


ADVANCED MAC 05 X PROGRAMMING
THE BIG NERO RANCH GUIDOE

MARK DALRYMPLE

)

nero

rancH



Advanced Mac OS X Programming

Advanced Mac OS X Programming: The Big Nerd
Ranch Guide

by Mark Dalrymple

Copyright © 2011 Big Nerd Ranch, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recoring, or likewise. For information regarding permissions, contact

Big Nerd Ranch, Inc.

154 Krog Street

Suite 100

Atlanta, GA 30307

(404) 478-9005
http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

Aperture, Apple, AppleShare, Aqua, Bonjour, Carbon, Cocoa, Cocoa Touch, Final Cut Pro, Finder, iChat, Instruments, Interface
Builder, i0S, iTunes, Keychain, Leopard, Mac, Mac OS, MacBook, Objective-C, Quartz, QuickTime, Rosetta, Snow Leopard,
Spotlight, Tiger, Time Machine, and Xcode are trademarks of Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

ISBN 10 0321706250
ISBN 13 978-0321706256

Library of Congress Control Number 2011931708

First printing, August 2011


http://www.bignerdranch.com/
http://www.informit.com

Dedication

For Zoe. May she grow up to be as geeky as her Weird Uncle Bork.



This page intentionally left blank



Acknowledgments

This book is based upon the experiences teaching a five-day class at The Big Nerd Ranch called
Advanced Mac OS X Bootcamp. The patience and curiousity of my students has made this a more
complete and comprehensible introduction to the plumbing that makes Mac OS X a reliable, flexible,
and high-performance system.

Special thanks go to Jeremy Sherman. Jeremy stepped up and taught one of the Advanced Bootcamps
when I was unable to so. Along the way he made numerous improvements to this book and associated
course materials, helping to modernize and robusticize the code. Jeremy is also responsible for the
excellent under-the-hoods look at Blocks.

Incredible thanks go to Aaron Hillegass, my co-author on the first two editions of this book. Many
moons ago Aaron took a chance on this random guy sitting in the back of a Cocoa class in Asheville.
Over the years I've learned from Aaron more than I imagined possible about writing, teaching, and
treating others well.

Susan Loper, the tireless editor, performed acts of magic on the purple prose she was given.

In preparing this book, many people reviewed the drafts and brought errors to our attention. The

most astonishing quantity of corrections over the years came from Bill Monk. It would be difficult to
overstate Bill's contributions. Other technical reviewers who submitted errors or offered suggestions:
John Vink, Juan Pablo Claude, Carl-Johan Kihlborn, Mike Morton, Ajeya Vempati, Eric Peyton, Chris
Ridd, Michael Simmons, David Southwick, Jeremy Wyld, Richard Wolf, Tom Van Lenten, Dave
Zarzycki, James Spencer, Greg Miller, Anne Halsall, Roy Lovejoy, Jonathan Saggau, Jim Magee, and
Rob Rix. They made this book better with their useful corrections and suggestions. Any errors that
remain in this book are completely my fault.

I would also like to thank my wife, my “Spousal Overunit” Sharlotte DeVere, for her support, patience
and understanding.



This page intentionally left blank



Table of Contents

FOTEWOIA ...ttt et ea e XV
INEOAUCTION ..outiiiiiiii e ettt e e et eaeeans Xvii
Mac OS X: Built t0 EVOIVE ..o.uiniiiiiii e Xvii

ThisS BOOK «..ueiiiiiii e XVii
Typographical CONVENLIONS ........cuiuiiniiniiteiiei ettt ettt et e e e enees Xix
Online MAterialS ......vuniiiniiiii ittt ettt et e eaaee Xix

L. € and ODBJECHIVE-C ....eniiiiiiei et ettt e e e e et et et e et et et e eanas 1
G e ettt et e e 1

The Compiler PIPEIINE .......ounieniiii e ae e 1

The C PIEPTOCESSOT ..euinenin ettt ettt et ettt et et et et e e et e e e e e e e e e e e e e anas 2

Const and volatile variables ............ccoooiiiiiiiiiiiiiii 13

Variable argument JIStS .........ouuiuniiniiii e 13

BitwiSe OPEIAtIONS ....eueniiiiin ettt e et et e 21

(0] 0] 15161 5 A PP PPN 27

C callbacks in ODJECHVE-C ...c.uiuiiiiiiiiiiiiiei ettt e e eaas 27
ODBJECHIVE-C 2.0 ..ottt e e et e 29

EXEICISES .eniiiiiiei ettt ettt ena e 40

B N TSl 00) 101011 ) TN 43
Handy Flags ....oouiiiii e 43
DEDUGZING . .eniiiie i et 44

WATTHINES ettt et et ettt ettt et et et et et et et et et et et e e eaaaen 45

Seeing Preprocessor OULPUL ........cuiuieiiii ittt et ettt e e 46
Seeing the Generated ASSEMbBlY COdE ......ocuiiuiiniiniiiiiii e 47
Compiler OPLMIZATION ....ueninii ittt et e e et et et e et e et e e e e e e e aaeeneans 48
GO C EXEEINSIONS ..euueiiniiiiiieiii ittt et et ettt et e et et et e ea e e e e e eaneenaens 49
Name ManGIiNG ....c.oeuiniiii ettt ea e 50
Testing the COMPIIET VETSION ...c.uiuniiniiiiiiiiiii e e e eieanes 50

The OPUIMIZET ..c.uenniniiiii ettt et ettt et e e e e 50
VECLOTIZAION ... eitiiiiniii ittt et et et e e et e e 51

Even More Compiler FIags ......cc.oiniiiiiiiiii e 51
64-Bit COMPULINE ..eueniniteit ettt ettt et et e et et et et et e et e e e b e e et eaneans 53

The 64-bit programming model ............coviiiiiiiiiiiiiiii 53

New ObJective-C TUNLIME .......ovuiiniiniineiei e e e e e e e aaeanes 56
Universally Fat Binari€s .........co.viuviniiiiiiii et 56

Fat binaries from the command 1ine ..............ccooiiiiiiiiiiiiiii e 56

Fat binaries in XCOde ........c.oveuiiiiiiiiiii e 60

Fat binary CONSIAETations ...........oeuuiuniiniuniiiieie e e e e e e ans 60

B BIOCKS e e 61
BIOCK SYNTAX .ttt et 62
Return ValUes .......c..oiiiiiiiiiiiii et 63
Accessing ENclOSINg SCOPE ....cuuieniiiiiiii ettt 64
Changing EnclOSINg SCOPE ...c.ueuniiniiiiiiiiit et ea e 64
BIOCK Variables .......c..couiiiiiiiiiiii e 65
Variable Capture ReAUX ..........oiiiiiiiii e 66
BIOCKS @S ODBJECLS ..vuitniintieiee ettt ettt et e et e et e et e e e et e aanas 67



Advanced Mac OS X Programming

WREN TO COPY -ttt e et ettt e e e 68
BIOCKS i COIIECLIONS ...evvtiiiiieiiiieiiie et ettt ettt e e 69
BIock Retain CYCIES ...ccuuniiiiiiiiiiiiieiii et 69
New API USing BIOCKS ....uiiuiiiiii e 70
For the More Curious: Blocks Internals ...............coooiiiiiiiiiiiiiiiiiii e 71
IMPIEMENTALION ....tittitie ittt e e e 71
DEDUZZING ...t 78
Dumping runtime information ...............eceuiviiiiniiiiniiiiieeiinc e 79
Evolving the implementation ...............vouuviuniiieiieieie et 81
Compiler-generated NAMES ...........cuueiuiiiiii et ea e eees 81
EIXEICISES ..ttt 82
4. Command-Line Programs ...........couiiuiiiiiiiii e 83
The Basic Program .........c.ooouiiiii et 84
Inside the Central LoOp ......c.iiuiiniii e 85
Changing Behavior By NamE ........c..couiiiiiiiiiii e 86
Looking at the ENVIFONMENT ........iuuiiuniiiiiii e 87
Parsing the Command Line ..........cooooiiiiiiiiii e 88
ELOPE_LONE() eevnneiiieiii ettt e e 92
USEI DETaUlLS ....oeniiiie e e 96
5. Exceptions, Error Handling, and Signals .............cooiiiiiiiiiiiiiiiinii e 99
123 L0 PPN 99
SELMP, LONZIMP L.eetnite e ettt 102
STENALS ..ttt e 104
Handling a Signal .........cooiiiiiiiii e 104
BlocKing SIZNALS .....c.uuiiniiiie e 106
SIZNAL ASSUCS ..ottt ettt et et e et et e e et e e 110
Exception Handling in COCOQ .......ouuuiiniiiiiii e 114
Classic exception handling ............ocouiiiiiiiiiiii e 114
Native exception handling ............oooiiiiiiiiiiiie e 117
Subclassing NSApplication to catch eXCeptions ...........ccceuuveiiiieiiiiiiiiiiiiineeiineennnn. 119
64-bit ODJECtiVe-C TUNTIME ...c.uieuniitiin ittt et e e e e ebeeaaes 120
AN 25 4 () PP UP RPN 120
| o o451 1 V- SRR PPN 121
SYSLOZ() ettt e 121

AL e 123

For the More Curious: ASSEITIONS ........ccuueeuneineit ettt ettt e et et e een e eaneeanens 129
N P8 (o TS 13 10) 1 PSPPI 130
ASSEItIMACTOS. N ..eeiie e 130
EXEICISES ..ttt et ettt 130
(O 3 1) 4 1< PP PP 131
StAtic LADTATIES «...ueietiiiiieiii ettt et e e e 131
Shared LADIATIES .....c.uiieneiieie et et et ea e 135
But I included the header! ............ocooiiiiiiiiiiiiiiii e 137
FramewoOrKS ......oouuiiiiiiii e 137
Libraries or Frameworks? ..........couiiiiiiiiiie e 141
WItING PIUZ-INS ..ttt 142
BUundles 0 COCOQ ....uuuiiniiiie e 142
Shared Libraries and dIOPen ............c.eiuiiiiiiiiiii e 146

Vi



Advanced Mac OS X Programming

141175753 1 TP PSP PTPRN 146
AISYI() ettt 147
BUNAICPTINIET ..vuiiiiiiiii e e e e e e et e e e e e e e eaeanas 147

For the More Curious: IDtOOL .........ouuiiniiiiiie e e e e ans 150
For the More Curious: OO0 .........iiueieiiieiiiiiei et ee et e ee e e et e e e e e ee e e eteeneenaaanas 151
For the More Curious: Runtime Environment Variables ............cccooviiiiiiiiiiiiiiniiieiniinennns 152
D) S (o 1 PPN 154
Y (S5 11 1e] o PO PTRPTR 155
VAUl MEIMOTY ..ttt ettt ettt e e e e e e e e e e e 155
Program Memory MOodel .........ccoiiiiiiiiii e 156
Memory LIfEtiME .....coouuiiiiniiiiiii e 159
Dynamic Memory AIOCAtION ........cccuuiiiiiiiiieiiiiiiie ettt 159
MNALIOC() et e 160
FTEE () vt 163
TEALLOC) eiinitiii e e e 163
CALLOC() ceniniie i 164
ALLOCA() 1ot 164
Memory OWNErship ISSUES ........iuuiiiiiiii e 165
INOAEPOOIS ..ttt et 165
Debugging Memory Problems ..........ccoouiiiiiiiiiiiiiiiiiii e 169
COMMON APT ISSUES ..vuiiniiiiiieie et e e e e et et et e et et e e e s eaneanes 169
MEMOTY COITUPLION ..eeeetetn ettt ettt e e et et e et e e e et e et e et e e e eba e e e aneeanns 170
MEMOTY 18AKS ..eeneeeiieii e 173
(011175 g Kol ) PPN 175
DS ettt et e ettt e et et e e et e ea e e e e e 175
RESOUICE TIMILS ..outitiiiitieeie ittt ettt e et e et e e e et e e et et e et eae et eaeans 176
MiSCEIlANEOUS TOOLS ..vuivieitiiieit ettt et e ee et e et e e e e et e ete et eete e e eneaneenaennas 180
%40 1T 7 | AP 182
Objective-C Garbage CollECION .........ccuuiiuniiiiii i 183
HOW 10 TSE 1 +.ueitieite ittt ettt e e e 183

HOW Tt WOTKS .ttt e e et e e e e e e e e e eaeanae 186
Strong and Weak referenCes ..........ceuiuuiiiiiiiiii et 187
Finalize MethodS .....c.oiuiiniiiiiiii e et e e e e e e e e e e e e e eaaas 188

NON ODBJECHIVE-C ODJECES ..vveiteiiieii ettt e e e 188
External 1eference COUNLS .......iviuiiieiiiie it e e e e e et e e e e 189

The "new" collection ClASSES ..........ceuueiuiiuiiiiiie e 189

GC and threads .....ovniie e 189
DEDUGZING .. 190

D) S (o T PPN 190
8. Debugging With GDB ..o e 193
What Is a Debugger? ... ..., 193
Using GDB from the Command Line ...........cccoooiiiiiiiiiiiiiiiiii e 193
A sample GDB SESSION ......uiiiniiiiiiiiiieeiiireeii ettt 194
GDB SPECITICS .ttt ettt e ettt et e 206
5 (511 o TP 206
STACK TTACES ..vuevneineineieie e e et e e et et et et et et et et et et et et et e s e s et eaneanesneanesnaanns 207
Program LISHNES ......couuiiniiiii e 207
BIreaKPOINLS ....uuieeii e 208

vii



Advanced Mac OS X Programming

Displaying Data .........couuiiiiiiiiiiiiii e 209
Changing Data .........couiiiiii e 211
Changing Execution FIOW ..........cooiiiiiiiiiii e 211
HANAY TEICKS .nenneiie ittt et 211
Debugg@ing TEChNIQUES ... c..uiiuiiiii ettt ettt e e 213
Tracking dOWn ProbIeMS ..........ocuuiiiiiiiiiiii e 214
Debugger tECANIQUES ......cuuiiiii ittt ettt 215

For the More Curious: Core Files ...........oviuiiiiiiiiiiiiii e 215
For the More Curious: SrAPPING ......cuueuniuneiieii ettt et e e e ean e 218
More Advanced GDB COommands ...........cc.oeeuiiniiiniiiniiie e e 220
TRICAAS ... ettt 220

. DITTACE ..ottt et ettt e et ettt aae 223
OVEIVIBW ..ttt ettt ettt ettt et e et et et e et et et e ea e e e e e e e eaneees 223
The D JangUaE ......ceuniiniieie e 224

N o1 T o PP 225
PIODES ..ottt 226
PrOVIAETS ... ettt 227
BEGIN and END Providers ..........c.oeeueieeiniiiieiie et aieeias 227

21 s 0] 0374 U [<) PSPPI 228
SYSCAIl PIOVIAET ..e.ueitiitei ettt 228
PIOfIlE PIOVIET ..c..uiiiiiiiiiiiiiii ettt e 229

PIOC PIOVIACT ..eiiniiiiiiiii ettt ettt et e e e e et e e eeens 229

TOE PIOVIART ...eniiniie e 230
Yot 5 (o) 1 TP 230
VariabIes .......ooiuiiiiiiii e 230
ScoPed VArIabIEs ......ccuuiiieiiei e 232
Built-in variables ..........oouiiiiiiii e 232
FUNCLIONS ...t e 234
ATTAYS ettt ettt e e 234
G AITAYS ettt ettt e ettt ettt e e 235
PrediCates . ..uiieiii et 235
PN e (o1 PP 235
Aggregate-related fUNCHIONS .........couuiiiiiiiiiiiiiiiiii e, 239
Random LeftOVerS ........couniiuiiiii e 239
ThE C PIEPIOCESSOL «..uuevvineiiiieeii ettt ettt ettt ettt et et e e e e et et e eeaaeeenes 239
Pragmas ... 239
ODBJECHIVE-C ..ottt et 241
EXEICISES ..ttt et ettt 242
10. Performance TUNING .......cc.uiiuiinii ittt et et et e e e eanes 243
The End of Free Performance ............o.ooiiiiiiiiiiiii et 243
Approaches To Performance .............coieiuiiiniiiiiiii e 244
Major Causes of Performance Problems ...............coooiiiiiiiiiiiiiiee e, 244
Y (5310 e) o TR 245

CPU e 249

DISK e e 249
GRAPRICS .ttt 250
Before using any of the profiling tools ...........ccoiiiiiiiiiiiiiiiiiie e 251
Command-Line TOOIS .......c.uiiuiiiiii e 251

viii



Advanced Mac OS X Programming

131101 R PO UPTPTN 252
AETUSS ettt e ettt aa e 252
£S_USAZE ANA SC_USAZE ..evniiieiie ittt et et ettt 253

110] o PP P PR PPRPRRN 254
StoChaStiC PrOfIlING ....uevniiniie ittt 255

F 1111 0] (TP UPTPRN 255
Precise Timing with mach_absolute_time() .........oeuuiiuniiiniiiiiiiiiii e 256
(€18 B LeTo ) F PP 257
ACHVIEY MOMILOT «...itiiieit ettt ettt e e e 258
INSIIUMENIES ...etiii ettt et ettt e e et e e e e eanaes 258
SUITIMATY ettt et ettt ettt et e et e e e e et e et et e ebeeeneeanns 284
2 & (0 LTSRS 284
11. Files, Part 1: I/O and PermiSSIONS ......o.uininitineiie e e 285
UNbuffered IO ... 285
OPening a fAle ....oeniee i e 285
WItING t0 @ fIl€ oeeneinii e 288
Reading from a file ........coouiiiiiiiiiiiii e 290
CLOSING fIIES .evvneeiiieii ettt et 291
Changing the read/write OffSet ............ceeiuiiiiiiiiiiiiiiiiii e, 291
ALOMIC OPETALIONS ..evuneiiineiiiieeiti ettt et e et et e eae et e e e et e eeaa e e et eeaieeeiaeeens 293
Scatter / Gather I/O .......iiniiie e 294
CTCAL() ettt ittt e e 298
BIocKIng /O ..couniiiiiiiii e 298
Buffered I/O ... 298
OPENING IS ..uiiiiiiiiiii e 299
CLOSING TIIES ..ttt e 300

TEXE T/O e 300
Binary T/O ..o 302
POSITIONIIE ..ottt e et e e 304
Formatted T/O ....oooiiiie e 305
MISC FUNCHIONS ...euieiiie ittt et et e e e e e e ees 306
Buffered I/O vs. Unbuffered I/O ..........ooouiiiiiiiiie e 306
RemMOVING FIlES ...uenniiiii e 307
Temporary FIlEs ......c..oouiiiiii e 308
Fle PErMISSIONS ...c.uieniineiieii ettt et et e e e e et e e e e e eans 310
USEI'S ANA ZIOUPS -.evnetieitneiie ittt ettt ettt et et e e et e e et e e eeneens 310

FAle PEITIISSIONS ....ueetiin ittt ettt et et et e e et e e e e e e e 312
Directory PermiSSIONS ........c.ueuuiuniie ettt 318
Permission-Check AIZOTIthmS ..........iiiiiiiiiiiiiii e 319
For the More Curious: Memory-Mapped Files ...........coociviiiiiiiiiiiiniiecee 320
12. Files, Part 2: Directories, File Systems, and Links ............cc.ccoiiiiiiiiiii, 325
D101 101§ (S PSPPI 325
Creation and deStIUCTION ..........iuuiiniii ittt e e 325
DIreCtOry TLEIAtION .....eeuueetiit ettt ettt et e et e e e e e e e e 325
Current WOrking dir€CtOIY ......ceuuiiuiinii et ean e 327
Inside The File SYSIEIM ....c.uiitniitiiiie et e e 328
DK et et 330
Hard HNKS ..oooee e 331



Advanced Mac OS X Programming

SYMDBOIC TINKS ..eeniin it 331

MaAC OS ALIASES ..ueevieiiieiiie ettt 334

APT £Or TINKS . oenii i 334

Fle IMEAALA «..evneiene ittt ettt et 334
211 E O U 334

JodS R 110§ £ 1 PP 339
Metadata in DatChes .........o.iiiiiiii e 346

Mac OS X Specific WEITANESS ......ccuueitiiiiiieii ettt et eanee 350
RESOUICE FOTKS ...evniiiiieii e 350

DS SEOTE e 351

Disk /O and SIEEP ....cuuniuniieiiei e 351

FOr The MoOre CUTIOUS ....uiuniiiiiei ettt et e e e e 351
Differences between HFES+ and UFS ... 351
Other random CallS .......cc.iiuiiiii e 352
Other random PrOZIAIMS ... c.ueuuitneiteit ettt e et e ea e eaae et e et e e e eanas 354
ACCESS CONLTOL TISTS .. evneitneite ittt ettt et et e e e eene 354
Extended attribUtes ........c..oouiiiiniiie e 355

13. NSFileManager - Cocoa and the File System ...........ccooeeiiiiiiiiiiiiiiiiiiniiee e 357
Making and Manipulating Paths ... 357
NSString path UIEES ....ceeuieniieiie e 358
NSURL path UtIlItIES ....cevuniiiineiiiiiiieiii e e 359
Finding Standard DIrCtOTIES ..........ceeuuriiiiniiiiiiiieiiie et 359
Path UHIEES .....oenieii e 360

URL UEIIEIES ettt ettt et et ettt ettt e e e e e e eans 361

(Y (S e 1 - PP UPT PPN 363
Metadata through paths ...........cooooiiiiiiiii e 363
Metadata through URLS .......c.iiiiiiiiiiii e 364

FAle OPEIAtIONS ...eeuetiiteit ettt e ettt et et et e e e e eaaes 367
Path OPEIations .......ccuiiiiii e 367

8] 28 DR ) 1S 1 (o) 1 PSPPSR PPN 368
SyMDBOLIC TINKS .oevuiiiiiiii e 369
Directory ENUMETation ..........coouiiiiiiiiiiiiiiiiii et 369
Enumeration with paths ..........ccoooiiiiiiiiiiiiiini e 369
Enumeration with URLS ........oiuiiii e 370

File References and Bookmarks ............cccooiiiiiiiiiiiiiiiiiiii e 372
FIle TETEICNCES ..ovuuiiiiniiii ettt 372
BOOKMATIKS ... 374
Make @ File BIOWSET .....uciuuiiiiiiiiiiii et 375
Create the DIrEntry Class ........c.eiuiiiiiiniiiiie e 376

Edit the nib file adding NSTreeController .............couuveiiiiiiiiiiiiiniiiiniiineiiieeiies 379
Using NSBrowser and DIirEntry ............cooooiiiiiiiiiiiiii e 384
AdAINg dEIETION ...eeuiiieiee it 385
INSWOTKSPACE ....eeeiee ittt e e 387
EXEICISES ..ttt et ettt 388
14. Network Programming With SOCKEts ..........cccoiiiiiiiiiiiiii e, 389
AAICSSES ...ttt et 389
Sockets Address Data SIUCTUIES ........eeuuieuniinii et 390
IPV4 address SLIUCIUIES .....uieuniineii ettt et et ettt e e e e e e e 390



Advanced Mac OS X Programming

TPV address SIIUCLUIES .....c..uuiiuuniiiin ittt et e e ettt eea e eaan 391
NEtWOrK Byte OTAET ...ceviniiiiiiiiiiiii e et 392
AdAress CONVEISIONS «....eiuuuiiintitieiii ettt et e et et e e e et e et e e e et e e e et eeaaenans 393

IPv4- and IPv6-compatible functions ............cccceeuuveiiiniiiiniiiiniiiiiieiincii e 393

IPv4-Specific fUNCHONS ....c..uviiiiiiii it 395
Domain Name LOOKUD .....iiuiiiiiiiiiiie e 396
Simple Network Programming ..........c..ooeieuiiiiiiiiiniiiiiii e 398

SEIVET COAINE .evvneiiiiiiiiieeiie ettt et ea e eaan 398

Constructing an addreSsS ............eeuuuiiiiniiiiiieiiieii et 399

DINA oo 399

LSBT ettt ettt ea e 400

Yo 1<) o APPSR PR 400
CLENE COING ..ttt ittt ettt et et et et e et e et e e e e eeans 404

COTIMEEE ettt eit ettt et et e et e et e et e et et e e e e e et e e et et et e e et e e et s eeaaeenaaeeetaenes 404
More AdVanCed ISSUES .........eiiuuiiiiniiiiiieii et 408

MultipleXing CONNECTIONS ....e.ueuneitneiteiteit et ettt et et e e e e et e e e et eenaeenaeanae 408

MeSSAZE DOUNAATIES ...e.ueetiiieii ettt et e e 410
For the More Curious: Datagrams ...........c.ueeuueiueiniii et 422
EXETCISES vttt ettt et ettt et e e 423

15, CFRUNLOOP .. eniii ittt et e ettt et et e e e e e e e eaa e 425
CESOCKRL ..ttt e ettt ettt e e e 426
CIFHOSE e ettt et e et 428
GUI Chatter CHENE ....ceuuiiiieiiie ittt ettt et e e e e e e eeen 430
RUNIOOP CRAET SEIVET ....uieiiiiiie et 436
The System Configuration Framework ..............coooiiiiiiiiiiiiiiii e 438

ATCRITECLUTE ..eiviteiiii ettt ettt et e e e e eaeeens 439

Basic API ... 439

Seeing all VAIUES ....ouuiiieiieii e e 441

Creating SCEMONILOT .....c.uiiniie ettt et e e e 443
For the More Curious: Run Loop ObDSEIVErs ...........ocuuiiuniiiiiiiniiieiiieiiei e 448
EXETCISES vttt ettt ettt et e e 450

16. kqueue and FSEVENES ........couiiiiiii et 451
KQUETE() o eeneite ittt ettt e 452
EVEIILS oottt et e 452
Registering and Handling EVents .............coooiiiiiiiiiiiii e 454
kqueues for Signal Handling ...........coooouiiiiiiiiiii e 455
kqueues for Socket MONITOTING .....c.ueuniiteiieii ettt e e e e 458
kqueues for File System MONItOTING .....couuniiiiniiiiniiiineiiieiiieiii et eeei e 459
kqueues and RUNIOOPS ...c..iuniiniiiiiie e 462
ESEVEIIES ..neeeti ittt ettt et e e 466
FSEVEIIESA ..eevineiii ittt et ea 467
WatChing DIrECIOTIES ...c.ueetniiiiii ittt et et et e e 467
EVEIILS ettt ettt 468
3 1 70] o PPN 468
VISIDILIEY ..eevneiiieii e ettt et 469
FSEvents APL ... 469

Creating the SIIEAIM .........uviiiiiiiiiiii et 469

Hook up t0 the runloop .....c..eeuniiiiiii e 471

Xi



Advanced Mac OS X Programming

EXAMPIE ..ot 473
EIXEICISES ..ttt ettt ettt 478

17, BOMJOUL ..etiiiiiiiii ettt et et ettt e et e e e et e e et e e et eeaaeees 479
Publishing an NSNEESEIVICE .....c.uiiuniiniiiiii e e 480
Make chatterserver Zeroconf-cCompliant ..............ooeuuieueiiiiiiiiniiiiieiineeneeeannen. 480

Browsing INEt SEIVICES ....ueeuuiiniiiiii ettt ettt e et e e eenes 481
Make ChatterClient browse for SEIVETS ..........couuveiiiiiiiiiiiiiieiireiiin e, 482

For the More Curious: TXT ReCOIdS ........ccouuviiiiiiiiiiiiiiiiiiiin e, 485
EXEICISES ..ttt ettt ettt 486

18, IMIUILIPIOCESSINE v eevneetne ettt ettt ettt et et e et et e e e et et et e ea e ea e eanaeaneeanaas 487
Process SChedUIING .....c..uiuniii e 487
Convenience FUNCLIONS .........iiuuiiiiniiiiiiiie et 488

FOTK e 490
Parent and Child Lifetimes .........c.uiiuniiiiiiiiiii e 493

BXEC ettt ettt e e et e e e e e aas 497
PIPS it 498
FOTK() GOLCIAS ...oeeiit e e 502
SUITIMATY ettt ettt ettt et et et e et et e e et et e et e et e eteeanas 503
EXEICISES ..ttt et ettt 503

19. USING NSTASK ettt et e ea e 505
INSPIOCeSSINTO ..cevuniiiiiiii e e e 505
INSTASK ettt ettt ettt ettt e e et eees 505
INSFIUEHANALE ....eeiiiiieiiiiie et 506
INSPIPE ..ttt ettt e 507
Creating an App that Creates a New Process ..........coooeiiiiiiiiiiiiiiiiiniieeeeee 507
NON-DIOCKING TEAAS ....etieiieiie ettt et ea e 510
Create the header and edit the Xib file ...........cccoeeiiiiiiiiiiiii e, 511

Edit the COAE ...oiiiniiiiiiii e 512

EXEICISES .. eneiieie ettt ettt 514

20. MUIGERIEAAING ...eeneeeei e et e e 515
POSIX TRICAAS ...eevueiiiiiiieiii ettt e 515
Creating threads .........oo.iiiiie e 515
SYNCATONIZALION ....evtiniiiiiiii ettt et e e e e e 519

I Lo G PP PPN 520

DeadlOCKS ..ovuniiiiiiie e 522

Condition Variables ...........couuiiuiiieie e 523

Cocoa and TRIEAdING ......oeuniiiiii e e 534
INSTRICAA ..ttt et ettt eaa 534

Cocoa and thread Safety ..........cc.iiiiiiiiiiiii e 535
Objective-C @synchronized blOCKS ..........cooiiiiiiiiiiiiiiii e, 535

For the More Curious: Thread Local Storage ............ccouiiuiiiniiiiiiiiiiiiee e 535

For the More Curious: Read/Write Locks ..........coviiiiiiiiiiiii e 536
EXEICISES ..ttt et ettt 537

21, OPCIALIONS ..cevuneeiineiiiie ettt et et ettt et et e et et e e e e et et e e ea e e et e eaieeaa e 539
Simple-Lifetime OPErations .............c..eiuueuneiuneii ettt e e e e eaeeees 540
NSOPErationQUEUE ......c.uiuneiiein ettt et et e e e e e e e e e eaanas 541

TRICAAING ISSUES ... eveeetie ittt ettt e e e e e e ees 541

Y Y1 15110 0] o ) SRR 541

Xii



Advanced Mac OS X Programming

BIEMAD oo e 543
BItmMapVIBW ...t 544

(1 (e 0313 211 () | H PP UPT PR 546
MandelOpperAppDEIEZALe ..........oeeuuiiiiiiiieiiie e 549
INSBIOCKOPETALION ...eeueieieiieiie ettt ettt e e e 551
Complex-Lifetime OPErations .............c.ueeuueeuneiueun ittt et e e e eaa e eans 553
KVO PIOPEITIES ..eeeeteiitei ettt ettt e e anes 554
IMAGESNAITET ....eunit e 555
IMAZECANVAS ...eeniteiie ittt et ettt 556

N1t T (0] 1S 14 (o) | PPN 558
NSURLConnection delegate methods ...........c.oeeuiiiiiiiiiiiiiiiiiiiiine e 561
ImageSnarferAppDEIEZate ........c..iiuuiiuneiieii e 562

1Y (o) o 3 o PP 565
EXETCISES vttt ettt ettt ettt et e e 566
22. Grand Central Dispatch .........c.oooiiiiiiiiiiiii e 569
GCD TerMINOIOZY ....ueeniii ittt et ettt e e e e e 571
QUBUIES ..ottt e e e 571
Object-Oriented DESIZN .....c.uiuniie it 573
DispatCh AP ..o e 574
QUBUIES ..etieit et 574
DISPALCRING .. eeneieeie e 575
MEMOIY MANAZEINIENE .. ...eeteeietn ettt e et e et e et e et et et e et e et e et e eaeenaeaneeanens 575
WOTACOUNLET ..ceuuiiiieiii ettt ettt et et e et e e et et e eaaaeees 576
TEETATION . eveiiie it ettt et 581
Safe Global INTtaliIZAION .......c..uiiiuiiiiiiiiii ittt e e 582
TIME, TIME, TIIMIE . .oneeiniiie it e e e e e 583
DiISPALCR GIOUPS ...t ettt 584
DISPALCR SOUICES ...netnite ittt et eaaes 586
SIZNAL SOUICES .. ..eeniie ittt et ettt e e e e e et e e e 588

File 1@ad SOUICTE .....cevuiiiiiiiiii ittt e 589

FAIE WIILE SOUICE ...evvuiiiieiii ettt ettt ettt e e e 590
TIMET SOUICES ...eevviiiiieiii ettt ettt et ettt e e et e e et eeaaes 590
CUSLOM SOUTCES ....evuiiiiiii ittt et et e ea e 591
Under the HOOd .......coouiiiiiiiiiii e 591
SEMAPROTES ... et 591
GCD 0F NSOPEIAtIONT ....eiiiiiiiiiiii ettt et et ettt e e e et e e ea e eaaes 592
For the More Curious: Synchronizing Tasks .............ccoiviiiiiiiiiiiiiiniiiii e 593
For the More Curious: The dispatch_debug() Function .............c...cooooiiiiiiiiiiiin, 593
EXETCISES vttt ettt ettt et ettt et e e e 594
23. Accessing the KeyChain ...........ocooiiiiiiiiiiiiiiii e 597
Items and ArDULE LISES ....eevuniiiiniiiiiiiiiee it 598
Searching for TEEIMS .......iuuiin i et 600
Reading Data From an Item ............ocoiiiiiiiiiii e 602
Editing the Keychain ...........oooiiiiii e 604
Getting Specific KeYChains ..........couiiiniiiiiii e 605
KEYCRAIN ACCESS ..eniiieiie ettt 605
Making a New Keychain Ttem ...........ccoviiiiiiiiiiiii e 608
Convenience FUNCLIONS .........ciiuiiiiiiiiiiiii e 610

xiii



Advanced Mac OS X Programming

(00T (TN o4 1111V P PP PT PR
| S (o 1= RPN

Xiv



Foreword

In 1989, the band Living Colour released the song Glamour Boy which explained that the world was
filled with glamour boys who valued appearance over other, deeper properties. And the song proclaims
“I ain't no glamour boy.”

Many programmers are glamour boys. They lack a deep understanding of what is happening under
the surface, so they are pleased simply to ship an application that the client doesn't hate. If they had
a better comprehension of how the operating system does its work, their code would be faster, more
reliable, and more secure.

If you are a Mac OS X or i0OS programmer, the knowledge that separates really good coders from
glamour boys is in this book. It demystifies the plumbing of Mac OS X. It helps you interpret
mysterious messages from the compiler and debugger. When you finish reading this book, you will be
a better programmer than when you started.

I met Mark Dalrymple shortly after Mac OS X shipped. I was astonished by his deep knowledge of
Mac OS X's Unix core and how Apple had extended and enhanced it. I begged him to write the first
edition of this book. The result was even better than I had hoped for.

If you read this third edition, you will master:

* Blocks * File I/O and metadata

* Grand Central Dispatch  Forking off tasks

* Multithreading * File system events

* Operation queues * Keychain access

* Network programming * Performance tuning

* Bonjour * Instruments and DTrace

e The run loop * Memory and the garbage collector

Don't be a glamour boy.

Aaron Hillegass
Big Nerd Ranch
July 1, 2011

XV



This page intentionally left blank



Introduction

Mac OS X: Built to Evolve

Complex systems come into existence in only two ways: through careful planning or through
evolution. An airport is an example of something that is planned carefully beforehand, built, and then
undergoes only minor changes for the rest of its existence. Complex organisms (like humans) are an
example of something that has evolved continually from something simple. In the end, organisms that
are well suited to evolution will always win out over organisms that are less suited to evolve.

An operating system evolves. Of course, the programmer who creates a new operating system designs
it carefully, but in the end, an operating system that is well suited to evolution will replace an operating
system that is not. It is, then, an interesting exercise to think about what traits make an operating
system capable of evolution.

The first version of Unix was developed by Ken Thompson at Bell Laboratories in 1969. It was

written in assembly language to run on a PDP-7. Dennis Ritchie, also at Bell Labs, invented the C
programming language. Among computer languages, C is pretty low level, but it is still much more
portable than assembly language. Together, Thompson and Ritchie completely rewrote Unix in C. By
1978, Unix was running on several different architectures. Portability, then, was the first indication that
Unix is well suited to evolution.

In 1976, Bell Labs began giving the source code for Unix to research facilities. The Computer Systems
Research Group at UC Berkeley got a copy and began tinkering with it. The design of Unix was
exceedingly elegant and a perfect platform upon which to build two important technologies: virtual
memory and TCP/IP networking. By freely distributing the source code, Bell Labs was inviting people
to extend Unix. Extensibility was the second indication that Unix is well suited to evolution.

4.4BSD was the last release of Unix produced by Berkeley. It was used as the basis for FreeBSD,
OpenBSD, NetBSD, and Mac OS X. Today, Unix is used as an operating system for cellular phones
and supercomputers. It is the most popular operating system for web servers, mail servers, and
engineering workstations. The manner in which it has found a home in so many niches is yet another
indication that Unix is capable of evolving.

Mac OS X is based upon a hybrid of Mach and 4.4BSD, but notice that this new niche, a desktop
operating system that your grandmother will love as well as a mobile device operating system that your
kids will love, is very different from Unix’s previous purposes. To reach this goal, Apple has made
several important additions to its Unix core.

The Unix part of Mac OS X is called Darwin. The large additions to Darwin that Apple has made are
known as the core technologies. Apple, recognizing that Unix must continue to evolve, has released the
source code to Darwin and most of the core technologies.

This Book

My thought is that things shouldn’t be “magic” in your field of expertise. I don’t
expect someone to implement a compiler or operating system, but they shouldn’t be
mystical black boxes.

—Paul Kim, Chief Noodler, Noodlesoft

XVii



Introduction

I didn’t realize until after my friend Paul uttered the above statement on IRC one day that one of
the goals of this book, and the Big Nerd Ranch Advanced Mac OS X Bootcamp in general, is to
help demystify the fundamental Mac OS X technologies. A programmer can live a long time solely
in the Cocoa Layer, only to be faced with inscrutable bugs when dealing with NSTask or network
communication. I believe that knowledge of the lower levels of the OS will help you use the higher
levels more effectively. That’s what I hope to accomplish here by showing you how the lower-level
Unix APIs work and then showing you how the higher-level technology uses them.

This book intends to bridge the gap between higher-level books dedicated to the graphical aspects of
Mac and i0S programming and the low-level kernel internal tomes. Some of the Unix API you may
have seen in a college-level operating systems course, but I've stripped away some of the historical and
no longer relevant details. For instance, you won’t see anything about managing pseudo-ttys.

When you finish this book, you will be able to:
* Create applications that leverage the full power of the Unix APIs.

* Use advanced ideas like multithreading and task queues to increase the performance of your
applications.

* Add networking capabilities to event-driven applications.

* Make networked applications Bonjour-aware.

» Use the keychain and authorization capabilities of the security framework.

* Understand and use gec, the linker, the debugger, Instruments, and the occasional Xcode dark corner.

» Use performance tools to evaluate and improve the responsiveness of your existing applications.

The ideas in this book can be broken into three basic groups:

Unix APIs There is a set of standard Unix APIs that every programmer should know how
to use. Even if higher-level abstractions alleviate the need to ever call them
directly, understanding these functions and structures will give you a much
deeper knowledge of how your system works. Much of what is said here will
also be true for Linux.

Framework APIs Apple has added a whole set of daemons and frameworks to its version of Unix.
These frameworks are exceedingly powerful, and sometimes Apple has been
slow to document how they work and how they are to be used.

Tools The Mac OS X developer tools suite, in addition to the system’s built-in
utilities, provides a veritable toy store for developers. This book covers lower-
lever Unix-heritage tools such as gee, gdb, the linker, and DTrace, as well as
higher-level tools such as Instruments.

The majority of the code in this book is ANSI C. Occasionally some C99 features will be used.

Some of the chapters use the Cocoa APIs, so you should have a basic understanding of Cocoa
and Objective-C. You can gain the necessary expertise by reading the first nine chapters of Aaron

xviii



Introduction

Hillegass’ Cocoa Programming for Mac OS X. i10S developers can take advantage of many OS features
as well. I have sought to point out differences between Mac OS X and iOS where they exist.

Typographical Conventions

To make the book easier to comprehend, we have used several typographical conventions.

Function names will appear in a bold, fixed-width font. All standard Unix functions are completely
lowercase. Functions developed by Apple are often mixed case. To make it clear that it is a function,
the name will be followed by a set of parentheses. For example, you might see, “Use NSLog() or
printf() to display the computed value.”

In Objective-C, class names are always capitalized. In this book, they will also appear in a bold, fixed-
width font. In Objective-C, method names start with a lowercase letter. Method names will also appear
in a bold, fixed-width font. So, for example, you might see, “The class NSObject has the method
-dealloc.”

Other literals that you would see in code will appear in a regular fixed-width font. Filenames will
appear in this same font. Thus, you might see, “In SomeCode. c, set the variable foo to nil.”

Command-line tools and other commands will appear in a slightly-smaller bold font. For instance,
“Join the two files with lipo and use the file command to verify the result.”

Occasionally, there will be an excerpt from a terminal window. What you should type will appear in a
bold, fixed-width font. The computer’s response will appear in a regular, fixed-width font. Example:

$ 1s /var
at cron empty mail named root tmp yp
backups db log msgs netboot run spool vm

Online Materials

The code in this book can be downloaded from http://www.borkware.com/corebook/.

Xix


http://www.borkware.com/corebook/

This page intentionally left blank



C and Objective-C

The Macintosh and iPhone are general-purpose computing platforms. You can program them in any
number of languages from Fortran to Tcl, Ruby to Nu, C to Java. However, the primary application
programming interfaces (APIs) from Apple are designed to work in plain C and Objective-C. The Unix
API is C-based, while Cocoa and Cocoa Touch are Objective-C based.

A solid grounding in C and Objective-C, though, is very important. Basic C and Objective-C will
not be covered here since there are a number of very good introductory texts available online and at
the bookstore. This chapter covers aspects of C and Objective-C that are not ordinarily covered in
introductory texts or are recent additions to the language.

