on the continuity of analysis and design, thus presenting many
descriptive issues that are normally considered as "OO design" activities in the context of OOA.
On the other side, it pushes many decisions that are usually made in the implementation phase into
design.

Implementors.

OO implementation should become easier when the task of satisfying functional requirements has
been moved into the design phase. I mplementation decisions can then concentrate on exploiting
the features of a chosen configuration and language needed to realize all the remaining
requirements.

Software engineers.

OO0 software development is becoming a viable alternative to structured development. The
application domains of both appear virtually the same. While the structured version has the
advantage of currently being better supported by CASE tools, the object-oriented version will most
likely become even better supported.

Project managers.
Experience with OO methods may be obtained using a throwaway, toy example to go through all
the phases. The promise of large scale reuse should justify the transition costs. Software

development planning is notoriously hard. This text addresses this topic by formulating a generic
development scenario. However, foolproof criteriafor measuring progress are as yet unavailable.

Tool builders.

The OO community needs integrated tools. In addition to object orientation, team effort, version
control, process management, local policies, metrics, all need support.

Methodol ogists.
We cite open issues and unsolved problems throughout the text, usually while discussing further
readings.

Students and teachers.

While the object-oriented paradigm is rapidly overtaking industrial software development efforts,
few courses address fundamental OO software engineering concepts untied to particular
commercial methods. We have successfully used material in this book as a basis for one-semester
graduate and undergraduate courses, one-week courses, and short tutorials 3.

3Footnote :

A team-based development project is almost mandatory for effective learning in
semester courses, but raises logistics problems common to any software engineering
course. Projects should neither be so big that they cannot be at |east partially
implemented by ateam of about three students within the confines of a semester, nor
be so small that they evade all systems-level development issues. Successful projects
have included aversion of f t p with an InterViews[4] based interface, and asimple

event display system for Mach processes. To implement projects, students who do not
know an OO programming language will need to learn one long before the end of the
course. One way to address thisis to teach the basics of OOP in a particular language
and other implementation pragmatics early on, independently of and in parallel with
the topics covered in this book. For example, in a course meeting two or three times
per week, one class per week could be devoted to programming and pragmatics. As
the semester continues, this class could focus on project status reports and rel ated
discussions. This organization remains effective despite the fact that the contents of
the different classes are often out of synch. By simplifying or eliminating project
options corresponding to the contents of Chapters 22 through 26, final
Implementation may begin while still discussing how these issues apply to larger
efforts.

Others.

The reader may think at this point that this book isrelevant only for large system development. We
don't think so. Even in a one-hour single-person programming task, activities applying to alarge
system can be recognized. The difference is that these activities all happen inside the head of the
person. There is no written record of all the decisions made. The person may not even be aware of
some of the decisions. We hope that everyone will obtain a better understanding of the overall
development process from this book.

This text does not aim at defining yet another OO "~“method". Instead, we aim to give a minimum set of
notions and to show how to use these notions when progressing from a set of requirements to an
implementation. We reluctantly adopt our own minimal (graphical) analysis and (textual) design
notations to illustrate basic concepts. Our analysis notation (OAN) and design language (ODL) are
“lightweight" presentation vehicles chosen to be readily trandlatable into any OO analysis, design, and
programming languages and notations you wish to use. (Notational summaries may be found in the
Appendix 27.)

Most of what we have written in this book is not true. It is also not false. Thisis because we are in the
prescriptive business. Software development is a special kind of process. We describe in this book a
(loosely defined) algorithm for producing a system. Algorithms are not true or false. They are
appropriate for atask or not. Thus this book should contain a correctness proof that demonstrates that the
application of its methods invariably yields a desired system. However, due to space limitations, we have
omitted this proof.

More serioudly, we have tried to decrease the fuzziness that is inherent in prescriptive text by giving
precise textual descriptions of the key notions in the respective methods. We have tried to be precise as
well, in describing how analysis output carries over into design and how the design output gets massaged
into an implementation. Thus we obtain checks and balances by integrating the methods across the

development phases. This, of course, provides only a partial check on the correctness of the methods.
Their application will be their touchstone.

We are opinionated regarding formal techniques. We want to offer software developers “formality ala
carte”". Developers may want to avoid rigorous mathematical" precision as one extreme, or may want to
provide correctness proofs of atarget system against the requirements as another extreme. We leave this
decision to the developer. As a consequence for us, we avoid introducing notions for which the semantics
are not crystal clear. Asaresult, the developer can be as formal as desired. Since we were at times unable
to come up with concise semantics, we have omitted some modeling and design notions that are offered
In other accounts.

While we have tried to provide a solid foundation for the core concepts, we are convinced as well that a
true formalist can still point out uncountably many ambiguities. On the other side, we ssmply do not
understand most of the material in this book sufficiently well to trivialize it into recipes.

Although one can read this book while bypassing the exercises, we do recommend them. Some exercises
ask you to operationalize the concepts in this book. Others are quick " thought questions®, sometimes
even silly sounding ones, that may lead you into territory that we have not explored.

Acknowledgments

Together, we thank our editors Alan Apt and John Wait, and reviewers Jim Coplien, Lew Creary,
Desmond D'Souza, Felix Frayman, Watts Humphrey, Ralph Johnson, and Hermann Kaindl.

DdC thanks Alan Apt for being a persistent initiator to this enterprise. He has an amazing ability to
exploit your vanity and lure you in an activity that is quite hazardous to plain family life. On the way he
gives encouragement, blissfully ignoring the perilous situation in which the writer has maneuvered
him/herself. Donna Ho provided an initial sanity check. Patricia Collins expressed very precisely her
concerns about domain analysis.

DL thanks others providing comments and advice about initial versions, including Umesh Bellur, Gary
Craig, Rameen Mohammadi, Rajendra Raj, Kevin Shank, Sumana Srinavasan, and Al Villarica. And, of
course, Kathy, Keith, and Coalin.

We remain perfectly happy to take blame for all remaining omissions, stupidities, inaccuracies,
paradoxes, falsehoods, fuzziness, and other good qualities. We welcome constructive as well as
destructive critiques. Electronic mail may be sent to dl @. oswego. edu.

References

1

D. de Champeaux, A. Anderson, M. Dalla Gasperina, E. Feldhousen, F. Fulton, M. Glei, C. Groh,
D. Houston, D. Lerman, C. Monroe, R. Raj, and D. Shultheis. Case study of object-oriented
software development. In OOPSLA '92. ACM, 1992.

N. Hazeltine. Oopsla panel report: Managing the transition to object-oriented technology. OOPS

Messenger, October 1992.

C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for ai. In Third
International Joint Conference on Artificial Intelligence, 1973.

M. Linton and et al. InterViews. interviews.stanford.edu, 1990.

Next: Chapter 1

Doug Lea
Wed Jan 10 07:51:42 EST 1996

PR e
Chapter 1: Overview

Object-Oxiented
Syisterm
o Scope
Development . Obiects

o Development Paradigms

o Development Phases

[s e i b 2 o
Dmaghas Lea

Perelope Tours ° Summary

Scope

The development of a software system is usually just apart of finding a solution to alarger problem. The
larger problem may entail the development of an overall system involving software, hardware,
procedures, and organi zations.

In this book, we concentrate on the software side. We do not address associated issues such as
constructing the proper hardware platform and reorganizing institutional procedures that use the software
to improve overall operations. We further limit ourselves to the "middle" phases of OO system
development. We discuss the initial collection of system requirements and scheduling of efforts only to
the extent to which they impact analysis. Similarly, we discuss situation-dependent implementation
matters such as programming in particular languages, porting to different systems, and performing
release management only with respect to general design issues. Also, while we devote considerable
attention to the process of OO development, we do not often address the management of this or any
software development process. We urge readers to consult Humphrey [8], among other sources, for such

guidance.

We cannot however, ignore the context of a software system. The context of any system is simply that
part of the ““world" with which it directly interacts. In order to describe the behavior of atarget system,
we have to describe relevant parts of the immediate context forming the boundary of the system.
Consequently, one may argue that the apparatus that we present in this book could be used for modeling
nonsoftware aspects as well. We do not deny potential wider applicability, but we have no claimsin that
direction.

Running Example

Many examplesin thistext describe parts of the following system of automated teller machines
(ATMs):

We assume that the American Bank (AB) has partly decentralized account management. Every branch
office has equipment to maintain the accounts of its clients. All equipment is networked together. Each
ATM isassociated and connected with the equipment of a particular branch office. Clients can have

checking, savings and line of credit accounts, al conveniently interconnected. Clients can obtain cash out
of any of their accounts. A client with a personal identification number (PIN) can use an ATM to transfer
funds among attached accounts. Daemons can be set up that monitor balance levels and trigger
automatic fund transfers when specifiable conditions are met and/or that initiate transfers periodically.
Automatic periodic transfers to third party accounts can be set up as well.

We will expand on these requirements as necessary. For presentation reasons, we often revise
descriptions from chapter to chapter. Our examples represent only small fragments of any actual system.

Objects

Objects have complex historical roots. On the declarative side, they somewhat resemble frames,
introduced in artificial intelligence (Al) by Marvin Minsky [10] around 1975. Frames were proposed in
the context of knowledge representation to represent knowledge units that are larger than the constants,
terms, and expressions offered by logic. A frame represents a concept in multiple ways. Thereisa
descriptive as well as a behavioral component. A frame of a restaurant would have as a descriptive
component its prototypical features -- being a business, having alocation, employing waiters, and

mai ntaining seating arrangements. The behavioral component would have scripts. For example, a
customer script outlines stereotypical events that involve visiting a restaurant.

Objects and frames share the property that they bring descriptive and behavioral features closely
together. This shared feature, phrased from the programming angle, means that the storage structures and
the procedural components that operate on them are tightly coupled. The responsibilities of frames go
beyond those of objects. Frames are supposed to support complex cognitive operations including
reasoning, planning, natural language understanding and generation. In contrast, objects for software
development are most often used for realizing better understood operations.

On the programming side, the Smula [3] programming language is another, even older, historical root of
objects. Unsurprisingly, Smula was aimed at supporting simulation activities. Procedures could be
attached to atype (aclassin Smula's terminology) to represent the behavior of an instance. Smula
supported parallelism , in the approximation of coroutines, allowing for many interacting entitiesin a
simulation.

Smula objects share the close coupling of data and procedures. The concurrency in Smulawaslost in
Smalltalk , Eiffel , Objective-C , C++ , and other popular OO programming languages. However,
parallelism has reentered the OO paradigm via OO analysis methods and distributed designs. Modeling
reality with “"active" objects requires giving them alarge degree of autonomy.

The notion of whether objects have a parallel connotation or not is currently a major difference between
OO0 analysis and OO programming. Since we expect OO programming languages to evolve to support
the implementation of distributed, parallel systems, we expect this difference to decrease. The parallel
OO0 paradigm iswell positioned to meet these upcoming demands.

Definitions

Like “system", “software", "anaysis’, and " "design”, the term "object” evades simplistic definition. A
typical dictionary definition reads:
« oObject: avisible or tangible thing of relative stable form; a thing that may be apprehended
intellectually; athing to which thought or action is directed [7].

Samplings from the OO literature include:
« An object hasidentity, state and behavior (Booch [1]).

« Anobjectisaunit of structural and behavioral modularity that has properties (Buhr [2]).

Our own working definition will be refined throughout this book. We define an object as a conceptual
entity that:

o isidentifiable;
« hasfeaturesthat span alocal state space;

« has operations that can change the status of the system locally, while also inducing operations in
peer objects.

Development Paradigms

The structured analysis (SA) paradigm [15] isrooted in third generation programming languages
including Algol , Fortran , and COBOL . The procedure and function constructs in these languages
provide for a powerful abstraction mechanism. Complex behavior can be composed out of or
decomposed into simpler units. The block structure of Algol-like languages provides syntactic support for
arbitrary many layers. Applied to the development of systems, this abstraction mechanism gives
prominence to behavioral characterization. Behavior is repeatedly decomposed into subcomponents until
plausibly implementable behavioral units are obtained.

The abandonment of sequential control flow by SA was a major breakthrough. Procedure invocations
have been generalized into descriptions of interacting processes. The “"glue" between the processes are
dataflows, the generalization of datathat is passed around in procedure invocations. Processes represent
the inherent parallelism of reality. At the same time, the use of processes produces a mapping problem.
One hasto transform a high level, intrinsically parallel description into an implementation that is usually
sequential. Aswe will see, the OO paradigm faces the same mapping problem.

The starting point for process modeling resides in the required behavior of the desired system. This
makes SA a predominantly top-down method. High level process descriptions are consequently target
system specific, and thus unlikely to be reusable for even similar systems. As aresult, a description (and
a subsequent design and implementation) is obtained that is by and large custom fit for the task at hand.

OO0 software development addresses the disadvantage of custom fitting a solution to a problem. At all
levels of the development process, solution components can be formulated that generalize beyond the
local needs and as such become candidates for reuse (provided we are able to manage these

components).

Other aspects of OO development are available to control the complexity of alarge system. An object
maintains its own state. A history-dependent function or procedure can be realized much more cleanly
and more independently of its run-time environment than in procedural languages. In addition,
inheritance providesfor an abstraction mechanism that permits factoring out redundancies.

Applicability

Arethe applicability ranges of the object-oriented paradigm and the structured paradigm different? If so,
how are they related? I's one contained in the other? Can we describe their ranges?

Asyet there is not enough evidence to claim that the applicability ranges are different, athough OO may
have an edge for distributed systems. Structured analysis thrives on process decomposition and data
flows. Can we identify atask domain where process decomposition is not the right thing to do, but where
objects can be easily recognized? Conversely, can we identify atask where we do not recognize objects,
but where process decomposition is natural ? Both cases seem unlikely.

Processes and objects go hand in hand when we see them as emphasizing the dynamic versus the static
view of an underlying ~"behaving" substratum. The two paradigms differ in the sequence in which
attention is given to the dynamic and static dimensions. Dynamics are emphasized in the structured
paradigm and statics are emphasized in the OO paradigm. As a corollary, top-down decomposition isa
strength for the SA approach, while the grouping of declarative commonalities viainheritance isa
strength for the OO approach.

Mixing Paradigms

The software development community has alarge investment in structured analysis and structured design
(SD). The question has been raised repeatedly whether one can mix and match components from the
structured development process with components of the OO development process. For instance, whether
the combination of SA + SD + OOP or SA + OOD + OOP isaviable route.

Experts at two recent panelst denied the viability of these combinations (but see Ward [13] for a

dissenting opinion). A key problem resides in the data dictionaries produced by structured analysis. One
cannot derive generic objects from them. Inheritance cannot be retrofitted. Also, the behavior of any
given object islisted ""all over the place” in data flow diagrams.

1Footnote :
panels at OOPS_A/ECOOP '90 and OOPSLA '91.

Consequently and unfortunately, we cannot blindly leverage SA and SD methods and tools. However,
OO0 analysis methods exist that do (partially) rely on SA to describe object behavior; see[6] for a

comparative study.

Development Methods

Within a given paradigm, one may follow a particular method2. A method consists of:
1. A notation with associated semantics.
2. A procedure/pseudo-al gorithm/recipe for applying the notation.
3. A criterion for measuring progress and deciding to terminate.

2Footnote :

We use the word method, not methodology. The primary meaning of methodology is " "the
study of methods" which is the business of philosophers. The secondary meaning of
methodology is method. Since that is a shorter word we refrain from joining the
methodology crowd. (Similarly, we prefer using technique over technology.)

This book does not introduce yet another new method for OO development. We instead attempt to
integrate methods representative of the OO paradigm. Our OO analysis notation is just borrowed from
multiple sources. Still we have given it aname, OAN (Our Analysis Notation), for easy referencing. In
part |1, we introduce ODL (Our Design Language), a language with similarly mixed origins. Summaries
of each are presented in the Appendix 27. When necessary to distinguish our views from those of others,

we will refer to these simply as ~ our method” (OM).

Development Phases

No author in the area of software development has resisted denouncing the waterfall model . Everyone
agrees that insights obtained downstream may change decisions made upstream and thus violate asimple
sequential development algorithm. The notion of a development process in which one can backtrack at
each point to any previous point has led to the fountain metaphor (with, we assume, the requirements at
the bottom and the target system at the top).

Whether the development process has few feedback loops (the waterfall model) or many (the fountain
model) depends on several factors. The clarity of theinitial requirementsis an obvious factor. The less
we know initially about the desired target system, the more we have to learn along the way and the more
we will change our minds, leading to backtracking.

Another factor might be the integration level of tools that support the development process. A highly
integrated devel opment environment encourages ~ wild" explorations, leading to more backtracking. On
the other hand without tool support, we may be forced to think more deeply at each stage before moving
on because backtracking may become too costly. The development style of team members may be a
factor aswell.

It has been said that the object-oriented paradigm is changing the classic distinctions between analysis,
design and implementation. In particular, it is suggested that the differences between these phasesis

decreasing, that the phases blur into each other. People claim that the OO paradigm turns every
programmer into a designer, and every designer into an analyst. We are willing to go only part way with
thisview. Thereisempirical evidence from projects in which objects identified in the requirements phase
carried all the way through into the implementation (see [5]). We will see aswell that notions and

notations used in analysis and design are similar, lending more support for this thesis.

On the other hand, intrinsic differences among phases cannot be forgotten. Analysis aims at clarifying
what the task is all about and does not go into any problem solving activity. In contrast, design and
implementation take the task specification as a given and then work out the details of the solution. The
analyst talks to the customer and subsequently (modulo fountain iterations) delivers the result to the
designer. The designer ""talks", viathe implementor, with hardware that will ultimately execute the
design. In asimilar vein we do not want to blur the difference between design and implementation.
Contemporary OO programming languages have limitations and idiosyncrasies that do not make them
optimal thinking media for many design tasks.

Itis, in our opinion, misleading to suggest that phase differences disappear in the OO paradigm. Objects
in the analysis realm differ significantly from objects in the implementation phase. An analysis object is
independent and autonomous. However, an object in an OO programming language usually shares a
single thread of control with many or all other objects. Hence, the design phase plays acrucial rolein
bridging these different computational object models.

Prototyping

Prototyping3 and exploratory programming are common parts of OO analysis, design and
implementation activities. Prototyping can play arole when aspects of atarget system cannot be
described due to lack of insight. Often enough, people can easily decide what they do not want, but they
cannot describe beyond some vague indications what is to be produced.

3Footnote :
We avoid the trendy phrase rapid prototyping since no one has yet advocated slow

prototyping.

Graphical user interfaces are an example. What makes a particular layout on a screen acceptable? Must a
system keep control during human interaction by offering menu choices or should control be relinquished
so that a user can provide unstructured input?

These kinds of question are sometimes hard or impossible to answer. Prototyping experimental layouts
can help. The situation resembles that of an architect making a few sketches so that a customer can
formulate preferences.

As long as the unknown part of the requirements is only afragment of a system, OO analysis cooperates
with prototyping. Exploratory programming is called for when most of the requirements are not well
understood. Research projects fall into this category. Programming in artificial intelligenceis an
example. Problem solving by analogy is particularly murky behavior. Exploratory programming can be a
vehicle for validating theories and/or for obtaining better conjectures.

We fedl that purely exploratory programming applies to an essentially different set of tasks than the more
tractable (although possibly very large) tasks to which the methods described in this book apply.

Formulated negatively, the methods in this book may not apply when the development task istoo simple
or when the task is too hard.

Elucidating functionality isjust one of the motivations for prototyping. We have so far used
“prototyping” primarily in the sense of "~ throwaway prototyping” -- aimed at gathering insights -- in
contrast to ~“evolutionary prototyping" -- aimed at implementing a system in stages. A prototyping
activity may have both aims but they need not coincide (see [4]). In Part 11, we describe aframework for
design prototyping that is explicitly evolutionary in nature. Similarly, performance constraints may
require empirical evaluation viaimplementation-level prototyping.

Development Tools

Acceptance of the fountain metaphor as the process model for software development has profound
ramifications. Beyond toy tasks, tool support and integration of different toolsis essential in enabling
backtracking. Of course these tools also need to support versioning, allow for traceability , and cater to
team development. These are quite stringent requirements, which are currently not yet satisfied. Various
groups are working on the standards to achieve tool control and dataintegration [11]. Manipulating
objectsin all phases of the development process should make it easier to construct an integrated
development environment. We consider these issues in more detail in Chapter 12 and 15.

Summary

Software systems are often components of general systems. This book discusses only object-oriented
approaches to developing software systems. The roots of the OO paradigm include Al frames and
programming languages including Smula.

The structured paradigm focuses on decomposing behaviors. The OO paradigm focuses on objects,
classes, and inheritance. The two paradigms do not mix well. While the OO paradigm tightly integrates
the development phases of analysis, design and implementation, intrinsic differences between these
phases should not be blurred. OO methods are compatible with prototyping efforts, especially those
constructed in order to elucidate otherwise unknown requirement fragments.

Further Reading

Standard non-OO0 texts include Ward and Mellor's Sructured Development for Real-Time Systems [14]
and Jackson's Systems Development [9]. OO texts that cover the full life cycle include Booch's Object
Oriented Design with Applications [1] and Rumbaugh et al's Object Oriented Modeling and Design [12].

Y early proceedings are available from the principal OO conferences, OOPS_A (held in the Western
hemisphere) and ECOOP (Europe). Both originally focused on programming and programming
languages but have more recently broadened their attention to the full life cycle.

Exercises

1. Analysisaims at giving an unambiguous description of what atarget system is supposed to do.

Enumerate the differences, if any, of an analysis method for characterizing software systems
versus an analysis method for characterizing hospital systems, or any other nonsoftware system
with which you are familiar.

. Consider whether the following list of items could be objects with respect to the definition givenin

Section 1.2: an elevator, an apple, asocial security number, athought, the color green, yourself, a
needle, an emotion, Sat Jun 1 21:35:52 1991, the Moon, this book, the Statue of Liberty, high tide,
the taste of artichoke, 3.141..., (continue thislist according to its pattern, if thereis one).

. Ingeneral, prototyping may be seen as ""disciplined" hacking that explores a narrow well defined

problem. Would the throwaway connotation of a produced artifact in this characterization change
asthe result of an overall OO approach?

References

1
G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1990.

2
R. Buhr. Machine charts for visual prototyping in system design. Technical Report 88-2, Carlton
University, August 1988.

3
O. Dahl and K. Nygaard. Simula: An agol-based simulation language. Communications of the
ACM, 9, 1966.

4
A.M. Davis. Software Reguirements, Analysis and Soecification. Prentice-Hall, 1990.

5
D. de Champeaux, A. Anderson, M. Dalla Gasperina, E. Feldhousen, F. Fulton, M. Glei, C. Groh,
D. Houston, D. Lerman, C. Monroe, R. Raj, and D. Shultheis. Case study of object-oriented
software development. In OOPSLA '92. ACM, 1992.

6
D. de Champeaux and P. Faure. A comparative study of object-oriented analysis methods. Journal
of Object-Oriented Programming, March/April 1992.

7
Random House. The Random House College Dictionary. Random House, 1975.

8

W.S. Humphrey. Managing the Software Process. Addison-Wesley, 1990.

10

11

12

13

14

15

M. Jackson. Systems Devel opment. Prentice Hall, 1982.

M. Minsky. A framework for representing knowledge. In P. Winston, editor, The Psychology of
Computer Vision. McGraw-Hill, 1975.

NIST. Reference Model for Frameworks of Software Engineering Environments. National Institute
of Standards and Technology, December 1991.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice Hall, 1991.

P.T. Ward. How to integrate object orientation with structured analysis and design. |EEE Software,
March 1989.

P.T. Ward and S. Mellor. Structured Development for Real-Time Systems. Prentice Hall, 1985.

E. Yourdon. Modern Structured Analysis. Y ourdon Press, 1989.

Next: Chapter 2

Doug Lea
Wed Jan 10 07:51:53 EST 1996

Obiect@ciented Chapter 2: Introduction to Analysis

Syisterm
Development « Purpose
e Modes
e Process
Imn_n;i;il:::pem:-: . Summar
Perebope Fonrs
Purpose

The analysis phase of object-oriented software development is an activity aimed at clarifying the
requirements of an intended software system, with:

Input:

A fuzzy, minimal, possibly inconsistent target specification, user policy and project charter.
Output:

Understanding, a complete, consistent description of essential characteristics and behavior.
Techniques:

Study, brainstorming, interviewing, documenting.
Key notion for the descriptions:

Object.

Thefinal item in thislist distinguishes object-oriented analysis from other approaches, such as Structured
Analysis[14] and Jackson's method [6].

Importance

Constructing a complex artifact is an error-prone process. The intangibility of the intermediate results in
the development of a software product amplifies sensitivity to early errors. For example, Davis [4]
reports the results of studies donein the early 1970'sat GTE, TRW and IBM regarding the costs to repair
errors made in the different phases of the life cycle. As seen in the following summary table, thereis
about afactor of 30 between the costs of fixing an error during the requirement phase and fixing that
error in the acceptance test, and a factor of 100 with respect to the maintenance phase. Given the fact that
mai ntenance can be a sizable fraction of software costs, getting the requirements correct should yield a
substantial payoff.

Development Phase|Relative Cost of Repair
Requirements 0.1--0.2

Design 0.5

Coding 1

Unit test 2

Acceptance test 5

Maintenance 20

Further savings are indeed possible. Rather than being aimed at a particular target system, an analysis
may attempt to understand a domain that is common to a family of systemsto be developed. A domain
analysis factors out what is otherwise repeated for each system in the family. Domain analysis laysthe
foundation for reuse across systems.

Input

There are severa common input scenarios, generally corresponding to the amount of ~~homework™ done
by the customer:

« At one extreme, we can have asinput a "niceidea’. In this case, the requirements are most likely
highly incomplete. The characterization of the ATM system in Chapter 1 is an example. The

notion of abank card (or any other technique) to be used by a customer for authentication is not
even mentioned. In this case, elaboration on the requirementsis amain goal. Intensive interaction
between analyst and client will be the norm.

« Intheideal case, adocument may present a totally" thought-through set of requirements.
However, "totally" seldom means that the specification isreally complete. "Obvious" aspects are
left out or are circumscribed by reference to other existing systems. One purpose of the analysisis
to make sure that there are indeed no surprises hiding in the omissions. Moreover, atranslation
into (semi) formal notationsis bound to yield new insightsin the requirements of the target
system.

« Inanother scenario, the requirements are not yet complete. Certain trade-offs may have been left
open on purpose. This may be the case when the requirements are part of a public offering for
which parties can bid. For instance, we can imagine that our ATM exampleis afragment of the
requirements formulated by a bank consortium. Since the different members of the consortium
may have different regulations, certain areas may have been underdefined and |eft to be detailed in
alater phase. A main aim of the analysis will be the precise demarcation of these ~"white areas on
the map".

« A requirements document may propose construction of aline of products rather than one systemin
particular. This represents a request for an OO domain analysis. Domain analysis specifies features
common to arange of systems rather than, or in addition to, any one product. The resulting domain

characterization can then be used as a basis for multiple target models. Domain analysisis
discussed in more detail in Chapter 13. Until then, we will concentrate most heavily on the

analysis of singletarget systems. However, we also note that by nature, OO analysis techniques
often generate model components with applicability stretching well beyond the needs of the target
system under consideration. Even if only implicit, some form and extent of domain analysisis
intrinsic to any OO analysis.

Across such scenarios we may classify inputs as follows:

Functionality:
Descriptions that outline behavior in terms of the expectations and needs of clients of a system.
("Client" isused herein abroad sense. A client can be another system.)

Resour ce:

Descriptions that outline resource consumptions for the development of a system (or for adomain
analysis) and/or descriptions that outline the resources that an intended system can consume.

Performance:
Descriptions that constrain acceptable response-time characteristics.
Miscellaneous:

Auxiliary constraints such as the necessity for a new system to interface with existing systems, the
dictum that a particular programming language is to be used, etc.

Not all these categories are present in all inputs. It isthe task of the analyst to alert the customer when
there are omissions.

As observed by Rumbaugh et a [10], the input of afuzzy target specification is liable to change due to
the very nature of the analysis activity. Increased understanding of the task at hand may lead to
deviations of theinitial problem characterization. Feedback from the analyst to the initiating customer is
crucial. Feedback failure leads to the following consideration [10]: If an analyst does exactly what the
customer asked for, but the result does not meet the customer's real need, the analyst will be blamed

anyway.

Output

The output of an analysisfor asingle target system is, in a sense, the same as the input, and may be
classified into the same categories. The main task of the analysis activity isto elaborate, to detail, and to
fill in “"obvious' omissions. Resource and miscellaneous requirements often pass right through, although
these categories may be expanded as the result of new insights obtained during analysis.

The output of the analysis activity should be channeled in two directions. The client who provided the
initial target specification is one recipient. The client should be convinced that the disambiguated
specification describes the intended system faithfully and in sufficient detail. The analysis output might
thus serve as the basis for a contractual agreement between the customer and a third party (the second
recipient) that will design and implement the described system. Of course, especially for small projects,

the client, user, analyst, designer, and implementor parties may overlap, and may even all be the same
people.

An analyst must deal with the delicate question of the feasibility of the client's requirements. For
example, a transportation system with the requirement that it provide interstellar travel times of the order
of seconds s quite unambiguous, but its realization violates our common knowledge. Transposed into the
realm of software systems, we should insist that desired behavior be plausibly implementable.

Unrealistic resource and/or performance constraints are clear reasons for nonrealizability. Less obvious
reasons often hide in behavioral characterizations. Complex operations such as Understand, Deduce,
Solve, Decide, Induce, Generalize, Induct, Abduct and Infer are not as yet recommended in a system
description unless these notions correspond to well-defined concepts in a certain technical community.

Even if analysts accept in good faith the feasibility of the stated requirements, they certainly do not have
the last word in this matter. Designers and implementors may come up with arguments that demonstrate
Infeasibility. System tests may show nonsatisfaction of requirements. When repeated fixesin the
implementation and/or design do not solve the problem, backtracking becomes necessary in order to
renegotiate the requirements. When the feasibility of requirements is suspect, prototyping of arelevant
“vertical dlice” isrecommended. A mini-analysis and mini-design for such a prototype can prevent
rampant throwaway prototyping.

Models

Most attention in the analysis phase is given to an elaboration of functional requirements. Thisis
performed viathe construction of models describing objects, classes, relations, interactions, etc.

Declarative Modeling

We quote from Alan Davis [4]:

A Software Requirements Specification is a document containing a complete description of
what the software will do without describing how it will do it.

Subsequently, he argues that this what/how distinction is less obvious than it seems. He suggests that in
analogy to the saying ~~One person's floor is another person’s ceiling” we have "~ One person’'s how is
another person's what". He gives examples of multiple what/how layers that connect all the way from
user needs to the code.

We will follow afew steps of his reasoning using the single requirement from our ATM example that
clients can obtain cash from any of their accounts.

1. Investigating the desired functionality from the user's perspective may be seen as a definition of
what the system will do.

The ability of clientsto obtain cash is an example of functionality specified by the user.

2. "~ The next step might be to define all possible systems... that could satisfy these needs. This step
clearly defines how these needs might be satisfied. ..."

The requirements already exclude a human intermediary. Thus, we can consider different
techniques for human-machine interaction, for example screen and keyboard interaction, touch
screen interaction, audio and voice recognition. We can also consider different authentication
techniques such as PIN, iris analysis, handline analysis. These considerations address the how
dimension.

3. On the other hand, we can define the set of all systems that could possibly satisfy user needs as a
statement of what we want our system to do without describing how the particular system ... will
behave."

The suggestion to construct this set of all systems (and apply behavior abstraction?) strikes us as
artificial for the present discussion, although an enumeration of techniques may be important to
facilitate a physical design decision.

4. “"The next step might be to define the exact behavior of the actual software system to be built ...
This step ... defines how the system behaves ..."

This is debatable and depends on the intended meaning of ~"exact behavior". If thisrefersto the
mechanism of the intended system then we subscribe to the quotation. However, it could also
encompass the removal of ambiguity by elaborating on the description of the customer-ATM
interaction. If so, we still reside in what country. For example, we may want to exemplify that
customer authentication precedes all transactions, that account selection isto be done for those
customers who own multiple accounts, etc.

5. 7On the other hand, we can define the external behavior of the actual product ... as a statement of
what the system will do without defining how it works internally."

We may indeed be more specific by elaborating an interaction sequence with: ~"A client can obtain
cash from an ATM by doing the following things: Obtaining proper accessto the ATM, selecting
one of his or her accounts when more than one owned, selecting the cash dispense option,
indicating the desired amount, and obtaining the delivered cash." We can go further in our example
by detailing what it means to obtain proper accessto an ATM, by stipulating that a bank card has
to be inserted, and that a PIN has to be entered after the system has asked for it.

6. The next step might be to define the constituent architectural components of the software system.
This step ... defines how the system worksinternaly ..."

Davis continues by arguing that one can define what these components do without describing how
they work internally.

In spite of such attemptsto blur how versus what, we feel that these labels still provide agood initial
demarcation of the analysis versus the design phase.

On the other hand, analysis methods (and not only OO analysis methods) do have ahow flavor. Thisisa
general consequence of any modeling technique. Making a model of an intended system is a constructive
affair. A model of the dynamic dimension of the intended system describes how that system behaves.
However, analysts venture into how-country only to capture the intended externally observable behavior,
while ignoring the mechanisms that realize this behavior.

The object-oriented paradigm puts another twist on this discussion. OO analysis models are grounded in
object models that often retain their general form from analysis (via design) into an implementation. Asa
result, thereis an illusion that what and how get blurred (or even should be blurred). We disagree with
thisfuzzification. It is favorable indeed that the transitions between analysis, design, and implementation
are easier (as discussed in Chapter 15), but we do want to keep separate the different orientations

inherent in analysis, design, and implementation activities.

We should also note that the use of models of any form is debatable. A model often contains spurious
elements that are not strictly demanded to represent the requirements. The coherence and concreteness of
amodel and its resulting (mental) manipulability is, however, a distinct advantage.

Objects in Analysis

OO analysis models center on objects. The definition of objects given in Chapter 1 isrefined here for the
analysis phase. The bird's eye view definition is that an object is a conceptual entity that:

o isidentifiable;

» hasfeaturesthat span alocal state space;

« has operations that can change the status of the system locally, while also inducing operationsin
peer objects.

Since we are staying away from solution construction in the analysis phase, the objects allowed in this
stage are constrained. The output of the analysis should make sense to the customer of the system
development activity. Thus we should insist that the objects correspond with customers' notions, and add:

« an object refersto athing which isidentifiable by the users of the target system -- either atangible
thing or amental construct.

Another ramification of avoiding solution construction pertains to the object's operator descriptions. We
will stay away from procedural characterizationsin favor of declarative ones.

Active Objects

Some OO analysis methods have made the distinction between active and passive objects. For instance
Colbert [3] defines an object as activeif it “"displays independent motive power”, while a passive object
“acts only under the motivation of an active object".

We do not ascribe to these distinctions, at least at the analysis level. Our definition of objects makes them
all active, asfar aswe can tell. This active versus passive distinction seems to be more relevant for the
design phase (cf., Bailin [1]).

This notion of objects being active is motivated by the need to faithfully represent the autonomy of the
entitiesin the ““world", the domain of interest. For example, people, cars, accounts, banks, transactions,
etc., are al behaving in aparallel, semi-independent fashion. By providing OO analysts with objects that
have at |east one thread of control, they have the meansto stay close to a natural representation of the
world. This should facilitate explanations of the analysis output to a customer. However, a price must be

paid for this. Objects in the programming realm deviate from this computational model. They may share
asingle thread of control in amodule. Consequently, bridging this gap is amajor responsibility of the
design phase.

Four-Component View

A representation of a system is based on a core vocabulary. The foundation of this vocabulary includes
both static and dynamic dimensions. Each of these dimensions complements the other. Something
becomes significant as aresult of how it behaves in interaction with other things, while it is distinguished
from those other things by more or less static features. This distinction between static and dynamic
dimensions is one of the axes that we use to distinguish the models used in analysis.

Our other main distinction refers to whether amodel concentrates on a single object or whether
interobject connections are addressed. The composition of these two axes give us the following matrix:

inside object |between objects
atic attribute relationship
constraint acquaintanceship
. _|state net and/or |interaction and/or
dynamic|: ;
interface causal connection

Detailed treatments of the cellsin this matrix are presented in the following chapters.

The static row includes a disguised version of entity-relationship (ER) modeling . ER modeling was
initially developed for database design. Entities correspond to objects, and relations occur between
objects. Entities are described using attributes . Constraints capture limitations among attribute value
combinations. Acquai ntanceships represent the static connections among interacting objects.

1Footnote:
Theterms ““relation” and ““relationship™ are generally interchangeable. " Relationship”
emphasi zes the notion as a noun phrase.

The dynamic row indicates that some form of state machinery is employed to describe the behavior of a
prototypical element of aclass. Multiple versions of causal connections capture the “"social" behavior of
objects.

Inheritance impacts all four cells by specifying relationships among classes. |nheritance allows the
construction of compact descriptions by factoring out commonalities,

Other Model Components

The four models form a core. Additional models are commonly added to give summary views and/or to
highlight a particular perspective. The core models are usually represented in graphic notations.
Summary models are subgraphs that suppress certain kinds of detail.

For instance, a summary model in the static realm may remove all attributes and relationship
interconnections in a class graph to highlight inheritance structures. Alternatively, we may want to show
everything associated with a certain class C, for example, its attributes, relationshipsin which C playsa
role, and inheritance linksin which C plays arole.

An examplein the dynamic realm is a class interaction graph where the significance of alink between
two classes signifies that an instance of one class can connect in some way or another with an instance of
another class. Different interaction mechanisms can give rise to various interaction summary graphs.
Another model component can capture prototypical interaction sequences between atarget system and its
context. Jacobson [7] has labeled this component use cases . They are discussed in Chapters 10 and 12.

All of these different viewpoints culminate in the construction of amodel of the intended system as
discussed in Chapter 10.

Process

Several factors prevent analysis from being performed according to afixed regime. The input to the
analysis phase varies not only in completeness but also in precision. Backtracking to earlier phasesis
required to the extent of the incompleteness and the fuzziness of the input. Problem size, team size,
corporate culture, etc., will influence the analysis process as well.

After factoring out these sources of variation, we may still wonder whether there is an underlying
“agorithm” for the analysis process. Investigation of current OO analysis methods reveal s that:

» The creators of amethod usually express only a weak preferences for the sequence in which
models are devel oped.

« Thereisasyet no consensus about the process.

« There appear to be two clusters of approaches: (1) Early characterization of the static dimension by
developing a vocabulary in terms of classes, relations, etc. (2) Early characterization of the
behavioral dimension, the system-context interactions.

We have similarly adopted aweak bias. Our presentation belongs to the cluster of methods that focuses
on the static dimension first and, after having established the static models, gives attention to the
dynamic aspects. However, this position is mutable if and when necessary. For instance in developing
large systems, we need top-down functional decompositions to get a grip on manageabl e subsystems.
Such a decomposition requires a preliminary investigation of the dynamic realm. Chapter 9 (Ensembles)
discusses these issues in more detail. A prescribed sequence for analysisis given viaan examplein
Chapter 10 (Constructing a System Model). A formalization of this ““algorithm" is given in Chapter 12

(The Analysis Process).

Summary

Analysis provides a description of what a system will do. Recasting requirementsin the (semi) formalism
of analysis notations may reveal incompleteness, ambiguities, and contradictions. Consistent and
complete analysis models enable early detection and repair of errorsin the requirements before they
become too costly to revise.

Inputs to analysis may be diverse, but are categorizable along the dimensions of functionality, resource
constraints, performance constraints and auxiliary constraints.

Four different core models are used to describe the functional aspects of atarget system. These core
models correspond with the elementsin a matrix with axes static versus dynamic, and inside an object
versus in between objects.

Analysisisintrinsically non-algorithmic. In aninitial iteration we prefer to address first the static
dimension and subsequently the behavioral dimension. However, large systems need decompositions that
rely on early attention to functional, behavioral aspects.

Further Reading

We witness an explosion of analysis methods. A recent comparative study [5] describes ten methods. A
publication half ayear later [9] lists seventeen methods. Mg or sources include Shlaer and Mellor
[11,12], Booch [2], Rumbaugh et a [10], Wirfs-Brock et a [13], and Jacobson et a [8].

Exercises

1. Discuss whether analysis, in the sense discussed in this chapter, should be performed for the
following tasks:

1. The construction of anew Fortran compiler for a new machine with a new instruction
repertoire.

The planning for your next vacation.

The repair of faulty software.

The acquisition of your next car.

The remodeling of your kitchen.

The decision to get married.

The reimplementation of an airline reservation system to exploit five supercomputers.
8. A comparative study of OO analysis methods.

2. Analysisisapopular notion. Mathematics, philosophy, psychiatry, and chemistry all have aclaim
on this concept. I's there any commonality between these notions and the notion of analysis
developed in this chapter?

3. Do you expect the following items to be addressed during OO analysis?
1. Maintainability.

No gk~ oD

http://g.oswego.edu/dl/oosd/node5.html#ch3
http://g.oswego.edu/dl/oosd/node5.html#korson
http://g.oswego.edu/dl/oosd/node5.html#sm
http://g.oswego.edu/dl/oosd/node5.html#sm4
http://g.oswego.edu/dl/oosd/node5.html#boochbook
http://g.oswego.edu/dl/oosd/node5.html#rumbaugh
http://g.oswego.edu/dl/oosd/node5.html#wirfs
http://g.oswego.edu/dl/oosd/node5.html#jacobson

Quality.

The development costs of the target system.
The execution costs of the target system.

The programming language(s) to be used.

The reusability of existing system components.
The architecture of the implementation.

The relevance of existing frameworks.

© N O~ WD

References

1

10

11

S.C. Bailin. An object-oriented requirements specification method. Communications of the ACM,
32(5), May 1989.

G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1990.

E. Colbert. The object-oriented software development method: A practical approach to
object-oriented development. In TRI-Ada 89, October 1989.

A.M. Davis. Software Requirements, Analysis and Soecification. Prentice-Hall, 1990.

D. de Champeaux and P. Faure. A comparative study of object-oriented analysis methods. Journal
of Object-Oriented Programming, March/April 1992.

M. Jackson. Systems Devel opment. Prentice Hall, 1982.

|. Jacobson. Object-oriented development in an industrial environment. In OOPSLA '87. ACM,
1987.

|. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering.
Addison-Wesley, 1992,

T.D. Korson and V.K. Vaishnavi. Managing emerging software technologies. A technology
transfer framework. Communications of the ACM, September 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice Hall, 1991.

