Jeff Forcier .
Paul Bissex
Wesley Chun

Covers
Django 1.0

Python Web Development with
Django

Developer’s Library

Python Web Development
with Django®

’ -
Developer’s Library
ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library books are designed to provide practicing programmers with
unique, high-quality references and tutorials on the programming languages and
technologies they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners
who are especially skilled at organizing and presenting information in a way that’s
useful for other programmers.

Key titles include some of the best, most widely acclaimed books within their
topic areas:

PHP & MySQL Web Development Python Essential Reference
Luke Welling & Laura Thomson David Beazley

ISBN 978-0-672-32916-6 ISBN-13: 978-0-672-32862-6
MySQL Programming in Objective-C
Paul DuBois Stephen G. Kochan

ISBN-13: 978-0-672-32938-8 ISBN-13: 978-0-321-56615-7
Linux Kernel Development PostgreSQL

Robert Love Korry Douglas

ISBN-13: 978-0-672-32946-3 ISBN-13: 978-0-672-33015-5

Developer’s Library books are available at most retail and online bookstores, as well as
by subscription from Safari Books Online at safari.informit.com

Developer’s
Library

informit.com/devlibrary

Python Web Development
with Django®

Jeff Forcier, Paul Bissex, Wesley Chun

vvAddison-Wesley

Upper Saddle River, NJ - Boston - Indianapolis - San Francisco
New York - Toronto - Montreal - London - Munich - Paris - Madrid
Cape Town - Sydney - Tokyo - Singapore - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publish-
er was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Forcier, Jeff, 1982-
Python web development with Django / Jeff Forcier, Paul Bissex, Wesley Chun.
p. cm.

Includes index.

ISBN-10: 0-13-235613-9 (pbk. : alk. paper)

ISBN-13: 978-0-13-235613-8 (pbk. : alk. paper) 1. Web site development. 2. Django
(Electronic resource) 3. Python (Computer program language) 4. Web sites—Authoring pro-
grams. |. Bissex, Paul. Il. Chun, Wesley. lll. Title.

TK5105.8885.D54F68 2009

006.7'6—dc22

2008037134

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-13-235613-8

ISBN-10: 0-13-235613-9

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing October 2008

Editor-In-Chief
Mark Taub

Acquisitions Editor
Debra Williams
Cauley
Development
Editor

Michael Thurston

Managing Editor
Kristy Hart

Project Editor and
Copy Editor

Jovana
San Nicolas-Shirley

Indexer
Cheryl Lenser

Proofreader

Geneil Breeze
Publishing
Coordinator

Kim Boedigheimer

Cover Designer
Gary Adair

Compositor
Jake McFarland

2
0‘0

To Brian Levine, for introducing me to Python, a small
thing that has made a big difference. To my parents,
for allowing me to monopolize the family computer

while growing up. And to my wife, for her loving support

and understanding.

—Jeff Forcier

To my late father Henry, who taught me to tinker; to my
mother Glenda, who taught me to write; and to my wife

Kathleen, a brilliant star in my life.

—Paul Bissex

To my wonderful children, Leanna Xin-Yi and
Daylen Xin-Zhi, for whom I've had to develop multiple
pairs of eyes with which to keep watch over, and who
are miraculously able to temporarily transport me back
in time to remind me of what childhood and its

amazing wonders were like.

—Wesley Chun

2
0’0

Table of Contents

Introduction

Where Web Frameworks Come From

A Better Way

We’re Not in Kansas Anymore

Web Development Is Better with Python and Django

I: Getting Started

1 Practical Python for Django

Python Skills Are Django Skills
Getting Started: Python’s Interactive Interpreter
Python Basics
Comments
Variables and Assignment
Operators
Python Standard Types
Object Boolean Values
Numbers
Numeric Operators
Numeric Built-in and Factory Functions
Sequences and lIterables
Lists
Strings
Sequence Built-ins and Factory Functions
Mapping Type: Dictionaries
Standard Type Summary
Flow Control
Conditionals
Loops
Exception Handling
The finally Clause
Throwing Exceptions with raise
Files
Functions

W NN PP

10
10
10
11
11
12
12
13
14
14
17
19
25
26
28
28
29
29
30
31
32
33
34

Declaring and Calling Functions
Functions Are First-Class Objects
Anonymous Functions
*args and **kwargs
Decorators
Object-Oriented Programming
Class Definitions
Instantiation
Subclassing
Inner Classes
Regular Expressions
The re module
Searching Versus Matching
Common Gotchas
Single-ltem Tuples
Modules
Mutability
Constructor Versus Initializer
Coding Style (PEP 8 and Beyond)
Indent Four Spaces
Use Spaces and Not Tabs

Don’t Write Single-Line Suites
on the Same Line as the Header

Create Documentation Strings
(aka “docstrings”)

Summary

Django for the Impatient: Building a Blog
Creating the Project
Running the Development Server
Creating the Blog Application
Designing Your Model
Setting Up the Database
Using a Database Server
Using SQLite
Creating the Tables
Setting Up the Automatic admin Application

34
36
38
40
42
44
44
45
46
46
47
47
48
48
48
48
50
52
53
53
53

54

54
59

57
58
59
61
62
62
63
63
64
65

Trying Out the admin
Making Your Blog’s Public Side
Creating a Template
Creating a View Function
Creating a URL Pattern
Finishing Touches
Template Niceties
Date-Based Ordering
Timestamp Formatting Via a Template Filter
Summary

Starting Out
Dynamic Web Site Basics

Communication: HTTR URLs, Requests,
Responses

Data Storage: SQL and Relational
Databases

Presentation: Rendering Templates into
HTML and Other Formats

Putting It All Together
Understanding Models, Views, and Templates
Separating the Layers (MVC)
Models
Views
Templates
Overall Django Architecture
Core Philosophies of Django
Django Tries to Be Pythonic
Don’t Repeat Yourself (DRY)
Loose Coupling and Flexibility
Rapid Development
Summary

II: Django in Depth

4 Defining and Using Models

Defining Models
Why Use an ORM?

66
70
70
71
72
73
73
74
75
75

77
77

78

78

79
79
79
79
80
81
81
82
82
84
84
84
85
86

89
89
89

Django’s Rich Field Types

Relationships Between Models

Model Inheritance

Meta Inner Class

Admin Registration and Options
Using Models

Creating and Updating Your Database
Using manage .py

Query Syntax

Utilizing SQL Features Django Doesn’t
Provide

Summary

URLs, HTTP Mechanisms, and Views
URLs
Introduction to URLconfs
Replacing Tuples with url
Using Multiple patterns Objects
Including Other URL Files with include

Function Objects Versus Function-Name
Strings

Modeling HTTP: Requests, Responses,
and Middleware

Request Objects
Response Objects
Middleware
Views/Logic
Just Python Functions
Generic Views
Semi-generic Views
Custom Views
Summary

Templates and Form Processing
Templates

Understanding Contexts

Template Language Syntax
Forms

Defining Forms

91
93
97
100
101
102

103
104

112
116

117
117
117
119
119
120

121

122
123
125
126
127
128
128
130
131
133

135
135
135
136
142
142

Filling Out Forms 147

Validation and Cleaning 149
Form Display 150
Widgets 152
Summary 154

11l: Django Applications by Example

7 Photo Gallery 159
The Model 160
Preparing for File Uploads 161
Installing PIL 162
Testing ImageField 163
Building Our Custom File Field 164

Initialization 166
Adding Attributes to the Field 167
Saving and Deleting the Thumbnail 168
Using ThumbnailImageField 169
Setting Up DRY URLs 169
The ITtem App’s URL Layout 172
Tying It All Together with Templates 173
Summary 179

8 Content Management System 181
What’s a CMS? 181
The Un-CMS: Flatpages 182

Enabling the Flatpages App 182
Flatpage Templates 184
Testing It Out 184
Beyond Flatpages: A Simple Custom CMS 185
Making the Model 186
Imports 188
Completing the Model 188
Controlling Which Stories Are Viewed 189
Working with Markdown 190
URL Patterns in urls.py 192
Admin Views 193

Displaying Content Via Generic Views 196

Template Layout 196

Displaying Stories 198
Adding Search 199
Managing Users 201
Supporting Workflow 202
Possible Enhancements 202
Summary 203
9 Liveblog 205
What Exactly Is Ajax? 205
Why Ajax Is Useful 206
Planning the Application 206
Choosing an Ajax Library 207
Laying Out the Application 208
Putting the Ajax In 211
The Basics 212
The “X” in Ajax (Or XML Versus JSON) 212
Installing the JavaScript Library 213
Setting Up and Testing jQuery 214
Creating the View Function 216
Using the View Function Via JavaScript 217
Summary 219
10 Pastebin 221
Defining the Model 222
Creating the Templates 223
Designing the URLs 225
Trying It Out 226
Limiting Number of Recent Pastes Displayed 229
Syntax Highlighting 230
Cleanup Via Cron Job 231
Summary 232

IV: Advanced Django Techniques and Features

11 Advanced Django Programming 235
Customizing the Admin 235
Changing Layout and Style Using Fieldsets 236

12

Extending the Base Templates

Adding New Views

Authentication Decorators
Using Syndication

The Feed Class

Giving the Feed a URL

Doing More with Feeds
Generating Downloadable Files

Nagios Configuration Files

vCard

Comma-Separated Value (CSV)

Charts and Graphs Using PyCha

Enhancing Django’s ORM with Custom Managers

Changing the Default Set of Objects
Adding New Manager Methods
Extending the Template System
Simple Custom Template Tags
Inclusion Tags
Custom Filters
More Complex Custom Template Tags
Alternative Templating
Summary

Advanced Django Deployment
Writing Utility Scripts

Cronjobs for Cleanup

Data Import/Export
Customizing the Django Codebase Itself
Caching

A Basic Caching Recipe

Caching Strategies

Caching Backend Types
Testing Django Applications

Doctest Basics

Unittest Basics

Running Tests

Testing Models

Testing Your Entire Web App

237
238
239
240
240
242
242
243
243
244
245
246
248
248
249
250
250
253
256
258
258
260

261
261
262
263
264
265
265
267
272
274
275
276
276
276
278

Testing the Django Codebase Itself 279
Summary 281

V: Appendices

A Command Line Basics 285
Putting the “Command” in “Command Line” 285
Options and Arguments 288
Pipes and Redirection 289
Environment Variables 291
The Path 293
Summary 294

B Installing and Running Django 295
Python 295

Mac 0S X 296
Unix/Linux 296
Windows 296
Updating Your Path 296
Testing 299
Optional Add-ons 300
Django 301
Packaged Releases 302
Development Version 302
Installation 302
Testing 303
Web Server 303
The Built-In Server: Not for Production 303
The Standard Approach: Apache and
mod_python 304
The Flexible Alternative: WSGI 306
Another Approach: Flup and FastCGl 307
SQL Database 308
SQLite 308
PostgreSQL 309
MySQL 310
Oracle 311
Other Databases 311

Summary 311

C Tools for Practical Django Development 313

Version Control 313
The Trunk and Branches 314
Merging 314
Centralized Version Control 315
Decentralized Version Control 315
Version Control for Your Project 316

Project Management Software 318
Trac 319

Text Editors 319
Emacs 319
Vim 320
TextMate 320
Eclipse 320

D Finding, Evaluating, and Using Django

Applications 321
Where to Look for Applications 321
How to Evaluate Applications 322
How to Use Applications 323
Sharing Your Own Application 323
E Django on the Google App Engine 325
Why the App Engine Matters 325
Pure Google App Engine Applications 326
Limitations of the App Engine Framework 326
Google App Engine Helper for Django 327
Getting the SDK and the Helper 327
More on the Helper 327
Integrating the App Engine 328
Copying the App Engine Code to Your Project 328
Integrating the App Engine Helper 329
Porting Your Application to App Engine 330
Taking a Test Drive 330

Adding Data 331

Creating a New Django Application That Runs
on App Engine

Summary
Online Resources

Getting Involved in the Django Project
Index

Colophon

333
334
334

337

339

375

This page intentionally left blank

Preface

Welcome to Django!

Greetings, and welcome to Django! We’re glad to have you along on our journey. You
will discover a powerful Web application framework that lets you do everything
rapidly—from designing and developing the original application to updating its features
and functionality without requiring major changes to the codebase.

About This Book

Several Django books are already on the market, but ours differs from most in that we
focus equally on three areas: Django basics, a variety of example applications, and
advanced Django topics. Our intent is to make this the most well-rounded book on the
subject, one you find useful regardless of background, and which will give you a com-
plete picture of the framework and what you can do with it.

Chapter Guide

In Figure 0.1, you see recommended starting points for your reading depending on your
Python and Django experience. Of course, we recommend a cover-to-cover treatment,
but the diagram will help if time is not on your side. Regardless of your experience, you
are always welcome to look at the applications because reading and studying code is one
of the best ways to learn. We also provide this chapter-by-chapter reading guide to
further help direct you to where you need to read.

Part |1, “Getting Started”

Part I covers the basic material needed to introduce users new to Django and/or
Python, although we recommend Chapter 3, “Starting Out,” even to advanced readers.

Chapter 1, “Practical Python for Django”

This chapter is an introduction for readers who are new to Python. In one comprehen-
sive chapter, we show you not only the syntax, but also go a bit more in-depth and
expose you to Python’s memory model and data types, especially constructs commonly
used in Django.

Know Ph

and Django
well but want

Brand Ne‘ Know Py&

to Django but new

Know Pyt&

and some

and Python to Django Django already advanced Chp7
usage Photo Gallery
Chp 1 Chp8
Practical CMS
Python
Chp 2
Impatient
Chp9
(blog) Liveblog
Chp 3
Starting
Out Chp 10
Part I: Getting Started Pastebin
Part Ill: Applications
Chp 4 Chp5 Chp 6
Models Views Templates
Part II: Django in Depth
Appendices
Chp 11 Chp 12 G
Advanced Advanced
Django Django
Programming Deployment

Part IV: Advanced

Figure 0.1 Suggested reading guide based on your Python and/or
Django experience

Chapter 2, “Django for the Impatient: Building a Blog”

This is a chapter for those who want to skip any Python introduction and want to dive
immediately into a Django application that can be completed in 15-20 minutes. It gives
a good overview of what’s possible with the framework.

Chapter 3, “Starting Out”

For those with a bit more patience, this chapter serves as an introduction to all the foun-
dations of developing Web-based applications (useful both for newbies and experienced

coders alike). Once the formalities are over, we describe how each concept fits into the
world of Django as well as what its philosophies are and how it may differ from other
Web application frameworks.

Part I, “Django in Depth”
Part IT covers all the basic components of the framework, laying the foundation for the
example applications in Part III, “Django Applications by Example.”

Chapter 4, “Defining and Using Models”
In Chapter 4, learn how to define and work with your data model, including the basics
of Django’s object-relational mapper (ORM) from simple fields up to complex relations.

Chapter 5, “URLs, HTTP Mechanisms, and Views”

This chapter goes into detail on how Django handles URL processing and the rest of
the HTTP protocol, including middleware layers, as well as how to use Django’s time-
saving generic views, and how to write custom or partially custom views from scratch.

Chapter 6, “Templates and Form Processing”

Chapter 6 covers the final major piece of the framework, where we explore Django’s
template language and its form-handling mechanisms. It covers how to display data to
your users and get data back from them.

Part lll, “Django Applications by Example”

In Part III, we create four distinct applications, each highlighting a different aspect or
component of Django development, both to introduce new general ideas and to expand
on the concepts found in Parts I and II.

Chapter 7, “Photo Gallery”

In Chapter 7, learn how to apply the “Don’t Repeat Yourselt” convention to your URL
structure and create a new thumbnail-creating image form field, while you make a sim-
ple photo gallery application.

Chapter 8, “Content Management System”

Chapter 8 contains two related approaches to creating a CMS or CMS-like system and
covers the use of a number of “contrib” Django applications.

Chapter 9, “Liveblog”

Chapter 9 covers writing a “liveblog”—a site that makes use of advanced JavaScript
techniques, serves as a backdrop for applying AJAX to a Django project, and shows how
easy it is to use any AJAX toolkit you want.

Chapter 10, “Pastebin”
In Chapter 10, learn the power of Django’s generic views as we create a pastebin using
almost no custom logic whatsoever.

Part IV, “Advanced Django Techniques and Features”

Part IV is a collection of advanced topics, ranging from customizing Django’s admin
application to writing command-line scripts that interface with your Django applica-
tions.

Chapter 11, “Advanced Django Programming”

Chapter 11 covers a number of topics related to fleshing out your own application’s
code, such as RSS generation, extending the template language, or making better use of
the Django admin application.

Chapter 12, “Advanced Django Deployment”

In Chapter 12, learn a number of tricks related to deploying Django applications or
working with your app from outside your Django project’s core code, such as command-
line scripts, cron jobs, testing, or data import.

Part V, “Appendices”

PartV fills in the remaining gaps or addresses topics relevant to the rest of the book but
that don't fit in well as full chapters. Learn the basics of the Unix command line, Django
installation and deployment strategies, tools for development, and more.

Appendix A, “Command Line Basics”
Appendix A is an introduction to the Unix command line for those who haven’t been
exposed to it before now. Trust us—it’s useful!

Appendix B, “Installing and Running Django”

In Appendix B, learn how to install all the necessary components for running Django,
including the various options for database and Web servers, as well as some tips on spe-
cific deployment strategies.

Appendix C, “ Tools for Practical Django Development”
Appendix C outlines some basic development tools you may or may not be familiar
with, including source control, text editors, and more.

Appendix D, “Finding, Evaluating, and Using Django Applications”

Good developers write code, but great developers reuse somebody else’s code! In
Appendix D, we share some tips on the where and how of finding reusable Django
applications.

Appendix E, “Django on the Google App Engine”

Appendix E provides an exclusive look at how Google’s new App Engine leverages
Django, and you can also learn how to enable your Django applications to run under the
App Engine framework.

Appendix F, “Getting Involved in the Django Project”

In Appendix F learn how to contribute to Django and become a part of the community.

Conventions

Throughout this book, we use bold to introduce new or important terms, italics for
emphasis, http://links/ for URLs, and monospacing to delineate Python and command
line material such as variable names or commands. Multiline blocks of code or command
examples are in monospaced blocks, like so:

>>> print "This is Python!"
This is Python!

We have made use of all three major platforms—Mac OS X, Linux, and Windows—
when writing this book and the example applications. In addition, we’ve used all major
browsers (although not all may be present in our screenshots), namely Firefox, Safari,
Opera, and Internet Explorer.

Book Resources

You can contact the authors collectively at authors@withdjango.com. Our Web site,
http://withdjango.com, contains a large amount of auxiliary material and is referenced
in a number of places throughout the book.

http://withdjango.com

Acknowledgments

My name may have ended up first in the author list, but this book wouldn’t be here
without the effort and dedication of the other two. Paul and Wesley are scholars and
gentlemen of the highest caliber, and working with them has been an awesome experi-
ence.

Speaking of scholars and gentlemen, the Django core team is filled to the brim.The
original four—Adrian Holovaty, Jacob Kaplan-Moss, Simon Willison, and Wilson
Miner—have laid (and continue to lay) an incredible groundwork, which has been
expanded on by Malcolm Tredinnick, Georg Bauer, Luke Plant, Russell Keith-Magee,
and Robert Wittams. Each one of these guys is an inspiration to me, and I'm not easily
inspired.

I'd also like to acknowledge two fellow “Djangonauts” and IRC veterans, Kevin
Menard and James Bennett, as well as the NYCDjango group, as stellar examples of the
kinds of talented people found in the Django community.

Finally, a big thanks to the staff at Pearson, including our editors and technical
reviewers (Wesley will fill you in on these folks below!) and especially the copyediting
staff, whose careful eye to detail is greatly appreciated.

Jeff Forcier
New York, NY
August 2008

Thanks are due to the communities surrounding Django, Python, and other open source
infrastructure for web applications. The work of thousands of dedicated developers and
maintainers makes powerful software stacks freely available worldwide.

My coauthors have been a boon, bringing essential knowledge and skills to the task as
well as serious dedication. Despite the fact that we are spread across a continent, I have
been lucky enough to meet face-to-face with both Jeff and Wes.

Thanks to the Western Massachusetts Developers Group for many interesting geeky
discussions and much enthusiasm about the book project.

Thanks to George J. Rosa III, President of Hallmark Institute of Photography, for
bringing me on and trusting me to choose the best tools—including, of course,
Django—to do the best job possible.

In the summer of 2008, after a serious automobile accident, I received an amazing
surge of attention and support from family, friends, and community. Every good wish,
card, dollar, and meal made a difference. You know who you are, and I thank you again.

And to my wonderful wife Kathleen, thank you for your support, smarts, vision, and
love.

Paul Bissex
Northampton, MA
September 2008

Writing my second book was a great experience. I'd like to salute the two wonderful
coauthors whom I've had the pleasure of working with. They were able to take someone
with some preexisting Python skills and introduce Django as an experience. I'm glad to
be able to contribute to producing this great Django book and look forward to working
with them again on future writings or in the classroom. It was also extremely gratifying
to write the entire book as if it were an open source project, using the same tools that
developers use every day to develop game-changing software.

I'd like to thank Debra Williams Cauley for helping us manage the entire process,
since I was first approached with this project. We had numerous changes in personnel,
and she kept us focused on the manuscript. It wasn’t enough to deliver just any ol’
Django book to meet market demand, as she subscribed to believing in our philosophy
of releasing the “right book” for the community as a whole. Thanks to all of our techni-
cal reviewers, Michael Thurston (development editor), Joe Blaylock, and Antonio
Cangiano, as well as those who submitted Rough Cuts feedback to make this book bet-
ter than it was when first introduced. I'd also like to thank Matt Brown, lead maintainer
of the Django Helper for Google App Engine, for his assistance in reviewing Appendix E,
and Eric Walstad and Eric Evenson for their last-minute overall review and
commentary.

Finally, without the support of our collective families, this book would not have been
possible.

Wesley Chun
Silicon Valley, CA
August 2008

About the Authors

Jeffrey E. Forcier currently works as a systems administrator and backend Web develop-
er at Digital Pulp, Inc., a New York-based interactive agency and Web development com-
pany. He has 7 years experience in Web development with PHP and Python, including
professional and personal use of the Django framework since its public release in 2005.
He holds a degree in Computer Science from the University of Massachusetts.

Paul Bissex has worked as a graphic designer, writer, teacher, babysitter, and software
developer. He was an early adopter of Django and is the creator and maintainer of
dpaste.com, the Django community pastebin site. From September to June, he can be
found at the Hallmark Institute of Photography (hallmark.edu), teaching Web develop-
ment and using Python and Django to build everything from attendance systems to
housing databases to image processing utilities. His writings on technology have appeared
in Wired, Salon.com, and the Chicago Tribune. Since 1996, he has served as a conference
host for The Well (well.com), which Wired magazine called “the world’s most influential
online community,” and currently hosts the Web conference there. He lives in
Northampton, Massachusetts, with his wife Kathleen.

Wesley J. Chun is author of Prentice Hall’s bestseller, Core Python Programming
(corepython.com), its video training course, Python Fundamentals (LiveLessons DVD), and
coauthor of Python Web Development with Django (withdjango.com). In addition to being
a senior software architect, he runs CyberWeb (cyberwebconsulting.com), a consulting
business specializing in Python software engineering and technical training. He has more
than 25 years of programming, teaching, and writing experience, including more than a
decade of Python. While at Yahoo!, he helped create Yahoo! Mail and Yahoo! People
Search using Python. He holds degrees in Computer Science, Mathematics, and Music
from the University of California.

Introduction

If you're a Web developer, a programmer who creates Web sites, then Django just might
change your life. It has certainly changed ours.

Anyone with even a little experience building dynamic Web sites knows the pain of
reinventing certain standard features over and over.You need to create database schemas.
You need to get data into and out of the database.You need to parse URLs.You need to
sanitize input.You need to provide content-editing tools.You need to attend to security
and usability. And so on.

Where Web Frameworks Come From

At some point you realize the wastefulness of reimplementing all these features on every
new project; you decide to code your own libraries from scratch to provide them—or,
more likely, you extract those libraries from your latest and greatest creation. Thereafter,
when you start a new project, the first thing you do is install your library code. It saves
you work and time.

However, there are still rough spots. Clients want features that aren’t provided by your
library code, so you add these. Different clients need different things, so you end up with
different versions of your library installed on different servers. Maintenance becomes hell.

So then, seasoned with experience, you take your base library and all the best add-ons
from your various projects and combine them. For most projects you no longer have to
tweak your library code directly; you alter a configuration file instead.Your codebase is
bigger and more complicated, but it’s also more powerful.

Congratulations, you’ve written a Web framework.

And as long as you (or your team, or your company, or your clients) keep on using it,
you're responsible for keeping it working. Will the next upgrade of your OS, your Web
server, or your programming language break it? Will it be flexible enough to accommo-
date future changes without great pain? Does it support difficult but important features
like session management, localization, and database transactions? And how’s your test
coverage?

Introduction

A Better Way

You have this book in your hands because you want something better. You want a power-
ful, flexible, elegant, well-tested framework you don’t have to maintain yourself.

You want to write your code in a real programming language; one that is powerful,
clean, mature, and extensively documented.You want it to have a great standard library
and a huge selection of high-quality third-party packages for whatever needs arise, from
generating a CSV or a pie chart to scientific computations or image file processing.

You want a framework that has a vibrant, helpful community of users and developers;
one that is designed to function smoothly as an integrated stack, but whose components
are loosely coupled, so you can make substitutions if circumstances require.

In short, you want Python, and you want Django. We wrote this book to help you
learn and use Django in real-world settings as easily, quickly, and smartly as possible.

We’re Not in Kansas Anymore

Django was originally written by Adrian Holovaty and Simon Willison at World Online,
the Web arm of a family-owned media company in Lawrence, Kansas. It was born out of
a need to quickly develop database-driven applications tied into news content.

After proving itself in the field, Django was released as an open source project in July
2005—a time, ironically, when it was widely felt that Python had far 700 many Web frame-
works—and rapidly gained a strong following. Today, it is one of the leaders not just
among Python frameworks, but among Web frameworks in general.

Django is still heavily used at World Online of course, and some of its core developers
work there and use it daily. But since Django’s open source release, companies and organ-
izations around the world have picked it up for use in projects large and small. A partial
list includes

s The Washington Post

= The Lawrence Journal-World
= Google

= EveryBlock

= Newsvine

= Curse Gaming

= Tabblo

= Pownce

There are, of course, thousands of other Django sites that are not (yet) household
names. It’s inevitable that as Django spreads and grows that an increasing number of pop-
ular sites will be powered by it. We hope that yours is one of them.

Web Development Is Better with Python and Django

Web Development Is Better with Python and
Django

Web development is generally messy business.You have to contend with browser incom-
patibilities, rogue bots, bandwidth and server limitations, and an overall architecture that
seems to defy thorough testing.

Of course, we believe our book is an excellent introduction to the basics of Django,
but we also aim to address many of those messy spots—the 20 percent of your work that
can take 80 percent of your time. We’ve worked with, listened to, and helped many devel-
opers using Django and have kept their questions and challenges in mind while writing
this book.

If we didn’t think that Django and Python were great, we wouldn’t have gone to the
trouble of writing a whole book about them. But when there are limitations you should
know about or sharp edges you should watch out for, we’ll tell you. Our goal is to help
you get things done.

This page intentionally left blank

Getting Started

1 Practical Python for Django
2 Django for the Impatient: Building a Blog
3 Starting Out

This page intentionally left blank

1

Practical Python for Django

Welcome to Django, and in this case, perhaps Python as well! Before jumping straight
into Django, we give you an in-depth overview of the language that is the foundation of
the Django applications you will develop. Programming experience with another high-
level language (C/C++, Java, Perl, Ruby, and so forth) makes it easier to absorb the mate-
rial in this chapter.

However, if you have never programmed before, Python itself is a great first language,
and several books out there teach you how to program using Python. Those references are
provided at the end of this chapter. We recommend those new to programming check out
some of those resources; once you’ve gotten your feet wet, return here, and then you’ll
get more out of the following sections.

‘We introduce you to Python in this chapter, focusing on the core features of the lan-
guage and specific skills related to Django development.To develop eftectively in Django,
not only do you need basic Python skills, but you need to know a bit more about how
Python works under the covers so when you come across certain features, aspects, or
requirements of Django, you won't be left high and dry. Those new to Python or to pro-
gramming in general can benefit from reading other general Python material first or fol-
lowing such materials along with this chapter—whichever suits your learning style best.

Python Skills Are Django Skills

Django provides a high-level framework that enables you to build Web applications with
relatively few lines of code. It is simple, robust, and flexible, allowing you to design solu-
tions without much overhead. Django was built using Python, an object-oriented applica-
tions development language which combines the power of systems languages, such as
C/C++ and Java, with the ease and rapid development of scripting languages, such as
Ruby and Visual Basic. This gives its users the ability to create applications that solve
many different types of problems.

In this chapter, we show you what we believe are some of the necessary Python skills
you should have to be an effective Django developer. Rather than regurgitating a generic
Python tutorial, we focus on those concepts of Python which are “must-haves” for the

8

Chapter 1 Practical Python for Django

Django developer. In fact, you find Django code scattered throughout the chapter.

Python 2.x Versus 3.x

At the time of this writing, Python is transitioning from the 2.x series to a new generation
starting with version 3.0. The 3.x family does not guarantee backward-compatibility with
older releases, so it’s entirely possible code written for 2.x doesn’t work under 3.x. However,
the core Python development team is making the switch as painless as possible: There will
be solid 2.x-to-3.x conversion tools available, and the switch itself is set to take enough time
so nobody is left behind.

The Django core team does not plan to switch to 3.0 right away—as with most large or
framework-oriented projects, such a switch can be disruptive and must be taken with care—
so we're only mentioning this transition in passing. Chances are good Django will only take
the leap when the majority of the user-base (that’s you!) is ready for it.

Getting Started: Python’s Interactive Interpreter

The interactive interpreter is one of the most powerful tools used in everyday Python
development, enabling you to test a few lines of code without needing to create, edit, save,
and run a source file. Not only will a language shell such as Python’s verify your code’s
correctness, but it also enables you to try out different things with new code, such as
inspecting data structures or altering key values, prior to adding it to your source files.

‘While reading this chapter, we suggest you launch an interactive Python interpreter to
try code snippets right away; most Python Integrated Development Environments (IDEs)
make it easily accessible, and it can also be run on its own from the command line or your
operating system’s (OS) applications menu. By using it, you see an immediate impact and
become more comfortable with Python and Django in a very short amount of time.
Python veterans, such as your authors, still use the Python shell daily, even after a decade
of Python programming experience!

Throughout this book, you see code snippets that are prefixed with the Python shell’s
interactive prompt: >>>.You can try these examples directly in your interpreter while
reading the book. They look something like this:

>>> print 'Hello World!'
Hello World!

>>> 'Hello World!'
'Hello World!'

print is your friend. It not only provides relevant application information to your
users, but also is an invaluable debugging tool. It’s often possible to “print” the value of
variables without explicitly calling print, as we just did, but note this often results in dif-
ferent output than when print is involved.

Notice the difference in our Hello World example. When you “dump the object” in
the interactive interpreter, it shows the quotation marks that tell you it is a string. When

Getting Started: Python’s Interactive Interpreter

using the print statement, it doesn’t do that because you told it to display the contents of
the string, which of course, does not include the quotes. This specific example is a subtle
difference that applies only for strings—there’s no difference for numbers.

>>> 10

10

>>> print 10
10

However, for complex objects, which we get to later, the difference can be quite pro-
nounced—this is because Python gives you a lot of control over how objects behave
when used with or without print.

Although we go over the details of variables and looping later on, the following is a
quick taste of some slightly more complex Python, involving a couple of for loops.

>>> for word in ['capitalize', 'these', 'words']:
print word.upper ()

CAPITALIZE

THESE

WORDS

>>> for i in range(0, 5):
print i

B w N B o

An important aspect of Python’s syntax is the absence of curly braces ({ }) for delimit-
ing blocks of code. Instead of braces, we use indentation: Within a given chunk of Python
code, there must be distinct levels of indentation, typically four spaces per indent
(although a different number of spaces, or tabs, can also be used). If you're used to other
languages, this can take a bit of time to adjust to; however, after a short period, you realize
it is not as bad as it seems.

A final note about the interpreter: Once you become familiar with using it, you should
consider a similar tool called IPython. If you’re already sold by the concept of an interactive
interpreter, [Python is an order of more powerful magnitude! It provides numerous fea-
tures such as system shell access, command-line numbering, automatic indentation, com-
mand history, and much more.You can find out more about IPython at http://ipython.
scipy.org. It does not ship with Python, but it is available as a third-party download.

Using the Interpreter with Django

It can be handy to use Python’s interactive interpreter to experiment with your Django appli-
cation code or aspects of the framework itself. But if you just launch the interpreter normally
and try to import your Django modules, you get an error about DOANGO SETTINGS MODULE

http://ipython.scipy.org
http://ipython.scipy.org

10

Chapter 1 Practical Python for Django

not being set. As a convenience, Django provides the manage.py shell command, which
performs the necessary environment setup to avoid this problem.

manage.py shell uses iPython by default if you have it installed. If you do have iPython
installed but want to use the standard Python interpreter, run manage.py shell plain
instead. We continue to use the default interpreter in our examples, but highly recommend
the use of iPython.

Python Basics

We introduce several basic aspects of Python in this section. We talk about comments,
variables, operators, and basic Python types. The next few sections go into even more
detail about the main Python types. Most Python (and Django) source code goes into text
files that have a .py extension—that is the standard way of telling your system it is a
Python file.You can also see files with related extensions such as .pyc or .pyo—these
don’t cause a problem on your system, and you see them, but you do not need to be dis-
tracted by them at this time.

Comments

Comments in Python are denoted with the pound or hash mark (#). When that is the first
character of a line of code, the entire line is deemed a comment. The # can also appear in
the middle of the line; this means from the point where it is found, the rest of the same
line is a comment. For example:

this entire line is a comment
foo = 1 # short comment: assign int 1 to 'foo'
print 'Python and %s are number %d' % ('Django', foo)

Comments are not only used to explain nearby code, but also to prevent what would
otherwise be working code from executing. A good example of this is in configuration
files like Django’s settings.py—common options that are not absolutely necessary, or
that have differing values than the default, are commented out, making it easy to re-enable
them or to make configuration choices obvious.

Variables and Assignment

Python’s variables do not need to be “declared” as holding a specific type of value, as in
some languages. Python is a “dynamically typed” language.Variables can be thought of as
names that refer to otherwise anonymous objects, which contain the actual values
involved—and thus, any given variable can have its value altered at any time, like so

>>> foo = 'bar'
>>> foo

'bar'

>>> foo =1

>>> foo

1

Python Standard Types

In this example, the variable foo is mapped to a string object, 'bar', but is then
remapped to an integer object, 1. Note the string that foo used to refer to disappears,
unless other variables are also referring to it (which is entirely possible!).

Because you can remap variable names like this, you are never really 100 percent sure
what type of object a variable is pointing to at any given time, unless you ask the inter-
preter for more information. However, as long as a given variable behaves like a certain
type (for example, if it has all the methods a string normally has), it can be considered to
be of that type, even if it has extra attributes. This is referred to as “duck-typing”—if it
waddles like a duck and quacks like a duck, then we can treat it as a duck.

Operators

As far as operators in general go, Python supports pretty much the same ones you're used
to from other programming languages. These include arithmetic operators, such as +, -,
and *, and so on, and this includes their corresponding augmented assignment operators, +=,
-=, *=,and so forth. This just means instead of x = x + 1,you can use x += 1.Absent are
the increment/decrement operators (++ and --) you may have used in other languages.
The standard comparison operators, such as <, >=, ==, ! =, and so on, are also available,

and you can group clauses together with Boolean AND and OR with and and or, respec-
tively. There 1s also a not operator that negates the Boolean value of a comparison. The

following is what an example grouping using and would look like:

show_output = True
if show_output and foo ==
print 'Python and %s are number %d' % ('Django', foo)

As far as Python syntax goes, you already know code blocks are delimited by indenta-
tion rather than curly braces. We previously mentioned it becomes fairly easy to identify
where blocks of code belong, and to take it one step further, you realize it is impossible to
have a “dangling-else” problem, simply because an else clearly belongs to one if or the
other—there is no ambiguity.

On the same note, Python has an absence of symbols in general. Not only are there no
delimiting braces, but no trailing semicolon (;) to end lines of code with, no dollar signs
(), and no required parentheses (()) for conditional statements (such as the preceding
if).You notice the occasional “at” (@) sign for decorators and an abundance of under-
scores (), but that’s really about it. The creator of Python believes less clutter means code
is clearer and easier to read.

Python Standard Types

‘We now introduce you to the standard types you are working with as a Django program-
mer. They include scalars or literals (such as numbers and strings), or they are “containers,”
or data structures, used to group together multiple Python objects. Before we introduce
you to the main data types, it is worth first noting all Python objects have some inherent
Boolean value.

11

12

Chapter 1 Practical Python for Django

Object Boolean Values

Like most other languages, exactly two Boolean values can be expressed: True and False.
All Python values can be represented as a Boolean value, regardless of their data values.
For example, any numeric type equal to zero is considered False while all nonzero
numeric values are True. Similarly, empty containers are False while nonempty contain-
ers are True.

You can use the bool function to determine the Boolean value of any Python object;
furthermore, True and False are legitimate values of their own and can be explicitly
assigned as a variable’s value.

>>> download complete = False
>>> bool (download complete)
False

>>> bool (-1.23)

True

>>> bool (0.0)

False

>>> bool ("")

False

>>> bool ([None, 0])

True

The previous examples and the output of bool should all make sense. The final exam-
ple can be a bit trickier: Although both list elements have False values, a nonempty list
has a True value. The “truthfulness” of Python objects comes into play when you use
them in conditionals such as 1f and while statements where the path of execution depends
on the Boolean value of those objects.

You should also note in the final example, the value None. That is Python’s special value
which is equivalent to NULL or void values found in other languages. None always evalu-
ates to False when treated as a boolean.

Booleans are literals just like numbers are; speaking of numbers, they’re our next topic.

Numbers

Python has two primary numeric types: int (for integer) and float (for floating point

number). In following its mantra of keeping it simple, Python has only one integer type,
int, as opposed to many other languages that have multiple integer types.' In addition to
normal base-10 notation, integers can be represented in hexadecimal (base 16) and octal
(base 8). floats are double-precision floating-point real numbers you should be familiar

* Python used to have another integer type called 1ong, but its functionality has been merged into
today’s int. You can still see a trailing ' L' representing long integers in various bits of old code and
documentation though. It looks like this: 11, -421, 99999999999999999L, and so on.

Python Standard Types

with from other languages. The following are some examples of ints and floats as well as
some interactive interpreter operators using them:

>>> 1.25 + 2.5

3.75

>>> -9 - 4

-13

>>> 1.1

1.1000000000000001

Whoops, what’s going on with the last example? £1loats have a large range; however,
they are not very accurate in terms of representing rational numbers with a repeating
fraction. Because of this, there is another floating point type called becimal—which is
not a built-in type and must be accessed via the decimal module—with a smaller value
range, but better accuracy. Python also features a built-in complex number type for scien-
tific calculations.

Table 1.1 summarizes these numeric types as well as gives a few more examples.

Table 1.1 Python Built-in Numeric Types

Type Description Examples

int Signed Integers (no size limit) -1, 0, OxE8C6, 0377, 42

float Double-precision Floating-Point 1.25, 4.3e+2, -5., -9.3e,
Numbers 0.375

complex Complex (Real+lmaginary) Numbers 2+2j, .3-j, -10.3e+5-60j

Numeric Operators

Numbers support the basic arithmetic operations you are familiar with from other lan-
guages: addition (+), subtraction (-), multiplication (*), division (/ and //), modulus (%),
and exponentiation (**).

The division operator / represents “classic division,” meaning truncation when both
operands are integers (floor division) but “true division” for floats. Python also features an
explicit “floor division” operator that always returns an integer result regardless of its
operand types:

>>> 1/ 2 # floor division (int operands)
0

>>> 1.0 / 2.0 # true division (float operands)
0.5

>>> 1 // 2 # floor division (// operator)

0

>>> 1.0 // 2.0 # floor division (// operator)

0.0

13

14

Chapter 1 Practical Python for Django

Finally, Python integers have bitwise operators for binary AND (&), OR (|), XOR (%),
bit inversion (~), and left and right shift (<< and >>), as well as their augmented assignment
equivalents, such as, &=, <<=, and so forth.

Numeric Built-in and Factory Functions

Each of the numeric types has a factory function that enables users to convert from one

numeric type to another. Some readers say “conversion” and “casting,” but we don’t use

those terms in Python because you are not changing the type of an existing object.You are

returning a new object based on the original (hence the term “factory”). It is as simple as

telling int (12.34) to create a new integer object with value 12 (with the expected frac-

tion truncation) while £loat (12) returns 12. 0. Finally, we have complex and bool.
Python also features a handful of operational built-in functions that apply to numbers,

such as round to round floats to a specified number of digits or abs for the absolute

value of a number. The following are a few examples of these and other built-ins:

>>> int ('123"')

123

>>> int (45.67)

45

>>> round(1.15, 1)

1.2

>>> float (10)

10.0

>>> divmod (15, 6)

(2, 3)

>>> ord('a')

97

>>> chr(65)

A

For more information on the previous number-related functions and others, see the
Numbers chapter in Core Python Programming (Prentice Hall, 2006), check out any of the
pure reference books, or search Python documentation online. Now let’s look at strings
and Python’ key container types.

Sequences and Iterables

Many programming languages feature arrays as data structures, which are typically of fixed
size, and tie together a group of like objects, accessible sequentially by index. Python’s
sequence types serve the same purpose, but can contain objects of differing types and can
grow and shrink in size. In this section, we discuss two very popular Python types: lists
(I1,2,31) and strings ('python').They are part of a broader set of data structures called
sequences.

Sequences are one example of a Python type that is an iterable: a data structure you
can “traverse” or “iterate,” one element at a time. The basic idea behind an iterable is you
can continually ask it for the next object via a next method, and it continues to “read off””

Python Standard Types

its internal collection of objects until it’s exhausted. Python sequences are not only itera-
tors in this way (although 99 percent of the time you are using for loops instead of the
next method), but also support random access—the capability to ask for the object at a
specific spot in the sequence. For example, use my 1list [2] to retrieve the third item in a
list (given indexes begin at 0).

There is a third sequence type called tuples. They can most easily be described as
“handicapped read-only lists” because they don’t seem like more than that—they serve a
very different purpose. They are not going to be your first choice as an application data
structure, but we do need to tell you what they are and what they’re used for. Because you
probably already know what a string is, we’ll start with lists first and cover tuples last. Table
1.2 itemizes each sequence type we discuss and gives some examples.

Table 1.2 Examples of Sequence Types

Type Examples

str 'django', '\n', "", "%s is number %d" % ('Python', 1), ""'"hey
there mmn

list [123, 'foo', 3.14159], [], [x.upper() for x in words]

tuple (456, 2.71828), (), ('need a comma even with just 1 item',)

Sequence Slicing

A minute ago, we mentioned the capability to directly index a sequence; the following are
some examples of this operating on a string. Unlike many other languages, Python’s strings
can be treated both as discrete objects and as if they were lists of individual characters.

>>> s = 'Python'
>>> s[0]

IPI

>>> g[4]

lol

>>> s[-1]

!

Python also offers the flexibility of negative indices. How many of you have ever coded
something like data[len(data)-1] or dataldata.length-1] to get the last element of
some sort of array? As in the final example of the preceding snippet, a simple -1 suffices.

You are also able to index multiple elements of a sequence at once, called slicing in
Python. Slicing is represented by a pair of indices, say 7 and j, delimited by a single colon
(:)-When a slice of a sequence is requested, the interpreter takes the subset of elements
beginning at the first index i and goes up to but not including the second index j.
>>> s = 'Python'

>>> s[1:4]
'yth'

15

16

Chapter 1 Practical Python for Django

>>> g([2:4]
lthl

>>> s[:4]
'Pyth’

>>> s[3:]
'hon'

>>> s[3:-1]
lhol

>>> s[:]
'Python'
>>> str(s)
'Python'

The absence of an index means either from the beginning or through to the end,
depending on which index is missing. An improper slice (meaning to return a copy” of the
entire sequence) can be designated with [:]. Finally, please note although all our previous
examples feature strings, the slicing syntax is applicable to lists and all other sequence types.

Other Sequence Operators

We saw the slicing operation in the previous section using the [] and [:] operators.
Other operations you can perform on sequences include concatenation (+),
repetition/duplication (*), and membership (in) or nonmembership (not in).As before,
we’ll use strings in our examples, but these operations apply to other sequences as well.

>>> 'Python and' + 'Django are cool!'
'Python andDjango are cool!'

>>> 'Python and' + ' ' + 'Django are cool!'
'Python and Django are cool!!

>>> -1 *x 40

>>> 'an' in 'Django’

True

>>> 'xyz' not in 'Django’

True

Alternatives to Concatenation

One caveat is we recommend avoiding the use of the + operator with sequences. When
you'’re new to the language, it does solve the problem of putting a pair of strings together;
however, it’s not a solution that provides the best performance. (The details on why would
involve explanation of Python’s C underpinnings, which we don’t go into here—you just have
to trust us.)

2 When we say “copy,” we mean a copy of the references and not of the objects themselves. This is
more correctly described as a shallow copy. See the following section on mutability for more informa-
tion on copying objects.

Python Standard Types

For example, with strings, instead of 'foo'+'bar', you can use the string format operator

(%) discussed in the following strings section, as in '$s%s' % ('foo', 'bar'). Another
way of putting strings together, especially given a list of strings to merge together, is the
string join method, such as, ' ' .join(['foo', 'bar'l). For lists, there is the extend

method, which adds the contents of another list to the current (as opposed to 1istl +=
list2)—yes, listl.extend (1list2) is better.

Lists

The Python type that acts most like other languages’ arrays is the list. Lists are mutable,
resizable sequences that can hold any data type. Next we present an example of how to
create a list and what you can do with it.

>>> book = ['Python', 'Development', 8] # 1) create list

>>> book.append (2008) # 2) append obj

>>> book.insert (1, 'Web!') # 3) insert obj

>>> book

['Python', 'Web', 'Development', 8, 2008]

>>> book [:3] # 4) first three slice

['Python', 'Web', 'Development']

>>> 'Django' in book # 5) is obj in list?

False

>>> book.remove (8) # 6) remove obj explicitly
>>> book.pop (-1) # 7) remove obj by index
2008

>>> book

['Python', 'Web', 'Development']

>>> book * 2 # 8) repetition/duplication
['Python', 'Web', 'Development', 'Python', 'Web', 'Development']

>>> book.extend(['with', 'Django']) # 9) merge list into current one
>>> book

['Python', 'Web', 'Development', 'with', 'Django']
What happened in the previous example? The rundown:
1. Create list initially with a pair of strings and an integer.
2. Add another int to the end of the list.
3. Insert a string into the second position (at index 1).
4. Pull out a slice of the first three elements.
5. Membership check. (Is an item in the list?)
6. Remove an item regardless of its location in the list.

7. Remove (and return) an item by its location (index).

17

18

Chapter 1 Practical Python for Django

8. Demonstrate the repetition/duplication operator *.

9. Extend this list with another one.

As you can see, lists are very flexible objects. Let’s discuss their methods further.

List Methods

Let’s reset the list back to what we had in the middle of the previous set of examples. We
then sort the list but with some follow-up discussion afterward.

>>> book = ['Python', 'Web', 'Development', 8, 2008]
>>> book.sort () # NOTE: in-place sort... no return value!
>>> book

[8, 2008, 'Development', 'Python', 'Web']

A “sort” on mixed types is really something that is undefined. How can you compare
objects (for example strings versus numbers) that have no relationship? The algorithm
Python uses is a “best guess” as to what is the “right thing to do”: Sort all the numeric
values first (smallest to largest) followed by a lexicographic sort of the strings. This exam-
ple can make a bit of sense, but if you start throwing files and class instances in there, it
becomes more undefined.

List built-in methods such as sort, append, and insert modify the object directly and
do not have a return value. Newcomers to Python can find it strange that sort does not
return a sorted copy of the list, so beware. In contrast, the string method upper we saw
earlier returned a string (consisting of a copy of the original string but in all UPPER -
CASE). This is because unlike lists, strings are not mutable, thus the reason why upper
returned a (modified) copy. See the following for more on mutability.

Of course, it’s often desirable to obtain a sorted copy of a given list instead of sorting
in-place; Python 2.4 and up provide the built-in functions sorted and reversed, which
take a list as an argument and returns a sorted or reversed copy.

List Comprehensions

A list comprehension is a construct (borrowed from another programming language
called Haskell) consisting of logic that builds a list containing the values/objects generated
by the logic. For example, let’s say we have a list containing the integers 0 through 9. What
if we wanted to increment each number and get all the results back in a list? With list
comprehensions (or “listcomps” for short), we can do just that.

>>> data = [x + 1 for x in range(10)
>>> data
[1, 2, 3, 4, 5,6, 7, 8 9, 10]

Listcomps, like lists, use the square bracket notation and a shortened version of
Python’s for loop. Even though we haven’t formally covered loops yet—we’ll get to them
soon—ryou can see how easy a listcomp is to read. The first part is an expression generat-
ing the resulting list items with the second being a loop over an input expression (which
must evaluate to a sequence).

Python Standard Types

The recommended way of “reading listcomps” is to start from the inner for loop,
glance to the right for any if conditional next to it—our first example did not have one
of these—and then map the expression at the beginning of the listcomp to each matching
element. See if you can read this one.

o

>>> even numbers = [x for x in range(10) if x % 2 == 0]
>>> even_numbers
[0, 2, 4, 6, 8]

This second example demonstrates the use of an additional filtering if clause at the
end. It also omits any actual modifying logic—=x by itself is a perfectly valid expression
(evaluating, of course, to the value of x) and is useful for using list comprehensions to filter
sequences.

Generator Expressions

Python also features a construct similar to list comprehensions, called a generator expres-
sion. It works in nearly the same way as a list comprehension, except it performs what is
called “lazy evaluation.” Rather than processing and building an entire data structure with
all the resulting objects, it performs the work on a single object at a time, thus potentially
saving a lot of memory (although sometimes taking a speed hit instead).

In our last example, we used a listcomp to identify even numbers out of a list of ten—
but what if our list of numbers was ten thousand or ten million? What if the list contents
were not simple integers, but complex or large data structures? In such cases, generator
expressions’ memory-saving behavior can save the day. We can tweak the syntax of a list-
comp to make it a “genexp” by replacing the square brackets with parentheses.

o

>>> even numbers = (x for x in range(10000) if x % 2 == 0)
>>> even_numbers
<generator object at 0x ...>

Generator expressions are new as of Python 2.4, so if you're stuck with Python 2.3
they won't be available, and they’re still gaining steam in the collective consciousness of
Python programmers. However, for any case where your input sequence has a chance of
becoming nontrivial in size, it’s smart to form a habit of using generator expressions
instead of list comprehensions.

Strings
Another Python sequence type is the string, which you can think of as an array of charac-
ters, although they are specified with single- or double-quotes ('this is a string' or
"this is a string").Also unlike lists, strings are not mutable or resizable. The act of
resizing or modifying strings actually creates a new, altered one from the original. How-
ever, this act is generally transparent in normal usage, and only becomes important when
dealing with memory issues and similar problems.

Like lists, strings also have methods, but again, because strings are immutable, none of
them modify the existing string, instead returning a modified copy. At the time of this

19

Chapter 1 Practical Python for Django

writing, strings had no less than 37 methods! We focus only on the ones you’re more
likely to use with Django. Next are some examples.

>>> g = 'Django is cool' # 1

>>> words = s.split() # 2

>>> words

['Django', 'is', 'cool'l]

>>> ' '.join(words) # 3

'Django is cool!

>>> '::'.join(words) # 4

'Django: :is::cool’

>>> ''.join(words) # 5

'Djangoiscool’

>>> s.upper () # 6

'DJANGO IS COOL'

>>> g.upper () .isupper () # 7

True

>>> s.title() # 8

'Django Is Cool'

>>> s.capitalize() # 9

'Django is cool!

>>> s.count('o') # 10
3

>>> s.find('go') # 11
4

>>> s.find ('xxx"') # 11
-1

>>> g.startswith('Python') # 12
False

>>> s.replace('Django', 'Python') # 13

'Python is cool'

The following is a summary of what went on in the previous examples:

1. Create initial string.

2. Split up string delimited by any whitespace into a list of substrings.

3. Inverse of #2. (Join a list of substrings into a single string delimited with a space.)
4. Same as #3 but delimited by a pair of semicolons.

5. Same as #3 but with no delimiter (merges all substrings together).

6. Create (and discard) new string that is an all-CAPS version of original [also see
lower].

7. Demonstrate chaining calls to confirm a string made of all CAPS [also see islower,
and others].

Python Standard Types

8. Convert string to being title-cased. Capitalize first letter of each word; the rest in
lowercase.

9. Capitalize only first word; the rest in lowercase.
10. Count the number of times substring 'o' appears in string.
11. Index where substring 'go' is found in string (at index 4) [also see index].
12. Same as #10 but when no match is found, returns -1.
13. Check to see if a string starts with given substring; it doesn’t [also see endswith].

14. Simple search and replace.

Similar to split, there is splitlines, which looks specifically for end-of-line charac-
ters (instead of just whitespace). If you have a string containing these characters, such as
when you're reading lines in from a file, you can use rstrip to remove all trailing white-
space characters (or even strip, which deletes both leading and trailing whitespace).

Another example, #7, shows how we can chain methods together, as long as you are
fully aware of what object is coming back as a result of the first method call. Because we
know upper returns a string, there’s nothing wrong with immediately calling another
string method on the new string. In our case, we call the isupper method, which is a
Boolean indicating whether (or not) a string is comprised of all CAPS. For example, if the
object returned instead was a list, then you could call a list method.

Aside from isupper, many other string methods start with is-., such as, isalnum,
isalpha, and so forth.Table 1.3 summarizes the methods presented in this section. There
are plenty of others, as you can surmise, so we refer you to your favorite Python text to
find out about all the other string methods available.

Table 1.3 Popular Python String Methods

String Method Description

count Number of occurrences of substring in string

find Search for substring [also see index, rfind, rindex]

join Merge substrings into single delimited string

replace Search and replace (sub)string

split Split delimited string into substrings [also see splitlines]
startswith Does string start with substring [also see endswith]

strip Remove leading and trailing whitespace [also see rstrip, lstrip]
title Title-case string [also see capitalize, swapcase]

upper UPPERCASE string [also see lower]

isupper Is string all UPPERCASE? [also see islower, and so forth]

21

22

Chapter 1 Practical Python for Django

String Designators

Python strings enable annotations placed before the opening quote: r for raw strings and
u for Unicode strings. These designators are used both when writing code and displaying
the value of strings in the interpreter.

>>> mystring = u'This is Unicode!'

>>> mystring

u'This is Unicode!'

However, the act of print-ing or converting raw or Unicode strings does not print the
designator:

>>> mystring = u'This is Unicode!'
>>> print mystring

This is Unicode!

>>> str(mystring)

'This is Unicode!'

The “raw” designator tells the interpreter not to transform any special characters inside
the string. For example, the special string character \n typically stands for a newline, but
there can be times where you don’t want such a transformation, such as in a DOS file-
name: filename = r'C:\temp\newfolder\robots.txt'.

Another use-case for raw strings is regular expressions, due to their heavy use of other-
wise special characters such as the backslash (\). In the regular expressions section, we
feature a raw string regular expression, r' \w+@\w+\ . \w+ ', which is easier to read than the
normal (and thus escaped) string, '\\w+@\\w+\\ . \\w+"'.

Raw Strings in Django

Raw strings are often seen in Python code wherever regular expressions are used. In the
case of Django, that’s in your URL configuration rules, where Django dispatches control to
various parts of your application based on matching the requested URL against regular
expression rules you provide. Using raw strings for these rules keeps their representation a
little cleaner, and for consistency, it is typically used for all regular expression strings, regard-less
of whether they contain a backslash.

Because normal Python strings are typically in a limited character set—one including a
Western alphabet plus a few special characters—they’re not capable of displaying the wide
range of characters used in non-English languages. Unicode is a newer string encoding
with extremely wide support that lacks this limitation. Django has (as of this writing)
fairly recently taken steps to ensure every part of the framework 1s Unicode-capable. As
such, you see a number of Unicode string objects when developing with Django.

String Format Operator and Triple Quotes

You've seen the string format operator (%) in previous examples in this chapter; it’s used to
prepare different input types for printing in a string via the use of a format string, which
contains special directives. Here’s another example to refresh your memory.

Python Standard Types

o

>>> '%s is number %d' % (s[:6], 1)
'Django is number 1'

>>> hi = '"''hi

there''"!

>>> hi

'hi\nthere'

>>> print hi

hi

there

In the previous example, we had a string (whose format-string directive is $s) and an
integer (%d). The format operator joins this format string on the left with a tuple (not a
list) of arguments on the right; the arguments must match one-to-one with the directives.
‘We refer you to your favorite Python reference for all the other format directives you
have access to.

The use of triple quotes, also featured in the previous example, is a feature unique to
Python. It enables you to embed special characters inside your string that are taken verba-
tim. If you have a long string that you have to generate, you no longer have to worry
about slipping end-of-line characters, such as \\n or \\r\\n, into all your strings to make
them wrap; instead, you can simply use triple quotes, such as in this XML snippet.

xml = ''!
<?xml version="1.0"?>
<Request version="%.1f">
<Header>
<APIName>PWDDapp</APIName>
<APIPassword>youllneverguess</APIPasswords>
</Header>
<Data>
<Payload>%s</Payload>
<Timestamp>%s</Timestamp>
</Data>
</Request>

Finally, note the previous example uses formatting directives, but lacks the string for-
mat operator and matching tuple. This is because the string format operator is just that—
an operator—and so it’s possible to define a format string in one part of your code, and fill
it out with the operator and tuple of arguments later on.

import time # use time.ctime() for timestamp
VERSION = 1.2 # set application version number
[]

def sendXML(data): # define some sendXML() function
'sendXML () - transmit XML data'

23

24

Chapter 1 Practical Python for Django

payload = 'super top-secret information'
sendXML (xml % (VERSION, payload, time.ctime()))

Tuples

Tuples (pronounced either “TOO-ples” or “TUP-ples”) are a close cousin to lists as we’ve
been discussing on the side in the last several sections. The one obvious difference is lists
use square brackets and tuples uses parentheses, but beyond that, you have to consider
Python’s object model again. Although lists enable their values to be changed and have
methods that do so, tuples are immutable, meaning you cannot change their values—and,
partly because of this, they do not have methods.

On first glance, new Python programmers can wonder why it is a separate data type; in
other words, why not just have a “read-only” list? On the surface, you may have an argu-
ment; however, tuples serve a more useful purpose than merely being “read-only” lists.
Their main purpose is to get parameters to and from functions (actually function calls)
and protecting their contents from being modified by foreign interfaces.

This doesn’t mean they'’re not useful to the programmer—far from it. They just aren’t
used as much on the main stage, but instead are there for more of the behind-the-scenes
action.You see a lot of tuples in Django configuration files, for example. Although they
do not have methods, they still work with the general sequence operators and built-in
functions.

Tuple-Related Gotchas in Django

You see tuples frequently in a typical Django application. For relative newcomers to
Python, they tend to be the trickiest sequence type—in particular, the single-item tuple
with its required trailing comma. See if you understand what’s happening in the following
examples:

>>> a = ("one", "two")
>>> al0]

'one'

>>> b = ("just-one")
>>> b[0]

ljl

>>> ¢ = ("just-one",)
>>> ¢ [0]

'just-one'

>>> d = "just-one",
>>> d[0]

'just-one'

What went wrong in the second example? Remember, it’s the commas, not the paren-
theses, that make a tuple. So b was really just a string, and b [0] gave us the first character

Python Standard Types 25

of that string as we saw previously. The trailing comma inside the parentheses in the
assignment to c gives us a tuple, and so ¢ [0] yields the value we expect. We can even leave
off the parentheses entirely, as in the previous assignment to d—but it’s generally better
not to. A core tenet of Python is being explicit is better than relying on implicit behavior.

Many Django config values are specified as tuples—admin options, URLconf rules, and
many settings in settings.py. Some parts of Django are better than others at telling you
what’s wrong. If you set an admin option to be a string when it’s supposed to be a tuple,
you can get a helpful message such as "admin.list display", if given, must be set
to a list or tuple.On the other hand, if your ADMINS or MANAGERS setting is missing
its trailing comma, you can find your server tries to e-mail error notices to every letter in
your first name! Because this is a common issue for new Django developers, we rehash
this issue later in the “Common Gotchas” section.

Sequence Built-ins and Factory Functions

Like numbers, all sequence types have a special factory function that creates an instance of
the type requested: list, tuple, and str.There is also a unicode for Unicode strings.
Usually str is responsible for providing a human-friendly or printable string representation
of an object. There is another function in Python called repr that is similar but produces
an evaluatable string representation of an object. What this typically means is that it is the
pure representation of a Python object as a string, and it should be possible to run the
eval statement on that string to turn it into the object in question.

The len built-in function tells you how many elements a sequence has. max and min
return the “largest” and “smallest” object in a sequence, respectively. any and all make up
another pair that tells you whether any or all elements of a sequence evaluate to True.

You've already seen how range helps a Python for loop gain some of the counting
skills that its cousins from other languages do natively while Python’s is more iterator-
style. However, a built-in function called enumerate combines the two styles together; it
returns a special iterator that emits both the traversed sequence’s index as well as its corre-
sponding item at that index.

We present all these common sequence functions in Table 1.4.

Table 1.4 Sequence Built-in and Factory Functions

Function Description®

str (Printable) string representation [also see repr, unicode]
list List representation
tuple Tuple representation

3 Although many of the function descriptions state “sequence,” it is likely such functions are applica-
ble across all iterables, meaning any sequence-like data structure you can iterate over, such as,
sequences, iterators, generators, keys of a dictionary, lines of a file, and so forth.

26 Chapter 1 Practical Python for Django

Table 1.4 Sequence Built-in and Factory Functions

Function Description®

len Object cardinality

max “Largest” object in sequence [also see min]

range Iterable of numbers in given range [also see enumerate, xrange]
sorted Sorted list of sequence members [also see reversed]

sum Sum (numerical) sequence values

any Is any sequence element True? [also see all]

zip Iterator of N-tuples for each corresponding element of N sequences

Mapping Type: Dictionaries

Dictionaries are Python’s sole mapping type. They are mutable, unordered, resizable map-
pings of keys to values, and are sometimes alternatively called hash tables (‘“hashes”) or
associative arrays. The syntax is otherwise similar to sequences, but instead of an index to
access the value, you use a key, and rather than square brackets (lists) or parentheses
(tuples), they are defined with curly braces ({ }).

Dictionaries are by far the most important data structure in the language. They are the
secret sauce for most of Python’s objects. Regardless of what types of objects they are or
how you use them, there’s a high likelihood that under the covers, there’s a dictionary
managing that object’s attributes. Without further ado, let’s take a look at what they are
and what they can do.

Dictionary Operations, Methods, and Mapping Functions
The following are some examples of how to use a dictionary. We discuss what happens in
this code as well as describe the operators, methods, or functions used.

>>> book = { 'title': 'Python Web Development', 'year': 2008 }
>>> book

{ryear': 2008, 'title': 'Python Web Development'}

>>> 'year' in book

True

>>> 'pub' in book

False

>>> book.get ('pub', 'N/A') # where book['pub'] would get an error
IN/A

>>> book['pub'] = 'Addison Wesley'

>>> book.get ('pub', 'N/A') # no error for book['pub'] now

'Addison Wesley'
>>> for key in book:
print key, ':', book [key]

year : 2008

Python Standard Types

pub : Addison Wesley
title : Python Web Development

So what did we do? Here’s a summary:

1. Create initial dictionary with a string and an integer; both keys are strings.

2. Dump out the object.

3. Check to see if the dictionary has a particular key (twice; once yes, once no).
4. Use the get method to fetch a value using the given key (gets default here).
5. Assign a new key-value pair.

6. Perform the same get call but with success this time.

7. Iterate through the dictionary and display each key-value pair.

Let’s take things slightly out-of-turn. In the final code segment, we used a for loop to
iterate through a dictionary’s keys. This is the typical way of doing it.You can also confirm
what we said previously; the dictionary keys are not ordered (if we cared about order, we’d
be using a sequence!), and it is this (lack of) ordering of keys that enables hashes to be very
quick in the lookup of values.

Backtracking to Step 4, if the key passed to get doesn’t exist in the dict, it returns the
second argument (or None if you don't specify such a default). Alternately, you can use
square-bracket notation, similar to retrieving a single element of a sequence, d['pub'].
The difference in this case is that 'pub' was not yet a member of the dictionary, so
d['pub'] would have resulted in an error. The get method is safer as it always returns a
value instead of raising an error.

There’s another, even more powerful method called setdefault. It does the same
thing as get, but if you provide a default and the key doesn’t exist yet, it creates the key
with that default value so that “dict.get (key)” or dict [key] is valid afterward.

>>> d = { 'title': 'Python Web Development',6 'year': 2008 }
>>> d.setdefault ('pub', 'Addison Wesley')

'Addison Wesley'

>>> d

{'year': 2008, 'pub': 'Addison Wesley',6 'title': 'Python Web Development'}

Now, those of you who already know what hashes are should be familiar with the term
key collision. That is where you try to save a different value using a key that is already in the
table. Python does not enable such a collision, so you assign another object to the diction-
ary with a key that’s already there; then it overwrites the previous value. We also demon-
strate how to remove a key-value pair using the del keyword to get the dictionary back to
the way we had it in the beginning:
>>> del d['pub']
>>> d['title'] = 'Python Web Development with Django’
>>> d

{'year': 2008, 'title': 'Python Web Development with Django'}

27

28

Chapter 1 Practical Python for Django

>>> len(d)
2

The first line uses the del command to get rid of a key-value pair. We then save a dif-
ferent string using an existing key, title, to replace the value that was previously there.
Finally, we use the generic len built-in function to tell us how many key-value pairs are
in our dictionary. Table 1.5 summarizes some common dictionary methods.

Table 1.5 Popular Python Dictionary Methods

Dictionary Method Description

keys Keys (also see iterkeys)

values Values (also see itervalues)

items Key-value pairs (also see iteritems)

get Get value given key else default [also see setdefault, fromkeys]
pop Remove key from dict and return value [also see clear, popitem]
update Update dict with contents of (an)other dict

“Dictionary-like” Data Types in Django

The dictionary (or “dict”) is a Python standby, so naturally it's used many places in Django.
However, some of the places where we want the key-value behavior of a dict also require
other things a dict doesn’t provide. The most prominent example is the QueryDict object
that holds GET and pPOST parameters in HttpRequest objects. Because it’s legal to submit
more than one value for a given parameter (dictionary key) and a normal Python dict can’t do
that, a special structure is needed. If you have an application that takes advantage of this
somewhat obscure feature of HTTP requests, see the official Django documentation on
Request and Response Objects.

Standard Type Summary

You find that of all these standard data types, lists and dictionaries (“dicts”) are the most
highly used data structures for your application. Tuples and dicts are primarily used for
exchanging parameters and return values to/from function calls; strings and numbers are
used as needed. Python has plenty more data types for you to use, but we have highlighted
the ones you use most frequently when writing Django applications.

Flow Control

Now that you know the basics of Python’s variables, we need to explore how to do more
than just assign values to them. Data, in the form of variables, doesn’t mean much unless
you can apply logic to it in the form of conditionals (taking different “paths” in the code
depending on certain conditions) and loops (repeating a chunk of code a number of
times, usually based on a list or tuple of some kind).

Flow Control

Conditionals

Like other languages, Python features if and else statements. Python’ “else-it” is actually
spelled elif, just like in the Bourne family of shell script languages (sh, ksh, and bash).
It’s so simple in Python we feel a single example conveys to you how they work.

data = raw_input ("Enter 'y' or 'n': ")

if datal0] == 'y':
print "You typed 'y'."
elif datal0] == 'n':

print "You typed 'n'."
else:
print 'Invalid key entered!'

Loops

Like other high-level languages, Python has a while loop. while continues to execute the
same body of code until the conditional statement is no longer True:

>>> 1 =0
>>> while i < 5:
print i

i +=1

=W NN R o

But to be quite honest, you don’t need to use the while loop very much as Python’s
most powerful looping mechanism is for. A for loop in other languages serves only as a
counting loop, much like its companion while. However, Python’s for is much more like
a shell scripting foreach loop and fits in with the language’s emphasis on letting you solve
the problem at hand instead of babysitting counter variables and so forth.
for line in open('/tmp/some file.txt'):

if 'error' in line:
print line

Of course, if you recall list comprehensions, you realize this could be turned into one.
Many simple loops work as well (or better!) as list comprehensions; however, there are still
times when even a simple for loop is still preferable, such as during debugging when you
can’t use a print statement in a listcomp. Figuring out where to use list comprehensions
and where to use for loops is a skill that comes with time.

For example, enumerate is a built-in function enabling you to iterate and count at the
same time (because the latter isn’t possible with for by itself), as shown here:

29

30

Chapter 1 Practical Python for Django

>>> data = (123, 'abc', 3.14)

>>> for i, value in enumerate (data):
print i, value

0 123

1 abc

2 3.14

Using enumerate in Django Models

A handy place to use enumerate when writing Django code is in your model definitions,
specifically for fields utilizing the choices keyword argument—see Chapter 4, “Defining
and Using Models,” for details on that particular model field argument. Such a use can look
like this:

STATUS_CHOICES = enumerate(("solid", "squishy", "liquid"))

class IceCream(models.Model) :
flavor = models.CharField(max_length=50)
status = models.IntegerField(choices=STATUS_ CHOICES)

In the database, your ice cream status values are stored as integers (0O, 1, 2), but in the
Django admin interface, the textual labels are displayed. This is an efficient use of database
storage (if that matters to you) and also a nice convenience in cases like this where
alphanumeric sorting can’t produce the desired order.

Exception Handling

Like other modern-day languages such as C++ and Java, Python offers exception han-
dling. As we saw in the first example at the beginning of this chapter, it gives the program-
mer the ability to detect errors at runtime, opening the door to taking some action and/or
use recovery step(s) to continue execution. Python’s try-except looks similar to the
try-catch blocks found in other languages.

What happens is that during runtime, if an exception occurs, the interpreter looks for a
handler for it. If it cannot find one in the current function, it propagates the exception
upward to the calling function to see if there’s a handler there and so on. If we are at the
topmost level (global “main,” unindented code) and no handler is found, this is when the
interpreter exits, dumping a traceback for the user to figure out what went wrong.

One thing to keep in mind is that although most errors result in exceptions, an excep-
tion doesn’t necessarily mean an error has occurred. Sometimes they are only meant as
warnings, and other times they can act as signals to functions higher up the call stack, such
as signaling the end of an iteration loop.

Exception handling can range from a single, specific case up to a series of different
blocks handling multiple different exception types. Reprising our earlier example, you can
see here we have one handler (the code in the except block):

attempt to open file, return on error
try:
f = open(filename, 'r')

Exception Handling 31

except IOError, e:
return False, str(e)

You can also have the same handler take care of more than one exception type—just
put them inside a tuple.
try:
process_some_data ()
except (TypeError, ValueError), e:
print "ERROR: you provide invalid data", e

Our example handles two exceptions, and you can place more inside that tuple.
It is also possible to create multiple handlers for multiple exceptions.
try:
process_some_data ()
except (TypeError, ValueError), e:
print "ERROR: you provide invalid data", e
except ArithmeticError, e:
print "ERROR: some math error occurred", e
except Exception, e:
print "ERROR: you provide invalid data", e

The final except takes advantage of the fact that Exception is the root class for
(almost) all exceptions, so if a thrown exception wasn’t caught by one of the earlier han-
dlers, it would be taken care of in that last statement.

The finally Clause

Python also features a try-finally statement. We are not as focused on catching errors as
we are in executing code that must run, regardless of whether an exception has occurred
or not, as in the closing of files, releasing of a lock, throwing a database connection back
into the pool, and so forth. For example:
try:

get_mutex()

do_some_stuff ()
finally:

free mutex()

‘When no exception has been raised, the code in the £inally suite is executed right
after the try block has completed. If an error does happen, then the £inally block still
executes, but does not suppress the exception, which continues to bubble up the call chain
looking for a handler.

As of Python 2.5, try-finally can be used alongside except. (This tactic does not
work in previous versions.)
try:

get_mutex ()
do_some_stuff ()

32

Chapter 1 Practical Python for Django

except (IndexError, KeyError, AttributeError), e:

log ("ERORR: data retrieval accessing a non-existent element")
finally:

free mutex()

Throwing Exceptions with raise

So far, we’ve only discussed catching of exceptions; how do you throw them? You use the
raise statement. Let’s assume you created an API call that requires those writing against
your library to send in a positive integer greater than 0. With the help of the isinstance
built-in function that verifies the type of an object, your code can look something like this:

def foo(must_be positive int):
""rfoo() -- take positive integer and process it"""

check if integer
if not isinstance(must_be positive int, int):
raise TypeError ("ERROR foo(): must pass in an integer!")

check if positive
if must_be positive_int < 1:
raise ValueError ("ERROR foo(): integer must be greater than zero!")

normal processing here

In Table 1.6 is a short list of the most common exceptions and ones that you most
likely run into when learning Python.

Table 1.6 Common Python Exceptions

Exception Description
AssertionError assert statement failed.
AttributeError Tried to access an attribute that the object does not have, such as

foo.x where foo does not have an attribute x.
IOError Some input/output error; most likely a file that could not be opened.
ImportError Could not import module or package; most likely a path issue.
IndentationError Syntax error; code not indented properly.

IndexError Tried to use index larger than sequence size, such as, x[5] when x
only has three elements.

KeyError Attempted to access key not in dictionary.
KeyboardInterrupt CTRL-C pressed.

NameError Used a variable that hasn’t been assigned to an object yet.

Files 33

Table 1.6 Common Python Exceptions

Exception Description
SyntaxError Code does not compile due to invalid Python code.
TypeError Passed in object of type different from expected.

UnboundLocalError Tried to access local variable that has not been set yet, likely
because you have global of the same name and thought you were
accessing that one.

ValueError Passed in value that caller was not expecting, even though the type
can be correct.

For a complete list of the current exceptions, see the documentation for the
exceptions module at http://docs.python.org/lib/module-exceptions.html.

Exceptions in Django

Like any complex Python program, Django uses exceptions extensively. For the most part,
these are internal and are not part of your regular use of Django. However, a few exceptions
are designed to be used directly in your Django applications. For example, raising an excep-
tion named Http404 triggers Django’s handling of an HTTP 404 “Not Found” error. Being
able to raise Http404 as soon as you know something is wrong—rather than, say, care-
fully propagating a special flag all the way back up through your code—turns out to be a sig-
nificant convenience when creating Web applications.

Files

You have already seen a few examples of the open built-in function in earlier code seg-
ments; it is used to open files for reading or writing:

>>> f = open('test.txt', 'w')
f.write('foo\n')
f.write('bar\n')

>>> f.close()

f = open('test.txt', 'r')

>>> for line in f:

print line.rstrip()

foo
bar
>>> f.close()

http://docs.python.org/lib/module-exceptions.html

34

Chapter 1 Practical Python for Django

In addition to the write method, there is read to read in the entire contents of a file as
a single string. For text files, readlines reads all lines of a file into a list, and similarly
writelines outputs a list of strings to a file with appropriate linebreaks.

A file object itself is an iterator, so there is often no need to use read or readlines
directly. Just a simple for loop as in the previous code sample suffices most of the time.

The line termination characters (\n, \r\n, or \r, depending on your operating system)
are preserved, hence the reason why we had to call the string rstrip method to take it off
incoming strings. (Otherwise, the output would be double-spaced because print auto-
matically adds one.) Similarly, all outbound strings sent to a file via write or writelines
require line termination characters, lest they all be merged into a single line.

Finally, a few other less-commonly used auxiliary file methods are not discussed here
but can easily be looked up in a reference or in the Files and 1/O chapter of Core Python
Programming.

Functions

Creating functions in Python is straightforward. We have seen several function declarations
already in this chapter. In this section, we also present slightly more advanced usage,
including (but not limited to)

» Declaring and calling functions

» Keyword arguments (in function calls)

= Default arguments (in function signatures)

= Functions are first-class objects

= Anonymous Functions and lambda

= Parameter containers (in function calls)

= Variable arguments (in function signatures)

= Decorators

Declaring and Calling Functions
Using the def keyword, you provide the name of your function with any parameters in
parentheses. (Parameterless functions simply use an empty pair of parentheses.)

>>> def foo(x):
print x

>>> foo(123)
123

As you can see, calling a function is even easier: Give the function name and a pair of
parentheses, putting any requirement arguments inside. Now let’s take a look at a more
useful example.

Functions

import httplib

def check_web_server (host, port, path):
h = httplib.HTTPConnection (host, port)
h.request ('GET', path)
resp = h.getresponse ()
print 'HTTP Response:'
print ' status =', resp.status
print ' reason =', resp.reason
print 'HTTP Headers:'
for hdr in resp.getheaders():

print ' %$s: %$s' % hdr

‘What does this do? It takes a hostname or IP address (host), server port number
(port), and a pathname (path) and attempts to contact the Web server running on the
specified host at the given port number. If that is successful, it issues a GET request on the
provided path.You can execute it and get the following output for checking the main
Python Web site’s server:
>>> check web server ('www.python.org', 80, '/')

HTTP Response:
status = 200
reason = OK

HTTP Headers:
content-length: 16793
accept-ranges: bytes
server: Apache/2.2.3 (Debian) DAV/2 SVN/1.4.2 mod ssl/2.2.3 OpenSSL/0.9.8c
last-modified: Sun, 27 Apr 2008 00:28:02 GMT
etag: "6008a-4199-df35c880"
date: Sun, 27 Apr 2008 08:51:34 GMT
content-type: text/html

Keyword Arguments (in Function Calls)

In addition to this “regular” calling convention, Python also enables you to specify named
keyword arguments, which makes code using the function clearer and makes it easier to use
functions—also, there’s no need to remember a fixed parameter order. Keyword arguments
are specified as key=value, as in the following modification of our earlier example (output
omitted for brevity):

>>> check web_server (port=80, path='/', host='www.python.org')

Based on the keyword names given, Python assigns the corresponding objects to those
variables when executing the function.

Default Arguments (in Function Signatures)

Another feature of Python functions is the capability to specify default values for parame-
ters so that passing them in as arguments is optional. Many functions have variables that
are often the same value for every call, so defining those default values makes using the
function a bit easier in that common case.

35

36

Chapter 1 Practical Python for Django

Default values can be assigned to parameters using an equal sign directly in the func-
tion signature. In our ongoing Web-server-checking example, most Web servers run on
port 80, and when running a simple “is the Web server up” one typically just tests the top-
level page. We can encode these defaults like so:

def check web_server (host, port=80, path='/"):

This is not to be confused with keyword arguments because those are only for function
calls, and default arguments only apply to the function declaration. All required parameters
must come before any optional ones; they cannot be mixed or in the opposite order.

def check web server (host, port=80, path): # INVALID

Lists and dicts as Default Arguments

We’d like to warn you about a common mistake some Python users tend to make; recall our
earlier discussion about mutable versus immutable variables, specifically how lists and
dicts are mutable whereas strings and integers are not. Because of this, specifying lists or
dicts as default arguments can be very dangerous, as they persist across multiple function
calls, like so:

>>> def func(arg=[]):
arg.append (1)
print arg

>>> func()

>>> func()
[1, 1]

>>> func()
[1, 1, 1]

This particular tendency of mutable objects is not terribly intuitive, which is why we mention
it here. Try to keep it in mind, or you can find yourself with odd behavior in some functions
down the road!

Functions Are First-Class Objects

In Python, you can treat functions (and methods) as any other object, such as, store them
in containers, assign them to different variables, pass them in as arguments to functions,
and so forth. The only difference is you can execute function objects, meaning you treat
them as a function by appending the usual parentheses and arguments. To discuss this fur-
ther, we need to understand what object references are.

References

‘When you execute the def statement, you are creating a function object and assigning
and/or binding it to a name in the current namespace, but that can be just the first refer-
ence or alias of many. Every time you pass a function object in a call to another function,

Functions

put it in a container, assign it to a local variable, and so forth, you are creating an addi-
tional reference or alias to that object.

By way of example, the following snippet creates not one, but fwo variables in the
global namespace because once defined, a function is a normal variable like any other:

>>> foo = 42
>>> def bar():
print "bar"

Just like other Python objects, functions can have as many references as you like. The
following are a few examples to make this a little more obvious. First, normal usage of bar:

>>> bar()
bar

Next, we assign bar to another name, baz, so the function formerly known just as bar
can now be referenced as baz too.