C

The Compiler pipeline

C is a compiled language, unlike scripting languages, which are usually interpreted. This means

that there is no REPL (Read, Evaluate, Print Loop) for interactive exploration. When you build your
program, you need to run your source code through the C compiler which then emits a binary object
file. After each of your source files have been compiled into object files, the linker combines your
object files, along with system libraries and frameworks (and your own libraries and frameworks), to
create the final executable program. And to make things more complicated, your C source files are
manipulated by the C preprocessor, which subjects your source code to textual manipulations before
the compiler sees it. This whole pipeline is shown in Figure 1.1.



Chapter 1 C and Objective-C

Figure 1.1 The compiler pipeline

Header
Files

<stdio.h>
"Myheader.h"

. . Object Library
Source #include / #import Files Files

BNRTreeView.o libec.so

File BNRxmlMagic.o AppKit.framework
BWMinuteTimer.o libpam.a
C
Preprocessor
main.c (cpp)
Object
File
C. Linker
Compiler j L
(co) (1) = \

main.o

Complete Application

The C preprocessor

The C preprocessor is a simple tool that performs textual manipulations, such as replacing specific text
with other text, expanding macros with arguments, including text from other files, and conditionally
including or excluding text.

The C preprocessor only does textual manipulations. It has no knowledge of the C language, so you
can happily use the preprocessor to create a real mess or to come up with some cool hacks. (Sometimes
the two are indistinguishable.)

Preprocessor symbols

You define symbols in the preprocessor with #define. The leading # indicates a directive to the
preprocessor. All preprocessor directives are processed and removed before the compiler sees the text.

#define SOME_SYMBOL 23
#define ANOTHER SYMBOL
#define MACRO(x) doSomethingCoolWith(x)

The first #define tells the preprocessor to substitute the text 23 whenever it encounters SOME_SYMBOL in
your source file. The second #define tells the preprocessor that “ANOTHER SYMBOL exists, but it has no
value.” If the preprocessor sees ANOTHER SYMBOL in the source file, it will take out the text.

The third defines a macro expansion. Whenever the preprocessor sees MACRO with an argument, it
expands to the text on the right-hand side of the #define, substituting the argument for x. For instance,
MACRO (bork) will end up doSomethingCoolWith(bork) after the preprocessor finishes its work.
Example 1.1 shows preprocessor macros in action.

Example 1.1 expansion.m

// expansion.m -- look at macro expansion



The C preprocessor

// gcc -g -Wall -o expansion expansion.m
#include <stdio.h> // for printf()
int main (void) {

#define FNORD hello
int FNORD = 23;
printf ("hello, your number today is %d\n", hello);

#define NOBODY HOME
static unsigned NOBODY HOME int thing = 42;
printf ("thing, your number today is %d\n", thing);

// This is actually a dangerous way to do this. See
// the section about macro hygiene.
#define SUM(x, y) x + vy

int value = SUM(23, 42);

printf ("value, your number today is %d\n", value);

return 0;
} // main
When you compile and run this program, you should see this output:
$ ./expansion
hello, your number today is 23

thing, your number today is 42
value, your number today is 65

The symbol FNORD expanded into the string “hello,” which made the first assignment look like
int hello = 23;

The symbol NOBODY HOME just vanishes because it was never given a replacement value. This leaves
thing’s declaration looking like

static unsigned int thing = 42;

Lastly, the SUM macro makes the value assignment look like

int value = 23 + 42;

You can define symbols on the command line using the -D flag:

gcc ... -DTHING 1 -DTHING 2=123

The preprocessor will behave as if you had these lines at the top of your source file:

#define THING 1
#define THING 2 123

You can also define macros in Xcode projects by including a space-separated list of definitions in the
Preprocessor Macros build setting.

Be careful what you decide to #define, especially if you define commonly used tokens like if. You
might run into situations where a structure field was #defined to another name, presumably to hack
around an error in an API or to change a name but preserve backwards compatibility. This macro could
end up clobbering a variable name used in another context.



Chapter 1 C and Objective-C

Stringization and concatenation

The # character can be used in a macro definition to turn an argument into a literal string rather than
having it evaluated. ## can be used to textually paste two tokens together. Example 1.2 shows some
simple uses.

Example 1.2 stringization.m
// stringization.m -- show token stringization and concatenaton

#import <stdio.h> // for printf()
#import <math.h> // for sqrt()

//gcc -g -Wall -o stringization stringization.m
#define FIVE 5
int main (void) {
#define PRINT EXPR(x) printf("%s = %d\n", #x, (x))
PRINT EXPR (5);
PRINT_EXPR (5 * 10);
PRINT EXPR ((int)sqrt(FIVE*FIVE) + (int)log(25 / 5));

#define SPLIT FUNC(x,y) x##y
SPLIT FUNC (prin, tf) ("hello\n");

return 0;
} // main
which when run looks like this:

$ ./stringization

5=5

5 * 10 = 50

(int)sqrt(FIVE*FIVE) + (int)log(25 / 5) =6
hello

You can see the x argument in PRINT_EXPR is printed out and also evaluated. Notice that the
stringization happens before any other symbols are expanded. The concatenating example pieces
“prin” and “tf” into “printf.”

Conditional compilation

The preprocessor can be used to conditionally include or exclude text based on the value (or existence)
of a particular symbol.

#ifdef some_symbol tells the preprocessor to test for the existence of some_symbol, whether or not it
actually has a value. If some_symbol does not exist, the preprocessor omits all the text until it sees an
#endif or an #else directive. Use #ifndef if you are interested in knowing if a symbol is not defined.

#if some_symbol works like #ifdef except that it uses the value of the symbol when deciding whether
to include the following text. If the symbol has a non-zero numeric value, the text following the #if

is allowed to pass through to the compiler. Any other symbol, whether alphanumeric or a macro, will
cause the text following the #if to be omitted until the preprocessor sees an #endif or #else directive.
#1if statements can also contain expressions based on the numeric value of the symbol. Example 1.3
shows conditional compilation.



The C preprocessor

Example 1.3 conditional-compilation.m

// conditional-compilation.m -- look at macro expansion
// gcc -g -Wall -o conditional-compilation conditional-compilation.m
#include <stdio.h> // for printf()

#define DEFINED NO VALUE
#define VERSION 10
#define ZED 0

int main (void) {

#ifdef DEFINED NO VALUE

printf ("defined no value is defined\n");
#else

i can has syntax error;
#endif

#ifdef ZED
printf ("zed is defined\n");
#endif

#if ZED

printf ("zed evaluates to true\n");
#else

printf ("zed evaluates to false\n");
#endif

#if VERSION > 5 && VERSION < 20
printf ("version is in the correct range.\n");
#endif

return 0;

} // main
You should see this output when you compile and run this program.

% ./conditional-compilation
defined no value is defined

zed is defined

zed evaluates to false

version is in the correct range.

Conditional compilation is useful when you have multi-platform code and you need to be able to turn
compatibility features on or off. A library call may have different arguments on OS X than on a Linux
system. It also can be used for turning features on or off with just a compiler flag, such as including or
excluding encryption from a web server communications driver, or removing the ability to print from
a trial version of a text editing application. You could include some computationally expensive sanity
checking for a debug-only build.

Predefined symbols

The compiler comes with a lot of preprocessor symbols predefined, many of which vary based on OS
version, compiler version, or processor architecture. You can see them all with this command:

% gcc -E -dM - < /dev/null



Chapter 1 C and Objective-C

#define  DBL MIN EXP_ (-1021)

#define _ FLT MIN  1.17549435e-38F
#define _ CHAR BIT 8

#define _ WCHAR MAX 2147483647

#define _ DBL DENORM MIN  4.9406564584124654e-324

#define _ LITTLE ENDIAN 1

#define APPLE 1

#define @ GNUC 4

#define MMX 1

#define OBJC_NEW_PROPERTIES 1
#define __ GXX_ABI_VERSION 1002

The -E flag tells gee to display preprocessor output, -dM is a gee debugging flag that dumps out symbols
at some point during the compilation process, and - < /dev/null tells gee to expect its program text
from standard in and feeds it /dev/null to indicate there is actually no text coming in. You can feed
the same arguments to clang to see what symbols Apple’s new compiler defines automatically.

Some of the symbols are pretty esoteric, and some can be very useful. Some of the more useful ones
include:

__APPLE__ Defined for an Apple platform, such as OS X.

__APPLE CC__ This is an integer value representing the version of the compiler.

__0BJIC _ Defined if the compiler is compiling in Objective-C mode.

__cplusplus Defined if the compiler is compiling in C++ mode.

_ _MACH__ Defined if the Mach system calls are available.

_ LITTLE ENDIAN Defined if you are compiling for a little endian processor, like Intel or
ARM.

__BIG ENDIAN Defined if you are compiling for a big endian processor, like PowerPC.

_ LP64 Defined if you are compiling in 64-bit mode.

There are also some built-in preprocessor symbols that have varying values:

__DATE _ The current date, as a char *.

__TIME _ The current time, as a char *.

__FILE _ The name of the file currently being compiled, as a char *.

__LINE__ The line number of the file before preprocessing, as an int.

__func__ The name of the function or Objective-C method being compiled, as a

char *. This is not actually a preprocessor feature but something that
comes from the compiler. Remember that the preprocessor does not
know anything about the languages of the files it processes.

__FUNCTION _ Equivalentto _ func__ and available in older versions of gec where
__func__ is not. With modern Mac or iOS programming, they are
interchangeable.



The C preprocessor

__PRETTY_FUNCTION _ The name of the function as a char *, as with __ func__, but it
includes type information.

These do not appear when you ask the compiler to display all of the built-in macros because they are
being expanded by the compiler, not the preprocessor. Example 1.4 shows some of the predefined
macros.

Example 1.4 predef.m
// predef.mm -- play with predefined macros
// g++ -g -Wall -o predef -framework Foundation predef.mm

#import <Foundation/Foundation.h>
#import <stdio.h> // for printf()

void someFunc (void) {

printf ("file %s, line %d\n", FILE , LINE );
printf (" function: %s\n", _ FUNCTION );
printf (" pretty function: %s\n", _ PRETTY FUNCTION );

} // someFunc

@interface SomeClass : NSObject

+ (void) someMethod;

+ (void) someMethod: (int) num withArguments: (NSString *) arg;
@end

@implementation SomeClass
+ (void) someMethod {

printf ("file %s, line %d\n", FILE , LINE );
printf (" function: %s\n", _ FUNCTION );
printf (" pretty function: %s\n", _ PRETTY FUNCTION );

} // someMethod

+ (void) someMethod: (int) num withArguments: (NSString *) arg {

printf ("file %s, line %d\n", FILE , LINE );
printf (" function: %s\n", _ FUNCTION );
printf (" pretty function: %s\n", _ PRETTY FUNCTION );
} // someMethod:withArguments
@end
class SomeOtherClass {
public:
void SomeMemberFunction (int argl, const char *arg2) {
printf ("file %s, line %d\n", FILE , LINE );
printf (" function: %s\n", _ FUNCTION );
printf (" pretty function: %s\n", _ PRETTY FUNCTION );
}
+
int main (int argc, char *argv[]) {
printf ("__APPLE__: %d\n", __APPLE__);
printf ("today is %s, the time is %s\n",
__DATE__, _TIME );
printf ("file %s, line %d\n", FILE , LINE );
printf (" function: %s\n", _ FUNCTION );
printf (" pretty function: %s\n", _ PRETTY FUNCTION );



Chapter 1 C and Objective-C

someFunc ();

[SomeClass someMethod];
[SomeClass someMethod: 23 withArguments: @"snork"];

SomeOtherClass something;
something.SomeMemberFunction (23, "hi");

#if  LITTLE ENDIAN

printf ("I'm (most likely) running on intel! woo!\n");
#endif
#if  BIG ENDIAN

printf ("I'm (most likely) running on powerPC! woo!\n");
#endif

return 0;
} // main

And a sample run would look like this:

$ ./predef
__APPLE_ : 1
today is Jan 17 2011, the time is 14:23:33
file predef.mm, line 48
function: main
pretty function: int main(int, char*x*)
file predef.mm, line 9
function: someFunc
pretty function: void someFunc()
file predef.mm, line 21
function: +[SomeClass someMethod]
pretty function: void +[SomeClass someMethod](objc _object*, objc selector¥*)
file predef.mm, line 27
function: +[SomeClass someMethod:withArguments:]
pretty function: void +[SomeClass someMethod:withArguments:] \
(objc_object*, objc selector*, int, NSString*)
file predef.mm, line 37
function: SomeMemberFunction
pretty function: void SomeOtherClass::SomeMemberFunction(int, const char¥*)
I'm (most likely) running on intel! woo!

File inclusion

The preprocessor #include directive takes the contents of one file and inserts it into the stream of text
that it feeds to the compiler. You can specify the file name in angle brackets to indicate the file being
included is a “system” header:

#include <stdio.h>

The preprocessor looks in some well-known locations, such as /usr/include, to find the file named
stdio.h. You specify the file name in quotes to indicate that the file being included is one that belongs
to your project:

#include "ATMMachine.h"

Files that are #included can also #include other files. It’s possible that a file can be included more
than once. This can cause problems for C header files: the compiler doesn’t like it when you declare a
structure twice, for instance. Consider this program:



The C preprocessor

#include <fcntl.h> // for open()

#include <ulimit.h> // for ulimit()
#include <pthread.h> // for pthread create()
#include <dirent.h> // for opendir()

int main (void) {
// nobody home
return 0;

} // main

This is a pretty typical set of #includes for a Unix program. Sometimes you can have a dozen or more
includes to pull in different sets of library types and function prototypes. Each of those #includes
includes other files, ending up with something that looks like Figure 1.2

Figure 1.2 Nested #includes

main.m
2N
fentl.h ulimit.h pthread.h dirent.h
AN
_types.h cdefs.h _types.h time.h cdefs.h _types.h cdefs.h
cdefs.h cdefs.h _types.h _structs.h cdefs.h
cdefs.h

Notice that many headers are included multiple times, such as <sys/cdefs.h>, which gets included
seven times. There is a standard trick you can use to prevent multiple inclusions of a file from causing
errors: an include guard, shown in Example 1.5:

Example 1.5 include-guard.h

// include-guard.h -- making sure the contents of the header
// are included only once.

#ifndef INCLUDE GUARD H

#define INCLUDE GUARD H

// Put the real header contents here.

#endif // INCLUDE GUARD H

So how does this work? The first time include-guard.h is #included, the symbol INCLUDE GUARD H
is undefined, so #ifndef INCLUDE GUARD H will evaluate to true, and the text after that is included,
including the #define of INCLUDE_GUARD H. If include-guard.h is included again while preprocessing



Chapter 1 C and Objective-C

this source file, INCLUDE_GUARD_H has been defined, so the #ifndef test fails, and the file is skipped
down through the #endif.

There are two drawbacks to this technique. The first is that the guard symbol has to be unique across
all header files that might be included together; otherwise one header’s contents won’t be included
when they need to be. The other drawback is that the preprocessor has to scan through the entire header
file, even if all of it is going to be thrown out. For a situation like Figure 1.2, <sys/cdefs.h> will still
be opened and read 7 times even though the file’s contents will be used only the first time through.

Luckily, the compiler includes optimizations to avoid doing all of this extra work when include guards
are in place. It also supports the #pragma once directive, which tells the compiler to only include the
file containing the pragma a single time. In Objective-C, life is even simpler. Instead of #include,
Objective-C uses the #import directive, which directs the compiler to include the file only once.

Macro hygiene

Earlier you read about the preprocessor being stupid. It really is. It has no clue about the context of
your code, so it cannot do what you mean, just what you say. So be careful how you say things.

You might have a preprocessor macro that looks like this:
#define SQUARE(x) x*x

Pretty simple. SQUARE (5) turns into 5*5, which yields the desired result. If someone uses SQUARE (2+3),
the text expansion will get fed to the compiler as 2+3*2+3, which due to C precedence rules is actually
calculated as 2 + (3*2) + 3, which is 11, not 25. Oops. If you parenthesize the arguments instead:

#define SQUARE(x) (x)*(x)

Then SQUARE (2+3) will turn into (2+3)*(2+3), the correct expression. It is generally a good idea to
surround the whole macro result in parentheses, such as:

#define SQUARE(x) ((x)*(x))
which prevents problems if the macro expands into an expression with operators of higher precedence.

Beware of side effects in macros. Preprocessor macro expansion is strictly textual substitution. The
code SQUARE (i++) will expand to ( (i++) * (i++)), which actually is undefined in the C standard. It
might cause 1 to be incremented twice. Then again, it might not. Similarly, using functions with side
effects, or that are computationally expensive, in a macro like this one could be bad news.

Multiline macros

Sometimes you want a macro to be more than one line of code, such as this one that increases a global
error count and then displays an error for the user. The backslashes are necessary to let a single macro
span multiple source lines.

#define FOUND AN ERROR(desc) \

error_count++; \
fprintf(stderr, "Found an error '%s' at file %s, line %d\n", \
desc, @ FILE , LINE )

The macro can be used like this:

if (argc == 2) {
FOUND AN ERROR ("something really bad happened");
}

10



The C preprocessor

Example 1.6 uses the macro:

Example 1.6 multilineMacro.m

#import <stdio.h>

// gcc -g -Wall -o multilineMacro multilineMacro.m

#define FOUND AN ERROR(desc) \

error_count++; \
fprintf(stderr, "Found an error '%s' at file %s, line %d\n", \
desc, @ FILE , LINE )

int error_count;

int main (int argc, char *argv[]) {
if (argc == 2) {
FOUND AN ERROR ("something really bad happened");
}

printf ("done\n");
return 0;

} // main
If you compile and run it, you see the “success” case:

$ ./multilineMacro
done

Now run it with an argument, which is the “error” case:

$ ./multilineMacro bork
Found an error 'something bad happened' at file multilineMacro.m, line 13
done

Looks like it works fine. Ship it!

There is one lurking problem, though: What happens if a programmer on your team does not fully
brace their single-line if statements? The code looks innocent enough if you take out the braces:

if (argc == 2)
FOUND AN ERROR ("something bad happened");

But, if you run the program now without an argument (the “success” case), you get an error:
$ ./multilineMacro

Found an error 'something bad happened' at file multilineMacro.m, line 13
done

That’s not good. Previously correct code is now considered an error. Take a look at what is happening
as the preprocessor mutates your code from:

if (argc == 2)
FOUND AN ERROR ("something bad happened");

to
if (argc == 2)
error_count++;

fprintf (stderr, "Found an error '%s' at file %s, line %d\n",
"something bad happened", "multilineMacro.m", 13);

11



Chapter 1 C and Objective-C

This is what it looks like indented the way that it is actually being executed:
if (argc == 2)
error_count++;

fprintf(stderr, "Found an error '%s' at file %s, line %d\n",
"something bad happened", "multilineMacro.m", 13);

You need to wrap these multiline macros in curly braces so that they are essentially one statement. It
will then become one statement as far as the compiler is concerned.

If you change the macro to read:

#define FOUND_AN_ERROR(desc) \

do { \
error_count++; \
fprintf(stderr, "Found an error '%s' at file %s, line %d\n", \
desc, FILE , LINE ); \
} while (0)

and rerun it, the program works properly. As you can see, the macro is wrapped with a do {} while
(0) statement, which means that the code inside of the loop will be executed only once. This idiom has
the side-effect of turning the multi-line operation into a single statement, which makes the unbraced if
behave as expected. This is a technique known as “eating the semicolon.” Using braces alone does not
work because you end up with stray semicolons that confuse the compiler if there is an else clause.

This solution hides one last problem. What happens if there is a break in the macro or something
included in the expansion? Granted, hiding a break or continue in a macro is not a terribly good idea,
but sometimes you need to do it. The while loop will consume the break and not let it affect the loop
that contains the macro.

#define FOUND AN ERROR(desc) \

do { \
error_count++; \
fprintf(stderr, "Found an error 'S%s' at file %s, line %d\n", \
desc, @ FILE , LINE ); \
break; \
} while (0)

while (no_error) {
if (x > 10) FOUND_AN ERROR ("x too large");
/* do something with x */

}

The while loop continues as long as x is not greater than 10. If it is, the macro logs an error and then
performs a break. But it only breaks out of the loop used in the macro’s implementation.

Here is one solution to this break-capturing problem:

#define FOUND AN ERROR(desc) \

if (1) { \
error_count++; \
fprintf(stderr, "Found an error '%s' at file %s, line %d\n", \
desc, FILE , LINE ); \
break; \

} else do {} while (0)

The if (1) gives you a new scope for your macro and also turns the macro into a single expression.
The empty do {} while at the end eats the semicolon. For the most part, just wrapping your macro

12



Const and volatile variables

in do/while will address multi-line macro issues, with the if (1) technical there if you need to play
games with loop control.

Const and volatile variables

const is a C keyword that tells the compiler that a variable will not be modified. The compiler is
allowed to make assumptions about the variable that can help in optimization and also flag as errors
any attempts to modify the variable after its declaration. const used with a scalar variable makes that
variable a constant:

const int i = 23;
i =24; // error: assignment of read-only variable 'i'

When dealing with pointers, const can apply to the pointer, to what the pointer points to, or both.
Listing const first causes the data being pointed to be considered read-only:

// pointer to const char

const char *string = "bork"; // The data pointed to by string is const.
string = "greeble"; // Pointer reassignment is ok.
string[0] = 'f'; // error: assignment of read-only location

Putting const after the * causes the pointer itself to be considered read-only without affecting the
mutability of what it points to:

// const pointer to char

char *const string2 = "bork"; // The pointer itself is const.
string2 = "greeble"; // error: assignment of read-only variable 'string2'
string2[0] = 'f'; // This is ok.

Putting const in both places causes both the pointer and data to be considered read-only:

// const pointer to const char

const char * const string3 = "bork"; // Pointer and pointee are const
string3 = "greeble"; // error: assignment of read-only variable 'string3’
string3[0] = 'f'; // error: assignment of read-only location

Keeping these separate in your brain is easy — look at what the const is next to. If it is next to a data
type, then the data is what is considered constant. If const immediately follows the *, then the pointer
itself is considered constant.

const does not affect the underlying data — only what you can and cannot do with data accessible
through a const-qualified variable. While you can play games with pointers and addresses and casts to

9. ¢

alter any variable’s “constant” data, please don’t do this.

volatile is the opposite of const. A variable that is volatile may be changed at any time, independent
of what the program is currently doing. The instigator of this change might be an interrupt handler, a
signal handler, another thread, or a Longjmp() (discussed in Chapter 5: Exceptions, Error Handling,
and Signals). Declaring a variable volatile means the value of the variable is reloaded from memory
every time it is used. This guarantees that you will have the correct value when you need it, but it also
negates some possible compiler optimizations, like caching the value in a register in addition to its
location in memory.

Variable argument lists

Variadic function is a fancy name for a function that takes a variable number of arguments. These can
provide a flexible and powerful programming interface. The functions belonging to the printf family

13



Chapter 1 C and Objective-C

are variadic functions, which combine one function, a small, expressive command language, and a
variable number of arguments leading to an incredibly powerful tool. The stdarg manpage contains
the full details on using variable argument lists.

To handle variable arguments in your own functions, you first declare a variable of type va_ list,
which acts like a pointer to argument values, as shown in Figure 1.3. Initialize it with va_start()
giving it the name of the last declared function argument. The va_1list now points to the first of the
additional arguments.

To get the actual argument values, you call va_arg() with the type of data you expect that argument
to be. It will return the correct number of bytes for type and advance the va_list to point to the next
argument. Keep on calling va_arg(), giving it the expected types, until you are done processing the

arguments. Call va_end() to clean up any internal state.

Example 1.7 shows a function that adds up the integers that are passed to it, using zero as a sentinel
value to stop processing:

Example 1.7 vararg.m
// vararg.m -- use varargs to sum a list of numbers
// gcc -g -Wall -o vararg vararg.m

#import <stdio.h>
#import <stdarg.h>

// sum all the integers passed in. Stopping if it's zero
int addemUp (int firstNum, ...) {
va list args;

int sum = firstNum;
int number;

va start (args, firstNum);
while (1) {
number = va arg (args, int);
sum += number;
if (number == 0) {
break;
}

}

va _end (args);
return sum;
} // addemUp

int main (int argc, char *argv[]) {
int sumbody;

sumbody = addemUp (1, 2, 3, 4, 5, 6, 7, 8, 9, 0);
printf ("sum of 1..9 is %d\n", sumbody);

sumbody = addemUp (1, 3, 5, 7, 9, 11, 0);
printf ("sum of odds from 1..11 is %d\n", sumbody);

return 0;
} // main

14



Variable argument lists

Build and run it:

$ ./vararg
sum of 1..9 is 45
sum of odds from 1..11 is 36

When you call va_start(), an internal pointer is initialized to point into the call stack at the end of the
supplied argument, as illustrated in Figure 1.3. Each time you call va_arg(), it returns the amount of
data making up the supplied type and advances the internal pointer to the end of that data. va_arg()
uses the supplied data type to determine how far it needs to advance its pointer.

Figure 1.3 Variadic function stack usage

int addemUp (int firstNum, ...);

number
sum
args
0 args number 3
11 0
9 11 args | @—]
7 9 0
5 = 11
3 5 9
firstNum 1 3 7
call stack 1 5
va start (args, firstNum); 3
1

number = va_arg (args, int);
(returns 3)

result = addemUp (1, 3, 5, 7, 9, 11, 0);

That sounds dangerous — what if the actual argument’s type is a different size than the type you
expected? If there are fewer arguments than you expect, how does va_arg() know when to stop? It

has no idea. There is no magic that automatically plants a flag at the end of a function’s parameters or
communicates the total number and types of arguments that are passed in. Your code will need to know
when to stop. You can do this by having some kind of pre-supplied description like the format string
passed to printf(). You can use a sentinel value like zero or NULL. [NSArray arrayWithObjects:]
uses nil (a zero pointer value) to signal the end of the list of objects to populate the array with.

While this helps with the number of arguments problem, there is unfortunately nothing you can do
about the wrong argument type problem. As you can imagine, this can be a major source of run-time
errors. If you supply a bad format string to printf() or do not include the terminating sentinel value,
the function processing the call stack could wander off into random data, causing a crash or data
corruption.

To help make calling variable argument functions safer, gee lets you tag a function or a method
declaration with __attribute ((sentinel)). Then, when your gec command line includes the

15



Chapter 1 C and Objective-C

-Wformat flag, gee will emit a warning if you fail to terminate the argument list with a zero pointer
value like NULL or nil. This flag also causes gee to warn of bad calls to printf(). Cocoa programmers
can use the symbol NS_REQUIRES NIL TERMINATION instead of using the (somewhat confusing)
attribute syntax. Example 1.8 shows a string printing function that uses NULL for its sentinel value.

Example 1.8 sentinel.m
// sentinel.m -- Show _attribute ((sentinel)) in action

#import <stdio.h> // for printf()
#import <stdarg.h> // for va start() and friends

// gcc -g -Wall -o sentinel sentinel.m
void printStrings(char *first, ...) __attribute ((sentinel));

void printStrings(char *first, ...) {
va_list args;
va_start (args, first);
char *string = first;

while (string != NULL) {
printf ("%s", string);
string = va_arg (args, char *);
}
va_end (args);
printf ("\n");
} // printStrings

int main (void) {
printStrings ("spicy", "pony", "head", NULL);
printStrings ("machine", "tool"); // should warn

return 0;
} // main

The compiler warns you about the second printStrings() call:

$ gcc -g -Wall -o sentinel sentinel.m
sentinel.m: In function 'main':
sentinel.m:31: warning: missing sentinel in function call

A run of this program on a PowerPC machine or 64-bit Intel machine prints the first string okay, but it
crashes with the second call. When run with 32-bit Intel, it kind of works:

$ gcc -arch i386 -g -Wall -o sentinel sentinel.m
$ ./sentinel

spicyponyhead

machinetoolhead

In this case, the second printStrings() call is using stale data left on the stack after the first call.

gee also provides an __attribute ((format_arg)) tag you can use for functions that take a printf-
style format string.

Some families of variadic functions make it easy for you to add an extra value to them. You might
want a version of printf() that takes a debug severity level and only prints out text if the level exceeds

16



Variable argument lists

some globally set value. To do this, you can write a function to accept the debug level, the format
string, and the arguments. You can then examine the debug level, and if it is in the right range, call
vprintf(), a version of printf() that takes a va_list rather than a format string and arguments. A

leading or trailing “v” is sometimes used for the name of a function or method that takes a va_list,
such as vsnprintf() or NSLogv (). Example 1.9 shows a way of performing conditional logging.

Example 1.9 debuglog.m
// debuglog.m -- a function for conditional logging
// gcc -g -Wall -o debuglog debuglog.m

#import <stdio.h>
#import <stdarg.h>

int globallLevel = 50;

void debuglLog (int loglLevel, const char *format, ...)
{
if (logLevel > globalLevel) {
va list args;
va start (args, format);
vprintf (format, args);
va end (args);

}
} // debuglLog

int main (int argc, char *argv[])

{
debuglLog (10, "this will not be seen: %d, %s, %d\n",
10, "hello", 23);
debugLog (87, "this should be seen: %s, %d\n",
"bork", 42);
return 0;
} // main

Compile and then run it:

$ ./debuglog
this should be seen: bork, 42

You can create variable argument methods in Objective-C the same way as in C, so there is no new
syntax to learn. Be aware you cannot create NSInvocations that reference variable argument methods.

Example 1.10 has a SomeClass object that has a weird little method that takes an arbitrary number of
objects (terminated by nil) and prints out their descriptions.

Example 1.10 describeObjects.m

// describeObjects.m -- varargs with Objective-C

// gcc -g -Wall -o describeObjects -framework Foundation describeObjects.m
#import <Foundation/Foundation.h>

@interface Describer : NSObject

17



Chapter 1 C and Objective-C

- (void) describeObjects: (id) firstObject,
__attribute ((sentinel));

@end // Describer
@implementation Describer
- (void) describeObjects: (id) firstObject, ... {
va list args;
id obj = firstObject;
va start (args, firstObject);
while (obj) {
NSString *string = [obj description];
NSLog (@"the description is:\n %@", string);
obj = va arg (args, id);
}
va end (args);
} // describeObjects
@end // Describer

int main (int argc, char *argv[]) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Describer *obj = [[Describer alloc] init];
NSString *someString = @"someString";
NSNumber *num = [NSNumber numberWithInt: 23];
NSDate *date = [NSCalendarDate calendarDatel];
[obj describeObjects:someString, num, date, nill];
[pool drain];
return (0);
} // main
Compile and run it:
$ ./describeObjects
2011-01-17 15:08:11.678 describeObjects[2830:903] the description is:
someString
2011-01-17 15:08:11.680 describeObjects[2830:903] the description is:
23
2011-01-17 15:08:11.680 describeObjects[2830:903] the description is:
2011-61-17 15:08:11 -0500

There are other Foundation methods that accept va_1ists much like vprintf() does, such as
NSString’s -initWithFormat:arguments: and NSPredicate’s +predicateWithFormat:arguments:

Varargs gotchas

Making assumptions about the sizes of data passed to functions that take a variable number of
arguments is a common error. For example:

18



Variable argument lists

size t mysize = somevalue;
printf ("mysize is %d\n", mysize);

This code assumes sizeof(size t) == sizeof(int), which is correct for 32-bit programming (both
are four bytes) but not for 64-bit programming where size t is eight bytes and int is four bytes.

The compiler pushes 8 bytes of data onto the call stack, but printf() has been told to expect an int,
so it only pulls four bytes off the stack. You will either crash or get bad data if there are subsequent
arguments.

One way to fix this is to cast your size t argument to the type specified in the format string:
printf ("mysize is %d\n", (int)mysize);

This can be necessary when dealing with types whose size might vary from platform to platform. A
better way is to ensure your format specifiers use the right types:

printf ("mysize is %zu\n", mysize);

Here, z is a length modifier that alters the unsigned conversion specifier u to match the size of the
platform-dependent type size t. Only a few such types have corresponding length modifiers; you can
find the list in the printf(3) manpage.

QuietLog

QuietLog() is a function like NSLog() except that it does not prepend the extra information such

as process ID and the current time to the subsecond level, greatly reducing the volume of output.

What makes the implementation a little more interesting is that we cannot use vprintf () because
vprintf() does not understand the Cocoa’s %@ conversion specifier for printing an object’s description.
A temporary NSString is created, and then printed, as shown in Example 1.11.

Example 1.11 quietlog.m
// quietlog.m -- NSLog, but quieter
// gcc -g -Wall -framework Foundation -o quietlog quietlog.m
#import <Foundation/Foundation.h>
void QuietlLog (NSString *format, ...) {
va list arglList;
va start (argList, format);
// NSString luckily provides us with this handy method which
// will do all the work for us, including handling %@
NSString *string;
string = [[NSString alloc] initWithFormat: format
arguments: arglList];
va end (argList);
printf ("%s\n", [string UTF8Stringl);

[string releasel;
} // QuietlLog

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

19



Chapter 1 C and Objective-C

NSLog (@"NSLog is %@", [NSNumber numberWithInt: 23]);
QuietLog (@"QuietLog is %@", [NSNumber numberWithInt: 42]);

[pool drain];
return (0);
} // main

And after compiling and running it, you would see something like this:
$ ./quietlog

2011-01-17 15:15:19.001 quietlog[2868:903] NSLog is 23
QuietlLog is 42

Variadic macros

gce has supported variadic macros for a long time as a gee-specific extension. C99, the version of
the C language specified by an ISO standard released in 1999, has adopted variadic macros into the
mainstream language.

As you can tell by the name, these are macros that accept a variable number of arguments. You cannot
address individual arguments in your macros, but you can use the symbol VA ARGS _ to reference
the remaining arguments. Remember this is still textual manipulation; a va_1list is not created in the
process.

Unfortunately, there is one problem with VA ARGS _ when you are writing macros that take an
optional number of arguments. You might have a macro that looks like this:

#define THING(string, ...) printf (string, _ VA ARGS )

If you invoke the THING macro with more than one argument, things work out okay.
THING ("hello %s %s\n", "there", "george");

turns into

printf ("hello %s %s\n", "there", "george");

If you do not supply any additional arguments, you get a leftover comma and an accompanying syntax
error:

THING ("hi\n");
turns into
printf ("hi\n", );

If you foresee this being a problem with your macro, use ## VA ARGS__, prepending two pound signs,
which causes the preprocessor to eat the preceding comma. With THING defined as

#define THING(string, ...) printf (string,## VA ARGS )
the failing example

THING ("hi\n");

now expands to

printf ("hi\n");

20



Bitwise operations

Example 1.12 is functionally the same as Example 1.9 but uses a macro rather than a function for
checking the debug level.

Example 1.12 debuglog-macro.m

// debuglog-macro.m -- a macro for conditional logging
// gcc -g -Wall -o debuglog-macro debuglog-macro.m

#import <stdio.h>
#import <stdarg.h>

int globallLevel = 50;

#define DEBUG LOG(logLevel, format, ...) \
do {

if ((logLevel) > globallLevel) printf((format), ## VA ARGS ); \
} while (0)

int main (int argc, char *argv[]) {
DEBUG LOG (10, "this will not be seen: %d, %s, %d\n", 10, "hello", 23);
DEBUG LOG (87, "this should be seen: %s, %d\n", "bork", 42);
DEBUG LOG (87, "and this should be seen\n")

return 0;
} // main

A sample run is exactly the same as it was before.

$ ./debuglog-macro
this should be seen: bork, 42
and this should be seen

Bitwise operations

C lets you manipulate the individual bits in a piece of memory. If you use higher-level toolkits

and languages, you can ignore the bitwise operators most of the time. However, the Cocoa API
occasionally needs you to assemble and test bit flags, and the Unix API requires it more often. So it is
good to be familiar with these operations.

A bit can contain the value of zero or one. A byte is a collection of eight bits, also referred to as
“octets.” The examples that follow use the two numbers shown in Figure 1.4. The bit pattern is listed
first, then the value in hex, and then in decimal.

Figure 1.4 Two bytes

A:l1|1]ofo|1]|1]0]0|= oxcc = 204

B:{1[1]|1]|1|0]0]0]0|= 0xF0o = 240

Bitwise operators

There are four different operations you can perform on bits: AND, OR, XOR, and NOT. You can also
shift the bits around in an integral value.

21



Chapter 1 C and Objective-C

When you AND two bits, the resulting bit is set (one) only if both bits are set. The resulting bit is clear
(zero) in all other cases.

Values larger than a single bit are ANDed bit-by-bit; this is the bitwise element of the bitwise AND
operator. You can imagine stacking the values’ bit representations and then ANDing the columns, as
shown in Figure 1.5.

Figure 1.5 Bitwise AND

A:l1|1]o]o]1|1]0]0]|= 0xcc = 204
B:{1[1]1]1]0]o]o]0|= 0xF0o = 240
A&B:|1|1]o0]0o]|o|o|0|0]|= 0xco = 192
A:l1|1]o]of1|1]o[0]|= oxcc = 204
Mask:{0 [0 |o[1]o|o|o]o]|= ox10 = 16

A&Mask:[o|o[o[1]o|o[o0|0]|= 0x10 = 16

When you OR two values, the bits in the result are set wherever either of the original two values has a
bit set or where both bits are set. Conversely, the resulting bits are clear only if both bits are zero.

Figure 1.6 Bitwise OR

A:l1|1|ofo]1]|1|0]0]= oxcc = 204

B:{1|1[1]1|0]0]0]0]|= 0xFo = 240

AIB: [1]|1|1]1|1]1]0o|0]= oxFc = 252

A:l1|1|ofo]1]|1|0]0]= oxcc = 204

Mask:| 0 [o[o[1]|o|o[0[0]|= 0x10 = 16

AlMask: [1]1]|o|1[1]1]0o|0]|= oxDc = 220

22



Bitwise operations

XOR, “exclusive or,” uses the ~ (hat or caret) operator. When you XOR two values, the bit is set in the
result only if the corresponding bit is set in one value or the other value but not both. The resulting bit
is clear if both bits are set or if both bits are clear. You can think of XOR like the question “Would you

like soup or salad with that?” at a restaurant. You can have one or the other, but not both (unless you
pay extra).

Figure 1.7 Bitwise XOR

A:l1|1]ofo1|1]o[0]|= oxcc = 204
B:{1[1]|1]|1|0]0]0]0|= 0xFO = 240
ArB:fofof1]|1|1]1]0]0|= 0x3c = 60

NOT complements (flips) the value of each of the bits using the ~ (tilde, twiddle) operator. What was
zero becomes one, what was one becomes zero.

Figure 1.8 Bitwise NOT

A:l1{1]o]of1]|1]o|0|= oxcc = 204
~A:{ofof1|1]o]o]1|1]=0x33=151
Mask:| 0 [o]|o]|1]o|o|o|o]|= 0x10 = 16
~Mask:| 1 [1[1]0o]1|1[1]1]= oxEF = 239
A:{1]|1|of1]1]|1|0]0]= oxpc = 220

~Mask:{ 1 [1]1]of1]|1]1]|1]|= oxEF = 239

A&~Maski1|1|ofo[1]|1]|0|0]|= 0xcc = 204

There are two shifting operators in C. << shifts the bits of an integral value to the left a specified
number of places, filling in the low bits with zeros and dropping the high bits on the floor. The >>
operator shifts the bits a specified number of places to the right. The behavior of what gets shifted-in
for the higher bits is implementation defined.

23



Chapter 1 C and Objective-C

Back in the old days, shifts were used as optimizations for multiplication and division by two, but there
are a number of corner cases with signed values that can make them dangerous to use. These days, the
most common use for bit shifting is using the left shift to position a one-bit at a particular location,

as shown in Figure 1.9. You can see the one-bit being shifted four positions to the left, having a final
value of 16.

Figure 1.9 Bitwise shift

1:{ofofofofofofo1|=0x01 =1

1 << 4:lofofo[1]o]0]0]0]|= 0x10= 16

"MASK"

Setting and clearing bits

You can use AND, OR, NOT, and shifting to compactly store information in integers by attaching
meaning to specific bit positions. For example, the NSEnumerationOptions specifies two bit flags:

enum {
NSEnumerationConcurrent = (1UL << 0), // binary 0001
NSEnumerationReverse = (1UL << 1), // binary 0010
b

typedef NSUInteger NSEnumerationOptions;

When presenting enumeration options to a call such as
-enumerateObjectsWithOptions:usingBlock:, you set the zeroth bit to one to indicate you want a
concurrent enumeration and set the first bit to one to indicate you want the enumeration to happen in
reverse. There are four combinations: all clear (non-concurrent, forward), either one set, or both set
(concurrently backwards).

This is commonly called “bitmasking” — a constant such as NSEnumerationConcurrent is used as a
mask on a collection of bits, hiding the bits we are not interested in.

The usual way to use bitmasks is by defining constants for each bit (or set of bits) with a specific
meaning. You can also use a numeric value that you know sets the right bit. The bit to set is defined
using either the appropriate integer value:

#define BIT_POSITION 8 // 00001000

or using a bit shifting expression:

#define BIT POSITION (1 << 3) // 00001000
You set a bitmask’s bits using bitwise OR:

flags |= BIT POSITION;

24



Bitwise operations

Figure 1.10 Setting a bit

flags:[ 0 [1]|1|o[o]o]o[1]= ox61= 97
BIT_POSITION: [ o [o oo [1]o[o]o] = oxo8=8
flags | BIT_POSITION:{ 0 [1]|1|o[1]0]0o|1]|= ox69= 105
You test whether a bitmasks bits are set using bitwise AND:
if (flags & BIT POSITION) {
// do something appropriate
}
Figure 1.11 Testing a bit
flags:{0|1|1[o[1]o]o|1]= ox69= 105
BIT_POSITION: |0 [0 |o[o[1]o]o[o0]|= ox08=8
flags & BIT_POSITION: [0 [0 o [o[1]oo[o0]| = ox08= 8

You clear a bitmask’s bits by ANDing the value with the bitmask’s complement:
flags &= ~BIT POSITION;

This one is a bit trickier. What you need is a new mask that will let through all the original values of
the bits of the variable you are masking, except the masked bit.