S. Shlaer and S.J. Méllor. Object-Oriented Systems Analysis. Y ourdon Press, 1988.
12

S. Shlaer and S.J. Méllor. Object Life Cycles: Modeling the World in States. Y ourdon Press, 1991.
13

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall,
1990.

14
E. Yourdon. Modern Structured Analysis. Y ourdon Press, 1989.
Next: Chapter 3

Doug Lea
Wed Jan 10 07:52:09 EST 1996

e Chapter 3. Object Statics

Object-Oriented o Instances
Systet o Classes

Rev Phent Attributes
o Attribute Features
o Constraints

[i AL b e o
Darzglas Lea

Pefukope Fours o ldentifying Objects and Classes
e SUMMary

Instances

In previous chapters, we have shown definitions of objects, but we do not expect that the reader has a
““gut level" understanding of what they are beyond the things that are usually encountered in everyday
life. We surmise that everyone starts out thisway. Thus, an object can be your boyfriend, NY C, the
Ferrari in the showroom which is beyond your means, the Tg) Mahal, etc. At the same time, objects can
be non-tangible things (provided that someone wants to see it that way) such as a bank transaction, a
newspaper story, aphone call, arental car contract, a utility bill, an airline reservation, a bank account,
etc.

Our graphical notation for a singular object is ssmply adot. For example an instance of the class
Account:

- acconnt 18345

The heading of this section is ““instances”, not just " objects’. We use the notion of an instance when we
want to emphasize that an object isa "member” of a class. In Chapter 2, we were already using the
notion of instance in the context of ""... an instance of one class..." In most methods, each object is
perceived as being a member of acertain class.

Classes

Sometimes we need to talk about a particular instance in our system model. For example, a bank may
maintain some key " system™ accounts. We may want to describe afew special employees, e.g., the
executive officers. Usually, however, collections of objects, so-called classes 1 are described.

Footnote 1:

The notions of “"type" and " class' are sometimes distinguished in the implementation realm.
A type isthe abstract characterization of a particular ~"family" of objects, whileaclassis
then the actual realization in a particular programming language of that type. We will
uniformly usetheterm ““class". Later in Part I we refer to directly implementable versions
as concrete".

A class stands for afamily of objects that have something in common. A classis not to be equated with a
set of objects, although at any moment we can consider the set of instances that belong to the class. A
class may be seen as what all these sets have in common. In technical terminology, a class stands for the
intension of a particular characterization of entities, while the set of objects that conform to such a
characterization in a certain period is known as the extension (see Carnap [3]).

Notationally, a rectangle surrounds the name of aclass. For example, the class Account is depicted as:

Acconnt

An object isan instance of at least one and at most one class. Certain methods allow an object to change,
during itslifetime, the class of which it is an instance. This freedom increases the expressive power of
the analysis method. But since most OO software devel opment methods and languages do not support
this feature, and since the effects of change may be described by other means, we refrain from this
practice.

Individual objects are primarily characterized by an indication of which class they belong. For example:

acconnt_ 18345
[

Acconmd

The arrow between the instance and its classis called the | SA relationship. Thisis not the same asthe
class inheritance relationship discussed in Chapter 7.

Thisinstance characterization isinsufficient. At this stage, we do not have available the means, beyond
naming, to distinguish multiple instances of the class Account. In general, we avoid using names to
describe individual objects, because usually objects do not have natural names. Just consider the
examples given earlier -- a bank transaction, a newspaper story, a phone call, arental car contract, a
utility bill, and an airline reservation. Instead, descriptions are used that somehow denote unique entities.
Attributes of objectswill do the descriptive job.

Attributes

Real-life entities are often described with words that indicate stable features. Most physical objects have
features such as shape, weight, color, and type of material. People have features including date of birth,
parents, name, and eye color. A feature may be seen as a binary relation between a class and a certain
domain. Eye color for example, may be seen as a binary relation between the class of Eyesand an
enumerated domain {brown, blue, yellow, green, red}. A domain can be aclass aswell, for example, in
the case of the features parents, spouse, accountOwnedBY, etc.

The applicability of certain features (i.e., the features themselves, not just their values) may change over
time. For example, frogs and butterflies go through some drastic changesin their lifetime. We avoid this
kind of flexibility. Thus, aclassis characterized by its set of defining features, or attributes. This

collection of features does not change. (We later present tricks for getting around this limitation.)

The notion of a (binary) relation crept into the previous discussion. The reader may wonder how we can
discuss them here since we have relegated them to another model in our four-component view. We make
adistinction between attribute (binary) relationships that represent intrinsic, definitional properties of an
object versus relationships that describe contingent, incidental connections between objects. Because we,
as analysts, are in control, we can prescribe for an object what is definitional and what is incidental. For
example, in aparticular system we may agree that for the class Person a social-security-number is a
defining attribute while a parent feature is seen as an incidental relationship. In another system, the
reverse choices could be made.

We illustrate the notation for attributes with a class Account that has:
« attribute accountNumber of value domain AccountNumber and
« altribute currency of value domain Currency.

A graphical notation for these attribute names and attribute valuesis:

Acconnt

accanwniNwmber
v AccouniNumber

CUTTETCT

v Chwrency

This representation indicates that AccountNumber isa "datavalue" domain and that Currency is aclass.
It is debatable whether we should make such a distinction between values and objects. For instance, one
can take the stance that integers, strings, and 32-bit reals are all objects as well. Although we will be very
picky about the resulting distinctionsin Part |1, either way is fine with us. We use the convention that
unboxed value domains do not represent classes. Consequently, if we change our mind and represent the
currency attribute as a data value, we would unbox it.

Attributes of Instances

Attributes can be employed to describe an instance of aclass by indicating how it ~“scores" with respect
to the attributes. In the following example, we depict a particular instance of the class Account:

Account

accauniNumber » AccouniNuwmber
curreEney w Chorency
tNwmb
| accouniNumber . 18345
CUTTETRCY g

Note that attribute names have been repeated in the instance. An alternative approach would use graphic
notation to link up the attributes of the instance with the attributes in the class, asin:

Attribute Features

We have attached attributes to objects. The next step isto give, in a sense, attributes to attributes. We
will call them features to avoid too much confusion.

Two features of attributes have been encountered already, the attribute's relation name, whichis
sometimes called the role name, and the value domain . Here we expand the features that can be
associated with an attribute. We should stress that using these featuresis optional and can be ignored in
first rounds or even all together.

Defaults

Sometimesiit is useful to indicate a default initial value for an attribute. A generous bank may, for
example, give a surprised new customer an account with an initial balance of $10. Since sheep are
usually white, their color attribute can be given this default value.

A revised Account class includes a notation for indicating a default value of an attribute:

Account

aocnbld . Number
LPirnE . Number
CUITEREY) defanit $

Cwrrency

Probability

We may want to associate with an attribute our knowledge about the distribution of the valuesin the
value domain. (A default value need not correspond with the value that has the highest probability.) As
an example, consider the class Human with the attribute age. The probability distribution corresponds
here with a demographic profile. A designer may want to exploit this information.

We avoid introducing special notation. One option isto list (value, probability) pairs. For numerical
domains, a probability distribution function may be specified. Any other mathematical notation may be
invoked as needed.

Multiplicity

A multiplicity feature associates more than one value to an attribute. We use the notation [N:M], where O
<= N <= M. N indicates the minimum number of values and M indicates the maximum number. A few
conventions simplify the notation:

o Weusually abbreviate [N:N] as[N] to represent a multiplicity of exactly N.
« Weusualy omit amultiplicity indicator when the multiplicity is[1].

For example, the class Hand might contain the attribute finger with a value domain of class Finger and a
multiplicity constraint of [0:6]. This requires an explanation indeed. A hand remains a hand even when
all the fingers have been amputated. That explains the minimum 0. The 6 has been chosen because Anne
Boleyn had a hand with six fingers.

This multiplicity notation is sometimes not expressive enough. Consider afamily of vehicles where the
number of wheels per vehicleis 3, 4, 6 or 10. In general, amultiplicity indicator can be any arbitrarily
complex description of a set of natural numbers. Given this state of affairs, we omit additional notation

beyond observing that predicate calculus provides formal precision and unbounded expressiveness.
Optional Attributes.

Using a zero lower bound in the multiplicity feature of an attribute indicates that possession of the
attribute is “"optional”. This allows instances that effectively do not have that attribute. Thisis away
around the limitation of freezing a collection of attributes for a class.

For example, a bank has branches, each having departments. We assume that departments consist of a
department head and subdepartments. This creates a recursive structure that bottoms out by making
subdepartments optional. Thus, anonmanagerial employee is a department head that does not supervise
subdepartments. For illustration, we restrict the branching ratio of departments to six:

Branch
bragnchld {1:1] Number
location [1:1]
Address
branchDept [1:1]
Department
Depariment
deptld [1:1] ~ Number
name [1:1] . String
tHead j1:1
dep {1:1] Employee
hlept i0:
subDept [0:6] Department

Multiplicity default and probability.

Multiplicity indications may be dressed up with more knowledge if thisinformation is beneficial for a
design and/or implementation. For example, areasonable default multiplicity for the number of wheels of
acar isfour. A probability distribution for the multiplicity feature denoting the number of children per
parent might be obtained through an empirical sampling.

Qualifiers

The range of an attribute value can be restricted in any of several senses. We always fix an attribute to a
particular domain. The values of an attribute of an object must remain within the indicated domain
throughout the lifetime of the object. The domain for an attribute listed in a class may be narrowed down
to only one possible value. For example, the class Albino has for its color attribute the value white.
Intermediate domain restrictions that do not limit attributes to only one value may be expressed via
constraints (see Section 5).

Several other senses of restriction are common enough to group under broad categories, allowing simpler
gualification:

« We may require that an attribute value for each instance of the class to be fixed (immutable) when
the object is created and initialized. This value may differ across different instances, but it may not
vary across time for any instance. Fixed attributes differentiate instances from peer objects that are
members of the same class.

« We may require that the value of an attribute be common to all instances of a class, even without
knowing what that value should be. The common value may also change across time. For example,
all instances of class Account might need to record transactions using a common LogFile. The
exact file may change over time.

« The category of unique attributes is the extreme opposite of common. A unique attribute is one
whose value differs for each instance of aclass. For example, the value of attribute accntld should
be unique to each instance of class Account.

Qualifiersincluding fixed, common, and unique may be annotated in any convenient fashion. For
example, the following class Client has a social security number attribute that is both unique for each
instance and remains fixed over itslifetime:

Constraints

Constraints may be used to rule out certain attribute value combinations for all instances of aclass.
Consider a Department that has the attributes head and treasurer, both having Employee as their value
domain. We may want to indicate that these positions cannot be filled by the same person. These kinds of
constraints may be expressed in any convenient notation. For example:

not(head = treasurer).

For clarity, attributes in such expressions may be qualified with self. We assume that every class supports
by default an attribute self which refers for each object to itself:

not(self.nead = self.treasurer).

Constraints can refer to other attribute features. Consider, for example, a Polygon with attributes angle
and side. We certainly want to express that the multiplicity features of these attributes are the same.

A constraint can reach beyond the boundary of an object. Assume a class Person with the attribute
spouse having the [0: 1] value domain Person and the attribute sex with the value domain [male, female].
We may want to express the following constraint (among others):

« The spouse of a spouseisthe original person:
self = self.spouse.spouse.

Many constraints involving multiple objects are more easily and naturally expressed viarelations. We
discussrelational constraintsin Chapter 4.

Derived Attributes

A specia case of aconstraint is an expression that describes an attribute functionally, in terms of one or
more other attributes.

For example, consider a class Person with the attributes dateOfBirth, dateOfMarriage and
ageAtMarriage. The ageAtMarriage attribute may be defined as a function of the other two.

Codependencies are possible aswell. A Triangle class with attributes sideLength, angle, bisector,
surfaceArea, etc., will have constraints on each attribute that refer to the others. For a different kind of
example, consider the class Account with a multivalued

attribute balance and a multivalued attribute transaction. We have the following codependencies:
balance(n+ 1) = balance(n) + transaction(n),

transaction(n) = balance(n+1) - balance(n).

ldentifying Objects and Classes

In this section, we describe some preliminary issues in the identification of objects, or rather, their
classes. We cannot claim that a procedure exists that can be followed blindfolded. In fact, after
developing further modeling apparatus, we devote much of Chapter 12 to the further investigation of

these identification, vocabulary, and process issues.

We focus here on elements of small and medium problems. The OO paradigm induces a bottom-up way
of modeling, designing, and subsequently implementing a system. The atomicity of objectsinduced by
encapsulation is the key cause. But analyzing alarge system in a bottom-up fashion is out of the
guestion. A leveling technique is needed in order to tackle alarge system in top-down mode, and is
required anyway to preserve the hierarchies that are " "naturally" present in large man-made systems. In
this book, we use ensembles as a special kind of object that allows decomposition. The treatment of

ensemblesis deferred to Chapter 9.

Developing Vocabulary

As afirst approximation one can scrutinize the requirements document, if there is one, and consider the
nouns, or better yet, the noun phrases in the document. As an example we have put in italics the noun
phrases of the running ATM example of Chapter 1.

We assume that the American Bank (AB) has partly decentralized account management.
Every branch office has equipment to maintain the accounts of its clients. All equipment is
networked together. Each ATM is associated and connected with the equipment of a
particular branch office. Clients can have checking, savings and line of credit accounts, all
conveniently interconnected. Clients can obtain cash out of any of their accounts. A client
with a personal identification number (PIN) can use an ATM to transfer funds among
attached accounts. Daemons can be set up that monitor balance levels and trigger automatic
fund transfers when specifiable conditions are met and/or that initiate transfers periodically.
Automatic periodic transfersto third party accounts can be set up as well.

We have to pick the winners from the collection of noun phrases:
« theindividual object the American Bank;

« the classes branch office, account, client, equipment;
while avoiding the losers balance level and specifiable condition.

Classes and Attributes

There isagreat amount of freedom in refining vocabulary. Iteration over the set of candidate classes
helps weed it out. The first round identifies classes only by their names. Subsequent rounds refine and
distinguish among class characterizations via attributes. (We postpone using inheritance to exploit
commonalities among classes until Chapter 7.)

When two classes have identical attribute descriptions, they may be synonyms. But having identical
attribute names is not sufficient for two classes to be equal. For example, the difference between the
classes Triangle and RightTriangle resides in the |l atter having a constraint expressing that one of the
anglesis 90 degrees. Thus, attributes plus optional constraints compose class definitions.

Classes versus Roles

Deciding when anotion is a class and when it is an attribute's role name can be puzzling. In [2], the
following example is given with respect to father:

(1) Ronisanew father.

(2) Ron isthe father of Rebecca.

In (1) father appears to be a class, while in (2) father acts like arole name of a (multivalued) attribute.
This exampleistypica. When a sentence with a questionable concept can be extended (asin " father of
.1, itisnormally arelational attribute with a suppressed attribute value (see Chapter 4).

Unique Versus Multiple Instances

Novice OO analysts sometimes wonder whether OO methods are applicable because their application
classes have only a single instance. A notorious exampleisthe car cruise control system with unique
Instances Speed Indicator, Desired Speed, Brake Pedal, and Carburetor (see Chapter 5).

Having classes with predominantly only one instance should not be a reason to abandon an OO approach.
Objects are encapsulated entities that improve conceptual, design, and implementation sanity. In
addition, reuse of classes across application boundaries is more promising than non-OO concepts, design
fragments, or code.

For example, our " requirements document™ contains the AB bank as a unigque entity:

FBank
hankName [1:1] String
headguariers j1:1
! s (1] v Hesdguariers
branch [0:M]
» Branch
. ~a “AB7

Also, the AB bank most likely needs a unique entity that tells all interested parties in AB what the day's
interest rate is. This suggests the introduction of a unique instance of a class with attributes including
savingsAccountlnterest, lineOfCreditinterest, etc.

Persistent Versus Transient Objects

Objects need not exist very long in asystem to still be full-fledged instances of full-fledged classes. For
example, an analyst is free to construe eventsin the application domain as objects. Thus we can make the
pragmatic distinction between objects that denote (semi) persistent entities in an application domain

versus objects that denote transient entities. Being able to capture the proper details should be a guide for
an analyst in choosing between persistent and transient objects.

For example, our requirements description refers to transfers between two accounts (e.g., to transfer
funds from a savings account to a checking account). A Transfer class describes the static dimension of
such transient objects:

Transfer

fram

™ Account
lo

™ Accound
amonnt § Nosarth

. wnher
dale

» Date

Statics and Dynamics

Static considerations may be insufficient to differentiate classes. We can still have variations based on
behavioral differences. For example, one kind of calculator may support only addition and subtraction,
while another one with the same attribute structure (at an appropriate abstraction level) also supports
multiplication and division. However, we are emphasizing for now class identification, and especially
characterization, viathe static features of the objects that constitute a class.

This may sound counterintuitive. Some entities are easier to describe viatheir dynamic (potential)
dimension. For instance, a pilot is a person that can fly a plane. Even so, remember that the static and
dynamic dimensions of an entity are complementary notions that can add and build onto the other.
Change is perceived against a background of constancy. Dually, constancy is merely the inability to
perceive aslow rate of change. In addition, our treatment of the static dimension of objects before
addressing the dynamic dimension should not be seen as an imperative for the OO analysis process.

For example, an automated teller machine can be understood as a device that can support a range of
financial transactions. (The term machine in its name already emphasizes the dynamic aspect.) However,
it may still be described in terms of its static features. The following first impression for class ATM (to be
revised extensively in coming chapters) lists attributes indicating functional components of an ATM
machine:

ATM

atmld v Number
address

Y Address
resrionManager . SessionManager
uilnpul ATMInput
wi Chstpal W ATMOwutpd
medialor

. AecServer Mediator
cordbater CardReader
i

IEPETRET o Digpenser

For adifferent kind of example, the following TransferDaemon class represents the static dimension of
procedures that are run periodically to transfer an amount provided a condition is met. For instance, such
a procedure may automatically transfer money to a savings account when a checking account has too
much money.

Transfer Daeman

fram

o Acecounl
Lo

W Accound
nert Transfer

» Daie
Jfrequency

’ Timelniernal
amannl)

» Amaonnt Erpression
condilion

» TransferBoalean

The TransferDaemon class will be revisited in Chapter 10 after we have devel oped behavior modeling.
For now, we sketch out characterizations of the attributes that help to control dynamics:

Timelnterval

describes how often atransfer will be attempted. Possible values can range from minutes (or
perhaps even shorter) to months (or even longer).

AmountExpression
Is any expression describing the amount to be transferred. This might just be a fixed sum.
Alternatively, we can envision that the AB bank allows for amounts that are functions of certain

parameters. For example, to maintain a certain balance in the from account, it might take the form:
(the balance of the from account) -- (a fixed sum).

TransferBoolean

describes a truth-valued function to be used to block the transfer when certain conditions are not
met. For example, avalue calculated by the function outlined in the previous attribute should not
be too small, or one may want to constrain the maximum amount on the target account.

Summary

This chapter describes a (graphical) language to capture the static dimension of objects. Attributes and
attribute features are introduced. Attributes are seen as special binary relations that help define a
prototypical instance of aclass. Thisisin contrast to relations that reflect contingent connections
between objects as induced by a particular target application. Attribute features and constraints further
describe and restrict attributes and their combinations. Generic classes capture parametric commonalities
across families of classes.

We have illustrated the notions in this chapter with several examples from the ATM domain. Most are
first approximations, built upon in subsequent chapters. For now, classes referred to but not expanded are
|eft as exercises to the reader.

Further Reading

Attributes are a keystone for our treatment. They play similar roles in most published OOA methods. But
at least two methods ignore them or even avoid them. Booch [1] downplays the importance of defining
objects and classes through static aspects. He characterizes objects by state, behavior and identity, in that
order. Attributes are also avoided by Embley et al [4]. They see an object as anode in a network of
connections (relationships). As a consequence they feel that the distinction between a relationship and an
attribute is to be postponed to the design phase.

Exercises

1. Identify objects, introduce their classes, give attributes, their features and constraints as suggested
by the following text:

Mr. White is married. He teaches OO Software Engineering classes on Fridays. He is a part-time
member of the faculty at the CS Department of the All-Smart Institute. His 23-year-old son John
was enrolled in the OOA class that Mr. White taught in the previous semester. John does not like
broccoli. Mrs. White uses a ten-speed for transportation to and from the campus (she teaches
Philosophy at the same institute). Class sizeis limited at the institute to 14 students. The faculty at
the ingtitute, when seen as parents, have at most two children. The sister of John has a boyfriend
that is two years younger than she is and plays two different instruments.

2. A "meta’ constraint on a class may express how many instances it can have in a particular target
system. As aspecial case, aconstraint may express for aclassthat it has only one instance. Would
such a construct obviate the notion of an instance? Consider the notions of the president of a
company, New Y ear, the first day of the year, Washington, the capital of the United States, and the
headquarters of a bank.

3. Describe a set of classes that represent entitiesin your kitchen.

References

1

G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1990.

R.J. et a Brachman. Living with classic: When and how to use a kl-one-like language. In John F.
Sowa, editor, Principles of Semantic Networks. Morgan Kaufmann, 1991.

R. Carnap. Meaning and Necessity. The University of Chicago Press, 1947.

D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon
Press/Prentice Hall, 1992.

Next: Chapter 4

Doug Lea
Wed Jan 10 07:52:24 EST 1996

ObiectOciented Chapter 4. Object Relationships

Syisterm
Dﬂﬂjpmﬂl‘t o Relationships
o Collections
o ldentifying Relationships
[s e i b 2 o
Db Les ° Summary

Perebope Fonrs

In this chapter, we provide further apparatus for capturing the static dimension of a system or domain of
interest. In the previous chapter, we looked at objects in isolation. Here we consider static regularities
among objects. We discuss relations in the tradition of entity-relationship (ER) modeling . An example
Is the Ownership relation that connects objects in the class Client and objects in the class Account.

Relationships

A relationship may be seen as a named family of typed tuples. They are typed in the sense that the nth
element in atupleis an instance from a specific domain or class. The signature of arelationship isjust a
listing of these types. For example, the signature of the Ownership relationship is (Client, Account) since
it has afamily of 2-tuples where the first domain is the class of Clients and the second domain is the
class of Accounts.

Following the tradition of the data modeling community and other OOA methods, a diamond is used to
depict arelationship in our graphical notation. A diamond is connected via edges to the domains of the
tuple elements. Obviously, we will always have at |east two edges. For example, to indicate that class
Client and class Account are connected by the relationship Own:

Client Acconuni

In the same way that we may want to refer to particular instances of classesin a particular target system,
we may want to express that certain instances actually belong to arelationship. For example, we may
want to express that a particular client owns a particular account. An instance of arelation is represented
with adiamond containing afilled circle:

Client r Acconnt
[\./]

Graphical notation can sometimes cause an ambiguity when arelationship connects identical domains.
For example, the Supervise relationship between two Persons is described in textual representations by
ordering the arguments, asin:

Supervise(Person, Person).

We can agree that the first argument represents the supervisor and the second argument the ™ supervisee”
(person that is being supervised). To avoid ambiguity in diagrams we can add role names, asin (letting

Sov stand for Supervise):
FPersan /SI"J'\ FPergan
ETPETIRGAT \Aﬂp&ﬂ'}iﬁﬂﬂ

The arity, or number of elementsin the signature is another way of classifying relationships. Binary
relations (such as Own and Supervise) have tuples of length two. Ternary relations have tuples of length
three. Examples include:

| nBetween,

arelationship among three Locations. For example, Chicago is in between San Francisco and New
Y ork.

Travel TimeBetween,

arelationship among two Locations and a Timelnterval. For example, the travel time between New
Y ork and San Francisco is six hours.

ParentsOf,
arelationship among three Persons. For example, John and Mary are the parents of Susanna.
ResidelnSnce,

arelationship among a Person, a Location, and a Date. For example, John resides in Stockholm
since December.

BorrowedFrom,

arelationship among two Persons and a Thing. For example, John borrowed alawn mower from
Mary. (" Thing" here is perhaps too broad. Can someone borrow the Sun?)

We can have relations with tuple lengths larger than three as well. Graphically, more than two edges are

obviously required for relationships with arity greater than two. For example, we may construe Transfer
asarelation among a pair of accounts, an amount, and a date (letting Trans stand for
Transfer (fromAccount, toAccount, amount, date)):

Amonnt

Acconnt | From Trans i Acconnd

Dale

Features

In Chapter 3, we attached features to attributes in order to capture more semantics. Similarly, features
can be attached to the tuple domains of arelationship.

Cardinality

Consider adomain in which an account cannot have more than one owner. This means that a particular
instance of Account can occur not more than once in an Own tuple. Cardinalities (the relational versions
of multiplicities) may be used to indicate such properties. Here, we can add the cardinality notation [0:1]
to the diagram:

Client Chon {0:1f Account

Alternatively, we could express that each client can own one to multiple accounts and each account can
have one to multiple owners:

)

{1:M] {1:NJ

Cliend Chen Aceconnt

<

As another example, we may want to express that a peculiar group of * Client* s have at |east three but at
most five accounts with:

)

* Hient * {J:5] Chon {0:1]

Acconnd

<

The date that a client becomes a customer may be described as arelationship. Each client must have
exactly one start date. A client may have started on the same date as another client. Letting CsSh stand
for Customer Snce(Client, Date):

)

Client {1:1] (&S {1:M] Date

<

Qualifiers

Relationships may be classified according to their technical properties. See any discrete mathematics text
(e.g., [4]) for fuller descriptions of properties including:

Reflexive:

For all x, R(x, X) holds; i.e., every element is necessarily related to itself. For example, the
relationship SameAgeAs.

Symmetric:
For all xandy, R(x, y) implies R(y, X); i.e., the relationship is “"bidirectiona". For example, the
relationship SblingOf.

Transitive:

For al x, y, z, if R(X, y) and R(y, 2) hold, then R(x, 2) holds. For example, the relationship
Ancestor Of.

Constraints

In the same way that constraints provide supplementary information about simple attributes, additional
constraints may express restrictions on the allowed instances of arelation. For example, we can rephrase
the fact that instances of class Person have the attribute spouse as a binary relationship Soouse between
Person and Person (assuming the spouse attribute has been eliminated from class Person):

(1] /\ {0:1]

Person Spouse Person

The[0:1] cardinality captures a monogamy restriction.

As before, we may want the ability to express age restrictions on the Person tuple elements. We omit
notation conventions for expressing these constraints; see Chapter 3 for suggestions.

Parametric Relation Instances

The instances of one relation, or more commonly, the attributes of a class may be constrained to be
instances of another relation. For example, consider a simplified Family class containing (only) one
parent and (only) one child attribute, along with a binary relationship Custody capturing the fact that one
person has custody over another person.

We would like to express the constraint that in each Family, the parent must have custody over the child.
This requires that the parent and child must also be instances of the Custody relationship. However,
simple relation instances cannot be used to state this. They indicate the existence of particular instances
of arelation. We need here away to say that any personsin the parent and child roles must also be
instances of the Custody relationship. This leads to the concept of a parametric relation instance (see
[1]). "Parametric” in this context refers to the fact that the exact identity of the relation instanceis a

variable (parameter), different for each instance of class Family.

We indicate parametric relation instances (PRIs) with an open dot. For example, the following diagram
says that the parent and child in a Family must be members of a Custody relationship. The relational
constraint appliesto all instances of the class:

Person

cuslodian

dependenl

child

Person

{

[Note that the Person boxes in this diagram are used in two different ways, as attribute domains and as
relation domains. For further economy at the expense of readability, we could have drawn only one
Person box, used in four ways.]

The parametric relation instance places constraints on the instances of Family that one may construct. If
we wanted a class in which the parent is not always the custodian, we might for example introduce
another attribute, nonCustodyChild with the same value domain Person.

Collections

Collections represent groups of objects. They may be employed when describing those objects that fall
under a common relationship or need to be manipulated in a common fashion.

Sets

Sets are the most well-known and useful kinds of collections. We have introduced sets indirectly in the
scope of regular classes. Any multivalued attribute has a set for its domain. Sets may also be employed
explicitly as primitive notions (cf., [2]). We restrict ourselves to typed sets where all elements of the set

belong to an indicated class (including subclasses of that class -- see Chapter 7).

A set isto be distinguished from aclass. A set must be defined in an extensional way, by construction,
optionally in combination with afiltering characterization. Thus we exclude here intensionally defined
subclasses, such as:

Accounts with a balance over $1000,

but we include:
Accounts in our database with a balance over $1000.

Other examples include a branch with an attribute representing a set of its local accounts (if this
association is not represented as a relationship) and similarly for the local clients of a branch.

Once we have sets, we can open the floodgates and adjoin to our representational apparatus the notations
that are available in set theory. These include:

M for intersection,

lJ for summation,

} for subtraction,

¢ for the subset relationship,
_3 for the superset relationship.

We denote sets by expressing their domains as " arguments”. For example, a set of branchesis denoted as
SET(Branch). Observe that we now have two ways to describe multivalued attributes; sets and
multiplicity features. The following two depictions may be treated as equivalent:

ACass
‘ whatener | SET(XYZ)
ACnss
‘ whatever{d: M] : o

Multiplicity and set notations may be combined, for example, when we introduce multivalued attributes
where each individual valueis a set. In the following example the class School treats its faculty as an
undifferentiated set of employees and treats the student body as afamily of sets of students:

School

facnity

L

SET(Employee)

students [1:M]

SET(Stndent)

When a multivalued attribute would have more specific multiplicity bounds, asin[3:7], the
corresponding set notation may be annotated accordingly in any agreed on manner.

Other Collections

If necessary, the analyst isinvited to employ other collection notations and the usual operations
associated with them:

Sequences.
For example, the class String may be described as SEQ(Char). Other examples include the ATM
attribute logOfSessions, which has as value domain SEQ(Session).

Arrays.

For example, the class 2D-4-5-grid may be described as ARRAY] 3:4] (Point). The days of ayear
can be represented as an array, for instance, to record a savings account interest rate for that time
period: ARRAY[365] (Day).

Bags.
For example, the collection of accountsinvolved in receiving funds in a certain time period may

be described as a BAG(Account). Since an account may receive funds more than once we can have
repetitions.

Generic Classes

Additional collections and related constructs may be defined as generic classes. These classes capture the
commonalities of a broad range of other classes. Inheritance (see Chapter 7) is an excellent mechanism to
exploit abstract classes and create more specific versions. Generic classes instead use the style of
procedure or function variables to express genericity.

Our notations for sets and other collections are special cases of that for generic classes. By convention
we use upper case names for generic classes. For example, the following generic class QUEUE has
instances with elements of type X.

GQUEUVE(X)

first

» X

tail [0:1]

r

QUEUE(X)

When the class Job happens to be around, we can introduce the class QUEUE(Job).

ldentifying Relationships

Relationships versus Classes

Analysts often have some freedom in whether to use classes versus relationships to represent static
features of adomain. The notion of Transfer is an example. It was represented as a class in Chapter 3 but
as arelationship in this chapter.

The main consideration is that classes and relationships describe different kinds of instances. As defined
in Chapter 2, objects (class instances) have identity, features, and operators that may change state across
time and communicate with other objects. Instances of relationships do not necessarily share these
properties. A relation instance need not be ascribed an independent identity. It may be fully characterized
merely by listing the elements of the tuple. Relation instances need not have any intrinsic properties
outside of those of the tuple. And they cannot change state or communicate with other objects at all.

Analysts may choose the approach that appears most appropriate to the task at hand. When aspects of a
purported relation appear class-like, or vice-versa, descriptions may change accordingly.

Intensional Versus Extensional Definition

The ways in which classes and relationships are defined also differ. Classes list the central defining
characteristics of identifiable objectsin adomain. As noted in Chapter 3, classes provide intensional

descriptions of objects by listing their defining properties rather than their members.

Like sets, relationships are normally described in a partialy extensional fashion. Most relationships
describe tuples corresponding to the state of affairsin the ““world" and are determined by circumstances.
Thus, they have been obtained by some form of observation. The Ownership relation is an example. In

this case, the family of tuplesis simply aset, and in practiceisa small” finite set. For al practical
purposes, relational modeling deals only with extensionally defined relations in which the family of
tuplesis small and can conceivably be handled by storage media that will satisfy resource requirements
constraints.

While a useful guide, this distinction does not intrinsically separate classes from relationships.
Intensionally defined relationships may provide a definition (e.g., a predicate) that characterizes which
tuples belong to the relation and which do not. Grandparenthood defined as being the parent of a parent
Is an example. Another example from the realm of math is the successor relationship relating every
natural number N with its successor N+ 1. Here, the family of tuplesis still a set, although not small and
in fact of infinite size. Relationships where the family of tuplesisnot a set any longer are possible as
well.

Relationships versus Attributes

In Chapter 3, we mentioned that an attribute may be seen as a special binary relationship between the
central object and an entity in the value domain. As aresult of the similarity between attributes and
binary relationships, an analyst must take care not to prematurely absorb binary relationshipsinto a class
definition.

The main conceptual issue is whether afeature is definitionally intrinsic to an object. One question to ask
Iswhether every instance of aclassis necessarily related to a member of the other

domain. Inthis caseit is normally a genuine attribute; in other cases it is better represented as a
relationship. On the other hand, one should be pragmatic as well. For example, in spite of the existence
of Gliders, it makes senseto see Engine asa[0:M] (multivalued) attribute of Airplane. Consequently,
Gliders may be described as effectively lacking the attribute Engine by giving them the multiplicity
feature[0].

A related question is whether one object is conceptually “"in control” of the values assumed in the other
domain. This generally corresponds to whether an object may contain transitions (see Chapter 5) that
directly change the value. If so, it is appropriate to list it as an attribute. For example, in Chapter 3 we
listed the " “relationship™ between an Account and the Number representing the current balance as an
attribute. Account objects are in control of their own balances, may alter them within transactions, etc.

As another example, in Chapter 6 we will introduce acquaintance relations describing the partnersin
object interactions. In order to describe the behavior of an object in its full generality, independent of the
roleit may play in aparticular target system, we may need to describe a handle to another, as yet
unknown, object with which it needs to interact. Binary acquaintance relations serve this need. However,
when one object must be able to determine its partner(s), this information may be listed in attribute form.

Functions

Functional relationships (or just * functions") represent the meeting point of these considerations. A
tuple component of arelation depends functionally on the other components if its value is uniquely
determined by the other components. The cardinalities[0:1] and [1:1] for any of the domainsindicate a
functional dependency. The cardinality [0:1] reflects apartial function that need not ""hit" every element
in the domain.

For example, the following diagram indicates that every person has precisely one mother, and every
mother has at least one child. Letting Mo stand for the Mother Of relation:

Mother | 12M] /Mﬂ\ {1
\/

Functions are among the most common kinds of relationships. In functional relationships, at least one
direction of the relation associates a single element of one domain to those in the other. It is convenient
and often reasonable to treat them as attributes in functional direction if this appears central to the
definition of the class. In this sense (as exploited in design -- see Chapter 16) all attributes are functions.

For example, to indicate that each person must have a mother:

FPerson

FPerson

ather Altribnles

molther

. Mother

Similarly, consider the MaintainedBy(Account, Branch) relation saying that an account must be
maintained by one branch, and a branch maintains at least one, possibly more accounts. This could be
described as afunctional relationship (letting MnBy stand for Maintai nedBy):

[1:1] @ ey |

Acconnt

Alternatively, the Account class could have an attribute maintainer with domain Branch. The " other"
direction in afunctional relationship may also be described as an attribute when this contributes to the
definitional characterization of aclass. However, in this case, the attribute normally has a SET domain.
For example, each Branch could have an attribute maintainedAccts with domain SET(Account).

More generally, any binary relationship may be described with apair of possibly set-valued functional
attributes (one per domain) when it is meaningful to do so. However, the ““equal partnership” implicit in
the idea of describing pairs of functional attributes is better captured as a relationship proper.

The extreme case of afunctional relationship is a one-to-one function, where the cardinalities of both
domainsare[1:1]. In this case, each element of one domain is "matched’ with a unique element of the
other. (If one of the domains has cardinality [0:1], thisinstead represents a partial one-to-one function).
For example, the “"relationship” between an Account and its accountNumber is one-to-one, as would be a
relationship between Departments and Managers saying that each department has a unique manager and
each manager manages a single department. These relationships are most naturally captured as attributes.
When doing so, attribute multiplicity notation may be extended as[1:1]-[1:1], or abbreviated as unique
to indicate this property.

We summarize these classifications by showing how some standard function categories are described as
attributes:
One-to-One:

A function is one-to-one if each distinct argument maps to a distinct result. This corresponds to
unique.

Pure:

A function is pure if multiple applications with the same argument always give the same result.
This corresponds to per-object fixed.

Singular:
A function issingular (or fully many-to-one) if it always gives the same answer, regardless of

argument. This corresponds to per-class common (i.e., constraining all instances to possess the
same value).

Partial:

A functionistotal if it is defined for each possible argument. Otherwise it is partial. Partial
functions are denoted with [0: 1] multiplicities.
Multivalued:

A multivalued (or one-to-many) function corresponds to either [1:N] multiplicities or SET or other
collection domains.

Summary

Relationship modeling captures generally static connections between objects. Relationships may be
distinguished across dimensions including arity, domains, and cardinality. Relationship notation may be
embellished with additional features and constraints. Collections, especially sets, may be used to describe
groups of objects bearing acommon relationship or role.

Further Reading

Relationships have been treated extensively in relational database theories and generic entity-relationship
modeling; see for instance Ullman [6] and Maier [3].

Relationships are widely employed in OOA methods. As discussed in Chapter 3, attributes are avoided in
Embley et a [2]. Instead they emphasize the importance of relationships. They also describe set

membership as a relationship between two classes where one provides the " raw materia™ instances and
the other represents the sets constructed from them. Wirfs-Brock et a [7], describe several special

relationships including PartOf, DependsUpon, Hasknowl edgeOf, IsAnalogousTo, and isKindOf.
Relationships are not employed directly inthe OMT method of Rumbaugh et al [5]. They use the

similar concept of associations instead.

Exercises

1. Formulate arelation that has tuples of length four, five, ... Try to avoid relations that are
constructed by adjoining time and/or space qualifiers asin: John travels from A to B on Sunday.

2. Can the following information be represented as relationships?
The balance of an account ten days ago.
Accounts associated with the zip code(s) of their owners.
Employees located in Toronto.
The grandparents of the children living in Springfield.
The weather report of 2001 January 1.
The molecular structure of H20.
The contents of alibrary.
The public transportation schedule in LA (assuming they have one).
The recipes in a cookbook.
The patterns of traffic lights at an intersection.
. The contents of an encyclopedia.
12. The grammar of FORTRAN.
3. Give examples of generic classes having one, two, ... arguments.
4. Discuss whether the following families of objects can be represented as a set and/or as a class.

© o N O~ wOWDdDPRE

el
= O

The states of the US.

The members of your family.
The atoms in the universe.
The inhabitants of Berlin.
The colors of the rainbow.
The natural numbers.

. The days of the week.

5. Redo exercise 1 from the previous chapter but this time exploit relationships as well. Compare
your solutions.

No gk~ owbdPE

|dentify objects, introduce their classes, give attributes, their features and constraints as suggested
by the following text:

Mr. White is married. He teaches OO Software Engineering classes on Fridays. He is a part-time
member of the faculty at the CS Department of the All-Smart Institute. His 23-year-old son John
was enrolled in the OOA class that Mr. White taught in the previous semester. John does not like
broccoli. Mrs. White uses a ten-speed for transportation to and from the campus (she teaches
Philosophy at the same institute). Class sizeis limited at the institute to 14 students. The faculty at
the institute, when seen as parents, have at most two children. The sister of John has a boyfriend
that istwo years younger than sheis and plays two different instruments.

References

1
R.J. Brachman. A structural paradigm for representing knowledge. Technical Report 3605, BBN,
May 1978.

2
D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon
Press/Prentice Hall, 1992.

3
D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

4
Z. Mannaand R. Waldinger. The Logical Basis for Computer Programming. Addison-Wesley,
1985.

5
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice Hall, 1991.

6
J.D. Ullman. Principles of Database Systems. Computer Science Press, 1982.

7

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall,

1990.
Next: Chapter 5

Doug Lea
Wed Jan 10 07:52:46 EST 1996

dbiocs Bientla Chapter 5: Object Dynamics
Systera

Deévelopment

o Describing Behavior

o Transition Networks

o Examples
o Reducing Complexity

[Naniisdr 1 hzmpe s
Dzl Lea

Perelape Fours ° Summary

In this and the next chapter, we concentrate on the characterization of behavior. The dynamics of individual objects
are discussed in this chapter. The next chapter focuses on ““socia” interactive behavior between objects. We begin
with some preliminary considerations about what it is we are trying to describe.

Describing Behavior

Behavior description is a notorioudly difficult problem. Physics borrows from mathematics the notion of differential
equations to describe changing entities, fluids, gases, etc. Thistrick is unavailable to us. The behavior of the entities
in our domains of interest practically never satisfy differential equations. Even a simple device like a piston engine
is beyond the formalisms of differential equations.

Algorithmic description languages are also not available at the level of analysis. The strengths of these languages lie
in detailing how a particular desired behavior can be realized. That is not what we want in analysis. We need only
the ability to provide a precise description of what constitutes a desired system's behavior. For instance in the case
of a prototypical system we would want to describe context interaction sequences.

Phrased compactly, procedural behavior descriptions should be traded in favor of declarative descriptions.

We face the little problem that purely declarative description languages are as yet still mired in theoretical
problems. It isin fact one of the core problemsin artificial intelligence and knowledge representation.

Background

The Frame Problem (identified at the end of the 1960s [6]) stands for, at least, the following questions:
« What are the necessary and sufficient preconditions for applying an operator?

In order to start a car, one needs to turn the ignition key. Thus an obvious precondition is that the car key be
available. Does the start-the-car operator also have to mention that the car has an ignition lock? That the
battery is not dead? That there isfuel in the tank? That the spark plugs in the engine have not been removed?

« What are the effects or postconditions of an operator?

An antenna pops out when a car is started. Is that a part of the postcondition of starting acar? Usually asa
result of the exposed antenna a horrible commercial is heard. Isthat also a part of the postcondition? There
are no set rules for limiting postconditions.

« What is a state description language that allows efficient representation of sequences of states?

