

Designing for XOOPS

Designing for XOOPS

Sun Ruoyu

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Designing for XOOPS
by Sun Ruoyu

Copyright © 2011 XOOPS Foundation. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Julie Steele
Production Editor: Kristen Borg
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Designing for XOOPS, the image of a crested ibis, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30896-4

[LSI]

1310562719

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. Before the Journey . 1
Prepare the Tools 1

General Workflow of Designing a XOOPS Theme 1

2. Elements of a XOOPS Theme . 5
Necessary Elements of a XOOPS Theme 5
A Simple Example 6

Block-Displaying Structures 8
Content and Footer 10

3. Converting an Existing XHTML Template . 11
Get the CSS Template 11
Plug It into XOOPS 14
Further Modifications 16

Head Part 16
Logo and Navigation Bar 17
Footer 17
The Last Fix to Make the Theme Work 17

4. Styling XOOPS and Creating a Theme from 960 . 21
More on Styling XOOPS 21

Global Style 21
Theme-Specific Style 21
XOOPS System Template Style 22

Dealing with XOOPS Template Style 22
#MainMenu 22
#Usermenu 23
Table and Cells 23

Smarty: I Want to Know More 24

v

Header Tags 25
XOOPS General 25
XOOPS User-Related 26
Smarty Flow Control 26
Include and Assign 27

More on Smarty: Tricks and Examples 27
Module-Based Navigation 27
What About a Block Without a Title? 28
Custom Block Filter 28

Create a Theme with 960 30

5. jQuery and UI Libraries for XOOPS Themes . 31
Link Your Theme to jQuery 31
Case1: jQuery Used Separately (Adding a Slider to Your Theme) 32

Get the Graphics Done 33
Coding (X)HTML and CSS 34
Adding jQuery Effect 36
Case2: jQuery Integration (Transform Your Blocks into Tabs) 38

jQuery Tools as UI Library 38
Implementing Tabs Separately 39
Integration: How to Come Up with an Idea 40
Integration: How to Implement the Idea 41

6. Module Template Override . 45
An Experiment in Module Template Override 46

Dig Deeper 48
Case Study: Gallery Slideshow Block 50

Preparation 51
Clean Up the Markup 51
Integrate with the InsMinimal theme 52
A Test Run 53

A Look Back 54

7. Block Anywhere Techniques . 55
How to Get XOOPS Tools Module 55
A First Play-around 56
What’s the Difference? 58

8. Case Study: My TinyMag . 61
Wireframing 61
Mock Up a Design 62
Code the Mock-Up Design 63

Header 63

vi | Table of Contents

How to Deal with Content 68
Content Markup 69
Set Up Blocks 74

Publisher FAQ 74
Where are the advanced editing options? 74
Why can’t I upload article images? 79

Construct Header Feature 81
Construct the Main Feature 84
Construct the Content 85
Construct Latest Article Categories 87
Poll 91
Archives and Discussions 92

Archives 92
Forum 94

User Menu 96
Publisher + Disqus 96
Final Check 102

Appendix: XOOPS Cheatsheets . 105

Table of Contents | vii

Preface

What Is XOOPS?
Before you dive into this book, I would like to first extend my warm welcome to you
as you enter the world of XOOPS. XOOPS is an acronym of eXtensible Object Oriented
Portal System. It is an open-source application platform and Content Management
System (CMS) written in PHP. It is built for developing a variety of solutions in a mod-
ular fashion, for both small and large interactive dynamic community websites, com-
pany portals, intranets, weblogs, and much more. By installing different modules, you
can build quite different websites.

XOOPS is released under the terms of the GNU General Public License (GPL) and is
free to use and modify. It is also free to redistribute as long as you abide by the distri-
bution terms of the GPL.

Why Use XOOPS?
XOOPS is shipped with a nice installer and can be easily deployed on a web-hosted
server. In XOOPS 2.5, a more user-friendly backend administration has been intro-
duced. This makes managing a complex website very easy and intuitive. You need
almost no programming knowledge to build a website!

Due to the very flexible architecture of XOOPS, a developer (or even an advanced user),
can create a vast variety of applications on top of XOOPS, including diaries,
team rankings for sporting events, school administration systems, photo galleries,
newspapers/magazines, and sophisticated ecommerce packages.

Powerful Modules
The most common application for XOOPS is as a CMS. With powerful modules con-
tributed by developers all over the world, you can create and manage content easily.

ix

Themes and Templates
XOOPS uses Smarty—one of the most popular template engines in PHP—as its tem-
plate engine. This makes it easier for designers to get used to the syntax. You don’t
have to deal with raw PHP code.

In addition, XOOPS is equipped with a lot of Smarty plug-ins to make life easier for
designers.

User Management
XOOPS has a robust user management system. This is a key feature for applications
like community websites. Users can search for other users by various criteria, or send
email and private messages to other users through a template-based messaging system.
And there are “social network” modules for XOOPS that can help enhance user inter-
action. XOOPS also has a powerful and user-friendly permissions system, which ena-
bles administrators to set permissions by group.

Supported Worldwide
XOOPS was created and is maintained by a team of several hard-working volunteers
located all over the world. The XOOPS community has more than a dozen official
support sites around the world for non-English-speaking users. XOOPS fully supports
multi-byte languages, including Japanese, Simplified and Traditional Chinese, Korean,
and so on.

If you have any questions, the community can always help you. And as you become an
expert on XOOPS, please join the community and make your own contribution!

Brief History of XOOPS
The roots of XOOPS go back to PHPNuke, which was created by Francisco Burzi in
2000. As it sometimes happens within open source projects, a few of the developers
who worked on PHPNuke decided to create something closer to their vision for a CMS,
which they felt should be written with Object Oriented Programming (OOP) principles
and technology. The result of their work became what we know today as XOOPS.

Over its 10 years of existence, XOOPS has reinvented itself many times. Besides being
one of the OOP pioneers in the CMS area, it was also one of the first to add the Smarty
templating system. Although Smarty is somewhat controversial, no one can deny that
using it is much easier than using raw PHP code to create themes. In addition, we can
take advantage of different Smarty plug-ins to enhance its flexibility.

Now XOOPS is evolving again. This time, it has been rewritten from scratch using the
Zend Framework. While currently in Alpha release, the new version’s release is planned
for the end of 2011.

x | Preface

What This Book Covers
This book covers the whole workflow of building a XOOPS theme from scratch.

Chapter 1, Before the Journey, generally describes the workflow and introduces the basic
concepts that you need to know. It briefly covers how to set up Apache, PHP, and
MySQL environments for XOOPS. I’ll also talk about what tools you need to build a
theme.

Chapter 2, Elements of a XOOPS Theme, starts by introducing the plain framework for
themes. Although you can build your theme from a blank XHTML file, it simply takes
too much time and requires a lot of thinking. By using the simplest theme framework,
I will introduce the template engine structures of XOOPS.

Chapter 3, Converting an Existing XHTML Template, mainly introduces how to apply
an existing XHTML template to XOOPS. This will give you a more thorough look at
the template engine.

Chapter 4, Styling XOOPS and Creating a Theme from 960, introduces more details on
CSS styling. It will also illustrate how to create a XOOPS theme using 960 Framework
for XOOPS, and how to make use of the theme framework to save time and code.

Chapter 5, jQuery and UI Libraries for XOOPS Themes, briefly discusses how to add
jQuery and jQuery-based UI libraries to the theme to achieve complex effects. Two
detailed case studies will help give you a deeper understanding of this subject.

Chapter 6, Module Template Override, covers the module template override. This allows
you to control the template of each individual module by your XOOPS theme. jQuery
integrations will also be discussed in this chapter

Chapter 7, Block Anywhere Techniques, mainly discusses “block anywhere” techniques.

Chapter 8, Case Study: My TinyMag, will summarize all you’ve learned in previous
chapters in a case study: we’ll go from an idea to a complete website.

To take it to the next level, see the materials available on the book’s support site at
http://insraq.me/book/. If you have the ebook, you were also given a file named
cny_sale_package.zip that contains premium themes (which I hope will help your stud-
ies), free to those who purchase this book. If you purchased a hard copy, you can get
these themes by going to http://insraq.me/book/—follow the instructions there and use
the coupon code DFXT11.

What You Need to Know
This is a designer’s guide. So I assume that you know XHTML and CSS quite well.

A little prior knowledge of XOOPS is very helpful. You should at least know how to
install XOOPS and conduct basic operations. And your knowledge of other CMSes
might also help you.

Preface | xi

http://insraq.me/book/
http://insraq.me/book/

There are also some things you don’t need to know:

• PHP know-how is not necessary. In fact, I will not talk about PHP at all. Many
great PHP programmers develop XOOPS to save designers from the dealing with
PHP code.

• In-depth JavaScript knowledge is not required, though a basic understanding of
JavaScript is quite useful. This book focuses on jQuery, a JavaScript Library that
allows designers to write less and do more. It is much easier than the traditional
JavaScript approach.

• Unix/Linux server-related knowledge is not needed (though it is recommended for
webmasters). This book focuses on the designing process. In fact, the main oper-
ating system used here is Windows. Server-related configuration is not covered.

Who Is This Book For?
If you fall into any of these categories, this book is for you:

• You are running a XOOPS website and have some basic understanding of the
framework. Now you want to customize the look of your website. This book in-
cludes in-depth discussions on designing techniques and tricks.

• You have planned several other websites powered by XOOPS, but you want to
improve your design skills with regard to XOOPS. You will definitely benefit from
the comprehensive coverage of XOOPS design, especially the last case study, which
explains how to turn an idea into a full-featured website.

• You are a designer and new to XOOPS, and you want to design for XOOPS to
extend your career opportunities. This book makes several comparisons between
(X)HTML template and the XOOPS theme engine. There is also a tutorial on how
to port an existing (X)HTML template to XOOPS in Chapter 3.

For absolute beginners, I will not go through the basic concepts here. But XOOPS is
quite easy to use, especially the latest version, 2.5, which has a very intuitive backend.
And you can always get help from the XOOPS community at www.xoops.org. After
you have some basic knowledge of XOOPS, this book will quickly deepen your un-
derstanding of XOOPS themes and templates.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates file names, directories, new terms, URLs, clickable items in the interface
such as menu items and buttons, and emphasized text.

xii | Preface

http://www.xoops.org

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user, as well
as the filename at the beginning of a code example.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Path and Folders
XOOPS represents your XOOPS root path. Therefore, XOOPS may translate to C:
\XAMPP\htdocs\XOOPS\ on your computer.

XOOPS/themes means the themes folder in your XOOPS root. You might notice that
Windows uses the backslash (\)—but I will use slash (/), which is the convention in
Linux.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Designing for XOOPS by Sun Ruoyu.
Copyright 2011 XOOPS Foundation, 978-1-449-30896-4.”

Preface | xiii

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449308964/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

xiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com/catalog/9781449308964/
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
First, I have to thank the core developers of XOOPS—without them, I could not have
written this book. Also thanks to the many module developers whose modules I made
use of while putting together this book.

Publishing the book is not easier than writing it; I got a lot of help from the community.
I want to especially thank Michael (Mamba), who helped me deal with the publishing
world. Mirza (Bleekk) reviewed the technical details of the book, and provided a lot of
useful feedback. The editor of this book, Julie Steele; production editor Kristen Borg;
and the whole O’Reilly team have done a wonderful job during the publishing process.

Finally, I want to thank my friends and family, who have always been supporting me
and made this happen.

Preface | xv

CHAPTER 1

Before the Journey

Prepare the Tools
There is an old Chinese saying: “To do a good job, one must first sharpen one’s tools.”
So before you start designing a XOOPS theme, you must first get yourself (and your
computer) prepared.

I’ll first describe the general workflow and list what tools you will need for each step.

General Workflow of Designing a XOOPS Theme

Step 1: Create a Web Design

As a designer, you are of course familiar with this procedure. Whether you start with
pencil and paper or Photoshop is up to you. As long as your final output is (X)HTML
and CSS, it will be fine.

Step 2: Convert the XHTML template to a XOOPS theme

In this step, you will need a copy of XOOPS installed on your computer. XOOPS re-
quires PHP and MySQL, so you should first set up the environment. There are plenty
of ways to do this, but the most simple way is to use XAMPP.

First, go to http://www.apachefriends.org/en/xampp.html. You can choose the appro-
priate version according to your operating system. For the illustration in Figure 1-1, I
used Windows. I recommend you download the Lite version.

After you get the file, extract it or let it self-extract. Then, enter the folder where you
extracted XAMPP Lite, and you will see xampp-control.exe, as shown in Figure 1-2.

1

http://www.apachefriends.org/en/xampp.html

Figure 1-1. This is the Windows distribution of XAMPP Lite I downloaded

Figure 1-2. The executable file appears in the extracted folder

Double-click to open it, and you will see an interface similar to that shown in Figure 1-3.

Figure 1-3. The XAMPP Lite interface for Windows

Click the Start button next to Apache and MySQL.

2 | Chapter 1: Before the Journey

When you see the Running label next to Apache and MySQL, you have successfully set
up the AMP (Apache + MySQL + PHP) environment on your computer.

The next thing to do is to install a copy of XOOPS. It is quite easy, as XOOPS has a
very user-friendly installer. Download the archive, extract it, set up the database, run
the installer and you’re done! There are many tutorials on how to do that, so I’m not
going to go into details here.

Step 3: Testing and debugging

You might encounter various problems when you code your theme. Some of them may
relate to the template itself—for example, you may make a mistake in the CSS code of
the template. Others may be caused by an incorrect implementation of XOOPS tem-
plate engine. You should make sure that the first type of bugs is fully eliminated before
you implement the XOOPS template engine. Otherwise, it will take you twice the time
to debug: you will have to consider the bugs in both the original template and the
XOOPS template engine implementation.

XOOPS will not turn on the debug option by default. You need to turn it on and select
an appropriate method for different purposes (System Options→Preferences→General
Settings). See Figure 1-4.

Figure 1-4. Turn on debug mode manually, since the XOOPS default leaves it off

For CSS debugging, I recommend two tools, and they are both add-ons for Firefox:
Web Developer Toolbar and Firebug (Figure 1-5).

Figure 1-5. The Web Developer Toolbar and Firebug add-ons for Firefox are helpful debugging tools

As a designer, you have probably already installed copies of major browsers so you can
debug cross-browser-wise. But if not, you should do that now, too.

Prepare the Tools | 3

CHAPTER 2

Elements of a XOOPS Theme

Now we can really start our journey. It may not be an easy road, but don’t worry—I’ll
be your guide.

Necessary Elements of a XOOPS Theme
Please go to the XOOPS/theme/default directory; this holds the default theme of
XOOPS. There you can see lots of CSS, HTML, and graphics files, as shown in
Figure 2-1.

Are all those files necessary? Of course not. The simplest XOOPS theme needs only
one file: theme.html. And since you are not in prehistoric times, you should use CSS to
control the style instead of directly controlling it in HTML. You can use theme.html
and style.css to build your theme. In the beginning, we will be dealing with these two
files pretty much all the time.

Now go to XOOPS/theme/, create a new folder, and name it whatever you’d like. I’ll
use firsttheme.

Now let me explain how it works. If we choose to use firsttheme as our theme, XOOPS
will display theme.html under the firsttheme folder, no matter what’s in that file. Sup-
pose that you write a static HTML file, name it theme.html and put it in firsttheme.
XOOPS will display that HTML file.

Then why bother with XOOPS? You could display that file by double-clicking it. It will
not make much difference.