Figure 1.12 Clearing a bit

flags:{ 0 [1]|1|o[1{0o]o[1]= ox69= 105
~BIT_POSITION:[1 [1]|1|1]o|1|1]1]= 0xF7= 247
flags & ~BIT_POSITION: [0 [1]|1|o{0]o[o]1]| = ox61= 97

When you are using a mask with multiple bits set, it is safer to compare against the mask rather than
doing a simple logical test:

#define MULTI BITS OxFO // 11110000

25



Chapter 1 C and Objective-C

And assuming that flags is 0x61 (01100001), the statement

if (flags & MULTI BITS) {
// do something if all bits are set
}

may be bad code. The result of the bitwise AND is:

Figure 1.13
flags:{0[1]{1]of1]o|o|1]|= 0x69= 105
MULTIBITS:[ 1|1 |1[2]0]o|o[0] = oxro= 240
flags & MULTI_BITS: [0 [1]1]o]o|o|0]o0| = ox60= 96

The result is 0x60. This will be treated by the if as a true value, even if only a couple of the bits in
MULTI BITS is set. Correct code would be:

if ((flags & MULTI BITS) == MULTI BITS) {
// do something if all bits are set
}

Example 1.13 shows a number of bitwise operations.

Example 1.13 bitmask.m

// bitmask.m -- play with bitmasks

// gcc -g -Wall -o bitmask bitmask.m

#include <stdio.h> // for printf

#define THING 1 MASK 1 // 00000001

#define THING 2 MASK 2 // 00000010

#define THING 3 MASK 4 // 00000100

#define ALL THINGS (THING 1 MASK | THING 2 MASK | THING 3 MASK) // 00000111

#define ANOTHER_MASK (1 << 5) // 00100000
#define ANOTHER MASK 2 (1 << 6) // 01000000

#define ALL ANOTHERS  (ANOTHER MASK | ANOTHER MASK 2) // 01100000
#define ALL USEFUL BITS (ALL THINGS | ALL ANOTHERS) // 01100111

static void showMaskValue (int value) {
printf ("\n"); // space out the output
printf ("value %x:\n", value);
if (value & THING 1 MASK) printf (" THING 1\n");
if (value & THING 2 MASK) printf (" THING 2\n");
if (value & THING 3 MASK) printf (" THING 3\n");

if (value & ANOTHER MASK) printf (" ANOTHER _MASK\n");

26



Objective-C

if (value & ANOTHER MASK 2) printf (" ANOTHER_MASK 2\n");

if ((value & ALL ANOTHERS) == ALL ANOTHERS) printf (" ALL ANOTHERS\n");
} // showMaskValue

static int setBits (int value, int maskValue) {
// Set a bit by just OR-ing in a value.
value |= maskValue;
return value;

} // setBits

static int clearBits (int value, int maskValue) {
// To clear a bit, AND it with the complement of the mask.

value &= ~maskValue;
return value;
} // clearBits

int main (void) {
int intval = 0;

intval = setBits (intval, THING 1 MASK); // 00000001 = Ox01
intval = setBits (intval, THING 3 MASK); // 00000101 = Ox05
showMaskValue (intval);

intval = setBits (intval, ALL ANOTHERS); // 01100101 = 0x65
intval = clearBits (intval, THING 2 MASK); // 01100101 = Ox65
intval = clearBits (intval, THING 3 MASK); // 01100001 = Ox61

showMaskValue (intval);

return 0;
} // main

When you compile and run, you get this output:

% ./bitmask

value 5:
THING 1
THING 3

value 61:
THING 1
ANOTHER MASK
ANOTHER MASK
ALL ANOTHERS

Objective-C

Objective-C is the language used to program the Cocoa toolkit. It is a thin layer on top of C with a little
additional syntax, a runtime component, and a big pile of metadata to support the dynamic nature of
the language. But fundamentally, Objective-C is still C. Many programmers forget Objective-C’s C
heritage and fail to take advantage of C’s language features and libraries.

C callbacks in Objective-C

A question that comes up fairly frequently in online forums is, “How do I put a method into a function
pointer?” Nine times out of ten, the poster actually wants to use Cocoa with an existing C API that

27



Chapter 1 C and Objective-C

uses callbacks. A much better question is, “I’m using a C API that uses callbacks with Cocoa, how do I
make it work?”

Even though Objective-C methods are fundamentally C functions, you cannot use Objective-C
methods as callbacks for a C API. When you send a message to an object, the compiler replaces
your square-bracket method call with a function call to objc_msgSend() or one of its variants.
objc_msgSend() is prototyped like this:

id objc_msgSend(id self, SEL op, ...);

When you make a call like

[box drawInRect: someRect]

it gets turned by the compiler into

objc msgSend (box, @selector(drawInRect:), someRect);

It passes the receiver of the message as the first argument. This becomes the self pointer inside of the
method. It passes the selector as the second argument, which is accessible with _cmd. The existence of
these two hidden arguments is what prevents you from using methods for callbacks.

Using objects in callbacks requires using a C function as a trampoline to bounce off of. Most C
callback APIs allow you to specify some kind of pointer-sized rock to hide some data under, whether
it’s called userData, info, refcon, or context.

For example, the Core Foundation framework provides an XML parser that is based on using C
callbacks. Programmers build their own data structures using information the callbacks supply about
the XML file’s content. Suppose we have a Watcher object that wants its -watchCreateStructure:
method to be triggered whenever CFXML invokes the callback.

You would set up your context to include your Objective-C object:

Watcher *watcher = [[Watcher alloc] init];
CFXMLParserContext context = { 0, watcher, NULL, NULL, NULL };

Set up your callbacks to include the C functions:

CFXMLParserCallBacks callbacks = { 0, createStructure, addChild,
endStructure, resolveEntity,
handleError };

And then create your parser (notice the passing of the context for the last parameter):

parser = CFXMLParserCreate (kCFAllocatorDefault, (CFDataRef)xmlData, NULL,
kCFXMLParserAll0Options,
kCFXMLNodeCurrentVersion,
&callbacks, &context);

The CFXMLParser will grovel through the XML and call the callbacks as needed. From there, you can
cast the info pointer into an object pointer and call a method. For instance,

void *createStructure (CFXMLParserRef parser,
CFXMLNodeRef node, void *info) {
Watcher *watcher = (Watcher *) info;
[watcher watchCreateStructure: node];

28



Objective-C 2.0

// ... do some work ...
return newXMLStructureDealie;
} // createStructure

Alternatively, you could create an NSInvocation or a block and use that for your context pointer. Then
you can have a generic callback that just casts the incoming context pointer to an invocation or a block
and then executes it.

Objective-C 2.0

Mac OS X 10.5 included a 2.0 update to the Objective-C language. While relatively minor, the
additional features improve programmer efficiency and program reliability by eliminating a lot of
boilerplate code and by moving common Cocoa idioms into the compiler where they can be sanity-
checked and optimized. The new features include additions to protocols, class extensions, a new
enumeration syntax, enhancements to the runtime, garbage collection, and properties. You cannot
use these new features if you have to support 10.4. You have to use the 10.5 SDK or later to get
Objective-C 2.0.

Protocols

An Objective-C protocol is similar to a Java interface: a list of methods that a class adopting the
protocol must implement. The compiler will complain if any methods are left unimplemented. This
can be inconvenient if you want to require some methods and have others be optional. For example, the
NSInputServiceProvider protocol has 15 methods. If you adopt this protocol, you have to implement
all 15 methods, even if you only need one or two to get your work done.

Informal protocols can be used to work around this annoyance. An informal protocol is a category on
NSObject that lists the methods that might (or might not) be implemented. This solves the “thou shalt
implement everything” problem, but it causes problems when there are methods that really do need
to be implemented. The NSTableDataSource category includes two methods you must implement:
-number0fRowsInTableView: and -tableView:objectValueForTableColumn: row:. Informal
protocols do not require you to implement these, so NSTableView relies on runtime checks on its data
sources to make sure these are implemented.

Objective-C 2.0 introduces a better solution with two new directives for use within protocols:
@required and @optional. @required precedes the declaration of methods that must be implemented.
Protocol methods default to being @required. @optional flags methods that do not have to be
implemented. If you were implementing something like the table view data source, you would create
something like Example 1.14:

Example 1.14 datasource.m

// datasource.m -- look at ObjC2 protocol additions.

// gcc -g -Wall -framework Foundation -o datasource datasource.m
#import <Foundation/Foundation.h>

AR
// Datasource for the new table view

29



Chapter 1 C and Objective-C

@protocol NewTableViewDataSource
- (NSUInteger) rowCount; // defaults to being required

@optional
- (BOOL) shouldEncheferizeStrings;
- (NSIndexSet *) emptyRows;

@required
- (id) dataValueAtRow: (NSUInteger) row;
@end // NewTableViewDataSource protocol

AR R TR
// a datasource class

@interface DataSource : NSObject <NewTableViewDataSource>
@end // DataSource

@implementation DataSource

- (NSUInteger) rowCount {
return 23;
} // rowCount

- (id) dataValueAtRow: (NSUInteger) row {
return [NSNumber numberWithInt: row * 7];
} // dataValueAtRow

(BOOL) shouldEncheferizeStrings {
return YES; // bork bork bork
} // should EncheferizeStrings

@end // DataSource

AR R TR
// the new table view

@interface NewTableView : NSObject {
id datasource;
}

- (void) setDataSource: (id <NewTableViewDataSource>) ds;
- (void) doStuff;

@end // NewTableView
@implementation NewTableView

- (void) setDataSource: (id <NewTableViewDataSource>) ds {
datasource = ds;
} // setDataSource

- (void) doStuff {
// Don't need to check for respondsToSelector - the compiler does
// some sanity checking for us.
NSLog (@"rowCount: %u", [datasource rowCount]);
NSLog (@"value at row 5: %@", [datasource dataValueAtRow: 5]);

// These are optional, so check that the datasource responds to
// them.

30



Objective-C 2.0

if ([datasource respondsToSelector: @selector(shouldEncheferizeStrings)]) {
NSLog (@"bork bork bork? %@",
[datasource shouldEncheferizeStrings] ? @"YES" : @"NO");
}
if ([datasource respondsToSelector: @selector(emptyRows)]) {
NSLog (@"the empty rows: %@", [datasource emptyRows]);
}

} // doStuff
@end // NewTableView

[ s
// Use everything.

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NewTableView *tableview = [[NewTableView alloc] init];
DataSource *ds = [[DataSource alloc] init];

[tableview setDataSource: [NSNull nulll]; // should warn
[tableview setDataSource: ds];
[tableview doStuff];

[pool drain];
return 0;
} // main

Example 1.14 starts out by declaring the NewTableViewDataSource protocol with

two required methods (-rowCount and -dataValueAtRow:) and two optional methods
(-shouldEncheferizeStrings and -emptyRows). Following that is the DataSource class that adopts
the new protocol. The compiler will warn if you do not implement either of the required methods. Only
one of the optional methods is implemented.

The next class is the NewTableView class with the datasource instance variable, whose setter requires
that the object given to -setDataSource: adopt the datasource protocol. The compiler will warn you
if you try to pass in an object that does not adopt this protocol. This guarantees (assuming you don’t
ignore the warnings) that your data source implements what it has to and that you do not give the new
table view something that will not handle the required messages. That simplifies the implementation
of the -doStuff method, which can assume its datasource implements the required methods. You still
need to check at runtime for the presence of the optional methods.

When you compile the program, you should get this warning for the line trying to feed a bad data
source to the tableview:

datasource.m: In function 'main':
datasource.m:92: warning: class 'NSNull' does not implement
the 'NewTableViewDataSource' protocol

And running it should give you output like this:
$ ./datasource
2011-01-18 12:39:43.211 datasource[4488:903] rowCount: 23

2011-01-18 12:39:43.213 datasource[4488:903] value at row 5: 35
2011-01-18 12:39:43.214 datasource[4488:903] bork bork bork? YES

31



Chapter 1 C and Objective-C

Class extensions

Another Objective-C convention is using categories to declare methods outside of a class @interface.
The two main reasons programmers do this are 1) to split up a long method list into smaller, easier to
understand chunks, such as NSWindow’s NSKeyboardUI, NSToolbarSupport, and NSDrag categories, and
2) to declare “private” methods, in either a different header file or at the top of a class implementation
file. The problem with using a category is that the compiler cannot check to make sure you actually
implement what you say you will. For example, you could have a category like this in your class
header file:

@interface BigShow(SlideManipulation)
- (void) moveToNextSlide;

- (int) currentSlideIndex;

@end

But your implementation might have a typo:

- (int) currentSlideINdex {
return index;
} // currentSlideIndex

This error will only be caught at runtime and might not be caught until you have shipped your
application to customers.

Objective-C 2.0 added class extensions to address this. A class extension is declared as a nameless
category:

@interface BigShow ()

- (void) moveToNextSlide;
- (int) currentSlideIndex;
@end

This tells the compiler that these methods are part of the class, even though they are specified in a
different place. The compiler will issue a warning if you do not provide an implementation for these
methods in the class @implementation block.

Some programmers refer to class extensions as “class continuations.” Continuation, though, is the
name of another (more interesting) computer science concept, so it is best to refer to class extensions
by their proper name.

In addition to forward-declaring methods in a class extension, you can also adopt protocols in them.
Snow Leopard and iOS have moved many informal protocols into protocols and require your class to
adopt those protocols before you can use your object as a delegate or a datasource. You can either list
the protocol adoption in your header file:

@interface GroovyController : UIViewController <UITableViewDataSourceProtocol>
or in a class extension in your implementation:
@interface GroovyController () <UITableViewDataSourceProtocol>

By using the class extension, you move implementation details out of your header. This can also
reduce compile time if your own classes make heavy use of protocols, where the adoption is just an
implementation detail and not really part of the public interface. If you adopt a protocol (such as the
NewTableViewDataSource protocol seen earlier) in your header file, you must include the data source

32



Objective-C 2.0

header that defines the protocol, leading to longer compile times for every file that includes the original
object’s header.

Fast enumeration

One of the most common Cocoa idioms is iterating through a collection. Typical enumeration code
looks like this:

NSEnumerator *enumerator = [array objectEnumerator];
NSString *string;
while ((string = [enumerator nextObject])) {

NSLog (@"%@", string);

This is rather verbose, requires memory allocation for the enumerator, and might involve a copy of the
collection in some circumstances. Iterating through an array with -objectAtIndex: is somewhat faster,
but it ties your loop to NSArray, making future maintenance more difficult if you change collection
classes.

Objective-C 2.0 adopts the “for-in” syntax found in many scripting languages for iterating through a
collection, which is equivalent to the previous code.

for (NSString *string in array) {
NSLog (@"%@", string);
}

The string variable is scoped to the loop. If you declared string outside of the loop, its value would
be visible outside of the loop. If the iteration went through the whole collection, string would be nil
when the loop exits. You can also supply an NSEnumerator instead of a collection:

NSEnumerator *enumerator = [array objectEnumerator];
for (NSString *string in enumerator) {
NSLog (@"%@", string);

The for-in syntax is not only more compact; it is also significantly faster than other collection iteration
methods. It takes advantage of the new NSFastEnumeration protocol, which lets the collection being
iterated leverage its implementation details to provide the best performance possible. In addition, for-
in will raise an exception if you mutate the collection while iterating through it, which has long been a
Cocoa invariant, though one previously not always enforced.

To implement your own fast enumerable collection, you need to adopt the NSFastEnumeration
protocol. It has only one method:
- (NSUInteger) countByEnumeratingWithState: (NSFastEnumerationState *) state
objects: (id *) stackbuf
count: (NSUInteger) len;

stackbuf is a pointer to an array of len object pointers on the stack, which the method can fill in but is
not required to. The method returns the number of items supplied for this round of iteration or zero if
iteration is finished.

The state parameter is a pointer to a structure that describes the current state of the enumeration:

typedef struct {
unsigned long state;

33



Chapter 1 C and Objective-C

id *itemsPtr;
unsigned long *mutationsPtr;
unsigned long extral[5];

} NSFastEnumerationState;

The state field is zero the first time -countByEnumeratingWithState:objects:count: is called. You
should set this to a non-zero value during the first call so you can tell when you are in a second (or
subsequent) call.

You return objects for iteration in the array pointed to by itemsPtr. You can point this into
the collection’s data structures if the collection stores object pointers linearly in memory.
Otherwise, you can put as many as len object pointers into the stackbuf parameter and point
itemsPtr there. The mutationsPtr should be set to a valid address that functions as some
kind of change counter for the object to catch the case of iterating over a mutating collection;
immutable collections can just use self. The extra values are scratch space available for your
-countByEnumeratingWithState:objects:count: implementation’s use.

Here is a class that stores a C array of NSStrings. The full text of this program can be found in
fastenum.m in the sample code download, which includes the implementation of the variadic method
and the code that maintains the mutations value.

@interface CArray : NSObject <NSFastEnumeration> {
NSString ** strings;
int stringCount;
unsigned long mutations;

}

- (void) setStrings: (NSString *)string, ... NS REQUIRES NIL TERMINATION;
@end // CArray

It has a C array of NSString pointers, a stringCount holding the length of the array, and a mutation
count instance variable that gets incremented any time the set of strings is manipulated. A variadic
method is provided to set the strings. Because CArray adopts NSFastEnumeration, it needs to
implement - countByEnumeratingWithState:objects:count::

- (NSUInteger) countByEnumeratingWithState: (NSFastEnumerationState *) state
objects: (id *) stackbuf
count: (NSUInteger) len {
if (state->state == 0) {

// First call, do initializations.

state->state = 1;

state->mutationsPtr = & mutations;

state->itemsPtr = strings;

return (_stringCount);

} else {
// We returned everything the first time through, so we're done.
return 0;

}

} // countByEnumeratingWithState

The first call to this method finds the state’s state value to be zero, so it does first time initialization.
It changes the state to a non-zero value so we know not to do the initialization work again. Then
it sets the state’s mutationsPtr to point to the mutations instance variable and points the

34



Objective-C 2.0

itemsPtr to the C array instance variable. CArray stores all of its string pointers sequentially in
memory, so we can tell the caller the total collection count. The for-in loop will then iterate over
all of them. When this method is called a second time, it returns zero signifying that all iteration
has been completed, and the for-in loop terminates. No matter how big our collection is, this
-countByEnumeratingWithState:objects:count: method is only called twice.

This code populates and iterates a CArray:

CArray *carray = [[CArray alloc] init];
[carray setStrings: @"I", @"seem", @"to", @"be", @"a", @"verb", nil];

for (NSString *string in carray) {
NSLog (@"%@", string);

And a sample run:

2011-01-18 15:47:15.531 fastenum[4688:903] I
2011-01-18 15:47:15.534 fastenum[4688:903] seem
2011-01-18 15:47:15.534 fastenum[4688:903] to
2011-01-18 15:47:15.534 fastenum[4688:903] be
2011-01-18 15:47:15.535 fastenum[4688:903] a
2011-01-18 15:47:15.535 fastenum[4688:903] verb

You do not actually have to iterate over a real collection. You can use fast enumeration for number
generators. Whether this is actually a good idea is open to debate, but it is possible.

One number sequence popular with technical interviewers and book authors is the Fibonacci sequence,
which is a recursive definition that says to start a sequence of numbers with two 1 values, then the next
value is the sum of the previous two: 1, 1, 2, 3, 5, 8, 13, and so on. There are iterative and recursive
solutions to this problem.

The fast enumeration solution takes advantage of two facts: -countByEnumeratingWithState: is
given a chunk of space that can hold a number of pointers. Empirically, it looks like Cocoa provides
16 pointers worth of space. There is also some scratch space in the state structure for us to play with.
The generator uses the stack space for pointers to NSNumbers for the sequence of numbers and uses the
scratch space to hold the N-1 and N-2 values of the sequence.

The FibonacciSequence object does not have any state of its own, so any number of independent
sequences can be generated from the same object. Here is the class interface:

@interface FibonacciSequence : NSObject <NSFastEnumeration>
@end // FibonacciSequence

And the lone method of this class does all of the dirty work:

- (NSUInteger) countByEnumeratingWithState: (NSFastEnumerationState *) state
objects: (id *) stackbuf
count: (NSUInteger) len {
assert(len >= 2); // because we pre-populate two values on first-call
id *scan, *stop;

if (state->state == 0) {
// first call, do initializations
state->state = 1;
state->mutationsPtr = (unsigned long *)self; // not applicable
state->itemsPtr = stackbuf;

35



Chapter 1 C and Objective-C

// extra[@] has the N - 2 value, extra[l] has the N - 1 value
// seed with correct values

state->extra[0] 1;

state->extra[1l] 1;

// fill in the first two values
state->itemsPtr[0] [NSNumber numberWithInt: state->extra[0]];
state->itemsPtr[1] [NSNumber numberWithInt: state->extra[l]];

// tweak the scanning pointers because we've already filled
// in the first two slots.

scan = &state->itemsPtr[2];
stop = &state->itemsPtr[0] + len;
} else {

// Otherwise we're in the Pink, and do normal processing for
// all of the itemPtrs.

scan = &state->itemsPtr[0];

stop = &state->itemsPtr[0] + len;

}

while (scan < stop) {
// Do the Fibonacci algorithm.
int value = state->extra[0] + state->extra[l];
state->extra[0] = state->extra[l];
state->extra[l] = value;

// populate the fast enum item pointer
*scan = [NSNumber numberWithUnsignedLong: valuel];

// and then scoot over to the next value
scan++;

}

// Always fill up their stack buffer.
return len;
} // countByEnumeratingWithState

This loop spins through a portion of the sequence:
FibonacciSequence *fibby = [[FibonacciSequence alloc] init];

int boredom = 0;
for (NSNumber *number in fibby) {
NSLog (@"%@", number);
if (boredom++ > 40) {
break;
}

}

And when run, looks like this:

2011-01-18 15:47:15.536 fastenum[4688:903] 1
2011-01-18 15:47:15.536 fastenum[4688:903] 1
2011-01-18 15:47:15.536 fastenum[4688:903] 2
2011-01-18 15:47:15.580 fastenum[4688:903] 102334155

2011-01-18 15:47:15.581 fastenum[4688:903] 165580141
2011-01-18 15:47:15.581 fastenum[4688:903] 267914296

36



Objective-C 2.0

Runtime enhancements and garbage collection

Objective-C 2.0 also enhances the language’s runtime component. The runtime has been rewritten
for 64-bit programming, which includes things like compatibility with C++ exceptions, discussed
in Chapter 5: Exceptions, Error Handling, and Signals, and solving the fragile base class problem,
discussed in Chapter 2: The Compiler.

Objective-C 2.0 has an optional garbage collector, which can be used instead of manual reference
counting with retain, release, and autorelease. The garbage collector is general purpose enough to be
used outside of Objective-C and is discussed in Chapter 7: Memory.

Properties

Another common Cocoa idiom is setters and getters, pairs of methods that affect instance variables.
Suppose you have a botanical simulation and you model plants with a name, a color, and a size. You
will want to have methods for users of a plant to have a way to change its attributes:

@interface LotusBlossom : NSObject {
NSString * name;
NSColor * color;
int size;

- (void) setName: (NSString *) name;
- (NSString *) name;

- (void) setColor: (NSColor *) color;
- (NSColor *) color;

- (void) setSize: (int) size;
- (int) size;

@end // LotusBlossom

The data that comes into each -setWhatever: method is treated in different ways: a string should
be copied, a color should be retained, and no memory management is necessary for an int. Plus you
need to maintain memory management hygiene, along with making checks to make sure you are not
releasing an object unnecessarily:

- (void) setName: (NSString *) name {
if (_name != name) {
[ name releasel];
~name = [name copy];
}
} // setName
- (NSString *) name {
return _name;
} // name

- (void) setColor: (NSColor *) color {
if (_color != color) {
[ color releasel;
_color = [color retain];

}

(NSColor *) color {
return color;

37



Chapter 1 C and Objective-C

} // color

- (void) setSize: (int) size {
_size = size;

} // setSize

- (int) size {
return size;

} // size

This code sidesteps issues relating to atomicity or exception handling. Still, that is a lot of boilerplate
code. There are utilities that will take a class definition and generate the setters and getters for you,
but these are still lines of code that have to be maintained. Properties push the work of creating this
repetitive code into the compiler. The equivalent code with Objective-C 2.0 properties looks like this:

@interface LotusBlossom : NSObject {
NSString * name;
NSColor * color;
int size;
}
@property (copy) NSString *name;
@property (retain) NSColor *color;
@property (assign) int size;

@end // LotusBlossom (properties)

@implementation LotusBlossom

@synthesize name = name;
@synthesize color = color;
@synthesize size = size;

- (void) dealloc {
[ name release];
[ color releasel;

[super dealloc];
} // dealloc

- (NSString *) description {
return [NSString stringWithFormat: @"blossom %@ : %@ / %d",
_name, color, sizel;
} // description

@end // LotusBlossom(properties)

Notice the use of underscores in instance variable names and the “assignment” in the @synthesize
directive. This is not a required style, but a common one chosen to remove a source of errors. If the
instance variable is the same as the property, it is very easy to use the instance variable, say name
directly rather than referencing the property, say self.name, leading to inconsistent use of accessors.
By prepending underscores to instance variables, there is no name, making it obvious when an instance
variable is being accessed via _name and a property, via self.name.

Properties also add a new syntactic element to Objective-C 2.0: the dot operator. When used with an
object pointer, the dot operator is the equivalent of using setters and getters:

LotusBlossom *blossom = [[LotusBlossom alloc] init];
blossom.name = @"Hoff";

blossom.color = [NSColor whiteColor];

blossom.size = 23;

38



Objective-C 2.0

NSLog (@"%@ of color %@ has size %d",
blossom.name, blossom.color, blossom.size);

The dot notation can be used independently of properties. You can even use the above code with the
first LotusBlossom class declaration that explicitly listed declarations for the setters and getters.

The use of the dot operator does not cause ambiguity with the language. You cannot use it with a
pointer, so stealing it for properties lets Objective-C 2.0 clean up the general syntax.

Properties introduce three new directives: @property, which declares the contract the property
declares: its name, its type, and how it behaves with respect to memory management. @synthesize

is an optional way of telling the compiler to automatically create the accessor implementation at
compile-time. The compiler requires implementation of the methods, whether through your explicit
implementation, @synthesize, or some combination. Use @dynamic to tell the compiler to trust you
that the accessor methods will be there at runtime, perhaps through some toolkit magic or loaded from
a shared library.

There are four classes of parameters that @property provides:
Mutability: whether the property is immutable (readonly) or mutable (readwrite, the default)

Memory management: whether setting the property is a simple assignment (assign, the default),
requires a retain (retain), or requires a copy (copy). For objects like delegates, you would use assign;
for other object references, you would use retain or copy. You should copy strings unless there is a
good reason not to. It is very easy for a mutable string to find its way into a graph of objects, especially
if you are getting strings from user interface classes. The copy operation is a no-op for immutable
strings, so you will not be paying a copy penalty for immutable strings. In a garbage collected world,
assign and retain are both strong references.

Concurrency: In a garbage collected (GC) world, assignments to properties are atomic for free. There
is no chance that another thread will see your assignment in-progress, even for complex types like

C structs. In a non-GC world, assignments via properties are atomic, but it comes at a price of using
an implicit lock when accessing the property. If you are in a non-GC program, noticing performance
problems with properties, and accessing the properties in a single thread, then you can use nonatomic
to suppress the use of these locks. Plain structure value assignments via the = operator are never
atomic. If you assign a struct in an accessor and you want the operation to be atomic, you will need

to provide explicit locking. For performance reasons on iOS, you should make all of your properties
nonatomic unless you have a reason not to.

API control: By default, a property will use the property name as the name of the getter, and the name
of the property prepended by “set” as the name of the setter. For example, for the property duration,
the accessor names would be -duration and -setDuration:. You can override these with setter= and
getter=. The methods you supply have to have the proper types for argument and return values.

Some examples:

@property (readonly) NSString *name;

name is an NSString, and it can only be read, not written.
@property (assign) id delegate;

delegate can be read and changed. It is a simple pointer assignment and not retained in a non-GC
world.

39



Chapter 1 C and Objective-C

@property (nonatomic, copy) NSString *foobage;

foobage can be read and changed, and when the property is changed, the string will be copied. It is
non-atomic, so only set/get it in a single thread.

A subclass or a class extension can change a property from readonly to readwrite. This allows for
mutable subclasses and private testing methods to change a property.

@synthesize is used to generate accessors. You can optionally tell @synthesize to use a particular
instance variable to read or write; otherwise it will use an instance variable named after the property.
The 32-bit (classic Objective-C) runtime requires that you declare the instance variables in the class
@interface declaration. The 64-bit runtime does not require this. It will add the instance variable to
the class at run-time.

Some examples:

@synthesize name;

This creates a -name method. Because name was declared readonly, no -setName: is created.
@synthesize delegate = hoobiedoo;

This creates -delegate and -setDelegate: methods, and the instance variable that holds the delegate
value is called hoobiedoo. hoobiedoo is assigned the value of the new delegate, and it is not retained.

There was no @synthesize for foobage, so you are responsible for writing the - foobage and
-setFoobage: methods and making sure that foobage has copy semantics. There is no compiler
verification of this. It assumes we are upholding our end of the contract.

Lastly, there is @dynamic, which just takes the name of the property:
@dynamic someProperty;

@dynamic tells the compiler not to look for or generate setters or getters for the property. Instead,

you will provide them at runtime somehow. You might load a dynamic library that contains the
implementation. In addition to the - forwardInvocation: method, NSObject also has added two new
methods, +resolveInstanceMethod and +resolveClassMethod. Each takes a SEL and returns a BOOL.
A class gets a chance to resolve a missing method and add it dynamically to the class at run-time
before the forwarding machinery takes over. One of the +resolve calls will be invoked, and it has the
chance of using the Objective-C runtime functions to add a method to a class. The +resolve are much
faster than using -forwardInvocation:. Core Data also takes advantage of this mechanism to map
properties to Core Data attributes.

Exercises

1. Use @dynamic, +resolveInstanceMethod, and the class_addMethod() function to add a property
implementation method at runtime. Manipulating the Objective-C runtime is not covered here, but
you can find out about this in Apple’s Objective-C 2.0 Runtime Reference.

2. Measure the performance of atomic and nonatomic properties in garbage collected and non-garbage
collected environments. Are there real performance differences?

3. The requirement that collections not mutate while you are iterating over them can be inconvenient
at times, especially if you are doing a “scan the collection and pull out stuff that shouldn’t be there”

40



Exercises

operation. What would it take to make a classic array enumerator support having the collection
mutated during iteration? What impact would this have on fast enumeration?

. C99, the current version of C, as well as Objective-C, have the restrict keyword. What does it do?

. FibonacciSequence rapidly exceeds the range of values an unsigned long can hold, which

is why the code here cheats and stops after 40 iterations. One way to fix this (or at least

allow us to get farther into the sequence) would be to use more of the extra values in the
NSFastEnumerationState structure. long longs may get you farther, as might the NSDecimal
functions or the NSDecimalNumber class. There are also “BigNum” libraries out on the Internet that
provide numbers of arbitrary size.

41



This page intentionally left blank



The Compiler

The compiler is the fundamental tool in your programming arsenal. No matter what editor you use for
source code and no matter if you build your programs with Xcode or make, the compiler is involved.
Apple ships the GNU Compiler Collection with the developer tools. You can invoke the compiler with
the gee command, but you can also use the ec command.

The Mac OS X 10.4 and 10.5 development tools include gee versions 3.3 and 4.0. You can use the
older compiler if you have code that will not compile with the newer compiler or if you need to support
versions of Mac OS X prior to version 10.3.9. gee 4.2 is the default for 10.6 and is incompatible with
the 10.4 (and earlier) SDKs. Also, gee 4.2 is the minimum compiler you can use with Xcode 4, so you
can’t use the latest Xcode to build applications for 10.4.

Apple has been working on its own compiler technology for some time through the LLVM (Low-Level
Virtual Machine) project. LLVM technology has been used behind the OpenGL Shader Language

and OpenCL on the Mac. clang is a front-end to LLVM that parses C code. You can use clang to

parse the code and use the LLVM or gee back-ends to generate the object code. The clang front-end
generates much better errors and warnings than gee does. The Xcode static analyzer is based on clang.
For maximal compatibility, you would use gee for everything. To get the better errors and warnings,
plus faster compile times, you can use “LLVM gee,” which uses the clang parser and the gee code
generation. Use the “LLVM compiler” to get all of the new goodies.

gee supports a number of languages. The C-dialect languages are the ones that are used for typical Mac
OS X development. The extension of the source file tells the compiler what dialect to use:

.C Regular C

.m Objective-C

.C C++ (but do not use on HFS+ file systems since it is not case sensitive)
.Cpp, .cc C++

.mm Objective-C++, a blend of C++ and Objective-C

Handy Flags

The documentation for gec is included with Xcode. Beware that gee is huge and comes with lots of
options, lots of features, lots of flags, and lots of extensions to the languages it compiles. It also has

43



Chapter 2 The Compiler

lots of cool stuff. Here are some command-line flags that you might find useful. You can control a
number of these settings in Xcode, but not all of gee’s flags are exposed via the GUIL. You would need
to add them in the Other C Flags or Other C++ Flags configuration.

-g Add debugging symbols. Turn this on using the Level of Debug Symbols in
Xcode’s Build tab in the Project or Target info panel.

-E See preprocessor output. You can tell Xcode to preprocess a file by using the
Preprocess menu item in the contextual menu in the Xcode 3 code editor. This
menu item also lives in the Build menu. As of this writing, Xcode 4 has moved
it to the Generated Output portion of the assistant.

-S See generated assembly code.

-save-temps Keep temporary files around.

-Wall, -Wmost Show more warnings.

-Werror Treat warnings as errors. Turn this on by checking Treat Warnings as Errors in

Xcode’s Build tab in the Project or Target info panel.
-DSYMBOL #define from the command line.

-DSYMBOL=value #define with a value from the command line. You can tweak the macro
settings by editing Preprocessor Macros in Xcode’s Build tab in the Project or
Target info panel.

-0# Set optimization levels (described below). Use the Optimization Level setting in
the Project or Target info panel’s Build tab to control this in Xcode.

-std Choose a standard, or non-standard, C dialect. Supplying -std=c99 will give
you C99, which adds several gee extensions and C++ features to the language
but disallows any additional gee extensions. You can also use -std=gnu99 to get
both C99 and gece’s extensions.

Debugging

The -g flag enables debugging symbols, which are chunks of extra data that allow debugging tools to
map an arbitrary address in your executable code back to the source that generated it. It also contains
information about your types, variable names, and data structures. Enabling debugging symbols can
make your program bigger and may also expose some implementation details that you might prefer to
be hidden. The strip command will remove these symbols, and Xcode provides a number of options for
controlling symbol stripping.

The downside of stripping your executables, or not building your application with -g in the first place,
means that you will not have symbolic stack traces when debugging in the field and you will not be
able to easily analyze crash reporter stack traces that people email you.

If you held on to a version of your application prior to stripping, you can use the ates command to map
addresses back to program symbols. You can also hang on to the external dSYM and feed it to atos. It is

44



Warnings

always a good idea to use -g during development because -g only adds debugging symbols and does
not affect the code generation.

The Apple development tools support two different debug symbol information formats: Stabs and
DWAREF. Stabs was the default for older Xcodes, and DWARF is the default for Xcode 3 and beyond.

Warnings

Compiler warnings are a good thing. If the compiler is complaining about something you wrote, most
likely your code has something questionable that could lead to errors somewhere down the line. A
good goal to strive for is to have your code always compile cleanly without warnings. -Wall will
show a lot of warnings for most everything the gee developers consider questionable. -Wmost is a good
middle ground when using the Cocoa frameworks.

Specific warnings can be independently turned on and off based on your specific coding style. Say you
are using a library that uses macros that leave unused variables lying around. Messy, but pretty much
harmless since the compiler won’t allocate space for them. Example 2.1 shows some warnings when
compiling.

Example 2.1 warning.m
// warning.m -- show generation of compiler warnings
// gcc -Wall -o warning warning.m
int main (int argc, char *argv) {
int i;
} // main
Then if you build it:
$ gcc -Wall -o warning warning.m
warning.m:5: warning: second argument of ‘main’ should be ‘char **’
warning.m: In function ‘main’:

m
warning.m:6: warning: unused variable ‘i
warning.m:7: warning: control reaches end of non-void function

(i

Two of those warnings are really interesting since they are actually errors: The parameters to main()
are messed up, and nothing is being returned from main (). But (in this case) the unused variable is not
a show-stopper. Fix the code otherwise:

int main (int argc, char *argv[]) {
int i;
return 0;

} // main

$ gcc -Wall warning.m
warning.m: In function “main':
warning.m:6: warning: unused variable

(L

i
You can turn that warning off with

$ gcc -Wall -Wno-unused warning.m
(no complaints)

45



Chapter 2 The Compiler

You will still get other warnings if you make mistakes. If you wanted to only see warnings for unused
variables and no others, use -Wunused (drop the no-):

$ gcc -Wunused warning.m
warning.m: In function “main':
warning.m:9: warning: unused variable i

The gee documentation has the full set of warnings described in detail.

If you have a file that has warnings that you want to ignore, but you do not want to turn them off
project-wide, you can add per-file compiler flags in Xcode. For Xcode 3, select the source file in the
Compile Sources phase of the target section of your Xcode project, choose Get Info, and then add your
compiler flags to the build tab of the info window. The important thing to remember is that you set this
deep in your target, not on your source file up in your source file Xcode groups.

Xcode 4 has moved this feature to the Build Phases tab for your target. Expand Compile Sources and
enter the compiler flags for the source file.

It is worth your time to reduce your warning count. If you have a lot of warnings that you “just ignore
all the time,” useful warnings will get lost in the noise. It is best to either fix them or suppress the
ones you consider useless. Treating warnings as errors is an excellent way to enforce good warning
discipline.

And lastly, for a quick syntax check and no code generation, give gee the - fsyntax-only flag.

Seeing Preprocessor Output

Sometimes you get an inscrutable error and have no idea why the compiler is complaining. Or you

may have code that looks reasonable and compiles OK, but it behaves in a way that defies sanity even
when you take the phase of the moon into account. This is a good time to examine the preprocessor’s
output so you can see exactly what the compiler is seeing. The -E flag tells gee to send the preprocessed
source code to standard out. You can use Xcode 3’s Preprocess command as well, or Xcode 4’s
generated output.

Example 2.2 looks simple enough. It will read a line from standard in and print it back out.

Example 2.2 preprocTest.m
// preprocTest.m -- a program to show preprocessor output
// cc -g -Wall -o preprocTest preprocTest.m
// or
// cc -g -Wall -E preprocTest.m > junk.i
// (and then look at junk.1i)
#import <stdio.h>
#define BUFFER SIZE 2048
int main (int argc, char *argv[]) {
char buffer[BUFFER SIZE]; /* this is my buffer, there are many like it */

char *thing;

thing = fgets (buffer, BUFFER SIZE, stdin);

46



Seeing the Generated Assembly Code

printf ("%s", thing);

/* happiness and light */
return 0;

} // main

Compile it and run it:

$ gcc -g -Wall -o preprocTest preprocTest.m
$ ./preprocTest

hello/[return]

hello

$

Now dig into its preprocessed output. Compile your program like this now:
$ gcc -Wall -E preprocTest.m > junk.i

This command tells gee to preprocess the source file and write the results to junk. i, where the .1
extension is for preprocessed output. junk.i will be a couple of hundred lines long due to the size and
complexity of the header files it includes. Open it up in your favorite text editor and scroll to the end.
You will see something like this:
int main (int argc, char *argv[]) {

char buffer[2048];

char *thing;

thing = fgets (buffer, 2048,  stdinp);
printf ("%s", thing);

return 0;

}

It is somewhat recognizable as the original program. Notice that all the comments are gone. #define
BUFFER SIZE 2048 is gone also, but you can see where 2048 has been substituted into the text stream.
Notice that stdin has been expanded into _ stdinp. What is that? Search in junk. i for it and find

extern FILE * stdinp;

which is a FILE pointer. Because you are seeing exactly what the compiler is seeing, you can look

at the guts of the FILE structure: all sorts of goodies like function pointers, buffers, and block size
variables are in there. This is not the kind of information you would want your code to depend on, but
it can be a big help when debugging. Plus, it’s fun to dig into things, see how they work, and see how
things change over time.

It is useful to view the preprocessed output when you are debugging macros. Write your macro, run it
through the preprocessor, and see if it has the effect you want.

Seeing the Generated Assembly Code

The real hard-core hackers can look at the assembly code generated by the compiler. Sometimes you
need this to track down compiler problems or OS problems. Or you can browse around just for general

47



Chapter 2 The Compiler

amusement and education. To get the assembly code, compile with the -S flag, and the results will be
put into an . s file based on the name of your source file. For instance, running

$ gcc -g -Wall -S preprocTest.m
will create a preprocTest.s. If you want to assemble the resulting file, feed it to the compiler like this:
$ gcc -o preprocTest preprocTest.s

Xcode 3 provides a Show Assembly Code item in the editor’s contextual menu so you can see what
your code will assemble into. Xcode 4 has removed this feature, as of this writing.

You can also use otool to disassemble existing programs if you do not want to muck around with
compiler flags or finding an installer for Xcode 3. This command will disassemble preprocTest:

$ otool -t -V preprocTest

_main:

0000000100000€94 pushqg  S%rbp

0000000100000e95 movq %rsp,%rbp
000000010000098 subq $0x00000830,%rsp
0000000100000e9f movl %sedi, Oxfffff7dc(%srbp)
0000000100000ea5 movq %rsi,Oxfffff7do(%srbp)
0000000100000eac movq 0x00000185 (%rip) ,%rax
0000000100000eb3 movq (%rax) ,%rdx
0000000100000eb6 movq %rdx, 0xf8(%rbp)
0000000100000eba xorl %sedx , %sedx
0000000100000ebc movq 0x0000017d (%rip) ,%rax
0000000100000ec3 movq (%rax) ,%rdx
0000000100000ec6 leaq Oxfffff7f0(%rbp),%rdi
0000000100000ecd movl $0x00000800,%esi

0000000100000ed2 callg 0x100000fle ; symbol stub for: _fgets

If you want to save all the intermediate elements, including some not covered here, you can use the
-save-temps flag.