An operator changes the ““world". One cannot simply add new assertions that describe the new aspectsto a
previous world description. For example, when we have the assertion that a door is open, and we perform an

operation, close-the-door, we cannot ssmply add that the door is now closed. The knowledge that open and
close exclude each other would generate a contradiction. Time or situation indexing of assertions does not
work in practice because a successor state does not have access to assertions in previous states whose truth
value obviously has not changed. For example, if adoor is opened while it is raining, we would know in the
subsequent state that the door is open, but we would have lost the rainy weather condition. Other approaches
run into similar snags.

In spite of vigorous research [1], not much progress has been made to solve these issues in a generic fashion.

Characterizing Transitions

The task of analysisis usually somewhat easier than that of Al. Most applications do not require support for
planning or plan execution of robots. It is sufficient that OOA notations disambiguate human-to-human
communication. At the same time, notations must not be sloppy. We want to have a smooth, easy transfer into
design notations, which in principle need the rigor of machine executability.

The fact that we usually deal with closed, artificial worlds provides further simplifications. We are able to delineate
once and for all what our concepts are within the scope of a system or a set of systems. Inreal life most concepts
have the crispness of vapor.

Since a powerful, purely declarative description language is not available, most analysis methods use
representations that are at least somewhat procedural. Structured methods use data flow diagrams (DFDs). A node
in a DFD stands for a process, and can be recursively decomposed in the same manner as functions can be
decomposed into ultimately elementary, obvious operations.

OOA methods mainly use augmented transition network diagrams to express the behavior of objects. Transition
networks are quite declarative, especialy when states, transition guards, and transition actions are defined in a
rigorous way.

Transition networks are " state machine diagrams" augmented in several ways.

« The firing" of atransition can be dependent on the state of an object, reception of an event, and any other
auxiliary guards.

« Operations of unbounded complexity may be described for each transition. For example (as discussed in
Chapter 6), they may include bidirectional synchronized interaction with other objects.

« Before entering a destination state, a transition may create an event that may in turn be received by one or
more other objects.

The ability to describe complex operations on state transitions can easily be misused. For example, an analyst can
create atransition network with one state and a single transition that connects this state with itself and which
concentrates al functionality of the object into this transition. It is unlikely that this yields a conceptually clear
representation of an object's behavior.

Parallelism

For the sake of discussion, we say that two activities are in parallel when they proceed at the same time. Some
real-life entities possess parallel features. A person seen as an entity harbors an amazing amount of parallelism, if
not at the mental level then at least at the physiological one. Cars perform many activities at the same time the
engine runs. Each wheel turns, the gears in the transmission turn, the wipers are on, the generator feeds the battery,
lights are switched on and off, etc. The engine itself contains lots of parallelism.

In spite of these considerations, we prefer to stick to the limitation of having only a single thread of control per
object. We consider atransition to be atomic, athough we allow switches between different transition networks if
an object has more than one.

How do we reconcile this restricted computational object model against arguments for parallelism?

« Weadready have an abundance of parallelism. Every object has its own thread of control, and executes
concurrently with other objects. We see it as a challenge to exploit this kind of parallelism to explain and
describe apparent parallelism inside entities.

« Pardlel transitions inside an object make the mapping of analysis outputs into design even harder. In some
low-level designs, asingle thread of control is shared by all objects. Even in distributed systems, there will be
many fewer computers than objects. Mapping analysis objects with each having a single thread of control into
low design objectsis already quite a challenge. We prefer to avoid the additional complexity of dealing with
objects that have internal parallelism. The assumed atomicity and independence of transitions at the analysis
level allow corresponding design and implementation activities to proceed in a more familiar and tractable
fashion.

« Allowing parallelism inside an object is a potential source for the introduction of ““magic", ill-defined
behavior, which is need of analysis for clarification. Since we are doing analysis, we will avoid the magic in
thefirst place.

We will consider apparent parallelism as an invitation to explicitly identify multiple objects operating concurrently.
Some entities do harbor multiple "“machines’ that act in parallel. Our strategy will be to treat such an entity asan
encapsulator for constituent machines, each of which are themselves objects. We have |abeled these encapsulators
ensembles and we have devoted Chapter 9 to their treatment. An ensemble is an object having a single thread of

control, while at the same time connoting an entity with internal parallelism.

Characterizing States

Our fina preliminary issueisto nail down what counts as a state.

Two different interpretations of states are seen in OO analysis methods (e.g., [2,7]), passive and active. (Thisisa
completely separate distinction than that between passive and active objects discussed in Chapter 2.)

What are their differences? A mgjor differenceis that passive states can be defined precisely, while active states are
asyet quite fuzzy notions.

A passive state of an object can be defined in terms of the attributes of the object. An object isin such a state if,
from the perspective of the object, nothing changes except time. Doors being open or closed are examples of such
states of affairs. The openness of the door can be defined by referring to an attribute of the door, say, frAngle, the
angle of the door with respect to its frame. And similarly for its closedness. These definitions can be used to show
that these states exclude each other, asisrequired for different states. By any reasonable definition of state, one
cannot be in two states at the same time.

In contrast, an active state refers to a situation in which an object isinvolved in an ongoing process. The English
language has a particular syntactic form for these situations, verb+ing. Thus we can have a door that is opening or
closing. We can have a person that isin the active state of typing, turning a key, writing a check, etc. In [2] these

states are typified as " interruptible activities'.

The use of active states (in addition to passive ones) has the apparent advantage of increasing the expressive power
of the formalism. The problem, however, is that proponents have not indicated what entering an active state means.

Are these processes themselves objects? If so, is another object constructed and set in motion? If not, does this mean
that afresh processis started? Or does it mean that a suspended process is resumed? Similar problems surround
leaving an active state. Does this mean that a process or object dies? Or does it mean it is suspended? Similarly, the
notion of “interruptible" is quite powerful yet underdefined.

Asaresult of such questions, we will avoid active states. However, we discuss in Section 2.4 how to emulate active

with passive states. It is also possible to give an object self-knowledge so that it can report that it is engaged in an
verb+ing activity. Such an active condition can be referred to by other objectsif necessary.

Transition Networks

A transition network is an abstraction of a process. It exploits our categorizations of behavior as sequences of
identifiable and classifiable changes, the transitions . A state is the abstraction that connects what *“happens’
between the end of atransition and the beginning of afollow-up transition. A state also allows the introduction of
branching. More than one transition can lead out of a state. Guards associated with transitions will determine
which, if any, subsequent transition will be chosen when a state is entered.

A transition network always has afinite, usually small, number of states. A transition is abinary directed connection
between pairs of states.

State

A state bridges" transitions, provides a choice point for alternative continuation transitions, and is aresting place
when no follow-up transition qualifies.

Thisisatechnical characterization of states. The analyst's perspective of a state of an object should emphasize that a
state makes sense for a customer. It should be a part of the “natural”, ~“public” lifecycle of an object. For example,
openness and closedness of a Door are most likely indeed states that are relevant from a customer's viewpoint.
Similarly, a checking account can be in either an ok state or in an overdrawn state. As another example, an ATM
can be in the states available and unavailable.

Our graphical notation for astateisacircle, for example, state closed:

cloged

| dentification and naming of the relevant states of an object can be firmed up by defining the states in terms of
attributes:

Door:
We assume that the class Door has an attribute fr Angle with value domain Degreesin the range [0, 180]:
closed
0= frAngle
ajar

0< frAngle< 45

open
45 <= frAngle<= 180
Checking account:
We assume that CheckingAccount has an attribute balance with value domain number:

ok
0 <= balance
overdrawn
balance< 0
ATM:

The availability of an ATM may be described by introducing attribute available? with values{y, n} (yes/no)
asits value domain, and associated states:

avallable
available? = y
unavailable
available? = n

Thisis an example of an object that has " self-awareness’ of where it resides in the collection of its possible
states. The definition of these two states will become more satisfactory when we elaborate (and modify) the
class ATM later in this chapter.

We have been semi-formal in defining states. States need not always be elaborated this deeply. It may be preferable
to first get a preliminary insight about the set of states, described only with informative names. On the other hand,
insisting on precise definitions in terms of attributes provides a mutual check on the static and the dynamic model.
In addition, it provides a preliminary view of the characterization of operators associated with transitions.

Initial State

A transition network needs a special state, which isthe initial state that describes the state of affairs for a newly
created object. The description of this state can be facilitated when default values have been formulated for
attributes. Aninitial state has the syntactic feature that it has at most one inbound transition that can initialize the
object. Graphically, we represent an initial state with an arrow leading in from ““nowhere™:

Exit State

A transition network may have an exit state. Entering this state means that the object ceasesto exist. A single
outbound transition can be associated with such a state to express a testament operation. Graphically:

Checking State Definitions

When states are precisely described, they can be checked against one another to ensure that they denote mutually
exclusive states of affairs. Consider the states S1 and S2 each defined respectively by the property P1 and P2. The
states should exclude each other, since an object can be only in one state at atime. This means that:

P1 implies not(P2), and

P2 implies not(P1).

\

For example, in our CheckingAccount example:
Sl = ok, P1 = (0 <= balance),
S = overdrawn, P2 = (balance < 0).

Showing that P1 implies not(P2) boils down to:
(0 <= balance) implies not(balance < 0).

Since we can rewrite not(balance < 0) into (0 <= balance), we are done. Similarly, showing that P2 implies not(
P1) amounts to:
(balance < 0) implies not(0 <= balance).

Again we rewrite the right hand side: not(0 <= balance) into (balance < 0) and we are done. Consequently, our
states are well defined in the sense that they satisfy the mutual exclusion feature.

Of course, satisfaction of mutual exclusion does not mean that the state definitions themselves are relevant from a
modeling perspective. It only demonstrates that when each state captures arelevant state of affairs for an object then
these states may coexist in atransition network.

Transitions

A transition models an object that |eaves an originating state and goes into atarget state (which may be the same as
the originating state). A transition is atomic. An object cannot be interrupted after it has |eft a state and has not yet
reached the target state; not even during a suspension caused by an action during the transition. Thus, we avoid
(possibly indirect) recursive transitions.

Transitions have standard graphical representations as directed links between circles representing states; see, for
example [5,2]. Added to the link is a box to represent respectively aguard, an action, and an optional event. A

canonical example of two states connected by atransition is:

transition name

guard action {event}

When we need a more global view of atransition network, we may suppress the details of the transitions:

cloge

anen
Account_ P Account_

nnaneilahle anailahle

The guard, action, and event components of atransition will be discussed in turn.

Guard

A guard is a condition (boolean-valued function) that must be satisfied in order for the transition to occur. For
example, atransition that effects awithdrawal on an account may have as guard the condition that the balance have
sufficient funds. A guard for atransition that achieves an open door may be the condition that the door is not locked.

A guard in atransition network associated with an object may refer directly to any attribute of the object. Attributes
of other objects may be referred to as well. This requires having a handle on those external objects, for instance, via
arelationship or an attribute that has an external object as value. References may be repeatedly tracked through
several different objects. As an example, consider a guard that checks whether the sum total of balances of attached
accounts has a certain property. Thiswould require finding an attribute or relation that describes the accounts and
then accessing their balances.

A guard can optionally refer to an event. Because input events are intrinsically associated with object interaction,
we defer details to Chapter 6.

Checking guards.

A state can have more than one outbound transition associated with it. Different guards should ensure that at most
one condition at the time can be satisfied. For example, if adoor is gar, one can either close it or open it (or leave it
asis), but one cannot achieve two changes at the same time.

Just as states in a transition network must be mutually exclusive, we have an exclusion property for the guards
associated with transitions emanating out of a particular state (assuming that there is more than one transition).
More specifically, when there are two guards G1 and G2, we should show:

Gl impliesnot(G2), and

G2 implies not(G1).

\

For example, consider a state PreDebit in the state space of Account out of which two transitions emerge
respectively with the guards:

debit <= balance, aregular debit, and

debit > balance, an overdrawn debit.

These guards obviously exclude each other.

Action

An action description is the second component of atransition. This action must be a terminating activity. It may
affect the attributes of self. Similar to the guard, an action can refer to any attribute, locally or remotely. Aswe will
see in the next chapter, an action may also entail bidirectional interactions with external objects. The form of
description may vary. We can have:

« informal action verbs such as "“sort" and " debit";

« more elaborate informal descriptions;

« structured English descriptions;

» formal preconditions and postconditions; and
« even dataflow diagrams.

Offhand we cannot prescribe the complexity of an action within atransition. That is the choice of the analyst.
However, these actions must be plausibly implementable without requiring an analysis after " all of the analysts
have gone home".

Formal preconditions and postconditions are certainly the scariest looking options in this list. However, when states
and guards have been described precisely, it islikely that almost all of the work has been done already. Theinitia
state together with the guard constitutes the precondition. The target state expresses most of the postcondition. (The
situation does get a bit more complex under object interaction; see Chapter 6.)

Actions corresponding to our examples include the following.
Door:

The definition of states closed, ajar and open alows (among others) a transition that originatesin closed and
terminates in open. The action on this transition is described by a postcondition that says that the fr Angle
attribute must obtain a value between 45 and 180 degrees. (This “"action” corresponds only to asimulation. In
arobotic context an effectuator would have to perform the real action to achieve the intended effect.)

Checking Account:

We described earlier the states ok and overdrawn. This allows, for example, atransition that goes from the
ok state into the overdrawn state. This reflects a withdrawal that surpasses the balance. A likely action for this
transition is described by the postcondition:
balance' = balance - w,
where w is the amount withdrawn. The unprimed occurrence of balance in this assertion (not assignment!)
stands for the value or extension of the balance attribute before the operation, the primed occurrence stands
for the value or extension after the operation.

Event

Actions affect the state of affairs of the object in which the state transition occurs. The reader may have wondered
how a door obtains its new frame-angle attribute value. Similarly, a checking account will not internally create
withdrawal (and deposit) amounts. Interaction between objects is necessary. We defer further elaboration to Chapter
6.

Exceptions

By analogy to the notion of defensive programming, an analyst may build in defenses against anomal ous situations.
Events, which serve as the gateways for data flowing into an object, are an obvious source for anomalies. A guard
may not be smart enough to recognize illegal datathat are subsequently passed on to an action. An analyst may
want to indicate what is to be done when an action error occurs.

We use the following notation for dealing with exceptions:

transition name

guard action {event}

This diagram shows two exception links. The one emanating from state S1 can be used for dealing with atiming
constraint that prohibits staying in state S1 for too long (see Chapter 11). The other exception link deals with
exceptions that arise in the transition. The action part may, for instance, rely on communication with another party.
This interaction may produce unexpected results, yield atime-out, etc. Exceptions are never associated with guards
or event generation.

Active State Emulation

As promised, we provide an emulation of active states. The key ideaisto exploit the fact that an active state is
interruptible "at all times'. Quotes have been used to emphasize that a processisin fact interruptible only at
discrete moments. In between these moments, aprocessis deaf". Thus an interruptible process can be represented
as aloop with atransition that leads back into the state where it originates and that does a little bit of activity on the

way:

transition riuane

guard action {event }

Although we have argued against active states in transition networks, it is sometimes necessary to refer to an object
that is actively looping. This can be obtained by giving an object an attribute that expresses whether or not it is
engaged in a particular cyclic transition.

For example, we may want to have a display lamp be off or on depending on whether an engineis off or is running.
Thiswould be established by giving Engine the attribute running. A displayLamp may consult this attribute
provided it has a handle on the corresponding engine object.

Examples

ATM

We illustrate the main concepts and notations with our ATM machine example. The following ATM transition
network diagram includes an additional notation. The two boxes with double vertical boundaries represent
abstracted subnetworks with the same start state and target state as the double-sided box. In both occurrences of the
double-sided boxes the start and target states just happen to be the same.

We |eave these subtransitions unelaborated for now (but see Chapter 10). An example of a Maintenance (Mntnc)

subtransition network would be one where the bill-dispenser is replenished. An example of aMenu Actionisa
subtransition network that dispenses cash.

The transition network is quite naive. For example, we have omitted a ertness constraints. A time-out transitionis
certainly warranted for the state that expects the customer to provide a PIN number. All the ugly details of reading
in the digits of aPIN are ignored as well. The transition from Finished (Fnshd) to Idleistoo coarse, and should
refer to at least two transitions, the machine g ecting the card and the customer taking the card out of the machine.
(We will address these and other refinementsin later chapters.)

mitglize ,@ Maintenance Actions
Put Make
o available &
maintenance Print
mode init
dizplay
/I;D‘" Eject card & Print init display

Qﬁh&

Take in card,
Read strip &
Display PIN request

Clan’ read strip

Read PIN

Custormer: Cancel or Invalid PIN

Aceept PIN &
Display menu

Jd g9 Customer: Finish Seasion N

Menu Actions

This transition network is still quite high level. We have characterized the states and the transition only by names.
To be more precise, we sketch afragment of the ATM class definition.,

ATM
anailahle ? » {y/n}
cardIn? » {¥/n}
siriplnfa ~ { nil / siripDala }
PINTnfo » { wil / PINdata }
finighed?

L 2

{y/n}
This characterization looks different than the one given in Chapter 3. The attributes specified here can be added to

the one given in Chapter 3. The new attribute definitions permit rigorous definitions for the statesin our transition
diagram. The following table describes the states uniquely on the basis of attribute value combinations.

e [S
]avajlable?’n |T|T|T|T|T
]car.dln?]n_ |n—|y—|y—|y—|y—
stripinfo |nil WWWWW
[PINInfo [nil" [nil il [niT [ok [nil

[finished? |n |n7|n7|n7|n7|y7

For example, the Maintenance state has the available? attribute set to n(0), while all other states have this attribute

set to y(es). As another example, the states 2 and S3 differ with respect to the PINInfo attribute. In 2, we have
either that the customer has pressed the cancel button (not represented here) or we have an as yet unverified PIN
number. In S3, we have obtained a verified and accepted PIN number.

The following example transition comes into action when the card's strip info cannot be decoded. Observe that the
finished? attribute is set in order to conform to the properties of the Finished state.

Can’t read strip
guard action {event}

not{ QK {siripInfa)] finished?’ = Yes

Another transition leads from Sl to S2 when the card's strip can be decoded successfully. Observe again that we set
striplnfo’ in order to conform to the characterization of S2. The action GetPIN refers to an interaction with another
object and is beyond the current discussion; we will revisit it in the next chapter. Also note that the guards of the
two transitions emanating from Sl exclude each other, and that they cover all possibilities; thus an object will never
get stuck in SL.

Read PIN
guard action {event }
giripInfo’ = ok
QK (stripInfa) e
PINInfo’ = (letPIN

Car Cruise Control

We present a fragment of the ubiquitous car cruise control (CCC) machinery. A CCC has several components that
can be modeled as objects: An object that keeps track of a desired speed, an object that interfaces with the
carburetor, sensor objects, objects that interface with control panel buttons, dliders, etc. We will deal here with a
“brain" object of class CCC that keeps track of the different states in which the CCC system can be. We quote from
areal manual:

When engaged, this device takes over the accelerator operation at speeds above 30 mph ... The controls
... consist of aspeed SET button and a control slide.

To Activate: When the vehicle has reached the desired speed, push the SET button to move the control
slide to the ON position. Thiswill establish memory and activate the system. Remove your foot from
the accelerator. Pushing the control slide from the OFF to ON while the vehicle isin motion establishes
memory at the speed, but does not activate the system. The slide may be left in the ON position when
the vehicleis parked.

To Deactivate: A soft tap on the brake pedal or normal brake ... while slowing the vehicle will
deactivate speed auto control without erasing the memory. Pushing the control slide to the OFF
position, or turning off the ignition, erases the speed memory.

To Resume Speed: Push the control to the RESUME position and the vehicle will return to the
previously memorized speed...

To Vary the Speed Setting: You can reset the control to any desired speed by accelerating or slowing

to that speed and pressing the SET button...

The transition network for the prototypical object cccin CCC has three states. The states may be defined in terms of
properties of the attributesin CCC. Because ccc is the brain of the CCC system, we give it knowledge about the
state of the CCC system. We give it an attribute state with value domain the set { off, sim, on}, where sim stands for
speedinMemory. Since al of the transitions depend on external events, with respect to ccc, we sketch only an
abstracted network. Details of the transitions, except their names, are suppressed:

18
14 1.3 1743
aff) i1 19 on

t1

occurs when the vehicle's speed is at least 30mph and the control slide goes from the OFF to the ON position.
t2

occurs when the SET button has been depressed or the control slide is pushed into the RESUME position.
t3

occurs when the brake pedal is depressed.
t4

occurs when either the control slide goes from the ON to the OFF state or the ignition is turned off.
t5

occurs when the SET button is depressed. Observe that t5 leads to the same state as where it comes from.
t6

islike t4 but originates in the on state.

Reducing Complexity

Transition networks have the questionabl e reputation that their size can get out of hand for realistic applications. We
discuss three strategies, state abstraction, subnet abstraction, and independent transition networks. A fourth,
inheritance, is discussed in Chapter 7. These may be employed to fight exponential explosions.

State Abstraction

We encountered six transitions in the transition network of ccc. The transitions t4 and t6 are nearly the same. The
only differenceisthat they originate in different states, respectively speedinMemory and on. It is always agood idea
to find ways to factor out commonalities. In this case, we may introduce a " superset” state ssmOrOn, with
interpretation that the ccc object isin either of the states speedinMemory or on. Subsequently, we remove the
transitions t4 and t6 and introduce instead a transition t4 6 that leads from ssimOrOn to off.

Harel [3,4] hasintroduced a graphical notation, stateCharts, for this state abstraction convention. In this notation,
the CCC transition network becomes:

41 N

19 15

a1

gim Crin _/
The transition t4_6 leads out of sim and out of on. A transition in the other direction (e.g., t1) cannot point to
simOrOn because this would yield an ambiguity.

12

The outermost state, ready, represents an extreme form of state abstraction. An object of class CCC isin the
abstract state ready whenever it is quiescent (i.e., not engaged in atransition). It is possible and useful to define
transitions leading from ready to ready. For example, there are surely many interactive transitions that perform the
actual cruise control. Some of them may operate differently when the object isin states off, sim, or on. Others may
operate in exactly the same way regardless of state, and so may be defined at thistopmost level. By convention, a
transition connecting an abstract state to itself isinterpreted as leading back to the precise state from which it
originated.

Subnetwork Abstraction

Sometimes we may connect two states, S1 and 2, with ahigh-level transition. Such atransition is high level in the
sense that it represents a transition subnetwork that has a single entry, corresponding with S1, and in which all paths
|eads to exits that can be identified with 2. We use a " “double-bar" notation for abstracted subnetworks, as was
illustrated earlier for the Maintenance actionsin the ATM example:

Mntnc Maintenance Actions

Abstraction may be performed prospectively (before expanding the individual transitions) when it is known that all
transitions must link the indicated states. In this case, abstracted subnetworks serve only as placeholders for further
anaysis.

Retrospective abstraction of a subnetwork after all transitions have been specified is a useful ssmplification device.
The subnetwork that has been taken out may also be used as a source of inspiration for the design of other
transitions.

Independent Transition Networks

A class may possess severa separable sets of transitions. This often arises when the transitions operate on digoint
sets of attributes. This situation in turn often arises when a class has multiple digoint superclasses (see Chapter 7).

The complete transition network can be conceptualized as one large transition network that is made up of the
Cartesian product of the individual, contributing networks. A straightforward graphical representation of such a
Cartesian product grows rapidly out of hand due to exponential growth of the required number of states and
transitions. Harel [3,4] has introduced a graphical convention for these product spaces. Two (or more) transition

networks are simply enclosed in an abstracted set where the transition networks are separated by dashed lines.

For example, the following Cartesian product transition network might describe a refrigerator, with one network
representing whether the motor is running or not and the other network representing whether the door is open or
closed:

/. R

stapMator
Of COn
| _ _ _ __ soriMalor I
apenloar
(pen Closed

\ claseDaar /

The diagram abbreviates the Cartesian product of the two independent sets of states and transitions that would
otherwise need to be represented explicitly as:

stapMator
OffOp OnCp
| start Matar t
cd od cd od
£]
stapMator
OFCH e
stariMolor

Here, cd and od abbreviate closeDoor and openDoor. The state OffOp represents the motor being off and the door
being open. The others are defined similarly.

The use of independent “"parallel’ transition networks adds conciseness and understandability to models, but may be
applied only when different parts of atransition network are truly digoint. As a safeguard, the states, guards, and
actions within the transitions in one independent network should not refer to attributes used in the definition of the
other networks.

Summary

The behavior of objects may be modeled using transition networks. There are no restrictions on the complexity of

an action associated with atransition. It isthe responsibility of the analyst to avoid *“magical” actions that require an
analysis by themselves. For this and other reasons, we argued against assuming parallelism inside objects (but see
Chapter 9).

The states of our transition networks are static. We avoid so-called "active" states. We advertised defining states
rigorously via properties of attribute value configurations. This opens the door for more discipline by being able to
show that different states, as suggested by their names, are different indeed. Transitions may be described in a
similarly rigorous fashion. In particular, the exclusion of guards associated with different transitions emanating out
of a state may be demonstrated.

State abstraction, subnet abstraction and multiple transition networks may be employed to reduce complexity of
transition networks.

Further Reading

Most OO analysis methods use transition networks in some form or another to describe the behavior of objects. The
variant used by Shlaer and Mellor [8,9] associates actions with states instead of with transitions as we have done

(and most others do). Their actions are executed when a state is entered. They advocate using data flow diagrams to
detail the description of an action.

Embley et a [2] are among those arguing for parallelism inside objects:

Besides interobject concurrency, objectsin OSA may exhibit intraobject concurrency. Intraobject
concurrency allows an individual object to exhibit concurrent states or actions. A person, for example,
may be talking on the phone while taking notes. A copy machine can copy and staple at the same time.

A different approach to object behavior is advocated by Wirfs-Brock et al [10]. Their CRC method avoids modeling

of prototypical objects independent of the role(s) played in atarget system. Instead, behavior is formulated in terms
of client-server contracts, responsibilities and collaborations.

Exercises

1. Show the mutual exclusion property for the states closed, ajar and open defined for a Door in this chapter.

2. Assume that an Account has a state Swith two emanating transitions Withdraw and Deposit, both leading
back to S. Formulate guards for these transitions and show that they satisfy mutual exclusion.

3. The car cruise control machinery actually supports more functionality:

When the system is activated, tapping the SET button will increase the speed settings by small
increments.

Holding the SET button depressed allows vehicle to coast to alower setting.

Can this functionality be expressed by an extension of the transition network given in this chapter? If so, what

are these extensions? If not, what has to be done instead?
4. Select another component of the CCC system and devel op a static and dynamic model for it.
5. Give adtatic and dynamic model of:
1. A tube of toothpaste.

2. AVCR.
3. A car's 5-speed stick shift.
4. A racing bike's 10-speed gear system.
5. A chessgame.
6. A LISP EVAL function.
7. A soccer or football match.
References
1
F.M. Brown, editor. Workshop on the Frame Problem. AAAI, 1987.
2
D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon Press/Prentice
Hall, 1992.
3
D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8, 1987.
4
D. Harel. On visua formalisms. Communications of the ACM, May 1988.
5
J. Martin and C. McClure. Diagramming Techniques for Analysts and Programmers. Prentice Hall, 1985.
6
J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of artificial intelligence. In D.
Michie and B. Meltzer, editors, Machine Intelligence 4. Edinburgh University Press, 1969.
7
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, 1991.
8
S. Shlaer and S.J. Méllor. Object-Oriented Systems Analysis. Y ourdon Press, 1988.
9
S. Shlaer and S.J. Méllor. Object Life Cycles: Modeling the World in Sates. Y ourdon Press, 1991.
10

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall, 1990.
Next: Chapter 6

Doug Lea
Wed Jan 10 07:53:06 EST 1996

I T
Chapter 6: Object Interaction

Object-Griented
Systen o Transitions
R phent « Sending and Receiving Events
« Interaction Notations
(KGR fh ahge c o Examples
e fure « Summary

Object interaction patterns may be placed in two broad categories, differing with respect to the roles played by
the participants:

« An event producer object and one or more event consumer objects.

Producer-consumer interaction involves only unidirectional (" one-way") communication. Examples
include a user selecting a menu item, a buyer sending a purchase order to a supplier, and a report generator
sending areport to a printer. An event may have multiple consumers. For example, a stock quotation
service may broadcast stock pricesto all ““interested” parties.

« A client object and a server object.

Client-server interaction involves bidirectional synchronized communication. A client requests that an
operation be performed by a server, and waits for areply. Both the request and the reply may contain other
transmitted data. This pattern is seen in common " “service" procedure or function invocations.

Bidirectional patterns are quite popular in OOA, in part because they readily map onto the object interaction
mechanisms available in most OO programming languages. This fact leads to a terminology mismatch. One
might suspect that the "“message passing” supported by OO programming languages would correspond to
one-way asynchronous interaction. Thisis not the case. Instead, in languages such as Smalltalk, C++, etc., a
““message” is a synchronized bidirectional procedure (or function) invocation. To avoid such connotations, we
often use the term " “event” rather than ~"message” to encompass either of these interaction styles and their
variants.

Transitions

We will look in more detail at transition descriptions discussed in the previous chapter, this time concentrating on
the interactive aspects of the guard, action, and event components of our transition diagrams. Transition notation
concentrates on the behavioral properties of a single object. It describes what an object expects from the context
without specifying any particular context, and how an object contributes to the context. It does this without any
assumption about the context beyond the existence of event providers and event consumers.

For interactive transitions, we split the box holding the guard to separate a regular boolean condition and the
dependency on an event. We leave the action box asis. The box for an optional event can be utilized to describe
valuesthat are available to the members of the audience:

transition narne
guard action {event }

condition pre- and

posteonditions
and for {vout}

paeudocode
{E‘UEI]]Z{‘F.IH}} ﬂlld.fﬂl'

Guard

A guard may contain a condition referring to any or al of:
« Attributes of self
« Attributes of other objects.
« A named event.
» Dataassociated with the event.

In the design phase, references to objects other than self within guards will necessitate construction of
““read-only" attribute access operations and related processing that have no impact at the current level of
description (see Chapter 16). In analysis, we freely list all required guard conditions without worrying about the

underlying mechanics.

Firing atransition requires that the condition and the event, if specified, are satisfied. If the event does not entail
datatransfer, it isapuretrigger , an invitation" for the recipient to engage in a state transition. A declarative
description of such atrigger can rely on an invariant indicating that certain state combinations of objects are to be
maintained. For example, whether an engine isin the off or on state may be reflected by a particular indicator
light. Consequently, a state change of the engine must correspond with a state change of the indicator light.

Aninput event may contain other data (in) sent as arguments'. A guard that depends on an external event may
contain a signature description regarding the types of expected data, aswell as any other constraints. This data
becomes available, of course, within the transition network of the recipient. The properties and types of data
produced by the originator of an event should satisfy expectations expressed by a guard of arecipient.

As an example, consider atransition that performs a mutation of the balance of an account. The guard expects an
input event that carries the amount mut to be added or subtracted. Thistransition may insist, for example that a
negative amount does not |eave the balance negative. Thus, this knowledge can be added to the event guard box:
balance + mut >= 0.

Action

An action isaterminating activity that can affect local attributes. Action components may be broken into two
categories:
« changesin attribute values, and

« embedded client-server interactions that help the object obtain the listed state transition.

For example, an Account withdrawal transition may result in the adjustment of its balance attribute:

balance' = balance - mut.

The transition may also require interaction with another object to determine the kind of currency to be delivered
to the customer. We have no special notation for bidirectional interaction with a server out of the action box.
However, class interaction diagrams can provide more graphical detail about bidirectional interactions.

Event

The creation of an event isoptional in atransition. When it is present, it has a name and a description of values (
out) be passed on to the audience of the event. The intended interpretation is that these events are issued after the
listed transition actions have been completed. The reply event in client-server interaction falls in this category.
For example, an Account withdrawal transition may send the new balance' value as areply value. Other events
may be included as well. For example, the withdrawal transition may generate an event picked up by a
transaction logging service.

Details about the audience for the event may or may not be available. If a class has a narrow purpose, it may be
obvious which objects make up the audience, what their transitions are and what values are to be sent over. For
example, an ignition lock of a car should pass aturn-key event to the start engine. Alternatively, we may know
nothing about the audience. For example, the recipient of a mouse event is any object to which the mouse is at
that time attached. To play it safe and have maximum flexibility, we minimize commitments about the audience.
We will later introduce a notation that captures communication partner information. Since the audience may
consist of multiple recipients, we cover not only point-to-point messaging, but also broadcasting. This facilitates
“"to whom it is concerned” interaction descriptions.

Sending and Receiving Events

The following table provides a pragmatic classification of transitions with respect to input and output events.
Most of the entries are self-explanatory. The last row describes a transition that waits for an event, optionally
receives data, performs an operation, and generates an event, again optionally passing data along to the audience
of the second event.

guard depends on event |transition creates event |type of transition
no no internal transition
yes no input port

no yes output port

yes yes transducer

Service Transitions

A special form of transducer transition is common enough to single out for special treatment. We use a special
notation for service transitions, those that process " services" provided by one object to others. This notation
represents the special features of service transitions:

1. Theinitia state is the same as the successor state. Usually, we may label this as topmost state, ~ ready”.

2. By convention, a service transition isinvoked viaits transition name. We use service as a stand-in for this
name in the guard box. It may also carry data describing the nature of the service request. The guard
depends only on this event, ensuring that the serviceis aways' available.

3. The output reply event is directed toward the originator of the input event. It may carry data representing
the results of the service.

4. This state -- transition combination is a complete transition network (possibly in parallel with other
transition networks).

SOTVICR
guard action {event }
seriee(V i) Any Action TEPIY(V gpt)

Observe the superficial structural similarity of a service transition and the emul ated active states diagram given in
Chapter 5. The difference is that the guard in an emulated active state refers to the attributes of the object, while a

service transition refers to an outside invoking event.

Readiness

A transition " “fires up" when an event specified in its guard occurs and other conditions in the guard are satisfied.
This raises the issue of what will happen when an event is generated, but a recipient cannot honor the
corresponding transition because either it isin astate in which no corresponding guards are satisfied or it is busy
in another transition.

Transitions may define the consequences of an object receiving each kind of event when it is not in a state that
ordinarily handlesit. For completeness, models should specify the effects of accepting each receivable event in
each possible state. Alternative transitions include the following.

Inaction.

The event is intentionally" ignored by the recipient. A transition leading back to the originating state consumes
the event without any other actions or consequences. An example is a button mounted on a floor to be used for
registering an elevator direction (up or down). This button is associated with a state space having two states:

« NO request was received, the button lamp is off,
» areguest was received, the button lamp is on.
Pushing the button while the lamp is on generates an event that is ignored.

Queuing.

The event is queued by the recipient. A transition leading back to the originating state contains an action placing
the event on a queue. An example is an elevator accepting floor button events specifying the floors to which it
should arrive. These events may be queued and then serviced in some order.

Queueing implicitly assumes the existence of a state with an associated queue that contains those = remembered"
events that cannot be honored right away. The intended semantics is that when such a state is entered, its queueis
investigated to verify whether atransition can be "“fired up”. We leave the issue open how the queueisto be
ordered and insist only that some commitment be made.

Exception.

The event causes an error condition. A transition contains an action leading to an error state in the recipient, an
error indicator event directed to the sender, and/or events directed to one or more other error handlers.

Communication

Inaction, queuing, and exceptions do not address cases in which an event isissued to arecipient that is busy
within another transition. Interpretations must reflect underlying assumptions about the nature of object
communication. Several are available. While they may reflect vastly different assumptions, each may be
employed to similar effect. Details do not impact the general form of analysis models.

Asynchronous communication.

We assume asynchronous communication by default. A sender may always issue an event, regardless of the
status of the recipient(s). Producer-consumer interaction involves one-way send-and-forget events, including
those directed to multiple recipients. Client-server interaction still requires synchronized waiting by clients.
Asynchronous communication frameworks may be further categorized by their assumptions about the underlying
media

Unbuffered:

Any event that is not accepted in atimely manner is lost.
Buffered:

The media holds events until receivers are able to accept them.

Additional refinements are possible. The mediamay ~ spontaneously” lose events with some known probability,
buffers may have known properties and limitations, etc.

In asynchronous systems, senders need not, and generally cannot distinguish situations in which events have not
yet been received from those in which they have been received but then internally queued. Similarly, senders
cannot distinguish event loss or recipient failure from other postponements.

Synchronous communication.

Analysts may aternatively adopt synchronous communication assumptions. Here, when a sender attempts to
issue an event to abusy recipient, it is blocked waiting for the recipient to finish the current transition. Applied to
producer-consumer interaction, this corresponds to synchronous " rendezvous' interaction in which the producer
walits for the consumer to be ready to accept the event, but does not wait for areply. Thismay inturnlead to a
normal transition by the recipient or any of the above alternatives. Applied to client-server interaction,
synchronous communication corresponds to one part of the process in which the client waits for the server to
issue areply.

In this framework, asynchronous communication may be modeled via synchronous communication in which
every sender-recipient pair is connected by one or more objects serving as communication buffers. Conversely,
rendezvous interaction may be described in asynchronous frameworks via bidirectional communication idiomsin
which the recipient notifies the sender on receipt.

Preemption.

Synchronous frameworks may include preemption requirements as well. One may require that an event issued
while arecipient isin the midst of another transition conceptually cause that transition to be " terminated".
Interruptible transitions may be modeled as variants of the emulated active states described in Chapter 5.

Preemptive events may be acted upon immediately, queued, ignored, or handled via exceptions.

Preemption significantly complicates models, so must be used with care. Modeling preemption requires that
analysts break conceptually meaningful transitions into their finest granularity components, thus specifying all
possible "listening points' during which objects may accept preemptive events.

Interaction Protocols

One-way interaction may be construed as " deeper" than bidirectional interaction. A bidirectional interaction
protocol may be decomposed into two one-way interactions. Other protocols, including the following, may be
constructed as well. (We postpone more precise descriptions of the underlying mechanicsto Part |1, Chapters
20-22)

Acknowledgments.

A receiver of an asynchronous one-way message may send back an acknowledgment of receipt to the sender.
This sometimes assists timing analysis. Without acknowledgment, the originator has “'no idea"' how much time it
takes for the recipient to receive and act upon a message. With an acknowledgment of reception, the originating
object obtains insight in the triggering time (an upper bound) but its waiting time is unbounded in the absence of
other knowledge.

Callbacks.

Rather than issuing acknowledgments, event consumers may generate any kind of event that will be picked up
by the original producer, including a " "reply" of any sort. These interaction schemes are usually termed callbacks,
since areceiver " "calls back" the sender by issuing an appropriate event. Refinements of this explicit
request-reply pattern form the " syntactic sugar” needed to express synchronized bidirectional interaction in terms
of one-way interaction.

Forwarding.

One object may serve as an event mediator for severa others, accepting and forwarding requests on their
behalf. Examples include task delegations 1 in which a™“manager" object breaks up tasks into pieces (each
perhaps requiring specia capabilities) and distributes these subtasks to ~“worker" objects. In bidirectional
versions, the mediator may also forward back areply from aworker to the client. These patterns are described in
more detail in Chapter 9.

1Footnote:

We use the term " "delegation” in an intentionally looser sense than sometimes seen in the OO
literature. We use it to refer to interactions with objects that somehow help the host perform a
particular service or responsibility. We discuss other variants in Chapter 22.

Multicast.

A producer may issue an event received by each member of acertain SET or other collection. Bidirectional
forms include those in which the sender collects replies from any, some, or al recipients.

Time-outs.

Any object engaged in a synchronized interaction may include time-outs that cause it to stop waiting for areply,
acknowledgment, or other event. Time-outs may be specified using the concepts and notations of Chapter 11.

Self-interaction.

A producer object may generate an event for which it just so happens to later serve as the consumer. Thisis
only as useful and common as mailing oneself aletter.

We avoid client-server self-interaction. An object cannot simultaneously wait for and perform a service or
transition, since this would entail being in two states at once. In contrast, many programming languages support
(possibly indirect) recursive self invocations by " suspending” one operation in order to perform another,
ultimately ““unwinding" back. Remember though, that analysis objects are autonomous computational entities. At
adeclarative level, recursive transitions rai se the same questions discussed with respect to active states in
Chapter 5. Any usage invites clarification. For example, if one wishes to describe objects supporting some form

of suspension, the corresponding transition machinery must be described. Since recursive invocation plays
essentially no role in modeling and problem characterization, we will not do so. However, in Chapter 19 we

describe design-level recursion of ““local" computations that implement analysis-level actions.

Interaction Notations

Transition network notations describe the behavior of a prototypical element of a class independently of therole
that the instances of the class will play in a particular target system. In this section, we describe notations that
indicate the dynamics among partners in an interaction.

Interaction Diagrams

Interaction diagrams are directed graphs with classes as nodes and interaction connections as vertices. The
classes belong to a particular application (or a generic framework). A connection from the class A to the class B
means that instances of class A may communicate in the indicated fashion with instances of class B.

We have two different kinds of connections. Synchronized bidirectional arcs connect a client class and a server
class:

Fequest
miﬁﬂt }? ___ =l Smj.gr

Asynchronous one-way arcs connect an event producer class and event consumer class:

Eneni
Producer } -- = Consumer

Other line styles and conventions could be introduced to abbreviate variant interaction protocols including those
described in the previous section.

An interaction diagram may also include a " stepping stone" marker that glues together different views of an
interaction. These may be used to resolve event name mismatches between producers and consumers, as well as
to accommodate multiple producers and/or consumers. For example:

E1 E2

Producer } ------------------------- O-"-----------"---"---I-' Consuwmer

Stepping-stone ovals may be eliminated by resolving event name mismatches within the associated classes and
specifically directing events to particular recipients. However, it is preferable to instead interpret them as
design-level requirements, obligating designersto install mechanisms that instantiate the indicated connections.
This provides flexibility in how designs may support object interaction without requiring analysts to commit to
particular mechanisms.

Acquaintance Relations

Interaction diagrams describe the nature of interaction among instances of different classes, but they do not
indicate the precise identities of the partners of any given interaction. This knowledge is generally not available
when aclassis defined. There are two reasons for this. First, an interaction partner may be different for each
instance of the class. The class cannot ~"hard-wire" the knowledge. Second, we normally want to define aclassin
ageneric fashion so that it can be used in multiple, open-ended contexts.

Thus, when aclass is defined we should not know what the communication partners are for the instances.
Instead, we should specify only the contract” for bidirectional interactions, or the “"obligations" and the
“expectations' for one-way interactions. Any communication partner satisfying these constraints will do.