>>> baz = bar
>>> bar ()

bar

>>> baz()

bar

To use a function object that has been saved in a container, you just reference it as any
other object, place the parentheses after it, and pass it in any parameters. For example:
>>> function list = [bar, baz]
>>> for function in function list:
function ()

bar
bar

Note we only put the parentheses in there when we want to call the function. When
passing it around like a variable or object, you only use the function’s name (like we did
previously when creating function_list).This highlights the difference between refer-
ring to the name of the function object or objects—for example, bar—and actually calling
or executing it—for example, bar () .

First-Class Functions in Django

The fact that Python function objects can be passed around just like other values is lever-
aged effectively in Django. One common example is assigning Django views in URLconf
files.

from django.conf.urls.defaults import *
from myproject.myapp.views import listview

urlpatterns = patterns('',

37

38

Chapter 1 Practical Python for Django

url(r'*list/', listview),

)

In this code snippet, listview is being used to pass a function object directly, rather than
a string containing the name of the function.

Another spot where function objects are used to good effect is in default arguments for
model fields. For example, if you want a DateField to receive the creation date by default,
you can pass a standard library function object that generates that value when called.

import datetime

class DiaryEntry (models.Model) :
entry = models.TextField()
date = models.DateField(default=datetime.date.today)

This is tricky. If we had set default to datetime.date.today () —note the parenthe-
ses—the function would be called at the time the model was defined, which is not what we
want. Instead, we pass the function object; Django is aware of this and calls the function at
instance-creation time to generate the value for us.

Anonymous Functions

Anonymous functions are another functional programming feature of Python. They are cre-
ated using the lambda keyword and consist of a single expression, which represents the
“return value” of the function. Such functions are not declared like a typical function and
thus do not receive a name, hence the term anonymous function. They are usually single-line
expressions that are meant to be created, used, and discarded in a general fashion. We
should point out the distinction between “expressions” and “statements” so there is no
confusion.

Expressions Versus Statements
Python code is made up of both expressions and statements which are executed by the
Python interpreter. The major difterence is an expression has a value; its result is always a
Python object. When evaluated by the Python interpreter, it results in some object, any
object; for example, 42,1 + 2, int ('123'), range(10), and so forth.

Lines of code that do nof result in objects are called statements; for example, if or print
statements, for and while loops, and so forth.You get the idea—they perform an action
instead of returning or generating a value.

Using 1lambda
The syntax for lambda is the following: lambda args: expression. Upon execution,
lambda returns a function object that can be used right away, or you can choose to save a
reference by assigning to a variable or by passing it to be saved off as a callback to be exe-
cuted later.

One common use of lambdas is to provide a function object to functional tools such as
sorted, which among other things takes a key argument; key needs to be a function

Functions

which, when applied to the items in the list to be sorted, yields the value to sort by. For
example, if we had a list of complex objects representing people and we wanted to sort by
their last name attribute, we could do the following:

sorted(list of people, key=lambda person: person.last name)

This works because key expects a function object, and lambda returns an anonymous
one. We could also have done the following, which would have been directly equivalent:

def get_ last name(person) :
return person.last_name

sorted(list _of people, key=get last name)

In fact, we could even do something like this:

get_last_name = lambda person: person.last_ name
sorted(list_of people, key=get last name)

The difference between those three statements is largely that of readability and
reusability. The first example is much more compact and still pretty obvious and is gener-
ally the best way to solve the problem at hand. However, many lambdas eventually “grow
up” to become regular functions (such as when the programmer realizes she needs to use
it more than once), in which case we would be looking at the second example.

The third example isn’t really practical—we just wanted to make it clear that lambda is
exactly equivalent to a one-off function definition—but it further highlights the first-class
nature of Python functions.

Lambda Functions in Django

Lambda functions are not commonplace in Django, but there is one spot where they seem to
be especially handy: the so-called “authentication decorators,” which identify pages that
should only be seen by users with certain permissions. One way to perform this gatekeeping
is to take the User object representing the logged-in user and pass it to a function that
returns True if the user should be allowed to see the page and False otherwise.

Such a function could be defined with the usual def foo () : construct, but 1ambda gives
us a more compact way to do it. You don’t have all the pieces necessary to completely
understand this example until later, but the identifier names should make it clear enough.

@user_passes_test (lambda u: u.is_allowed to_vote)
def vote(request) :
""r"Process a user's vote"""

That line beginning with the @ is a function decorator, which you learn about later in this
chapter. Decorators “wrap” functions (such as our vote function here) to change their
behavior. The user_passes_test decorator, a built-in feature of Django, takes as an argu-
ment any function that accepts a Django User object and returns a Boolean (True or
False) value. Because our test is so simple—we simply return the value of a particular
attribute on a User object—it works tidily on one line.

39

40

Chapter 1 Practical Python for Django

*args and **kwargs

In this section, we discuss the special meaning of the * and ** characters in Python, both
related to functions but which exhibit different behavior when used in function calls ver-
sus function declarations. Before we go any further, we want to be absolutely clear to all
the C/C++ programmers out there the asterisks have nothing to do with pointers!

In general, whether tied to function calls or declarations, when you see a single *, this
means a tuple (or list) is involved, and a double ** means there is a dict nearby. We
start with function calls first.

* and ** in Function Calls
Let’s reuse our check_web_server function that we studied earlier. The following shows
the signature again:

def check web_server (host, port, path):
To call this function, we issued check web server('127.0.0.1', 8000,
'/admin/').What if you had this information in a three-tuple instead? For example:

host_info = ('www.python.org', 80, '/') # http://www.python.org/

Our call would then look like this:
check web_server (host_info[0], host_info[l], host_info[2])

However, that method of doing things is neither scalable (what if the function in ques-
tion had a dozen arguments?) nor desirable. Using a single * can solve our problem because

when calling a function, an expression evaluating to a tuple or list is unpacked if prefixed
by an asterisk. The following snippet is exactly equivalent to the previous line of code:

check _web_server (*host_info)
As you can see, this is a clean and elegant solution and using ** with dictionaries is

similar. Instead of ('www.python.org', 80, '/'),let’s create a dictionary with similar
content.

host info = {'host': 'www.python.org', 'port': 80, 'path': '/'}
You would then call the function like this:
check _web_server (**host info)
This tells the function to unpack the dictionary where each key is the name of the

parameter and its corresponding value should be the argument to the function call. In
other words, it’s equivalent to the following:

check web server (host='www.python.org', port=80, path='/"')

You are able to use one or both of these techniques at the same time, in the same way
that it’s possible to manually call a function with positional and/or keyword arguments.

Functions

* and ** in Function Signatures

Using * and ** in function signatures has a similar but different purpose: enable Python
functions to support variable arguments, sometimes known as “varargs.” This gives functions
the capability to accept any number of arguments passed to them via function calls.

When defining a function with three required arguments (such as arguments with no
default value), that exact number must be passed in by the caller. Use of default argu-
ments adds a little flexibility, but one is still limited by the maximum number of defined
arguments.

For increased flexibility, it’s possible to define a vararg using a single * representing a
tuple, as a “shopping bag” that holds each element passed in. Let’s create a daily sales total
function like this:

def daily sales_total(*all sales):
total = 0.0
for each sale in all_sales:
total += float(each sale)
return total

Valid calls to this function include the following:

daily sales_total()
daily sales_total(10.00)
daily sales_total(5.00, 1.50, '128.75') # Any type is allowed, not just floats!

It doesn’t matter how many arguments you pass to this function; it can handle them all.
all sales is simply a tuple that contains all of them (which is why we were able to loop
over all_sales within our function definition).

It’s possible to mix normal argument definition with varargs, in which case the vararg
“argument” acts as a catch-all, such as in this hypothetical definition of a
check_web_server that can accept extra arguments.

def check web server(host, port, path, *args):

Note

When using varargs in function definitions, all required parameters must come first, followed
by any parameters with default values, with a vararg coming in last.

Similarly, you can use ** in a function signature to accept a variable number of key-
word arguments which goes into a dictionary when the function is called.

def check web server(host, port, path, *args, **kwargs):

‘We’ve now set up our function such that it must take at least the three initial argu-
ments, but happily accepts any further positional or keyword arguments; inside the func-
tion we can then inspect the contents of the args tuple or the kwargs dict and either use
or discard their contents.

In fact, there’s a so-called “universal” Python method signature that consists solely of
varargs.

41

42

Chapter 1 Practical Python for Django

def f(*args, **kwargs):

Such a function can be called as £(), £ (a, b, ¢),f(a, b, foo=c, bar=d) and so
on—it accepts any and all input. How such a function handles the contents of args and
kwargs of course varies depending on what it’s used for.

**kwargs in Django QuerySets: Dynamically Building ORM Queries

Django database API queries often involve keyword arguments. For example:

bob_stories = Story.objects.filter(title contains="bob",
subtitle contains="bob", text_ contains="bob",
byline contains="bob")
Clear enough. The following shows how those keyword arguments could also be passed as a
dictionary:
bobargs = {'title__contains': 'bob', 'subtitle contains': 'bob',
'text contains': 'bob', 'byline contains': "bob'}
bob_stories = Story.objects.filter (**bobargs)

Having done that, you can see how you would build up the dictionary dynamically:

bobargs = dict ((f + ' _contains', 'bob') for f in ('title', 'subtitle', 'text',
'byline'))

bob_stories = Story.objects.filter (**bobargs)

Having done that, you can see how this technique could be helpful in streamlining queries

with a lot of redundancy—or, even more commonly, helpful in assembling filter arguments

whose names are provided dynamically (from options on a search form, for example).

Decorators

The last and perhaps most mind-bending concept when learning about Python functions
and functional programming is decorators. In our context, a Python decorator is a mecha-
nism enabling you to alter or “decorate” the behavior of a function to perform somewhat
differently than designed, or to do something in addition to its native task; a decorator is a
“function wrapper” if you will. Some of these extra tasks can include logging, timing, fil-
tering, and so forth.

In Python, a wrapped or decorated function (object) is usually reassigned back to its
original name so the wrapped function is compatible with the normal version—because
using decorators is analogous to “overlaying” additional functionality on top of what you
already had.

The simplest syntax we can present looks something like this:

@deco
def fool():
pass

In this example, deco is a decorator function that “decorates” the foo function. It takes
the foo function, adds some functionality to it and reassigns it back to the foo name.The

Functions

@deco syntax is equivalent to executing this line of code (given that foo is a valid function
object):

foo = deco(foo)

The following is a simple example where we acknowledge or log the calling of a func-
tion live as it happens:

def log(func) :

def wrappedFunc ()
print "*** %g() called" % func. name
return func()

return wrappedFunc

@log
def foo():
print "inside foo()"

Now if we execute this code, we get the following output:

>>> foo()
**xx foo() called

inside foo()

Earlier in the chapter, we saw an example of a decorator that took an argument.

@user passes_test (lambda u: u.is_allowed to vote)

In this case, we’re actually calling a function that then returns the actual decorator—
user_ passes_test is not, itself, a decorator, but a function that takes arguments and uses
those arguments to return the decorator to use. The syntax looks something like this:
@decomaker (deco_args)
def foo():

pass

This is equivalent to the following snippet, keeping in mind how Python expressions
can be chained together:

foo = decomaker (deco_args) (foo)

Here, the “decorator-maker” (or decomaker) takes deco_args and returns the decora-
tor that takes foo as the function to wrap.
This final example syntax demonstrates applying multiple decorators:
@decol (deco_args)
@deco2
def fool():
pass

43

44

Chapter 1 Practical Python for Django

We don'’t discuss this further here, but by the code we have already seen, you can con-
clude this code is equivalent to

foo = decol(deco _args) (deco2 (foo))

You may still be wondering, “Why decorators?” In all honesty, wrapping functions is
really not new to Python, and neither is taking an object, modifying it, and reassigning it
back to the same variable. What is different is that decorators enable you to do this with a
simple syntactic notation, the @ character.

For a more complete and user-friendly tutorial on decorators, check out Kent John’s
“Python Decorators” tutorial at http://personalpages.tds.net/~kent37/kk/00001.html.

Object-Oriented Programming

First of all, this section is not a tutorial on object-oriented programming (OOP). We are
just going to dive into creating and using Python classes. If you are new to OOP, doing it
in Python is one of the simplest ways to ease into it—it would probably be more beneficial
if you read a high-level tutorial first, but it is not a requirement. The main goals of OOP
are to provide a logical mapping between code and real-life problems and to promote code
reuse and sharing. We also expose you to certain behaviors that are unique to Python.

Class Definitions

In our first example of modeling a real-world problem, we create an address book. To cre-
ate a class in Python, you need to provide the class keyword, the name of your new class,
and one or more base classes or classes that your class is based on. For example, if you want
to create a Car or Truck class, you can use Vehicle as a base class. If there are no existing
classes that you want to derive from, just use Python’s root class or type, object, as your
base class, like we do here with our address book entry class, AddressBookEntry:

class AddressBookEntry (object) :
version = 0.1

def init (self, name, phone):
self.name = name
self.phone = phone

def update phone (self, phone):
self.phone = phone

Static class members like version can be created as long as the assignment takes place
within the class definition—such members are just variables that belong to the class and
thus are shared among all instances. Methods are defined just like functions with the addi-
tion of a self object as a required first parameter for every method—Python is explicit in
this regard.

The variable self refers to a particular instance of a class (other languages use this as
the name instead of self). If a class is the blueprint, then an instance is a realization of the

http://personalpages.tds.net/~kent37/kk/00001.html

Object-Oriented Programming

class, a real object that you create to manipulate during the course of execution. All vari-
ables that begin with self and are given in the dotted-attribute notation indicates an
instance attribute, meaning an object belonging to a particular instance. If name is an
instance attribute, you must use self.name as a fully qualified reference.

For those coming from other languages with object-oriented features, note Python
does not have the concepts of constructors and destructors—there are no keywords new
nor free. We discuss this more in a moment.

Instantiation

In other languages, instances are created with a new statement, but in Python, you simply
call a class as if it was a function. Rather than a “constructor,” Python has an “initializer,”
thus its name __init . When you instantiate an object, you pass in the parameters that
are required by __init . Python creates the object, automatically calls __init__ with
your given arguments, and then finally hands the newly created object back to you.

While we are on the subject of calling methods, we can safely say that it is as simple as
a function call. Although you are required to give self in method declarations, Python
gives you a break in that when you call a method (in the normal bound manner), Python
automatically passes in self for you.The following are two examples of creating instances
of our AddressBookEntry class:

john = AddressBookEntry ('John Doe', '408-555-1212")
jane = AddressBookEntry('Jane Doe', '650-555-1212")

Recall Python creates the instances, calls __init for each, and then returns the
objects. Look again; the self is not given in the calls, just the name and phone number.
Python passes the self for you.

Now you can access the attributes directly, such as, john.name, john.phone,
jane.name, jane.phone.As you can see here via the interactive output, we can access
instance attributes quite freely:
>>> john = AddressBookEntry('John', '408-555-1212")
>>> john.phone
1408-555-1212"
>>> john.update phone('510-555-1212")
>>> john.phone
'510-555-1212"

Again, notice the update_phone method signature has two parameters, self and
newphone, but the only one we need to provide is the new phone number while Python
passes in the instance object referred to by john as self.

Python also supports dynamic instance attributes, those that are not declared any-
where in the class definition, yet can be created “on the fly”

>>> john.tattoo = 'Mom'

This is certainly an advantageous feature, showcasing the flexibility of Python.You can
create as many of these attributes as you want any time you want.

45

46

Chapter 1 Practical Python for Django

Subclassing

Creating a subclass is just like creating a class, only you're going to provide one or more
base classes (instead of just object). Continuing our previous example, we now create an
employer address book entry class.

class EmployeeAddressBookEntry (AddressBookEntry) :
def _ init_(self, name, phone, id, social):
AddressBookEntry. init_ (self, name, phone)
self.empid = id
self.ssn = social

Note we neglected to assign the name and phone arguments to self.name and
self.phone—this is because our call to AddressBookEntry. init__ takes care of that
for us. When you override a base class method in this manner, you have to explicitly call it
(the original method), which is what we just did. Note we had to pass in the self argu-
ment this time because we referred to the class AddressBookEntry instead of an instance.

At any rate, aside from potentially overriding the base class’s methods, subclasses inherit
everything else, so our EmployeeAddressBookEntry has name and phone attributes as well
as the update_phone method. Django, as well as most other Python programs and frame-
works, makes heavy use of subclassing both for its own codebase as well as for features you
are concerned with as a Django user.

Inner Classes

Just like the “inner functions” used to create decorators, you are able to create inner classes,
classes defined inside other classes, as in:

class MyClass (object) :
class InnerClass:
pass

This inner class is a real Python class, but is only visible to instances of the MyClass
class. This is a somewhat esoteric Python feature, but it is used to good effect in Django
(see the following sidebar, “Classes and Django Models”). The only inner class you’re
likely to use in Django—but an important onel—is the Meta inner class.

Classes and Django Models

Django data models, the heart of most Django applications, are classes, inheriting from the
built-in Django class django.db.models.Model. The powerful features that Django’s
Model class gives you are extensive, and we cover them in depth in Chapter 4. For now,
the following is an example from the application we build in Chapter 2, “Django for the
Impatient: Building a Blog”:

from django.db import models
from django.contrib import admin

class BlogPost (models.Model) :
title = models.CharField(max length=150)

Regular Expressions

body = models.TextField()
timestamp = models.DateTimeField()

class Meta:
ordering = ('-timestamp',)

This defines a new class called BlogPost that inherits from django.db.models.Model
and has three user-defined fields. The inheritance from Model gives BlogPost other meth-
ods and attributes as well, not least of which are methods that enable you to query the
database for BlogPost objects, create new such objects, and access related items.

Regular Expressions

Django makes use of a string pattern-matching technique known as regular expressions
for, among other things, defining your Web site’s UR Ls. Without regular expressions (col-
loquially known as “regex”) we’d have to define each and every possible URL, which
would work fine for /index/ or /blog/posts/new/, for example, but quickly breaks
down for anything dynamic such as /blog/posts/2008/05/21/.

Many books and online tutorials give introductory coverage of what exactly regular
expressions are and how they can be assembled, so we don’t spend much time on that
here. A good selection of those resources is available at withdjango.com. The rest of this
section assumes you're familiar with regex (or have just gone and done some reading on
them), so we’ll examine how to use them in Python.

The re module

Python regular expressions are accessed via the re module; one of the more commonly
used components of the module is the search function. re. search returns a match
object whose group or groups method can be used to pull out the matching patterns.

>>> import re

>>> m = re.search(r'foo', 'seafood')
>>> print m

<_sre.SRE Match object at ...>

>>> m.group ()

'foo'

>>> m = re.search(r'bar', 'seafood')
>>> print m

None

On success, the search function returns a Match object that has a group method you
can call to get the matching string. When it fails, you get None. Note the use of the raw
string notation, r' '—as mentioned earlier in the chapter, it’s a good habit to use raw
strings for regular expressions as they remove much of the need for escaping characters
such as backslashes.

a7

48

Chapter 1 Practical Python for Django

Searching Versus Matching

We need to distinguish between a search, which looks to match the pattern anywhere in
the target string and a match, which means the entire string must be described with a sin-
gle pattern. For example:

>>> import re

>>> m = re.match(r'foo', 'seafood')
>>> if m is not None: print m.group()

>>> print m

None

>>> m = re.search(r'foo', 'seafood')
>>> if m is not None: print m.group()

'foo'

In the call to re.match, the result was empty, or None because r' foo' only matches
part of 'seafood'. re.search does get us a result because it’s more lenient.

Common Gotchas

In this section, we discuss some of the things that bite newcomers to Python, for example:
How do you create a single-element tuple? Or, why do I see self everywhere in object-
oriented Python code?

Single-ltem Tuples

While it can be clear to beginners that () and (123, 'xyz', 3.14) are tuples, it is not so
obvious that (1) is not. Parentheses are indeed overloaded in Python. When used to
enclose an expression, parentheses are used for grouping. If you want a single-element
tuple in Python, the not-so-pretty but required idiom is to put a comma after the sole
member, as in (1,).

Modules
We have already seen how to import modules and their attributes in two different ways:

import random
print random.choice (range(10))

AND

from random import choice
print choice (range(10))

The namespace implications of the first technique is the module name is set as a global
variable, and you access the choice function as that global’s attribute. In the second exam-
ple, we are importing the name choice directly into our global namespace (and not the

Common Gotchas

module’s name). Because of this, there is no need to refer to the attribute as a member of
the module anymore. In fact, we only have the attribute name itself.

There is some misconception among new Python programmers that the second way
only imports a function but not the entire module. That is not true. The entire module is
loaded but only a reference to the one function has been saved. There is no performance
difference or memory savings with the from-import syntax.

Can | Import a Module More Than Once?

A common newbie worry is that they have module m.py and another one n.py, both of
which import foo.py.The question is if m imports n, is foo imported twice? The short
answer is yes, but it is not what you think.

Python has the concept of importing a module versus loading a module. A module can
be imported many times, but it can only be loaded once. In other words, when Python
runs across another import statement for a module that has already been loaded, it skips
the load process so you don’t have to worry about taking up more memory.

Packages
Python packages are a way to distribute a set of Python modules across the filesystem and
use the familiar dotted-attribute notation to access subpackage modules as if they were
merely attributes of another object. In other words, if you were shipping a software prod-
uct with several hundred modules, it doesn’t make too much sense to put them all in the
same folder.You could, but do you want to? Why not use the filesystem to help organize
those modules in a logical and sensible manner?

For example, let’s say you had a telephony application. We can organize a directory
structure that looks something like this:

Phone/
__init .py
util.py
Voicedata/
__init_ .py
Pots.py
Isdn.py
Fax/
__init .py
G3.py
Mobile/
__init_ .py
Analog.py
Digital.py

Phone is the top-level directory or package. Under it are subpackages, but they are
really subdirectories containing other Python modules.You immediately notice a file
named __init__ .py in each subdirectory. That signals to the Python interpreter that files
in those folders should be treated as subpackages and not just plain files. They are typically

49

50

Chapter 1 Practical Python for Django

empty, save for the occasional initialization, which can be required before using any code
in subpackages.
Let’s say we wanted to access the dial function for analog cell phones. We could execute:

import Phone.Mobile.Analog
Phone.Mobile.Analog.dial ()

This is a bit cumbersome. In the everyday work world, you would probably take some
shortcuts for performance reasons as we briefly described previously, but mostly for your
own sanity at not having to type so much! Python and Django are all about simplicity
and not repeating yourself. The following shows something more likely to be found in
production:

import Phone.Mobile.Analog as pma
pma.dial ()

Mutability

People new to Python often ask if it is “call by reference” or “call by value?” The answer
isn’t quite that simple and boils down to “it depends”—some objects are passed in to
functions as a reference, although others are copied or passed by value. Which behavior is
observed depends on the object’s mutability, which in turn is determined by its type.
Because of this dual behavior, Python programmers don’t generally use the terms “by ref-
erence” or “by value,” but instead ask whether an object is mutable or immutable.

Mutability asks the question of whether an object enables the modification of its value.
All Python objects have the following three attributes: type, id, and value. Type and value
should hopefully be obvious; the “id” is simply an identification number that uniquely
identifies an object from all other objects running in the interpreter.

All three attributes are almost always read-only, meaning they cannot be changed dur-
ing the lifetime of an object. The only possible exception is the value: If the value can be
changed, then it is a mutable object; otherwise it is immutable.

Simple or “scalar” types, including integers and other numeric types, are immutable as
are string types like str and unicode, and finally tuples. Just about everything else—lists,
dicts, classes, class instances, and so forth—is mutable.

Note

As you see in this section, mutability is an important aspect of programming Python, This
explains why Python offers two “list” types, 1ist and tuple, where the former is mutable
and the latter is not. The capability to specify a list-like object that can be used in situations
requiring immutability—such as dictionary keys—can be very useful.

How Mutability Affects Method Calls

One area of caution with mutable objects is in calling their methods. If the method you
call modifies a mutable object in any way, then it typically does so “in place,” meaning the

Common Gotchas

data structure is modified directly instead of returning a modified copy of the object
(in which case the function returns None instead).

A common example of this is 1ist.sort, which sorts the list in place instead of
returning it; this tends to trip up many new Python programmers who aren’t expecting
it! Many other 1ist methods, such as reverse and extend, as well as some dict methods
like update (which adds new key-value pairs to the dict) work in place as well.

Thankfully, Python—since 2.4—offers built-in methods such as sorted and
reversed, which take an iterable object as input and return a sorted or reversed copy.
These are useful in situations where operating in place isn’t desirable or you want to save
a few extra statements of code. If you're stuck with Python 2.3, to get a modified copy of
a list, you'd need to manually copy the list (typically with newlist = list (mylist) or
newlist = mylist[:1),and then call the new copy’s sort method.

Copying Objects and Mutability
Let’s take a look at a common gotcha to new Python programmers, which relates to
mutability and the copying of objects. Recall the start of the section, where we men-
tioned immutable objects are passed by value, but mutable ones are passed by reference.
This holds true for both passing arguments into a function or for any other sort of “copy-
ing” of an object: Immutable objects, such as ints, become truly copied, but mutable ones
only have their reference copied over, leaving us with only one object in memory and two
references to it.

To illustrate why this is so important, consider the following example of a list with a
nested inner list:

>>> mylist = [1, 'a', ['foo', 'bar']
>>> mylist2 = list(mylist)

>>> mylist2[0] = 2

>>> mylist[2] [0] = 'biz’

What you can expect is updating the inner list of mylist would only affect mylist,
leaving mylist2 alone—but this is not the case! Observe the new values of both lists.
>>> print mylist
[1, 'a', ['biz', 'bar']
>>> print mylist2
(2, 'a', ['biz', 'bar']

The first two objects in mylist are immutable, being an integer and a string, and so
mylist2 got its own brand new integer and string objects—thus our replacement of 1
with 2 worked fine. However, the third object in mylist is a list, which is mutable, and
thus only a reference to it was copied over into mylist2. Because the third object in both
lists 1s a reference to the single in-memory list object, modification of it in either parent
list is reflected in the other.

This sort of copying we have just seen is known as shallow copying because of the
way it copies over references to mutable objects instead of trying to extract the values

51

52

Chapter 1 Practical Python for Django

within them. If you truly want the latter behavior, known as deep copying, then you
must import the copy module and use copy.deepcopy. Please read its documentation
carefully—this sort of copying is, naturally, recursive (a problem if you have circular refer-
ences!) and not all objects are deep-copyable.

Constructor Versus Initializer

Python is object-oriented, but one area where it differs from traditional OOP languages
is there is no explicit concept of a constructor. There is no new keyword in Python
because you don'’t really instantiate your classes. Instead, Python creates instances and calls
an initializer for you—it is the first method that is called after your object has been cre-
ated but before Python hands it back to you. Its name is always spelled as __init_ .

To instantiate a class, or in other words, to create an object, you call the class as if it
were a function.

>>> class MyClass (object) :
pass

>>> m = MyClass()

Furthermore, because Python automatically calls__init__for you, if the initializer
takes parameters, you pass those into the class “call.”

>>> from time import ctime
>>> class MyClass (object) :
def _ init_ (self, date):
print "instance created at:", date

>>> m = MyClass(ctime())
instance created at: Wed Aug 1 00:59:14 2007

Similarly, Python programmers do not typically implement destructors and destroy
their objects, but instead simply enable objects to go out of scope (at which point they
are garbage-collected). However, Python objects can define a __del method which acts
similar to a destructor in other languages, and it’s possible to explicitly destroy an object
with the del statement (e.g. del my object).

Dynamic Instance Attributes
Another area of possible confusion to those new to Python (coming from other object-
oriented languages) is that instance attributes can be assigned dynamically, after the class is
already defined and an instance has been created. For example, take this AddressBook class:
>>> class AddressBook (object) :
def _ init_ (self, name, phone):
self.name = name
self.phone = phone

>>> john = AddressBook ('John Doe', '415-555-1212"')
>>> jane = AddressBook ('Jane Doe', '408-555-1212"')

Coding Style (PEP 8 and Beyond) 53

>>> print john.name
John Doe

>>> john.tattoo = 'Mom'
>>> print john.tattoo
Mom

Notice self.tattoo doesn’t show up anywhere in the class or method declaration or
in any of this class’s methods—not even __init__ ! We created that attribute dynamically
during runtime. These are called dynamic instance attributes.

Coding Style (PEP 8 and Beyond)

Many elements, recommendations, and suggestions for “proper coding style” are in
Python, but the overall theme is to keep your code “Pythonic.” Programming systems
which follow Python’s philosophies of keeping things simple, not repeating yourself, cre-
ating code that is easy-to-read, promoting elegant solutions and code reuse, and so forth,
are tagged with that moniker, and Django is no exception. In our limited amount of
space, we can only provide a few basic guidelines. The rest comes with continued experi-
ence with Python, Django, and their highly supportive communities. There is an official
style guide, and it can be found in PEP 8 (http://www.python.org/dev/peps/pep-0008).

Indent Four Spaces

In a language where block delimitation is done by whitespace and the user base is as
diverse as anything, it’s a simple fact that editing Python source code is difficult for the
eyes if you indent just one or two spaces. It is also true your code wraps too easily if you
use eight spaces. The longstanding suggestion from Guido’s original essay is four spaces, a
perfect medium.

Use Spaces and Not Tabs

Regardless of the platform you develop on, there is always the possibility your code can
be moved or copied to another machine of a different architecture or run on a different
operating system. Because tabs are treated differently on various platforms, such as, tabs
are four spaces on Win32 and eight on POSIX or any Unix-based system, it is wise to
avoid using tabs altogether.

If you run into a situation where the Python interpreter is complaining your code has
a syntax error but it looks perfect on your screen, there is a good chance a tab has slipped
in somewhere because your editor is showing you a “false” view of what your code actu-
ally looks like. By explicitly converting all tabs into spaces, you then see where the inden-
tation went wrong in your code.

http://www.python.org/dev/peps/pep%E2%80%930008

54

Chapter 1 Practical Python for Django

Don’t Write Single-Line Suites on the Same Line as the Header
It’s possible to write “one-liners” like this:

if is finished(): return

However, we recommend you split it up into multiple lines, like this:
if is finished():

return

The main reason is it makes your code easier to read, plus you don’t have to do any
extra editing if you ever have to add new lines to your suite.

Create Documentation Strings (aka “docstrings”)

Code documentation can be very useful, and Python enables you to not only document
your code, but also to make it accessible during runtime. Docstrings can be created for
modules, classes, and functions and methods. For example, take this sample script called
foo.py:

#!/usr/bin/env python

""nfoo.py -- sample module demonstrating documentation strings"""

class Foo(object) :

"""Foo () - empty class ... to be developed"""

def bar (x):
""mpar(x) - function docstring for bar, prints out its arg 'x'"""
print x

When we say “accessible at runtime,” this is what we mean: If you start up the inter-
preter and import your module, you can access each docstring using the _ doc__ attrib-
ute for each module, class, and function.

>>> import foo

>>> foo._doc_

'foo.py -- sample module demonstrating documentation strings'
>>> foo.Foo. doc

'Foo() - empty class ... to be developed'

>>> foo.bar. doc_

'bar (x) - function docstring for bar, prints out its arg "x"'

Furthermore, you can use the help built-in function to “pretty-print” the docstrings;
we’ll just give one example here for the module (but you can do the same for the class
and the function).

>>> help (foo)
Help on module foo:

Summary

NAME
foo - foo.py -- sample module demonstrating documentation strings

FILE
c:\python25\1lib\site-packages\foo.py

CLASSES
__builtin_.object
Foo

class Foo(_builtin .object)
| Foo() - empty class ... to be developed

Data descriptors defined here:

dictionary for instance variables (if defined)

\

\

\

| _ dict
\

\

| _ weakref
\

list of weak references to the object (if defined)

FUNCTIONS
bar (x)
bar(x) - function docstring for bar, prints out its arg "x"

Docstrings for most software available in the Python Standard Library already exist, so
if you need help with a built-in function, methods of built-in types, or any module or
package attribute, feel free to “ask for help,” such as help (open), help(''.strip),
help (time.ctime), and so forth, assuming you’ve imported any necessary modules to get
access to an attribute.

Summary

In this very large introductory chapter, we attempted to welcome new Django developers
to Python. Obviously we cannot be as comprehensive as we would like, but this is really a
Django book, not a Python one. With that said, however, we attempted to condense as
much relevant Python material as necessary to succeed with Django.

The first three-quarters of the chapter were mostly Python language material along
with the appropriate Django relationships spelled out; the final part of the chapter con-
tains more of the “softer skills”: the gotchas, style guidelines, and so forth. Hopefully,
we’ve exposed enough of the language to give you the skills to read and write basic
Python code, so you can now branch off to the Django world.

55

56

Chapter 1 Practical Python for Django

In the next section, we’re going to immediately get you knee-deep into the Django
world by having you build a simple blog application in under 20 minutes. The blog isn’t
as fully functional as the commercial ones out there, but it should give you an idea of
how quickly you can develop and tweak a Django application, and in the process, exercise
the newfound Python development skills you picked up in this chapter.

2

Django for the Impatient:
Building a Blog

Django bills itself as “the Web framework for perfectionists with deadlines.” So let’s put
ourselves on deadline and see how fast we can produce a simple blog using Django. (We’ll
address your perfectionist side later.)

Note

This chapter assumes you've already installed Django on your system. If you haven’t, consult
Appendix B, “Installing and Running Django.”

All the work in this chapter is done on the command line in your shell of choice
(bash, tcsh, zsh, Cygwin, or what have you). So open your terminal and ed to a directory
that is on your PYTHONPATH environment variable. On a Unix-based system such as Linux,
Mac OS X, FreeBSD, and so on, you can issue an echo $PYTHONPATH command to see its
contents; from a Win32 Command window, type echo $PYTHONPATHS.You can read more
about paths in both the installation and Python chapters.

We recommend you try to follow along and actually build the blog as you go. If that’s
not practical—if you aren’t near a computer, or you're just impatient—simply reading it is
illuminating too. That’s especially true if you have experience with one or more other
modern Web frameworks, since many of the basic concepts are familiar.

If you are following along on your own computer, and you reach a point where the
results you're getting don’t match what you see here, stop and re-examine the step you
just completed, and then review the two or three steps before that. Look for a spot where
you could have skipped over a seemingly unimportant detail or didn’t understand a spe-
cific instruction. If no light bulbs come on, delete your sample project and start over. The
authors used this method when learning Django; in addition to being faster than staring
blankly at error messages for hours, the repetition of the steps leading up to your trouble
spot really help with your retention!

58

Chapter 2 Django for the Impatient: Building a Blog

Creating the Project

The easiest way to organize your Django code when you are starting out is to use what
Django calls a project: A directory of files that constitute, usually, a single Web site. Django
comes with a utility called django-admin.py to streamline tasks such as the creation of’
these project directories. On Unix, it has a default installation into the /usr/bin directory,
and if you're on Win32, it goes into the Scripts folder right in your Python installation,
for example, C: \Python25\Scripts. In either case, you need to make sure that
django-admin.py is in your PATH so it can be executed from the command line.

To create the project directory for your blog project, issue this django-admin.py
command:

django-admin.py startproject mysite

On a Win32 box, you need to open a DOS Command window first. It can be accessed
via Start -> Programs -> Accessories -> Command Prompt.Also, instead of a §,you
see something like C: \WINDOWS\system32> as a shell prompt.

Now take a look at the contents of the directory to see what this command has created
for you. It should look something like this on Unix:

$ cd mysite

$ 1s -1

total 24

-IW-r--r-- 1 pbx pbx 0 Jun 26 18:51 _ init .py
-IWXr-Xr-x 1 pbx pbx 546 Jun 26 18:51 manage.py
-IW-r--r-- 1 pbx pbx 2925 Jun 26 18:51 settings.py
-rw-r--r-- 1 pbx pbx 227 Jun 26 18:51 urls.py

If you were developing on a Win32 platform, opening an Explorer window to that
folder looks something like Figure 2.1, if we created a folder named c:\py\django with
the intention of putting our project there.

_|O) =
| Ble Edt Vew Favortes Toos Heb | &
| Dok - &3 - P |[D scarch [Foders |[$ 30 X 9| -
|Rﬁdfﬁ! ||ﬂ C:\pyldjangoimysite j Go
Nz~ | Sice | Type | Date Mudified |
= nit__py OKE Python File 2{23{2008 11:48 PM
. manage.py 1KE Python Hie 2f29f200 11:44 KM
. settings. py JEH Python Hie 2f29f200 11:44 KM
Pours.py 1KE Python File 2{29/2008 11:48 PM
4 objects |3.58KB | 4 My Computer y

Figure 2.1 mysite folder on Win32

Running the Development Server

Note

As you probably know if you're an advanced Python user, that __init__ .py file makes this
project directory a Python package—a collection of related Python modules. Its status as a
package enables us to use Python’s dot-notation to address individual pieces of our project,
such as mysite.urls. (You can read more about packages in Chapter 1, “Practical Python
for Django.”)

Besides __init__ .py, the startproject command has created three other files.

= manage.py is a utility for working with this Django project.You can see from its
permissions flags in the directory listing that it is executable. We run it in a moment.

= settings.py is a file containing default settings for your project. These include
database information, debugging flags, and other important variables. Any value in
this file is available to any of your project’s installed apps—we show you the useful-
ness of that as we progress through this chapter.

= urls.py is what’s known in Django as a URLconf, a configuration file that maps
URL patterns to actions your applications perform. URLconfs are an exciting and
powertful feature of Django.

Note

Every file created by the startproject command is Python source code. There’s no XML,
no .ini files, and no funky configuration syntax. Django pursues a “pure Python” philosophy
wherever possible. This gives you a lot of flexibility without adding complexity to the frame-
work. For example, if you want your settings file to import settings from some other file or to
calculate a value instead of having it hardcoded, there’s no barrier—it’s just Python.

Running the Development Server

At this point, you haven’t built your blog application yet, but nonetheless there are some
Django conveniences in place for your use. One of the handiest is Django’s built-in Web
server. It’s a server designed not for deploying public sites, but for quick development.
Advantages of using it include

= You don’t need to install Apache, Lighttpd, or whatever other Web server software
you'd use in actual production—great if you’re working on a fresh server or a non-
server development machine or just playing around.

= It automatically detects when you make changes to your Python source files and
reloads those modules. This is a huge time-saver compared to manually restarting
your Web server every time you edit your code, which is what’s required with most
Python Web server setups.

= It knows how to find and display static media files for the admin application, so you
can work with it right away.

59

60

Chapter 2 Django for the Impatient: Building a Blog

Running the development (or “dev”) server is as simple as issuing a single command.
We’re going to use our project’s manage.py utility, a thin wrapper script that saves us the
work of telling django-admin.py to use our specific project settings file. The command to
run the dev server is

./manage.py runserver # or ".\manage.py runserver" on win32
You should see something like the following with a slight difference for Win32 plat-
forms where the quit key combination is CTRL-BREAK instead of CONTROL-C:

Validating models...
0 errors found.

Django version 1.0, using settings 'mysite.settings’
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Open that link in your browser, and you should see Django’s “It Worked!” screen, as
shown in Figure 2.2.

ene Welcome to Django (=)
& hup://127.0.0.1:8000/ v
It worked!

Congratulations on your first Django-powered page.

Of course, you haven't actually done any work yet. Here's what to do next:

* 1f you plan to use a database, edit the DATARASE_+ seftings in blogproject /asttings.py.
= Sartyour first app by running python blogproject/manage.py startapp [appname].

You're secing this message because you have DEBUG = True In your Django semings file and you
haven't configured any URLs. Get to work!

Figure 2.2 Django’s initial It worked! screen

Meanwhile, if you look in your terminal session, you see the dev server has logged
your GET request.

[07/Dec/2007 10:26:37] "GET / HTTP/1.1" 404 2049

The four chunks of the log line are from left to right: timestamp, request, HTTP
response code, and byte count. (Your byte count is likely to be slightly different.) The
response code is 404 (“Not Found”) because your project has no URLs defined yet. The
It Worked! page is Django’s friendly way of telling you that.

Tip
If your server isn’t working at this point, retrace your steps. Be ruthless! It's probably easier

to delete your whole project and start following this chapter again from the beginning than it
is to laboriously check every file and every line of code.

Creating the Blog Application

When you've successfully got the server running, we can move on to setting up your
first Django application.

Creating the Blog Application

Now that we have a project, we can create applications (or “apps” in Django-speak)
within it. To create our blog app, we’ll use manage.py again.

./manage.py startapp blog # or ".\manage.py startapp blog" on win32
It’s just as simple as starting a project. Now we have a blog directory inside our project

directory. Here’s what’s in it, first in Unix format, and then in a screenshot of Windows
Explorer (see Figure 2.3).

$ 1s -1 blog/

total 16

-rw-r--r-- 1 pbx pbx 0 Jun 26 20:33 _ init .py
-rw-r--r-- 1 pbx pbx 57 Jun 26 20:33 models.py
-IW-r--r-- 1 pbx pbx 26 Jun 26 20:33 views.py

& hing S [=] B3
| Bl Edt vew Favoes Toos e ‘.-‘?,'
| Qeack - O - 7| Dsearch [Foders |13 3 X B |-
Jﬁljdﬂﬁs Iffl C:\pyidjango!mysitsiblog j Go
Name ~ | Sizs | Typs | Date Modifisd |
2 _init__py DKB Python Fils 3(1/2008 12:19 AM

2 modele.py 1KB Pythan Fils 3(1/2008 12:19 AM

2 views.py 1KE Pythan File 3(1/2008 12:19 AM
13 objects |87 bytes | *d My Computer /

Figure 2.3 mysite\blog folder on Win32

Like your project, your app is a package too.The models.py and views.py files have
no real code in them; they’re merely placeholders. For our simple blog, in fact, we don’t
need to touch the dummy views.py file at all.

To tell Django this new app is part of your project, you need to edit settings.py
(which we can also refer to as your “settings file””). Open your settings file in your editor
and find the INSTALLED_aPPS tuple near the bottom. Add your app in dotted module
form to that tuple in a line that looks like this (note the trailing comma):

'mysite.blog’,

Django uses INSTALLED_APPS to determine the configuration of various parts of the
system, including the automatic admin application and the testing framework.

61

62

Chapter 2 Django for the Impatient: Building a Blog

Designing Your Model

We’ve now arrived at the core of your Django-based blog application: the models.py file.
This is where we’ll define the data structures of the blog. Following the principle of Don’t
Repeat Yourself (DRY), Django gets a lot of mileage out of the model information you
provide for your application. Let’s create a basic model, and then see all the stuft Django
does for us using that information.

Open up models.py in your favorite text editor (bonus points if it has a Python mode
with syntax coloring).You see this placekeeper text:

from django.db import models

Create your models here.

Delete the comment, and then add the following lines:

class BlogPost(models.Model):
title = models.CharField(max length=150)
body = models.TextField()
timestamp = models.DateTimeField()

That’s a complete model, representing a “BlogPost” object with three fields. (Actually,
strictly speaking it has four fields—Django automatically creates an auto-incrementing,
unique id field for each model by default.)

You can see our newly minted class, BlogPost, 1s a subclass of
django.db.models.Model. That’s Django’s standard base class for data models, which is
the core of Django’s powerful object-relational mapping system. Also, you notice our fields
are defined like regular class attributes with each one being an instance of a particular field
class. Those field classes are also defined in django.db.models, and there are many more
types—ranging from BooleanField to XMLField—than the three we'’re using here.

Setting Up the Database

If you don’t have a database server installed and running, we recommend SQLite as the
fastest and easiest way to get going. It’s fast, widely available, and stores its database as a sin-
gle file in the filesystem. Access controls are simply file permissions. For more on how to
set up a a database for use with Django, see Appendix B.

If you do have a database server—PostgreSQL, MySQL, Oracle, MSSQL—and want to
use it rather than SQLite, then use your database’s administration tools to create a new
database for your Django project. We name this database “djangodb” in our examples, but
you can name it whatever you like.

Either way, with your (empty) database in place, all that remains is to tell Django how
to use it. This is where your project’s settings.py file comes in.

Setting Up the Database

Using a Database Server

Many people use Django with a relational database server such as PostgreSQL or MySQL.
There are six potentially relevant settings here (though you may need only two):
DATABASE_ENGINE, DATABASE NAME, DATABASE_HOST, DATABASE_PORT, DATABASE_USER,
and DATABASE_PASSWORD. Their names make their respective purposes pretty obvious. Just
plug in the correct values corresponding to the database server you are using with Django.
For example, settings for MySQL look something like this:

DATABASE_ENGINE = "mysql"

DATABASE NAME = "djangodb"
DATABASE_HOST = "localhost"
DATABASE_USER = "paul"
DATABASE_PASSWORD = "pony" # secret!

Note

We haven’t specified DATABASE_PORT because that’s only needed if your database server is
running on a nonstandard port. For example, MySQL's server uses port 3306 by default.
Unless you've changed the setup, you don’t have to specify DATABASE_PORT at all.

For details on creating a new database and database user (which 1s required for database
servers), see Appendix B.

Using SQLite

SQLite is a popular choice for testing and even for deployment in scenarios where there
isn’t a great deal of simultaneous writing going on. No host, port, user, or password infor-
mation is needed because SQLite uses the local filesystem for storage and the native
filesystem permissions for access control. So only two settings are needed to tell Django to
use your SQLite database.

DATABASE_ENGINE = "sqlite3"
DATABASE_NAME = "/var/db/django.db"

Note

When using SQLite with a real Web server such as Apache, you need to make sure the
account owning the Web server process has write access both for the database file itself
and the directory containing that database file. When working with the dev server like we are
here, permissions are typically not an issue because the user (you) running the dev server
also owns the project files and directories.

SQLite is also one of the most popular choices on Win32 platforms because it comes
free with the Python distribution. Given we have already created a c:\py\django direc-
tory with our project (and application), let’s create a db directory as well.

DATABASE ENGINE = 'sqlite3'
DATABASE _NAME = r'C:\py\django\db\django.db'

63

64

Chapter 2 Django for the Impatient: Building a Blog

If you are new to Python, you notice the subtle difference in the first example; we used
double quotes around sqlite3, whereas in the Win32 version, we used single quotes. Rest
assured it has nothing to do with differing platforms—Python does not have a character
type, so single quotes and double quotes are treated the same. Just make sure you open and
close a string with the same type of quote!

You should also have noticed a small “r” in front of the folder name. If you've read
Chapter 1, then you know this means to designate the object as a “raw string,” or one that
takes all characters of a string verbatim, meaning do not translate special character combi-
nations. For example, \n usually means a newline character, but in a raw string, it means
(literally) two characters: a backslash followed by an n. So the purpose of a raw string is
specifically for DOS file paths, telling Python to not translate special characters (if there
are any).

Creating the Tables

Now you tell Django to use the connection information you’ve given it to connect to the
database and set up the tables your application needs. The command to do this is simply:

./manage.py syncdb # or ".\manage.py syncdb" on win32

You see some output that starts like this as Django sets up the database:

Creating table auth_message
Creating table auth_group

Creating table auth_user

Creating table auth_permission
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table blog_blogpost

When you issue the syncdb command, Django looks for a models.py file in each of
your INSTALLED_APPS. For each model it finds, it creates a database table. (There are
exceptions to this later when we get into fancy stuff such as many-to-many relations, but
it’s true for this example. If you are using SQLite, you also notice the django.db database
file is created exactly where you specified.)

The other items in INSTALLED_APPS, the ones that were there by default, all have mod-
els too. The output from manage.py syncdb confirms this, as you can see Django is creat-
ing one or more tables for each of those apps.

That’s not all the output you got from the syncdb command, though.You also got
some interactive queries related to the django.contrib.auth app.

You just installed Django's auth system, which means you don't have any superusers
defined.

Would you like to create one now? (yes/no): yes

Username (Leave blank to use 'pbx'):

E-mail address: pb@e-scribe.com

Setting Up the Automatic admin Application

Password:

Password (again):

Superuser created successfully.

Installing index for auth.Message model
Installing index for auth.Permission model

Now you’ve got one superuser (hopefully yourself) in the auth system. This comes in
handy in a moment, when we add in Django’s automatic admin application.

Finally, the process wraps up with a couple lines relating to a feature called fixtures,
which we come back to in Chapter 4, “Defining and Using Models.” These enable you to
preload data in a freshly created application. For now, we’re not using that feature, so
Django moves on.

Loading 'initial data' fixtures...
No fixtures found.

Your initial database setup is now complete. The next time you run the synedb com-
mand on this project (which you do any time you add an application or model), you see a
bit less output because it doesn’t need to set up any of those tables a second time or
prompt you to create a superuser.

Setting Up the Automatic admin Application

The automatic back-end application, or admin, has been described as Django’s “crown
jewel” For anyone who has tired of creating simple “CRUD” (Create, Read, Update,
Delete) interfaces for Web applications, it’s a godsend. We get much deeper into the admin
in “Customizing the Admin” in Chapter 11,“Advanced Django Programming.” For now,
let’s just turn it on and poke around.

Because it’s an optional part of Django, you need to specify in your settings.py file
you’re using it—just like you did with your own blog app. Open settings.py and add
the following line to the INSTALLED APPS tuple, just underneath
'django.contrib.auth’.

'django.contrib.admin’,

Every time you add a new application to your project, you should run the syncdb
command to make sure the tables it needs have been created in your database. Here we
can see adding the admin app to INSTALLED_APPS and running syncdb triggers the cre-
ation of one more table in our database:

$./manage.py syncdb

Creating table django_admin_log
Installing index for admin.LogEntry model
Loading 'initial data' fixtures...

No fixtures found.

Now that the app is set up, all we need to do is give it a URL so we can get to it.You
should have noticed these two lines in your automatically generated urls.py.

65

66

Chapter 2 Django for the Impatient: Building a Blog

Uncomment this for admin:
(r'"admin/', include('django.contrib.admin.urls')),

Remove the # character from the second line (and you can remove the first, comment-
only line at the same time) and save the file.You've told Django to load up the default
admin site, which is a special object used by the contrib admin application.

Finally, your applications need to tell Django which models should show up for editing
in the admin screens. To do so, you simply need to define the default admin site men-
tioned previously and register your BlogPost model with it. Open the
mysite/blog/models.py file, make sure the admin application is imported, and then add
a line registering your model at the bottom.

from django.db import models
from django.contrib import admin

class BlogPost(models.Model):
title = models.CharField(max_length=150)
body = models.TextField()
timestamp = models.DateTimeField()

admin.site.register(BlogPost)

This simple use of the admin is the tip of the iceberg; it’s possible to specify many dif-
ferent admin-related options by making a special Admin class for a given model, and then
registering the model with that class. We do this shortly, and you also see examples of
advanced admin use in later chapters, especially in Parts III, “Django Applications by
Example,” and IV, “Advanced Django Techniques and Features.”

Trying Out the admin

Now that we’ve set up our Django site with the admin app and registered our model with
it, we can take it for a spin. Issue the manage.py runserver command again. Now, go to
http://127.0.0.1:8000/admin/ in your Web browser. (Don’t worry if your dev server
address is different; just add an admin/ onto it, whatever it is.) You should see a login
screen, as shown in Figure 2.4.

Type the “superuser” name and password you created earlier. Once you’ve logged in,
you see the admin home page, as shown in Figure 2.5.

We’ll tour this interface later in the book; for now, just confirm your application, Blog,
is showing up as seen in the screenshot. If it’s not, recheck the previous steps.

Tip
The three most common causes for “My app doesn’t show up in the admin,” problems are
1) forgetting to register your model class with admin.site.register, 2) errors in the

app’s models.py, and 3) forgetting to add the app to the INSTALLED APPS tuple in your
settings.py file.

Trying Out the admin

eane Log In | Django site admin (=)
@ http://127.0.0.1:8000/admin/ v

Django administration

Username:

Password:

toaln

Figure 2.4 The admin login screen

I_Q 06 Site | Django site admin [=]
@ http://127.0.0.1:8000/admin/ v
Django administration Welcome, phu. Documentation J Change password [Log out
Site administration
Recent Actions
Groups dadd #Change My Actions
Users dadd #Change None available
Sltes dAdd S Change
HBlag posts dAdd FChange
Dane £

Figure 2.5 The admin home page

‘What’s a blog without content? Click the Add button to the right of Blog Posts. The
admin presents a form for adding a new post, as shown in Figure 2.6.

Give your post a title and some scintillating content. For the timestamp, you can click
the Today and Now shortcut links to fill in the current date and time.You can also click
the calendar or clock icons to pull up handy date and time pickers.

‘When you're done writing your masterpiece, click the Save button.You see a screen
with a confirmation message (“The blog post ‘BlogPost object’ was added successfully”)
and a list of all your blog posts—a grand total of one at this point, as shown in Figure 2.7.

Why is the post given the awkward name of “BlogPost object”? Django is designed to
flexibly handle an infinite variety of content types, so it doesn’t take guesses about what

67

68 Chapter 2 Django for the Impatient: Building a Blog

[=XsXs) Add blog post | Django site admin [=]
& htp://127.0.0.1:8000/adminfblog/bl ddf =T
Django administration Welcome, phx. Documentation / Change password f Log out
Heme » Blog posts » Add blag past
Add blog post
Title: |
Body:
Timestamp: Date: Today | [
Time: Now | (D
Save and add ancther | Save and continue editing E
Done &
Figure 2.6 Adding new content via the admin
=XsKs] Select blog post to change | Django site admin [=]

@ hup://127.0.0.1:8000

Django administration

Home » Blog posts
@ The hing post “BlagPast ahject” was added successfully.

Select blog post to change Add blog poat
Blog post
BlogPost object

1 blog post

Figure 2.7 Successfully saving your first blog entry

field can be the best handle for a given piece of content. Throughout Part 3’ example
applications, you see examples of defining how to specify a particular field, or specially
constructed string, to be used for your objects’ default labels.

Now go ahead and add a second post with different content by clicking on the Add
Blog Post + button to the upper-right. When you are returned to the list view, you just
see another BlogPost row added to the page. If you refresh the page or go away and come
back to your application, the output has not improved any—you just do not feel satistied
with seeing all the entries generically labeled as “BlogPost object,” as shown in Figure 2.8.
You are not alone if you're thinking, “There has got to be a way to make it look more
useful!”

However, we don’t have to wait until then to clean up the list display in our admin
view. Previously, we enabled the admin tool with the bare minimum of configuration,

Trying Out the admin

& Select blog post to change | Django site admin - Minefield

Elle EJt View Hstory Bookmarks Tools Help
W (& o @l.up;;mm.mL;mou,fau...wulugmugpmu
[secvogposctoconoe 100 5| |

Django administration

Home » Blog posts

Select blog post to change
Blog post
BlogPost object

BlogPust ubject

2 blog posts

Figure 2.8 Not the most useful summary page

namely registering our model with the admin app all by itself. However, with an extra
two lines of code and a modification of the registration call, we can make the presentation
of the listing much nicer and more usable. Update your mysite/blog/models.py file

with a new BlogPostAdmin class and add it to the registration line, so your models.py
looks like this:

from django.db import models
from django.contrib import admin

class BlogPost(models.Model):
title = models.CharField(max_length=150)
body = models.TextField()
timestamp = models.DateTimeField()

class BlogPostAdmin(admin.ModelAdmin):
list _display = ('title', 'timestamp')

admin.site.register(BlogPost, BlogPostAdmin)

The development server notices your changes and reloads your models file. If you are
monitoring your command shell, you see some output to this eftect.

If you refresh the page, you now see much more useful output based on the new
list_display variable you added to your BlogPostAdmin class (see Figure 2.9).

Try clicking on the Title and Timestamp column headers that have appeared—each one
affects how your items are sorted. For example, click once on Title to sort in ascending
order by title; click the Title header a second time to change to descending order.

The admin has many other useful features that can be activated with just a line or two
of code: searching, custom ordering, filters, and more. As we’ve mentioned a few times
already, Parts IIT and IV cover or demonstrate many of these topics in greater detail.

69

70 Chapter 2 Django for the Impatient: Building a Blog

"= Select blog post to change | Django site admin - Minefield

File Edit Wew History Bookmarks Tools Help

'@ﬁ? c x lglhttp:Hlocalhost:BDDD,l’admln,l’blog,l’blogpost.l’

] D Select blog post to change | Dja... E

Django administration

Home » Blog posts

Select blog post to change

Title Timestamp

my 2nd post March 1, 2008, 1:08 a.m.

my first post March 1, 2008, 1:05 a.m.
2 blog posts

Figure 2.9 Much better

Making Your Blog’s Public Side

With the database and admin side of our application taken care of; it’s time to turn to the
public-facing pages. A page, from Django’s perspective, has three typical components:

= A template that displays information passed to it (in a Python-dictionary-like
object called a context)

= A view function that fetches information to be displayed, typically from a database

= A URL pattern that matches an incoming request with your view function,
optionally passing parameters to the view as well

We'll tackle these three in that order. In a sense this is building from the inside out—
when Django processes a request, it starts with the URL patterns, then calls the view, and
then returns the data rendered into a template.

Creating a Template

Django’s template language is easy enough to read that we can jump right in to example
code. This is a simple template for displaying a single blog post:

<h2>{{ post.title }}</h2>

<p>{{ post.timestamp }}</p>
<p>{{ post.body }}</p>

It’s just HTML (though Django templates can be used for any kind of textual output)
plus special template tags in curly braces. These are variable tags, which display data
passed to the template. Inside a variable tag, you can use Python-style dot-notation to
access attributes of the objects you pass to your template. For example, this template
assumes you have passed it a BlogPost object called “post.” The three lines of the template
fetch the BlogPost object’s title, timestamp, and body fields, respectively.

Making Your Blog’s Public Side

Let’s enhance the template a bit so it can be used to display multiple blog posts, using
Django’s for template tag.

{% for post in posts %}
<h2>{{ post.title }}</h2>
<p>{{ post.timestamp }}</p>
<p>{{ post.body }}</p>

{% endfor %}

The original three lines are unchanged; we’ve simply added a block tag called for that
renders a template section once for each of a sequence of items. The syntax is deliberately
similar to Python’s loop syntax. Note that unlike variable tags, block tags are enclosed in
{% ... %} pairs.

Save this simple five-line template in a file called archive.html, and put that file in a

directory called templates inside your blog app directory. That is, the path to your tem-
plate file should be:

mysite/blog/templates/archive.html

The name of the template itself is arbitrary (we could have called it foo.html), but the
templates directory name is mandatory. By default, when searching for templates, Django
looks for a templates directory inside each of your installed applications.

Creating a View Function

Now we’ll write a simple view function that fetches all our blog posts from the database
and displays them using our template. Open up the blog/views.py file and type the
following:

from django.template import loader, Context
from django.http import HttpResponse
from mysite.blog.models import BlogPost

def archive(request):
posts = BlogPost.objects.all()
t = loader.get_template("archive.html")
c = Context({ 'posts': posts })
return HttpResponse(t.render(c))

Skipping over the import lines for the moment (they just load up the function and
classes we need), here’s the breakdown of the view function, line by line:

= Line 5: Every Django view function takes a django.http.HttpRequest object as its
first argument. It can also take other arguments that get passed in via the URLconf,
which is a feature you are using a lot.

= Line 6:When we created our BlogPost class as a subclass of django.db.models.Model,
we inherited the full power of Django’s object-relational mapper. This line is a sim-
ple example of using the ORM (Object-R elational Mapper; see Chapters 3,
“Starting Out,” and 4 for more) to get all the BlogPost objects in the database.

71

72 Chapter 2 Django for the Impatient: Building a Blog

= Line 7:To create our template object t, we only need to tell Django the name of
the template. Because we’ve stored it in the templates directory of our app, Django
can find it without further instruction.

= Line 8: Django templates render data that is provided to them in a context, a dic-
tionary-like object. Our context ¢ has only a single key and value.

= Line 9: Every Django view function returns a django.http.HttpResponse object.
In the simplest case, we pass the constructor a string. The template render method
returns a string, conveniently.

Creating a URL Pattern

Only one more piece is needed for our page to work—Ilike anything else on the Web, it
needs a URL.

We could create the needed URL pattern directly inside mysite/urls.py, but that
creates a messy coupling between our project and our app. We can use our blog app some-
where else, so it would be nice if it were responsible for its own URLs. We do this in two
simple steps.

The first step is much like enabling the admin. In mysite/urls.py, there’s a com-
mented example line that is almost what we need. Edit it so it looks like this:

url(r'*blog/', include('mysite.blog.urls')),

This catches any requests that begin with blog/ and passes them to a new URLconf
you're about to create.

The second step is to define URLs inside the blog application package itself. Make a
new file, mysite/blog/urls.py, containing these lines:

from django.conf.urls.defaults import *
from mysite.blog.views import archive

urlpatterns = patterns('',
url(r'"$', archive),

It looks a lot like our base URLconf. The action happens in line 5. First, note the
blog/ part of the request URL, which our root URLconf was matching, is stripped—our
blog application is reusable and shouldn’t care if it’s mounted at blog/ or news/ or
what/i/had/for/lunch/.The regular expression in line 5 matches a bare URL, such as
/blog/.

The view function, archive, is provided in the second part of the pattern tuple. (Note
we’re not passing a string that names the function, but an actual first-class function object.
Strings can be used as well, as you see later.)

Let’s see it in action! Is the dev server still running? If not, fire it up with manage.py
runserver, and then go to http://127.0.0.1:8000/blog/ in your browser.You should see a
simple, bare-bones rendering of any blog posts you have entered, complete with title,
timestamp, and post body.

Finishing Touches

Finishing Touches

Using the key concepts laid out so far, you could go forward and refine this primitive blog
engine in a number of ways. Let’s step through a few of them to make this project feel just
a little more polished.

Template Niceties

Our template is plain to say the least. Because this is a book on Web programming not
Web design, we leave the aesthetic touches to you, but template inheritance is another
feature of the template system that can make your life easier, especially as your page styles
proliferate.

Our simple template is completely self-contained. But what if our site had a blog, a
photo archive, and a links page, and we wanted all these to be based on a common base?
Experience tells you the wrong way to do this would be to copy and paste your way to
three kind-of-identical self-contained templates. The right way in Django is to create a
base template, and then extend this template to generate the other, specific templates. In
your mysite/blog/templates directory, create a template called base.html containing
the following:

<html>

<style type="text/css">

body { color: #efd; background: #453; padding: 0 S5em; margin: 0 }
hl { padding: 2em lem; background: #675 }

h2 { color: #bf8; border-top: lpx dotted #fff; margin-top: 2em }
p { margin: lem 0 }

</style>

<body>

<hl>mysite.example.com</hl>

{% block content %}

{% endblock %}

</body>

</html>

Not exactly valid XHTML Strict, but it’ll do. The detail to notice is the {$ block ...
%} tag. This defines a named area that subtemplates can change. To make your blog app use
this template, change your archive.html template so it references this new base template
and its “content” block.

{% extends "base.html" %}
{% block content %}

{% for post in posts %}
<h2>{{ post.title }}</h2>
<p>{{ post.timestamp }}</p>
<p>{{ post.body }}</p>

{% endfor %}

{% endblock %}

73

74

Chapter 2 Django for the Impatient: Building a Blog

The {% extends ... %} tag tells Django to look for a template named base.html,
and plug the content of any named blocks in this template into the corresponding blocks
in that template.You should now see something like Figure 2.10 (hopefully your blog
posts are more exciting, though).

[=XsXs) Mozilla Firefox [=]
@ http://127.0.0.1:8000/blog/

mysite.example.com

Hello, world
2007-07-06 21:55:32

This is my first post using my Blog-o-Tronic 5000 (betal) blog
system.

What | had for lunch today

2007-07-07 18:51:49

Today's lunch consisted of a delicious Philly cheese steak sandwich, a
significant amount of coffee, and a chocolate chip cookie.

Figure 2.10 The blog, lightly styled

Date-Based Ordering

You should have noticed your blog posts are not being presented in traditional reverse-
chronological order. It’s easy for us to tell Django to do that; in fact, we have a choice as
to where we want to tell it to do so. We can add a default ordering to our model, or we
can add it to the BlogPost.objects.all() query in our view code. In this case the
model is a better location because we most often want posts ordered reverse chronologi-
cally. If we set our preferred ordering in the model, any part of Django that accesses our
data uses that ordering.

To set default ordering for your model, give it an inner class called Meta and set the
ordering attribute in that class.

class Meta:
ordering = ('-timestamp',)

Take a look at your blog home page (/blog/).The newest post should now be on top.
The string -timestamp is a concise way of telling Django, “order by the ‘timestamp’ field,
and do it in descending order.” (If we omitted the “~”, they’d be presented in ascending

date order instead.)

Summary

Note

Don’t omit the trailing comma inside the parentheses! It makes this a single-item tuple,
rather than just a parenthesized string. Django expects a tuple here; you're allowed to spec-
ify as many fields for ordering as you want. If you added 'title"' after the comma, and you
had two posts titled “A” and “B” with the same timestamp, post “A” would come first.

Timestamp Formatting Via a Template Filter

That timestamp is handy, but its ISO8601 format is a little nerdy. Let’s humanize it a bit
by using a cool feature of the Django template system: filters.

Because this is a presentation detail, not a data structure or business logic detail, the
appropriate place for it is in the template. Open your archive.html file and change the
“post.timestamp”’ line to

<p>{{ post.timestamp|date }}</p>

To apply a filter to a variable, you simply tack it on to the end of the variable name—
inside the curly brackets—using a vertical bar, or “pipe,” character. Reload your blog
home page. Now your dates appear in a more liberal-arts-friendly form (“July 7).

If the default style of the date filter isn’t to your liking, you can pass it an argument
using strftime-type formatting. However, rather than using the conversion codes from
Python’s time module, it uses the same formatting directives as PHP’ date function. For
example, if you want to display the day of the week but omit the year, change the line to
pass an argument to the date filter.

<p>{{ post.timestamp|date:"l, F jS" }}</p>

This particular format string gives you dates in the style “Friday, July 6th.” Make sure
you don'’t leave any space on either side of that colon—the Django template engine is
particular about this.

Summary

Of course, we could continue adding features to our blog engine forever (many people
do!), but hopefully you’ve seen enough to give you a taste of the power of Django. In the
course of building this skeletal blog app you’ve seen a number of Django’s elegant, labor-
saving features:

= The built-in Web server, which makes your development work more self-contained
and automatically reloads your code if you edit it

= The pure-Python approach to data model creation, which saves you from having to
write or maintain SQL code or XML description files

= The automatic admin application, which provides full-fledged content-editing fea-
tures even for nontechnical users

= The template system, which can be used to produce HTML, CSS, JavaScript, or any
textual output format

75

76 Chapter 2 Django for the Impatient: Building a Blog

= Template filters, which can alter the presentation of your data (such as dates) with-
out messing with your application’s business logic

= The URLconf system, which gives you great flexibility in URL design while keep-
ing application-specific portions of URLs in the application, where they belong

Just to give you an idea of what’s ahead, the following are some things we could pro-
ceed to do to our blog using Django’s built-in features:

= Publish Atom or RSS feeds of our latest posts (see Chapter 11)

= Add a search feature so that users can locate blog posts containing specific terms
(see the CMS example app in Chapter 8,“Content Management System”)

= Adopt Django’s “generic views” to avoid having to write any code in views.py at all
(see the Pastebin example app in Chapter 10, “Pastebin”)

You’ve completed your whirlwind tour of Django basics. Chapter 3, fleshes out with a
broad look at Django’s key components and the philosophies behind them, as well as pro-
vides a recap of some Web development principles central not only to Django itself, but
to the lessons we offer in later parts of the book. Chapter 4, takes you down into the
details of the framework, where you find answers to the questions of “how, why, and what
about ...?” that probably arose as you walked through the previous examples. After
Chapter 4, you have a solid enough understanding to follow along and build several
example applications: a content management system, a pastebin, a photo gallery, and an
Ajax-powered “live blog.”

3

Starting Out

As with any large software project, Django encompasses a large number of concepts,
features, and tools, and the set of problems it was designed to solve—mnamely Web devel-
opment—also has a large scope.To start learning the details about using Django, you need
to understand those problems and the methods frameworks such as Django use to solve
them.

This chapter introduces these basic ideas, starting with a tool-agnostic look at the Web,
following with explanations of the Web framework model and its constituent parts, and
wrapping up with the general development philosophy employed by the creators of
Django. The high-level overview in the previous chapter also gives you a bit of context
here.

An important note: If you already have a solid background in Web development, some
of these concepts should be old hat—but even intermediate and experienced Web devel-
opers can benefit from taking a step back and reviewing the fundamentals of the practice.
It is all too common to find ourselves mentally constrained by the specific language or
toolset at hand, whereas a greater perspective often presents solutions previously hidden
from view.

Having a solid handle on these core concepts makes you a better problem solver and
allows you to make better choices, both during design and implementation. So please—
don’t skip ahead!

Dynamic Web Site Basics

At its heart, Web development is conceptually simple. Users request a document from the
Web server; the Web server fetches or generates the requested document; the server
returns the result to the user’s browser; and the browser renders the document. The details
tend to vary, but that’s really all there is to it. Let’s break this down as it applies to Web
frameworks such as Django.

78

Chapter 3 Starting Out

Communication: HTTP, URLs, Requests, Responses

HTTP (HyperText Transfer Protocol) encapsulates the entire process of serving Web
pages and is the foundation for the Web. Because it’s a protocol for client-server commu-
nication, it largely consists of requests (client to server) and responses (server to client).
What happens on the server between the two isn’t covered by HTTP and is up to the
server software (see the following).

The concept of a request encapsulates the first part of the process—the client asking
the server for a given document. The heart of a request is the URL—the “path” to the
document being requested—but it can be further parameterized via a number of meth-
ods, enabling a single location or URL to exhibit multiple behaviors.

A response consists primarily of a body—usually the text of a Web page—and accom-
panying headers with extra information about the data in question, such as when it was
last updated, how long it should be cached locally, its content type, and so forth. Other,
non-HTML content included in a response could be plain text, images, documents (PDE
Word, Excel, and so on), audio clips, and so forth.

Django represents both requests and responses as relatively simple Python objects with
attributes for the varying pieces of data and methods for more complex operations.

Data Storage: SQL and Relational Databases

Looked at simply, the Web is about data transfer or the sharing of content (meaning, quite
literally, anything—blog entries, financial data, ebooks, and so forth). In the Web’s early
days, content consisted of HTML text files, written by hand, and stored on the server’s
filesystem. This is known as static because requests to the same URL always return the
same information. The “path” described previously was more primitive; there were no
parameters, as it was merely a path on the server’ filesystem where the static content was
located. Present day, most content is considered dynamic because the data returned by a
given URL can vary tremendously depending on factors.

A large part of this dynamic nature is enabled by storing data in a database, where
instead of a single string of text, one can create multipart pieces of data and link them to
one another to represent relationships. To define and query the database, SQL (Structured
Query Language) is used, often further abstracted by an ORM (Object-Relational Map-
per), which enables object-oriented programming languages to represent the database as
code objects.

SQL databases are organized into tables, each consisting of rows (for example, entries,
items, objects) and columns (for example, attributes, fields), similar in overall organization
to a spreadsheet. Django provides a powerful ORM, where Python classes represent
tables, objects represent individual rows within those tables, and the table’s columns are
attributes of those objects.

Understanding Models, Views, and Templates

Presentation: Rendering Templates into HTML and Other Formats

The final piece of the Web development puzzle is how to present or format the informa-
tion requested and/or returned via HTTP and queried from the SQL database. Typically,
this is done in HTML (HyperText Markup Language) or its newer, more XML-like
cousin XHTML, along with the sister languages of JavaScript for dynamic browser-side
functionality and CSS (Cascading Style Sheets) for visual styling. Newer applications also
use JSON (a “light” data format) or XML to enable dynamic content.

To work with data being presented, most Web frameworks provide a template lan-
guage, which blends raw HTML tags with a programming-like syntax for looping over
collections of objects, performing logic operations, and other constructs that enable the
dynamic behavior desired. A simple example could be an otherwise static HTML docu-
ment with a piece of logic that says to display the username of the currently logged-in
user or to display a “Login” link if the user is not yet logged in.

Some templating systems attempt to be fully XHTML compliant, implementing their
programming-like commands as HTML attributes or tags, so the resultant document can
be parsed as normal HTML. Others emulate regular programming languages more
closely, sometimes with an “alternative tag” syntax where the programming constructs are
surrounded with special characters for ease of reading and parsing. Django’s template lan-
guage is one of the latter.

Putting It All Together

While organizing the Web into the three components outlined previously, one important
aspect has been omitted: how they interact with one another. How does a Web applica-
tion know to execute a SQL query based on a request, and how does it know what tem-
plate to use when rendering the result?

The answer depends partly on the tools used: Each Web framework or language can
approach things in a different way. However, there are generally more similarities than
there are differences, and although the next two sections outline Django’s own approach,
many of these concepts can be found in other frameworks as well.

Understanding Models, Views, and Templates

As you’ve just seen, dynamic Web development is often broken down into a handful of
core components. In this section, we expand further on those concepts, discussing the
programming methodologies involved and an overview of how Django implements them
(with details and examples in chapters to come).

Separating the Layers (MVC)

The idea of breaking down a dynamic application (Web or otherwise) has been around
for some time, usually applied to graphical client-side applications, and is generally known
as the MVC (Model-View-Controller) paradigm. As you can expect, this means the
application is segregated into the model, which controls the data, the view, which defines

79

80

Chapter 3 Starting Out

how to display data, and a controller, which mediates between the two and enables the
user to request and manipulate the data.

Compartmentalizing an application in such a manner enables the programmer to be
flexible and encourages code reuse among other things. For example, a given view—say, a
module that knows how to display graphs of numeric data—could be used on top of var-
ious different sets of data, so long as the glue between the two is able to tie them together.
Or a specific, single set of data could be displayed in multiple different output formats,
such as the aforementioned graph view, a flat text file, or a sortable table. Multiple con-
trollers could enable varying levels of access to the same data model for different users or
enable data entry via a GUI application as well as via e-mail or the command line.

The key to successfully leveraging an MV C architecture lies in correctly segregating
these different layers of the application. Having one’s data model store information about
how it should be displayed, although potentially convenient for some setups, means it is
much harder to completely swap out one view for another. And having database-specific
access codes in one’s graphical layout code would cause no end of headaches if you
decide to switch database platforms!

Django’s Approach

Django adheres to this separation of duties, although it does so in a slightly different man-
ner than the norm. The model aspect stays the same: Django’s model layer deals solely
with passing data into and out of a database. However, the “view” in Django isn’t the final
step in displaying the data—Django’s views are closer to what are normally considered
the “controller” aspects of MVC.They’re Python functions which tie together the model
layer and the presentation layer (which consists of HTML and Django’s template language
to be covered later in Chapter 6, “Templates and Form Processing”). To quote the Django
development team:

In our interpretation of MVC, the “view” describes the data that gets presented to the
user. It’s not necessarily how the data looks, but which data is presented. The view
describes which data you see, not how you see it. It's a subtle distinction.

In other words, Django splits the presentation layer in twain with a view method
defining what data to display from the model and a template defining the final representa-
tion of that information. As for the controller, the framework itself serves as a controller of
sorts—it provides mechanisms, which determine what view and template are used to
respond to a given request.

Models

The basis for any application, Web or otherwise, is the information it presents, gathers, and
modifies. As such, if we examine an application as a set of layers, the model is the bottom
layer, the foundation.Views and templates can come and go, changing how data enters
and leaves the model and how it is presented, but the model is relatively set in stone.

Understanding Models, Views, and Templates

From the perspective of designing a full-stack Web application, the model is possibly
both the easiest to grasp and the hardest to master. Modeling a real-world problem in an
object-oriented system is often a comparatively simple task, but for high-traffic Web sites
the most realistic model isn’t always the most efficient.

The model encompasses a wide range of potential pitfalls, one of which is changing
the model code after your application has been deployed. Although you are “just chang-
ing code,” you have actually altered your database schema under the covers, and this often
causes side effects to the preexisting data stored in the database. We go over many of these
real-life concerns in the chapters ahead when exploring the design of some example
applications.

Views

Views form much (sometimes most or all) of the logic in Django applications. Their defi-
nition is deceptively simple: Python functions are linked to one or more defined URLs,
which return HTTP response objects. What happens in-between those two endpoints of
Django’s HTTP mechanisms is entirely up to you. In practice, there are usually a few,
similar tasks performed at this stage, such as displaying an object or list of objects from the
model or adding new such objects, along with bookkeeping-like tasks such as checking
the status of an authenticated application user and either enabling or rejecting access.

Django provides many shortcuts and helper functions for tasks such as these, but you
can write everything yourself for full control over the process, for heavy use of the short-
cuts for rapid prototyping and development, or for combining the two approaches. Flexi-
bility and power are the name of the game here.

Templates

You should have noticed we just stated the view is responsible for displaying objects from
the model. That’s not 100 percent true.To the extent that view methods just have to
return an HTTP response, it’s true enough—you could write out a string in Python and
return that and be none the worse for wear. However, in the vast majority of cases, it’s
terribly inefficient to do so, and as mentioned previously, separation of layers is important
to adhere to.

Instead, most Django developers use its template language to render the HTML that
Web applications so often result in. Templates are essentially HTML text documents with
special formatting denoting where to output dynamic values, enabling simple logic con-
structs such as loops, and so forth. When a view wants to return an HTML document, it
usually specifies a template, gives it the information to display, and uses that rendered tem-
plate in its response.

81

82

Chapter 3 Starting Out

Although HTML is the most common format, templates don’t actually have to con-
tain any—they can be used to create any text format, such as comma-separated values
(CSV) or even e-mail message body text. The important thing is they enable a Django
project to separate the presentation of its data from the view code which decides what
data to present.

Overall Django Architecture

In this chapter thus far, we’ve covered some of the large architectural components which
make up an actual Django system as well as supporting cast just outside its boundaries.
Let’s put them all together to give you an overall perspective. In Figure 3.1, you can see
the HTTP communication protocol is the closest to the user. Using URLs, they can send
requests to Django Web applications and can receive responses back to their Web clients,
which may also be running JavaScript with Ajax doing any out-of-band server access.

At the opposite end of the spectrum (at the bottom of the figure), you see the data-
base is the persistent storage which is managed under the guidance of your models and
the Django ORM, communicating to the database via Python’s DB-API as well as the
database’s client library in the form of an adapter, usually written in C/C++ with a
Python interface.

Last but not least, in between we have Django, the heart of the application. Django’s
MVC paradigm is equivalently spelled out as “MTV” in Django-speak. The views, serving
in controller capacity navigate between creating, updating, and deleting the data model
through to the database via the ORM while managing the final view to users given its
templates.

Connecting the pieces together, the HTTP requests that come in are forwarded by the
Web server to Django, which accepts them starting at the request middleware layer. They
are then dispatched based on URLconf patterns to the appropriate view, which performs
the core part of the work required, using models and/or templates as necessary to create
the response. The response then goes through one more layer of middleware that per-
forms any final processing before returning the HTTP response back to the Web server to
forward on to the user. Make sense?

Core Philosophies of Django

As a full-stack Web framework initially developed by a small, tightly knit group of pro-
grammers, Django has been and continues to be designed with a fairly specific set of
philosophies in mind. These ideals reflect the experiences (and to a degree, the personali-
ties) of the core team, but at the same time they tend to line up very well with what any
Web developer using any toolkit would agree are “best practices.” Understanding these
philosophies helps you understand, and make better use of, the framework.

Core Philosophies of Django

User
Web browser
HTTP client
JavaScript

Internet

v
v

> =

l_ HTTPD/web server

HTTP Request
(POST, GET) HTTP Response

Request

Response
Middleware

Middleware

URLconf
urls.py

1 Response

View
Middleware

!

Generic, Semi-generic
or Custom Views

views.py Stack
Models Stack
modeLs . py <4=p ORM
I DJANGO

Python DB-API

Database Adapter

!

(RDBMS)

Figure 3.1 A high-level overview of Django’s component architechure

83

84

Chapter 3 Starting Out

Django Tries to Be Pythonic

The programming language used, and that language’s community, is often one of the
larger influences on any software project’s design, and this is no different with Django.
Users of Python tend to describe things that mesh well with and generally adhere to the
philosophies of the language as being Pythonic; although there is no explicit definition of
the term, it generally means code exhibits various attributes common to other works in
the language.

Among these attributes are the use of terse but powerful syntax (the default syntax of
for loops or the even-more-concise tool of list comprehensions); the idea there is usually
only one right way to do any given simple task (such “ways” are often incorporated into
the language itself, such as the get dictionary method) and favoring the explicit more
than the implicit (such as the requirement for a self argument in all object methods).

As we see in the example application chapters in Part III,“Django Applications by
Example,” many Django conventions, methods, and design decisions are Pythonic or strive
to be.This makes the framework easier to pick up for programmers with Python experi-
ence and also helps to ingrain good programming practices in less experienced developers.