What you are going to do is add some markup that can be read by the XOOPS theme
engine. The engine can read your instructions and actually control the way XOOPS
displays your website. That’s basically the mechanism of the XOOPS theme engine,
and is pretty easy to understand.

The next question is how to make use of the “special markup.” Instead of introducing
these options one by one, I will first give you an example and then explain the markup
in it.

5

A Simple Example
Erol Konik (known in the forums as aph3x) provides a plain XOOPS theme in the
XOOPS forum (http://goo.gl/qXkgv). It is a very good theme to start with:

theme.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<{$xoops_langcode}>"
 lang="<{$xoops_langcode}>">
<head>
<meta http-equiv="content-type" content="text/html; charset=<{$xoops_charset}>" />
<meta http-equiv="content-language" content="<{$xoops_langcode}>" />
<meta name="robots" content="<{$xoops_meta_robots}>" />
<meta name="keywords" content="<{$xoops_meta_keywords}>" />
<meta name="description" content="<{$xoops_meta_description}>" />
<meta name="rating" content="<{$xoops_meta_rating}>" />
<meta name="author" content="<{$xoops_meta_author}>" />
<meta name="copyright" content="<{$xoops_meta_copyright}>" />
<meta name="generator" content="XOOPS" />
<title><{$xoops_sitename}> - <{$xoops_pagetitle}></title>
<link href="<{$xoops_url favicon.ico}>" rel="SHORTCUT ICON" />
<link rel="stylesheet" type="text/css" media="screen"
 href="<{$xoops_url xoops.css }>" />
<link rel="stylesheet" type="text/css" media="screen" href="<{$xoops_themecss}>" />

Figure 2-1. The default theme directory in XOOPS contains CSS, HTML, and graphics files

6 | Chapter 2: Elements of a XOOPS Theme

http://goo.gl/qXkgv

<{$xoops_module_header}>
</head>
<body>

<!-- LEFT -->
<{foreach item=block from=$xoBlocks.canvas_left }>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- CENTER -->
<{foreach item=block from=$xoBlocks.page_topcenter }>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- CENTER LEFT -->
<{foreach item=block from=$xoBlocks.page_topleft }>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- CENTER RIGHT -->
<{foreach item=block from=$xoBlocks.page_topright }>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- CONTENT PAGES -->
<{$xoops_contents}>

<!-- BOTTOM CENTER -->
<{foreach item=block from=$xoBlocks.page_bottomcenter}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- BOTTOM CENTER LEFT -->
<{foreach item=block from=$xoBlocks.page_bottomleft}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- BOTTOM CENTER RIGHT -->
<{foreach item=block from=$xoBlocks.page_bottomright}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

<!-- RIGHT -->
<{foreach item=block from=$xoBlocks.page_right }>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

A Simple Example | 7

<!-- FOOTER -->
<{$xoops_footer}>
</body>
</html>

Block-Displaying Structures
Let’s ignore the <head> part for now and focus on <body>. You will find out that there
are lots of similar structures:

<{foreach item=block from=$*}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

These are used to display XOOPS blocks. The part between <{foreach}> will be re-
peatedly displayed. What does that mean? Well, for example, if you’ve set the block
manager in the XOOPS backend to display four left blocks, then the following section
in theme.html will be interpreted by XOOPS:

theme.html (excerpt)
<{foreach item=block from=$xoBlocks.canvas_left}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

The output result will be as shown in Figure 2-2.

By using this code in theme.html, you are actually telling XOOPS, “OK, please display
all the left blocks here, and don’t forget to follow the pattern I defined within the
<foreach> tag!”

How does XOOPS know whether you are talking about left blocks or not? The key is
in the first line:

<{foreach item=block from=$xoBlocks.canvas_left}>

from=$xoBlocks.canvas_left actually instructs XOOPS to show left blocks only. If you
understand this, then you can understand all other similar structures in the code. They
are only different in block types.

You can read the comment to see what part the code is actually displaying.

There are eight positions (or places) of blocks in the latest XOOPS, version 2.4. You
can match the code with the settings in the XOOPS backend (see Figure 2-3).

8 | Chapter 2: Elements of a XOOPS Theme

Figure 2-3. XOOPS 2.4 contains eight block positions, shown here

In XOOPS 2.5, we have same number of block types, but a much nicer system of
block management. You can drag and drop, enable, or disable blocks instantly (see
Figure 2-4).

Figure 2-2. Four similar left blocks are displayed

A Simple Example | 9

Figure 2-4. XOOPS 2.5 has a fancier block management interface

Content and Footer
If you remove all the code related to block display, there are only two lines left:
<{$xoops_contents}> and <{$xoops_footer}>.

<{$xoops_contents}> is used to display the content (mainly module content). For ex-
ample, the module content will be displayed when you visit a specific module.

And <{$xoops_footer}>, as the name suggests, displays a footer, such as copyright and
powered-by information.

These are most of the key elements of any XOOPS theme. The major difference between
XOOPS theme files and plain (X)HTML templates is basically the code above. You
should already be quite familiar with HTML and CSS, and therefore designing a
XOOPS theme will hopefully be intuitive for you.

In the next chapter, we will discuss how to convert an existing HTML template to
XOOPS, giving you hands-on experience with XOOPS themes.

10 | Chapter 2: Elements of a XOOPS Theme

CHAPTER 3

Converting an Existing
XHTML Template

OK, now you know the mechanisms of XOOPS themes. So let’s get something done!
In this section, you will convert an existing XHTML template into a XOOPS theme.
Your focus should be the XOOPS theme syntax, not CSS.

There are lots of websites that provide free and quality CSS templates; I happened to
choose FreeCSSTemplates.org for illustration purposes.

Get the CSS Template
Please go to http://www.freecsstemplates.org/preview/paperslips and get the Paperslips
template. It is a three-column, grungy-looking template in a light color (see Figure 3-1).

Extract the archive file to XOOPS/themes/. After this, you should see a paperslip folder
in XOOPS/themes/. If you don’t like this name, you can change it. But for simplicity’s
sake, I will keep the original name here.

The files in the folder are shown in Figure 3-2.

Now please recall what we talked about in the last chapter regarding the XOOPS theme
engine: the main theme file should be named theme.html. Simply change index.html to
theme.html. Go to the backend of your XOOPS installation and make paperslips se-
lectable, as shown in Figure 3-3.

You should see something similar to Figure 3-4.

11

http://www.freecsstemplates.org/preview/paperslips

Figure 3-1. The Paperslips template

Figure 3-2. The files in the paperslip folder

12 | Chapter 3: Converting an Existing XHTML Template

Figure 3-4. Don’t panic if you see this! You’re still doing it right.

“What have I done wrong?” you might ask. Actually, you’ve done everything right. You
just need one further fix.

Perhaps you’ve realized what is the problem here: the paths. The paths in the original
files might not fit, and an amendment is needed. Open theme.html, and in Line 8 where
the stylesheet path is defined,

<link href="style.css" rel="stylesheet" type="text/css" media="all" />

change style.css to <{xoImgUrl style.css}>.

Save the file and refresh your browser, and things should look like Figure 3-5.

See? It is all right now. <{xoImgUrl style.css}> is actually equivalent to http://yourxoops
.com/themes/paperslips/style.css. It will be interpreted as such by the XOOPS theme
engine.

Figure 3-3. Making the Paperslips theme selectable

Get the CSS Template | 13

http://yourxoops.com/themes/paperslips/style.css
http://yourxoops.com/themes/paperslips/style.css

Figure 3-5. Once you’ve fixed the paths, your browser should look like this upon being refreshed

Plug It into XOOPS
Well, now the template is correctly displayed in your XOOPS installation. The next
step is to integrate the template. We need to replace some of the content with XOOPS
theme engine syntax. It might be a little abstract at first, but don’t worry.

Please go to the content inside <div id="content">.

It is easy to discover that this code is actually the main content area of the template.
What you need to do is to replace this with the XOOPS center block code.

First, let’s remove the <div class="photo">...</div>, as we don’t need it for now.
Recall the structure that you learned in the last chapter:

<!-- CENTER -->
<{foreach item=block from=$xoBlocks.page_topcenter}>
<{$block.title}>

14 | Chapter 3: Converting an Existing XHTML Template

<{$block.content}>
<{/foreach}>

We’ll use the center center (sometimes referred to as top center) block as an example.
Looking at the Paperslips template, you can intuit that we will add some tags to our
basic structure to “fit in.”

<!-- CENTER -->
<{foreach item=block from=$xoBlocks.page_topcenter}>
 <div class="title"><h2><{$block.title}></h2></div>
 <div class="entry"><{$block.content}></div>
<{/foreach}>

You can do this for other center blocks. Please do not forget the <{$xoops_contents}>.

After you’ve done everything, save your theme.html and refresh your browser, and you
will see the center blocks you’ve set up in XOOPS.

If you don’t see the update, please go to System Options→ Preferences→General Set-
tings, and set Check templates for modifications to Yes (as shown in Figure 3-6). You
should have no problem then.

Figure 3-6. Set “Check templates for modifications” to “Yes” if your browser does not properly show
the update

I will illustrate this technique again, using a sidebar as an example.

Please find the line containing <div id="sidebar">. (I cannot tell you the line number,
as you’ve already modified the theme when you implemented the center blocks.)

By preliminary investigation, you can see that:

• <div class="section1"> controls the upper part of the sidebar.

• <div class="section2"> controls the left part.

• <div class="section3"> controls the right part.

You might ask, “How do you know that?” I find out by researching style.css. However,
even without knowing anything about CSS, you can figure this out by comparing the
content in your browser to that in your editor. It works 99% of the time (except when
the template author uses the same text for all parts).

Suppose you want to use the following block-matching relationship:

Section 1 Leave it there, we don’t need that for now.
Section 2 Left block
Section 3 Right block

Plug It into XOOPS | 15

Recall the basic structure for the left block:

<{foreach item=block from=$xoBlocks.canvas_left}>
 <{$block.title}>
 <{$block.content}>
<{/foreach}>

You should add the following markup:

<{foreach item=block from=$xoBlocks.canvas_left}>

<h2><{$block.title}></h2>
 <{$block.content}>

<{/foreach}>

The code within <div class=”section2”> should look like this:

<div class="section2">

 <{foreach item=block from=$xoBlocks.canvas_left}>

 <h2><{$block.title}></h2>
 <{$block.content}>

 <{/foreach}>

</div>

Please pay attention to the placement of and tags.

Similarly, we can fit in the right blocks. Up to now, XOOPS blocks should be displayed
correctly in your theme.

Further Modifications
The theme is 80% complete. But there are a few more things to do.

Head Part
I strongly suggest that you replace the code within <head> with the code in the blank
theme in the previous chapter. This will save you a lot of effort and will work 99% of
the time:

<head>
<meta http-equiv="content-type" content="text/html; charset=<{$xoops_charset}>" />
<meta http-equiv="content-language" content="<{$xoops_langcode}>" />
<meta name="robots" content="<{$xoops_meta_robots}>" />
<meta name="keywords" content="<{$xoops_meta_keywords}>" />
<meta name="description" content="<{$xoops_meta_description}>" />
<meta name="rating" content="<{$xoops_meta_rating}>" />
<meta name="author" content="<{$xoops_meta_author}>" />
<meta name="copyright" content="<{$xoops_meta_copyright}>" />
<meta name="generator" content="XOOPS" />

16 | Chapter 3: Converting an Existing XHTML Template

<title><{$xoops_sitename}> - <{$xoops_pagetitle}></title>
<link href="<{$xoops_url}>favicon.ico" rel="SHORTCUT ICON" />
<link rel="stylesheet" type="text/css" media="screen"
 href="<{$xoops_url}>xoops.css" />
<link rel="stylesheet" type="text/css" media="screen" href="<{$xoops_themecss}>" />
<{$xoops_module_header}>
</head>

XOOPS will replace those Smarty variables with the correct content set in the system.
This is an essential step for Search Engine Optimization (SEO).

Logo and Navigation Bar
You might find that the logo is not your XOOPS site name. Please find the following
code:

<div id="logo">
 <h1>Paperslips</h1>
 <p>By nodethirtythree and Free CSS Templates</p>
</div>

And replace it with:

<div id="logo">
 <h1><{$xoops_sitename}></h1>
 <p><{$xoops_slogan}></p>
</div>

Again, you can see that the aim is to replace the text in the template with Smarty var-
iables that can be used by XOOPS.

You can modify the navigation bar according to the modules that you’ve installed. Some
advanced techniques will be introduced in later chapters.

Footer
Add <{$xoops_footer}> to the code within <div id="footer" class="container">.

Please do not remove the credit to the original author. We need to com-
ply with the license and respect the work of the designer.

Since XOOPS is released under GPL 2.0, you could remove the “Pow-
ered by XOOPS” line, but the XOOPS community would highly appre-
ciate it if you preserve the footer.

The Last Fix to Make the Theme Work
Figure 3-7 shows the last obvious problem: the items in User Menu and Main Menu do
not appear in a list.

Further Modifications | 17

Figure 3-7. The menu items run together in a paragraph instead of a list

This is because the style of the Main Menu and User Menu are not defined in style.css,
but it is not difficult to fix this.

Please open style.css, and at the end of the file, add the following code:

#usermenu a, #mainmenu a {
 display: block;
}

Save your file and refresh: you should see results similar to those shown in Figure 3-8.

Figure 3-8. After fixing the display, the menu items now appear as a list

18 | Chapter 3: Converting an Existing XHTML Template

The theme will now work on your XOOPS website. That’s basically all you need to do
with theme.html. However, you might find that in certain pages, some styles seem to
be missing. We will need to modify style.css to define those styles.

You can get the source code for the theme in its current state (though we will perfect
the theme later on) from http://insraq.me/files/book/paperslips_ch3.zip.

Further Modifications | 19

http://insraq.me/files/book/paperslips_ch3.zip

CHAPTER 4

Styling XOOPS and Creating a Theme
from 960

This chapter mainly deals with how to add more styles to your themes. We will continue
to use the theme you converted in Chapter 3. Also, we will discuss how to create a
theme from the 960 CSS Framework for XOOPS (found online at http://code.google
.com/p/insraq/source/browse/#svn%2Ftrunk%2F960) to save you time and coding.

More on Styling XOOPS
If you find an existing XOOPS theme and open the style.css file for that theme, you will
find lots of CSS definitions. If the file is not well commented, though, you can hardly
decipher what they actually do. It is the same when you write your own CSS file: if you
do not follow a certain procedure, you will confuse others (and maybe even yourself).

There are lots of ways to categorize the definitions. I will introduce a method that I use
when I am writing XOOPS themes.

Global Style
These definitions regard general tags, like body, a, img, h1-h6, etc. They will be used
extensively on every page. Only include those styles that are applicable to every page
(for example, if you want a link on a specific page to be red, do not write color: red;
here).

Theme-Specific Style
These definitions are usually CSS definitions used by theme.html (for example, header,
content, footer, slideshow, block, and so on). These styles are not used by XOOPS by
default; they are used by your theme.

21

http://code.google.com/p/insraq/source/browse/#svn%2Ftrunk%2F960
http://code.google.com/p/insraq/source/browse/#svn%2Ftrunk%2F960

I originally used some general naming conventions like “nav” and
“menu”. Then I found out that this may cause conflict between theme
style (your style.css) and module style (some module-specific styles de-
fined by module developers).

It is best to add a prefix to these names, like “inspire10-nav” and “inspire10-menu”.
This way, even though we have longer names, there will be fewer conflicts and more
distinction.