This position is argued forcefully by Sullivan and Notkin [13]:

In dynamic modeling ... object-oriented analysis generally fails to externalize representations of
behavioral relationships, instead casting them in terms of direct communications among the related
classes. This produces exactly the intertwining of definitions that externalizing architectural
relationships was intended to avoid. ...

We show that implicit invocation is the dual of explicit method invocation and that adding an
implicit invocation mechanism makes it possible to externalize behavioral relationships.

A generic solution for introducing partnership information is to establish an acquaintance relationship that
relates clients, servers, and services for bidirectional interaction and producers, consumers, and transitions for
one-way interaction. For example, an acquaintance relation may describe those objects involved in withdrawals:

Client @ Aceonnt

Generally, every interaction diagram may be associated with an acquaintance relation describing those partners
from each of the classes that communicate in the indicated manner. Conversely, a single acquaintance relation
may cover severa kinds of interaction among the listed participants.

Acquaintance relations may be annotated and used in the same way as any other relation. For example,
cardinalities may be added to indicate that each sender may interact with multiple recipients. Parametric
instances of the relation may be employed to describe interaction constraints among attributes of a class.

Listing partnerships via acquaintance relations normally provides sufficient information for designers to arrange
that the appropriate interactions occur (see Chapters 16 and 18). Alternatively, when appropriate and desirable,

these matters may be spelled out within analysis models.

For example, interaction partners may possess attributes referring to the appropriate acquaintance relationship. A
client-server partnership can determine the partner of such an attribute. An event generator can similarly
determine the audience for the event. Updating this relationship in the action part of atransition can reflect either
changing the server in aclient-server partnership or the modification of the audience for an event generator.

There are many simpler specia cases. For example, thisinformation may be recorded as attributes inside clients
(or event generators) only. The identities of new partners may be transmitted as event input and output data. Also
we may know all about a particular object's servers and/or audience at the timeit is created. If so, we may
introduce fixed attributes at class definition time, to be set upon initialization.

Interfaces and Signatures

Design and implementation level object-oriented notations collect the names and data associated with events,
forming interfaces describing the input and output capabilities of the instances of each class. Sgnatureslisting
the names of all receivable events and the domains of associated arguments and results facilitate aform of partial
verification. Signature verification for an interaction consists in showing that the client indeed sends the right
kinds of arguments and can handle the reply. This may be performed without having to look inside a design or
implementation.

Signature verification alone is not sufficient to demonstrate correctness. For example, integer addition has the
same signature as integer multiplication, but when an addition is demanded by a client a multiplication offered by
a server would be incorrect. More complete interface characterizations require that client and server expectations
be matched via semantic descriptions, as shown in the examplesin Section 4.

Of course our examples are quite small. In practice, full-blown theorem proving may be required to verify the
correctness of interactions. Still, while many people believe that formal techniques cannot be applied in practice
because current deductive machinery is not powerful enough, we believe instead that a key problem isthe
unavailability of solidified annotation languages and the unavailability of sizable collections of knowledge
formulated in such annotation languages to analysts, designers and implementors.

The story becomes more complicated when asynchronous one-way interaction is considered. Signature
characterizations are again insufficient. But adding semantic characterizations, as for the synchronized case, is

till not enough. We have to ascertain, among other things, that a recipient obtains the correct one in a series of
events generated by an event producer; see[8,9,2].

Interface descriptions play a more central role in the design phase than in analysis. We postpone the introduction
of interfaces and signature-based methods to Part |1 of this book. However, if desired, interface descriptions may
be constructed as summary models in analysis. The design notation presented in Part |1 includes constructs useful
in signature verification and related efforts.

Examples

We revisit the refrigerator example briefly introduced in Chapter 5. The top half of the network belongsto the
engine of the refrigerator. The bottom half describes whether the door is open or closed:

. R

stapMalar
of (I
- _ . _ _ #aniMelor |
apenlloor
Cpen Closed

\ closelaar /

We will add the requirement that the motor will go in the off state as a side effect of the openDoor transition,
provided the motor isin the on state. We will expand the relevant transitions of the door and the motor. Since
both of them are generic, we are not able to express the requested causal connection. That is not surprising after
al. Why would a door know anything about motors? Why would we ""hard-wire" a dependence of a motor's
behavior on changesin a door?

The openDoor transition for the door may be described by elaborating its guards, actions, and events. Because a
door can always be opened when it is closed, the condition for the transition is just TRUE. However, someone
has to open the door. The transition requires an external event, OpenDoor, that does not carry any other
associated data. There are no required actions associated with the transition, but the event Door Opens must be
generated before entering the Open state. Again, this event carries no data.

Cper Door
Clased guard action {event } Open
TEUE
kU Daar(pens
ChpenDoor

We proceed with the similar transition for the motor. The relevant part of this transition is the guard in which we

see the dependency on an event haltMotor:

Stop Mator
guard action {event }
TRUE
haliMalor

The motor may simply ignore a haltMotor event when it is already off:

Ignore Hall Kequest
guard action {event }
TEUE
haliMaior

Observe that the names of the events generated by the door and expected by the motor do not match up. We may
“"glue" them together using interaction diagrams.

We can hook up the event generated when the door opens with the event expected by the motor to stop when it is
running. For illustration, we also extend the example with a temperature sensor that generates an event TmpLow
when the temperature drops below a certain threshold. Thus we have effectively modeled a digunction of events
that can cause the motor to halt:

DoorCpens TmpLow
Daar [-----mmmmmemmmmmmeee - O TempSensor
i hall Motar
¥
Matar

ATM

We revisit afragment of the ATM transition network from Chapter 5:

Eject card & Print init display

Take in card,
Read strip &
Digplay PIN request

Clan’t read atrip

Qﬁhﬁ

Read PIN

Custorner: Cancel or Invalid PIN

Aceept PIN &
Display menu

Customer: Finish Session

In Chapter 5 we described the transition:

Read PIN
guard action {event }
striplnfo’=ok
OK{siripInfa) o
PINInfo’=CletPIN

Reconsider how the ATM object may obtain the PIN data. The original Read PIN transition induces the
“magical” function GetPIN to obtain the PIN data. We will be more redlistic here. Our ATM object is the overal
controller for the physical ATM. We assume that we have similar control objects for physical subsystems such as
the CRT output, the keyboard, the card reader, the bill dispenser, etc.

Let atminput be the intermediary object between the physical keyboard subsystem and our ATM control object.
A synchronous interaction to obtain the PIN data can be achieved by replacing GetPIN by GetPIN(atminput).
We assume then that the atmlnput has a service transition called GetPIN which in its action part produces either
the expected PIN number collected from the keyboard (in some agreed representation) or the information that the

Cancel button was activated.

Alternatively, we can establish an asynchronous connection. We assume then that the atmlnput object has a

transition Provide-user-input, which sends its data via an event Keyb-in that carries the data obtained from the
keyboard (ignoring time-outs):

Prowvide-user-input
guard action {event }
Cut’ = (PIN-data ‘ }
User-data or Cancel) Keyb-in{Chut’)

Subsequently, this event can be picked up by the ATM viathe transition:

Read PIN
guard action {event }
QK {simpInfo
(o) striplnfa’ = ok
KB({PINInfa’)

In order for thiswork, we still have to " glue together” the event producers view with the event consumers view
in an interaction diagram:

Kegh-in{Out’) KB(FINInfa’)
atminpmd |[-------- oo O+ ATM

We can increase our confidence that two communication partners have been plugged together correctly by
describing from both ends what is produced and what is expected. As afirst approximation (ignoring event
sequencing) we get for the event producer:

4-digit-number (Out") or Out' = ~“cancel”

and for the event consumer:

4-digit-number (PINInfo") or PINInfo' = “cancel".

Thus, we have a good match indeed.

Client-Server Interactions

We continue with an example connecting two classes in a client-server relationship. We assume that an ATM
class has atransition named PINCheck. This transition hasin its action box an invocation of an Authenticator
server. A card code and user-provided PIN are sent to the Authenticator possessing a service transition named
CheckPin. This server will reply with yes or no depending on whether the correct PIN has been provided.

PINCheck{cardld, wserPin) = ant
ATM }0

-- ~ Authenticalor
Check Pin{id(fCard, PIN) = reply

This diagram gives us confidence that the requested service formulated by the client transition corresponds with
the functionality offered by the server transition.

This confidence may be strengthened by specifying the domains of the exchanged data. For example, the two
input arguments could be passed along as strings of digits of a certain length. The output could be a boolean

value in any agreed on notation.

We can be even more precise when both interaction parties more fully specify what they expect and what they
can offer. We may then verify that these descriptions match up. For example, the client could expect that the
reply value, which it refers to as out, satisfies:

out = Encrypt(cardld, userPin),
where Encrypt stands for a particular one-way agorithm. Similarly, the server may offer to return:
reply = Encrypt(idOfCard, PIN).

Thiswould settle the matter; expectations and obligations do indeed match. Observe that for this to succeed both
parties have to agree on a common annotation vocabulary.

Summary

In one-way interactions, a producer generates events that are picked up by one or more event consumers. In
synchronized bidirectional interaction, the client waits for the server to reply to arequest. There are additionally
three strategies for dealing with the situation in which arecipient of an event cannot handle it right away,
ignoring the event, queuing it, or raising an exception. Many variant communication and interaction protocols
exist.

Interaction diagrams are useful in the construction of atarget model. Strict encapsulation means that we do not
have to conform to incidental naming conventions of services and/or events. Thus we employ " glue"
conventions to bridge mismatches between clients and consumers and between event producers and event
consumers.

Knowledge of the actual partnersin any interaction need not, and normally should not be known when aclassis
created. Acquaintance relations may be used to describe these partners. Verification of interaction specifications
may be performed by analyzing the expectations and offerings of each participant.

While we have employed a purely declarative framework, we have by now defined the semantics of an abstract
object computational model that may be exploited in design. The following figure summarizes some highlights of
a typical" object using a partly ad hoc notation.

T =1= T e .

condilions

..

>—C Set new walues & state)
>{: EMMﬁﬁﬂhﬂmmmm.:%mnéndh Server
\-.C Asynchronous events >—————--—§~- r---m Consumer

hehamaor

N ——)

Further Reading

Alternative views on behavior specification may be obtained by abstracting away from the OO perspective.
Davis [5] surveys techniques for representing behavioral requirements. These include finite state machines;

StateCharts [10,11]; Petri nets; decision tables and trees; PDL (Programming Design Language), also known as
structured English and pseudocode; REV S (Requirements Engineering Validation System) [7,3,1], an approach
for “stimulus rich" applications; RLP (Requirements Language Processor)[6,4], an approach emphasizing the
use of typical dialogs or stimulus-response sequences; SDL (Specification and Design Language) [12], a
graphical language supporting the primitives state, stimulus, response, task, and decision; and PAISley
(Process-oriented, Applicative, and Interpretable Specification Language) [15,14], an executable language for

describing embedded systems.

At the very least, we may conclude that the quest for a proper behavior specification is not a recent enterprise.
The main twist that OO provides is the decomposition of a system description in weakly dependent entities that
interact according to compatible protocols.

Exercises

1. Classify the following as asynchronous, synchronous, both, or neither:
1. Interactions between the cogwheels in a gearbox.
2. Interactions between people in a conversation.
Interaction between atypist and the keyboard.
I nteractions between a citizen and the state regarding tax payments.

The flows of liquidsin asystem of reservoirs, sinks, pressure regulators, valves, junctions, pumps,
etc.

2. Model the interaction protocols of a business tel ephone system you know, perhaps including:
1. Diding.
2. Call forwarding.

Voice mail.

Automatic callbacks.

Holding.

6. Conference calls.

3. Consider an elevator. (2) Model the interactions between buttons on floors, buttons in the elevator, the
elevator controller, etc. (b) Add multiple elevators.

4. Reconsider the refrigerator with a motor, atemperature sensor, and a door. The motor turns on and off
primarily as prescribed by the temperature sensor. However the motor also halts when the door is opened
and restarts when the door is closed, provided that it is supposed to run according to the temperature
sensor. Describe the classes of all relevant entities, and give the transition networks. Try introducing a
motor controller object.

5. Consider asituation in which atap isused to fill abucket. Can you describe this setting with objects? In
particular, can you model the changing water level in the bucket? If not, why not? If so, sketch the object

o s~ w

o A~ w

interactions.
References
1
M.W. Alford. A requirements engineering methodology for real-time processing requirements. IEEE
Transactions on Software Engineering, SE-3(1), January 1977.
2
K. Apt and E. Olderog. Verification of Sequential and Concurrent Programs. Springer-Verlag, 1991.
3

T.E. Bell and D.C. Bixler. A flow-oriented requirements statement language. In Symposium on Computer
Software Engineering. Polytechnic Press, 1976.

A.M. Davis. RIp: An automated tool for the processing of requirements. In [EEE COMPSAC '79. |EEE,

1979.

5
A .M. Davis. Software Requirements, Analysis and Specification. Prentice-Hall, 1990.

6
A.M. Davisand W. Rataj. Requirements language processing for the effective testing of real-time
software. ACM Software Engineering Notes, November 1978.

7
C. Davisand C. Vick. The software development system. |EEE Transactions on Software Engineering,
SE-3(1), January 1977.

8
D. de Champeaux. Verification of some parallel agorithms. In 7th Annual Pacific Northwest Software
Quality Conference, 1989.

9
R. Fagin, J.Y. Halpern, and M.Y. Vardi. What can machines know? on the properties of knowledge in
distributed systems. JACM, 39(2), April 1992.

10
D. Harel. Statecharts: A visua formalism for complex systems. Science of Computer Programming, 8,
1987.

11
D. Harel. On visual formalisms. Communications of the ACM, May 1988.

12
A. Rockstrom and R. Saracco. Sdl-ccitt specification and description language. | EEE Transactions on
Communications, 30(6), June 1982.

13
K.J. Sullivan and D. Notkin. Behavioral relationships in object-oriented analysis. Technical Report
91-09-03, Department of Computer Science and Engineering, University of Washington, September 1991.

14
P. Zave. An operational approach to requirements specification for embedded systems. |EEE Transactions
on Software Engineering, May 1982.

15

P. Zave and R.T. Y eh. Executable requirements for embedded systems. In Fifth |EEE International
Conference on Software Engineering. IEEE Computer Society Press, 1981.

Next: Chapter 7

Doug Lea
Wed Jan 10 07:53:34 EST 1996

e Chapter 7. Class Relationships

Object-Oriented « Property Inheritance
Systern o Subclasses
Development

o Multiple Inheritance
o Sibling Relationships
o Set Operations

[i AL b e o
Darzglas Lea

Perebape Tours « Inheritance of Relations
e SUMMary

Inheritance is a core concept of the object-oriented paradigm, emerging in two basic contexts, abstraction
and reuse.

Abstraction

First, one may recognize that two constructs A and B have something in common. To avoid having to
deal twice with this shared aspect, one may create a construct C that captures the commonality, remove
this commonality from A and B and restore it in A and B by letting them inherit from C. Consider Apples,
Pears, and Oranges. It may pay off to introduce the notion of Fruit and factor out in Fruit the
commonalities of apples, pears, and oranges. Similarly, it may pay off to introduce the class Account to
capture the commonalities in CheckingAccount, SavingsAccount, BusinessAccount, etc. Hierarchical
abstraction of common features contributes to the overall human understanding of the objects and classes
comprising a system.

Reuse and Specialization

A second reason for using inheritance can arise during model construction. During the construction of,
say, class D, one may recognize that adesired feature of D has been developed already and is available
in, say, class E. Instead of reconstructing this feature, one establishes a directed inheritance link between
D and E. The more specialized class D reuses all features of E. In the programming ream, thisis
sometimes known as "~ programming by differences".

Property Inheritance

The notions subject to inheritance in an analysis, adesign, and an implementation are respectively
properties, computation, and code. Since classes are not described through code in the analysis phase, we
have a more abstract notion of inheritance than seen in OO programming, property inheritance.
Properties consist of declarative class features and associated constraints. (We consider only explicit
features and constraints ruling out features, values, etc.) Property inheritance isin fact the foundation for
inheritance at the design and implementation level (see Chapter 16).

Property inheritance is arelation between a subclass and a

superclass. Class Q is a subclass of superclass P when every attribute, constraint, and transition network
of P isalso an attribute, constraint and transition network of Q and wherever P participatesin a
relationship Q does as well. Additionally, the subclass Q is " "stronger” than P. Instances of Q have all the
definitional properties defined in class P, but are also constrained by at least one additional definitional
feature. Thus, the family of instances of Q is a subfamily of the instances of P. In more detail:

Attributes:

If all instances of P possess attribute a, then so do all instances of Q. All features and constraints
applyingtoainP also apply toain Q.
Relationships:

If there is arelationship between P and a class R, then there is arelationship between Q and R as
well. If thisrelationship is functional and all of P isin the domain of the relationship, then for
every instance g in Q thereis an associated instancer in R.

Transitions:

If the behavior of P is described by atransition network with state Sand transition T, then Q has
state Sand transition T as well.

| nter actions:

If instances of P may interact with, accept event input data describing, and/or generate output
event data describing instances of aclass R, then so may instances of Q.

All classes may be considered to be subclasses of a common base. We consider class Any to describe any
object. It thus serves as the root of any inheritance hierarchy. The class defines no attributes or
transitions. Any is an example of aclassthat is not directly (deterministically) instantiable. No object isa
member only of class Any, but instead of one of its subclasses (or their subclasses, or ...).
Non-instantiable classes are common results of superclass abstraction.

Subclasses

One can simply declare that a class is a subclass of another, for example that class CheckingAccount isa
subclass of the class Account. It is, of course, much more defensible to provide areasoned justification of
why the classis a subclass of the other. In general, inheritance is justifiable when the subclass description
imposes additional features and/or constraints without invalidating any properties described in the
superclass.

We will give a set of more precise justifications, along with examples. In this section we focus on the
definition of a subclass Q with a single superclass P. We will later broaden this to include multiple
inheritance. Thislist of justifications is not exhaustive. Computational justifications will be introduced in
Part |1 (especially Chapter 16).

It is certainly possible to define subclasses justified by more than one application of these cases. It is

another matter whether bundling multiple cases into one inheritance relationship isawise
conceptualization. A good rule of thumb is to proceed step-by-step, while at the same time limiting
construction to subclasses that have a ™ "natural” interpretation.

Additional Attribute

Q adds an attribute to those that it has obtained from P. As an example, a Room has the subclass
Bathroom with the attribute bath of domain Bathtub:

Room

Bathroom

hath

Balfilud

Asillustrated here, our graphical notation of the superclass-subclass inheritance relation isan arc
directed to the superclass.

For another example, consider a bank to be afamily of branches where the headquarters is considered to
be a specia branch. This suggests defining the class Headquarters as a subclass of Branch. We can

distinguish these two classes by giving Headquarters an additional attribute president with domain
Employee:

Branch

Headguariers

president {1

Employee

A variation on thisjustification isfor Q to require that additional elements be contained ina SET or other

collection attribute defined for P, assuming that P does not possess any constraints (e.g., collection size
bounds) that preclude this.

Additional Transition

A subclass Q inherits everything in parent class P, including its transition network. In the simplest case,
the transition network for Q is the same as the transition network for P. This provides transitions "~ for
free" in the subclass. However, it is possible that the transition network of Q contains additionsto P's
transition network.

A subclass may contain additional attributes that in turn generate new states and transitions. For example,
a savings account may have an attribute that describes the interest rate. As aresult, the behavioral
description may have an additional transition that accounts for interest debits. Other examples include:

o Let P beaparticular kind of editor. Q does the same and supports in addition an undo operation.

« Let P beaparticular kind of car. Q has exactly the same features, however it has the additional
behavior that it can be operated in four-wheel drive.

Additional Constraint

Subclass Q may differ from P because Q carries an additional constraint on the attributes of P. For
example, let P be the class of Customers, and Q the class of GoldenCustomers (GC) with the feature that
they have been customersfor at least ten years.

Customes cuslomerSince Date
Qe | cuslomerSince
| customerSince + 10 year £ TODAY

Narrowed Multiplicity

A specia case of additional constraint is a narrowed multiplicity feature. For example, let P be the class
of Airplanes with the multivalued attribute engine having multiplicity feature [0:M] stating that a plane
has zero or more engines. Now let Q be the class of gliders where we narrow down the multiplicity
feature of engineto [O]:

engine {0:M] | Engine

Airplane

Clider | engine {{f

As another example, consider the class of bikes that can have as instances unicycles, bicycles, and
tricycles.

wheel {1:9] . Wheel

Bike

Bicyde | wheol [2]

Narrowed Domain

Assume that P has an attribute with the class PR as a value domain. Subclass Q differs from P because it
has for this attribute the value domain QR instead of the value domain PR, where QR is a subclass of PR.
Thus, we see that the subclass notion has a recursive component.

As an example, let P be the class Person having the attribute countryOfBirth where the value domain PR
isegual to Country. Let Q be the class European. We choose EuropeanCountry as the corresponding
value domain QR. Indeed, with this choice QR is a subclass of PR and thus Q is a subclass of P:

FPerson) L - Country

| conntry(}fBirth

'1r

Enropean EurapeanConnlry

Fixed Domain

Subclass attributes may be narrowed down to fixed values. To extend the previous case, instead of being
restricted to a subclass of PR, Q's attribute may be fixed to a certain value of PR, say, qr.

Elaborating the previous example, Canadian becomes a subclass of Person by fixing the value domain of
countryOfBirth to the instance Canada of the class Country.

conntry(lfBirth - Country

FPerson

| conntry(QfBirih - (anada

Canadian

Similarly, we can obtain the subclass Albino out of Mammal by fixing a color attribute in Mammal to
white:

Mammal calar . Clalor

Albina I calor va ihile

Refined Transition

The definition of property inheritance states that any property true of all instances of superclass P must
be true of all instances of subclass Q. The same remarks thus hold for each transition individually. As
with static properties, refined transitions may impose additional constraints as long as they do not
conflict with those of their bases. In particular:

1. Theguardin Q'sversion of atransition must be true whenever that in P'sversion istrue. A guard
describing input event data (arguments) in Q's version must be no more restrictive than that in P's
version. Subclass versions may even accept less constrained data than the base. (This is sometimes
termed argument contravariance.)

2. Q'sversion may include additional actions, for example, to set attributes listed in Q but not P. It

may also include different actions that have equivalent effect with respect to the state and attribute
settings defined for P, aslong as they do not invalidate properties that hold for P. For example, an
action that resultsin an attribute being set to true in P's version cannot be redefined to set it to
falsein Q'sversion.

3. Q'sversion may list additional output events. For example, a checking account deposit transition
may generate a makeReceipt event in addition to updating the balance. Also, output event data
(results) in Q's version must obey P's constraints. Subclass versions may even strengthen
guarantees about reply values. (Thisis sometimes termed result covariance.)

Most considerations governing guard, action, and event refinement impact subclassing mechanics with
respect to the interfaces and signatures employed at the design level (Chapter 21) where different

subclasses describe different ways of representing and computing properties.

Multiple Inheritance

A subclass may have two or more superclasses, inheriting all properties and constraints from each. For
example, we may introduce an account that combines the features of a checking account and a savings
account, a so-called BahamaAccount:

Checking Sanings

BahamaA ccound

minimumBalance defanll $10M
- -

Careless use of multiple inheritance can result in the introduction of frivolous subclasses that do not
describe any possible instance. For example, one may define a meaningless subclass that inherits from,
say, both Account and Mammal. Such constructions may be avoided by demanding that every defined
class beillustrated with at least one prototypical instance.

Attribute Ambiguity

In multiple inheritance, equal attributes from multiple sources are projected into a single occurrence. This

Is one reason that different concepts and roles should not be associated with the same namein OO
models. For example, consider the class of employees who are also clients:

Person ‘

I 1

Employee ‘ Client

I 1

EmployeeClient

Multiple inheritance may lead to ambiguity when a subclass inherits a feature that has two or more
different interpretations in the different superclasses. For example, suppose that both the class Employee
and the class Client introduce an attribute address. Assume that the value domain for addressin
Employeeis, say, LongAddress (supporting an extended zip code), while the value domain for addressin
Client is ShortAddress. What is the domain for address in EmployeeClient?

It isthe responsibility of the analyst (and/or a support tool) to avoid or repair these ambiguities. Here,
one solution is to redefine the class Client by making it a subclass of the class ClientNA, which islike the
original Client class but does not have the address attribute. The ShortAddress attribute may then be
added to Client. Class EmployeeClient avoids the address ambiguity by inheriting from both Employee
and ClientNA. Letting LA stand for LongAddress and SA for ShortAddress, we obtain:

ClentNA

y !

Employee

‘uddmss

Client

address

Employee Client

Alternatively, the ancestor class Person could be subdivided in an analogous fashion. For example,

subclass PersonWithLongAddress could be made the common superclass of Employeel A and ClientLA.
Pushing the distinction up one level has the advantage of addressing similar ambiguities that may arisein
any additional Person subclasses that are introduced. An even better strategy isto use only one form of
Address, if thisis possible.

Sibling Relationships

The relationship among the n sibling subclasses Q1, Q2, ... Qn of superclass P may be stronger than
indicated by the mere fact that they are all subclasses of the same superclass. We discuss three special
cases, exclusion, covering, and partitioning.

Exclusion

We may know that sibling subclasses are definitionally digoint, thus exclude each other. Among other
constraints, thisimplies that if we have an instance of Q1 then we know that this instance does not satisfy
the definitional characteristics of Q2, ... Qn.

For example, clients may be divided into two definitionally exclusive categories:
P =the class of clients

Q1 = those clients that are also employees

Q2 = those clients that are not employees.

For another example, assume that different account subclasses have been characterized in terms of
attributes and/or constraints such that they are, in principle, mutually exclusive:

Account = BankAccount + ClientAccount

ClientAccount = Personal + Joint + Business

A +"isconventionally used in textua listings of digoint classes. We also denote this graphically as
follows:

Acconmnt

E
BankAcconnl Client Acconnt
FPersanal Jaint Buriness

The subclassesin afamily of subclasses Q1, Q2, ..., Qn of P bearing an exclusion property are connected
in an indirect way to the superclass P. Their family membership is expressed by connecting them first to
an intermediate box which isin turn is attached to the superclass. This notation is also used for covering
and partitioning. To discriminate among them, we put an E, C, or P in the little intermediate box.

Covering

A set of subclasses Q1, Q2, ..., Qn of P may be defined such that any instance of P must belong to at
least one of the listed subclasses. Asin the previous case, this property applies to any actual collection of
instances of P.

An ill-defined example is a classification of humans into children, adults and elderly. Thisyields overlap
because the boundary between children and adultsis fuzzily defined and a particular person can be
considered to belong to more than one class.

As aprecise example, consider a classification of bank clients in three overlapping categories, where the
ambiguity of aclient qualifying for more than one category isto be resolved at the discretion of a branch
manager:

P = the class of clients

Q1 = regular clients with balances less than $1M

Q2 = golden clients with balances over $0.8M but less than $1B

Q3 = platinum clients with balances over $0.8B.

Partitioning

When a set of subclasses Q1, Q2, ..., Qn of P satisfy the exclusion property and the covering property,
we have a partitioning of P.

We have encountered a partitioning already in the example:
P = the class of clients

Q1 = those clients that are also employees

Q2 = those clients that are not employees.

Every client is either an employee or not, thus we have the covering property. We agreed already on the
exclusion property.

As another example, consider the classification of people according to which region of the world in
which they reside: Africa, America, Antarctica, Asia, Australia, Europe, Oceania. These categories cover
the world and exclude each other. A sometimes-useful technique for transforming an exclusion into a
partitioning isto define an “other” class that describes all features not possessed in the exclusive classes
otherwise defined. This “other” class may later be expanded into subclasses. For example, people of the
world could be partitioned simply as:

Citizen = American + NonAmerican

Later, if necessary, the NonAmerican class could itself be partitioned:

NonAmerican = European + African + ...

In turn, each of these may be subject to further refinement, for example:

European = British + Continental.

Partitioning sibling classes often makes them easier to reason about. All possible instance classifications
are accounted for. Partitioning properties (when they can be ascertained) also have ramifications for
design and subsequent implementation. For example, they sometimes simplify the construction of
conditional expressions. When we know about or have estimates of the relative sizes of a partitioning, we
should register these insights as well.

If some instances may belong to the superclass only, and not of any particular subclass, then these
measures do not partition all instances into exactly one of the subclasses. For example, people whose
citizenship may change can be described only as Citizen, not one of its subclasses. When variability on
such adimension is the norm, the entire subclass structure is usually best employed to describe
partitioned attributes of instances of other classes, not as the main classification hierarchy.

Multiple Relationships

A class may bear more than one family of exclusions, coverings and/or partitionings. These sets are
independent (or orthogonal) when the intersection of any tuple of subclasses taken from the different
characterizations is nonempty. As an example, consider the following sets of properties describing
Humans:

Nationality = American + NonAmerican

Gender = Female + Male

Height = Short (< 1.6m) + Medium + Tall (> 1.8m).

All crossings are permitted. For example, the intersection of Americans, females, and people of height
less than 1.6m leads to a meaningful class.

Assuming that each of these have been described as subclass structures, there are two variant techniques
for using them to derive new subclasses, attribute narrowing and mixint inheritance. In the first,
properties are listed as attributes of a base class, and narrowed in subclasses. The superclass may list
unconstrained domains, and the subclass constrained ones:

Human
hi)
» Heighi
nal . Chtizen
der
uaL o Clender
ShortAmericanFemale
hi
’ Short
nal
American
der
ok . Female
1Footnote:

The term “"mixin" has grown to be used so commonly in a particular technical sense to have
lost its hyphen. This also true of afew other terms, including "~ callback”

Using mixin inheritance, classes representing completely independent properties are " mixed together"
viamultiple inheritance in the target class. The superclasses used in mixin inheritance are often totally
useless, and even unnatural by themselves, but readily combine with others to form meaningful classes.

For example:

Start

American

Female

Shart American Female

Independence

The previous example illustrated two different strategies for relating partitioned attribute structures
through inheritance. While similar, these are not always equivalent in effect. For example, consider a
MailingLabel class with a set of attributes containing no explicit codependency constraints:

MailingLahel

TETNE

slrect

T

city

1r

znpcode

'1r

=
| ol

String
String
Slring

Number

While unstated, there are some implicit constraints among the attributes, especially the fact that together
they describe an actual postal address. However, these constraints are not even specifiable without
recourse to amodel of the entire postal system, and thus, probably, of the entire planet.

There are many ways in which these properties could have been factored into classes. One extreme isto
create a class for each attribute and then to use multiple inheritance to bind them together:

Name SirestAddr Clity ZipClode

MailingLahel

This class structure suggests that the different aspects of a MailingLabel may be viewed ""in isolation".
But thisis not necessarily true, especialy if each of the mixed-in classes contains a transition that
changes the value of the single attribute it maintains. Changing, say, the city surely requires changesin
the zipcode. When properties are truly orthogonal, multiple inheritance is a good way of describing
property combinations. But the implicit constraints that the parts together form alegal address indicate
otherwise here (and in nearly al similar situations). Most often, interdependencies are much more
explicit than in this example, thus arguing immediately against multiple inheritance.

Here, an intermediate factoring is more attractive. By isolating the address properties in an Address class,
we can still structurally reflect the cohesion of the address attributes. The MailingLabel class then
connects the address to a name. By doing this, we will have created an Address class that seems generally
useful beyond what is needed for mailing label purposes.

Construction of an Address classis, of course, a pretty obvious maneuver. But once we have broken out
Address, we can think about extending and refactoring this new class. For example, it seemslike a bad
ideato use a zip code attribute, since this only applies to addresses in the United States. It seems safe to
say that all addresses, world wide, need street and city properties (or surrogates such as post office boxes,
which are OK since these are just uninterpreted string attributes). But different countries have different
postal codes and/or other information required on mailing labels. This could be captured through
standard subclassing mechanics.

Adding Attributes

Asillustrated in the previous example, inheritance may be used to help elicit and flesh out tacit
dependencies among attributes. Attempts to factor classes into hierarchies may also reveal attributes that
were not originally listed in classes, but only implicitly assumed.

For example, an Employee class might be defined as a subclass of Person, with additional attributes such
as salary. But there may be other properties that distinguish employees from people in general that
nobody bothered to list. Assuming that this classis used in our banking application, an obvious oneisthe
predicate worksFor AB, which is true for employees but not others, and similarly for isEmployed,

mayPar klnEmployeel ot, and perhaps many others.

It is sometimes difficult to avoid implicit distinctions during initial class definition. There may be
innumerable ways in which objects of conceptually defined subclasses differ from those of their

superclasses. These are only made explicit when analysts notice their importance in a given model or
hierarchy. Leaving them implicit can be a source of error. Of course, the best solution isto add
appropriate attributes. For example:

Ferson
F1
mayPark _ boalean
atherAliribuics
‘ - | ‘
Employes NonEmployee
‘ mayPark v lrnie ‘ mayPark .o Jaise

Alternative Notations

A simple and useful device for organizing attempts to factor and partition classes forms the heart of the
Demeter tool system [3]. Classes and properties may be viewed in a notation similar to that used for
describing formal grammars. In the Demeter notation, any class may have only properties (written using
“=") or may be a superclass of any of a number of aternative subclasses (writtenas " ... |...").

For example, suppose we started dissecting our MailingLabel class as:
MailingLabel = Name Address

Address: USAddress | CanadianAddress

USAddress = Street City ZipCode

CanadianAddress = Street City CanadianPostal Code

After looking at thingsin this way, we might decide to transform it into:
MailingLabel = Name Address

Address = Sreet City PostalCode

Postal Code: ZipCode | CanadianPostal Code

The Demeter system itself incorporates a number of other constructs and notations. Various partitioning
criteria and transformation algorithms may be applied to such representations. For example, it isagood
idea to push attributes as far upwards in a hierarchy as they can go without breaking any interdependency
constraints. Even without tools, this grammatical technique can be avaluable aid.

Set Operations

In Chapter 4 we described sets as extensionally defined analogs of classes. Analogs of set operations may
be applied to existing classes to derive new candidate classes:

| ntersection.

For example, those persons who are clients as well as employees may be described as Client '
Employee.

Summation.

For example, household furniture may be described as
LI(Table, Chair, Couch, Bed).

Subtraction.
For example, persons who are clients but not employees may be described as Client \ Employee.

Class intersection (") has been encountered before. It corresponds to multiple inheritance. Class
summation (L) is similar to abstraction into common superclasses, and subtraction (\) issimilar to
specialization via partitioning.

However, the subclass relations described earlier are based on properties of instances while these set
operations focus on the families of instances themselves. While they may be used directly, set
expressions are often better viewed as invitations to recast the resulting classes in terms of properties and
then apply the resulting mechanics.

Moreover, these operations must be applied carefully to avoid the definition of meaningless classes. For
Instance, the class Rectangular Account is obtained by intersecting Rectangle and Account. Similarly,
EvenNumber and NonEvenNumber surely yield an empty intersection because they form a partitioning of
numbers. Raven and Albino are also not recommended for intersection. Subtracting Adult from Human is
fine. The reverse subtraction is troublesome.

Inheritance of Relations

Inheritance may also be used to abstract and refine relations. Justifications for how arelation Scan
become a specialization of arelation R are similar to those for classes. The most common forms follow.

Additional Constraint

Relation Sdiffers from R because the domains of Sare subject to an additional constraint. For example,
consider the relation between ATMs and branches with respect to where the ATMs are located. Some
(perhaps most) of the ATMs reside at the same location of a particular branch. Others arein malls,
airports, etc. The relationship ATMAssociatedWithBranch (As) is uncommitted about the location of an
ATM. Therefined relation ATMAttachedToBranch (At) holds only for attached ATMs:

S

ATM ‘ Branch
| eddress | 5

N

ATM. address = Bronch.address

Narrowed Domain

A relation may be specialized by narrowing down one or more of its domains. For example, consider
the subrelation of fraudulent account ownership. Letting Crim stand for Criminal Client, LAcc for
LaundryAccount, and FrOwn for FraudulentOwn:

/ﬂ'\ Acoount

[HT

Client

LAce

o |——<pom>

Similarly, a Transfer relationship between accounts may be specialized to an InterestTransfer between
BankAccount and Savings. Letting Trans stand for Transfer, BA for BankAccount, and I Trans for

InterestTransfer:

Acconnt /TTI\

X Aceount
BA | ITra Saings

>

A narrowed domain may also result from multiple inheritance. For example, If we have been convinced
that we can safely create EmployeeClient, we can use this class to refine an Own relationship into an
Own* subrelationship, asin:

Acconnt Client
(hpn ¥ Employeelient

A more classic example of domain narrowing isthe ternary relation R(i, j, k) among the integersi, j, and
k corresponding to addition:

i+j=k

and the ternary relation Se, f, g) among the even integers e, f, and g also with:

et+tf=g.

Fixed Domain

Fixing adomain of Sto a specific value in the corresponding domain of R effectively means that the arity
of the relation Sisless than the arity of R. For example, consider again the ternary relationship R(i, j, k)
among the integersi, j, and k corresponding to:

i+] =Kk,

A refined relation (i, k) can describe successors by fixing | = 1:

I+ 1=k

This may be viewed as a projection of the ternary relation R to the special binary relation S

Summary

Redundancies among classes can be factored out using (multiple) inheritance. Inheritance lays the
foundation for abstraction as well asfor a powerful version of reuse. Inheritance may also induce
relationships among sibling classes, including exclusion, covering, and partitioning. Another approach to
deriving classes focuses on set operations. A second use of inheritance refines relationshipsin order to
achieve similar abstraction and redundancy reductions.

Further Reading

Representative approaches to OO inheritance and subclassing are described in the books edited by
Lenzerini et a [2] and Shriver and Wegner [6]. A somewhat more formal framework for enumerating

subclass justifications may be found in [1]. Opdyke [4] discusses other pragmatic issues in the factoring
of classes.

We have been careful in this chapter to stay away from code inheritance in order to deal first with
property inheritance, the foundation of what some others call subtyping. Some analysis methods are less
conservative. As an example, we quote from Wirfs-Brock et a [7]:

Inheritance is the ability of one class to define the behavior and data structure of its
instances as a superset of the definition of another class or classes. ... Inheritance also allows
us to reuse code; the wheel need not be reinvented every time.

Exercises

1. We have advocated introducing subclasses through the mechanism of applying only one of the
subclassing mechanisms at atime. Multiple inheritance will in general deviate from this advice. Is
the advice wrong? Should multiple inheritance be avoided?

2. To obtain justification for relationship inheritance, we looked into the justification of class
inheritance. Check thelist of classjustifiers and try to construct additional justifiers for
relationship inheritance. Consider, for example, multiple inheritance for relations.

3. Consider adomain with which you are familiar, for example, a university environment, a kitchen,
a hardware store, etc. Describe fragments of such a domain exploiting (multiple) inheritance.

4. Section 2 gave justifications for subclassness. Are there other justifications rooted in the static
realm? If you cannot find others, can you prove that the given list is exhaustive?

5. Doesit make sense to make Human a subclass of Mammal and Male and Femal e subcl asses of
Human? If not, what would be an alternative?

6. Give an example of classesrelated by inheritance, possibly involving multiple inheritance, where
there are at least four levels of parent -- child classes.

7. Asdiscussed in [5], inheritance may be used to capture regularities of events. Exemplify this by
creating classes and subclasses describing MouseEvents.

8. Consider whether one could construct classes using operators that represent:

Swedish electrical engineersresiding in Melbourne.
Swedish electrical engineers not residing in Melbourne.
Grandparents with only male grandchildren.

Morning flights out of Kennedy Airport to LA or Paris.
Federal laws that have not been enforced since 1900.

o s~ wbdhPRE

References

1

K. Lano and H. Haughton. Reasoning and refinement in oo specification languages. In ECOOP
'92. Springer Verlag, 1992.

M. Lenzerini, D. Nardi, and M. Simi. Inheritance Hierarchies in Knowledge Representation and
Programming Languages. Wiley, 1991.

K. Lieberherr and I. Holland. Assuring good style for object-oriented programs. | EEE Software,
September 1989.

W. Opdyke. Refactoring object-oriented frameworks. Technical Report Thesis, University of
Illinois at Urbana-Champain, 1992.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling
and Design. Prentice Hall, 1991.

B. Shriver and P. Wegner, editors. Research Directions in Object-Oriented Programming. MIT
Press, 1987.

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall,
1990.

Next: Chapter 8

Doug Lea
Wed Jan 10 07:54:02 EST 1996

R e
Chapter 8: Instances

Object-Ociented
Systein « Subclasses and Instances
Révelopment o Metaclasses
« Parametric Instances
[¥inis e i hampe s * m
TR e . References

In previous chapters, we have modeled general properties of instances viatheir classes. In this chapter, we
discuss methods for describing those objects that actually exist in a given target system.

Subclasses and Instances

Previous chapters have introduced core notions and notations for describing software systems. Most of
these notions aim at introducing general ~ vocabulary" that can be used not only for describing a particular
system, but also related systems. Thisis one reason why basic OOA techniques may be used for an
object-oriented domain analysis. Asdiscussed in Chapters 2 and 13, domain analysisis an activity that
identifies generic, core concepts, frameworks, architectures, etc., that are likely to be relevant for the
analysis of multiple future systemsin the target domain. Nearly all OOA activities ordinarily produce at
least some models that are more general than necessary for the system at hand. Indeed, thisis a distinct
advantage of the OO approach.

However, construction of any particular system often requires that instances of more specialized classes
be put together into a system configuration. For example, most of our illustrative Account, ATM, Client,
etc., classes have been fairly generic. They have not always included features that may be peculiar to the
instances that popul ate American Bank.

The need to specialize immediately raises the question: How much class-based specialization is enough?
For example, must the Account class be specialized to ABAccount, or can each account object in the
American Bank system be described simply as an instance of class Account?

When one class adds attributes (perhaps with corresponding states and transitions) to those of another,
then subclassing is always called for unless the added attribute may be meaningfully considered as
optional ([0:1]) in the superclass. In other cases, it is sometimes a matter of raw judgment whether a class
should be divided into subclasses describing groups of instances or whether those instances should be
described as variants of the same class. Initial models usually provide at least preliminary commitments
about the depth and granularity of subclassing for a particular domain. Target system-specific refinements
are not always bound by such commitments. Sometimesit is sensible to use deeper or even shallower
hierarchies.!