Don’t Repeat Yourself (DRY)

One Pythonic attribute that deserves its own section is a principle common to almost all
programming: DRY, or Don’t Repeat Yourself. DRY is perhaps the simplest program-
ming idiom of all because it’s just plain old common sense: If you have information in
more than one place and it needs to change, you’ve just made twice as much (or more)
work for yourself.

As an example of DRY, consider the need to perform a simple calculation on a few
pieces of data, such as the sum of a collection of bank accounts associated with a given
individual. In a poorly designed system, this summation can be performed in multiple
places throughout the code: pages listing individuals, a page for detailed per-individual
information, or a page displaying grand totals for multiple individuals. In a system such as
Django’s ORM, you can easily honor DRY by creating a Person class with a
sum_accounts method defined only once and then used in all the previous locations.

Although DRY can be easy to apply to simple situations such as the previous example,
it’s also one of the hardest commandments to adhere to strictly all the time; there are
many places where it conflicts with other idioms, Pythonic and otherwise, where trade-
offs must be made. However, it is a worthy goal to strive toward and one which becomes
easier with experience.

Loose Coupling and Flexibility

Django is a full-stack Web framework in the sense it provides all necessary components
for a dynamic Web application: database access, request framework, application logic, tem-
plating, and so forth. However, an effort has been made to ensure that users’ options are

Core Philosophies of Django

left open: You can use as much or as little of Django as you need and can replace compo-
nents with other tools as you see fit.

For example, some users dislike Django’s template system and prefer alternatives such
as Kid or Cheetah. Django view methods don’t require that Django’s template system be
used, so it’s entirely possible to have one’s views load up Kid or Cheetah, render a tem-
plate written for those systems, and return the result as part of a Django response object.

The same goes for the database layer. Users who prefer SQLAlchemy or SQLObject,
for example, can simply ignore Django’s ORM entirely and work with their data via
other tools. Conversely, if less common, it’s possible to utilize only Django’s ORM for
other projects (even non-Web-oriented ones); it functions with only a minimum of setup.

When all is said and done, however, such modularity comes at a price: Some of
Django’s nicest shortcuts necessarily encompass the stack as a whole, such as the generic
view methods enabling simple display and updating and creating database records. As
such, this modular approach to Django is usually best avoided by those new to Python
Web development.

Rapid Development

Django was written with rapid, agile development in mind. Working in a fast-paced local
newspaper shop, the core team needed a set of tools that would allow them to implement
an idea in an extremely short amount of time. The open-sourcing of the framework has
not changed the fact that it excels in this area.

Django provides shortcuts at a couple of different levels. The most obvious is the afore-
mentioned generic view collection, which consists of perhaps a dozen or so common
tasks. Combined with flexible and powerful parameterization, these generic views can,
and often do, make up the entirety of a Web site, enabling creation and modification of
database records, display of lists of objects (date-oriented and otherwise) and individual
object pages, and more. With only three Python files—site-specific settings, a model dec-
laration, and a map linking URLs to generic views—and some HTML templates, one can
create an entire Web site in a matter of minutes or hours.

At a lower level, Django provides many shortcut methods for common tasks at the
Python view level itself, so when generic views can’t provide what the programmer
needs, they can still avoid a lot of boilerplate. Such shortcuts exist for rendering templates
with data dictionaries, obtaining a database object, returning an HTTP error if one
doesn’t exist, processing forms, and so forth.

Combined with the flexibility, terseness, and power of the Python language, these
shortcuts enable programmers to focus on getting projects built and out the door quickly,
and/or solving domain-specific problems without worrying about grunt work or
so-called “glue code.”

85

86

Chapter 3 Starting Out

Summary

We’ve covered a lot of ground in this chapter: the fundamentals of what Web develop-
ment is all about, how Django and similar frameworks organize their approach to creating
Web sites, and the underlying philosophies driving Django’s own development and design
decisions. Regardless of what you brought to this chapter, we hope you’ve gained some-
thing from the overview.

At this point in the book, you should now have a decent background in both the
basics of developing Web applications as well as the underlying theory and organization of
a typical Web framework. In Part II, “Django in Depth,” we dive into the details of how
to use Django, exploring the various classes, functions, and data structures it uses and
showing you more code snippets to help it all make sense.

Django in Depth

4 Defining and Using Models
5 URLs, HTTP Mechanisms, and Views

6 Templates and Form Processing

This page intentionally left blank

A

Defining and Using Models

As explained in Chapter 3,“Starting Out,” the data model of a Web application is usu-
ally its foundation, and at any rate is an excellent place to begin exploring the details of
Django development. Although this chapter has two main sections—defining models, and
then using them—the two halves are more intertwined than separate. We need to con-
sider how we plan to use our models, while we'’re defining them, to generate the most
effective arrangement of classes and relationships. And, of course, you can’t make the best
use of a model without understanding the how and the why of its definition.

Defining Models

Django’s database model layer makes heavy use of an ORM (Object-Relational Mapper),
and it’s a good idea to understand the reasoning behind this design decision as well as the
pluses and minuses of the approach. Therefore, we start out this section with an explana-
tion of Django’s ORM, after which we get into the details of model fields, the possible
relationships between model classes, and the use of model class metadata to define specific
behaviors of the model or enable and customize the Django admin application.

Why Use an ORM?

Django, along with most other modern Web frameworks (as well as many other applica-
tion development tools), relies on a rich data access layer that attempts to bridge an
underlying relational database with Python’s object-oriented nature. These ORMs are still
a subject of much debate in the development community with various arguments for and
against their use. As Django was designed with the use of an ORM in mind, we present
to you four arguments in favor of using them, specifically Django’s own implementation.

Encapsulation of Useful Methods

Django model objects, as we cover later in this chapter, are first and foremost a way of
defining a collection of fields, which generally map to database columns. This provides the
first and primary step in tying the relational database to object-oriented concepts. Instead
of a SQL query like SELECT name FROM authors WHERE id=5,one can request the

90

Chapter 4 Defining and Using Models

Author object whose id is 5 and examine author .name—this is a much more Pythonic
type of interface to the data.

However, model objects can add a lot of extra value to that humble beginning.
Django’s ORM, like many others, enables you to define arbitrary instance methods, lead-
ing to any number of useful things. For example:

= You can define read-only combinations of fields or attributes, sometimes known as
data aggregation or calculated attributes. For example, an order object with
count and cost attributes could expose a total that is simply the product of the
other two. Common object-oriented design patterns become much easier—
facades, delegation, and so forth.

= In Django, the ORM presents the option of overriding built-in database-altering
methods such as saving and deleting objects. This enables you to easily define a set
of arbitrary operations to be performed on your data before it is saved to the data-
base or to ensure that certain clean-up operations are always called prior to deleting
a record, no matter where or how the deletion occurs.

= Integration with the programming language—in Django’s case, Python—is gener-
ally simple, enabling you to let your database objects conform to specific interfaces
or APIs.

Portability

Due to their very nature—being a layer of code between your application and the data-
base itself—ORMs provide excellent portability. Most ORM platforms support multiple
database backends, and Django’s is no exception. At the time of this writing, code utiliz-
ing Django’s model layer runs on PostgreSQL, MySQL, SQLite, and Oracle—and this list
is likely to grow as more database backend plugins are written.

Safety

Because you are rarely executing your own SQL queries when using an ORM, you don’t
have to worry as much about the issues caused by malformed or poorly protected query
strings, which often lead to problems such as SQL injection attacks. ORMs also provide a
central mechanism for intelligent quoting and escaping of input variables, freeing up time
otherwise spent dealing with that sort of minutia. This sort of benefit is common with
modularized or layered software of which MVC frameworks are a good example. When
all the code responsible for a specific problem domain is well-organized and self-
contained, it can often be a huge time-saver and increase overall safety.

Expressiveness

Although not directly related to the definition of models, one of the greatest benefits of
using an ORM (and certainly one of the largest differences, compared to writing raw
SQL) is the query syntax used to obtain records from the database. Not only is a higher-
level query syntax arguably easier to work with, but the act of bringing the query mecha-
nisms into the realm of Python enables a host of useful tactics and methodologies. For

Defining Models

example, it becomes possible to construct otherwise unwieldy queries by looping over
data structures, an approach that is generally more compact than the equivalent SQL and
can avoid the sometimes tedious string manipulation that can be otherwise required.

Django’s Rich Field Types

Django models cover a wide range of field types; some of them are closely tied to their
database implementations, although others have been designed with Web form interfaces
in mind. Most of them fall between these two extremes. Although an exhaustive list can
be found in the official Django documentation, we present a comparison study which
covers some of the most commonly used fields. First, we provide a quick introduction to
the basics of Django model definition.

from django.db import models

class Book(models.Model) :
title = models.CharField(max_length=100)
author = models.ForeignKey (Author)
length = models.IntegerField()

From the previous, it should be relatively obvious what we’ve just created: a simplistic
model of a book made of up various database-related concepts. It’s not much to look at—
generally those tasked with cataloging books are interested in much more than just the
title, author, and number of pages—but it’ll do. It’s also perfectly workable.You could
throw that example into a Django models.py file and be well on your way to a book cat-
alog app with very few modifications.

As you can see, Django uses Python classes to represent objects, which generally map
to SQL tables with attributes mapping to columns. These attributes are themselves
objects, specifically subclasses of a Field parent class; as stated previously, some of them
are obvious analogues to SQL column types, although others provide some level of
abstraction. Let’s examine some specific Field subclasses.

= CharField and TextField: Possibly the most common fields you encounter, these
two do much the same thing—they hold text. CharFields have a set, finite length,
although TextFields are essentially infinite; which one you use depends on your
needs, including the fulltext search capabilities of your database or your need for
efficient storage.

= EmailField, URLField, and IPAddressField: These three fields, among others, are
essentially CharFields which provide extra validation. Such fields are stored in the
database, like a CharField but have validation code defined to ensure their values
conform to e-mail addresses, URLs, and IP addresses, respectively. It’s simple to add
your own validation to model fields and thus to create your own “field types” on
the same level as Django’s built-in ones. (See Chapters 6, “Templates and Form
Processing,” and 7, “Photo Gallery,” for more on validation.)

91

92

Chapter 4 Defining and Using Models

= BooleanField and NullBooleanField: BooleanField works in most situations
where you want to store True or False values, but sometimes you want the capabil-
ity to store the fact you don’t know yet if the value is one or the other—in which
case the field would be considered empty, or null, and thus NullBooleanField was
born. This distinction highlights the fact that modeling your data often requires
some thought, and decisions sometimes need to be made on a semantic level as well
as a technical one—not just how the data is stored, but what it means.

= FileField:FileField is one of the most complex fields, in no small part because
almost all the work involved in its use isn’t in the database at all, but in the request
part of the framework. FileField stores only a file path in the database, similar to
its lesser cousin FilePathField, but goes the extra mile and provides the capability
to upload a file from the user’s browser and store it somewhere on the server. It also
provides methods on its model object for accessing a Web-based URL for the
uploaded file.

These are only a handful of the available field types present in Django model defini-
tions, and as new Django releases come out, new fields are occasionally added or updated.
To see the full, up-to-date list of model field classes and what you can do with them, see
the official Django documentation.You also see many of these fields throughout this book
in example code snippets and example applications in Part III, “Django Applications by
Example.”

Primary Keys and Uniqueness

A common concept in relational database definition is that of a primary key, which is a
field guaranteed to be unique across an entire table (or in Django ORM terms across an
entire model). These primary keys are typically auto-incrementing integers because such
a field is a simple and effective method of ensuring that each row in the table has a
unique value.

They're also useful as reference points for relationships between models (which are cov-
ered in the next few sections)—if a given Book object has an ID number of 5 and is guar-
anteed to be the only Book with that ID number, a reference to “book #5” is
unambiguous.

Because this type of primary key is fairly ubiquitous, Django automatically makes one
for you unless you specify otherwise. All models without an explicit primary key field are
given an id attribute, which is a Django AutoField (an auto-incrementing integer).
AutoFields behave just as normal integers, and their underlying database column type
varies depending on your database backend.

For those wanting more control over primary keys, simply make sure you specify
primary_key=True for one of your model fields, and that field becomes the primary key
for the table in place of id (which is omitted in such circumstances). This means the
field’s values must be completely unique, so specifying it for a string field such as a name
or other identifier cannot be a good idea unless you're 110 percent certain you never, ever
have duplicates!

Defining Models

Speaking of duplicates, we’ll also mention there’s a similar argument that can be
applied to just about any field in your model: unique=True. This enforces uniqueness for
the field in question without making that field the primary key.

Relationships Between Models

The capability to define relationships between model objects is, naturally, one of the
strongest selling points for using relational databases (as evidenced by the name itself—
relational) and is also an area where ORMs sometimes tend to differ from one another.
Django’s current implementation is fairly database-centric, making sure the relations are
defined at the database level and not just at the application level. However, because SQL
only provides for one explicit form of relation—the foreign key—it is necessary to add
some layering to provide more complex relationships. We examine the foreign key first
and then move to how it can serve as a building block for the other relationship types.

Foreign Keys

Because foreign keys are fairly simple, Django’s implementation of them is similarly
straightforward. They're represented as their own Field subclass, ForeignKey, whose pri-
mary argument is simply the model class being referred to, as in the following example:

class Author (models.Model) :
name = models.CharField(max_length=100)

class Book (models.Model) :
title = models.CharField(max_length=100)
author = models.ForeignKey (Author)

You should note we need to define classes being referred to at the top because other-
wise the Author variable name would not be available for use in the Book class’s
ForeignKey field. However, you can use a string instead, either the class name if it’s
defined in the same file, or using dot notation (for example, 'myapp.Author') otherwise.
Here’s the previous example rearranged and rewritten using a string-based ForeignKey:
class Book (models.Model) :

title = models.CharField(max_length=100)
author = models.ForeignKey ("Author")

class Author (models.Model) :
name = models.CharField(max_length=100)

It’s also possible to define self-referential ForeignKeys by using the string 'self . This
is commonly used when defining hierarchical structures (for example, a Container class
defining a parent attribute enabling nested Containers) or similar situations (such as an
Employee class with attributes such as supervisor or hired_by).

Although the ForeignKey is only defined on one side of the relationship, the receiving
end is able to follow the relationship backward. Foreign keys are technically a many-to-one

93

94

Chapter 4 Defining and Using Models

relationship, as multiple “child” objects can refer to the same “parent” object; thus, the
child gets a single reference to its parent, but the parent gets access to a set of its children.
Using the previous example, you could use Book and Author instances such as:

Pull a book off the shelf - see below in this chapter for details on querying
book = Book.objects.get(title="Moby Dick")

Get the book's author - very simple

author = Book.author

Get a set of the books the author has been credited on

books = author.book_set.all()

As you can see, the “reverse relationship” from Author to Book is represented by the
Author.book_set attribute (a manager object, outlined later in the chapter), which is
automatically added by the ORM. It’s possible to override this naming scheme by speci-
fying a related_name argument to the ForeignKey; in the previous example, we could
have defined author as ForeignKey ("Author", related_name="books") and would
then have access to author.books instead of author.book_set.

Note

The use of related_name is optional for simple object hierarchies, but required for more
complex ones, such as when you have multiple ForeignKeys leading from one object to
another. In such situations, the ORM needs you to tell it how to differentiate the two reverse
relationship managers on the receiving end of those two ForeignKey fields. Django’s data-
base management tools lets you know by way of an error message if you forget!

Many-to-Many Relationships

Foreign keys are generally used to define one-to-many (or many-to-one) relationships—
in our previous examples, a Book has a single Author and an Author can have many
Books. However, sometimes you need more flexibility. For example, until now we’ve
assumed a Book has only one Author, but what about books written by more than one
person, such as this one?

Such a scenario requires a “many” relationship not only on one side (aAuthor having
one or more Books) but on both (Book also having one or more authors). This is where
the concept of many-to-many relationships come in; because SQL has no definition for
these, we must build them using the foreign keys it does understand.

Django provides a second relationship-oriented model field to handle this situation:
ManyToManyField. Syntax-wise, they are identical to ForeignKey; you define them on
one side of the relationship, passing in the class to relate to, and the ORM automatically
grants the other side the necessary methods or attributes to use the relationship (typically
by creating a _set manager as seen previously with ForeignKeys). However, due to the
nature of ManyToManyField, it doesn’t generally matter which side you define it on
because the relationship is inherently symmetrical.

Defining Models

Note

If you plan on using Django’s admin application, keep in mind the admin forms for objects in
a many-to-many relationship only display a form field on the defining side.

Note

Self-referential ManyToManyFields (that is, a ManyToManyField on a given model refer-
encing that same model) are symmetrical by default because it's assumed the relationship
goes both ways. However, this is not always the case, and so it's possible to change this
behavior by specifying symmetrical=False in the field definition.

Let’s update our book example with the newfound realization we must handle
multiple-author books:

class Author (models.Model) :
name = models.CharField(max_length=100)

class Book (models.Model) :
title = models.CharField(max_length=100)
authors = models.ManyToManyField (Author)

The usage of ManyToManyField is similar to the “many” side of a foreign key
relationship:

Pull a book off the shelf

book = Book.objects.get(title="Python Web Development Django")
Get the books' authors

authors = Book.author_set.all()

Get all the books the third author has worked on

books = authors[2].book_set.all()

The secret of the ManyToManyField is that underneath, it creates an entirely new table
in order to provide the lookups needed for such a relationship, and it is this table which
uses the foreign key aspects of SQL; each row represents a single relationship between two
objects, containing foreign keys to both.

This lookup table is normally hidden during regular use of Django’s ORM and cannot
be queried on its own, only via one of the ends of the relationship. However, it’s possible
to specify a special option on a ManyToManyField, through, which points to an explicit
intermediate model class. Use of through thus lets you manually manage extra fields on
the intermediate class, while retaining the convenience of managers on the “ends” of the
relationship.

The following is identical to our previous ManyToManyField example, but contains
an explicit Authoring intermediate table, which adds a collaboration_type field to the
relationship, and the through keyword pointing to it.

class Author (models.Model) :
name = models.CharField(max_length=100)

95

96 Chapter 4 Defining and Using Models

class Book (models.Model) :

title = models.CharField(max_length=100)

authors = models.ManyToManyField (Author, through="Authoring")
class Authoring(models.Model) :

collaboration_type = models.CharField(max_length=100)

book = models.ForeignKey (Book)

author = models.ForeignKey (Author)

You can query author and Book in an identical fashion to our earlier query example
and can also construct queries dealing with the type of “authoring” that was involved.

Get all essay compilation books involving Chun
chun_essay_compilations = Book.objects.filter(
author__name__endswith='Chun',
authoring_ collaboration_type='essays'

As you can see, this adds significant flexibility to Django's ability to compose relation-
ships meaningfully.

Composition with One-to-One Relationships

In addition to the commonly used many-to-one and many-to-many relationship types
you've just seen, relational database development sometimes makes use of a third type,
namely one-to-one relationships. As with the other two, the name means exactly what it
says; both sides of the relationship have only a single-related object.

Django implements this concept as as a OneToOneField that is generally identical to
ForeignKey—it requires a single argument, the class to relate to (or the string “self” to be
self-referential). Also like ForeignKey, it optionally takes related name so you can differ-
entiate between multiple such relationships between the same two classes. Unlike its
cousins, OneToOneField does not add a reverse manager for following the reverse rela-
tionship—just another normal attribute—because there’s always only one object in either
direction.

This relationship type is most often used to support object composition or ownership,
and so is generally a bit less rooted in the real world than it is in object-oriented design.
Before Django supported model inheritance directly (see the following), oneTooneField
was typically used to implement inheritance-like relationships and now forms the behind-
the-scenes basis for that feature.

Constraining Relationships

As a final note regarding the definition of relationships, it’s possible—for both
ForeignKeys and ManyToManyFields—to specify a 1imit_choices_to argument. This
argument takes a dictionary as its value, whose key/value pairs are query keywords and
values (again, see the following for details on what those keywords are). This is a powerful
method for specifying the possible values of the relationship you're defining.

Defining Models

For example, the following is a version of the Book model class that only works with
Authors whose name ends in Smith:

class Author (models.Model) :
name = models.CharField(max_length=100)

class SmithBook (models.Model) :
title = models.CharField(max_length=100)
authors = models.ManyToManyField(Author, limit_choices_to={
'name__endswith': 'Smith'’

1)

Note
It's also possible—and sometimes desirable—to specify this limitation at the form level.

See the description of ModelChoiceField and ModelMultipleChoiceField in
Chapter 6.

Model Inheritance

A relatively new feature in Django’s ORM at the time of this writing is that of model
inheritance. In addition to foreign key and other relationships between otherwise distinct
model classes, it’s possible to define models which inherit from one another in the same
way that normal, non-ORM Python classes do. (Some examples of which can be found in
Chapter 1, “Practical Python for Django.”)

For example, the previous smithBook class could be defined not as its own stand-alone
class that just happens to have the same two fields as the Book class, but as an explicit sub-
class of Book. The benefits are hopefully obvious—the subclass can then add or override
only the fields that differentiate it from its parent, instead of replicating the entire defini-
tion of the other class.

Our simplistic Book example doesn’t make this sound too exciting, but consider a more
realistic model with a dozen or more attributes and a handful of complex methods, and
suddenly inheritance becomes a compelling way to adhere to Don’t Repeat Yourself
(DRY). Do note, however, that composition—the use of ForeignKey or
OneToOneField—is still a viable alternative! Which technique you use is entirely up to
you and depends a lot on your planned model setup.

Django currently provides two different approaches to inheritance, each with its own
pluses and minuses: abstract base classes and multi-table inheritance.

Abstract Base Classes

The approach of using abstract base classes is, to put it simply, “Python-only” inheri-

tance—it enables you to refactor your Python model definitions such that common fields

and methods are inherited from base classes. However, at a database and query level, the

base classes don’t exist, and their fields are replicated in the database tables for the children.
This sounds like a violation of DRY, but is actually desirable in scenarios where you

don’t want an extra database table for the base class—such as when your underlying

97

98

Chapter 4 Defining and Using Models

database is legacy or otherwise being used by another application. It’s also just a neater
way to express refactoring of class definitions without implying an actual object hierarchy.

Let’s re-examine (and flesh out) the Book and SmithBook model hierarchy, using
abstract base classes.

class Author (models.Model) :
name = models.CharField(max_length=100)

class Book(models.Model) :
title = models.CharField(max_length=100)
genre = models.CharField(max_length=100)
num_pages = models.IntegerField()
authors = models.ManyToManyField (Author)

def _ unicode__ (self):
return self.title

class Meta:
abstract = True

class SmithBook (Book) :
authors = models.ManyToManyField(Author, limit_choices_to={
'name__endswith': 'Smith'

})

The key is the abstract = True setting in the Meta inner class of Book—it signifies
that Book is an abstract base class and only exists to provide its attributes to the actual
model classes which subclass it. Note smithBook only redefines the authors field to pro-
vide its 1imit_choices_to option—because it inherits from Book instead of the usual
models.Model, the resulting database layout has columns for title, genre, and
num_pages, as well as a many-to-many lookup table for authors. The Python-level class
also has a __unicode__ method defined as returning the title field, just as Book does.

In other words, when created in the database, as well as when utilized for object cre-
ation, ORM querying, and so forth, SmithBook behaves exactly as if it were the following
definition:
class SmithBook (models.Model) :

title = models.CharField(max_length=100)

genre = models.CharField(max_length=100)

num_pages = models.IntegerField()

authors = models.ManyToManyField (Author, limit_choices_to={
'name__endswith': 'Smith'

}

def __unicode__ (self):
return self.title

Defining Models

As mentioned, this behavior extends to the query mechanism as well as the attributes
of smithBook instances, so the following query would be completely valid:

smith_fiction_books = SmithBook.objects.filter (genre='Fiction')

Our example isn’t fully suited to abstract base classes, however, you'd typically want to
create both normal Books as well as smithBooks. Abstract base classes are, of course,
abstract—they cannot be created on their own, and as stated previously, are mostly useful
to provide DRY at the model definition level. Multi-table inheritance, outlined next, is a
better approach for our particular scenario.

Some final notes regarding abstract base classes: The inner Meta class on subclasses is
inherited from, or combined with, that of the parent class (with the natural exception of
the abstract option itself, which is reset to False, as well as some database-specific
options such as db_name).

In addition, if a base class uses the related_name argument to a relational field such as
ForeignKey, you need to use some string formatting, so subclasses don’t end up clashing.
Don’t use a normal string, such as "related_employees", but one with % (class)s in it,
such as "related_% (class)s" (refer back to Chapter 1 if you don’t recall the details
about this type of string replacement). This way, the subclass name is substituted correctly,
and collisions are avoided.

Multi-table Inheritance

Multi-table inheritance, at the definition level, appears to be only slightly different from
abstract base classes. The use of Python class inheritance is still there, but one simply omits
the abstract = True Meta class option. When examining model instances, or when
querying, multi-table inheritance is again the same as what we’ve seen before; a subclass
appears to inherit all the attributes and methods of its parent class (with the exception of
the Meta class, as we explain in just a moment).

The primary difference is the underlying mechanism. Parent classes in this scenario are
full-fledged Django models with their own database tables and can be instantiated nor-
mally as well as lending their attributes to subclasses. This is accomplished by automati-
cally setting up a OneTooneField between the subclasses and the parent class, and then
performing a bit of behind-the-scenes magic to tie the two objects together, so the sub-
class inherits the parent class’s attributes.

In other words, multi-table inheritance is just a convenience wrapper around a normal
“has-a” relationship—or what’s known as object composition. Because Django tries to be
Pythonic, the “hidden” relationship is actually exposed explicitly if you need it, via the
OneToOneField, which is given the lowercased name of the parent class with a _ptr suf-
fix. For example, in the snippet that follows, SmithBook gets a book_ptr attribute leading
to its “parent” Book instance.

The following is our Book and SmithBook example with multi-table inheritance:

class Author (models.Model) :
name = models.CharField(max_length=100)

99

100

Chapter 4 Defining and Using Models

class Book (models.Model) :
title = models.CharField(max_length=100)
genre = models.CharField(max_length=100)
num_pages = models.IntegerField()
authors = models.ManyToManyField (Author)

def _ unicode__ (self):
return self.title

class SmithBook (Book) :
authors = models.ManyToManyField (Author, limit_choices_to={
'name__endswith': 'Smith'

}

As mentioned, the only difference at this point is the lack of the Meta class abstract
option. Running manage.py syncdb on an empty database with this models.py file
would create three main tables—one each for author, Book, and SmithBook—whereas
with abstract base classes we’d only have tables for author and SmithBook.

Note smithBook instances get a book_ptr attribute leading back to their composed
Book instance, and Book instances that belong to (or that are part of, depending on how
you look at it) SmithBooks get a smithbook (without a _ptr suffix) attribute.

Because this form of inheritance enables the parent class to have its own instances,
Meta inheritance could cause problems or conflicts between the two sides of the relation-
ship. Therefore, you need to redefine most Meta options that can otherwise have been
shared between both classes (although ordering and get_latest_by is inherited if not
defined on the child). This makes honoring DRY a little bit tougher, but as much as we’d
like to achieve 100 percent DRY, it’s not always possible.

Finally, we hope it’s relatively clear why this approach is better for our book model; we
can instantiate both normal Book objects as well as smithBook objects. If you’re using
model inheritance to map out real-world relationships, chances are you prefer multi-table
inheritance instead of abstract base classes. Knowing which approach to use—and when to
use neither of them—is a skill that comes with experience.

Meta Inner Class

The fields and relationships you define in your models provide the database layout and the
variable names you use when querying your model later on—you often find yourself
adding model methods such as __unicode__ and get_absolute_url or overriding the
built-in save or delete methods. However, there’s a third aspect of model definition and
that’s the inner class used to inform Django of various metadata concerning the model in
question: the Meta class.

The Meta class, as the name implies, deals with metadata surrounding the model and its
use or display: how its name should be displayed when referring to a single object versus
multiple objects, what the default sort order should be when querying the database table,
the name of that database table (if you have strong opinions on the subject), and so forth.

Defining Models

In addition, the Meta class is where you define multi-field uniqueness constraints because
it wouldn’t make sense to define those inside any single field declaration. Let’s add some
metadata to our first Book example from earlier.

class Book(models.Model) :
title = models.CharField(max_length=100)
authors = models.ManyToManyField (Author)

class Meta:
Alphabetical order
ordering = ['title']

That’s it! The Book class is so simple it doesn’t need to define most of the options the
Meta inner class provides, and if we didn’t really care about a default ordering, it could
have been left out entirely. Meta and Admin are entirely optional, albeit commonly used,
aspects of model definition. Let’s whip up a more complex example because Book’s meta
options are fairly boring.

class Person(models.Model) :
first = models.CharField(max_length=100)
last = models.CharField(max_length=100)
middle = models.CharField(max_length=100, blank=True)

class Meta:

The proper way to order people, assuming a Last, First M. style of

display.

ordering = ['last', 'first', 'middle']

Here we encode the fact that we can't have a person with a 100%

identical name. Of course, in real life, we could, but we'll pretend
this is an ideal world.

unique_together = ['first', 'last', 'middle']

Django's default pluralization is simply to add 's' to the end: that
doesn't work here.

verbose_name_plural = "people"

As you can see from the comments, modeling the concept of a person would be rough
going without defining some Meta options. We have to consider all three fields when
ordering records, and to avoid duplication, and having the system refer to more than one
person as “persons” can be quaint, but is probably not desired.

For more details on the various Meta class options you can define, we defer you to the
official Django documentation.

Admin Registration and Options

If you're using the “admin” contrib app that comes with Django, you are making heavy
use of admin site objects and their register function, as well as optional Modeladmin
subclasses. These subclasses enable you to define various options concerning how your
model is utilized when you're interacting with it in the admin application.

101

102

Chapter 4 Defining and Using Models

Simply registering your model class with the admin (along with enabling the Admin
app itself, covered in Chapter 2,“Django for the Impatient: Building a Blog™) is enough to
get the admin to pick it up and provide you with basic list and form pages; hooking in a
ModelAdmin subclass with extra options enables you to hand-pick the fields displayed in
list views, the layout of the forms, and more.

In addition, you can specify inline editing options for relational fields such as
ForeignKey, by creating Inline subclasses and referencing them in a ModelAdmin sub-
class. This proliferation of extra classes can seem odd at first, but it’s an extremely flexible
way of ensuring any given model can be represented in more than one way or in multiple
admin sites. Extending the model hierarchy to inline editing also enables you to place an
inline form in more than one “parent” model page, if desired.

We leave the detailed explanation of what each option does to the official documenta-
tion—and note there are some examples of admin usage in Part 3—but here’s a basic out-
line of what’s possible in each of the two main types of ModelAdmin options.

= List formatting: 1ist_display, list_display links, list_filter, and similar
options enable you to change the fields shown in list views (the default being simply
the string representation of your model instances in a single column) as well as
enabling search fields and filter links, so you can quickly navigate your information.

= Form display: fields, js, save_on_top, and others provide a flexible means of
overriding the default form representation of your model, as well as adding custom
JavaScript includes and CSS classes, which are useful if you want to try your hand at
modifying the look and feel of the admin to fit the rest of your Web site.

Finally, realize if you find yourself making very heavy use of these options, it can be a
sign to consider disregarding the admin and writing your own administrative forms. How-
ever, make sure you read the “Customizing the Admin” section of Chapter 11,“Advanced
Django Programming,” first for tips on just how much you can flex the Django admin
before setting out on your own.

Using Models

Now that we’ve explained how to define and enhance your models, we go over the details
of how to create, and then query, a database based on them, finishing up with notes on the
raw SQL underpinnings of the overall mechanism.

Using Models

Creating and Updating Your Database Using manage.py

As mentioned previously in Chapter 2, the manage.py script created with every Django
project includes functionality for working with your database. The most common
manage.py command is syncdb. Don’t let the name fool you; it doesn’t do a full synchro-
nization of your database with your models as some users can expect. Instead, it makes
sure all model classes are represented as database tables, creating new tables as necessary—
but not altering existing ones.

Database “Synchronization”

The reasoning behind syncdb’s behavior is Django’s core development team strongly
believes one’s production data should never be at the mercy of an automated process. Addi-
tionally, it is a commonly held belief that changes to database schemas should only be per-
formed when a developer understands SQL well enough to execute those changes by hand.
The authors tend to agree with this approach; a better understanding of underlying technol-
ogy is always preferable when developing with higher-layer tools.

At the same time, an automatic or semi-automatic schema change-set mechanism (such as
Rails’ migrations) can often speed up the development process. At the time of this writing,
there are several non-core Django-related projects in various stages of development attempt-
ing to address this perceived deficit in the framework.

Therefore, if you create a model, run syncdb to load it into the database, and later
make changes to that model, syncdb does not attempt to reconcile those changes with the
database. It is expected that the developer makes such changes by hand or via scripts or
simply dumps the table or database entirely and reruns syncdb, which results in a fully up-
to-date schema. For now, what’s important is that syncdb is the primary method for turn-
ing a model class into a database table or tables.

In addition to syncdb, manage.py provides a handful of specific database-related func-
tions which synecdb actually builds upon to perform its own work.Table 4.1 shows a few
of the more common ones. Among these are commands such as sql and sqlall, which
display the CREATE TABLE statements (sqlall performs initial data loading as well);
sqlindexes for creating indexes; sqlreset and sqglclear, which empty or drop previ-
ously created tables; sqlcustom, which executes an app’s custom initial SQL statements
(see the following for more); and so forth.

Table 4.1 manage.py Functions

manage.py Function Description

syncdb Create necessary tables needed for all apps

sqgl Display CREATE TABLE call(s)

sglall Same as sql plus initial data-loading statements from . sqgl file

sglindexes Display the call(s) to create indexes for primary key columns

103

104

Chapter 4 Defining and Using Models

Table 4.1 manage.py Functions

manage.py Function Description

sqglclear Display the DrROP TABLE call(s)

sglreset Combination of sglclear and sgl (DROP plus CREATE)
sglcustom Display custom SQL statements from . sqgl file

loaddata Load initial fixtures (similar to sqlcustom but without raw SQL)
dumpdata Dump current database contents to JSON, XML, and so on

Unlike syncdb, these sql* commands do not update the database on their own.
Instead, they simply print out the SQL statements in question, enabling the developer to
read them for verification’s sake (ensuring a later syncdb does what the developer
intends, for example) or save them to a stand-alone SQL script file.

It’s also possible to pipe these commands’ output into one’s database client for immedi-
ate execution, in which case they can act as more granular analogues to syncdb.You can
also combine the two approaches by redirecting to a file first, modifying that file, and then
redirecting the file into the database for execution (see Appendix A, “Command Line
Basics,” for more on pipes and redirection).

For more information on how to use these commands and the intricacies of syncdb,
see the example application chapters in Part 3 or visit the official Django documentation.

Query Syntax

Querying your model-generated databases requires the use of two distinct, but similar,
classes: Managers and QuerySets. Manager objects are always attached to a model class, so
unless you specify otherwise, your model classes each exhibit an objects attribute, which
forms the basis for all queries in the database concerning that model. Managers are the
gateway to obtaining info from your database; they have a trio of methods that enable you
to perform typical queries.

= all:Return a QuerySet containing all the database records for the model in
question.

= filter:Return a QuerySet containing the model records matching specific
criteria.

= exclude: The inverse of f£ilter—find records that don’t match the criteria.

= get: Obtain a single record matching the given criteria (or raise an error if there are
either no matches or more than one).

Of course, we're getting ahead of ourselves—we haven’t explained what a Queryset
really is yet. QuerySets can be thought of as simply lists of model class instances (or data-
base rows/records), but they’re much more powerful than that. Managers provide a

Using Models

jumping-off point for generating queries, but Querysets are where most of the action
really happens.

QuerySets are multifaceted objects, making good use of Python’s dynamic nature, flex-
ibility, and so-called “duck typing” to provide a trio of important and powerful behaviors;
they are database queries, containers, and building blocks all rolled into one.

QuerySet as Database Query

As evidenced by the name, a Queryset can be thought of as a nascent database query. It
can be translated into a string of SQL to be executed on the database. Because most com-
mon SQL queries are generally a collection of logic statements and parameter matches, it
makes sense that QuerySets accept a Python-level version of the same thing. QuerySets
accept dynamic keyword arguments or parameters that are translated into the appropriate
SQL.This becomes obvious in an example using the Book model class from earlier in this
chapter.

from myproject.myapp.models import Book

books_about_trees = Book.objects.filter(title_ contains="Tree")

The keywords accepted are a mix of your model’s field names (such as title in the
previous example), double underscores for separation, and optional clarification words
such as contains, gt for “greater than,” gte for “greater than or equal to,” in for set
membership testing, and so forth. Each maps directly (or nearly so) to SQL operators and
keywords. See the official documentation for details on the full scope of these operators.

Going back to our example, Book.objects. filter is a Manager method, as explained
previously, and Manager methods always return QuerySet objects. In this case, we’ve asked
the Book default manager for books whose title contains the word “Tree” and have cap-

tured the resultant Queryset in a variable. This Queryset represents a SQL query that can
look like this:

SELECT * FROM myapp_book WHERE title LIKE "$%Tree%";

It’s entirely possible to make compound queries, such as one for the Person model also
defined previously:

from myproject.myapp.models import Person

john_does = Person.objects.filter(last="Doe", first="John")
which would result in the following SQL:

SELECT * FROM myapp_person WHERE last = "Doe" AND first = "John";

Similar results appear when using other previous Manager methods, such as all:

everyone = Person.objects.all()

which turns into the unsurprising SQL query:

SELECT * FROM myapp_person;

105

106

Chapter 4 Defining and Using Models

It should be noted the various query-related options defined in the optional Meta
model inner class affect the generated SQL, as you can expect; ordering turns into ORDER
BY, for example. And as we explore later, Queryset’s extra methods and composition capa-
bilities also transmute the SQL, which is eventually executed on the database.

Finally, if you speak SQL yourself and understand the implications of various query
mechanisms (both in terms of the result sets and the execution times), you will be better
equipped to construct ORM queries, which are faster or more specific than ones you
could otherwise have created. In addition, planned and current development work on
Django makes it easier to pry open QuerySet objects and tweak the resultant SQL—giv-
ing you more power than ever.

QuerySet as Container
Queryset is list-like. It implements a partial 1ist interface and thus can be iterated over
(for record in queryset:),indexed (queryset[0]),sliced (queryset[:5]1), and meas-
ured (len (queryset)).As such, once you're used to working with Python lists, tuples,
and/or iterators, you already know how to use a Queryset to access the model objects
within. Where possible, these operations are accomplished intelligently. For example, slic-
ing and indexing make use of SQL’s LIMIT and OFFSET keywords.

On occasion, you can find you need to accomplish something with a Queryset that
isn’t possible or desirable with the existing features Django’s ORM provides. In these

1S

cases, you can simply turn a Queryset into a list with 1ist, after which point it becomes
true list containing the entire result set. Although this is sometimes necessary or useful—
such as when you want to do Python-level sorting—keep in mind this can cause a lot of
memory or database overhead if your Queryset results in a large number of objects!

Django strives to provide as much power as possible with its ORM, so if you do find
yourself thinking about casting to a list, make sure you spend a few minutes skimming this
book or the official documentation, or poke around the Django mailing list archives.
Chances are good you find a way to solve your problem without pulling the entire
QuerySet INto memory.

QuerySet as Building Block

QuerySet is lazy; it only executes a database query when it absolutely has to, such as
when it is turned into a list or otherwise accessed in ways mentioned in the previous
section. This behavior enables one of the most powerful aspects of Querysets. They do not
have to be stand-alone, one-oft queries, but can be composed into complex or nested
queries. This is because QuerySet exposes many of the same methods as Managers do, such
as filter and exclude, and more besides. Just like their Manager counterparts, these
methods return new Queryset objects—but this time they are further limited by the par-
ent QuerySet’s own parameters. This is easier to understand with an example.

Using Models

from myproject.myapp.models import Person

doe_family = Person.objects.filter (last="Doe")
john_does = doe_family.filter (first="John")
john_guincy_does = john_does.filter (middle="Quincy")

With each step we cut down the query results by an order of magnitude, ending up
with one result object, or at least very few, depending on how many John Quincy Does
we have in our database. Because this is all just Python, you could use a one-liner.

Person.objects.filter(last="Doe").filter (first="John").filter (middle="Quincy")

Of course, the astute reader notices this provides nothing we couldn’t do with a single
call to Person.objects. filter. However, what’s to say we don’t get the earlier john_does
QuerySet in a function call or take it out of a data structure? In that case, we don’t know
the specific contents of the query we're handling—but we don’t always need to.

Imagine we have added a due_date field to our Book model and are responsible for
displaying books that are overdue (defined, naturally, as books whose due date is earlier
than today). We could be handed a Queryset containing all the books the library knows
about, or all the fiction books, or all the books being returned by a specific individual—
the point being that it’s some arbitrary collection of books. It’s possible to take such a col-
lection and narrow it down to show only the books we’re interested in, namely the
overdue ones.

from myproject.myapp.models import Book
from datetime import datetime
from somewhere import some_function_returning_a_queryset

book_queryset = some_function_returning_a_queryset ()
today = datetime.now()

__1t turns into a less-than operator (<) in SQL
overdue_books = book_queryset.filter (due_date__lt=today)

In addition to filtering in this manner, QuerySet composition is absolutely required for
nonsimple logical constructs, such as finding all the Books written by authors named
smith and which are nonfiction.

nonfiction_smithBook.objects.filter (author__last="Smith").exclude(genre="Fiction")

Although it could have been possible to achieve the same result with query options for
negation, such as __genre_ neq or similar (something Django’s ORM used to support in
the past), breaking that logic out into extra Queryset methods makes things much more
compartmentalized. It’s also arguably easier to read this way by breaking the query down
into a few discrete “steps.”

107

108

Chapter 4 Defining and Using Models

Sorting Query Results

It should be noted that Querysets have a handful of extra methods that aren’t present on
Manager objects because they only serve to modify a query’s results and don’t generate
new queries on their own. The most commonly used such method is order_by, which
overrides the default ordering of a Queryset. For example, let’s say our previous Person
class is normally ordered by last name; we can get an individual QuerySet ordered by first
name instead, such as:

from myproject.myapp.models import Person

all_sorted_first = Person.objects.all().order_by('first"')

The resulting guerysSet is the same as any other, but behind the scenes the SQL-level
ORDER BY clause was updated as we requested. This means we can continue to layer on
more syntax for more complex queries, such as finding the first five people sorted by
first name.

all_sorted_first_five = Person.objects.all().order_by('first')[:5]

You can even sort across model relationships by using the double-underscore syntax
you've seen earlier. Let’s pretend for a moment our Person model has a ForeignKey to an
Address model containing, among other things, a state field, and we want to order peo-
ple first by state and then by last name. We could do the following:

sorted_by_state = Person.objects.all().order_by('address__state', 'last')

Finally, it’s possible to reverse a sort order by prefixing the identifying string with a
minus sign, for example, order_by (' -last').You can even reverse a whole Queryset (if,
for example, your code was passing a QuerysSet around and you had no direct control over
the previous call to order_by) by calling a QuerySet’s reverse method.

Other Ways to Alter Queries

Aside from ordering, there are a few other Queryset-only methods to consider, such as
distinct, which removes any duplicate entries in a QuerySet by using SELECT DISTINCT
on the SQL side of things. Then there’s values, which takes a list of field names (includ-
ing fields on related objects) and returns a Queryset subclass, ValuesQuerySet, containing
only the requested fields as a list of dictionaries instead of normal model classes. values
also has a twin method called values_1list, which returns a list of tuples instead of dic-
tionaries. Here’s a quick interactive example of values and values_list.

>>> from myapp.models import Person

>>> Person.objects.values('first')
[{'first' : u'John'}, {'first': u'Jane'}]
>>> Person.objects.values_list('last')
[(u'Doe',), (u'Doe',)]

Another useful but often overlooked method is select_related, which can some-
times help with a common ORM problem of having an undesirably large number of

Using Models

queries for conceptually simple operations. For example, if one were to loop over a large
number of Person objects and then display information on their related address objects
(considering the scenario in the previous section), your database would be queried once
for the list of Persons, and then multiple times, one query per Address.This would be a
lot of queries if your list contained hundreds or thousands of people!

To avoid this, select_related automatically performs database joins in the back-
ground to “prepopulate” related objects, so you end up with a single, larger query—data-
bases are typically better performers with a few big queries than a ton of small ones. Note,
however, select_related does not follow relationships where null=True is set, so keep
that in mind if youre designing a model layout geared for performance.

Some final notes on select_related; you can control how “far” it reaches down a
chain of relationships with the depth argument to prevent a truly gigantic query from
happening if you have a deep object hierarchy. Furthermore, you can select only a few
specific relationships if you have a wider hierarchy with lots of links between objects by
passing their field names as positional arguments.

As an example, the following is how one would use select_related to do a simple
join of our Person with its address and to avoid any other defined Foreignkey fields on
either Person or Address:

Person.objects.all().select_related('address', depth=1)

Not a very exciting example, but that’s rather the point; select_related and these
other methods are only useful when you need to grab more or less than the query engine
does by default. If you haven’t worked with medium or large Web sites before, these don’t
seem too useful yet, but they’re indispensable once your application is fully developed, and
you need to start worrying about performance!

Details on all these functions, as well as order_by and reverse, can be found on the
official Django documentation.

Query Keyword Composition with @ and ~Q

QuerySet is further augmented by a keyword-argument-encapsulating class named o,
which enables even more complex logic, such as composition of AND and OR using the
& and | operators (which, although similar, should not be confused with their equivalent
Python operators, and and or or the bitwise & and |). The resulting ¢ objects can be used
in place of literal keyword arguments within filter or exclude methods, such as:

from myproject.myapp.models import Person
from django.db.models import Q

specific_does = Person.objects.filter(last="Doe").exclude (
Q(first="John") | Q(middle="Quincy")

109

110

Chapter 4 Defining and Using Models

Although that example is rather contrived—there probably aren’t many situations
where you’d care about searching for a specific first or middle name—it should illustrate
how ¢ is used.

Like Querysets themselves, 0 objects can be composited together over time. The & and
| operators, when used on s, return new Q objects equivalent to their operands. For
example, you can create potentially large queries via looping.

first_names = ["John", "Jane", "Jeremy", "Julia"]

first_name_keywords = Q() # Empty "query" to build on
for name in first_names:
first_name_keywords = first_name_keywords | Q(first=name)

specific_does = Person.objects.filter(last="Doe").filter (first_name_keywords)

As you can see, we created a short for loop, primed it with the first item in our list,
and then kept “appending” to the resulting 0 object by using the | operator. This example
actually isn’t the best—such a simple scenario would be served better by the __in query
operator—but hopefully it illustrates the potential power of composing 0 objects together
programmatically.

Note

We could have saved a few lines in the previous example by using some functional program-
ming tools Python provides, namely list comprehensions, the built-in method reduce, and
the operator module. The operator module provides functional equivalents to operators,
such as or_ for | and and_ for &. The three lines surrounding the for loop could have been
rewritten as reduce (or_, [Q(first=name) for name in first_names]). As always,
because Django is “just Python,” this sort of approach can be applied to just about any
aspect of the framework.

Finally, you can use the single-operand operator ~ with Q objects to negate their con-
tents. Although the gueryset exclude method is a more common solution for such
queries, ~0 shines when your query logic gets a bit more complex. Take for example this
compound one-liner that grabs all the Does, plus anyone named John Smith, but not any-
one named John W. Smith.

Person.objects.filter(Q(last="Doe") |
(Q(last="Smith") & Q(first="John") & ~Q(middle__startswith="w"))

Tacking on exclude (middle_startswith="W") to such a query wouldn’t have quite
done the trick—it would have excluded any Does with a middle initial of ““W,” which is
not what we want—but we were able to express our specific intentions with ~Q.

Using Models

Tweaking the SQL with Extra

As a final word on what you can accomplish with Django’s query mechanisms (and a
lead-in to the next section about what they aren’t currently capable of), we examine

the QuerySet method extra. It’s a versatile method, which is used to modify aspects of
the raw SQL query that is generated by your gueryset, accepting four keyword
arguments that we describe in Table 4.2. Note the examples in this section can make use
of attributes that were not defined in earlier model examples, for the sake of being
more illustrative.

Table 4.2 Some of the Parameters that extra Accepts

extra Parameters Description

select Modify parts of SELECT statement
where Provide additional WHERE clauses
tables Provide additional tables

params Safely substitute dynamic parameters

The select parameter expects a dictionary of identifiers mapped to SQL strings,
which enables you to add custom attributes to the resultant model instances based
on SQL seLECT clauses of your choosing. These are handy when you want to define
simple additions to the information you pull out of the database and limit those to
only a few parts of your code (as opposed to model methods, which execute their
contents everywhere). In addition, some operations are simply faster in the
database than they would be in Python, which can be useful for optimization
purposes.

Here’s an example of using select to add a simple database-level logic test as an extra
attribute:

from myproject.myapp.models import Person

SELECT first, last, age, (age > 18) AS is_adult FROM myapp_person;
the_folks = Person.objects.all().extra(select={'is_adult': "age > 18"})

for person in the_folks:
if person.is_adult:
print "%s %s is an adult because they are %d years old." % (person.first,
person.last, person.age)

The where parameter takes as input a list of strings containing raw SQL WHERE
clauses, which are dropped straight into the final SQL query as-is (or almost as-is; see
params in the following). where is best used in situations when you simply can’t make
the right query by using attribute-related keyword arguments such as __gt or
__icontains. In the following example, we use the same SQL-level construct to both

111

112

Chapter 4 Defining and Using Models

search by, and return, a concatenated string using PostgreSQL-style concatenation

with | |:

SELECT first, last, (first|]|last) AS username FROM myapp_person WHERE

first||last ILIKE 'jeffreyf%';

matches = Person.objects.all().extra(select={'username': "first||last"},
where=["first||last ILIKE 'jeffreyf%'"])

Possibly the simplest extra parameter is tables, which enables you to specify a list of
extra table names. These names are then slotted into the FroM clause of the query, often
used in tandem with JOIN statements. Remember by default, Django names your tables
as appname_modelname.

Here’s an example of tables, which deviates a bit from the rest (and returns to the
Book class with an additional author_last attribute) for brevity’s sake:

from myproject.myapp.models import Book

SELECT * FROM myapp_book, myapp_person WHERE last = author_last

joined = Book.objects.all().extra(tables=["myapp_person"], where=["last =
author_last"])

Finally, we come to the params argument. One of the “best practices” of performing
database queries from higher-level programming languages is to properly escape or insert
dynamic parameters. A common mistake among beginners is to do simple string concate-
nation or interpolation to get their variables into the SQL query, but this opens up a
whole host of potential security holes and bugs.

Instead, when using extra, make use of the params keyword, which is simply a list of
the values to use when replacing $s string placeholders in the where strings, such as:

from myproject.myapp.models import Person
from somewhere import unknown_input

Incorrect: will "work", but is open to SQL injection attacks and related problems.
Note that the '%s' is being replaced through normal Python string interpolation.

[}

matches = Person.objects.all().extra(where=["first = '%s'" % unknown_input()])
Correct: will escape quotes and other special characters, depending on
the database backend. Note that the '%s' is not replaced with normal string

interpolation but is to be filled in with the 'params' argument.

matches = Person.objects.all().extra(where=["first = '%s'"],
params=[unknown_input ()])

Utilizing SQL Features Django Doesn’t Provide

The final word on Django’s model/query framework is that, as an ORM, it simply can’t
cover all the possibilities. Few ORM:s claim to be a 100 percent complete replacement for
interfacing with one’s database via the regular channels; Django is no different, although

Using Models 113

the developers are always working to increase its flexibility. Sometimes, especially for those
with extensive prior experience with relational databases, it’s necessary to step outside the
ORM.The following sections are a few thoughts on how this is possible.

Schema Definition and Custom Initial SQL

Aside from standard tables and columns, most RDBMS packages provide additional fea-
tures such as views or aggregate tables, triggers, the capability to define “cascade” behavior
when rows are deleted or updated, and even custom SQL-level functions or datatypes.
Django’s ORM—Iike most others—is largely ignorant of such things at the time of this
writing, but that doesn’t mean you can’t use them.

One recently added aspect of Django’s model definition framework is the capability to
define custom initial SQL files, which must be .sql files within a sql subdirectory of an
application, such as myproject/myapp/sql/triggers.sql. Any such file is automatically
executed on your database whenever you run manage .py SQL-related commands such as
reset or syncdb and is included in the output of sqlall or sqlreset.The feature has its
own manage.py command, sqlcustom, which (such as the other sq1* commands) prints
out the custom SQL it finds.

Through use of initial SQL, you can store schema definition commands within your
Django project and know that they are always included when you use Django’s tools to
build or rebuild the database. Most of the following bullet points can be accomplished by
making use of this feature:

= Views: Because SQL views are effectively read-only tables, you can support them by
creating Model definitions to mirror their layout, and then use the normal Django
query API to interact with them. Note you need to be careful not to execute any
manage.py SQL-related commands that would attempt to write such a model to
the database, or you'd run into problems. As with any SQL library accessing such
views, attempts to write to the view’s table results in errors.

= Triggers and cascades: Both work just fine with inserts or updates generated by nor-
mal ORM methods and can be defined via initial SQL files, depending on your
database (cascade constraints can be manually added to the output of manage.py
sqlall,if they cannot be created after the fact).

= Custom functions and datatypes: You can define these in initial SQL files, but need
to make use of QuerySet .extra to reference them from within the ORM.

Fixtures: Loading and Dumping Data

Although not technically a SQL extra per se, we'd like to include in this section a look at a
Django feature related to working with your database outside the ORM itself: fixtures.
Fixtures, touched on briefly in Chapter 2, are a name for sets of database data stored in flat
files, which are not usually raw SQL dumps, but a database-agnostic (and often human-
readable) representation, such as XML,YAML, or JSON.

114

Chapter 4 Defining and Using Models

The most common use for fixtures is as initial data loaded into a database when it is
created or re-created, such as “prefilling” database tables used for categorizing user-entered
data or loading up test data during application development. Django supports this in a
similar fashion to the initial SQL outlined previously; each Django app is searched by a
fixtures subdirectory, and within it, a file named initial_data.json (or .xml, .yaml,
or another serialization format). These files are then read using Django’s serialization mod-
ule (see Chapter 9, “Liveblog,” for more on this topic) and their contents used to create
database objects, whenever database create/reset commands are run, such as manage.py
syncdb Or reset.

Here’s a quick example of what a simple JSON fixture file for our Person model class
can look like:

[

"pk": 1",
"model": "myapp.person",
"fields": {
"first": "John",
"middle": "Q",
"last": "Doe"
}
},
{
"pk": "2",
"model": "myapp.person",
"fields": {
"first": "Jane",
"middle": "N",
"last": "Doe"

]

and the output from importing it into our database:
user@example: /opt/code/myproject $./manage.py syncdb

Installing json fixture 'initial_data' from '/opt/code/myproject/myapp/fixtures"'.
Installed 2 object(s) from 1 fixture(s)

In addition to initial data, fixtures are also useful as a more ‘neutral’ (although some-
times less efficient or specific) database dump format than using your database’s SQL
dump tool—for example, you could dump a Django application’s data from a PostgreSQL
database and then load it into a MySQL database, something that’s not nearly as easy with-
out the intermediate translation step of fixtures. This is accomplished with manage.py
dumpdata and/or loaddata

When using dumpdata and loaddata, the location and name of the fixtures used is
more flexible than with initial data. They can have any name (as long as the file extension

Using Models

is still that of a supported format) and can live in the fixtures subdirectory, any directory
specified in the FIXTURES_DIRS setting, or even on an explicit path provided to loaddata
or dumpdata. For example, we can dump out the two Person objects imported previously,
like so (using the indent option to make the output more human-readable).
user@example: /opt/code/myproject $./manage.py dumpdata --indent=4 myapp >

= /tmp/myapp . json

user@example: /opt/code/myproject $ cat /tmp/myapp.json

[

"pk": 1,
"model": "testapp.person",
"fields": {

"middle": "Q",

"last": "Doe",

"first": "John"

"pk": 2,
"model": "testapp.person",
"fields": {
"middle": "N",
"last": "Doe",
"first": "Jane"

As you can see, fixtures are a useful way of dealing with your data in a format that’s a
bit easier to work with than raw SQL.

Custom SQL Queries

Finally, it’s important to remember if the ORM (including the flexibility provided by extra)
doesn’t meet your query-related needs, it’s always possible to execute fully custom SQL by
using a lower-level database adapter. Django’s ORM uses these modules to interface to your
database as well. These modules are database-specific, depending on your Django database
setting, and likely conform to the Python DB-API specification. Simply import the
connection object defined in django.db, obtain a database cursor from it, and query away.

from django.db import connection

cursor = connection.cursor ()

cursor.execute ("SELECT first, last FROM myapp_person WHERE last='Doe'")
doe_rows = cursor.fetchall()

for row in doe_rows:

o

print "%s %s" % (row[0], row[1l])

115

116

Chapter 4 Defining and Using Models

Note

See the Python DB-API documentation, the “Database” chapter of Core Python Programming,
and/or the database adapter documentation (see withdjango.com) for details on the syntax
and method calls provided by these modules.

Summary

We’ve covered a lot of ground in this chapter, and with luck, you’ve come out of it with
an appreciation for the amount of thinking that can (and usually should) go into one’s
data model.You've learned how ORMs can be useful, learned how to define simple
Django models as well as more complex ones with various relationships, and seen the
special inner classes Django uses to specify model metadata. In addition, we hope you're
convinced of the power and flexibility of the Queryset class as a means of pulling infor-
mation out of your models and understand how to work with your Django application’s
data outside the ORM itself.

In the next two chapters, Chapters 5,“URLs, HTTP Mechanisms, and Views” and 6,
you learn how to make use of your model in the context of a Web application by setting
up queries in your controller logic (views) and then displaying them in your templates.

5

URLs, HTTP Mechanisms,
and Views

In the previous chapter, you learned how to define the data models which form the
underpinnings of most Web applications; in the chapter following this one, we show you
how to display those models with Django’s template language and forms. However, by
themselves those two aspects of a Web framework don’t do much; you need controller
logic deciding what data to render which template with and URL dispatching to deter-
mine what logic is performed for a given URL.

This chapter details how Django implements the HTTP request-response architecture
introduced in Chapter 3,“Starting Out,” followed by an explanation of the simple Python
functions that form controller logic, as well as some built-in helper functions that assist
with common tasks.

URLs

The mechanisms for tying together a request’s URL and the resulting response are key to
any Web development framework. Django uses a fairly simple, but powerful mechanism
which enables you to map regular-expression-based configuration items to Python view
methods, as well as link these lists of mappings together by including them within one
another. Such a system is easy to use, but enables practically unlimited flexibility.

Introduction to URLconfs

The mappings mentioned previously are stored in Python files called URLconfs. These
files must expose a urlpatterns object, which should be the result of a patterns func-
tion defined by Django. The patterns function, when called, consists of the following:

= A leading prefix string, which can be blank

= One or more Python tuples consisting of a regular expression (regex) string match-
ing a URL or set of URLs; a view function object or string; and, optionally, a dict
of arguments for that view function

118

Chapter 5 URLs, HTTP Mechanisms, and Views

Here’s an example to make sense of this, using an extended version of the URLconf
from our blog application in Chapter 2,“Django for the Impatient: Building a Blog”:

from django.conf.urls.defaults import *

urlpatterns = patterns('myproject.myapp.views',
(r'~$', 'index'),
(r'~archives/ (?P<year>\d{4})/ (?P<month>\d{2}) / (?P<day>\d{2})/$', 'archive'),

Clearly, the regexes (first introduced in Chapter 1, “Practical Python for Django”) are
the star of the show here. Aside from the lack of leading slashes (which are omitted due to
their omnipresence in URLs), the primary thing to look for is the regex characters
denoting the beginning and end of a string, ~ and $, respectively.

In practice, the ~ is nearly always required to remove ambiguity about what to match.
The URL /foo/bar/ is not the same as /bar/, but the URL-matching regex r'bar/"
would match both; r' ~bar/"' is more specific and matches only the latter.

The ¢ character is also used more often than not, for the same reason. It ensures the
regex only matches the end of a URL and not the middle. However, $ is omitted for
URL items designed to include other URLconf files because a URL leading into an
include is not the final URL, but only part of one.

Note

Examine the first tuple in the previous example. You see it consists solely of r'~$'; that
means it matches the root URL of the Web site, /. As mentioned previously, Django strips
out the leading slash, and once that’s gone, we're left with an empty string with nothing
between the beginning (~) and the end ($). You use this a lot in your Django projects to
define index or landing pages.

Another aspect of these regexes is they can use a part of regex syntax called symbolic
groups (the parentheses-clad expressions beginning with ?P<identifier>) to capture
parts of the URL that vary. This feature provides the power necessary to define dynamic
URULs. In the previous example, we have an archives section of a blog, addressing individ-
ual entries based on their date. The fundamental information being accessed by the
URL—a blog entry—does not change; only the date being accessed. As we see later, the
values captured here are passed to the specified view function, which can use them in a
database query or however else it sees fit.

Finally, once you've defined the regex, you simply need to note the function it’s linking
to and possibly some extra keyword parameters (stored here as a dict). The first argument to
patterns, if not empty, is prepended to the function string. Going back to the example for
this section, you note the prefix string is 'myproject.myapp.views';as a result, the full
Python module paths go from 'index' and 'archive' to 'myproject.myapp.views.
index' and 'myproject.myapp.views.archive' s respectively.

URLs

Replacing Tuples with url

A relatively late addition to Django’s URL dispatching mechanism is the url method,
which is designed to replace the tuples outlined previously while remaining nearly identi-
cal in structure. It takes the same three “arguments”—a regex, a view string/function, and
optional argument dict—and adds another optional, named argument: name. name is sim-
ply a string, which should be unique among all your URLs; then, you can use it elsewhere
to refer back to this specific URL.

Let’s rewrite the previous example using url.

from django.conf.urls.defaults import *

urlpatterns = patterns('myproject.myapp.views',
url(r'~$', 'index', name='index'),
url (r'~archives/ (?P<year>\d{4})/ (?P<month>\d{2}) / (?P<day>\d{2})/$', 'archive',
name='archive'),

As you can see, it’s a simple drop-in replacement for the older tuple syntax. Because it’s
an actual function and not just a tuple, it enforces what used to be merely a convention.
The first two arguments are required and have no name, although the argument dict is
now an optional named argument, kwargs, along with the new optional named argu-

ment, name.

Note

kwargs and name are named arguments instead of positional ones to support the fact they
are both optional. You can specify neither of them, either of them, or both without running
into problems. Positional arguments (or the use of tuples) would make such a setup far
more difficult.

We're presenting this url approach after the tuple-based syntax because it’s newer; even
by the time you read this, there are still likely to be more Django URLconfs out in the
wild utilizing tuples than using url. However, we strongly encourage you to use url in
your own code; we have endeavored to set a good example by using it in the rest of this
book because it offers more power and flexibility than the tuple approach.

Finally, see the example applications in Part III,“Django Applications by Example,” for
more information on the name argument and how it can be used to reference back to
your URLs from other parts of the code.

Using Multiple patterns Objects

One trick commonly used by Django developers is that of refactoring their UR Lconfs
into multiple patterns calls per URL file, at least for files which have a nontrivial num-
ber of entries. This is possible because the return type of patterns is an internal Django
object type that can be appended to as if it were a list or other container type. As such, it’s
easy to concatenate multiple such objects together, and thus it’s possible and desirable to

119

120

Chapter 5 URLs, HTTP Mechanisms, and Views

segregate them based on the prefix string. Here’s a semi-abstract example representing a
top-level URL tying together multiple apps.

from django.conf.urls.defaults import *

urlpatterns = patterns('myproject.blog.views',

url(r'~$', 'index'),
url(r'”~blog/new/$', 'new_post'),
url(r'”~blog/topics/ (?P<topic_name>\w+)/new/S$', 'new_post'),

urlpatterns += patterns('myproject.guestbook.views',
url (r'~guestbook/$', 'index'),
url (r'~guestbook/add/$', 'new_entry'),

urlpatterns += patterns('myproject.catalog.views',
url (r'”~catalog/$', 'index'),

Note the use of the += operator for the second and third calls to patterns. By the end
of the file, urlpatterns contains a conglomerate of all six defined URLs, each with their
own distinct mappings thanks to the different prefix arguments. Of course, astute readers
notice this still isn’t the height of refactoring. The “blog,” “guestbook” and “catalog”
sections of the URL definitions are themselves slightly repetitive. Next, we cover how to
streamline even further by including other URLconfs.

Including Other URL Files with include

The refactoring mindset seen in the previous section can be further applied, by breaking
up URLconf files into multiple such files. This is most commonly seen in projects consist-
ing of multiple apps, where there can be a “base” app defining an index page or other site-
wide features such as authentication. The base application’s UR Lconf then defines the
subsections filled in by other apps and uses a special include function to pass off further
URL dispatching to said apps, as seen here in an update to the previous example.

urls.py

from django.conf.urls.defaults import *

urlpatterns = patterns('myproject.blog.views',
url(r'~$', 'index'),
url(r'~blog/', include('myproject.blog.urls'),

urlpatterns += patterns('',
url (r'~guestbook/', include('myproject.guestbook.urls')),

URLs

urlpatterns += patterns('',
url(r'”~catalog/', include('myproject.catalog.urls')),

blog/urls.py

urlpatterns = patterns('myproject.blog.views',
url(r'*new/$', 'new_post'),
url (r'~topics/ (?P<topic_name>\w+) /new/$', 'new_post'),

guestbook/urls.py

urlpatterns += patterns('myproject.guestbook.views',
url(r'”~$', 'index'),
url(r'*add/$', 'new_entry'),

catalog/urls.py

urlpatterns += patterns('myproject.catalog.views',
url(r'~$', 'index'),

This example is actually a bit larger than the previous one, but hopefully you can see
the benefits for a realistic Web site with dozens of potential URLs for each section; in
each scenario, we save a decent amount of typing and repetition of the “blog,” “guest-
book,” and “catalog” parts of the URL definitions. Specifically, we now have a multi-app
Web site delegating most URL: to its subapplications, with the exception of the index
page, which lives in the blog application (although you can make a base or similar appli-
cation for such things—it’s entirely up to you).

URULconf including can be valuable even within single applications—there’s no hard
limit on when to use multiple apps versus individual ones, so it’s entirely possible to have a
Django app with hundreds of URLs. Most developers, in such a situation, would quickly
start organizing things into modules, and UR Lcont including supports this as well. In gen-
eral, the organization of your site is up to you, and the UR Lconf mechanisms have been
set up to be as flexible as possible, in which includes play a large part.

Function Objects Versus Function-Name Strings

Throughout this section, we’ve been using strings to denote the Python module path
to the view functions to which our URLs link. However, that’s not the only way to go
about it; Django also enables you to pass in a callable object in place of a string, such as:

121

122

Chapter 5 URLs, HTTP Mechanisms, and Views

from django.conf.urls.defaults import *
from myproject.myapp import views

urlpatterns = patterns('', # Don't need the prefix anymore
url(r'~$', views.index),
url(r'”~blog/', include('myproject.blog.urls')),

This opens up the door to a lot of functionality, such as using decorator functions to
wrap generic views or even creating your own callable objects to do more complex dele-
gation to different views. See Chapter 11,“Advanced Django Programming,” for more on
decorators and other tricks usable with callable views.

Note

It's sometimes tempting to do a blanket from myproject.myapp.views import * in
your URLconf to use callable views, but this can lead to problems when mixing multiple view
modules—imagine two separate view files each defining its own index view. Therefore it's
probably smart to follow the previous example and import each view module as its own
object (using the from x import y as z style if necessary), resulting in a cleaner local
namespace.

Modeling HTTP: Requests, Responses, and
Middleware

You now understand how to set up your URL definitions and associate URLs with view
functions; now it’s time to detail the ecosystem surrounding those view functions. As dis-
cussed in Chapter 3, Django models HTTP in a relatively simple request-response
dichotomy with Python objects for requests and responses. Along with the URL dispatch-
ing and view functions, a request to your Web application flows such as:

= HTTP request occurs to your Web server.
= Web server passes request to Django, which makes a request object.
= Django consults your URLconf to find the right view function.

= That view function is called with the request object and any captured URL
arguments.

= The view then creates and returns a response object.
= Django turns that response object into a format your Web server understands.

= The Web server then responds to the requesting client.

We first go over the request and response objects and their components, and then get
into Django middleware, which provides “hooks” into various stages of the previous
process. Afterward, the next major section teaches you what you need to know about the
views themselves.

Modeling HTTP: Requests, Responses, and Middleware

Request Objects

Once you have your URLconfs set up, you need to define what behavior the URLs
exhibit. We go over the details of view methods in a short while, but for now we show
you the layout of the HTTP request and response objects, which those views are dealing
with. All view functions accept a “request” parameter, which is an HttpRequest object, a
nicely packaged set of attributes representing the raw HTTP request handed down from
the Web server.

GET and POST Dictionaries

The most commonly accessed pieces of request-related data Web developers use are the
GET and POST data structures, which are attributes of the HttpRequest object
(request.GET and request.POST, as you can expect) and are represented as Python dic-
tionaries. Although identical in structure, they are populated in two different ways, the
importance of which is more than you can expect at first. Together, they offer a flexible
way to parameterize Web requests.

Note

Although closely related to Python’s dict builtin, Ht tpRequest’s GET and POST attributes
are actually instances of a Django-specific dict subclass, QueryDict, which is designed to
mimic the underlying behavior of these data structures in the HTTP CGI specification. All key-
value pairs store the value as a list, even in the case of a single value per key to correctly
handle the cases where the HTTP server does return multiple values. Typical use of
QueryDicts as dictionaries returns single items for convenience; you can use QueryDict
methods, such as getlist, when you're interested in multiple values.

GET parameters are passed as part of the URL string, but are not technically part of
the URL itself in that they do not define a different resource (or view) but only change
the behavior of the resource they’re attached to. For example, the URL /userlist/ can
point to a page that lists the users of a community Web site; if the developer wants to

break the list so it isn’t gigantic, he can decide to note the page number as a GET variable:

/userlist/?page=2.The view being accessed is still the same, but the developer can look
for a page key/value pair in the GET dictionary and return the correct page, such as in
this abstract example.

def userlist(request):
return paginated_userlist_page (page=request.GET['page'])

Note with request.GET, as with the other dict-like attributes of the request object, it’s
helpful to make use of dictionary methods such as get (see Chapter 1 “Practical Python
for Django,” for a refresher on dictionaries), so your logic doesn’t break down when the
parameter you're looking for isn’t specified.

POST parameters are not part of the URL but are effectively hidden from the user,
often generated by an HTML form within a Web page. One of the attributes of the FOrRM
tag, action, denotes which URL the data will be submitted to; if the user submits the
form, the URL is called with a POST dict made up of the form fields. This is how most

123

124

Chapter 5 URLs, HTTP Mechanisms, and Views

Web forms operate, although they can technically submit their data via the GET method
as well. (This is not usually done, as it results in long, messy URLs for no good reason.)

In addition to GET and POST, Ht tpRequest objects expose a REQUEST dictionary, which
searches both of the former in an attempt to return the requested key. This can be conven-
ient in situations where a given key/value pair can be sent to your view via either
method, and you’re unsure which was used; however, due to the Pythonic philosophy of
“explicit is better than implicit,” most experienced Django programmers tend not to use
this feature.

Cookies and Sessions

Following GET and POST, the next most commonly used aspect of request objects is
request.COOKIES, which is yet another dictionary whose key/value pairs expose the
HTTP cookies stored in the request. Cookies are a simple method by which Web pages
can store persistent pieces of information in a user’s browser—they power most authenti-
cation systems on the Web and are used by some commercial sites to track a user’s surfing
history.

Most cookies, generally, are used to enable a feature called sessions. This means that a
‘Web page can ask the browser for a value identifying the user (which is set when the user
first connects to the site or when the user logs in), and then uses this information to cus-
tomize the behavior of the page for that user. Because cookies are easily manipulated on
the client side, thus making it unsafe to store any real data in them, most Web sites store
information in a server-side session object (usually via the site’s database) and leave only a
unique session ID in the cookie itself.

Sessions are often used to implement state, as the HT'TP protocol is by nature state-
less—each request/response cycle stands by itself and has no knowledge of previous
requests nor ways to pass information to later ones. With sessions, Web applications can
work around this, storing items of data—such as messages to the user about whether sub-
mitting a form successfully saved her changes—on the server and sending them to the
user in subsequent responses.

In Django, sessions are presented as yet another dictionary-like attribute of the
HttpRequest object, request.session (note the session is lowercase, unlike the
others—because sessions are not actually part of the HTTP protocol). Like the cookIEs
attribute before it, session can be both read from and written to by one’s Python code.
‘When first presented to your code, it contains the session as read from the database based
on the user’s session cookie. If written to, it saves your changes back to the database, so
they can be read later.

Other Server Variables
The previous aspects of the request object are the most often used; however, requests con-
tain a host of other, usually read-only variables, some of which are part of the HTTP

Modeling HTTP: Requests, Responses, and Middleware

specification and others which are convenience attributes specific to Django. The follow-
ing are all direct attributes of the request object:

= path:The portion of the URL after the domain, for example, /blog/2007/11/04/;
this is also the string that is handled by the URLconf.

= method: One of two strings, 'GET' or 'POST', specifying which HTTP request
method was used in this request.

= encoding:A string specifying the encoding character set used to decode any form
submission data.

= FILES:A dict-like object containing any files uploaded via a file input form field,
each represented as another dictionary with key/value pairs for the filename, the
content type, and the file content itself.

= META: Another dictionary, containing the HTTP server/request variables not han-
dled by the other aspects of the request, including CONTENT_LENGTH, HTTP_REFERER,
REMOTE_ADDR, SERVER_NAME, and so forth.

= user:The Django authentication user, which only appears if your site has Django’s
authentication mechanisms activated.

= raw_post_data:The raw, unfiltered version of the POST data contained within this
request. The use of request . POST is almost always preferable over accessing
request.raw_post_data, but it’s here for examination by those with advanced needs.

Response Objects

At this point, you've read about the information that is passed into our view function;
now we examine what it’s responsible for returning, namely a response. From our point of
view, responses are simpler than requests—their primary data point is the body text, stored
in the content attribute. It’s usually a large string of HTML, and it’s so central to
HttpResponse objects there are a couple of ways of setting it.

The most common method is via the act of creating the response object—
HttpResponse takes a string as a constructor argument, which is then stored in content.

response = HttpResponse("<html>This is a tiny Web page!</html>")

Just with that, you’ve got a fully functioning response object, one worthy of being
returned farther up the stack to the Web server and forwarded to the user’s browser. How-
ever, it’s sometimes useful to build the response content piece-by-piece; to support this,
HttpResponse objects implement a partial file-like behavior, notably the write method.

response = HttpResponse()
response.write("<html>")
response.write("This is a tiny Web page!")
response.write("</html>")

125

126

Chapter 5 URLs, HTTP Mechanisms, and Views

Of course, this means you can use an HttpResponse for any code that expects a file-
like object—for example, the csv module’s CSV writing utilities—that adds a lot of flexi-
bility to the process of generating the information your code returns to end users.

Another key aspect of response objects is the capability to set HTTP headers by treat-
ing the HttpResponse object like a dictionary.
response = HttpResponse()
response["Content-Type"] = "text/csv"
response["Content-Length"] = 256

Finally, Django provides a number of HttpRequest subclasses for many common
response types, such as HttpResponseForbidden (which uses the HTTP 403 status code)
and HttpResponseServerError (similar but for HTTP 500 or internal server errors).

Middleware

Although the basic flow of a Django application is fairly simple—take in request, find
appropriate view function, return a response—extra layers are available that can be lever-
aged to add a lot of power and flexibility. One of these extra layers is middleware—
Python functions executed at various points in the previous process that can alter the
effective input (by modifying the request before it reaches the view) or output (modifying
the response created by the view) of the entire application.

A middleware component in Django is simply a Python class which implements a
certain interface, namely it defines one of a number of methods with names such as
process_request or process_view. (We examine the most commonly used ones in the
following subsections.) When listed in the MIDDLEWARE_CLASSES tuple in your
settings.py file, Django introspects the middleware class and calls its method at the
appropriate time. The order of classes listed in your settings file determines the order in
which they are executed.

Django comes with a handful of built-in middleware, some of which are generally use-
ful and others which are required for specific “contrib” applications such as the authenti-
cation framework. See the official Django documentation for more on these.

Request Middleware
On the input side sits request middleware, which is defined as a class that implements the
process_request method, as in the following example:

from some_exterior_auth_lib import get_user

class ExteriorAuthMiddleware (object) :
def process_request(self, request):
token = request.COOKIES.get ('auth_token')
if token is None and not request.path.startswith('/login'):
return HttpResponseRedirect('/login/')
request.exterior_user = get_user (token)

Views/Logic

Note the line assigning a value to request.exterior_user, which illustrates a com-
mon use of request middleware: adding extra attributes to the request object. In the situa-
tion where that line is called, process_request implicitly returns None (Python functions
always return None if they lack an explicit return statement), and in that case Django
continues to process other request middleware and eventually the view function itself.

If, however, the test checking for a valid auth token (and making sure the user isn’t cur-
rently trying to log in!) fails, our middleware redirects the user to the login page. This
illustrates the other possible behavior of middleware methods; they can return an
HttpResponse (or subclass) that is immediately sent off to the requesting client. In this
case, because our middleware is a request middleware, everything past that point in the
normal flow of things—including the view that would have been called—is skipped.

Response Middleware

As you can expect, response middleware is run on the HttpResponse objects returned by
view functions. Such middleware must implement the process_response method, which
accepts request and response parameters and returns an HttpResponse Or subclass.
Those are the only limitations—your middleware can modify the response it is given or
create an entirely new response and return that instead.

One of the most common uses of response middleware is to inject extra headers into
the response, either across the board—such as enabling caching-related HTTP features—
or conditionally, such as a built-in middleware that sets Content-Language equal to the
current translation.

Following is a trivial example that does a simple search and replace of “foo” with “bar”
on all text output by the Web application:

class TextFilterMiddleware (object) :
def process_response(self, request, response):
response.content = response.content.replace('foo', 'bar')

We could have made this a more realistic example that filters out naughty words
(which can be useful for a community Web site, for example), but this is a family book!

Views/Logic

Views (née controllers) form the core of any Django Web application in that they provide
nearly all the actual programming logic. When defining and using the models, we’re data-
base administrators; when writing the templates, we'’re interface designers; but when
writing views, we're truly soffware engineers.

Although the views themselves can easily account for a large portion of your source
code, the Django framework code surrounding views is surprisingly slim.Views represent
your business logic and are thus the aspect of a Web application which needs the least glue
code and the most custom work. At the same time, built-in generic views are one of the
most touted time-savers in Web development frameworks such as Django, and we introduce
these and methods of using them both on their own and in tandem with custom views.

127

128

Chapter 5 URLs, HTTP Mechanisms, and Views

Just Python Functions

At the heart of it, Django views are Python functions, plain and simple. The only restric-
tion on view functions is they must take an HttpReguest object and return an
HttpResponse object, which is described previously. Also previously mentioned are the
regex patterns from the URLcontfs, in which you can define named groups. Combined
with an optional dictionary parameter, they provide the arguments to the view function,
as in the following example (slightly altered from its earlier incarnation):
urlpatterns = patterns('myproject.myapp.views',

url (r'*archives/ (?P<year>\d{4})/ (?P<month>\d{2}) / (?P<day>\d{2})/$"', 'archive',

{'show_private': True}),

Combined with the HttpRequest object, the archive view function referenced by the
previous URL could have a signature such as:

from django.http import HttpResponse

def archive(request, year, month, day, show_private):
return HttpResponse ()

As long as it returns an HttpResponse of some kind, the inner guts of the method are
inconsequential; what we're seeing here is essentially an API. As with any API, you can use
prewritten code implementing it or write your own from scratch. We examine your
options in that order.

Generic Views

Possibly the most-touted aspect of Django, and Web frameworks in general, is the capabil-
ity to use predefined code for the so-called CRUD operations that make up most of the
average Web application. CRUD stands for Create, Read (or Retrieve), Update, and
Delete, the most common actions taken in a database-backed application. Showing a list of
items or a detail page for a single object? That’s Retrieve. Displaying an edit form and
altering the database when it’s submitted? That’s Update or Create, depending on your
application and the form in question. Delete should need no explanation.

These tasks and their variants are all provided for by Django’s set of generic views. As
previously shown, they are simply Python functions, but ones that are highly abstracted
and parameterized to achieve maximum flexibility in their defined role. Because they
handle the logic, framework users simply need to refer to them in their URLconf files,
pass the appropriate parameters, and make sure a template exists for the view to render
and return.