Compiler Optimization

There are two classes of argument flags for controlling optimization, which controls how the compiler
generates machine code from your C code, as well as how it rewrites your code to behave more
optimally. You can use -0 with a number or letter to control the optimization level.

-00 Do no optimizations.

-01 Do some optimization (also what’s used if you use -0 without a number).

-02 and -03 Use yet more aggressive optimization.

-0s Optimize for size. It does the same optimizations as -02 but doesn’t do function
inlining.

Higher optimization levels can make code unstable as more and more mechanical operations happen
to it, so be sure to test when changing levels. Sometimes failures that happen at higher optimization

48



GCC Extensions

levels can actually be indications of programming errors, so if you have the time, it may be worthwhile
to pursue any failures that happen at higher optimization levels.

If you know of specific optimizations that you want to enable or disable, like strength reduction or
common subexpression evaluation, you can turn them on or off individually. For example:

-fstrength-reduce Enables strength reduction.

-fno-strength-reduce Turns off strength reduction, even if the -0# setting would have it
enabled otherwise.

The gee documentation describes all the available control flags, and there are a lot of them.

Having an optimization level set to -02 or higher will issue a warning (when -Wall is engaged) if
a variable is used before initialization. The compiler needs to do flow analysis to determine if this
happens, and that analysis only happens with -0 levels of 2 or higher.

gce supports both -g (debugging) and -0 (optimization) at the same time. This combination has
historically been unsupported in C compilers. This means you can use gdb on an optimized program,
but there may be unexpected behavior because code can be re-ordered and variables may be eliminated.
For example, single-stepping through some code in the debugger can make your “current line”
indicator bounce all over the place when you are dealing with code that has been run through the
optimizer.

Apple recommends using -0s to optimize for size, even on fast new machines. It might not produce
the best optimization for a specific program, but it gives the best overall system performance since the
system working set seems to be a big constraint on performance, as well letting more code live in the
processor caches.

GCC Extensions

One of the constants of GNU products is a huge number of features. gee has an incredible number of
extensions available. They can help improve your code, but they can also destroy portability if you
target a platform that does not have gee or you are not using gec on Mac OS X.

Here are a handful of interesting extensions:

* long long and unsigned long long: quadword (i.e., 64-bit) integers are treated as first class
citizens. You can perform basic math (+,-,*,/), modular arithmetic, and bitwise operations with them.

e Complex numbers: in C++ you can create complex numbers as a first class type, but gee C has them
built in.

e Variable length automatic arrays: like you can use in C++, declaring the size of a stack-based array
at runtime:

int size = some_ function();
char buffer[sizel;

The array also gets deallocated when the brace level the array was declared in is exited.

¢ Inline functions (like in C++).

49



Chapter 2 The Compiler

* Macros with variable number of arguments, very handy for wrappers around printf and friends.

* Packed structures, which remove any alignment padding the compiler might otherwise include. Add
__attribute((packed)) at the end of your structure definition.

A number of these extensions have made their way into €99, the most recent version of the ISO C
standard, such as variable automatic arrays and complex numbers. Also, Objective-C with the gee
compiler lets you declare variables anywhere, just like in C++.

Name Mangling

C++ uses name mangling for doing typesafe linking. The compiler encodes type information in a
function’s name, which can lead to unreadable error messages or indecipherable output from Unix
tools like nm You might be poking around an object file and see something like this:

$ nm slidemaster.o
00000030 s EH framel

U  ZN12BigNerdRanch7BigShow5Slidel3DisplayInViewEP7BigView
U  gxx personality vO

That "__ZN12BigNerdRanch..." symbol looks interesting. Here it is made human readable:
$ c++filt __ZN12BigNerdRanch7BigShow5Slidel3DisplayInViewEP7BigView

BigNerdRanch: :BigShow: :Slide: :DisplayInView(BigView*)

Testing the compiler version

gee supplies a number of preprocessor macros that you can use in your code to test what version of
the compiler you are using and enable or disable code based on it. For instance, you could use long
doubles if the code is being compiled with gee 4 but fall back and use regular doubles on gee 3. The
version macros are:

__GNUC__ The major revision number. For gcc 4.0.1, __GNUC__ would be 4.

__GNUC_MINOR _ The minor revision number. For gcc 4.0.1, __ GNUC_MINOR__ would
be 0.

__GNUC_PATCHLEVEL _ The patch level number. For gcc 4.0.1, _ GNUC_PATCHLEVEL__
would be 1.

The Optimizer

The optimizer gets changed and improved with every gee version, as well as with new versions of
clang/LLVM. Many of the same optimizer flags work as they did before, and new flags are added. It
is entirely possible there are compiler bugs related to aggressive optimization of correct code. As with
any change to the toolchain for building a program, it pays to do appropriate testing to make sure new
problems are not introduced when upgrading your compiler.

50



Vectorization

-00 is for no optimization and a maximally debuggable application. -0 is a tradeoff of compile speed
and execution speed. -02 performs the optimizations that do not involve a space-for-time tradeoff, but
it does attempt function inlining when specified. -03 is best for code that makes heavy use of loops
and lots of computation. It considers all functions in the current compilation unit (source file) for
inlining, even those not declared inline. -0s optimizes for code size rather than speed. There is no loop
unrolling, but performance should still be about -02 levels. Apple still recommends using -0s, which
will lead to smaller executables, so there will be less paging from disk for large programs, plus more
code will fit in the processor’s caches.

-fast is an optimization flag that changes the overall optimization strategy for gee. The optimizations
happen at the expense of code size. - fast sets the optimization level to -03, enables a number of
optimization flags, and ignores all other flags, except for those that specify the target architecture.

-fastcp, doesn’t do anything different than - fast in gee 4.0 and is for C++ users only. It may change
in the future to add optimizations to C++ code. -fastf is for C code made from fortran-to-C translators
or if your code has fortran semantics.

The - fast family of flags can break IEEE-754 conformance for floating point math. Round-off

errors can grow if you are doing lots of calculations, so you will need to decide if your floating point
calculations need IEEE-754s guarantees of accuracy. It also changes the alignment mode of data types,
which affects the layout of members of a struct. This can create binary compatibility issues. Code
compiled with - fast cannot always be linked against code compiled without it.

Vectorization

gee 4.0 also includes an autovectorizer. The compiler attempts to convert code, such as loops

or sequences of similar operations over chunks of data, into code for the vector processor, such

as PowerPC’s Altivec, or Intel’s SSE2/SSE3. To use the vectorizer, you need to supply the
-ftree-vectorize compiler flag. This only works at optimization levels -02 or higher because gee
only computes a probable data flow graph using -02 and higher.

-ftree-vectorize also enables the - fstrict-aliasing which lets the compiler make some
assumptions based on the type of expressions it sees. In particular, an object of one type is assumed
never to reside at the same address as an object of a different type unless they are “almost the

same.” An unsigned int can alias an int, but not a pointer or a double. Doing something like

taking the address of an int and storing a double there breaks this strict-aliasing assumption. The
-Wstrict-aliasing flag will cause the compiler to emit warnings about most places that might break
the strict aliasing rules.

Even More Compiler Flags

gee has always had a lot of command-line flags that can control many aspects of the compiler, such as
the dialect of the language being compiled, the manipulations performed on the resulting object code,
and controlling what warnings are emitted.

In Xcode, you can pass these flags to the compiler by setting the Other C Flags (for optimization and
other general flags) and Other Warning Flags (for flags related to warnings) in the target inspector. The
warning flags are placed before the other C flags in case there is an order dependency between a set of
flags.

Here are some flags that might be of interest to you:

51



Chapter 2 The Compiler

-Wno-protocol

-fobjc-call-cxx-cdtors

-Wundeclared-selector

52

This flag makes Objective-C’s @protocol feature more useful
in some circumstances. The default behavior of @protocol is to
issue a warning for every method declared in the protocol that
is not defined in the class that is adopting the protocol, even if
the methods are implemented by a superclass. By giving gee
this flag, methods from the superclass will be considered to be
implemented, and no warning will be issued.

Objective-C++ has had a limitation regarding C++ objects
that are embedded in Objective-C objects: constructors for the
C++ objects never get called when the Objective-C object was
allocated and initialized. The whole block of memory for the
Objective-C object was zeroed as usual by the alloc method,
and so the C++ object also was cleared out to all zeros. But its
constructor is not called. This means the C++ object might be in
a broken state having not been constructed properly. Likewise,
destructors were never invoked on the embedded C++ object
when the Objective-C object is deallocated, so the C++ object
could leak memory. You could work around this by using a
pointer to a C++ object and allocating it with new.

By adding this flag, the compiler will create a pair of
Objective-C methods (called .cxx_construct and
.cxx_destruct) that are called by the Objective-C runtime to
construct and destruct the C++ objects.

This flag tells the compiler to warn you if you use a
@selector() that it has not seen yet. You might have an
NSTimer callback method called -moveMonsterTowardsPlayer:,
and you accidentally use @selector(moveMonsterToPlayer:).
The compiler will issue a warning if you use this flag. Needless
to say, this can save you some headaches by catching typos at
compile time rather than runtime.

This last one is purely for geeky fun. It tells the compiler to
display the name of functions and methods as they are compiled,
along with random statistics about the compilation:

-[BWCrossStitchList addStitch:atRow:column:]
-[BWCrossStitchList markRemovedAtRow:column:]
-[BWCrossStitchList changeEnumerator]
-[BWCrossStitchList isChangeAtRow:column:]
-[BWCrossStitchList count]

Execution times (seconds)

preprocessing 0.02 ( 1%) wall
lexical analysis 0.01 ( 0%) wall
parser 0.98 (61%) wall
tree gimplify 0.01 ( 1%) wall
expand 0.01 ( 1%) wall
global alloc 0.02 ( 1%) wall
final 0.01 ( 0%) wall



64-Bit Computing

symout : 0.05 ( 3%) wall
TOTAL : 1.61

64-Bit Computing

Mac OS X 10.4 introduced 64-bit computing to the Mac platform. 64-bit computing means that a
process can directly address more than the 4 gig address space that 32-bit computing allows. The
process might not actually ger more than 4 gigs of memory to play with, but it will have the extra
address space. That depends on what the user has installed in the machine, per-process limits, different
operating system settings, and so on.

How much bigger is the 64-bit address space compared to the 32-bit one? A common analogy is this: if
a byte is a dot the size of the period at the end of this sentence, then a 32-bit address space would cover
the surface of the Golden Gate Bridge. A 64-bit address space would cover the entire land surface of
the Earth.

Mac OS X supports 64-bit programming while using a 32-bit kernel. The kernel itself does not need
to address huge chunks of memory directly, so it can easily run in a 32-bit address space. The data
structures it manipulates can be 64-bit, so it can support a 64-bit program. This means that there is just
one version of Mac OS X that users will be running, and no need for them to install a special 64-bit
version of the OS to take advantage of 64-bit applications.

There is a 64-bit Mac OS X kernel available, which is 64-bit top to bottom. It can still run 32-bit
applications fine. The main reason to run the 64-bit kernel is when you have a large amount of physical
RAM, exceeding 32 gigabytes. The in-memory tables for managing the memory start consuming more
and more of the 32-bit kernel’s address space, leaving less room for things like the file system cache.
Note that all kernel extensions will need to be rebuilt for a 64-bit kernel. Some tools, such as the Shark
profiler, do not work at all with the 64-bit kernel.

The 64-bit programming model

The 64-bit programming model used by Mac OS X is called LP64. This means that longs and pointers
are 64 bits, while ints remain 32 bits. long long is still 64 bits. Unix systems, including Linux, use

an LP64 model. In comparison, Windows is LLP64. In LLP64, long long is 64 bits, as are pointers,
but ints and longs remain 32 bits. This is something to keep in mind if you have a cross-platform code
base.

Code compiled with the 32-bit model is not compatible with code compiled with the 64-bit model.
There are changes to the Mach-O ABI to support 64-bit computing. bools are still one byte in size, and
the alignment in structs is “natural,” so fields will be padded so that the pointers are 8-byte aligned.
Calling conventions in code differs between 32-bit and 64-bit. 64-bit code on Intel has access to many
more registers, so more kinds of structs are passed by value in registers.

This also means that 64-bit programs can only use 64-bit frameworks. Mac OS X 10.4 only supplied
64-bit versions of the System and Accelerate frameworks. None of the user interface frameworks

were supplied in a 64-bit version. Also, only C and C++ were supported in Tiger 64-bit code, not
Objective-C. Supplying a user interface to your 64-bit programs required you to split the program into
32-bit client part and a 64-bit server part and then have them communicate via shared memory, sockets,
pipes, or some other [PC mechanism.

OS X 10.5 and beyond have 64-bit versions of the system frameworks, meaning that you can have a
64-bit Cocoa application. There are some things that are 32-bit only, such as parts of QuickTime and

53



Chapter 2 The Compiler

the user interface portions of Carbon, and there are API differences with some deprecated calls and
classes being unavailable in 64-bit mode.

Because you cannot mix 32-bit and 64-bit code, you cannot use 32-bit plugins in a 64-bit program.
There is also a code impact from the change in the sizes of the primitive data types.

When using interprocess communication, networking, and binary data files, you should be careful
when you choose your data types. Explicitly sized data types, like uint32_t, will stay the same size in
both 32-bit and 64-bit worlds and are more predictable than generic types, like long, which can change
sizes

Alignment of data also changes between the two worlds. Pointers and longs will need to have 64-bit
rather than 32-bit alignment which can make structures larger. The general rule of thumb is putting
larger elements early on in the structure. That should give you good use of space vs. padding caused by
data alignment.

64-bit cleanliness

Be careful of mixing 64-bit (Long) and 32-bit (int) values. You can get unexpected results like
truncation of values. If you assign a pointer to a 64-bit long, pass it as a 32-bit int function argument,
and convert the function result back into a pointer, then the upper 4 bytes will be stripped off due to the
smaller int argument.

If you are seeing problems with data truncation, try using the -Wconversion compiler flag. This flag
will cause the compiler to warn you about any data conversions it thinks are suspect. This will generate
warnings for some legitimate conversions, but it will be a place to start looking for the problem.

There are also some pre-defined types to hold values that might overflow an int:

uintptr t Use this as the destination when casting between 64-bit pointers and integer
types.

ptrdiff t An integer sufficiently large to hold the result of pointer arithmetic.

size t The type that sizeof returns. This has become a 64-bit value.

fpos_t An integer sufficiently large to hold a file position. This type is primarily

used with the standard C library, such as with fgetpos().

off t An integer sufficiently large to hold a file offset. This type is used by system
calls, such as lseek().

Also, never assume you know the size of any type or structure. Always use sizeof.

The OS helps you catch some pointer truncation errors by making the first four gigabytes of a 64-

bit process’ address space to be one huge zero page. Any attempt to read, write, or execute from this
address range will result in a program crash. This forces all of your 64-bit pointers to have significant
bits in the upper four bytes, causing any pointer truncation to end up with a value of zero there, at least
when using Intel processors.

Bitmasks of type long have some gotchas. By default, masks expressed in code as constants are treated
as an unsigned int, meaning that any significant digits implicitly added by the compiler will be zeros.

54



The 64-bit programming model

That is fine if you want zeros in the upper bits of your mask. If you want ones in the upper part of your
mask, you’ll want to write the mask as the bitwise inverse of the mask’s inverse. If you’re wanting the
mask Oxftfc to be sign-extended through all 64 bits, you’ll want to do something like the second line.
The first line shows you what bitmask would result without using this inversion trick:

oxfffffffc // 0x00000000fffffffc (64 bits)
~0x3 // Oxfffffffc (32 bits) or Oxfffffffffffffffc (64 bits)

Be careful of making assumptions about how many bits are in a long if you are shifting through its
bits. Use the LONG_BIT constant to figure out the number of bits involved.

Cocoa on Leopard introduces the NSInteger and NSUInteger types. These are primitive types that are
32 bits wide in 32-bit code and 64 bits wide in 64-bit code. Most of the integral types used as Cocoa
method and function parameters have been changed to be NS[U]Integers. Even though it is called
“NSInteger,” these are not classes like NSNumber.

So why introduce these new types? Prior to 64-bit support, Cocoa methods took and returned integer
values using native C types. - [NSArray count] returns an unsigned int, for instance. This return
value would be 32 bits in LP64. It would be nice to be able to accept and return larger values. The
Cocoa team could either change all ints to longs, but that would break 32-bit binary compatibility.
By introducing a layer of abstraction with the NS[U]Integer types, Apple can build Cocoa with 32-bit
integer types for 32-bit land and maintain binary compatibility, and at the same time build Cocoa with
64-bit integers.

The CGFloat is the floating-point equivalent to NSInteger. It is a float (32 bits) in 32-bit code and

a double (64 bits) in 64-bit code. Graphical quantities such as NSRect and NSPoint use CGFloats

now. In 64-bit code, CGRect and NSRect are identical, so there’s no need to play typecast games when
converting between CGRect and NSRect. You can define the preprocessor token NS BUILD 32 LIKE 64
to have your 32-bit code use these types.

Should you go 64-bit?

So, should you immediately go for 64 bits? Sure, if you need it now. For some developers, 64-bit
computing will not have much of an immediate impact.

You truly need a 64-bit address space when you need random access to huge data objects (greater than
2 GiB) or you need concurrent access to a quantity of data that will not fit into a 32-bit address space,
like multi-gig data modeling, data mining, web caches, large-scale 3D rendering, very large databases,
etc.

If your app uses a streaming data access model, or just uses 64-bit integer math, you do not absolutely
need 64-bit computing. You also don’t need 64-bit computing when dealing with very large files. The
file system API is capable of handling 64-bit offsets.

You may see some performance improvement going to 64 bits on Intel processors. The 64-bit ABI has
more registers available to it (16 vs. 8), and the registers are wider (64 vs. 32 bits). The 64-bit calling
conventions are also register-based rather than stack-based.

You will not see much, if any, performance improvement with 64-bit PowerPC, since the PowerPC
family was designed from the outset for 64-bitness. If anything, you could see a performance decrease:
64-bit code is larger, and it deals with larger data, so cache misses will happen more often. Larger apps
and larger data can require more memory and may end up paging if there is not enough physical RAM
on the machine.

55



Chapter 2 The Compiler

Instruction sequences to get an address or a constant into a register are longer in 64-bit code. And some
situations, such as using a 32-bit signed integer as an array index, will require the value to be sign-
extended on every access if it is not stored in a register.

On the other hand, most of the applications shipped by Apple are 64-bit native, with iTunes being the
main holdout. If your app is 32-bits, and no other 32-bit applications are running, the system will need
to load all of the 32-bit frameworks it uses, which will increase overall system memory usage and
delay your launch time.

New Objective-C runtime

Apple has upgraded the Objective-C runtime for 64-bit programming. This new runtime is also used on
i0S.

The new runtime solves the fragile base class problem for Objective-C. When you access instance
variables in Objective-C, the compiler turns the reference into a pointer+offset operation. Each instance
variable lives at a fixed offset from the beginning of the object. Subclasses can add instance variables,
which just get stuck at the end of the object structure. This makes it impossible for the base class to
add or remove any instance variables or change the size of any of them (say, to move from 32-bit to 64-
bit pointers). The new runtime solves this problem by waiting until runtime to calculate the instance
variable offsets.

This means you can’t think of an Objective-C object as a fixed-size struct. If, for whatever

reason, you were using sizeof () against an object, you would need to make another call such as
class_getInstanceSize(). Similarly, offsetof (), which gives you the offset from the base pointer
for an instance variable, must be replaced by a runtime call like ivar_getOffset(). Also, the @defs
operator, which gives you the instance variable layout for a class, is no longer useful.

The new runtime adds stricter instance variable access control. Before, you could access @private
instance variables. With the modern runtime, you can get a link error if you try directly accessing an
instance variable of an object in a different framework.

Universally Fat Binaries

Mach-O supports “fat” files, officially called “universal” files by Apple. These let you have PowerPC,
Intel, and the 32-bit and 64-bit flavors of each kind of code in the same file. This allows for a single
application or a single framework to service all the computing worlds.

Fat binaries from the command line

You can use gee on the command-line, or in makefiles, to generate object code for any of the
supported architectures. You can also build the final fat binaries using these command-line tools.

gee’s -arch flag controls which architecture(s) it should build. For Mac OS X, you can give -arch the
ppc, 1386, ppc64, and x86_64 flags. iOS is an ARM architecture, so you would use armvé or armv7 if
you were constructing your own geec commands. armv7-capable processors appeared in the iPhone 3GS
and later.

56



Fat binaries from the command line

Example 2.3 sizeprinter.c
#include <stdio.h> // for printf()

int main (void) {
printf ("sizeof(int*) is %zu\n", sizeof(int*));

return 0;

} // main

Compiling this code in 64-bit mode and running it on a 32-bit machine, such as a first-generation
MacBook, will get you rejected:

macbook$ gcc -arch x86_64 -g -Wall -o sizeprinter sizeprinter.c
macbook$ ./sizeprinter
./sizeprinter: Bad CPU type in executable.

The program works fine when run on a 64-bit capable machine like a MacBookPro:

macpro$ ./sizeprinter
sizeof(int*) is 8

You will still get rejected if you try running it on the wrong architecture. In this case, an x86_64
executable on a G4:

g4$ ./sizeprinter
./sizeprinter: Bad CPU type in executable.

It is legal to run a PowerPC executable on Intel on Leopard, thanks to the Rosetta emulation
technology. Snow Leopard has moved Rosetta to an optional install, so it might not be available on all
user’s machines.

macbook$ gcc -arch ppc -g -Wall -o sizeprinter sizeprinter.c
macbook$ ./sizeprinter

sizeof(int*) is 4

Rosetta does not support 64-bit PowerPC, just 32-bit.

An easy way to create a fat binary is to give gee all of the architectures on the command line at once.
Here is how to make a fat binary using the code from Example 2.3.

g4$ gcc -arch ppc -arch ppc64 -arch i386 -arch x86_64 \
-g -Wall -o sizeprinter sizeprinter.c

g4$ ./sizeprinter
sizeof(int*) is 4

and the same executable run on a G5:

g5% ./sizeprinter
sizeof(int*) is 8

and the same executable run on a 32-bit MacBook:

386% ./sizeprinter
sizeof(int*) is 4

The file command will tell you about the fatness of a program:

57



Chapter 2 The Compiler

$ file sizeprinter

sizeprinter: Mach-0 universal binary with 4 architectures

sizeprinter (for architecture ppc7400): Mach-0 executable ppc
sizeprinter (for architecture ppc64): Mach-0 64-bit executable ppc64
sizeprinter (for architecture 1i386): Mach-0 executable 1386
sizeprinter (for architecture x86 64): Mach-0 64-bit executable x86 64

Your file actually gets compiled multiple times when you specify multiple architectures, and the
resulting set of object code is merged into the output file. Example 2.4 uses some preprocessor
macros to figure what mode the compiler is currently in. __ppc__ is defined when compiling in 32-bit
PowerPC mode, ppc64 _ when compiling in PPC 64-bit mode, 1386 _ when compiling for Intel
32-bit,and x86 64 _ when compiling for Intel 64-bit.

__LP64 _is defined when using the LP64 model, so it will be defined when ppc64 or x86 64
is defined. If you are mainly interested in whether you are compiling for 64 bits, use __LP64__ rather
than one of the specific chip architecture symbols.

Example 2.4 uses the #warning preprocessor directive to tell us what chunks of code are being
compiled at any particular point in time.

Example 2.4 fat-macro-warn.c

/* compile with
gcc -o fat-macro-warn fat-macro-warn.c
or
gcc -arch ppc64 -o fat-macro-warn fat-macro-warn.c
or
gcc -arch ppc64 -arch ppc -arch x86 64 \
-arch 1386 -o fat-macro-warn fat-macro-warn.c
*/

int main(void) {
#warning compiling the file

#ifdef LP64
#warning in LP64
#endif

#ifdef  ppcbd
#warning in _ ppc64

#endif

#ifdef  ppc
#warning in _ ppc
#endif

#ifdef 1386
#warning in 1386
#endif

#ifdef  x86 64
#warning in _ x86 64
#endif

return 0;
} // main

Compiling it without extra flags on a G4 or G5 tells us the ~_ppc__ section gets compiled. On an Intel
system, it will be compiling with 1386 _ defined.

58



Fat binaries from the command line

g4$ gcc -o fat-macro-warn fat-macro-warn.c
fat-macro-warn.c:12:2: warning: #warning compiling the file
fat-macro-warn.c:23:2: warning: #warning in _ ppc__

Compiling it with -arch ppc64 tells us it finds the ppc64 and LP64  sections:

g4$ gcc -arch ppc64 -o fat-macro-warn fat-macro-warn.c
fat-macro-warn.c:12:2: warning: #warning compiling the file
fat-macro-warn.c:15:2: warning: #warning in LP64
fat-macro-warn.c:19:2: warning: #warning in _ ppc64

And, finally, here is compiling for all four architectures at once:

% gcc -arch ppc64 -arch ppc -arch x86_64 -arch i386 -o fat-macro-warn fat-macro-warn.c
fat macro-warn.c:12:2: warning: #warnlng compiling the file
fat-macro-warn.c:23: warning: #warning in _ ppc
fat-macro-warn.c:12: warning: #warning compiling the file
fat-macro-warn.c:15: warning: #warning in LP64
fat-macro-warn.c:19: warning: #warning in _ ppc64
fat-macro-warn.c:12: warning: #warning compiling the file
fat-macro-warn.c:27: warning: #warning in 1386
fat-macro-warn.c:12: warning: #warning compiling the file
fat-macro-warn.c:15: warning: #warning in LP64
fat-macro-warn.c:31: warning: #warning in  x86 64

NNNNNNNNN

Notice the order, or lack thereof; it changes on each invocation of the command. gec is parallelizing
the compilation. If you watch Xcode’s build log, you can see that it actually compiles each architecture
with its own command. This keeps the warnings and errors from becoming confusingly intermixed
and also allows Xcode to apply per-architecture build settings. You do not have to compile multiple
architectures at the same time. Instead, you can compile them separately and then use the lipo
command to assemble them together into fat versions. “Lipo” comes from the Greek word for “fat,”
which is why “fat” has been used in this chapter.

Be aware that the term “Universal” means different things on Mac OS X and iOS. On Mac OS X,
universal binaries have different independent chip binaries packaged together. Different code is run
whether it is run on a G4 or a 64-bit Intel machine. On iOS, a universal app is one that runs both on
the iPhone and the iPad, but it’s same executable running on both devices. You make runtime checks to
decide whether to enable iPad functionality and to choose whether to load iPhone or iPad nib files.

Continuing on with Example 2.3, here are steps that will create four object files and one fat binary.
Here are the PowerPC versions:

$ gcc -arch ppc -g -o sizeprinter-32 sizeprinter.c
$ gcc -arch ppc64 -g -o sizeprinter-64 sizeprinter.c

And the Intel versions:

$ gcc -arch 1386 -g -o sizeprinter-i32 sizeprinter.c
$ gcc -arch x86_64 -g -o sizeprinter-i64 sizeprinter.c

Join them with lipo and use the file command to verify the result is indeed a fat binary:

$ lipo -create -output sizeprinter-fat \
sizeprinter-32 sizeprinter-64 sizeprinter-i32 sizeprinter-i64
$ file sizeprinter-fat
sizeprinter: Mach-0 universal binary with 4 architectures
sizeprinter (for architecture ppc7400): Mach-0 executable ppc
sizeprinter (for architecture ppc64): Mach-0 64-bit executable ppc64

59



Chapter 2 The Compiler

sizeprinter (for architecture 1i386): Mach-0 executable 1386
sizeprinter (for architecture x86 64): Mach-0 64-bit executable x86 64

You can use the posix_spawn () function to control which architecture is run if you are launching your
Own process.

Fat binaries in Xcode

Xcode will of course let you create fat binaries in any permutation you want. The user interface for
choosing which architectures to use seems to change with every Xcode version. Searching for “arch” in
the Build Settings will get you to the place where you can make the settings.

Fat binary considerations

Even though Xcode makes it very easy to make N-way executables, the decision whether to go to a
2-way or 4-way fat binary is not one to take lightly because your testing matrix gets larger. A fat 32-
bit executable requires testing both the Intel and PowerPC versions. You can do much of your 32-bit
PowerPC testing in Rosetta on an Intel machine. Performance will be different, and it is good to test on
a real live PowerPC machine to cover any unknown corner cases. Adding both 64-bit versions doubles
the testing and verification burden.

Back during the Mac’s first architecture transition (from the Motorola 68000 to PowerPC), there was
a clever mixed mode system where a single executable could execute either kind of code. There is no
“mixed mode” in OS X between the Intel and PowerPC worlds and the 32-bit and 64-bit worlds.

As mentioned before, this means that there are Intel and PowerPC, 32-bit and 64-bit versions of the
system frameworks. If you have a have a bunch of 32-bit applications running and then you run a
64-bit program, all of the 64-bit frameworks will need to be brought into memory, which can take

a noticeable amount of time on first launch, not to mention the additional memory consumption.
Eventually all applications will be 64-bit, and 32-bit applications will become the bad guys, dragging
in system frameworks that only they are using.

Also, you can run into issues if your program supports plug-ins. The plug-ins need to match the host
application’s architecture. If you ship a 4-way executable, then your plug-ins will need to be 4-way
also. This may have an impact on any third parties that supply plug-ins.

60



Blocks

One shortcoming of C and Objective-C is code that performs a particular task becomes scattered
around the code base. Say you are performing an operation on a C array of People structs and you need
to sort the list by last name. Luckily, there is the library function qsort() to sort the array. qsort() is
well-optimized and does its job well, but it needs some help. It does not know how items are compared
to each other so that they end up in the proper sorted order.

gsort (peopleArray, count, sizeof(Person), personNameCompare);

int personNameCompare (const void *thingl, const void *thing2) {
Person *pl = (Person *) thingl;
Person *p2 = (Person *) thing2;
return strcmp(pl->lastName, p2->lastName);

} // compare

The compare function is not close to the invocation of gsort (). If you want to know exactly what
the comparison is doing while you are reading or maintaining the code, you will need to find
personNameCompare (), perhaps look at surrounding code, and then return to your original place.

Similarly, in Cocoa you frequently initiate some process that is handled in a place distant from the
initial call, kicking asynchronous work that is completed in callbacks. Say the user pushes a button to
load an image, and an NSOpenPanel is displayed:

- (IBAction) startImagelLoad: (id) sender {
NSOpenPanel *panel = [NSOpenPanel openPanell];

[panel beginSheetForDirectory: nil

modalDelegate: self
didEndSelector: @selector(openPanelDidEnd:returnCode:contextInfo:)
contextInfo: nil];

} // startImagelLoad

The callback method is somewhere else in the source file:

- (void) openPanelDidEnd: (NSOpenPanel *) sheet
returnCode: (int) code
contextInfo: (void *) context {
if (code == NSOKButton) {
NSArray *filenames = [sheet filenames];
// Do stuff with filenames.
}
} // openPanelDidEnd

61



Chapter 3 Blocks

The initiation of the open panel is separated both in time and space from the handling of the open
panel’s results. You need to find a place to hide any data that needs to be communicated from one place
to another, such as in a context parameter, instance variable, or global variable.

Wouldn’t it be nice to have these auxiliary chunks of code near where they are being invoked? That
way you can take in the entirety of an operation in a single screenful of code without having to hop
around your codebase.

Blocks are a new feature added by Apple to the C family of languages, available in Mac OS X 10.6 and
later and 10S 4.0 and later. Blocks allow you to put code that does work on behalf of other code in one
place.

The gsort() function call would look this when expressed with blocks:

gsort b (elements, count, sizeof(element),
~(const void *thingl, const void *thing2) {
Person *pl = (Person *) thingl;
Person *p2 = (Person *) thing2;
return strcmp(pl->lastName, p2->lastName);
} )

The open panel code would look something like this:

[panel beginSheetModalForWindow: window
// ...
completionHandler: ~(NSInteger result) {
if (result == NSOKButton) {
NSArray *fileNames = [sheet filenames];
// do stuff with fileNames
}
L

Block Syntax

A block is simply a piece of inline code. Here is an NSBlockOperation that logs a line of text when the
operation is scheduled to run.

NSBlockOperation *blockop;
blockop = [NSBlockOperation blockOperationWithBlock: ~{
NSLog (@"The operation block was invoked");
The block is introduced by the caret with the code of the block surrounded by braces. Bill Bumgarner
from Apple said that the caret was chosen because “it is the only unary operator that cannot be
overloaded in C++, and the snowman & is out because we can’t use unicode.”

The code inside of the block is not executed at the same time as the function or method call that
contains the block. The NSLog above will not be executed when the NSBlockOperation has been
created; instead, it will be called at a later time when the operation is finally run.

Blocks can take arguments. NSArray’s -enumerateObjectsUsingBlock: will enumerate all objects
in the array, invoking the block for each one. The block takes three parameters: the object to look at,
the index of the object in the array, and a stop pointer to a BOOL. Setting *stop to YES will cause the
iteration to cease before the array has been exhausted:

NSArray *array = [NSArray arrayWithObjects:

62



Return Values

@llhill, @Ilborkll’
@"badger", @"greeble",
@"badgerific", nill;

[array enumerateObjectsUsingBlock:
~(id object, NSUInteger index, BOOL *stop) {
NSLog (@"object at index %d is %@", index, object);

G
will print:
object at index 0 is hi
object at index 1 is bork
object at index 2 is badger
object at index 3 is greeble
object at index 4 is badgerific

Return Values

Blocks can also return values. The return type of the block can be specified after the caret, but
if you omit it, the compiler will try to infer as much information about the return value as it can,
allowing you to write more succinct code. This is a fully qualified block literal for NSArray’s
-indexes0fObjectsPassingTest: method:

~BOOL (id object, NSUInteger index, BOOL *stop) { return YES; }
But you can reduce it a bit because the return type will be inferred:

~(id object, NSUInteger index, BOOL *stop) { return YES; }

A block that takes no arguments and returns no value can be drastically reduced:

~void (void) { ... }
~(void) { ... }
...

All three are equivalent: a block that takes no arguments and returns no values.

Rather than printing out each element of the array, say you want to know which elements contain the
word “badger.” -indexes0fObjectsPassingTest: will invoke a block for each object in the array. It
uses a return value of YES or NO to control whether that object’s index is added to the index set that is
ultimately returned.

NSIndexSet *indices =
[array indexesOfObjectsPassingTest:
~(id object, NSUInteger index, BOOL *stop) {

NSRange match = [object rangeOfString: @"badger"];
if (match.location != NSNotFound) {

return YES;
} else {

return NO;
}

5
NSLog (@"%@", indices);

This prints:

63



Chapter 3 Blocks

<NSIndexSet> [number of indexes: 2 (in 2 ranges), indexes: (2 4)]

which corresponds to “badger” and “badgerific.”

Accessing Enclosing Scope

Blocks can also access their enclosing scope. Say you wanted to print out each of
the words that contains “badger.” You can use a variation of the previous code, using
-enumerateObjectsUsingBlock:

[array enumerateObjectsUsingBlock:
~(id object, NSUInteger index, BOOL *stop) {
NSRange match = [object rangeOfString: @"badger"];
if (match.location !'= NSNotFound) {
NSLog (@"found a '%@' : %@", @"badger", object);
}

s
Which would print out

found a 'badger' : badger
found a 'badger' : badgerific

It would be nice to be able to generalize this code so “badger” is not hard-coded. Blocks can capture
the values of variables defined in the scope that contains the block. Here is a more general version:

NSString *subString = @"badger";

[array enumerateObjectsUsingBlock:
~(id object, NSUInteger index, BOOL *stop) {
NSRange match = [object rangeOfString: subString];
if (match.location != NSNotFound) {
NSLog (@"found a '%@' : %@", subString, object);

G
As you would expect, this also prints out

found a 'badger' : badger
found a 'badger' : badgerific

The subString variable does not have to be a hard-coded assignment either. It could be a value
retrieved from an NSTextField or UITextField.

So, what is happening here? The compiler emits code that captures the value of any variables in the
outer scope that are used inside of the block. The block, in essence, takes a snapshot of the world at
this point in time. Captured local variables are treated as constant. You cannot assign to subString
inside of the block; if you do, you will get an error.

Captured Objective-C objects are retained. subString therefore has been retained. It will automatically
be released when the block goes away.

Changing Enclosing Scope

Blocks can also change their enclosing scope. Say you want to count the number of badgers found
inside of the list of words. You want the flexibility of providing subString to the block, but you

64



Block Variables

also want a way for multiple invocations of the block to calculate a value and let the enclosing scope
know about that value. A return value from the block will not work here because the badger count is
calculated across an arbitrary number of block invocations. You cannot use a captured variable because
they are const.

__block, with two leading underscores, is a new compiler keyword introduced to indicate that an
enclosing scope variable can be modified from inside of the block.

Here is an enumeration that counts the number of badgers:
NSString *subString = @"badger";
__block int count = 0;
[array enumerateObjectsUsingBlock:
~(id object, NSUInteger index, BOOL *stop) {
NSRange match = [object rangeOfString: subString];

if (match.location != NSNotFound) {
count++;
}

s
NSLog (@"found %d %@s", count, subString);
prints
found 2 badgers

The block will be invoked once for each object in the array executing the code from top to bottom.
count is incremented if object contains subString. Because count is _block scoped, a common piece
of memory is having its value changed.  block says “Hey, this variable can be changed inside of a
block.” Of course, global variables and function-scoped static variables can be changed inside of a
block without needing the block qualifier.

Captured objects are not retained with _block. There are no thread safety guarantees with _block
variables, so if your block could be executed on multiple threads simultaneously, you will need to take
proper thread safety precautions.

Programmers familiar with other languages may recognize these block features under different names:
Lambdas, closures, anonymous functions, as well as “blocks” in languages like Ruby and Smalltalk.

Block Variables

Blocks are not limited to living in-line in method or function calls. You can have variables, whether
local, global, or instance, that point to blocks. The syntax is like standard C function pointer syntax but
using a caret instead of a star:

void (”~blockPtrVar) (NSString *arg) = ~(NSString *arg) { NSLog (@"%@", arg); };

The name of the variable is blockPtrVar. The block returns nothing (void) and takes a single
NSString argument.

Invoke it like a function pointer:

blockPtrVar (@"hello");

65



Chapter 3 Blocks

which prints “hello.”

Things become more readable when you use a typedef:

typedef void (”BlockType) (NSString *arg);

BlockType blockPtrVar = ~(NSString *arg) { NSLog (@"%@", arg); };
blockPtrvVar (@"there");

which prints out “there” as you would expect.

Variable Capture Redux

Let’s revisit variable capture. Each of the blocks here is the same code, but they are “created” at
different times — each after the value of val has changed.

typedef void (”BoringBlock) (void);

int val = 23;
BoringBlock blockl

~{ NSLog (@"%d", val); };

val = 42;
BoringBlock block2

~{ NSLog (@"%d", val); };

val = 17;
BoringBlock block3

~{ NSLog (@"%d", val); };

blockl points to a block that has captured val when it had a value of 23. block2 points to a block
that has captured val when it had a value of 42, and likewise block3’s val captured the value of 17.
Invoking the blocks prints out the captured values of val:

blockl ();
block2 ();
block3 ();

prints
23
42
17
Now, make a single change to the code, making val a __block-scoped variable:

typedef void (”BoringBlock) (void);

__block int val = 23;
BoringBlock blockl = ~{ NSLog (@"%d", val); };

val = 42;
BoringBlock block2

~{ NSLog (@"%d", val); };

val = 17;
BoringBlock block3 = ~{ NSLog (@"%d", val); };

Invoking the blocks as above will print:

17

66



Blocks as Objects

17
17

The same value is printed because all blocks are sharing the same storage for val rather than making
copies.

Blocks as Objects

Interestingly enough, blocks are also objects and can be stored in collections. Blocks start out life
on the call stack, making them the only stack-based Objective-C objects. The block’s executable
code does not actually live on the stack, but all of the data the block uses, such as local variables and
captured variables, lives there.

Because these blocks live on the stack, you need to make a copy of the block into the heap if it is to
live beyond the current scope. When you copy a block, any captured variables are copied into the heap
as well. Figure 3.1 shows the block data on the stack for this block:

int stride = 10;
__block int summation = 0;

BoringBlock blockPtr = "{
summation += stride;

};

Because summation is _block-scoped, the code inside and outside of the block refers to the same
location in memory. stride, on the other hand, is a simple const-captured variable. Its value, at the
time the block is defined, is duplicated and placed in another location in memory, so any changes made
to stride will not corrupt the value that has been captured.

Figure 3.1 Block storage starts on the stack

Stack

/int stride = 10;
. _block int summation = 0;
stride: 10 4—//
summation: 0 BoringBlock blockPtr = "{
- rord X
summation

. += i .
captured stride: 10 ___——————’—}"’—_ stride;
i

You can make a copy of a block using the -copy method, or with the Block_copy () function:
void *Block copy (const void *block);

You can -release the copied block or use Block_release():

void Block release (const void *block);

After the copy, memory looks like Figure 3.2. The captured values for summation and the captured
stride have been moved to the heap, and a pointer has been put into place for summation so that the
value can be found in the heap. This means that the address of a __block-scoped variable can change,
so do not rely on it being constant.

67



Chapter 3 Blocks

Figure 3.2 Copies get moved to the heap

Stack
stride: 10
summation -~
int stride = 10;
. _block int summation = 0;
BoringBlock blockPtr = "{
summation
Heap += stride;

}i

summation: 0
e

captured stride: 10

The first copy of a block can be expensive because it requires dynamic allocation. Subsequent copies
of the block just turn into retains, and so are fast.

In general, - copy and Block_copy () are interchangeable, except when you are running under garbage
collection. If you use -copy, you need to keep a strong reference to the block to prevent it from getting
collected. Block_copy under GC behaves more like CFRetain, preventing the block from being
collected even if there are no strong references to it.

Sending -retain to a block is a no-op until the block has been copied.

When To Copy

So when do you need to copy a block? Make a copy whenever a block will outlive the scope it is
defined in. In particular, these snippets are broken:

if (rand() % 1 == 0) {

blockPtr = ~{ NSLog (@"You are a winner!"); };
} else {

blockPtr = ~{ NSLog (@"Please try again!"); };
}

The braces for the branches of the if statement introduce a new scope, so the blocks are invalid
afterwards.

blockPtr = ~{ NSLog (@"Help me"); };
return blockPtr;

Like returning the address of a local variable, returning a block that is still on the stack will cause
problems later on, especially if you capture any local variables whose storage vanishes when the
function ends.