XOOPS System Template Style
These definitions are used by the XOOPS system template and are supposed to be used
by modules—for example, the System menus and User menus. Others include very
detailed table style definitions and form definitions. (Strictly speaking, forms are not
really in this category, but for convenience, we will include them here.)

Dealing with XOOPS Template Style
Global style and theme-specific style are not XOOPS-specific, meaning that you should
write them by the time you finish your XHTML and CSS templates. To include them
in your theme, simply copy and paste.

The XOOPS system template style (referred to as required style therein) is generally not
defined in your original template, but is required by XOOPS. This is what you need to
work on.

XOOPS has many historical versions. Each version might have different requirements
for required styles. I will introduce the common ones and leave those that are rarely
used for you to discover on your own later.

#MainMenu
This group of style definitions is used by the system module on the main menu (usually
used as the navigation menu). They are all under #mainmenu ID, and have different
classes:

style.css (excerpt)
#mainmenu {}
#mainmenu a {
 display: block;
}
#mainmenu a:hover {}
#mainmenu a:active, #mainmenu a.current {}
#mainmenu a:visited {}
#mainmenu a.menuTop {}
#mainmenu a.menuMain {}
#mainmenu a.menuSub {
 padding: 0 0 0 10px;

22 | Chapter 4: Styling XOOPS and Creating a Theme from 960

}
#mainmenu a.menuSub:hover {}
#mainmenu a.maincurrent {}

Above is the necessary definition. As you can see, I only added two definitions (a and
a.menuSub) and left the others blank. The display: block; is used to make the menu
item displayed in the block, and the definition in #mainmenu a.menuSub is used to dif-
ferentiate subitems from main items. I added a 10px left padding to achieve this.

#Usermenu
usermenu is quite similar to mainmenu, except that there is no “subitem” in usermenu:

style.css (excerpt)
#usermenu {}
#usermenu a {
 display: block;
}
#usermenu a:hover {}
#usermenu a:active, #usermenu a.current {}
#usermenu a:visited {}
#usermenu a.menuTop {}
#usermenu a.highlight {}

Table and Cells
This is the most complex part. XOOPS has a complicated definition of table style, and
different modules might use themes differently. I always try to maintain a minimum
definition that works well in most situations, and let the modules set their styles. But
the problem remains unsolved:

style.css (excerpt)
table {
 width:100%;
 margin: .5em 0 1em 0;
 border-collapse: collapse;
}

th {
 font-weight: bold;
 text-align: center;
 vertical-align : middle;
 background: #e7eef7;
 padding: 5px;
}

tr {
 border: 1px solid #eee;
}

td {
 padding: 5px;
}

Dealing with XOOPS Template Style | 23

.outer {
 border-collapse: collapse;
 padding: 5px;
}

.head {
 font-weight: bold;
 vertical-align: top;
 background: #f8f8f8;
}

.even {
 padding: 5px;
 border: 1px solid #eee;
}

.odd {
 padding: 5px;
 border: 1px solid #eee;
 background: #e7eef7;
}

The above code is the style I use in the 960 CSS framework for XOOPS. I make a lot of
assumptions about styles here. The border of the table is #eeeeee, and for th (which
defines a style for table headers) and .head (which defines a style for the head class), I
add a background to differentiate them. I also add a padding of 5px to td (which defines
a style for standard table cells) and additional classes.

I do it this way because I think table definitions should not be the focus of theme design,
and shouldn’t bother designers so much. When I first designed for XOOPS, I was quite
confused by those table definitions. They seemed too overwhelmed with details. Even
if you do not define style for most of the selectors, you will be fine.

Another problem is that different module designers will use different markup for their
modules. For example, some will use <th> as a table header, while others use <th
class="header">. So my current approach is to define a set of minimum styles. But a
better way to tackle this would be for the XOOPS community to work out a standard
for module templates. If all the designers and developers followed this standard, dif-
fering markup would no longer be a problem.

Smarty: I Want to Know More
XOOPS provides a lot of Smarty variables to help designers achieve their goals. Here,
I’ve made a list of the commonly used Smarty variables according to my experience
over the past few years. I’ve categorized them for easy reference.

24 | Chapter 4: Styling XOOPS and Creating a Theme from 960

Header Tags
<{$xoops_charset}>

Output the character set information (e.g., “iso-8859-1”, “UTF-8”).

<{$xoops_langcode}>
Output content language (e.g., “DE”, “EN”).

<{$xoops_meta_keywords}>
Output the keyword list from the Meta/Footer settings.

<{$xoops_meta_description}>
Output the meta tag site description.

<{$meta_copyright}>
Output the meta tag copyright text.

<{$meta_robots}>
Output the W3C robot meta tag info.

<{$meta_rating}>
Output the meta tag rating information.

<{$xoops_js}>
Output XOOPS JavaScript.

<{$xoops_module_header}>
Output the module header. Usually, the module’s own JavaScript will be output-
ted. Details will be explained later.

XOOPS General
<{$xoops_sitename}>

Output the site name.

<{$xoops_slogan}>
Output the site slogan.

<{$xoops_pagetitle}>
Output the page title.

<{$xoops_theme}>
Output theme’s name in directory “/themes/” (e.g., “default”, “suico”).

<{$xoops_dirname}>
Output the name of the current module directory. If no module is displayed, this
value is set to “system”.

<{$xoops_themecss}>
Inserts the style.css file (e.g., “http://www.xoops.org/themes/default/style.css”).

<{xoImgUrl}>
This is the XOOPS resource locator. It is often used if you want to link to an image
or a CSS. Detailed usage will be explained throughout the book.

Smarty: I Want to Know More | 25

http://www.xoops.org/themes/default/style.css

<{$xoops_url}> or <{xoAppUrl}>
Output the site URL (e.g., “http://www.xoops.org”), without the final slash.

<{$xoops_banner}>
Display banners.

<{$xoops_contents}>
Display the news and other content.

<{$xoops_footer}>
Display the footer.

<{$xoops_requesturi}>
Request URL provided by XOOPS (e.g., /modules/news/article.php?storyid=1).

XOOPS User-Related
<{$xoops_isadmin}>

Test if the visitor is Administrator—return TRUE if yes.

<{$xoops_isuser}>
Test if the visitor is a logged in user—return TRUE if yes.

<{$xoops_userid}>
User ID of the member.

<{$xoops_uname}>
Username for the member.

Smarty Flow Control
<{if $smarty_variable}>
...
<{elseif}>
...
<{else}>
...
<{/if}>

The if-else control.

<{foreach item=block from=$xoBlocks.canvas_left}>
<{/foreach}>

The foreach loop.

There is also a foreachq, described next.

<{foreachq item=block from=$xoBlocks.canvas_left}>
...
<{/foreach}>

Note that the closing tag is <{/foreach}> instead of <{/foreachq}>.

26 | Chapter 4: Styling XOOPS and Creating a Theme from 960

http://www.xoops.org

Include and Assign
<{include file=PATH}> or <{includeq file=PATH}>

Used to include a file in theme.html; the difference is that the latter is more efficient
(but less secure).

<{assign var=NAME value=SOME_VALUE}>
Assign a value to a Smarty variable. For example:

<{assign var=theme_name value=$xoTheme->folderName}>
<{assign var=theme_name value=$xoTheme->folderName|cat:'/tpl'}>

Then you could use:

<{includeq file="$theme_name/tpl.html"}>

This would include XOOPS/themes/yourtheme_tpl.html or XOOPS/themes/tpl/
yourtheme_tpl.html.

More on Smarty: Tricks and Examples

Module-Based Navigation
Now suppose you have a typical site navigation markup:

<ul class="nav">
 <li class="current">Home
 News
 Forum
 Blogs
 Contact

You want the navigation panel to tell the visitor which section of the website they are
currently in. The most common way is to add a current class to the current item. Then
you can style the class in your CSS file.

The trick is to add a current class to the current item. How does one achieve that in
XOOPS? It’s easy:

<ul class="nav">
 <li<{if $xoops_dirname == "system"}> class="current"<{/if}>>
 Home

 <li<{if $xoops_dirname == "news"}> class="current"<{/if}>>
 News

 <li<{if $xoops_dirname == "forum"}> class="current"<{/if}>>
 Forum

 <li<{if $xoops_dirname == "xpress"}> class="current"<{/if}>>
 Blogs

More on Smarty: Tricks and Examples | 27

 <li<{if $xoops_dirname == "contact"}> class="current"<{/if}>>
 Contact

As mentioned earlier, $xoops_dirname outputs the current module directory name.
Suppose you are using News module; the corresponding directory name is news. So we
can use an if clause in Smarty to test whether $xoops_dirname equals the current module
name. If yes, then we add a current class.

What About a Block Without a Title?
Usually, a block consists of a block title and block content. However, for some blocks,
you may think the block title is meaningless and you probably do not want to display
it. Take a look at our previous markup. If the block does not have a block title, the
output will look like this:

<div class="title"><h2></h2></div>
<div class="entry">This is the block content</div>

This does not look nice. If you define some style for the title, it will simply give a blank
result.

A better way to handle this is to only show the markup for the block title when the
block has a title:

<{if $block.title}>
 <div class="title"><h2></h2></div>
<{/if}>
<div class="entry">This is the block content</div>

Use the above markup, and if a block has no title (i.e., the block title is empty), the
output will look like this:

<div class="entry">This is the block content</div>

The markup for a block title will not be output.

Custom Block Filter
This sounds like rocket science, but it really isn’t. This trick follows the previous work-
around. Suppose you want to have a special markup or style for some specific blocks
—for example, the Search block. You have two choices. The first is the block any-
where technique, which will be covered in Chapter 7. This is fairly complex and is
suitable for a situation in which your whole website is made of custom-designed blocks.

The second choice is to create a custom block filter. This is easy, and applies to situations
in which you only have one or two custom-designed blocks.

28 | Chapter 4: Styling XOOPS and Creating a Theme from 960

To illustrate, look at the original code for blocks:

<{foreach item=block from=$xoBlocks.page_topcenter}>
<div class="title"><h2><{$block.title}></h2></div>
<div class="entry"><{$block.content}></div>
<{/foreach}>

A block filter is simply an if clause:

<{foreach item=block from=$xoBlocks.page_topcenter}>
 <{if $block.title == "Search"}>
 <div class="block-search">
 <{else}>
 <div class="block-general">
 <{/if}>
 <div class="title"><h2><{$block.title}></h2></div>
 <div class="entry"><{$block.content}></div>
 </div>
<{/foreach}>

With the above code, if the block title is "Search", then we will apply a block-search
class to the block, and then apply the block-general class.

To add more than one filter, use an if-elseif clause:

<{foreach item=block from=$xoBlocks.page_topcenter}>
 <{if $block.title == "Search"}>
 <div class="block-search">
 <{elseif $block.title == "Welcome"}>
 <div class="block-welcome">
 <{elseif}>
 <div class="block-general">
 <{/if}>
 <div class="title"><h2><{$block.title}></h2></div>
 <div class="entry"><{$block.content}></div>
 </div>
<{/foreach}>

Blocks can be filtered not only by names, but also by ids, a technique which is less
commonly used:

<{foreach item=block from=$xoBlocks.page_topcenter}>
 <{if $block.id == 5}>
 <div class="block-search">
 <{elseif $block.id == 6}>
 <div class="block-welcome">
 <{elseif}>
 <div class="block-general">
 <{/if}>
 <div class="title"><h2><{$block.title}></h2></div>
 <div class="entry"><{$block.content}></div>
 </div>
<{/foreach}>

“What is my block ID?” you may ask.

More on Smarty: Tricks and Examples | 29

The ID of a block can be found out in the following way: edit a block, and in the address
bar of your browser, you will see a URL like this:

http://example.com/modules/system/admin.php?fct=blocksadmin&op=edit&bid=1

The bid part of the query string is your block ID.

Create a Theme with 960
To create a theme from scratch takes a lot of time, which is why the concept of a
framework is so handy. There are two types of framework, and both have their pros
and cons. One is very rigid and strict, with lots of rules and conventions. The learning
curve is very steep, but once you master it, you can write very concise and beautiful
code.

Another type is loosely organized. It provides lots of functions to help your design. But
even if you don’t follow all of the conventions, it’s fine. The learning curve is flat, but
you’ll probably need to write more code than with the first type.

When I first decided to create a theme framework for XOOPS, there were already many
other good frameworks. (One of the most famous is Morphogenesis, created by Chris
(kris_fr in the forums). It is very powerful, concentrating on the file structure and func-
tions. It does have some documentation, but is a little difficult for beginners.)

I decided to create a theme framework that focuses on design itself. I did not provide
a lot of functions within it. The framework includes a theme.html to set home page
structure using the 960 CSS Framework; some CSS files with definitions necessary to
create a theme; and some other must-have JavaScript libraries.

To create a theme with 960, just copy the folder, rename it, and it’s done!

Then, open theme.html and you can see that the home page structure is written in 960,
which assumes a width of 960 pixels and provides a grid system based on frequently
used dimensions. If you are familiar with this system, you can easily modify it. If not,
just leave it there, because the default grid layout will work 90% of the time.

The next step is to add some selectors in theme.html and add the corresponding styles
to style.css. Your style definitions should be added in the /* Theme Specific Style
*/ section. Assuming you are already used to designing in CSS, you will have no trouble
dealing with rest of the stuff in the template—it’s just like designing pure XHTML and
CSS templates, except for some Smarty syntax. If the syntax throws you at all, refer
back to Chapter 2.

30 | Chapter 4: Styling XOOPS and Creating a Theme from 960

CHAPTER 5

jQuery and UI Libraries for
XOOPS Themes

Several years ago, when I needed to add animations to my web design, Flash was the
first word that came into my mind. But nowadays, with the rapid development of Java-
Script and its related libraries, I seldom use Flash in general web design. JavaScript has
taken over many roles that used to be filled by Flash. In this chapter, I will cover how
to use one of the most popular JavaScript libraries, jQuery, in XOOPS themes.

Link Your Theme to jQuery
The first method that comes to your mind should be adding:

<script src=" https://ajax.googleapis.com/ajax/libs/jQuery/1.6/jQuery.min.js"
 type="text/javascript"></script>

to the <head> section of theme.html.

This is very intuitive, and will work without too many disturbances. But you may ask:
What disturbances might we encounter?

Look back at “A Simple Example” on page 6 in Chapter 2, where I first introduced a
bare bones theme. You might notice that there is a <{$xoops_module_header}> in the
<head> section. This tells XOOPS to load the header required by specific modules—
which allows a module to load what it needs on demand, instead of loading the files
for the whole of XOOPS.

A common example is an editor’s JavaScript and stylesheet. As jQuery is very popular,
many modules will load jQuery on demand. However, if you use the above code to
load jQuery in your theme, it will be loaded again for some modules, thus causing some
malfunctions (such errors will only happen in modules that load jQuery on demand,
but not for the whole of XOOPS).

31

Trabis has provided a technique at http://bit.ly/91pH6t (please note that there is a small
typo in the original code) to tackle this obstacle. Instead of directly adding <{$xoops_
module_header}>, we add:

<{php}>
 global $xoTheme;
$xoTheme->addScript('browse.php?Frameworks/jQuery/jQuery.js');
$this->assign('xoops_module_header',
$xoTheme->renderMetas(null, true));
<{/php}>
<{$xoops_module_header}>

The above code does the following:

• Loads jQuery to your theme if it has not already been loaded by a module.

• Avoids loading jQuery twice to your theme if it has already been loaded by a
module.