For example, the object_detail generic view is intended to facilitate display of a sin-
gle object and takes its parameters from both the URL regex and the argument dictionary
to do so:

from django.views.generic.list_detail import object_detail
from django.conf.urls.defaults import *

Views / Logic

from myproject.myapp.models import Person

urlpatterns = patterns('',
url (r'"people/ (?P<object_id>\d+)/$', object_detail, {
'queryset': Person.objects.all()

1)

In the previous example, we've defined a regex that matches URLs such as
/people/25/, where 25 is the database ID of the Person record we want to display. The
object_detail generic view needs both an object_id argument and a QuerySet it can
filter to find the object identified by that ID. In this case, we provide object_id via the
URL and the gqueryset via the argument dictionary.

Passing Full QuerySets into Generic Views

It can appear inefficient to pass in Person.objects.all () because if executed as-is that
QuerySet could be an enormous list of all Person objects! However, remember what you
saw in Chapter 4, “Defining and Using Models”"—qQuerySets can be, and usually are, fil-
tered with £ilter and/or exclude before they actually turn into a database query. Because
of this, you can rest assured the object_detail generic view filters for the specific object
in question, resulting in a properly sized query.

Furthermore, by requiring a full-fledged QuerySet instead of, say, the model class (which
would be another way of specifying what type of object to look for) Django enables us to do
our own filtering if we so choose. For example, an employee-only detail page could pass
Person.objects.filter (is_employee=True) into object_detail instead of
Person.objects.all().

As always, Django’s core team tries to make decisions that give you more flexibility, even if
the resulting functionality sometimes appears unintuitive at first glance.

Generic views often expose a handful of options. Some are specific to that view;
although others are global, such as a template_name argument enabling the user to over-
ride the default location of the view’s template or an extra_context dict which enables
the user to pass extra information into the template’s context. (See Chapter 6, “Templates
and Form Processing,” for more on templates and contexts.) You can see the official
Django documentation for details on all the generic views and their arguments; we go
over some of the more commonly used ones next. Note generic views are organized in a
two-level module hierarchy for neatness’ sake.

= simple.direct_to_template: Useful for templates that have some dynamic con-
tent (as opposed to flatpages, which are static HTML, see Chapter 8,“Content Man-
agement System”’) but require no specific Python-level logic, such as index pages or
nonpaginated/mixed list pages.

= list_detail.object_list and list_detail.object_detail:These two provide

the primary read-only aspect of most Web apps and are probably the most com-
monly used generic views, as information display doesn’t usually require complex

129

130 Chapter 5 URLs, HTTP Mechanisms, and Views

logic. However, if you need to perform logic to prepare your template context, you
can find yourself wanting custom views instead.

m create_update.create_object and create_update.update_object: Useful for
simple object creation or update, where all you need is the form validation defined
in your form or model (see Chapters 6 and 4, respectively) and where no other
business logic applies.

= date_based.*: A handful of date-based generic views which highlight Django’s
origin as a publication-oriented framework. They are extremely useful for any date-
based data types. Included are date-oriented index and detail pages plus sublist
pages ranging from the year down to the day.

Generic views are both a blessing and a curse. The blessing aspect should be obvious;
they save a lot of time and can be used to cut out almost all the work involved in simple
or moderately complex views. Their usefulness is further expanded by wrapping them
within custom views, as we outline next. However, generic views’ usefulness can make it
difficult to accept that sometimes; you just have to write your own completely custom
view from scratch, even if the generic view closest to your vision would get you 90 per-
cent of the way there. Knowing when to throw in the towel and go the custom route is a
valuable skill, which, like many aspects of software development, can only truly be picked
up with experience.

Semi-generic Views

There are times when generic views on their own, called straight from a URLconf file,
do not suffice. Often, this requires a completely custom view function to be written, but
equally often, a generic view can still be leveraged to do the grunt work depending on
the logic required.

The most common use of such “semi-generic” views, in our experience, has been to
work around an inherent limitation in the URLconf itself. You can’t perform logic with
the captured URL parameters until the regex has been parsed. This limitation exists due
to the way URLconfs are designed, and it’s easy to work around it. Consider the follow-
ing snippet combining portions of a URLconf file and a view file:

urls.py

from django.conf.urls.defaults import *
urlpatterns = patterns('myproject.myapp.views',

url (r'“people/by_lastname/ (?P<last_name>\w+) /$', 'last_name_search'),
views.py

from django.views.generic.list_detail import object_list
from myproject.myapp.models import Person

Views/Logic

def last_name_search(request, last_name):
return object_list (request,
queryset=Person.objects.filter(last__istartswith=last_name)

)

As you can see, although our function takes the last_name argument defined as a
named group in the URL regex, we're still delegating 99 percent of the actual work to
the generic view. This is possible because generic views are normal Python functions and
can be imported and called as such. It’s easy to fall into the trap of thinking about the
framework as its own language, but as we’ve emphasized before, it’s all just Python, and
this sort of trick shows why that’s a good thing.

Custom Views

Finally, as mentioned earlier, it’s sometimes the case you can’t use generic views at all,
which brings us back to the beginning of this section; the view functions as a blank slate,
conforming only to a simple API, waiting for you, the programmer, to fill it however you
want. We share a couple of observations based on our own experience and point out
some convenient shortcut functions supplied by the framework; however, in general, this
is an area in which your own skills and experiences determine what you do next.

Framework-Provided Shortcuts

As we’ve stated, once you're in the realm of custom views, Django basically leaves you
alone. However, it does provide a handful of shortcuts, most of which are defined in the
django.shortcuts module.

= render_to_response: A function that replaces the two- or three-step process of
creating a Context object, rendering a Template with it, and then returning an
HttpResponse containing the result. It takes the template name, an optional con-
text (Context object, or dictionary, as usual) and/or MIMEtype, and returns an
HttpResponse object. Template rendering is covered in Chapter 6.

= Http404:An Exception subclass which effectively returns an HTTP 404 error code
and renders a top-level 404 .html template (unless you've overridden this in your
settings.py). To use it, you raise it like you would any other exception, the idea
being that when you encounter a 404 condition, it’s a full-fledged error, same as
if you had tried to add a string to an integer. It is defined in the django.http
module.

= get_object_or_404 and get_list_or_404:These two functions are simple short-
cuts for obtaining an object or list or raising Http404 if the lookup fails. They take a
klass argument—which is flexible enough to take a model class, a Manager, or a
QuerySet—and some database query arguments such as those passed to Managers
and QuerysSets and attempt to return the object or list in question.

Here are two examples using the previous shortcuts: The first uses Http404 by itself,
and the second shows how to streamline things using get_object_or_404—the two

131

132

Chapter 5 URLs, HTTP Mechanisms, and Views

functions exhibit identical behavior in practice. Don’t worry about the template paths for
now; those are explained in more detail in Chapter 6.
Here’s the manual method of raising a 404 exception:

from django.shortcuts import render_to_response
from django.http import Http404
from myproject.myapp.models import Person

def person_detail (request, id):
try:
person = Person.objects.get (pk=id)
except Person.DoesNotExist:
raise Http404

return render_to_response("person/detail.html", {"person": person})

And an example of get_object_or_404, which you’ll usually want to use in place of
the preceding method:

from django.shortcuts import render_to_response, get_object_or_404
from myproject.myapp.models import Person

def person_detail (request, id):
person = get_object_or_404 (Person, pk=id)

return render_to_response ("person/detail.html", {"person": person})

Other Observations
Perhaps a minor point—many Django developers find themselves making use of the
“args/kwargs” convention when defining their own view functions. As seen in Chapter 1,
Python functions can define *args and **kwargs to accept arbitrary positional and key-
word arguments; although a two-edged sword (concrete function signatures are often a
source of excellent documentation, but are lost here), this is often a useful trick to
increase flexibility and is also faster to boot.You no longer have to move back to your
URLconf file to remember exactly what you named your captured regex parameters or
keyword arguments, just define your function as
def myview(*args, **kwargs):

Here we can refer to e.g. args[0] or kwargs['object_id']

and away you go, referring to kwargs ["identifier"] when necessary. After a while,
doing this becomes second nature, and it also makes things easier when you want to pass
on a function’s arguments to a delegate function—such as in the “semi-generic” views
mentioned previously.

Summary

Summary

We’re now more than halfway done exploring the basics of Django’s core components. In
addition to the models described in Chapter 4, this chapter has shown you how Django
implements URL dispatching and the rest of the HTTP request-response “conversation,”’
including the use of middleware.You’ve also seen how to put together simple Django
view functions, and you’ve gotten a taste of the included generic views and how they can
be utilized.

The next and last chapter in this section of the book, Chapter 6, describes the third
major piece of the puzzle, that of rendering Web pages via templates and managing input
from users with forms and form validation. Afterward, it’s on to Part IIT where you get to
see these concepts put to use in four example applications.

133

This page intentionally left blank

$

Templates and Form Processing

N ow that you’ve learned about Django’s data models and logic processing, it’s time for
the final piece of the puzzle: how to display information and manage user input. We start
with an overview of Django’s template language and rendering system with the second
half of the chapter covering forms and form processing.

Templates

As touched on in previous chapters, templates are stand-alone text files containing both
static content (such as HTML) and dynamic markup specifying logic, looping, and the
display of data. The decision of which template to use and what set of data to render it
with is made either in the view function itself (via explicit rendering or the use of
render_to_response) or in the view’s arguments (such as the template_name argument
to generic views).

Django’s template language is designed to be used by front-end developers who are
not necessarily programmers; because of this and the desire to separate logic from presen-
tation, the template language is emphatically not embedded Python. However, the exten-
sible system of tags and filters (see the following for more) enables the programmers of a
Django application to expand the logical constructs available to the template language.

Finally, note that although the template system is generally used to generate HTML
(this being the Web and all), it is not married to HTML and can be equally useful in gen-
erating log files, e-mail content, CSV files, and any other text-based format. Keeping this
in mind allows you to make the fullest use of what Django’s templates have to offer.

Understanding Contexts

Templates, being dynamic text documents, wouldn’t be very useful if they didn’t have any
dynamic information to display. The term Django uses for the information passed to a
rendered template is context—a template’s context is essentially a dictionary of key-value
pairs, represented as a dict-like Context object when rendering takes place.

As seen briefly in Chapters 2,“Django for the Impatient: Building a Blog,” and 5,
“URLs, HTTP Mechanisms, and Views,” every rendering of a template requires a context

136

Chapter 6 Templates and Form Processing

to be present. Sometimes the context is prepopulated for you, such as in generic views,
and you merely append to it with an extra_context argument. Other times, as with cus-
tom views, you provide the context yourself when calling a template’s render method, or
more commonly as an argument to the helper function render_to_response. It’s techni-
cally possible to render a template with an empty context, but in such situations, you'd be
better off using the flatpages contrib application—a template with no context is not
very dynamic.

The other method for contributing data to template contexts is through context
processors, a middleware-like aspect of the framework where various functions can be
defined to append key-value pairs to all contexts just prior to template render time. This
is how features such as the authentication framework are able to ensure that certain site-
wide pieces of data are always present. Here’s a quick example of a context processor.

def breadcrumb_processor (request) :
return {
'breadcrumbs': request.path.split('/")
}

Perhaps not terribly useful—breadcrumbs are rarely that easy in practice—it highlights
the simplicity of context processors.You can store your context processor functions any-
where, but as usual, it’s probably a good idea to standardize on something, such as a
context_processors.py file in the root of your project or in an app directory.

Context processors, such as middlewares, are enabled by referring to them in Python
module syntax in your settings.py, specifically in a tuple named TEMPLATE_CONTEXT_
PROCESSORS. And in another nod to their similarity to middlewares, order matters; context
processors are applied in the order listed within that settings variable.

Template Language Syntax

The syntax of Django’s template language is comparable to non-XML-based template
languages, such as Smarty or Cheetah, in that it does not attempt to remain XHTML-
compliant, but uses special characters to set apart template variable and logic commands
from the static content (usually the HTML). As with most other aspects of Django, the
template language is only loosely coupled to the rest of the framework, and it is entirely
possible to use another template library if desired.

As with most template languages, there are singular commands—such as printing the
value of a context variable—and block-level commands, usually logic commands such as
“if” or “for.” Django’s template language uses two conventions, both involving curly
braces; variable output is accomplished with double curly braces ({{ variable }}),and
everything else is accomplished with tags ({$ command %}). Here’s a small example, that

can render a context similar to the Python dictionary { "title_text": "My Webpage",
"object_list": ["One", "Two", "Three"] }.
<html>

<head>

<title>{{ title_text }}</title>

Templates

</head>
<body>

{% for item in object_list %}
{{ item }}</1i>
% endfor %}

</body>
</html>

It should be noted when you output context variables in your templates, there is an
implicit call to unicode, so objects and other nonstring variables are turned into (Uni-
code) strings as best they can. Be wary—if you’re attempting to print objects whose
__unicode__ method is not defined, you don’t see them in your templates. This is
because the default Python representation of an object just happens to be the same
format as an HTML tag, specifically text bounded by the < and > characters.

>>> print object()
<object object at 0x40448>

This is a common pitfall that even experienced Django developers sometimes
encounter, so if you're trying to display something and it doesn’t show up, make sure you
first know what it is and that you know what its string representation is supposed to be!

As you can see, although Django template syntax is not semantically correct HTML,
the curly-brace syntax makes it easy to visually distinguish the output and command
aspects from the static content. In addition, because Django’s development team intended
to use the template language for document types other than just HTML, they felt a tem-
plate system focused on XML output wouldn’t make sense.

Template Filters

Although it provides the foundation for building dynamic templates, simple variable out-
put is fairly inflexible. The template framework enables transformation of context vari-
ables via mechanisms called filters, which are similar to Unix pipes—see Appendix A,
“Command Line Basics,” if you're not already familiar with pipes. Filters even use the
same syntax as Unix pipes, the pipe character: |.They can be chained together, as they
always take a single text string as input and return one on output. As you see later in the
“Extending the Template” section of Chapter 11,“Advanced Django Programming,” fil-
ters are simply Python functions.

Django ships with a wide variety of useful filters that encapsulate common Web devel-
opment and text processing tasks, such as escaping slashes, capitalization, date formatting,
obtaining the length of lists or tuples, concatenating strings, and so forth. Here’s an exam-
ple of how filters could be used to transform a list of strings into lowercase.

% for string in string_list %}
<1i>{{ string|lower }}</1i>

137

138

Chapter 6 Templates and Form Processing

{% endfor %}

Although most filters take a single string as input, some accept an argument to further
parameterize their behavior, such as the yesno filter used to take arbitrary (usually
boolean) values and print human-useful strings.

<table>
<tr>
<th>Name</th>
<th>Available?</th>
</tr>
{% for person in person_list %}
<tr>
<td>{{ person.name }}</td>
<td>{{ person.is_available|yesno:"Yes,No" }}</td>
</tr>
% endfor %}
</table>

Tags

As you’ve probably noticed in the previous examples, although variable output and filters
are useful, the real power lies in tags—thus far we’ve seen them used to loop over lists of
strings or objects, but they’re also capable of performing logic ({$ if %}, {% ifequal
%}), template inclusion/inheritance ({$ block %}, {$ include %} and {% extends %},
as seen in the next section), and various other tasks.

Tags are technically free-form and can take any manner of input after the tag name
(see the “Extending the Template” section of Chapter 11 for more), but the built-in tags
and most user-created tags tend to follow certain conventions, generally a space-delimited
list of arguments. Many tag arguments can be context variables, and in fact most of the
time, filters can be used as well. For example, the following is how one could check the
length of a list before iterating over its contents.

{% ifequal object_list|length 10 %}

{% for item in object_list %}
{{ item }}</1i>
% endfor %}

{% endifequal %}

Of course, we could have also used the length_is filter, which takes a list and argu-
ment and returns a boolean value.
{% if object_list]|length_is:10 %}

{% for item in object_list %}

Templates

<1li>{{ item }}</1li>
{% endfor %}

o

% endif %}

As this hopefully illustrates, there’s a lot of flexibility in Django’s built-in filter and tag
library. It’s a good idea to become well-acquainted with what’s available (the official
Django documentation provides an excellent list) to avoid reinventing the wheel.

One final word on tags: The block-level ones such as {$ if %} and {% for %} are
capable of altering their local context, which often comes in handy. For example, {% for
%} provides a local context variable, {{ forloop }}, which has a variety of attributes that
enable you to take differing actions based on which attributes you use and what loop
iteration you are on. Such attributes enable various actions such as what to do at the
beginning or end of the loop ({{ forloop.first }} or {{ forloop.last }},booleans
for whether this is the first or last loop iteration, respectively) or displaying the loop
counter ({{ forloop.counter }} and {{ forloop.counter0 }},startingat 1 or O,
respectively). Refer to the Django documentation for more information and examples.

Blocks and Extends

One useful set of template tags are those that reach out of the current template and inter-
act with other template files, enabling composition and code reuse via two primary
methods: inheritance and inclusion. We go over inheritance first, as it is generally more
conducive to logical template organization. Includes, although useful, can easily lead to
“include soup,” making debugging and development difficult.

Template inheritance is realized via two template tags, {$ extends %} and {% block
%}.{% extends %} must be called at the top of a template and signals to the rendering
engine this template inherits from a higher-level one. For example, you can define a top-
level or site-wide template that outlines headers/footers and global navigation; then, a
mid-level template for each subsection, which would extend the top-level template (such
as adding a second-level nagivation menuy); and finally, bottom-level templates for each
individual site location, each extending the mid-level template and providing the actual
content for the page in question.

{% block %} is a block-level tag used to define sections of a template that are
intended to be filled in by those extending it. Although blocks are typically used by a
template’s immediate child, it’s not required. Blocks can be ignored (thus displaying what-
ever is inside them in the parent template) or delegated further to a lower template. Fol-
lowing is a simplistic example using the three-level Web site layout mentioned previously
with URLs consisting of /, /sectionl/, /section2/, /sectionl/pagel/, and
/sectionl/page2/.

For now, let’s omit the index pages for the site root and the sections and focus on the
“leaf” pages at the lowest level. As shown next, base.html provides the top level wrap-
ping structure with section templates providing the page title (thus denoting which site
section users are in) and page templates providing simple content.

139

140 Chapter 6 Templates and Form Processing

base.html:

<html>
<head>
<title>{% block title %}My Web site{% endblock %}</title>
</head>
<body>
<div id="header">
Section 1
Section 2
</div>
<div id="content">
{% block content %}{% endblock %}
</div>
<div id="footer">
About The Site
</div>
</body>
</html>

sectionl.html

{% extends "base.html" %}

{% block title %}Section 1{% endblock %}
section2.html

{% extends "base.html" %}

{% block title %}Section 2{% endblock %}
pagel.html:

{% extends "sectionl.html" %}

{% block content %}This is Page 1.{% endblock %}
page2.html:

{% extends "sectionl.html" %}

{% block content %$}<p>This is Page 2.</p>{% endblock %}

Templates

With templates set up per the previous example, the user’s browser sees the following
when visiting /sectionl/page2/:

<html>
<head>
<title>Section 2</title>
</head>
<body>
<div id="header">
Section 1
Section 2
</div>
<div id="content">
<p>This is Page 2.</p>
</div>
<div id="footer">
About The Site
</div>
</body>
</html>

The nice thing about template inheritance is it’s easy to navigate the template hierar-
chy and see what template is generating which chunk of HTML on any given page; addi-
tionally, compared to an inclusion-based approach that can have code for including
headers, footers, sidebars, and so forth on every subpage, inheritance saves a decent
amount of typing.

Including Other Templates

Despite the niceties of template inheritance, template inclusion still has its place. Some-
times you need to reuse chunks of HTML or other text that doesn’t fit well into the
inheritance scheme, such as a commonly used pagination element. Django supports
inclusion with {$ include %}, which behaves exactly as you can assume, taking the
name of the template file to include and replacing itself with the contents of that file.
Included files can themselves be fully realized Django templates; their contents are parsed
with respect to the context of the including template.

In addition to * {% include %}, Django provides the{% ssi %}tag (where ssi refers
to the Apache-ism SSI, or Server Side Includes). {% include %} and {% extends %}
refer to template files locally within the defined template directories specified in
settings.py; by comparison, {% ssi %} uses an absolute filesystem path. However, in
the interests of security, {$ ssi %} is limited to a specific set of directories, specified in
the settings.py ALLOWED_INCLUDE_ROOTS variable.

Finally, it should be noted both {% extends %} and {$ include %} accept context
variable names as well as strings, enabling templates to dynamically determine what they
are including or inheriting from.

141

142

Chapter 6 Templates and Form Processing

Forms

Templates by themselves are great for displaying information, but entering information
into one’s database is another matter entirely, involving both the creation of HTML forms
and the validation and saving of the information submitted. Django provides a forms
library, which ties together the three main components of the framework: the database
fields defined in the model, the HTML form tags displayed in the templates, and the
capability to validate user input and display error messages.

As of this writing, Django’s form mechanisms are in a transitional state; the library we
cover here is currently known as newforms and is a modular approach that much
improves on its predecessor, referred to as oldforms (although at present, import
django. forms return this older library). We are covering the newforms library, referring
to (and importing) it in the present tense as forms, with the hope that by the time you're
actually reading this book, its transition to the forefront of Django’s form processing will
be complete.

Defining Forms

At the heart of form processing is a class similar to the Model: the Form. Like models,
forms are essentially collections of field objects, except they represent a specific Web input
form instead of a database table. Much of the time, what we’re interested in is a form that
matches 100 percent of a given model; however, having a separate Form class creates a
useful degree of flexibility.

With a separate form entity, you can hide or otherwise omit specific fields or tie
together fields from multiple model classes. Of course, sometimes you want to be able to
process forms that have nothing to do with database storage, and that’s equally feasible.
Let’s go over a quick example.

from django import newforms as forms

class PersonForm(forms.Form) :
first = forms.CharField()
last = forms.CharField()
middle = forms.CharField

0

Although this can look suspiciously similar to an earlier model class, it’s a completely
stand-alone form that just happens to have the same set of fields (except the fact that
these are forms.Field instances instead of models.Field ones). Form fields take argu-
ments, again in similar fashion to how models are defined.

class PersonForm(forms.Form) :
first = forms.CharField(max_length=100, required=True)
last = forms.CharField(max_length=100, required=True)
middle = forms.CharField(max_length=100)

Forms

The previous example now defines a form made up of three text fields; when valida-
tion occurs (see the following), it generates errors unless the first and last fields are
filled in. Furthermore it ensures they are no larger than 100 characters in length. There’s a
lot of overlap between database field types and form field types—check the official docu-
mentation for a detailed list of form Field classes if you're curious about what’s available
outside the examples in this chapter.

Model-Based Forms

In the interests of preserving DRY, Django makes it possible to obtain a Form subclass for
any model class or instance, using a special variation called ModelForm. A ModelForm is
basically identical to a regular Form, but has a Meta inner class (similar to that of model
classes), which has one required attribute, model, whose value is the Model class in ques-
tion. The following is functionally identical to the regular Form defined previously:

from django import newforms as forms
from myproject.myapp.models import Person

class PersonForm(forms.ModelForm) :
class Meta:
model = Person

In general, you need to define at least one such ModelForm for every model class you
create, even if it’s just this simple base case. This approach highlights the separation of the
data definition (the model) from the data entry and validation (the form) and provides a
lot of flexibility.

The use of ModelForm “copies” your Model class’s fields into Form fields. This is gener-
ally straightforward—a model CharField becomes a form TextField or a ChoiceField
if it defines choices—although there are a few caveats well-documented on the official
Django site in a table. The main thing to keep in mind is fields are considered to be
required=True unless the model has set them to be blank=True, in which case they
become optional (required=False).

Saving ModelForms

Forms generated in this way have one important difference from those generated manu-
ally; they have a save method, which, if validation succeeds, saves their information as a
database row and then returns the resulting Model object. The implications of this become
more obvious once you've read about how to get that information into the form and
how it’s validated, but know that save makes it easy to go from a POST dict to a database
create (or update) in a few steps. Continuing the previous example (details on this process
appear later in the chapter):

from myproject.myapp.forms import PersonForm

form = PersonForm({'first': 'John', 'middle': 'Quincy', 'last': 'Doe'})

143

144

Chapter 6 Templates and Form Processing

new_person = form.save()

Will result in the __unicode__ () output for the new Person
print new_person

There are often situations where you want to modify input data between the time a
form is submitted and the time it hits the database. Sometimes this can be done by updat-
ing the POST dict before handing it to the form, but other times it’s easier to do it after
the form is done validating (but still before it arrives at the model layer). The latter
approach usually makes the most sense because it takes place after the raw POST data has
been turned into Python values.

For this sort of flexibility to exist, the save method takes an optional commit argu-
ment (defaulting to True), which controls whether it actually updates the database. Set-
ting it to False still gives you the model object, but leaves you responsible for calling that
object’s save method. This example only hits the database once, rather than twice, which
is what would happen without commit=False.

form = PersonForm({'first': 'John', 'middle': 'Quincy', 'last': 'Doe'})

We get a Person object, but the database is untouched.
new_person = form.save(commit=False)

Update an attribute on our un-saved Person.
new_person.middle = 'Danger’

Now we can update the database for real.
new_person.save ()

Another common scenario concerning commit=False is when you’re using inline
editing of related objects. In such cases, a single ModelForm is validating and saving data
for both the primary object and its related objects. Because relational databases naturally
need target rows to exist before they can be referenced, it’s not possible to save the related
objects while delaying the saving of your primary object.

Therefore, when a ModelForm contains related object information and you use
commit=False, Django adds an extra method to the form (not the resulting Model
object!) called save_m2m, which enables you to correctly stagger the chain of events. In
this example, let’s say the Person model has a self-referential many-to-many relationship.

This input to PersonForm would contain "sub-forms" for additional Person
objects related to the primary one via the ManyToManyField.
form = PersonForm(input_including_related_objects)

Those related objects can't be saved at this point, so they are
deferred till later.

new_person = form.save (commit=False)

Update an attribute on our un-saved Person.

Forms

new_person.middle = 'Danger'’

After we save to the DB, our Person exists and can be referenced by
the related objects.

new_person.save ()

So now we save them as well. Don't forget to call this, or your related objects
will mysteriously disappear!
form.save_m2m/()

As you can see, the need to consider immediate saving versus deferred saving adds
some complexity to the use of the save method; thankfully, that complexity is optional,
and most of the time you are happily save-ing without worry.

Differing from the Model

Sometimes, you want to modify your form so it’s not an exact replica of your model.
Hiding certain fields is a common requirement, and only slightly less common is the need
for wholesale exclusion or inclusion of fields. Creating a regular Form subclass from
scratch isn’t usually necessary, as there are a few different ways to accomplish the task with
ModelForms.

The Meta inner class of ModelForms enables you to define a couple of optional attrib-
utes, fields, and excludes, which are simply lists or tuples of field names to either
include or exclude (naturally, you can only use one of these at a time!). For example, the
following gives you a Person form that omits the middle name:
from django import newforms as forms
from myproject.myapp.models import Person

class PersonForm(forms.ModelForm) :
class Meta:
model = Person
exclude = ('middle',)

Given a Person that only has first,middle, and last model fields, the following use
of fields is exactly equivalent to the previous:
class PersonForm(forms.ModelForm) :
class Meta:
model = Person
fields = ('first', 'last')

An important note to keep in mind is when calling such a form’s save method, it only
attempts to save the fields it knows about. This can cause problems if you omit fields that
the model considers to be required! Make sure such fields are either marked as optional
with null=True or have default values defined with the default argument.

Aside from determining which fields from the model are displayed, you can also over-
ride the forms-level Field subclasses used in validating/displaying specific fields. Just

145

146

Chapter 6 Templates and Form Processing

define them explicitly, as seen toward the beginning of this part of the chapter, and that
definition overrides whatever would have been taken from the model. This is useful both
for changing the arguments passed to the form-level Field—such as max_length or
required—or for altering the class itself (perhaps making a TextField display as a
CharField or adding choices to a CharField by making it a ChoiceField). For example,
the following simply tightens validation on the first-name field to be shorter than usual:

class PersonForm(forms.ModelForm) :
first = forms.CharField(max_length=10)

class Meta:
model = Person

Deserving special mention here are the relationship form fields, ModelChoiceField
and ModelMultipleChoiceField, which correspond to ForeignKey and
ManyToManyField, respectively. Although it’s possible to specify the 1imit_choices_to
argument to the model-level fields, you can also specify a queryset argument to the
form-level fields, which naturally expect a specific QuerySet object. In this way, you can
override any such limitations (or lack thereof) at the model level and customize your
ModelForm instead, as in the following where we assume a Person model with a non-
limited parent ForeignKey to other Person objects:

A normal, non-limited form (since the Model places no limits on 'parent')
class PersonForm(forms.ModelForm) :
class Meta:
model = Person

A form for people in the Smith family (whose parents are Smiths)
class SmithChildForm(forms.ModelForm) :
parent = forms.ModelChoiceField(queryset=Person.objects.filter(last='Smith'))

class Meta:
model = Person

Form Subclassing

In many scenarios, both with normal Forms and ModelForms, it’s possible to take advan-
tage of the object-oriented nature of Python to avoid repeating yourself. Form subclasses
can themselves be subclassed, and the resultant classes contain all the fields of their prede-
cessors. For example:

from django import newforms as forms

class PersonForm(forms.Form) :
first = forms.CharField(max_length=100, required=True)
last = forms.CharField(max_length=100, required=True)
middle = forms.CharField(max_length=100)

Forms

class AgedPersonForm(PersonForm) :
first, last, middle all inherited
age = forms.IntegerField()

class EmployeeForm(PersonForm) :
first, last, middle all inherited
department = forms.CharField()

class SystemUserForm(EmployeeForm) :
first, last, middle and department all inherited
username = forms.CharField(maxlength=8, required=True)

It’s also possible to perform so-called “mix-ins,” which make use of multiple inheritance.

class BookForm(forms.Form) :
title = forms.CharField(max_length=100, required=True)
author = forms.CharField(max_length=100, required=True)

class InventoryForm(forms.Form) :
location = forms.CharField()
guantity = forms.IntegerField()

class BookstoreBookForm(BookForm, InventoryForm) :
Has title, author, location and quantity
pass

When applying this approach to ModelForm subclasses, note you can alter Meta attrib-
utes as well, typically updating or adding fields or excluding values to further limit the
available fields.

Filling Out Forms

In Django’s forms library, any given form instance is either bound, meaning it has some
data associated with it, or it is unbound, meaning it’s effectively empty. Unbound, empty
forms are used primarily for generating an empty HTML form for users to fill out
because you can’t validate them (unless a completely empty form is a desired input, which
is rather unlikely), and you probably wouldn’t want to save their contents to a database
either. Bound forms are where most of the action lies.

Binding data to a form is done at instantiation time, and once instantiated, a form is
effectively immutable. This can sound inflexible, but it makes the process of using and
applying forms more explicit and orthogonal than it can otherwise be; it also removes any
ambiguity about the validation state of a form whose data has been altered (as was possi-
ble in the oldforms library).

Let’s generate a bound form based on our earlier Person-related ModelForm subclass,
embedded in the beginnings of what could become a form-processing view function.
The use of request . POST. copy () is not explicitly required, but it’s a good idea.You can

147

148

Chapter 6 Templates and Form Processing

modify your copy of the dict while preserving the original contents of the request, in case
it’s needed farther down the line.

from myproject.myapp.forms import PersonForm

def process_form(request) :
post = request.POST.copy() # e.g. {'last': 'Doe', 'first': 'John'}
form = PersonForm(post)

It should be noted that adding extraneous key/value pairs to a form’s data dict is not a
problem; forms simply ignore any input that does not correspond to their defined set of
fields. This means you can take a POST dict from a large form and use it to fill a Form
object representing a subset of those fields, for example.

It’s also possible to create forms that, although unbound, are loaded with initial values
displayed when the form is printed in a template. The aptly named initial constructor
argument is a dict, just as the positional argument used for binding. Individual form fields
have a similar parameter, enabling them to specify their own default value, but the form-
level dict overrides these if there’s a conflict.

Here’s an example of creating a form, modifying our custom PersonForm from earlier
to prefill the last name field with “Smith” (via the form definition) and the first name
field with “John” (at runtime when creating the form instance). Users can, of course,
override either of these when they fill out the form.

from django import newforms as forms
from django.shortcuts import render_to_response

class PersonForm(forms.Form) :
first = forms.CharField(max_length=100, required=True)
last = forms.CharField(max_length=100, required=True, initial='Smith')
middle = forms.CharField(max_length=100)

def process_form(request) :
if not request.POST: # Display the form, nothing was submitted.
form = PersonForm(initial={'first': 'John'})
return render_to_response ('myapp/form.html', {'form': form})

Note
If our initial argument to the instantiation of PersonForm had instead been something
such as {'first': 'John', 'last': 'Doe'}, the instance-level “Doe” value (for the

'last' key) would have overwritten the class-level “Smith” value from the form definition.

A major benefit of using the instance-level initial argument is that its values can be
constructed at the time of the form’s creation. For example, this allows you to reference
information not available at the time the form or model is defined, typically info in the
request object.

Forms

Observe how we can make use of this in a view function that deals with adding new
Person records, relative to another such record. Pretend for now we have a new “parent”
self-referential ForeignKey on the Person model and that we have a simple ModelForm
defined for pPerson.

from django.shortcuts import get_object_or_404, render_to_response
from myproject.myapp.models import Person, PersonForm

View's URL: /person/<id>/children/add/
def add_relative(request, **kwargs):
Display the form if nothing was POSTed
if not request.POST:
relative = get_object_or_404 (Person, pk=kwargs['id'])
form = PersonForm(initial={'last': relative.last})
return render_to_response('person/form.html', {'form': form})

For brevity’s sake, we’ve omitted the handling of a submitted form, something a real
view function would probably be concerned about! Note how we obtained the relative
object based values in the URL, and then passed that relative’s last name as the initial value
of 1last in our form. In other words, we’ve set things up so children automatically get
their parents’ last name filled in—something that could come in handy if your users are
doing a lot of data entry.

Validation and Cleaning

Although forms are generally stateless, they do require some sort of trigger to perform
validation on the data they’ve been bound to, if they’ve been bound at all (validation and
cleaning do not apply to unbound forms).To cause a form to run its validation routines,
you can explicitly call its is_valid Boolean method, or you can call one of its display
methods (see the following), all which implicitly perform validation as well.

Let’s rejigger our previous add_relative form processing view, so it handles form
input as well as empty form display. This involves changing the logic around to be a bit
more flexible, with a common Django idiom that checks for the existence of the POST
dict and handles validation (or generates an empty form), and then “falls through” to
displaying the form.The form then displays either for non-POST requests or for POST
requests that failed to validate.

View's URL: /person/<id>/children/add/
def add_relative(request, **kwargs):
Get the parent relative

Validate if the form was POSTed
if request.POST:
form = PersonForm(request.POST)
if form.is_valid:
new_person = form.save()
return HttpResponseRedirect (new_person.get_absolute_url())

149

150 Chapter 6 Templates and Form Processing

Otherwise, prep an empty form with the relative pre-filled
else:

relative = get_object_or_404 (Person, pk=kwargs['id'])

form = PersonForm(initial={'last': relative.last})
Display the form for non POST requests or failed validations.
Our template will display errors if they exist.

return render_to_response('person/form.html', {'form': form})

Once validation has been triggered, the form object gains one of two new attributes:
errors, a dictionary of error messages, or cleaned_data, a dictionary containing the
“clean” versions of the values originally bound to the form.You never find both at once,
as cleaned_data is only generated when the form validates, and of course errors only
applies if the validation failed.

The format of the errors dictionary is simple; the keys are the field names, and the
values are lists of strings (each string being a message about why the form’s validation
failed). errors, naturally, only contain key/value pairs for fields with errors to display.
Later in the chapter, we explore some helper methods that Form objects provide for easy
display of these error messages.

Behind the concept of “clean” data is the need for input data to be normalized—
translated from one or more potential input formats into a consistent output format
appropriate for validation and database storage. For example, forms whose bound data
comes straight from a request . POST dictionary generally contains strings, and thus any
numeric fields’ cleansing process casts those strings to ints or longs, date-related fields
parse strings such as “2007-10-29" into datetime objects, and so forth.

Although normalization is required for the automatic validation and saving methods to
work correctly, it also means any Python code interacting with the form’s contents has
access to the correct data types. If you find the need to examine the original prenormal-
ized data, it is still available as the form’s data attribute.

Form Display

Form objects have a handful of helpful methods that enable you to display them in vari-
ous predefined HTML formats; these methods print out the entire innards of the form,
sans the <form> tags and submit buttons, and include <label> tags as well. It’s also possible
to display each form field individually, if you need finer-grained control over the output.
Finally, it should be noted that although you generally use these display methods in tem-
plates, it’s not required—you can call any and all such methods at the Python level if you
should find the need.

Each Django form field knows how to display itself as an HTML tag or tags, and this
behavior can be modified via widgets, covered at the end of the chapter. Additionally, the
name and id attributes for these tags, as well as the for attribute in their corresponding
<label> tags, are all drawn from the field’s attribute name on the Form class you defined
in the beginning. The text inside the <label> tags are, by default, generated by taking the
field names, capitalizing, changing underscores to spaces, and appending a trailing : char-
acter if the field name didn’t end in punctuation to begin with.

Forms

Here’s an example to help you make sense of these various options and how they affect
the HTML output. First, a recap of a manually created PersonForm:

from django import newforms as forms

class PersonForm(forms.Form) :
first = forms.CharField(max_length=100, required=True)
last = forms.CharField(max_length=100, required=True, initial='Smith')
middle = forms.CharField(max_length=100)

and a sample of how this translates into HTML for the first field when displayed as
part of a table:

<tr><th><label for="id_first">First:</label></th><td><input id="id_first"
type="text" name="first" maxlength="100" /></td></tr>

It’s possible to change the behavior of the id attributes and <label> tags by way of the
form’s auto_id constructor argument: False prevents the display of ids and labels entirely;
True uses the fields’ attribute names, as shown previously; and strings containing the string
format character, such as 'id_%s', replaces the format character with the attribute name.
In addition, the trailing : character in labels can be overridden by the label_suffix
argument, which is simply a string.

The following is how one would create an instance of PersonForm with auto_id
turned off and label_suffix also turned “oft” by setting it to the empty string:

pf = PersonForm(auto_id=False, label_suffix='")

and what the first field would look like when that form is displayed:

<tr><th>First</th><td><input type="text" name="first" maxlength="100" /></td></tr>

Finally, the same setup, but with custom string values for auto_id and label_suffix:

pf = PersonForm(auto_id='%s_id, label_suffix='?")

which would output the following:

<tr><th><label for="first_id">First?</label></th><td><input id="first_id"
type="text" name="first" maxlength="100" /></td></tr>

As you can see, the auto-generated form output Django provides is fairly flexible. We
show you how to actually obtain this sort of output from a form object in this next section.

Displaying Forms Wholesale

By default, printing a form uses its as_table method, wherein the form is printed out
two fields per row, using <tr> and <td> tags, although it omits the <table> tags to be more
flexible. as_table is accompanied by its brethren as_p, which uses paragraph tags, and
as_ul, which uses list-item tags (but, as usual, omits the wrapping tags themselves).

151

152

Chapter 6 Templates and Form Processing

Note

Forms omit the “outside” wrapping tags, such as <table></table> because including
them would make it much more difficult to integrate wholesale form display with the rest of
your template’s HTML. The same holds true for submit buttons—many template designs
require the use of different methods for form submission, such as <input type="button"
/> Or <input type="submit" />, and so Django leaves that decision entirely up to you.

When displayed wholesale in this manner, validation errors are also automatically
printed, if they exist: A tag with one or more <1i> tags is displayed near the appro-
priate field, depending on the output method used. as_table and as_ul print error lists
within the same tag as the field itself (the <td> and <1i> tags, respectively) and as_p cre-
ates new paragraphs to hold the error lists. In each case the errors are printed as shown
previously, or before, the form elements.

It’s possible to customize the way error lists are displayed by subclassing
django.forms.util.ErrorList and passing your subclass as the error_class argument
to the form in question. And if you want to change the order of the fields/error lists,
simply rearrange the order they appear in on your Form class—it’s that simple.

Displaying Forms Piecemeal

In addition to the convenience methods outlined previously, it’s possible to exert finer
control over how your form is arranged. The individual Field objects are available
through dictionary keys on the form itself, enabling you to display them whenever and
wherever you want.You can also iterate over the form itself, thanks to Python’s duck typ-
ing capabilities. R egardless of how you obtain them, each field has its own errors attrib-
ute, a list-like object whose string representation is the same unordered list previously
displayed in the wholesale methods (and overridden the same way).

In oldforms, the simplest way to override the default HTML representation of a form
field was to access the field’s data attribute and wrap it with custom HTML—a trick that
is still possible with newforms. However, the power of widgets hopefully makes that
approach less necessary than it was in the past.

Widgets

A widget, in Django forms parlance, is an object that knows how to display an HTML
form element. In similar fashion to model Field subclasses and form Field subclasses,
Django provides a decently sized default library of widget subclasses. Every form field is
paired with a specific widget so its data can be displayed when it comes time to render
the form in a template. CharFields use by default a widget subclass named TextInput,
for example, which just renders <input type="text" />.

The default field-widget pairings often suffice, in which case you don’t even notice
the widgets themselves. However, there are scenarios where you find yourself needing to
modify attributes of a field’s widget or replacing the widget with an entirely different one.
The former is more common as it provides a way for you to change HTML attributes of

Forms

the field in question. The following is an example of changing the “size” attribute of an
otherwise normal text field:

from django import newforms as forms

class PersonForm(forms.Form) :
first = forms.CharField(max_length=100, required=True)
last = forms.CharField(max_length=100, required=True)
middle = forms.CharField(max_length=100,
widget=forms.TextInput (attrs={'size': 3}

)

Use of that form would result in a middle field such as:

<input id="id_middle" maxlength="100" type="text" name="middle" size="3" />

As you can see, this type of modification is possible because widget subclasses (such as
TextInput) accept an attrs dict, which maps directly to HTML tag attributes. In this
case, we don’t want to limit the actual input size of the middle name (users can still type
up to 100 characters), but we do want its display size to be smaller than the default.

Overriding a Field’s Default Widget

The widget parameter for Field subclasses can also be used to replace the default widget
entirely, by passing in a different widget subclass; for example, one could use a Textarea
to replace a TextInput. Utilizing this aspect of form fields enables a clean separation of a
field’s display qualities (the widget) from its validation behavior (the form field). It also
means you can define your own wWidget subclasses if the built-in ones don'’t fulfill

your needs.

Although the details of defining from-scratch widgets 1s outside the scope of this
chapter, we can share a quick and easy way to use Wwidget subclassing to save time. If you
find yourself often making use of the attrs dict for a specific widget, you can subclass
the widget in question and give it a default attrs dict.

from django import newforms as forms

class LargeTextareaWidget (forms.Textarea) :
def _ _init_ (self, *args, **kwargs):
kwargs.setdefault('attrs', {}).update({'rows': 40, 'cols': 100})
super (LargeTextareaWidget, self).__init__ (*args, **kwargs)

The previous example uses a little bit of dictionary cleverness; setdefault acts like
get in that it returns an existing value for the given key or the supplied value if that key
isn’t already set. However, it also alters the dictionary in question to store that value per-
manently. It’s used here to ensure that the kwargs keyword-argument dictionary has an
attrs dict, regardless of the original arguments to the constructor. We then update the
resulting attrs dict with our intended defaults.

153

154 Chapter 6 Templates and Form Processing

The end result is our new LargeTextarea widget behaves exactly like a normal
Textarea, but always has 40 rows and 100 columns by default. It’s then possible to use
our new widget for all the fields that we want displayed as a larger-than-normal text area.
For the next example, let’s say we store our custom form-related classes in an app-local

forms.py.

from django import newforms as forms
from myproject.myapp.forms import LargeTextareaWidget

class ContentForm(forms.Form) :
name = forms.CharField()
markup = forms.ChoiceField(choices=[
('markdown', 'Markdown'),
('textile', 'Textile')
1)

text = forms.Textarea(widget=LargeTextareaWidget)

Of course, it’s possible to go one step further. Because the widget argument in a
Field subclass simply sets its widget attribute, we can subclass the field itself to always use
our custom widget.
class LargeTextareaWidget (forms.Textarea) :

def _ init_ (self, *args, **kwargs):
kwargs.setdefault ('attrs', {}).update({'rows': 40, 'cols': 100})
super (LargeTextareaWidget, self).__init_ (*args, **kwargs)

class LargeTextarea (forms.Field):
widget = LargeTextareaWidget

Now we can change the previous form-creating example to use the custom field.

class ContentForm(forms.Form) :
name = forms.CharField()
markup = forms.ChoiceField(choices=[
('markdown', 'Markdown'),
('textile', 'Textile')
1)

text = LargeTextareal()

As usual, the fact that Django is pure Python means it’s easy to swap out various classes
and objects like this when the need arises. Keeping this in mind helps you spot other
areas where customization can be utilized.

Summary

In this chapter, you’ve learned about Django’s template syntax and how templates are ren-
dered against context dictionaries, including more complex subjects such as template
inheritance and inclusion. In addition, you know how to generate forms—both stand-
alone and ones representing specific model classes—and cause them to validate data and

Summary

display themselves as HTML. Finally, we exposed some of the customization possible with
the power of widgets.

This chapter marks the end of Part II, “Django in Depth,” and you now have a decent
background in what Django has to offer; everything from model definition, URLs and
request handling, and now templates and forms. The next four chapters in Part III,
“Django Applications by Example,” contain example applications making use of the
material you've already seen and also introduces a handful of new or expanded concepts
as they go along.

155

This page intentionally left blank

Django Applications
by Example

Photo Gallery
8 Content Management System
Liveblog
10 Pastebin

This page intentionally left blank

v

Photo Gallery

A common feature of many content-driven Web sites is the capability for users to add
not only text, but also files—office documents, videos, PDFs, and of course the ubiqui-
tous image. In this example application, we show you a working example of Django’s
image upload field—ImageField—as used in a simple gallery-type application. In addi-
tion, we make our own custom ImageField subclass capable of automatically generating
thumbnails. Finally, we are designing the app with a dynamic root URL to maximize ease
of deployment.

The application we are building 1s simplistic—a collection of generic Items, each of
which can have multiple Photo associations, with this small hierarchy represented by a
gallery Django project and an items app within (for lack of a better name).

One could expand on this application to build a more typical gallery site, where our
Item becomes more like a container or folder solely used for organizing photos. Or you
could make it into a sort of showroom application, where each Item has additional attrib-
utes (such as a car’s model, make, and year) enabling for more sophistication. For our
example, you can think of each Item as a stand-alone photo album.

We don’t want to do any more work than is necessary, so our app makes use of generic
views where possible, and we do all its data entry via Django’s built-in admin. As such, its
layout 1s pretty small:

= Static in-template welcome message on landing (index) page.

= Landing page features a “showcase” (small subset of thumbnails).

= Listing page shows all Items on the site.

= Detail views for each Item with list of all its Photos (thumbnails again).

= Detail views for each Photo displaying image at full resolution.

We start oft by defining the model, and then walk through the steps necessary to get
file uploads working via the admin application. This is followed by detaied creation of our

custom model field. Finally, we go over applying DRY to our URLs and create the front-
end templates used to display our thumbnails and images to the rest of the world.

160

Chapter 7 Photo Gallery

Note

This example application assumes an Apache + mod_python setup, although it can, of
course, be modified to work with other deployment strategies. Because a gallery involves
serving lots of static media—such as images—Django’s development server doesn’t really
cut it. You can find out more about Apache configuration in Appendix B, “Installing and Run-
ning Django.”

The Model

Following is this application’s models.py, and aside from a single change we are making
later on, it’s complete. Note the get_absolute_url methods are using the @permalink
decorator, which is covered toward the end of the chapter.

class Item(models.Model) :
name = models.CharField(max_length=250)
description = models.TextField()

class Meta:
ordering = ['name']

def __unicode__(self):
return self.name

@permalink
def get_absolute_url(self):
return ('item _detail', None, {'object_id': self.id})

class Photo(models.Model):
item = models.ForeignKey (Item)
title = models.CharField(max_length=100)
image = models.ImageField(upload_to='photos"')
caption = models.CharField(max_length=250, blank=True)

class Meta:
ordering = ['title']

def _ _unicode__(self):
return self.title

@permalink
def get_absolute_url (self):
return ('photo_detail', None, {'object_id': self.id})

class PhotoInline(admin.StackedInline) :
model = Photo

Preparing for File Uploads

class ItemAdmin (admin.ModelAdmin) :
inlines = [PhotoInline]

admin.site.register(Item, ItemAdmin)
admin.site.register (Photo)

As you can see, the Item is simple with the Photo being more the star of the show—it
not only has the relation to its parent Item, but a title, the image itself, and an optional
caption. Both objects are registered with the admin application; they also both have a
Meta.ordering attribute set.

Our main focus is the ImageField in the Photo model, as that’s the field we are even-
tually customizing and also takes a bit of setup compared to most other model fields. Let’s
explore how to get that working.

Preparing for File Uploads

Before we can upload files to our gallery site, we need to be specific about where we want
Django to put them. FileFields and ImageFields store uploaded data to a subdirectory
of one’s settings.py-defined MEDIA_ROOT, which is specified in the upload_to field
argument. In our model code, we’ve set this to 'photos, ' so if our settings.py con-
tained the following:

MEDIA_ROOT = '/var/www/gallery/media/"'

our photos would necessarily end up in /var/www/gallery/media/photos/. If that
directory doesn’t exist, it needs to be created, and it also needs to be writable by whatever
user or group your Web server is running as. On our Debian-based system, we’re running
Apache as the www-data user, so we can have a short shell session that looks like this (see
Appendix A, “Command Line Basics,” for details on using the command line):

user@example:~ $ cd /var/www/gallery/media

user@example: /var/www/gallery/media $ 1s

admin

user@example: /var/www/gallery/media $ mkdir photos
user@example: /var/www/gallery/media $ 1ls -1

total 4

lrwxrwxrwx 1 root root 59 2008-03-26 21:41 admin ->
/usr/lib/python2.4/site-packages/django/contrib/admin/media
drwxrwxr-x 2 user user 4096 2008-03-26 21:44 photos
user@example: /var/www/gallery/media $ chgrp www-data photos
user@example: /var/www/gallery/media $ chmod g+w photos
user@example: /var/www/gallery/media $ 1s -1

total 4

lrwxrwxrwx 1 root root 59 2008-03-26 21:41 admin ->
/usr/lib/python2.4/site-packages/django/contrib/admin/media
drwxrwxr-x 2 user www-data 4096 2008-03-26 21:44 photos

161

162

Chapter 7 Photo Gallery

The previous is only possible if your normal user is also in the www-data group—
depending on your system setup you can find yourself having to use sudo or similar
approaches, which is fine. We’ve found that when doing lots of system tasks that intersect
with our Web server’s domain, it’s very useful to make ourselves part of its group; then as
long as directories or files are group-writable (as previously shown) both the Web server
and our user can interact with them.

Finally, note that a more fleshed-out application would probably have another symlink
or two in the media directory—you need your CSS and JavaScript, after all—and your
Web server needs to be configured to serve it up normally. If you use mod_python with
Apache, for example, you need a short config block to “punch through” the Django-
handled URL space so Apache serves your media files directly. See Appendix B for more
on mod_python configuration.

Installing PIL

At this point—once we’ve added our custom app to our settings.py and have run
syncdb—we’re almost ready to upload some images. However, as we see in a moment,
there’s one final task remaining. If we were to load up our admin site as things currently
stand (with our Django project installed and the photos upload folder set up), chances are
good we'd see a screen similar to that in Figure 7.1.

ImproperlyConfigured at /gallery/admin/
Error while importing URLconf 'gallery.items.urls': No module named PIL

Request Method: GET

Request UAL: hipaiibe dyndng

Type:

Excoption Value: Ermor while imporing URLoonf ‘gallery.iterns.urls’; Mo module named PIL

ion Location: fustlibipyth i j py in _get_urdcont_module, line 255

Python Executable: fusribin/python

Python Versian: 2.4.6

Python Path: i

zip', i 4, i Afplat-inux, Yuslib/python@. AMib-tk',
Allib-dynicar, Alnit X /sl
Berver time: Thu, 27 Mar 2008 21:04:58 -0400

1

Template error

In templale /fusr/1ib pyehond. /ol jang ib/admin, 1 / -heml, wrror at line 28

Caught an exception while rendering: Error while iImporting URLconf 'gallery.ltems.urls’: No module named PIL

18 (% if not lu_popup %}

19 <l-- Hoader --=

20 <div id="header™>

il €div id="mranding >

2 {% block branding %}{% endblock %}

3 <fdive

24 {¥ if vser.is suthenticated and user.is staff ¥} L

25 <div {de"unor-toolas .
(_26 {% trans ‘Welcome,’ 8} (% if user.first_nase 3}{{ ulvl.(irl‘jmhu:wﬂ 1344 eloe $)({ uner.asecs?

|

Figure 7.1 What happens when you don’t have PIL installed

In other words—we need a special Python library to use ImageField, specifically PIL,
or the Python Imaging Library. PIL is a commonly used Python library that can handle all

Testing ImageField

sorts of image manipulation. ImageField uses it to verify that uploaded files are images
and to store their height and width if you use the optional height_field and
width_field options; we use it further to do our thumbnail resizing.

To install PIL for Unix-based systems, such as Linux or Mac, download the Source Kit
from http://www.pythonware.com/products/pil/ and run setup.py install in its
install directory once you’ve unpacked it. For Win32, you would download the appropri-
ate .exe installation binary for your version of Python and install it.

A simpler way to install third-party Python packages on any platform is Easy Install.

It knows about dependencies and makes download plus installation a complete one-step
solution.You simply run easy_install pil to accomplish the same thing as all the steps
previously described. To find out more information about obtaining and using the Easy
Install tool, visit the PEAK Developers’ Center at http://peak.telecommunity.com/
DevCenter/EasyInstall.

Testing ImageField

Regardless of how you did it, once PIL is installed and we’ve restarted and/or reloaded
our Web server, the PIL-related errors should go away, and we can move onward and do a
simple test of our ImageField.

Because of the way the gallery’s model is constructed, we can’t just upload a random
image not associated with an Item. A careful look at the model definition shows we’ve set
up admin and inline classes, so our Photo objects can be edited as part of their parent
Ttem. This enables us to easily add images at the same time as we define our items, and
you can see this in Figure 7.2.

Add item | Django site admin

Django administration Welcome, User. Documentation | Change password [Log out

Home » ltems » Add item

Add item
Name: Test em
Description: Test deseriprinnl

Tithe: Test Image

Image: [(Cheose File) % IMG_0010jng

Caption:

Tithe:

Image: (Choose File) no file selected 1y

Caption:

Figure 7.2 The ImageField

163

http://www.pythonware.com/products/pil/
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall

164

Chapter 7 Photo Gallery

After saving our new Item, the selected image (in our case, a picture of one of the
authors’ pet rabbit) is uploaded and stored. We can verify this via the admin, as seen in
Figure 7.3.

Change item | Django site admin

Django administration

Home + hems » Test ltem

Change item =B D
Name: Test ltem
Description: Test deseriprion)

Title: Test Image

Image: Currently: photos/IMG_0010.jog

Caption: e
Title:

Image: [Choase File) na file selected
=

Figure 7.3 The admin interface, post-upload

Note the Currently: link above the file selector for the first Photo—clicking it shows
the uploaded image, as shown in Figure 7.4.

We can also verify the file upload via the command line.
user@example:/var/www/gallery/media/photos $ 1s -1
total 144
-rw-r--r-- 1 www-data www-data 140910 2008-03-27 21:26 IMG_0010.Jjpg

It’s taken a bit of explanation, but as you can see, getting up and running with image
uploads is pretty painless—up till now all we’ve really done is define a model, create a
folder to hold the images, and install the imaging library. Now we can finally show you
the interesting stuff, namely how to extend ImageField to perform thumbnailing.

Building Our Custom File Field

Because Django provides no thumbnailing capabilities out of the box, we write our own
model field, which is capable of transparently handling thumbnail creation, deletion, and
display by subclassing TmageField.The official Django documentation has excellent infor-
mation on writing entirely new model fields from scratch—here, we just want to tweak
existing behavior, which is a bit simpler and probably more common.

Building Our Custom File Field 165

IMG_0010.jpg 480640 pixels s * j'

Figure 7.4 Checking the current value of an ImageField

Don’t Fear the Source

It’'s all too common for programmers to treat the libraries they work with—even fully open
source ones—as black boxes with defined input and output behavior, but which are other-
wise mysterious. Although this can be appropriate in some cases, such as in verbose or low-
level languages where these libraries can get truly gigantic or byzantine, it’s often not the
case with Python source code.

Pythonic, well-written libraries are generally pretty easy to crack open and comprehend, and
Django is no exception. We don’t pretend the entire codebase is perfectly refactored and
commented, but much of it is in great shape, and developers—even intermediate ones—can
get a lot of benefit out of diving into code to figure out what makes Django tick. What we do
in this chapter is not fully documented—but it is relatively easy to figure out just by reading
the source for django.db.models.ImageField and its parent classes.

To accomplish this, we needed to override four methods of our parent ImageField
class, and in the process added one simple, private method as a refactoring aid. The source
code that directly inspired this chapter is heavily commented—documentation greatly
helps with the process of understanding new territory—but we’ve removed most of that
here to make it easier to read.

Our thumbnailing ImageField, called—naturally—ThumbnailImageField, is stored in
gallery.items.fields. It consists solely of some imports, a refactoring-based utility
function, and a couple of subclasses that modify some built-in Django classes. If you’re
unfamiliar with Python’s approach to object-oriented subclassing, see Chapter 1,“Practical
Python for Django,” for details.

Let’s step through our file top-to-bottom.

166

Chapter 7 Photo Gallery

Initialization

Every Python file, except for some rare cases, begins with imports, and this one’s no
different.

from django.db.models.fields.files import ImageField, ImageFieldFile
from PIL import Image

import os

Imports are simple; all we need for this task are the parent classes of ImageField and
ImageFieldFile, PILs Image class, which does the thumbnailing for us, and the built-in
os module for handling the thumbnail files themselves.
def _add_thumb(s):

Modifies a string (filename, URL) containing an image filename, to insert
'.thumb' before the file extension (which is changed to be '.jpg').
parts = s.split(".")
parts.insert (-1, "thumb")
if parts[-1].lower() not in ['jpeg', 'jpg']:
parts[-1] = 'jpg'
return ".".join(parts)

_add_thumb is a utility function that, as the docstring says—always use good doc-
strings—takes the original image’s file path and inserts the string “.thumb.” So an
uploaded image named rabbit.jpg would result in a thumbnail of rabbit. thumb.jpg;
because our code can only generate JPEG thumbnails, it also changes the extension if
necessary.
class ThumbnailImageField(ImageField):

Behaves like a regular ImageField, but stores an extra (JPEG) thumbnail
image, providing get_FIELD_thumb_url() and get_FIELD_thumb_filename() .

Accepts two additional, optional arguments: thumb_width and thumb_height,
both defaulting to 128 (pixels). Resizing will preserve aspect ratio while
staying inside the requested dimensions; see PIL's Image.thumbnail ()
method documentation for details.

attr_class = ThumbnailImageFieldFile

Not much to say here—we’re defining our new subclass, having it inherit from
ImageField, and putting in a nice big docstring. This way, anyone using Python’s help sys-
tem, or automated documentation tools, gets a decent idea of what our code does.

Building Our Custom File Field

The single line of actual code here, concerning attr_class, is used to update a special
class our field uses as a delegate for attribute access. We go into detail about this class in
the next section. The last piece of this introduction is __init_ :

def _ _init_ (self, thumb_width=128, thumb_height=128, *args, **kwargs):
self.thumb_width = thumb_width
self.thumb_height = thumb_height
super (ThumbnailImageField, self)._ _init_ (*args, **kwargs)

Our overridden __init__is also fairly simple—we’re just storing the desired max
width and height of our thumbnail for use during the resize operation. This enables easy
reuse of the field with varying thumbnail sizes.

Adding Attributes to the Field

Many fields are relatively low-key and don’t modify their containing model objects, but in
our case, we want to make it easy to get to the extra information we provide (our thumb-
nails’ filenames and URLs). The solution is to subclass a special class that ImageField uses
to manage its attributes, ImageFieldFile, which is used when one performs attribute
lookups on the field itself.

For example, to obtain the filesystem path for an ImageField called image, you use
myobject.image.path;in such a scenario, .path is an attribute on ImageFieldFile.
Because Django caches the file data when possible and delegates the file to a lower layer,
this is done via Python properties. (See Chapter 1 for a refresher on the property built-in
function.)

The following code snippet illustrates how the default Django codebase implements
ImageFieldFile.path:

def _get_path(self):
self._require_file()
return self.storage.path(self.name)
path = property(_get_path)

This snippet is taken from the FieldFile class (which is the parent of
ImageFieldFile, used — as you can guess — by ImageField). Recall our previous utility
function _add_thumb, and how it transforms a given file path, and you can guess what
we’ll do to add the . thumb_path and . thumb_url attributes to our field:

class ThumbnailImageFieldFile(ImageFieldFile):
def _get_thumb_path(self):
return _add_thumb(self.path)
thumb_path = property(_get_thumb_path)

def _get_thumb_url (self):
return _add_thumb(self.url)
thumb_url = property(_get_thumb_url)

167

168

Chapter 7 Photo Gallery

Because the .path and .url getters are already defined, and they take care of the
minute boilerplate required for safe operation (the call to self._require_file,seen in
the previous snippet concerning _get_path), we are free to omit that extra code. We sim-
ply perform our _add_thumb transformation and attach the result to the desired attribute
names, with property.

With ThumbnailImageFieldFile defined above our ThumbnailImageField and refer-
enced in the attr_class line at the top of ThumbnailImageField, we have added two new
attributes to our field, which you can use in Python code or templates: myobject . image.
thumb_path and myobject . image. thumb_url (given, of course, that myobject is a Django
model instance and image is a ThumbnailImageField on that model).

Subclassing TmageFieldrFile and tying that subclass to our ImageField subclass is
probably not an obvious action to take; most custom model fields won’t need to go this
far. In fact, as a user of Django, you’ll likely never see this particular aspect of the model
(although it’s more accessible now than it used to be—the previous version of this section
was a little more complex). However, it highlights the fact that the Django core team tries
to apply extensible design to the internals of the framework and not just its public API.

Now that we have access to our desired thumbnail’s URL and filesystem path, we
move on to actually creating (and removing) that thumbnail file.

Saving and Deleting the Thumbnail

The crux of the matter, creation of the thumbnail file itself, is an overridden save method
on ThumbnailImageFieldFile (not ThumbnailImageField!) that looks like this:

def save(self, name, content, save=True):
super (ThumbnailImageFieldFile, self).save(name, content, save)
img = Image.open(self.path)
img. thumbnail (
(self.field.thumb_width, self.field.thumb_height),
Image.ANTIALIAS

)
img.save (self.thumb_path, 'JPEG')

The call to the superclass’s save takes care of normal saving operations for the primary
image file, so all our method has to do is the three-step sequence of opening that original
image, creating the thumbnail, and saving that thumbnail to our thumbnail filename. Note
the use of self.field that lets us access the Field that this File object belongs to, which
is where we’ve stored the desired thumbnail dimensions. Leveraging the PIL Image class,
which we imported at the beginning, enables our code to be very simple indeed.

As a final step, we need to make sure our thumbnails are cleaned up when their
“parent” images are deleted:

def delete(self, save=True):
if os.path.exists(self.thumb_path) :
os.remove (self.thumb_path)
super (ThumbnailImageFieldFile, self) .delete(save)

Setting Up DRY URLs

Thanks to Python’s syntax, this excerpt almost describes itself. We obtain the filename
of our thumbnail, delete it (if it exists, of course—no point inviting an error if the file’s
not there), and tell our superclass to do its own file deletion (which removes the original
image). If it wasn’t obvious, the delete method, like save, is triggered by ImageField
when its container model object is deleted.

Order of Operations

The order of operations in our delete method matters and is something to be considered
whenever you subclass. If we had called super first, the call to self.thumb_path would
have generated an error because it in turn calls self.path, which—if you recall the previ-
ous code snippet—tries to ensure the field’s main file exists! Therefore, we need to wait
until the last possible minute to remove that file, lest our class break down.

Using ThumbnailImageField

Now that we’ve defined our subclass of ImageField, it’s time to put it to work. All that’s
needed is to add a new import to our models.py:

from gallery.items.fields import ThumbnailImageField

and to replace models. ImageField with the thumbnail version in our Photo model:

class Photo(models.Model) :
item = models.ForeignKey (Item)
title = models.CharField(max_length=100)
image = ThumbnailImageField(upload_to='photos"')
caption = models.CharField(max_length=250, blank=True)

After a reload of our Web server, there’s no noticeable change in the admin because
we didn’t modify anything that has to do with the form aspect of the field, as seen in
Figure 7.5.

Post-upload, things also look identical to the earlier example, as shown in Figure 7.6.

However, checking our upload directory, we see the fruits of our labor.
user@example: /var/www/gallery/media/photos $ 1ls -1
total 148
-rw-r--r-- 1 www-data www-data 140910 2008-03-30 22:15 IMG_0010.Jjpg
-rw-r--r-- 1 www-data www-data 1823 2008-03-30 22:15 IMG_0010.thumb.jpg

Success! Unfortunately, it takes a bit of time to get to the point where we can view the
thumbnail, as we’ve yet to show you the templates our application uses to display them.
Before we do so, it’s time to quickly explore the secondary aspect of this application: how
we’ve set up a fairly simple approach to preserving DRY in our URLs.

Setting Up DRY URLs

Until now, we’ve focused solely on the model aspects of the gallery app. It’s time to go
over our URL structure, which provides the context necessary to understand the tem-
plates in the next section. First, though, we need a bit of background to explain a rather

169

170 Chapter 7 Photo Gallery

Django administration

Home « ltems « Add item

Add item
Name: Test em
Description: Test

e

Tithe: Tes Photo

image: $ w0100
Caprion:

Tithe:

Image: no file selected

Caption:

[N CIIS

Figure 7.5 Nothing’s different from before

Django administration

Home » ltems « Test ltem

Change item [istoy L View onsito |+]
Name: Test em
Description: Test
£
.\I ‘T:.‘T—

Tithe: Test Photo

Image: Currently: photos/IMG_0010.jog

Dﬂng::fﬂnﬁ“ﬁlg , ne fle selected
Caption: u

T e ——]

Title:

Image: na il seecred

| ETIS

Figure 7.6 Still nothing new from a visual perspective

unusual setup. Because of how this application was developed, it was desirable to have it
work equally well at the top level of a domain (such as http://www.example.com/) or as
a subsection (for example, http://www.example.com/gallery/).

By default, a Django site is assumed to be in the former situation—URLs are parsed
from the root of the domain, even if one’s Web server handler is hooked in higher up.

Setting Up DRY URLs

Because of this, one’s URLs must include the entire URL path, so a site at /gallery/
needs all its URLs prefixed with that string.' We’ve simply done the obvious thing and
stored that value as a settings.py variable and referenced it where necessary.

ROOT_URL = '/gallery/'

Because a couple of other settings.py variables rely on URL paths, we can put it to
use right away for our authentication login URL, the media URL, and the admin’s
media prefix.

LOGIN_URL = ROOT_URL + 'login/'
MEDIA_URL = ROOT_URL + 'media/'
ADMIN_MEDIA_ PREFIX = MEDIA_URL + 'admin/'

Next, because of how Django’s URL include system works, we have to use a two-file
root URLconf setup, where the “normal” top-level urls.py simply uses ROOT_URL, and
then calls the “real” urls.py, which is blissfully ignorant of ROOT_URL and its implications.
Here’s the root urls.py:

from django.conf.urls.defaults import *
from gallery.settings import ROOT_URL

urlpatterns = patterns('',
url(r'~%s' % ROOT_URL[1:], include('gallery.real_urls')),

Note

We needed to slice ROOT_URL to chop off the leading slash because settings.py vari-
ables that use it—such as LOGIN_URL—trequire that leading slash in order to be correct
absolute URLs. However, because Django’s URL parsing omits that leading slash character,
we have to get rid of it for our URLs to parse correctly.

Here’s our “real” root UR Lconf, which we’ve called real_urls.py due to a lack of
Imagination:
from django.conf.urls.defaults import *
from django.contrib import admin

urlpatterns = patterns('"',
url(r'*admin/(.*)', admin.site.root),

url(r'~', include('gallery.items.urls')),

* Django 1.0 introduced a new Apache configuration directive, PythonOption django.root
<root>, which takes the place of much of the ROOT_URL functionality we outline here. However,
we’re leaving this part of the chapter intact, as an example of how Django’s “just Python” approach
enables you to alter its behavior in various ways.

171

172

Chapter 7 Photo Gallery

Finally, it’s useful for templates to have access to ROOT_URL to construct similarly DRY-
compatible include URLs, such as those needed for CSS or JavaScript includes. This can
be accomplished with a simple context processor (covered previously in Chapter 6, “Tem-
plates and Form Processing”).

from gallery.settings import ROOT_URL

def root_url_processor (request) :
return {'ROOT_URL': ROOT_URL}

And that’s it! After applying those handful of tweaks to a normal Django project,
everything now hinges on the value of ROOT_URL—it’s currently set to ' /gallery/",
meaning the application should live at http://www.example.com/gallery/, as mentioned
previously. If we wanted to deploy the application to just http://www.example.com/, all
we need to do is change ROOT_URL to ' /' (and update our Web server config so Django
is hooked in at the root level), and we’re done.

The I1tem App’s URL Layout

To complete the DRY-ness of our URL structure, we’re going to apply a three-part
approach for our objects’ get_absolute_url methods. The first and most important part,
you’ve already seen throughout the book—the use of the url function for defining our
UR Lconfs, which enables us to give our URLs unique names. Following is the urls.py
contained within the items app itself:

from django.conf.urls.defaults import *
from gallery.items.models import Item, Photo

urlpatterns = patterns('django.views.generic',
url(r'~$', 'simple.direct_to_template',
kwargs={
'template': 'index.html',
'extra_context': {'item_list': lambda: Item.objects.all()}
Iy
name="'index"'
)
url(r'~items/$', 'list_detail.object_list',
kwargs={
'queryset': Item.objects.all(),
'template_name': 'items_list.html',
'allow_empty': True
Y,
name='item_list'
).
url (r'~items/ (?P<object_id>\d+)/$', 'list_detail.object_detail',
kwargs={
'queryset': Item.objects.all(),

Tying It All Together with Templates

'template_name': 'items_detail.html'

1,
name="'item_detail'
),
url (r'~photos/ (?P<object_id>\d+)/$', 'list_detail.object_detail',
kwargs={
'queryset': Photo.objects.all(),
'template_name': 'photos_detail.html'
},
name="'photo_detail"
),

As you can see, the application consists of an index page, a list of items, per-item pages,
and per-photo pages, each with the obvious name defined. These names can be refer-
enced with the {$ url %} templatetag, as we see next in the templates section, as well as
with the permalink decorator that wraps get_absolute_url,such as:

class Item(models.Model) :
name = models.CharField(max_length=250)
description = models.TextField()

class Meta:

ordering = ['name']

def __unicode__ (self):
return self.name

@permalink
def get_absolute_url (self):
return ('item_detail', None, {'object_id': self.id})

The permalink decorator expects its wrapped function to return a three-tuple con-
sisting of the URL name, a list of positional arguments, and a dictionary of named argu-
ments, which are used to reconstruct the URL. As you can see from the previous
example, the item detail view takes no positional arguments and one named argument,
and that’s what we’ve provided in our get_absolute_url.

When set up in this way, Item.get_absolute_url returns the appropriate URL, even
if our URL structure changes, thus preserving DRY (albeit at the cost of making
get_absolute_url behave rather oddly if the decorator is ever removed).

Tying It All Together with Templates

Finally, after making our custom model field and tweaking our URL setup, all that’s
left—because we’re using entirely generic views—are the templates. We use a simple
inheritance setup to maximize DRY, starting with our base template for structure and a
dash of CSS.

173

174 Chapter 7 Photo Gallery

<html>
<head>
<title>Gallery - {% block title %}{% endblock %}</title>
<style type="text/css">
body { margin: 30px; font-family: sans-serif; background: #fff; }
hl { background: #ccf; padding: 20px; }
h2 { background: #ddf; padding: 10px 20px; }
h3 { background: #eef; padding: 5px 20px; }
table { width: 100%; }
table th { text-align: left; }
</style>
</head>
<body>
<hl>Gallery</hl>
{% block content %}{% endblock %}
</body>
</html>

Next up is the index page. In the application that inspired this chapter, it was fleshed
out a bit more with some light CMS-like functionality to enable the “welcome” blurb to
be edited in the admin; we’ve omitted that here in the interest of brevity. Instead, we’ve
just got a static welcome paragraph and a short list of three highlighted Items, which is
controlled in the URLconf. (It’s currently a list of all items, but could easily be changed
to meet some other criteria.)

{% extends "base.html" %}

{% block title %}Home{% endblock %}
{% block content %}

<h2>Welcome to the Gallery!</h3>
<p>Here you find pictures of various items. Below are some highlighted
items; use the link at the bottom to see the full listing.</p>

<h3>Showcase</h3>
<table>
<tr>
{% for item in item list|slice:":3" %}
<td>
{{ item.name }}

{% if item.photo_set.count $%}

% else %}
No photos (yet)
{% endif %}

</td>

Tying It All Together with Templates

{% endfor %}
</tr>
</table>
<p>View the full list »</p>

% endblock %}

The previous template code renders the page view as seen in Figure 7.7.

(& @ & Gallery - Home —ﬂ

Gallery

Welcome to the Gallery!
Here you'll find pictures of various items. Below are some

highlighted items; use the link at the bottom to see the full
listing.

Showcase

Test ltem

View the full ligt =

Figure 7.7 The gallery index page

Note the use of both get_absolute_url and {$ url %} for linking to item detail
pages and the item list, respectively; and, most importantly, the use of image. thumb_url
on the first image in each item’s list of photos. An improvement on how we approach the
“which thumbnail to use for an item” problem could be to update the Photo model to
mark a specific image as the “representative” one—which is just one of many ways this
application could be extended.

The item listing (items_listing.html) is just a more complete version of the high-
light list on the index page, using the same tricks, as shown in Figure 7.8.

o

% extends "base.html" %}

{% block title %}Item List{% endblock %}

{% block content %}

175

176

Chapter 7 Photo Gallery

Gallery - Item List |

Name Sample Thumb Description

Tast tam Tast

Figure 7.8 The gallery listing page

<p>« Back to main page</p>

<h2>Ttems</h2>
{% if object_list %}
<table>
<tr>
<th>Name</th>
<th>Sample Thumb</th>
<th>Description</th>
</tr>
{% for item in object_list %}
<tr>
<td><i>{{ item.name }}</i></td>
<td>
% if item.photo_set.count %}

{% else %}
(No photos currently uploaded)
% endif %}

</td>

<td>{{ item.description }}</td>

Tying It All Together with Templates

</tr>
{% endfor %}
</table>
{% else %}
<p>There are currently no items to display.</p>
{% endif %}

{% endblock %}

Similarly, the item detail view (items_detail.html), is like the item listing view
except that it lists all the photos instead of just using the first one as a representative, as
shown in Figure 7.9.

=" Gallery - Test Item — |

Gallery

Test Item
Test
Photos

Title Thumbnail Caption

Test Photo

Figure 7.9 An item detail page

{% extends "base.html" %}

{% block title %}{{ object.name }}{% endblock %}

{% block content %}

<p>« Back to full listing</p>

177

178

Chapter 7 Photo Gallery

<h2>{{ object.name }}</h2>
<p>{{ object.description }}</p>

<h3>Photos</h3>
<table>
<tr>
<th>Title</th>
<th>Thumbnail</th>
<th>Caption</th>
</tr>
{% for photo in object.photo_set.all %}
<tr>
<td><i>{{ photo.title }}</i></td>
<td>

</td>
<td>{{ photo.caption }}</td>
</tr>
{% endfor %}
</table>

% endblock %}

Finally, the following shows the photo detail view (photos_detail.html), which is
the only place we actually use image.url, as shown in Figure 7.10.

% extends "base.html" %}

{% block title %$}{{ object.item.name }} - {{ object.title }}{% endblock %}
{% block content %}

« Back to {{
object.item.name }} detail page

<h2>{{ object.item.name }} - {{ object.title }}</h2>

{% if object.caption %$}<p>{{ object.caption }}</p>{% endif %}

{% endblock %}

Summary 179

Summary

It’s been a bit of a whirlwind tour, but hopefully at this point you’ve got a fairly complete
picture of how this application has come together.

= We defined our models and used the admin to demonstrate how image uploading
works, including the necessary system-level setup.

= The desire for thumbnails drove us to define a new subclass of Django’s image field
and its related file class, during which we simply overrode a few methods to per-
form the resize and provide access to the thumbnail file.

= We made full use of Django’s DRY URL features, including implementing a “root
URL” setting (similar to one added to Django core just prior to 1.0) to help us
maintain flexible URLs.

= Finally, we created simple templates to enable users to navigate and view our photos.

(& & & e Gallery - Test Item - Test Phato S —|

=

Gallery

u B Test tom il

Test Item - Test Photo

Figure 7.10 The photo detail view

This page intentionally left blank

3

Content Management System

A common question from new Django users is, “Is there an open source CMS (Content
Management System) written in Django?” Our typical answer is not always what people
want to hear—that you should build your own. This chapter explores a couple of ways to
do this with Django; first, by leveraging a contrib app that makes it easy to create and
publish “flat” HTML pages, and then by making a more in-depth, but still simple, content
creation system.

What’s a CMS?

People mean many difterent things by “CMS.” It can be easier to build one using the
tools Django provides than to try adapting someone else’s solution, unless that solution is
already nearly identical to what you want.

The “CMS” label 1s used to refer to many different application types.To one person it
can mean a basic interface for editing Web page content displayed in templates, such as a
blog. To another it can encompass complicated permissions and workflow rules, genera-
tion of multiple output formats from a single source, multiple versions and editions, and
all sorts of non-Web content (and the indexing, archiving, and managing thereof).

In other words, nearly everyone’s CMS application is custom to some extent. And
Django’s sole purpose is to make it easier for you to develop custom Web applications.
Practical-minded developers are rightfully cautious about reinventing the wheel, but it
can be that your specific wheel hasn’t been invented yet.

As the ecosystem of open source Django applications matures, we will likely see a few
CMS-type apps become mature enough to be recommended frequently, accumulating
their own communities of users and maintainers. The perfect one for your needs might
even be out there already. So do look around (see Appendix D, “Finding, Evaluating, and
Using Django Applications,” for some pointers), but don't feel shy about implementing
your own solution.

182

Chapter 8 Content Management System

The Un-CMS: Flatpages

The simplest Django-powered CMS doesn’t require writing any code at all. Django ships
with an application called “Flatpages” that is suitable for simple cases. What’s most appeal-
ing about the Flatpages app is that, if it works for you, there’s very little setup to be done
and no code of your own to maintain.

Another convenience is that the URLs pointing to your Flatpages-based pages are
specified via the admin; you don’t have to edit a URLconf file to add a new page. Before
you get too excited, though, here are some of its limitations.

= All pages can be edited by all administrative users who have access to the Flatpages
application; users can’t “own’ individual pages.

= Aside from title and content attributes and a few special-purpose fields we dis-
cuss, there’s not much to a Flatpages object; there’s no creation date or other bits of
data you can have associated with a particular page.

= Because it’s a provided (“contrib”) app, you can’t easily change its admin options,
add new fields, or model methods.

Assuming those aren’t showstoppers for you, however, Flatpages can be useful. We

explore how to set up and use Flatpages in the next few sections, followed by a look at
setting up a more robust, custom CMS application.

Enabling the Flatpages App

Here’s a quick overview of the steps necessary to get Flatpages up and running.
1. Create a new Django project with django-admin.py.
2. Open your project’s settings.py and update your MIDDLEWARE_CLASSES setting
to include django.contrib. flatpages.middleware.

FlatpageFallbackMiddleware.

3. Add django.contrib. flatpages and django.contrib.admin to your
INSTALLED_APPS settings.py variable.

4. Run manage.py syncdb to get Django to create the necessary tables.
5. Update your urls.py, uncommenting the default admin-related line to activate it.

6. (Re)start your Web server of choice.

Once you've followed the previous steps, log in to the admin site, and you should see
what looks like Figure 8.1.