BoringBlock blocks[101];
for (int i = 0; i < 10; i++) {

68



Blocks in Collections

blocks[i] = *{
NSLog (@"captured %d", 1i);
b
}

Similar to the if branches, the body of the for loop is a different scope, so the blocks are invalid once
the loop ends.

Blocks in Collections

You need to copy a block before you add it to a Cocoa collection class. Consider this erroneous code:

NSMutableArray *blockArray = [NSMutableArray arrayl];
[blockArray addObject: ~{
NSLog (@"Jen makes great cupcakes!");

5

The stack-based block object has its address passed to -addObject:. -addObject: retains the passed-
in object. Because the block is still on the stack, -retain is a no-op. The block becomes invalid when
the calling function exits, waiting to blow up when you use it in the future. You fix this by copying it
before putting it into the collection. Do not forget to offset the implicit retain from - copy.
[array addObject: [["{
NSLog (@"Jen makes great cupcakes!");
} copyl] autoreleasell;

Yes. It looks weird, but it’s necessary.

Block Retain Cycles

Blocks have retain counts. If you have retain counts, you can get retain cycles. Here is a typedef for a
simple block, and a class that references the block, along with a string instance variable.
typedef void (”BoringBlock) (void);
// The leaky object.
@interface Leakzor : NSObject {
NSString * string;
BoringBlock blockhead;
}

// Print |string].
- (void) funk;

@end // Leakzor

And here are -init and -dealloc.

- (id) init {
if ((self = [super init])) {
_string = @"snork";

// |string| is same as self->string, so |self| is retained.
_blockhead = Block copy(~{
NSLog (@"string is %@", string);
1)

69



Chapter 3 Blocks

}

return self;
} // init

- (void) dealloc {
[ string release];
[ blockhead releasel];
[super dealloc];

} // dealloc

The string instance variable is used in the block. Instance variable references like this are actually a
pointer dereference off of self, so

NSLog (@"string is %@", string);
is the same as
NSLog (@"string is %@", self-> string);

Because self is a variable in the outside scope that is being captured, it is retained. self will not be
released until the block is released in -dealloc, but -dealloc will not be called until self has been
released. This is the cause of the retain cycle.

You can break the retain cycle by using a __block-scoped local variable that points to self. _block-
scoped objects are not retained automatically, so the retain cycle is not created:
- (id) init {
if ((self = [super init])) {
_string = @"snork";

// blockSelf is _ block scope, so won't be auto-retained
__block Leakzor *blockSelf = self;
_blockhead = Block copy(~{
NSLog (@"string is %@", blockSelf-> string);
1)
}

return self;
} // init

You do not have to jump through this hoop for every block you make because most blocks have a very
short lifespan. Just be aware that if you have a block that has the same lifetime as its owning object and
you are freeing the block at -dealloc time, you can get a retain cycle.

New API Using Blocks

Several new C library calls have been introduced using blocks. They have b appended to their names
to indicate they are block calls, similar to the way some library functions have r appended to indicate
re-entrant calls. Some of the more useful ones are:

gsort_b() quicksort using a block for a comparator

bsearch_b() binary search using a block for a comparator

psort_b() parallel sort using a block for a comparator

glob_b() generate pathnames matching a pattern, using a block for an error callback

70



For the More Curious: Blocks Internals

scandir_b() collect pathnames, using blocks for a path selection and comparison

Cocoa has introduced a large number of block-oriented methods. An easy way to find them all is to
search through the framework headers looking for the caret. The caret operator is rarely used in Cocoa
header files, so it is a good way to find block methods. Here are some interesting new Cocoa methods:

[array enumerateObjectsUsingBlock:
~(id obj, NSUInteger index, BOOL *stop) { ... }1;

You have seen this before. It iterates through the array, invoking a block for each object.

[array enumerateObjectsWithOptions:
NSEnumerationReverse | NSEnumerationConcurrent
usingBlock:
~(id obj, NSUInteger index, BOOL *stop) { ... }1;

You can include some extra options when enumerating an array. Interesting options are
NSEnumerationReverse, which iterates through the array backwards, and NSEnumerationConcurrent,
which will automatically parallelize the iteration.

[dictionary enumerateKeysAndObjectsUsingBlock:
~(id key, id object, BOOL *stop) { ... }1;

This is the fastest way to iterate the keys and values in a dictionary. Fast enumeration over a dictionary
only gives you the keys, so getting the corresponding value requires an -objectForKey: call.

NSPredicate *p = [NSPredicate predicateWithBlock:
~BOOL (id obj, NSDictionary *bindings) { ... }1;

This creates an NSPredicate that is backed by arbitrary code, which allows you to express more
sophisticated predicates than can be constructed using the predicate format language.

Grand Central Dispatch is also heavily block-based and will be covered in Chapter 22: Grand Central
Dispatch).

For the More Curious: Blocks Internals

Blocks and __block variables are implemented by a combination of structures and functions. These are
generated by the compiler and maintained by a runtime environment. Knowing how things work under
the hood is useful for understanding the details of memory management and debugging.

Implementation

The compiler interprets the new, block-specific syntax and generates data to interface with the runtime
and code that relies on functions provided by the runtime. The blocks runtime enables the use of blocks
while the application is actually running.

The specific compiler is irrelevant to our discussion. The most visible difference between gee and clang
is in the names generated for the private structures and functions created by the compiler to support
blocks and __block variables.

Those private structures and functions make up the heart of the blocks implementation.

71



Chapter 3 Blocks

Block literals

Each block literal definition triggers the compiler to generate two structures and at least one function.
The two structures describe the block and its runtime information. The function contains the executable
code of the block.

The two structures are the block literal (also known as the “block holder””) and the block descriptor.
A block descriptor looks like:

static const struct block descriptor NAME {
unsigned long reserved;
unsigned long literal size;

/* helper functions - present only if needed */
void (*copy helper)(void *dst, void *src);
void (*dispose helper)(void *src);

b

The reserved field is currently unused. The literal size field is set to the size of the corresponding
block literal. The two helper function pointers are only present if needed. They are needed when the
block references an Objective-C or C++ object or a __block variable. When helper functions are
necessary, the compiler generates them in addition to the function implementing the body of the block
literal.

A block literal looks like:

struct block literal NAME {

void *isa;

int flags;

int reserved;

void (*invoke) (void *literal, ...);

struct block descriptor NAME *descriptor;

/* referenced captured variables follow */
b

The isa pointer is what makes a block into an Objective-C object. Even when not using Objective-C,
the isa pointer is still used by the blocks runtime to indicate what kind of block it is dealing with.

The isa field will point to:

_NSConcreteStackBlock when the block is on the stack.

_NSConcreteGlobalBlock when the block is in global storage.
_NSConcreteMallocBlock when the block is on the heap.

_NSConcreteAutoBlock when the block is in collectable memory. This class is used

when running under the garbage collector and a stack block not
referencing a C++ object is copied to the heap.

_NSConcreteFinalizingBlock when the block is in collectable memory and must have a
finalizer run when it is collected. This class is used when
running under the garbage collector and a stack block
referencing a C++ object is copied to the heap, because the

72



Implementation

runtime must ensure that the C++ object’s destructor is called
when the block is collected.

All of these block classes are subclasses of _NSAbstractBlock. The abstract class provides
implementations for the memory-related methods used by blocks. The various concrete subclasses
exist solely to indicate information about where the block is stored.

The flags field provides further information about the block:

enum {
BLOCK REFCOUNT MASK = (OXFFFF),
BLOCK NEEDS FREE = (1 << 24),
BLOCK HAS COPY DISPOSE = (1 << 25),
BLOCK HAS CXX_OBJ = (1 << 26),
BLOCK IS GC = (1 << 27),
BLOCK IS GLOBAL = (1 << 28),
BLOCK HAS DESCRIPTOR = (1 << 29),

};

BLOCK REFCOUNT MASK, BLOCK NEEDS FREE, and BLOCK IS GC are set as appropriate by the runtime
when a block is copied.

BLOCK IS GLOBAL is set at compile time for blocks in global storage. Copying and releasing such a
block has no effect, as the block is always present in the application’s memory. The compiler might opt
to hoist a stack-local block into static memory and set the BLOCK IS GLOBAL flag if it has no references
to any stack-local (which includes  block) variables.

BLOCK_HAS DESCRIPTOR is always set. It was added to distinguish the version of the blocks
implementation that was eventually released with Snow Leopard from an earlier implementation.

Every block invoke function takes a pointer to the calling block literal as its first argument. This
provides the function with access to the block’s captured variables. This is functionally identical to

the this pointer passed as the first argument to C++ member functions, which the member function
uses to access the member variables, and the self pointer supplied as the first argument to Objective-C
instance methods, which the method uses to access the instance variables. As in C++, the return

value and remaining arguments of the block invoke function are those declared by the programmer.
(Objective-C adds one more implicit argument between self and the programmer-declared arguments,
_cmd, which is set to the method’s selector.)

Aside from the obvious referenced captured variables, blocks also are considered to have referenced all
variables referenced by any blocks nested within them. Consider this brief example:

int x = 0;
inty=1;
int ("b)(void) = 7{
int ("c)(void) = ~{
return y;
}
return x + c();

}
Here, the block assigned to b is considered to have referenced both x and y.

To see how block literals, block descriptors, and block invoke functions come together, consider this
code:

73



Chapter 3 Blocks

void f(void) {
int x = 0;
int (”b)(void) = ~{ return x + 1; };
int y = b()

}
The compiler would turn that code into something like this:

typedef void (*generic_invoke funcptr)(void *, ...);
struct _ block literal {

void *isa;

int flags;

int reserved;

generic_invoke_ funcptr invoke;

struct _ block descriptor_tmp *descriptor;

const int captured x;

Y

static const struct _ block descriptor tmp {
unsigned long reserved;
unsigned long literal size;
/* no copy/dispose helpers needed */
} __block descriptor tmp = {
QUL, sizeof(struct _ block literal)
b

// ~int (void) { return x + 1; }

int _f block invoke (struct _ block literal *bp) {
return bp->captured x + 1;

}

typedef int (*iv_funcptr)(struct _ block literal *);

void f(void) {
int x = 0;
// int (~b)(void) = ~{ return x + 1 };
struct _ block literal b = {
.isa = & NSConcreteStackBlock,
.flags = BLOCK HAS DESCRIPTOR,
.reserved = 0,
.invoke = (generic_invoke funcptr)_ _f block invoke ,
.descriptor = & block descriptor_tmp,
.captured x = x
3
struct _ block literal *b = & b;
int y = (*(iv_funcptr)(b->invoke)) (b);
}

Notice that the block variable is really a pointer to a structure created on the stack. It can be helpful to
keep this in mind when thinking about when a block literal must be copied or not.

__block variables

Like block literals, _block variables can move from the stack to the heap and their variable data
can require memory management, such as when it is an Objective-C object. Consequently, _block
variables are also compiled into a struct and, if necessary, ancillary functions.

In order that all manipulations of the ~_block variable deal with the current location of the variable, all
access is mediated by a forwarding pointer. When a __block variable is copied from the stack to the

74



Implementation

heap, the forwarding pointers of both the on-stack and in-heap structures are updated to point to the in-
heap structure.

Because all  block variable access is by reference, the names of the structure and functions
associated with __block variables embed “byref.”

The byref structure looks like:

struct Block byref {
void *isa;
struct Block byref *forwarding;
int flags;
int size;

/* helper functions - present only if needed */
void (*byref keep)(struct Block byref *dst, struct Block byref *src);
void (*byref destroy)(struct Block byref *);

/* actual variable data follows */

}

The isa field is always NULL to start with. When a _ weak-qualified ~block variable is copied, the
field is set to &NSConcreteWeakBlockVariable.

The forwarding pointer always points to the start of the authoritative byref header. To begin with, this
will always be the address of the containing byref structure itself.

The flags field is used to indicate whether copy and dispose helper functions are present. If they are
not, it will be initialized to 0; otherwise, it will be initialized to BLOCK_HAS COPY DISPOSE. As with
block literals, when the structure is copied at runtime, the flags field will be updated with memory
management information. If it is copied into scanned memory, BLOCK_IS GC will be set. Otherwise,
BLOCK_NEEDS_FREE will be set and the bottom two bytes used to store a reference count.

The size is set to the size of the particular Block byref structure.

Helper functions will be synthesized by the compiler if the byref variable is a block reference, an
Objective-C object, or a C++ object. If they are present, flags will include BLOCK_HAS COPY_DISPOSE.
They will be invoked when copying and when releasing a block that references a _block variable.

When a block captures a __block variable, it holds onto the byref structure’s forwarding pointer and
uses that to interact with the variable. The block will then need copy and dispose helpers to handle
copying and disposing of the captured __block variable.

As an example, we will return to the function f. We will change it slightly by moving the referenced
variable x from auto storage to __block storage:

void f(void) {
__block int x = 0;
int ("°b)(void) = ~{ return x + 1; };
inty = b();

}

In response, the compiler will generate something like the following code (the changes wrought by
adding __block have been emphasized):

// __block int x
struct __byref_x {

75



Chapter 3 Blocks

/* header */

void *isa;

struct __byref_x *forwarding;
int flags;

int size;

/* no helpers needed */

int x;

i

typedef void (*generic_invoke funcptr)(void *, ...);
struct  block literal {

void *isa;

int flags;

int reserved;

generic_invoke funcptr invoke;

struct  block descriptor tmp *descriptor;

struct __byref_x *captured_x;

};

void __copy_helper_block_(struct _ block_literal *dst,
struct __block_literal *src);
void __destroy_helper_block_(struct __block_literal *bp);

typedef void (*generic copy funcptr)(void *, void *);
typedef void (*generic dispose funcptr)(void *);
static const struct  block descriptor tmp {

unsigned long reserved;

unsigned long literal size;

/* helpers to copy _ block reference captured_x */
generic_copy_funcptr copy;
generic_dispose_funcptr dispose;

}  block descriptor tmp = {
OUL, sizeof(struct  block literal),

(generic_copy_funcptr)__copy_helper_block_,
(generic_dispose_funcptr)__destroy_helper_block_

I
// ~int (void) { return x + 1; }
int f block invoke (struct block literal *bp) {

return bp->captured x->forwarding->x + 1;
}

typedef int (*iv_funcptr)(struct  block literal *);

void f(void) {

// __block int x = 0;
struct __byref_x x =
.isa = NULL,

{

76



Implementation

.forwarding = &x,

.flags = 0,
.size = sizeof(x),
X =0

i

// int (”b)(void) = ~{ return x + 1 };
struct  block literal b = {

.isa = & NSConcreteStackBlock,

.flags = BLOCK_HAS DESCRIPTOR,

.reserved = 0,

.invoke = (generic_invoke funcptr) f block invoke ,
.descriptor = & block descriptor tmp,

.captured_x = x.forwarding

I
struct  block literal *b = & b;
int y = (*(iv_funcptr) (b->invoke)) (b);

// Clean up before leaving scope of x.
_Block_object_dispose(x.forwarding, BLOCK_FIELD IS_BYREF);

void __ copy_helper_block_(struct _ block_literal *dst,
struct __block_literal *src) {
_Block_object_assign(&dst->captured_x, src->captured_x,
BLOCK_FIELD_IS_BYREF);
}

void __destroy_helper_block_(struct _ block_literal *bp) {
_Block_object_dispose(bp->captured_x, BLOCK_FIELD IS_BYREF);
}

Of particular note here is the call to _Block_object_dispose() at the end of f(). This is because,
when garbage collection is not being used, the runtime must adjust the reference count of the = block
variable whenever it goes out of scope. When all references have been eliminated, the runtime releases
any allocated storage.

The functions used by the helper functions, _Block_object_assign() and
_Block_object_dispose(), are provided by the blocks runtime for use by the compiler. Their behavior
is heavily determined by the final argument, const int flags, which provides information on the type
of the object being assigned or disposed of. The possible values of this field are:

enum {
BLOCK FIELD IS OBJECT = 3,
BLOCK FIELD IS BLOCK = 7,
BLOCK FIELD IS BYREF = 8,
BLOCK FIELD IS WEAK = 16,
BLOCK BYREF CALLER = 128

};

The BLOCK _BYREF_CALLER flag is used to signal to the functions that they are being called by a byref
structure’s byref keep or byref destroy function. It is only ever set by such functions.

77



Chapter 3 Blocks

The other flags are set as appropriate for the type of the object being assigned or disposed. Notice that
a block field is also an object, since BLOCK_FIELD IS BLOCK & BLOCK FIELD IS OBJECT results in
BLOCK FIELD IS OBJECT. Where distinguishing between an object and a block object is important, the
runtime functions are careful to test whether the block flag is set before testing whether the object flag
is set.

Debugging

Debugging blocks can be tricky as the debugging environment straddles the line between the
abstraction and the implementation. gee provides far better debugging information than clang, but this
might change in the future.

gdb comes with only one block-specific command: invoke-block, which you can unambiguously
abbreviate to inv. Its arguments are a block reference or the address of a block literal structure followed
by the declared arguments to the block function. The arguments are separated by spaces, so arguments
with spaces must be enclosed in double quotation marks. Double quotation marks within quoted
arguments must be escaped with a backslash. The only time you are likely to encounter this is in
passing a string argument to a block; the resulting command would look like:

inv string block "\"string argument\""

gee and clang differ significantly in the debugging information they supply for blocks.

gcc’s debugging information

gee embeds a goodly amount of debugging information about blocks. The print command (p for short)
picks up that block references are pointers, and you can use ptype to print the compiler-generated type
of a block:

(gdb) p local_block
$1 = (struct _ block literal 2 *) Oxbffff854
(gdb) ptype local_block
type = struct _ block literal 2 {
void * isa;
int _ flags;
int _ reserved;
void * FuncPtr;
struct _ block descriptor withcopydispose * descriptor;
const char *enc vbv;
struct _ Block byref 1 i *i;
}*
(gdb) ptype local_block->__descriptor
type = struct _ block descriptor withcopydispose {
long unsigned int reserved;
long unsigned int Size;
void *CopyFuncPtr;
void *DestroyFuncPtr;

}*

You can also use the Objective-C command print-object (po for short) to get a different view on the
block:

(gdb) po local_block
< NSStackBlock : Oxbffff854>

78



Dumping runtime information

Getting information on local variables within a block will show that gee adds the = func__ variable,
which is set to the name of the function. If you get information on the function arguments, you will see
the implicit block literal pointer argument:

(gdb) i args
.block descriptor = (struct _ block literal 2 *) Oxbffff854

The debugging information generated by gee pretends that __block variables are identical to their auto
counterparts, so that if you have a variable _block int i, you will find that printing the i and its size
will behave the same as printing a variable int i.

clang’s debugging information

clang, unfortunately, provides no debugging information for block references. The debugger finds no
type information for block references. It also has no way to look up the block implementation function
for a block so that invoke-block always fails.

You can still set breakpoints in blocks by setting them at a line in a file or at the invocation function, if
you can determine its name, but you will find that clang pretends that block implementation functions
have the same arguments as the block literal, so you cannot readily gain access to the implicit block
literal pointer argument. Interestingly, clang does not report any  func__ local variable; it generates a
warning if you use it from a block literal, but you will find that the variable is in fact present, regardless
of what the debugging information says.

clang also emits no debugging information for __block variables. They do not appear in the list of local
variables, and any attempt to reference them results in a message like:

No symbol "i" in current context.

While you could make headway by using what you know of the blocks implementation to cadge the
desired information out of a program compiled using clang, until these issues are fixed, you would do
well to use gee when compiling an application using blocks where you plan to rely on the debugging
information in future.

Dumping runtime information

Apple’s blocks runtime includes a couple functions for dumping information about a block reference
anda __block variable.

These functions are:

const char *_Block_dump(const void *block);
const char *_Block_byref_dump(struct Block byref *src);

You can call these from gdb to dump information about a block or __block variable. If you have the
following declarations:

__block int i = 23;
void (~local block)(void) = ~{ /*...*/ };

then you can dump information about them as follows:
(gdb) call (void)printf((const char *)_Block_dump(local_block))

~Oxbffff854 (new layout) =
isa: stack Block

79



Chapter 3 Blocks

flags: HASDESCRIPTOR HASHELP
refcount: 0

invoke: 0x1e50

descriptor: 0x20bc
descriptor->reserved: 0
descriptor->size: 28
descriptor->copy helper: 0x1le28
descriptor->dispose helper: 0xle0a

(gdb) set $addr = (char *)&i - 2*sizeof(int) - 2*sizeof(void *)
(gdb) call (void)printf((const char *)_Block_byref_dump($addr))
byref data block Oxbffff870 contents:

forwarding: Oxbffff870

flags: 0x0

size: 20

Note that, though the debugging information supplied by gee pretends that the  block variable 1 is
simply an int variable, the address of the variable is in fact its address within the byref structure. Since
we know the layout of the structure, we can calculate the address of the start of the structure and pass
that to _Block_byref_dump().

You can wrap these calls in user-defined commands. Adding the following definitions to your
.gdbinit file will make them available whenever you run gdb:

define dump-block-literal
printf "%s", (const char *) Block dump($arg0)
end

document dump-block-literal
Dumps runtime information about the supplied block reference.
Argument is the name or address of a block reference.

end

define dump-block-byref
set $ dbb addr = (char *)&$argd - 2*sizeof(int) - 2*sizeof(void *)
printf "%s", (const char *) Block byref dump($ dbb_addr)

end

document dump-block-byref

Dumps runtime information about the supplied _ block variable.

Argument is a pointer to the variable embedded in a block byref structure.
end

With these commands defined, dumping that information is as simple as:

(gdb) dump-block-literal local_block
~Oxbffff854 (new layout) =

isa: stack Block

flags: HASDESCRIPTOR HASHELP
refcount: 0

invoke: 0x1e50

descriptor: 0x20bc
descriptor->reserved: 0
descriptor->size: 28
descriptor->copy helper: 0x1le28
descriptor->dispose helper: 0xle0a
(gdb) dump-block-byref i

80



Evolving the implementation

byref data block Oxbffff870 contents:
forwarding: Oxbffff870
flags: 0x0
size: 20

Evolving the implementation

This chapter has described the blocks runtime as released with Mac OS X 10.6 (Snow Leopard). The
blocks runtime is unlikely to make any changes that would break code compiled to that interface, but it
will not stop evolving.

There are several extension points built into the current runtime. The various flags fields can be
carefully extended; reserved fields can be repurposed; and new fields can be tacked on at the ends of
the various structures.

One minor extension that might see release is the addition of a signature field at the end of the block
descriptor structure. This field would contain a pointer to the Objective-C type encoding of the block
invoke function.

(For those curious, blocks themselves are encoded by the @encode directive as @?; this parallels the
function pointer encoding of ~?, which literally reads as “pointer to unknown type.”)

To indicate that this field is present, the BLOCK_HAS DESCRIPTOR flag would no longer be set, and a new
flag, BLOCK_HAS SIGNATURE = (1 << 30), would be set in all blocks compiled for the new runtime.

With the ability to test for BLOCK_HAS_SIGNATURE to check for a block compiled against a

newer version of the runtime, the way is opened for other changes, including repurposing
BLOCK_HAS_DESCRIPTOR to signal that a block returns a structure large enough to require special
handling on some architectures. The flag could be renamed BLOCK_USE_STRET. This is similar to the
way that objc_msgSend_stret() is used by the Objective-C runtime instead of objc_msgSend() in the
same situation.

A more significant change would be to add the signature of the variables captured by a block. This
would allow the runtime to eliminate helper functions in favor of using the type information now
encoded along with the block to itself do the right thing for all captured variables when a block is
copied or disposed.

Compiler-generated names

Both gee and clang automatically generate names for the structures and functions that make up blocks
and __block variables. Sometimes during debugging, it would be useful to be able to guess the names
generated in implementing a given block or __block variable.

Unfortunately, outside of toy examples, this is generally not possible without reference to a
disassembly of the code. Both compilers disambiguate the names of the structures and helper functions
they generate by appending numbers to the end of the same string. Thus, you can judge the type of
support structure or helper you are looking at, but you cannot readily trace it back to the block or
__block variable that caused its generation.

Fortunately, the outlook is not so bleak when it comes to block invoke functions. Block invoke
functions not defined at global scope embed the name of the outermost enclosing function.
The first block in a function f() will be named ~f block_invoke 1 if generated by gee and

81



Chapter 3 Blocks

__f block_invoke if generated by clang. The numeric suffix is incremented prior to generating the
name of the block invoke function of each subsequent block encountered within the function. (clang
starts by appending the number 1 and increments it like gee thereafter.) Objective-C method names
will be embedded just as C function names, leading to block invoke function names like - [Foo
init] block invoke 1. C++ member functions are neither qualified nor mangled for embedding, so
a block defined within the member function Foo: :Bar () will cause the compiler to generate a block
invoke function named __Bar block invoke_(append a 1 if the compiler is gee).

The block invoke functions of blocks defined at global scope are harder to track down, since they have
no enclosing function to anchor them. gee names such functions starting with _block _global 1. clang
uses the same name scheme as for blocks defined within a function, only it substitutes global as the
function name. Consequently, the first block defined at global scope that clang encounters is named
__global_block_invoke , and the second, global block invoke 1.

One surprising result of the naming conventions for blocks at global scope is that when several source
files are compiled into a single executable, each one can have its own __global block invoke
function. The resulting executable will have several functions with the identical name distinguished by
their being at different addresses.

Whenever possible, specify breakpoints in block functions using the file and line number rather than
the name. The name generation scheme could change in future and does not guarantee uniqueness
within a linked executable, only within a compilation unit.

Exercises

1. Rewrite this function as a block:

int k(void) {
return 1;

}

2. Write a function create_k that accepts a single integer argument i and returns a block. The returned
block accepts no arguments and always returns the value of i passed to create_k(). Use this
function in a test program. (Be careful with the block memory management!)

3. Define two blocks called add_one and add_two that accept no arguments and return nothing.
These should both increment the same integer by one or two. (You will need the __block storage
specifier.)

4. Use typedefs to simplify the following block reference declaration:

int (~(*(~get block factory funcptr)(void))(int)) (void);

82



Command-Line Programs

Much of the power that Unix brings to the user is in the command-line tools, where the user can set up
pipelines of independent programs that manipulate data. It’s time to take a peek under the hood of a
typical command-line tool and see how it works, as many of the command-line concepts (processing
arguments, checking the environment) apply to any Unix program. Here you are going to write a
program that filters its input by changing any letters it finds to upper or lower case.

Figure 4.1 shows a typical command-line program along with its three communication streams. The
standard-in stream (also called “stdin”) supplies data to the program. The data you are to process
comes from standard-in. You are done once the stream dries up. While you process the data, you write
new data to the standard-out stream (also called “stdout”). If you need to report any errors or output
any information other than the processed data, you can write that information to the standard-error
stream (also called “stderr”).

When you type a pipeline command in a shell, like cat words.txt | wc -1, the shell creates new
processes, one for each command. For this command, there are two new processes, one for cat and

one for we. The shell then hooks the standard-out of cat to the standard-in of we, and also hooks the
standard-out of we back to the shell so that the shell can read its output. By using the stream redirection
features of your shell, you can pour a file’s contents into the standard-in of a program or save the
standard-out output to a file.

Figure 4.1 The standard file streams

"HeLIO tHeRe"

- upcase
stdin stdout

e
5 ’ ‘

e Y "HELLO THERE"
"oops. something went wrong"

83



Chapter 4 Command-Line Programs

The Basic Program

The stdio.h header file (among other stuff) defines global symbols that represent the three file
streams: stdin, stdout, and stderr, which represent standard-in, standard-out, and standard-error
respectively.

Here’s a source file called upcase.m. First import the header files. You will always need some kind of
header files:

#import <Foundation/Foundation.h> // for BOOL
#import <stdlib.h> // for EXIT FAILURE/SUCCESS
#import <stdio.h> // for standard I/0 stuff

Importing Foundation.h pulls in the headers for the Cocoa Foundation Kit. For now, you’re just going
to be using the BOOL type.

stdlib.h brings in much of the C standard library. Here we will be using the EXIT_FAILURE and
EXIT SUCCESS constants.

stdio.h provides the declarations for the standard input/output types and functions.
Next is a function to change the case of all the characters in a buffer:

void changecaseBuffer (char buffer[], size t length, BOOL upcase) {
char *scan = buffer;
char *const stop = buffer + length;

while (scan < stop) {
*scan = upcase? toupper(*scan) : tolower(*scan);
scan++;

}
} // changecaseBuffer

changecaseBuffer() scans over every byte in the buffer calling the toupper() or tolower() function
on each one. The functions change a character’s case appropriately if it is a letter, and they leave it
alone if not. This code assumes an ASCII-style character encoding. A string in a multi-byte encoding
like UTF-8 will get trashed.

You will need a chunk of memory to hold the incoming data while it is being processed. The program
will process things in 2-KiB chunks.

#define BUFFER_SIZE (2048)

Last is the main() function, which is where program control flow starts when the program is run.
main () reads and processes the input:

int main(int argc, char *argv[]) {
char buffer[BUFFER SIZE];
const BOOL upcase = YES;

while (!feof(stdin)) {
const size t length = fread(buffer, 1, BUFFER SIZE, stdin);
changecaseBuffer(buffer, length, upcase);
fwrite(buffer, 1, length, stdout);

}
return EXIT SUCCESS;
} // main

84



Inside the Central Loop

You can build this program in Xcode using the Command Line Tool template as a starting point. (In
Xcode 3, look for the Foundation Tool template.) Or you can compile it on the command line:

$ gcc -o upcase upcase.m

This command runs the C compiler on upcase.m, which generates an executable program with the
name upcase. If you do not include -o upcase, the compiler will, for historical reasons, use the name
a.out.

Invoke your new program with . /upcase. The program will just sit there doing nothing. You need to
type some stuff, then press return followed by Control-D, the end-of-file key sequence:

$ ./upcase
HooVeR Ni BOrK
~D

HOOVER NI BORK

This program also works in simple pipelines:

$ echo "HooVeR" | ./upcase
HOOVER

It works for more complex pipelines as well:

$ cat /usr/share/dict/words | ./upcase | grep BADGER
BADGER

BADGERBRUSH

BADGERER

BADGERINGLY

(and a couple more BADGER-1like words)

Inside the Central Loop

Take a look at the central loop in main:
while (!feof(stdin)) {

Loop over the body of the while statement until the standard-in stream indicates that it has reached
EOF (end of file). End of file happens when you explicitly type Control-D on a new line if you are
typing text into the program. When in a pipeline, the standard-in stream will be closed when the
program writing to it exits or otherwise closes the outgoing pipe on its end.

const size t length = fread (buffer, 1, BUFFER SIZE, stdin);

Read in no more than BUFFER_SIZE bytes. The fread() function is a record-oriented function that
you'll see more of in Chapter 11: Files, Part 1: I/O and Permissions. This function reads x items
composed of n bytes. Here you are interested in the number of bytes read, so we tell fread() to read
up to BUFFER_SIZE records of one byte each.

changecaseBuffer (buffer, length, upcase);

Call changecaseBuffer to process the buffer. Note that the length is passed as an argument. fread will
not append a null terminating character (' \0', hex 0x00) to the string, so the receiving function will not
know where to stop processing unless you tell it where to stop.

Finally, use the same idea of “writing length records of 1 byte each” to write to the standard-out
stream:

85



Chapter 4 Command-Line Programs

fwrite (buffer, 1, length, stdout);

Changing Behavior By Name

Now it’s time to let the user control the program behavior. One easy way is to look at the name the
user used to invoke the program. There is a Linux utility called BusyBox that implements many of the
standard Unix command-line programs in one small executable, changing its behavior based on the
name. On your system you probably have a /usr/bin/ranlib which is a symbolic link to the libtool
program. In this case, libtool works like ranlib when invoked using the ranlib name.

Example 4.1 changes the program’s behavior depending on if it is run as “upcase” or “downcase.” To
do this, look at the argv array that is passed to main. argv is a contraction of the phrase “argument
vector.” You could call that parameter anything you wanted to, but typically it will just be argv.

The argv array has all of the command-line arguments passed to the program. The shell breaks the
command the user typed into arguments (usually at whitespace characters, but that can be overridden
by quotes). The program invocation is in the first element of the array at argv[0]: this is the command
as entered by the user. If the program was run with . /upcase, argv[0] would be “. /upcase.” If the
program was started with /Users/bork/projects/book/chapter2/upcase, argv[0] would have this
value too, so you cannot really depend on finding a specific string value there. Luckily, there is a little
convenience function called fnmatch that does shell-style filename matching. By seeing if the string in
argv[0] matches “*upcase” or “*downcase,” you can decide how the program will operate.

Example 4.1 upcase.m
// upcase.m -- convert text to upper case

// gcc -g -Wall -o upcase upcase.m

#import <Foundation/Foundation.h> // for BOOL

#import <stdlib.h> // for EXIT FAILURE
#import <stdio.h> // for standard I/0 stuff
#import <fnmatch.h> // for fnmatch()

#define BUFFER SIZE (2048)
// changecaseBuffer is unchanged

int main(int argc, char *argv[]) {
char buffer[BUFFER SIZE];

BOOL upcase = YES;

if (fnmatch("*upcase", argv[0], 0) == 0) {
fprintf ("upcase!\n", stderr);
upcase = YES;
} else if (fnmatch("*downcase", argv[0], 0) == 0) {
fprintf ("downcase!\n", stderr);
upcase = NO;

while (!feof(stdin)) {
const size t length = fread(buffer, 1, BUFFER SIZE, stdin);
changecaseBuffer(buffer, length, upcase);
fwrite(buffer, 1, length, stdout);

86



Looking at the Environment

}
return EXIT SUCCESS;
} // main

Compile your program as before with:

$ gcc -g -Wall -o upcase upcase.m

Here is a sample run:

$ echo "bLaRg" | ./upcase

upcase!

BLARG

Now make a symbolic link that points to upcase:
$ ln -s upcase downcase

and run the program like this:

$ echo "bLaRg" | ./downcase

downcase!
blarg

Looking at the Environment

Another way to influence program behavior is through environment variables. Environment variables,
such as those in Figure 4.2, are key-value pairs that are under user control via the shell. The getenv ()
function is used to read the variables the user has set (directly or indirectly) in the environment from
which your program has been run.

Figure 4.2 Environment variables

SHELL /bin/csh

HOME /Users/markd
USER markd

LANG en US

MACHTYPE | i386

HOST borkbook.local.

getenv ("HOME"); —» "/Users/markd"

Supply getenv () with the name of the environment variable you want. If the variable does not exist
in the environment, you get NULL back. If it does exist, you will get back a string with the value. The
system owns the memory for the string returned by getenv(), so you do not need to free it.

The next version of the program uses the CASE_CONV environment variable to control the case
conversion program A value of LOWER will have it massage strings to lower case, and UPPER, to upper
case. The default behavior is to upper case.

87



Chapter 4 Command-Line Programs

Remove
#import <fnmatch.h>

because you won’t be using fnmatch(). The declarations for getenv() and family live in stdlib.h,
which has already been included.

Also remove the two if blocks that use fnmatch() and replace them with:

const char *envSetting = getenv ("CASE_CONV");
if (envSetting != NULL) {
if (strcmp(envSetting, "UPPER") == 0) {
fprintf (stderr, "upper!\n");
upcase = YES;
} else if (strcmp(envSetting, "LOWER") == 0) {
fprintf (stderr, "lower!\n");
upcase = NO;

}

Recompile it with:

$ gcc -o upcase upcase.m
and give it a whirl:

$ export CASE_CONV=LOWER
$ ./upcase

lower!

GrEEblE
greeble

Check out the other case:

$ export CASE_CONV=UPPER
$ ./upcase

upper!

GrEEblE
GREEBLE

Parsing the Command Line

Aside from reading some configuration file, the last way to influence program behavior is through
command-line arguments. This is also the most common way to control program behavior for
command-line programs.

Recall earlier that the “choose behavior based on program name” version of upcase looked at the first
element of argv to get the program name. The argv array in fact has all of the program’s arguments,
living at argv indexes greater than zero. Recall that argc is the number of arguments on the command
line, including the program name.

Example 4.2 is a quick little program that prints out command-line arguments:

Example 4.2 dumpargs.m

// dumpargs.m -- show program arguments

88



Parsing the Command Line

gcc -g -std=c99 -Wall -o dumpargs dumpargs.m

#include <stdio.h> // for printf()
#include <stdlib.h> // for EXIT SUCCESS

int main(int argc, char *argv[]) {
for (int 1 = 0; 1 < argc; i++) {
printf("sd: %s\n", i, argv[il);

}
return EXIT SUCCESS;
} // main

Now feed this program various arguments:

$ ./dumpargs
0: ./dumpargs

As expected, the name of the program lives in the 0" element of the a rgv array.

./dumpargs -oop -ack -blarg
./dumpargs

-oop

-ack

-blarg

WNRFEOWw»

You can also see the effect of shell file name globbing and quotation marks:

./dumpargs "dump*" dump*
./dumpargs

dump*

dumpargs

dumpargs.m

WN O

The first argument, because it is in quotes, is given to you explicitly as dump*. The second dump* was
intercepted by the shell and expanded to list all of the files whose names start with dump. In this case, it

matches the name of the program and the name of the .m file.

Now back to upcase.m. We’ll use the -u flag for uppercase and -1 (ell) for lowercase.

Remove the code you added for handling the environment variables and add this:

if (argc >= 2) {
if (strcmp(argv([1],

upcase = YES;

} else if (strcmp(argv[1l], "-1") == 0) {
fprintf (stderr, "lower!\n");

upcase = NO;
}
Recompile and try it out:
$ ./upcase -u
upper!

GrEEbLe
GREEBLE

$ ./upcase -1
lower!

-u") == 0) {
fprintf (stderr, "upper!\n");

89



Chapter 4 Command-Line Programs

GrEEbLe
greeble

One thing some experienced programmers will notice is the distinct lack of error checking in these
programs. Much of the work of programming Unix is catching and handling errors, whether they are
user errors (typing invalid or conflicting command arguments) or system errors (a disk fills up).

You may have noticed the return EXIT SUCCESS; at the end of each of the main() functions
throughout this book. EXIT SUCCESS is a macro that expands to zero, which when returned, tells

the shell that the command succeeded. Any non-zero return value tells the shell that the command
failed. The shell uses this return value to decide whether to continue with the work it is doing, whether
running a shell script or just a command pipeline. For upcase, you should do a little checking of
arguments, such as whether the user entered too many or entered one that is invalid.

Return EXIT_FAILURE, a macro that expands to the value 1, to tell the shell that something went wrong.
You can use any number less than 256 for the return value, but using the symbolic constant makes it
obvious that you’re indicating an error condition. An attempt has been made to categorize some error
return values. Check out /usr/include/sysexits.h, which has an email-subsystem flavor.

Here is upcase with some error checking (replace the argv code you entered above with this):

if (argc > 2) {
fprintf(stderr,
"%s: Too many arguments - supply at most one.\n",
argv[e]);
return EXIT_FAILURE;
} else if (argc == 2) {
BOOL found = NO;
if (strcmp(argv[1l], "-u") == 0) {
upcase = YES;
found = YES;
} else if (strcmp(argv[1l], "-1") == 0) {
upcase = NO;
found = YES;

}
if (!'found) {
fprintf (stderr,
"%s: unexpected command-line argument: '%s'\n",
argv[0], argv[1]);
fprintf (stderr, "%s: expected: -u or -1\n", argv[0]);
return EXIT_FAILURE;

}

When you discover that something is wrong, print out a complaint message to the standard error stream
and bail out with an error code.

In real life programs, there is usually some cleanup work that would need to be done, like closing files
or freeing memory before returning from a function that detected errors. The operating system will
clean up any open files or allocated memory for your program when it terminates, but it’s a good idea
to be tidy so that resource monitoring tools won’t accuse you of leaking resources. You might want

to do this cleanup in debug versions, so you can have maximal tool support, but also have the fastest
possible shutdown in release versions.

Throughout this book, you will see one way of handling errors: keeping all of the cleanup code at the
end of the function and using a goto to jump to a label at the end and bypass any additional work in the

90



Parsing the Command Line

function. Unfortunately, too many in the programming industry have been trained to have a knee-jerk
reaction to goto, when in many cases it can lead to much more readable cleanup than the alternatives.

For example, in pseudo-code
int someFunction (void) {

result = failure;

blah = allocate some memory();

if (do _something(blah) == failure) {
goto bailout;

}

ack = open_a file();
if (process_file(blah, ack) == failure) {
goto bailout;

}

hoover = do_something else();

if (have_fun(blah, hoover) == failure) {
goto bailout;

}

// we survived! yay
result = success;

bailout:
if (blah) free the memory (blah);
if (ack) close the file (ack);
if (hoover) clean this up (hoover);

return result;

}

If you are using C++, you can use exception handling (a fancy form of goto) and stack-based cleanup
objects to simplify cleanup. Objective-C users can use a @finally block to accomplish something
similar. In plain C, you must either nest ifs, introduce an auxiliary success variable, or employ goto.

Here is the final main function, including error checking of the command-line arguments and a single
exit point:

int main(int argc, char *argv[]) {
int exitReturn = EXIT FAILURE;
char buffer[BUFFER SIZE];
BOOL upcase = YES;

if (argc > 2) {
fprintf (stderr,
goto bailout;
} else if (argc == 2) {
BOOL found = NO;
if (strcmp(argv[l], "-u") == 0) {
upcase = YES;
found = YES;
} else if (strcmp(argv[1l], "-1") == 0) {
upcase = NO;
found = YES;

%s: Too many arguments - supply at most one.\n", argv[0]);

}
if (!found) {
fprintf (stderr, "%s: unexpected command-line argument: '%s'\n",
argv[0], argv[1l]);
fprintf (stderr, "%s: expected: -u or -1\n", argv[0]);

91



Chapter 4 Command-Line Programs

goto bailout;

}
while (!feof(stdin)) {
const size t length = fread (buffer, 1, BUFFER SIZE, stdin);

changecaseBuffer (buffer, length, upcase);
fwrite (buffer, 1, length, stdout);

}
exitReturn = EXIT SUCCESS;

bailout:
return exitReturn;
} // main

getopt long()

Parsing Unix command lines correctly is actually a very tricky proposition. You can have individual
arguments:

$ someprogram -a -b -c

By convention, you can glom all of the single-character arguments together:

$ someprogram -abc

Some arguments can take additional values:

$ someprogram -dTwitter -f filename

and there are also more verbose (called “long”) arguments, introduced by two dashes:
$ someprogram --kthx --cheezburger

There is a convention where - - will terminate processing of command-line arguments and use the
remaining contents of the command line as-is, even if they look suspiciously like more command-line
arguments.