Note that after version 2.4, XOOPS provides jQuery support by default, so we can
simply load jQuery from XOOPS:

$xoTheme->addScript('browse.php?Frameworks/jQuery/jQuery.js');

Now you can use jQuery in your theme.

Using jQuery in a XOOPS template is basically the same as using it in static HTML
pages. However, since XOOPS template uses the Smarty engine, we can integrate
jQuery into the template engine to achieve more complex effects.

In the following sections, I will use two cases to illustrate how to make use of jQuery.
The first case involves using it separately—not integrated with the template engine.
The second case takes advantage of integration.

Case1: jQuery Used Separately (Adding a Slider to Your Theme)
A slider, or a sliding block, usually works as shown in Figure 5-1 (the screenshots from
Figure 5-1 and Figure 5-2 come from one of my themes, InsApp).

Figure 5-1. A sliding block is hidden until the user clicks the arrow in the upper right-hand corner

When you click the upper-right arrow, a hidden block will slide down and appear, as
shown in Figure 5-2.

32 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

http://bit.ly/91pH6t

Figure 5-2. The block that had previously been hidden is now revealed, and the arrow may be used
to hide it again

Now the arrow on the right that had been pointing down becomes an up arrow, and
you can click it to slide the block back up.

This sort of sliding block is a fairly common effect used by many modern websites for
login or other information that doesn’t need to be presented to first-time visitors, yet
should be easily accessible.

If you are very familiar with jQuery in other settings, you can easily implement this in
your XOOPS theme: it is basically the same. But I will demonstrate this step by step.
Let’s use the “Paperslips” template that we converted in Chapter 3.

Get the Graphics Done
You might need some graphics, like arrows, icons, and a background.

In Paperslips, you can see a textured, dark red header (labeled 1 in Figure 5-3), where
you may add a light, textured background slider. Another possible choice would be to
extend the dark red header. I will carry out the former option for illustration purposes.

First, you will need to redo the textures. To accomplish this, we can make use of
bg05.jpg in the images folder.

Case1: jQuery Used Separately (Adding a Slider to Your Theme) | 33

Figure 5-3. At the top of the window, a dark red header labeled by the numeral 1 shows where we
will add a sliding block

Then you might want to make two arrows in your favorite graphic editor. However,
for simplicity, I will use some text in the navigation panel instead of arrows.

Now that we’re ready with the graphics, let’s code the (X)HTML and CSS.

Coding (X)HTML and CSS
We will add something before wrapper div. Let’s call it slider:

theme.html (excerpt)
<div id="slider">
 <div class="slidercontent">
 <h2>Lorem ipsum dolor sit amet</h2>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus turpis
 lacus, sagittis a cursus a, ornare dictum mauris. Etiam ultricies turpis
 eget tortor congue interdum. Morbi lacinia libero at felis vestibulum
 malesuada. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices
 posuere cubilia Curae; Maecenas eget imperdiet augue. Nunc nec malesuada
 neque. Phasellus sed est turpis, et tincidunt dolor.
 </div>
</div>

34 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

Now add a CSS definition to style.css:

style.css (excerpt)
/* Slider */
#slider {
 width: 965px;
 margin: 0 auto;
 background: url(images/bg05.jpg) repeat-x;
 background-position: bottom;
}

.slidercontent {
 padding: 20px 30px 20px 80px;
}

Refresh your browser…not bad. You might have even better ideas, so please go ahead
and try them out. For illustration, I will go with this version, shown in Figure 5-4.

Figure 5-4. The sliding block is shown at the top of the window

Next, we should add the toggle switch.

I decided to use the third item in the navigation panel as the switch (I am so lazy!). So
I change:

Photo Gallery

to:

Toggle Header

The XHTML and CSS coding is done. It seems simple, because I just want to achieve
a simple effect. Of course, you can play around with other implementations that yield
much fancier effects. The point here is to illustrate that implementing a jQuery effect
in a XOOPS theme is basically the same as in other static HTML templates.

Coding (X)HTML and CSS | 35

Read through the code again, and you will notice that if you copied it
to a static HTML file, it would work there, too. It should also work if
you simply copy the code from HTML to XOOPS.

Adding jQuery Effect
If you are with me so far, the next section will be relatively easy.

Add display: none; to your #slider in style.css; now it should look like this:

#slider {
 width: 965px;
 margin: 0 auto;
 background: url(images/bg05.jpg) repeat-x;
 background-position: bottom;
 display: none;
}

Then, add id="slidertoggle" to your toggle switch:

Toggle Header

Lastly, add the following script right before the closing body tag:

<script type="text/javascript">
$('#slidertoggle').click(function () {
 $('#slider').slideToggle('slow');
});
</script>

Ta-da…all done! It isn’t too hard, is it?

Now refresh your browser to see the result. When you first load the page, the sliding
block will not be shown (see Figure 5-5).

Then click the text that says “Toggle Header” in the upper-right corner, and the sliding
block will slide down, as shown in Figure 5-6.

Click on the text again, and the block will slide up.

Once again, I must say that the effect I implemented here is—to some extent—crude.
But the point is to show you that you can easily transfer your knowledge of designing
static HTML to designing a XOOPS theme. Some designers are intimidated by XOOPS
and its template engine. After this example, I hope you will feel more confident about
designing for XOOPS.

36 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

Figure 5-5. Our home page looks mostly the same as it did before

Figure 5-6. When the user clicks the “Toggle Header” text in the navigation panel, our sliding block
appears

Adding jQuery Effect | 37

Case2: jQuery Integration (Transform Your Blocks into Tabs)
The jQuery library is very powerful. If we integrate jQuery into XOOPS, we can achieve
much more sophisticated effects. The integration you are able to carry out will be based
on your understanding of the XOOPS template engine. I will not simply tell you how
to implement this. Instead, I will try to present the idea behind it: how to come up with
the integration. You will be able to derive many other methods based on a little bit of
theory.

In this case study, I will implement a Tab in a XOOPS theme, which can be controlled
by block management of XOOPS.

jQuery Tools as UI Library
Of course, you can write your own tab implementation in jQuery, but who has the
time? There are many excellent JavaScript programmers who have already done this.
Why not make use of their work instead of reinventing the wheel?

You could use jQuery UI, which is the official UI library for jQuery—but jQuery UI is
too big, and I only need a tab implementation. So in this example, I will pick jQuery
Tools (http://flowplayer.org/tools/index.html). It is much smaller, and has very good
documentation and demonstrations available. We will continue to use the Paperslips
theme.

Create a folder called js in your theme folder. Download the jQuery Tools Tabs module.
By default, the file name is tabs.min.js. Put it in the js folder (see Figure 5-7).

Figure 5-7. The jQuery Tabs module will transform blocks into tabs

Then open theme.html, and add a link to tabs.min.js using the approach I introduced
at the beginning of this chapter:

<{php}>
 global $xoTheme;
 $xoTheme->addScript('browse.php?Frameworks/jQuery/jQuery.js');
 $xoTheme->addScript('js/tabs.min.js');
 $header = empty($GLOBALS['xoopsOption']['xoops_module_header']) ?
 $this->get_template_vars('xoops_module_header') :
 $GLOBALS['xoopsOption']['xoops_module_header'];
 $this->assign('xoops_module_header', $xoTheme->renderMetas(null, true) . $header);
<{/php}>
<{$xoops_module_header}>

The line in bold is what you need to add.

38 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

http://flowplayer.org/tools/index.html

Implementing Tabs Separately
Now what you should do is to implement tabs separately, just as we discussed in our
Case 1 study earlier in this chapter. If you need to, you can refer to the documentation
here: http://flowplayer.org/tools/demos/tabs/index.html

In this example, I will use the third implementation on this page: http://flowplayer.org/
tools/demos/tabs/skins.html, that is, “Tab skin without images”. Again, my purpose here
is not to make some fancy tabs, but to present the integration method and the idea
behind it. So I’ve chosen one with minimal styles.

By looking at the source code of the demo page, you can find out that Tabs have a basic
HTML structure. Copy and paste the following to your XOOPS theme after <div
id="content">:

theme.html (excerpt)
<!-- tabs -->
<ul class="css-tabs">
 Tab 1
 Tab 2
 Tab 3

<!-- panes -->
<div class="css-panes">
 <div>
 Tab 1 Content
 </div>

 <div>
 Tab 2 Content
 </div>

 <div>
 Tab 3 Content
 </div>
</div>

You will also need to add the following before the closing of the body tag:

$(".css-tabs").tabs(".css-panes > div");

If you followed what we did in Case 1, then right before the </body> tag you should
have some code like this:

<script type="text/javascript">
// Tabs
$(".css-tabs").tabs(".css-panes > div");
// Header Slider
$('#slidertoggle').click(function () {
 $('#slider').slideToggle('slow');
});
</script>

Case2: jQuery Integration (Transform Your Blocks into Tabs) | 39

http://flowplayer.org/tools/demos/tabs/index.html
http://flowplayer.org/tools/demos/tabs/skins.html
http://flowplayer.org/tools/demos/tabs/skins.html

And that’s not the end. We still need to add styles. The CSS file provided by the jQuery
Tools document can be found here: http://flowplayer.org/tools/css/tabs-no-images.css.

Save it as tabs.css and use the @import rule to include it in style.css.

Save all the files and refresh your browser, and you should see that the tab is actually
working (though not necessarily looking good—see Figure 5-8).

Figure 5-8. As you can see on the left, our tabs are now appearing, although they are not yet very stylish

I’ve gone through this very quickly, as it is pretty much just a replication of what we
did in the Case 1 study.

Integration: How to Come Up with an Idea
Look at the HTML code of Tabs again. What does it remind you of?

<!-- tabs -->
<ul class="css-tabs">
 Tab 1
 Tab 2
 Tab 3

<!-- panes -->
<div class="css-panes">
 <div>
 Tab 1 Content
 </div>

 <div>
 Tab 2 Content
 </div>

40 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

http://flowplayer.org/tools/css/tabs-no-images.css

 <div>
 Tab 3 Content
 </div>
</div>

Did you notice that the structure is similar to some of the structures we have already
come across? I will give you a hint: read the XOOPS block structure code again (from
the section “Block-Displaying Structures” on page 8).

We can actually rewrite the Tab structure like this:

<!-- tabs -->
<ul class="css-tabs">
 Block 1 Title
 Block 2 Title
 Block 3 Title

<!-- panes -->
<div class="css-panes">
 <div>
 Block 1 Content
 </div>

 <div>
 Block 2 Content
 </div>

 <div>
 Block 3 Content
 </div>
</div>

The difference is that block content does not directly follow block titles. They are sep-
arated and then grouped together.

I suggest you stop reading for a moment and think of a way to integrate tabs into the
block system. I’ve given you lots of hints already.

Integration: How to Implement the Idea
Here is my implementation. You might have your own ideas, so go ahead with those
and come back later to compare with mine. You might come up with a better way.

Suppose I want to integrate tabs with center blocks (or top center, to be consistent with
XOOPS naming). This is the original code for the center block:

<!-- CENTER -->
<{foreach item=block from=$xoBlocks.page_topcenter}>
 <div class="title"><h2><{$block.title}></h2></div>
 <div class="entry"><{$block.content}></div>
<{/foreach}>

Case2: jQuery Integration (Transform Your Blocks into Tabs) | 41

As we know, <{foreach item=block from=$xoBlocks.page_topcenter}> is used as a loop.
So what we need to do is to loop both the block title and the block content and fit them
into the Tabs structure. It looks like this (please pay attention to the code in bold):

<!-- CENTER -->
<!-- tabs -->
<ul class="css-tabs">
 <{foreach item=block from=$xoBlocks.page_topcenter}>
 <{$block.title}>
 <{/foreach}>

<!-- panes -->
<div class="css-panes">
 <{foreach item=block from=$xoBlocks.page_topcenter}>
 <div><{$block.content}></div>
 <{/foreach}>
</div>

Save the files. Add some content to the top center block via XOOPS block management
(see Figure 5-9), and give them short block titles, as the block title will be the tab title.

Figure 5-9. Use XOOPS block management to add content to the top center block

Refresh your browser and the tabs should be working now, as shown in Figure 5-10.

Although that still does not look very good, once you’ve finished the integration, other
styling can easily be achieved by modifying CSS files.

My goal here was to show you how easy is to make such integrations. I hope you have
captured the essence of integration. If so, then you should have no problem applying
other jQuery effects to XOOPS.

42 | Chapter 5: jQuery and UI Libraries for XOOPS Themes

Figure 5-10. Our tabs are now populated with content and titles

Case2: jQuery Integration (Transform Your Blocks into Tabs) | 43

CHAPTER 6

Module Template Override

You may wonder how a basic XOOPS theme can be so small in size. It’s because XOOPS
themes only set the overall styles and block layout. But XOOPS-powered websites are
more than that, because they are equipped with many modules. Modules are a special
feature of XOOPS, which makes it highly extendable. Modules work like plug-ins to
some extent, but they are far more powerful. Actually, the XOOPS core system can be
viewed as a basic module.

Then there is a problem: how do you deal with the themes for different modules?
XOOPS themes only set the basic styling and block layout, and allow specific modules
to have their own templates—even styling—provided that the stylesheets will not clash.

Since we are now on the topic, I should pause to explain the difference between a
theme and a template.

A theme in XOOPS sets the style of an entire XOOPS website. The stylesheet will be
applied to the whole website, including all the modules. The theme also sets block
layout.

A template in XOOPS sets the layout of a specific part of XOOPS. The specific part can
be block content, a module page, or a forward page.

Here are some further insights into themes and templates in XOOPS:

• A theme sets the layout of blocks; a template sets the layout in each of the blocks.

• A theme sets the style of a module page; a template sets the layout of the module
page.

• A theme can be seen as a template of XOOPS blocks.

• A theme resides in /XOOPS/theme, while a template resides in modules/
MODULE_NAME/templates/

But what if you want to modify the template of a specific module in your theme? Do
you have to modify the module template directly?

45

Well, you could achieve your goal using that approach, but it has an obvious flaw. If
you want to have different templates for different themes, you would need to manually
replace the template every time you switch to a new theme.

That’s why XOOPS introduced a template override. It allows you to directly override
the template of any module in your theme. You don’t need to modify the module
template file—you just create your new template, save it to a specific folder in your
theme, and XOOPS will automatically override the original module template with the
new one you’ve created.

An Experiment in Module Template Override
Let’s begin with a simple experiment.

We’ll use Contact 1.7 (http://code.google.com/p/xuups/downloads/list) by Trabis for our
example. Download and install the module, then visit the module web page. You
should see something like what’s shown in Figure 6-1 (assuming you’re using the
Paperslips theme from previous chapters).

Figure 6-1. Trabis’s contact module shown with the Paperslips theme

Now, let’s say you want to enlarge the text “Contact Form.” Please create the folder
XOOPS/themes/paperslips/modules/contact/.

46 | Chapter 6: Module Template Override

http://code.google.com/p/xuups/downloads/list

Next, copy XOOPS/modules/contact/templates/contact_contactusform.html to XOOPS/
themes/paperslips/modules/contact/ so that there is one HTML file in the folder you have
just created.

Then edit contact_contactusform.html, and find the following line:

<th colspan="2"><{$contactform.title}></th>

Add an h2 tag to make it look like this:

<th colspan="2"><h2><{$contactform.title}></h2></th>

Save and refresh the browser, and it should look like Figure 6-2.