The Un-CMS: Flatpages

Django administration velcome, wese. Documeantatia

Site administration
Recent Actions

Groups add #Change | My Actions
Users fadd #change | MNone avallable
Ty T T—

Sites dadd & Change

Flat pages dadd #Change

Figure 8.1 The admin page after logging in with the Flatpages app available

Click Add to create a new Flatpage object (see Figure 8.2). Only the url, title, and
content fields are required. Make sure the URL includes leading and trailing slashes, as

indicated.

d flat p ango site admin - Windows Intern

T B e - | 2 3 i 35

8 i sk page | Dyango ske admin

Django administration

Horne » Flat pages » 244 flat page

Add flat page
URL: Jabout/

E-ample abouticontadt”, Make sure to have leading and trading slashas.

Title: Abaut Us

Content:

Our company was created by our founders. We provide the best service of any company in our
industry.

Figure 8.2 The Flatpage Add screen

Create one or two pages now, so you have something to look at when you get to the
testing step!

183

184

Chapter 8 Content Management System

We go straight into the templates next because Flatpages requires no URL manage-
ment aside from what you’ve already done. Instead, it uses a special piece of Django mid-
dleware that intercepts 404 errors and looks up the requested URL in the list of Flatpage
objects. If it finds a match, the Flatpages app takes over. If it doesn’t, the 404 is passed
through for normal error handling.

Note

The 404-handling aspect of Flatpages also means it can be used in tandem with a regular
Django application, enabling you to simply and easily specify your flatpages (“About Us” or
“Legal”) without having to constantly update a URLconf.

Flatpage Templates

Individual Flatpage objects have a template_name attribute that can be customized, but
by default the Flatpages app looks for a template called flatpages/default.html among
the templates available. That means you need to create a “flatpages” template directory in
one of the locations listed in your project’s TEMPLATE_DIRS setting or inside a “templates”
folder inside one of the applications listed in your INSTALLED_APPS setting if you're using
the app_directories template loader. Either way, create that directory now.

Your template is passed an object called flatpage that you can use as you'd expect. For
example:

<hl>{{ flatpage.title }}</hl>
<p>{{ flatpage.content }}</p>

So, make yourself a minimal page template by saving the following code as
default.html in the directory you just created.

<html>
<head>
<title>My Dummy Site: {{ flatpage.title }}</title>
</head>
<body>
<hl>{{ flatpage.title }}</hl>
<p>{{ flatpage.content }}</p>
</body>
</html>

Testing It Out

At this point, try to load up your flatpage(s). For example, if your server is running on
your workstation, and you created a Flatpage object via the admin whose URL value is
/about/, you would load up http://localhost:8000/about/ in your browser. It should dis-
play the title and content fields’ values using your default.html template, as shown in
Figure 8.3.

Beyond Flatpages: A Simple Custom CMS

/2 My Dummy Site: About Us - Windows Internet Explorer

v | 2] hetpifiocabiost:A000sboutf Elfer ll =il coooe i
Be Edt Yew Fovortes Took Help
SF 4R My Dusmeny She: About s I |@~ - e - |- page - (G Taoks - @ 7
|
About Us

Onr company was created by our founders. We provide the best serce of any company in our industry.

Figure 8.3 An example of an “About Us” Flatpage

Hopefully you've seen enough to get a taste of how Flatpages is intended to be used
and how well it fills its particular niche. We now focus on the meat of the chapter—an
example of a more robust CMS application.

Beyond Flatpages: A Simple Custom CMS

Flatpages are fine, but as outlined previously, they have many limitations. Getting beyond
them is as simple or as complex as the needs of your site. Let’s walk through the process of
using Django to build a custom CMS that goes beyond Flatpages. Specifically, we want
our solution to

= Enable users to enter text in a convenient non-HTML format that is automatically
converted to HTML

= Create page URLs based on human-friendly text rather than database-friendly inte-
ger primary keys

= Provide pieces of a basic workflow—associating a staff user with each story and
enabling each story to be marked as belonging to one of several production stages

= Maintain creation and modification dates
= Provide for categorization of stories with the capability to view stories by category

= Offer a simple search function available on all pages

These are all things that Django facilitates. Most of them involve features you have
already seen; part of learning how to build Django applications is learning how to
effectively combine these features to get your results with as little unneccessary work as
possible.

To begin with, you need to have another Django project set up (as usual, refer to
Chapter 2, “Django for the Impatient: Building a Blog,” for a refresher on how to create a
project, its database, and so forth). We refer to our project as cmsproject with a single
application named cms.

Let’s start with the model.

185

186

Chapter 8 Content Management System

Making the Model

Following is the central model definition for our little CMS. Note there are references to
two other models (User and Category); we see where those come from, as well as add a
few necessary import statements, shortly.

class Story(models.Model) :
"""A hunk of content for our site, generally corresponding to a page"""

STATUS_CHOICES = (
(1, "Needs Edit"),
2, "Needs Approval"),
3, "Published"),
4, "Archived"),

title = models.CharField(max_length=100)

slug = models.SlugField()

category = models.ForeignKey (Category)

markdown_content = models.TextField()

html_content = models.TextField(editable=False)

owner = models.ForeignKey (User)

status = models.IntegerField(choices=STATUS_CHOICES, default=1)
created = models.DateTimeField(default=datetime.datetime.now)
modified = models.DateTimeField(default=datetime.datetime.now)

class Meta:

ordering = ['modified']
verbose_name_plural = "stories"
@permalink

def get_absolute_url(self):
return ("cms-story", (), {'slug': self.slug})

class StoryAdmin (admin.ModelAdmin) :

list_display = ('title', 'owner', 'status',6 ‘'created',K 'modified')
search_fields = ('title', 'content')

list_filter = ('status', 'owner', 'created', 'modified')
prepopulated_fields = {'slug': ('title',)}

admin.site.register (Story, StoryAdmin)

Inside the model class definition itself, the first bit of code defines four stages of a sim-
plified workflow. Your process can have other steps, of course.

Although using Django’s mapping approach for field choices, as demonstrated here
with STATUS_CHOICES, has many conveniences, in this case it does still boil down to inte-
gers in the database.You are not easily able to redefine what ““1” means later, so it’s worth

Beyond Flatpages: A Simple Custom CMS 187

pausing a moment to be reasonably sure you’ve got a comprehensive list. This is true espe-
cially if you are going to be ordering your model instances based on the value of the field,
as we have reason to do so here.

We also are able to use these values in our public views to determine what can be seen
by our site visitors, that is, we want them to see “Published” and “Archived” stories but
not those that “Needs Edit” or “Needs Approval.” This is just the logic that is determined
by the business, project, and/or appplication requirements.

If you find yourself with a list of choices like this that just don’t settle down into a sim-
ple hardcoded list, what you probably want instead is a ManyToManyField, which can serve
the same purpose but whose choices can be edited in the admin just like your other data.

After the sTaATUS_CHOICES definition come the field definitions.

= title:The title we display, both in the browser’s title bar and in a heading on the
rendered page.

= slug:The unique name for the page that is used in its URL.This is nicer than a
plain integer primary key.

= category:The category for this item. This is a foreign key to another model we
define in a moment.

= markdown_content:The page content in Markdown format (more on Markdown
next).

= html_content:The page text as HTML.We automatically render this at edit time,
so when pages are displayed there is no markup translation overhead.To reduce pos-
sible confusion, this field is not directly editable (and thus does not show up in edit-
ing forms in the Django admin app).

= owner:An admin user (or, as Django sees it, a foreign key reference to a User object)
who “owns” this piece of content.

= status:The item’s place in the editorial workflow.

= created:The item’s creation time, automatically set to the current time (courtesy of
Python’s datetime module).

= modified:The item’s modification time, initially set to the current time. We need to
take special steps to make sure this gets updated when the item is edited. This time-
stamp is displayed on the story detail pages.

One cosmetic touch we make in this model, purely for users of the admin, is to specify
a verbose_name_plural attribute in the Meta inner class. This keeps our model from
showing up in the admin app with the incorrect name of “Storys.” Finally, we have a
permalinked get_absolute_url method, first mentioned in Chapter 7,“Photo Gallery.”

188

Chapter 8 Content Management System

Imports

All we need to import, besides the usual django.db.models (and an associated permalink
decorator function we explain next), is the datetime module (which we use for our
created and modified fields) and the user model that comes with Django’s
contrib.auth app. Last is the Django admin module, used to register our models with
the admin app.

import datetime

from django.db import models

from django.db.models import permalink
from django.contrib.auth.models import User
from django.contrib import admin

Like the Flatpages app, you might find the user model lacking in certain respects once
you get into building advanced Django applications. For example, its idea of what consti-
tutes a user name can clash with your requirements. However, User is a significant con-
venience, an adequate and complete solution, and extremely useful as-is in many
real-world applications.

Completing the Model

So our User object is coming straight from Django’s contributed “auth” app. But what
about category? That’s ours; here is its model definition, which should appear in the
models.py file directly above the story model definition.

class Category(models.Model) :
"""A content category"""
label = models.CharField(blank=True, max_length=50)
slug = models.SlugField()

class Meta:
verbose_name_plural = "categories"

def _ _unicode__(self):
return self.label

class CategoryAdmin (admin.ModelAdmin) :
prepopulated_fields = {'slug': ('label',)}

admin.site.register (Category, CategoryAdmin)

The category model is simple, almost trivial. You often see models this simple—some-
times simpler with just a single specified field—in Django applications. We could hack up
a similar effect by having a “category” field on our story model, but that would make
some things difficult (renaming categories) and others impossible (adding attributes to cat-
egories, for example, descriptions). Django makes it so easy to build a proper relational
model that it almost always makes sense to do so.

Beyond Flatpages: A Simple Custom CMS 189

As with story, we also set a verbose_name_plural attribute here so we don’t appear
illiterate to users of the admin.

Controlling Which Stories Are Viewed

Our database contains both publishable (3 and 4 from STATUS_CHOICES previously shown)
and not-yet-publishable (statuses 1 and 2) stories. We want a convenient way to have only
the former viewable on the site’s public pages, although of course making sure the full set
is editable in the admin. Because this is a matter of business logic rather than presentation
style, it should be implemented in our model.

We could make it happen via {$ if...%} tags in our templates, but that solution would
end up being needlessly brittle, verbose, and repetitive. (If you don’t believe this, we
encourage you to try it—the negatives become apparent before you're through!) Based on
your authors’ collective experience, it’s always a good idea to keep business logic out of
your templates because over time they turn into spaghetti!

We add this capability to our story model via a custom Manager. For more on this
technique, see the “Custom Managers” section of Chapter 4,“Defining and Using Mod-
els.” Add the following code to your models.py file, just following the import statements:

VIEWABLE_STATUS = [3, 4]

class ViewableManager (models.Manager) :
def get_query_set(self):
default_queryset = super(ViewableManager, self).get_query_set()
return default_queryset.filter(status__ in=VIEWABLE_STATUS)

We first define VIEWABLE_STATUS as a simple list of integers corresponding to the
statuses that merit a story being “viewable” by the general public. This is a module-level
attribute, meaning it is available to other methods we can add in the future.

Next, we instantiate the manager objects within our model. At the bottom of your
models.py, following the field and Meta inner class definitions, add the following two
lines, remembering to indent them properly so they belong to the story class:

admin_objects = models.Manager ()
objects = ViewableManager ()

As mentioned in Part 4, because the admin_objects manager is defined first, it
becomes our model’s default manager and is used by the admin—ensuring stories at all
stages are editable by staff. The name is not special, except as a reminder to us about what
its purpose is.

Then we create an instance of our custom manager using the conventional objects
name. Because we use this name in our URLconf and views, all our public pages auto-
matically receive the special, filtered queryset of stories provided by the custom
ViewableManager.

190

Chapter 8 Content Management System

Working with Markdown

As a finishing touch on our models, we overwrite the built-in save function to apply a
light markup language, called Markdown, to the text users enter via the admin. Somewhat
similar to Wiki-style syntax, Markdown offers an simpler alternative to creating Web con-
tent. Editing Markdown is much more pleasant than raw HTML and is familiar to anyone
who has composed a plaintext e-mail or edited a Wiki page.

You could easily use Textile, ReStructuredText, or other light markup languages as
well. The key trick we are employing here is to override the model’s save method to
“automagically” turn the Markdown into HTML right away, so the translation doesn’t
have to be made on every page request—we mentioned this earlier when describing the
pair of markdown_content and html_content fields.

Why Not WYSIWYG?

Presuming that a Web-based content management system is aimed at relatively nontechni-
cal users, some might find our use of Markdown here a bit nerdy. Fair enough. It is indeed
possible to integrate various WYSIWYG (What You See Is What You Get) HTML editors with
the Django admin, giving users what is hopefully a more familiar experience.

The downside of this approach, besides the extra initial effort of implementation, is a
WYSIWYG text area still doesn’t turn a Web browser into Microsoft Word, and you can bump
up against browser incompatibilities. That said, such tools can increase the appeal and
adoption of tools such as this CMS among nontechnical users. For recommended WYSIWYG
plugins and other advice, visit withdjango.com.

To use Markdown with Python, you have to first download the Python-Markdown
module as it is not part of the standard library.You can find it athttp://www.freewisdom.
org/projects/python-markdown/. Once it’s installed, import the markdown function from
the markdown module with the following statement:

from markdown import markdown

This import might look circular, but in fact, it’s a common Python idiom when a mod-
ule and the attribute you’re importing from that module share the same name.

Not knowing Markdown doesn’t impair your ability to understand this application, but
for the uninitiated, following are a few examples.You can try them out in the Python
interpreter if you like. For this demo, we define a helper function, tidy_markdown, that
makes things print a little cleaner by removing the newlines (\n) that Markdown inserts in
its output. (When we’re using Markdown for more extended pieces of HTML, those
newlines prevent the output from being a single extremely long line.)

>>> from markdown import markdown
>>> def tidy_markdown (text):
return markdown (text).replace('\n', '')
>>>
>>> tidy_markdown ("Hello")
'<p>Hello</p>"'
>>> tidy_markdown ("# Heading Level One")

http://www.freewisdom.org/projects/python-markdown/
http://www.freewisdom.org/projects/python-markdown/

Beyond Flatpages: A Simple Custom CMS

'<hl>Heading Level One</hl>'
>>> tidy_markdown ("Click here to buy my book (<http://withdjango.com/)">)
'<p>Click here to buy my book</p>'
>>> tidy_markdown ("""

. An alternate H1l style

> A blockgquote
* Bulleted item one

* Bulleted item two
nn IV)

'<hl>An alternate H1 style</hl><blockquote><p>A blockquote</p></blockquote>
<1li> Bulleted item one </1i>
 Bulleted item two "'

As you can see, the input is plain text in Markdown syntax, and the function output is
valid HTML.

So back to our Django application: To have our Markdown content automatically con-
verted to HTML as we save it, we make an addition to our model code. It’s a simple
three-line function, placed just above the assignment to admin_objects (but at the same
indent level as the rest of the model class).

def save(self):
self.html_content = markdown (self.markdown_content)
self.modified = datetime.datetime.now ()
super (Story, self).save()

When our code (or any application that works with our model, such as the Django
admin) attempts to save an object to the database, our model’s save method is called first,
translating the user-entered Markdown content into HTML. (If you need a review of the
syntax of the super call, see Chapter 1, “Practical Python for Django”).

Database purists can cringe at the presence of a field whose contents can be easily
computed from those of another field. If the conversion had no computational cost, we
wouldn’t need to store the rendered HTML. It’s also a common trade-off that is different
for every project. We’re assuming computing power is the limiting factor here, such as for a
site that gets lots of traffic but doesn’t necessarily have a lot of content. For a site where
database size is the greater concern—such as a community forum with thousands or mil-
lions of database entries—computing on every page view can be a more viable choice.

Because the model field storing our HTML is marked editable=False, it is not dis-
played in the admin interface. This keeps the user’s interactions cleaner and eliminates the
frustrating possibility that someone can edit the rendered HTML then overwrite those
changes by clicking Save. All changes get made to the Markdown source, converted to
HTML, and saved to the html_content field without requiring any explicit attention. At
save-time we also update the modified field with a current timestamp.

For more on Markdown and its syntax, see the official site at http://daringfireball.net/
projects/markdown/ . You should also know Python-Markdown also comes with some
useful contributed extensions. In fact, this book was written in Markdown with the help of

191

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

192

Chapter 8 Content Management System

the Wrapped Tables “wtables” extension (see http://brian-jaress.livejournal.com/5978.
html)! There is also a second Markdown project in Python should you want to investigate
that; see http://code.google.com/p/python-markdown2/.

URL Patterns in urls.py

With the overridden save function out of the way, our models are finally all fleshed out.
Before we move on to the views and templates, let’s ensure our URLs are in place. Here’s
our project-level urls.py.
urlpatterns = patterns('',

url(r'~admin/(.*)', admin.site.root),

url(r'~cms/', include('cmsproject.cms.urls')),

The admin line is the same as always; the other URL pattern prefixes all URLs to the
CMS app with “cms/.” If you want another prefix, such as “stories” or “pages,” you can, of
course, specify that here. See Chapter 7 for an alternate approach for flexible root URLs.

Next, the file mentioned in the previous call to include is our app-level urls.py,
which looks like this:

from django.conf.urls.defaults import *
from cms.models import Story

info_dict = { 'queryset': Story.objects.all(), 'template_object_name': 'story' }

urlpatterns = patterns('django.views.generic.list_detail’,
url (r'~(?P<slug>[-\wl+)/$', 'object_detail', info_dict, name="cms-story"),
url(r'~$', 'object_list', info_dict, name="cms-home"),

urlpatterns += patterns('cmsproject.cms.views',
url (r'”~category/ (?P<slug>[-\w]+)/$', 'category', name="cms-category"),
url(r'”~search/$', 'search', name="cms-search"),

In order, our URLs provide for the display of individual stories, the full list of stories,
lists of stories by category, and lists of stories matching a search request.

Because we’re again taking advantage of Django’s generic views, this is where much of
the action is in our application. We have four URL patterns, split into two patterns
objects due to the differing view prefixes; however, we could also have directly imported
and used the view functions themselves.

Note

We chose to use strings here because we’'d like to start using the admin and the generic
views before fully fleshing out our custom views; trying to import not-yet-defined functions
wouldn’t work too well in that scenario. The use of strings and/or function objects in URLs is
often relatively arbitrary—use whatever works best for you.

http://brian-jaress.livejournal.com/5978.html
http://brian-jaress.livejournal.com/5978.html
http://code.google.com/p/python-markdown2/

Beyond Flatpages: A Simple Custom CMS

As you’ve seen in many of the previous chapters, generic views have many optional
arguments to control their behavior. We’re using just one of those arguments here;

template_object_name, which enables our story object to be referred to as story in the
template rather than the default name of object.

Admin Views

You should now have a functioning admin site for the CMS app. (Make sure you run
manage.py syncdb at some point, so your database tables are created.) Connect to it
now. Figure 8.4 is what you should expect to see from the admin page once you log in.
Figure 8.5 shows the Add Story page, which shows up after clicking on Add.

/2 Site administration | Django site admin - Windows Internet Explorer
m =[] hetp: fflocahost 0000 e | |"_—r| Z| JGooge £/
Ble Bt Yew Fgeores Took Help

S0 S 28 she sty | Diorngo s axkoin

£ - 6 - - e ek - @- 7

Django administration Welcarme, wesc, Documentation / Change password
Site administration
H Recent Actions

Groups deadd My Actlons

Users dadd Ao Mone available

Siles Padd an

Cateqories $add Change

Sturies Padd SC

4] | _Lrl

Figure 8.4 The admin page

You can also choose to create a category. If you do and click the “+” on the Add Story
page, you see a small popup as in Figure 8.6.

For example, enter “Site News” in the Label field. You see a Web-friendly string
appearing in the Slug field at the same time (see Figure 8.7).

Now we can continue and finish adding our story. In our example, we set the status to
Published (see Figure 8.8).

Once you save it, you should be redirected to the CMS Story page (see Figure 8.9)
where your story should show up now.

Now you are welcome to add more and/or to edit stories, making sure at least one of
them has Published or Archived status so there is something to see on the live site!

193

194 Chapter 8 Content Management System

/2 A stoey | Dijango site admin - Windows [sternet Bplorer

G = [o] remiiscsrsomnjsceyensaryistal L B8 e 8
Bl Bt Yew Fgeodes Tods e
SF | e wery | v ste o - B - e - @i - @ "
Django administration Waltama, wesc Dac tation { Chings paseward [Log aut
Hemns - Storas
Add story
Tithe:
stug:
Categery: [——H=*
Markdown
content:
]
=
owner rerra Y
Sratus: e
Created: Date: |2000-66-22 | Todsy | 5
Time: 01:8a:33 | How | (D)
Modiflad: tate: |2008-06-22 | Todny | £
vime: 015432 | ew | @
sore s comeuncanvs | [
|

Figure 8.5 Adding a story in the admin

/2 Add category | Django site admin - Windows Internet Explorer

Add category

Labal:

Slug:

Figure 8.6 Adding a category while adding a story

/2 Add category | Django site admin - Windows Internet Explorer

Add category
Labal: Site News

Slhug: site-news

ave

Figure 8.7 Adding the “Site News” category

Beyond Flatpages: A Simple Custom CMS 195

Home « Stories

Add story
Thiw: The First Stary
Shug: -

cateno: [de

Markdown

content:

The is the first story on our site. Mot very exciting, but I'm sure editing will impreve it ﬂ
#% A mete on the type

T tmat of this story is st in Old Dakalte llhru Distandad, the work of noted Amarican typagrapher
‘Spencer “Big Boy” Cilthorpe T11. Naturaily, if ts type funns not installed on your systam you will
Inatead see the teat in sume lesser, plebeien faes such as Ansl

ownen: [He
Status: | e — |

Creatad: vats: 2000-06-22 | Today| [T
Time: [02:07:27 | Hon | D)
Hadified: Bata:

< 2008-05-22 | Taduy | [
ima: | 02:07:27 | Mew | ()

Save and add anathar Savn and centinue adhivg | m

£l

Figure 8.8 Completing our first story

Django administration

Hame

@ The story "Story object” was added successiully.
Select story to change
Q G e —
By status
Title Owner Stalus Created Modilied

The First Story wesc Published June 22, 2008, 2:07 asn. June 22, 2008, 2:12 a.m,

1story

|| &roy date

By modified
| Ay date

Today

Past 7 days

This menth

This year

5

Figure 8.9 Viewing the list of stories in the admin;
note the available filters

196

Chapter 8 Content Management System

Displaying Content Via Generic Views

As seen earlier in the URLconf, we’re using generic views for most of our front-end
display purposes. However, we need a couple lines of custom view code for our per-
category listings. Here’s the start of our views.py file for this application.

from django.shortcuts import render_to_response, get_object_or_404
from django.db.models import Q
from cms.models import Story, Category

def category(request, slug):
"""Given a category slug, display all items in a category."""
category = get_object_or_404 (Category, slug=slug)
story_list = Story.objects.filter (category=category)

heading = "Category: %s" % category.label
return render_to_response("cms/story_list.html", locals())

As you can see, it’s a simple view function, but one that isn’t quite able to be handled
by one of the existing generic views, which is why we needed to write it directly. We
move on to our templates now and return to the second custom view, one providing a
search interface, afterward.

Template Layout

As with most Django projects, there is a base.html template that is extended by all oth-
ers. In this case, we only have two more: story_detail.html and story_list.html.
Create all three files in your cms folder, and set TEMPLATE_DIRS with the full directory
path to your project in your settings.py file.
Let’s start with the simple base template, which looks like this:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4d/strict.dtd">
<html lang="en">
<head>
<title>{% block title %}{% endblock %}</title>
<style type="text/css" media="screen">
body { margin: 15px; font-family: Arial; }
hl, h2 { background: #aaa; padding: 1% 2%; margin: 0; }
a { text-decoration: none; color: #444; }
.small { font-size: 75%; color: #777; }
#header { font-weight: bold; background: #ccc; padding: 1% 2%; }
#story-body { background: #ccc; padding: 2%; }
#story-list { background: #ccc; padding: 1% 1% 1% 4%; }
#story-list 1i { margin: .5em 0; }
</style>
</head>
<body>
<div id="header">
<form action="{% url cms-search %}" method="get">

Beyond Flatpages: A Simple Custom CMS

Home •
<label for="g">Search:</label> <input type="text" name="q">
</form>

</div>

{% block content %}

{% endblock %}

</body>
</html>

We explain the various Django-specific pieces of this template later in the chapter.
Now we need a template for displaying an individual story (story_detail.html), which,
as we’ve said before, extends the base template.

% extends "cms/base.html" %}
{% block title %$}{{ story.title }}{% endblock %}
{% block content %}

<hl1>{{ story.title }}</hl>

<h2>{{ story.category
}}</h2>

<div id="story-body">
{{ story.html_content|safe }}
<p class="small">Updated {{ story.modified }}</p>
</div>
% endblock %}

This 1s almost the simplest possible useful template—it expects only a single template
variable, story. As long as this template is passed an object with title and html_content
attributes, it should be happy.

One important item in the template is the safe filter that is applied to our
html_content field. By default, Django auto-escapes all HTML in templates to protect
against malicious user-entered content (a growing and serious security concern among
Web applications). Because our Markdown source originates from trusted users, we feel
justified in marking the content as “safe” and letting the browser treat the HTML literally,
rather than escaping to and so on.

Our list template, story_list.html, is used by several different views that need to dis-
play multiple stories—category listings, search results, and the home page.

% extends "cms/base.html" %}
{% block content %}
{% if heading %}
<h1>{{ heading }}</hl>
{% endif %}
<ul id="story-list">
% for story in story_list %}
{{ story.title }}
{% endfor %}

{% endblock %}

197

198

Chapter 8 Content Management System

This is only slightly more complex than our detail template. It loops through the items
in story_list, creating an <1i> element for each where the title is used as link text for a

link to the story’s detail page.

Displaying Stories

Because we are using story slugs, the URLs display our stories on our dev server with
http://localhost:8000/ cms/first-story/. Make sure your runserver has been restarted, load
the URL into your browser, and you should see something like Figure 8.10.

f= The First Story - Windows Internet Explorer

Figure 8.10 The “detail page” for our first story

Next, we test out the object_list view that is displayed when we visit our site’s
home page. This URL is http://localhost:8000/cms/, and when you visit the home page,
you should see something like Figure 8.11.

Figure 8.11 The home page with a complete list of stories

Beyond Flatpages: A Simple Custom CMS

The titles of the stories are links, generated by the get_absolute_url method we
created previously.
Note our page has a search box on it! Read on to understand how we make it work.

Adding Search

Being able to search textual content is a must. For a public site, just adding a Google Site-
Search box is always an option (http://www.google.com/coop/cse/), but it’s nice to have
a bit more control over the search process and the presentation of results.

Let’s add a simple search function to our site. Only a few pieces are needed to make
this happen.

= An HTML form containing a search field added to our base.html template so it
appears on every page

= A view function that accepts input from this form and finds matching articles

= The story_list.html template we have already created, which we use to display
those results

If you recall our earlier look at the base.html template, it includes a search box in the
header. For that box to do something, we need a view that processes the form when it is
submitted.

This task can’t be handled via a generic view, so we need another small custom view
function. Add this code to your views.py right after the definition for the category
method:

def search(request):

Return a list of stories that match the provided search term
in either the title or the main content.
if 'g' in request.GET:

term = request.GET['q']

story_list = Story.objects.filter(Q(title_ contains=term) \
w (markdown_content__contains=term))

heading = "Search results"
return render_to_response("cms/story_list.html", locals())

This is a custom view, but it doesn’t really need its own template. We're able to reuse
our story_list.html template as long as we provide it with what it expects—a
QuerySet of Story model objects in a context variable named story_list.The search
algorithm 1s simpleminded; a Story matches if the complete literal text submitted via the
form is found in either the title or the Markdown content.

Let’s add a few more “stories.” In our example, we add an “About Us” page (just like in
our Flatpages example) and mark it as Archived. We then add a Contact Us page but leave
it in a Needs Edit state. Our admin screen should now show all three and their statuses, as
seen in Figure 8.12.

199

http://www.google.com/coop/cse/

200

Chapter 8 Content Management System

t story b pe | 1) adman - Windows Internet E 4

K ©d = 2] herpeifloc host amnadiminjemsstory,

_Select story to change

al Ise]

Title Owner Status Created Modified =
.11||: First Story wese Published June 22, 2008, 2:07 a.m. June 22, 2008, 2:12 a.m.
Ahout L5 wese | Archivad June 22, 2008, 900 p.m. | June 22, 2008, 10213 pom.
Contact Lis wese Neads Edit June 22, 2008, 10:15 p.m. June 22, 2008, 10:18 p.m.

3 ataries

By modified
I Ay date
Today

This year

|

Figure 8.12 The Admin page with a complete list of stories

In the main home page, however, we should only show the pages and provide the links
of pages that we’ve enabled public access to (Published or Archived as controlled by

VIEWABLE_STATUS). On visiting the home page as we do in Figure 8.13, you can see the
Contact Us page does not show up!

‘'t = Winduows Inle er

L€ 190 DT -] 3| =D

Figure 8.13 The Home page with a list of publically
viewable stories

Now, let’s try out the search feature. On searching for the word, “typographer,” we see
the only matching document is our first story, as shown in Figure 8.14.

Beyond Flatpages: A Simple Custom CMS

= Windows Internel Explorer

G- e ' Bl o]
e ER Yew Favortes Took Help
W s [T A8 8 e G @~
=
Home = Search:

« The First Story

|

Figure 8.14 The Search Results page (also a list of publically
viewable stories)

This concludes the core functionality that we’re implementing for our CMS. Let’s dis-
cuss the final behavioral aspects of our application: managing users and permissions and a
workflow as dictated by business logic.

Managing Users

Our system features a concept of ownership; each story is associated with a specific
Django user object. There is no technical obstacle to a user editing or deleting content not
marked as theirs—and no obstacle to their changing the ownership field, in fact. The pres-
ence of this field doesn’t create any per-object access control that did not exist before.

Note

In the near future, it will be possible to implement a more granular “per-object permissions”
system in Django, using new admin-related features that were still in development at the
time of writing. For more on this, see withdjango.com.

Nonetheless, this kind of informal or loosely enforced ownership can still be quite use-
ful inside an organization where mutual trust exists. This is really not much different from
an office environment where you trust that others don’t steal your special red stapler or
shred documents in your filing cabinet. The convenient thing about the way we’ve imple-
mented ownership here is we’re leveraging Django’s built-in user model. We don’t have to
add any model code at all. Therefore we manage users using the Django admin.

As a superuser in the admin, you can use the admin to control who has the capability
to edit users and groups and which of them have the right to access your story model.
You can also make it possible for users to edit Story objects but not category objects.
This would be a reasonable restriction, as most content editors are not reorganizing the
information architecture of the site, but merely adding or updating existing content items.

201

202 Chapter 8 Content Management System

Supporting Workflow

Here’s the simple content workflow that motivates our status field and its choices:

1. An outside writer or staff member submits content for the page. This content is in
draft form and needs to be edited.

2. After the initial edit is complete, a final approval is needed before publication.
3. Once the article is marked as “published,” it appears on the public Web site.

4. If the article becomes out of date, it can be marked as “archived.” This can mean, for
example, it shows up in searches on the site, but is not featured in a “Recent arti-
cles” list on the home page.

This chapter’s example doesn’t involve any customization of the admin. If it did, this
field would be used heavily by custom views that can do things such as color code items
by their stage or present users with lists of action items when they logged in to the admin.

Note

You can find out more about customizing the admin in Chapter 11, “Advanced Django
Programming.”

Note our models.py uses the the 1ist_filter feature of the Django admin to offer
convenient selection of stories at any one of the four stages. For example, an editor can
use these to select all stories at the Needs Edit stage or an intern charged with culling old
material can look just at the items with Archived status.

Possible Enhancements

As suggested at the beginning of this chapter, there are as many difterent CMS architec-
tures as there are users. The example application you’ve built in this chapter could be
taken in several different directions, depending on what features are desired. Here are a
few ideas.

Pagination. With only a few or a few dozen stories, our list pages remain manageable.
But once you get into the realm of hundreds of items, displaying them all on a single page
can be daunting to the user and potentially detrimental to the performance of your site as
well. Likewise, if a search returns hundreds of results it’s unlikely that the user wants to see
them all at once. Luckily, Django offers some built-in support for pagination, mostly in
the form of the django.core.paginator module. For more, see the official Django
documentation.

More powerful search. Our search function is handy, but doesn’t offer the power that
something as familiar as a Web search engine does; a multiword phrase, for example,
should ideally be treated as a collection of independent search terms unless otherwise
specified. The implementation here could be made more sophisticated, but if you are
doing full-text searching over large numbers of records you probably would benefit from

Summary

something such as Sphinx, a search engine with available Django integration. For more,
see withdjango.com.

Status change notifications. We’ve already got a custom save method that handles
our Markdown rendering. We could easily extend this to improve our workflow system
by detecting when a story’s status has been changed and sending a notification e-mail to
the person responsible for handling stories at that stage. A key piece of implementing this
would be to replace our status field with a Foreignkey to a full-fledged Status model,
which in addition to the numerical value and label fields implied of our STATUS_CHOICES
list would have a status_owner field, a Foreignkey field to the User model. Our save
method would compare the recorded status value with the one about to be saved; if
they differed, it would use Django’s send_mail function to notify the associated user.

Dynamically generated navigation. Our app doesn’t address the issue of site naviga-
tion, except to present a full list of all stories by default. For a real site, we'd need some-
thing better. One option would be to add some navigation-related fields to our Story
model. A more flexible solution would be a separate Navigation model, which could be
as simple as three fields: position in the overall sequence of navigation items, label to be
displayed to the user, and a ForeignKey to the story that navigation item should link to.

User comments. Our CMS works well for publishing content, but doesn’t offer end
users any way to contribute. A natural addition along these lines would be to enable com-
ments to be posted on individual stories. Fortunately, Django has an excellent built-in
commenting system that can work with both registered and anonymous users. Unfortu-
nately, when we went to press, this system was pending a major rewrite, so we aren’t able
to document it in this edition. However, if this functionality is of interest, check out the
official documentation, which will be updated as soon as the feature is available.

Static files. Many marketing and public relations organizations desire the capability to
upload content to distribute to customers, existing and potential, as well as providing pre-
sentations, reports, technical white papers, and so on, all in the form of PDF files, Word
documents, Excel spreadsheets, ZIP archive files, and so forth.

Summary

It’s been a long chapter, but you should have gotten a good overview of how to leverage
many of Django’s core components and contrib applications, both for a simple flatpages-
based site and a more complex attempt at building a CMS.

By now, we hope you’re becoming familiar with the way Django apps are made: creat-
ing a project and applications with the command-line tools, thinking up a model defini-
tion (including how to leverage the admin), defining URLs, using both generic and
custom views, and creating a template hierarchy.

There are two more example applications left in this part of the book: one using
Ajax to create a liveblog and a look at a Django-based pastebin.

203

This page intentionally left blank

9

Liveblog

This book is about writing Web applications with Django, and as you’ve seen so far, the
framework has sufficient built-in functionality, so you can accomplish a lot without stray-
ing outside of what it offers. However, like all tools, Django does have limits, and one
popular piece of Web functionality that it explicitly omits is the integration of Ajax, or
Asynchronous JavaScript And XML.

Thankfully, all this really means is Django doesn’t tie you to a single Ajax library, of
which there are many, but simply leaves the door open for you to use one of your
choosing.

In this chapter, we show you a relatively simple use of Ajax, the so-called “liveblog.” A
liveblog is a Web page listing a number of short, timestamped entries capable of refresh-
ing itself with new content without any user interaction. Those familiar with Apple’s
media events in recent years have seen this sort of application on various Mac news and
rumor sites such as macrumorslive.com. The same concept is used to a lesser extent on
normal, static blogs, which cover live events in the same format, but usually without the
dynamic updating.

Our example application goes over everything you need to know to integrate Ajax
with a Django Web application without going too deep into the specifics of complex
client-server interaction or animation. We also point out in a few places how Django
works well with Ajax while remaining toolkit-agnostic.

Note

As with some of the other example applications, we're going to use Apache here to make it
easier to serve our static files (in this case, our JavaScript).

What Exactly Is Ajax?

‘When someone mentions the term “Ajax” with relation to Web development, as opposed
to the house-cleaning product, they are typically talking about two distinct but often
intertwined behaviors.

206

Chapter 9 Liveblog

= Web pages pulling in extra information without requiring the user to reload or nav-
igate elsewhere—think GMail and how it displays various e-mails, inboxes, and
forms without your browser reloading and/or redrawing the entire page.

» Advanced “dynamic” user interface behavior—think Google Maps’ map scrolling
and zooming, or the drag-and-drop interfaces featured on various “widget”-based
personal portal sites.

In terms of implementation, the “extra information” aspect of Ajax can be thought of
as mini-requests where the browser and server engage in a normal HTTP conversation
behind the scenes without a full page reload. We get into the details of how that’s
accomplished later in the chapter; for now, just note the response part of these conversa-
tions is typically in XHTML or XML (thus the “X” in Ajax) or in a light data format
known as JSON.

The UI aspect of Ajax is just fancy client-side Javascript and DOM manipulation, made
recently accessible due to more powerful browsers and client computers. If you consider
the display possibilities of correctly styled Web markup elements and the fact that
Javascript is a full-fledged programming language, this means a Web page now resembles a
canvas for traditional GUI animation techniques.

Why Ajax Is Useful

From a developer’s perspective, the capability to have a Web page engage in mini-requests
is useful for a couple of reasons. It saves bandwidth in high-traffic situations, as the client
browsers are only requesting specific chunks of data instead of an entire page, and it cre-
ates a more responsive user experience because the browser window isn’t constantly
redrawing everything. This makes Web applications feel much more like desktop apps.

Although they are sometimes considered “eye candy,” advanced animations, drag-and-
drop, and other “Web 2.0” features can also greatly enhance the user experience, as long as
they’re done unobtrusively and in moderation. Coupled with the reduced amount of page
reloading enabled by mini-requests, well-integrated animation and special eftects further
blur the line between the Web and the traditional GUI.

Planning the Application

Before we get into the code, let’s lay out a simple specification for what features our appli-
cation has and decide what tools (specifically, which Ajax library) we use to build it. First,
let’s nail down some requirements, defining exactly what the application is supposed to do.

= Our application consists of a single Web page. No need for anything fancy—we’re
just setting up a site capable of liveblogging a single event at a time.
= It tracks a single, sequential stream of information. Again, just keeping it simple.

= The “stream” consists of timestamped text paragraphs. Therefore, we only need two
fields in our model.

Planning the Application

= This stream is displayed in reverse chronological order with the most recent first. So
the most recent info is always at the top of the page.

= An initial page load displays the current state of the stream. Users visiting an in-
progress liveblogging see all entries up through the present without any Ajax
necessary.

= The page asks the server for new entries once a minute. Here’s where the Ajax
comes in.

= Entries are submitted via the Django admin. However, it would be easy to make a
custom form for this purpose as well, if desired—you could even use Ajax on the
back end for submissions for responsiveness’ sake.

Choosing an Ajax Library

A number of Ajax JavaScript libraries are available at the time of writing, each with vari-
ous strengths and weaknesses and with differing focus. Some of them attempt to deliver a
large number of UI widgets, whereas others stay largely within the domain of making
JavaScript an easier language to work with. They also differ in their approaches to updat-
ing JavaScript with their own syntax for manipulating and navigating the HTML structure
of a Web page.

Many of these libraries have multiple components available for download, focusing on

LR}

“core” elements such as the JavaScript language updates, “network” elements for the mini-
request aspect, “widget” elements for the UI widgets, and of course a “full” version with
the entire package. So in addition to choosing a toolkit, you also need to figure out what
you want to do with that toolkit and download the correct version.

This seems like a lot of effort to go through, but it’s necessary. A large, bulky JavaScript
library that needs to be downloaded with every page view can require a decidedly non-
trivial amount of resources on the hosting Web server. Therefore, enabling developers to
pick and choose components lets them only include what they need for their application.

Without further ado, here’s a quick rundown of the best-known Ajax toolkits and

where to get them.

= Dojo: (dojotoolkit.org) One of the larger Ajax libraries, Dojo has absorbed a few
smaller libraries and offers multiple download options.

jQuery: (jquery.com) A newer library that provides a powerful “chaining” syntax for

selecting and operating on multiple page elements at the same time.

= MochiKit: (mochikit.com) One of the more “Pythonic” JavaScript libraries, which
has taken inspiration from sources such as Python and Objective-C.

= MooTools: (mootools.net) MooTools has an extremely modular download system,

enabling for a very customizable library setup.

Prototype: (prototypejs.org) Originated from the Ruby on Rails Web framework,
but has since branched out to be a stand-alone library.

207

208

Chapter 9 Liveblog

= Yahoo! User Interface (YUI): (developer.yahoo.com/yui) The best of Yahoo!’s recent
and ongoing JavaScript Ul work, packaged for community use.

In our example application, we are using jQuery, although this is largely an arbitrary
choice on the part of the authors. The simple Ajax functionality we use here would be
possible in any of the previous frameworks.

Laying Out the Application

Time to roll up our sleeves and get started! This example application, which we call
liveupdate, lives inside a generic Django project named liveproject. In addition to the
app itself, we have the standard projectwide templates folder and a projectwide media
folder (to house our JavaScript), so our initial setup can look something like the following
output (from the Unix tree command):

liveproject/

|-- _init_ .py

|-- liveupdate

| |-- _init__.py

| |-- models.py

| |-- urls.py

| °-- views.py

| -- manage.py

|-- media

|- s

| -- settings.py

|-- templates

| ‘-- liveupdate

‘-- urls.py

Note the structure of the media folder is solely our own convention—nothing in
Django forces you to organize your media files in any specific manner or even to have it
hosted within your project folder. In our case, we're going by habits borne of developing
larger sites with many different JavaScript, CSS files, and images, where a separate js sub-
folder makes a lot of sense. We’re not using external CSS or images for this particular
example, but if we were, we’'d have sibling img and css folders accompanying it.

Placing our media inside our Django project folder makes managing it on the server
and in our source control a lot simpler. Symlinking the media folder into our Apache doc-
ument root (and making sure Apache is configured to AllowSymlinks there) ensures the
media files within are also served up correctly.

For our liveupdate app, we've got the generic package of one file each for models,
urls, and views. Right now, given the previous requirements, our urls and models are
extremely simple, and there aren’t any nongeneric views yet. Following are the contents of
the app-level URLconf file liveupdate/urls.py (which should be included in the
project-level urls.py as usual), which just lists our Update objects:

Laying Out the Application

from django.conf.urls.defaults import *
from liveproject.liveupdate.models import Update

urlpatterns = patterns('django.views.generic',
url(r'~$', 'list_detail.object_list', {
'queryset': Update.objects.all()
1),

Now let’s show you the models.py file, which defines the Update model class (includ-
ing the default ordering) as well as setting it up for admin use:

from django.db import models
from django.contrib import admin

class Update(models.Model) :
timestamp = models.DateTimeField(auto_now_add=True)
text = models.TextField()

class Meta:
ordering = ['-1id']

def _ _unicode__(self):
return "[%s] %s" % (
self.timestamp.strftime ("%Y-%m-%d $H:%M:%S"),

self.text

admin.site.register (Update)

Finally, here’s our first stab at the template (templates/update_list.html), which is
the initial “static” view of the current state of our updates list users see when they first
load the site:

<html>
<head>
<title>Live Update</title>
<style type="text/css">
body {
margin: 30px;
font-family: sans-serif;
background: #fff;
}
hl { background: #ccf; padding: 20px; }
div.update { width: 100%; padding: 5px; }
div.even { background: #ddd; }
div.timestamp { float: left; font-weight: bold; }
div.text { float: left; padding-left: 10px; }

209

210

Chapter 9 Liveblog

div.clear { clear: both; height: 1lpx; }
</style>

</head>
<body>
<hl>Welcome to the Live Update!</hl>

<p>This site will automatically refresh itself every minute with new
content -- please do not reload the page!</p>

{% if object_list %}
<div id="update-holder">
{% for object in object_list %}
<div class="update {% cycle even,odd %}"id="{{ object.id }}">
<div class="timestamp">
{{ object.timestamp|date:"Y-m-d H:i:s" }}
</div>
<div class="text">
{{ object.text|linebreaksbr }}
</div>
<div class="clear"></div>
</div>
{% endfor %}
</div>
{% else %}
<p>No updates yet -- please check back later!</p>
{% endif %}
</body>
</html>

As you can see, the template is fairly plain from a logic standpoint and lacks any
JavaScript or JavaScript includes. In the next section, we flesh out the template’s dynamic
aspects by leveraging jQuery.

Before we do this, let’s try giving our app a quick test drive to get a feel for it before
we add in the core functionality. Enable the Admin (referring to earlier chapters if you
need to remember the specifics), run manage.py syncdb, start or reload Apache, and navi-
gate to the admin.

You should see the usual admin controls for our Update model class, so click the Add
link and fill out the text area as in Figure 9.1. Note that because we specified
auto_now_add in our timestamp field, all we need to do is enter the text—all the better
for quick updates to our liveblog.

Once you’ve added an entry, the admin shows your newly added update, such as in
Figure 9.2 .

You can also see the “static” version of the liveblog by hitting the root front-end URL,
as in Figure 9.3.

The base of our application is in place—it’s now time to apply the Ajax.

Putting the Ajax In

Add update | Django site admin

Django administration Welcome, cyrus. Documentation | Change password |/ Log out

Home » Updates » Add update
Add update

Text This Is the first entry,

&

and add another | Save and comunue eding | [T

Figure 9.1 Adding a new Update entry

/2 Sedect update Lo change | Django site admin - Windows Internet Explorer

(o Ao = 120

(He ER Vew Fawries ook Hep
|54 4% @ seloct update to changs | Django ske admin

fi - B - 0 - |heme - (GTock - @ 7

Dja ngo administration Weleame. wese. Documentation / Change passward / Leg aut

Home Updats

Select update to change Add update
Update
[2008-06-24 01:35:02] This is the first entry.

1 update

|

Figure 9.2 The Admin page after logging in with Liveupdate app available

o6 i v — |

Welcome to the Live Update!

This site will automatically refresh itself every minute with new content - please do not reload the page!

2008-05-03 22:41:37 This s the first entry.

Figure 9.3 The liveblog with one lonely entry

Putting the Ajax In

This section takes up most of the rest of the chapter, but don’t be discouraged! You need a
lot of background to fully understand what’s going on when using Ajax, and as usual we
want to make sure we give you the chance to learn something instead of simply finding
out what to copy and paste.

211

212

Chapter 9 Liveblog

We start with a quick overview of what’s required to use Ajax and what format it uses
to transmit information, followed by installation and testing of an Ajax-capable JavaScript
library, and finally show you the actual code that performs the magic, both on the server
side and in the browser.

The Basics

Practically speaking, “implementing Ajax” for a Web site consists of three primary tasks.

= Importing the library: Because we'’re using a third-party library to do the heavy lift-
ing, we must include it in our template before it can be used.

= Defining the client-side callback function: We use the library to write a function
that makes a mini-request to the server and updates the Web page with the result.

= Defining the server-side logic: Finally, the server needs to know how to respond to
the mini-request, so we must define a Django view capable of doing so; Ajax-
capable views are normal views (that is to say, functions that take an HTTP request
and return an HTTP response), which occasionally have an extra header or two (see
the section “Creating the View Function” later in the chapter).

The first step, importing the library, usually consists of a single JavaScript include,
although the two functions can be as simple or as complex as your logic requires. Typi-
cally, the client-side functionality takes more work, as the server-side is often just a bridge
between your JavaScript and the database; but this varies depending on your specific
needs and those of your users. In addition, if you’re interested in using the Ul aspects of
your Ajax library, that code also lives at the template level, whether or not it executes
concurrently with the mini-requests.

The “X” in Ajax (Or XML Versus JSON)

The dialogue between your client- and server-side functions can technically consist of any
format your JavaScript code is capable of handling (and/or any format that HTTP can
transmit because that’s what we're using here). However, because the desired result is to
transform or add HTML to your Web page, the majority of Ajax conversations—as noted
earlier—utilize XML (of which XHTML is a variant) or a text data format called JSON
(JavaScript Object Notation), which is simply text that can be evaluated as a JavaScript
variable.

XML is arguably more commonly used, and of course lent its first initial to the name
of the technology due to its popularity as an intersystem data transfer language. Given the
intimate relationship between XML and (X)HTML, it’s also well-suited to the task
because JavaScript and various Web development tools are already designed for manipulat-
ing its hierarchical data structure. In addition, it’s entirely possible to format your HTML
on the server-side (with, say, a Django template and the rendering engine), thus simplify-
ing your client-side code to a function that just drops it in place, ready-made.

Putting the Ajax In

JSON has recently risen in popularity due to its terse, readable syntax, and the fact it
can be less bandwidth-intensive than XML. As a plus, its syntax is strikingly similar to that
of Python’s data structures (strings, dicts, and lists). You can find out more about the JSON
syntax at http://json.org.

Here’s a quick example of a simple JSON data structure.

{"first": "Bob", "last": "Smith", "favorite_numbers": [3,7,15]}

Even if you don’t know any JavaScript, your Python background should make it obvi-
ous this is a dictionary with a couple string values and a third value that is a list of inte-
gers. Such a string evaluates to a working data structure in JavaScript and can then be
utilized by client-side code.

JSON as Python

In many cases, JSON can be directly evaluated as a Python data structure, which would be
useful when sending data from the client JavaScript back to the server. However, there are a
few incompatibilities with Python, such as the JSON true and false Booleans versus
Python’s (which are title-cased) and JSON’s null and Python’s None. In such cases, an
actual Python/JSON parser must be employed. To learn more about JSON and Python inter-
operability, see the previously listed JSON Web site as well as articles found at http://deron.
meranda.us/python/comparing_json_modules/ and http://blog.hill-street.net/?p=7.

We are using JSON in our application, but XML is still a popular choice; there is no
shortage of examples, how-to documents, and tutorials for both formats in print and online.

Installing the JavaScript Library

Because we've settled on using jQuery for this example, we need to download it via the
Download link at http://jquery.com. jQuery comes as a single library and is not compart-
mentalized like some of the others, but it does offer multiple downloads—minified,
packed, and uncompressed. All three are functionally equivalent but have different file sizes
and require different amounts of client CPU time to decompress.

‘We are using the minified variant of the current version of jQuery, which at press time
was 1.2.6, but any version 1.2.x works for our code here. (Versions older than 1.2.x also
work but lack the getJson function and thus require an extra statement to evaluate JSON
strings.)

jQuery needs to be included in our templates, and as such should live alongside our
custom JavaScript in liveproject/media/js/. From a Win32 machine, just use a Web
browser to download the file into that folder. On Unix-based hosts, such as Mac OS X
and Linux, we like to use the wget or curl command line tools to download files directly,
such as (using our browser’s Copy function to grab the final download URL):

user@example: /opt/code/liveproject $ cd media/js/

user@example: /opt/code/liveproject/media/js $ wget
http://jqueryjs.googlecode.com/files/jquery-1.2.6.min.js

213

http://json.org
http://deron.meranda.us/python/comparing_json_modules/
http://deron.meranda.us/python/comparing_json_modules/
http://blog.hill-street.net/?p=7
http://jquery.com

214

Chapter 9 Liveblog

--2008-05-01 21:52:15-- http://jqueryjs.googlecode.com/files/jquery-1.2.6.min.js
Resolving jqueryjs.googlecode.com... 64.233.187.82

Connecting to jqueryjs.googlecode.com|64.233.187.82|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 54075 (53K) [text/x-c]

Saving to: ‘jquery-1.2.6.min.js’

227K/s in 0.2s

2008-05-01 21:52:16 (227 KB/s) - “jquery-1.2.6.min.js' saved [54075/54075]

Now that we’ve got the library in our media directory, we need to add it to our tem-
plate by adding this line in our <head> tag (note /media/custom is a symlink in our
Apache docroot pointing to our liveproject/media directory).

<script type="text/javascript" language="javascript"
src="/media/custom/js/jquery-1.2.6.min.js"></script>

We're all set to start using jQuery now, so we first do a simple setup and test, and then
move on to the real functionality.

Setting Up and Testing jQuery

Ajax libraries typically provide an easy way to access the library’s code, the current
browser document, or the current DOM object. jQuery uses a somewhat unique syntax
for almost all its functionality; the variable name $ is bound to a special callable object,
which is either called as a function (for example $ (argument)) or used to hold special
methods (such as $.get (argument)).

For example, $ (document) returns an object that’s generally comparable to the normal
JavaScript document variable, but with jQuery magic added to it. One such extra method
is ready, used to execute a JavaScript function when the page loads (while avoiding prob-
lems with JavaScript’s built-in onLoad).

As an example of this (and to set the stage for our eventual functionality) add the fol-
lowing, just after the include of jQuery itself, inside the <head> tag of your template:
<script type="text/javascript" language="javascript">

$ (document) .ready (function() {
alert("Hello world!");
})

</script>

JavaScript is similar to Python in that functions are “first-class” or regular objects;
advanced JavaScript development makes heavy use of modifying objects and passing func-
tions around. In this case, $ (document) . ready takes a function to execute when the page
is ready, and we’re just defining that function anonymously—similar to how Python’s
lambda would work if it could span multiple lines. If all went well, and the template is able

Putting the Ajax In

to include jQuery, our JS snippet just pops open a dialog window with “Hello World!”
when you refresh the page, which is a nice proof-of-concept, but isn’t very exciting.

Embedding JavaScript Actions in Our Template
Let’s make things a bit more interesting and change it to dynamically add a <div> (one
representing an Update object, albeit a hardcoded one) to our list when the page loads.
This is, of course, the same action our live update code is doing later on with live data.
<script type="text/javascript" language="javascript">
$ (document) .ready (function() {
$ ("#update-holder") .prepend('<div class="update">\
<div class="timestamp">2008-05-03 22:41:40</div>\
<div class="text">Testing!</div>\
<div class="clear"></div>\
</div>"');
1)
</script>

What’s going on here is we're using jQuery’s selector syntax, which enables you to pass
a CSS-like string to the $ () query function and whose result is then a Query representing
all matching objects. In this case, we're looking for the <div id="update-holder"> tag
defined in our previous template, and so we use the # character, which is CSS parlance for
selecting an object ID.

Once selected, we use the prepend method, which prepends an object or
HTML string to the contents of the selection—so here, it tacks on another <div
class="update"> to the beginning of our list. Not bad for a single line of JavaScript! Let’s
see the result when we load the page, as shown in Figure 9.4.

e e e Live Update ==

Welcome to the Live Update!

This site will automatically refresh itself every minute with new content - please do not reload the page!

2008-05-03 22:41:40 Testing!
2008-05-03 22:41:37 This is the first entry.

Figure 9.4 Testing our live updating JavaScript

We're all set now—we know jQuery is installed and working. It’s time to go back to
the server-side and create our Django view. We are implementing a tiny data-serving API,
which we can then hook into with jQuery’s request mechanism for the final step.

215

216

Chapter 9 Liveblog

Creating the View Function

The quickest and easiest way to implement our stated requirement for this feature—the
capability for our JavaScript to ask for all updates newer than the latest one it currently
has—is to set up a normal URL. If we needed to send more than one piece of info in our
request, we'd probably want to use a POST-based API, but here we can get away with
something simple.

Let’s say our Ajax-capable view lives at the URL /updates-after/<id>/, where <id>
is the latest ID the requesting JavaScript has seen. Our view can do a simple query based
off that ID number and return all newer Update objects. The return format is a JSON-
encoded version of those model objects that our client-side JS can easily parse and wrap
in HTML.

Timestamps Versus IDs

There are actually two ways we could have gone about ordering our Update objects here: the
ID approach and a timestamp string approach. Using IDs, as we did, is a bit simpler (no
parsing of timestamp strings into Python datetime objects at query time) and more granu-
lar (depending on how often Updates are entered into the database—you could have more
than one for the same timestamp!). However, the ID approach makes the assumption that
IDs are always autoincrementing, as Django’s automatic ones typically are—but this is not
always the case in the real world.

Of course, technical know-how is only part of a developer’s job—knowing how to correctly
translate requirements into a live and working solution can be more tricky than it sounds.

To do this, we need to add one line to our app-level UR Lconf file,
liveupdate/urls.py.

url (r'*updates-after/ (?P<id>\d+)/$"',
'liveproject.liveupdate.views.updates_after'),

Here is the corresponding view function in liveupdate/views.py.

from django.http import HttpResponse
from django.core import serializers

from liveproject.liveupdate.models import Update

def updates_after (request, id):
response = HttpResponse()
response|['Content-Type'] = "text/javascript"

response.write(serializers.serialize("json",
Update.objects.filter (pk__gt=id)))

return response

We save a lot of time here by leveraging a built-in Django serializing library, which
translates model objects into arbitrary text formats, including XML, JSON, and YAML.
The serializers.serialize function does its work on a Queryset, selecting the

Putting the Ajax In

objects based on primary key (pk)—in our case, we are asking only for the objects whose
ID is greater than the value of the id passed in.

The function then returns the resulting string in the format of our choice—here, it’s
JSON—which we write into our response using Ht tpResponse’s file-like behavior.
Finally, setting the Content-Type header of our response is necessary for JavaScript to
correctly parse and use the body of the response.

The nice thing about using human-readable serialized text formats is we can
debug them easily. Figure 9.5 shows what happens if we manually visit the URL
http://localhost:8000/updates-after/0/ in our browser with a single test Update in our
database.

[alala) http://liveupdate. local fupdates-after/0/f |

[{"pk": 11, "model”: "liveupdate.update”, "fields": {"timestasp”: "2008-05-03 22:41:37", "text":
“This is the first entry."}}]

Figure 9.5 Testing our JSON view in the browser

We’re almost done—the final step is to write the keystone of the whole thing, the
JavaScript to interface with this API view, and update the page with its response.

Using the View Function Via JavaScript

JavaScript provides a built-in timer function that is capable of evaluating arbitrary code at
certain intervals, called setInterval, which takes a string to evaluate and an interval
period in milliseconds, such as:

setInterval ("update()", 60000);

This makes an update () call every 60,000 milliseconds or 60 seconds. Paired with a
useful jQuery method called getgson—which performs a mini-request to a URL and
parses the result as JSON—we’ve got our Ajax at last. Here’s the end result:

<script type="text/javascript" language="javascript">
function update() {
update_holder = $("#update-holder");
most_recent = update_holder.find("div:first");
$.getJSON (" /updates-after/" + most_recent.attr('id') + "/",
function(data) {
cycle_class = most_recent.hasClass("odd")
? "even" : "odd";
jQuery.each(data, function() {
update_holder.prepend('<div id="' + this.pk
+ '" class="update "' + cycle_class
+ '"><div class="timestamp">"'

217

218 Chapter 9 Liveblog

+ this.fields.timestamp

+ '</div><div class="text">'

+ this.fields.text

+ '</div><div class="clear"></div></div>"'
)
cycle_class = (cycle_class == "odd")

? "even" : "odd";

}
$ (document) .ready (function() {
setInterval ("update()", 60000);

}
</script>

The action taking place inside update should be pretty self-explanatory, but here’s the
rundown:

1. We grab the container object (update_holder) and the most recent existing update
item (most_recent) via jJQuery’s various selection methods.

2. most_recent’s HTML ID attribute (which we’ve filled in with the server-side
database ID number for convenience purposes) is used to construct the URL,
which is getJson’ first argument.

3. The second argument is the usual anonymous function, encompassing the follow-
ing remaining points.
The first line in the function initializes the “even/odd” CSS class variable.

We then use jQuery’s each function to iterate over the JSON data from our view,
which is giving us a list of serialized Update objects.

6. Those Update objects are used to construct new HTML snippets, prepended to the
container <div>.

7. Finally, the CSS class is cycled at the end of each loop iteration to alternate the row
colors.

Once update has been so defined, the actual “action” code executed within ready is
simply our previously mentioned call to setInterval.After posting additional blog
entries, you should see them automatically loaded onto the Web page within a minute of
saving them. Although we can’t actually show you this code in action—animated GIFs or
videos don’t display well in book form—Figure 9.6 is a screenshot of what the site looks
like after a handful of updates have been entered.

Summary

[RIala) Live Update “"—'|

Welcome to the Live Update!

This site will automatically refresh itself every minute with new content - please do not reload the page!

2008-05-03 22:43:25 And this is the third!
2008-05-03 22:43:21 This is the second entry.
2008-05-03 22:41:37 This is the first entry.

Figure 9.6 The final look of the liveblog with multiple entries

Summary

Although we’ve made good use of jQuery’s powerful selection syntax and its getJSON
function to provide the client-side functionality, neither of them was absolutely required
to use the server-side functionality we’ve set up here. Not only do most of the other Ajax
libraries have similar tools handy, but it’s actually fairly easy to work with our small API
view without any special libraries whatsoever.

The key here is everything involved speaks HTTP—our view expects the usual GET
HTTP request, and similar views can use POST as well—and the return value (sent via
HTTP) is also an open format, JSON. Just as Django’s internal components strive to be
flexible and compartmentalized, the use of Ajax with Django relies on being similarly
open and well-defined.

This chapter has focused more on the mini-request aspect of Ajax, but there’s plenty of
reading material regarding many amazing things you can do with JavaScript on the Ul
front. We recommend you check out Appendix D, “Finding, Evaluating, and Using
Django Applications,” for some places to start looking, and remember—it’s tempting to
put a lot of graphical bells and whistles in your application, but your users will thank you
for only doing so in moderation!

219

This page intentionally left blank

10

Pastebin

A major part of Django’s appeal for many developers is the fact it allows you to write
Web applications using Python. Paradoxically, another major part of Django’s appeal is its
generic views feature, enables you to create Web applications without writing much
Python code at all. (You learned about generic views in Chapter 5, “URLs, HTTP
Mechanisms, and Views.”)

Django’s generic views can be a powerful tool for rapid development and prototyping.
Don'’t be fooled by the name though. Generic views are not just temporary scaffolding.
Newcomers to Django can be forgiven for thinking the name must refer to some sort of
default template for displaying your data, but the reality is quite different. Remember, a
Django view is Python code that accepts an HttpRequest and returns an HttpResponse.
The design of the data objects passed to that view, and the template used to render that
response, are completely up to you.

In this section, we walk through a simple pastebin application that relies on generic
views. Here are the features our application has

= A form for submitting new items with one mandatory field (the content) and two
optional ones (the poster’s name and a title)

= A clickable list of recent items
= A detail view for each item

= An administrative interface that allows us (as site owners) to edit or delete exist-
ing entries
= Syntax colorizing

= Periodic cleanup of outdated items

To achieve all this, we write approximately zero lines of imperative Python code. We
create a model file that describes our data and its attributes and templates to display it, but
nearly every other aspect of our application is handled by Django itself.

222 Chapter 10 Pastebin

Note

The code for this example application is functionally similar to the first version of
dpaste.com, the Django community pastebin. The present-day dpaste.com no longer is a
pure-generic-views application, but the heart of its simplicity and utility is present in this
chapter’s code.

One note on approach before we dive in: The essence of this example is seeing how
much work we can hand off to the framework. Some might call this approach lazy, but
every line of code you don’t write is one you don’t have to debug. So in this example,
where there’s a choice between writing a little more code to get some custom behavior or
enabling Django to do it for us, we’re going to allow Django to do it.

Defining the Model

Here’s the complete models.py for our pastebin application. It defines a simple five-field
data structure, some Meta options, and a couple methods that are leveraged by the generic
view code and our templates. It also registers our model with the admin and sets some
list-related admin options.

import datetime

from django.db import models

from django.db.models import permalink

from django.contrib import admin

class Paste(models.Model) :
"""A single pastebin item"""

SYNTAX_CHOICES = (

(0, "Plain"),

(1, "python"),

(2, "HTML"),

(3, "sQL"),

(4, "Javascript"),
(5, "Css"),

content = models.TextField()

title = models.CharField(blank=True, max_length=30)

syntax = models.IntegerField(max_length=30, choices=SYNTAX_CHOICES, default=0)
poster = models.CharField(blank=True, max_length=30)

timestamp = models.DateTimeField(default=datetime.datetime.now, blank=True)

class Meta:
ordering = ('-timestamp',)

Creating the Templates

def _ unicode__ (self):

return "%s (%s)" % (self.title or "#%s" % self.id,
wself.get_syntax_display())

@permalink
def get_absolute_url (self):
return ('django.views.generic.list_detail.object_detail',
None, {'object_id': self.id})

class PasteAdmin(admin.ModelAdmin) :
list_display = ('__unicode__', 'title', 'poster',6 'syntax',6 'timestamp')
list_filter = ('timestamp', 'syntax')

admin.site.register (Paste, PasteAdmin)

Most of these elements you have seen before. What’s unusual here is these lines consti-
tute the bulk of the custom Python code for your pastebin application. Except for some
simple rules in our application’s urls.py, the heavy lifting is done by the framework itself.

Applications based on generic views, such as this one, really show off the power that
Django’s DRY (Don’t Repeat Yourself) philosophy yields. In the example we’re about to
build, the five field definitions at the core of our previous model (content, title, syntax,
poster, and timestamp) are used by:

» The manage.py syncdb command, which creates a table in the database
= The admin app, which generates an editing interface for our data

= The object_detail generic view, which fetches instances of our model and sends
them to the template system for display

= The create_update generic view, which generates and processes a submission form
for adding new paste items

The model methods are also used in multiple places. The admin app uses the
__unicode__ object when it needs to refer to the object by name (for example, in
deletion-confirmation messages), and the get_absolute_url method for generating “View
on site” links. Our template uses __unicode__ implicitly anywhere it needs to display the
name of an item and get_absolute_url to generate links in the list of recent items.

Creating the Templates

Now let’s create some basic templates that are used to render our content to the user. First
we need a base template, a technique you’ve seen in earlier chapters such as Chapter 7,
“Photo Gallery.” Save this in pastebin/templates.

<html>
<head>
<title>{% block title %}{% endblock %$}</title>
<style type="text/css">
body { margin: 30px; font-family: sans-serif; background: #fff; }

223

224

Chapter 10 Pastebin

hl { background: #ccf; padding: 20px; }
pre { padding: 20px; background: #ddd; }
</style>
</head>
<body>
<p>Add one • List all</p>
{% block content %}{% endblock %}
</body>
</html>

Once our base template is set up, let’s create a form for users to paste their code to our
application. Save the following in pastebin/templates/pastebin/paste_form.html.
(Keep reading for an explanation of the seeming redundancy in the path name.)

{% extends "base.html" %}

{% block title %}Add{% endblock %}
{% block content %}

<hl>Paste something</hl>

<form action="" method="POST">
Title: {{ form.title }}

Poster: {{ form.poster }}

Syntax: {{ form.syntax }}

{{ form.content }}

<input type="submit" name="submit" value="Paste" id="submit">
</form>

{% endblock %}

Next, we make a template for our list view. This shows all the recently pasted items and
enables the user to select one with a click. Save this to pastebin/templates/pastebin/
paste_list.html.

{% extends "base.html" %}

{% block title %}Recently Pasted{% endblock %}

{% block content %}

<hl>Recently Pasted</hl>

{% for object in object_list %}
{{ object }}
{% endfor %}

{% endblock %}

Finally, we make a detail page template. This is the one people spend the most time
looking at. Save this as pastebin/templates/pastebin/paste_detail.html.

{% extends "base.html" %}

{% block title %}{{ object }}{% endblock %}
{% block content %}

<hl1>{{ object }}</hl>

Designing the URLs

<p>Syntax: {{ object.get_syntax_display }}

Date: {{ object.timestamp\date:”r” }i</p>
<code><pre>{{ object.content }}</pre></code>
{% endblock %}

Designing the URLs

Because the structure of our application is so clear, creating our URLs is fairly easy. The
only tricky part here is the apparatus needed to take advantage of generic views. We need
to design three URL patterns—one for listing all items, one for showing individual items,
and one for adding new items.

from django.conf.urls.defaults import *

from django.views.generic.list_detail import object_list, object_detail
from django.views.generic.create_update import create_object

from pastebin.models import Paste

display_info = {'queryset': Paste.objects.all()}
create_info = {'model': Paste}

urlpatterns = patterns('',
url(r'”$', object_list, dict(display_info, allow_empty=True)),
url(r'”(?P<object_id>\d+)/S$', object_detail, display_info),
url(r'”add/$', create_object, create_info),

This is really the heart of our application. We import three function objects, view func-
dons,ﬁonldjango.views.generic

m django.views.generic.list_detail.object_list
® django.views.generic.list_detail.object_detail

» django.views.generic.create_update.create_object

In addition to the HttpRequest that all Django views, generic or otherwise, take as
their first argument, these views also get passed a dictionary of additional values; we define
two different ones in our previous URLconf. The names, display_info and
create_info, are arbitrary (although _info is a conventional suffix for these dictionaries),
but their contents are structured specifically for the generic views we are using. The
list_detail views expect a queryset containing all eligible objects with a key of
queryset.The create_update views expect the model class (not an instance) with a key
of model. In the case of object_list, we add allow_empty=True to the dictionary to tell
the view we want to see the page even if there are no objects in the database.

There are many other possible values you can include in these dictionaries. Because
they are the primary method for customizing the behavior of generic views they can get
quite crowded. For a full list of the options in these views, see the official Django docu-
mentation. For now we’re keeping it simple.

225

226 Chapter 10 Pastebin

Note

There’s a special rule at play here that is worth knowing about when you begin expanding
your use of these _info dictionaries. The code in your URLconf is not evaluated fresh on
every request. This means that, if nothing special were done, the Paste.objects.all
queryset we set up here could actually get stale as new objects were added, edited, or
removed by users or site admins. Luckily, Django knows this and is explicitly instructed not
to cache the data with the key queryset.

Trying It Out

Even though we haven’t written much in the way of imperative code, we now have a
functional application. Let’s try it out. When we launch the app, we see a screen as shown
in Figure 10.1—an empty pastebin.

Zella Recently Pasted

Add one - Listall

Recently Pasted

Figure 10.1 The empty pastebin

Let’s think for a moment about all the things Django has done to get this page to us; it
parsed our requested URL, determined which view needs to be called, passed an (empty)
queryset derived from our model, found our template file, rendered the template using the
appropriate context, and returned the resulting HTML content to the browser.

Now let’s add some content. If we click the Add One link, we should see our blank
form. This form is a collaboration between Django’s view and our template. The generic
create_update view introspects our model, generates HTML form elements, and passes
them to our template in the {{ form }} template variable. Our template unpacks these
elements and displays a form to the user. Note the <form> tags and the submit button
were our responsibility.

The resulting form should look something like Figure 10.2.

Trying It Out

ene Add ==

Add one - Listall

Paste something

Title: FirzBuzr
Foster: raul

Syntax: [Pahon 19

for nin range(l,101):printFizz"*(n%3 <1)+'Buzz"*(nX5 < llor

Paste)

Figure 10.2 The Add One form

Our friendly pastebin doesn’t force the user to do much. Only the Code field is
required, in fact. Pastebins are only useful if they are convenient, and long lists of required
fields are not convenient.

By filling in the form and clicking the Paste button, we are calling Django’s
create_update generic view again. Because the data is being sent via HTTP POST
instead of GET, the view knows that instead of displaying our blank form, it needs to
process the user’s input and (if possible) store it in the database.

One aspect of the create_update view we don'’t illustrate here is validation. What
happens if the user omits a required field? In this case, the form is simply displayed again.
Our extremely simple template does not include code that looks for or displays validation
error messages, but in fact Django is passing them along in the {{ form.errors }} tem-
plate variable. A more robust implementation would look for those errors and display
them as helpful messages to the user.

Assuming the user has managed to fill in the one required field and click Paste Django
processes the form input (again, via the create_update generic view) and stores it in the
database. It then redirects to the newly created object’s get_absolute_url and presents us
with our submission rendered via the pastebin_detail.html template, as shown in
Figure 10.3.

This is the most likely thing that a user wants after submitting an item—a view of that
item and a URL that can be sent to others.

If the user wants to see what other items are in the pastebin, the List All link takes him
there.Via Django’s object_list generic view and our paste_list.html template, a sim-
ple bulleted list of pasted items is displayed, as shown in Figure 10.4.

This list illustrates the working of the object_list generic view nicely. The
display_info dictionary in our URLconf passes the queryset representing all our Paste

227

228 Chapter 10 Pastebin

00 FizzBuzz (Python) |
Add one -« List all

FizzBuzz (Python)
Syntax: Python

yih
Date: Mon, 28 Jan 2008 04:05:02 -0800

for n in range(1,101):print'Pizz’+*(nk3<€1)+'Buzz'#*(nk5<1)or n

P = —

Figure 10.3 The newly pasted item

Tala) Recently Pasted —
Add one - Listall
Recently Pasted

« FizzBuzz (Python)

Figure 10.4 The list of submitted items

objects to the object_list view. That view passes the objects along to our template,
where our concise {$ for object in object_list %} loop generates the clickable list.

Note

In practice, a list of submitted items is not necessarily a great feature for this type of site.
Pastebin users typically care only about their own submissions. Pastebin operators have
been known to muse, “Why do spammers keep pasting stuff into my pastebin?” The answer,
of course, is spammers “care” about any mechanism by which their content can be placed
in front of unsuspecting users. A pastebin’s list of recent items serves this purpose handily,
despite being an incongruous venue for commercial messages.

Limiting Number of Recent Pastes Displayed

Finally, don’t forget on top of all the parts of our application that we more or less
explicitly designed, we also get the admin app. Given the options we specified in our
PasteAdmin class, our admin looks something like Figure 10.5.

Select paste to change | Django site admin

ango administration Welcome, pbx. Documentation / Change password / Log out
Select paste to change
Paste Title Poster Syntax Timestamp i T
FizzBurz (Python) FizsBurz Paul Python Jan. 28, 2008, 4:05 a.m, By timestamp

lpaste . Today

year

By syntax
All

Figure 10.5 The admin screen

Note by using our model’s __unicode__ method as the first argument to the admin’s
list_display, rather than a particular model field, the clickable name for each item can
be adjusted depending on what information is available.

What you have at this point is a useful, usable application powered entirely by Django’s
generic views. Although a perfectly reasonable strategy for enhancing the application
would be to begin adding your own custom view code, there are actually many more
improvements you could make while sticking to generic views. We tackle three: keeping
the list of recent pastes manageable, adding syntax highlighting to our entries, and sched-
uling cleanup of old entries.

Limiting Number of Recent Pastes Displayed

That Recently Pasted list is cool when you have only a few items, but if you were running
a busy public site, the list could quickly grow unwieldy. There are ways we could limit the
number of items in this list. Given our focus on generic views, the best place to take care
of it here is in the template.

This just takes one change to line 6 of our paste_list.html template, applying a
slice filter to object_list.

% for object in object_list|slice:":10" %}

229

230

Chapter 10 Pastebin

Here’s how this works: The URLconf passes the template a queryset representing all
the pastes in the database. They’re sorted in descending order by timestamp, thanks to the
ordering = ('-timestamp') line in our models.py.The for-loop in the template then
takes the top ten items and iterates over them.

The value passed to the slice filter is exactly what we’d pass to a normal Python
object, minus the brackets. An equivalent example in Python would be something such as:
>>> number_list = [15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> print number_list[:10]

[15, 14, 13, 12, 11, 10, 9, 8, 7, 6]

If Django’s querysets weren'’t “lazy”—that is, if we passed the complete list of objects
just to throw away all but ten—this would be madness. If we had thousands of items, the
memory consumption of our Web server processes would skyrocket. Because the queryset
isn’t evaluated until the last possible moment (in this case, the for loop in our template),
there’s no penalty for specifying Paste.objects.all () in the URLconf and then slicing
in the template. Also, because the choice of how many items to display in the list is really a
presentational one, the template is an excellent place to do the trimming.

Syntax Highlighting

A pastebin is a lot more useful (and attractive) if it knows how to properly apply colored
syntax highlighting to the submitted snippets. There are various ways to do this (including
the excellent Python-based library Pygments, which dpaste.com uses), but the easiest path
to implementation here is to make the highlighting happen on the client side in
Javascript.

A programmer named Alex Gorbatchev created an excellent and widely used high-
lighting utility in Javascript. Called simply Syntax Highlighter, it can be fetched from
Google Code (http://code.google.com/p/syntaxhighlighter/).

A full set of instructions and examples on using Syntax Highlighter can be found on
the project’s Web site, but here’s a run-through of how we’d get syntax highlighting for
our Python code samples.

First, we update our paste_detail.html template to look like this.

{% extends "base.html" %}

{% block title %}{{ object }}{% endblock %}

{% block content %}

<hl>{{ object }}</hl>

<p>Syntax: {{ object.get_syntax_display }}

Date: {{ object.timestamp|date:"r" }}</p>

<code><pre name="code" class="{{ object.get_syntax_display|lower 1>
{{ object.content }}</pre></code>

<link type="text/css" rel="stylesheet"
href="/static/css/SyntaxHighlighter.css"></1link>

<script language="javascript" src="/static/js/shCore.js"></script>

<script language="javascript" src="/static/js/shBrushPython.js"></script>

http://code.google.com/p/syntaxhighlighter/

<script
<script
<script
<script
<script

Cleanup Via Cron Job

language="javascript" src="/static/js/shBrushXml.js"></script>
language="javascript" src="/static/js/shBrushJscript.js"></script>
language="javascript" src="/static/js/shBrushSql.js"></script>
language="javascript" src="/static/js/shBrushCss.js"></script>
language="javascript">

dp.SyntaxHighlighter.HighlightAll('code');
</script>
% endblock %}

We added name and class attributes to our <pre> tag. This enables our code block to

be located by the Javascript when it runs.

<pre name="code" class="{{ object.get_syntax_display\lower P>

That’s all it takes. When the browser renders the page, the syntax highlighter JavaScript

code runs, transforming the bland monochromatic code sample before the user even sees
it. The output should look something like Figure 10.6.

ene Fib (Python) =)
@ hrtp://127.0.0.1:8000/paste/19/ ¥ |

Add one -« List all

Fib (Python)

Syntax: Python
Date: Sun, 24 Feb 2008 21:25:57 -0600

view plain print 7

20. def fibonacci(max):

e1. a, b=9,1

ez. while a < max:

3. yield a

B4, a, b =b, atb
05.

86. for n in fibonacci(1000):
7. print n,

Figure 10.6 Syntax coloring applied to a Python source snippet

Cleanup Via Cron Job

Items posted on pastebin sites tend to be ephemeral, so it’s nice to perform some periodic

automated cleanup of older items. The best way to do this is with a nightly cron job run-

ning on your server.

231

232

Chapter 10 Pastebin

Cron jobs and other Django scripts that are designed to run outside the Web server
environment are another testament to the power of Django’s ““it’s just Python” approach.
Writing a script that does stuff with your Django app’s objects involves very little that is

specific to Django. The following simple script depends on the following assumptions:

= The environment variable DJANGO_SETTINGS_MODULE has been set to a string con-
taining the Python pathname of your project’s settings file (for example,
“pastesite.settings”).

= You have a setting named EXPIRY_DAYS in your project’s settings module.

= Your project’s name is “pastesite.”

Assuming those are taken care of, there’s little else for you to do other than test and
deploy.
#!/usr/bin/env python
import datetime
from django.conf import settings
from pastesite.pastebin.models import Paste

today = datetime.date.today()
cutoff = (today - datetime.timedelta(days=settings.EXPIRY_DAYS))
Paste.objects.filter (timestamp__lt=cutoff) .delete()

The last line of the script is where all the action is—it uses Django’s ORM to select all
objects in the database whose timestamp is older than the calculated cutoff, and then
deletes them en masse.

Note

Depending on your database engine, you can also periodically “vacuum” or reclaim the
space left by the deleted entries. A simple code snippet to perform this on a SQLite data-
base can be found at http://djangosnippets.org.

Summary

Hopefully you are now convinced of the power of Django’s generic views. Our example
pastebin site is simple in its implementation, but think of all the features it has: input vali-
dation, redirect-on-post, detail and list views, and so on. But perhaps even better than
having these is knowing that with Django we have a solid base for expansion. If we want
to localize our app, or fortify it against Digg-level traffic by adding caching, Django is
ready for us.

http://djangosnippets.org

IV

Advanced Django
Techniques and
Features

11 Advanced Django Programming
12 Advanced Django Deployment

This page intentionally left blank

11

Advanced Django Programming

In this chapter, we explore a number of different advanced techniques that can be
applied to your Django code, such as the generation of RSS and other formats, customiz-
ing the behavior of the admin application, and advanced use of the templating system.

The next chapter, Chapter 12, “Advanced Django Deployment,” consists of a similar
group of topics, such as testing, data imports, and scripting—things that are more tangen-
tial to your core application logic. In both chapters, order doesn’t really matter—feel free
to skip around as you see fit.

Customizing the Admin

Django’s admin app is, in some ways, its crown jewel. This can seem odd to say about a
component that lives in the “contrib” directory—those that inhabitant these confines are
usually optional add-ons not core components. However, Django’s developers have
labeled it that way because it’s the right thing to do—you don’t have to use the admin
when you use Django, so it shouldn’t be required. But make no mistake: The admin app is
a powerful and compelling application. If your project requires you to quickly create a
polished, usable interface for adding and editing data, the admin is your friend.