$ someprogram --hoover -- -not --really --arguments -now

That’s an awful lot of complexity. Luckily, you do not have to implement all of this logic yourself.
The standard library supplies getopt_long() to handle this drudge-work. There is an older function
called getopt() that performs similar duties, but it does not handle long argument processing.
getopt_long() takes a number of parameters:

int getopt_long (int argc, char * const *argv,
const char *optstring,
const struct option *longopts,
int *Llongindex);

argc and argv are the command-line parameters passed to main(). optstring is a character string
that describes the short, single-character options, while longopts describes the longer, more verbose
options. longindex, if supplied, returns the index into longopts when it processes an argument.
Usually you will just pass NULL here.

Call getopt_long() repeatedly in a loop until it indicates that it has processed all of the arguments by
returning -1. It will return ' : ' if there was a missing argument to an option that requires an argument,

92



getopt_long()

or '?" if the user supplied an unknown or ambiguous option. Otherwise, it returns a value, controlled
by optstring and longopts, that you can then use for argument processing.

optstring is a string that has all of the single character arguments you wish to support. Use a colon
after arguments that take a required additional argument and two colons after arguments that take an
optional additional argument. So, if we had a program that took arguments of -c, -o and - f, where - f
took an argument (say a filename), the optstring argument would look like "cof:". getopt_long()
will let you use the command-line syntax - fBlah as well as -f Blah for indicating the argument.
getopt_long() returns the appropriate character when it sees any of these arguments as it runs through
the command line.

longopts is a bit more complicated. You provide getopt_long() an array of option structures,
terminated by a sentinel that has zero/NULL values in all fields. This array is almost always statically
created in your source file. The option structure looks like this:

struct option {

char *name;
int has_arg;
int *flag;
int val;

};

name is the verbose name of the option. has_arg is one of the constants no_argument,
optional argument, and required argument that describe whether this particular command-line
option requires an additional argument.

flag and val work together. If flag is NULL, val will be the return value from getopt_long() if it sees
the long option indicated by name. You typically use a single-character return value that matches one of
the options described in your optstring. This lets you process single-character and verbose commands
that are the same.

Non-NULL flag values should be a pointer to an integer value. When getopt_long() processes

the verbose option described by name, it puts val’s value into the integer where flag points. When
getopt_long() processes one of these options, it returns zero to indicate that it just set a variable for
you. This mechanism only works for verbose arguments.

To phrase it another way, if you have a verbose option that also has a single-character equivalent, you
want flag to be NULL and val to be that character. Otherwise, if you have a verbose option that does
not take an argument, you can have getopt_long() automatically set an arbitrary integer variable to a
given value.

Example 4.3 shows getopt_long() in-action.

Example 4.3 argparse.m

// argparse.m -- using getopt long to parse arguments
// gcc -Wall -std=c99 -g -o argparse argparse.m
#import <getopt.h> // for getopt long()

#import <stdio.h> // for printf()

#import <stdlib.h> // for EXIT_SUCCESS

static const char *optstring = "gf:c::0";

93



Chapter 4 Command-Line Programs

static int thingl, thing2, thing3;

static struct option longopts[] = {

{ "filename", required argument, NULL, o},
{ "cattoy", optional argument, NULL, 'c' },
{ "oop", no_argument, NULL, 'o' },
{ "thingl", no_argument, &thingl, 1 },
{ "thing2", no_argument, &thing2, 2 },
{ "thing3", no_argument, &thing3, 3 },
{ NULL, 0, NULL, 0}
b
int main(int argc, char *argv[]) {
int ch;
while ((ch = getopt long(argc, argv, optstring, longopts, NULL)) != -1) {
switch (ch) {
case 'g':
puts (" greeble!");
break;
case 'f':
printf (" file name is %s\n", optarg);
break;
case 'c':
printf (" cat toy is %s\n", (optarg == NULL) ? "string" : optarg);
break;
case 'o':
puts (" oop!");
break;
case 0:
puts (" getopt long set a variable");
break;
case ':':
puts (" missing required argument");
break;
case '?':
puts (" oops, unknown option");
break;
}
}
// See if the thing variables got manipulated.
printf ("thingl: %d thing2: %d thing3: %d\n", thingl, thing3, thing3);
// Mop up any remaining arguments.
argc -= optind;
argv += optind;
if (argc > 0) {
puts ("additional trailing arguments:");
for (int i = 0; 1 < argc; i++) {
printf (" %s\n", argv[il);
}
}
return EXIT SUCCESS;
} // main

The first thing of interest is the optstring:

static const char *optstring = "gf:c::0";

94



getopt_long()

This says that there are four single-character command-line options, -g, - f, -c, and -o. - f requires an
argument, while - ¢ takes an optional argument.

After that is the array describing the longopts:

static struct option longopts[] = {

{ "filename", required argument, NULL, o},
{ "cattoy", optional argument, NULL, ‘c' },
{ "oop", no_argument, NULL, ‘o' },
{ "thingl", no_argument, &thingl, 1 },
{ "thing2", no_argument, &thing2, 2 },
{ "thing3", no_argument, &thing3, 3 },
{ NULL, 0, NULL, 0}

};

There is no direct connection between the two argument descriptions. In a real program, you’d want to
generate the option string from your longopts table so you wouldn’t have two places to modify if you
added more arguments at a later time.

There are three long arguments that correspond to three of our short arguments. There is one short
argument, -g, that has no verbose equivalent. This is perfectly OK. You can see that - -cattoy takes an
optional argument.

The three ““- -thing” arguments have no single-character equivalent. If - -thingl is seen on the
command line, the thing1l variable will be set to the value 1. If - -thing3 is seen, then thing3 will
have the value of 3.

The body of main() then calls getopt_long() repeatedly. As described earlier, the return value is the
character for the argument, for single-character arguments.

One of the cases is interesting:
case 'c':

printf (" cat toy is %s\n", (optarg == NULL) ? "string" : optarg);
break;

This case will be hit if the argument -c (or - -cattoy) was provided. optarg is a global variable that
is set to the argument provided by the user. If no argument is provided, which is possible for this case
since - -cattoy’s argument has been flagged as optional both in the optstring by the two colons
following 'c' and in the longopts, then optarg will be NULL. That’s your cue to supply whatever
default value is appropriate.

The loop terminates when getopt_long() returns -1. After that, the values of the three thing variables
are printed. These values are set if the user provides arguments like - -thingl, and the only hint this
happens is when zero is returned during the loop.

There is another global variable manipulated by getopt_long() used here — optind. This is how far
it processed into argv. Arguments after this have not been processed and are yours to do with as you
please. A program might use them as file names to process. getopt_long() automatically handles
using - - as an indicator to stop processing arguments.

Here are some runs of this program:
Lack of arguments is not terribly interesting:

$ ./argparse
thingl: © thing2: 0 thing3: 0

95



Chapter 4 Command-Line Programs

Single-character arguments are handled as well:

$ ./argparse -og
oop!
greeble!
thingl: 0 thing2: 0 thing3: 0

The optional argument is handled as well:

$ ./argparse --cattoy
cat toy is string
thingl: 0 thing2: 0 thing3: 0

As are things that accept arguments:

$ ./argparse --filename=somefile -f file
file name is somefile
file name is file

thingl: 0 thing2: 0 thing3: 0

As well as trailing arguments:

$ ./argparse --filename=somefile -- -f file
file name is somefile

thingl: 0 thing2: 0 thing3: 0

additional trailing arguments:
-f
file

getopt_long() also does some rudimentary error checking:

$ ./argparse -f

argparse: option requires an argument -- f
oops, unknown option

thingl: 0 thing2: 0 thing3: 0

The first line is emitted by getopt_long() itself, while the “oops” line is generated by the program.
Note that getopt_long() has returned '?' even though we’ve encountered a missing argument, not an
unknown option. You can disable getopt_long()’s error messages by setting opterr to 0. To get it to
return ':' for a missing argument, you must begin optstring with a colon; this also disables its error
messages. You cannot configure it both to return ' : ' and supply error messages.

User Defaults

Cocoa’s NSUserDefaults class can also be used as a crude form of command-line processing.
NSUserDefaults automatically takes parameters of the form -parameter value and adds them to the
defaults domain NSArgumentDomain. Every parameter must take a single argument. You cannot have
optional arguments or parameters with no arguments when using this technique.

This is a volatile domain, so its values will not be saved to the user preferences. You probably do not
want to use NSUserDefaults as the main configuration interface for command-line programs because
it is inflexible, but it can be useful when you want to supply some optional command-line options. This
is handy for supplying debugging or testing flags to a GUI program.

Example 4.4 shows a program that looks for file names and cat toys on the command line and prints
out the values it sees.

96



User Defaults

Example 4.4 defargs.m
// defargs.m -- Get command-line arguments from user defaults.

#import <Foundation/Foundation.h>
#import <stdlib.h<

// gcc -g -Wall -framework Foundation -o defargs defargs.m

int main(int argc, const char *argv[]) {
NSAutoreleasePool *const pool = [[NSAutoreleasePool alloc] init];
NSUserDefaults *const defs = [NSUserDefaults standardUserDefaults];

NSLog(@"cat toy: %@"

, [defs stringForKey:@"cattoy"]);
NSLog(@"file name: %@",

[defs stringForKey:@"filename"]);

[pool drain];
return EXIT SUCCESS;
} // main

Just running the program shows that there are no values:

$ ./defargs
2010-09-20 19:34:59.549 defaults[5405:807] cat toy: (null)
2010-09-20 19:34:59.551 defaults[5405:807] file name: (null)

But you can provide arguments:

$ ./defargs -cattoy flamingo

2010-09-20 19:35:15.765 defaults[5406:807] cat toy: flamingo
2010-09-20 19:35:15.767 defaults[5406:807] file name: (null)
$ ./defargs -filename bork -cattoy flamingo

2010-09-20 19:53:49.226 defargs[5501:807] cat toy: flamingo
2010-09-20 19:53:49.227 defargs[5501:807] file name: bork

One nice thing about using NSUserDefaults for settings like these is that you can use the defaults
command-line tool to set them persistently. Because this program has no bundle identifier, you must
use the program name. Set a default like this:

$ defaults write defargs filename -string "bork"
And then run the program:
$ ./defargs

2010-09-20 19:55:29.038 defargs[5504:807] cat toy: (null)
2010-09-20 19:55:29.039 defargs[5504:807] file name: bork

97



This page intentionally left blank



Exceptions, Error Handling,
and Signals

One of the grisly facts of programming life is that errors can happen, and program code must react to
those errors and deal with them appropriately. With the Unix APIs, there are two primary ways that
exceptional conditions are communicated to programs. One is through return codes from function calls
plus a global variable that describes the error in more detail. The other is through signals sent to the
program from the OS. The Objective-C compiler and Cocoa framework in Mac OS X also provide an
exception-handling architecture that programs can take advantage of.

errno

Most of the library functions and system calls provided by Unix systems have a return value that
signifies that an error happened during the execution of the call. The global integer variable errno
will be set to a value to indicate what went wrong. If nothing went wrong, errno is meaningless; it
should only be consulted when the function returns a value that indicates failure (generally, -1) and is
documented to set errno on failure.

malloc()

(oops, out of

memory) ™~
2) sets extern int errno;
Sal ENOMEM
3) returns
error flag
1) called

int someFungtion (void) {
unsignéd char *buffer;

buffer = malloc (1024 * 1024);
if (buffer == NULL

&& errno == ENOMEM) {
fprintf (stderr, "out of memory\n");

} // someFunction

99



Chapter 5 Exceptions, Error Handling, and Signals

You can use the function strerror() to get a human description of the error. The prototype for
strerror() lives in <string.h>. It is necessary to #include <errno.h> to get the definition of errno.
You can look in /usr/include/sys/errno.h for the complete set of errno values. It is important to
include errno. h rather than providing your own extern int errno, since errno is implemented in a
thread-safe manner that is more than just a simple global int.

The manpages for Unix calls spell out in detail what the error code is and what specific errno values
are set. For example, from the open(2) manpage:

OPEN(2) System Calls Manual OPEN(2)

NAME
open - open or create a file for reading or writing

SYNOPSIS
#include <fcntl.h>

int
open (char *path, int flags, mode_ t mode);

DESCRIPTION
The file name specified by path is opened for reading and/or writing, as
specified by the argument oflag; the file descriptor is returned to the
calling process.

RETURN VALUES
If successful, open() returns a non-negative integer, termed a file
descriptor. It returns -1 on failure, and sets errno to indicate the
error.

ERRORS
The named file is opened unless:

[ENOSPC] 0 CREAT 1is specified, the file does not exist, and
there are no free inodes on the file system on which
the file is being created.

[ENOTDIR] A component of the path prefix is not a directory.
[ENAMETOOLONG] A component of a pathname exceeded

{NAME_MAX} characters, or an entire path
name exceeded {PATH_MAX} characters.

[ENOENT] 0 _CREAT is not set and the named file does not exist.

[ENOENT] A component of the path name that must exist does not exist.

[EFAULT] Path points outside the process’ allocated address space.

[EEXIST] 0 _CREAT and O0_EXCL were specified and the file exists.

[EOPNOTSUPP] An attempt was made to open a socket (not currently
implemented.

100



errno

The symbols in square brackets are the errno values that open() can set when it returns -1.
Example 5.1 has code that looks for specific errors. A real life program would handle these errors in an
appropriate manner.

Example 5.1 open.m
// open.m -- Try opening files and getting different errors.

// gcc -g -Wmost -o open open.m

#import <errno.h> // for errno

#import <fcntl.h> // for open()

#import <stdio.h> // for printf() and friends
#import <stdlib.h> // for EXIT SUCCESS, etc
#import <string.h> // for strerror()

#import <sys/stat.h> // for permission flags
#import <unistd.h> // for close()

// Given a path and access flags, try to open the file. If an error
// happens, write it out to standard error.

void tryOpen (const char *path, int flags) {
// Attempt to open read/write for user/group.
int result = open (path, flags, S IRUSR | S IWUSR | S IRGRP | S IWGRP);

if (result == -1) {
fprintf (stderr, "an error happened opening %s\n", path);

switch (errno) {
case ENOTDIR:
fprintf (stderr,
break;

part of the path is not a directory\n");

case ENOENT:
fprintf (stderr, something doesn't exist, like part of a path, or\n"
" 0 CREAT is not set and the file doesn't exist\n");

break;

case EISDIR:
fprintf (stderr,
break;

tried to open a directory for writing\n");

default:
fprintf (stderr, another error happened: errno %d, strerror: %s\n",
errno, strerror(errno));

}
} else {
close (result);
}
fprintf (stderr, "\n");
} // tryOpen
int main (void) {

// trigger ENOTDIR
tryOpen ("/mach.sym/blah/blah", 0 RDONLY);

101



Chapter 5 Exceptions, Error Handling, and Signals

// trigger ENOENT, part of the path doesn't exist
tryOpen ("/System/Frameworks/bork/my-file", 0 RDONLY);

// trigger ENOENT, O CREAT not set and file doesn't exist
tryOpen ("/tmp/my-file", O RDONLY);

// trigger EISDIR
tryOpen ("/dev", O WRONLY);

// trigger EEXIST
tryOpen ("/private/var/log/system.log", 0 CREAT | O EXCL);

return EXIT SUCCESS;

} // main

In most cases it is not possible to handle every possible error condition (like ENFILE: System file table
is full). In general, try to handle whichever errors makes sense and have a catch-all case that will log
the error.

The main downside with this return code/errno reporting technique is that it is necessary to check the
result code of every library function call, which can get tedious pretty quickly. Plus, all of the error-
handling code obscures the flow of control. Some programmers write error-handling wrappers around
library functions so that return codes do not pollute the mainline code; others instead use goto to jump
to error-handling code at the end of the function.

With that caveat in mind, you are free to use this convention for your own code, which can be nice
when you are supplying a library to programmers familiar with the Unix conventions. There is no
standard way to add your own error strings to strerror (), unfortunately.

setjmp, longjmp

Languages like C++ and Java have exception-handling features built in. This is where code can happily
go about its business, ignoring anything that might go wrong with the functions it is calling. But

if something does go wrong, an exception can be thrown which will terminate the current flow of
execution. Control resumes execution at a previously registered exception handler, which can then
decide how best to recover from the problem and resume the work.

C has a primitive form of exception handling that can be used in a similar manner. The setjmp and
longjmp functions are used like a super-goto:

int setjmp (jmp buf env);
void longjmp (jmp buf env, int value);

jmp_buf is a data structure that holds the current execution context (the current program counter, stack
pointer, etc). You setjmp where you want execution to return (equivalent to your exception handler)
and call longjmp () when you want to branch back to that point (equivalent to throwing an exception).

Example 5.2 shows how to use longjmp().

Example 5.2 longjmp.m
// longjmp.m -- use setjmp, longjmp

// gcc -g -Wall -o longjmp longjmp.m

102



setjmp, longjmp

#import <setjmp.h> // for setjmp / longjmp
#import <stdio.h> // for printf
#import <stdlib.h> // for EXIT SUCCESS

static jmp buf handler;

void doEvenMoreStuff () {
printf (" entering doEvenMoreStuff\n");
printf (" done with doEvenMoreStuff\n");
} // doEvenMoreStuff

void doMoreStuff () {
printf (" entering doMoreStuff\n");
doEvenMoreStuff ();
longjmp (handler, 23);
printf (" done with doMoreStuff\n");
} // doMoreStuff

void doStuff () {
printf ("entering doStuff\n");
doMoreStuff ();
printf ("done with doStuff\n");
} // doStuff

int main (void) {
int result;

if ( (result = setjmp(handler)) ) {
printf ("longjump called, setjmp returned again: %d\n", result);

} else {
doStuff ();
}
return (EXIT SUCCESS);
} // main

A sample run:

$ ./longjmp
entering doStuff
entering doMoreStuff
entering doEvenMoreStuff
done with doEvenMoreStuff
longjump called, setjmp returned again: 23

Two of the functions never get to print out their “done with” statements. They just get jumped over.

The interesting piece here is the if statement. When setjmp () is called, it returns zero, so the second
branch of the if is taken. When longjmp() is called, that if statement is essentially evaluated again,
and execution begins again at that point. The value argument to longjmp () is what is returned from
setjmp() the second time it returns.

Any number of setjmp() calls can be active at any point in time as long as they use different memory
locations for their jmp_bufs. You can maintain a stack of jmp_bufs so that Longjmp knows to jump

to the closest setjmp(). This is what Cocoa uses for its “classic” exception handling mechanism
(discussed after Signals).

There is one rule to remember when using setjmp() and longjmp(): any local variables in the function
that calls setjmp() that might be used after a Longjmp () must be declared volatile. That will force

103



Chapter 5 Exceptions, Error Handling, and Signals

the compiler to read the variables from memory each time rather than using processor registers.
setjmp() saves some processor state, but it does not save every register. When longjmp () branches
back to its matching setjmp(), any garbage in the registers can give you wrong values in variables.

Signals

Signals are like software interrupts: they can be delivered to your program at any time due to a number
of well-defined conditions, like when you write outside of your mapped memory pages, you will

get sent a SIGBUS (bus error) or a SIGSEGV (segmentation violation) signal. If a subprocess of yours
terminates, you will get a SIGCHLD (child stopped) signal. If your controlling terminal goes away, there
is SIGHUP (terminal hung up), and if you use the alarm() function, you will get sent SIGALRM when the
time expires. The system defines about 31 different signals, many of which deal with job control or
specific hardware issues.

A signal is delivered to your program asynchronously whenever it enters the operating system, whether
it be via a system call or just regular process scheduling. This means that your code can be interrupted
by a signal at pretty much any time.

As you saw above, signals are named with SIG plus an abbreviation of what the signal does. These are
defined in <sys/signal.h> if you are curious. The signal manpage has the complete list of signals.
The signal function (a simplified form of sigaction() that we will discuss shortly) is used to provide
a handler for a signal.

Handling a signal

Use the signal function to register a signal handler.
typedef void (*sig t) (int);

sig t signal (int sig, sig_t func);

where sig is the signal number (e.g., SIGHUP) and func is the handler function. If you do not call
signal() for a particular signal, the system default handler is used. Depending on the signal, the
default handler will either ignore the signal or terminate the process. Check the signal(2) manpage
for details on which is which.

Example 5.3 shows a program that registers signal handlers for three signals. The program will catch
the signals and either print out that the signal that was caught (SIGHUP and SIGUSR1) or exit (SIGUSR2).
By the way, SIGUSR1 and SIGUSR2 are signals that your program can use for its own purposes. The OS
will not send you those signals unless explicitly told to.

Example 5.3 catch.m

// catch.m -- catch some signals

// gcc -g -std=c99 -Wall -o catch catch.m

#import <signal.h> // for signal functions and types
#import <stdio.h> // printf and friends

#import <stdlib.h> // for EXIT SUCCESS

#import <string.h> // for strlen

#import <unistd.h> // for sleep

static void writeString (const char *string) {
int length = strlen (string);

104



Handling a signal

write (STDOUT FILENO, string, length);
} // writeString

void handleHUP (int signo) {
writeString ("got a HUP!\n");
} // handleHUP

void handleUsrlUsr2 (int signo) {
if (signo == SIGUSR1l) {
writeString ("got a SIGUSRI\n");

} else if (signo == SIGUSR2) {
writeString ("got a SIGUSR2. exiting\n");
exit (EXIT SUCCESS);

}
} // handleUsrlUsr2

int main (void) {
// Register the signal handlers

(void) signal (SIGHUP, handleHUP);
(void) signal (SIGUSR1, handleUsrlUsr2);
(void) signal (SIGUSR2, handleUsrlUsr2);

// Now for our "real work"

for (int 1 = 0; i < 500000; i++) {
printf ("i is %d\n", 1i);
sleep (1);

}

return EXIT SUCCESS;
} // main

Here is a sample run. It can be done with two terminals: one to see the output and the other to run the
kill command, which sends signals to programs. Or it can be performed in one terminal because catch
is put into the background for easy access to its process ID.

Terminal 1 Terminal 2
$ ./catch &
[1] 7429 (this is the process ID)

Nouhs,WwWNE

kill -HUP 7429
got a HUP!

12 kill -USR1 7429
got a SIGUSR1

13

14

15

16

17

105



Chapter 5 Exceptions, Error Handling, and Signals

18 kill -USR2 7429
got a SIGUSR2, exiting
[1] Done ./catch

A signal handler can handle more than one signal. Also, the return value of signal() is the previously
registered function. If you are adding a signal handler to a library, or know that more than one handler
will be registered for a signal, you should hang on to that return value and call that when your handler
is invoked. If you want to register the same function for a bunch of signals, you will need to call
signal() a bunch of times.

To ignore a signal, use the constant SIG_IGN instead of a function address. To restore the default
behavior, use SIG_DFL. You cannot ignore or block SIGKILL or SIGSTOP. These give system
administrators the ability to stop or kill any process that has run amok.

Use the raise() system call to send yourself a signal.
int raise (int sig);

sig is the number of the signal to raise. Your program can terminate itself by raising STGKILL.

Blocking signals

Sometimes it is inconvenient to have a signal handler called during a critical piece of code. You may
want to use a signal to interrupt a long-running process, but you do not want to stop in the middle of
a complex data structure change and leave your program’s environment in an inconsistent state. The
signal mask can help you protect these critical sections.

Every running program has a signal mask associated with it. This is a bitmask that specifies which
signals are blocked from delivery, as shown in Figure 5.1. The kernel tracks which blocked signals
have been sent to the application so it can deliver them when they become unblocked, but it does not
track the number of times a signal has been sent. A blocked signal will only be delivered to a process
after it has been unblocked.

Figure 5.1 Blocking signals
SIGPIPE generated
1| SIGHUP SIG_IGN
1| SIGBUS SIG_DFL
1| SIGPIPE handlePipe ();
1| s1GCHLD childExited (); \
1| SIGUSR1 rollServerLog (); handlePipe() run
signal mask signal handlers

106

sigaddset (&signalMask, SIGPIPE);
sigprocmask (SIG_BLOCK, signalMask, &oldSignalMask);

SIGPIPE generated

1| sIGHUP SIG_IGN

1| sicBUS SIG_DFL

0| SIGPIPE handlePipe ();

1| sIGCHLD childExited ();
record SIGPIPE 1| SIGUSR1 | rollServerlLog ();
pending signal mask signal handlers



Blocking signals

You use sigprocmask() to control the signal mask:
int sigprocmask (int how, const sigset t *set, sigset t *oset);

how is one of

SIG_BLOCK Add the given signals to the program’s signal mask (union).
SIG UNBLOCK Remove the signals from the program’s signal mask (intersection).
SIG_SETMASK Replace the program’s signal mask with the new one.

sigset t is an abstract type that represents the signal mask. set is the set of signals you want to
add or remove, and oset is the original set (which is handy for feeding back into sigprocmask with
SIG SETMASK). You manipulate sigset t with these functions (defined in man sigsetops(3)):

int sigemptyset (sigset t *set); Clears a set to all zeros (no signals)
int sigfillset (sigset t *set); Fill it with all ones (all signals).

int sigaddset (sigset t *set, int signo); Add a specific signal to the set.

int sigdelset (sigset t *set, int signo); Remove a specific signal from the set.
int sigismember (const sigset t *set, int signo);  Test a signal’s membership in the set.

Example 5.4 is a variation of the catch program above, but instances in which 1 is not a multiple of
five are considered a critical section.

Example 5.4 catchblock.m
// catchblock.m -- Catch and block some signals

// gcc -g -std=c99 -Wall -o catchblock catchblock.m

#import <signal.h> // for signal functions and types
#import <stdio.h> // printf and friends

#import <stdlib.h> // for EXIT SUCCESS

#import <string.h> // for strlen

#import <unistd.h> // for sleep

static void writeString (const char *string) {
int length = strlen (string);
write (STDOUT FILENO, string, length);

} // writeString

void handleHUP (int signo) {
writeString ("got a HUP!\n");
} // handleHUP
void handleUsrlUsr2 (int signo) {
if (signo == SIGUSR1l) {
writeString ("got a SIGUSR1\n");

} else if (signo == SIGUSR2) {

107



Chapter 5 Exceptions, Error Handling, and Signals

writeString ("got a SIGUSR2. exiting\n");
exit (EXIT SUCCESS);

}
} // handleUsrilUsr2

int main (void) {
// Register our signal handlers
(void) signal (SIGHUP, handleHUP);
(void) signal (SIGUSR1l, handleUsrlUsr2);
(void) signal (SIGUSR2, handleUsrlUsr2);

// construct our signal mask. We don't want to be bothered
// by SIGUSR1 or SIGUSR2 in our critical section.

// but we'll leave SIGHUP out of the mask so that it will get
// delivered

sigset t signalMask;

sigemptyset (&signalMask);
sigaddset (&signalMask, SIGUSR1);
sigaddset (&signalMask, SIGUSR2);

// now do our Real Work
sigset t oldSignalMask;

for (int i = 0; i < 500000; i++) {
printf ("i is %d\n", 1i);

if ( (i %5) ==10) {
printf ("blocking at %i\n", 1i);
sigprocmask (SIG BLOCK, &signalMask, &oldSignalMask);

if ( (1 % 5) ==4) {
printf (" unblocklng at %i\n", 1i);
sigprocmask(SIG SETMASK, &old51gna1Mask NULL);
}

sleep (1);
}

return EXIT SUCCESS;
} // main

A sample run:

Terminal 1 Terminal 2
./catchblock &

[1] 7533

iis 0

blocking at 0

iis 1

iis 2

iis 3

iis 4

unblocking at 4

iis 5

blocking at 5

iis 6 kill -HUP 7533
got a HUP!

108



Blocking signals

iis 7

iis 8 kill -HUP 7533
got a HUP!

iis 9

unblocking at 9

iis 10

blocking at 10

iis 11 kill -USR1 7533
iis 12

iis 13

iis 14

unblocking at 14

got a SIGUSR1

iis 15

blocking at 15

i is 16 kill -USR1 7533
iis 17 kill -USR1 7533
i is 18 kill -USR1 7533
iis 19

unblocking at 19

got a SIGUSR1

iis 20

blocking at 20

iis 21

iis 22 kill -USR2 7533
iis 23

iis 24

unblocking at 24

got a SIGUSR2. exiting

It works as expected: HUPs make it through immediately, and USR1 and USR2 are only handled once at
the unblocking no matter how many times they have been sent.

You can use sigpending() to see if a signal of interest is pending:
int sigpending (sigset t *set);

This returns by reference a mask of the pending signals.

Handling signals with sigaction()
sigaction() is the full-featured way to handle signals:

struct sigaction {

void (*sa_handler)();
sigset t sa mask;
int sa_flags;

};

int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

Instead of just passing in a handler function, you pass in a structure containing the handler function,
the set of signals that should be added to the process signal mask, and some flags. Usually you just set
them to zero. The sigaction() manpage describes them, mainly used for some SIGCHLD signals or for
controlling which stack is used when signals are handled.

Like signal(), the previous setting is returned, this time in the oact parameter if it is non-NULL.

109



Chapter 5 Exceptions, Error Handling, and Signals

Signal issues

Reentrancy

There are a number of difficult programming issues involved with signals which sometimes makes
them more difficult to deal with than they’re worth. The first is reentrancy, and the second concerns
race conditions.

A reentrant function is one that will work if there are two execution streams active in it at one time.
This can happen even without threads. For example, consider this code:

ptr = malloc (50);

The program is in the middle of calling malloc(), and malloc() is messing with its internal
data structures and is in an inconsistent state. Then a signal happens. Because signals happen
asynchronously, your program is interrupted, and the signal handler runs:

féﬁthr = malloc (20);

Because malloc() is in the middle of its previous work, the program will most likely crash.

In your signal handlers, you should only use reentrant functions. The sigaction() manpage has a list
of functions that are either reentrant or are not interruptable by signals.

In general, these are safe:

* Llongjmp()

* Reentrant versions of functions, like strtok_r()

* Program terminators like abort() and exit()

¢ Unbuffered I/O (read(), write(), open(), etc.)

* Interrogative functions (getgid(), getpid(), getuid())
 Signal functions (sigaction(), sigprocmask())

* Any of your own reentrant functions

These are unsafe:

Buffered I/O (printf() and friends). That’s why a custom writeString function was used earlier.
* malloc() and free()
* Anything using static buffer space, like strtok()

* Any of your own non reentrant functions

110



Signal issues

You do not need to make your signal handler reentrant. When a signal handler is entered, the signal
that triggered the handler is automatically added to the process signal mask. The handler will not
get triggered again until it returns. Note that if a handler is registered for more than one signal using
signal() or sigaction(), you will need to make it reentrant unless the other signals are blocked by
the sa_mask member of the structure supplied to sigaction().

You may notice that Longjmp () is on the set of safe functions. You are free to Longjmp() out of
a signal handler to wherever the matching setjmp() was placed. This is a way of handling the
interruption of a long-running process.

You may wonder about the process signal mask. If you longjmp () out of a handler, is the signal still
blocked? In Mac OS X, longjmp() automatically restores the signal mask when jumping out of a
signal handler. If you do not want this behavior (like what exists on some other Unixes), you can use
the _setjmp() and _longjmp() functions.

If you’d rather not rely on this behavior, for example you plan to use the code under another Unix-
alike, you can use the sigsetjmp()/siglongjmp() pair of functions, which are guaranteed to save or
not save and restore the signal mask at your choice:

int sigsetjmp (sigjmp_buf env, int savemask);
void siglongjmp (sigjmp buf env, int val);

If savemask is non-zero, the signal mask will be saved and restored; if zero, the signal mask will be
unaffected by use of siglongjmp().

Example 5.5 is an example of breaking out of a long-running process.

Example 5.5 interrupt.m
// interrupt.m -- show interruption of a long-running process

// cc -g -std=c99 -Wall -o interrupt interrupt.m

#import <errno.h> // for errno

#import <setjmp.h> // for setjmp / longjmp

#import <signal.h> // for signal functions and types
#import <stdbool.h> // for bool type

#import <stdio.h> // for printf

#import <stdlib.h> // for EXIT SUCCESS

#import <string.h> // for strerror

#import <unistd.h> // for sleep

static jmp buf handler;

void handleSignal (int signo) {
longjmp (handler, 1);
} // handleSignal

void doLotsOfWork () {
for (int i = 0; i < 50000; i++) {
printf ("i is %d\n", 1i);
sleep (1);

}
} // doLotsOfWork

111



Chapter 5 Exceptions, Error Handling, and Signals

int main (void) {
struct sigaction action;
sigemptyset (&action.sa mask);
sigaddset (&action.sa mask, SIGTERM);

action.sa handler = handleSignal;
action.sa flags = 0;
if (sigaction (SIGUSR1l, &action, NULL) == -1) {
fprintf (stderr, "error in sigaction: %d / %s\n", errno, strerror(errno));
return EXIT FAILURE;
}
volatile bool handlerSet = 0;
while (1) {
if (!'handlerSet) {
if (setjmp (handler)) {
// We longjmp'd to here. Reset the handler next time around.
handlerSet = 0;
continue;
} else {
handlerSet = 1;
}
}
printf("starting lots of work\n");
doLotsOfWork ();
}

return EXIT SUCCESS;
} // main
A sample run:

Terminal 1 Terminal 2
$ ./interrupt &

[1] 7625

starting lots of work

iis 0

is
is
is
is
is
is
starting lots of work

iis 0

iis 1

iis 2 kill -USR1 7625
starting lots of work

iis 0

is
is
is
is

e e e e e .
ok WN =

kill -USR1 7625

e e e
S WN =

kill 7625
[1] Terminated ./interrupt

The last kill sends a SIGTERM, which terminates the process if not handled.

112



Signal issues

Race conditions

The other bugaboo with signals is race conditions (a subject revisited, along with the entire signal
model, in Chapter 20: Multithreading). A race condition happens when two different streams of
execution hit an ambiguous area of code and the code’s behavior changes depending on the order in
which the two streams execute.

A piece of code as simple as

i
i

i+ 7;

can be subject to race conditions. Depending on order of operations, you can get different results:

thread 1 thread 2
i=>5

copy 1 to register

add 7 to 5

store 12 into i
i=12
copy i to register
add 7 to 12

store 19 into i

Final value: 19

thread 1 thread 2
i=>5
copy i to register
i=>5
copy i to register
add 7 to 5

store 12 into i
add 7 to 5
store 12 into i

Final value: 12

The interrupt.m program has a couple of race conditions in it. The first happens after you register
the signal handler but before the call to sigsetjmp() on the sigjmp_buf. If a SIGUSR1 signal happens
any time after the sigaction() and before the sigsetjmp(), you will crash by trying to siglongjmp()
with an invalid jump buffer.

Likewise, if a SIGUSR1 signal happens between the time that the code returns from sigsetjmp()
and you call sigsetjmp() again, you will crash from using an out-of-date sigjmp buf. You can use
sigprocmask() to block the signal during these vulnerable times.

Race conditions are not limited to interleaving C statements. Delivery of a signal could leave a variable
half-set, in some otherwise impossible and entirely inconsistent state. This can happen when a type
requires more than one machine instruction to update, such as might be the case with long long,
double, or a struct.

Aside from calling explicitly async-safe functions, the only guaranteed-safe ways a signal handler
can interact with global, static state are to write to a variable of type volatile sig atomic_t and to
read from errno. The volatile sig atomic_t variable is typically a “signal happened” flag read by a

113



Chapter 5 Exceptions, Error Handling, and Signals

function executing normally. You might find you can get away with ignoring these severe restrictions,
but if you ignore them and things go wrong, that could very well be why.

Signal handling is a dangerous and ugly task. The kqueue interface (discussed in Chapter 16: kqueue
and FSEvents) provides an easy-to-use and safe way of handling signals. Grand Central Dispatch
Chapter 22: Grand Central Dispatch also has a signal-handling mechanism.

Exception Handling in Cocoa

Cocoa provides two exception-handling mechanisms similar to what C++ and Java offer. The older,
“classic” way to handle exceptions is to wrap a body of code with a set of macros. The newer way, the
“native” way, was introduced in Mac OS X 10.3 and adds language support for exceptions.

Classic exception handling

To handle exceptions, wrap your code in an NS_DURING clause. Any exceptional conditions will raise an
exception, which can then be caught by an NS_HANDLER clause.

The way you work it is:

NS DURING

... code that might throw an exception
NS HANDLER

... code to examine the exception and possibly handle it
NS ENDHANDLER

If any code between NS_DURING and NS_HANDLER raises an exception, execution immediately resumes
with the first instruction after NS_HANDLER, as shown in Figure 5.2

Figure 5.2 Exception flow of control

NS_DURING
someFunction ();
NS_HANDLER
NSLog (@"oops");
NS_ENDHANDLER

void someFunction (void)

{
if (somethingBad) {
// use NSException and raise

}

} // someFunction

Handlers can be arbitrarily nested, so you could call a function that is in an NS_DURING handler, and it
can set up its own NS_DURING handler. When someone finally raises an exception, flow of control will
jump to the closest NS_HANDLER.

114



Classic exception handling

The macro for NS_HANDLER declares a local variable called localException that you can query for
details about the exception — specifically, its name and the reason it happened. You can also use
localException to “rethrow” the exception using [localException raise].

Example 5.6 is a little command-line tool to show exception handling in action. - [NSString
characterAtIndex:] will raise an exception if you try to get a character that is beyond the length of
the string.

Example 5.6 exception.m
// exception.m -- Show simple exception handling in Cocoa
// gcc -g -Wall -o exception -framework Foundation exception.m

#import <Foundation/Foundation.h>
#import <stdlib.h> // for EXIT SUCCESS

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];
NSString *string = @"hello";

NS DURING

NSLog (@"character at index 0: %c", [string characterAtIndex: 0]);

NSLog (@"character at index 1: %c", [string characterAtIndex: 1]);

NSLog (@"character at index 2000: %c", [string characterAtIndex: 2000]);

NSLog (@"character at index 2: %c", [string characterAtIndex: 2]);
NS_HANDLER

NSLog (@"inside of exception handler.");

NSLog (@"name is : %@", [localException namel);

NSLog (@"reason is : %@", [localException reason]);

NSLog (@"userInfo dict: %@", [localException userInfol);

NS_ENDHANDLER
[pool drain];

return EXIT SUCCESS;
} // main

A sample run:

$ ./exception
2011-05-20 13:18:37.449 exception[89626:903] character at index 0: h
2011-05-20 13:18:37.453 exception[89626:903] character at index 1: e
2011-05-20 13:18:37.459 exception[89626:903] inside of exception handler.
2011-05-20 13:18:37.460 exception[89626:903] name is : NSRangeException
2011-05-20 13:18:37.460 exception[89626:903] reason is :

*** - [NSCFString characterAtIndex:]: Range or index out of bounds
2011-05-20 13:18:37.460 exception[89626:903] userInfo dict: (null)

The first two characterAtIndex: method calls succeed, and the third raised an exception, terminating
the code in the NS_DURING section of code.

Specific Cocoa methods document whether they raise exceptions. Unfortunately there is not a
centralized list of all methods that can raise exceptions.

Cocoa classic exception handling is based on setjmp()/longjmp(), so you must use volatile variables
if they might be accessed after the Longjmp () to your NS_HANDLER. There is no automatic cleanup

115



Chapter 5 Exceptions, Error Handling, and Signals

of allocated objects when exceptions happen (like with stack objects in C++). Also, there are some
restrictions in what you can do during the NS_HANDLER portion. Specifically, you should not goto

or return out of an exception-handling domain (anywhere between NS_DURING and NS_HANDLER);

if you do, the exception handler stack will be left in a bad state. If you want to return from an
exception-handling domain, you must use the macros NS_VOIDRETURN and NS_VALUERETURN (value,
value_ type). Further, setjmp() and longjmp() should not be used if it crosses an NS_DURING
statement. (In general, if you are using Cocoa exception handling, you will not need to use setjmp()
and longjmp (), but be careful of library code.)

Cocoa exception handling is a heavy-weight operation, so do not use it for normal flow of control. It
is better test a string’s length when processing characters rather than falling off the string’s end and
depending on an exception to terminate your processing.

Cocoa provides the NSException object. You can allocate your own instances of this object and use
them to raise your own exceptions. You can supply your own name and reason strings or use built-in
ones.

Example 5.7 is a command-line tool that raises a custom exception:

Example 5.7 raise-classic.m
// raise-classic.m -- raise an exception in old-school Cocoa
// gcc -g -Wall -framework Foundation -o raise-classic raise-classic.m

#import <Foundation/Foundation.h>
#import <stdlib.h> // for EXIT SUCCESS

void doSomethingElse () {
NSDictionary *userInfo = [NSDictionary dictionaryWithObjectsAndKeys:
@"hello", @"thingl",
@"bork", @"thing2", nil];
NSException *exception =
[NSException exceptionWithName: @"GroovyException"
reason: @"doSomethingElse raised a GroovyException
userInfo: userInfol;
[exception raise];

NSLog (@"after the raise. This won't be printed.");

} // doSomethingElse

void doSomething () {
doSomethingElse ();
} // doSomething

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NS _DURING
doSomething ();

NS_HANDLER

NSLog (@"inside of exception handler.");
NSLog (@"name is : %@", [localException namel);

116



Native exception handling

NSLog (@"reason is : %@", [localException reason]);
NSLog (@"userInfo dict: %@", [localException userInfol);

NS ENDHANDLER
[pool drain];

return EXIT SUCCESS;
} // main

A sample run:

$ ./raise-classic
. inside of exception handler.
. name is: GroovyException
reason is: doSomethingElse raised a GroovyException
. userInfo dict: {thingl = hello; thing2 = bork; }

The Cocoa classic exception-handling mechanism is fundamentally string-based. There is no
hierarchy of exception classes as there is in Java and C++. When code throws a built-in exception (like
NSGenericException), the exception is actually just an NSString that gets put into an NSException
object.