1Footnote:

Similar concerns apply in the design phase, where concretely instantiable classes are defined
as subclasses of analysis-level classes. Different subclasses and/or instances are constructed
to reflect different ways of representing and computing static and dynamic properties. See
Chapter 16.

For example, in our MailingLabel classes (Chapter 7), we might have been content to declare that all

MailingLabels contain an uninterpreted string value representing postal codes. In that case, U.S.,
Canadian, French, etc., codes could all be accommodated without having to declare subclasses. In the
other direction, we could have created one subclass per City, and grouped instances even more finely.
Ultimately, we could have isolated every individual mailing label object in its own unique class.

While there can be no recipes for making decisions about when to use subclasses and when to use
Instances, some guidelines exist. Generally, overclassification is easier to deal with than
underclassification. The extreme tactic of defining one class Object with all possible attributes listed as
optional and all possible input events ignored does not get you very far in object-oriented development. On
the other hand, the extreme case of defining one class per entity can be tolerated if all reasonable
superclasses have also been defined. Others need only use those properties in which they are interested, by
referencing the appropriate superclass. Prototype-based OO systems (e.g., the OO language SELF [3])
implicitly take aform of this extreme position by not even supporting a class construct. There are only
individuals, along with mechanisms for creating new individuals with properties similar to those of
existing ones. Class-based frameworks allow simpler descriptions of commonalities among objects.
However, even here, the notion that each object has a unique identity might be interpreted in part as away
of making up for the coarse granularity of most class descriptions. Unless all objects of a class share all
properties and are immutable, when the specific values of a set of attributes are required, one must
describe, say, "instance XYZ_423", rather than ~“any instance of class XYZ".

We illustrate other considerations with the ubiquitous example of whether to create class Square asa
subclass of Rectangle.

Constraints.

Subclassing is by far the best way to subdivide sets of instances that carry additional invariant constraints.
For example, it may be insufficiently precise to construct square objects only as instances of class
Rectangle. Declaring a Squar e class alows ssimpler expression and exploitation of the definitional
requirement that squares are rectangles with sides that are always equal.

Client interactions.

When different subsets of instances interact with different kinds of clients or support significantly different
client applications, these clients become easier to model if the instances are differentiated through
subclassing. For example, if squares are drawn by special-purpose square rendering objects, then
distinguishing them as different subclasses simplifies description of the different interactions. Thisisan
application of the justification rule in Chapter 7 for subclassing on the basis of narrowed relations. If the
SquareRenderer is asubclass of Renderer, then the acquaintance relation between Square and
SquareRenderer specializes that between Rectangle and Renderer.

Mutability and state abstraction.

If instances of Rectangle may change their dimensions (and thus sometimes are square and sometimes not)
then sguareness constraints are not invariant, and the definition of a Square subclass might do more harm
than good. Indeed, if the Rectangle class contains transitions that change one dimension without changing
the other, a Square class should not inherit them, and cannot be defined as a subclass. State abstractionisa
more useful alternative. It would be more fitting to define and employ an isSquare state in the Rectangle
class to discriminate rectangles that happen to have equal sides. This state may even be defined viaaclass
serving as the domain of an appropriate attribute.

Nonsubclassed groupings.

One reasonable compromise for squares would be to define both Square and Rectangles as classes, but not
to make Sguare a subclass of Rectangle or vice versa. They may however share some other ancestor that
does not list mutative transitions. Rectangles that just happen to be square for awhile would not belong to
class Square. The resulting subclass structure is not always as simple or aesthetically pleasing, but can
make for good pragmatics. Thisis entirely analogous to programming language distinctions between

r eal s, that sometimes assume integral values, versusi nt eger s, that aways do. Even though there are
some deeper relations between them, they are treated as distinct unrelated types for the sake of practicality.

Metaclasses

In the same way that a class has instances, we may consider regular classes to be instances of a metaclass
named Meta. This allows all properties of regular classes to be described in a common manner.

M etaclasses provide a purely declarative basis for analysis level descriptions of object management. We
can summarize descriptions of classes presented in previous chapters by defining class Meta, that includes
as attributes those features we have ascribed to regular classes. One possible version is as follows:

Mela

Object Construction and Deletion

dassName . Siring
meta(lass defanit Meia
Class .

super(lasses SET/(Class) default . { Any}
aliribinle

i SET(Attribute)

lrainls

ke SET(Consiraint)
i .
e SET (TransitionNetwork)
iniRla
e SET(Instance)

By giving Meta the attribute instances we specify that every regular class can keep track of its instances.
Describing the mechanism for creating and deleting instances is now a matter of establishing service

transitions;

New
guard action {event }

I = h-inslance
e fres reply(1)
inglances’ =

instances |J {1}

The fresh-instance | must beinitialized in accord with al constraints and defaults. There may be several
variant New services that include requests to override defaults. A similar transition describes the deletion
of an instance:

Delete
guard action {event}
delete(T) inslances’ = reply
instances \, {I}

Parametric Instances

While we may use metaclasses to describe the construction of instances in atarget system, we would also
like to be able to refer to the instances more abstractly, without necessarily having to say anything about
how or when they are created. To enable this, we introduce the notion of a parametric instance (P1).

Like aregular instance, a Pl denotes a unique instance of a certain class which isfixed over the lifetime of
asystem. However, unlike a normal instance, there is no commitment about the exact identity of the
instance. Pls are similar to roles (attributes) in ordinary classes in that they describe any instance that may
occupy such arole. They differ only in that Pls describe " "top-level” roles that are not necessarily listed
within other classesin a system.

For example, in our banking domain, we may want to focus on the subsystem of a branch -- not a
particular branch, but a generic branch. We would like the ability to refer within this system to the branch
itself. We may not want to freeze the branch to a particular instance, because we want to have a
description that applies to any branch. Thus, we choose to represent the branch asaPl.

We use open circles to denote parametric instances. For example, our branch PI:

hranchX
. » Branch

Usually, the most notable features of a parametric instance lie in its relationships to other Pls. These may
be expressed using parametric relation instances (PRISs), first encountered in Chapter 4. For example, to
indicate that a certain unique employee manages a certain unique branch:

Employee Manages Branch

{0 O {
emplogee X \/ hranchX

In addition, we may introduce a " utility" bank account that is associated with the branch viathe
relationship BranchBankAccount (abbreviated as BrBnkA). We show as well that the branch manager is
the ““owner" of the branch account in the sense that he or sheis Authorized to deal with this account:

/§>

BrkAccnt Awthrzd Employee Manages Branch

ha X hir X

¢
A\
3
)
<

An aternative to using multiple PIsis to construct a class System that includes as attributes all stable
instances in the system. A single PI of class System may then be used to represent the system. The

attributes of System may be constrained using parametric relation instances in exactly the same way asis
donefor PIs.

Summary

I nstances must be specified to populate a particular system. Description of target-system-specific instances
Is sometimes facilitated by subclassing. Metaclasses provide a declarative framework for describing class
features and object construction and deletion. Networks of parametric instances joined by parametric
relation instances express features and constraints of the instancesin atarget system. These allow for the
construction of generic models where we need instances, but do not as yet want to commit to what these
Instances are.

Further Reading

There are few existing alternatives to the constructs described in this chapter. An exception is Embley et a
[1] who introduce (in addition to instances) the notion of aclass that has only a single instance. This

facilitates the representation of top level notions such as " the president of the company”, " the personnel
department”, " headquarters”, without having to be specific about a unique president, personnel department
or headquarters.

The reader interested in meta-stuff is encouraged to study [2]. A quote from its introduction:

M etaobject protocols are interfaces to the language that give users the ability to incrementally
modify the language's behavior and implementation, as well as the ability to write programs
within the language.

Exercises

1. Consider making amodel of an elementary school. What classes, specialized classes, and parametric
instance(s) would you introduce?

2. Extend the transition network of Meta to describe
1. Theintroduction and removal of user class attributes.
2. Theintroduction and removal of user classes.

References

1

D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon
Press/Prentice Hall, 1992.

G. Kiczales, J. desRivieres, and D.G. Bobrow. The Art of the Metaobject Protocol. MIT Press,
1991.

D. Ungar. The self papers. Lisp and Symbolic Computation, 1991.
Next: Chapter 9

Doug Lea
Wed Jan 10 07:54:37 EST 1996

Chapter 9: Ensembles

Object-Bciented
Systen « Ensembles
R phent « Exposing Constituents
o Other Decomposition Constructs
e « Ensembles as Systems
e T o Summary

The bottom-up flavor of the object-oriented paradigm sometimes causes the analysis of large systemsto be
problematic. While inheritance provides property abstraction and decomposition mechanisms not available in
other methods, it does not provide task decomposition mechanisms equivalent to those found in structured
analysis (SA). Every processin an SA data flow diagram (DFD) can be ""naturally" decomposed into a sub-DFD
in which the subprocesses together achieve the required top level data transformations. In this chapter, we
describe constructs offering these decomposition advantages while at the same time preserving the inheritance
and behavior modeling advantages of OO.

Decomposition serves severa related needs in software development. Large problems must be subdivided so
they may be addressed by multiple analysts. Independence among the pieces of decomposed problems leads to
more tractable modeling and reasoning. Also, the practical design and implementation of systemsis possible only
when these different pieces can be constructed independently of others. We can appreciate the need for
decomposition when we look at some of the entities occurring in some large systems:

A large cor poration:

adivision, adepartment, an employee, a project, a production unit, a product, an order, afloor in a
building, alocation code, etc.

An airline system:

aflight, an airplane, aflight attendant, a client, aflight schedule, a special meal order, a service schedule, a
luggage door, a payment scale, etc.

A bank:

an interest rate, a branch office, ateller machine, a corporate account, aloan officer, the overseas
department, a monthly statement, etc.

One cannot deny objecthood to any of these notions. However, their juxtaposition imparts an uneasy feeling. The
notions and methods described in previous chapters do not provide the requisite means for decomposing
problems into relatively independent pieces. To resolve this situation, we introduce different abstraction levels
via special objects, ensembles, whose properties facilitate task decomposition and a top-down analysis mode.

Ensembles

Ensembles share with other objects the modeling apparatus outlined in previous chapters. An ensemble has
attributes, has an associated state-transition machine, and has the ability to interact with other objects.

An ensemble differs from the kinds of objects described in Chapter 3 in that it stands for a cluster or bundle of

less abstract entities that are each either objects or lower level subensembles. These constituents are described as
internal to the ensemble, thus ""hidden" from other objects. Constituents interact only among each other or within
the encompassing ensemble. In other words, the ensemble acts as a gateway or manager between its constituents
and the rest of the system and its context.

While the dynamics of an ordinary object may be conceptualized as a sequential machine, an ensemble connotes
an entity with internal parallelism. For example, in the bank domain, we can see an account as an object when
only one transaction at atime is permitted. On the other hand, aloan department with several |oan officers would
be an ensemble because its constituents, the loan officers, may be operating in parallel.

An ensemble hides details of its constituent objects and subensembles that are irrelevant outside the ensemble,
somewhat analogous to an object in OO programming that hides its internal implementation details. We have
previously ignored these aspects of OO encapsulation to focus on the declarative structure of objects and classes.
Asillustrated below, many objects that we have previously modeled using unencapsulated classes are more
appropriately described as ensembles.

Describing Ensembles

In the same way that we like to deal with classes of objects instead of individual objects, we will deal with
classes of ensemblesinstead of individual ensembles.

Attributes can describe the constituent objects and subensembles of an ensemble. Invariant constraints may relate
constituents with self of the ensemble to elaborate the relationship between the two. The relationship between an
ensemble and its constituents may be thought of as subsuming a particular sense of the PartOf relation.

Additional attributes may describe features that apply to the cluster of constituents as awhole; e.g., the number
of constituents. We can also capture information that applies to each of the constituents. Consider afleet of ships
that is represented by an ensemble. The individual ships share the direction in which they are heading. Thus,
direction can be introduced as an attribute of the fleet itself.

When an ensembl e has nonconstituent attributes, it may have a "life of its own". This permits development of a
state-transition model. As an example, we can maintain in afleet an attribute that records the distance of the fleet
to its home port. This allows us, for example, to introduce states near TheHomePort, remoteFromTheHomePort,
and far AwayFromTheHomePort, along with the transition refuel that refers to these attributes.

If an ensembl e has been equipped with a state-transition model, we can also describe ensemble-to-ensemble
and/or ensemble-to-object interactions. For example, an ensemble fleet may communicate with ensemble
homeF|eet representing the different home ports of the shipsin the fleet. An interaction initiated by homeF|eet
could represent acommand for the shipsin the fleet to dock into their respective home ports. An example of an
ensemble-to-constituent interaction would be the fleet giving a directive specifically to one of its ships.

Summary Definition

1. Anensembleisan object with other objects and/or subensembles as its functional constituents.

2. A constituent is a part of at least one and at most one ensemble. (Thus the constituent-ensemble
relationship is not transitive.)

3. An ensemble mediates al interaction between constituents and entities outside the ensemble.
4. Constituents may interact among each other. In other words, constituents may bear acquaintance relations

among one another, but not among objects outside their ensembl es.
5. An ensembleis responsible for the construction and deletion of constituents.

Examples

We use double-vectors to denote ensemble constituents. For example, we can describe a bank as an ensemble,
with its branches (and possibly other entities) as constituents:

Bank

branchii:M]

™ Branch

ATM machines may also be described as ensembles. Properties that we have previously described as attributes
may be relabeled as constituents:

ATM

Sl . Number
address

w Address
sessionManager

* SessionManager
wilnpnt

* ATMInpui
wiCudpul

= ATMChdpd
medialor

- AccServer Medialar
cordFaler

* CerdReader
dirpenser

™ Dhspenser

In order for a constituent to ""talk” to its enclosing ensembl e, the constituent needs to have a handle on this
ensemble. This appliesto any constituent. Thus we can create a class Constituent with the attribute
constituentOf of domain Any. We can then introduce a subclass ATMConstituent where the domain is refined to
ATM, and then use ATMConstituent asamixin class. For instance, we can intersect a generic Input class with
ATMConstituent to produce our ATMInput (or a superclass version of it); similarly for the other constituents. We
show ATMConstituent as a mixin with Input to yield ATMInput.

Clonsiduent Inpul

constitnent Of
— Any
ATMConstduent
» ATM
ATMInput

Similarly, we may consider an ATM to be a constituent of a branch:

Branch

atm{l:M]

- ATM

(Note that the zero lower multiplicity bound still allows branches not to have an ATM.)

Whether it iswise to see ATMs as constituents of branches is another matter. If we do, al interaction between an
ATM and external entities, such as nonlocal accounts, other banks, etc., will have to be mediated by the branch.
Thiswill entail exposing and exporting part of the ATM functionality to its branch.

Exposing Constituents

Constituent encapsulation shields the complexity of the inside world of an ensemble. However, sometimesit is
necessary or desirable to partially expose the behavior component of a particular constituent.

We do not need special notational apparatus to do this. An ensemble (like any object) can have multiple digjoint
transition networks. Exposure of (part of) a constituent can be achieved by " "copying" and " elevating" a coherent
part of atransition network of a constituent as a behavior component of the ensemble. The copied fragment must
be adjusted for the fact that the ensemble itself does not do the work, but instead forwards incoming triggers and
messages to the delegated constituent. Similarly, an event produced by the constituent directed to an external
recipient must be modified such that it is directed instead to the ensemble. The ensemble will take care of the

subsequent transmission to the intended external recipient.

As an example, consider a vacuum cleaner with constituents switch and engine:

VacunmCleaner
sivitch
= CnCffBulion
ETIHRE
= Maotar

The class OnOffButton is a subclass of the class Button with generic transition network:

Turn(2ff

QfF Cn

Twrnln

This transition network is generic in the sense that both transitions are uncommitted to what they control. For
example, the TurnOn transition is not more than:

Turn On
guard action {event }

Turn(n

In general, we do not know how a button is turned on. TurnOn is a placeholder for an incoming event in the
guard. Similarly, we do not know what device will be affected by the TurnOn transition.

The subclass OnOffButton of the class Button will know more about the situation in which it participates, so we
may specialize the transition. Let us assume that it has an attribute vcEngine representing the motor of the
vacuum cleaner. Consequently, its Turn On transition can be refined into:

Turn Om
guard action {event}
(nEngine
TuraCn (ncEngine)

We assume that the motor has a transition network with atransition OnEngine in order to respond to the event
OnEngine(vcEngine).

We may finaly return to the main issue of partialy exporting the transition network of the OnOffButton

constituent to the VacuumCleaner ensemble. Instead of turning on a button (which can be deep down inside a
vacuum cleaner), the vacuum cleaner itself isturned on. This should forward the proper effect to the
OnOffButton constituent. Thus, we can give the vacuum cleaner atransition network:

Turn O ff

i Cn

Turn (i

However, these transitions are merely forwarding activities. For example, the TurnOn transition expands into:

Other Decomposition Constructs

Aggregation

Several analysis methods approach decomposition by describing " aggregates” that are defined using PartOf
relations. PartOf(q, p) stands for the notion that an object g isin some sense a component of another object p.
These methods treat a PartOf connection as an intrinsic concept to model applications and domains.

Unfortunately, PartOf isin practice quite underdefined. Mathematicians usually assume that PartOf is transitive.
Transitivity means:

PartOf(a, b) and PartOf(b, ¢) implies PartOf(a, c).

However, can we entertain the following?

Plato’'s stomach is part of Plato, and
Plato is part of the Greek population, thus
Plato's stomach is part of the Greek population.

One can object that this example is not fair. PartOf has been used here in two different senses, physical PartOf
and aversion of metaphorical PartOf. Thiskind of error is easy to make, especially when in large systems
involving multiple analysts. Most cases do not include quite as obvious misnomers as seen in this example.

Without care, PartOf might mean nothing more than ""is somehow related to". Nearly any use invites
clarification. Do we want PartOf to be transitive? If so, are we prepared to do transitivity inference? Will our
development tools help us enforce transitivity? Will an implementation realizing PartOf enforce and exploit
transitivity?

Rumbaugh et a [5] provide a more specific interpretation of aggregates: If p is an aggregate of g1, g2, ..., gn,
then there is a behavioral connection between p and its constituents (possibly recursively so). To achieve a
particular operation O on p, p will forward this operation O to its components qi, and will perhaps perform some
integration operation. This requires that all elements reachable from an aggregate via the transitive closure of the
PartOf relationship should support this operation.

As an example, consider asking a physical entity e for its weight. When e knows that it is composed of f1, {2, and
f3, it can ask for their weights and reply with the sum of their answers. Similarly, consider the task of copying a
chapter. A chapter consists of sections. A section consists of paragraphs ... consists of characters. Thus when all
the notions in this chain support the notion of copying, then chapters can be copied “"by transitivity".

This version of aggregation still leaves open several matters of interpretation. Circularity is certainly out. But
what about a component being part of more than one aggregate (apart from being implied by transitivity)? Do we
want that? Does the destruction of an aggregate imply the destruction of the components? Does the destruction of
a component imply the destruction of the aggregate?

Ensembles were defined to provide answers to such questions:

« The constituent-to-ensemble relationship is explicitly not transitive. Ensembles introduce abstraction
layers. The constituents of layer N+ 1 reside in layer N and certainly do not reside also in layer N-1.

« While an ensemble manages construction and deletion of constituents, the issue of whether a constituent is
aphysical part of the ensemble is otherwise incidental. If this fact happens to contribute to the model, it
must be expressed separately.

« Ensembles must explicitly forward events to constituents. Ensembles thus allow but do not require
transitive propagation of operations. The development of models that do maintain transitivity remains a
useful option in appropriate situations.

Subsystems

Ensembles are closer to the notion of subsystems developed by Wirfs-Brock et a [7], who motivate themin a

similar fashion. However, they treat subsystems as pure analysis constructs, without any implementation
consequences:

A subsystemisaset of ... classes (and possibly other subsystems) collaborating to fulfill acommon
set of responsibilities....

Subsystems are a concept used to simplify a design. The complexity of alarge application can be
dealt with by first identifying subsystems within it, and treating those subsystems as classes....

Subsystems are only conceptual entities; they do not exist during execution.

We take the opposite position about implementation consequences for ensembles. Like al analysis constructs,
particular ensembles introduced in the analysis phase may indeed be " compiled away" in a subsequent design
phase. However, ensembles with regular attributes in addition to constituent attributes can persist into the
implementation and become " managerial" objects. In fact, ensembles may be seen as declarative analysis-level
versions of the communication-closed layered compositional OO design constructs that play a central rolein Part
Il (or vice versa). The encapsulation and forwarding properties of ensembles (which are not necessarily shared by
subsystem notions) play central rolesin the design phase.

Still, the notion of a subsystem bears a useful additional connotation with respect to development task
decomposition, without commitment to other definitional aspects of ensembles. We will continue to use the term
when highlighting this sense of decomposition.

Ensembles as Systems

Since we have defined an ensembl e to be an object (with additional features) and since an object hasasingle
thread of control, we may wonder whether we can model an entire system faithfully as an ensemble. Consider the
example of a Branch ensemble having multiple ATMs as constituents. How do we ensure with this setup that
multiple interactions can occur at the same time?

We give two answers. First, we can simply expose appropriate parts of the transition networks of the ATMs

through the branches to a bank. Alternatively, we can add to the class Branch an attribute user with the same
multiplicity [0:M] asfor atm and we express through a constraint that user; interacts with atmy. The users may be

modeled explicitly as " stubs’.

Summary

Ensembles are generally “"large" encapsulated objects with a connotation of internal parallelism. They are similar
in nature to subsystems. Ensembles introduce multiple layers of abstraction necessary for dealing with large
target systems. These multiple layers of abstraction complement the bottom-up flavor of the OO paradigm with a
top-down component. This allows a divide-and-conquer development strategy where multiple analysts deal with
relatively independent subsystems.

Ensembles encapsulate their constituents. Inner objects and subensembles cannot directly interact with external
entities. Ensembles have the exclusive responsibility to create and delete their constituents.

Further Reading

Ensembles were introduced in [2]. Much of Booch's [1] treatment of ~"decomposition” may be seen as an account
of ensemble definition. Subsystems are given ample attention in [7], [6] and [4]. Other methods (especially
Rumbaugh et a [5]) postpone subsystem development to the design phase. Alternative high-level class constructs
that are less geared toward problem decomposition are discussed in [3].

Exercises

1. Discuss whether the following pairs of notions can be in the ensemble -- constituent relation:
1. A hand and afinger.
2. A country and a capital.
IBM and its marketing department (assume that it has one).
USA and its defense forces.
The USA government and its defense forces.
A bicycle and awhes!.
The 20th century and 1950.
Y our feet and a smell.
A keyboard and a key.
10. A billiard ball and spherical.
2. Formulate some ensemble -- constituent pairs in the domain of banks.
Formul ate some ensemble -- constituent pairs in the domain of airline reservation systems.

4. Describe afragment of atransition network of an ATM that must be exposed to a branch when we
consider an ATM to be a constituent of a branch.

5. An architecture of a system may be seen as consisting of a high level decomposition in functional
subsystems. What role, if any, could ensembles play in architectural descriptions? (Consider that
sometimes a distinction is made between logical architecture and physical architecture.)

6. We have been critical regarding aggregates and its PartOf relationship. Investigate a domain with which

© 0N Ok

w

you are familiar and see how PartOf can play arolein it. Is PartOf transitive in this domain? If so, what
are the ramifications? How would PartOf be handled in the design? In the implementation?

References

1
G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1990.

2
D. de Champeaux. Object-oriented analysis and top-down software development. In ECOOP '91. Springer
Verlag, 1991.

3
D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon Press/Prentice
Hall, 1992.

4
|. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering.
Addison-Wesley, 1992.

5
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and
Design. Prentice Hall, 1991.

6
S. Shlaer and S.J. Méellor. Object Life Cycles. Modeling the World in States. Y ourdon Press, 1991.

7

R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall, 1990.

Next: Chapter 10

Doug Lea
Wed Jan 10 07:54:51 EST 1996

Chapter 10: Constructing a System Model

Led S wl e
L. . « Requirements Fragment
Object-Oxiented = =
E-]}‘Btem o Use Cases
Dévelopment « Subsystems
« Vocabulary
e Classes
s e « Ensembles
Frerathape Taurs
« Modé€
o Summary

In this chapter, we illustrate the synthesis of atarget system model using the building blocks described in previous
chapters.

The reader may wonder whether such an activity is necessary and, moreover, whether such an activity is still
“analysis' or atransgression into the computational realm of design. It cannot be denied that constructing a model of
an intended system has the flavor of design, at least to the extent that some commitments are made with respect to
(logical) system architecture. At the same time, the relative concreteness of amodel is an advantage for all parties
involved. Analysts are forced to think through the demands of the customer from yet another perspective. The validity
of amodel can be checked by having analysts and customers mentally execute scenarios. Designers will obtain an
abstract model that may be transformed into an executable realization.

We will present a " vertical dice" of an OO analysis, in a sequence corresponding to steps described in more detail in
Chapter 12. We discuss:
1. A requirements fragment.
A few scenarios (use cases).
A few subsystems.
A vocabulary.
A precise expansion of some elementsin the vocabulary.

A model consisting of (prototypical) instances, specialized classes, ensembles and relationships, and a class
interaction diagram that summarizes object interactions.

o gk w0

Requirements Fragment

We envision an ATM transaction menu that will be pulled up by a customer using a certain designated key. The menu
will list several transaction services the branch offers. We will discuss several choices: an automated payments service,
automatic overflow management, and overdraft protection. The customer will select one and run through a series of
submenus to clarify and describe a specific transaction. We assume the usual (circa 1993) ATM hardware
configuration, minimally including a numeric keypad and asmall CRT.

ATM as a subsystem refers to the user interface events on the actual ATM machine. The actions of putting in acard,
collection and verification of same, plus entering the PIN number as additional verification of account person validity

are examples. The transactions available on an ATM include deposits, withdrawals, balance verification and so on. In
our vertical slice of the ATM subsystem, we will discuss card and PIN entry verification and the section of the menu
system dealing with our set of transactions.

Bank as a subsystem is arepository for data and an agent of events from the perspective of the ATM subsystem. In this
example, we will look at the data and events centered around the three transactions being modeled, automated payment
service, automatic overflow management, and overdraft protection. The bank will play aserver role in aclient/server
relationship, where the ATM isthe client and the bank is the server. The bank will also maintain aregistry of all
account verifications involved in transactions as well as registering billing for the three services.

Automated payments service.

A customer can pay bills through an automated payment plan. The automated payment service offers a series of
submenus by which the customer can initiate a payment plan where fixed amount and variable amount bills are paid
automatically. The latter can occur by empowering a recipient to specify an amount due. The customer will be ableto
set time and amount constraints on all automated payments.

When clients select the automated payment service, they are asked to key in the account number of a payment
recipient. Oncethisis verified, a client specifies fixed or variable payment, the timing of the payment (e.g., one time
only, biweekly, weekly, monthly, yearly, any time), and if appropriate, the payment amount or a maximum limit
amount. A series of submenus will be provided to further refine these choices if necessary. For example, if the
customer specifies variable monthly, the customer would have an opportunity to set a payment date and to set a
payment amount limit (a payment would have to be under this amount). After everything has been verified, the client
will be asked to specify a start time (now, or some future date).

The bank plays a central role in the automated payment service. It will manage payments from the checking account
on the appropriate designated dates. It will register and track all variable payment amounts, including registering the
appropriate amount from the recipient, checking it against any constraints and paying it on the designated date (an
event-driven transaction). The bank will also make regular or one-time-only payments of customer-stipulated amounts
to designated recipients on designated dates (a stipulated transaction).

Automatic overflow management.

Customers may specify an account as arecipient of a payment using an automatic overflow management menu series.
This enables a customer's savings account, another checking account, a child's trust account, a money market account,
etc., to be the recipient of overflow amounts in the checking account. The client would enter a maximum checking
account balance that, when reached, would trigger an automatic payment of the overage into the specified account.

The bank will again manage checking account balance constraints for automatic overflow management. Thistime a
transaction resulting in a maximum overage will result in atriggered withdrawal/deposit into the designated account
(wherever that may be).

Overdraft protection plan.

A customer's checking account may be paid from a designated savings account in order to maintain a minimum
balance. The client would enter an account number that acts as the ~“protector” account (i.e., the account that will pay
the checking account each time a transaction would bring the balance below the minimum). Provided the protector
fund continues to be well endowed with money, the balance will never fall below the minimum. This account will, of
course, be verified. Then the minimum checking balance will be entered. If a pending transaction will put the account
balance below this figure (which could be $500 or $0.05 or whatever), the designated "~ protector” account will
immediately transfer funds up to the specified minimum maintenance amount.

The bank will keep track of the account checking balance and the balance minimum (and maximum if it exists). It will
also keep track of the designated " protector” account balance. Additionally, it will register any transactions coming in

against the checking account. If atransaction will put the checking account balance below its minimum, the
transaction registry will immediately notify and withdraw the correct balance from the “"protector" account. If the
““protector" account does not have the necessary funds, it will register the notification for later action.

When the protector account does not have enough money to maintain the minimum checking balance, it will register
this situation. When funds are available, it will immediately transfer the amount necessary to maintain the minimum if
the condition still exists. An error will be registered as soon as the minimum is not maintained. When a transaction
occurs and there is not enough in the checking account and the protector account cannot cover the minimum, an error
will be registered leading to a charge by the bank for the overdraft. Thiswill proceed on a transaction-by-transaction
basis. When the protector account again has money it will automatically check the checking account balance and
replenish it to the specified minimum.

A customer may " protect” the protector account. An example of this might be a checking account that is protected by
another checking account, which in turn is protected by atrust account. Protection "cycles" where an account is
protected by another account which is protected by the first account will not be allowed.

Use Cases

The narrative in the previous section explains the functionality to be supported in a high-level fashion, perhaps as
produced by a marketing department. A first step in analysisisto extract scenarios, or use cases that describe the
behavior of a system from an external user's perspective. (A user need not be human. It might be another system as
well.) Use cases were introduced by Jacobson [2,3], who describes them as follows:

A use case is a specific way of using the system by using some part of the functionality. Each use case
constitutes a complete course of eventsinitiated by an actor and it specifies the interaction that takes place
between an actor and the system. A use case is thus a special sequence of related transactions performed
by an actor and the system in adialogue. The collected use cases specify all the existing ways of using the
system.

There are two forms of use cases. The onesillustrated here have the form of linear sequences or timethreads [1]

describing the course of typical system-context interactions. An alternative version gives the interactionsin the form of
atree. The branch points correspond to choices made by the user, with aternative continuations chosen by the
intended system. These are more accurate for capturing all possibilities, and are necessary for capturing worst case
performance requirements. The sequential format eliminates ~“pathological™" continuations and is more likely to
illustrate how a user'sintention is to be achieved.

We provide minimal sketches of the three principal use cases. The details are mainly dreamed up, educated guesses
that are not strictly justified by the requirements. In reality, approval from a customer for such extensionsisto be
obtained early on to avoid more costly rework in alater stage.

Automated Payment Service

Customer puts card into ATM card slot and enters PIN number.

Card verified and main menu presented.

Customer selects the transaction services menu and the corresponding menu is displayed.
Customer selects " automated payment service" and is prompted for the recipient's account number.
Customer enters recipient's account number.

Account verified and a menu with payment schedules is presented.

o 0k wDdPE

10.
11.

Customer selects monthly payment schedule from one-time, biweekly, weekly, bimonthly, monthly, yearly, etc.,
and a submenu refining the payment schedule is presented.

Customer provides the day of the month for the periodic payment. A submenu asking for an amount comes up
with options such as afixed amount or a maximum amount.

Customer selects the maximum amount option and provides as the maximum, $75. A menu asking for the start
date comes up with options such as " "now" or a supplied future date. (Choosing a maximum amount signifies
that thisis a variable payment amount and that the recipient will supply the required amount. The date will be
used as the payment date. The recipient must supply the amount of payment by this date. If a recipient specifies
a payment above the maximum amount, only the maximum will be paid.)

Customer selects " "now" as the start date.
Transaction is verified and approved and the main menu is displayed.

Automatic Overflow Management

o 0k wdpE

©

Same as steps 1 and 2 in the first use case.

Customer selects " transaction services' menu and the corresponding menu is displayed.

Customer selects automatic overflow management” and is prompted for an overflow account number.
Customer enters overflow account number.

Account verified.

Customer enters a maximum balance in checking account. This maximum balance cannot be less or equal to a
minimum balance established on the account. (A customer request for a maximum balance just $1 over the
minimum balance would be allowed with this constraint. The customer may have to be constrained to a greater
difference.)

Customer may select start date as ™ "now" or fill in date.
Transaction is verified and approved.
Customer selects ““main menu" or " exit".

Overdraft Protection

© ©

10.

No ok wdPRE

Same as steps 1 and 2 in the first use case.

Customer selects " transaction services'.

Customer selects " overdraft protection”, and is prompted for the choices of “"bank" or *"protector account".
Customer selects " protector account”.

Customer enters protector account number.

Account verified.

Customer enters minimum balance in checking account. This cannot be more or equal to a maximum balance
established on the account.

Customer selects ' now" as start date.
Transaction is verified and approved.
Customer selects "main menu" or ~exit".

Subsystems

We use templates for structuring the predominantly English descriptions. These " “structured” reformulations of a
reguirements document help prepare for more precise graphical descriptions.

ATM Subsystem

Parent system(s)

The ATM system that consists of the sum of the physical machinery and our software component.
Internal subsystems

Communication input system
Communication output system
Deposit control system
Customer card control system
Dispenser control system
Bank communication system
Other account entities

Generic functionality

Controls the interactions between a customer and either the bank to which the ATM belongs or athird party
financial institution.

Clients of subsystem

Customers,
Service personnel

Servers of subsystem

Customers,
Service personnel,
Bank system and other account entities.

Other subsystems

(None)

Bank Subsystem

Parent system(s)

A Bank system encompassing the central bank offices and all the branches. It includes all the distributed
hardware and software that makes up the bank's automated system.

Internal subsystems

Account tracking system

Deposit control

Withdrawal control

Communication notification
Communication input/output system
Gateway communication system
Payment calendar control

Billing control

Generic functionality

Datarepository for account and billing information.
Communicates with other account system entities.
Acts as the transaction manager for the client.

Clients of subsystem

ATM
Customer

Servers of subsystem

(None)
Other subsystems

(None)

Vocabulary

A vocabulary superficially corresponds to a data dictionary. However, while a data dictionary prepares for the
definition of data structures, a vocabulary prepares for the definitions of classes and related constructs.

We provide structured descriptions of some classes as preparation for their characterization in our graphic formalism.
(We omit for now similar treatments of ensembles, relations, and parametric instances.) Later on, in design, we will
reformulate graphic notations in our textual ODL design language, which will in turn be reformulated into a target
programming language. All these reformulations force us to rethink, each time from a different perspective, what the
task isand how it is to be solved.

Client Class

Parent class(es)

Person
Generic functionality

Uses ATM, produces checks, receives statements, etc.
Clients of class

(None)
Servers of class

(None)
Other interaction classes

Statement, Check, ...
Salient features

name, ssn, address, ...
Salient states

standing: [new, below average, average, above average, excellent]
Salient transitions

change address, add account, close account, change standing

Account Class

Parent class(es)

(None)
Generic functionality

Thisisarecord of financial assets. The usual operations, including deposit, withdrawal, balance inquiry are
supported in addition to advanced actions.

Clients of class

Customer, ATM, Other accounts
Servers of class

Bank, Other accounts
Other interaction classes

ATM, Other accounts
Salient features

clientld, type, balance, balance constraints, date and type of transaction
Salient states

new, open, closed, constrained
Salient transitions

created, ongoing transactions, limiting

Menu Class
Parent class(es)

Main menu
Generic functionality

The menu subsystem is the user interface for the customer. It has a series of question and/or answers and
information to be conveyed to the customer.

Clients of class

Customer
Servers of class

Account
Other interaction classes

Account, Client, Customer
Salient features

transaction type menu, questions, answers, dates, submenu items
Salient states

question, answer, informational
Salient transitions

guery, information collecting, display, traversa

Classes

A systematic attack on class specifications would describe in turn each relevant class, providing for each a static and
dynamic characterization. Instead, we proceed by elaborating material in a ™ natural" way, driven by the use cases.
These examples illustrate how an analyst may traverse the analysis space in an associative manner. A CASE tool
would help track and order these activities.

To begin, we exploit and extend the description of an ATM as given in Chapter 5. The following fragment of the
transition network is relevant for dealing with our use cases:

Read PIN

Clustormer: Cancel or Invalid PIN

1r

52

Accept PIN &
Display menu

Customer: Finish Seasion

T

= 53

Menu Actions

In the &2 -- S3 transition, we can do more than just display the general menu. Since the ATM card has been read
successfully and a correct PIN has been provided, the owner of the card (the client) may be determined. Other
information, including which bank issued the card and which branch isthe “"home" of the client may be determined as
well. At thispoint, asession log is created that contains the client/customer, the date-time, and all transactions. All
these initializations are done by InitAtmSession. Each menu choice in S3 by the customer will lead into a subtransition
network that will ultimately lead back to S3:

Accept PIN
guard action {event }
InitAlmSessi
OK(PINInfa) it
DigplayMenu

Automated Payment Service

When the customer has chosen the Automated Payment Service (APS) option, an instance is created that describes the
desired payment service. There are two similar, but slightly different services; one in which the paying client
determines a fixed amount that should be transferred each time, and the other one in which the recipient stipul ates each
time what the to-be-transferred amount should be:

APS

APSFized

fiz/nar e fiT

amonnl

¥

$Number

The class structure bundles commonalities in the class APS. This allows us to create two subclasses that represent,
respectively, the fixed and variable payment schedules. The subclasses APSFixed and APSVariable exclude each other
(on the fix/var attribute), and together form a partitioning of APS. The two classes also differ in whether afixed

amount or a maximum amount isindicated per transfer.

Fixed Automatic Schedule

Next we deal with the machinery that will trigger the proper transfers, starting with the fixed case. For each automatic

schedule, an instance of FAS (Fixed Automatic Schedule) is created:

FAS

schedule

APSFized

nert Transfer

Date Time

m
fro Acoonunt
1o
Acoonunt
schedule .
[daily, weekly, .. .|
feafvar [fix, var]
APSVariahie
fix/var e DT
mazAmonnt
= SNumber

An instance of this class has a clock triggered transition that will rejuvenate itself at each activation. The initial value
of the attribute nextTransfer will be obtained from the customer during the ATM interaction. The transition network of
aFASis:

Create Transaction
guard action {event }
self newd Trangfer Create Transfer
< §DateTime$ BesetNert Transfer

The expression $DateTime$ in the guard refers to the current time. When the current time has progressed beyond the
time indicated by nextTransfer the transition Create Transaction will fire up. The activity ResetNextTransfer expands
into the description:

nextTransfer' = nextTransfer + self.schedule.schedule

The CreateTransfer activity may consist of creating an instance of the class Transfer introduced in Chapter 3:

Transfer
M
fra Acoconnt
lo
Acoconnt
amannl $ Nusrmzh
nmber
date
Dale

CreateTransfer has accessto all the information to properly initialize a new instance of Transfer. A naive transition
network for Transfer illustrates how the transaction can be effectuated:

Adjust-Accounts,
guard action {event}
Subt(self from, self.amount)
Add{self 1o, self . amonnt)

True

This approach assumes that the Account class transition network supports a Subt(ract) and an Add transition.

Aninstance of Transfer is prototypical of transient objects. It has been initialized when it is entering S1, it executes
during the Sl -- & transition, and then it disappears.

This story isasimplification. System and/or network failures have not been dealt with. Also, logging of atransfer (in
addition to logs maintained by the accounts) has been omitted. Observe as well that we have ignored the little detail of
how to handle the situation when an account has insufficient funds for a transfer. When we discuss the overdraft
protection use case, we will expand the transition network of Transfer to be more realistic.

Variable Automatic Schedule

The VAS (Variable Automatic Schedule) is similar to the FAS:

VAS

schedule

AFPSVariahie

nert Transfer

Date Timne

Again we have asimilar transition network:

Create Transaction
guard action {event }
self nexd Transfer Create Transfer
< §DateTime$ BesetNert Transfer

The only differenceisthat the action CreateTransfer must access the self.to-account through a service transition
invocation of the form

nextPaymentFrom(self.to, self.from)

in order to determine what to fill in for amount in a Transfer instance. Thus we assume that a certain subclass of
Account supports the nextPaymentFrom transition as a service that produces the amount to be transferred by the
requesting account.

In summary, the transition subnetwork of ATM that deals with this use case either needs to generate an instance of
APSFixed together with an instance of FASfor the case of fixed periodic payments, or needs to generate an instance of
APSVariable together with an instance of VASfor the case of variable payments.

Automatic Overflow Management

We assume here that the customer has set up a session with an ATM and that a subtransition network has been entered
as aresult of selecting the Automatic Overflow Management option. The use case requires the customer to provide an
overflow account and a maximum amount to be maintained by the account. A reasonable choice for recording this
information is to add optional attributesto Account:

Account

olher sin
'ﬂ. XYZ
averFlow Acent{(:1]
Acoonunt
marFordcentil:1
0:1] $Number

Instead of adding these optional attributes, we could have created a subclass of Account, such as
AccountWithOverflowManagement, and added these fixed attributes to this subclass. The customer's regular account
would be discontinued after copying over all attributes into a new instance of AccountWithOverflowManagement.

The desired functionality is obtained by adding the following transition network:

Transfer Qverflow
guard action {event }
self halance ;

CreateTransfer

self. mazForAccnl

The action CreateTransfer again has access to all the information to initialize an instance of Transfer that will take
care of the actual operation. The amount to be transferred is obviously:
self.balance - self.maxForAccnt.

Overdraft Protection

An account must be protected so that it cannot fall below acertain level. The level is determined by the bank as a
default or can be strengthened by the client. For example, alimit set by a bank for a checking account is usually $0.
The limit can be negative asis the case for credit lines. However, a client can stipulate that an overdraft protection
service should be activated at a higher level than the bank's limit, for instance to avoid penalties. At the sametime a
level specified by a customer should be less than an overflow level, if this serviceis used. Thus, we have as an
Invariant:

bank-minimum-level <= client-minimum-level < client-overflow-level.

This service will work provided a protecting account is able to transfer funds. Since a protecting account may itself be
protected, we will model atransfer from a protecting account as a request that is generated when a balance falls below
either the minimum level specified by the client or the minimum level specified by the bank.