Throughout the rest of the book, you’ve seen some of the customizations possible via
ModelAdmin subclasses. For instance, just setting the 1ist_display, list_filter,and
search_fields options gives you much of the basic customization that you need.

It’s also been mentioned that the admin site used in our examples is the “default”
admin site—and that’s because it’s possible to set up multiple different admin sites for
extra flexibility. This enables you to go a ways toward having different admin views for
different groups of users, for example.

However, inevitably you want the admin to do more. It’s not uncommon for new
Django developers, after playing with the admin for a while, to say something such as,
“I've been reading the documentation, and there’s this one thing I can’t figure out how to
make it do. But if it just did this one additional thing, it would be the perfect tool!”

In the following, we show you some ways you can customize and extend the admin
app to do some things people commonly request. However, as you read this section, keep

236

Chapter 11 Advanced Django Programming

in mind the admin is just another Django app. It’s an incredibly useful one with a lovely
interface and a lot of configurability, but in the end it if doesn’t do what you want, you
have the power to replace it with something else.

Depending on the depth of the customizations you find yourself contemplating, it
could be wiser in the end to develop your own custom admin rather than trying to twist
the existing one into doing things it wasn't really designed for. If the well-established
techniques outlined here don’t go far enough for you, it’s probably time to consider creat-
ing your own admin. With this cautionary note out of the way, following are some of the
more advanced admin customizations available.

Changing Layout and Style Using Fieldsets

The admin app’s fieldsets setting gives you some very granular control over how data
is displayed. For example, it’s probably what you want to use if you want to add some cus-
tom CSS styles to particular elements, group fields in a certain way, add Javascript input
helpers to selected fields, or initially have certain fields display in a hidden state.

Here’s a trivial example model with display customization done using fieldsets.

class Person(models.Model) :
firstname = models.CharField(max_length=50)
lastname = models.CharField(max_length=50)
city = models.CharField(max_length=50)
state = models.CharField(max_length=2)

class PersonAdmin (admin.ModelAdmin) :

fieldsets = [
("Name", {"fields": ("firstname", "lastname")}),
("Location", {"fields": ("city", "state")})

admin.site.register (Person, PersonAdmin)

In Python-speak, the fieldsets setting is a list of two-tuples. The first item of each
tuple is a string label for the group of fields, and the second item is a dictionary of set-
tings for that group. Inside the dictionary, the keys are the names of particular options (we
list them next); the associated values can be of various types depending on the particular
option. In our minimal previous example, the fields option is being set to a tuple of’
field names.

The result is the fields grouped via our use of the fieldsets option are displayed
together in the admin, as seen in Figure 11.1.

Here are the options you can use (as dictionary keys per the previous example) under
the fieldsets setting.

= classes: This option specifies a tuple of strings, which are the names of CSS classes
(ones available in your rendered template) that should be applied to this field group.
The admin predefines a few classes that can be handy here: “collapsed,” which

Customizing the Admin

806 Add person | Django site admin

Django administration Welcom, cyriss. Bocurmsntation 1 Changs password | Log out

Hame » Persens » Add person

Add person

Firstnama:

Lastname:

City:
State:

Save and add another | Save and continue editing

Figure 11.1 New fields in our admin

causes the fieldset to be collapsed under its header with a JavaScript-based toggle
for expansion; “monospace,” which can be used for HTML textarea fields that are
intended to contain code; and “wide,” which gives the fieldset a wider (though
fixed) width in the admin. Look in the “media” directory inside django.contrib.
admin to find the default stylesheets if you're curious about what other classes you

can use.

Note

If you are a practitioner of the “progressive enhancement” style of JavaScript development,
the CSS classes you add via this option can serve as hooks for your custom JavaScript
code—for example, if you want to add a WYSIWYG editor to a textarea.

= description: This option specifies a string that is used as a description of the field
group. Think of it as group-level help_text. Django’s default admin CSS styles are
carefully written to display text such as this in a readable, unobtrusive way. These
nice design touches add even more value to simple labeling features such as this.

= fields: As explained previously, this option specifies a tuple of field names that should
be grouped together visually in the admin. If the dictionary in which this option is
set is prefaced by a string (for example, “Name” in our previous example), that label
is used for the group. Otherwise, it appears without a textual header.

Extending the Base Templates

Going beyond simple settings changes, you can also make some significant adjustments to
the appearance of your admin app by replacing one or more of the base templates with
your own version. Of course, you're not actually replacing per sé, but overriding the origi-
nal templates with your own files, as we explain next.

237

238

Chapter 11 Advanced Django Programming

Technically, the admin is just another Django app, but it’s a complicated one on all
levels. The twisty maze of templates that it uses is not something a beginner should dive
into unprepared. A gentle introduction is the template called base_site.html. Here’s the
whole thing, reformatted slightly for presentation.

{% extends "admin/base.html" %}

{% load il8n %}

{% block title %}{{ title|escape }}|{% trans 'Django site admin' %}{% endblock %}
{% block branding %}

<hl id="site-name">{% trans 'Django administration' %}</hl>

{% endblock %}

{% block nav-global %}{% endblock %}

With your knowledge of the Django template system, you understand the extends tag
at the top is probably doing the heavy lifting here.Youre correct. A more complicated
template called base.html is the true underlying template for all the admin pages. How-
ever, the two things in it you'd likely want to customize—the page’s <title> and the
<h1> header block—have been tidily abstracted into base_site.html.

As for the customization, simply change the strings “Django site admin” and “Django
administration” to whatever values are appropriate for your application and save the tem-
plate. But where to save it?

To override the contents of this template, you need to create your own customized
copy, and then help the Django template loader find it before the default one.You can
place your copy either inside one of your applications’ template directories (if you're using
the app_directories template loader) or in one of your TEMPLATE_DIRS locations.

In either case, you need to place it inside a subdirectory labeled admin, so the extends
tags in the other admin templates can locate it correctly.

If you're placing it inside one of your applications (for example,
myproject/myapp/templates/admin/base_site.html), make sure your application
comes before the django.contrib.admin in your INSTALLED_APPS setting. Because the
template loader searches those apps’ template directories in order, if the admin is listed
before your app, the Django template loader ceases its search when it finds the original
template.

If you’d like to delve a little deeper into customizing the admin templates, the next one
to look at is index.html. It’s a bit more complex than base_site.html, but it is worth
looking at if you want to significantly rearrange the main admin page.

Adding New Views

Short of writing an entire custom admin app, the ultimate step in admin customization is
writing your own admin views. This is far preferable to hacking up the Django admin
app’s code directly.

At the very least, such hacks place an onerous maintenance burden on you, their cre-
ator, every time the main Django codebase is updated. If changes in upstream that conflict
with your customizations have been made, you have to constantly deal with merging the

Customizing the Admin

two together. Additionally, if you make your customizations as stand-alone admin views,
they are much easier to share with other Django developers, who can in turn contribute
fixes and improvements back to you.

Writing new admin views is “just Django” in the sense there is very little about it spe-
cific to the admin. There are three basic requirements:

= Your view should ideally be mapped to a URL that is “inside” the admin app’s
URL space. This is more for user comfort than anything, but Django’s UR Lconf
system makes it easy, so there’s little reason not to do it.

= Your view should look like the rest of the admin; in other words, it should render its
responses using the admin site templates.

= Your view should use Django’s authentication decorators—explained in the next
section—to enforce access.

Authentication Decorators

Before you go any further in this section, if you're new to Python and need a refresher on
the concept of decorators, read this paragraph and then flip back to the section on decora-
tors in Chapter 1,“Practical Python for Django.” Decorators are functions that change
other functions.Your Django views are functions.You want to change them in a specific
way—to restrict access so that only certain users can call them—and this is a natural fit for
decorators.

You can think of the decorator as a guard for your view function. If the user passes
your test, they’re in—the view runs and the page displays. If the user fails the test, she is
redirected elsewhere. (By default, users are redirected to /accounts/login/ plus a param-
eter that says where users should be redirected after they’ve successtully logged in, for
example, /accounts/login/?next=/jobs/101/.You can set LOGIN_URL in your
settings.py to customize this URL if needed.)

For enforcing authentication, a single decorator does most of the heavy lifting for you,
Caﬂeduser_passes_test

To use this decorator, in addition to the view that you are guarding you also need to
provide a utility function that actually applies the test in question. This function must take
a User object and return a boolean (True or False). Such a function can be simple, even
trivial:
def user_is_staff (user):

return user.is_staff

Having defined that function, your use of the decorator would be something such as this:

@Quser_passes_test (user_is_staff)
def for_staff_ eyes_only(request):
print "Next secret staff meeting date: November 14th"

239

240

Chapter 11 Advanced Django Programming

That definition of user_is_staff almost feels like a waste of a function, doesn’t it? This
is where lambda comes in (for an introduction to lambda, refer back to Chapter 1). With
lambda we can define an ad-hoc, “anonymous” function right in the decorator line itself.

@user_passes_test (lambda u: u.is_staff)
def for_staff_eyes_only(request):

Moving on with our example, let’s say you need to slice it finer than staff-or-not-staft.
One of the handy things about Django’s admin and auth apps is they offer a convenient
permissions system for managing your users. You already know that each model gets its
own set of create/update/delete permissions in the admin, but these permissions are also
accessible in your Python code. If you had a secretMeeting model and accompanying
privileges listed in the auth system, and you were creating a view that allowed certain
people to add new secret meetings, your decorated function could look like this:

@user_passes_test (lambda u: u.can_create_secretmeeting)
def secret_meeting_create(request):

‘With a mix of Django’s predefined permissions and your own application-specific
ones, you should be able to control access in whatever way you like.

Using Syndication

Django provides a convenient facility, the Syndication app (django.contrib.
syndication), for generating RSS or Atom feeds from any collection of model objects.
This makes it incredibly easy to add feeds to your Django project.

The Syndication app is highly configurable, but it is easy to get started with thanks to
its sensible defaults. There are only two essential steps: first, a special class that produces
feed objects; second, a rule in your URLconf that passes these objects to the Syndication
app. The easiest way to understand how this all works is to jump right into the code. We
base this example on the Blog application developed back in Chapter 2, “Django for the
Impatient: Building a Blog.”

The Feed Class

To configure your feeds, you define a separate module containing special feed classes,
which are then imported directly into your UR Lconf. Django doesn’t place any restric-
tions on where you place this file (or even what its name is), but a sensible location is
inside your app directory, and the usual name is feeds.py. So, inside your mysite/blog
directory, you would create a file called feeds.py containing the following code:

from django.contrib.syndication.feeds import Feed

from mysite.blog.models import BlogPost

Using Syndication

class RSSFeed (Feed) :
title = "My awesome blog feed"
description = "The latest from my awesome blog"
link = "/blog/"
item_link = link

def items (self):
return BlogPost.objects.all()[:10]

The title and description attributes are used by the consumer of the feed (for
example, a desktop RSS reader) to label the feed. The 1ink attribute specifies what page is
associated with your feed.Your site’s domain name is prepended to whatever partial URL
you provide.

The item_link attribute is used to determine what page to load if the reader wants to
see the Web page associated with an individual feed item. By setting item_link to
/blog/, we're saying that a click on any individual feed item sends the user to the front
page of our blog—and if you're thinking that seems kind of inflexible, you’re right. A bet-
ter technique is to extend your BlogPost model with a get_absolute_url method.The
Syndication app automatically uses it if it’s present.

The items method is the heart of this class—it decides what objects are returned to
the Syndication app. The code here returns the first ten objects in our list of blog posts;
because our BlogPost model has its Meta.ordering attribute set to "-timestamp"
(reverse-chronological order), we get them in reverse-chronological order.

This class we’ve created is just about the simplest thing that works. It contains only the
items that the Syndication app absolutely requires. There are many optional attributes and
more flexible ways specifying some of the required ones. In learning the possible cus-
tomizations, it’s useful to understand that many attributes in a feed class can actually be
one of three things:

= A hardcoded value (as with the previous title, description, and link)

= A method that takes no explicit arguments (the implicit self referring to the feed is
required of course)

= A method that takes one explicit argument (an individual feed item)

The Syndication app figures out which one youre doing by taking intelligent advan-
tage of Python’s “duck typing.” The Syndication app looks for these three options (where
applicable) in reverse order from how they're listed here: If it finds a one-argument
method with the appropriate name, it uses that, passing in the current feed object; next, it
looks for a no-argument method and calls that if found,; failing those two, it looks for a
hardcoded value. Failing all three, it throws a FeedDoesNotExist exception (because in
that case your feed is broken).

241

242

Chapter 11 Advanced Django Programming

Giving the Feed a URL

Having created the class that handles the actual generation of the feed, all that’s left is to
give your feed a working URL. Continuing with our blog example, we would update our
app’s URLconf file (mysite/blog/urls.py) so it looks like this:

from django.conf.urls.defaults import *

from django.contrib.syndication.views import feed
from mysite.blog.views import archive

from mysite.blog.feeds import RSSFeed

urlpatterns = patterns('',
url(r'~$', archive),
url (r'~feeds/ (?P<url>.*)/$', feed, {'feed_dict': {'rss': RSSFeed}}),

We’ve added just three lines. Two are imports; we bring in the feed view object from
the Syndication app, and we bring in our new RSSFeed class from our blog app.

We’ve also added a fairly complicated-looking URL pattern. Breaking it down into its
three components, we have:

= r'~feeds/ (?P<url>.*)/$': Our URL regex. Because were inside the “blog” app,
which currently lives at the URL /blog/, this means URLs of the form
/blog/feeds/Fo0/ are captured with “FOQO” being passed along to our view
function.

= feed:The view function we’ve imported from django.contrib.syndication.

views.

m {'feed_dict': {'rss': RSSFeed}}:In any urlpatterns tuple, we can provide a
third item such as this, a dictionary that is used to pass additional arguments to the
view function. We're passing one argument, called feed_dict, which is a one-item
dictionary mapping the string “rss”’ to our RSSFeed class. We could add other
types of feeds simply by creating the needed classes and referring to them in this
dictionary.

Though the key we use in our context dict (“rss”) happens to be the type of feed, it
could be anything—*latest” for the latest posts, for example. The Syndication app
doesn’t restrict us there. It just wants to know how to connect requests to Feed classes
that it can use.

Doing More with Feeds

Offering RSS or Atom feeds can be a great improvement to a regularly (or irregularly)
updated site. Although these formats are ostensibly simple, rolling your own code for feed
output 1s tedious and error-prone. The well-known Universal Feed Parser (http://
feedparser.org/) ships with more than three thousand tests to make sure it robustly handles
the huge range (some would say “mess” rather than “range”) of published feeds. By using

http://feedparser.org/
http://feedparser.org/

Generating Downloadable Files

Django’s Syndication app, you produce clean, valid output with a very small investment of
code and configuration.

If you require more customization than we’ve covered here, see the official Django
documentation. It’s unlikely that you ever have to take the roll-your-own approach again.

Generating Downloadable Files

Because Django is a Web framework, naturally we think of it mostly as a tool for generat-
ing HTML and sending it via HTTP. But Django is perfectly adaptable to other types of
content and other modes of delivery.

Two factors make this true. The first is that Django’s template language is text-based,
not XML-based. A Web framework that can only do XML templating doesn’t help you
much when you also need to generate plain text reports or e-mail.

The second factor is simply that Django’s exposure of the HTTP mechanisms driving
your Web site enables you to tweak the various HTTP headers involved. Therefore, you're
able to set the Content-Type to a non-HTML value, such as JavaScript (as with the JSON
view in Chapter 9,“Liveblog”) or add a Content-Disposition header to force download-
ing instead of browser rendering.

Here are a few short examples of using Django to generate non-Web-page output.
Some of them use the template system, as we’ve just mentioned; others don’t because
there are times when any template system is just unnecessary overhead. As always, use the
right tool for the job.

Nagios Configuration Files

One real-life example that we share briefly with you here hinges on a well-known open
source monitoring system, Nagios (http://nagios.org/). Like many similar projects, it
embraces the Unix convention of plain-text configuration files with a published format;
such config files are an excellent target for Django’s template system.

One of the authors is, at the time of writing, producing a small, highly customized
internal application to (among other things) generate a partial Nagios configuration setup.
It’s based on a Django app that serves as a central database of information on systems and
services; this catalog is then exported to a format Nagios can understand, enabling the user
to keep track of systems in one place and have Nagios monitor them.

Here’s a simplified example of the system-service hierarchy model (in the real applica-
tion, this information is spread among a number of models).

class System(models.Model) :
name = models.CharField(max_length=100)
ip = models.IPAddressField()

class Service(models.Model) :
name = models.CharField(max_length=100)
system = models.ForeignKey (System)
port = models.IntegerField()

243

http://nagios.org/

244

Chapter 11 Advanced Django Programming

Next is a template that can generate a per-host Nagios service-check file, again greatly
simplified from the real thing. Its intended context is a single System object, system.

define host ({

use generic-host
host_name {{ system.name }}
address {{ system.ip }}

{% for service in system.service_set.all %}
define service {

use generic-service
host_name {{ system.name }}
service_description {{ service.name }}
check_command check_tcp!{{ service.port }}
}
Note

Don’t be confused by the single curly-braces; they're part of the Nagios file format and aren’t
parsed by Django’s template system. The template system only cares about double curly-
braces or curly-braces paired with percent signs.

When rendered, the previous template gives us a working Nagios file that defines the
system as a Nagios host record and writes out any services associated with it, using a net-
work check command that makes sure the recorded TCP port is up and running.

vCard

The Vcard format is a text-based format for contact information. It is a supported import
and export format for many popular address book, e-mail, and PIM (Personal Information
Manager) products, including Evolution, the OS X Address Book, and Microsoft Outlook.

If you have contact information in a Django app, you can want to be able generate
vCards so that users can import that contact information into their local address book or
PIM application.

This sample code uses the vObject module (available from http://vobject.
skyhouseconsulting.com/), which makes generating vCard data a bit easier.

import vobject

def vcard(request, person):
v = vobject.vCard()

v.add('n")

v.n.value = vobject.vcard.Name (family=person.lastname, given=person.firstname)
v.add('fn")

v.fn.value = "%s %s" % (person.firstname, person.lastname)

http://vobject.skyhouseconsulting.com/
http://vobject.skyhouseconsulting.com/

Generating Downloadable Files

v.add('email')

v.email.value = person.email

output = v.serialize()

filename = "%$s%s.vcf" % (person.firstname, person.lastname)

response = HttpResponse (output, mimetype="text/x-vCard")

response['Content-Disposition'] = 'attachment; filename=%s' % filename

return response

The most significant bit here is the manipulation of the HttpResponse object to pro-
vide a non-HTML MIME type and a filename for the download. Rather than returning
an HttpResponse directly, we first create the object, setting the content and MIME type.
Then we set the response’s Content-Disposition header to specify an attachment.
Returning that response object at the end of our view sets the transaction in motion, and
the user receives the generated file.

This technique shows off Django’s excellent mix of high-level and low-level tools. The
HttpResponse object makes it easy for us to leverage our knowledge of browsers, servers,
and HTTP to customize the response we return—yet we don’t need to think about any
of the other parts of the response unless we want to.

This method can be used with any non-HTML file type you want to generate and
deliver, as seen in the following examples.

Comma-Separated Value (CSV)

‘When it’s time to get tabular data out of your application, nothing beats the CSV
(comma-separated value) format as a lowest common denominator. Every programming
language under the sun can deal with it, and virtually any application designed to work
with structured data (Microsoft Excel, Filemaker Pro) can import and export it. Python’s
handy csv module is there to help you.

The first thing many programmers try to do when confronted with a CSV-related task
is to write their own parser or generator. CSV is simple, after all, right? Just some commas
and some numbers. Oh, and maybe some other characters. And maybe some quotation
marks if there are commas in those characters. And maybe some escaping if there are quo-
tation marks inside those quotation marks. This is getting complicated! Good thing some-
body wrote a module to take care of it for us.

Let’s say we have been charged with turning the person data from the previous vCard
example into a simple spreadsheet with columns for first name, last name, and e-mail
address. First, let’s try it out in the interpreter to make sure we are using the csv module
correctly. We use Python’s handy stringIo module to capture the output because the csv
module is designed to work with file-like objects. (stringTo provides a file-like interface
to strings.)

>>> import csv, StringIO

>>> output = StringIO.StringIO()

>>> output_writer = csv.writer (output)

>>> people = [("Bob", "Dobbs", "bob@example.edu"),

245

246

Chapter 11 Advanced Django Programming

("Pat", "Patson", "pat@example.org"),
("O,RLY", "O'Reilly", "orly@example.com")]
>>> for p in people:
output_writer.writerow(p)

>>> print output.getvalue()

Bob, Dobbs, bob@example.edu
Pat,Patson,pat@example.org
"O,RLY",0'Reilly, orly@example.com

Looks good—it quoted the troublesome item that contained a comma. So, what does
this look like as a Django view function? Very similar, thanks to the fact that Django’s
HttpResponse objects, like StringTo objects, are “file-like”—that is, they have the write
method that csv.writer is looking for.

def csv_file(request, people):
import csv
response = HttpResponse (mimetype="text/csv")
response_writer = csv.writer (response)
for p in people:
response_writer.writerow(p)
response['Content-Disposition'] = 'attachment; filename=everybody.csv'

return response

When a user makes a request that hits this view, an HttpResponse object is still
returned—that’s a requirement of all Django views, you recall—but instead of containing
text/html content, it contains text/csv content, as well as a Content-Disposition
header that, for most browsers, triggers a download rather than an attempt at in-browser
display.

CSV is a handy answer to those inevitable “can we get our data out of Django and
into application X” questions. Almost any program that works with structured data can
read CSV.

Charts and Graphs Using PyCha

PyCha (http://www.lorenzogil.com/projects/pycha/) is a simple, elegant charting and
graphing library for Python, based on the Cairo graphics system. PyCha doesn't try to
accommodate every output format or configuration option under the sun, but it does
have two strong points: a relatively Pythonic syntax and default output that actually looks
quite pleasant.

As in the previous CSV example, the major tricks specific to Django are getting our
output into a string so we can return it and setting the proper mime-type on our response.

def pie_chart (request):
import sys, cairo, pycha.pie
data = (
('Io on Eyedrops', 61),

http://www.lorenzogil.com/projects/pycha/

Generating Downloadable Files

('Haskell on Hovercrafts', 276),
('Lua on Linseed 0il', 99),
('Django', 1000),

)

dataset = [(item[O0], [[0, item[1]]]) for item in data]
surface = cairo.ImageSurface(cairo.FORMAT ARGB32, 750, 450)
ticks = [dict(v=1, label=d[0]) for i, d in enumerate(data)]

options = {
‘axis': {'x': {'ticks': ticks}},
'legend': {'hide': True}
}
chart = pycha.pie.PieChart (surface, options)
chart.addDataset (dataset)
chart.render ()
response = HttpResponse (mimetime="image/png")
surface.write_to_png(response)
response|['Content-Disposition'] = 'attachment; filename=pie.png'
return response

The basic gist here is we’ve obtained a surface object, which is the primary drawing
element in Cairo, and drawn our chart on it by passing it into the pycha.pie.PieChart
constructor, and then calling the resulting chart’s render function. Once this drawing has
been taken care of, we use the surface’s write_to_png method—which expects to write
binary PNG data to a file-like object—and give it our response.

Therefore, at the end of the view function, our response is a PNG image, and we sim-
ply set its headers accordingly and return it so it gets sent to the browser, which down-
loads it.

Figure 11.2 is the resulting image.

lo on Evedrops (4.2%)

Haskell on Hovercrafts (19.2%)

Lua on Linseed Ol (6.9%)

Django (69.6%)

Figure 11.2 PyCha example chart

247

248

Chapter 11 Advanced Django Programming

In a real view, of course, rather than hard-coding our data inside the view function, we
would fetch it from our database using a Django ORM query. Depending on your appli-
cation, you can even consider writing a custom template tag that took data from a certain
QuerySet and rendered it into a PNG chart. This would also be an excellent place to use
caching because generating graphics files on the fly is a bit resource-intensive.

Enhancing Django’s ORM with Custom Managers

Though Django’s ORM system is not designed as a complete replacement for SQL, it’s
more than sufficient to power many Web applications. You’ve already learned how to sup-
plement Django ORM queries by passing raw SQL commands via the extra method.
However, custom managers give you another way.You've already used managers, even if
you didn’t know it, as in this code example:

really_good_posts = Post.objects.filter (gemlike=True)

Post.objects is a manager object. It’s an instance of a class that inherits from
models.Manager, and the methods of this class determine what you can do with a query-
set—filtering, in the case of this example.

A custom manager is simply a class you define that also inherits from models.Manager.
It can be useful in two distinct ways: changing the set of objects returned by default (nor-
mally all objects in the table) and adding new methods to manipulate that set of objects.

Changing the Default Set of Objects

Let’s say instead of writing the previous query over and over, you would like to have a
more concise way to tell Django you only want the “gem-like” posts from your database.
Easy. Write a manager like this:

class GemManager (models.Manager) :
def get_query_set(self):
superclass = super (GemManager, self)
return superclass.get_query_set().filter (gemlike=True)

So far so good, but how do you use it? Simply assign it to be an attribute of your model.

class Post (models.Model) :
"""My example Post class"""
title = CharField(max_length=100)
content = TextField()
gemlike = BooleanField(default=False)

objects = models.Manager ()
gems = GemManager ()

Notice your model now actually has fwo managers—one called objects and one called
gems. They both return querysets; objects behaves just like the default manager of the
same name.

Enhancing Django’s ORM with Custom Managers

Note

Our definition of the objects manager here is exactly equivalent to the one Django normally
creates for us automatically. We have to define it explicitly on this model because of the way
Django behaves in the presence of additional managers—the first one it sees on the model
becomes the default manager, which is used by the admin when selecting objects. If we
omitted the objects = models.Manager () line, the admin wouldn’t be able to show us
the “non-gem-like” posts.

Having seen the code for the new manager gems, it’s probably pretty apparent what it
does.Via Python’s super function, it calls the get_query_set method of the parent class
(models.Manager), and then filters the result just like we were already doing before the
custom manager.

How do we use it? Just as you'd expect—in the same way you use the default objects
manager.

really_good_posts = Post.gems.all()

And of course, because your new custom manager returns a queryset, you can do fur-
ther operations on it with filter, exclude, and other queryset methods.

Adding New Manager Methods

The custom manager we defined previously is useful syntactic sugar. That is, it makes what
would otherwise be a fairly verbose query:

really_good_posts = Post.objects.filter (gemlike=True)

into something much more compact:

really_good_posts = Post.gems()

If we are working a lot with this set of objects, this would certainly make our code
read better, but it isn’t the whole story on custom managers. We can get even more power
by adding custom methods to our custom manager class, enabling us to pass arguments for
more flexibility.

Continuing our contrived example, let’s imagine we want to be able to compactly
specify a queryset containing only posts that mention a certain word in both the title and
the content. We could specify this with normal Django syntax as follows:

cat_posts = Post.objects.filter(gemlike=True, title_ contains="cats",
content__contains="cats")

That’s getting a little long, and if it’s a type of query that we use repeatedly, we find
ourselves wanting something a bit more compact, such as:

cat_posts = Post.objects.all_about("cats")

Note

One of the interesting challenges posed by creating custom classes and methods such as
these is clear naming. Finding a good method name that reads well in the
Post.objects. foo sort of chain is worth some effort; you (and anyone else who uses your

249

250

Chapter 11 Advanced Django Programming

” o«

code) look at it often. As a rule of thumb, managers should be nouns (“objects,” “gems”);
manager methods should be verbs (“exclude,” “filter”) or adjectives (“all,” “latest,”
“blessed”).

Here’s what the code behind such a manager method looks like:

class AllAboutManager (models.Manager) :
"""Only return posts that are really good and all about X"""
def all_about(self, text):
posts = super (AllAboutManager, self).get_query_set().filter(
gemlike=True,
title_ contains=text,
content__contains=text)

return posts

Strictly speaking, custom Managers don’t give you any power you don’t have without
them. However, the clearer and less cluttered you can make the API of your model, the
easier it is to write and maintain all the other code in your project that makes use of it.

Extending the Template System

Django’s templates, which you learned about in Chapter 6, “Templates and Form Process-
ing,” embody a couple of deliberate design decisions that are not shared by all such sys-
tems. As we’ve mentioned, it’s designed to produce all sorts of text, not just XML variants
such as XHTML. This makes it useful for producing JavaScript, CSS, plain-text e-mail, and
other text-based output.

Django templating also differs from some other systems in that it is not a reinvention
of, or a wrapper around, a full-fledged programming language. This increases the speed of
template processing, reduces the overall complexity of the framework, and keeps things
simpler and cleaner for nonprogrammers who are designing pages.

For many projects, the built-in capabilities of the template system are fine. However,
there can be times when you need or want it to do more. In this section, you learn how
to create custom template tags and filters and even use third-party template systems in
place of Django’s provided one.

Simple Custom Template Tags

Let’s say you want to display a randomly selected image on the front page of your site.
‘With what you know already, you could do this fairly easily. In your view code, you build
a list of image files. Then, using Python’s random. choice function, you select one, and
you pass that value to your template. The code for your view function can look something

like this:

def home_view(request) :
img_files = os.listdir (settings.RANDOM_IMG_DIR)
img_name = random.choice (img_files)
img_src = os.path.join(settings.RANDOM_IMG_DIR, img_name)

Extending the Template System

... other view processing goes here ...
render_to_response ("home.html", {'img_src': img_src})

(This code follows general good Django practice of keeping configuration values, such
as RANDOM_IMG_DIR in your settings.py file, where they can be accessed by all your pro-
ject’s apps and changed easily if needed.)

Finally, in your template you have an image tag that used the value you had passed:

That’s all fine as far as it goes. But suppose you decide to include that random image
on a different page, driven by a different view. Or your designer says, “Hey, I have five other
places I could use that random image thing... except three of them would have to pull
images from a different directory.... Can you do that?”Yes, you can!

The key is a feature called custom template tags. The same mechanisms Django uses
to define its own template tags are also available to you as a programmer. That means you
can create a simple tag that your designer can use. Even better, the tag can be made to take
a path argument, so your designer can have his/her “special” cases, too.

The code for a tag like this is fairly simple, so we start with the implementation, and
then work backward, explaining the details. The tag we end up with looks like this in use:

The name of the tag is random_image; the quoted string after the colon is a path name.
We use a partial path that is assumed to be relative to MEDIA_ROOT. The Django template
system takes care of parsing the argument and passing its value to your function (as tem-
plate tags are just that—functions).

Here’s the complete code that defines the tag. As always, it’s up to us to import what-
ever modules we need to do our work. Most of this code is plain old Python; we focus
our explanation on the Django-specific parts.

import os

import random

import posixpath

from django import template

from django.conf import settings

register = template.Library()

def files(path, types=[".Jjpg", ".jpeg", ".png", ".gif"]):
fullpath = os.path.join(settings.MEDIA_ROOT, path)
return [f for f in os.listdir(fullpath) if os.path.splitext(f)[1] in types]

@register.simple_tag
def random_image (path) :
pick = random.choice(files(path))
return posixpath.join(settings.MEDIA_URL, path, pick)

251

252

Chapter 11 Advanced Django Programming

The first new thing you have noticed is the register = template.Library() line.
The template.Library instance gives us access to decorators that turn our simple func-
tions into tags and filters that can be used by the template system. Although the name of
the instance is arbitrary in the sense it could be called something else and still work, call-
ing it register is a strongly encouraged and accepted Django convention which makes it
easier for others to understand your code.

The files function is a simple helper that gives us a list of filenames whose extensions
indicate they are images.

The random_image function is executed when our tag is used in a template, passing the
path from the template tag. It gets a list of image filenames in the provided directory via
files, chooses one, prepends your MEDIA_URL to make a path suitable for use in an img
tag, and returns that path. (The use of posixpath.join here has nothing to do with
POSIX paths; it’s just a good function for joining URL pieces, making sure that we only
end up with a single slash between them, and unlike os.path.join, it uses forward slashes
even on Windows.)

If there’s a magic line in this code, it’s the @register.simple_tag decorator on the
random_image function. This turns our simple function into something that can be used
by the template engine.

Though we’ve only defined one tag here, the file we've created is actually a Django tag
library, which can hold many tags. So save the file with a name that suits the library; for
example, imagine we are going to add other random-content tags to this library, called
randomizers.py.

The file needs to be saved in a directory called templatetags that is somewhere on
the template system’s search path.That is, either inside one of your INSTALLED_APPS (if
you have django.template.loaders.app_directories.load_template_source listed
in your settings.TEMPLATE_LOADERS), or inside one of the directories listed in your
TEMPLATE_DIRS setting (if you have django.template.loaders.filesystem.
load_template_source listed in your settings.TEMPLATE_ LOADERS).

The templatetags directory is expected to be a Python package, which means you
need to create an __init__.py file inside it—an empty one will do. If you forget to cre-
ate that __init__ .py file in your templatetags directory, you get an error, but not one
that makes the problem obvious.

TemplateSyntaxError at /yourproject/
'randomizers' is not a valid tag library: Could not load template library
from django.templatetags.randomizers, No module named randomizers

So, if you get that error, create an empty __init__.py file in your templatetags
directory. (If you want a refresher on why Python wants that file there, see the section on
modules and packages in Chapter 1.)

With all that taken care of, your new tag is now ready for use by any applications in
your project.

Extending the Template System

To make the new tag available for use in a given template, you use the template sys-
tem’s load tag at the top of the template where you are using the tag. The load tag takes
one argument, the module name of the library (no “.py”).

{% load randomizers %}

Once the tag library is loaded into a template, the tags it defines are available in that
template as if they were a built-in part of Django. Your new random_image tag can take as
an argument either a literal string or a template variable. So, for example, you could deter-
mine in your view at runtime the specific directory from which random images are
drawn, and pass that to your template as image_dir.Then, your use of the random_image
tag can look like this:

It’s also easy to define tags that take multiple arguments. The simple_tag decorator
and Django’s template system take care of checking to see the number of arguments
passed is the same as the number expected.

Let’s make a new random-image tag, based on the old one, which takes a second argu-
ment. Let’s say we want to be able to specify exactly what file type (extension) is used. For
example, if our image directory has PNG, GIFE and JPEG images, we can specify we only
want to select from the PNGs.

Here’s the new function to add to your randomizers.py file.

@register.simple_tag
def random_file(path, ext):
pick = random.choice(files(path, ["." + ext]))
return posixpath.join(settings.MEDIA_URL, path, pick)

The new tag is called random_file, and leverages the files function from the previ-
ous version. This new version simply adds a second argument, ext, and provides that (as a
one-item list and with the needed “.” prepended) to the files function as its optional
second argument.

Our new template tag looks like this in use.

For cases such as these where you want to provide template authors (including your-
self) with a compact and readable way to generate values that would otherwise require
custom code in multiple view functions, simple custom template tags can be just what you
need. If you're already wanting something more complex, read on.

Inclusion Tags

Our previous example tags return simple strings. If you want a custom tag that returns
more complex content—a dynamic snippet of HTML for example—you can be tempted
to have your template tag function build and return that HTML. Don’t do that. The prin-
ciple of MVC (see Chapter 3, “Starting Out”) means you should keep HTML in your

253

254

Chapter 11 Advanced Django Programming

templates, not in your view functions; likewise, you should keep hardcoded HTML out of
your template tag functions if possible.

To address this, you could write a simple_tag that used the template engine, but
Django provides a more convenient and flexible option: inclusion tags.

Inclusion tags are most useful when you want to render a piece of content with some
values from the current template context. For example, let’s say your template has a vari-
able called {{ date }} that contains the current date, and you'd like to have a template
tag that renders a simple calendar for the current month.

Let’s build that tag now. Our tag is based on Python’s calendar module, which can
give us the month as a list containing lists of day numbers (spots that lie before the begin-
ning or after the month contain a 0).

>>> import calendar
>>> calendar.monthcalendar (2010, 7)
(fo, o, o, 1, 2, 3, 4jJ, (5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15...

Now we just need a transformation that gives us a list where those zeroes have been
turned into blanks—Dbecause we don’t want the days before the beginning of the month
or the days after the end of the month showing up as zeroes. We do this using a list com-
prehension on the values returned by calendar.monthcalendar.

>>> import calendar

>>> month = calendar.monthcalendar (2010, 7)

>>> [[day or '' for day in week] for week in month]

e, oy, 1,2, 3, 43, [5, 6, 7, 8,9, 10, 11], [12, 13, 14...

The slightly tricky list comprehension says go through every week in the month; for
each week, go through every day; for each day, if it has a nonzero (Boolean True) value,
use that; otherwise use the empty string.

Because Django’s template engine doesn’t care whether we pass it integers or strings,
the motley assortment of data types doesn’t cause us a problem. If we are passing this data
to a Python function for further processing, the mix can give us pause.

The calendar module even provides us the names of the days and months.

>>> list(calendar.day_abbr)

['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

>>> list(calendar.month_name)

['', 'January', 'February', 'March', 'April', 'May', 'June', 'July'...

In this age of CSS layouts, calendars are still tabular data, and so we generate the calen-
dar HTML with table tags. Let’s create a small template just for our calendar; we presume
that the full list is passed in as weeks:

<table>

<tr><th colspan='7'>{{ month }} {{ year }}</th></tr>

<tr>{% for dayname in daynames $%$}<th>{{ dayname }}</th>{% endfor %}</tr>
{% for week in weeks %}

<tr>

Extending the Template System

{% for day in week %}
<td>{{ day }}</td>
{% endfor %}
</tr>
% endfor %}
</table>

Our preferred naming convention for partial templates, including templates such as this
one that are used by inclusion tags, is to start their names with an underscore. This serves
as a visual reminder that they are not intended to be full-fledged document skeletons. Call
your template fragment _calendar.html and save it somewhere that the template system
can find it, whether that’s in your application’s templates directory or in one of your
TEMPLATE_DIRS.

Now for the actual inclusion tag function. Create this as a new file in your
templatetags directory, calling it inclusion_tags.py.

@register.inclusion_tag("_calendar.html")
def calendar_table():
import calendar
import datetime
date = datetime.date.today ()
month = calendar.monthcalendar (date.year, date.month)
weeks = [[day or '' for day in week] for week in month]
return {
'month': calendar.month_name[date.month],
'year': date.year,
'weeks': weeks,
'daynames': calendar.day_abbr,

}

Notice our function returns a dictionary; this is provided as the context dict when ren-
dering the template we provided in the call to @register.inclusion_tag. In other
words, any key in this dictionary becomes a variable in the template that can be used to
display the corresponding value.

Other than what we’ve described previously, there’s nothing magical about inclusion
tags. They exist to help you keep presentation separate from logic and to do so in a con-
venient way.You could create a tag via simple_tag that builds up and returns a big hunk
of HTML, but that would be ugly to maintain.You could create a tag that made its own
calls to the template engine, but that would be extra boilerplate. Inclusion tags enable you
to write more compact code and keep template content in templates—where it belongs.

We add a quick-and-dirty stylesheet to our page just to dress up the calendar a bit.
Place this code at the top of _calendar.html.

<style type="text/css">

td, th { padding: 4px; width: 30px; background: #bbb; }
td { text-align: right; }

</style>

255

256 Chapter 11 Advanced Django Programming

When you want to use this tag, simply type {$ load inclusion_tags %} at the top
of the template in which you want to use it; when we use the tag, we just type a simple
{% calendar_table %)} at the spot where we want the calendar grid to appear.

The calendar grid, depending on our browser looks something like Figure 11.3.

October 2007
Mon Tue Wed Thu Fri Sat Sun
1 o 3 4 5 6 7
8 L¢] alfo} | kel | kel | k) e
ik 16 17 18 1818201 21
278 B 2048251261271 28
29(30 31

Figure 11.3 Our calendar

Not bad! Because of the tidy separation of business logic from presentation, your
designer can easily tweak the tag’s template file. Meanwhile, you or other developers can
make content changes, such as localizing the month and day names without having to
touch the template (or any templates that include it) at all.

Custom Filters

Django’s template system comes with a large number of very useful filters, but once in a
while, there is reason to add your own. Filters are easy to use, and in fact, they’re easy to
write as well. Like the other tags you've seen so far, there’s a convenient decorator syntax.
Filters are just functions—functions that, in most cases, accept strings and return
strings. A fun example that isn’t very complicated (or at least not very long—it can look a
little hairy depending how you feel about regular expressions) is a wikify filter that turns
words in CamelCase into HTML links suitable for use on a wiki. Here’s the whole thing:

import re
from django.template import Library
from django.conf import settings

register = Library()
wikifier = re.compile(r'\b(([A-Z]+[a-z]+){2,})\b")

@register.filter
def wikify(text):
return wikifier.sub(r'\1', text)

This tag expects a string; all occurrences of CamelCase words inside the string are
replaced with links to /wiki/CamelCasedwWord/.It can be used in a template such as this

Extending the Template System

(presuming variables called title and content holding the page’s title and wiki-markup
content, respectively).

{% load wikitags %}

<hl1>My Amazing Wiki Page: {{ title }}</hl>

<div class="wikicontent">

{{ content|wikify }}

</div>

Filters with an Extra Argument

The previous wikify function takes one argument; its value is the value of whatever
expression appears in your template to the left of the “|” (pipe) character that precedes
your filter name. But what if you also want the user of the filter to be able to adjust the
action of that filter by passing an additional argument?

Filters can be written to take a second argument as well. Often this second argument is
used to adjust the action of the filter. For example, let’s say you want a function that dis-
plays a string only if that string contains a certain sequence of characters (think of this like
the Unix command grep).You could accomplish this with if/then template tags, of
course, but a filter would be much more compact.

{{ my_string|grep: "magic" }}

The definition of the filter looks like this:

@register.filter
def grep(text, term):
if text.contains(term):

return text

Arguments to filters are always quoted and separated from the filter name with a colon.
Even when you are using it as a number or other nonstring data type, Django’s template
syntax requires that it be quoted. So if you made a filter designed only to print input text
when it was longer than a certain number of letters, it can look like this in use.

{{ bla_bla_bla\hide_if_shorter_than:"lOO" 13

The implementation of a tag such as this needs to account for the type conversion to
get its work done. So inside our filter we use the int function to do our conversion.
@register.filter
def hide_if_shorter_than(text, min_len):

if len(text) >= int(min_len):
return text

‘We convert the min_len argument to an int explicitly because it is passed to us as a
string for the reason described previously.

Perhaps confusingly, the first argument that is passed to filter functions—the actual
value that is being “filtered” or modified—is not restricted to being a string. You realize
this must be true just from looking at the date- and time-related filters, which operate on

257

258

Chapter 11 Advanced Django Programming

Python datetime objects. Along these lines, this means you can also make filters that
operate on nonstring objects. It’s unusually simple because so much of Web development
is manipulation of string data, but it’s possible.

If you know that your filter function can get passed some nonstring data, but you want
to treat it as a string, there’s a stringvalue decorator that you can add to your function.
Multiple decorators can be applied to a single function, so if we decided to add this deco-
rator to our hide_if_shorter_than function, we’d simply add @stringvalue on its own
line underneath the @register.filter line

Note

Order matters when applying decorators to a function. The order we mention previously—
@register.filter, followed by @stringvalue, followed by the function itself—makes the
input to the filter a string. Reversing that order to be @stringvalue followed by
@register.filter would only ensure that the output of our filter is a string. A subtle, but
important, distinction.

More Complex Custom Template Tags

More complex custom template tags are possible—for example, paired block-style tags
that perform some transformation on the content they enclose. Creating tags such as
these are complex, involving fairly direct manipulation of the internal machinery of the
Django template engine. It’s a lot more work than the previous simple decorators and
not often needed. For details on advanced custom template tags, see the online Django
documentation at www.djangoproject.com/documentation/templates_python.

Alternative Templating

The template engine’s job in Django is to prepare strings that serve as the content of
HttpResponse objects. Once you understand this, it’s clear that if, for some reason, you
decided you couldn’t accomplish your goals using Django’s provided template language,
using a different template engine would not be major surgery.

Plain Text
Here’s the simplest possible alternative templating mechanism for Django.
def simple_template_view(request, name):

template = "Hello, your IP address is %s."
return HttpResponse (template % request.META['REMOTE_ADDR'])

No third-party modules necessary—this view just uses Python’s built-in string tem-
plating syntax.

Choosing an Alternative Templating Mechanism

Django gains a lot of strength from being a fairly integrated stack. However, it’s not
intended to be a monolith—if you want to replace a component of Django with a third-
party package you like better, in most cases you can.

www.djangoproject.com/documentation/templates_python

Extending the Template System

The template system is an especially handy place to be able to do this. Why would you
want a different template system?

= You have come to Django from another system whose template syntax you prefer.

= You run other projects written in other Python Web frameworks, and you'd like to
settle on a common templating language.

= You are converting a project from another Python Web framework and have exist-
ing templates you don’t have time to translate.

= Your presentational logic requires features that can’t easily be added to Django’s
template language.

Using Other Template Engines: Mako

One popular third-party template engine, and the one we use in this section, is Mako. It
is quite different from the Django template language in appearance and design, but it does
share some common virtues: It’s extremely fast, it’s not bound to XML-like languages,
and it has a similar inheritance mechanism.

Mako replaces the Python templating framework called Myghty, which in turn was
based on an influential system written in Perl called HTML: : Mason. Mako has been used
by sites such as reddit.com and python.org and is currently the default template engine of
another Python web framework, Pylons. So if youre looking at alternative templating sys-
tems, Mako is a good place to start. Among its cited influences are the Django template
system itself, so despite the syntactic differences, there is some conceptual overlap that
makes going back and forth between the two systems easier than it could be otherwise.

Unlike Django templates, Mako’s syntax is Python-based. This is a significant departure
from the Django template philosophy, which strives to limit the amount of programming
logic that makes its way into templates. Both approaches have their merits. The idea
behind the Mako approach is that it is simple for Python programmers, while Python’s
clear syntax helps keep it accessible to template designers.

Before we build a Django view that uses Mako, here’s a simple example in the inter-
preter to give you a feel for how Mako works.

>>> from mako.template import Template

>>> t = Template("My favorite ice cream is ${name}")
>>> t.render (name="Herrell's")

"My favorite ice cream is Herrell's"

>>> context = {'name': "Herrell's"}

>>> t.render (**context)

"My favorite ice cream is Herrell's"

In the first example, we explicity pass in the actual variable name, and in the second,
we use a context as we have been doing throughout. Recall that context is simply a dic-
tionary that we are passing to the render method. It should look very familiar—at this
simple level, it’s nearly identical to the way Django’s template engine works.

Mako also has a filtering syntax that is much like Django’s.

259

260

Chapter 11 Advanced Django Programming

>>> from mako.template import Template
>>> t = Template("My favorite ice cream is ${name entity}")
>>> t.render (name="Emack & Bolio's")

"My favorite ice cream is Emack & Bolio's"

Now let’s wire up a Django view to use a Mako template.

from mako.template import Template

def mako_view(request) :
t = Template("Your IP address is ${REMOTE_ADDR}")
output = t.render (**request.META)
return HttpResponse (output)

In this view, we're doing the same thing we did in the previous interactive example—
creating a new Mako template and rendering it with a context coming from the request’s
META object we saw briefly in Chapter 5, “URLs, HTTP Mechanisms, and Views.”

If you are really going to use Mako, of course, you want to store your templates in the
filesystem (or possibly in the database), have Django be able to find them just like it finds
its own templates (without having to specify full paths), create a Mako-friendly
render_to_response method, and so on. Luckily, much of this work has been done for
you by other Django/Mako pioneers. There’s some very helpful code posted on Django
Snippets (http://www.djangosnippets.org/snippets/97/) and with the accompanying blog
post linked from that page you should be off and running.

Summary

As mentioned in the introduction, this chapter has been all over the map, but we hope
that we’ve opened some doors for you as a Django developer and made it more obvious
how flexible and extensible the framework really is. The next chapter, Chapter 12, con-
cludes Part IV of the book with another assortment of sections on advanced topics.

http://www.djangosnippets.org/snippets/97/

12

Advanced Django Deployment

As with Chapter 11,“Advanced Django Programming,” this chapter consists of a hand-
ful of mostly unrelated sections on varied topics. Chapter 11 dealt with topics relating to
your own application code; here, we go over topics that are a little more tangential and
have to do with deploying your applications, updating the environment they run in, or
modifying Django itself.

Writing Utility Scripts
Django is a Web framework, but that doesn’t mean you can’t interact with it outside of a
browser. In fact, one of the great things about Django being written in Python, as
opposed to a Web-specific language, such as ColdFusion or PHP, is that it’s designed for
use in a command-line environment.You can have periodic or ad-hoc operations you
need to perform on the data managed by your Django application yet not have the need
to create a full Web interface.

Some common use cases for Django-powered utility scripts include

= Creating cached values or documents that you rebuild every night (or every hour)
= Importing data into your Django models

= Sending out scheduled e-mail notifications

= Generating reports

» Performing cleanup tasks (for example, deleting stale sessions)

This is an aspect of using Django where solid Python skills are especially valuable.
When you write a Django utility script, you're just writing Python with a small amount
of environment setup required by Django.

The following are a few examples of Django utility scripts. We explain each one after
showing the code, so you can determine what approach works best for your project.

262

Chapter 12 Advanced Django Deployment

Cronjobs for Cleanup

In SQLite (and some PostgreSQL) databases with significant churn—deletion of old
records and adding of new records—a periodic “vacuum” operation is useful to reclaim
unused space. On dpaste.com, for example, most entries stay in the database for a month
and are then purged. This means that every week there is about 25 percent churn.

Without periodic vacuuming, the database would become gigantic. Even though
SQLite claims to support database files up to 4GB in size, we’d rather not test that limit.
The following is what the vacuuming script on dpaste.com looks like. It runs nightly
under the control of cron. (If running on Windows-based systems, you have to create its
automation as a “‘service.”)

import os

import sys

os.environ|['DJANGO_SETTINGS_MODULE'] = "dpaste.settings"
from django.conf import settings

def vacuum_db() :
from django.db import connection
cursor = connection.cursor ()
cursor.execute ("VACUUM")

connection.close()

if _ name__ == "__main_ ":
print "Vacuuming database..."
before = os.stat(settings.DATABASE_NAME).st_size
print "Size before: %s bytes" % before
vacuum_db ()
after = os.stat(settings.DATABASE_NAME) .st_size
print "Size after: %s bytes" % after
print "Reclaimed: %s bytes" % (before - after)

At the top of this script, after the first two imports, we do some manual setup of our
environment—specifically, we set the all-important DJANGO_SETTINGS_MODULE environ-
ment variable so that Django knows which project we are working with.

This script assumes both Django itself and the parent directory of your project are on
your Python path. They can be symlinked from site-packages, installed as Python eggs,
or included in a PYTHONPATH environment variable. If you need to set them manually
inside your script, you have extra lines such as these after the initial two import
statements:

sys.path.append('/YOUR/DJANGO/CODEBASE")
sys.path.append('/YOUR/DJANGO/PROJECTS")

Substitute your own paths, of course—the first one points to the directory where the
Django source code lives on our system (like all Django pioneers we are of course run-
ning it from a fresh Subversion checkout); the second adds our project directory to

Writing Utility Scripts

sys.path so all our projects can be found by the various import statements that refer-
ence them.

The key thing to remember about writing Django-based utility scripts is that in the
end it’s just a Python script. As long as Python knows where to find Django and your
project, and Django knows where to find your settings file, you're all set.

Data Import/Export

The command line is also a good place for tools that are used infrequently and not by
end users. For example, if you periodically receive data that needs to be inserted into your
database, you can write a Django utility script to handle that task.

Now, if your Django project is sitting on top of a SQL database, you can wonder why
you would go through the seemingly indirect route of creating a Python/Django script
to handle the import when you could instead just use SQL.

The answer is typically that your data needs to be converted or massaged in some way
before being converted to SQL. The fact is, if you’re going to import some foreign data
format more than once or twice, it is less work to write a tool that works directly with
the provided data format (CSV, XML, JSON, plain text, or what have you) instead of
doing one-off search and replace operations in your text editor in an attempt to wrangle
that data into a sequence of SQL INSERT statements.

This is an area where the “batteries included” aspect of Python—specifically the fact
that it has libraries for parsing an incredibly wide variety of file formats—really pays off.
For example, if you were building an e-mail archive and wanted to import a Unix-style
“mbox” file, you could leverage Python’s email module in the standard library rather than
writing your own clever, but inevitably either labor-intensive or flawed (or both) parser.

The following is a simple model that can be used to store e-mail messages—in fact, it
is very much like the model used on purportal.com for the “spammy scam” message
archive.

class Message (models.Model) :
subject = models.CharField(max_length=250)
date = models.DateField()
body = models.TextField()

Assuming the presence of such a module and the presence of an mbox file whose path
is given in your project’s settings.MAILBOX setting, you can import mail into the model
like this:

import os, mailbox, email, datetime
try:

from email.utils import parsedate # Python >= 2.5
except ImportError:

from email.Utils import parsedate # Python < 2.5

os.environ['DJANGO_SETTINGS_MODULE'] = "YOURPROJECT.settings"
from django.conf import settings

263

264

Chapter 12 Advanced Django Deployment

from YOURAPP.models import Message

mbox = open(settings.MAILBOX, 'rb')
for message in mailbox.PortableUnixMailbox (mbox, email.message_from file):
date = datetime.datetime (*parsedate (message['date'])[:6])
msg = Message (
subject=message|['subject'],
date=date,
body=message.get_payload(decode=False),
)

msg.save ()

print "Archive now contains %s messages" % Message.objects.count ()
Depending on your application, you might clear the mbox now:
open (MAILBOX, "w").write("")

As mentioned, this is only one small example of how to write scripts concerning your
Django projects. Python’s standard library—to say nothing of the collection of third-party
libraries available—covers an enormous amount of ground. If you plan to become a
serious Django developer, it is definitely worth your time to skim the Python “stdlib”
(http://docs.python.org/lib/), so you have an idea of what’s out there.

Customizing the Django Codebase Itself

Customizing the internal code of Django is a measure of last resort. Not because it’s diffi-
cult—it’s Python, after all, and it’s a clean codebase with significant amounts of internal
documentation in docstrings and comments. No, the reason we discourage you from
leaping into Django internals to “fix” some problem you are having is that it’s often not
worth the effort.

Django is a project under active development. Because stability is prized, keeping up
with the main line or “trunk” version of Django is a pretty safe prospect. As new features
get added and old bugs get fixed, you can follow the reports on code.djangoproject.com
and upgrade any time you’re comfortable. However, if you’ve got your own customized
version, you are effectively locking yourself out of upgrades to the trunk. Or, at best, you
are setting yourself up for a great deal of work as you try to merge the new updates with
your old changes. Distributed version control systems can make this easier if you must do
it. (See Appendix C, “Tools for Practical Django Development,” for more on that
approach.)

Finally, if you find yourself irresistably drawn to hacking on the Django codebase itself,
think about whether the change you are making for your own purposes can be eftectively
generalized so it would make a useful addition to the framework for others. If you think
this is true, be sure to read “Contributing to the Django Project” in Appendix F “Getting
Involved in the Django Project.”

http://docs.python.org/lib/

Caching

Caching

High-traffic sites are rarely limited in their performance by how fast the Web server can
send data. The bottleneck is almost always in the generation of that data; the database is
not able to answer queries quickly enough, or the server’s CPU can be bogged down
executing the same code over and over for every request. The answer to this problem is
caching—saving a copy of the generated data, so the relatively “expensive” database or
computation steps don’t have to be performed every time.

For high-traffic sites, caching is a must, no matter what back-end technology you use.
Django has fairly extensive support for caching with three different levels of control
depending on what works for your site architecture. It also provides a handy template tag
that enables you to identify particular sections of rendered pages that should be cached.

A Basic Caching Recipe

Django’s cache framework presents the first-time user with a potentially confusing num-
ber of possible configurations. Although the needs of every site (and the capabilities of
every server) are different, you have a better handle on how to use this tool if we begin
with a concrete example. As a bonus, it happens to be a configuration that’s suitable for a
large number of sites—so this can be all you need to know about caching in Django.

Get a Baseline

The entire point of caching is improving site performance, so it makes sense to make
some measurements beforehand. Every site is different, and the only way you know the
effect of caching on your site is to test it.

One widely available tool for doing basic server benchmarking is ab, the Apache
benchmarking tool. If you have Apache installed, you have ab as well. On any POSIX-
based system such as Linux or Mac OS X, it should already be available due to being on
one of your paths. On a Windows-based system, it can be found where you’ve installed
Apach@fbrexanqﬂe,c:\Program Files\Apache Software Foundation\Apache2.2\
bin. (For more usage information, see its manual page at http://httpd.apache.org/docs/2.
2/programs/ab.html.)

The way it works is you give it a URL and a number of requests to make, and it gives
you performance statistics. Here’s the output of running ab on our example blog app from
Chapter 2,“Django for the Impatient: Building a Blog.” The bottom line here, literally and
figuratively, is the relative change in “requests per second.” Don't think too much about
the absolute numbers in our example because they’re tied to the the particular three-year-
old laptop we used to run this test—hopefully your server performance is better!

$ ab -n 1000 http://127.0.0.1:8000/blog/
Benchmarking 127.0.0.1 (be patient)

Finished 1000 requests

265

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html

266 Chapter 12 Advanced Django Deployment

Time taken for tests: 27.724 seconds

Requests per second: 36.07 [#/sec] (mean)

So, about 36 requests per second. Now let’s turn on caching and see what kind of dif-
ference it makes.

Add the Middleware

Django’s caching features happen via a piece of middleware that is not active by default.
To use it, open your settings.py file and add django.middleware.cache.
CacheMiddleware to your MIDDLEWARE_CLASSES setting. In general, you want to add it
at the end because certain other middleware (notably SessionMiddleware and
GzipMiddleware) has the potential to interfere with the HTTP vary header on which
the caching framework depends.

Set the Cache Type

The caching framework offers no less than four cache data storage mechanisms or back-
ends. To keep things simple for now we use Django’s default cache backend, a local-
memory cache called 1ocmen. It stores cached data in RAM, which makes retrieval
instantaneous. Though many caching solutions store the cache on disk, an in-memory
cache can give great performance benefits. (If you're skeptical, see the following for dis-
cussion of Memcached, an extremely high-performance cache originally designed to
support LiveJournal.com.)

Add this line to your settings.py:

CACHE_BACKEND = "locmem://"

(The peculiar, pseudo-URL style of this setting makes more sense when you’ve seen
some of the other backends, which use the URL format to encapsulate configuration
arguments. Because it’s the default backend, strictly speaking we don’t need to set it unless
we want something different. However, as Python lore says, “Explicit is better than

implicit,” and switching backends or adding some of the configuration parameters out-
lined next is simpler if you have this setting in place.)

Try It Out

That’s all it takes to turn on basic, site-wide caching in Django. Now let’s see how our
new, cache-enabled site performs.

$ ab -n 1000 http://127.0.0.1:8000/blog/
Benchmarking 127.0.0.1 (be patient)
Finished 1000 requests

Time taken for tests: 8.750 seconds

Caching

Requests per second: 114.29 [#/sec] (mean)

That’s more than three times faster, and all it took was two lines of code in our
settings.py.Also, keep in mind that our blog app is very lightweight in terms of data-
base queries and business logic; you can generally expect the improvement to be much
greater for more complicated apps.

Caching Strategies

Though the results we got with the previous simplest possible cache implementation are
impressive, they aren’t suitable for all situations. We haven’t addressed specifying how long
cached items should live, the caching of content that is not a full Web page (for example,
complex sidebars or widgets), what to do about pages that need to be exempt from
caching (admin pages, for example), or what arguments are available for performance tun-
ing. Let’s talk about some of them now.

Site-wide

‘What we enabled previously is known as the site-wide caching feature. Django simply
caches the result of all requests that don’t involve GET or POST arguments. We’ve gone
through the simplest possible usage, but there are a few other settings.py settings to
help you tune it.

= CACHE_MIDDLEWARE_SECONDS: The number of seconds that a cached page should be
used before being replaced by a fresh copy. The default value for this setting is 600
(ten minutes).

= CACHE_MIDDLEWARE_KEY_ PREFIX:A string that is used to prefix keys to items in the
cache. If you are sharing a cache across several Django sites, whether in memory,
files, or a database, this ensures no key collisions occur across site boundaries. You
can use any unique string for these settings—the site’s domain name or
str(settings.SITE_ID) are both sensible choices.

= CACHE_MIDDLEWARE_ANONYMOUS_ONLY: Simple URL-based caching doesn’t always
play nicely with interactive Web applications, where the content at a given URL
can change frequently in response to user input. Even if the public side of your site
doesn’t involve user-created content—if you're using the Django admin app—you
want to set this setting to True to make sure that your changes (additions, deletions,
edits) are instantly reflected in the pages of the admin site.

If Django’s page caching works for your needs, then the previous information is as
much as you need to know. However, it’s not suitable for all situations. Let’s see what
other, more granular options Django offers for caching and when you can take advantage
of them.

267

268

Chapter 12 Advanced Django Deployment

The Per-view Cache
The site-wide cache assumes every part of your site should be cached for the same
amount of time. However, you can have other ideas. For instance, let’s say you run a news
site and track the popularity of individual stories, aggregating those statistics to generate
lists of the most popular pages. A “Yesterday’s Top Stories” list can clearly be cached for 24
hours. “Today’s Top Stories,” on the other hand, changes over the course of the day. To
strike a balance between keeping the content fresh and the server load reasonable, we
might want that page to be cached for only five minutes.

Presuming those two lists are generated by two separate views, turning on caching is as
simple as applying a decorator.

from django.views.decorators.cache import cache_page

@cache_page (24 * 60 * 60)
def top_stories_yesterday (request) :
... retrieve stories and return HttpResponse

@cache_page (5 * 60)
def top_stories_today(request) :
... retrieve stories and return HttpResponse

The cache_page decorator takes a single argument, the number of seconds that the
page should be cached. That it; there’s nothing else you have to do to make this work.

The per-view decorators depend on the fact that all Django views accept an
HttpReqguest object and return an HttpResponse object. They use the former to learn
what URL was requested; the cached data is stored key-value style with the URL as the
key. They use the latter to set appropriate cache-related headers on the HTTP response.

Controlling Cache-Related Headers
Up until this point in our coverage of caching, we've focused on what you do on your
server to determine how often cached content is regenerated. In practice, caching is a
conversation between your server and the clients that connect to it (including external
cache servers that you might not have control over). This conversation is shaped by special
headers, called “cache-control” headers, that you can pass along in your HTTP responses.
The most basic form of additional cache control Django gives you is a “never cache”
decorator.

from django.views.decorators.cache import never_cache

@never_cache
def top_stories_this_second(request) :
... we don't want anybody caching this

This instructs downstream recipients of your page that it is not to be cached. As long
as they abide by that standard (RFC 2616), it won’t be. The never_cache decorator is

Caching

actually a wrapper around a more powerful and flexible caching-related tool that Django
Oﬁém:django.views.decorators.cache.cache_controL

The cache_control decorator modifies the Cache-control header of your
HttpResponse to communicate your caching policies to Web clients and downstream
caches.You can pass the decorator any of six boolean settings (public, private,
no_cache,no_transform,must_revalidate,proxy_revalidate)andtvn)hnegerseb
tings (max_age, s_maxage).

For example, if you want to force clients and downstream caches to “revalidate” your
page—to check whether it has been modified, even if the cached version they are holding
has not yet expired—you can decorate your view function such as:

from django.views.decorators.cache import cache_control

@Qcache_control (must_revalidate=True)
def revalidate_me (request) :
#

Most sites are unlikely to need many, if any, of the fine-grained options provided by
the cache_control decorator. But if you do need them, it’s nice to have this functionality
available rather than having to manually alter the headers of the HttpResponse object
yourself.

Django also gives you control over the vary HTTP header. Normally, content is
cached using just the URL as the key. However, you can have other factors that affect
what content is returned for a specific URL—logged-in users, for example, can see a dif-
ferent page than anonymous ones, or the response can be customized based on the user’s
browser type or language setting. All those factors are communicated to your server via
HTTP headers in the page request. The “Vary” response header lets you specify exactly
which of those headers have an effect on the content.

For example, if you are sending different content from the same URL depending on
what the request’s Accept-Language header says, you can tell Django’s caching mecha-
nism to consider that header as well.

from django.views.decorators.vary import vary_on_headers

@vary_on_headers ("Accept-Language")
def localized_view(request):
#

Because varying on the “Cookie” header is a common case, there’s also a simple
vary_on_cookie decorator for convenience.

The Object Cache
The previous caching options focus on caching pages—every page on your site in the case
of the site-wide cache and individual pages (views) in the case of the per-view cache.

269

270

Chapter 12 Advanced Django Deployment

These solutions are extremely simple to implement. However, in some situations you can
leverage this caching infrastructure directly to store individual chunks of data.

Let’s say you’re running a busy site and have an information box on many pages as the
result of some expensive process—for example, it can be the result of processing a large
file that is periodically updated.Your pages are otherwise relatively quick to generate, and
this generated information is displayed on many pages, and then it makes sense to use
object caching.

Django’s object cache—really just a simple key/value store in which you can assign
expiration times—enables you to save and retrieve arbitrary objects, so you can focus on
the ones you know to be resource-intensive. Here’s some code based on our imaginary
example with no caching yet.

def stats_from_log(request, stat_name):
logfile = file("/var/log/imaginary.log")
stat_list = [line for line in logfile if line.startswith(stat_name)]
... go on to render a template which display stat_list

Now, although that list comprehension in line 3 might be slick, it’s not going to be
particularly speedy on a large log file. What we want to do is insulate ourselves from hav-
ing to assemble stat_list on every request. Our primary tools for solving this is the
cache.get and.cache.setlnethodsﬁxnn.django.core.cache.

from django.core.cache import cache

def stats_from_log(request, stat_name):
stat_list = cache.get (stat_name)
if stat_list == None:
logfile = file("/var/log/imaginary.log")
stat_list = [line for line in logfile if line.startswith(stat_name)]
cache.set (stat_name, stat_list, 60)
... go on to render a template which display stat_list

The cache.get call returns any cached value (object) for the given key—until that
object expires at which point cache.get returns None, and the item is deleted from the
cache.

The cache. set method takes a key (a string), a value (any value that Python’s pickle
module can handle), and an optional time to expiration (in seconds). If you omit the
expiration argument, the timeout value from the CACHE_BACKEND setting is used. See the
following for details on CACHE_BACKEND.

There’s also a get_many method, which takes a list of keys and returns a dictionary
mapping of those keys to their (possibly still-cached) values. One final note in case you
didn’t notice: The object cache does not depend on Django’s caching middleware—we
merely imported django.core.cache and didn’t ask you to change any settings or add
any middleware.

Caching 271

The cache Template Tag

Django provides one final caching option: the cache template tag. It provides a way to
use the object cache from the template side without having to alter your view code.
Although some developers do not like the idea of an optimization artifact such as caching
appearing in the presentation layer, others find it expedient.

For the sake of example, let’s say we have a template that displays information on a
long list of items and that the process of generating that information is somewhat
resource-intensive. Let’s also say the page as a whole, outside this list, changes on every
page load, so simple caching of the entire thing is of no benefit, and that the long list only
needs to be updated every five minutes at most. Because the “expensiveness” of the list
output is a combination of our display loop and the expensive method call inside the
loop, there is not a single point of attack in our view or model code where we can solve
this. With the cache template tag, though, we can apply caching right where we need it.

{% load cache %}
. Various uncached parts of the page ...
{%$ cache 300 list_of_stuff %}
{% for item in really long list_of_items %}
{{ item.do_expensive_rendering step }}
{% endfor %}
{% endcache %}
. Other uncached parts ...

The entire previous output of the for loop is cached.The cache tag takes two argu-
ments: the length of time the content should be cached, in seconds, and a cache key for
the content.

In certain cases, a static key for the content isn’t sufficient. For example, if your site is
localized and the rendered data is specific to a the current user’s language preference, you
want the cache key to reflect that fact. Luckily, the cache tag has an optional third param-
eter designed for this sort of situation. This parameter is the name of a template variable
to be combined with the static key name (1ist_of_stuff in the previous example) to
create the key.

To accommodate the fact that the contents of 1ist_of_stuff is different for each lan-
guage, your cache tag can look like this:

% cache 300 list_of_stuff LANGUAGE_CODE %}

Note

This last example assumes you are passing RequestContext to your templates, which
adds extra variables to your template context based on your context processor settings. The
django.core.context_processors.il18n internationalization is activated by default and
provides the LANGUAGE_CODE variable. See Chapter 6, “Templates and Form Processing,”
for more on context processors.

272

Chapter 12 Advanced Django Deployment

Caching Backend Types

In your previous introduction to Django caching, you were introduced to the “locmem”
cache type. Here is the full list:

= dummy: For development only; actually performs no caching, but enables you to
leave your other cache settings intact, so they work correctly with the cache on
your live site (which uses one of the following nondevelopment backend types).

= locmem: A reliable in-memory cache that is multiprocess safe. This is the default.
= file: A filesystem cache.
= db: A database cache (requires creating a special table in your database).

= memcached: A high performance, distributed, in-memory cache; the most powerful
option.

The cACHE_BACKEND setting takes a URL-style argument, beginning with the cache
type followed by a colon and two slashes (three in the case of £ile).The development
backends, dummy and locmem, take no further arguments. Configuration of the file, db,
and memcached backends is described next.

The CACHE_BACKEND setting also takes three optional arguments.

= max_entries:The maximum number of unique entries the cache stores; the default
is 300. Remember, it’s likely that a relatively small number of items account for the
bulk of the load of the server, so the cache doesn’t have to store everything to make
an improvement. And because of the way expiry works, the cache tends to be domi-
nated by frequently used items. If you have very little RAM or very large objects in
the cache, reduce this value; if you have lots of RAM or are storing tiny objects, you
can increase it.

= cull_percentage: Poorly named, this argument is not a percentage; it specifies
what portion of the entries in the cache are removed when the max_entries limit
is reached. It defaults to 3, meaning the oldest 1/3 of the cache’s entries is deleted
each time the cache becomes full.

= timeout:The length of time cached content should live, in seconds; the default is
300 (five minutes). This number is used not only in determining when something
should be deleted from the cache, but also in creating the various headers that tell
Web clients about the cache-ability of the content you are sending.

These arguments are specified URL-argument style, such as this:

CACHE_BACKEND = "locmem://?max_entries=1000&cull_percentage=4&timeout=60"

That tells Django to use the local-memory cache, to keep 1000 entries, remove 1/4 of
them when the cache becomes full, and set the expiry of cached items to 60 seconds after
their creation time.

Caching

File

All that the file backend requires is a directory that is writable by the Web server process.
Remember to use three slashes after the colon; the first two mark the end of the URL’s
“scheme” portion, although the third indicates the path is absolute (that is it starts at the

root of the filesystem). Like other file settings in Django, use forward slashes here, even on
Windows.

CACHE_BACKEND = "file:///var/cache/django/mysite"

Of course, on a Windows-based system, it looks more like this:

CACHE_BACKEND = "file:///C:/py/django/mysite/cache"

Database

To use the database cache backend, you need to make sure you have the cache table set up
in your database. The command to do this is

$ python manage.py createcachetable cache

The last argument is the table name; we recommend simply calling it cache as we have
next, but you can call it whatever you like. Once you’ve set up the table, your
CACHE_BACKEND setting becomes

CACHE_BACKEND = "db://cache/"

This is a very simple table with only three columns: cache_key (the table’s primary
key), value (the actual data being cached), and expires (a datetime field; Django sets an
index on this column for speed).

Memcached

Memcached is the most powerful caching option that Django provides. Not surprisingly, it
is also more complicated to set up than the others. But if you need it, it’s worth it. It was
originally created at Livejournal.com to ease the load that 20 million page views per day
were putting on their database servers. It has since been adopted at Wikipedia.org,
Fotolog.com, Slashdot.org, and other busy sites. Memcached’s home page is located at
http://danga.com/memcached.

The major advantage Memcached offers over the other options listed here is easy dis-
tribution across multiple servers. Memcached is a “giant hash table in the sky”; you use it
like a key-value mapping such as a Python dictionary, but it transparently spreads the data
aCross as many servers as you give it.

Even though Memcached is much more heavy-duty than the other caching options
presented here, it’s still just a cache and a memory-based one at that. It’s not an object
database. One Memcached FAQ answers questions like “How is memcached redundant?”
and “How does memcached handle failover?” and “How can you dump data from or load
data into memcached?” with the answers “It’s not, it doesn’t. and you don’t!” Your reliable,
persistent store of data is your database; Memcached just makes it fast. (For a great deal of

273

http://danga.com/memcached

274

Chapter 12 Advanced Django Deployment

fascinating detail about the creation and architecture of Memcached, see this article at
http://www.linuxjournal.com/article/7451.)

You need two things to run Memcached: the software itself and the Python bindings
that Django uses to talk to Memcached.You should be able to easily find a package for your
Linux distribution or check Darwin Ports or Macports for your Mac OS X system. A
Windows-based memcached can be found at http://splinedancer.com/memcached-win32.

Next, on the server where your Django app is running, you need to give Python the
capability to talk to memcached.You can do this either with the pure-Python client
python-memcached (http://tummy.com/Community/software/python-memcached)or a
faster version called cmemcache that relies on a C library (http://gijsbert.org/
cmemcache/). python-memcached is also available via Easy Install for mindless installation
and setup.

Set up your server so it automatically starts the memcached daemon on bootup.The
daemon has no configuration file. The following line tells memcached to start up in dae-
mon mode, using 2GB of RAM, listening on IP address 10.0.1.1:

$ memcached -d -m 2048 -1 10.0.1.1

If you’re curious about the full spate of command line options for memcached, check
its manual page or other documentation. On POSIX-based systems, you put this com-
mand in the operating system startup scripts, while on Windows-based systems, you have
to set it up as a service.

Now that you have your memcached daemon running, tell Django to use it via the
CACHE_BACKEND setting.

CACHE_BACKEND = "memcached://10.0.1.1:11211"
Django requires us to specify a port; by default, Memcached uses port 11211, and
because we didn’t specify a port on our previous command line, that’s the port our

Memcached server is listening on. If you’re using multiple servers, separate them by
semicolons.

CACHE_BACKEND = "memcached://10.0.1.1:11211;10.0.5.5:11211"

Finally, although Memcached takes a bit more setup than the other backends, it 1s still
just that—a backend—and thus it behaves identically to the rest once it’s installed properly.

Testing Django Applications

It has become an uncontested point that having an automated test suite for your applica-
tion is a good thing. This is especially true in dynamically typed languages, such as Python,
which don’t offer the safety net of compile-time type checking.

Note

This chapter presumes you already have caught the testing religion and focuses on the how
rather than the why. If you feel like you could use more convincing, though, please see our
additional reading and resources at withdjango.com.

http://www.linuxjournal.com/article/7451
http://splinedancer.com/memcached-win32
http://tummy.com/Community/software/python-memcached
http://gijsbert.org/cmemcache/
http://gijsbert.org/cmemcache/

Testing Django Applications

Python is blessed with excellent testing support in the form of two complementary
modules—doctest and unittest—as well as a number of popular independent tools.
This chapter, like Django itself, focuses on the two built-in systems, but if you are curious
about the wider world of Python testing you can learn more at the previous URL.

The bad news is testing Web applications is hard. They are inherently untidy with all
kinds of real-world interactions such as database connections, HTTP requests and
responses, e-mail generation, and so on. The good news is Django’s testing support makes
it relatively easy to incorporate testing into your project. Before getting into the specifics
of Django’s testing support, let’s review the Python foundations on which it’s built.

Doctest Basics

A doctest is simply a copy of an interactive Python session included in the docstring of a
module, class, or function. We then use the doctest module’s test runner to discover, exe-
cute, and verify these tests. For a review of docstrings and their uses, see Chapter 1,“Prac-
tical Python for Django.”

For example, here’s a simplistic function we can easily write a test for.
def double(x):

return x * 2

If we were testing this function manually in the interpreter, we can type something
such as this:

>>> double (2)
4

We get the expected result, and declare the function has passed.To add the doctest to the
function, we copy the literal text of that interactive session into the function’s docstring.
def double (x):

>>> double (2)
4

return x * 2

When this function is tested by the doctest module’s test runner, the command
double (2) is executed. If its output is “4,” all is well. If it’s not, a report is issued.

The test runner is smart enough to skip over nontest text, too (such as regular old
documentation text not prefixed by or immediately following >>>), so we can add a more
human-readable introduction.
def double(x):

This function should double the provided number. We hope.

>>> double(2)
4

return x * 2

275

276

Chapter 12 Advanced Django Deployment

Unittest Basics

The unittest module complements doctest with a different approach. It is an adapta-
tion of the JUnit testing framework for Java, which in turn took its inspiration from the
original unit testing work done in Smalltalk. Typical use of plain old unittest tests in
Python looks something like this:

import unittest

class IntegerArithmeticTestCase(unittest.TestCase):
def testAdd(self):
self.assertEquals(l + 2, 3)
def testMultiply(self):
self.assertEquals(5 * 8, 40)

if _ name__ == '__main_ ':

unittest.main()

This example is a complete script; when executed on its own, it runs its test suite. This
happens via the unittest.main() call, which searches for all subclasses of
unittest.TestCase and calls any methods beginning with test.

Running Tests
Django tests can be run with the following command:

./manage.py test

Django automatically detects tests (of either kind) in the models.py files of all applica-
tions listed in your INSTALLED_APPS setting. You have the option of narrowing these
choices with additional arguments to the test command specifying an individual app or
even a specific model within an app, for example, manage.py test blog or manage.py
test blog.Post.

Additionally, the test command looks for unit tests in any files named test.py that
live within app subdirectories (at the same level as your models.py). Therefore, you can
keep your unit tests in either or both locations—whatever suits you best.

Testing Models

Models are typically tested with doctests because Django looks for these in each of your
installed apps’ models when you run the manage.py test command. If you have a basic
model that consists solely of data fields, you don’t have much to test. Your model in this
case is a simple declarative representation of your data with the actual logic being handled
by Django’s well-tested internals. As soon as you begin adding model methods, however,
you are introducing logic that needs testing.

Testing Django Applications

For example, let’s say you have a Person model that includes a birthdate field, and you
have a model method to calculate the person’s age as of a certain date. That code can look
something like this:

from django.db import models

class Person(models.Model) :
first = models.CharField(max_length=100)
last = models.CharField(max_length=100)
birthdate = models.DateField()

def _ _unicode__(self):
return "%s %s" % (self.first, self.last)

def age_on_date(self, date):
if date < self.birthdate:
return 0
return (date - self.birthdate).days / 365

Code, such as our age_on_date method, is notorious for susceptibility to “fencepost”
errors, where boundary conditions (for example, testing on the person’s birthday) can
yield incorrect results. Using doctests, we can guard against these and other errors.

If we were going to manually test our age method, we would run the Python inter-
preter, creating example objects and performing method calls, such as:

>>> from datetime import date

>>> p = Person(firstname="Jeff", lastname="Forcier", city="Jersey City",
... state="NJ", birthdate=date(1982, 7, 15))

>>> p.age_on_date(date (2008, 8, 10))

>>> p.age_on_date(date (1950, 1, 1))

>>> p.age_on_date (p.birthdate)

Of course, as you can surmise from what you already know about doctests, we can
simply lift this straight out of the interactive session and place it into the docstring for the
age_on_date method, so the method looks like this:
def age_on_date(self, date):

Returns integer specifying person's age in years on date given.

>>> from datetime import date
>>> p = Person(firstname="Jeff", lastname="Forcier",
. city="Jersey City", state="NJ", birthdate=date(1982, 7, 15))
>>> p.age_on_date(date (2008, 8, 10))
26

277

278 Chapter 12 Advanced Django Deployment

>>> p.age_on_date(date (1950, 1, 1))
0

>>> p.age_on_date (p.birthdate)

0

if date < self.birthdate:

return 0
return (date - self.birthdate).days / 365

Finally, we can use the aforementioned manage . py command to execute our test:

user/opt/code/myproject $./manage.py test myapp
Creating test database...

Creating table auth_permission

Creating table auth_group

Creating table auth_user

Creating table auth_message

Creating table django_content_type
Creating table django_session

Creating table django_site

Creating table django_admin_log

Creating table myapp_person

Installing index for auth.Permission model
Installing index for auth.Message model
Installing index for admin.LogEntry model

Ran 1 test in 0.003s

OK
Destroying test database...

A lot of output for one little test, of course, but once your entire model hierarchy is
fully tested, you get a nice line or two of periods with the occasional E or F when unex-
pected errors or test failures occur.