Figure 6-2. We have added an h2 tag to override the module template and enlarge some text

Let me now explain the mechanism. When a module page is loaded, XOOPS will ask
for a template. Usually that would be located in XOOPS/modules/MODULE_NAME/
template. However, XOOPS will also check XOOPS/themes/CURRENT_THEME/mod-
ules/MODULE_NAME/ to see if there is a required template file in that folder. If the
answer is yes, then XOOPS will use that instead of the one from the module itself.
That’s how the module template override is achieved. It’s not rocket science, just a
clever design.

An Experiment in Module Template Override | 47

Dig Deeper
Now, please open contact_contactusform.html again and read through it. What do you
find? Don’t you think the syntax of HTML looks very familiar? If so, you’re right—it
is also Smarty. This line:

<{foreach item=element from=$contactform.elements}>

is the start of a for loop. It will display every form element, just like in your theme. The
difference is that in your theme, you ask XOOPS to display every block. Here, you ask
XOOPS to display contact form elements.

You might notice that the code here is quite old-fashioned—it still uses a table layout.
Let’s rewrite it using XHTML and CSS.

First remove all the table elements, so it looks like this:

contact_contactusform.html
<{$contactform.javascript}>
<form name="<{$contactform.name}>" action="<{$contactform.action}>"
 method="<{$contactform.method}>" <{$contactform.extra}>>
 <h2><{$contactform.title}></h2>
 <!-- start of form elements loop -->
 <{foreach item=element from=$contactform.elements}>
 <{if $element.hidden != true}>
 <{$element.caption}>
 <{$element.body}>
 <{else}>
 <{$element.body}>
 <{/if}>
 <{/foreach}>
 <!-- end of form elements loop -->
</form>

Then, add XHTML markup and CSS definitions. You may have your own approach to
accomplishing this. Here is how I did it:

contact_contactusform.html
<{$contactform.javascript}>
<style>
.contactform {
 margin: 0;
 padding: 0;
}
.contactform li {
 list-style: none;
 margin: 10px 0;
}
.contactform label {
 display: block;
}
</style>
<form name="<{$contactform.name}>" action="<{$contactform.action}>"
 method="<{$contactform.method}>" <{$contactform.extra}>>
 <h2><{$contactform.title}></h2>

48 | Chapter 6: Module Template Override

 <!-- start of form elements loop -->
 <ul class="contactform">
 <{foreach item=element from=$contactform.elements}>

 <{if $element.hidden != true}>
 <label><h3><{$element.caption}></h3></label>
 <{$element.body}>
 <{else}>
 <{$element.body}>
 <{/if}>

 <{/foreach}>

 <!-- end of form elements loop -->
</form>

I’ve bolded the part inside the foreach loop. Please note that this section of code will
be repeated many times to display every form element set by the module. So the li
element should be inside the foreach loop, while the ul element should stay outside.
Refresh your browser to see what the contact form looks like now (or see Figure 6-3).

Figure 6-3. We’ve rewritten the contact form with XHTML and CSS instead of a table layout

An Experiment in Module Template Override | 49

Case Study: Gallery Slideshow Block
In this section, you will construct a block with a gallery slideshow. You will learn to
use module override together with jQuery. It might be a bit challenging, but if you
follow the steps here, you should be fine. And I hope to get you out of your comfort
zone: we have been using the Paperslips theme for some time, so now let’s switch to a
new theme, shown in Figure 6-4: InsMinimal (http://code.google.com/p/insraq/down
loads/detail?name=InsMinimal.zip&can=2&q=).

Figure 6-4. A page with a hard-coded slideshow shown in the InsMinimal theme

Here, we have a large slideshow, but it is hardcoded. We’ll need to integrate it with a
gallery module so that we can manage the slides using that gallery module.

50 | Chapter 6: Module Template Override

http://code.google.com/p/insraq/downloads/detail?name=InsMinimal.zip&can=2&q=
http://code.google.com/p/insraq/downloads/detail?name=InsMinimal.zip&can=2&q=

Preparation
There are many gallery modules. I chose a widely used one called extGallery. Please get
the latest version from SourceForge, at http://sourceforge.net/projects/zoullou/files/. I
used version 1.08 for this case study.

Unzip the module and install it as usual. Since InsMinimal already has a slideshow, you
just need to integrate extGallery into it. Please copy:

XOOPS/modules/extgallery/templates/blocks/extgallery_block_random.html

to:

XOOPS/themes/InsMinimal/modules/extgallery/blocks/extgallery_block_random.html

(You’ll have to create the folder if it doesn’t already exist.)

You may have noticed that we are overriding the module block template this time. You
already know that many modules come with blocks. You can display the related blocks
on the XOOPS home page by using block management. Those blocks also need a tem-
plate, and by default, it is located in XOOPS/modules/MODULE_NAME/templates/
blocks. We can also override those templates in our theme by using the same techniques.

Clean Up the Markup
Open extgallery_block_random.html. This is the template for “Random Photos,” and
you may notice that there are two foreach loops. That’s because the module provides
two settings of “Display Direction.” We will clean up the template, preserving only the
most important settings:

<{foreach item=photo from=$block.photos}>
<a href="<{$xoops_url}>/modules/extgallery/public-photo.php?photoId=<{$photo.photo_id}
>">
 <img src="<{$xoops_url}>/uploads/extgallery/public-photo/thumb/thumb_<
{$photo.photo_name}>"
 alt="<{$photo.photo_desc}>" title="<{$photo.photo_desc}>" />

<{/foreach}>

Currently, thumbnails will be displayed—but that is too small for us. Let’s change it
to display medium-size images:

<{foreach item=photo from=$block.photos}>
<a href="<{$xoops_url}>/modules/extgallery/public-photo.php?photoId=<{$photo.photo_id}
>">
 <img src="<{$xoops_url}>/uploads/extgallery/public-photo/medium/<
{$photo.photo_name}>"
 alt="<{$photo.photo_desc}>" title="<{$photo.photo_desc}>" />

<{/foreach}>

Case Study: Gallery Slideshow Block | 51

http://sourceforge.net/projects/zoullou/files/

Integrate with the InsMinimal theme
Now open InsMinimal/tpl/slideshow.html. You can see that the slideshow structure is
pretty simple. We don’t even need to modify the structure.

Suppose you want to use the center center block to display your slideshow. First, find
the following line in theme.html:

<div class="slideshow">
<{includeq file="$theme_name/slideshow.html"}>
</div>

Comment out the includeq and add the following code after that line:

<div class="slideshow">
<!-- <{includeq file="$theme_name/slideshow.html"}> -->
<{foreach item=block from=$xoBlocks.page_topcenter}>
 <{$block.content}>
<{/foreach}>
</div>

Then comment out the following code about displaying the center center block:

<div class="grid_3">
 <{foreach item=block from=$xoBlocks.page_topcenter}>
 <div class="block">
 <h2><{$block.title}></h2>
 <{$block.content}>
 </div>
 <{/foreach}>
</div>

Now you have to add the block you just modified to the home page. Go to XOOPS
backend→block management, and enable Random photo block in extGallery (see Fig-
ure 6-5).

Figure 6-5. Enable the Random photo block in the center center position

52 | Chapter 6: Module Template Override

Do not confuse the Random photo block with the Random photo (sli-
deshow) block. Also, please make sure it is the only center center block!

A Test Run
Now we’ll add the two photos to extGallery. But before that, let’s adjust the medium
photo size in extGallery→Preferences (see Figure 6-6).

Figure 6-6. Adjusting the medium photo size in extGallery

Set the width to 940, and the height to 400. (The setting here is related to the size of
your photos and the slideshow stylesheet.) Add a category, then add the two photos
(Figure 6-7)—and don’t forget to approve them!

Figure 6-7. Adding the photos for our slideshow

Then, refresh the home page. Hopefully it’s working! You might be skeptical: it looks
the same as before. How can you prove that our method works? Let’s add a third photo
(see Figure 6-8).

Figure 6-8. Adding a third photo to the slideshow

Case Study: Gallery Slideshow Block | 53

Refresh your home page, and the proof should now be visible, as in Figure 6-9.

Figure 6-9. The third photo we added now appears in the slideshow on the home page

A Look Back
I hope you are not puzzled by the code here. The code is not important, but the thought
process is. So let’s look back and see what you’ve done:

• You got a theme with a hardcoded slideshow.

• You overrode the random photo block template in extGallery, so that it fit the
structure of the slideshow

• You replaced the hardcoded slideshow with a center center block.

• You displayed the Random photo block in the center center block.

• You added photos in extGallery and they were displayed in the block.

54 | Chapter 6: Module Template Override

CHAPTER 7

Block Anywhere Techniques

XOOPS provides you with eight block positions, which should be more than enough
in most cases. However, for a very complex home page, you may still run out of blocks.
And sometimes you want to totally abandon the traditional block layout for your home
page, as the block layout can look quite old-fashioned.

The key question is how to fully customize your XOOPS home page, without the lim-
itation of the block system. Well, it may sound a bit fancy and high-tech, but actually
it isn’t. Thanks to the work of some module developers, we have several solutions
available. I’ve picked one that I believe is the easiest: the XOOPS Tools module. Of
course, you can search for other solutions, but the mechanism is the same: making use
of Smarty plug-ins.

How to Get XOOPS Tools Module
This module was made by developers from XOOPS China, and the file can be found
in the repository there. But so you don’t have to deal with Chinese characters, I have
uploaded the latest version to my code forge page at http://code.google.com/p/insraq/
downloads/list (Figure 7-1), and you can download it there. Let me be clear that it is
not my work; I cannot take credit for it. I am just illustrating how to use this great
module.

Figure 7-1. You can find the XOOPS Tools module on my code forge page

55

http://code.google.com/p/insraq/downloads/list
http://code.google.com/p/insraq/downloads/list

After you have downloaded the package, you will find two folders in the zip archive:
modules and class. Please copy those two folders to your XOOPS root folder. The
modules folder contains the main module interface and the class folder contains the
Smarty plug-in. Please make sure you have copied both folders.

Then install the module as usual. For the following example, I will continue to use
InsMinimal theme.

A First Play-around
Now go to the backend→XOOPS Tools→Block Callback→Add a block (see Figure 7-2).

Figure 7-2. The XOOPS Tools backend will let us create new blocks

You should find all the blocks are listed here. Click the Create link of the Site Info block
(see Figure 7-3).

You will be led to a page with some codes and options. The upper part—i.e., the code
section—provides the code for you to display the block, while the lower part—i.e., the
option section—allows you to modify the setting of the code. After modification, you’ll
have to resubmit and regenerate the code.

First, copy the code from the text area labeled Simple:

<{xoBlk module="system" file="system_blocks.php" show_func="b_system_info_show"
 options="320|190|s_poweredby.gif|1" template="system_block_siteinfo.html"}>

56 | Chapter 7: Block Anywhere Techniques

Then open go to XOOPS/themes/InsMinimal, open theme.html, and paste that code
into <div class="footer">:

<div class="footer">
 <{$xoops_footer}> | InsMinimal - A Design of INSRAQ
 <{xoBlk module="system" file="system_blocks.php" show_func="b_system_info_show"
 options="320|190|s_poweredby.gif|1" template="system_block_siteinfo.html"}>
</div>

Save the file and refresh your home page (it should look like Figure 7-4).

Figure 7-4. When you refresh the home page, you’ll see the Site Info block you placed

Figure 7-3. Choose the Site Info block and click the Create link

A First Play-around | 57

The Site Info block appears in the place where you have pasted the code! Pretty neat,
isn’t it? You completely step around the XOOPS Block System and display the block
directly.

What’s the Difference?
The difference between Block Anywhere (or Block Callback, which is the term used by
the XOOPS Tool module) and the traditional block system is that the built-in block
management of XOOPS will be taken out of commission.

The traditional block system mechanism can be summarized with the diagram shown
in Figure 7-5.

Figure 7-5. The usual procedure for displaying blocks and setting block styles in XOOPS

The XOOPS module block template tells us how the content of the block will be dis-
played. This is controlled by each individual module, but we can use the module tem-
plate override technique, introduced in the previous chapter, to change the template.

The XOOPS block system is built-in with XOOPS; it is the most commonly used block
management system. It provides eight block positions by default. The block system
determines which block should be displayed in which position. For example, the Latest
News block from the News module should be displayed in the center center position.

As for the XOOPS theme, it determines what the block should look like. The name of
the block is just a convention: left block does not have to be placed on the left. Actually,
you can put it on the right, but that would be very misleading. Consider the slideshow
example in the previous chapter, wherein the center center block became the slideshow.
The traditional 8-block-position system can really be viewed as a communication
channel.

58 | Chapter 7: Block Anywhere Techniques

By using Block Anywhere techniques, we use the XOOPS Tools module to replace the
original communication channel, so the diagram looks like Figure 7-6 instead.

Figure 7-6. The procedure for using the Block Anywhere technique to display custom blocks in XOOPS

This way, the 8-block-position limitation is avoided: you can display any block in your
theme, and there is no limitation on the number of blocks. Sounds good, doesn’t it?
Then why not abolish the traditional block system and replace it with XOOPS Tools?

The consideration here is generality of themes. The 8-block-position system is built in
with every XOOPS installation. If you, as a designer, follow the conventions, your
theme should work on every XOOPS installation.

Using the 8-block-position system in website A, you could display the center center
block in <div class="content"> and the right block in <div class="sidebar">; in the
center center block, you could choose to display Latest News, and in the right block,
display Latest Photos. Then in website B, if you applied the same theme, you could
display Latest Forum Topics in the center center block and Latest Comments in the right
block. It wouldn’t matter which module you chose: the theme only specifies the posi-
tions, not individual module templates.

However, XOOPS Tools is website-specific. If in website A, you displayed Latest
News in <div class="content"> and Latest Photos in <div class="sidebar">, and then
applied the theme to website B, you would have to install the same modules on both
websites and you could only display Latest News in <div class="content"> and Latest
Photos in <div class="sidebar">. Clearly, this largely limits the flexibility of themes.

What’s the Difference? | 59

This chapter has been a bit theoretical. I know you probably don’t like theories—
neither do I. But to actually take advantage of this technique, you have to build a com-
plex home page with lots of customized blocks. In the next chapter, I will use a complete
case study example to illustrate Block Anywhere, as well as aggregate other techniques
introduced in this book.

60 | Chapter 7: Block Anywhere Techniques

CHAPTER 8

Case Study: My TinyMag

Wireframing
Let’s begin by visualizing the layout. Wireframing tools are very useful. I personally
prefer Pencil, which is a Firefox extension as well as a standalone product (http://pencil
.evolus.vn/). Using it, I’ve designed quite a complex home page structure, shown in
Figure 8-1. (Note that it is only for illustration purposes: please don’t judge the design
according to UI or UX principles!)

When making prototypes, start by thinking about which modules you are going to use.
For an article module, I chose Publisher. It’s based on SmartSection and was developed
by Trabis. Although it is only in alpha, it is already quite stable. However, since the
author hasn’t provided the latest version for download, you’ll have to check it out from
his code forge at http://code.google.com/p/xuups/source/browse/trunk/modules/.

If using SVN is painful for you, you can use the Publisher version I
checked out on February 9, 2011, at http://code.google.com/p/insraq/
downloads/list. It works well on my XOOPS 2.5 installation. See Fig-
ure 8-2.

For building polls, I chose the XOOPSPoll module. You can get it from the official
module repository at http://xoops.org/modules/repository/singlefile.php?cid=51&lid=
1897.