We are assuming that an Account has an attribute bankMin that expresses the minimum set by the bank and an optional
attribute clientMin that expresses the minimum specified by the client. By adding an optional protecting account, we
obtain:

Account

hankMin
$ Number
pratectingA ccnt{:1]
Acoonunt
chientMini):1
(0:1] $Number

In order to model the desired behavior, we revisit the transition network of a Transfer. The guard in the
Adjust-Accounts transition must be strengthened and the transition must be embedded in a network.

To smplify the diagrams, we ignore a minimum specified by a client. Thus the overdraft protection service will be
triggered here only when the minimum specified by the bank would be surpassed. By strengthening the guard from
Trueinto:

(self.from.balance - self.from.bankMin) >= self.amount

we get the guarantee that the Adjust-Accounts transition does not produce an overdraft. The resulting transition

network is as follows:
Initialize

Adjust-Aceounts if
balance is sufficient

Insufficient
balarnce

Crverdraft processing if
ey protecting account

Generate transfer request from protecting aceount if
protecting account available

Overdraft processing if
tirne-out

Adjust-Accounts if
balance is sufficient

85

The dynamic waiting in state $4 may be surprising. But remember that while doing analysis, the desired functionality
Is described concisely without worrying about performance.

In summary, the transition subnetwork of ATM that deals with this use case needsto fill in the optional attributes into
an account in order to start the service.

Account

Severa extensions to class Account have already been described. Here, we will look at the extensions that must be
made in order for an account to be the recipient of automated payments.

First we give the class Account the optional attribute nextCharge. This attribute associates for each account in the set
what its next payment should be. Thisinformation is accessed periodically viathe service transition
nextPaymentFrom. We omit the mechanism that determines the amount that is to be transferred for every account in
the set and for every pay period:

Acconnd ‘

‘ nertChargef(:1} SET{PAIR{ Acconnt, $Number))

An example transition specifies that every pay period, requests from accounts that have automated variable periodic
payments are serviced:

Ensembles

We have many ensembles in our domain of interest. For example, we have so far been quite casual regarding accounts.
We have suggested that accounts are residing in an unstructured “"ocean”. To be more realistic, we could have made
distinctions between locally maintained accounts, accounts belonging to the American Bank, or another bank's
accounts. These distinctions enable different services to be invoked for different types of accounts.

ATM

In Chapter 9 we described an ATM from an ensembl e perspective. Here, we will add some details, beginning with a

few new properties necessary to support the use cases. First, class ATM must be equipped with the following new
attributes:

stripData,
the information read in from an ATM card.
PIN,
the data provided by the customer for authentication.

customer,
the client that has initiated a session.
account,

an account of aclient; either the account for which overflow management is to be installed or the account for
which overdraft protection isto be installed.

All use cases are realized via subtransition networks that start in S3 and that lead back to S3. They all follow the
pattern of:

1. Obtain the relevant information from the customer.

2. Validate the dataif appropriate and/or have the customer confirm choices.

3. Generate new objects if necessary, asis the case for the automated payment service.

4. Assign the information obtained to attributes of objects.

5. Abort the subnetwork at the customer's request or because the customer cannot provide valid data.

Ensemble Properties

So far, our characterizations in the dynamic model have been high level, essentially ignoring the details where
ensembles have to be acknowledged. For instance, in the transition network of an ATM in Chapter 6, we wrote
bluntly:

Takein card,

Read strip &

Display PIN request

At the same time, we described an ATM as an ensemble with constituents (among others):

ATMInput,

ATMOutput,

CardReader.

A more careful and precise elaboration of “"Take in card" requires describing these activities through interactions via
events between an atm and its constituents.

We will illustrate an interaction inside an ATM ensemble, using the Idle -- Sl transition from Chapter 6.

Take in card & Read strip

Idi o 81
£ Display PIN request =

None of the actions on this transition are actually performed by the ATM ensemble. They are controlled by its
constituents. The ATM ensemble itself need not to be involved in manipulating the card. The only data of interest to
the ATM isthe strip information. The display operation is delegated to another constituent. Consequently, we arrive at
the following interactions with the constituents:

(Get strip data & Display PIN request
guard action {event }

(et striplnfa) Chd (PINRegquest)

We assume here that the expectation Get(striplnfo) is matched by an event generated by the ATMInput constituent, and
dually the Out(PINRequest) will be picked up by the ATMOutput constituent.

Model

Although the context has been quite sketchy, we have assembled most of the salient ingredients of a model of an
ATM.

Parametric Instances

Constructing a model requires the definition of some (parametric) instances. The use cases apply to any ATM and to
any eligible set of accounts. A minimal model consists only of ATMs and Accounts. ATMs may be described as
parametric instances:

atm_X
Cr » ATM

In order to flesh out the model, we must provide at least stubs for the constituents of atm_X. We leave thisas an
exercise. Additionally, the constituents of atm X and the atm_X ensemble itself have to be ““welded" together. Their
Interactions should be described as point to point communications instead of broadcasted events. For details, see the
interaction diagrams in Chapter 6 where they have been introduced and applied to an ATM.

The next step is to add parametric instances of Account, adjoining all relevant classes, ensemble, and relationship
descriptions.

accannt_ X
O H Acoount

The account account_X will play the role of the primary account selected by the customer for respective uses cases.
Similarly, we will have account_Y as recipient for periodic payments and account_Z for overflow account and
protector account.

Use Case Satisfaction

The final step of analysisis model validation. However, machine execution of the model is not possible. Transition
actions in the networks have not been formulated as algorithms but are instead in English (sometimes as structured
English precondition and postcondition formul ations).

To show that the model satisfies the use case scenarios, we may role play the objects in mental walk-throughs. The use
cases we formulated earlier are only the bare minimum. Exception situations and corner cases have to be investigated.
How does the model behave when a customer indicates that the recipient account is the same account as the one that
will be charged for the automated payment service? Is it acceptable to have automated payment services between two
pairs of accounts in both directions?

Stress testing the model may reveal ambiguities or incompleteness in the requirements. Identifying these errorsin an
early stage will save substantial repair costs later. Prototyping efforts may be employed when there are doubts about
correctness. These activities may result in the iteration of various analysis tasks, especially when anaysis (or
development generally) has been performed in vertical slices.

Summary

In this chapter, we have outlined an approach to the construction of amodel for a desired system using notions
developed in the previous chapters. The phase in which semiformal classes, ensembles, and relationships are
developed is preceded with a phase that relies on structured English to describe use cases, subsystems and a
vocabulary. Of course, we do not claim that these two phases (and their subactivities) necessarily be performed in a
breadth-first, waterfall manner. Vertical slices and iterations can be done as necessary (see Chapter 12).

The model produced by an analysisrelies on carefully constructed building blocks. When classes have been defined
with reuse in mind, then they often need to be subclassed to fit the needs of a particular target system (see Chapter 8).

Exercises

1.

~

Provide the subtransition networks of an ATM that deal with the three use cases. They start in S3 and lead back
into S3; see Chapter 10.

Assume that we have extended the use case for automated payment service such that the customer can supply
optionally an expiration date for the service. Extend the models to capture this additional functionality.

We simplified the modeling of the overdraft protection use case. We omitted a client-specified minimum level.
We also ignored the fact that a protecting account, which cannot replenish another account but which obtains
funds later, should ““remember" its obligation. Extend the models that we presented to deal with these
omissions.

Modify the overdraft protection use case such that members of Congress cannot subscribe to this service.
Expand the models to detail what happens when an overdraft occurs. Introduce different categories of clients
where the different categories are penalized differently for overdrafts. Make sure that members of Congress
always get the most severe penalties.

An account can play the role of a protector account provided it is owned by the client that sets up an overdraft
service. Give the details of the transition network (of an ATM?) that enforces this constraint. An account cannot
protect itself, which is a special case of circular protection links. Where is this constraint formulated in the
models?

Expand the ATM model to include other services.
Construct a distributed bank model.

Devisethe ""ultimate" bank services model -- the one that replaces the ATM. (It might use interactive television
from your home, and include new services such as registering and paying everything automatically with no
customer intervention, the five minute home loan interview without paperwork, etc.).

References
1
R. Buhr and R. Casselman. Architecture with pictures. In OOPS_A '92. ACM, 1992.
2
I. Jacobson. Object-oriented development in an industrial environment. In OOPSLA '87. ACM, 1987.
3

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering.
Addison-Wesley, 1992.

Next: Chapter 11

Doug Lea
Wed May 10 07:47:40 EDT 1995

ObiectOciented Chapter 11: Other Requirements

Syisterm
Development « Resources
e Timing
o Other Constraints
e « Summary

Perebope Fonrs

The notions and notations devel oped thus far aim at capturing the intended functionality of the target
system. We have used " “functionality” in a narrow sense, excluding performance specifications, resource
specifications, etc. For instance, we can describe the functionality of a subsystem only by stating that it
performs a sort operation, while omitting a commitment regarding the resources, the number of compute
servers, the performance, upper bounds on processing times, etc. In this chapter, we discuss the treatment
of these so-called ""non-functional requirements’.

Resources

Resource constraints refer to the resources that are available to the executing target system. They do not
refer to constraints that might apply to the development effort of that system.

There are many kinds of constraints, ranging from number and type of underlying compute servers,
avallability and capabilities of primary and secondary storage, accessibility of networks and their
capabilities, and on up to the assumed nature of system infrastructure software.

All these constraints pass right through from the initial requirements phase to the design phase. For
example, compute server constraints are explicitly addressed during the design phase. Other existing
resource constraints must be satisfied somewhere and sometime during design and/or implementation.

However, it is possible that details brought out by the analysis yield the insight that there is a mismatch
between resources that will be available to the target system and the demands of the system. Having too
many available resources can be dealt with easily, but is unusual. Having not enough resources requires
backtracking and resolution at the level of the requirements specifications.

Timing

Timing constraints are usually referred to as real-time constraints. A timing constraint can be formulated

for phenomena at the system-context boundary. Here are some examples.
1. A dial tone must be produced within 0.2 seconds after the phone has been taken of the hook.

2. After acustomer hasinserted an ATM card in an ATM, the customer must be prompted for the
PIN within 0.5 seconds.

3. When a customer has not responded within 30 seconds with a PIN, areminder is displayed. The
session is terminated when the customer has not responded within 45 seconds after the display of
the reminder.

4. The card number -- PIN combination isto be validated within 5 seconds.

5. After the XY Z subsystem is turned off, the pump will continue until the temperature drops, but for
no longer than 5 minutes.

We may classify these constraints into two categories (cf., [2]):

Perfor mance;

Certain actions executed by the system as aresponse to a stimulus from the outside, must be
completed within a certain time window. Items 1, 2, and 4 in the preceding list are examples of
performance constraints.

Alertness:

The system (or a component) should resume control when an external agent (for instance another
system) does not respond/reply within a certain amount of time. Items 3 and 5in thelist are
alertness constraints.

If we look at the system and its context from a bird's-eye view, we see that performance and alertness
timing constraints reduce to the same notion. When the system does not satisfy a performance
requirement, the context will be alerted and will take appropriate actions. Dually, when the context does
not perform from the system's perspective, a system's a ertness mechanism must jump in.

System-context interaction speed is also subject to performance-based timing constraints. For example:
1. Eventsin astream are separated by at least 0.03 seconds.
This constraint indicates that a recipient of the event stream has alower bound on its ability to

process the events, and thus that the generator must not be too fast. Thisillustrates that lower
bounds on time windows sometimes have to be specified.

2. Continuous one-way reliable data exchange must be at least 3 gigabits per second.
This expresses a performance constraint for both partiesin an interaction.

Timing constraints are formulated for the demands of a particular system. This prescribes that notations
for capturing these constraints should be adjoined to target system specific notions.

Annotating Use Cases

Use cases are obvious candidates for timing constraint annotations. For example, we can annotate a
modified fragment of a use case from the previous chapter. The notation { x} denotes a state of affairs at
time x.

o Customer putscard into ATM card dlot { a}. The ATM will read the magnetic strip. The next step
occurs when the strip can be read.

o Customer is prompted for PIN number { b};
b-a<=0.1s.

o Customer enters 4-digit PIN number { c};
c-b<=1m.

« Card verified and presentation of main menu { d};
d-c<=0.1s

Annotating Transitions

Timing constraints described in use cases must be propagated into transition networks. However, to keep
separate reusable generic classes and their transition networks from target system-specific classes and
their transition networks, we must extend only the |atter.

Let's have acloser ook at asimple version of atelephone use case called PhoneSession from a switch
control perspective. A corresponding transition network fragment is depicted in tabular notation:

Init state action result state
phone on hook |take phone off hook |phone off hook
phone off hook |providedial tone |dial tone

dial tone process digit

wait for next digit

wait for next digit |process digit wait for next digit

We may want to express the requirement that the transition provide dial tone should take at most 0.2
seconds. Thisis an example of a performance constraint. To be more precise, we put a bound on the time
that can expire between leaving the phone off hook state and entering the dial tone state. This transition
may imply interaction with third-party objects, which in turn may trigger other activities, nonetheless, the
transition has to reach its goal state in 0.2 seconds. We could use the following notation (where poh
stands for phone off hook, and dt for dial tone):

provide dial tone < (0.2 sec

guard action {event}

As an alternative notation, we may attach time labels to the arcs leaving and entering states, and then
capture the same constraint using an expression that refers to the labels:

prowvide dial tone

{a} {b}

guard action {event }

h-a< .8ec

Annotating Transition Sequences

The second notation scales up when we need to put a bound on a sequence of transitions. Consider an
initialization transition network that contains, for example, two variant sequences:

h-a< crec

Annotating States

The guards of the process digit transitions depend on the occurrence of an externa event, namely, a
customer selecting a (next) digit. We want to provide for atime-out when the customer does not come up
with a (next) digit. Thisis an example of an aertness constraint. A bound should be placed on waiting in
the originating states of these transitions. For instance, a customer may be required to select the first digit
within a minute, and each subsequent digit within 10 seconds (dt stands again for dial tone, wfnd stands
for wait for next digit):

process first digit

guard action {event }

i time-out

TRUE action {event }

process next digit

wfnd guard action | {event}

i time-out

TRUE action {event }

Timing constraints within the states specify that associated guards (which depend on events that describe
the arrival of adigit) should be satisfied within a certain time window. (These diagrams are
oversmplified in that alast digit of a number is recognized through atime-out and that special short
phone numbers are not recognized.)

Timing constraints within states are not necessarily associated with outbound transitions that depend on
events. For example, we can have an object m that monitors an aspect of object p, whereaguardin a
transition in the network of mrefersto the state of affairs of p. When the condition in the guard is not
satisfied for too long a period, atime-out transition takes over. More specifically, consider a power plant
that operates according to its own logic. To improve the safety of the plant, we can have a monitor object
m that watches over sensor p readings. Normal functioning of the sensor p would entail that monitor m
make a transition within a particular time frame. If not, atime-out transition springs into action.

For another example, we revisit afragment of the transition network of an ATM given in Chapter 6:

Eject card & Print init display

Qﬁhﬁ
Take in card, ‘
Read strip &

Display PIN request

Can’t read strip

Read PIN

Clustomer: Caneel or Invalid PIN

Recall that the Idle -- Sl transition has been modeled in Chapter 10 to generate an event targeted at the

ATMOutput constituent. The atm ensemble expects to obtain from its ATMInput constituent aPIN inits
Sl -- 2 Read PIN transition as detailed in Chapter 6.

Suppose that the requirements document specifies that the customer must provide the PIN within a
certain time span. This requirement can be accounted for by adding another time-out transition from Sl
to Fnshd. This paralels the Can't read strip transition and depends on atime limit in Sl

time-out

TRUE action {event }

Constraint Failures

We began by extending a sequential use case with timing annotations. These extensions exposed the
incompleteness of the use case since no remedial actions have been specified when time constraints are
violated. Thisis acceptable for the specification of user-system interaction, but needs remedial action
when ““closing off" the requirements. One may want to be specific about how badly the system behaves
when atiming constraint is not met, taking into account total breakdown versus gradual degradation and
everything in between.

Constraints may be annotated with some indication of the consequences of faillure. For ease of use, these
constraints and consegquences may be organized into general categories. For example, Jacobson et a [4]

provide several classifications of constraintsin real-time systems. A distinction is made between hard
deadlines and soft deadlines. Not meeting a hard deadline results in a disaster. An example is a control
system for an aerodynamically unstable plane. Not meeting a soft deadline results in a degradation of
service. A slowly responding ATM is an example. They also make the distinction between critical,
noncritical, and nonessential services. Critical services have hard deadlines. Noncritical and nonessential
services both have soft deadlines. They differ in that a =" nonessential process may miss its deadlines
without any effect in the near future, but may have an effect in the long term if not executed (for
example, maintenance and bookkeeping functions).”

Other Constraints

Boehm [1] (see aso Davis|[2], chapter 5) mentions the following categories of other constraints:
portability, reliability, efficiency, human engineering, testability, understandability, modifiability. These
are refined into fifteen subcategories including self-containedness, robustness, integrity, and conciseness.
We have nothing to add here at the level of analysis, but do address associated design criteriain Chapter
15.

Summary

Many non-functional requirements pass through analysis and are input to the design and/or the
Implementation phases.

Timing requirements may be classified into performance and alertness constraints. A performance
constraint indicates that a certain operation by the system is to be completed in a certain time window.
An aertness constraint indicates that a system should resume control when an external event does not
occur within a certain time window.

Further Reading

Jacobson et al [4] further categorize time constraints in real-time systems, including for example, those
between periodic and aperiodic processes.

Hoogeboom and Halang [3] argue that time should play a more explicit role in analysis and development.
They propose that processors be equipped with radio receivers to replace the notion of local time by the
“awareness” of global time. They also propose that tasks be scheduled in the same way as done in our
society, using reservations for time slots, priorities, etc. It is hard to disagree with the advantages they
list:
« More problem oriented, since the problem is stated in terms of time. Therefore, it reflects the user's
way of thinking.
« Enhanced predictability. No unpredictable waiting periods due to delay statements of
synchronization operations.
« Improved dependability by checking and early conflict resolution.

« Synchronization and scheduling are treated within the same framework.

Exercises

1. We have equipped an atm ensemble with a dispenser constituent. Assume that the requirements
document specifies that the customer has to take dispensed bills within y seconds. Otherwise, the
dispenser will reabsorb these bills and generate an appropriate alert. Model a dispenser and its
transition network in enough detail to capture this functionality.

2. Model a pump subsystem in which, when the subsystem is turned off, the pump will continue until
the temperature drops to a threshold, but for no longer than 5 minutes.

References

1

B. Boehm. Quantitative evaluation of software quality. In Second | EEE International Conference
on Software Engineering. IEEE Computer Society Press, 1976.

2
A.M. Davis. Software Requirements, Analysis and Soecification. Prentice-Hall, 1990.
3
B. Hoogeboom and W.A. Halang. The concept of time in software engineering for real time
systems. In Third International Conference on Software Engineering for Real Time Systems, 1991.
4

|. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering.
Addison-Wesley, 1992,

Next: Chapter 12

Doug Lea
Wed May 10 07:49:48 EDT 1995

Chapter 12: The Analysis Process
[Eg;;[;n o Software Development Process

Dévelopment « Default Sequence of Steps
e OO Analysis of the OO Analysis Process

o Alternative Processes

[dnifisde i hzmpeox

Dasghs Lea « Tools
Perebope Fours
e« Summary

How does one proceed from the requirements to the design input?

In previous chapters, we have been discussing analysis notions and notations, culminating in the construction of a
model of atarget system. In this chapter, we will concentrate on the process dimension of OOA. We start off by
investigating more general software development process concepts. We describe the OO analysis process abstractly,
making it independent of particular tasks and developers. We informally present a partially ordered set of analysis
activities within this framework. We then illustrate how OOA notions themsel ves can be applied to the more precise
description of fragments of this generic OOA process. We compare the results to alternative approaches, and finally
discuss prospects for corresponding tools.

Software Development Process

The notion of a ™ software devel opment process" can be interpreted in several ways:

1. It can refer to the actual behaviors of ateam of analysts, designers, implementors, and maintainers working on
aparticular development task.

This process emerges (provided the organization has a certain discipline) from a process plan, as described in
(2) below. Such a cooperative activity can be assisted by tools that have knowledge about a particular
development paradigm, that capture the output of team members, that mediate their interactions, that do
version control, that do progress monitoring, etc.

2. It can aso refer to aparticular plan made for a certain devel opment task.

Such a plan would prescribe an intended process execution as outlined in version (1). A process plan is guided
by the process as defined by the paradigm used, asin (3) below, or by features of the task at hand, by
corporate policies, by human and other resources, etc. Such a plan would be the basis for progress monitoring.
It can be used to allocate resources, to help decide what to do in case of plan execution deviations, etc. Again
we can envisage tools that assist in representing plans, deadlines, dependencies, critical paths, etc. Such tools
could, of course, interact with those in version (1).

3. It can refer aswell to generic, recommended, broad-brush scenarios for doing software devel opment.

These scenarios may be seen as providing inspiration for setting up development plansasin (2).
Alternatively, these devel opment process scenarios can act as constraints on those plans.

There are also intermediate interpretations. For instance, a generic, broad brush scenario can be refined by a
commitment to agiven analysis paradigm. In turn, such a paradigm-specific process description can be narrowed to
accommodate the specific properties of an application domain and/or of policies defined by a corporation.

Standard accounts ([5,10], and especially [9]) describe the software development processin ageneraly similar

fashion. Their treatment of the development processis paradigm neutral. As aresult, these authors describe the
development process only in large-granularity components including analysis, design, implementation, compilation,
debugging, etc. Our commitment to the OO paradigm allows us to be more specific. In particular, we will ~~open up”
the OO analysis phase in this chapter. (We will do the same for the design phase in Chapter 15.)

Default Sequence of Steps

In this section, we elaborate on a default sequence of steps for OO analysis:
1. Obtain "complete" requirements.
Describe system-context interaction.
Delineate subsystems.
Develop vocabulary by identifying instances with their classes, ensembles, and relationships.

Elaborate classes and relationships by defining their generic static structure and describing their generic
dynamic dimension.

6. Construct amodel in which the dynamics of objects are wired together.

a s oD

These steps are connected by transformation -- elaboration relationships. The output of the last step, the model,
feeds naturally into the design phase.

Backtracking may occur at any time. Choices made upstream may be revised on the basis of insights gathered
downstream. Tool support is obviously invaluable to help decide what must be scrapped and what can be salvaged.
All steps combined can also be iterated to incorporate feedback from the customer.

Requirements

Whenever arequirements document already exists, the requirements step can be bypassed. It has been argued (e.g.,
by Ward and Brackett [15]) that the analysis phase encompasses the acquisition of the requirements aswell. This
would entail extracting the requirements from the customer while transcribing them into the analysis formalisms.
Although thisis possible, it is not necessarily recommended. Reformulating a =" complete” initial requirements
document allows checks on these requirements.

The notion of completenessisrelative. A natural language description is usually too imprecise or too cumbersome to
yield awatertight system characterization. In addition there may be aspects of the requirements that cannot be
formulated because customers simply do not know what they want. Those aspects, for example, user interfaces, will
have to be elucidated by prototyping.

System-Context Interaction

The behavior description is, of course, a core element of the requirements. Since the requirements language is
usually free-form, any appropriate formalism can be employed. If it has not been done already, prototypical
interaction sequences (use cases) between the context and the target system should be detailed. Corner cases and
exception cases can be useful aswell.

Subsystem Delineation

Splitting up atarget system into weakly interacting subsystemsis the next challenge. Thisstep isintrinsically
heuristic. An intended automatization of a manual system may adopt decompositions that have been already
introduced. For example:

« Acquire data/ Process data/ Return response.
« Ordering / Manufacturing / Delivery / Planning / Accounting.
o User interface/ System logic / Persistent data.

These can all be possibilities for subsystem delineation.

We must be prepared to revisit decisions made in this phase, either on the basis of subsequent interaction with the
client or on the basis of newer insights obtained downstream.

Subsystems are candidates for mapping into ensembles. We will introduce another bundling notion, clusters, in Part
I1. Subsystems and clusters may or may not coincide. Subsystems represent a bundling of entities that are cohesive
in alogical sense. Clustering represents the physical cohesion of objects that will reside within a processon a
compute server. Accounts are an example of objects belonging to a subsystem of a bank that can be scattered
physically in adistributed design and implementation.

Multiple subsystems create multiple options -- breadth first, depth first, or any combination in between. With
multiple analysts, it is attractive to work partially breadth first, where each analyst is responsible for one or more
subsystems.

Vocabulary Development

Vocabulary development may be performed for each subsystem. When multiple analysts are involved and/or when a
single analyst has introduced synonyms, several merging phases may be required to remove duplicates and
synonyms.

Aninitial step involvesthe identification of classes whose instances will make up the system. There are many
approaches. Several of the following categories are based on those described by Firesmith [6].

Abbott's noun approach.

This process relies on a requirements document and more specifically on a description of prototypical system --
context interaction sequences. As described in Chapter 3, objects and their classes are identified by underlining

nouns, pronouns, and noun phrases. Individual (parametric) objects are located by noun phrases that refer to unique
entities such as sensor number 5, the fifth sensor. Verbs and verb phrases can be used to get an initial understanding
of the operations associated with the objects found.

This technique may yield false positives and worse, may fail to locate relevant classes. Another problemisthat a
requirements text contains an abundance of noun phrases. The previous sentence, for example, contains four noun
phrases:

« another problem,
» arequirements text,
« houn phrases,

« an abundance of noun phrases.

Thus one needs to prune judiciously using this approach. Nevertheless, the technique provides afertile starting
point.

Structured approach.

This technigque has the following variants:

« A context diagram shows the external entities with which a software system must interface. Each external
entity that is aterminator in the diagram corresponds to an individual object or class. This approach yields
almost no false positive identifications, according to Firesmith [6].

« A dataflow diagram (DFD) depicts processes, flows of data, and data stores. A data store can be identified as
an object or aclass. Processes associated with a data store can give a hint of the operations to be supported by
the corresponding object.

Using pre-existing DFDs is attractive from a cost perspective, but as observed in Firesmith [6], they often have the
wrong scope: ~ Pieces of the same abstract object or class are often on several DFDs." Devel oping object-oriented
DFDs is recommended only when ““you haveto" (e.g., for contractual or political reasons).l

IFootnote:

A reviewer of this book was a bit more adamant: ~~DFDs, by the admission of the very people who use
them, are useless except to develop some kind of mysterious cult understanding. That data stores can be
identified as objects of classes is absolutely wrong on so many levels of abstraction that | can barely
count them. First, classes should be locales of behavior: the behavioral coupling in a DFD does not
manifest itself in data stores. Second, classes reflect stable abstractions of the application domain; if
they do not, then all these claims of OO supporting long-term maintenance are for naught... Bringing up
DFDs hereisjust stupid. Just say no!"

State approach.

When a state of affairs is mentioned in the requirements document, a candidate object may be used that exhibits that
state. Since one object may support multiple states, we may have to merge candidate objects identified by this
approach. This approach may sound counterintuitive given the presentation sequence of the previous chapters.
Object identification precedes the development of transition networks and thus precedes the description of statesin
these transition networks. However, when " state” is used in an imprecise sense, this approach may lead to the
identification of useful classes.

Attribute approach.

This follows the same pattern as the previous approach. As stated in Firesmith [6]: " For each data abstraction,

identify the corresponding ... class of which it is an attribute.” A data dictionary, if one happens to be available,
might serve as a crude source of inspiration.

Operation approach.

Another variant on the same theme and from the same sourceis: " For each functional abstraction, identify the
corresponding ... class of which it is an operation.”

Relationship approaches.

Three variants are mentioned in Firesmith [6]:
« Anentity in entity-relation diagrams may be seen as afirst approximation of an object/class.

o Similarly, if there is a semantic net description of adomain, the nodes in these nets can be identified as
candidate objects/classes.

« Again, if by some miracle there are message/interaction diagrams, their nodes can be identified as candidates.

Firesmith [6] observes that the construction of the last two diagrams relies on some early insight into at least some
of the relevant objects/classes. CRC cards [1] provide a more direct and fruitful vehicle for eliciting object
relationships and collaborations.

Decomposition approach.

When large objects are found, we may want to look for component objects. The issue of whether alarge object can
be given the status of an ensemble may be ignored at this stage. Components can have different appearances
including spatial PartOf, temporal PartOf, and the many versions of metaphorical PartOf.

Reuse approach.

This entails investigating repositories that capture the ingredients of earlier and similar systems. We can obtain
inspiration from class libraries (possibly produced by a domain analysis) and/or frameworks. Frameworks are
organized sets of classes and related constructs, usually self-contained hierarchies, that intentionally fall short of
specifying those subclasses needed for particular systems and applications. They are skeletons that must be
supplemented by system-specific subclasses and operations. A framework can be an overall ““wrapper" or it can be a
structure for amajor subresponsibility such as persistence or graphical user interaction (see Chapters 13 and 15).

Abstraction approach.

If ““mechanical” approaches fail, we must rely on original thinking. A requirements document and auxiliary sources
of domain knowledge must be scrutinized for the identification of unique and subsequently prototypical objects and
their relationships.

Firesmith [6] suggests looking for the following kinds of items (or sets of them):
« Aggregates or devices.
« Personsor roles.

Organizations.

« Locations.

o Events.

« Interactions.

Shlaer and Méllor [13] present asimilar list:
« Tangible objects, things that exist in the physical world.
Roles, purposes or assignments of people, pieces of equipment, or organizations.
Incidents, some happening or occurrence.
Interactions, associations between objects.
Specification objects that capture rules, standards, or quality criteria.

\

In anew domain, an OO analyst has a great amount of freedom to pick and choose candidate objects, classes, and
relationships. Since not much is at stake at such an early stage, it paysto play around. Mapping physical entities
onto objects and physical events onto events is an obvious choice. However, an analyst also has the freedom to
objectify physical or abstract events. Fitness for use is the general guideline. Minimality of notions, orthogonality of

concepts, naturalness, and unbundledness of functionality are obviously desirable athough potentially conflicting
desiderata

In this early stage, it is better to have false positives that will be weeded out in subsequent refinements than it isto
overlook key concepts. Although we may ultimately need (parametric) instances in the last step of the analysis phase
(model construction), every object should be generalized into a class, even when the model contains only one
instance of aclass.

Class and relation elaboration

An overview of this phase is represented in the diagram introduced in Chapter 2:

inside object |between objects

atic attribute relationship
constraint acquaintanceship
. _|state net and/or |interaction and/or
dynamic|: ;
interface causal connection

Thistable is enclosed in a hidden quantifier:

For every identified class do:
Fill in the entries of the table

In a naive interpretation, we would for each classin turn completely fill in thistable. The right-hand entriesin the
table already imply that thisis not feasible. We need to have some overview of the collection of classesin the
system to describe relationships and inheritance. Similarly, it is useful to have a preliminary insight into potential
interaction partners when the interaction capabilities of class instances are formulated. A more realistic approach for
this phase is captured by:
For every entry of the table do:

For each cl ass do:

El aborate the class as prescribed by the table entry

In what sequence do we traverse the entries in the table? There is no right answer. As we have seen, static and
dynamic descriptions are strongly intertwined. To summarize:

« Attributes define an overall universe representing the cartesian product of the attribute value domains.
« Constraints define a subuniverse space.
« State predicates describe digjoint subspaces that correspond to the states in transition networks.

« A guardin atransition further narrows a state subspace. When multiple transitions emanate from a state, their
guards will define digoint subspaces inside that state space.

« An action on atransition yields a state that is consistent with the properties that define the target state.

Still, as discussed in Chapter 2, we prefer to go from left to right in the first row and then the second row. (See
Section 4 for alternative traversals suggested by other methodologists.) However, inheritance cuts across all steps.
Elaborations and models constructed during any of these activities may reveal acommonality in structure and
behavior between two or more classes. This commonality can be factored out by a (multiple) inheritance

relationship between classes. Such commonalities can also emerge with respect to classesresiding in alibrary of
analysis concepts.

Class Statics

The vocabulary development phase produces candidate classes and relationships. After selecting concise and
evocative names we must describe each class with attributes. Although each class must have a unique name, classes
should be distinguishable on the basis of their attribute characterizations. A rule of thumb isif two classes have
identical attributes, then they are most likely the same. (We have seen exceptionsin Chapters 3 and 5.)

An attribute expresses an essential definitional feature that is shared by all instances of aclass. A minimal
characterization of an attribute consists of the value domain of the attribute and a name that explains the role or
relationship that an attribute value has with respect to the instance to which it belongs. Multivalued attributes may
be annotated with multiplicity characterizations. Defaults for an attribute value and/or multiplicity description can
be formulated in this phase as well. Constraints can restrict attribute value combinations and/or refer to multiplicity
descriptions.

Relationships

Relationships help capture target system-specific knowledge by describing connections among different objects.
Relationships may also be used to modify descriptions in the previous step. For example, when an attribute has a
multiplicity range that includes zero, one may eliminate the attribute and represent this information as arelationship
instead.

Class Dynamics

A transition network can be rigorously developed for a prototypical class instance as soon as the static attribute
characterization is available. Postponing transition specifications until after inheritance class connections are
established sometimes produces an initial transition network " “for free" viainheritance.

States and transitions are dual notions. Whether one enumerates and defines the states or a mixture of the two
depends on the available data. Beyond its name, a state is preferably defined in terms of a predicate on the space of
value combinations of the attributes. An operation on atransition is preferably defined not only by its name but also
by preconditions and postconditions.

Interaction

“"Hard-wiring" interaction connections between prototypical class instances should be avoided. Object interactions
may instead be described through relationships that can later be captured as attributes (or not) as the target system
model is constructed.

Synchronous interaction may be described on the server side with an interface description that details what is
expected from the client and what, if anything, will be delivered. This may consist of signature descriptions,
preconditions and postconditions. Similarly, on the client side, adua description should be formulated to describe
the data to be sent to the server and what is expected from the server. Asynchronous interaction proceeds in asimilar
fashion, via descriptions of events, their producers, and consumers.

Model Construction

The previous activities provide the key building blocks for assembling a model of the target system. The overall
structure, the architecture, is guided by:

« The architecture of asimilar, previously developed system, if any.

« A generic framework, if any applies.

« A specific framework (such as a user interface) that can play the role of a generic framework, if any can be
found.

« Anensemble object that can represent the whole system.
« A family of ensembles or objects that can represent the whole systemin a™ democratic” fashion.

The model is subsequently constructed by recursively filling in the details of this architecture up to the level at
which it becomes obvious that the design phase can construct a computational realization of this descriptive model.

When objects are chosen to interact with each other, we must ascertain that the mutual expectations and obligations
for events and for client-server interactions match. If necessary, application-specific subclasses must be introduced
to pin down interaction partner commitments at this stage.

Model construction may reveal that areas are underconstrained, inconsistent, or ssmply ill defined. If interaction with
the customer does not resolve this situation, prototyping may be used to gather more insights into such unresolved
arees.

OO Analysis of the OO Analysis Process

The presentation in this section isin a sense a meta activity. Metais an ambiguous notion that needs clarification.
We will not use OOA to describe OAN syntax. Neither will we describe the semantics of the OOA constructs.
Instead we will sketch the pragmatic dimension of the OO analysis process. Of course, we will avoid the process
aspects that are team- and project-specific. We will limit ourselves to the abstract, generic interpretation as defined
in Section 1.

We stated earlier that a development activity may change the requirements. New insights can be obtained that will
fill in omissions, add additional constraints, eliminate constraints, or replace existing constraints with others. We
ignore this aspect of the analysis process and focus on the transformation of some frozen version of the requirements
into an analysis model of the target system. However our model does have atraceability infrastructure for dealing
with changes to the requirements.

The first step of an analysis process demands that we obtain requirements and compl ete them as necessary. In our
case, we want to describe the OOA process, so we can refer to the previous section describing default steps and
activities as the requirements document for this enterprise. Subsequently, we ought to provide for system-context
interaction, subsystem delineation and vocabulary development. However, we will bypass these steps. Our
abstraction level eliminates the analyst. We cannot effectively discuss system-context interaction or model
construction. Additionally, the OOA processis too abstract to allow subsystems to be distinguished. The vocabulary
consists of concepts such as class, relationship, instance, attribute, constraint, transition network, state, transition,
etc., so we can go straight into class elaboration.

Graphical Overview

IDEAS fRequjrmnmﬁs

C UseCases Suhﬁ}'stmns>

Veeabulary
C Classes C Instances) Relations)
Model /1 - DESIGN

This diagram may be interpreted as follows:
Boxes.
The IDEAS box represents external input to the analysis process. The DESIGN box denotes the next phase in
the devel opment process.
Ovals:
The ovals denote the artifacts that are constructed in the analysis process. If complete requirements are
initially available then the Requirements oval resides outside the analysis process boundary as well.
Horizontal arcs.
These arcs represent input and output dependencies.
Other lines.

The other linesin the diagram denote dependencies between the artifacts. For example, a class definition
depends on at |east one item in the vocabulary and similarly the model depends on classes, instances and
relations. Phrased differently, an item lower in the diagram is obtained through elaboration of an item or
items higher up in the diagram.

This diagram resembles a class interaction diagram. But while the arcsin an interaction diagram represent
synchronous or asynchronous object interaction capabilities, those lines here denote *"manual™ interventions by
anaysts. During analysis, we reformulate and expand an informal set of requirements into a more formal

description. This transformation is done gradually. UseCases, SubSystems and V ocabulary are till informal in the
sense that they rely on natural language, but at the same time they structure the characterizations by providing
templates. The crossover point isin the elaboration of the items in the Vocabulary into itemsin Classes, Instances,
and Relations.

These items may be further expanded. For example, class development may be represented using the following
diagram:

Vocabulary f Attributes)

C o /L T

Classes

Transitions)

The diagrams contain afew simplifications. For example, "V ocabulary" represents severa different kinds of
categories -- classes, ensembles, relationships and their instances. Also, the main diagram does not capture a
validation step in which a constructed model is checked to ascertain that it satisfies the behaviors expressed by the
use cases.

We have not explicitly represented the introduction of inheritance connections among classes and relationships via
abstraction and specialization. Abstraction of commonalities among classes and relationships may be performed at
any time. Consequently, this operation is global to all the elaboration activities depicted in the diagrams.
Specialization occurs after a preliminary version of a class or relationship has been formulated and it is recognized
that the intended classis already partially realized. Thus this operation can be associated with the behavior of the
class Class.

Statics
Since analysisis akey concept for us, we start with the class Analysis. An instance of class Analysisis arepository
for aparticular analysis task.

When an Analysisinstance is created, a requirements attribute must be initialized with information that has been
““chopped up" into a sequence of "bite-size" fragments labeled Text*. Preferably, each Text* fragment embodies a

singleidea, in the form of aFigure, Table, or smple Text.

These requirements fragments are described as things to be elaborated. Elaboration of analysis fragments is the core
notion that will be expanded when we address the dynamic dimension of these classes.

An agenda attribute registers the elaboration tasks still remaining for a particular analysis project. This attribute will
be initialized as a copy of the requirements attribute. During the course of analysis, it will be elaborated to include
other instances of class AComp (Analysis Component).

An instances attribute refers to identified stable instances of classes, ensembles and relations. The corresponding
classes and relations themsel ves are represented through attributes classes and relations. Most other attributes are
self explanatory. The associated classes will be further detailed as we proceed.

Analysis
reguirements SEQ(Test®)
wee(Cases SET(UseCase)
subsyslems SET({SubSystem)
vacabulary SET{AnalysisCancept)
clagses SET{Class)
relations SET{Relation)
inslances L{CT, EI, BI)
targetModel Maodel
agenda SET(AComp)

In order to establish trace links between the constituents of an analysis, we introduce the four classes AComp,
ACompL, ACompR, and ACompLR.

The class AComp captures overall commonalities among Text*, UseCase, SubSystem, AnalysisConcept, Class and

Relation. We represent the traceability connections with the attributes elaborates and elaboratedin. Alternatively,
we could have introduced a binary relationship Elaborate.

Most constituents have both backward and forward elaboration links. However the requirements captured in Text*
do not have backward links, and a Model, which brings everything together, does not have any elaboration links.

ACamp
elaharates{Q:M] ACompL
eleharaledInii:N,
? n0:N] ACompE
belongsTa
Analysis
completed? Bool
oolean
locked?
Boolean
rationale g ®
exl
Where:
belongsTo

provides a backward reference to the instance of Analysisto which this artifact item belongs.
rationale

allows registration of why a particular elaboration is chosen.
completed?

records whether the current component is considered to be compl ete.
locked?

is superfluous for the task at hand, but could be used by a CASE tool to prevent contention across multiple
analysts.

Class AComp is refined into ACompLR via ACompL and ACompR. Classes ACompL and ACompR differ only in
whether they must have predecessors or successors. This refinement captures the idea that ACompL instances must
have predecessors, that ACompR instances must have successors, and that ACompLR instances must have both
elaboration chains.

AComp

elehoratedIn1:N]

ACempL ACeompE

elahorates(i: M}

ACaompLE

When we create an instance of ACompLR (and hence an instance of ACompR) we may not yet know what its
successors will be. Thus we must give its elaboratedin attribute a dummy value and add this artifact onto the agenda
to ascertain that this attribute will befilled in properly later.

The requirements (of class Text*) represent the start of the traceability chain:

ACompL ‘
A
elaharates [} . ACompL ‘
elaharatedInfi:Nj} LU{ UseCase, SubSysiem, AnalysisConcept)
body .
LU{ Tem, Figure, Tahie)

An instance of the class UseCase describesin a pseudo-formal way a prototypical interaction sequence with atarget
system:

ACompLE ‘

\

UseClase ‘
elahorales
Ter®

elaharatedl

? " AnalysisConcept
indSlale

TeriStiale

actionlLisl

bk SEQ(PAIR(TeriEvent, TertState))

Where:
actionList

describes a UseCase as a sequence of the form:
<Event,, Sate;> <Event,, Sate,.> ... <Event,, Sate,>

initSate

provides a characterization of theinitial state of the interaction sequence. An instance of TextSate is text that
explains a particular external state of affairsin which someone/something can act, yielding an instance of
TextEvent upon which the system can act, which will yield yet another instance of TextSate.

The class SuUbSystem is used to introduce decompositions of the target system. To simplify the situation, we call the
target system itself a SubSystem. Its parent attribute would simply be missing; this effect is achieved by exploiting
the permitted zero multiplicity of the parentSystem attribute. The setup of this multiplicity description permits a
ubSystem to be a constituent of more than one subsystem. Whether this freedom is to be exploited or, alternatively,
whether the subsystem hierarchy should be atreeis up to the analyst.