Finally, note that although doctests probably fulfill your needs most of the time, don’t
hesitate to set up model-related unit tests when more complex business logic or inter-
model relationships come into the picture. If you’re new to the world of testing, it takes
time to figure out what to use when—but don’t give up!

Testing Your Entire Web App

Testing your web application from top to bottom is by no means an easy task and cannot
be 100 percent automated using the same test scripts as every Web app is surely different.
However, there are several tools out there that have proven quite useful.

The first one you should check out is built into Django itself and at the time of writ-
ing was quite new. It’s simply referred to as “the Django test client” and is documented on

Testing Django Applications

the official Django Web sitehttp://www.djangoproject.com/documentation/testing/
#Htesting-tools. The test client offers an easy way to mock up a typical request-response
cycle and tests certain conditions throughout.

When you find you need more control than the built-in test client gives you, it can be
time to move up to an older and more featureful tool called Twill, found at http://twill.
idyll.org/. Like Django’s test client, it’s fully command-line based and is designed to be
easy-to-use but still powerful—your typical Pythonic library.

Another test tool, one making waves more recently, is Selenium (see http://selenium.
openga.org/). Unlike the other two, it’s an HTML/JavaScript-based test tool created
specifically for testing Web applications from a truly browser-based perspective. It supports
most major browsers on most platforms, and because it’s JavaScript-based, can test Ajax
functionality as well. The application codebase is compartmentalized into 2.5 to 3 distinct
modes of operation: Selenium Core, Selenium RC (Remote Control), and Selenium IDE
(Integrated Development Environment).

Selenium Core (http://selenium-core.openqa.org/) represents the heart of the (man-
ual and automated) testing of Web applications. Some people refer to it as running Sele-
nium in “bot mode.” It’s the workhorse. The core can also perform browser compatibility
tests in addition to your Web app’s system functional testing.

Selenium RC (http://selenium-rc.openqa.org/) gives its users the ability to create
full-fledged automated tests in a variety of programming languages.You write your test
apps; they are run by Selenium Core—you can think of it as a scripting layer that sits on
top of the Core, a “code mode” if you will.

A great tool to get started with Selenium is the IDE (see http://selenium-ide.openqa.
org/). It’s written as a Firefox extension and is a full IDE that enables you to record and
play back Web sessions as tests. It can also output tests in any of the languages supported
by Selenium R C, so you can further enhance or modify those tests.You can set break-
points as well as single-step through tests. Because it’s written on Firefox, one common
FAQ is whether it exists for Internet Explorer (IE). The answer is no; however, the
“record mode” of the IDE enables you to run them on IE via Selenium Core.

Aside from these three tools—the Django test client, Twill, and Selenium, you can find
more reading on Web application testing athttp://www.awaretek.com/tutorials.
html#test and by following links found therein.

Testing the Django Codebase Itself

The Django framework itself has an extensive test suite. Every bugfix is generally accom-
panied by a regression test that ensures the bug doesn’t resurface unnoticed. New func-
tionality is also typically accompanied by tests that ensure it works as intended.

You can run these tests yourself. This can be especially useful if you are having trouble
running Django on a little-used platform or in an unusual configuration. Although it’s
always wise to check your own code first, it’s possible you have uncovered an unusual bug

279

http://www.djangoproject.com/documentation/testing/#testing-tools
http://www.djangoproject.com/documentation/testing/#testing-tools
http://www.awaretek.com/tutorials.html#test
http://www.awaretek.com/tutorials.html#test
http://twill.idyll.org/
http://twill.idyll.org/
http://selenium.openqa.org/
http://selenium.openqa.org/
http://selenium-core.openqa.org/
http://selenium-rc.openqa.org/
http://selenium-ide.openqa.org/
http://selenium-ide.openqa.org/

280

Chapter 12 Advanced Django Deployment

that hasn’t been seen before. A failing test or tests in the built-in suite enables you to cre-
ate a bug report that is taken much more seriously.

Running Django’s test suite is easy with one minor hurdle: It needs to be pointed to a
settings file, so it knows how to create its test database. This can be the settings file of any
active project, or you can create a dummy project (that is one with no apps) and fill out
only the DATABASE_* settings in the settings.py file.

The test runner is at the top level of the installed Django directory in a directory
called tests. (This is not to be confused with the test package that is part of the overall
Django package.) Invoking the command looks like this:

$ tests/runtests.py --settings=mydummyproject.settings

This is a pretty quiet process because tests are only supposed to produce output if they
fail. Because the test suite can take a while to run, you can see more feedback about the
tests in progress. The runtests.py command takes a -v verbosity argument. At -v1 the
process begins with output such as this:

... E...EE...

The E characters indicate tests producing an error; this summary is followed by output
that details the nature of those failures, so you can determine if it’s an artifact of your
setup or an actual problem in Django.

At verbosity -v2 the output begins with a long list of imports, followed by messages
detailing the creation of the test database and its tables (the
represent lines removed from the actual output for brevity).

[T}

.. in the following example

Importing model basic

Importing model choices
Importing model custom_columns
Importing model custom_managers
Importing model custom_methods
Importing model custom_pk
Importing model empty

Creating test database...

Processing contenttypes.ContentType model
Creating table django_content_type
Processing auth.Message model

Creating table auth_message

Processing auth.Group model

Creating table auth_group

Processing auth.User model

Creating table auth_user

Summary 281

Seeing an indicated failure when running the test suite doesn’t necessarily mean you
have found something wrong with Django—if you’re unsure, a good first step is to post
to the Django-users mailing list with your configuration details and failed test output.

Summary

This chapter covered a number of advanced topics, and together with Chapter 11, we
hope it’s given you a good overview of the kind of depth you can go into when it comes
to Django development. These topics are only a sample of what’s possible, of course: Web
application development, like most other computer-based disciplines, is not self-contained
but branches out into many other general areas, much like Python itself, which is capable
of handling a wide variety of situations and technologies.

At this point, you're just about done with our book—congratulations! The appendices
are all that’s left, although they—Ilike these last two chapters—are still important parts of
the book, covering a number of different subjects from command-line usage and
installing and deploying Django to a list of external resources and development tools.

Finally, you might find it useful to go back and reread (or at least skim) the earlier parts
of the book; now that you’ve seen just about all the topics we’ve wanted to cover, the ear-
lier code examples and explanations can give you additional insight. This is true of any
technical book, of course, not just this one.

This page intentionally left blank

O 0 W >

V

Appendices

Command Line Basics
Installing and Running Django
Tools for Practical Django Development

Finding, Evaluating, and Using Django
Applications

Django on the Google App Engine

Getting Involved in the Django Project

This page intentionally left blank

Appendix A

Command Line Basics

The vast majority of Web servers (not to mention e-mail servers, file servers, and so
forth) run on POSIX-compliant operating systems such as Linux, FreeBSD, or other
Unix variants, and Django-based Web servers are no exception; most of the core Django
team and a large portion of the community run the framework on such machines. If you
haven’t previously been exposed to the command-line interfaces common in such envi-
ronments, this appendix gives you a basic overview, so the examples in the rest of the
book make more sense.

For those of you in the Windows world, this appendix may not have a lot of immedi-
ately applicable knowledge, but we suggest you give it a read (or at least a skim) any-
way—chances are very good that you find yourself in a position to make use of it in the
future. In addition, it’s a general consensus that the more programming languages, plat-
forms, and techniques programmers are exposed to, the better they are able to utilize both
the new tools and the tools theyre currently familiar with.

If you want to practice any of these commands in a Windows-based system, we would
suggest Cygwin, a Linux-like environment for Windows. It consists of an emulation layer
as well as a set of command-line tools familiar to Unix users, some of which are featured
throughout this appendix. What it isn’t meant to do, however, is to turn your PC into a
server. You can find out more information about Cygwin as well as download it at
http://cygwin.com.

If you are a Mac user, you are in luck. Mac OS X is derived from one of the offshoots
of BSD (Berkeley Software Distribution) Unix, giving your computer much of the func-
tionality of a full-fledged server. To play with the command line, just open the Terminal
application (found in /Applications/Utilities). From here on out, we assume you
have access to some Unix “shell” with which to issue command-line requests.

Putting the “Command” in “Command Line”

Instead of using a mouse-driven interface to press buttons and fill out text fields, Unix-
like server operating systems are driven by command interpreters or shells, text prompts
that accept commands and execute them one at a time. As a programmer, you're likely

http://cygwin.com

286

Appendix A Command Line Basics

familiar with programming language expressions: print a string, call a function with some
parameters, and so on. The command line is much the same.

Following shortly is a simple example wherein we list the contents of our current direc-
tory (Windows calls these “folders”), list the contents of a subdirectory, and remove a file
in that subdirectory. Note the $ character is the prompt, and featured in the following
examples is a simple prompt denoting which lines are commands being entered and
which lines are output from those commands.

Otbher shells can use different characters—besides $, you can also see > or %. (The
Python interpreter shell has a prompt of >>>.) In addition to the character(s) appearing
immediately before the user input, many prompts have extra info such as your current
username, host, or directory (as do some examples in this book, which utilize
user@example $).

Here’s a quick example where we list the contents of the current directory, and then
remove a file in a subdirectory.

$ 1s

documents code temp
$ 1ls documents

test.py

$ rm documents/test.py

$

Both commands used previously are programs, or binaries, located somewhere in the
current executable path. (See the next section for details on paths.) Although programs
can theoretically exhibit any behavior, there are established standards for how to specity
arguments and options. Traditionally, a Unix command consists of up to three parts: the
command’s name, options controlling how the command behaves, and arguments, which
specify the subcommands to run, files to operate on, and so forth.

Taking the last command from the previous example, rm is the program name (rm
standing for “remove”), and documents/test.py is an argument, specifically the file to
remove. If we want to remove an entire directory, we can pass options to rm to control its
behavior, like we do here:

$ 1s temp

tempfilel tempfile2

$ rm temp

rm: cannot remove 'temp': Is a directory
$ rm —help

Usage: /bin/rm [OPTION]... FILE...

Remove (unlink) the FILE(s).

-d, —directory unlink FILE, even if it is a non-empty directory
-f, —force ignore nonexistent files, never prompt
-i, —interactive prompt before any removal

—no-preserve-root do not treat '/' specially (the default)
—preserve-root fail to operate recursively on '/'

Putting the “Command” in “Command Line” 287

-r, -R, --recursive remove the contents of directories recursively
-v, --verbose explain what is being done
--help display this help and exit

--version output version information and exit
$ rm -rf temp

$

As a general rule, rm cannot remove directories, so that’s why we weren't able to use it
in this situation. However, passing the -r and -f options—combined into a single option
string for convenience (see the following “Options and Arguments” section for more)—
enables rm to recursively remove directories, no questions asked, and so it removes the
temp directory without further trouble.

As you can see from the previous example, programs usually contain built-in help
information about what their options and arguments are. Almost every program on a
Unix system accepts the --help or -h options, which results in some sort of help mes-
sage. These generally contain enough info for anyone, novice or expert, to get some use
out of the program.

Note

If you're following along, your output can differ from ours due to the variety of Unix systems
out there—programs often have slightly different implementations from platform to platform.
Core utilities, such as rm and 1s, are not immune to this, although there is usually at least a
small set of options common to every system.

If the built-in help isn’t good enough, or you need more details on a given option,
there’s the man system (short for “[user] manual”), which provides a full set of information
about each command, often explaining its arguments in greater detail and/or giving usage
examples. man itself is, of course, a program like all the others, and it generally takes a sin-
gle argument—the name of the program whose “man page” (short for “manual page”)
you want to read. One command often thrown at novice Unix users is man man, which of
course is the man page for the man command itself.

For better or worse, Unix-based systems are often geared toward the self-learner;
because you're obviously not averse to reading, however, the authors are sure you’ll do
fine! And in all seriousness, you’ll do yourself a favor if you form such a habit: Those with
experience are known to be rather rude to newer folks who ask questions without look-
ing for the answer first.

Unix Program Names

Many, if not most, Unix programs have odd-looking hames such as rm, 1s, sed, and so on.
Such names exist partly due to computing history (the keyboards and displays we take for
granted nowadays used to be much slower) and partly because they simply save typing; in
environments that are largely or entirely keyboard-based, one obviously gets more done if
the commands take less time to type.

288

Appendix A Command Line Basics

The shortened names are sometimes obvious, such as with rm (“remove”) and 1s (“list”),
and other times less so—sed is short for “stream editor.” Many names, especially for com-
paratively newer programs, are made up of various acronyms built on other acronyms; the
popular gec is short for “GNU € compiler,” wherein GNU is a reference to the GNU project,
or “GNU’s Not Unix.”

In general, Unix command names often end up like regular acronyms—once you know what
they're used for, the actual meaning ceases to matter quite so much, as the shortened form
takes on the meaning all by itself.

Options and Arguments

We presented previous program options and arguments as being two distinct aspects of the
program’s specification, but this is not entirely true. At their core, options and arguments
are simply a long string presented to the program, which it can interpret any way it
pleases. Because of this, the standards presented here are simply that—standards—and vari-
ations on them are commonly found, depending on how strictly the program’s author
wants to adhere to the norm.

In general, all arguments or options to a program are delimited by spaces with options
usually being prefixed by a hyphen or dash character, -, and appearing before arguments,
which have no prefix. Some programs also accept a so-called “long option” format, which
typically uses two dashes and more than one character for the option name—such as the
--help option we mentioned previously.
$ rm --help
Usage: rm [OPTION]... FILE...

This is the standard: utility/program name, followed by zero or more options of either
type, followed by zero or more arguments (as some commands can sometimes take no
arguments at all). Options can be specified one at a time separated by spaces:

$ rm -r -f temp

but they can also be combined into a single option string to save typing, as we did in
the earlier example:
$ rm -rf temp

Note you cannot combine long and short options in this way, as that wouldn’t make
much sense, but they can be otherwise interleaved:
$ rm -rf --verbose temp

Options can themselves be parameterized with arguments, depending on the option
involved. For example, the head program is intended to return only the top few lines of a

given file or chunk of text; how many lines it returns is controlled with the -n argument,
such as the following example, which returns the top five lines of the file myfile.txt:

$ head -n 5 myfile.txt

Pipes and Redirection

By default (with any -n option), head displays the first ten lines. Note that, as with the
combination of multiple options into one string, option arguments do not have to be sep-
arated from their option with a space, but can be combined as one string.

$ head -n5 myfile.txt

Finally, although traditional Unix programs tend to accept a strict ordering of
<program> <options> <arguments>, many Linux applications are more lenient and
enable options to be specified at any point, such as:

$ head myfile.txt -n5

Or:

$ rm -rf temp --verbose

Although this tendency of Linux applications is very convenient (such as when one
types a command and only at the end remembers an option he forgot), the authors rec-
ommend you try to become used to the more strict form found on true Unix systems.
Otherwise you find yourself on a FreeBSD or Mac OS X machine, constantly tripped up
by the programs’ complaints about your argument order. Trust us, we’ve been there!

The examples here have been kept simple for purposes of illustration, but if you look at
examples of command-line program usage found all over the Web (or check out various
man pages and --help outputs), you see that command-line programs provide an astound-
ing amount of power and flexibility in terms of altering their behavior. And we’re not
done yet—the next section introduces a whole new dimension of how the Unix com-
mand line works.

Pipes and Redirection

By their nature, command lines deal almost exclusively with text, both for input and out-
put. However, in addition to the input and output from and to the user, Unix programs
also communicate between themselves and files on disk via an input/output abstraction
known as pipes. As implied by their name, pipes are a mechanism for directing the flow of
text between various combinations of the terminal a user is interacting with, programs,
and files.

Every Unix program deals with three potential types of output and input: input, regu-
lar output, and error-related output. When nothing special is going on, programs interface
with the so-called “standard” pipes, which end up pointing to the text terminal the user is
viewing. For example, when you use the cat command (short for “concatenate”) to spit
out the contents of a file, what happens is that cat opens the file or files in its arguments
and puts their contents into the stdout stream, such as in this example where we cat the
contents of a grocery list.
$ cat groceries.txt
Milk
Canned corn
Peanut butter

289

290

Appendix A Command Line Basics

Can of soup
Powdered milk

Here, because we are just running cat by itself, stdout dumps the text of the grocery
list to our terminal. If cat ran into an error condition, such as being given the name of a
file that didn’t exist, it would print out an error message to the stderr stream, which also
goes directly to the user by default.

$ cat foo.txt
cat: foo.txt: No such file or directory

The neat thing about the abstraction of pipes is when we depart from the normal
scheme of things and use what’s known as the pipe operator, |, to tell the command shell
to redirect the stdout of one program into the stdin stream of another. stdin, the third
type of program 1/0, is of course short for “standard input.”” Many programs accept text
from stdin in addition to, or instead of, expecting the user to give them the names of files
to read.

By way of example, let’s revisit the use of head with relation to our grocery list and
ascertain what the first item on our list is.

$ cat groceries.txt | head -nl
Milk

Notice how were not telling head what file to deal with and instead use the pipe char-
acter to redirect the output of the cat command into the head command. The result is
the same as if we had passed the filename to head directly.

$ head -nl groceries.txt
Milk

A more realistic example can use the grep utility, which among other things can be
used to return only lines matching a given regular expression (see Chapter 1, “Practical
Python for Django,” for information on those). Let’s use pipes to take the output of a grep
command, which filters (in a case-insensitive fashion) our grocery list for items with the
word “can” in their name:

$ grep -i "can" groceries.txt
Canned corn
Can of soup

and then use head to pare the results down to just the first item.

"

$ grep -i "can

"

groceries.txt | head -nl
Canned corn

As mentioned previously, we can use more than one pipe in a single command. Let’s
use grep’s sister command, sed, to do a replacement of the word “corn” with the more
generic “veggies.”
$ grep -i "can" groceries.txt | head -nl | sed -e "s/corn/veggies/"

Canned veggies

Environment Variables

Finally, as mentioned, you can redirect these text streams to and from files using the >
and < characters. Keeping with the pipe notation of operating from left to right, > is used
for directing stdout to a file, and < for redirecting a file to stdin. For example, in the
previous example we’ve done a search and replace, albeit a not terribly useful one, but
once displayed on the terminal, our hard work is gone (short of copying and pasting, of
course). Let’s redirect it to a new file.

$ grep -i "can" groceries.txt | head -nl | sed -e "s/corn/veggies/" > filtered.txt

This command creates a new file (or overwrites an existing file—so be careful!) named
filtered.txt, and it contains the line “Canned veggies.” Note the command produces
no output to the terminal—that’s because we redirected stdout to the file, and because it’s
been redirected, we don’t get to see it ourselves.

Finally, note you can double up the redirect-to-file character (>>) to append to an exist-
ing file instead of overwriting it; this, like >, creates a new file if none previously existed.

Environment Variables

The command-line shell has what’s known as an environment, or namespace, just like a
program’s namespace in Python or any other language, wherein various strings can be
bound to variable names and referred to by the user when executing commands, or even
by the commands themselves (which have access to the calling user’s environment). The
env command prints out the current state of the environment, such as:

$ env

TERM=1linux

SHELL=/bin/bash

USER=user
PATH=/usr/local/bin:/usr/bin:/bin:/usr/games:~/bin
PWD=/home/user

EDITOR=vim

HOME=/home/user

Many environment variables are used by common Unix shell utilities or by the shell
itself—for example, the EDITOR variable is used by programs such as Subversion, which
attempts to call the named program when they need to dump the user into a text editor
temporarily. The TERM variable determines the terminal type, which many programs refer-
ence when deciding whether to use color output or how to interpret keystrokes; PWD is
the current directory; and so forth.

As in Python and other languages, you can alter the environment by assigning values to
these variables with an assignment character. Here, we shorten the output of env for
brevity.
$ env
EDITOR=vim
$ EDITOR=pico

291

292

Appendix A Command Line Basics

$ env
EDITOR=pico

In this example, the default value for EDITOR is the well known vim editor, and we’ve
changed it to point to a less powerful editor called pico. However, environment vari-
ables—as you might expect—are initialized at the beginning of each shell session. Our
change to EDITOR is temporary at best, unless we alter our shell configuration files, which
are read when the shell starts, to make the change permanent. (See your shell’s man page
for details on how to do this.)

Up till now we’ve been using env to print the values of environment variables, but
that’s analogous to Python’s globals function—it’s not actually very useful unless you're
troubleshooting something. The shell can automatically expand any environment variables
it sees and can substitute them with their values, but only when using the $ character as a
prefix. We use the echo program, which simply echoes its arguments back to the user, to
demonstrate this:

$ env
EDITOR=vim
$ echo EDITOR
EDITOR
$ echo $EDITOR
vim

As you can see, echoing EDITOR by itself does nothing special—it’s just a string—but
echoing $EDITOR results in printing the value of the EDITOR variable.To put things
another way, the shell takes any name or expression following a $ and attempts to expand
it into a variable value. Those of us used to languages that use $ to denote variables for
both assignment and expansion, generally spend a while making mistakes such as this:

$ SEDITOR=pico

-bash: vim=pico: command not found
$ EDITOR=pico

$ echo S$EDITOR

pico

A final note on this topic: Environment variables aren’t limited to simple one-word
strings, but can hold any string whatsoever. As you saw in the previous example, the shell
expanded $EDITOR and combined it with the rest of the line, and then tried to execute
the whole as a command. That obviously didn’t work—there’s no binary called
vim=pico—but it’s entirely possible to utilize this to save a bit of typing, such as in the fol-
lowing example, where we bind most of a command string to a variable and use it multi-
ple times, appending the argument to the end.

$ FINDMILK="grep -ni milk"
$ SFINDMILK groceries.txt
1:Milk

5:Powdered milk

$ SFINDMILK todo.txt

The Path

l:Search grocery list for milk
$ SFINDMILK email from reader.txt
3:Also, what's up with all the groceries and milk examples?

Our FINDMILK variable is expanded each time, resulting in commands looking like
grep -ni milk groceries.txt. However, this example is slightly contrived—in many
cases such as this, what you really want to do is paramaterize an otherwise static call to a
program, and in that case you're better off writing a small shell script. For example, you
could write a script that takes two arguments, not just one, and enables you to specify
both the term being searched for as well as the location to search.

Details on shell scripting are outside the scope of this chapter, but your shell’s man
page has plenty of information, and as with most subjects, there’s a lot of excellent mate-
rial online.

The Path

One environment variable, arguably the most important, is the path, normally stored as
PATH, which is a list of directories the shell looks in to find the commands you type.

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:/usr/games:~/bin

When you type a command into your shell, the shell looks at each of the listed direc-
tories in turn until it finds an executable file with the name you asked for; at that point, it
executes that file with the arguments and options you provided. So, when we type echo,
for example, the shell is really executing /bin/echo, and when we type man, it finds and
executes /usr/bin/man. (See the following sidebar for an explanation of these different
bin directories.)

Unix Binary Directories

Unix systems traditionally have multiple directories for different classes of programs, such
as /usr/bin for normal user binaries (executables, just like the utilities that we’ve looked
at so far in this appendix) or /usr/local/bin for programs installed by the user (as
opposed to ones installed with the operating system’s package manager). Still more bina-
ries, intended for use by the system administrator and not by regular users, can live in
/sbin and /usr/sbin.

Some third-party applications, such as Java implementations or older versions of the Mozilla
suite, place their data into /opt/mozilla/, for example, with binaries being in
/opt/mozilla/bin. Paths typically contain a subset of the system binary directories, these
third-party binary directories, and potentially others as well.

It’s possible to add things to your path to save time typing. In the previous example,
the user in question has added ~/bin to their path; because ~ is a shortcut for one’s home
directory, this means the user can now type the names of scripts in their personal binary
directory, and they can be easily found by the shell.

293

294

Appendix A Command Line Basics

Note you can easily execute programs not in the path by specifying the full or relative
path when you want to execute it. The shell’s path capability is simply a handy shortcut to
doing this, in fact.

$ /tmp/packagename-2.0.1/bin/program

Because /tmp/packagename-2.0.1/bin/ (a potential place for binaries if you're trying
out a program not fully installed yet) is not likely to be in your PATH, you have to tell the
shell exactly where to find it. In fact, the entire concept of paths is simply a shortcut,
albeit a very pervasive one.

Finally, keep in mind you want the containing directory of your binaries in your PATH
and not the binaries themselves—the same is true for other paths such as Python’s own
module path (see Chapter 1). Think of a path as a list of containers and not a list of things
to reference.

Summary

You’ve learned a lot already by this point: how to execute programs with various kinds of
options and arguments, making those programs work together and with files via pipes and
redirection, and how environment variables and pathing can save you a lot of time.

However, there’s a lot more to the average Unix shell program than what we’ve cov-
ered here—most of them are full-fledged programming environments in their own right,
including conditional statements, loops, and so forth. Once youre comfortable navigating
around a filesystem and running commands, you can find it worthwhile to explore the
depths of the shell your system uses—it can save you a lot of time, just like any other pro-
gramming tool.

Appendix B

Installing and Running Django

To develop with Django, you need to have it installed, the manner of which depends on
your choice of operating system and the tools at hand. The simplest environment needed
to run Django consists of Python 2.5, a light SQL database package, and Django’s built-in
development Web server.

However, the average Django deployment typically has a more robust set of applica-
tions behind it, using industry greats such as Apache or PostgreSQL. This appendix intro-
duces you to the range of Django deployment options, including some specific pointers
about the most common configurations, and is broken down into the necessary core
parts: Python and Django themselves, a Web server, and a database engine.

Python

As with most programming languages, newer versions of Python are better. Django runs
on any version of Python 2.3 or newer, but we recommend the most current and stable
version you can get your hands on. (At the time of writing, that was Python 2.5.2 with
2.6 approaching fast and in parallel with the next generation, 3.0.) See Chapter 1, “Practi-
cal Python for Django,” for details on the differences between these recent major revi-
sions of Python.

Installers for all major platforms can be obtained from the official Python site at http://
www.python.org/download/. Next, we outline some platform-specific notes of interest.

If you’re not sure what version of Python you have installed (if any), open a command
shell and type python -v (note that’s a capital “V”’). If Python is available, it reports its ver-
sion number and exits.

$ python -V
Python 2.5.1

http://www.python.org/download/
http://www.python.org/download/

296

Appendix B Installing and Running Django

Mac 0S X

On the Mac, Python comes installed by default, but unless you’re using OS X 10.5
(“Leopard”), which comes with Python 2.5, you have Python 2.3, in which case we rec-
ommend upgrading. Python 2.4 or 2.5 can be obtained directly from python.org, which
has installer packages, or via a software upgrade system such as MacPorts (http://
macports.org). If you use MacPorts, you should also install the python_select port, so
you can make the newer version your system’s default.

Unix/Linux

Most open-source Unix clones such as Linux or the BSD family also come with Python
installed as part of their core system; the specific version varies greatly depending on
which flavor you have, as well as how up-to-date it is. Check your distribution’s package
management system to make sure you have the most recent Python available to you, or
browse the python.org downloads page for stand-alone packages such as RPMs or source
archives.

Windows

Windows doesn’t come with Python by default, so you need to head to the official
Python downloads page. Alternately, you can visit the Web site for the Core Python book,
http://corepython.com, and click the Download Python link on the left side of the page
to see a handy grid with current versions of Python for all platforms. Get the latest stable
version for your system.

There is an optional Windows-only Python library known as the Python Extensions
for Windows (a.k.a. win32al11), which enables development of native Windows Python
applications. Users new to Python can find the package desirable for its IDE, PythonWin,
even if they don’t yet need the integration with the operating system.

Updating Your Path

Once you've got Python installed, you may need to add the executable to your system’s
path. This is typically taken care of for you on Unix-based systems, such as Linux and
Mac OS X, if Python is installed in a well-known location such as /usr/bin,
/usr/local/bin, and so on. Windows users, however, need to perform this step manually
to run Python scripts in the command shell, as follows:

Right-click My Computer and pull down the Properties menu item to get to the
System Properties pop-up. From here, you select the Advanced tab, as in Figure B.1.

You find three main sections in the Advanced tab (see Figure B.2). Skip past these and
go down to the bottom of the window and click the Environment Variables button.

After clicking on that button, you are presented with two panels (see Figure B.3) with
which to alter your environment variables. Here, you can choose whether to
add/edit/update the path variable for just yourself (“User variables for USER”), PATH, or

http://macports.org
http://macports.org
http://corepython.com

Python 297

System Propertirs

Figure B.1 System properties

System Propertirs

Figure B.2 The Advanced tab

298 Appendix B Installing and Running Django

for all users of the entire system (“System variables”), Path, provided you have the proper
permissions to do so.

Fnvirnnment ¥Yariahles 2] %]

User variables Mor DellUser

| Value

= EelTonis
C:\PROGRA~1\PyETKIGTK bing
e T seenids |UedliseriLoc..,
Ci\Ducuneils aid Sellinys Delllser Lo,

New Cdit | Delete |

~System variabl

| Valuc |;|

MUMBER_OF_P... 1

PAT e T
PROCESSOR_A.,. 86 =l

Figure B.3 Environment variables

Select the one you want to modify and click the appropriate Edit button and add
C:\Python25 to the list following the existing format, as in Figure B.4.

Edit System Yariahle 4 B3

Variable name; I Path

Variable value: | 321WbeQ E:'twthnnZS:c:IthhunZSlS:riDts D
Gl |

Figure B.4 Modifying the path

If there are already folders there, then you can just add it to any position, making sure
all folders are still semicolon-delimited. If there is no such variable, then add it—it is also
okay to be the only folder if such is the case.

Once you click OK and open a new DOS/Command shell, you should now be able
to launch the interpreter without regurgitating the entire pathname C:\Python25\
python.exe; just python by itself should work (see the following).

Python

Testing

To make sure your Python installation went smoothly, simply load up the interactive
interpreter by running the main Python program. Enter python in a shell/terminal win-
dow—sometimes appended with the version number, for example, python2. 4. If every-
thing’s working correctly, opening a command prompt and executing the interpreter
results in a display that looks like this in a textual context:

$ python
Python 2.5.1 (r251:54863, Mar 7 2008, 04:10:12)
[GCC 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-1l6ubuntu2)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Or, if you are on Windows-based system in a DOS/Command window, it looks like
Figure B.5.

+ M5-DOS - python

Ricrozoft Windowsz &P [Uerazion 26881 =]
[KC?» Copyright 1985-2881 Hu:ru:ml't Gﬂl‘n

C: \U]NDM\EVEtHI\JZ)DE
Pvthnll 2.5.1 <r251:54 63 ﬂl)l- 18 ZBW BI 51: BI) [HSC v.1318 32 bit CIntel>] on wind2
T;l)u “help”. “copyright”, “credits” or “license™ For more information.

Figure B.5 Python in cmd.exe

The three “greater-than” prompt (>>>) means you are at the interactive interpreter
prompt, which is waiting for you to enter some valid Python code. Exit with Ctrl-D
(Unix shell or IDLE) or *Z (DOS/Command window).

If you get an error such as “command not found” or “’python’ is not recognized as an
internal or external command,” then you did not add the folder correctly to the PATH
variable, so check it again, taking a careful look to verify your installation directory, the
existence of python.exe, and the folder name you added to the PATH variable.

Finally, another useful convenience is to add the scripts folder to your path, too, fol-
lowing the previous same steps. This enables you to run the Django administrative tool,
django-admin.py, in a similar fashion as the Python interpreter.

Congratulations! If this is your first time using Python, and you haven’t yet run
through any tutorials or read Chapter 1, we suggest you do so—at least briefly—before
venturing further. It’s always good to do limited testing with any new tool before you
start using it in earnest.

299

300

Appendix B Installing and Running Django

Optional Add-ons

Along with your Python installation, there are a few recommended (but optional) tools
that you can consider: Easy Install and IPython.

Easy Install

One of Python’s greatest strengths is that it comes with “batteries included,” a rich stan-
dard library of modules and packages to help you get things done. In case this doesn’t suf-
fice for your application(s), a wealth of third-party software is available. So before you
potentially reinvent the wheel, check out the Python Package Index, or “PyPI” at http://
pypi.python.org to see if you can find a tool just for you.

Once you discover the additional wealth of external tools, managing your Python
installation becomes more burdensome.You have to worry about things like compatibil-
ity with your version of Python, other software dependencies, integrating new packages
and modules into your installation so they can be imported from your applications, and
so forth.

The good news is there is a tool that does all this for you, called Easy Install, and it is
available at http://peak.telecommunity.com/DevCenter/Easylnstall. You download the
singular ez_setup.py, run it (via sudo or as an administrator), and it makes installing a
new software package as easy as

easy_install NEW_3RD_PARTY SOFTWARE

Easy Install uses “PyPI” to get the latest (or your specially requested) version of the
desired software, downloads it (and all its dependencies), and installs it for you, all with
one simple shell command.

Upgrading or uninstalling a software package is just as simple.

IPython

[Python is a third-party alternative to the standard interactive intepreter that comes dis-
tributed with Python. It adds many useful features on top of what Python gives you,
including tab completion of variable and attribute names, command-line history, auto-
matic indentation, easy access to docstrings and argument signatures, and much more.
Because of IPython’s popularity and usefulness, it is the default interpreter if you start up
a shell using your Django project’s manage.py administrative script. More information on
[Python can be found at http://ipython.scipy.org.

As both an alternative to downloading it from its Web site as well as an introduction to
both Easy Install and IPython—especially how simple it is to install third-party packages
using Easy Install—here is a demo of installing IPython using Easy Install on a Linux sys-
tem (and sudoing to obtain superuser access):
$ sudo easy_install ipython
Password:

Searching for ipython
Reading http://pypi.python.org/simple/ipython/

http://pypi.python.org
http://pypi.python.org
http://peak.telecommunity.com/DevCenter/EasyInstall
http://ipython.scipy.org

Django

Reading http://ipython.scipy.org

Reading http://ipython.scipy.org/dist

Best match: ipython 0.8.4

Downloading http://ipython.scipy.org/dist/ipython-0.8.4-py2.4.eqg
Processing ipython-0.8.4-py2.4.egg

creating /usr/lib/python2.4/site-packages/ipython-0.8.4-py2.4.eqg
Extracting ipython-0.8.4-py2.4.egg to /usr/lib/python2.4/site-packages
Adding ipython 0.8.4 to easy-install.pth file

Installing ipython script to /usr/bin

Installing pycolor script to /usr/bin

Installed /usr/lib/python2.4/site-packages/ipython-0.8.4-py2.4.eqg
Processing dependencies for ipython
Finished processing dependencies for ipython

The process is much the same on a Windows-based system, provided you have admin-
istrator access. Here is what happens on a PC where we already have the latest version of
IPython for Windows installed:

C:\>easy_install ipython

Searching for ipython

Best match: ipython 0.8.2

Processing ipython-0.8.2-py2.5.egg

ipython 0.8.2 is already the active version in easy-install.pth
Deleting c:\python25\Scripts\ipython.py

Installing ipython-script.py script to c:\python25\Scripts
Installing ipython.exe script to c:\python25\Scripts

Installing pycolor-script.py script to c:\python25\Scripts
Installing pycolor.exe script to c:\python25\Scripts

Using c:\python25\1lib\site-packages\ipython-0.8.2-py2.5.eqg
Processing dependencies for ipython
Finished processing dependencies for ipython

Django

Now that you’ve got Python up and running, the next step is to obtain Django’s own
codebase. At the time of writing, Django 1.0 was recently released with version 1.1 in the
works. We recommend that you use version 1.0, as this book is largely 1.0-compatible,
and because using the latest stable version 1s generally a good idea. If you're willing to live
on the edge, however, see the following for information on using Django’s development
version.

301

302 Appendix B Installing and Running Django

Packaged Releases

Packaged releases of Django can be obtained on the project’s Web site athttp://www.
djangoproject.com/download/ (or via some package managers—check your system’s
packaging system for availability). Official releases from the Web site come in the com-
mon Unix package format of .tar.gz—Unix and Mac systems are able to open these
natively, and Windows users require additional software, such as 7-Zip (http://7zip.org),
the command-line LibArchive (http://gnuwin32.sf.net/packages/libarchive.htm), or a
"Unix-on-Windows" environment such as Cygwin (http://www.cygwin.com/).

Development Version

Django’s development version, which will have the latest features not found in the most
recent stable version, requires use of the Subversion version control client program. Like
Python, Subversion is typically available via package managers (on Unix) or MacPorts (on
OS X) and requires a direct download otherwise—see the Subversion Web site lttp://
subversion.tigris.org/) for that.

Once you have Subversion, fetching the latest version of Django is a one-liner.

$ svn co http://code.djangoproject.com/svn/django/trunk django_trunk

Installation

After unpacking the .tar.gz file (for packaged releases) or checking out Django’s trunk
(for the development version), there is a new directory at your current location named
Django-1.0 or django_trunk. Inside that directory are all the pieces of Django—not
only the framework (the Python module itself, the django directory), but documentation
and tests, as well as other scripts and bits of information.

To get Django working, you can take one of three options:

= Add the new directory to your PYTHONPATH. If you did a trunk checkout in
/home/username/, for example, you would want to add /home/username/
django_trunk—not the django subdirectory—to your PYTHONPATH.

= Move, copy, or symlink the django subdirectory into your Python site-packages
directory.

= Enter the new directory and execute python setup.py install (as an admin
user), which installs Django to the proper location automatically.

For details on Python’s path mechanisms, see Chapter 1. We note here if you plan on
using Subversion to keep a development checkout up-to-date, the first or second option

http://www.djangoproject.com/download/
http://www.djangoproject.com/download/
http://www.cygwin.com/
http://gnuwin32.sf.net/packages/libarchive.htm
http://7zip.org
http://subversion.tigris.org/
http://subversion.tigris.org/

Web Server

(and only the symlink version of the second option) is preferable. Running setup.py
install on a trunk checkout works fine, but you’d have to do it again every time you
update from Subversion, so it’s not recommended.

Testing

To make sure Django is installed in your PYTHONPATH correctly, enter the Python inter-
preter and simply attempt to import django. If you see no errors, you're all set! If you
get a message such as ImportError: No module named django, double check your
work, or try a different option from those described previously.

Web Server

Having Python and Django installed is the first big step to actually using Django. The
next most important aspect is the Web server, which takes care of delivering your dynam-
ically generated HTML to browsers. Your Web server is also responsible for serving up
static media files such as images and CSS, not to mention being a platform for the sorts of
system-level things that crop up in Web development (load balancing, proxying, and so
on).

The Built-In Server: Not for Production

The simplest Web server you realistically use with Django is its built-in “runserver” or
development (“dev”) server, which is based on Python’s built-in BaseHttpServer (a good
example of how to leverage the Python standard library).You've seen it in action in
Chapter 2,“Django for the Impatient: Building a Blog,” where it was used via manage.py
to rapidly test the beginnings of a simple Web application. That’s where the dev server
shines: testing out new ideas and getting off the ground quickly. It’s also great for debug-
ging, as it runs in the foreground of your terminal and thus all Python print statements
show up in its output.

However, building Web servers that have performance, reliability, and security is no
easy task, and the Django team has wisely declined to try and reinvent the wheel in this
area. The development runserver hasn’t undergone the testing and refinement of a Web
server suitable for deployment on the public Internet and is absolutely not to be used for
anything but testing or simple development. The Django documentation used to joke
about “revoking your Django license” if you so much as considered using it in production
environments, and that sentiment is still quite true.

Finally, although the runserver does enable static file serving (see the official documen-
tation or withdjango.com), we strongly recommend that once you’re at this point in your
development, you invest in setting up one of the following server environments instead.
There’s no real point in putting off the inevitable, and as a plus, you are developing in a
close-to-production environment—always good for discovering potential deployment
issues sooner instead of later.

303

304

Appendix B Installing and Running Django

The Standard Approach: Apache and mod_python

The Apache Web server, along with its mod_python module, has long been the preferred
method for deployment of Django sites. This is the combination that the Lawrence team
who originated Django used in their busy public sites, and to date, it is still the most well-
tested and well-documented deployment option.

If you have requirements that make mod_python unsuitable for you—a shared hosting
environment or a non-Apache server, for example—see the following sections on WSGI
and Flup for alternatives. However, if you control your own server (or virtual server
instance) or otherwise have stable support for mod_python, then it’s a safe way to go.

You need Apache 2.0 or 2.2 (sometimes referred to in package managers as apache2
to differentiate them from Apache 1.3, which is much older) along with mod_python 3.0
or newer to use Django. As with Python, the actual installation of these packages varies
between platforms, with Mac users on 10.4 or older needing to use MacPorts (only
Leopard has Apache 2). Windows users can find prebuilt binaries at http://httpd.apache.
org and http://www.modpython.org, respectively.

In terms of post-install configuration, there are two core issues to consider when
deploying Django with mod_python: where to hook in Django itself and where to serve
your static files.

Hooking Django into Apache
The first thing you need to determine is how much of your domain’s URL space Django
is handling—the entirety of one’ site, such as www.example.com, or only a subsection or
subsections, such as www.example.com/foo/ (where www.example.com/ or
www.example.com/bar/ are handled by, for example, PHP or static HTML). It’s also
possible to use multiple Django projects, each attached to their own subsections.
Hooking up a Django project requires the following Apache configuration snippet,

which would typically live inside a <virtualHost> block, or within your main
apache2.conf (httpd.conf on some systems) if you’re not using virtual hosts.
<Location "/">

SetHandler python-program

PythonHandler django.core.handlers.modpython

SetEnv DJANGO_SETTINGS_MODULE mysite.settings

PythonDebug On
</Location>

The previous <Location> block sets up the Django project mysite to handle the top
level of whatever domain is controlled by the configuration file it lives in. To set up
Django to cover only one section of the URL space, just update the location, like so:

<Location "/foo/">
There are also a few variations on this theme: One is when you don’t have your

Django project on the global system PYTHONPATH and need to grandfather it in at the
time that Apache is loading up Python modules. For this, just add an extra PythonPath

http://www.modpython.org
http://httpd.apache.org
http://httpd.apache.org

Web Server

directive. If your mysite Django project (the directory containing your settings.py,
root URLconf, and app directories) was /home/user/django-stuff/mysite/, you need
to add its containing folder to the Python path, as follows:

<Location "/">
SetHandler python-program
PythonPath "['/home/user/django-stuff/'] + sys.path"
PythonHandler django.core.handlers.modpython
SetEnv DJANGO SETTINGS_MODULE mysite.settings
PythonDebug On

</Location>

If you want to have multiple Python projects on the same domain, you can simply
define multiple such <Location> blocks with one major caveat:You need to tell
mod_python to keep them separate in memory, or else you can get unexpected behavior.
This is done by giving each Python handler a distinct (but otherwise arbitrary)
PythonInterpreter directive.

<Location "/foo/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO_ SETTINGS_ MODULE foosite.settings
PythonInterpreter foosite
PythonDebug On

</Location>

<Location "/bar/">
SetHandler python-program
PythonHandler django.core.handlers.modpython
SetEnv DJANGO SETTINGS_MODULE barsite.settings
PythonInterpreter barsite
PythonDebug On

</Location>

As you can see, there’s some flexibility with how you can use mod_python to serve
your Django code. For details on these and other Python* Apache directives, see
mod_python’s documentation at http://modpython.org.

“Poking a Hole” for Static Media

We've got Django successfully served up by Apache, but there’s still something missing:
our images and JavaScript/CSS (and possibly our videos or PDFs or whatever else our
Web site has to serve up). Typically, you want to host these files in the same URL space as
your application, so if your app lives at /foo/, your images and stylesheets might be
/foo/media/. However, if we’ve just hooked up our Python code at /foo/, we’ve now
got to make way for the media to get through.

305

http://modpython.org

306

Appendix B Installing and Running Django

This is a simple task:You just need to tell Apache to turn oft the mod_python handler
for a specific location by using another <Location> block following the one for your
Django project.
<Location "/foo/media/">

SetHandler none
</Location>

With this in place, requests to, say, /foo/users/ hit our Django code without issue,
but requests to /foo/media/images/userpic.gif, for example, end up looking in
Apache’s document root (defined elsewhere in your configuration or virtual host block).
As you can expect, it’s also possible to specify multiple such “holes” in your mod_python
URL space, meaning you could have distinct directories for images, CSS, and Javascript
such as:

<LocationMatch "/foo/(images|css|js)/">
SetHandler none
</LocationMatch>

<LocationMatch> enables the use of regular expressions in an otherwise normal
<Location> block, and so here we’ve simply used regular expression branching to state
we want the handler off for any of the specified three directory names. This is functionally
equivalent to defining three <Location> blocks, but is of course a bit neater. There’s no
reason to leave DRY in your Python code—apply it liberally to your system configura-
tion, too!

The Flexible Alternative: WSGI

WSGI (Web Server Gateway Interface) and mod_wsgi are the rising stars in Python Web
hosting technology. Django has fairly complete support for WSGI, and an increasing
number of Django programmers (and Python Web programmers in general) prefer it
more than mod_python. WSGI is a flexible protocol intended to bridge Python code with
any compatible Web server, not only Apache, but also alternatives such as lighttpd (http://
lighttpd.net/), Nginx (http://nginx.net), CherryPy (http://cherrypy.org), and even
Microsoft’s IIS.

Although WSGI is still relatively new, it works on all the previously mentioned Web
servers and has been tested to work with a large number of Python Web frameworks,
including Django, as well as popular stand-alone Python Web applications such as the
MoinMoin wiki engine and the Trac software project manager.

The major selling points of mod_wsgi (besides the Web-server-agnostic aspect) are a
reduced memory footprint and increased performance over mod_python; a single inter-
face standard for all WSGI applications, including those outside Django; and a daemon
mode that enables you to easily make a WSGI process “owned” by a particular user on
your system.

The most significant downside to mod_wsgi at the time of this writing is it is not yet
widely available in package managers, so chances are you have to compile and install it

http://lighttpd.net/
http://lighttpd.net/
http://nginx.net
http://cherrypy.org

Web Server

yourself. However, this is bound to change in the relatively near future, and Windows
users can currently take advantage of some unofficial Windows binaries linked to from
the main mod_wsgi Web site.

If no precompiled version exists for your operating system, you can fetch the source
code from the mod_wsgi Web site, http://modwsgi.org/, and follow the installation
instructions. After it’s installed, it’s not hard to get it running; a bit easier than mod_python
in most cases, in fact. First, configure Apache to use the module. For Apache 2, that means
a line such as this in your httpd.conf:

LoadModule wsgi_module /usr/lib/apache2/modules/mod wsgi.so

And a configuration block such as this:

Alias /media/ "/var/django/projects/myproject/media"
<Directory /var/django/projects/myproject/>
Order deny,allow
Allow from all
</Directory>
WSGIScriptAlias / /var/django/projects/myproject/mod.wsgi

Then, finally, create the mod.wsgi script referenced in the previous last line:
import os, sys

sys.path.append('/var/django/projects’)
os.environ['DJANGO_SETTINGS_MODULE'] = 'myproject.settings'

import django.core.handlers.wsgi

application = django.core.handlers.wsgi.WSGIHandler()

In all the previous code you would need to replace /var/django/projects with the
path to the directory where your Django project or projects live. With the previous
sys.path.append, the important thing, as always, is to use a path that contains your proj-
ect directory; /var/django/projects rather than /var/django/projects/myproject.

Another Approach: Flup and FastCGl

The last potential Web server deployment method we cover here is the £1up Python
module, which is not only an alternate bridge to using WSGI (£flup’s original goal), but
supports a somewhat similar protocol known as FastCGI (sometimes abbreviated FCGI).
FastCGI, such as WSGI, is intended to act as a bridge between one’s application code and
a'Web server, and has the same benefits: potentially better performance, due to running as
a separate process, and potentially increased security by running as a user account separate
from that of the Web server.

As things currently stand, FastCGI has more support on shared hosting platforms than
WSGI does, partly because it supports multiple languages, and partly due to having been
around a bit longer. As such, if Apache’s not an option and your environment doesn’t sup-
port the use of WSGI, FastCGI is an excellent choice.

307

http://modwsgi.org/

308

Appendix B Installing and Running Django

The official Django documentation (see withdjango.com for a direct link) has an
excellent tutorial on how to set up FastCGI, which we don’t replicate here. As that docu-
ment mentions, £lup provides support for a couple of additional protocols on top of
WSGI and FastCGI—SCGI and AJP—which can be important to you if your
deployment needs are a bit out of the ordinary.

SQL Database

Finally, we come to the last piece of the puzzle:You've got your Python code (Python,
Django), and it’s hooked into your Web server (Apache, lighttpd, and so on) to serve
dynamic requests. However, you still need persistence for your data, and that’s where a
SQL database comes in. There are multiple options when it comes to running a database
for Django, and each one typically requires both the database software itself, as well as a
Python library for interfacing with it.

In addition to the following notes, the official Django documentation has specific
notes and gotchas concerning these various platforms (see withdjango.com for a direct
link). Make sure to check it out if you find yourself with questions or problems about
your database of choice.

SQLite

SQLite is well named; it’s a “light” SQL database implementation. Unlike PostgreSQL,
MySQL, and various commercial databases such as Oracle or MS SQL, SQLite doesn’t
run as a stand-alone server, but is simply a library interface to on-disk database files. As
with other “light” implementations of typically complicated services, SQLite has its pluses
(ease of use and setup, low overhead) and minuses (less functionality, poor performance
for large amounts of data).

Therefore, SQLite is great for getting oft the ground quickly (as you have already seen
in Chapter 2) or for small sites where you don’t want or need the overhead of a full data-
base server. However, once you’re past the learning phase, and certainly for any serious
deployment, you want to upgrade to something more suitable.

To interface with SQLite, you need a Python library; if you're on Python 2.5, the
built-in sqlite3 module is the one to use, or for those on Python 2.4 and below, visit
http://www.initd.org (or, always, your package manager) to obtain the pysqlite module.

Unlike the following database servers, SQLite doesn’t require explicit database creation
or any user management; instead, simply choose a filesystem location for your database to
live (one that your Web server can read from and write to) and record that as the
DATABASE_NAME option in your settings.py. Once you've done this, normal use of
Django utilities such as manage.py syncdb writes to a SQLite database file in that loca-
tion, and you're all set.

SQLite’s SQL shell is the sqlite3 program (sometimes just sqlite, especially if your
system only has SQLite 2.x installed) and should be run with your database file as its
argument, for example, sqlite3 /opt/databases/myproject.db.

http://www.initd.org

SQL Database

PostgreSQL

PostgreSQL (often abbreviated as “Postgres”) is a full-fledged database server, providing a
wide range of features and with a well-respected history as one of the leading open-
source database applications. It’s recommended by the Django core team, which speaks
pretty highly about its quality. Postgres is currently at version 8 (although version 7 is sup-
ported for use with Django) and is available for all major platforms, although it’s not quite
as ubiquitous as MySQL on shared or managed servers.

The official Postgres Web site ishttp://www.postgresql.org, and the best place to start
for downloading it (if you’re on Windows or it’s not in your package manager) is, at the
time of writing, http://www.postgresql.org/ftp/binary/. Navigate to the latest version,
then your platform, and go from there.

To use Postgres from Python, you need the psycopg library, ideally version 2, some-
times called psycopg2. psycopg can be downloaded from http://initd.org/pub/software/
psycopg/ or your package manager. One minor note to keep in mind is Django has two
separate database backends, one for each version of psycopg. Make sure you’re using the
right onel!

Creating databases and users with Postgres is easy; the default installation includes
stand-alone command-line utilities such as createuser and createdb, and it’s obvious
what these do. Depending on your system and method of installing Postgres, a database-
level superuser could have been created for you—sometimes it’s a postgres system-level
user, and other times it can be your own username. Check out the relevant documenta-
tion to make sure—either on the official Postgres Web site or that of your operating sys-
tem (if you installed through a package manager).

Once you know the Postgres superuser name and password, you want to do some-
thing similar to the following example to set up a new database and user for your Django
project:
$ createuser -P django_user
Enter password for new role:

Enter it again:

Shall the new role be a superuser? (y/n) n

Shall the new role be allowed to create databases? (y/n) y
Shall the new role be allowed to create more new roles? (y/n) n
Password:

$ createdb -U django_user django_db

Password:

The previous creates a new passworded Postgres-level database user, django_user with
the permissions to create new databases, who is then used to create a new database,
django_db. Once you’ve done the previous and entered the username and database name
in your settings.py (along with the password you assigned the user), you should be all
set to start using manage.py to create and update your database.

Note the final “Password:” prompt in our example was Postgres prompting us for our
Postgres-level password—our system user is also our Postgres superuser. If that weren’t the

309

http://www.postgresql.org
http://www.postgresql.org/ftp/binary/
http://initd.org/pub/software/psycopg/
http://initd.org/pub/software/psycopg/

310

Appendix B Installing and Running Django

case, we would have used the -U flag to createuser to specify that superuser account
name, similar to what was done in the call to createdb.

Finally, PostgreSQL’s SQL prompt program is called psql and supports many of the
same options as createdb and createuser, such as -U for choosing a username.

MySQL

Another mainstream, open-source database server is MySQL, now at version 5 (4 is also
supported). MySQL lacks some advanced functionality present in Postgres, but is also a bit
more common, partly due to its tight integration with the common Web language PHP.

Unlike some database servers, MySQL has a couple of different internal database types
that determine the effective feature set: One is MyISAM, which lacks transactional sup-
port and foreign keys but is capable of full-text searching, and another is InnoDB, which
is newer and has a better feature set but currently lacks full-text search. There are others,
but these two are the most commonly used.

If youre on Windows or your package manager doesn’t have a recent version of
MySQL, its official Web site ishttp://www.mysql.com, and offers binaries for most plat-
forms. Django’s preferred MySQL Python library is MysoLdb, whose official site is http:
//www.sourceforge.net/projects/mysql-python, and you need version 1.2.1p2 or newer.
Take note of that exact version number—some older Linux distributions can have ver-
sions such as 1.2.1¢2, which are too old and not compatible with Django.

Creating databases with MySQL is typically accomplished with the all-purpose admin
tool mysgladmin. As with Postgres, you need to figure out your installation’s database
superuser name and password before you can create a new user for your Django project.
This superuser is typically root and is also often set up with no initial password (some-
thing you should change as soon as you can), leading to a fairly quick database creation
such as

$ mysqgladmin -u root create django_db

Unlike Postgres, MySQL’s user management is done entirely within the database itself,
so to create our django_user DB user we need to use MySQLs SQL shell right away. It’s
sensibly named mysql.
$ mysqgl -u root
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6

Server version: 5.0.5la-6 (Debian)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

http://www.mysql.com
http://www.sourceforge.net/projects/mysql-python
http://www.sourceforge.net/projects/mysql-python

Summary

mysqgl> GRANT ALL PRIVILEGES ON django_db.* TO 'django_user'@'localhost' IDENTIFIED
BY 'django_pass';
Query OK, 0 rows affected (0.00 sec)

mysql>

That’s it! You’re now all set to update settings.py and start issuing database-related
manage.py commands.

Oracle

The final database currently supported by Django at the time of writing is a commercial
offering, Oracle. If you’re new to database-driven development, you’re not likely to be
considering this option, as Oracle itself is not as commonly available or deployed on
shared hosting or Linux package managers. However, Oracle does have free versions avail-
able, and Django can interface with versions 9i and up.

Python’s Oracle bridge is cx-oracle, available at http://cx-oracle.sourceforge.net/.

Other Databases

Django’s database support is continually evolving. The best source of up-to-date informa-
tion is the official Web site and the Django-users mailing list. Two options that are not
currently supported by Django directly are Microsoft SQL Server and IBM DB2. An
independently maintained project that gives Django MS SQL support is available on
Google Code: http://code.google.com/p/django-mssql/. There is also Python-DB2 sup-
port on Google Code at http://code.google.com/p/ibm-db/, though as of this writing, it
is not plug-and-play with Django.

Summary

We’re hopeful that by now you’ve gotten completely up and running with Django and all
its constituent parts—Python, Django, a Web server, and a database. If you’ve run into
trouble, keep in mind some advice we share in Chapter 2—back up, try things over again,
and make sure you don’t miss any steps in the documentation you’re following.

Finally, Django’s own installation documentation (which covers all components and
not just the Python library itself) is an excellent resource. See withdjango.com for a direct
link.

311

http://cx-oracle.sourceforge.net/
http://code.google.com/p/django-mssql/
http://code.google.com/p/ibm-db/

This page intentionally left blank

Appendix C

Tools for Practical Django
Development

Web development, at anything but the smallest scale, is software development. If your
site takes input from users in some form and does something with that input, it’s a Web
application, and its development is—or should be—similar to the development of other
kinds of software.

If you came to Web development from the software side, it’s probably obvious to you
to use established software development tools and techniques such as version control, bug
tracking, and powerful development environments.You can just skim this appendix to
make sure you're not forgetting anything that could make your life easier.

If you're arriving from the design side of things, some of the things presented can be
new to you.The good news is, we guarantee any effort you invest in learning and using
them pays oftf many times over in increased productivity, flexibility, and peace of mind.

Version Control

If you’re developing any kind of software at all, and you’re not using version control,
you're missing out.Version control systems keep a complete revision history of your proj-
ect, enabling you to rewind your code to any point in time (for example, to the hour
before you made that innocent-looking change that broke something you didn’t notice
for a week).

Older version control systems such as SCCS (Source Code Control System) and RCS
(Revision Control System) were simple, either maintaining the original versions of files
plus deltas (minor changes to files between versions) or vice versa—keeping the latest
editions of files and applying “backward deltas.” One limitation of such systems was the
controlled files lived on and were modified on the same server.

As software development has progressed, especially in the open source community, it
became clear the existing systems were awkward for distributed group development,
hence leading to more modern version control systems such as CVS (Concurrent

314

Appendix C Tools for Practical Django Development

Versions System), an improved and distributed oftshoot of RCS, and later, the Subversion
project, which was meant to be “a better CVS” and a compelling replacement for it.

The Trunk and Branches

Version control systems generally follow a tree analogy, where the original or primary line
of development is called the trunk, of which copies can be made—becoming distinct
entities in their own right—and then which tend to go off in their own direction. These
copies are known as branches, and the decisions about what work belongs in branches
and what belongs in the trunk varies from project to project.

One methodology keeps all feature development—development that can break back-
ward compatibility or be otherwise unstable—in the trunk and uses branches to represent
releases of the software, which only receive bug-fixes after they diverge from the trunk.
Another “opposite” approach keeps the trunk stable and puts all new feature work into
branches, which has the benefit of enabling more than one big, earth-shattering feature to
be worked on at the same time.

Django itself uses a methodology that exists somewhere in-between these two
approaches: It keeps both release branches and feature branches, and the trunk is in a mid-
dle ground—neither completely stable nor terribly unstable. Changes that have a large
effect on the stability of the framework get their own branches with simpler, less disrup-
tive alterations being performed directly on the trunk.

Merging

Having branches diverge from the trunk is useful for segregating copies of the codebase,
but it wouldn’t be very useful without a way to get those changes back into the trunk!
This is where the tree analogy breaks down a bit: The other main concept in source con-
trol is that of merging changes from one branch into another branch.

For example, Django’s forms framework received a major overhaul recently and because
it consisted of a large series of changes, it got its own branch. Work went on for some time,
resulting in a much-improved version of the framework. During that time period, the
trunk kept receiving its own updates in various areas, so not only did the “newforms”
branch have its own list of changes compared to the point it diverged at, but there was
another list of changes that occurred on the trunk between that point and the present.

There’s a lot of theory surrounding how to reconcile nontrivial sets of changes such as
these, but the basic gist is version control tools provide commands to merge such changes
together and apply them to one side or the other. In Django’s case, the maintainers ran a
couple of commands to update the trunk with the changes from the “newforms” branch,
manually dealt with a few places where the version control program was unable to recon-
cile things, and they were all done.

Now that you’ve got a general idea of what version control entails, let’s explore the
two main paradigms in today’s source control techniques, including a brief look at one or
two specific version control systems from each.

Version Control 315

Centralized Version Control

The big names in open source centralized version control are CVS and Subversion—with
the latter steadily supplanting the former. Older systems you can see mentioned include
RCS and SCCS. Commercial alternatives in this category include Perforce, IBM Rational
ClearCase, and Microsoft Visual Studio Team System.

Subversion

Subversion (http://subversion.tigris.org/) is the closest thing we have to an industry stan-
dard version control system. It’s open source, available for many platforms, has good per-
formance and stability, and is well proven in the real world.

Subversion operates on a centralized model with one master repository that all users
connect to.Your checkout of the code can be worked on without a network connec-
tion—as in, you can edit the files—but recording your changes to or receiving changes
from the repository requires you to be online. Subversion can keep track of what you've
changed since the last time you fetched an update from the central server, but it doesn’t
give you any way to record multiple sets of changes without a connection to the server.

Subversion is the version control system that is currently used for the main Django
code repository at http://code.djangoproject.com, as well as by the many Django-related
projects hosted at Google Code and elsewhere. Subversion also has excellent integration
with the Trac wiki and issue-tracker (see the following for more on Trac).

Decentralized Version Control

Decentralized version control is the future. A decentralized system can do everything that
a centralized one can, but with the powerful additional feature that every “checkout” of a
project is also a full-fledged repository. With distributed version control, you don’t need a
connection to a central server to record sets of changes.You simply record them in your
local repository. Later, if someone else wants the changes, they can be pushed or pulled
across the network.

Open source decentralized version control systems include Git, Mercurial, Darcs,
Bazaar, SVK, and Monotone. Commercial systems include BitKeeper and TeamWare.

Mercurial

Mercurial (http://www.selenic.com/mercurial/) is one of the most popular distributed
systems in use today. Mercurial is largely written in Python with a bit of C in perform-
ance-critical portions. Performance is something that the Mercurial developers take very
seriously, which has led to the adoption of Mercurial by some very large projects, includ-
ing the Mozilla Web browser and Sun’s OpenSolaris effort.

Git

Something of a rival to Mercurial, in that both tools vie with Bazaar for open-source
DVC mindshare, is Git (http://git.or.cz). Written in C, by Linus Torvalds and other Linux
kernel team members, Git is a Unix-inspired tool and was originally created to help deal

http://www.selenic.com/mercurial/
http://subversion.tigris.org/
http://code.djangoproject.com
http://git.or.cz

316

Appendix C Tools for Practical Django Development

with the extremely complex source-control needs of the Linux kernel project, which uses
it today. Git has also been embraced by the Ruby on Rails project and many other proj-
ects in Rails’ sphere of influence, in addition to the WINE project, X.org (the Linux
graphics system), the Fedora Linux distribution, and others.

Version Control for Your Project

Here’s a basic walkthrough for the uninitiated of using version control on a Django proj-
ect. In this example we use Mercurial (the hg command).
We start with a skeletal Django project.
$ django-admin.py startproject stuff dev site
$ cd stuff dev_site
$./manage.py startapp stuff app
$ 1s stuff app
__init .py manage.py settings.pyc urls.py
__init .pyc settings.py stuff app

Now we turn this working directory into a repository.
$ hg init

And make a basic .hgignore file (either with echo, as the following, or with a text
editor) that tells Mercurial to skip over those .pyc bytecode files because they are auto-
matically generated by the Python bytecode compiler and not something we need to sep-
arately track.

$ echo "\.pyc$" > .hgignore

By default, patterns in an .hgignore file are regular expressions. Now we can go ahead

and add files:

$ hg add

adding .hgignore

adding _ init .py

adding manage.py

adding settings.py

adding stuff app/_init_ .py
adding stuff app/models.py
adding stuff app/views.py
adding urls.py

Then, we commit our changes with hg commit and verify that Mercurial recorded
them with hg log.

$ hg commit -m "Initial version of my project”
No username found, using 'pbx@example.org' instead

$ hg log
changeset: 0:€991d£3d3205
tag: tip

user: pbx@example.org

Version Control

date: Sun Oct 07 13:49:14 2008 -0400
summary: Initial version of my project

Every time you commit to a Mercurial repository, Mercurial records a changeset iden-
tified with two different numbers: an incremental integer that is only valid in this reposi-
tory and a hexadecimal hash that uniquely identifies this changeset no matter where it is
pushed or pulled to.

Let’s make a simple change, inspect it, and commit it.

$ echo "I_LIKE CANDY = True" >> settings.py

$ hg status

M settings.py

$ hg commit -m "Apparently someone likes candy."
No username found, using 'pbx@example.org' instead

$ hg log

changeset: 1:65e7cda9f64b

tag: tip

user: pbx@example.org

date: Sun Oct 07 13:57:53 2008 -0400
summary: Apparently someone likes candy.

changeset: 0:€991d£3d3205

user: pbx@example.org
date: Sun Oct 07 13:49:14 2008 -0400
summary: Initial version of my project

Once you have recorded a changeset, it remains available as a “snapshot” of your proj-
ect from that point forward. If you decide that everything you did after changeset 0 was a
terrible mistake, then the command hg revert --rev 0 --all rewinds your working
directory to that point.

So at this point you are off and running with your project.You write code, you test
with the development server, and you record your changes with concise yet meaningful
commit messages. Soon it’s time to deploy your project.

You could just tar all the files into an archive, copy that archive to the server where
your live application is deployed, and extract the files from the archive. That wouldn’t be
so bad—if you never made any changes to your application ever again. But assuming you
are actually developing software rather than creating marble busts, it’s likely that you’ll
want to correct and enhance your handiwork, and for repeated rounds of updates the
tar-copy-untar cycle is a pain.

It would be much better if you could make a quick copy of the repository, but have
Mercurial remember where the copy came from so you could incrementally fetch any
updates that were made to the original. That’s exactly what the hg clone command does.

For simplicity in this example, we assume the deployed copy of the Web site lives on
the same server as the development copy. This means that making the clone is as easy as
changing our working directory to the spot we would like to create the clone, and then
typing hg clone and the path to the original (development) directory. For example, if we

317

318

Appendix C Tools for Practical Django Development

were still inside the original directory and wanted the deployment version to be a copy
on the same level as that original directory, our commands would be like this:

$ed ..
$ hg clone stuff dev_site stuff live site
8 files updated, 0 files merged, 0 files removed, 0 files unresolved

This gives us a perfect copy (“clone”) of our original repository and working directory.

$ 1ls stuff live site/
__init .py manage.py settings.py stuff app urls.py

Wait, where are our .pyc files? Well, we told Mercurial to ignore them, so they didn’t
get added to the repository, and they don’t show up in this list.
Now let’s make some changes to the original (development) directory.

$ cd stuff dev_site
$ echo "I_LIKE DOGS = True" >> settings.py
$ hg commit -m "Also, dogs are liked."

When we've sufficiently tested those changes and are ready to deploy, we switch to the
"live" branch and pull them in:

$ cd ../stuff_live site

$ hg pull -u

pulling from /stuff dev_site

searching for changes

adding changesets

adding manifests

adding file changes

added 1 changesets with 1 changes to 1 files

1 files updated, 0 files merged, 0 files removed, 0 files unresolved

We can use the same hg revert command to undo changes to the live site—for
example, we can do that if the change we just pulled turned out to cause unexpected
problems on the live site despite our testing on the dev site. Every clone of the project has
the same content and the same history.

That’s just the surface, but hopefully it has at least whetted your appetite. There is, of
course, much more to using version control in general, and Mercurial in particular, than
we have hinted at here. For more, including links to excellent free manuals for Subver-
sion, Mercurial, and other systems, see withdjango.com.

Project Management Software

Version controlling your source code is useful, and some developers make do with a ver-
sion control system and nothing more. However, many others use a breed of Web applica-
tions typically designed to “partner” with a version control system, providing not only a

Text Editors

‘Web interface to the source repository and its history, but issue or todo-item tracking,
documentation, and so forth.

There are a number of such packages in existence; many are hosted services, such as
Google Code, SourceForge, Launchpad, and Basecamp. Others are stand-alone applica-
tions you can host yourself; the one favored by the majority of open-source developers is
named Trac, which is—mnot too surprisingly—written in Python.

Trac

Trac is an open source wiki, issue-tracking, source code, and project management system,
maintained by Edgewall Software. We admit a bias right now: Trac is our favorite in the
field of project management software. It works wonderfully out of the box, especially its
excellent integration with Subversion and other version control systems. It also has perva-
sive wiki markup that can be used to easily link code revisions, bug tickets, and pages of
documentation and notes.

If that’s not testimonial enough, you should know that the Django code repository
itself at http://code.djangoproject.com/ is running on Trac. (You just might not have rec-
ognized it due to the lovely style customizations.)

Note
Trac was a central tool in the process of writing this book—Ilearn more in the Colophon.

We should also mention that although Trac ships with Subversion support as the
default, it is possible to use other systems (such as the ones we described previously) with
Trac via plugins.You can download Trac and read the full documentation ahttp://trac.
edgewall.org/. If you find yourself wanting to extend Trac, make sure you check out
http://trac-hacks.org/ for extra plugins and other “hacks.”

Text Editors

You don’t need any special software to work on a Django project. Any coder’s text editor
will do. Here are some tips for some popular editors.

Emacs

The most important piece of equipment you need to be a happy and productive Django
coder using Emacs is python-mode, which enables syntax highlighting, intelligent inden-
tation, and various other niceties that streamline the production and editing of Python
code. Emacs versions 22 and newer come with a built-in version of python-mode. For
older versions, or Emacs variants such as XEmacs, see the Emacs page on the official
Python Web site (http://www.python.org/emacs/).

There’s also a user-contributed mode for Django templates, which you can find on the
Django wiki (http://code.djangoproject.com/wiki/Emacs).

319

http://www.python.org/emacs/
http://code.djangoproject.com/wiki/Emacs
http://code.djangoproject.com/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac-hacks.org/

320

Appendix C Tools for Practical Django Development

Vim

Vim is a text editor based on the old vi Unix tool and provides an incredible number of
enhancements and improvements to the original tool.You can read more about it and
download it at the main vim Web site athttp://www.vim.org/. As with Emacs, there is a
Python syntax mode. A comprehensive page of tips on using the vim editor (and its vari-

ants) with Python can be found on the Django wiki (http://code.djangoproject.com/
wiki/UsingVimWithDjango).

TextMate

TextMate is a popular commercial editor for OS X that has excellent support for Django.
TextMate organizes its support for particular languages and syntaxes into “bundles” and
ships with a Python bundle that speeds up working with Python code and makes it more
readable through syntax coloring. In addition, in TextMate’s public bundle repository,
there are two special bundles for Django: one for Python code and one for Django
template code. More information can be found via the Django wiki (http://code.
djangoproject.com/wiki/TextMate).

Eclipse

The Eclipse IDE ofters a powerful Python development module called PyDev.You can
fetch the code and learn more about PyDev via its SourceForge page (http://pydev.
sourceforge.net/).

http://www.vim.org/
http://code.djangoproject.com/wiki/UsingVimWithDjango
http://code.djangoproject.com/wiki/UsingVimWithDjango
http://code.djangoproject.com/wiki/TextMate
http://code.djangoproject.com/wiki/TextMate
http://pydev.sourceforge.net/
http://pydev.sourceforge.net/

Appendix D

Finding, Evaluating, and Using
Django Applications

It’s fun to write applications in Django, but you don’t always want to make everything
yourself. As the framework has grown in popularity, an ecosystem of open source Django-
powered applications has sprung up around it. This is boosted by the fact that Django
itself is open source; it leads by example, creating an ethic that says, when in doubt, release
your application as open source.

Even better, most of these further follow Django’s example in using the unrestrictive
BSD/MIT-style license. This can make adoption of those applications an easier sell inside
organizations that are shy of the most common open source license, the GNU Public
License or GPL.The GPL mandates if a product based on GPL-licensed code is used in
an application that gets redistributed (as opposed to merely being offered as a service via
the Web, for instance), the code of that application must be publicly released. The
BSD/MIT style licenses certainly enable this, but don’t require it. No judgement is
implied on the relative merits of the two approaches, but the fact that BSD/MIT=style
licenses are more “business friendly” is well accepted, and so the license issue can affect
your choices.

Whether it’s something simple such as user-registration features, something more
complex such as a full-featured blog engine, or a full-on e-commerce solution for run-
ning your Web store, there is likely to be an open source Django application out there
that does it. But how do you find it? How can you tell if it’s good? And how can you
make using it (and keeping up with updates) as easy as possible?

Where to Look for Applications

Some developers run their own Web sites and/or their own project management systems,
and thus you often find Django applications listed in their creator’s blog or personal Trac
instance. However, many (if not most) developers congregate at centralized listing sites to
achieve higher visibility, and we list some of the more popular such sites here.

322 Appendix D Finding, Evaluating, and Using Django Applications

The DjangoResources page on the Django project wiki: This is where many appli-
cation authors let the world know about the availability of their application. The
direct URL is http://code.djangoproject.com/wiki/DjangoR esources.

Google Code: With its free hosting and clean interface, Google Code has become a
popular spot for Django-powered projects. Searching for projects tagged “django”
yields a nice long list.

Djangopluggables.com: Relatively new at the time of writing,
djangopluggables.com is a nicely designed site that aggregates information on a
wide variety of Django applications.

DjangoSites.org: This simple directory of Django-powered sites has a “sites with
source” category that shows you only the listed sites whose authors have released
the source code.

GitHub.com: A popular source-repository-and-social-networking site using the Git
version control system, which hosts a few Django apps and is growing in popularity
along with Git itself.

Just as the ecosystem of Django applications is constantly evolving, so are the best ways

to find them. Check withdjango.com for an updated list of links and recommendations.

How to Evaluate Applications

Here are some questions you can ask of a prospective application or project that you've

found.

Is it alive? When were the most recent feature updates or bug fixes? Not every proj-
ect needs to be updated every week, but a project that last saw activity in a flurry of
commits a year ago could have been abandoned. Anything developed against a pre-
1.0 release of Django needs to be kept up to date, or it quickly becomes useless.

How’s the documentation? Is there documentation? Is it organized and readable? Is
it relatively free of red-flag warnings such as “NOTE: This section is out of date!”?

Does it seem to be actively maintained? (For example, is the documentation man-

aged via source control and distributed as part of the project download?)

Who are the authors? Google the author name(s) to get a sense of how experi-
enced they are and how their work is regarded in the community. If you come up
with a lot of helpful replies on the project mailing list, for example, that’s good.

How’s the code? If you have some experience as a Python programmer, one of the
best ways to get a quick feel for a project is to download its source code and just
start reading. Are the source files organized? Are there docstrings that explain the
intent and use of functions and methods? Is there a test suite, and does it pass?

Is there a community? Many Django projects that were started to fulfill a particular
person’s or organization’s needs have grown to have user and development com-
munities of their own. The more complex the application, the more likely that it

http://code.djangoproject.com/wiki/DjangoResources

Sharing Your Own Applications

has its own community of experienced people who can help you solve problems.
Not every application needs a vibrant community to be considered viable, of
course, but social infrastructure should be present in rough proportion to the com-
plexity of the application.

How to Use Applications

Third-party Django applications, just like yours, are simply Python modules. To use them

in a project, simply add a string containing the application’s path (in Python dot-

delimited form) to your project’s settings.py in the INSTALLED_APPS setting.
Although you can put them anywhere you want, you essentially have three choices:

= Embedding: If you only need the application for a single project, you can decide to
simply add it inside your project directory alongside your other applications. In
some ways this is the simplest approach. The downside comes when you decide you
want to start using it in other projects on the same server.

= Creating a “shared apps” directory: Another option is to create a directory for
shared apps—you could call it shared_apps—and add this directory to your
Python path. This keeps the third-party code in a single place, but makes it easy to
import across projects. To add an application to a given project, you'd simply add its
name (no dotted prefix needed) to that project’s INSTALLED_APPS setting.

= Installing to your site-packages directory:You can also add Django applications to
your system-wide Python library, usually found in a directory called site-
packages. (Type import sys; sys.path at a Python prompt to find the exact
path on your system, as well as the other directories on your Python path.)

If you are following an evolving project, you can work with a checkout from that pro-
ject’s version control system rather than simply downloading archived files. In that case,
you can simply check out the latest version of the code into your project, your shared
apps directory, or your system’s site-packages, depending on which of the previous
methods you are following. Just keep in mind that you need to use caution when upgrad-
ing any such external applications to make sure you don’t break your projects that depend
on them.

Sharing Your Own Applications

Hopefully, as you continue progress as a Django application developer, you can find that
some of your creations have the potential to be useful to other people. We encourage you
to consider releasing these applications under an open source license and to allow other
Django users to use them and improve them. Code hosting services such as Google Code,
SourceForge, GitHub and others can make it easy for you to get your code out there
(without creating a whole new Web site for you to administer). Be sure to tell us, too!

323

This page intentionally left blank

Appendix E

Django on the Google
App Engine

This appendix introduces you to porting your Django application to the Google App
Engine, a scalable Web application platform that is based in part on Django and embodies
many Django features. Although we try to cover the basics, we cannot go over every
aspect of this technology; you can find links to more information at the end of the
appendix.

There are several ways of developing apps with App Engine with a varying degree of
“Django-ness:”

= A new/pure App Engine app
= An existing Django app ported to App Engine
= A new Django app written specifically for App Engine

The first method uses only the (minimal) Django features and components that come
with every App Engine application—we discuss these in the next section. The other two
methods bring more Django into the picture and are the focus of this appendix. Again, if
you want to learn more about “pure” App Engine applications, check out the related links
at the end because we aren’t covering those details here.

Our purpose is to focus on Django—developing applications with Google App
Engine by itself warrants its own book!

Why the App Engine Matters

The launch of Google App Engine represents an exciting development for those using or
planning to use Django. Its release is a welcome boost to the profile of both Python and
Django within the larger software development community, generating a lot of interest
from folks who previous could not have considered using either technology.

Perhaps the most significant promise of App Engine is it aims to make deployment and
server upkeep a nonissue. We deal with Web server setup—Apache or nginx deployment,

326

Appendix E Django on the Google App Engine

whether to use mod_python or FCGI, and so on—because we have to, to make Web sites
using Python.

Contrast this to PHP, which—while suffering from many problems, the language itself
not least among them—is generally free of such worries. The App Engine allows Python
Web developers a similar sort of care-free programming platform. On top of that, it
enables us to leverage Google’s existing (and massive) infrastructure.

Pure Google App Engine Applications

Pure App Engine applications are created in a single directory and use the toolset App
Engine provides: the SDK’s development Web server (dev_appserver.py) and the appli-
cation uploader (appcfg.py) used for deployment to the App Engine “cloud” when your
code is ready for release.

Configuration of an App Engine application is defined in aYAML file (app.yaml) that
can look something like:

application: helloworld
version: 1

runtime: python

api version: 1

handlers:
- url: /.*
script: helloworld.py

You notice the handlers section looks similar in function to a Django UR Lconf,
hooking up a URL-like string with a specific script to execute. Another Django or
Django-like feature of App Engine development is its templating system, which is essen-
tially a wholesale reuse of Django’s own.

Limitations of the App Engine Framework

From the perspective of a Django developer, the biggest missing piece in Google’s imple-
mentation is Django’s ORM. Instead of a relational database, Google relies on its propri-
etary BigTable system for storage—see http://labs.google.com/papers/bigtable.html and
http://en.wikipedia.org/wiki/BigTable for more information. There are no SQL state-
ments, no relations, no JOINs, and so on.

Although you can write brand-new apps that use the other parts of Django and substi-
tute Google’s BigTable-based ORM for your data models, this limitation scratches virtu-
ally all existing Django apps oft the list. You can conceivably rewrite parts of your own
apps to work around this, but you are not going to do that for existing Django apps and
components such as the admin, the authentication system, the generic views, and so forth.

We discuss reworking your own apps for App Engine in the next section.

http://labs.google.com/papers/bigtable.html
http://en.wikipedia.org/wiki/BigTable

Google App Engine Helper for Django

With those portions of Django out of the picture, we’re left with the core functional-
ity: UR Lconfs, views, and templates. Although these components are enough to build any
sort of Web site, they aren’t entirely satistying if you want to use existing Django applica-
tions on the App Engine or build applications capable of deploying both normally and as
App Engine.

Note

At the time of this writing, the Django components that App Engine ships with are part of an
outdated yet stable release of Django (0.96.1).

Google App Engine Helper for Django

The key to making your experience with App Engine a bit more like “real” Django devel-
opment is the Google App Engine Helper for Django. This is an open-source Google-
sponsored project (with Python creator Guido van Rossum being listed as one of its
contributors) that aims to make App Engine a more comfortable environment for those
with Django experience. It even enables you to swap in a more current version of Django
instead of the one that App Engine ships with.

Getting the SDK and the Helper

Before we go any further, we need to get the necessary software.You can download

the Google App Engine SDK for your platform at http://code.google.com/p/
googleappengine/, the SDK Project home page. An .msi file is available for Windows
users along with a .dmg file for OS X. For everyone else, just download the general source
Z1P file. Similarly, the helper is available for download at http://code.google.com/p/
google-app-engine-django/.

Follow the instructions on installing both. Once completed, you are welcome to start
playing around with the App Engine on its own; for example, we suggest following its
tutorial to build a simple application solely on that platform. Google provides good doc-
umentation on how to get up and running with App Engine, so we don’t rehash it all
here. The App Engine tutorial can be found at http://code.google.com/appengine/docs/
gettingstarted/.