For a forum module, I chose CBB 4.03 by Alfred. You can download the latest version
from his SVN repository at http://svn.myxoops.org/, and you don’t need to do a SVN
check-out. Remember to rename the module folder newbb.

61

http://pencil.evolus.vn/
http://pencil.evolus.vn/
http://code.google.com/p/xuups/source/browse/trunk/modules/
http://code.google.com/p/insraq/downloads/list
http://code.google.com/p/insraq/downloads/list
http://xoops.org/modules/repository/singlefile.php?cid=51&lid=1897
http://xoops.org/modules/repository/singlefile.php?cid=51&lid=1897
http://svn.myxoops.org/

Figure 8-1. A wireframe of the home page we will build in this chapter

62 | Chapter 8: Case Study: My TinyMag

Mock Up a Design
This step is basically the same as with other design jobs. Open your favorite graphic
editor—Photoshop, Fireworks, or GIMP—and choose a nice color scheme, make sev-
eral graphics, and pick a typography set.

Here I’ve used the 960 Grid System to assist me in the design process. It is widely used
and easier to apply to XOOPS. We will look at it more closely in the next section.

Actually, to code the design mock-up shown in Figure 8-3, the traditional 8-block-
position system is more than adequate. However, I’ve intentionally tried to use Block
Anywhere techniques here.

Code the Mock-Up Design
The traditional method is to first code in XHTML and CSS, and then integrate the
template into XOOPS. Luckily, we will be using the 960 Grid System (Figure 8-4),
which I have adapted to XOOPS. You can download it from my code forge at http://
code.google.com/p/insraq/downloads/list.

Now unzip the folder in XOOPS/themes/, and rename it from 960 to mytinymag.

Header
Open theme.html and code the <!-- header --> section as follows:

theme.html (excerpt)
<!--- Header -->
<div class="container_12">
 <div class="grid_10">
 <div class="grid_4 alpha"><a href="<{xoAppUrl}>">
 <img src="<{xoImgUrl}>img/logo.png"
 alt="<{$xoops_sitename}>" />
 </div>
 <div class="grid_3">
 <div class="header-feature">

 <img src="<{xoImgUrl img/feature_1.png}>"
 alt="Feature 1" />

Figure 8-2. A version of Publisher checked out on February 9, 2011 is available for download if you
prefer to avoid Subversion

Code the Mock-Up Design | 63

http://code.google.com/p/insraq/downloads/list
http://code.google.com/p/insraq/downloads/list

Figure 8-3. The mock-up design includes featured articles, latest articles, a poll, an archive, and a
forum

64 | Chapter 8: Case Study: My TinyMag

 Best place to go for holiday

 </div>
 </div>
<div class="grid_3 omega">
 <div class="header-feature">

 <img src="<{xoImgUrl img/feature_2.png}>"
 alt="Feature 2" />

 Know more about you DC

 </div>
</div>
<div class="clear"></div>
<div class="grid_4 alpha">
 <p class="slogan ptsans">
 Tiny magazine,big world!
 </p>
</div>
<div class="grid_6 omega">
 <ul class="nav">
 Home
 Travel
 Digital
 Food
 Sports
 Forum

</div>
<div class="clear"></div>
 </div>
 <div class="grid_2">
 <a href="<{xoAppUrl user.php}>" class="header-login">Login
 <a href="<{xoAppUrl register.php}>" class="header-register">Register
 </div>
 <div class="clear"></div>
</div>
<div class="sep-20"></div>

My folder structure is shown in Figure 8-5.

Figure 8-4. The 960 Grid System available for download

Code the Mock-Up Design | 65

Figure 8-5. A peek at my folder structure may be helpful

Giving the image source as <{xoImgUrl img/feature_1.png}> indicates that the image
is placed in the img folder. If you type that in, XOOPS will automatically locate the
resources.

Here is the related stylesheet:

style.css (excerpt)
/* Theme Specific Style */

.ptsans {
 font-family: 'PTSansRegular', Arial, Verdana, sans-serif;
}

.sep-20 {
 margin: 10px 0;
}

.sep-30 {
 margin: 15px 0;
}

.sep-40 {
 margin: 20px 0;
}

/* Header */

.header-feature {
 position: relative;
}

.header-feature .title {
 position: absolute;
 top: 0;

66 | Chapter 8: Case Study: My TinyMag

 left: 0;
 width: 220px;
 color: #fff;
 background: url(img/70.png);
 font-size: 16px;
 text-align: center;
}

.header-feature .title a, .header-feature .title a:hover {
 color: #fff;
}

.header-login, .header-register {
 display: block;
 width: 140px;
 padding: 15px 0;
 color: #fff;
 text-align: center;
 font-family: 'PTSansBold', Arial, Verdana, sans-serif;
 font-size: 16px;
}

.header-login:hover, .header-register:hover {
 color: #fff;
}

.header-login {
 background: #ccc;
}

.header-register {
 background: #9BBCDD;
 margin: 5px 0 0 0;
}

.slogan {
 text-align: right;
 margin: 0 10px 0 0;
 color: #999;
 font-size: 20px;
}

ul.nav {
 font-size: 20px;
 font-family: 'PTSansBold', Arial, Verdana, sans-serif;
}

ul.nav a {
 color: #666;
}

ul.nav a:hover {
 color: #333;
 border-bottom: 3px solid #6699CC;
}

Code the Mock-Up Design | 67

ul.nav li {
 float: left;
 margin: 0 20px 0 0;
}

I used the font PT-Sans, which can be acquired from FontSquirrel (http://www.fonts
quirrel.com/fonts/PT-Sans).

How to Deal with Content
Now let’s stop for a minute and think about how we will approach the content:

Home page
Completely abandon block system, use Block Anywhere technique

Other pages
Two-column layout, display module content and right block

Here is the problem: XOOPS does not provide an <{if $homepage}> function, so how
will it know whether we are working on the home page or not?

You could hack the XOOPS core to fix this, but that would cause trouble when it comes
time to upgrade later on. Instead, the best practice is to make use of the original block
system. Display a customized HTML block in the center center position and set it to
display only on “top page.” Then you can use <{if $xoBlocks.page_topcenter}> to
judge whether a given page is a home page or not. The customized HTML block will
not be displayed if you do not call the foreach loop to display it.

So the structure for content will look like this:

<{if $xoBlocks.page_topcenter}>
 <!-- Here goes the code of customized home page -->
<{else}>
 <!-- Module content -->
 <!-- Right block -->
<{/if}>

The actual code looks like this:

theme.html (excerpt)
<div class="container_12">
 <!-- if home page -->
 <{if $xoBlocks.page_topcenter}>
 <!-- Customized home page -->
 <!-- if not home page -->
 <{else}>
 <!-- Module content -->
 <{if $xoops_contents && ($xoops_contents != '') }>
 <div class="grid_9">
 <{$xoops_contents}>
 </div>
 <{/if}>

68 | Chapter 8: Case Study: My TinyMag

http://www.fontsquirrel.com/fonts/PT-Sans
http://www.fontsquirrel.com/fonts/PT-Sans

 <{if $xoBlocks.canvas_right}>
 <!-- Right Blocks -->
 <div class="grid_3">
 <{foreach item=block from=$xoBlocks.canvas_right}>
 <div class="right-block-content">
 <h2><{$block.title}></h2>
 <{$block.content}>
 </div>
 <{/foreach}>
 </div>
 <{/if}>
 <{/if}>
 <div class="clear"></div>
</div>

Make sure you understand why we are doing this. If you feel comfortable, then let’s
move on.

Content Markup
Create the markup and stylesheet for featured content:

theme.html (excerpt)
<!-- Content -->
<div class="container_12">
 <!-- if home page -->
 <{if $xoBlocks.page_topcenter}>
 <!-- Featured content -->
 <div class="grid_12 content-feature">
 <img src="<{xoImgUrl img/slideshow_940_400.png}>" alt="" />
 <div class="title">Featured: WOW! The bridge</div>
 <div class="grid_10 alpha">
 <p>
 Lorem ipsum dolor sit amet, consectetur
 adipiscing elit. Donec suscipit odio sed libero feugiat
 dignissim. Praesent mollis, sapien vel vulputate imperdiet,
 consectetur adipiscing elit.
 </p>
 </div>
 <div class="grid_2 omega read-more">Read More</div>
 </div>
 <div class="clear"></div>
 <div class="sep-20"></div>
 <!-- Latest Articles -->
 <div class="grid_8">
 <h2 class="title">Latest Articles</h2>
 <div class="grid_4 alpha">
 <div class="content-article">
 <h3 class="title">
 Travel: A Good Place for Winter
 </h3>

 <img src="<{xoImgUrl img/art_img_1.png}>" alt="" />

Code the Mock-Up Design | 69

 <p>
 Morbi ac tellus sed metus vestibulum, morbi ac
 tellus sed metus vestibulum, orbi ac tellus sed
 metus vestibulum
 </p>
 </div>
 </div>
 <div class="grid_4 omega">
 <div class="content-article">
 <h3 class="title">
 Digital: The Latest DC is On!
 </h3>

 <img src="<{xoImgUrl img/art_img_2.png}>" alt="" />

 <p>
 Morbi ac tellus sed metus vestibulum, morbi ac
 tellus sed metus vestibulum, orbi ac tellus sed
 metus vestibulum
 </p>
 </div>
 </div>
 <div class="clear"></div>
 <div class="sep-20"></div>
 <div class="grid_4 alpha">
 <div class="content-article">
 <h3 class="title">
 Food: Know More About Lobster
 </h3>

 <img src="<{xoImgUrl img/art_img_3.png}>" alt="" />

 <p>
 Morbi ac tellus sed metus vestibulum, morbi ac
 tellus sed metus vestibulum, orbi ac tellus sed
 metus vestibulum
 </p>
 </div>
 </div>
 <div class="grid_4 omega">
 <div class="content-article">
 <h3 class="title">
 Sports: Teach Yourself Golf!</h3>
 </h3>

 <img src="<{xoImgUrl img/art_img_3.png}>" alt="" />

 <p>
 Morbi ac tellus sed metus vestibulum, morbi ac
 tellus sed metus vestibulum, orbi ac tellus sed
 metus vestibulum
 </p>
 </div>
 </div>

70 | Chapter 8: Case Study: My TinyMag

 <div class="grid_4">
 <h2 class="title lighter">What do you think?</h2>
 <div class="content-general">
 <p>Placeholder for XOOPS Poll</p>
 </div>
 </div>
 <div class="clear"></div>
 <div class="sep-20"></div>
 <div class="grid_6">
 <h2 class="title">Archives</h2>
 <div class="content-general">
 <p>Placeholder for Archives</p>
 </div>
 </div>
 <div class="grid_6">
 <h2 class="title">Discussions</h2>
 <div class="content-general">
 <p>Placeholder for Forum Topics</p>
 </div>
 </div>
 <!-- if not home page -->
 <{else}>
 <!-- Module content -->
 <{if $xoops_contents && ($xoops_contents != '') }>
 <div class="grid_9">
 <div class="content-general"><{$xoops_contents}></div>
 </div>
 <{/if}>
 <{if $xoBlocks.canvas_right}>
 <!-- Right Blocks -->
 <div class="grid_3">
 <div class="content-general">
 <{foreach item=block from=$xoBlocks.canvas_right}>
 <div class="right-block-content">
 <h2><{$block.title}></h2>
 <{$block.content}>
 </div>
 <{/foreach}>
 </div>
 </div>
 <{/if}>
 <{/if}>
 <div class="clear"></div>
</div>
<div class="sep-40"></div>
<div class="container_12">
 <div class="grid_12">
 <div class="content-general footer"><{$xoops_footer}></div>
 </div>
 <div class="clear"></div>
</div>
<div class="sep-20"></div>

Code the Mock-Up Design | 71

style.css (excerpt)
/* Featured Content */

.content-feature {
 border-bottom: 1px solid #ddd;
 position: relative;
}

.content-feature p {
 margin: 5px 0;
}

.content-feature .title a {
 position: absolute;
 padding: 15px;
 right: 0;
 top: 0;
 background: url(img/70.png);
 color: #fff;
 font-family: 'PTSansRegular', Arial, Verdana, sans-serif;
 font-size: 20px;
}

.content-feature .title a:hover {
 color: #fff;
}

.read-more a {
 background: #99CC00;
 display: block;
 margin: 5px 0;
 padding: 10px 0;
 text-align: center;
 color: #fff;
 font-size: 18px;
 font-family: 'PTSansBold', Arial, Verdana, sans-serif;
}

.read-more a:hover {
 color: #fff;
}

/* Content */

h2.title {
 font-size: 30px;
 color: #333;
 font-family: 'PTSansRegular', Arial, Verdana, sans-serif;
}

h2.lighter {
 color: #999;
}

72 | Chapter 8: Case Study: My TinyMag

.content-article {
 border: 1px solid #ddd;
}

.content-article:hover {
 border: 1px solid #ccc;
}

.content-article img {
 width: 298px;
 height: auto;
}

.content-article p {
 padding: 10px;
}

h3.title {
 font-size: 18px;
 font-family: Georgia, "Times New Roman", Times, serif;
 font-style: italic;
 text-align: center;
 margin: 10px 0;
}

.content-general {
 border: 1px solid #ddd;
 padding: 10px;
}

.content-general:hover {
 border: 1px solid #ccc;
}

/* Footer */

.footer {
 text-align: center;
}

The above code is probably a piece of cake for you design champs, so I don’t need to
explain it. But I have to say a few words about why we didn’t code Poll, Archives, or
Discussions blocks.

The module itself has some block templates. In some places, we can just modify these
templates instead of completely rewriting them. But in other places, the module tem-
plates won’t fit at all, so we have to rewrite the templates—and it doesn’t really matter
in which step we do this.

The image files in the img folder will be as shown in Figure 8-6.

Code the Mock-Up Design | 73

Figure 8-6. The files in the img folder

Refresh your browser and you should see something similar to the screenshot shown
in Figure 8-7.

Set Up Blocks
Before we apply the Block Anywhere technique, we will first need to set up blocks. Add
a Center Center Control Block, as shown in Figure 8-8.

Make sure the blocks we want to display are as shown in Figure 8-9: Center Center
Control Block should appear under Top Center; and Main Menu, Themes, and User
Menu should appear on the Right.

Publisher FAQ
Before you actually apply the Block Anywhere technique, let’s play around with Pub-
lisher first. Publisher’s backend is quite user-friendly, but there are a few places where
you need to pay special attention.

Where are the advanced editing options?
Publisher has lots of advanced editing options, including article image upload, which
you will probably use quite often. But after installing the module, you’ll see the basic
interface as shown in Figure 8-10.

74 | Chapter 8: Case Study: My TinyMag

Figure 8-7. After refreshing your browser, you should see this layout

Publisher FAQ | 75

Figure 8-8. Adding a Center Center Control Block

Figure 8-9. Configuring the block display

76 | Chapter 8: Case Study: My TinyMag

Figure 8-10. The basic Publisher interface; to access the advanced options, change the default
Permissions settings

The trick here is setting permissions: by default, you do not have permission to use the
advanced options, but you can grant yourself permission in the Permissions tab (see
Figure 8-11).

Figure 8-11. Go ahead and grant yourself full permissions

Publisher FAQ | 77

After changing the settings, you will be able to see the full edit options, as shown in
Figure 8-12.

Figure 8-12. After granting yourself additional permissions, you’ll see more options in the Publisher
interface

And there are two more tabs: Images and Others.