You can use gdb to halt execution when exceptions are thrown, just put a breakpoint on - [NSException
raise] or objc_exception_throw(). The latter will be triggered with classic and native exceptions,
and the former only with classic exceptions.

Native exception handling

Starting with Mac OS X 10.3, native exception handling was added to the Objective-C language.
You need to turn it on before you can use it. You can provide gee the - fobjc-exceptions flag when
compiling on the command line or with makefiles. You can turn on native exception handling in
Xcode’s build configuration. Enabling native exceptions also enables some native thread-safety tools
that will be discussed in Chapter 20: Multithreading.

Example 5.8 shows the syntax for native Objective-C exceptions.
Example 5.8 Objective-C Exception Syntax
@try {

@throw expr;
}

@catch (SomeClass *exception) {

@throw expr;

@throw
}
@catch (AnotherClass *exception) {
}

@catch (id allOthers) {

}
@finally {

117



Chapter 5 Exceptions, Error Handling, and Signals

@throw expr;

}

You wrap the code that might throw an exception inside of an @try block. If any exceptions are thrown
from inside of that block, one of the @catch handlers might be entered. Unlike the classic exceptions,
the native exceptions are object-based, so you can catch different classes of exceptions. If you @catch
a particular class, any objects that are subclasses of that class will be caught by that block, too. Use id
to designate the “catch-all” handler. Any exception that does not match any of the other classes will be
caught here. Classes are matched in the order they are listed, so be sure to have any id @catch blocks
at the end. Finally, the @finally section is run whether or not an exception was thrown or the @try
block completed successfully.

To throw an exception, you @throw an object. Only Objective-C objects can be thrown and caught,
so you cannot throw C++ objects or primitive C types. You can @throw an exception at any time. The
code inside of an @catch section can throw a brand new exception if it wants, or it can use @throw;
(without an object) to rethrow the current exception.

The native Objective-C exception mechanism is binary compatible with the NS_HANDLER idiom, but you
can only use the new syntax on Mac OS X 10.3 or later because of support added to the Objective-C
runtime.

If you want the debugger to break when an exception is @thrown, put a breakpoint on
objc_exception_throw(). You can also have Xcode catch exceptions for you. In Xcode 3, use the
Stop on Objective-C Exceptions menu command. In Xcode 4, add an exception breakpoint and choose
whether you want to break on Objective-C or C++ exceptions and whether to break on throw or on
catch.

Example 5.9 is the raise-classic program ported to use the native exception syntax. It throws an
NSException object because it conveniently wraps some useful data, but you could throw any kind of
object.

Example 5.9 raise-native.m
// raise-native.m -- Raise an exception using native Objective-C mechanisms

// gcc -g -Wall -framework Foundation -fobjc-exceptions -o raise-native
// raise-native.m

#import <Foundation/Foundation.h>
#import <stdlib.h> // for EXIT SUCCESS

void doSomethingElse () {
NSDictionary *userInfo = [NSDictionary dictionaryWithObjectsAndKeys:
@"hello", @"thingl",
@"bork", @"thing2", nil];
NSException *exception =
[NSException exceptionWithName: @"GroovyException"
reason: @"doSomethingElse raised a GroovyException"
userInfo: userInfol;
@throw exception;

NSLog (@"after the throw. This won't be printed.");

} // doSomethingElse

118



Subclassing NSApplication to catch exceptions

void doSomething () {
doSomethingElse (
} // doSomething

)i

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

@try {
doSomething ();
}

@catch (NSException *exception) {

NSLog (@"inside of exception handler.");

NSLog (@"name is : %@", [exception namel);
NSLog (@"reason is : %@", [exception reason]);
NSLog (@"userInfo dict: %@", [exception userInfo]);

}
@finally {
[pool drain];

return EXIT SUCCESS;
} // main

And the results are the same as raise-classic:

$ ./raise-native
[21540] inside of exception handler.
[21540] name is: GroovyException
[21540] reason is: doSomethingElse raised a GroovyException
[21540] userInfo dict: {thingl = hello; thing2 = bork; }

In both native and classic exception handling, you must be careful not to deallocate the autoreleased
exception object by draining a local autorelease pool prior to rethrowing the exception. Be particularly
careful of draining pools in @finally blocks, because these execute before the next exception handler
catches the rethrown exception.

Subclassing NSApplication to catch exceptions

In some applications (Xcode, for example), when an exception falls through the stack all the way
to the run loop, the user is shown the exception in a panel. (Often, the panel just says something
like “Something has gone wrong. You may want to save what you are working on and restart this
application.”) They accomplish this by using a custom subclass of NSApplication.

When an exception falls through the stack all the way to the run loop, the instance of NSApplication
gets sent the following message:

- (void)reportException: (NSException *) theException

This method simply logs the exception using NSLog(), and the run loop begins again. If you would like
to alter this behavior, you must subclass NSApplication and override - reportException:.

If you do this, make sure that you also alter the Info.plist for your application so that it uses your
subclass instead of NSApplication:

<key>NSPrincipalClass</key>

119



Chapter 5 Exceptions, Error Handling, and Signals

<string>GroovyExceptionReportingApplication</string>

Note that this only works if your Objective-C code is in a Cocoa application. If you have written a
Command Line Tool, you will call NSSetUncaughtExceptionHandler () and supply it with a pointer to
a function with this signature:

volatile void Handler (NSException *e);

The Exception Handling framework’s NSExceptionHandler class provides some default uncaught
exception handling that can be helpful during debugging; you should check it out before rolling your
own.

You might wonder at the volatile void return type. This is a GNU extension to standard C that
indicates that the function does not return, similar to the noreturn attribute you could use to qualify
wrappers around exit () and abort().

64-bit Objective-C runtime

The new runtime introduced with Leopard’s 64-bit support and now used on iOS, changes the way
exceptions are implemented in Objective-C. Under the classic runtime, exceptions are setjmp/longjmp
based. Recall that setjmp saves processor registers and other bits of state. This means that you pay a
price for every @try, while the @throw is a very cheap operation.

The C++ exception model instead makes try operations very cheap, while incurring the
computationally expensive portion when an exception is actually thrown. Entering and exiting try
blocks is a much more common operation than actually throwing an exception, so this is a design
win. The new Objective-C runtime adopts the C++ model and actually unifies the two exception
mechanisms. You can now throw and catch C++ and Objective-C exceptions with each other’s
handling mechanism.

i0S development has its own considerations. iOS devices use the new runtime, including the unified
exception model. In general, all exception work is relatively expensive, so you should measure the
performance impact of any heavy exception work you might be doing.

NSError

Apple introduced NSError in Mac OS X 10.3 as a way of returning richer error results from methods.
Consider reading the contents of a file into an NSData object:

+ (id) dataWithContentsOfFile: (NSString *) path;

If something goes wrong, you get nil back, and there’s not much you can do to figure out what went
wrong. The updated version of this method looks like this:

+ (id) dataWithContentsOfFile: (NSString *) path
options: (NSDataReadingOptions) readOptionsMask
error: (NSError **) errorPtr;

Notice the NSError that is passed in. The method wants a pointer to a pointer. The method will fill in
this pointer if the method failed. The return value of errorPtr is undefined if the method succeeded.
Therefore, you should never use the value (nil or non-nil) of an NSError pointer to decide if an error
happened.

This is the usual usage pattern:

120



Logging

NSError *error;
NSData *data = [NSData dataWithContentsOfFile: pathname
options: O
error: &error];
if (data == nil) {
// Use error to figure out what went wrong.
}

Logging
In our development careers at one time or another we have all done “caveman debugging,” putting in

lots of print statements to see program flow and to see what values our variables have. Using stuff in
Chapter 11: Files, Part 1: I/0 and Permissions, you can even redirect those print statements to log files.

But there are times when you are logging and it is not debugging related, like server programs keeping
an audit trail of connections or printing information that may be of interest to administrators (such as
the disk is filling up). Most Unix systems have a daemon running called syslogd, the system logging
daemon. System administrators can configure syslogd to log to a file or to send the log information
from many machines to a central location (very useful if you have a lot of machines to keep an eye on).

syslog()
One programmatic interface to syslogd, the syslog() function, is:
void syslog (int priority, const char *message, ...);

The message is a printf()-style string. You can use any printf() token in there you want. There is
also an added format string, “%m”, to insert the current error message from strerror(). syslog() also
adds a trailing newline if one is not already specified in the message string.

The priority argument controls whether the logging will be seen or not. Here are the priority levels
from highest to lowest:

LOG_EMERG A panic condition. This is normally broadcast to all users.

LOG_ALERT A condition that should be corrected immediately, such as a corrupted system
database.

LOG_CRIT Critical conditions, e.g., hard device errors.

LOG_ERR Errors.

LOG_WARNING Warning messages.

LOG_NOTICE Conditions that are not error conditions, but should possibly be handled specially.

LOG_INFO Informational messages.

LOG_DEBUG Messages that contain information normally of use only when debugging a program.

The configuration file for syslogd, /etc/syslogd.conf, contains the controls for setting the threshold
where logging will occur. By default, LOG_DEBUG messages are not shown, but everything else is.

You can control some of the syslog behavior of the logging output by using openlog():

121



Chapter 5 Exceptions, Error Handling, and Signals

void openlog (const char *ident, int logopt, int facility);

ident is the name to use for the program in the log. By default, the executable name is used. logopt is
any one of these flags bitwise-OR’d together:

LOG_CONS If syslog() cannot pass the message to syslogd, it will attempt to write the message
to the console (/dev/console).

LOG_NDELAY Open the connection to syslogd(8) immediately. Normally the open is delayed until
the first message is logged. This is useful for programs that need to manage the order
in which file descriptors are allocated.

LOG_PERROR Write the message to standard error output as well as to the system log.
LOG_PID Log the process ID with each message; this is useful for identifying instantiations of
daemons.

The facility parameter tells syslogd that the program is a member of a standard system facility,

like being a daemon, or that it is part of the security subsystem. For example, if you were writing a
daemon that was part of the mail system, you would call openlog() with a facility of LOG_MAIL. These
constants are listed in the man page.

Example 5.10 is a sample that logs to syslog, which by default gets written locally to /var/log/
system. log. This is the one of the logs that Console.app looks at.

Example 5.10 syslog.m
// syslog.m -- use the syslog functions

// gcc -g -Wall -o syslog syslog.m

#import <syslog.h> // for syslog and friends
#import <stdlib.h> // for EXIT_SUCCESS
#import <errno.h> // for errno

int main (int argc, char *argv[]) {
syslog (LOG WARNING, "This is a warning message.");
errno = EINVAL;
syslog (LOG ERR, "This is an error, %m");
syslog (LOG_EMERG, "WHOOP!! WHOOP!!")

’

openlog ("BNRsyslogTest", LOG PID | LOG NDELAY | LOG_CONS, LOG DAEMON);

syslog (LOG DEBUG, "Debug message");
syslog (LOG NOTICE, "Notice message");

return EXIT SUCCESS;
} // main

A run of this produces in the log:

$ tail -f /private/var/log/system.log
(and run ./syslog in another terminal)

(beep) Broadcast Message from root@pheasantbook.local
(no tty) at 13:39 EDT...

122



ASL

WHOOP!! WHOOP!!

May 20 13:39:18 pheasantbook ./syslog[89697]: This is a warning message.

May 20 13:39:18 pheasantbook ./syslog[89697]: This is an error, Invalid argument
May 20 13:39:18 pheasantbook ./syslog[89697]: WHOOP!! WHOOP!!

May 20 13:39:18 pheasantbook BNRsyslogTest[89697]1: Notice message

Here you can see the LOG_EMERG getting broadcast to all the open terminals and then the various
syslog messages. You can call openlog() at anytime. You can see how the LOG_PID option and
“BNRSyslogTest” identifier appear.

ASL

The syslog() function is very portable and works on all modern Unix-flavored systems. Apple has
introduced its own API that adds some value on top of syslogd. ASL, the Apple System Log facility,
provides an alternate API for sending messages to syslogd, as well as a capability for querying syslogd
for information about previously logged items.

ASL messages

ASL is based on messages, and these messages are an opaque type called aslmsg. A message is a
container for key-value pairs with a number of pre-defined keys that have meaning for launchd. You
create a new message using asl_new():

aslmsg asl_new (uint32 t type);

asl_new() creates a new aslmsg and returns it to you. The type parameter can either be ASL_TYPE MSG
to create a new message or ASL_TYPE_QUERY to create a new search query.

When you are done with an aslmsg, release its resources using asl_free(), which takes an aslmsg as
its only argument.

Use asl_set() to add keys and values to a message:
int asl_set (aslmsg message, const char *key, const char *value);

message is the aslmsg you are filling out. key and value are null-terminated strings (ASCII or
UTF-8). The function returns zero on success, non-zero for failure. There are a number of pre-defined
keys that have defaults set, and you are also allowed to add your own keys. The predefined keys

are: ASL_KEY TIME, ASL KEY HOST, ASL_KEY_ SENDER (defaults to the process name), ASL_KEY PID,
ASL_KEY UID, ASL KEY GID, ASL KEY LEVEL, and ASL_KEY MSG (the text to actually log).

You can get a value out of a message for a specific key with as1_get() and iterate through a message’s
keys with as1_key():

const char *asl_get (aslmsg message, const char *key);
Given a message and a key, this returns the value or NULL if there is no value under that key.
const char *asl_key (aslmsg message, uint32 t index);

Given a message, this returns the key at the position indicated by index. The function returns NULL
if index falls off the end of the list of keys. You can spin through the keys by starting at 0 and
incrementing an index. When the function returns NULL, you have reached the end. You can pass the
returned key to asl_get() to retrieve the value.

123



Chapter 5 Exceptions, Error Handling, and Signals

Once you have constructed a message, you can send it off to syslogd using as1_send():
int asl_send (aslclient client, aslmsg message);

The second argument, message, is the message that has already been constructed. The first argument,
client, is an aslclient. If you pass NULL, a default client will be used. Access to a client is single-
threaded, so if you want multiple threads to be able to log at the exact same time, you must create
additional clients using as1_open(). as1_open() is not described further here; see the as1 manpage for
more information.

If nothing appears in the log, you may need to set the message level, such as
asl set (message, ASL KEY LEVEL, "5");
The argument takes a string, not an ASL_LEVEL_* constant.

ASL supplies two convenience functions, asl_log() and as1_vlog(), so that you don’t have to create
anew aslmsg every time you want to log something:

int asl_log (aslclient client, aslmsg message, int level,
const char *format, ...);

int asl_vlog (aslclient client, aslmsg message, int level,
const char *format, va list args);

You can pass NULL for the first argument, client. You only need additional clients in multi-threaded
applications. The message argument is a template message that has some key-value pairs already
added to it. The template will be merged with default values for the message. You can pass NULL if
you don’t have a template message you want to use. asl_log() handles its format string the same
way as syslog(), so it includes support for the %m “current error string” format specifier. If you have a
va_list handy, you can pass that to asl_vlog().

ASL queries

Using ASL messages seems like a lot of work when you can just use syslog(). But unlike the
syslog API, ASL provides a way to query syslogd for information about previously logged entries,
turning syslogd into a mini-database of sorts. To query the database, you make a new message of type
ASL_TYPE_QUERY and then use the as1_set_query() function to add predicates. You can set multiple
predicates, which will be joined using logical ANDs.

int asl_set_query (alsmsg query, const char *key, const char *value,
uint32 t operation);

The query parameter is an aslmsg that was created with the ASL_TYPE_QUERY type. key is the key you
want to search for, value is the value you want to search for, and operation is the way to search, along
with some optional flags.

Here are the different query operations:
ASL _QUERY_OP_EQUAL Compare values for equality. If the value for key in a logged

message is equal to the value parameter, that message will be
returned from the query.

124



ASL

ASL_QUERY_OP_GREATER

ASL_QUERY OP GREATER EQUAL

ASL_QUERY OP_LESS

ASL_QUERY_OP LESS EQUAL

ASL QUERY OP NOT EQUAL

ASL_QUERY OP REGEX

ASL_QUERY OP_TRUE

If the value for key in a logged message is strictly greater than
the value parameter, that message will be returned from the

query.

If the value for key in a logged message is greater than or equal
to the value parameter, that message will be returned from the

query.

If the value for key in a logged message is strictly less than the
value parameter, that message will be returned from the query.

If the value for key in a logged message is less than or equal
to the value parameter, that message will be returned from the

query.

If the value for key in a logged message is not equal to the value
parameter, that message will be returned from the query.

If the value for key in a logged message matches the regular
expression specified by value parameter, that message will be
returned from the query. Regular expression searches use the
regex function; see the regex(3) manpage for details. Patterns
are compiled using the REG_EXTENDED (use “modern” regular
expressions) and REG_NOSUB (compile the regular expression
for matching that only reports success or failure, not what was
matched) options.

Always true. Use this to test for the existence of a key.

There are also a number of modifiers you can bitwise-OR into asl_set_query()’s operation

parameter:

ASL_QUERY OP_CASEFOLD

ASL_QUERY OP_PREFIX
ASL_QUERY OP_SUFFIX
ASL_QUERY OP_SUBSTRING

ASL_QUERY OP_NUMERIC

Compare strings in a case-insensitive manner. This is the only
modifier that is checked for the ASL_QUERY _OP_REGEX operation.

Match a leading substring.

Match a trailing substring

Match any substring.

Convert values to integers using atoi(). By adding this option to
one of the relative operations (greater, greater_equal, etc.), you can

do numeric comparisons instead of string comparisons. This is very
handy when you want a specific range of message levels.

A common error is to forget to include a query operation like ASL_QUERY OP_EQUAL along with

ASL_QUERY_OP_SUBSTRING

After you have constructed the query message, you send it off to syslogd using as1_search():

125



Chapter 5 Exceptions, Error Handling, and Signals

aslresponse asl_search (aslclient client, aslmsg query);

The client can be NULL unless you are calling this from multiple threads. query is the query message
you built up with as1_set_query. The return value, an aslresponse, is an opaque iterator type

that you feed to aslresponse_next() until it returns NULL. Release the query’s resources with
aslresponse_free() when you’re done with it. Both of these aslresponse functions take an
aslresponse returned by asl_search()

Example 5.11 will list all messages that syslogd has recently displayed. It uses a query with
ASL_QUERY_OP_TRUE to match everything.

Example 5.11 asl-list.m
// asl-list.m -- show what asl messages have been logged so far

// gcc -g -Wall -o asl-list asl-list.m

#import <asl.h> // for ASL API
#import <stdlib.h> // for EXIT_SUCCESS
#import <stdio.h> // for printf()

void dumpAs1Msg (aslmsg message) {
// walk the keys and values in each message
const char *key, *value;

uint32 t i = 0;

while ((key = asl key (message, i))) {
value = asl get (message, key);
printf ("Ssu: %s -> %s\n", i, key, value);
i++;

}
} // dumpAslMsg

int main (void) {
// Construct a query for all senders using a regular expression
// that matches everything.
aslmsg query;
query = asl _new (ASL TYPE_QUERY);
asl set query (query, ASL KEY SENDER, "", ASL QUERY OP_TRUE);

// Perform the search.
aslresponse results = asl search (NULL, query);

// walk the returned messages
aslmsg message;
while ((message = aslresponse next(results))) {
dumpAs1Msg (message);
printf ("----c-ccmii i \n");
}

aslresponse free (results);
asl_free (query);

return EXIT SUCCESS;
} // main

And here is a sample run:

126



ASL

./asl-list

Time -> 1280870970

Host -> Pheasantbook

Sender -> kernel

PID -> 0

UIib -> 0

GID -> 0

Level -> 3

Message -> (null)

ASLMessageID -> 65297

TimeNanoSec -> 0

10: ReadUID -> 0

11: ReadGID -> 80

12: Facility -> com.apple.system.fs

13: ErrType -> IO

14: ErrNo -> 5

15: I0Type -> Read

16: PBlkNum -> 911281

17: LBlkNum -> 12995

18: FSLogMsgID -> 1438271333

19: FSLogMsgOrder -> First

20: ASLExpireTime -> 1312493370

0: Time -> 1280870970
1: Host -> Pheasantbook
2: Sender -> kernel

3: PID -> 0

4: UID -> 0

5: GID -> 0
6
7
8
9

OCoNOOU B WNREO “r

: Level -> 3
: Message -> (null)
: ASLMessageID -> 65299
: TimeNanoSec -> 0
10: ReadUID -> 0
11: ReadGID -> 80
12: Facility -> com.apple.system.fs
13: DevNode -> /dev/disk2s2
14: MountPt -> /Volumes/Time Machine Backups
15: FSLogMsgID -> 1438271333
16: FSLogMsgOrder -> Last
17: ASLExpireTime -> 1312493370

There actually was a lotf more output. This is just a representative sample.

Example 5.12 logs a simple message with as1_log(), and then it builds a template message and

uses that for a couple of logs. The template has a custom key in it, “Suit” — presumably because the
organization running this program wants to log when someone enters the research lab while wearing a
specific kind of protective suit. Two people are logged as having been suited up. After the logs, a query
is made to get the log messages for when Alex wears his suit.

Example 5.12 asl-log-n-query.m
// asl-log-n-query.m -- do some logs and some queries
#import <asl.h> // for ASL function

#import <stdio.h> // for printf()
#import <stdlib.h> // for EXIT_SUCCESS

127



Chapter 5 Exceptions, Error Handling, and Signals

#import <syslog.h> // for LOG_ constants
#import <inttypes.h> // for printf constant PRIu32

// gcc -g -std=c99 -Wall -o asl-log-n-query asl-log-n-query.m

void dumpAslMsg(aslmsg message) {
// walk the keys and values in each message
const char *key, *value;
uint32 t i = 0;
while ((key = asl key(message, i))) {
value = asl get (message, key);
printf ("%u: %s => %s\n", i, key, value);
i++;
}
} // dumpAslMsg

int main(void) {
// Perform a simple log.
asl log (NULL, NULL, LOG NOTICE, "Hello how are %s today?", "you");

// Make a template message with our custom tags
aslmsg template = asl new (ASL TYPE MSG);
asl set (template, "Suit", "(4A)CGS");

// Log some messages.
asl log (NULL, template, LOG NOTICE, "Laurel has suited up");
asl log (NULL, template, LOG NOTICE, "Alex has suited up");

// Do a query to see how many times Alex has worn his (4A)CGS suit
aslmsg query = asl new (ASL TYPE QUERY);
asl set query (query, "Suit", "(4A)CGS", ASL QUERY OP EQUAL);
asl set query (query, ASL KEY MSG, "Alex",
ASL_QUERY_OP_EQUAL | ASL_QUERY_OP_PREFIX);

// Perform the search.
aslresponse results = asl search(NULL, query);

// Walk the returned messages.
aslmsg message = NULL;
while ((message = aslresponse next(results))) {

dumpAs1Msg(message) ;

prj_ntf [ \n");
}
// Cleanup.

aslresponse free (results);
asl free (query);
asl free( template);

return EXIT SUCCESS;
} // main

When you run the program, have a tail -f pointed at /var/system. log so you can see the three log
messages:

$ tail -f /var/system.log

128



For the More Curious: Assertions

May 20 14:15:08 pheasantbook asl-log-n-query[90248]: Hello how are you today?
May 20 14:15:08 pheasantbook asl-log-n-query[90248]: Laurel has suited up
May 20 14:15:08 pheasantbook asl-log-n-query[90248]: Alex has suited up

Then the program displays the results from its query. It shows an earlier notice from 17:45:45 and the
one from 19:20:57. The discrepancy in time stamps between the program’s output and syslogd’s output
is due to time zones: the time returned from the query is in UTC (coordinated universal time), while
the log file uses the current time zone (Eastern Daylight Time in this case).

$ ./asl-log-n-query

Time => 1305914413

Host => pheasantbook

Sender => asl-log-n-query

PID => 89953

UID => 501

GID => 20

Level => 5

Message => Alex has suited up
ASLMessageID => 869458
TimeNanoSec => 360885000

0: Facility => user

1: Suit => 4ACGS

Time => 1305914522

Host => pheasantbook

Sender => asl-log-n-query

PID => 89979

UID => 501

GID => 20

Level => 5

Message => Alex has suited up

HEOONOURARWNREO

NoubhWwWNREO

ASL also has some features that allow you to change the logging level of applications remotely,
allowing you as a user or an administrator to crank up or down the volume of logging from an
application. Check out the as1(3) and syslog(1) manpages.

For the More Curious: Assertions

Assertions are a programming technique where tests are added for conditions that cannot happen. The
program kills itself when it enters such an impossible state, dumping a core file if it can.

The assert macro
assert (expression)

evaluates the expression. If the expression is zero (false), the process is terminated, a diagnostic
message is written to the standard error stream, and the abort () function is called, which terminates
the program by raising the signal SIGABRT. Because most programmers use asserts for debugging
purposes, you can compile them out of a production program by using the preprocessor flag -DNDEBUG.
Be aware of side effects due to code called in the assert() macro. This could cause your program to
fail in a non-debug build.

Should you always leave assertions and debugging statements in your code? There are two schools
of thought. One idea, usually held by programmers that primarily work on server software, is that

129



Chapter 5 Exceptions, Error Handling, and Signals

programs should terminate immediately if something bad is detected. A server program will be
restarted if it exits, and the faster you exit the less chance you have of corrupting the user’s data and
sending that corrupted data to permanent storage.

On the other hand, one of the worst things a GUI application can do is suddenly exit, wiping out any
work the user has done. In that case, you would not want to immediately terminate the program, but
instead put up some kind of “help help i am dying” alert and give the user an opportunity to save any
data.

Cocoa also has an assertion mechanism, NSAssertionHandler. There you use macros like
NSAssert(test, msg) (when in a method) and NSCAssert(test, msg) (when in a regular

old C function) to evaluate a condition. If it evaluates to false, the message is passed to an
NSAssertionHandler (one is associated with each thread). When invoked, this object prints an error
message and raises an NSInternalInconsitencyException, which can be caught using @catch().

Static assertions

A neat trick is crafting an assertion so that it prevents the file from compiling if the assertion fails.
This notifies you of the failed test without having to run the executable! The easiest way to make such
a static assertion is to exploit the guarantee that arrays must have a non-negative size. For example,
suppose you wanted to assert that sizeof (int) == sizeof(long). You can use a typedef to avoid
any cost in space or speed to the program while still checking this predicate statically:

typedef char AssertIntAndLongHaveSameSize[(sizeof(int) == sizeof(long)) ? 0 : -11;

There’s no problem compiling for 1386 because both int and long are four bytes. But compiling it for
x86_64 yields an error:

$ gcc -arch i386 isILP32.m
$ gcc -arch x86_64 isILP32.m
isILP32.m:4: error: size of array ‘AssertIntAndLongHaveSameSize’ is negative

AssertMacros.h

/usr/include/AssertMacros.h has a collection of useful debugging macros that can be used to
control program flow in the face of error conditions. For example, require_noerr takes an error
code and a label. In debug builds, if the label is not zero, otherwise known as noErr, it will invoke
the DEBUG_ASSERT MESSAGE macro, which will log the error value, file, line, etc and then jump to the
indicated label. You can replace that macro with one that does other work, such as breaking into the
debugger, for helping to catch “that can’t possibly happen” circumstances. In production builds, it
simply jumps to the label.

Exercises

1. Fix the race conditions in interrupt.m by using sigprocmask(). Should sigsetjmp() be saving
the signal mask or not?

2. Tweak /etc/syslogd.conf to display the debug message from syslog.m in the system.log file.

130



Libraries

A library is a packaged collection of object files that programs can link against to make use of the
features it provides. Traditional Unix has two kinds of libraries: static libraries, where the linker
packages the object code into the application, and shared libraries, where the linker just stores a
reference to a library and the symbols the application needs. Mac OS X also brings frameworks to the
table. Frameworks package shared libraries with other resources, like header files, documentation, and
subframeworks.

Static Libraries

Static libraries are the simplest libraries to work with. Many open source projects that you can
download will frequently build static libraries, whether for your programs to link against or for internal
use to simplify the build system where each major module is put into its own static library. All of these
libraries are then linked together to make the final executable program. Figure 6.1 shows that the object
code that lives in the shared libraries is physically copied into the final executable.

u Static Library A

<<

Figure 6.1 Static libraries

Static Library B

Application

The ar program is what is used to create libraries, or in ar’s terminology, archives. ar can create an
archive, add new files to it, and existing files can be extracted, deleted, or replaced. Files are named in
the archive by their file name (any files specified with a path just use the file name).

In the online materials for this book, you will find five source files that look like Example 6.1:

131



Chapter 6 Libraries

Example 6.1 srcO.c

// srcO.c : a simple source file so we can fill a library
// gcc -g -Wall -c srcO.c

int add 0 (int number) {
return number + 0;
} // add 0

These are little functions that do not actually do anything useful. You can compile them all into object
files by this command:

$ gcc -g -c src?.c
Recall that the shell will use ? as a one-character wildcard. You can see the source files:

$ 1s src?.c
src@.c srcl.c src2.c src3.c src4.c

and the associated object files:

$ ls src?.o0
src@.0 srcl.o src2.o0 src3.o0 src4.o

Create the archive:
$ ar crl libaddum.a src?.o

with the final result looking like Figure 6.2. A static library is basically a collection of object files.

Figure 6.2 Inside a library

src3.o

. | srcé.o
in

int add_4 (int);

libaddum.a

The flags are:

¢ Create if the archive does not exist.

r Replace or add the specified files to the archive.
1 The next argument is the name of the library file.

After you create or modify an archive, you may need to run the ranlib command, which builds the
table of contents for the archive. The linker needs this table of contents to locate the object files it
actually needs to link in. Frequently, ranlib can be used to “fix” broken libraries. If you get strange
linker errors (particularly if you’re not using Apple’s development tools) when using a static library,
run ranlib on it and see if it that helps things.

$ ranlib libaddum.a

132



Static Libraries

To actually use a static library in your program, you need to use two compiler flags. -L tells the linker
what directory to look in. -1 (lowercase ell) tells the linker what files to look for. By convention,
library file names are of the form libfoo.a, where foo is some descriptive name for the features the
library provides. If you specify - 1foo, the linker knows to look for libfoo.a.

Example 6.2 uses some of the functions from the libaddum.a.

Example 6.2 useadd.m

// useadd.m -- use functions from a library

// gcc -g -Wall -o useadd useadd.m -L. -laddum

#import <stdlib.h> // for EXIT SUCCESS
#import <stdio.h> // for printf
int main (int argc, char *argv[]) {

int i;

i=25;

printf ("i is %d\n", 1i);

i=add 1l (i);
printf ("i after add 1: %d\n", 1i);

i=add 4 (i);
printf ("i after add 4: %d\n", 1i);

return EXIT SUCCESS;
} // main

If you just try to compile like other programs, you will understandably get a complaint about the
missing functions:

$ gcc -g -o useadd useadd.m
Undefined symbols for architecture x86 64:
" add 1", referenced from:
~main in ccg3lI00.0
" add 4", referenced from:
~main in ccg31lI00.0
1d: symbol(s) not found for architecture x86 64
collect2: 1d returned 1 exit status

BSD systems frequently prepend an underscore to symbols during linking, and Mac OS X is no
different. The missing symbol names are actually “add_1"" and “add_4.” Now add the flags to tell the
linker where to look and what library to use:

$ gcc -g -o useadd useadd.m -L. -laddum

A sample run:

$ ./useadd

iis 5

i after add 1: 6

i after add 4: 10

Note that the library stuff is specified after the source file name. If it were the other way around:

$ gcc -g -o useadd -L. -laddum useadd.m
/usr/bin/ld: Undefined symbols:

133



Chapter 6 Libraries

~add 1
~add 4

you would still get the errors because the linker scans files left to right. It looks at the library, sees
that nobody so far needs those symbols to link, and so discards the file. It then goes on to resolve the
symbols for the useadd program itself. Since it already discarded the library, the linker complains
about the missing symbols. Depending on the complexity of your libraries (e.g., circular references),
you may need to specify a library more than once.

When you get one of these undefined symbol errors when using libraries provided by other parties, it
can be a real hassle figuring out where a symbol lives. The nm command can come in handy, since it
shows you information about the symbols that live in applications, libraries, and object files.

Compile the program but generate an object file instead of a program (the - c flag):
$ gcc -g -c useadd.m

$ ls -1 useadd.o

-rw-r--r-- 1 markd staff 4108 May 18 15:09 useadd.o

And now nm it:

$ nm useadd.o

0000000000000450 s EH_framel
0000000000000415 s LCO
000000000000041e s LC1
0000000000000431 s LC2

U add 1

U add 4

U _exit
0000000000000000 T _main
0000000000000468 S _main.eh

U printf

The U is for “undefined,” and the T stands for a defined text section symbol. Chapter 7: Memory
discusses the text section, which is the area of the program file that contains the actual code that will be
executed. You can see the two add functions that were used, printf, plus a little housekeeping.

You can nm libraries too:

$ nm libaddum.a
libaddum.a(src0.0):
0000000000000290 s EH framel
0000000000000000 T add 0
00000000000002a8 S add 0.eh

libaddum.a(srcl.o):
0000000000000290 s EH framel
0000000000000000 T add 1
00000000000002a8 S add 1l.eh

libaddum.a(src2.0):
0000000000000290 s EH framel
0000000000000000 T add 2
00000000000002a8 S add 2.eh

libaddum.a(src3.0):
0000000000000290 s EH framel
0000000000000000 T add 3
00000000000002a8 S add 3.eh

134



Shared Libraries

libaddum.a(src4.0):
0000000000000290 s EH framel
0000000000000000 T add 4
00000000000002a8 S add 4.eh

This shows each object file that has been put into the archive, as well as what symbols are present.

Using static libraries in Xcode is really easy. Just drag the 1ibfoo.a file into your project. Xcode will
automatically link it in.

Shared Libraries

When you use static libraries, the code is linked physically into your executable program. If you have
a big library, say 10 megabytes, which is linked into a dozen programs, you will have 120 megabytes
of disk space consumed. With today’s huge hard drives, that’s not too big of a deal, but you also

have the libraries taking up those megabytes of space in each program’s memory. This is a much
bigger problem. Memory is a scarce shared resource, so having duplicate copies of library code each
occupying its own pages in memory can put stress on the memory system and cause paging.

Shared libraries were created to address this problem. Instead of copying the code into the programs,
just a reference is included. When the program needs a feature out of a shared library, the linker just
includes the name of the symbol and a pointer to the library, as shown in Figure 6.3.

=
e

Figure 6.3 Shared libraries

Shared Library A I~ /
|
/
/
| f Another Application

Sharef Library B
Application

/

Yet Another Application

When the program is executed, the loader finds the shared libraries, loads them into memory and fixes
up the references (resolves the symbols) so that they point to the now-loaded shared library. The shared
library code can be loaded into shared pages of memory and shared among many different processes.
In the example above, the dozen programs linking to a 10-megabyte shared library will not take up

any extra space on disk — plus the library will only appear once in physical RAM and will be shared
amongst the dozen processes. Of course, any space for variable data the shared library uses will be
duplicated in each process.

135



Chapter 6 Libraries

Libraries on OS X support two-level namespaces. This means that the name of the library is stored
along with the symbol. In the “flat namespace” model, just the symbol was stored, and the loader
would search amongst various libraries for the symbol. That caused problems, for instance, if the
log() function was defined in a math library and someone else defined a log() function to output text
to a logfile. The math library function user might get the file logging function instead. The two-level
namespaces handle this case for you so that the two log() functions can coexist. You can sometimes
run into difficulty when building code from other Unix platforms. Adding the flag - flat_namespace to
the link lines can fix many problems.

To build a shared library, use 1d, the linker, rather than ar. To build the adder functions shared library,
use the command

$ 1d -dylib -o libaddum.dylib *.o

And link it into your program:

$ gcc -g -o useadd useadd.m libaddum.dylib

As an aside, you can specify a static library:

$ gcc -g -o useadd useadd.m libaddum.a

and you can use linker search paths with shared libraries:
$ gcc -g -o useadd useadd.m -L. -laddum

The linker, when given a choice between a shared library and a static library, will choose the shared
library. There are no pure static programs on Mac OS X because everything links to 1libSystem, which
is only available in dynamic form.

When you run the program, the loader searches for the shared libraries to load. It looks in a number of
default places (like /usr/1lib), and it also looks at the environment variable DYLD LIBRARY_ PATH. Any
paths specified there (multiple paths can be separated by colons) are searched in order, looking for the
library.

By convention on Mac OS X, shared libraries have an extension of .dylib, for Dynamic Library. On
most other Unix systems, the extension is . so, for Shared Object.

nm can also be used to see what dynamic libraries an application links against by using -mg flags. In
this case, nm is being run against a Cocoa application:

$ nm -mg BigShow
00000000 (absolute) external .objc class name AppController
(undefined [lazy bound]) external .objc class name BigElement
(from BigShowBase)
(undefined [lazy bound]) external .objc class name NSArray
(from Cocoa)
(undefined [lazy bound]) external .objc class name NSBezierPath
(from Cocoa)
(undefined [lazy bound]) external .objc class name NSBundle
(from Cocoa)
(undefined [lazy bound]) external .objc class name NSColor
(from Cocoa)

(undefined) external _ objcInit (from Cocoa)

(undefined [lazy bound]) external abort (from libSystem)
(undefined [lazy bound]) external atexit (from libSystem)
(undefined [lazy bound]) external calloc (from libSystem)

136



But | included the header!

00007008 ( DATA, data) [referenced dynamically] external _environ
(undefined) external errno (from libSystem)
(undefined [lazy bound]) external exit (from 1ibSystem)
(undefined [lazy bound]) external free (from libSystem)
(undefined) external mach init routine (from 1ibSystem)

This shows the symbols from Cocoa that are being used (NSArray, NSBezierPath), some of the
standard C library symbols (abort (), calloc()), and some housekeeping calls (_objcInit).

Shared libraries can be loaded on demand after your program has started and are the standard Unix
way for building a plug-in architecture to your program.

If you want to see all the shared libraries a program pulls in, run the program from the command line
and set the DYLD PRINT LIBRARIES environment variable to 1. You can use this to peek into a program
and see how it does some stuff. For instance:

$ DYLD_PRINT_LIBRARIES=1

$ /Applications/iTunes.app/Contents/Mac0S/iTunes

loading libraries for image: /Applications/iTunes.app/

Contents/Mac0S/iTunes

loading library: /usr/lib/libz.1.1.3.dylib

loading library: /usr/lib/1libSystem.B.dylib

loading library: /System/Library/Frameworks/Carbon.framework/Versions/A/Carbon
loading library: /System/Library/Frameworks/IOKit.framework/Versions/A/IOKit

loading library: /System/Library/QuickTime/\
QuickTimeFirewireDV.component/Contents/Mac0S/QuickTimeFirewireDV

loading libraries for image: /System/Library/QuickTime/\
QuickTimeFirewireDV.component/Contents/Mac0S/QuickTimeFirewireDV

loading libraries for image: /System/Library/Extensions/\
IOUSBFamily.kext/Contents/PlugIns/I0USBLib.bundle/Contents/Mac0S/\
IOUSBLib

loading library:/System/Library/Frameworks/\
ApplicationServices.framework/Versions/A/Frameworks/\
CoreGraphics.framework/Resources/1ibCGATS.A.dylib

In all, over 130 libraries. It’s pretty interesting to see some of the stuff in there, like Speech
Synthesis, a cryptography library, and some of the private frameworks, like iPod framework and
DesktopServicesPriv.

But | included the header!

A common error programmers coming from non-Unix, non-C systems make is assuming that including
a header file is sufficient to use a particular library’s features. Instead of a compiler error, you will get
a link error. The header file just tells the compiler information like what data structures look like and
signatures of functions and methods. Once the compiler is done generating an object file, it forgets
about the header file. The linker never hears about the header, so it tries to link your program but
doesn’t find the necessary symbols to link against. This is why you also need to specify the library
even though you have already included the header in your source.

Frameworks

Shared libraries are nice from a system implementation point of view, but straight shared libraries are
a pretty inconvenient way to package and ship a complete product. When you are providing some kind

137



Chapter 6 Libraries

of software library, like a database access API, you will want to provide not only the shared library that
has the executable code, but also the header files that describe the API provided, the documentation,
and any additional resources like images or sounds. With plain old shared libraries (on plain old

Unix), you’ll need to cook up your own packaging format or use whatever platform-specific delivery
mechanisms (like RPMs on Red Hat Linux or the Ubuntu packaging system). Even then, the pieces of
your product will probably get split up: libraries into /usr/lib, header files into /usr/include, and
sound files and images go into who knows where.

NeXT came up with the framework idea to address these issues. Figure 6.4 shows a framework, a
bundle that contains the shared library as well as subdirectories for headers and other resources.

Figure 6.4 A framework

libraries headers resources

version 1.0 (C)
Iversion 0.9 (B)
|version 0.5 (A

sub framework sub framework
1 2

groovyFramework

Because the framework has a somewhat complex internal structure, including a directory hierarchy for
versions and a set of symbolic links to indicate which version is current, it’s best to just let Xcode do
the work.

Figure 6.4 shows a maximally complex framework, including multiple versions. Most frameworks you
will use or create will be simpler, having just one version and no subframeworks. But this explains
why you will see a directory in the framework bundle called “Versions” with a subdirectory “A” with a
symbolic link called “Current” pointing to it.

Here’s how to make a shared library for the adder program in Xcode:
1. Launch Xcode.

2. File > New > New Project

3. Framework & Library > Cocoa Framework

4. Name the framework. In this case, called it Adder.

5. Drag in your source files: src0.c, etc.

6. If you wish, you can remove the Cocoa, Foundation, Core Data, and AppKit frameworks from the
External Frameworks and Libraries folder, since this program will not link against them.