ACompLE ‘

\

SubSyslem ‘
elahorales S
. ert
elabo] . ACEnsemble
parentSysie
il | SET(SubSystem)
descendantSysie
i Ml o SET(SubSystem)
functionality ——
. erl

The Text** class captures structured text to annotate a subsystem, much as we provided for annotationsin the class
UseCase. We will use Text** in other classes aswell. To provide more guidance for annotations, we could define
specialized versions of Text** that correspond to context-specific templates.

The vocabulary attribute in class Analysisis a set of AnalysisConcepts. The class AnalysisConcept captures the
commonalities of, and is partitioned by, the classes ACClass, ACEnsemble, ACRelationship, ACCI, ACEI and ACRI.
ACClass, ACEnsemble, and ACRelationship provide structured but not yet formal descriptions of their respective
classes, ensemble classes, and relationships. ACCI, ACEI and ACRI capture the kinds of instances (CI, RI, and El,
respectively) in the realm of the target system. The inheritance structure of these classes exploits the fact that an
ensembl e has been conceptualized as a special instance.

The only work done inside AnalysisConcept is that eligible instances of the attribute value restrictions of elaborates
and elaboratedin are constrained:

ACempLE ‘

|

AnalysisConcepl ‘

elaborales

L{ Tez*, UseCase,
SubSysiem)

elahoratedIn/i]

| U(Class, Ensemble,

Relalionsho,
1, EI, B
ACClass ‘ A CRelationship
ACCT ACEI
ACEnsemble ‘ ‘
ACEI

AnalysisConcepts provide focused descriptions of the constituents of an analysis. Of the six (indirect) subclasses of
AnalysisConcept, we give the diagrammatic expansions of only ACClass and ACCI, along with the the associated
class Class. (The othersfollow similarly.) A class description in ACClassis captured textually in Text** and
formally in a Class. Distinguished instances are recorded as ACCIs. Class ACCI includes the attribute i nstanceOf
providing an upward reference to the corresponding ACClass.

Analysis Concept

ACClass ACCT
clahoratedIn elahoraledln
Class - I
clossFeatures instenceFenlures
Text ** i Teat™
instances wnstance
SET(ACCE) of ACCIass
AClampE
(lass
elahorates|1}
ACClass
elahoratedr
a nf] AtCampL
inElanCER
SET{CT)
10
parent(lasses SET{Class)
aliribule
rilintes SET(Attribuie Description)
Irainls
COTIRLTRITI SET(Ggﬂgtmiﬂtﬂesm'ipﬁﬂﬂ)
transdionNetworks

SET(TN)

Note the similarity between class Class and the metaclass framework discussed in Chapter 8.

The binary inheritance relationship between classes is absorbed in the Class attribute parentClass. Alternatively, we
could have used an Inherit relationship:

Inheril

child parent

(lass

Elaboration of the other classes needed in class Class requires commitment to particular representations of class
features. A first approximation of the class AttributeDescription has the form:

Altribnie Descrplion

role

¥

String U AltributeDescription

meinelestriction

NonCOhjectSet | Class

'1r

defaunit Value [0:1]

"r

Nan(hject Value | Instance

valneDistribndion [:1] N ValneDistribution
mudbiplicity [0:1] . SET{NatwalNumber)
defanitMultiplicity [0:1] ~, P degontt A1}
Gl ca Ty b it g) . MultiplicityDistribution
Where:
role

is either a descriptive name for the attribute or areference to an attribute in a parent class that is made more
specific.

valueRestriction
is adescription of aclass from which instances can be attribute values or a description of non-object values.
defaultValue
isthe default value or a probability description of attribute values.
multiplicity
isa repetition count" of the attribute.
defaultMultiplicity
isadefault count or a probability description of the multiplicity feature.
ValueDistribution

iseither a set of pairs of the form (value, probability) or a genuine probability distribution function describing
the distribution of values.

MultiplicityDistribution
similarly describes the probability distribution of multiplicities.
Rather than digressing into other representational matters, we present the other Class-related classes only as brief
sketches:
ConstraintDescription

represents constraints using aformal characterization of aformal language such as the predicate calculus. In
short, a constraint consists of an expression in which attributes and optionally self occur as parameters.

TN
represents transition networks. Its main attributes are states with domain Sate, and transitions, with domain

Transition. Constraints should express that states and guardsin a TN are digjoint unless the class has multiple
TNSs.

Transition

represents transitions within TNs. The class has the attributes fromState, toState, name, guard, action, and
event among others.

Sate
represents states within TNs. The class has attributes including a characteristic name and an expression that
refersto the value domains. The expression should demarcate a nonempty subset in the cartesian product
spanned by the value domains.

Cl

represents class instances in terms of attribute values, etc., based on the above representations.
All the components of the analysis are used for the construction of a model. Instances and classes are specialized, if

necessary, to express object interaction commitments. A model consists of a set of instances corresponding to stable
objects, and a set of classes and relationships that act as generators for transient entities:

Maodel

specialized(lasses h SET(Class)
specialized Fnsembles X SET (Ensembie)
specializedRelalionships , SET(Relationskip)
specialized(Class_i . SET(CI)
specializednremble_q . SET(EI)
specializedBelalionghip_1 , SET(RI)

The attributes in the class Model suggest that we do not use classes, relationships, etc., asis, but instead use refined
or specialized versions. Thisis aconsequence of our philosophy that the classes, relationships, etc., originally
developed should be generalized, as if they were the result of adomain analysis. Then they must be specialized to fit
the needs of an intended system. We elaborate on the nature of these specializations while discussing the dynamic
view.

Dynamics

We will present some fragments of the transition networks associated with these classes. Every analysis activity
starts by selecting an item from the agenda attribute inside an instance of Analysis. A random choice from this
agendawould be:

Selert Agenda Item
guard action event
TRUE et bt
random (client,
elernent selected-
Felch- and remove elemnent }
task-far from agenda
(client)

(For simplicity, we ignore empty agendas, and temporarily ignore check-out operations on selected agenda
elements.)

The agenda selection operation may be refined in several ways. At a minimum, random selection could be replaced
with mechanisms allowing the analyst to select which tasks to pick from the agenda. Other policies may be
supported by making certain tasks ““invisible" and/or only accessible in particular ways. For example:

« A top-down approach for the treatment of subsystems and ensembles would require that these be elaborated
first.

« A reuse policy might require searching for relevant analysis artifacts in a domain-specific library before an
analyst addresses a particular task.

For the class AComp we can set up the following minimal transition network:
checkln

check(ut

inactine actine

The checkOut transition can be triggered by the selectAgendaltem transition inside Analysis. Alternatively, it can be
invoked as a client-server operation in the action part of selectAgendaltem. The guard in checkOut can depend on
whether an instance of AComp has its locked? attribute set; if not, it can be set in the action part. Thistransition
network may be extended in the (indirect) subclasses of AComp. For example, the class ACompR may support
transition:

create A Successor
acline guard action {event }
TEUE
creale-
instance-or
(Haharatedln)
Elghaoraoie

The expression create-instance-vr (Elaboratedin) creates an instance of the value restriction of the attribute
elaboratedin. Inside the class ACompR the value restriction is the class ACompL, but for an instance of UseCase we
would obtain an instance of AnalysisConcept.

The newly created instance should also be added to the value restriction of the attribute elaboratedin. The instance
construction operation should additionally be extended in order to initialize attributes. For example, the elaborates
attribute can be given asits value the identity of the object that instigates its creation.

We can extend this transition network further for subclasses of AnalysisConcept. For example, in the class UseCase
we can introduce transitions that set the values of the attributes initSate and actionList viainteraction with an
analyst:

Fil-in-Ini-Staie

Y

acline

Ertend-Action-Ligt

|-
=

Although an analyst would have to take the initiative to select such atransition, the transition could help the analyst
by displaying templates identifying the information to be provided by the analyst. These templates would be defined
by the attributes in UseCase.

Most of the transition networks for other classes can be patterned similarly. For example, atransition network for
Class should have atransition that helps the analyst fill in attribute values. The backward elaboration pointers give
access to the relevant semantic information. The value domain of such an attribute hel ps to define an acquisition
template.

An exception is the transition network for the class Model. In a sense, we need all the power of the OOA process
inside aModel since we have to customize classes to join their interaction patterns together. While a generic class
can specify a communication unilaterally via an event, a prototypical instance of a specialized class should be
equipped with the knowledge of its communication partners. Either we must introduce acquai ntance relationship
instances and provide “"hooks" inside objects that consult such relationship instances to figure out what the
communication partners are, or we must bypass the indirection of acquaintance relationships and * hard-wire"
knowledge of the communication partner inside the objects.

Alternative Processes

To place this version of the analysis process in perspective, we sketch the analysis procedures proposed by some
other methodol ogists.

Gibson gives the five steps of Object Behavior Analysis (OBA) [7] asfollows:
Understand the application; identify behaviors.

Derive objects using the behavioral perspective.

Start classifying objects.

| dentify relationships among objects.

5. Model processes.

~wbdeE

Ignoring the preliminary aspects of step (1) we can plot these stepsin our table:

]inside obj ect]between objects

Classify objects (3)
[dentify relations (4)

static |Derive objects (2)

’dynamic]ldentify behavior (1)]Model processes (5)

In contrast, the OOA method of Shlaer et al [12,14] and the OSA method of Embley et a [4] move from left to right
first in the top row and then in the bottom row, although the vertical separation isless apparent in [4]. A similar
route is followed by Coad and Y ourdan [3]:

Rather than jumping right into a study of functions and sequencing, the OOA analyst first focuses on
Objects, Structures, Attributes (and Instance Connections) -- and then finally gets around to a
consideration of Services (and Message Connections).

The OMT method of Rumbaugh et al [11] describes a quite elaborate sequence of steps. Still, interpretations of
each can be seen in the process described in this chapter:

Object Modeling
« ldentify objects and classes.
« Prepareadatadictionary.
« ldentify associations (including aggregations) between objects.
« ldentify attributes of objects and links.
« Organize and simplify object classes using inheritance.
« Verify that access paths exist for likely queries.
« Iterate and refine the model.
» Group classes into modules.

Dynamic Modeling
» Prepare scenarios of typical interaction sequences.
« ldentify events between objects.
« Prepare an event trace for each scenario.
« Build state diagrams.

« Match events between objects to verify consistency.

Functional Modeling
o ldentify input and output values.
« Build data flow diagrams showing functional dependency.
« Describe functions.
o ldentify constraints.
» Specify optimization criteria.

Tools

Analysis tools may be classified along several dimensions:
Tool integration.

Is the tool a stand-alone point tool or isit (potentially) integrated in a set of tools that coversthe life cycle?
Data integration.

Arethe artifacts produced by a customer stored in a proprietary database or in aformat that is compatible with
emerging standards?

Control integration.
Is the tool able to generate events to be picked up by other tools? Dually is the tool able to respond to events
generated by other tools?

Team support.
Does the tool support only asingle user or are the proper hooks in place to support teams?

Minimality.
Is the tool extensible? Isthe tool customizable? Does the tool support capturing metrics? Does the tool have

the flexibility to support and guide novices but at the same time does not impede experts? Does the tool
support the (OOA) process in the multiple interpretations outlined in Section 17?

Interface.
Can the user interface be adjusted to provide a consistent appearance with other tools?

This shopping list is daunting, as has been observed by Humphrey [8]: * Such comprehensive environments will
likely be very large, possibly rivaling or even surpassing the largest operating systems.”

There are not as yet many tools that support OO analysis (although surprisingly many vendors claim their tools to be
in someill-specified sense OO-ish). Cadre has a product that implements the OOA method of Shlaer and Mellor
[12,13]. Rational has a product called ROSE that implements the method of Booch [2]. Thistool supports analysis
aswell as design. Hewlett-Packard has developed an in house prototype of Embley's et al [4] OSA . The companies
MarkV and ProtoSoft have developed meta-tools providing generic support for classes, relationships, transition
diagrams, interaction diagrams, etc. These are highly parameterized so that the notions and graphical representations
of “any" method can be emulated.

Summary

A software development process is guided by broad scenarios, particular plans, and situation-dependent factors. A
generic recommended scenario for the OO analysis phase includes default steps:

1. Obtain ""complete” requirements.

Describe system-context interaction.

Delineate subsystems.

Develop vocabulary by identifying instances with their classes, ensembles and relationships.

Elaborate classes and relationships by defining their generic static structure and describing their generic
dynamic dimension.

6. Construct a model in which the dynamics of objects are wired together.

a s b

“Flow of control" in this space is uncommitted. Thus whether breadth-first descending or vertical dicing is done
depends on the features of a particular task and the prescription of arisk analysis.

We illustrated this analysis process by applying it to itself, and aso in Chapter 10 where we applied it to the
construction of an ATM system.

Exercises

1. The classes Class, Ensemble, Relationship, Cl, El, and Rl share the property that the elaborates attribute is
single-valued. They share as well that the elaboratedin attribute is absent. Introduce an abstract class that
factors out this commonality and integrate this classin the other classes. Hunt for other opportunities for

abstraction.
2. Expand the undefined and underdefined classes in the OOA process model, including those indicated by

summations.

References

1
K. Beck and W. Cunningham. A laboratory for teaching object-oriented thinking. In OOPSLA '89. ACM,
1989.

2
G. Booch. Object Oriented Design with Applications. Benjamin/Cummings, 1990.

3
P. Coad and E. Y ourdon. Object-Oriented Analysis. Y ourdon Press/ Prentice-Hall, 1990.

4
D.W. Embley, B. Kurtz, and S.N. Woodfield. Object-Oriented Systems Analysis. Y ourdon Press/Prentice
Hall, 1992.

5
P.H. Feller and W.S. Humphrey. Software process development and enactment: Concepts and definitions.
Technical report, Software Engineering Institute, January 1992.

6

D.G. Firesmith. Identification and classification guidelines for objects, classes and subassemblies. In

10

11

12

13

14

15

| dentification Working Group, OOPS_A '91, 1991.

E. Gibson. Objects - born and bred. BYTE, October 1990.

W.S. Humphrey. Managing the Software Process. Addison-Wesley, 1990.

NIST. Reference Model for Frameworks of Software Engineering Environments. National Institute of
Standards and Technology, December 1991.

Rocky Mountain Institute of Software Engineering. Seventh International Software Process Workshop. Rocky
Mountain Institute of Software Engineering, 1991.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design.
Prentice Hall, 1991.

S. Shlaer and S.J. Méellor. Object-Oriented Systems Analysis. Y ourdon Press, 1988.

S. Shlaer and S.J. Méellor. Object Life Cycles. Modeling the World in Sates. Y ourdon Press, 1991.

S. Shlaer, D. Ohlsen S.J. Méllor, and W. Hywari. The object-oriented method for analysis. In 10th Sructured
Development Forum (SDF-X), 1988.

P.T. Ward and J.W. Brackett. Object-oriented requirements definition and software. NTU Satellite Network
Broadcast, November 1991.

Next: Chapter 13

Doug Lea
Wed May 10 07:50:45 EDT 1995

agaieed - Chapter 13: Domain Analysis

Development NV

o Reuse
[e L hampe o C Summar
Dpglas Lea
Pereibape Tours

Previous chapters have concentrated on analysis methods resulting in the clarification of the requirements of a
particular target system. However, often, a system may be seen as an element of a stream of products. If so, we can
investigate their common features. Such a domain characterization can then be leveraged for each system to be
devel oped.

Target-specific OO analysis technigues often generate models with applicability stretching beyond the needs of the
system(s) under consideration, and thus intrinsically incorporate at least some form and extent of domain analysis.
However, the notion of domain analysis as a distinguishable enterprise remains an immature topic, in need of
considerable development. In this chapter, we survey genera views, models, and variants of domain analysis,
along with their consequences for reuse.

There are several ways to define ""domain”. For example, Berard [2] gives two characterizations:

1. A collection of current and future (software) applications that share a set of common characteristics.

2. A well-defined set of characteristics that accurately, narrowly, and completely describe afamily of problems
for which computer application solutions are being, and will be sought.

A founder, if not the founder, of domain analysisis Neighbors[5,6]. He wrote in 1980:

The key to reusable software is captured in domain analysisin that it stresses the reusability of
analysis and design, not code.

Models

The scope of adomain investigation can vary widely. A definition of domain analysis formulated by Prieto-Diaz
[8] elucidatesits purpose as:

... aprocess by which information used in developing software systemsis identified, captured, and
organized with the purpose of making it reusable when creating new systems.

Arango and Prieto-Diaz [1] present amodel of domain analysis summarized in the following SADT diagram:

Sources of Domain

Dormn ain Analysis Managernent
Knowledpe Met hads Procedures
' 1
technical literature
B taxonomies)
existing implement ations -
\ standards
\ CUSLOIMEr SUrveys Do -
Domain L functional models
expert advice Analysis ’
I j domain languages
current and future)

requirements

i F 3 F F ! F |
-

mfrastructure mmplementor

infrastructure analyst

demain analyst

problem domain expert

This model describes domain analysis as an activity that takes multiple sources of input, produces many different
kinds of output, and is heavily parameterized. For example, one parameter is the development paradigm (e.g., SA,
Jackson, OO). Raw domain knowledge from any relevant source is taken as input. Participants in the process can
be, among others, domain experts and analysts. Outputs are (semi)formalized concepts, domain processes,
standards, logical architectures, etc. Subsequent activities produce generic design fragments, frameworks, etc.

While this account gives an inspiring initial insight into domain analysis, it is not the full story. Several
refinements are presented next.

Product Definition Domain Analysis

When a product is seen as part of anew or an existing stream of products, the domain of this product stream may
itself be studied. This study will in general go beyond technical aspects of the product. For example, strategic
alignment, longer term marketing aspects, product positioning, risk analysis, common look-and-feel, covering a
diversity of product features, etc., will play arolein conjunction with investigations of generic terminology,
logical architectures, reliability standards, and other general considerations.

Such a study may be seen as adomain analysis. It involves a multidisciplinary team. Consequently a nonformal

language is the lingua franca. A software development paradigm, such as OO, is unlikely to play a prominent role
here.

Requirements Domain Analysis

When there is enough confidence that a stream of products can be produced, one may want to factor out the
commonalities in the multiple analyses that must be done for each product. Thus one may want to do a conceptual
domain analysis that yields common ground for each specific analysis. OO analysis notions lend themselves for
capturing generic concepts at multiple levels of granularity. Ensembles, subensembles, classes, and generic
relationships are all candidates for describing an application domain.

While we can use the notions and notations from an OO analysis method for requirements domain analysis, we
have to adjust the process dimension. We cannot rely on a system-specific requirements document as input to the
process. Instead, we have to take in any relevant features from the documentation that describe the commonality of
the products. Experts and customers may be tapped, as suggested in the generic diagram. However, the situation
differs from the diagram in that people have to be primed for more specific and detailed information. The output
side differs as well because the process stops earlier; no model is to be constructed. Instead, generic classes,
relationships, ensembles, etc., are produced. These may be organized into one or more OO frameworks that may
be specialized to the needs of particular systems.

For example, many of the ATM examples in previous chapters are not geared to any specific system. To the extent
to which these descriptions are realistic, they are contributions to an OO domain analysis of “ATMsfor banks'".
Our model of the OOA process in Chapter 12 represents an even better example of thisform of domain analysis.
This model abstracted across different development styles and contexts. It did not culminate in a particular target
model, but only those model components forming abasis for any OOA process.

Domain Engineering

A requirements domain analysis may lead to an OO domain engineering effort. This entails the construction of
design fragments of the generic elements identified by a requirements domain analysis. These designs can be
implemented and added to a domain-specific code library.

Generator Domain Analysis

When a stable domain serves as the basis of a product line or market segment, one may consider constructing a
generator for a particular domain. This generator may then be used to automatically build (parts of) any of a series
of related products. Relational database systems are an example of a mature, stable domain whereit is quite
conceivable to perform a generator type domain analysis. The query language, platform, operating system and
windowing environment would be main parameters for such arelational database builder.

The analysis performed for the construction of such a meta-program may be seen as athird version of the notion of
domain analysis. One may assume for such an enterprise not only that the domain is stable and well understood,
but also that domain specific design and/or code libraries are available.

One may even step one level higher. For example, the Rose system (Reuse Of Software Elements) [3,4] was an

experimental meta-meta-program that assisted in capturing domain knowledge and design know-how for the
domain.

Reuse

Domain analysisis not a one-shot affair. Product definitions evolve continuously. The development of a particular
system that exploits previously accumulated domain knowledge can be the source for new insights about the
domain that adds to or refines codified domain knowledge. In analogy to the emergence of domain-specific code
libraries, we foresee the devel opment of domain-specific analysis concept repositories, linked ultimately to code
via domain-specific design repositories. The following diagram describes the interactions:

Initial domain analysis

TN T

domain dormain

TN

domain

code

o/

]
roneepts
tep]

S/

{:.: constructs e

o/

L r r

Implement ation ‘

Requirernents Analyais

N 7

Eeneric

congtructs

N

< eode

Eereric

N

Functional model components are the primary outputs of adomain analysis. The feedback |0ops describe/prescribe
that the outputs of the different phases are to be abstracted and added to the domain repositories. The " bird-feet"
linesin the diagram that are attached to the repositories express their interconnections. For example, a domain
analysis concept can have multiple realizations in the design repository. Similarly, adomain construct can have
multiple realizations in the corresponding code repository, where each realization satisfies different auxiliary
requirement trade-offs.

Domain analysisis the spearhead for disciplined reuse in software development. Thisis quite obvious for the
generator version of domain analysis, but applies as well to the two weaker versions. An organization for system
development will be complemented, when cost effective, by an organization that maintains and manages
domain-specific repositories. OO analysis has much to offer to domain analysis from atechnical perspective.
However the sociological, cultural and organizationa problems of realizing a cost effective reuse program that
underlies our diagram extend beyond the technical dimension (see, among others[7]). As discussed in Chapter 15,
these obstacles are more easily conquered at the OO design and implementation levels. This has led to the
widespread adoption of reuse-based strategies in OO design and programming efforts. However, these practices
remain incomplete without equally prevalent adoption of a reuse-based engineering discipline at the requirements
and analysis levels.

Summary

While OO analysisis focused on the features and functionality of a single system to be generated, adomain
analysis focuses on the common and variant features across afamily of systems. At least three versions of domain
analysis may be distinguished: (1) at the level of product definitions, (2) at the level of analysis of the
proto-products, and (3) at the level of the analysis for a generator of applications in the domain. Because of the
informality of version (1), the OO paradigm plays aless significant role there than in versions (2) and (3).

To ensure the reusability of the domain models produced, domain analysts use diverse sources of domain
knowledge. These sources provide information on the range of potential systemsin the domain. While all domain
analysis methods involve extraction of terminology and identification of a common domain language, the OO
domain anaysis method accomplishes this task through identification of classes, relationships and behaviors. Such
domain models may tranglate into reusable frameworks.

In areuse strategy the domain analysis work-products must be maintained and enhanced over many systems. The
domain analysis repository contains domain models that form the basis of subsequent systems analysis activities.

Further Reading

The state of the art in domain analysisis concisely formulated in a Domain Analysis Working Group Report from
aworkshop held in 1991 [8]. Many open questions are formulated in this document. The great diversity of

perspectives suggests that domain analysisis still in an embryonic stage with substantial potential for further
developments.

Exercises

1. Revidit the previous chapters and identify which of those specific notions, notations, and procedures can be
reused for adomain analysis.

2. Perform adomain analysisin any of the interpretations of this chapter for adomain with which you are
familiar.

References

1

G. Arango and R. Prieto-Diaz. Domain analysis: Concepts and research directions. In R. Prieto-Diaz and G.
Arango, editors, Domain Analysis:. Acquisition of Reusable Information for Software Construction. |EEE

Computer Society Press, May 19809.
E. Berard. Essays in Object-Oriented Software Engineering. Prentice Hall, 1992.

M.D. Lubars. Wide-spectrum support for software reusability. In Workshop on Software Reusability and
Maintainability. National Institute of Software Quality and Productivity, October 1987.

M.D. Lubars. Domain analysis and domain engineering in idea. Technical Report STP-295-88, MCC,
September 1988.

J.M. Neighbors. Software construction using components. Technical Report 160, Department of Information
and Computer Sciences, University of California, Irvine, 1980.

J.M. Neighbors. The draco approach to constructing software from reusable components. | EEE
Transactions of Software Engineering, SE-10(5), September 1984.

R. Prieto-Diaz. Implementing faceted classification of software reuse. Communications of the ACM, May
1991.

W. Tracz. Domain analysis working group report. In First International Workshop on Software Reusability,
1991.

Next: Chapter 14

Doug Lea
Wed May 10 07:53:42 EDT 1995

Object-Oxiented
Syisterm

ROt Chapter 14: The Grady Experience

[s e i b 2 o
Dmaghas Lea
Perebope Fonrs

Above all else, the goa of analysisis human understanding of systems and their problem domains.

In arecent study [1], Grady identified cost components of software development across the whole
lifecycle, including maintenance and functionality enhancements. The cost percentages assigned to the
different components stem from a combination of educated guesses and empirical data obtained from
inside and outside of Hewlett-Packard:

Component Per centage
Program understanding [27%
Requirements analysis (24%
Design 18%
I mplementation 18%
Testing 13%

Grady estimates that 27% of the total cost must be attributed to = program understanding”. Thisisa
separate component from requirements analysis, design, implementation, and testing. It represents the
efforts of analyzing what existing artifacts are all about before remedial actions can be taken in the case
of bug fixes, or, in other cases, before functionality extensions can be performed.

One may wonder why the program understanding component absorbs such alarge fraction of costs. A
glimpse of an explanation may be found in another set of data presented in [1]. Each of the four other

components were further split into two categories. Work, the effort spent during the first timein the
cycle; and Rework, the accumulated efforts from all the other iterations.

The following table demonstrates that rework plus program understanding accounts for 60% of costs.
These contribute little to the implementation efforts. Assuming that code size correlates with coding

effort, the code grows as a result of rework by about /.

Component Work [Rewor k
Requirements analysis|7% |17%
Design 7% |11%

Implementation 14% (4%
Testing 12% (1%

We conjecture that the key to the substantial program understanding component resides in the initial
efforts. Theinitial analysis, design and implementation efforts have the ratio 1:1:2. We surmise that
implementations start before the task is sufficiently understood and before a reasonable design has been
constructed. Once an initial implementation has been obtained, the damage is done. The analysis and
design outputs are insufficient guides for maintaining and enhancing the system.

Grady's account of the cost components is somewhat tentative. Still we recommend that the reader go
back to the beginning of Part I.

References

1

B. Grady. An investment model for software process improvement. Technical report,
Hewlett-Packard Corporate Engineering, February 1992.

Next: Chapter 15

Doug Lea
Wed May 10 07:54: 18 EDT 1995

s Chapter 15: From Analysis to Design

Object-Bxiented
Syisterd -
o Continuity
Deévelopment

e Transformation

o Design Phases

o Design Criteria

[Nt e AL h e
gl Lea

Prrelape Faars ° ManaCﬂnq Deﬂqn
e SUMMary

The goal of the design phase isto generate a description of how to synthesize software objects that behave in
accord with analysis models and meet all other system requirements. This phase is a set of activities with:

I nput:

Functional, resource, and performance requirements.
Output:

A specification providing a complete plan for implementing the system.
Techniques:

Transformation, refinement, reification, composition.

Analysts see objects as descriptions of required properties and behavior. Designers view objects as
computational entities which realize the desired propertiesin a manner that may be readily implemented using
common object-oriented programming languages and tools. In this way, design serves as a bridge between
analysis activities that describe those properties a system should possess, and implementation activities that
describe the language and environment-dependent manner in which it is constructed.

Continuity

The border between analysis and design is often filled with discontinuities in non-object-oriented approaches
to development. Designers sometimes use analysis information in only the most general ways and reanalyze
the problem at hand from a computational perspective using different techniques and strategies than that of
analysis. This can even apply to object-oriented design. When OOD is preceded by non-OO analysis, much of
the design phase should be preceded by a secondary analysis using the methods described in Part | to establish
declarative structure.

One of the most attractive features of a uniform object-oriented approach to software development is
structural continuity. The basic decomposition of a system into objects retains its general form from analysis
through design and into implementation. Structural continuity is both an empirical observation (i.e., something
that appears to hold widely across object-oriented development efforts) and a guiding principle for design
methods. Even though their perspectives, methods, and goals differ, object-oriented analysts, designers, and
implementors maintain the same overall orientation. They employ the same concepts and terminology for
describing objects, classes, behaviors, inheritance, etc. This simplifies and streamlines the development

process.

From a designer's point of view, many of the structures and descriptions that we have been calling analysis
modelsin Part | may be thought of as declarative software designs. In Part |1 we assume that the main
declarative aspects of a system model/design have been constructed using the methods described in Part |. Part
I1is "merely" about computational concerns. However, the continuity principle also ensures that OOA models
may be refined and restructured during the design phase without the need for painful back-translation when
reconciling designs with specifications. The border between design and implementation is also guided by
continuity. Program designs should be tuned and restructured on the basis of experimentation, monitoring, and
feedback with executable code.

Among the best tools for assessing the need for improvements at all levelsis prototyping. We will show how
OOD methods can accommodate the creation of prototypes that reflect only those transformations and details
already committed. These steps may then be revisited after experimenting with the tentative system.

Exploitation of continuity resultsin a design process that is robust in the face of errors, suboptimal
constructions, and other snags. Any design process that relies on the omniscience and perfection of analystsis
doomed to failure. Methods must allow for analysis models to have occasional gaps and imperfections.
Constraints and opportunities that stem from computational concerns can strengthen, complete, or override
those seen from a declarative perspective. Similarly, analysts (even domain analysts) may not always
recognize and exploit common design idioms, reusable components, and applications frameworks. Regardless
of these considerations, the diversity of OO constructs allows many concepts to be described in any of several
nearly equivalent ways. In the following chapters, we present several alternative strategies for expressing
various analysis constructs. The best choice from a design perspective need not mesh with that from analysis.

For these reasons, designers should be prepared for the possibility of new insights, corrections, and
improvements throughout the development process. Designers sometimes introduce new classes, refactor class
hierarchies, and intertransform constructs in the process of meeting other goals. The methods described in Part
11 allow these manipulations to be phrased in ways that maintain contact with the original OOA models.

Reviews

Continuity also streamlines traceability from a software process management perspective. When design
refinements are intrinsically keyed to OOA models, they are much easier to keep track of than otherwise.
However, achieving thisis by no means automatic, especially when analysis groups differ from design groups.
Traceability requires a high degree of interaction and frequent reviews, mainly during the early stages of
design.

During such reviews, designers should try to anticipate points at which models run into computational
feasibility problems, cases where model incompleteness leads to ambiguities, class structures that are known
to lead to software quality problems, and so on. Analysts must be prepared to defend, fill in, and/or revise their
decisions.

There are many ways to structure this review process. Oneisto follow IBIS procedures [6] in which review
points are raised as well-formed issues. For each issue there may be one or more positions. Each position may
in turn have one or more rationales. Issues, positions, and rationales may all lead to other nested issues. These
may ultimately lead to a set of decisions, actions, or other outcomes. Maintaining a record of such reviewsin
this structured form enhances traceability.

Transformation

Inputs

Obj ect-oriented design methods exploit continuity while proceeding from a declarative to a procedura point
of view. This process may be seen as a series of transformations from the inputs to the outputs of the design
process. The most important input considerations from analysis are of the same general form as those
described in Chapter 2 as analysis inputs. While the headings are the same, the details are substantially more

refined, and reflect the products of OOA activities.
Functionality:

The purpose of the system, as described by (multiple) declarative models of objects, classes, relations,
states, transitions, interactions, etc.

Resour ce:

The computational substrate on which the system will be built.
Performance:

The expected response times of the system.
Miscellaneous:

Auxiliary constraints including:

Software quality

requirements concerning reliability, modularity, safety, cohesion, testability, understandability,
reusability, and extensibility.

Lifecycle
requirements for system evolution, demanding design allowances for reimplementation, repair,
extension, and related adaptations necessary for coping with future requirements.
Compatibility
requirements governing interactions with other systems, subsystems, and components (most
typically non-OO ones) through constrained interfaces.

Process Criteria

We describe design activities as a series of transformations. However, we cannot prescribe fully algorithmic
transformation schemes. The spectrum of transformations includes afew utterly mechanical trandations, some
involving guided (but not fully predetermined) series of refinements, some providing awide range of options
that must be chosen using situation-specific criteria (thisis the most typical case), and some for which we can
only provide general advice about how to connect initial and final conditions. The structure of these
transformations relies on criteria common to the design of any transformational process, including:

« Group al transformations into meaningful, tractable phases with well-defined inputs, outputs, and
separation of concerns.

» Obey logical dependencies. Do not schedule a step until its prerequisites are compl ete.
« Keep downstream options open. Avoid premature commitments to nonessential details.

« Operate on the most general representation possible for any transformation, thus minimizing
redundancies resulting from similar operations on special cases.

« Output refinements and restructurings using the same representational framework as their inputs.

For example, requirements may be handed to a designer in sizable chunks, or even al at once. However,
because of their intrinsic dependencies, design activities attempting to deal with these requirements must be in
part sequential. It isimpossible to assign resources to objects and manage their use until resource demands are
at least approximately determined by establishing representational and computational properties. It issimilarly
impossible to address performance issues until these mappings are known. Sequentiality does not, however,
imply that all activities within one subphase should be performed before all in the next.

While we use these criteria for guiding the overall design process, they also govern the architecture of just
about any transformational system. Examples include compiler design, simulation system design, and
computer vision processing system design.

Phases and Activities

The three major categories of input from analysis subdivide focal design issuesin a natural way. We can
expand on these groupings to better characterize them from a design perspective:

Functional design:

Definition of representational and algorithmic properties of classes obeying the declarative constraints
specified within OOA models.

Physical design:
Mapping of objects to processors, processes, storage, and communication channels, along with design of
facilities to manage these resources.

Performance design:

Reconciliation of functionality and resource mappings to meet performance requirements when
expressed using the target implementation languages, tools, configurations, etc.

The distinctions between functional, physical, and performance phases help capture different concerns and
activities within design. While thisis areasonable way of classifying well-accepted object-oriented design
practices, it differs from traditional approachesin a number of respects. For example, there is no separation
between “"coarse”" and " detailed" design. Our presentation actually begins by discussing some small
granularity issues, and our performance design methods consider both in-the-small and in-the-large
performance factors. Thus, these categories focus more on the goals of design than their granularities.
Similarly, we do not focus on (logical) —architectural design” per se. OOA models aready specify much of
the logical structure of systems. While many aspects of this structure may be modified during design, their
general forms are established through declarative modeling.

We summarize some highlights of this process in the accompanying diagram. (It has the same interpretation as
those of Chapter 12).

OOA (partial} Model

C Fxerutable Model

C Clustered Modeal)
C Sequentialized Cluste-:s)

C Optimized Clusters >—~ The Design

The basic framework admits several variations. For example, functional design may be interleaved with parts
of OOA by dealing with subsystems or other coarse-grained components as they become available. Design
activities may be subdivided among designers working concurrently and semi-independently. Performance
design and implementation activities may be similarly distributed and pipelined. Also, design of the general
form, policies, and infrastructure of many physical system matters may proceed at nearly any point.

Object Definitions and Models

Even though OOA is a declarative activity, analysts implicitly or explicitly adopt some kind of underlying
abstract computation framework. Designers must ultimately replace this framework with one that is more
easily supported by implementation languages, tools, and systems. Thus, not only must designers transform
abstractly defined objects into concretely implementable ones, they must also transform the underlying
processing and communication structure. This may be clarified by separating out the underlying computational
models used in OOA from the ways analysts describe objects:

» Objects possess logical states and attributes, relations to other objects, and dynamic capabilities that
may alter these across time.

« Each object isamember of some class. All objects of a particular class possess the same static and
dynamic features, but may be in different states.

« Each object isa potentialy active, autonomous sequential agent, performing at most one activity at a
time.

« Objects communicate by generating events. The nature of event generation varies, and may include
point to point messages and nonspecific requests issued via blocking, nonblocking, and timed
protocols.

« Events may trigger transitions, new events, and/or the construction of new objects.

We have seen in Part | that most OOA practicesimplicitly or explicitly assume that every object is an
“active" agent residing in its own processor. This framework would be pretty easy to deal with in designiif a
system were targeted for amassively parallel MIMD computer supporting exactly this computational model.
But thisis not areality. These days, practical systems must occupy many fewer processors than objects. This
means that objects must be packed into arelatively small number of interacting processes.

For both conceptual and pragmatic reasons, it is useful to think about a model that pushes this to an extreme,
and packs all objectsinto a single program. This computational model is captured in the notion of a
single-process object-oriented supervisory kernel . A kernel isthe virtual machine that supports object
computation. It specifies how objects are constructed and managed, how events are scheduled, and how
communication is arranged.

The pragmatic utility of this model isthat, unlike the massively parallel version, a single-process kernel may
actually be implemented without engaging in many of the design issues described in Part |1 (cf., [22]).

Prototype Interpreters

An operational high-level kernel serves not only as a concrete implementation of a computational reference
model, but also as an interpretive prototype simulator useful for experimenting with preliminary designs.

Prototypes may be implemented using techniques common to any single-process simulator or interpreter. The
basic ideaisto create a single active computational agent that receives all events in some kind of queue. When
conditions allow, it pulls an event off the queue and performs the indicated actions on behalf of the simulated
objects. In thisway, all conceptually active objects may be simulated passively, at the expense of creating an
all-powerful super-object forever repeating the following steps:

» Takefrom the queue any action that has all of itstriggering constraints satisfied and process it:

o If itisan object construction event, create a new (passive) object with the required initial states
and attributes.

o Elseif itisan elementary state change operation on a primitive object, then directly compute it.
0 Else place on the queue all component events listed in the body of the transition.

Thisisactualy just avariation on the computational structure implicit in OOA object models. (Compare the
figurein Chapter 6.) It assumes that all state changes, etc., are explicitly described in a computational fashion.

But instead of empowering all objects to perform their own transitions and communicate with others, this
model forces the single super-object to behave asif it were composed of all others, and to communicate only
with itself viathe queue.

The single-process nature of thisinterpreter allowsit to be constructed without dealing with concurrency,
distribution, and encapsulation issues that otherwise complicate design. However, thisis a highly smplified
model. A more complete version would need to address several other issues described in Part [1, including:

Dispatching:

Trandating an event into the corresponding operation of a particular object.
Queuing:

Keeping track of the conditions allowing operations to be triggered.
Conversion:

Tranglation of more complex constructs (e.g., client-server interactions) into the simple format
demanded by the model, or, equivaently, incorporating extensions that directly accommodate these.

Object management:
Controlling storage and other resources consumed by simulated objects.
Symbolic analysis:

Evaluating constraints, types, and annotations placed on objects, classes, relations, events, etc., before or
during simulation.

Efficiency:
Selection of algorithms that allow acceptable performance of functioning interpreters.

Many other design and implementation issues must be faced during the construction of such an interpreter. For
large software development projects, efforts to do so are repaid with the ability to test preliminary designs. For
smaller efforts, this model, even if not implemented, remains a useful conceptual tool for approaching and
organizing design efforts.

While very generdly stated, the features of this model are not engraved in stone. A preliminary design step is
to agree on those details that might impact the overall approach taken in designing individual classes. This
may then serve as a computational reference model for design. For example, the reference model may be
severely constrained when the system is required to be implemented as a single program written in asingle
language. In this case, the language's own run-time kernel (or an abstraction thereof) may be substituted for
the interpreter.

This view of prototype-compatible design does not cover all uses of prototypes. For example, prototyping the
look and feel of auser interface is best carried out through side efforts experimenting directly with a Smalltalk
environment, or with a C++ system using the InterViews toolkit [12], or whatever.

Translating Notations

OAN Construct ODL Construct

Instance (_ch.3, ch. 8) new (ch.16)

Parametric Instance (_ch. 8) new, uni que (ch. 17)

Class (ch.3) cl ass (ch.16)

Attribute (ch.3) fn(ch.17)

Qualifier (ch. 3) Qualifier (ch. 17)

Constraint (ch. 3) i nv (ch17)

Multiplicity (ch. 3) opt, SET, ... ch. 17ch. 18)

Default (ch. 3) generator ops(ch.16-ch.17)
Relationship (ch. 4) cl ass, fn,..(ch.18)

Relation Instance (ch. 4) new, cl ass, fn, ... (ch. 18)
Parametric Relation Instance (ch.4) i nv, ... (ch. 18)

Generic Class (_ch. 4) class[T] (ch.16,ch.18)

Set (ch. 4) class,SET[T],...(ch.18)
State (_ch. 5) fn (ch.17,ch. 19)

Initial State (ch.5) init (ch.17)

Final State (ch.5) del et e (ch.24)

Transition Guard (ch. 5,6}ch.6) [when (ch.19)

Transition Action (ch. 5 ,6}ch.6) |==>,{ calls} (ch. 16 20}ch. 20)
Transition Event (ch. 5,6}ch.6) |==>,{ sends} (ch. 20 20}ch. 20)
Service (ch.6,) op (ch.20)

Exception (ch. 5,ch. 6) reply,..(ch.20)

Message Queuing (ch. 6) pend (ch. 19)

Acguaintance (ch. 6) f n, arguments, cl ass, ... (ch. 16 ch. 18)
Subclass (ch. 7) IS, ...(ch.16)

Partition (_ch. 7) oned, ... (ch.17)

Metaclass (ch. 8) cl ass,generator, ... (ch.18, ch. 22)

Ensemble (ch. 9) cl ass (ch. 16,ch. 22)
Ensemble Constituent (ch. 9) | ocal , own (ch.17)

Timing Constraint (ch. 11) @... (ch. 19 -ch. 20)

The language of analysisisthat of models and notations geared toward the goals of the analysis phase
centering on the description of what systems do (not how they do it), written in away that is meant to be
complete, yet humanly understandable by both customers and designers.

Designers need to recast analysis models to enable further transformation of the declarative information
supplied by OOA, while aso supporting expression of computational and representational information
important to implementors. Neither the graphical and textual notations of analysis, nor the
implementation-dependent notations of common object-oriented programming languages suffice to describe
this effectively. The computational aspects of design become tractable only by introduction of a notation that
can capture analysis concepts on the one side, and implementation constructs on the other.