78 | Chapter 8: Case Study: My TinyMag

Why can’t I upload article images?
Publisher makes use of the built-in XOOPS image manager (access this by going to
Modules→System→Image Manager, as shown in Figure 8-13). You first need to add at
least one category.

Figure 8-13. Use the Image Manager to add image categories

When adding categories, pay attention to the permission settings and the maximum
width, maximum height, and maximum file size—the default settings might not be
suitable (see Figure 8-14). For example, the default maximum file size is only 50KB,
which is obviously too small.

After adjusting the settings, you should be able to upload article images in Publisher.

For the purposes of this case study, please create an image category for each article
category to keep things neat and tidy. The categories in Publisher and the corresponding
categories in Image Manager are shown in Figures 8-15 and 8-16.

Publisher FAQ | 79

Figure 8-16. Create image categories in Image Manager that correspond to the article categories in
Publisher

Figure 8-14. You may need to adjust the default image settings

Figure 8-15. These are the article categories we are using in Publisher

80 | Chapter 8: Case Study: My TinyMag

Construct Header Feature
Go to the XOOPS Tools module, choose Add a block, and add Latest News from the
Publisher module.

You will see lots of options, but what you need to adjust are the following:

• Exclude first: 1

• Display: 1

• Show Article Image: Yes

• Image Width: 220

• Image Height: 78

The first and second of these ensure that the second latest article or feature will show,
because we want to display the latest in the large feature style. The final two options
solely affect the design. You can upload a large image and Publisher will display the
thumbnail. Click Submit.

You may notice that there are two sets of code, as shown in Figure 8-17: the one named
Simple uses the default template, while the one called Template format allows you to
modify the template directly. Of course, we will use the latter.

Figure 8-17. The Simple code block sets the default template, while “Template format” code allows
you to modify the template

Construct Header Feature | 81

You’ll see a lot of <{if}> clauses—those are for those display options. We just need the
following code:

tpl/feature_1.html
<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="1|1|2|300|0|0|100|30|right|datesub|1|220|78|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|1"}>
<{section name=i}>
 <div class="header-feature">
 <{foreach item=item from=$block.columns[i]}>
 <a href="<{$item.itemurl}>">
 <img src="<{$item.item_image}>"
 height="<{$block.imgheight}>"
 title="<{$item.alt}>" alt="<{$item.alt}>" />

 <{$item.title}>
 <{/foreach}>
 </div>
<{/section}>
<{/xoBlkTpl}>

I have already adapted this code to the design. Here are some explanations of the Smarty
variables:

<{$item.itemurl}>
Links to the article

<{$item.item_image}>
Article image URL

<{$block.imgheight}>
The height of article image

<{$item.alt}>
Usually, the title without any markup

<{$item.title}>
The article title with a link to the article page

You can directly copy and paste the code to replace the original markup, but to make
theme.html look nicer, we can organize the files in the following way:

1. Save the above code to XOOPS/themes/mytinymag/tpl/feature_1.html.

2. In theme.html, replace the markup of the original feature_1 to <{includeq
file="$theme_name/feature_1.html"}>.

The code looks like this (pay attention to the bold part):

theme.html (excerpt)
<!--- Header -->
<div class="container_12">
 <div class="grid_10">

82 | Chapter 8: Case Study: My TinyMag

 <div class="grid_4 alpha">
 <a href="<{xoAppUrl}>">
 <img src="<{xoImgUrl img/logo.png}>"
 alt="<{$xoops_sitename}>" />

 </div>
 <div class="grid_3">
 <{includeq file="$theme_name/feature_1.html"}>
 </div>

What about the second feature? You could start from 0 and repeat all the steps. But
reusing what we’ve already done seems better.

The second feature will display the third-latest featured article. The only difference
from feature_1 is the Exclude first option: we should set it to 2.

Now look at the code in tpl/feature_1.html, and you will see a series of numbers in the
first line:

<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="1|1|2|300|0|0|100|30|right|datesub|1|220|78|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|1"}>

Those numbers are not meaningless; they record the options for the block. And they
are presented in the same order as on the Edit a block page. What you need to do is
change the first 1 to 2:

<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="2|1|2|300|0|0|100|30|right|datesub|1|220|78|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|1"}>

Save a copy as feature_2.html, and replace the original markup with an includeq clause:

theme.html (excerpt)
<!--- Header -->
<div class="container_12">
 <div class="grid_10">
 <div class="grid_4 alpha">
 <a href="<{xoAppUrl}>">
 <img src="<{xoImgUrl img/logo.png}>"
 alt="<{$xoops_sitename}>" />

 </div>
 <div class="grid_3">
 <{includeq file="$theme_name/feature_1.html"}>
 </div>
 <div class="grid_3 omega">
 <{includeq file="$theme_name/feature_2.html"}>
 </div>
 <div class="clear"></div>

Construct Header Feature | 83

Construct the Main Feature
Save feature_1.html as feature_main.html, and change the first parameter from 1 to 0
so that it will display the latest article. The fourth parameter tells XOOPS how many
words to display; set it to 200 to fit your design. Finally, adjust the image size by
changing 220 to 940, and 78 to 400.

<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="0|1|2|200|0|0|100|30|right|datesub|1|940|400|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|1"}>

Once you are familiar with the syntax, you won’t even need to go to the XOOPS Tools
module: you can directly modify the parameters.

Adapt it to our design:

<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="0|1|2|200|0|0|100|30|right|datesub|1|940|400|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|1"}>
<{section name=i}>
 <{foreach item=item from=$block.columns[i]}>
 <img src="<{$item.item_image}>" height="<{$block.imgheight}>"
 title="<{$item.alt}>" alt="<{$item.alt}>" />
 <div class="title"><{$item.title}></div>
 <div class="grid_10 alpha"><p><{$item.text}></p></div>
 <div class="grid_2 omega read-more"><{$item.more}></div>
 <{/foreach}>
<{/section}>
<{/xoBlkTpl}>

Here is an explanation of Smarty variables:

<{$item.text}>
The first 200 words of the article, which we set in options

<{$item.more}>
A “Read more...” that links to the article page

You might be wondering how we figure out the meaning of the Smarty variables. One
way is by guessing, as the names of the variables are often self-explanatory. Another
way is trial and error: you can place different variables in the template and find out how
they affect the display.

Now do the markup replacement:

<!-- Featured content -->
<div class="grid_12 content-feature">
 <{includeq file="$theme_name/feature_main.html"}>
</div>

84 | Chapter 8: Case Study: My TinyMag

Construct the Content
Let’s post the three sample articles (see Figure 8-18). The latest one should use an article
image size of 940×400, while the next two should be 220×78.

Figure 8-18. Queuing up our three sample articles

In case you do not know how to add an article image, let’s go through it together. When
adding a new article:

1. Click the Images tab, choose the proper category, and type in a description.

2. Click Upload new image and choose the file you want to upload.

3. If the upload is successful, the image name should appear on the righthand list,
and will also be displayed in the Image preview section (see Figure 8-19).

You can also choose an existing image from the list on the left and click Add to append
it to the article.

Figure 8-19. Adding a new article image

Construct the Content | 85

Actually, the correct way to do this is to upload a full-size article image for all articles
and let Publisher control the display size by changing the image-size options for the
block. Here, for simplicity, I directly uploaded image thumbnails for featured articles
in the header, and a full-size image for the main featured article.

You might have noticed that the thumbnails and large images are not
proportional. In practice, you should make sure that they are propor-
tional—take this into consideration when you do the mock-up design.
However, since the design here is only for illustration purposes, I’ve
simply ignored those analytical procedures.

Refresh your browser to see the result shown in Figure 8-20.

Figure 8-20. The home page now features a full-size main article image, and two thumbnail-size article
images

Click on the first feature article in the header, and you’ll see that the article page
(Figure 8-21) looks pretty nice even without further work!

86 | Chapter 8: Case Study: My TinyMag

Figure 8-21. The feature article page after clicking through from the home page

Construct Latest Article Categories
Constructing the Latest Article part won’t be too difficult if you understood the previous
section. Here, I’ll just go through the code and highlight the parts to which you need
to pay special attention:

tpl/latest_travel.html
<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"

Construct Latest Article Categories | 87

 options="0|1|2|100|0|0|100|30|right|datesub|1|300|128|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|2"}>
<{section name=i}>
 <div class="content-article">
 <{foreach item=item from=$block.columns[i]}>
 <h3 class="title">
 <a href="<{$item.itemurl}>"><{$item.alt}>
 </h3>
 <a href="<{$item.itemurl}>">
 <img src="<{$item.item_image}>"
 height="<{$block.imgheight}>" title="<{$item.alt}>"
 alt="<{$item.alt}>" />

 <p><{$item.text}></p>
 <{/foreach}>
 </div>
<{/section}>
<{/xoBlkTpl}>

We can set an options parameter to tell XOOPS which topics to display. As the list in
Figure 8-22 suggests, 0 is “All categories,” 1 is “Features,” 2 is “Travel,” and so on.
You’ll need to change this parameter for each different category:

Figure 8-22. A list of topics to display corresponds to an option parameter

tpl/latest_digital.html
<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="0|1|2|100|0|0|100|30|right|datesub|1|300|128|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|3"}>
<{section name=i}>
<div class="content-article">
 <{foreach item=item from=$block.columns[i]}>
 <h3 class="title">
 <a href="<{$item.itemurl}>"><{$item.alt}>
 </h3>
 <a href="<{$item.itemurl}>">
 <img src="<{$item.item_image}>"
 height="<{$block.imgheight}>" title="<{$item.alt}>"
 alt="<{$item.alt}>" />

 <p><{$item.text}></p>
 <{/foreach}>

88 | Chapter 8: Case Study: My TinyMag

 </div>
<{/section}>
<{/xoBlkTpl}>

tpl/latest_food.html
<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="0|1|2|100|0|0|100|30|right|datesub|1|300|128|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|4"}>
<{section name=i}>
 <div class="content-article">
 <{foreach item=item from=$block.columns[i]}>
 <h3 class="title">
 <a href="<{$item.itemurl}>"><{$item.alt}>
 </h3>
 <a href="<{$item.itemurl}>">
 <img src="<{$item.item_image}>"
 height="<{$block.imgheight}>" title="<{$item.alt}>"
 alt="<{$item.alt}>" />

 <p><{$item.text}></p>
 <{/foreach}>
 </div>
<{/section}>
<{/xoBlkTpl}>

tpl/latest_sports.html
<{xoBlkTpl module="publisher" file="latest_news.php"
 show_func="publisher_latest_news_show"
 options="0|1|2|100|0|0|100|30|right|datesub|1|300|128|||LEFT
 |1|1|1|1|1|1|1|1|1|1|0|0|extended|5"}>
<{section name=i}>
 <div class="content-article">
 <{foreach item=item from=$block.columns[i]}>
 <h3 class="title">
 <a href="<{$item.itemurl}>"><{$item.alt}>
 </h3>
 <a href="<{$item.itemurl}>">
 <img src="<{$item.item_image}>"
 height="<{$block.imgheight}>" title="<{$item.alt}>"
 alt="<{$item.alt}>" />

 <p><{$item.text}></p>
 <{/foreach}>
 </div>
<{/section}>
<{/xoBlkTpl}>

theme.html
<!-- Latest Articles -->
<div class="grid_8">
 <h2 class="title">Latest Articles</h2>
 <div class="grid_4 alpha">
 <{includeq file="$theme_name/latest_travel.html"}>
 </div>

Construct Latest Article Categories | 89

 <div class="grid_4 omega">
 <{includeq file="$theme_name/latest_digital.html"}>
 </div>
 <div class="clear"></div>
 <div class="sep-20"></div>
 <div class="grid_4 alpha">
 <{includeq file="$theme_name/latest_food.html"}>
 </div>
 <div class="grid_4 omega">
 <{includeq file="$theme_name/latest_sports.html"}>
 </div>
</div>

Add one article in each category, using 300×128 as the article image size. Then refresh
your browser (see Figure 8-23). You should see it working!

Figure 8-23. Our latest articles in different categories

90 | Chapter 8: Case Study: My TinyMag

Poll
Install the XOOPS Poll module via the usual method, and then generate code with the
XOOPS Tools module (see Figure 8-24).

Let’s try Simple code first (which, remember, uses the default template). Paste the code
where the Placeholder for XOOPS Poll text appears:

<{xoBlk module="xoopspoll" file="xoopspoll.php" show_func="b_xoopspoll_show"
 template="xoopspoll_block_poll.html"}>

Figure 8-24. In the “Edit a block” tab, find the Simple code box

Create a poll (for this exercise, it doesn’t matter too much what it is) and refresh your
browser (see Figure 8-25). That looks nice! The default template actually works pretty
well.

Poll | 91

Figure 8-25. I created a dummy poll using the XOOPS Poll module

Archives and Discussions
The archives and discussions used here are from Publisher and Forum, respectively.
However, they may not be suitable for our purposes, so let’s tweak the code.

Archives
For Archives, let’s use the Recent Items List block template from Publisher. First try the
default template, shown in Figure 8-26.

92 | Chapter 8: Case Study: My TinyMag

The overall style is fine, but it looks kind of funny to have the author on a second line,
so let’s make a small modification to the original template:

tpl/archives.html
<{xoBlkTpl module="publisher" file="items_new.php"
show_func="publisher_items_new_show"
options="0|datesub|1|5|65|none"}>
 <table cellpadding="0" cellspacing="0" border="0">
 <{foreach item=newitems from=$block.newitems}>
 <tr class="<{cycle values="even,odd"}>">
 <{if $newitems.image}>
 <td>
 <img style="padding:1px;margin:2px;border:1px solid #c3c3c3"
 width="50" src="<{$newitems.image}>" title="<{$newitems.image_name}>"
 alt="<{$newitems.image_name}>" />
 </td>
 <{/if}>
 <td>
 <{$newitems.link}> by <{$newitems.poster}>
 <{if $block.show_order == '1'}> (<{$newitems.new}>) <{/if}>
 </td>
 </tr>
 <{/foreach}>
 </table>
 <p style="text-align: right;">All articles</p>
<{/xoBlkTpl}>

Save this as tpl/archives.html and include it in your theme.html file.

The archives should look something like Figure 8-27. Much better now!

Figure 8-26. Publisher’s default template for recent items

Archives and Discussions | 93

Figure 8-27. We modified the template to display the title and author all on one line

Forum
To create a forum, the default template will work, but it’s not perfect. Let’s also make
some adjustments here:

tpl/forum.html
<{xoBlkTpl module="newbb" file="newbb_block.php" show_func="b_newbb_topic_show"
 options="time|5|0|2|1|0|0"}>
<table cellpadding="0" cellspacing="0" border="0">
 <{foreachq item=topic from=$block.topics}>
 <tr class="<{cycle values="even,odd"}>">
 <td><{$topic.seo_url}></td>
 </tr>
 <{/foreach}>
</table>
<p style="text-align: right;">
 <{$block.seo_top_allposts}> |
 <{$block.seo_top_allforums}>
</p>
<{/xoBlkTpl}>

Save it as tpl/forum.html and include it in your theme.html file. You’re almost done:
refresh your browser and see the results of your hard work (Figure 8-28)!

Finally, we need to edit the navigation panel and add the correct links:

<a href="<{xoAppUrl}>">Home

<a href="<{xoAppUrl modules/publisher/category.php?categoryid=2}>">Travel

<a href="<{xoAppUrl modules/publisher/category.php?categoryid=3}>">Digital

<a href="<{xoAppUrl modules/publisher/category.php?categoryid=4}>">Food

<a href="<{xoAppUrl modules/publisher/category.php?categoryid=5}>">Sports

<a href="<{xoAppUrl modules/newbb}>">Forum

94 | Chapter 8: Case Study: My TinyMag

Figure 8-28. Our home page now contains all the elements from our mock-up in Figure 8-3

This part of your code may vary, depending on your category ID.