It’s advantageous to know how to create simple apps on both platforms so when we try
integration such as bringing Google App Engine to an existing Django app or building a
new App Engine application with more of a Django flavor, things come easier to you.

More on the Helper

At the time of this writing, the Helper is in a fairly primitive state. Its primarily goal is to
round off the sharp corners of App Engine from a Django developer’s perspective, but it
has a long way to go. If you go poking around in the Helper source, be prepared to learn a
bit about the internals of both App Engine and Django.

The Helper does not turn App Engine info Django, but it does ease the transition a bit.
Although our following example presumes you are using the Helper, choosing to simply

327

http://code.google.com/p/googleappengine/
http://code.google.com/p/googleappengine/
http://code.google.com/p/google-app-engine-django/
http://code.google.com/p/google-app-engine-django/
http://code.google.com/appengine/docs/gettingstarted/
http://code.google.com/appengine/docs/gettingstarted/

328

Appendix E Django on the Google App Engine

use the stock App Engine functionality is also perfectly acceptable. As is commonly said
about Django, “It’s just Python.” Don't let the rough edges of App Engine prevent you
from exploring its potential. In the words of one observer, App Engine “makes it hard not
to scale.” Assuming you are willing to trade the previous limitations for deployment con-
venience and the promise of immense scalability, then please read on.

The Helper is delivered in the form of a skeletal Django project containing a single
application called appengine_django.You can use the skeleton as the basis of a new proj-
ect or copy the appengine_django application folder into an existing project.

App Engine provides a minimal administrative back-end called the Development
Console. Once you've installed the Helper, this admin app resides at a URL similar to
http://localhost:8000/_ah/admin (assuming you have the App Engine server running on
port 8000). Unlike the regular admin, this tool can only work with models that already
have some records saved in the data store. If you have a model that has not yet been used
to save any data, you are not able to create records of that type via the Development
Console.

Integrating the App Engine

In this section, we are going to take our simple blog, as developed in Chapter 2,“Django
for the Impatient: Building a Blog,” and turn it into an App Engine application. We are
going to follow the steps as outlined in the Google App Engine Helper for Django
README file, located at http://code.google.com/p/google-app-engine-django/source/
browse/trunk/README. For the following example, we are assuming you called your
project mysite and your application blog.

Copying the App Engine Code to Your Project

After downloading the Helper and unzipping it, you have a directory named
appengine_helper_for_django. Copy the contents of that directory into the root folder
of your existing Django blog project, so the app.yaml, main.py files, and the
appengine_django folder are now coexisting with your Django files such as urls.py and
settings.py.

Now, edit your app.yaml file and change the application name to the one you regis-
tered your application under in the App Engine’s Admin Console. The next step is to give
your project access to the App Engine code itself.

Note

Updating app.yaml with an App Engine-registered name is not actually required; it's only
necessary when and/or if you decide to upload your code to the App Engine itself. It's
entirely possible to run your code with the SDK runserver without this information entered.

http://code.google.com/p/google-app-engine-django/source/browse/trunk/README
http://code.google.com/p/google-app-engine-django/source/browse/trunk/README

Integrating the App Engine

If you did not install the App Engine SDK using the Windows or Mac OS X installers,
you need to manually link to the App Engine code. On a POSIX system (Linux or Mac
OS X)), the call to the 1n command looks something like this:

$ 1n -s THE PATH TO/google appengine ./.google appengine

Integrating the App Engine Helper

Our next step is to integrate our helper into our command-and-control file manage.py.
This enables us to manage our app almost like a stand-alone Django application. The way
to do this is to add two new lines to the very top of the file (after the “sh-bang” line)
right before the import of execute_manager, so the first four lines of manage.py look

like this:

#!/usr/bin/env python

from appengine _django import InstallAppengineHelperForDjango
InstallAppengineHelperForDjango()

from django.core.management import execute manager

This enables App Engine to take partial control over some of the Django management
commands, as well as adding App Engine-specific code and making the Helper’s add-ons
accessible. However, even with a modified manage. py, you still have access to many of the
more important commands.

Now that we have a “new” manage.py, let’s use our first new command to generate a
new settings.py file. (We recommend backing up the original in case you want to
revert everything afterward!) Why are we doing this? Sadly, we have to remove all Django
functionality that’s incompatible with App Engine—all the stuft we described previously.
The way you do that is with the diffsettings command.

$ manage.py diffsettings

WARNING:root:appengine django module is not listed as an application!
INFO:root:Added 'appengine django' as an application
WARNING:root:DATABASE ENGINE is not configured as 'appengine'. Value overridden!
WARNING:root:DATABASE_%s should be blank. Value overridden!

WARNING:root:Middleware module 'django.middleware.doc.XViewMiddleware' is not
compatible. Removed!

WARNING:root:Application module 'django.contrib.contenttypes' is not compatible.
Removed!

WARNING:root:Application module 'django.contrib.sites' is not compatible. Removed!
DATABASE_ENGINE = 'appengine'
DEBUG = True

INSTALLED APPS = ('django.contrib.auth', 'django.contrib.admin', 'mysite.blog’,
'appengine django')
MIDDLEWARE CLASSES = ('django.middleware.common.CommonMiddleware',

'django.contrib.auth.middleware.AuthenticationMiddleware')
ROOT_URLCONF = 'mysite.urls' ###

329

330

Appendix E Django on the Google App Engine

SECRET KEY = 'w**sb”(p($wzxra*a9 @4 z0s(9i(9x3(w—aribbaaad (r"wi'
SERIALIZATION MODULES = {'xml': 'appengine django.serializer.xml'} ###
SETTINGS_MODULE = 'settings' ###

SITE_ID = 1 ###

TEMPLATE DEBUG = True

TIME ZONE = 'America/Los_Angeles'

In the output, all lines that start with “WARNING” usually indicate something is not
compatible or is an incorrect setting and removed. All lines that come affer the final line of
WARNINGs and INFOs make up the contents to the new settings.py file.

Porting Your Application to App Engine

We need to tweak our application to use App Engine objects now, so the first place is in
models.py. Instead of using django.db.models.Model, we need to use
appengine_django.models.BaseModel. Back up your original models file, and then
modify models.py so it looks like:

from appengine_django.models import BaseModel
from google.appengine.ext import db

class BlogPost(BaseModel):
title = db.StringProperty()
body = db.StringProperty()
timestamp = db.DateTimeProperty()

The similarities are definitely there—these are now equivalent objects to what you had
before. One notable difference is we no longer need the max_length setting for our
title.The App Engine stringProperty has a maximum of 500 bytes. For simplicity, we
use the same property for body in our example.

If there is a chance that a blog entry exceeds this size, then you can use TextProperty
instead. TextProperty can hold more than 500 bytes, but the downside is these values are
not indexed and cannot be used in filters or sort orders. Of course, chances are you
wouldn’t be filtering or sorting on your body attribute anyway, so it wouldn't be a big loss
in this case.

Because App Engine does not use the Django ORM, you have to change your view
code to use BigTable queries.You discover the App Engine database API gives you two
different ways of querying for data: a standard Query or a SQL-like GglQuery. In our case,
we love the ORM-ness of Django and want to preserve a high-level of data access, so we
just use Querys.

Taking a Test Drive

We’re now ready to give our overhauled application a test drive. When you use
manage.py runserver to start up the development server, you no longer see Django
validating models, letting you know which settings file it’s using, and the friendly startup
message. Instead, you see the App Engine server output.

Integrating the App Engine

$ manage.py runserver
INFO:root:Server: appengine.google.com
INFO:root:Running application mysite on port 8000: http://localhost:8000

Open a web browser window to http://localhost:8000/blog. You should see the famil-
iar blog entry screen as shown in Figure E.1. Of course, no entries are showing up
because you are now using the App Engine datastore instead of the original Django
ORM’s database and have nothing in there (yet)!

Fle Edt Yew Bockmarks ‘Widgets Feeds Took Helbp
W ope [seve Bt Oy [1jtore 38 v [Concode P ok

« 4w B B gl (B el a080 oyl =

mysite.example.com

B GH - (S 100% =

Figure E.1 No entries yet in our “new” blog app

Adding Data

As we’ve mentioned previously, the Django admin app is not available on the App
Engine. With no admin application, we need to add our first blog entry manually (via
the Python shell) so the App Engine’s data-entry mechanisms is aware of that particular
model. On this machine, we have IPython installed, so we see its startup message and
prompts.

$ manage.py shell
Python 2.5.1 (r251:54863, Mar 7 2008, 04:10:12)
Type "copyright", "credits" or "license" for more information.

IPython 0.8.2 — An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object'. ?object also works, ?? prints more.

331

332

Appendix E Django on the Google App Engine

Once we have the prompt, we can import our BlogPost class, instantiate it, and fill in
the details.

In [1]: from blog.models import BlogPost

In [2]: entry = BlogPost()

In [3]: entry.title = 'lst blog entry'

In [4]: entry.body = 'this is my 1lst blog post EVAR!!'
In [5]:
In [6]: entry.timestamp = datetime.today()

from datetime import datetime

App Engine’s DateTimeProperty accepts a datetime.datetime object, hence our
import and usage of that particular Python library. We then use the today function to get
the current date and time and assign it as our timestamp. From here, to store the object,
we just issue a call to put.

In [7]: entry.put()

Out[7]: datastore types.Key.from path('BlogPost', 1, _app=u'mysite’)
In [8]:

In [9]:

query = BlogPost.all()
for post in query:

print post.title, ', post.body, '(%s)' % post.timestamp

1st blog entry : this is my lst blog post EVAR!! (2008-07-13 12:28:52.140000)

As stated in the database API documentation, “The all() method on a Model... class
returns a Query object that represents a query for all entities of the corresponding kind.”
(This quote is from the high-level documentation on data manipulation that can be found
at http://code.google.com/appengine/docs/datastore/ creatinggettinganddeletingdata.
html.) As you can see, we are able to open our newly-added data from within the shell.
What remains is to go full circle and be able to view this new data in our app.

Make sure your server is up, and then refresh your Web browser pointing to
http://localhost:8000/blog. You should now see your entry as shown in Figure E.2.

Hopefully this short experience has made you appreciate Django’s admin more than
you could have before. At the same time, of course, you notice the Python shell can be an
invaluable tool for working with data regardless of the state of your Web site.

http://code.google.com/appengine/docs/datastore/creatinggettinganddeletingdata

Creating a New Django Application That Runs on App Engine

calhust:8080,blog/ - Opera
Eie Yiew Pockmarks Widgets Feeds Took Heb

W o [seve Bt Oy [ijtore 38 v [Coscode P voke
H & B B B oo 8080 byl -

mysite.example.com

1st blog entry

Figure E.2 Our blog entry now shows up!

Creating a New Django Application That Runs on
App Engine

By porting an existing Django application to the App Engine, you’ve actually performed
the more difficult task first. Creating a new application is, for most part, simpler—because
you do not have the “baggage” of an existing Django application. The following steps,

which apply to creating a brand new App Engine-centric Django application, can be eas-
ily followed if you keep the previous section in mind:

1.
2.

5.
6.

Create your Django project using django-admin.py as usual.

Copy the App Engine code (app.yaml, main.py, appengine django) into your
project directory.

Edit your app.yaml file with the new application name (the one registered with
the App Engine Admin Console).

If necessary, link to the Google App Engine code.
Run manage.py startapp NEW_APP NAME.

Build your application!

When building your application, you have to keep in mind not to write “pure

Django,” such as remembering to use the App Engine Helper’s models instead of
Django’s. On the plus side, you now have access to all App Engine’s powerful APIs.

333

334 Appendix E Django on the Google App Engine

= Python Runtime
= Datastore API

= Images API

= Mail API

= Memcache API
= URL Fetch API
= Users API

We suggest reading the App Engine documentation to see what’s possible with these
frameworks.

Summary

In this appendix, we introduced you to the Google App Engine, what its capabilities are,
and how it presents an alternative environment to develop Django applications. In
exchange for new functionality, some Django features had to be sacrificed, making it
more of a challenge for existing Django programmers to jump directly into App Engine-
based development. Thankfully, the App Engine helper makes this task a bit easier.

We then went in-depth, showing you how to port one of our example applications to
the App Engine. Creating a new application from scratch involves similar steps, except
without any worries about preexisting code. As an exercise in getting up-to-speed with
App Engine, we invite you to recreate the blog app completely from scratch, as a 100 per-
cent App Engine application.

The bottom line for you as a Django developer is you can still program (mostly) in
Django, but be able to take full advantage of all the benefits that Google App Engine has
to offer: simple deployment, massive scalability, and the capability to leverage Google’s
existing production infrastructure.

Online Resources

Following are some of the key online resources that we’d like to share with you. For a
more comprehensive list, please visit the book’s Web site, withdjango.com.

= Google App Engine
http://code.google.com/appengine/

= App Engine SDK Project
http://code.google.com/p/googleappengine/

= App Engine Tutorial
http://code.google.com/appengine/docs/gettingstarted/

http://code.google.com/appengine/
http://code.google.com/p/googleappengine/
http://code.google.com/appengine/docs/gettingstarted/

Online Resources

Google App Engine Helper for Django
http://code.google.com/p/google-app-engine-django/

Using the Google App Engine Helper for Django (Matt Brown, May 2008)
http://code.google.com/appengine/articles/appengine_helper_for_django.html

VIDEOS

Rapid Development with Python, Django, and Google App Engine (Guido van
Rossum, May 2008)

http://sites.google.com/site/i0/rapid-development-with-python-django-and-google-
app-engine

Introducing GAE at Google Campfire (various, Apr 2008, 7 videos) http://
innovationstartups.wordpress.com/2008/04/10/google-app-engine-youtubes/

335

http://code.google.com/p/google-app-engine-django/
http://code.google.com/appengine/articles/appengine_helper_for_django.html
http://sites.google.com/site/io/rapid-development-with-python-django-and-google-app-engine
http://sites.google.com/site/io/rapid-development-with-python-django-and-google-app-engine
http://innovationstartups.wordpress.com/2008/04/10/google-app-engine-youtubes/
http://innovationstartups.wordpress.com/2008/04/10/google-app-engine-youtubes/

This page intentionally left blank

Appendix F

Getting Involved in the
Django Project

Django is not just a Web framework. It’s not just a great design and 50,000 lines of
code. It’s also a community of coders, testers, translators, question-answerers, and a global
collective of volunteers. The Django AUTHORS file lists more than 200 contributors, and
there are many, many others who contribute in large and small ways to keep the project
going.

Django is an exemplary open source project—Python creator Guido van Rossum has
said as much—and among other things that means it offers many ways for interested peo-
ple to get involved. It’s likely that, like many others, you find Django makes your life as a
Web developer easier and more fun, and you may find your incredible surplus of leisure
and happiness inspires you to give something back. Next are some examples of contribu-

tions you could make.
The easiest ways to contribute don’t even require any programming whatsoever:

= Submit a correction for a typo you found in the documentation
= Help answer newbie questions on the IRC channel or the django-users mailing list

= Help with ticket triage at code.djangoproject.com, closing invalid tickets and clari-
fying (or verifying) valid ones

If you're willing to get your hands a little dirty, then there are options involving actual
code that still don’t require Herculean effort:

= Submit a patch that fixes a known bug

= Run Django’s test suite on a less popular system or an unusual (but supported) soft-
ware configuration to help identify potential problems

= Join work on a “branch” of Django where new features are being developed

338 Appendix F Getting Involved in the Django Project

Finally, speaking of Herculean effort, these tasks would have a significant impact on the
Django community:

= Perform Django localization for a language that hasn’t been done yet (if you can
find one!)

= Find a feature that is widely considered desirable but hasn’t been implemented, and
implement it

= Create a high-quality application based on Django and release it as open source

If you’re unsure, an easy way to test the waters without commitment is to join the
django-users or django-developers mailing lists or spend some time in the #django
IR C channel at irc. freenode.net. Before long you may find yourself contributing as
well. And if you see one of us there, say hello!

Note

The Django documentation (see the official site or withdjango.com for a pointer) covers the
details of contributing in great detail from coding style to mailing list protocol.

Aside from joining the mailing lists and/or the IRC channel, another way to establish
yourself in the Django ecosystem is to register yourself at http://djangopeople.net, a
worldwide directory of Django developers (which can also be used to find other develop-
ers if you're interested in forming a team project). Another site attempting to pair up
developers with those trying to hire them is http://djangogigs.com, which also has its
own developer listing (http://djangogigs.com/developers/).

Finally, you want to make sure you subscribe to the official Django blog aggregator,
which can be a great way to get news on what’s going on in the world of Django devel-
opment. The aggregator, along with plenty of links to other community tools, can be
found at http://djangoproject.com/community/.

http://djangopeople.net
http://djangogigs.com
http://djangogigs.com/developers/
http://djangoproject.com/community/

Index

Symbols

& (ampersand) operator (Django), 109

>> append operator, 291
* (asterisk)
in functions (Python), 40-42, 132
repetition/duplication, 16
@ (at sign), function decorators, 44
A (carat), in URLconfs, 118
: (colon), sequence slicing, 15
, (comma), in tuples, 24
$ (dollar sign)
in URLconfs, 118
variable (jQuery), 214

** (double asterisk), in functions (Python),
40-42, 132

(hash mark), comments, 10

% (percent sign), string format operator,
22-24

| (pipe)
operators (Django), 109, 290
template filters, 137

+ (plus sign), concatenation, 16

~Q, in keyword composition (Django),
109-110

< redirection operator, 291

> redirection operator, 291

A

ab (benchmarking tool), 265

abstract base classes (Django), 97-99

access control. See authentication
decorators (Python), 240

340 accessing App Engine objects in Django applications

accessing App Engine objects in Django
applications, 330

add-ons for Python, 300
Easy Install, 300
IPython, 300-301

admin application (Django)
changing list display, 68-69
creating blog posts, 67-69
customizing, 235-236

with authentication decorators,
239-240

base templates, extending, 237-238
with fieldsets setting, 236-237
views, creating, 238-239

login, 66-67

model options, 101-102

setup, 65-66

troubleshooting, 66

admin views in CMS example application,
193-195

Ajax (Asynchronous Javascript And XML),
205. See also JavaScript

advantages of, 206
explained, 205-206
libraries (liveblog example application)
installing, 213-214
selecting, 207-208
setup and testing, 214-215
requirements for usage, 212
XML versus JSON, 212-213
all function (Python), 25-26
all method (Django), 104
alternative templating (Django), 258-260

ampersand (&) operator (Django), 109
animation with Ajax. See Ajax
anonymous functions (Python), 38
in Django, 39
lambda keyword, 38-39
any function (Python), 25-26
Apache Web server
hooking Django into, 304-305
installing, 304
serving static files, 305-306
App Engine. See Google App Engine
append method (Python), 18
append operator (>>), 291
applications (Django)
blog project example
admin application, 65-69
applications, creating, 61
databases, setup, 62-65

development runserver, running,
59-61

models, 62, 74
projects, creating, 58-59
templates, creating, 70-75
URL patterns, creating, 72
view functions, creating, 71-72
CMS example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192

model definition for, 186-189
search functionality in, 199-201
templates for, 196-198

urls.py file, 192-193

user management, 201
views.py file, 196

workflow management, 202

converting to App Engine
applications, 328

accessing App Engine objects, 330
adding data, 331-332
copying App Engine code, 328
integrating App Engine Helper for
Django, 329-330
linking to App Engine code, 329
testing, 330
creating, 61
for Google App Engine, 333-334
evaluating, 322-323
finding, 321-322
Flatpages, 182
enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185
installing, 323
liveblog example application
Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208

Ajax libraries, setup and testing,
214-215

Ajax requirements, 212
directory structure of, 208-211

applications (Django) 341

planning, 206-207
view function, creating, 216-217

view function, using via JavaScript,

217-218
XML versus JSON, 212-213

pastebin example application, 221-222

cleaning up with cron jobs,
231-232

limited number of items displayed,
229-230

models.py file, 222-223

syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229

URLs, designing, 225

photo gallery example application, 159

file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161

PIL (Python Imaging Library),
installing, 162-163

templates, 173-179

ThumbnaillmageField class,
building, 164-169

ThumbnaillmageField class,
usage, 169

URLs setup, 169-173

sharing, 323
testing, 274-279

doctest module (Python), 275
models, testing, 276-278
running tests, 276

tools for, 278-279

unittest module (Python), 276

342

args/kwargs convention

args/kwargs convention. See * (asterisk);
**(double asterisk)

arguments for commands, 286, 288-289
arithmetic operators (Python), 11, 13
arrays. See lists (Python)
AssertionError exception (Python), 32
assigning environment variable values, 291
associative arrays. See dictionaries (Python)
asterisk (*)

in functions (Python), 40-42, 132

repetition/duplication, 16
Asynchronous Javascript And XML. See Ajax
at sign (@), function decorators, 44
AttributeError exception (Python), 32
attributes (Django)

adding to fields, 167-168

calculated attributes, 90

of request objects, 124-125

augmented assignment operators (Python),
11,14

authentication decorators (Python) for
admin application, 239-240

B

backend types for caching (Django), 272
db, 273
file, 273
memcached, 273-274
base classes, 44
base templates
creating, 73-74
extending, 237-238

baselines (server performance), determining,
265-266

base_site.html template (admin application),
extending, 238

benchmarking server performance, 265-266
BigTable system, 326
binary directories, 293
bitwise operators (Python), 14
block tag (Django), 71, 139-141
block template tag (Django), 73
blog project example
admin application
changing list display, 68-69
creating blog posts, 67-69
login, 66-67
setup, 65-66
troubleshooting, 66
applications, creating, 61
databases, setup, 62-65

development runserver, running,

59-61
models
default ordering, setting, 74
designing, 62
projects, creating, 58-59
templates
base templates, creating, 73-74
creating, 70-71
filters, applying, 75
URL patterns, creating, 72

view functions, creating, 71-72

blogs. See also blog project example
Django blog aggregator, 338
liveblogs, defined, 205

bool function (Python), 12

Boolean data type (Python), 12

Boolean operators (Python), 11

BooleanField class (Django), 92

bound forms (Django), 147-149

branches (version control systems), 314

BSD/MiT-style licenses, GPL (GNU Public
License) versus, 321

built-in functions (Python), 14

C

CACHE_BACKEND setting, arguments
for, 272

cache_control decorator (Django), 269
cache_page decorator (Django), 268

cache-related headers (Django), controlling,
268-269

cache template tag (Django), 271
cache type (Django), setting, 266
caching (Django), 226, 265
backend types, 272
db, 273
file, 273
memcached, 273-274
baseline, determining, 265-266
cache type, setting, 266
middleware, adding, 266
strategies for, 267

cache-related headers, controlling,
268-269

cache template tag, 271

classes (Django)

object cache, 269-270
per-view caching, 268
site-wide caching, 267
testing, 266-267
calculated attributes, 90
calendar module (Python), 254
callable views (Django), 121-122
calling functions (Python), 34-35
* and ** in, 40
by reference/value. See mutability
keyword arguments in, 35
carat (*), in URLconfs, 118
cascades (SQL), support for, 113
Cascading Style Sheets (CSS), 79

casting Python data types. See numeric
functions (Python)

centralized version control systems, 315
changes (in version control systems)
committing, 317
merging, 314
changesets, recording, 317
CharField class (Django), 91
charts, generating, 246-248
CherryPy, 306
choosing. See selecting
class keyword (Python), 44
classes (Django)
abstract base classes, 97-99
BooleanField, 92
CharField, 91
EmailField, 91
Field, 91
FileField, 92

343

344 classes (Django)

ForeignKey, 93 classes (Python)

Form, 142
Http404, 131

ImageField, testing, 163-165. See also
photo gallery example

ImageFieldFile, 167-168
IPAddressField, 91

creating, 44-45

Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46

instantiating, 45, 52

subclassing, 46

Manager, 104-105
ManyToManyField, 95
Meta, 100-101

clean up. See cron jobs
clear method (Python), 28
CMS (Content Management System)

ModelChoiceField, 146
ModelForm, 143
ModelMultipleChoiceField, 146
NullBooleanField, 92
OneToOneField, 96
Q, 109-110
QueryDict, 123
QuerySet, 104-105
as database query, 105-106
joining databases, 108-109

keyword composition with Q
and ~Q, 109-110

as list container, 106
modifying SQL queries, 111-112
as nested queries, 106-107
removing duplicates, 108
sorting query results, 108
TextField, 91
URLField, 91
Widget, 152

custom example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192
model definition for, 186-189
search functionality in, 199-201
templates for, 196-198
urls.py file, 192-193
user management, 201
views.py file, 196
workflow management, 202

explained, 181

Flatpages application, 182
enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185

codebase (Django), testing, 279-281
coding style (Python), 53
documentation strings, 54-55
indentation, 53
single-line suites, 54
spaces versus tabs, 53
colon (:), sequence slicing, 15
columns (in database tables), 78
comma (,), in tuples, 24

comma-separated values (CSV) files,
generating, 245-246

command line. See also utility scripts
arguments and options, 288-289
environment variables, 291-293
input and output, 289-291
Mac OS X, using in, 285
operational overview, 285-287
paths, 293-294
Unix program names, 287-288
Windows, using in, 285
commands

arguments and options, 286-289
Django

dumpdata, 104

loaddata, 104

manage.py shell, 10

runserver, 60

sql, 103

sqlall, 103

sqlclear, 103

sqlcustom, 103, 113

contexts for templates (Django)

sqlindexes, 103
sqlrest, 103
startapp, 61
startproject, 58
syncdb, 64, 103
Python
del, 27
print, 8-9
commenting system (Django), 203
comments (Python), 10

committing changes in version control
systems, 317

communication methods (in Web
development), 78

comparison operators (Python), 11
complex data type (Python), 13
concatenating sequences (Python), 16-17
conditionals (Python), 29

configuration files (Nagios), generating,
243-244

configuring
feeds (Django), 240-241

pure Google App Engine
applications, 326

constraining relationships, 96
constructors. See instantiation (Python)

contact information (vCard generation),
244-245

containers, QuerySet class (Django) as, 106
Content Management System. See CMS
context processors (Django), 136

contexts for templates (Django), 135-136

345

346

contributing to Django community

contributing to Django community, 337-338
controllers (in MVC architecture), 80
converting

Markdown content to HTML, 191

Python data types. See numeric
functions (Python)

cookies, 124
COOKIES data structure (Django), 124
copying

App Engine code to projects, 328

objects (Python), mutability and,
51-52

repositories (version control
systems), 317

sequences (Python), 16

create_update.create_object generic view
(Django), 130

create_update.update_object generic view
(Django), 130

cron jobs

in pastebin example application,
231-232

utility script for, 262-263
CRUD operations, 128
CSS (Cascading Style Sheets), 79

CSV (comma-separated values) files,
generating, 245-246

csv module (Python), 245-246
custom classes (photo gallery example)
building, 164-169
using, 169
custom datatypes (SQL), support for, 113
custom filters (Django), creating, 256-258

custom functions (SQL), support for, 113
custom managers (Django), 248
for CMS example application, 189
default object set, changing, 248-249
methods
creating, 249-250
naming, 249
custom queries (SQL), support for, 115

custom template tags (Django), creating,
250-253

custom views (Django), 131-132
customizing
admin application (Django), 235-236

with authentication decorators,
239-240

base templates, extending, 237-238
with fieldsets setting, 236-237
views, creating, 238-239
codebase (Django), 264
generic views (Django) with
dictionaries, 225
CVS (Concurrent Versions System), 313
Cygwin, 285

D

data aggregation, 90
data caching (Django), 226

data import/export, utility script for,
263-264

data normalization in forms (Django), 150

data storage methods (in Web
development), 78

data types (Python)

Boolean, 12

complex, 13

conversion. See numeric functions

(Python)

Decimal, 13

dictionaries, 26-28

float, 12

int, 12

iterables, 14

long, 12

numeric, 12-13

sequences, 14-15
concatenation, 16-17
copying, 16
functions for, 25-26
lists, 14, 17-19
operations on, 16
slicing, 15-16
strings, 14, 19-24
tuples, 15, 24-25

for variables, 10-11

databases, 78

Django

creating and updating, 103-104

non-Django SQL features, usage
of, 112-115

querying, 104-112

synchronization, 103
MySQL, 310-311
Oracle, 311
PostgreSQL, 309-310

default arguments in functions (Python) 347

setup, 62
for SQLite, 63-64
table creation, 64-65
SQLite, 308
support for, 311
DATABASE_ENGINE setting, 63
DATABASE_HOST setting, 63
DATABASE_NAME setting, 63
DATABASE_PASSWORD setting, 63
DATABASE_PORT setting, 63
DATABASE_USER setting, 63
date-based ordering of models, setting, 74
date_based.* generic views (Django), 130
db cache type (Django), 272-273

decentralized version control systems,
315-316

Decimal data type (Python), 13
declaring functions (Python), 34
* and ** in, 41-42
default arguments in, 35-36
decorators
Django
cache_control, 269
cache_page, 268
stringvalue, 258
Python

authentication decorators for
admin application, 239-240

for functions, 39, 42-44
deep copying (Python), 52

default arguments in functions (Python),
35-36

348

default object set in ORM system (Django), changing

default object set in ORM system (Django),

changing, 248-249
default ordering (in models), setting, 74

default widgets (Django), overriding,
153-154

defining
forms (Django), 142-143
initial SQL files, 113
models (Django), 91

CMS example application, 186-189

pastebin example application,
222-223

del command (Python), 27
delete method (Django), 168
order of operations, 169
deleting
directories, 287

duplicates in query results
(Django), 108
files, 286

older items (pastebin example
application), 231-232

thumbnail images (photo gallery
example), 168-169

designing URLs (Django) for pastebin
example application, 225

Development Console, 328

development runserver, 303
running, 59-61

development version of Django, 302

dictionaries (Python), 26-28
COOKIES data structure, 124

as default function arguments, 36

in Django, 28

customizing generic views
with, 225

FILES data structure, 125

GET and POST data structures,
123-124

META data structure, 125

REQUEST data structure, 124

session data structure, 124
directories

binary directories, 293

listing contents of, 286

liveblog example application, 208-211

preparing for file uploads (photo
gallery example), 161-162

removing, 287

shared applications directory,
creating, 323

site-packages directory, installing
applications to, 323

display of admin application, changing,
236-237

displaying forms (Django), 150-152
distinct method (Django), 108
division operators (Python), 13
Django. See also Django applications
admin application
changing list display, 68-69
creating blog posts, 67-69
customizing, 235-240
login, 66-67
setup, 65-66
troubleshooting, 66

anonymous functions (Python) in, 39

architectural overview, 82
block tags, 71
blog aggregator, 338
caching, 226, 265
backend types, 272-274
baseline, determining, 265-266
cache type, setting, 266
middleware, adding, 266
strategies for, 267-271
testing, 266-267
codebase
customizing, 264
testing, 279-281
community, contributing to, 337-338
core philosophies of, 82
DRY (Don’t Repeat Yourself), 84
modularity, 84-85
as Pythonic, 84
rapid development, 85
custom managers, 248

default object set, changing,
248-249

methods, creating, 249-250
methods, naming, 249
databases, setup, 62-65
decorators
cache_control, 269
cache_page, 268
stringvalue, 258
described, 7
development of, 2

dictionaries in, 28, 225

Django

documentation, 338
downloadable file generation, 243
charts and graphs, 246-248

CSV (comma-separated values)

files, 245-246

Nagios configuration files, 243-244
vCards, 244-245

downloading
development version, 302
packaged releases, 302

exception handling, 33

filters, 229

fixtures, 65, 113-115

forms, 142
data normalization, 150
defining, 142-143
displaying, 150-152
filling out, 147-149
model-based forms, 143-146
subclassing, 146-147
validating, 149-150
widgets, 152-154

function objects (Python) in, 37-38

hooking into Apache Web server with
mod_python, 304-305

imports (CMS example application),
188

installing, 302-303

interactive interpreter (Python) usage,
9-10

keyword arguments (Python) in, 42

managers, 249

349

350 Django

models
admin options, 101-102
classes (Python) and, 46-47
CMS example application, 186-189

creating and updating databases,
103-104

default ordering, setting, 74
defining, 91

designing, 62

encapsulation of methods, 89-90
enumerate function (Python) in, 30
field types, 91-92

inheritance, 97-100

Meta class, 100-101

non-Django SQL features, usage
of, 112-115

ORM (Object-Relational
Mapper), advantages of, 89-91

photo gallery example, 160-161
portability, 90

primary keys, 92-93

query syntax, ease of use, 90
querying databases, 104-112
registering, 66

relationships, 93-96

security, 90

uniqueness, enforcing, 93

MVC (Model-View-Controller)
architecture in, 80

projects, creating, 58-59
raw strings, 22

superusers, creating, 65

Syndication application, 240
feeds, configuring, 240-241
feeds, URLs for, 242
Universal Feed Parser, 242-243

templates, 70, 135
base templates, creating, 73-74

for CMS example application,
196-198

contexts, 135-136
creating, 70-71

embedding JavaScript actions
in, 215

extending, 250-260
filters, 75, 137-138
for Flatpages application, 184
inclusion, 141
inheritance, 139-141
language syntax, 136-137
liveblog example application, 209
photo gallery example, 173-179
tags, 136, 138-141

tuples in, 24-25

URL patterns, 70
creating, 72

URLs, 117
callable views, 121-122

HTTP request-response model,
122-127

include function, 120-121
multiple patterns objects, 119-120
url method, 119

URLconfs, 59, 117-118

utility scripts, 261

cron jobs, 262-263

data import/export, 263-264
variable tags, 70
view functions, 70

creating, 71-72

liveblog example application,
216-218

views, 127
custom views, 131-132

generic views, 128-131, 221. See
also pastebin example

as Python functions, 128
Django applications.
blog project example
admin application, 65-69
applications, creating, 61
databases, setup, 62-65

development runserver, running,
59-61

models, 62, 74
projects, creating, 58-59
templates, creating, 70-75
URL patterns, creating, 72
view functions, creating, 71-72
CMS example application, 185
admin views in, 193-195
custom managers for, 189
displaying stories, 198-199
enhancement suggestions, 202-203
imports for, 188
Markdown usage in, 190-192

Django applications 351

model definition for, 186-189
search functionality in, 199-201
templates for, 196-198

urls.py file, 192-193

user management, 201
views.py file, 196

workflow management, 202

converting to App Engine
applications, 328

accessing App Engine objects, 330
adding data, 331-332
copying App Engine code, 328
integrating App Engine Helper for
Django, 329-330
linking to App Engine code, 329
testing, 330
creating, 61
for Google App Engine, 333-334
evaluating, 322-323
finding, 321-322
Flatpages, 182
enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185
installing, 323
liveblog example application
Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208

Ajax libraries, setup and testing,
214-215

Ajax requirements, 212

Django applications

directory structure of, 208-211
planning, 206-207
view function, creating, 216-217

view function, using via JavaScript,
217-218

XML versus JSON, 212-213
pastebin example application, 221-222

cleaning up with cron jobs,
231-232

limited number of items displayed,
229-230

models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URULs, designing, 225

photo gallery example application, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161

PIL (Python Imaging Library),
installing, 162-163

templates, 173-179

ThumbnaillmageField class,
building, 164-169

ThumbnaillmageField class,
usage, 169

URLs setup, 169-173

sharing, 323

testing, 274-279
doctest module (Python), 275
models, testing, 276-278
running tests, 276
tools for, 278-279
unittest module (Python), 276

django-admin.py utility, directory location
of, 58

django.shortcuts module (Python), 131-132
djangogigs.com, 338

djangopeople.net, 338
Djangopluggables.com, 322

DjangoResources page (Django project
wiki), 322

DjangoSites.org, 322
__doc__ attribute (Python), 54

docstrings. See documentation strings
(Python)

doctest module (Python), 275
documentation (Django), 338
documentation strings (Python), 54-55
Dojo, 207
dollar sign ($)

in URLconfs, 118

variable (jQuery), 214

double asterisk (**), in functions (Python),
40-42,132

downloadable files, generating, 243
charts and graphs, 246-248

CSV (comma-separated values) files,
245-246

Nagios configuration files, 243-244
vCards, 244-245
downloading
Django
development version, 302
packaged releases, 302

Google App Engine Helper for
Django, 327

Google App Engine SDK, 327
Python, 295
Python-Markdown module, 190

dpaste.com, 222
DRY (Don’t Repeat Yourself) principle, 62, 84

URLs setup (photo gallery example),
169-173

dummy cache type (Django), 272
dumpdata command (Django), 104

duplicates in query results (Django),
removing, 108

dynamic content, 78

dynamic instance attributes (Python), 45,
52-53

dynamic URLs (Django), 118

dynamic Web development. See Web
development

E

Easy Install (Python add-on), 300
Eclipse IDE, 320
editing
INSTALLED_APPS tuple, 61
settings.py file, 61, 65

urls.py file, 65
editors. See text editors
elif statement (Python), 29
else statement (Python), 29
Emacs, 319
EmailField class (Django), 91
embedding
Django applications, 323
JavaScript actions, 215
enabling Flatpages application, 182-184
encapsulation of methods (Django), 89-90
encoding variable (request objects), 125
enumerate function (Python), 25-26, 29
in Django models, 30

example applications 353

environment (command line), 291
environment variables, 291-293

error handling in Flatpages application, 184.
See also exception handling

escaping HTML, 197
evaluating Django applications, 322-323
example applications
blog project
admin application, 65-69
applications, creating, 61
databases, setup, 62-65

development runserver, running,

59-61

models, 62, 74

projects, creating, 58-59

templates, creating, 70-75

URL patterns, creating, 72

view functions, creating, 71-72
CMS, 185

admin views in, 193-195

custom managers for, 189

displaying stories, 198-199

enhancement suggestions, 202-203

imports for, 188

Markdown usage in, 190-192

model definition for, 186-189

search functionality in, 199-201

templates for, 196-198

urls.py file, 192-193

user management, 201

views.py file, 196

workflow management, 202

example applications

liveblog
Ajax libraries, installing, 213-214
Ajax libraries, selecting, 207-208

Ajax libraries, setup and testing,
214-215

Ajax requirements, 212
directory structure of, 208-211
planning, 206-207

view function, creating, 216-217

view function, using via JavaScript,

217-218
XML versus JSON, 212-213
pastebin, 221-222

cleaning up with cron jobs,
231-232

limited number of items displayed,
229-230

models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225

photo gallery, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161

PIL (Python Imaging Library),
installing, 162-163

templates, 173-179

ThumbnaillmageField class,
building, 164-169

ThumbnaillmageField class,
usage, 169

URULs setup, 169-173

except clause (Python), 30-31
exception handling (Python)

in Django, 33

Http404 class, 131

exceptions, list of, 32-33

raise statement, 32-33

try-except blocks, 30-31

try-finally blocks, 31-32
exclude method (Django), 104
expanding environment variable values, 292
exporting data, utility script for, 263-264

expressions (Python), statements (Python)
versus, 38. See also regular expressions
(Python)

extend method (Python), 51
extending

base templates (admin application),
237-238

template system (Django), 250
alternative templating, 258-260
custom filters, 256-258
custom tags, 250-253
inclusion tags, 253-256

extends tag (Django), 74, 139-141
extra method (Django), 111-112

F

factory functions (Python), 14

False value (Python), 12

FastCGl, 307-308

feeds (Django)
configuring, 240-241
Universal Feed Parser, 242-243
URLs for, 242

feeds.py file, configuring, 240-241
Field class (Django), 91
field types (Django), 91-92

fields (Django), adding attributes to,
167-168

fieldsets setting (admin application),
236-237

file cache type (Django), 272-273
file extensions (Python), 10

file uploads, preparing for (photo gallery
example), 161-162

FileField class (Django), 92
files (Python)
initialization, 166-167
methods for, 33-34
removing, 286
FILES data structure (Django), 125
filling out forms (Django), 147-149
filter method (Django), 104
filtering
lists (Django) in pastebin example
application, 229-230
queries (Django), 106-107
QuerySets (Django) in generic
views, 129
filters (Django)
custom filters, creating, 256-258
safe, 197
slice, 229
in templates, 75, 137-138
finally clause (Python), 31-32
finding Django applications, 321-322
fixtures (Django), 65, 113-115

forms (Django) 355

Flatpages application, 182
enabling, 182-184
error handling, 184
templates, creating, 184
testing, 184-185
flexibility of Django, 84-85
float data type (Python), 12
floor division (Python), 13
flow control (Python), 28
conditionals, 29
loops, 29
flup module, 307-308
for loops (Python), 29
for template tag (Django), 71
foreign keys (Django), 93-94
ForeignKey class (Django), 93
Form class (Django), 142

form display options in admin application
(Django), 102

formatting
with filters, 75
strings (Python), 22-24
forms (Django), 142
data normalization, 150
defining, 142-143
displaying, 150-152
filling out, 147-149
model-based forms, 143
modifying, 145-146
saving, 143-145
subclassing, 146-147
validating, 149-150
widgets, 152-154

356

fromkeys method (Python)

fromkeys method (Python), 28
functions (Django)
get_list_or_404, 131
get_object_or_404, 131
include, 120-121
patterns, 117
render_to_response, 131
serialize, 216
functions (JavaScript), setinterval, 217

functions (Python), 34. See also methods
(Python)

* and ** in, 40-42, 132
anonymous functions, 38
in Django, 39
lambda keyword, 38-39
as objects, 36
in Django, 37-38
references, 36-37
bool, 12
calling, 34-35
declaring, 34
decorators, 39, 42-44
default arguments in, 35-36
enumerate, 29
in Django models, 30
help, 54
keyword arguments in, 35
match, 48
numeric functions, 14
reversed, 18
search, 47
for sequences, 25-26
sorted, 18
views (Django) as, 128

G

generator expressions (Python), 19

generic views (Django), 128-130, 221. See
also pastebin application

CMS example application, 196
customizing with dictionaries, 225
modifying, 130-131

GET data structure (Django), 123-124

get method (Django), 104

get method (Python), 27-28

getJSON method (jQuery), 217

get_list_or_404 function (Django), 131

get_object_or_404 function (Django), 131

Git, 315

GitHub.com, 322

Google App Engine, 325. See also Google

App Engine Helper for Django

advantages of using, 325-326

converting Django applications to App
Engine applications, 328

accessing App Engine objects, 330

adding data, 331-332

copying App Engine code, 328

integrating App Engine Helper for
Django, 329-330

linking to App Engine code, 329

testing, 330

creating Django applications for,
333-334

limitations of, 326-327

objects, accessing in Django
applications, 330

pure applications for, 326

tutorial, 327

Web sites for information, 334-335

Google App Engine Helper for Django,
327-328

downloading, 327
integrating into Django applications,
329-330
Google App Engine SDK, downloading, 327
Google Code, 322
Google SiteSearch box, 199
Gorbatchey, Alex, 230

GPL (GNUPublic License), BSD/MIT-style
licenses versus, 321

graphs, generating, 246-248

GUI animation with Ajax. See Ajax

H

handlers. See exception handling (Python)
hash mark (#), comments, 10
hash tables. See dictionaries (Python)

headers (Django), cache-related, controlling,
268-269

help function (Python), 54
help system for command line, 287

highlighted syntax in pastebin example
application, 230-231

Holovaty, Adrian, 2

HTML (HyperText Markup Language), 79
converting Markdown content to, 191
escaping, 197

HTTP (HyperText Transfer Protocol), 78

HTTP request-response model (Django), 122
middleware, 126-127
request objects, 123-125
response objects, 125-126

Http404 class (Django), 131

IndexError exception (Python)

Http404 error, raising, 33

HttpRequest object (Django), 123-125

HttpResponse object (Django), 125-126
changing MIME type in, 245

IBM DB2, 311

id attribute (Python), 50

IDs, timestamps versus, 216
if statement (Python), 29
IS, 306

ImageField class (Django), testing, 163-165.
See also photo gallery example

ImageFieldFile class (Django), 167-168

immutable variables (Python), as default
function arguments, 36

ImportError exception (Python), 32
importing
data, utility script for, 263-264
modules (Python), 48-49

imports (Django), CMS example
application, 188

imports (Python), 166

improper slicing, sequences (Python), 16
in operator (Python), 16

include function (Django), 120-121
include tag (Django), 141

inclusion of templates (Django), 141
inclusion tags (Django), creating, 253-256
indentation (Python), 9, 11, 53
IndentationError exception (Python), 32
index pages, defining URLs for, 118
IndexError exception (Python), 32

357

358 inheritance (Django)

inheritance (Django), 97 interactive interpreter (Python), 8-9
with abstract base classes, 97-99 Django usage with, 9-10
multi-table inheritance, 99-100 10Error exception (Python), 32
of templates, 139-141 IPAddressField class (Django), 91

__init__ initializer (Python), 45, 52 IPython (Python add-on), 300-301

__init__.py file, 59 IRC channel for Django information, 338

initial SQL files, defining, 113 isupper method (Python), 21

initializing is_valid method (Django), 149
files (Python), 166-167 items method (Python), 28
objects (Python), 52 iterables (Python), 14

inner classes (Python), 46 iteritems method (Python), 28

input on command line, 289-291 iterkeys method (Python), 28

insert method (Python), 18 itervalues method (Python), 28

INSTALLED_APPS tuple, editing, 61

installing J
Ajax libraries (liveblog example JavaScript, 79. See also Ajax

application), 213-214

Apache Web server with
mod_python, 304

Django, 302-303
applications, 323

actions, embedding, 215
libraries. See Ajax libraries

using view functions via (liveblog
example application), 217-218

JavaScript Object Notation. See JSON
joining

databases, 108-109

Django community, 337-338
jQuery, 207

installing (liveblog example
application), 213-214

setup and testing (liveblog example

testing installation, 303

PIL (Python Imaging Library), photo
gallery example, 162-163

Python
on Mac OS X, 296
testing installation, 299
on Unix/Linux, 296

on Windows, 296-298 application), 214-215
instantiation (Python), 45, 52 JSON (JavaScript Object Notation), 79, 212
int data type (Python), 12 Python interoperability with, 213
integrating App Engine Helper for Django XML versus. 212-213

into Django applications, 329-330

K

key argument (Python), 38
key collision (Python), 27
Keyboardinterrupt exception (Python), 32
KeyError exception (Python), 32
keys method (Python), 28
keyword arguments (Python), 41

in Django, 42

in functions, 35

keyword composition (Django), 109-110

L

lambda keyword (Python), 38-39
in authentication decorators, 240
landing pages, defining URLs for, 118

language syntax for templates (Django),
136-137

layout of admin application, changing,
236-237

len function (Python), 25-26

libraries (Ajax), liveblog example application
installing, 213-214
selecting, 207-208
setup and testing, 214-215

licensing, BSD/MIT-style licenses versus
GPL (GNU Public License), 321

lighttpd, 306
limit_choices_to argument (Django), 96

line termination characters in
files (Python), 34

linking App Engine code to projects, 329
Linux, installing Python on, 296

liveblog example 359

list comprehensions (Python), 18-19

list display in admin application, changing,
68-69

list formatting options in admin application
(Django), 102

list function (Python), 25

listcomps. See list comprehensions (Python)
listing directory contents, 286

lists (Django)

filtering in pastebin example
application, 229-230

QuerySet class as, 106

lists (Python), 14, 17-18
as default function arguments, 36
generator expressions, 19
list comprehensions, 18-19
sorting, 18, 51

list_detail.object_detail generic view
(Django), 129

list_detail.object_list generic view
(Django), 129

liveblog example
Ajax libraries
installing, 213-214
selecting, 207-208
setup and testing, 214-215
Ajax requirements, 212
directory structure of, 208-211
planning, 206-207
view function
creating, 216-217
using via JavaScript, 217-218
XML versus JSON, 212-213

360

liveblogs, defined

liveblogs, defined, 205

load tag (Django templates), 253
loaddata command (Django), 104
loading modules (Python), 49

locmem cache type (Django), 266, 272
login for admin application, 66-67

long data type (Python), 12

loops (Python), 29

loose coupling of Django, 84-85

M

Mac 0S X
installing Python on, 296

Unix command-line tools, using
in, 285

mailing lists for Django information, 338
Mako templating engine, 259-260
man system (command-line help), 287
manage.py shell command (Django), 10
manage.py utility, 59

applications, creating, 61

databases, creating and updating,

103-104
development runserver, running, 60
Manager class (Django), 104-105
managers (Django)
custom manager, 248

default object set, changing,
248-249

methods, creating, 249-250
methods, naming, 249
objects, 249

many-to-many relationships, 94-95

many-to-one relationships, 93
ManyToManyField class (Django), 95
mapping types (Python), dictionaries, 26-28

Markdown (light markup language) in CMS
example application, 190-192

match function (Python), 48

matching, searching versus (Python regular
expressions), 48

max function (Python), 25-26
membership in sequences (Python), 16
memcached cache type (Django), 272-274
Mercurial, 315

operational overview, 316-318

merging changes in version control
systems, 314

Meta class (Django), 100-101
META data structure (Django), 125
Meta inner class (Python), 46
method variable (request objects), 125
methods (Django)
all, 104
for custom managers
creating, 249-250
naming, 249
delete, 168
order of operations, 169
distinct, 108
encapsulation, 89-90
exclude, 104
extra, 111-112
filter, 104
get, 104
is_valid, 149

order_by, 108
process_request, 126-127
process_response, 127
reverse, 108
save, 143-145, 168
select_related, 108-109
url, 119
values, 108
values_list, 108
methods (jQuery), getJSON, 217
methods (Python). See also functions (Python)
for dictionaries, 27-28
for files, 33-34
for lists, 18
mutability and, 50-51
for strings, 19, 21
Microsoft SQL Server, 311
middleware (Django), 126-127
for caching, adding, 266

MIME type in HttpResponse object,
changing, 245

min function (Python), 25-26
MochiKit, 207
model-based forms (Django), 143
modifying, 145-146
saving, 143-145
Model-View-Controller. See MVC architecture
ModelChoiceField class (Django), 146
ModelForm class (Django), 143
ModelMultipleChoiceField class (Django), 146
models (Django)
admin options, 101-102
classes (Python) and, 46-47

models (Django)

databases
creating and updating, 103-104

non-Django SQL features, usage
of, 112-115

querying, 104-112
default ordering, setting, 74
defining, 91
CMS example application, 186-189

pastebin example application,
222-223

designing, 62
encapsulation of methods, 89-90
enumerate function (Python) in, 30
field types, 91-92
inheritance, 97
with abstract base classes, 97-99
multi-table inheritance, 99-100
Meta class, 100-101

ORM (Object-Relational Mapper),
advantages of, 89-91

photo gallery example, 160-161

portability, 90

primary keys, 92-93

query syntax, ease of use, 90

registering, 66

relationships, 93
constraining relationships, 96
foreign keys, 93-94
many-to-many relationships, 94-95
one-to-one relationships, 96

security, 90

testing, 276-278

uniqueness, enforcing, 93

361

362

models (in MVC architecture)

models (in MVC architecture), 79-81
models.py file, 61

liveblog example application, 209

models, designing, 62

pastebin example application, 222-223

photo gallery example, 160-161
modifying

generic views (Django), 130-131

model-based forms (Django), 145-146
modularity of Django, 84-85
modules (Python)

calendar, 254

csv, 245-246

django.shortcuts, 131-132

doctest, 275

importing, 48-49

loading, 49

operator, 110

packages, 49-50

Python-Markdown module,
downloading, 190

re, 47
Stringl O, 245
unittest, 276
mod_python module
hooking Django into, 304-305
installing, 304
serving static files, 305-306
mod_wsgi module, 306-307
MooTools, 207
multi-table inheritance (Django), 99-100
multiple patterns objects (Django), 119-120

mutability of objects (Python), 50
copying objects and, 51-52
method calls and, 50-51

mutable variables (Python), as default
function arguments, 36

MVC (Model-View-Controller) architecture,
79-80

in Django, 80
models in, 80-81
templates in, 81-82
views in, 81
Myghty templating engine, 259
MySQL, 310-311

N

Nagios configuration files, generating,
243-244

named arguments, positional arguments
versus, 119

NameError exception (Python), 32

namespace. See environment
(command line)

naming conventions

managers/manager methods
(Django), 249

partial templates (Django), 255
negative indices in Python sequences, 15
nested classes. See inner classes (Python)
nested queries (Django), 106-107
Nginx, 306
non-Django SQL features, usage of, 112-115
None value (Python), 12

nonmembership in sequences (Python), 16

normalization. See data normalization
not in operator (Python), 16

NULL. See None value (Python)
NullBooleanField class (Django), 92
numeric data types (Python), 12-13
numeric functions (Python), 14

numeric operators (Python), 13-14

0

object cache (Django), 269-270

object-oriented programming (OOP) in
Python, 44

class definitions, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46
Object-Relational Mapper. See ORM
objects (Django), printing, 137
objects (Python)
dynamic instance attributes, 52-53
functions as, 36
in Django, 37-38
references, 36-37
initializing, 52
mutability, 50
copying objects and, 51-52
method calls and, 50-51
objects manager (Django), 249
one-to-one relationships, 96
OneToOneField class (Django), 96

online resources. See Web sites

pagination, Django support for

OOP (object-oriented programming) in
Python, 44

class definitions, 44-45
Django models nad, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46
open method (Python), 33
operator module (Python), 110
operators (Python), 11
numeric, 13-14
for sequences, 16
options for commands, 286, 288-289
Oracle, 311

order of operations for delete method
(Django), 169

ordering of models, setting, 74
order_by method (Django), 108
ORM (Object-Relational Mapper), 78
advantages of, 89-91
custom managers (Django), 248

default object set, changing,
248-249

methods, creating, 249-250
methods, maning, 249
output on command line, 289-291
overriding default widgets (Django), 153-154

P

packaged releases of Django, 302
packages (Python), 49-50, 59
pagination, Django support for, 202

363

364

partial templates (Django), naming

partial templates (Django), naming, 255
pastebin example, 221-222
cleaning up with cron jobs, 231-232

limiting number of items displayed,
229-230

models.py file, 222-223
syntax highlighting in, 230-231
templates, creating, 223-225
testing, 226-229
URLs, designing, 225
path variable (request objects), 125
paths, 293-294
binary directories, 293
updating for Python, 296-298
patterns function (Django), 117

patterns objects (Django), using multiple,
119-120

per-view caching (Django), 268

percent sign (%), string format operator,
22-24

permissions, database access, 63

photo gallery example, 159
file uploads, preparing for, 161-162
ImageField class, testing, 163-165
models.py file, 160-161

PIL (Python Imaging Library),
installing, 162-163

templates, 173-179

ThumbnaillmageField class
building, 164-169
usage, 169

URULs setup, 169-173

PIL (Python Imaging Library), installing
(photo gallery example), 162-163

pipe (|)
operator (Django), 109, 290
template filters (Django), 137
pipes (command line), 289-291
plain text templating (Django), 258

planning liveblog example application,
206-207

plus sign (+), concatenation, 16
pop method (Python), 28
popitem method (Python), 28
portability of models (Django), 90

positional arguments, named arguments
versus, 119

POST data structure (Django), 123-124
PostgreSQL, 309-310
pound sign (#), comments, 10

presentation methods (in Web
development), 79

primary keys (Django), 92-93
print command (Python), 8-9
printing

environment state, 291

objects (Django), troubleshooting, 137
process_request method (Django), 126-127
process_response method (Django), 127
program names in Unix, 287-288
project management software, 318-319
projects (Django), creating, 58-59
prompts (command line), 286
Prototype, 207
.py file extension, 10
PyCha, 246-248
PyDev, 320

Python
add-ons, 300
Easy Install, 300
IPython, 300-301
classes
creating, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiating, 45, 52
subclassing, 46
coding style, 53
documentation strings, 54-55
indentation, 53
single-line suites, 54
spaces versus tabs, 53
comments, 10
data types
Boolean, 12
complex, 13
Decimal, 13
dictionaries, 26-28
float, 12
int, 12
iterables, 14
lists, 14, 17-19
long, 12
numeric, 12-13
sequences, 14-17, 25-26
strings, 14, 19-24
tuples, 15, 24-25
described, 7

Python

dictionaries
COOKIES data structure, 124
FILES data structure, 125

GET and POST data structures,
123-124

META data structure, 125
REQUEST data structure, 124
session data structure, 124
downloading, 295
exception handling
in Django, 33
exceptions, list of, 32-33
raise statement, 32-33
try-except blocks, 30-31
try-finally blocks, 31-32
expressions, statements versus, 38
file extensions, 10
files
initialization, 166-167
methods for, 33-34
flow control, 28
conditionals, 29
loops, 29
functions, 34
* and ** in, 40-42, 132
anonymous functions, 38-39
calling, 34-35
declaring, 34
decorators, 39, 42-44
default arguments in, 35-36
keyword arguments in, 35
numeric functions, 14
as objects, 36-38
views (Django) as, 128

365

Python

indentation, 9, 11
installing
on Mac OS X, 296
testing installation, 299
on Unix/Linux, 296
on Windows, 296-298
interactive interpreter, 8-9
Django usage with, 9-10
JSON interoperability with, 213
modules
calendar, 254
csv, 245-246
importing, 48-49
loading, 49
packages, 49-50
Stringl O, 245

object-oriented programming (OOP)
in, 44

class definitions, 44-45
Django models and, 46-47
dynamic instance attributes, 52-53
inner classes, 46
instantiation, 45, 52
subclassing, 46
objects
dynamic instance attributes, 52-53
initializing, 52
mutability, 50-52
operators, 11
numeric operators, 13-14
packages, 59
regexes in URLconfs, 118

regular expressions, 47

re module, 47

searching versus matching, 48
sequences

tuples, 48

unpacking in functions, 40
source code, examining, 165
strings, raw strings, 64
symbols, lack of, 11
tuples, two-tuples, 236
updating path to, 296-298
variables, 10-11
versions of, 8, 295
viewing version number, 295

Python Extensions for Windows, 296

Python Imaging Library (PIL), installing
(photo gallery example), 162-163

Python-Markdown module,
downloading, 190

python-mode (Emacs), 319
Pythonic, Django as, 84
PYTHONPATH environment variable, 57

Q

Q class (Django), 109-110

~Q, in keyword composition (Django),
109-110

queries (Django), building dynamically, 42
query syntax
of models (Django), ease of use, 90
of databases (Django), 104-112
QueryDict class (Django), 123

QuerySet class (Django), 104-105
as database query, 105-106
joining databases, 108-109

keyword composition with Q

and ~Q, 109-110
as list container, 106
modifying SQLqueries, 111-112
as nested queries, 106-107
removing duplicates, 108
sorting query results, 108

QuerySets (Django), filtering in generic
views, 129

quote marks, types of, 64

R

raise statement (Python), 32-33
raising Http404 error, 33
range function (Python), 25-26
rapid development in Django, 85
raw strings (Django), 22
raw strings (Python), 22, 64

in regular expressions, 47
raw_post_data variable (request objects), 125
RCS (Revision Control System), 313
re module (Python), 47
read method (Python), 34
readlines method (Python), 34
recording changesets, 317
redirection (command line), 289-291
redirection operators (<>), 291

references of function objects (Python),
36-37

rows (in database tables)

regexes (Python), in URLconfs, 118
registering

as Django developer, 338

models (Django), 66
regression testing, 279
regular expressions (Python), 47

re module, 47

searching versus matching, 48
relationships between models (Django), 93

constraining relationships, 96

foreign keys, 93-94

many-to-many relationships, 94-95

one-to-one relationships, 96
removing. See deleting
render_to_response function (Django), 131

repetition/duplication of sequences
(Python), 16

repositories (version control systems),
copying, 317

repr function (Python), 25

REQUEST data structure (Django), 124
request middleware (Django), 126-127
request objects (Django), 123-125
requests (Web development), 78
response middleware (Django), 127
response objects (Django), 125-126
responses (Web development), 78
reverse method (Django), 108

reverse method (Python), 51

reversed function (Python), 18, 26, 51
root URLs (Django), regexes for, 118
rows (in database tables), 78

367

368

rstrip method (Python)

rstrip method (Python), 21, 34
running development runserver, 59-61

runserver command (Django), 60

S

safe filter (Django), 197
save method (Django), 143-145, 168
saving

model-based forms (Django), 143-145

thumbnail images (photo gallery
example), 168-169

SCCS (Source Code Control System), 313
schema definition with initial SQL files, 113
scripts. See utility scripts (Django)

search function (Python), 47

search functionality in CMS example
application, 199-201

searching, matching versus (Python), 48
security of models (Django), 90

selecting Ajax libraries (liveblog example
application), 207-208

select_related method (Django), 108-109
Selenium, 279
Selenium Core, 279
Selenium IDE, 279
Selenium RC, 279
self keyword (Python), 44
sequences (Python), 14-15
concatenation, 16-17
copying, 16
functions for, 25-26

lists, 14, 17-18
generator expressions, 19
list comprehensions, 18-19
sorting, 18, 51
operations on, 16
slicing, 15-16
strings, 14, 19-21
formatting, 22-24
string designators, 22
tuples, 15, 24
in Django, 24-25
single-element tuples, 48
unpacking in functions, 40
serialize function (Django), 216
server performance, benchmarking, 265-266

server variables for request objects (Django),
124-125

session data structure (Django), 124
sessions, 124
setdefault method (Python), 27-28
setinterval function (JavaScript), 217
settings.py file, 59

database settings, 63

editing, 61, 65

setup of Ajax libraries (liveblog example
application), 214-215

shallow copies (Python), 16, 51
shared applications directory, creating, 323
sharing Django applications, 323

shell (Python). See interactive interpreter
(Python)

shortcuts for custom views (Django),
131-132

simple.direct_to_template generic view
(Django), 129

single-element tuples (Python), 48
single-line suites (Python), 54

site-packages directory, installing
applications to, 323

site-wide caching (Django), 267
slice filter (Django), 229
slicing sequences (Python), 15-16
sort method (Python), 18, 51
sorted function (Python), 18, 26, 51
sorting
lists (Python), 18
query results (Django), 108
source code (Python), examining, 165
source control. See version control systems
spaces (Python), tabs (Python) versus, 53
spam in pastebins, 228
Sphinx, 203
split method (Python), 21
splitlines method (Python), 21
SQL (Structured Query Language), 78

non-Django SQL features, usage of,
112-115

sql command (Django), 103

SQL databases. See databases

sqlall command (Django), 103

sqglclear command (Django), 103
sqlcustom command (Django), 103, 113
sqlindexes command (Django), 103

style of coding

SQLite, 308
setup for blog project example, 63-64
sqlrest command (Django), 103
ssi tag (Django), 141
startapp command (Django), 61
startproject command (Django), 58
statements (Python)
for conditionals, 29
expressions (Python) versus, 38
for loops, 29
raise, 32-33
static class members, 44
static content, 78

static files, serving in Apache Web server,
305-306

stderr stream, 290
stdin stream, 290
stdout stream, 290
str function (Python), 25
string designators (Python), 22
StringlO module (Python), 245
strings in URLs, 192
strings (Python), 14, 19-21
concatenation, 16-17
formatting, 22-24
raw strings, 64
in regular expressions, 47
string designators, 22
stringvalue decorator (Django), 258
strip method (Python), 21
Structured Query Language. See SQL
style of coding. See coding style (Python)

369

370

subclassing

subclassing
forms (Django), 146-147
in Python, 46
Subversion, 314-315
sum function (Python), 26
superusers (Django), creating, 65
symbolic groups (Python), 118
symbols (Python), lack of, 11
syncdb command (Django), 64, 103
synchronization of databases (Django), 103
Syndication application (Django), 240
feeds
configuring, 240-241
Universal Feed Parser, 242-243
URLs for, 242
Syntax Highlighter, 230

syntax highlighting (pastebin example
application), 230-231

SyntaxError exception (Python), 33

T

tables (in databases), 78
creating, 64-65
tabs (Python), spaces (Python) versus, 53
tag libraries (Django), 252
tags (Django templates), 136, 138-139
block, 139-141
extends, 139-141
include, 141
ss1, 141

template languages, 79

template system (Django), extending, 250
alternative templating, 258-260
custom filters, 256-258
custom tags, 250-253
inclusion tags, 253-256

template tags (Django), cache, 271

templates (Django), 70, 135
base templates

creating, 73-74

extending, 237-238
CMS example application, 196-198
contexts, 135-136
creating, 70-71

for pastebin example application,
223-225

embedding JavaScript actions in, 215
filters, 137-138
applying, 75
Flatpages application, 184
inclusion, 141
inheritance, 139-141
language syntax, 136-137
liveblog example application, 209
partial templates, naming, 255
photo gallery example, 173-179
tags, 136, 138-139
block, 139-141
extends, 139-141
include, 141
ss1, 141
templates (in MVC architecture), 81-82
templatetags directory (Django), 252

Terminal application, 285
testing

Ajax libraries (liveblog example
application), 214-215

applications (Django), 274-275
doctest module (Python), 275
models, testing, 276-278
running tests, 276
tools for, 278-279
unittest module (Python), 276

caching (Django), 266-267

codebase (Django), 279-281

converted App Engine
applications, 330

feeds (Django), 242-243
Flatpages application, 184-185

ImageField class (Django), photo
gallery example, 163-165

installation (Django), 303
pastebin example application, 226-229
Python installation, 299

text editors, 319-320

TextField class (Django), 91

TextMate, 320

third-party applications. See Django
applications

third-party tools. See add-ons

throwing exceptions (Python), raise
statement, 32-33

ThumbnaillmageField class (photo gallery
example)

building, 164-169
usage, 169

unigueness of models (Django), enforcing 371

timestamps, IDs versus, 216
toolkits (Ajax). See libraries (Ajax)

tools for testing applications (Django),
278-279

Trac, 319

triggers (SQL), support for, 113

triple quotes, in Python strings, 22-24

troubleshooting. See also testing
admin application problems, 66
printing objects (Django), 137

True value (Python), 12

trunk (version control systems), 314

try-except blocks (Python), 30-31

try-finally blocks (Python), 31-32

tuple function (Python), 25

tuples (Python), 15, 24
in Django, 24-25
single-element tuples, 48
two-tuples, 236

Twill, 279

two-tuples (Python), 236

type attribute (Python), 50

TypeError exception (Python), 33

types (Python). See data types (Python)

U

unbound forms (Django), 147-149
UnboundLocalError exception (Python), 33

unicode function (Python), 25
Unicode strings (Python), 22

uniqueness of models (Django),
enforcing, 93

372

unittest module (Python)

unittest module (Python), 276

Universal Feed Parser, 242-243

Unix
command line. See command line
installing Python on, 296
program names explained, 287-288

unnamed functions. See anonymous
functions (Python)

unpacking sequences (Python) in
functions, 40

update method (Python), 28, 51
updating path for Python, 296-298

uploading files, preparing for (photo gallery
example), 161-162

upper method (Python), 18
url method (Django), 119
URL patterns (Django), 70
CMS example application, 192-193
creating, 72
URLconfs (Django), 59, 117-118
URLField class (Django), 91
URLs (Django), 117
callable views, 121-122

designing for pastebin example
application, 225

for feeds, 242
HTTP request-response model, 122
middleware, 126-127
request objects, 123-125
response objects, 125-126
include function, 120-121
multipled patterns objects, 119-120

setup (photo gallery example),
169-173

strings in, 192

url method, 119

URLconfs, 59, 117-118
urls.py file, 59

CMS example application, 192-193

editing, 65
liveblog example application, 208

user management in CMS example
application, 201

user variable (request objects), 125
utility scripts (Django), 261

cron jobs, 262-263

data import/export, 263-264

V

“vacuuming.” See cron jobs
validating forms (Django), 149-150
value attribute (Python), 50
ValueError exception (Python), 33
values method (Django), 108
values method (Python), 28
values_list method (Django), 108
varargs (Python), 41

variable arguments (Python), 41
variable tags (Django), 70
variables (Python), 10-11

environment variables, 57, 291-293

mutable/immutable variables, as
default function arguments, 36

vCards, generating, 244-245

version control systems, 313-314
centralized version control, 315
decentralized version control, 315-316
merging changes in, 314
operational overview, 316-318
trunk and branches approach, 314

version numbers (Python), viewing, 295

view functions (Django), 70
creating, 71-72

liveblog example application,
216-217

using via JavaScript (liveblog example
application), 217-218
viewing Python version number, 295
views (Django), 127
callable views, 121-122
CMS example application
admin views, 193-195
generic views, 196

creating for admin application,
238-239

custom views, 131-132

generic views, 128-130, 221. See also
pastebin example

customizing with dictionaries, 225
modifying, 130-131
as Python functions, 128
views (in MVC architecture), 79-81
views (SQL), support for, 113
views.py file, 61
in CMS example application, 196
Vim, 320
vObject module, 244

void. See None value (Python)

Web sites

W

Web development

communication methods, 78

data storage methods, 78

Django core philosophies, 82
DRY (Don’t Repeat Yourself), 84
modularity, 84-85
as Pythonic, 84
rapid development, 85

MVC (Model-View-Controller)
architecture, 79-80

in Django, 80
models in, 80-81
templates in, 81-82
views in, 81
presentation methods, 79
Web frameworks, development of, 1

Web Server Gateway Interface (WSGI),
306-307

Web servers

Apache with mod_python
hooking Django into, 304-305
installing, 304
serving static files, 305-306

development runserver, 303
running, 59-61

FastCGlI, 307-308

WSGI (Web Server Gateway
Interface), 306-307

Web sites
finding Django applications, 321-322

Google App Engine information,
334-335

to register as Django developer, 338

373

374

while loops (Python)

while loops (Python), 29
Widget class (Django), 152
widgets (Django), 152-154
Willison, Simon, 2
Windows

installing Python on, 296-298

Unix command-line tools, using
in, 285

workflow management in CMS example
application, 202

wrappers. See decorators
write method (Python), 34
writelines method (Python), 34

WSGI (Web Server Gateway Interface),
306-307

X-Z

XHTML, 79
XML, 79

JSON versus, 212-213
xrange function (Python), 26

Yahoo! User Interface (YUI), 208
YAML file, 326
YUI (Yahoo! User Interface), 208

zip function (Python), 26

Colophon

We tried to approach the development of this book like we would a software project.
We wanted to make our lives easier by using well-tested open source tools, especially ones
that enable group collaboration. None of what we did is radical or fancy, but in the world
of print publishing, there’s still a surprising reliance on a workflow that boils down to
e-mail attachments in a certain proprietary word processor format, and we wanted to
break free from that. For the curious, here’s a list of the most important open source tools
we used during the preparation, writing, and editing of this book.

For version control of our manuscript and project files, we used Subversion (with a
little Git and Mercurial for flavor). It’s hard to list all the ways in which using version
control makes this sort of work better, but here are some of them: complete history of the
project; ability to work in parallel, even in difterent sections of the same file, without step-
ping on each other’s toes; and the security of a complete copy of the project in at least
four places at all times.

Trac, the lightweight software project management system written in Python, gave us
convenient tracking of changes, as well as wiki-based shared notes. The combination of
Trac and Subversion (or any one of the other version-control backends supported
through contributed plugins) is very powerful, even for a (largely) non-code project like
ours. There’s nothing like a colorized diff to give you a feeling for how much work you
got done that day or to help you see exactly what got changed in the latest round of edits.

Our manuscript was made up of multiple plain text files created and edited using Vim
on Win32 or Linux machines and TextMate on Macs. They were written using the
Markdown text markup system, which made it easy to generate HTML, PDF®, and
other output formats as needed. Markdown was chosen because it focuses on readability
and minimalistic semantic markup, both of which really matter when you are writing. To
compile our text files (.txt or .mkd), we ran the seminal make utility, which executed
Markdown-Python (along with the Wrapped Tables [wtables] extension), compiling all
the text files into HTML.

For internal communication, we used a mailing list powered by Mailman, the mailing
list manager written in Python. In addition to providing the core mailer services, Mail-
man also archived each message, so we could go back and refer to them without having
to worry about keeping them within our e-mail clients.

Operating systems with sophisticated package management are a blessing when writing
about a complicated software ecosystem. Need to install SQLite? Memcached? Mako?
PostgreSQL? Apache? No problem. We benfitted from the excellent package management

376

Colophon

systems built into the Debian, Ubuntu, and FreeBSD operating systems, as well as the
MacPorts system for OS X.

That the Python language is a key player here too almost goes without saying. In addi-
tion to the obvious, we also used Python in support of our quality control efforts. Simple
Python scripts parsed our manuscript files, testing interactive Python examples
embedded in manuscript files using the doctest module, and updating the code samples
we drew from larger, working applications. Python code was also used to scan all manu-
script files and generate updated Table of Contents text files so at any time we could see
our progression. Python was also used to execute the Markdown-Python compiler that

coverted our text files to HTML. All three of us have been lucky enough to be able to
use Python extensively in our professional work, and we wish you the same.

Our Makefile also contained directives to collate the produced content, such as com-

bining all the HTML into a single manuscript file, compressing content into ZIP archives,

opening each HTML file in separate Web browser windows, and also generating PDF
files (with the help of the html2ps [not the PHP one; the other one| and Ghostscript’s

ps2pdf£ filters).

Last but not least, we “ate our own dog food” by creating the book’s Web site with

Django!

The bridge on the cover is Erasmus Bridge in Rotterdam, Netherlands.

Software Link

Subversion http://subversion.tigris.org

Trac http://trac.edgewall.org

Mailman http://www.gnu.org/software/mailman
Markdown http://daringfireball.net/projects/markdown
Markdown-Python http://freewisdom.org/projects/python-markdown
wtables http://brian-jaress.livejournal.com/5978.html
make http://www.gnu.org/software/make/
TextMate http://macromates.com

Vim http://www.vim.org

Ghostscript http://pages.cs.wisc.edu/~ghost/

html2ps http://user.it.uu.se/~jan/htmi2ps.html
Firefox http://mozilla.com/firefox

Ubuntu http://ubuntu.com

FreeBSD http://freebsd.org

http://subversion.tigris.org
http://trac.edgewall.org
http://www.gnu.org/software/mailman
http://daringfireball.net/projects/markdown
http://freewisdom.org/projects/python-markdown
http://brian-jaress.livejournal.com/5978.html
http://www.gnu.org/software/make/
http://macromates.com
http://www.vim.org
http://pages.cs.wisc.edu/~ghost/
http://user.it.uu.se/~jan/html2ps.html
http://mozilla.com/firefox
http://ubuntu.com
http://freebsd.org

Colophon 377

Software Link

Macports http://macports.org
Python http://python.org

Django http://djangoproject.com

The Netherlands is also the birthplace of Guido van Rossum, creator of the Python
language. Django, too, serves as a bridge connecting the potentially wild world of Web
application development to everyday people who want to publish online without having
to worry about writing complex server code, SQL statements, or what “MVC” stands for.

http://macports.org
http://python.org
http://djangoproject.com

This page intentionally left blank

A

. . v
Addlthnal Resources for s PRENTICE popen
Mastering Python °s HALL Wesley

covre f

»PYTHO

program ming

WESLEY J. CHUN

Rapid GUI Programming with Python and Qt: The Definitive Guide

to PyQt Programming

Whether you're building GUI prototypes or full-fledged cross-platform
GUI applications with native look-and-feel, PyQt 4 is your fastest,
easiest, most powerful solution. Qt expert Mark Summerfield has written
the definitive best-practice guide to PyQt 4 development.

live.es_s_ol1_$_®

Python

FW‘dafTE‘rltEils

Core Python Programming

The complete developer’s guide to Python! Leading Python developer
and trainer Wesley Chun helps you learn Python quickly and compre-
hensively so you can immediately succeed with any Python project.
Using practical examples, Chun covers the fundamentals of Python
and delves deeply into advanced topics as well.

ISBN-13: 978-0-13-226993-3

ISBN-13: 978-0-13-235418-9

Self-Paced, Personal Video Training for Learning Python!

Featuring leading Python trainer Wesley Chun, this set of video lessons
provides a solid foundation for new and current Python programmers.

LiveLessons are video courses on DVD with a book supplement that
are organized into bite-sized, self-contained sessions—you’ll learn key
skills in as little as five minutes!

To learn more about LiveLessons, visit mylivelessons.com.

ISBN-13: 978-0-13-714341-2

in'nrml'l' For more information and to read sample material,
please visit informit.com.

Safa rl Titles are also available at safari.informit.com.

Books Online

m i

Programming
in Python 3

Developer's Library

Programming in Python 3:

A Complete Introduction
to the Python Language

Mark Summerfield
ISBN-13: 978-0-13-712929-4

Developer’s Library

ESSENTIAL REFERENCES FOR
PROGRAMMING PROFESSIONALS

m Third Edition

Pytho

ESSENTIAL REFERENCE

Developer's Library

Python Essential
Reference, Third Edition

David M. Beazle
ISBN-13: 978-0-672-32862-6

Other Developer’s Library Titles

TITLE

MySQL, Fourth Edition
Zend Studio for Eclipse
Developer’s Guide
Dojo: Using the Dojo
JavaScript Library to
Build Ajax Applications

Programming in Objective-C 2.0

AUTHOR
Paul DuBois

Peter Macintyre / lan Morse

James E. Harmon

Stephen G. Kochan

Developer’s Library books are available at most retail and online
bookstores. For more information or to order direct, visit our
online bookstore at informit.com/store.

Online editions of all Developer’s Library titles are available by
subscription from Safari Books Online at safari.informit.com.

Python

PHRASEBOOK

Python Phrasebook

Brad Dayley
ISBN-13: 978-0-672-32910-4

ISBN-13
978-0-672-32938-8

978-0-672-32940-1

978-0-13-235804-0

978-0-321-56615-7

Developer’s
Library

informit.com/devlibrary

	Table of Contents
	Introduction
	Where Web Frameworks Come From
	A Better Way
	We’re Not in Kansas Anymore
	Web Development Is Better with Python and Django

	I: Getting Started
	1 Practical Python for Django
	Python Skills Are Django Skills
	Getting Started: Python’s Interactive Interpreter
	Python Basics
	Python Standard Types
	Flow Control
	Exception Handling
	Files
	Functions
	Object-Oriented Programming
	Regular Expressions
	Common Gotchas
	Coding Style (PEP 8 and Beyond)
	Summary

	2 Django for the Impatient: Building a Blog
	Creating the Project
	Running the Development Server
	Creating the Blog Application
	Designing Your Model
	Setting Up the Database
	Setting Up the Automatic admin Application
	Trying Out the admin
	Making Your Blog’s Public Side
	Finishing Touches
	Summary

	3 Starting Out
	Dynamic Web Site Basics
	Understanding Models, Views, and Templates
	Overall Django Architecture
	Core Philosophies of Django
	Summary

	II: Django in Depth
	4 Defining and Using Models
	Defining Models
	Using Models
	Summary

	5 URLs, HTTP Mechanisms, and Views
	URLs
	Modeling HTTP: Requests, Responses, and Middleware
	Views/Logic
	Summary

	6 Templates and Form Processing
	Templates
	Forms
	Summary

	III: Django Applications by Example
	7 Photo Gallery
	The Model
	Preparing for File Uploads
	Installing PIL
	Testing ImageField
	Building Our Custom File Field
	Using ThumbnailImageField
	Setting Up DRY URLs
	The Item App’s URL Layout
	Tying It All Together with Templates
	Summary

	8 Content Management System
	What’s a CMS?
	The Un-CMS: Flatpages
	Beyond Flatpages: A Simple Custom CMS
	Possible Enhancements
	Summary

	9 Liveblog
	What Exactly Is Ajax?
	Planning the Application
	Laying Out the Application
	Putting the Ajax In
	Summary

	10 Pastebin
	Defining the Model
	Creating the Templates
	Designing the URLs
	Trying It Out
	Limiting Number of Recent Pastes Displayed
	Syntax Highlighting
	Cleanup Via Cron Job
	Summary

	IV: Advanced Django Techniques and Features
	11 Advanced Django Programming
	Customizing the Admin
	Using Syndication
	Generating Downloadable Files
	Enhancing Django’s ORM with Custom Managers
	Extending the Template System
	Summary

	12 Advanced Django Deployment
	Writing Utility Scripts
	Customizing the Django Codebase Itself
	Caching
	Testing Django Applications
	Summary

	V: Appendices
	A: Command Line Basics
	Putting the “Command” in “Command Line”
	Options and Arguments
	Pipes and Redirection
	Environment Variables
	The Path
	Summary

	B: Installing and Running Django
	Python
	Django
	Web Server
	SQL Database
	Summary

	C: Tools for Practical Django Development
	Version Control
	Project Management Software
	Text Editors

	D: Finding, Evaluating, and Using Django Applications
	Where to Look for Applications
	How to Evaluate Applications
	How to Use Applications
	Sharing Your Own Application

	E: Django on the Google App Engine
	Why the App Engine Matters
	Pure Google App Engine Applications
	Limitations of the App Engine Framework
	Google App Engine Helper for Django
	Integrating the App Engine
	Creating a New Django Application That Runs on App Engine
	Summary
	Online Resources

	F: Getting Involved in the Django Project

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

	Colophon