These considerations are not restricted to matters of software design. Electronics design increasingly relies on
textual notations such as VHDL [13] to express the detailed structures and properties of designs while still

abstracting over physical layouts and electrical characteristics. However, there are no universally or even
commonly accepted intermediate languages for software design. In the case of systems-level object-oriented
design, there are few such languages at al, and none that seem particularly well-suited to our goals of
supporting (relatively) ssmple translation of analysis models on the one hand, and (relatively)
language-independent design on the other. So, for the purposes of this book, we have reluctantly concocted an
intermediate language (ODL) as a vehicle for expressing basic design notions. Like OAN, ODL isintended to
be avery lightweight veneer that is easily converted to other notations and languages. We do not in any way
insist that ODL be used when following the design methods described in Part 11, but we need something
concrete and specific to get across the main ideas. However, thisbook is not “"about” OAN and ODL. You do
not have to take the syntax as seriously as we sometimes do. In the course of reading examples, you ought to
be able to jot down similar constructions using your favorite notation.

While trand ation from OOA to OOD declarative form is straightforward, there are few recipes. Aslisted in
the accompanying table (a preview of translation mechanics discussed in Part I1), several options are usually
available. Even so, the transformational nature of design maintains backwards compatibility. Design measures
result in classes, operations, etc., whose basic structural characteristics remain representable in OAN. The
principle of structural continuity implies that most graphical OOA models are also graphical design tools, at
least for the declarative aspects of design. However, our increasing computational focus leads to decreased
reliance on OAN.

ODL shares many features with commonly used object-oriented programming languages. It differs from
programming languages in its ability to describe the properties of objects and operations, in addition to their
representational and computational structure. Also, ODL retains from our analysis models the ability to
describe parallelism and system architecture without having to commit to the extra-linguistic tools and
systems typically required for their implementation. (This fact represents the most fundamental reason for
using ODL in this book. The current state of languages, tools, and services for implementing such notions
otherwise precludes a uniform treatment of underlying design concepts.) Still, ODL is very small and
primitive, as OO notations go. These properties sometimes lead to awkwardness, but also lead to transparent
translation to OO programming and tool constructions. We will exemplify translationsto C++ and
C++-based tools as we progress toward program design issues.

Active Objects

Design notations and corresponding methods for objects that may indeed be active, process-like entities
denoted by our analysis models differ in several respects from those focused only on passive objects

mani pulated within a single OO program. Because these concerns may come into play even when objects are
ultimately implemented as passive entities, we will not often distinguish the two until we need to. Asa
preview for those experienced in OO design of passive objects, we briefly characterize here some of the more
notable differences in constructs and emphasis. Details will, of course, follow in later chapters.

Autonomy.

Because they are autonomous independent agents, the "membranes’ separating the insides from the outsides
of active objects are better defined than those for passive objects. For example, active objects are sometimes
ultimately placed on different processors. There cannot be any representation dependencies, references to
““shared memory", or commitment to other single-process constructions at least until it is known where
different objects will physically reside. Similarly, it isusually abad ideato claim that one active object is
representationally embedded within another. Design methods arrange connections among hel per objects rather
than ~“embedded subobjects’. The existence of links connecting one object to others thus forms important
design information, even when these links can never be directly accessed by other objects and do not form
parts of visible interfaces. Another consequence is that there are fewer opportunities for ssmultaneously
subclassing both interfaces and implementations.

Thus, many design steps that form natural components of passive object design must be restructured. We resist
premature commitments to sequentialization, representation, and other computational strategies that support
declarative properties. The resulting practices may, however, be seen as extensions of the classic design goal

of avoiding premature optimizations (i.e., counter-optimizations) of any form.

Communication.

Interactions may include combinations of one-way message sends and synchronized bidirectional exchanges.
Designs relying on one-way asynchronous messages and other protocols built from them are often
gualitatively different than sequential programs employing only procedural invocation.

Asin our analysis models, we treat the issue of whether an operation should reply to a sender as a property of
the receiving object. Clients must wait for the reply in any interaction defined using a bidirectional, procedural
operation. One-way message sends may be either synchronous or asynchronous. In one-way communication,
synchronicity refers the sending and reception of messages. All one-way messages are asynchronous with
respect to their effects. In synchronous one-way schemes (as found, e.g., in Ada rendezvous constructs) a
sender must wait until the receiver is able to accept a message. In asynchronous schemes (as found in most
distributed processing toolkits), a sender may always generate a message. The message may be buffered by the
communications media until it is accepted. There are intermediate forms as well. For example, evenin
asynchronous schemes, senders may need to wait for a channel over which to send a message. Channel
availability may depend on the readiness of a dispatcher that resolves and routes requests. Conversely, in
synchronous systems, receiver objects may possess queuing mechanisms allowing them to essentially always
accept messages. Thus, we have been and will continue conservatively construing one-way messages as

generally asynchronous. Adding synchronicity properties does not change the logic of resulting designs, but
may lead to stronger guarantees about event sequencing and timing.

Coordination.

Interaction protocols for common services and bookkeeping responsibilities must be specifically designed.
Routing, dispatching, and polymorphism support may also be under ““manual™ control. In addition to other
computational and construction details, synchronization and control mechanisms must be specified and
implemented. In particular, the design of joint actions involving synchronized transitions among possibly
many objects requires transformations that eliminate potential interference, establish protocols to coordinate
transitions among participating autonomous objects, and provide recovery mechanisms allowing one object or
operation to fail without causing the entire system to fail.

Design Phases

This section provides an overview of principal phases, activities, concepts, and issues described in Part 11 of
thisbook. Part Il is structured similarly to Part I, although many details are not strictly parallel to those of Part
|. The core chapters 17-20 parallel chapters 3-6 describing the four basic components of OOA models.
However, dynamic computational issues play afar more central role in design, and thus permeate all other
discussions.

Functional Design

Theinitial focus of design isto move from the world of description to that of computation. In the terminology
that we will adopt for Part |1, OOA descriptions are abstract. They describe attributes and constraints without
completely indicating how it is that objects represent and maintain them. OOA dynamic models are similarly
abstract. They describe the conditions and effects of state transitions and interactions without fully committing
to algorithmic or representational details.

Abstract Classes

Abstract classes are the trandlation units of OOA information into aform suitable for other design activities.
An abstract classis akind of summary model, that may be used in the analysis phase as well as design (see
Chapter 6). One or more abstract classes bring together descriptions of attributes, relations, states, transitions,

events, and interaction protocols for an analysis-level class, while also propelling further design activities.

A near-synonym for ~“abstract” is black-box. Analysis models describe the outsides of objects without saying
much about what the insides ought to look like. Abstract classes and operations are valuable tools for design
too. Abstract classes at the design level may also represent constraints that are decidedly ““abstract” but of
interest only to designers, not analysts. They may describe the nature of objects introduced solely for
behind-the-scenes design purposes and to fill in other gaps.

It is sometimes necessary to recast analysis information into different constructs and idiomsin order to meet
design goals. Analysis models do not address the nature of classes as software artifacts. Other class

architecture requirements are implicitly or explicitly present during the functional design phase. We explore
these issues a bit further later on in this chapter.

Concrete Classes

Among the primary tasks of functional design isreification, the synthesis of internal representational and
algorithmic specifications that meet the declarative constraints of analysis models, along with other
software-based criteria. Thisisthe most time-consuming and creative aspect of the design process. Designers
must choose among the multitude of available idiomsto find those that best reflect the abstract specifications
and other design goals. They must ensure that software quality criteria are met by paying attention to
well-known pitfallsincluding aliasing and interference.

For each abstract class, a design must define one or more concrete classes that define the inner details of
objects that fulfill the promiseslaid out in the abstract versions. These concrete classes may be introduced
without disrupting the abstract characterizations. Any concrete class defines one particular, specialized way of
obtaining the properties defined in an abstract class. Thus, concrete classes may be defined as subclasses of
abstract ones. Because of subclassing, the abstract versions may continue to be used in the course of other
design activities, without introducing any dependencies on how these classes are actually composed. Design
also introduces a number of classes for the purpose of organizing and managing relationships, constraints, and
interactions between other objects.

Compositional Design

Essentially all OO methods for synthesizing internal class properties are compositional. Objects obtain their
static and dynamic properties by aggregating, delegating, inheriting, and coordinating those of other objects.
The basic idea of compositional design isto build complex objects and operations out of simpler ones. This
can take many forms, falling between two extremes:

Property-driven composition.

Property-driven composition begins when you are given an abstract characterization of aclass. Y ou must then
find some components that make good on it. Typical stepsinclude:

1. A set of attributes and behavior is described as an abstract class.
2. Other candidate components supporting at least some of the required properties are found or created.

3. The declarative constraints of the complex entity are restated in terms of combinations or sequences of
those of the identified components.

4. A concrete version of the complex entity is then defined to access, coordinate, and/or extend the
components.

Management-driven composition.

In management-driven composition, you are given information about how a number of other objects may be
related and/or how they may interact. Thisinformation isjust as " abstract” as OOA class descriptions, but is
focused on relations rather than individuals. The design goal isto find ways of representing and managing
relations and interactions. Typical stepsinclude:

1. A set of relations, constraints, services, management chores, or interaction protocols is determined for a
given set of objects.

2. A classor set of classesis defined to represent and track participant object information. Instances of
these classes serve as *agents' for the components.

3. Constraints and protocols are localized within the agent classes.

4. Abstract characterizations, external interfaces, inheritance relations, etc., are defined for the agent
classes.

These approaches are amost opposite perspectives on the same process of bridging external interfaces and
internal affairs through managed composition. Most designs involve at least some aspects of both
perspectives. For the moment, we emphasize only the compositional basis of both views. Abstract objects
become software objects when built out of other software components. Conversely, groups of related
components can be brought together under an abstract interface.

Bottom-up Methods

The compositional object-oriented design process differs significantly from that of classic ~ structured"
methods. In those approaches, the design phase is normally a top-down refinement process starting with crude
structural design, followed by module design, and then detailed design. OO strategies sometimes amount to
the reverse of this.

OOA models already provide top-down decomposition of a system into constructs akin to abstract classes.
Designers may define associated concrete classes in a more productive bottom-up fashion.

Assuming the existence of good analysis models, there is no absolute necessity that design methods be
bottom-up. Top-down analysis models specify both complex and simple classes, operations, etc. It ispossible
to start off designing details of complex objects and to worry about components later. But there are a number
of compelling reasons for working up from the smple to the complex as the default strategy:

Internal reuse;

Smaller scale components tend to be usable in many different roles across a system. If they are not
designed once, up front, it isvery likely that similar, but not identical classes will be designed (perhaps
by different designers) for many of these roles. Thisis awaste of everyone's time, a source of
incompatibilities, and a barrier to further reusability.

Layering:
A different label for internal reuseis "layering” (or "~ superimposition”) . Higher level, coarser-grained
classes may be layered on top of collections of ssmpler ones. When the underlying classes are addressed
first, other designers may in turn build off this richer base, without worrying about the feasibility of
underlying details.

External reuse:

If components are useful in multiple roles within one system, it islikely that they will be reusable in
other applications as well. It often pays to design such components more carefully to make them usable
in broader contexts than those required for the applications immediately at hand. It istechnically easier
in OO frameworks to tune a general component for a particular application than to generalize a
special-purpose one.

I mported components:

Components created for relatively general and/or elementary purposes are more likely to be available
than those for specialized subsystems. If available, complex classes can be designed to use them.

One pass design:
Detailed characterizations of the attributes and behaviors of complex objects are often dependent on
properties of components. If these are known, further design activities need not be interrupted or
postponed. Simple safeguards within foundational objects minimize chances of making design errors
stemming from assumptions that a component can do something that it cannot, and improve run-time
safety.

Testability:
Unit tests may be designed for individual components without considering their application contexts.

Known primitives:

Analysts get to pick their own ““primitives'. But all software objects must ultimately be tied to the
workings of elementary software objects such as booleans, integers, etc. Sometimes thisinvolves an
annoying amount of attention to such details. There is a compensating advantage: Because this
bottommaost level is essentially constant across different programming languages, systems, and
platforms, designers have a known starting point for composing classes.

These considerations lead to tactics that are highly reminiscent of those used in other design enterprises. The
combination of top-down analysis and compositional design has been awinning strategy in a variety of
engineering endeavors, especially electronics design. As discussed by Cox [7], many aspects of
object-oriented software design parallel those of circuit design. A circuit is designed by composing (most
typically via standard interconnection strategies) various elementary devices, each of which is described in
terms of itsinterface, and is often available in different versions.

Identifying components.

Bottom-up composition first involves the identification and design of those elementary classes necessary in
the construction of others. Thisis not quite as glamorous as larger scale design activities. But one of the
general claims of OO approaches s that class-based methods scale across small and large granularity
problems.

Pure bottom-up design is most straightforward for very basic and/or general components. It is easy to identify
at least some of the analysis model entities that serve as the most fundamental building blocks in a system.
They are the ones that do not make any reference at all to any others in the definitions of their static and
dynamic properties. After defining these, attention can be turned to classes that depend only on elementary
ones, and then in turn these, and so on. All of this can usually be surmised through an informal definitional
dependency analysis noting which classes definitionally rely on which others. Of coursg, it is not the least bit
necessary, or even desirable, to proceed exactly in this order.

Preliminary models often lack detailed consideration of the lowest levels of component structure. They
sometimes omit descriptions of such components all together, leaving them to designers, who may in turn pass
the buck down to implementors. In other cases, they may describe features in unstructured terms, rather than
as encapsulated classes. In others, analysts may have failed to notice how the definition of an elementary class
or two could simplify treatment of several complex ones.

Some of these situations may be avoided through reviews of analysis models, especially with domain analysts
who are familiar with tactics used in related software efforts. Others will require a bit of backtracking whilein
the midst of dealing with other components. Experience gained while designing various classes may lead to

refactorings, new encapsulations, and other simplifications that are sometimes difficult to predict in advance.
Identifying frameworks.

In addition to pure bottom-up sweeps, self-contained hierarchies may be isolated for special attention. These
frameworks are useful not only as subsystem- or system-independent components, but also astools in helping
shape the conceptual underpinnings of a system development effort. Frameworks may be viewed as partial
““theories' of particular domains, problems, and plans of attack. Early selection of frameworks helps guide
application design. It ensures that different designers view similar problems appearing in different parts of a
system in similar ways.

Scaling up.

The ultimate in bottom-up compositional design is megaprogramming [23], the piecing together of large
systems into huge ones. Similar methods apply but, of course, at much different scales. Many of the
safeguards that allow smaller scale composition to proceed smoothly become unavailable, and strategies must
be created to “"glue” large, otherwise incompatible megaobjects together in a useful fashion.

Physical Design

The task of physical design isto map a set of software objects onto a set of physical objects.

Typical OO systems cannot enjoy the simplicities of either of our extreme computational models, * one object
per processor” or ~"al objectsin one process’. Most systems need to reside in some middle ground of this
continuum, in which all analysis-level objects are grouped into some number of coarse-grained active objects,
or clusters. Each cluster contains some (usually large) number of objects sharing a CPU, an address space, and
other physical resources.

Clusters themselves map easily into contemporary system process structures. In fact, our active object model
isnearly identical to standard models of system processes. Thus, another way of viewing the design processis
that in functional design, we assume every object, from the tiniest boolean object on up, can be implemented
as a self-contained system process. For purposes of functional design we would like to stay away from
physical mappings as long as reasonable. With few exceptions, these concerns do not impact the basic
structure of classes and objects described by analysis models. It is not terribly productive to deal with these
constraints until the computational properties of a system are at |east approximately known.

In physical system design, we remedy the illusion that the system can be implemented using arbitrarily many
processes. There are two principal phases of physical design. First, objects must be mapped to clusters.
Second, the management facilities required to support these objects and clusters must be designed and/or
employed.

Nearly al systems are constructed with the help of support tools and services that make specific commitments
about how clusters are put together, managed, and allowed to communicate. These allow for ultimate
transformation into a range of software architectures.

Performance Design

Systems design activities result in atwo-tiered architecture. The system as a whole may be viewed in terms of
the interactions of arelatively small number of coarse-grained cluster objects. Each of the clustersisinturn a
program, usually written in a standard sequential OO programming language along with associated tools
allowing communication to other clusters.

Performance design mainly involves transformations of the * second-class" passive objects forced to reside
within programs. Design activities involve both accommodation and tuning:

Passivation.

Intrinsically concurrent properties and mechanisms such as synchronization and triggering need to be either
eliminated or simulated by objects residing in sequential environments and programmed using standard OO
languages.

Optimization.

Numerous measures are available to recast or otherwise tune classes and operations to meet performance
requirements. Optimization and tuning involve interplay between designers and implementors.

Design Criteria

The central notion of aclass at the design level iswonderfully flexible and powerful. Classes form a natural
focal point for organizing diverse descriptive, representational, and computational properties. The waysin
which these properties are conceptually viewed often governs the basic plan of attack for functional design.

We focus on design techniques associated with several different conceptual perspectives on the nature and
roles of classes and objects. The different perspectives normally correspond to OOA models that stress
particular features of objects. Often, multiple perspectives may be applied to the same OOA model. Designs
can look very different depending on which sets of techniques are employed.

We will encounter some general principles for designing classes, as well as some particular idiomatic
constructions representing known (small-, medium- or large-scale) architectures that may be applied to
common design problems. We focus primarily on the former. We cannot describe all of the OO design
architectures, patterns, and idioms that you are likely to need or run into. We restrict ourselves to surveys of
some general forms. Still, we frequently discuss multiple aternative paths to a design solution, sometimes at
the expense of presenting idioms and constructs that are closer to the level of neat tricks than of principled,
stepwise developments. OO design has not matured to the point where we can fully rationalize, evaluate, or
even categorize these strategies. Indeed, some people think that the situation-specific nature of design all but
precludes development of comprehensive theories and accounts.

We describe many constructs, idioms, and strategies available for transforming analysis constructs into
software. While we provide afew hints and guides for using them, we do not include explicit answers for
guestions such as, ~"Which strategy is best for representing relationship R?", ~"Should M be written asa
blocking or nonblocking operation?', and so on. Most such questions cannot be answered. Few strategies and
constructions are always right. Their appropriateness depends on how they fit into other design goals and

criteria, that may differ from those of analysis. This notion that models are to be transformed into software
components places a different perspective on some standard quality notions.

The most central criteriarevolve around compositionality. Compositional design is simplest when the
construction of one class depends only on the abstract class specifications of its components, not their internal
structures. In a compositional design framework, just about every class should be designed to be amenable for
use as a component by others. In the remainder of this section, we survey afew more specific criteriaand
concerns that may serve as guides for deciding among different OO methods and constructions. We will also
preview some of their implications for choosing among design idioms and transformations, leaving others for
later.

Coupling

The most well-known design guidelines for enhancing composition revolve around the issue of coupling. An
operation, object, set of objects, class, or set of classes that minimizes demands on the computational
environment is said to have low coupling with respect to that environment. Decoupled entities are normally
easiest to compose. Coupling isavery broad concept, and may be partitioned along several dimensions.

Representational coupling.

Classes should not depend on the specific representational and computational details of one another. The
central tactic of defining and using abstract classes stems from the idea that composite classes and actions
should minimize dependencies on irrelevant representational and computational details. These concerns lead
to the routine exploitation of interoperability and black-box reuse .

Complex objects need not be dependent on, or even know about, the representational and computational
details of other components, as long as they do the right thing. Common abstract class descriptions may cover
arange of interoperable implementations. This solves severa related design problems:

I nter changeable parts:
New components may be swapped for old ones without disrupting other classes.
Multiple representations:

Different versions of the same kind of component may work best in different parts of the system. There
isno reason a all to settle on just one version. Unlike most modular design strategies, OOD facilitates
coexistence of multiple implementations of the same capabilities.

Prototype evolution:

During prototype development, classes can be thrown together in the most haphazard way, even as
nonfunctional stubs, in order to get something executable for evaluation. These classes may then be
replaced with more serious versionsin an incremental fashion.

System evolution:

Very often, evolutionary software changes can be isolated by reimplementing afew classes that
preserve the same interface to the rest of the system, but differ vastly ininternal details. For example,
persistent storage management may be recast to use a different database service.

Performance tuning:
Poorly performing classes can be identified and replaced, again, without disruption. In thisway,

prototype evolution, performance tuning, repair, and evolution are all performed using the same
fundamental strategy of component replacement.

Extensibility:
There may be several levels of subclasses that all preserve the same interface but add upon each other's

mechanics. Creation of a subclass rather than an interoperable sibling classis an attractive option for
tuning, evolution, and replacement.

External components:

Existing systems that we cannot (or will not) implement may be described via ordinary classes, but with
implementation details that are beyond our control.

Standar dization:

It is both easier and more productive for a company or group to standardize on interfaces than on
internal details. Some people predict eventual industry-wide standardization of many object-oriented
component specifications.

Testability:
Representati on-independent test suites may be constructed for entire sets of classes.
Frameworks:

M edium-scale, multipurpose, reusable class hierarchies that depend only on the abstract interfaces of
various components have proven to be valuable tools for simplifying and accelerating further design.
The frameworks themselves are never touched. Different applications are constructed by defining
particular versions of the abstract components. Generally, just about any hierarchy of abstractly defined
classesis a candidate framework. However, only those few that turn out to be useful across different
applications and contexts deserve the title.

We are fanatical about eliminating representational coupling, especially at the lowest levels of class design.
We are concerned about the design of systems that might be built using multiple heterogeneous platforms,
operating systems, and configurations. We take careful, even tedious, measures early in the design process to
guarantee avoidance of low-level representational dependencies.

These concerns extend upward. The other side of interoperable subclasses is black-box reuse. We encourage
the use of pure composition rather than certain subclassing strategies. Black-box composition is a means of
routinely minimizing representational coupling.

Value coupling.

Classes should be written so that operations are as independent as possible on the particular values of
attributes. Thisisanatural practicein OOD. Generally, superclasses define attributes and behaviors without
committing to particular values. Whenever necessary or desirable, subclasses and related constructs may then
define special cases for special values and conditions. Parameterization constructs (e.g., generic classes)
provide similar opportunities for removing such dependencies.

Subclass coupling.

Beyond minimizing the dependence of one class on how other classes support various features, components
may be designed to reduce dependence on whether these features are present at all. Thisis another view of the
notion that preconditions should never be overstated.

Attributes and arguments should always be defined using the least specific (i.e., most abstract) class type that

is guaranteed to have the right attributes and behavior. For example, if some pri nt 1 operation just prints a
narme attribute, then even though it might be ““intended"” for usein printing Cl i ent names, it may as well
accept any Per son object, assuming that Per sons have namesand classCl i ent isasubclass of class
Per son. Thismay in turn lead you to abstract out yet simpler and more general superclasses. For example,
you might decide to create a class NanedQObj ect asasuperclass of Per son and/or other classes.

Footnote :br: For clarity and emphasis, we continue to use this font for OOA level names but
t hi s font for OOD level names.

Other consequences of subclass coupling include the following.
Subclassindependence:

Decreasing the granularity of classes by imposing new superclasses introduces a different form of
coupling. Classes become | ess dependent on each other, but more dependent on the details of aclass
hierarchy itself. Thisisnot at all bad, but sometimes results in the design of components that are
unusable outside of an otherwise irrelevant class hierarchy. The use of shallow hierarchies, aswell as
exploitation of generic, parameterized class mechanisms can remove unnecessary dependencies. Also,
specia " flattened” versions of classes may be defined. These pull together all inherited information in
one class, allowing it to be used stand-alone.

Subclass extensibility:

Superclasses may be defined only in terms of base properties, which are then specialized in subclasses.
Applications need not know which particular subclass they are using. But abstraction of the " right"
properties can be hard. Superclass descriptions need to be strong enough to be usable by other classes as
arguments and components. But they also need to be weak and general enough to allow definition of
subclasses that extend and refine these propertiesin all useful directions.

Subclass performance:

Inheritance may be used as an optimization technique. By constructing classes ensuring that
general-purpose algorithms are always available, but employing specia ones when additional
constraints hold, both performance and integrity criteria can be met. When efficiency requirements
overwhelm others, optimization via subclassing can be further exploited to improve performance,
although sometimes at the expense of additional, undesirable coupling.

Identity coupling.

A real danger in OOD isthe potential proliferation of " connection” attributes within classes. These
connections maintain communication channels with other objects. The more objects and classes that one
object needs to know about, the more dependent it is on the details of its environment.

There are severa remedies. For example, when one object requires some service, it often does not need to
know exactly who provides this service. We would rather not have to keep track of the targets (recipients) of
service messages, especially when they may change, or when discovering the “"best" service provider isa
nontrivial matter. We attack this at several levels, from exploitation of basic dispatching mechanisms to the
design of higher granularity mediator objects.

Protocol coupling.

A sender of any message (or, equivalently, generator of an event) should require only those effects and
communication of effects minimally necessary. For example, send-and-forget one-way message passing places
the lowest possible demands on the objects performing the operations, since it does not assume anything about

when operation effects hold, or even require that notification be sent back to senders indicating completion.
We will aso discuss constructs that allow objects to interact without hard-wiring either the identities or the
operations invoked on the other objects. A similar tactic is to build mediator objects that enforce particular
protocols among objects who do not otherwise know how to respond to each other.

Minimization of identity and protocol coupling isthe design analog of analysis-level postponement of the
definition of interaction partners (Chapter 6). However, identity and protocol coupling are not always all bad

from a computational perspective. Perhaps the ultimate decoupled system is arelational database, where (from
an OO view) objects are just represented in terms of their attributes and relations, and centralized systems
(database managers) coordinate all state changes without any independent communication between the objects
whatsoever. While this may or may not be a good way to manage persistent storage, it is far too centralized to
serve as a reasonable model of most software systems. Object-oriented designs distribute knowledge and
coordination across a system, generally at the lowest level that it can be reasonably managed. This requires
compromises between localization and centralization through intermediate levels of identity and protocol
coupling.

Code coupling.

The definition of concrete operations should be decoupled from the contexts in which they are employed. This
requirement is most obvious and critical when classes are designed for possible use in concurrent execution
environments. Here, the internal characteristics of an operation may be identical across different classes and
subclasses, but the situations under which these actions are triggered may differ significantly.

For example, in a concurrent environment arequest to get an item fromaLi st may be postponed until an
item becomes available. In a sequential environment, it may result in an exceptional condition. However, we
would like to describe the details of how the item is obtained in the case when the list is not empty in the same
way across both situations. We will focus on the design of classes that are assumed to be usable in concurrent
settings. However, many will need to become sequentialized.

Cohesion

The other side of minimizing demands is minimizing features. Thisis related to the familiar software
engineering concept of cohesion. A class that maintains, localizes, and protects only those features necessary
to perform its primary roleis said to have high cohesion.

Objects should provide "just enough functionality and support features necessary to serve their intended
roles. While there is often some leeway in deciding among core primitive attributes and operations, objects
need not be burdened with the responsibility of supporting derived operations that can be performed with
them, rather than by them. This enables additional superimposed layersto control components in different

ways.
Strengthening features.

The most common strategy for minimizing features is to enhance the guaranteed properties of those that
remain as core attributes. For behavioral features, this often corresponds to the notion of strengthening
postconditions.

Encapsulation.

Encapsulation is the meeting point between coupling and cohesion. Objects in design contain features that
support advertised functionality, but hide the underlying mechanisms so that other objects cannot reach in and
corrupt them. This kind of encapsulation is among the central defining features of the object-oriented
approach. But it is not an automatic consequence of OOD, and is among the hardest things to get just right.
Well-designed classes are as open as possible, so that others may use them for diverse applications, but not so
open that others may abuse them.

Reliability

Correctnessis, of course, of paramount importance. However, objects must also be designed to be robust with
respect to internal design and implementation errors leading to run-time faults, misuse (errors by clients), and
failures of other objects on which they rely.

Several alternative strategies are available for each case. They need to be tailored to the situations at hand. In
addition to the kinds of errors usually addressed in OOA, computational concerns lead to the following
problems. Several are just different views of the same phenomena.

« A message has no valid receiver.

« A messageis sent to the ““wrong" receiver.

« An object recelves amessage it cannot handle.

« An object receives a message with value argument that it cannot handle.
« A client obtains aresult that it cannot handle.

« Aninvoked bidirectional operation never replies.

« A received request never executes.

« Anobject reaches anillegal (undefined) state.

« An object cannot be constructed.

« An object cannot be killed.

« An object forever waits for an event that never occurs.
« An operation triggers by accident”.

o A supposedly “dead" object wakes up.

Error policies.

Of course, the best policy for dealing with errorsis avoidance. Error avoidance is mainly a static design-time
issue that ensures that no action is ever performed unless all of its preconditions hold. In principle, many
errors are avoidable via program verification. But we do not foresee the existence of full OO verification tools
and technigues in the near future.

Descriptions of the diagnosis and recovery of unpreventable errors should be part of any OOA model.
Communications failures, deadlocks, and so on may be accommodated using time-outs, recoveries off history
logs, or whatever means specified. Design activities may introduce other opportunities for failure. In most
cases, the best strategy is to backtrack to Part | of this book and reanalyze conditions and actions, including:

« Inaction (ignoring errors).

« Logging faulty attempts.

« Notifying other objects about failures.

« Notifying people about failures.

« Multi-level notification protocols based on severity.

« Notification protocols at multiple levels of centralization.
« Retrying an operation again with different arguments, etc.
 Postponement, usually by requeuing failed operations.

« Time-outs on waits for operations.

« Redirecting a message to adifferent receiver.

« Conditional continuation based on error values, etc.

« Termination of operation sequences.

« Rollbacksto undo the incomplete effects of afailed operation.
« Re-initializing or reconstructing failed objects.

« Re-initializing or reconstructing the entire system.

o Self-destruction.

Human Factors

Like all software constructs, classes are written both for machine and human consumption. To be usable (and
reusable), classes must be retrievable, readable, understandable, convenient, general, and so on. These
propertiesrest in part on the availability of good toolsto help designers find, understand, and integrate other
classes, aswell as the availability of documentation, tracing mechanisms, etc. But even the best tools and
documentation are useless unless classes are designed with these factors in mind.

Conservatism

First, do no harm. Some OOD constructs and idioms are novel, esoteric-looking, and/or technically
demanding. These are balanced with notions aimed at enhancing the chances that designs will be correct,
reliable, maintainable, traceable, testable, understandable, and reusable. This emphasis distinguishes our
account from many other standard treatments of OOD. We strive to integrate descriptive and computational
approaches, sometimes to the point of awkwardness, but always with the intention of providing maximal
guidance for designing classes in a conservative, correct fashion.

The key components of this approach are those that integrate descriptive and computational information,
mainly via steps linking abstract and concrete classes. We should note that this approach does have some
limitations. It can limit the design space. Some concrete class designs may obey abstract constraints, but
maintain properties in ways that we cannot describe. We sometimes avoid this by limiting the kinds of
descriptive properties attached to abstract classes.

Managing Design

Good design requires good management of constituent activities and developers. While general software
development process management strategies are outside the scope of this book, we note in this section afew
aspects that are specia to OO design and development efforts, especially those surrounding roles and practices
enhancing component reuse. They apply equally well across most phases and levels of design and
implementation. We will not bother to distinguish them within this context.

Roles

Development roles may be assigned according to the kinds of entities that need to be designed and
implemented. These may include classes, process management services, interprocess communication services,
programs, code-generating tools, simulators, test suites, performance monitors, documentation, installation
manuals, and so on. There are also partitioning strategies that cut across these task-based categorizations.
Different individuals or teams may be assigned responsibility for tasks associated with different subsystems
identified in the analysis or design phase. This is common practice in any development effort. Alternatively,
people may be assigned responsibility for developing related classes and/or tools that need to be built
regardless of their use in any particular subsystem.

These categorizations sometimes conflict. An increasingly prevalent compromise s to perform most
assignments by subsystem and/or task, but also to assign people or teams to reuse management and/or tool
management efforts that operate in close coordination with other teams.

In anideal version of this partitioning, individuals performing subsystem and application development engage
in pure design with reuse methods. All development builds on top of reusable components and tools devel oped
and maintained by other teams. At the same time, newly developed components are fed back into the reuse
effort. This may be pushed to extremes for routine applications development. Individuals assigned to create
miscellaneous small applications may do so solely by connecting existing componentsin new ways. This
would be facilitated by the use of special graphical OO programming languages that construct programs by
compiling interconnection graphs.

Support Teams

Tool management and reuse management teams are motivated and structured along the same lines, and are
even commonly rolled together as the responsibility of a single team or individual. In both cases,
implementation of the current system may progress most rapidly if the teams are involved very early in the
system development process, so that support software is ready when needed.

The differences between OO tools and OO class libraries can be alittle subtle, and perhaps not even worth
defining with respect to management efforts. For example, atool that generates classes for custom user
interfaces is often interchangeable with an application framework providing operations on abstract W ndow,
But t on, etc., classes that may be customized through composition and subclassing. The availability of one
might govern whether and how to develop the other. Here, for example, the optimal solution might be to have

both an applications framework and atool that quickly generates common cases within that framework.

A vague but more useful distinction is separation of general-purpose tools and classes from domain-specific
ones.

General-purpose software might include user interface classes and tools, interprocess communication tools,
basic collection classes, system interface classes, and instrumentation tools. For these, teams and individuals
may spend more time in acquisition and evaluation of externally obtainable components than in creating new
ones. They may become the local expertsin the use of this software, and provide training and consulting to
others. Cases in which general-purpose classes and tools are required, but not available, may lead to side
channel development efforts that are sponsored by several ongoing applications projects.

Domain-specific software supports aline of products, but not any one of them per se, for example, application
classes (e.g., for banking), tools generating class stubs obeying particular error protocols, and classes and tools
supporting authentication protocols. Most domain-specific efforts are constructive rather than evaluative.
Building such classes and tools during the course of development of any one project represents an investment
in the future.

Managing Reuse and Tools

Reuse management should be an ongoing concern. For any particular project, a reuse team should be involved
early in the development process. Members help identify components and chart out reusability prospects.
These efforts are facets of domain analysis, as described in Chapter 13.

Regardless of whether they address general -purpose or specialized software, and whether they are centered
around tools or components, the basic goals in support management are similar: To prevent people from
needlessly re-creating designs and implementations, to provide people with a means of profiting from the
efforts of others, and to encourage people to create components and tools that may be reused by others.

Problems emerge when individuals do not think to reuse classes before designing or implementing them.
Without care, many essentially identical classes may be defined using different names and conventionsin
different parts of the system. Among other problems, none of these are typically as good as those that would
be produced from awell-managed reuse program. Support efforts may include:

« ldentifying potentially reusable components.

« Evauating component quality and suitability for reuse.

« Importing components devel oped elsewhere.

» Developing software "“glue" to facilitate composition of different components.
« Providing support tools for browsing, understanding, and using components.

» Coordinating feedback, annotations, bug reports, etc.

« Integrating different media and notations.

« Developing components projected for use across multiple projects.

« Training othersin the use of existing components.

Controlling Components

The control of reusable components extends techniques common to other software coordination efforts. Tools
and techniques should address both reuse-specific and other supportive roles, including:

Version control:

Central tracking of versions, tests, and usage histories.
Format standards:

Tools maintaining standard formats for designs, code, documentation, etc.
Updates:

Protocols and tools for error reports, change requests, suggested improvements, resubmissions, and
replacements, along with subsequent rel ease notices.

Annotations:

Feedback and commentary from component users accessible to other potential and actual users. Usage
notes remain among the best means for communicating client-side documentation.

Retrieval:

Clients cannot reuse components if they cannot find them. Components may be retrievable using any
plausible path. These include the standard inheritance-based paths, those specified by interface, by
functional category, by keywords, and so on.

Browsing:
A standard browsing system for models, designs, code, graphics, documentation, etc.
Metrics:

Basic metrics (e.g., numbers of classes, subclasses, operations) may be collected to summarize sets of
related components.

Owner ship protocols:

Responsibility for a class or set of classes may be assigned to a principal ~“owner”, who may or may not
also be an actual designer. If a component passes from ateam to areusable library, ownership may also
pass to the reuse team.

Access control:

During development, classes should be available to devel opers, but not others. Access control strategies
prevent potential users of a class from obtaining and/or attempting to modify premature versions.

Configuration control:

Components destined to work in specific products, releases, platforms, etc., must be so marked and
mai ntai ned.

Release management:

Tools to gather software, documentation, etc., in preparation for particular releases.
Testing:

Test histories, test generators, testing and integration protocols, etc.
Generators:

Standardization of formats, approaches, and policiesis facilitated by tools that help semiautomatically
generate parts of design descriptions, for example, those that help ensure conformance to selected error

handling policies.
Design checkers:

Tools for checking whether designs meet standards and other criteria.
Program development:

Compilers, debuggers, editors, etc.

Tool integration.

It isunlikely that you will find single integrated tool sets that contain all of this functionality, in addition to
integrated support for OOA methods (Chapter 12) and requirements and domain analysis. In the future,
integrated tools may be available supporting traceability and version management of all artifacts across all
development phases, team (policy) support, prototype interpreters, and indexed access to libraries of analysis,
design and code components.

However, less extensive solutions fare reasonably well, especially for small and medium efforts. For example,
asreported in [9], a successful medical software product produced in 18 months by ateam of eight relied only
on asingle-user OOA drawing tool and a C++ compiler. Still, they expect more than 80% reuse for a
follow-on project.

Evaluating Components

Criteria and protocols need to be established for assigning, accepting, revising, replacing, and removing
components. General criteriamay be based on the quality concerns described earlier in this chapter. However,
such criteria are notorioudly difficult to apply to individual components. Beyond simply observable qualities
such as tests and testability, few automatic checkoffs are always applicable. Thisleads to the widespread
adoption of review (inspection) procedures.

There are many kinds of reviews, including blind inspections, joint walk-throughs, and comparisons of
multiple independent designs. These procedures are well described in standard texts on software process
management (e.g., [10]). They apply equally well to OO development and to reuse management. Such efforts
may be operationalized via certification policies and procedures describing those steps that must be taken for
any component to be certified for general reuse. These normally include some combination of requirements
for testing, review, and assessment via metrics.

Evaluating Use

Reuse and tool management efforts and their clients should themselves be evaluated. Thisisadifficult issue.
Metrics for evaluating how effectively people have reused classes and exploited tools remain controversial.
Worse, many standard " productivity" measures (e.g., lines of code generated per programmer) sometimes
counterindicate effective reuse. Much care and judgment is needed in evaluating devel opers within this
framework.

Summary

|deally, object-oriented design methods and practices seamlessly mesh with those of analysis. Thisisa
byproduct of more general continuities inherent in object-oriented software development. These ideals may be
approximated by arranging that design subphases and activities respect these continuities. Design may be

approached as a series of transformations dealing with functional, resource, and performance requirements. At
atechnical level, transformation is often only a metaphor, not a series of blind mechanical trandations. But
even so, transformational logic leads to the formulation of a default strategy that is structured enough to be
useful, yet flexible enough to support countless situation-specific variations.

Whether it is focused on the description of object properties, behaviors, relationships, or interactions, design is
primarily a compositional process. Complex classes rely on simpler ones for many of their static and dynamic
features. Since OOA models already provide descriptive accounts of high-level class organization, the design
process may employ more productive bottom-up methods. OO design is aso idiomatic. Class-based design
frameworks are amost too flexible. Different idiomatic approaches to the same problem often lead to different
design solutions.

Criteriafor evaluating such solutions resemble those established for any other software artifact. There are
many criteriato choose from, and few ways to measure any one of them. We consider them to be most
valuable in guiding the design process itself, rather than as metrics for gauging the quality of individual
classes, although they may certainly play apart in thisas well.

Creating distinct reuse and/or tool management teams is a central factor in making good on the high
productivity reputation of the OO paradigm.

Further Reading

Different authors differently categorize the borders or lack thereof between analysis and design; see, for
example, Monarchi and Puhr [17], Dasgupta [8], and Potts [20] for summaries.

The compositional OO approach to the design of active objectsis perhaps most closely associated with the
work of Tsichritzis, Nierstrasz, and colleagues at Geneva; see, for example, [19].

Berard [2] and Meyer [14] provide alternative characterizations of coupling and related OO software quality

criteria. Reuse-oriented software process management is discussed by several authors in the collection edited
by Biggerstaff and Perlis[4].

Design interpreters may be constructed using simulation, logic programming, and constraint propagation
techniques, including those found in OO constraint systems such as Garnet [18].

More formal computational models of active objects might be based on abstract process models including CCS
[15], pi-calculus [16], and the Chemical Abstract Machine [3], on algebraic frameworks (e.g., [24]), or on

concurrent constraint systems (e.g., [21]). Alternative conceptualizations include models treating all objects as
sets of storage locations accessed and controlled by multiple processes [5,1,11].

Exercises

1. Compare the approach described in this chapter with that of other transformational systems with which
you are familiar; e.g., compilers, computer vision systems.

2. Describe how and why our OO kernel and reference model differs from those used in discrete event
simulation systems.

3. Sequentially pipelined activities sometimes stall. Describe some possible stall pointsin a pipelined
analysis-design-implementation process framework and how to deal with them.

o

In Chapter 5, we started using constructs (e.g., event generation) that are not classically considered to be
black box. Why do you think we still characterize them as abstract from a design perspective?

Explain the difference between function composition and object composition.
Wedid not list “"generality” per se as an independent component design criterion. Should we have?
List smilarities and differences between:

1. Anl nt eger object and anail.

2. A Pul | DownMenu object and a hot water faucet knob.

3. AnAccount Li st object and arefrigerator.

4. Reusable software and reusable hardware.

8. Why do lines-of-code metrics sometimes counterindicate reuse? Do they always do so?
References
1
K. Apt and E. Olderog. Verification of Sequential and Concurrent Programs. Springer-Verlag, 1991.
2
E. Berard. Essaysin Object-Oriented Software Engineering. Prentice Hall, 1992.
3
G. Berry and G. Boudol. The chemical abstract machine. In ACM Conference on Principles of
Programming Languages. ACM, 1990.
4
T. Biggerstaff and A. Perlis, editors. Software Reuse. ACM Press, 1989.
5
K. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.
6
J. Conklin and M. Begeman. gibis: a hypertext tool for exploratory policy discussions. ACM
Transactions on Office Information Systems, October 1988.
7
B. Cox. Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley, 1986.
8
S. Dasgupta. Design Theory and Computer Science. Cambridge University Press, 1991.
9
D. de Champeaux, A. Anderson, M. Dalla Gasperina, E. Feldhousen, F. Fulton, M. Glel, C. Groh, D.
Houston, D. Lerman, C.