Archives and Discussions | 95

And add something in the footer, such as copyright information:

<div class="content-general footer">Copyright 2011 my TinyMAG. All rights reserved.
 Powered by XOOPS</div>

User Menu
The login / register link on the top right is static whether the user has signed in or not,
which is not user-friendly. You might consider displaying a logout / user menu when
the user signs in. You can use <{if $xoops_isuser}> to solve this:

theme.html (excerpt)
<{if $xoops_isuser}>
 <a href="<{xoAppUrl user.php?op=logout}>" class="header-login">Logout
 <a href="<{xoAppUrl user.php}>" class="header-register">Profile
<{else}>
 <a href="<{xoAppUrl user.php}>" class="header-login">Login
 <a href="<{xoAppUrl register.php}>" class="header-register">Register
<{/if}>

Publisher + Disqus
XOOPS’s default comment system is quite old-fashioned (see Figure 8-29).

Figure 8-29. XOOPS’s default comment system isn’t very shiny

The user has to click the Post Comment button and then go to a new page in order to
leave a comment. This is definitely not good for a start-up website: you want to en-
courage comments and communication. You could solve this by rewriting the comment
system, but that would be a large project.

Instead, we’ll use a simpler solution and make use of the Disqus service. Disqus (http:
//disqus.com) is a third-party service that provides powerful and modern commenting
systems. We can integrate it into Publisher to replace the old commenting system.

However, it is not appropriate to use this integration in every situation. XOOPS has an
integrated user system, so if you plan to build a community website, it’s better to stick
to the built-in system. However, in this case, the website is for a magazine and we don’t
need lots of community services. Thus the integration might be okay.

96 | Chapter 8: Case Study: My TinyMag

http://disqus.com
http://disqus.com

First you’ll have to create an account in Disqus, and then register your website (see
Figure 8-30).

Figure 8-30. Create a Disqus account and then register your website

Then you’ll have the option to change some settings and enable features, as shown in
Figure 8-31.

Figure 8-31. Disqus feature options at registration

After that, you will have to “install” the service. As you can see in Figure 8-32, there
are many built-in platforms available. Unfortunately, we will have to install manually
to integrate with Publisher. Click Universal Code.

Publisher + Disqus | 97

Figure 8-32. Disqus offers many platform options, but for Publisher we need to do a manual install

First you will get a code snippet like this:

<div id="disqus_thread"></div>
<script type="text/javascript">
 /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
 var disqus_shortname = 'example'; // required: replace example with your
 // forum shortname

 // The following are highly recommended additional parameters. Remove the slashes
 // in front to use.
 // var disqus_identifier = 'unique_dynamic_id_1234';
 // var disqus_url = 'http://example.com/permalink-to-page.html';

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function() {
 var dsq = document.createElement('script'); dsq.type = 'text/javascript';
 dsq.async = true;
 dsq.src = 'http://' + disqus_shortname + '.disqus.com/embed.js';
 (document.getElementsByTagName('head')[0] ||
 document.getElementsByTagName('body')[0]).appendChild(dsq);
 })();
</script>
<noscript>Please enable JavaScript to view the <a href="http://disqus.com/
 ?ref_noscript">comments powered by Disqus.</noscript>
blog comments powered by
 Disqus

After this step, you have two choices: the first is to use a module template override, and
the second is to hack the module template directly. Because the latter approach can be
used for other themes, it’s the one I’ll cover here.

98 | Chapter 8: Case Study: My TinyMag

Open /XOOPS/modules/publisher/templates/publisher_footer.html (to find this file, you
may have to analyze the template files and use your intuition):

publisher_footer.html
<{if $isAdmin == 1}>
 <div class="publisher_adminlinks">
 <{$publisher_adminpage}>
 </div>
<{/if}>
<{if ($commentatarticlelevel && $item.cancomment) || $com_rule <> 0}>
 <table border="0" width="100%" cellspacing="1" cellpadding="0" align="center">
 <tr>
 <td colspan="3" align="left">
 <div style="text-align: center; padding: 3px; margin:3px;">
 <{$commentsnav}> <{$lang_notice}>
 </div>
 <div style="margin:3px; padding: 3px;">
 <!-- start comments loop -->
 <{if $comment_mode == "flat"}>
 <{include file="db:system_
 comments_flat.html"}>
 <{elseif $comment_mode == "thread"}>
 <{include file="db:system_comments_
 thread.html"}>
 <{elseif $comment_mode == "nest"}>
 <{include file="db:system_
 comments_nest.html"}>
 <{/if}>
 <!-- end comments loop -->
 </div>
 </td>
 </tr>
 </table>
<{/if}>
Publisher + Disqus | 97
<{if $rssfeed_link != ""}>
 <div id="publisher_rpublisher_feed">
 <{$rssfeed_link}>
 </div>
<{/if}>
<{include file='db:system_notification_select.html'}>

Replace the <table> structure with the code from Disqus:

publisher_footer.html
<{if $isAdmin == 1}>
<div class="publisher_adminlinks"><{$publisher_adminpage}></div><{/if}>

<{if ($commentatarticlelevel && $item.cancomment) || $com_rule <> 0}>
<div id="disqus_thread"></div>
<script type="text/javascript">
 /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
 var disqus_shortname = 'mytinymag'; // required: replace example with your
 // forum shortname

Publisher + Disqus | 99

 // The following are highly recommended additional parameters. Remove the slashes
 // in front to use.
 // var disqus_identifier = 'unique_dynamic_id_1234';
 // var disqus_url = 'http://example.com/permalink-to-page.html';

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function() {
 var dsq = document.createElement('script'); dsq.type = 'text/javascript';
 dsq.async = true;
 dsq.src = 'http://' + disqus_shortname + '.disqus.com/embed.js';
 (document.getElementsByTagName('head')[0] ||
 document.getElementsByTagName('body')[0]).appendChild(dsq);
 })();
</script>
<noscript>Please enable JavaScript to view the <a href="http://disqus.com/
 ?ref_noscript">comments powered by Disqus.</noscript>
blog comments powered by
 Disqus
<{/if}>

<{if $rssfeed_link != ""}>
<div id="publisher_rpublisher_feed"><{$rssfeed_link}></div><{/if}>

<{include file='db:system_notification_select.html'}>

Remember to change disqus_shortname to your own shortname.

Then you’ll have to replace the “comment count” of Publisher.

First, add the following code from Disqus to the end of publisher_footer.html:

<script type="text/javascript">
 /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */
 var disqus_shortname = 'mytinymag'; // required: replace example with your
 // forum shortname

 /* * * DON'T EDIT BELOW THIS LINE * * */
 (function () {
 var s = document.createElement('script'); s.async = true;
 s.type = 'text/javascript';
 s.src = 'http://' + disqus_shortname + '.disqus.com/count.js';
 (document.getElementsByTagName('HEAD')[0] ||
 document.getElementsByTagName('BODY')[0]).appendChild(s);
 }());
</script>

Remember to replace the shortname here, too.

100 | Chapter 8: Case Study: My TinyMag

Then, add #disqus_thread after <{$item.itemurl}> in publisher_item.html:

publisher_item.html (excerpt)
<{if $display_comment_link && $item.cancomment}>

 <a href="<{$item.itemurl}>#disqus_thread">
 <{$item.comments}> <{$smarty.const._MD_PUBLISHER_COMMENTS}>

<{else}>

<{/if}>

Refresh your page, and you’ll see the modern comment form is there, as in Figure 8-33!

Figure 8-33. Comment form built with Disqus

Please note that by default, Disqus will use a URL as an identifier to show comments.
The best practice is to use a custom ID. This can be accomplished easily in Publisher—
simply define those JavaScript variables in the first code snippet from Disqus:

publisher_footer.html (excerpt)
var disqus_shortname = 'mytinymag'; // required: replace example with your
 // forum shortname
var disqus_identifier = 'publisher-item-<{$itemid}>';
var disqus_url = '<{$item.itemurl}>';
var disqus_title = '<{$item.title}>';

Publisher + Disqus | 101

And add:

data-disqus-identifier="publisher-item-<{$itemid}>"

to publisher_html.html as follows:

publisher_item.html (excerpt)
<{if $display_comment_link && $item.cancomment}>

 <a href="<{$item.itemurl}>#disqus_thread"
 data-disqus-identifier="publisher-item-<{$itemid}>">
 <{$item.comments}>
 <{$smarty.const._MD_PUBLISHER_COMMENTS}>

<{else}>

<{/if}>

I provide this integrated edition of Publisher for download in my code forge at http://
code.google.com/p/insraq/downloads/list (see Figure 8-34).

Figure 8-34. An integrated edition of Publisher available for download

Final Check
The last thing to check before we make our website public is the permission settings.
View the user website both as a normal user and as a visitor. Publisher has a permissions
setting for each individual article; make sure you grant the corresponding user groups
permission to view each article. The settings can be modified in the Others tab when
you edit an article (see Figure 8-35).

102 | Chapter 8: Case Study: My TinyMag

http://code.google.com/p/insraq/downloads/list
http://code.google.com/p/insraq/downloads/list

Figure 8-35. A permissions setting in the Others tab lets you set permissions for each individual article

If you want to read through the detailed source code, or gain a fuller
understanding of the code, you can get the source from http://insraq.me/
files/book/mytinymag_ch8.zip.

Final Check | 103

http://insraq.me/files/book/mytinymag_ch8.zip
http://insraq.me/files/book/mytinymag_ch8.zip

APPENDIX

XOOPS Cheatsheets

XOOPS Resources
This appendix features handy tables and examples with XOOPS commands you will
frequently use. A more detailed PDF, ideal for portability, is available on the book’s
website (http://oreilly.com/catalog/9781449308964/), as well as at http://insraq.me/
book/. Please report any bugs to me at ruoysun@gmail.com.

Table A-1. Header meta tags

Tag Example output Purpose

<{$xoops_charset}> UTF-8 Output the character set

<{$xoops_langcode}> en Output content language

<{$xoops_meta_keywords}> N/A Output the meta keyword list

<{$xoops_meta_description}> N/A Output the meta description

<{$meta_copyright}> N/A Output the meta tag copyright

<{$meta_robots}> index, follow Output the W3C robot meta tag

<{$meta_rating}> general Output the meta tag rating

105

http://oreilly.com/catalog/9781449308964/
http://insraq.me/book/
http://insraq.me/book/

Table A-2. General XOOPS commands

Tag Comment

<{$xoops_sitename}> Site name

<{$xoops_slogan}> Site slogan

<{$xoops_pagetitle}> Current page title

<{$xoops_theme}> Theme folder name

<{$xoops_url}>a Site URL without the “/”

<{$xoops_banner}> Site banner

<{$xoops_contents}> Module contents

<{$xoops_footer}> XOOPS footer
a This tag can be replaced by <{xoAppUrl}>, which basically achieves the same result.

Table A-3. User-related XOOPS commands

Tag Comment

<{$xoops_isadmin}> If the user is an admin?

<{$xoops_isuser}> If the visitor is a user?

<{$xoops_userid}> User ID (integer)

<{$xoops_uname}> Username

Table A-4. XOOPS resource locators and links

Tag/code Link

<{xoAppUrl backend.php}> XOOPS/backend.php

<{xoImgUrl style.css}> XOOPS/theme/yourtheme/style.css

<{xoImgUrl img/some.png}> XOOPS/theme/yourtheme/img/some.png

<{xoImgUrl js/some.js}> XOOPS/theme/yourtheme/img/some.png

More Resources
If you want to know more, here are some good online references:

• Smarty: http://www.smarty.net

• PHP: http://www.php.net

• XOOPS: http://xoops.org

106 | Appendix: XOOPS Cheatsheets

http://www.smarty.net
http://www.php.net
http://xoops.org

About the Author
Sun Ruoyu is a UI designer, web designer, author, and XOOPS 3 core designer. He is
a two-time XOOPS Innovation Award Winner (in 2009 for successfully leading the
redesign project, and in 2010 for his contributions in improving UI and designs), and
winner of the 2010 NEA OSS Forum "Best Technology" Award for XOOPS 3.

Colophon
The animal on the cover of Designing for XOOPS is a crested ibis (Nipponia nippon).

The cover image is from Heck’s Pictorial Archive of Nature and Science. The cover font
is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	What Is XOOPS?
	Why Use XOOPS?
	Powerful Modules
	Themes and Templates
	User Management
	Supported Worldwide

	Brief History of XOOPS
	What This Book Covers
	What You Need to Know
	Who Is This Book For?
	Conventions Used in This Book
	Path and Folders

	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Before the Journey
	Prepare the Tools
	General Workflow of Designing a XOOPS Theme
	Step 1: Create a Web Design
	Step 2: Convert the XHTML template to a XOOPS theme
	Step 3: Testing and debugging

	Chapter 2. Elements of a XOOPS Theme
	Necessary Elements of a XOOPS Theme
	A Simple Example
	Block-Displaying Structures
	Content and Footer

	Chapter 3. Converting an Existing XHTML
 Template
	Get the CSS Template
	Plug It into XOOPS
	Further Modifications
	Head Part
	Logo and Navigation Bar
	Footer
	The Last Fix to Make the Theme Work

	Chapter 4. Styling XOOPS and Creating a Theme from 960
	More on Styling XOOPS
	Global Style
	Theme-Specific Style
	XOOPS System Template Style

	Dealing with XOOPS Template Style
	#MainMenu
	#Usermenu
	Table and Cells

	Smarty: I Want to Know More
	Header Tags
	XOOPS General
	XOOPS User-Related
	Smarty Flow Control
	Include and Assign

	More on Smarty: Tricks and Examples
	Module-Based Navigation
	What About a Block Without a Title?
	Custom Block Filter

	Create a Theme with 960

	Chapter 5. jQuery and UI Libraries for XOOPS
 Themes
	Link Your Theme to jQuery
	Case1: jQuery Used Separately (Adding a Slider to Your Theme)
	Get the Graphics Done

	Coding (X)HTML and CSS
	Adding jQuery Effect
	Case2: jQuery Integration (Transform Your Blocks into Tabs)
	jQuery Tools as UI Library
	Implementing Tabs Separately
	Integration: How to Come Up with an Idea
	Integration: How to Implement the Idea

	Chapter 6. Module Template Override
	An Experiment in Module Template Override
	Dig Deeper

	Case Study: Gallery Slideshow Block
	Preparation
	Clean Up the Markup
	Integrate with the InsMinimal theme
	A Test Run

	A Look Back

	Chapter 7. Block Anywhere Techniques
	How to Get XOOPS Tools Module
	A First Play-around
	What’s the Difference?

	Chapter 8. Case Study: My TinyMag
	Wireframing
	Mock Up a Design
	Code the Mock-Up Design
	Header
	How to Deal with Content
	Content Markup
	Set Up Blocks

	Publisher FAQ
	Where are the advanced editing options?
	Why can’t I upload article images?

	Construct Header Feature
	Construct the Main Feature
	Construct the Content
	Construct Latest Article Categories
	Poll
	Archives and Discussions
	Archives
	Forum

	User Menu
	Publisher + Disqus
	Final Check

	Appendix. XOOPS Cheatsheets
	XOOPS Resources
	More Resources