138



Frameworks

Now make a header file for the adder functions:

Example 6.3 adder.h
// adder.h -- header file for the little adder functions we have

int add 0 (int number);
int add 1 (int number);
int add 2 (int number);
int add 3 (int number);
int add 4 (int number);

Because it is a public header file, you need to tell Xcode that this header is public so that it will be
added to the Headers directory of the framework.

1. Drag in the header file. You can drag it in from the Finder, or you can create it in place in Xcode.
Your files should look like Figure 6.5

2. Make the header public by setting the Target Membership to Public in the File Inspector, as shown in
Figure 6.6

3. And then build the framework.

When you are done, the project window should look like Figure 6.5

Figure 6.5 Framework source files

®0o0

®, i:ﬂ; [ﬁdderl My Mac 64-bit :] [-]

Im 0 @ A = = B
-_n,lﬁudder
1 target, Mac O5 X 5DK 10.6
[ ] Adder
@adder.h

@ srcQ.c
&| srcl.c
@ src2.c
@ src3.c
@ srcd.c

|__|5upporting Files
|| Frameworks
| | Products

™= Adder.framework

139



Chapter 6 Libraries

Figure 6.6 Setting the header’s public target membership

| Dl 8

Identity and Type

File Name | adder.h

File Type __. Default - C header =

1
r

Location | Relative to Group =

1
r

oS Writing fcore-osx/
libraries—chap/Projects [
adder.h

Full Path fUsers fmarkd /Writing /
core-osx/libraries-chap/
Projectsfadder.h

Localization

Target Membership

¥ & Adder e
Private

Project

Text Settings

By default, Xcode 4 places build artifacts into ~/Library/Developer/Xcode/DerivedData/. ...
You can find the exact location of your framework by popping up the contextual menu on the
Adder. framework product, shown at the bottom of Figure 6.5 and choose Show in Finder.

Now that there is a shared library, build the useadd program:

$ ADDER_FRAMEWORK_PATH=/Users/markd/Library/Developer/Xcode/DerivedData/. . ./Debug
$ gcc -g -o useadd -F${ADDER_FRAMEWORK_PATH} -framework Adder useadd.m

Use -F to specify where the linker should search for the framework when linking. It works just like the

-L flag for static and shared libraries. If you run it now, you will get an error, though:

dyld: Library not loaded: /Library/Frameworks/Adder.framework/Versions/A/Adder
Referenced from: /Users/markd/Writing/core-osx/libraries-chap/Projects/./useadd
Reason: image not found

Trace/BPT trap

This is because the -F flag only affects compile-time behavior, finding the framework so the linker can
make sure all the symbols are there. At runtime, if the framework is not embedded in the program’s
bundle, the system looks in these directories in this order:

1. ~/Library/Frameworks

2. /Library/Frameworks

140



Libraries or Frameworks?

3. /Network/Library/Frameworks
4. /System/Library/Frameworks

So copy the Adder. framework into your ~/Library/Frameworks (which you may need to manually
create) and re-run the program:

$ ./useadd

iis 5

i after add 1: 6
i after add 4: 10

If you will be iterating, building this framework fairly often, you might want to make a symbolic
link to the library. That way your useadd will always pick up the latest version as you rebuild the
framework.

You can see the program using the new framework if you turn on DYLD_PRINT_ LIBRARIES:

$ export DYLD_PRINT_LIBRARIES=1

$ ./useadd

dyld: loaded: /Users/markd/Writing/core-osx/libraries-chap/Projects/./useadd
dyld: loaded: /Users/markd/Library/Frameworks/Adder.framework/Versions/A/Adder
dyld: loaded: /usr/lib/1libSystem.B.dylib

dyld: loaded: /usr/lib/system/libmathCommon.A.dylib

iis 5

i after add 1: 6

i after add 4: 10

You can see the Adder framework being loaded in the beginning.

Libraries or Frameworks?

So, should you be turning all of your common code into frameworks? In general, no. Frameworks are
great if you are supplying libraries to third parties for them to be used as-is. Your users can include the
frameworks in their application bundles and happily use your stuff.

Where you get into trouble is following along the line of thought “I have a suite of apps, so I'll make
a bunch of shared frameworks that all of them can use and put them up in /Library/Frameworks.”
Along this path lies madness. You need administrator privileges to install and update the frameworks.
You will need to use an install package, or else escalate privilege, to install your frameworks.

Once you have your shared frameworks installed, you need to worry about versioning issues. Even
though frameworks have some versioning abilities, tool support for creating versioned frameworks and
linking to particular versions just isn’t there. So you will end up releasing your suite of apps in lock-
step, perhaps releasing some apps before they’re fully baked, and delaying releases of other apps until
the rest of the suite catches up.

You will avoid the worst of these problems if you always include your frameworks into your
application’s bundle. That does mean that common code and resources will not be shared amongst
multiple applications, but in today’s age of huge disks and huge tracts of RAM this is less of an issue.
Many shops either use static libraries or just include the necessary source files into their projects. The
code will find its resources relative to the main bundle.

Also be aware that you cannot use your own frameworks on iOS. You can only statically link in code,
whether via static libraries or including the source directly into your application project.

141



Chapter 6 Libraries

Writing Plug-ins

Shared libraries can be loaded on demand after the program has started running. They are the
mechanism used to add plug-in features: build a shared library and have the program load it. Generic
Unix applications can use the dyld functions to load shared libraries and get the addresses of symbols
(including function pointers to executable code). Higher-level applications can load bundles at runtime.
Cocoa can use the NSBundle class.

Bundles in Cocoa

A bundle is a directory containing some executable code, whether it’s a shared library or an executable
program, and the various resources that support the code. Cocoa applications are bundles, as are
frameworks, screensavers, iPhoto export plug-ins, and a lot of other stuff. Bundles are how Cocoa
handles plug-ins that are loaded after the program has launched. Some programs, like QuickSilver, have
a tiny main program, and all of the functionality is implemented via plug-ins.

There are two sides to making an application accept plug-ins: the application doing the loading and

the plug-in itself. You need to make each of them agree to some kind of protocol to communicate

with each other. There is not any pre-defined protocol for doing this, so you are free to use whatever
mechanism you care to. Here is a little command-line tool example that will load plug-ins that return a
string, which the main program will print out. Once all the plug-ins have had a chance to print out their
stuff, the program exits.

Create three projects in Xcode. First, create a Command Line Tool (or Foundation Tool in Xcode 3)
called BundlePrinter. Then create a Cocoa Bundle called SimpleMessage, and another Cocoa Bundle
called ComplexMessage.

Add a header file to BundlePrinter that looks like this:

Example 6.4 BundlePrinter.h
// BundlePrinter.h -- protocol for BundlePrinter plugins to use
@protocol BundlePrinterProtocol

(BOOL)activate;
(void)deactivate;

+
+
- (NSString *)message;

@end // BundlePrinterProtocol

This is very simple protocol. The class is given an opportunity to do stuff when activated and

deactivated. Perhaps the plug-in needs to create and destroy a big image or load an mp3 file. Then there
is an instance method for getting a string message to print.

Add this header file to the two bundle projects. Now go ahead and implement the plug-ins to conform
to this protocol. Add a SimpleMessage.m file to the SimpleMessage project. Also set the Principal
Class for the project to SimpleMessage. Go to the Targets pane, select SimpleMessage target, select
the Info tab, and add a Principal Class with the string value SimpleMessage.

Here is what SimpleMessage.m looks like:

142



Bundles in Cocoa

Example 6.5 SimpleMessage.m

// SimpleMessage.m -- a simple plug-in that returns a simple, hard-coded message

#import <Foundation/Foundation.h>
#import "BundlePrinter.h"

@interface SimpleMessage : NSObject <BundlePrinterProtocol>
@end // SimpleMessage

@implementation SimpleMessage
+ (BOOL) activate {
NSLog (@"SimpleMessage plug-in activated");
return YES;
} // activate
+ (void) deactivate {
NSLog (@"SimpleMessage plug-in deactivated");
} // deactivate
- (NSString *) message {
return (@"This is a Simple Message");
} // message

@end // SimpleMessage

Build it and fix any errors.

Do the same thing for ComplexMessage (set the ComplexMessage Principal class, and add the
ComplexMessage.m source file).

Example 6.6 ComplexMessage.m

// ComplexMessage -- a plug-in that returns a message using some stored state
#import <Foundation/Foundation.h>

#import "BundlePrinter.h"

#import <stdlib.h> // for random number routines
#import <time.h> // for time() to seed the random generator

@interface ComplexMessage : NSObject <BundlePrinterProtocol> {
NSUInteger randomValue;
}

@end // ComplexMessage
@implementation ComplexMessage

+ (BOOL) activate {
NSLog (@"ComplexMessage plug-in activated");
return YES;

} // activate

+ (void) deactivate {
NSLog (@"ComplexMessage plug-in deactivated");
} // deactivate

143



Chapter 6 Libraries

- (id) init {
if ((self = [super init]))
srandom ((unsigned)tim
_randomValue = random

—~
— —~
=
c
-

}

return self;
} // init

- (NSString *) message {
return [NSString stringWithFormat: @"Here is a random number: %d",
_randomValuel];
} // messagee

@end // ComplexMessage

This is more “complex” because it stores some state at initialization time and uses it later.
Build this and fix any errors.

Now, in the BundlePrinter project, edit main.m so that it looks like this:

Example 6.7 main.m
// main.m -- the main BundlePrinter program

#import <Foundation/Foundation.h>
#import "BundlePrinter.h"

NSString *processPlugin (NSString *path) {
NSString *message = nil;

NSLog (@"processing plug-in: %@", path);

// Load the bundle
NSBundle *plugin = [NSBundle bundleWithPath: path];

if (plugin == nil) {
NSLog (@"could not load plug-in at path %@", path);
goto bailout;

}

// Get the class the bundle declares as its Principal one.
// If there are multiple classes defined in the bundle, we
// wouldn't know which one to talk to first

Class principalClass = [plugin principalClass];

if (principalClass == nil) {
NSLog (@"could not load principal class for plug-in at path %@", path);
NSLog (@"make sure the PrincipalClass target setting is correct");
goto bailout;

}

// Do a little sanity checking

if (![principalClass conformsToProtocol: @protocol(BundlePrinterProtocol)]) {
NSLog (@"plug-in principal class must conform to the BundlePrinterProtocol");
goto bailout;

144



Bundles in Cocoa

// tell the plug-in that it's being activated

if (![principalClass activate]) {
NSLog (@"could not activate class for plug-in at path %@", path);
goto bailout;

}

// make an instance of the plug-in and ask it for a message
id pluginInstance = [[principalClass alloc] init];

// get the message and dispose with the instance
message = [pluginInstance messagel;
[pluginInstance release];

// ok, we're done with it
[principalClass deactivate];

bailout:
return message;

} // processPlugin

int main (int argc, const char *argv[]) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

// Walk the current directory looking for bundles.

// An application would look in its bundle, or maybe a plugin
// directory in ~/Library.

NSFileManager *manager = [NSFileManager defaultManagerl];

for (NSString *path in [manager enumeratorAtPath: @"."]1) {

// Only look for stuff that has a .bundle extension
if ([[path pathExtension] isEqualToString: @"bundle"]) {

// Invoke the plugin.
NSString *message = processPlugin (path);

if (message != nil) { // plugin succeeded
printf ("\nmessage is: '%s'\n\n", [message UTF8String]);
}
}

[pool drain];
return EXIT SUCCESS;

} // main

main () looks in the directory you invoke the program from and searches for entries that end in

.bundle. If it finds one, it attempts to load it and invoke methods on the class it finds there.

Here is a sample run after copying (or symlinking) the SimpleMessage and ComplexMessage bundles

into a directory and running the program. In this case, copy them to the BundlePrinter project

directory.

$ build/Debug/BundlePrinter
. BundlePrinter([4458] processing plug-in: ComplexMessage.bundle
. BundlePrinter([4458] ComplexMessage plug-in activated
. BundlePrinter([4458] ComplexMessage plug-in deactivated

145



Chapter 6 Libraries

message is: 'Here is a random number: 2342'
. BundlePrinter[4458] processing plug-in: SimpleMessage.bundle
. BundlePrinter[4458] SimpleMessage plug-in loaded
. BundlePrinter[4458] SimpleMessage plug-in unloaded

message is: 'This is a Simple Message'

There are a couple of limitations that are glossed over here. One is that you cannot load the same
bundle twice. You will get a message from the Objective-C runtime about duplicate classes. The other
is you cannot unload an Objective-C bundle. The Objective-C runtime gets its claws into the shared
library and refuses to let go.

Shared Libraries and dlopen

If you don’t want to use (or can’t use) NSBundle for loading plug-ins, you can load a shared library
instead. Loading a shared library does not give you ready access to resources like NSBundle does.

Mac OS X has a choice of API for manually loading bundles and shared libraries. There is the
NSModule API, which includes functions such as NSCreateObjectFileImageFromFile(). Prior
editions of this book described this mechanism. It has been deprecated in Mac OS X 10.5, and the
documentation manpages have been removed. You can find information in the header located at /usr/
include/mach-o/dyld.h.

dlopen()
dlopen() is used to open a shared library or a bundle at a given path:
void* dlopen (const char* path, int mode);

dlopen() opens the library and resolves any symbols it contains. It returns a module handle (an opaque
pointer) to the library, which can be used in subsequent calls, or it returns NULL if the library could not
be opened. The function dlerror() returns a string describing the error.

The path can be a full path or a relative path. If the path is just a leaf name (having no slash in the path,
just a library name), dlopen () uses this algorithm to find the library:

1. The LD_LIBRARY_PATH environment variable (a colon-separated list of directories) is consulted, and
the directories are searched (in order) to find the library.

2. If the DYLD_LIBRARY_PATH environment variable is set, those directories are searched for the leaf.

3. If the DYLD FALLBACK LIBRARY PATH environment variable is set, those directories are searched. If
this environment variable is not set, $HOME/lib, /usr/local/lib, and then /usr/1ib are searched.

4. Finally, the path is treated like a regular path.

Because Mac OS X has fat binary files, there are no separate 32-bit and 64-bit search paths.

The mode parameter can take one of two options that control the binding of external functions, along
with two optional flags. Here, “external” refers to functions not defined in the shared library that was
just loaded:

146



disym()

RTLD_NOw Each external function is bound immediately. You can use this flag to make sure
that any undefined symbols are discovered at load-time.

RTLD LAZY Each external function is bound the first time it is called. You will usually use this
form. It is more efficient because it doesn’t bind functions that might never be
called.

RTLD GLOBAL This is an optional bitwise-OR-in flag. Symbols exported from the loaded library
will be available to any other libraries that are loaded, in addition to being available
through calls to dlsym(). This is the default behavior.

RTLD_LOCAL This is also an optional bitwise-OR-in flag. Symbols exported from the loaded
library are generally hidden and only available to dlsym() when using the module
handle for this library.

disym()

Once you have a module handle from dlopen(), you can use dlsym() to get the address of code or data
at the location specified by a given symbol.

void* dlsym (void *module, const char *symbol);

module is a module handle returned by dlopen (). Unlike the dyld family of calls, you do not prepend
the symbol with an underscore. If the symbol cannot be found, dlsym() returns NULL, and you can
query dlerror() to see what the problem was.

There are two constants you can give to dlsym() instead of a module handle: RTLD DEFAULT to search
through every Mach-O image in the process in the order they were loaded. This can be an expensive
operation since it will have to slog through all of the system frameworks. You can also use RTLD_NEXT
to search for the symbol in any Mach-O images that were loaded after the one calling dlsym(). So, if
you call dlsym() in your main program using RTLD NEXT, it will look in any libraries loaded after your
program started running.

BundlePrinter

bundleprinter uses bundle plug-ins similar to the Cocoa-based BundlePrinter. You can compile a shared
library like

$ gcc -g -o simplemessage.msg -bundle simplemessage.m

You can also build it as a shared library:

$ gcc -g -o simplemessage.msg -dylib simplemessage.m

So what’s the difference between a bundle and a shared library on Mac OS X? Practically, not a

huge difference. dlopen() can load both of them and dig around the symbols inside. Bundles can be
unloaded, while shared libraries cannot. Bundles that use Objective-C have to be unloaded in strict
first-in, last-out order, which effectively makes them unloadable. Bundles can also be linked against
executables to satisfy missing symbols. This allows a host application to provide an API that the plug-
in can use.

147



Chapter 6 Libraries

.msg is the file extension used for these “message” plug-ins. Example 6.8 is the driver program, while
Example 6.9 and Example 6.10 are the plug-in implementations.

Example 6.8 bundleprinter.m

// bundleprinter.m -- dynamically load plugins and invoke functions on them, using
// the dlopen() family of calls.

// gcc -g -o bundleprinter bundleprinter.m

#import <sys/dirent.h> // for struct dirent

#import <dirent.h> // for opendir and friends
#import <dlfcn.h> // for dlopen() and friends
#import <errno.h> // for errno/strerror
#import <stdio.h> // for printf

#import <stdlib.h> // for EXIT SUCCESS

#import <string.h> // for strdup

// We need a type to coerce a void pointer to the function pointer we
// need to jump through. Having a type makes things a bit easier
// to read rather than doing this inline.

typedef int (*BNRMessageActivateFP) (void);
typedef void (*BNRMessageDeactivateFP) (void);
typedef char * (*BNRMessageMessageFP) (void);

char *processPlugin (const char *path) {
char *message = NULL;

void *module = dlopen (path, RTLD LAZY);

if (module == NULL) {
fprintf (stderr,
"couldn't load plugin at path %s. error is %s\n",
path, dlerror());
goto bailout;
}

BNRMessageActivateFP activator = dlsym (module, "BNRMessageActivate");
BNRMessageDeactivateFP deactivator = dlsym (module, "BNRMessageDeactivate");
BNRMessageMessageFP messagator = dlsym (module, "BNRMessageMessage");

if (activator == NULL || deactivator == NULL || messagator == NULL) {
fprintf (stderr,
"could not find BNRMessage* symbol (%p %p %p)\n",
activator, deactivator, messagator);
goto bailout;
}

int result = (activator)();

if ('result) { // the module didn't consider itself loaded
goto bailout;

}

message = (messagator)();

(deactivator)();

bailout:

148



BundlePrinter

if (module != NULL) {
result = (dlclose (module));
if (result != 0) {
fprintf (stderr, "could not dlclose %s. Error is %s\n",
path, dlerror());

}
return message;
} // processPlugin

int main (int argc, char *argv[]) {
// walk through the current directory

DIR *directory = opendir (".");
if (directory == NULL) {
fprintf (stderr,
"could not open current directory to look for plugins\n");
fprintf (stderr, "error: %d (%s)\n", errno, strerror(errno));

exit (EXIT FAILURE);

}

struct dirent *entry;

while ((entry = readdir(directory)) != NULL) {
// If this is a file of type .msg (an extension made up for this
// sample), process it like a plug-in.

if (fnmatch("*.msg", entry->d_name, 0) == 0) {
char *message = processPlugin (entry->d name);

printf ("\nmessage is: '%s'\n\n", message);
free (message);

}
closedir (directory);
return EXIT SUCCESS;
} // main
Example 6.9 simplemessage.m
// simplemessage.m -- return a malloc'd block of memory to a simple message
// gcc -g -o simplemessage.msg -bundle simplemessage.m

#import <string.h> // for strdup
#import <stdio.h> // for printf

int BNRMessageActivate (void) {
printf ("simple message activate\n");
return 1;

} // BNRMessageActivate

void BNRMessageDeactivate (void) {
printf ("simple message deactivate\n");

149



Chapter 6 Libraries

} // BNRMessageDeactivate

char *BNRMessageMessage (void) {
return (strdup("This is a simple message"));
} // BNRMessageMessage
Example 6.10 simplemessage.m
// complexmessage.m -- return a malloc'd block of memory to a complex message

// gcc -g -o complexmessage.msg -bundle complexmessage.m

#import <stdio.h> // for printf

#import <stdlib.h> // for random number routines

#import <string.h> // for strdup, and snprintf

#import <time.h> // for time() to seed the random generator

static unsigned g randomValue;

int BNRMessageActivate (void) {
printf ("complex message activate\n");

srandom ((unsigned)time(NULL));
g randomValue = random () % 500;

return 1;

} // BNRMessageActivate

void BNRMessageDeactivate (void) {
printf ("complex message deactivate\n");
} // BNRMessageDeactivate

char *BNRMessageMessage (void) {
char *message;
asprintf (&message, "Here is a random number: %d", g randomValue);
return message;

} // BNRMessageMessage

And here is a run:

$ ./bundleprinter

complex message activate
complex message deactivate

message is: 'Here is a random number: 230'

simple message activate
simple message deactivate

message is: 'This is a simple message'

For the More Curious: libtool

Earlier in the chapter, the class Unix tools ar and ranlib were used to build static libraries, and gec
was used to build a dynamic library. Mac OS X has a tool, libtool, which is peculiar to the platform,

150



For the More Curious: otool

but provides a superset of features over ar and friends. The GNU project also has a libtool, but it is
unrelated to the one in Mac OS X.

Make a static library like this and use it:

$ libtool -static -o libaddum.a src?.o
$ gcc -g -o useadd useadd.m -L. -laddum

And dynamic libraries (but not bundles) can be created thusly:

$ libtool -dynamic -macosx_version_min 10.5 -o libaddum.dylib src?.o
$ gcc -g -o useadd useadd.m -L. -laddum

For the More Curious: otool

otool is another library-oriented tool. Even though it shares the last four letters with libtool, otool will
output a lot of information about an object file, library, or executable. otool has a ton of options, so
check out the manpage for the whole suite. Here are a couple of interesting commands.

List the names and version numbers of the shared libs an object file or executable uses:

$ otool -L /Applications/Safari.app/Contents/Mac0S/Safari
/Applications/Safari.app/Contents/Mac0S/Safari:
/usr/lib/libsqlite3.dylib (compatibility version 9.0.0, current version 9.6.0)
/System/Library/Frameworks/PubSub. framework/Versions/A/PubSub \
(compatibility version 1.0.0, current version 1.0.0)
/System/Library/PrivateFrameworks/CrashReporterSupport.framework/Versions/A/ \
CrashReporterSupport (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libxar.1l.dylib (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/CoreLocation. framework/Versions/A/CoreLocation \
(compatibility version 1.0.0, current version 11.0.0)

Disassemble the contents of the text section. The -V indicates a symbolic disassembly.

$ otool -V -t useadd

0000000100000e82 movl 0xfc(%rbp),%esi

0000000100000e85 leaq 0x000000ac(%rip),%rdi

0000000100000e8c movl $0x00000000,%eax

0000000100000e91 callg 0x100000efa ; symbol stub for: printf
0000000100000€96 movl 0xfc(%rbp),%edi

0000000100000€99 movl $0x00000000,%eax

0000000100000e9e callg 0x100000ee8 ; symbol stub for: add 1

0000000100000ea3 mov1l %seax, Oxfc(%rbp)

Print out some Objective-C stuff:

$ otool -ov BundlePrinter
Contents of (_ DATA, objc classrefs) section
0000000100002178 0x0
0000000100002180 0x0
0000000100002188 0x0
Contents of (_ DATA, objc protolist) section
0000000100002060 0x1000021b0
Contents of (_ DATA, objc msgrefs) section
imp 0x0
sel 0x100001e80 alloc

151



Chapter 6 Libraries

imp 0x0
sel 0x100001e8b release
imp 0x0
sel 0x100001eb6 countByEnumeratingWithState:objects:count:
imp 0x0
sel 0x100001ef6 isEqualToString:
Contents of (_ DATA, objc imageinfo) section
version 0
flags 0Ox0

Point it to something big like /Applications/Safari/Contents/Mac0S/Safari to see a huge amount
of output.

For the More Curious: Runtime Environment
Variables

Earlier you saw several environment variables that could be set to achieve different results. There are
a number of environment variables you can set. Here’s an interesting subset, and check out the dyld
manpage for the complete list. When a list of things is mentioned, it is a colon-separated list of those
objects.

The first set of environment variables control where the dynamic linker finds libraries and frameworks
when a process is first loaded.

DYLD FRAMEWORK PATH A list of directories that contain frameworks. The dynamic linker
searches these directories first.

DYLD FALLBACK FRAMEWORK PATH A list of directories that contain frameworks. This is used as
the default location for frameworks. By default, it includes the
Frameworks directory in /Library, /Network, and /System/
Library.

DYLD LIBRARY_ PATH A list of directories that contain libraries. The dynamic linker
searches these directories before it looks at the default location
for the libraries. Handy for testing new versions of libraries.

DYLD FALLBACK LIBRARY_ PATH A list of directories that contain libraries. These are the default
locations for libraries. By default, it is set to $(HOME) /1ib:/
usr/local/bin:/lib:/usr/lib

The second set causes the dynamic linker to emit output when interesting things happen. Some are
good nerdy fun, and some can be useful when debugging or tracking down performance problems
that happen before main () is called. The environment variables do not have to be set to any particular
value, just so long as they are set.

DYLD PRINT STATISTICS Prints out where the dynamic linker spent its time before main ()
is called.

DYLD PRINT INITIALIZERS Prints when running each initializer in every image.

DYLD_ PRINT_APIS Prints when dynamic linker API is called, such as dlsym().

152



For the More Curious: Runtime Environment Variables

DYLD_PRINT_ SEGMENTS Print out a line with the name and address range of each Mach-O

segment the dynamic linker maps in.

Here is a sample run, showing statistics and API calls with bundleprinter:

$ export DYLD_PRINT_APIS=""
$ export DYLD_PRINT_STATISTICS=""
$ ./bundleprinter

_dyld_

total
total
total
total
total
total
total
total
total
total
total
total
total
total
total

register func_for remove image(0x7fff82fc6b76)

time: 0.53 milliseconds (100.0%)

images loaded: 3 (2 from dyld shared cache, 0 needed no fixups)
segments mapped: 0, into O pages with 0 pages pre-fetched
images loading time: 0.03 milliseconds (6.0%)

dtrace DOF registration time: 0.02 milliseconds (5.5%)
rebase fixups: 0

rebase fixups time: 0.00 milliseconds (0.7%)

binding fixups: 2

binding fixups time: 0.02 milliseconds (5.1%)

weak binding fixups time: 0.00 milliseconds (0.1%)
bindings lazily fixed up: 0 of 0

initializer time: 0.43 milliseconds (82.3%)

symbol trie searches: 2
symbol table binary searches: 0
images defining/using weak symbols: 0/0

dlopen(complexmessage.msg, 0x00000001)
dlsym(0x100100260, BNRMessageActivate)
dlsym(0x100100260, BNRMessageDeactivate)
dlsym(0x100100260, BNRMessageMessage)

complex message activate
complex message deactivate

dlclose(0x100100260)

message is: 'Here is a random number: 99'

dlopen(simplemessage.msg, 0x00000001)

dlsym(0x100100260, BNRMessageActivate)
dlsym(0x100100260, BNRMessageDeactivate)
dlsym(0x100100260, BNRMessageMessage)

simple message activate
simple message deactivate

dlclose(0x100100260)

message is: 'This is a simple message'

153



Chapter 6 Libraries

Exercises

1. Take the Cocoa plug-in example and include it in a GUI program, putting the plug-in name and the
message into an NSTableView. Write some additional plug-ins.

2. otool has a lot of options and additional flags. Write a Cocoa front-end so you can easily play with

the options. You can use NSTask, covered in Chapter 19: Using NSTask to actually run otool from
your application.

154



Memory

Virtual Memory

Virtual memory is a way for the computer to fake having more memory than it actually has. A machine
might have four gigabytes of RAM, but you can write programs that manipulate data several times that
amount. When you overflow the available amount of real memory, portions of the data are saved out to
disk and read back in when the program needs it.

The operating system handles the grungy details of keeping data that is currently being worked on
physically in memory and moving data that has not been touched in a while out to the disk. It also pulls
the data back into memory from disk if the program wants to work with it again.

The operating system divides memory into pages, 4KB chunks of memory that the operating system
addresses. Programs are given pages as they request memory. As pages are used, they are kept

on a list of recently used pages. As programs request more and more memory from the system,

the least recently used pages are written to disk, called “paging” or “swapping,” and the chunk of
physical memory is reused. iOS does not have this disk-based swapfile, so you will hit out-of-memory
conditions sooner on that platform than with desktop Mac OS X.

Pages can be written out and then read back in at different physical addresses. A 4k page starting at
address 0x5000 might be paged out and given to another program. The program that needs the data that
was at 0x5000 now needs it again, so the OS reads the page from disk. The chunk of memory at 6x5000
may now be in use by the second program. Oops. To fix this, virtual addressing is used.

Figure 7.1 shows virtual memory in action. Virtual addresses are the memory addresses a program
sees, and each program has its own address space. The virtual address gets mapped by the OS (and
hardware in the CPU) to the physical address of a chunk of a page of RAM. Program A and program
B each have a page of data at 0x8000. In physical memory, A’s might live at physical address 0x15020,
and B’s might live at physical address 0x3150, but the address translation lets each program live with
the fantasy of having their data at address 0x8000.

155



Chapter 7 Memory

Figure 7.1 Virtual memory

process AL [ [ [ [ [T/ TTLITTLTTLITTRPTLIPTT TILL JITTITT]] “as

Physical memory| | | | | H | |

AN

process B[ | | [] [ [T T LI TIRE TT TN P EILRT IO LTI LTI @cs

The total amount of memory that a program has allocated to it at a particular time is called its virtual
set. The amount of memory that is actually located in RAM is called its resident set. The difference
between the virtual set and the resident set is stored out on disk in a swap file, or in the files of read-
only code segments such as the system frameworks. “Swap” derives its name from the pages that are
swapped for each other when paging happens. You can also lock, or wire, memory down so it doesn’t
get swapped out. Some pages you absolutely don’t want to be swapped out, such as pages containing
decrypted passwords. These pages should be wired down with the mlock() function before decrypting
the password.

Pages can have permissions, like read-only, read/write, and execute. This helps keep you from
scribbling over your own code and helps prevent security exploits that try to execute code from a page
that is not marked executable.

Program Memory Model

Mac OS X processes have a conceptual memory model, where memory is divided into space for the
executable code, a stack, a heap, and other bits and pieces, as shown in Figure 7.2:

Figure 7.2 Unix program memory model

fext segment initisaelgriigtata uninitialized data
(executable code) (globals given segment heap > <« program stack
" (globals defaulting to zero)
explicit values)
Text Segment The executable program code lives here. At program launch

time, the code is mapped into memory from the executable on
disk as read-only pages. Since these pages are read-only, they
can be easily shared among multiple processes, so the pages
only have to appear in physical memory once and can still

156



Program Memory Model

Initialized Data Segment

Uninitialized Data Segment

Heap

Program Stack

be shared among multiple users. They can, of course, appear
multiple times in the virtual memory of other processes. This is
especially for shared libraries that are loaded into each program.
Because the data is read-only, the kernel can recycle these pages
without having to write them to the swapfile.

Initialized global and static variables live here — things like
float pi = 3.1415 outside of any functions or static int
blah = 25 inside of a function. The initialized data is stored in
the data segment itself, which is just copied into memory into
a read/write page that the program can then modify. Because
the kernel is just reading in blocks of data from disk, it is very
fast to load and initialize all of the globals. No real explicit
initialization happens, just bulk data loads.

This is all the stuff that lives in global space but is not given an
explicit initializer, like int bork outside of any functions or
static char buffer[5000] inside of a function, and that all
gets cleared to zero on program launch. These are not treated
like the initialized data segment, which would mean lots of zero
blocks in the executable. Only the size of this data segment is
stored. On program load, the OS allocates that amount of space
and zero-fills it.

This is also referred to as the “bss” segment in manpages and the
historical literature. “bss” comes from an assembler instruction
that means “block started by symbol.”

The heap is the area where dynamic (runtime) allocations
happen. If you malloc() 40K, that 40K will come from the
heap.

The program call stack for the main thread. Local (automatic)
variables are stored here, as well as the stack frame for each
function call. When a function calls another function, the
processor’s registers and other assorted bookkeeping need to
be stored before the new function is invoked. These values also
need to be restored when the new function exits.

Memory “allocation” using the program stack is very fast. A
processor register is used to indicate where the end of the stack
is. Reserving space on the stack just involves adding a value

to this address, whether it be four bytes or four thousand. You
do not want to store foo much stuff on the stack, such as big
buffers, because there is a limit on how big the stack can be.
Also, threads have limited stack space because each thread has
its own chunk of memory to use for a stack. This is discussed in
Chapter 20: Multithreading.

Example 7.1 is a program that has 8K of initialized data and a megabyte of uninitialized data:

157



Chapter 7 Memory

Example 7.1 dataseg.m

// dataseg.m -- show size of data segments

#import <stdio.h> // for printf()
#import <stdlib.h> // for exit()

// gcc -arch x86 64 -g -o dataseg dataseg.m
// gcc -arch i386 -g -o dataseg-32 dataseg.m

// about 8K doubles. lives in the initialized data segment.
static double rdoubles[] = {

0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0,

1017.0, 1018.0, 1019.0, 1020.0, 1021.0,

1022.0, 1023.0
}
// one meg, all zeros. Lives in the uninitialzed data segment
static char buffer[1048576];

int main (void) {
printf ("hi! %ld bytes of doubles, %ld bytes of buffer\n",
sizeof(rdoubles), sizeof(buffer));
return 0;
} // main

Here’s a sample run:

$ ./dataseg
hi! 8192 bytes of doubles, 1048576 bytes of buffer

The size command will show the size of numerous segments of programs. Running size on this program
yields:

$ size dataseg
_TEXT DATA _ 0B3JC others dec hex

4096 1060864 0 4294971392 4296036352 100105000
Above is the size output for a 64-bit executable file. This is the size for a 32-bit version:

$ gcc -arch i386 -g -o dataseg-32 dataseg.m

$ size ./dataseg-32

__TEXT __DATA _ 0BJC others dec hex
4096 1060864 4096 8192 1077248 107000

Here size combines the size of initialized and uninitialized data into the __DATA entry. 1060864 (the
data segment size) minus 1048576 (the zero-filled uninitialized data) is 12288, which is 8192 (the 8K
of double data) plus 4096 (4K of overhead and bookkeeping).

The 64-bit version, though, has a huge “others” section, weighing in at more than four gigabytes. Use
the -m flag to get more details:

$ size -m dataseg
Segment _ PAGEZERO: 4294967296

The __PAGEZERO segment is exactly four gigabytes large. The others segment was 4294971392, for
a difference of 4096 bytes of bookkeeping. Remember that 64-bit processes have the bottom four

158



Memory Lifetime

gigabytes zeroed out to catch pointer truncation errors. The = PAGEZERO segment is how the loader is
told to reserve that space.

Note finally that the application size is small even with those large chunks of zeros in the PAGEZERO
and empty buffer. The megabyte buffer of zeros comes from the uninitialized data segment:

$ 1s -1 dataseg
-rwxr-xr-x 1 markd staff 17256 Jun 21 10:27 dataseg*

Memory Lifetime

Initialized and uninitialized data segment variables are around during the entire run time of the
program. They will not go away. Memory on the heap is explicitly requested and explicitly released.
Memory here can be deallocated, but it’s under program control. Memory on the stack goes away,
meaning that it can be reused by someone else as soon as it goes out of scope, even before a function
exits, like within brace-delimited blocks within a function. The stack memory behavior can cause
errors if you assume that memory will be valid longer than it actually is. A classic error is returning an
address on the stack:

char *frobulate (void) {
char buffer[5000];

// work on buffer
return buffer;
} // frobulate

buffer is allocated on the stack. There are five thousand bytes on the stack, and buffer contains
the address of the first byte. Once buffer goes out of scope, this memory will be available for other
functions to use. Anyone working with the return result of borkulize() is taking a chance that
someone will clobber its contents, potentially much later in time after this function exits, leading to
bugs that are hard to track down.

Dynamic Memory Allocation

“Dynamic memory” is memory that comes from the heap. The heap of the program starts off at an OS-
defined default amount of space available for program consumption. As you allocate memory from the
heap, it fills up, and then your program asks for more memory from the OS. Memory that you have
released can be reused by your program. Memory allocated and subsequently freed is still charged to
your program by the operating system. If you allocate 50 megabytes for temporary workspace and then
free it all, your program will still have the 50 megabytes of memory allocated to it. This will eventually
be swapped out to disk (on desktop systems) since you might not be using it. The total amount of
memory can be considered a high water mark.

The primary functions for allocation and deallocating memory are:
void *malloc (size t size);

void free (void *ptr);

void *realloc (void *ptr, size t size);

void *reallocf (void *ptr, size t size);

159



Chapter 7 Memory

These functions give you memory from the heap.

malloc()

malloc() allocates a chunk of memory with the address of the block aligned to the strictest boundary
required in the OS. That is, if an 8-byte double had the strictest alignment, malloc() would return
addresses that were evenly divisible by 8. Example 7.2 allocates blocks of different sizes and shows the
address of the returned memory.

Example 7.2 mallocalign.m
// mallocalign.m -- see how malloc aligns its pointers
// gcc -Wall -g -o mallocalign mallocalign.m

#import <stdio.h> // for printf()
#import <stdlib.h> // for malloc()

void allocprint (size t size) {

void *memory = malloc (size);

printf ("malloc(%ld) == %p\n", size, memory);

// Intentionally leaked so we get a new block of memory
} // allocprint

int main (void) {
allocprint
allocprint
allocprint
allocprint
allocprint
allocprint

);

);
izeof(double));
024 * 1024);

);

);

HEEONRE

(
(
(
(
(
(

return 0;
} // main

has a run of

$ ./mallocalign

malloc(l) == 0x100100080
malloc(2) == 0x100100090
malloc(8) == 0x1001000a0
malloc(1048576) == 0x100200000
malloc(l) == 0x1001000b0O
malloc(l) == 0x1001000c0O

These are all addresses evenly divisible by 16. Vector operations, such as Altivec or SSE, work best
when aligned on 16-byte boundaries. You can see that the very large malloc starts at an address far
away from the small allocations. The memory is being put on its own pages elsewhere in the address
space.

You should always use the C sizeof operator to determine how much memory to allocate for specific
data structures:

typedef struct Node {

int blah; // 4 bytes
int bork; // 4 bytes

160



malloc()

} Node;

Node *mynode = malloc (sizeof(Node)); // 8 bytes

and for arrays

Node nodules[] = malloc (sizeof(Node) * 100); // 800 bytes

malloc() is entitled to give you a block of memory that is larger than what you ask for, but you are
only guaranteed to get as much memory as you ask for.

Example 7.3 mallocsize.m
// mallocsize.m -- see what kind of block sizes malloc is actually giving us
// gcc -g -Wall -o mallocsize mallocsize.m

#import <malloc/malloc.h> // for malloc size()
#import <stdio.h> // for printf()
#import <stdlib.h> // for malloc()

void allocprint (size t size) {
void *memory = malloc (size);
printf ("malloc(%ld) has a block size of %ld\n",
size, malloc_size(memory));
// Intentionally leaked so we get a new block of memory

} // allocprint

int main (void)
allocprint
allocprint
allocprint
allocprint
allocprint
allocprint
allocprint
allocprint
return 0;

} // main

Yields:

$ ./mallocsize

malloc(1l) has a block size of 16
malloc(8) has a block size of 16
malloc(14) has a block size of 16
malloc(16) has a block size of 16
malloc(32) has a block size of 32
malloc(48) has a block size of 48
malloc(64) has a block size of 64
malloc(100) has a block size of 112

You can see that the actual block size is often larger than what was asked for. Memory allocation
algorithms are an interesting area of computer science, and most any operating systems textbook
will describe a number of different algorithms for managing dynamic memory. Apple has revved its
memory allocation algorithms several times in the past.

161



Chapter 7 Memory

Usually, your malloc arena has a bunch of buckets that each contain uniform-sized blocks of memory.
The system chooses the smallest block size that will contain the requested amount of memory. Rather
than have a whole bunch of 9-byte blocks and a whole bunch of 10-byte blocks and a whole bunch of
11-byte blocks (and so on), it will have larger increments. In the above case, it has 16 bytes, 32 bytes,
48 bytes, and 64 bytes. Powers of two or sums of powers of two.

Even though malloc_size() reports sizes (possibly) larger that what was initially allocated, you
should not use it to see “how much memory is allocated to this pointer.” For example, if a function is
passed a pointer that had been allocated using malloc(8), but you use malloc_size() on the pointer
and find its block size to be 16, don’t subsequently treat the pointer like it had come from malloc(16).
Doing that could cause problems. malloc_size() also won’t work for pointers to stack memory. You
will still need to pass around sizes of buffers.

In general, you cannot make any assumptions about memory placement with multiple calls to
malloc().

E.g., you cannot depend on this:

X
y

malloc (10);
malloc (10);

to look like Figure 7.3 in memory

Figure 7.3 Incorrect memory layout

X Y

01 23 456 789 012 3 456 7 89

Depending on this malloc(), it most likely looks like: Figure 7.4

Figure 7.4 How blocks are actually laid out

X Y

(random junk)
01 2 3 456 7 89 01 2 3 456 7 89

There is no guarantee that blocks allocated one after the other are anywhere near each other in memory.

Dynamic memory allocation gives no guarantee of locality of reference. (Locality of reference means
what is used together is placed near each other in memory, leading to fewer cache misses and less
paging activity.) You could allocate two chunks of memory one after the other:

X
y

malloc (10);
malloc (10);

162



free()

and it is perfectly legal for malloc() to give you a pointer to x from one end of your address space
and a pointer to y from way on the other side. If you need locality of reference, you may be better off
allocating one large chunk of memory and then doing suballocations yourself out of that buffer.

Finally, malloc() on Mac OS X is always thread safe. Some older Unix variants have a thread-safe
malloc() if you link with special thread libraries.

free()

free() tells the system that you are done with a block of memory and that it can be reused by a
subsequent call to malloc(). In earlier examples, especially mallocalign.m, the allocated memory
was purposely never freed because the same block would keep getting returned, and it is hard to draw
conclusions about memory alignment if you get the same starting address for a block of memory each
time.

Not freeing allocated memory is termed a “memory leak,” since the memory just kind of pours away
and is not available for use any more. There is a discussion about memory leaks and memory leak
detection tools later on.

Lastly, make sure you only feed free() addresses you get from malloc() or NULL. You will get
unpredictable results (crash) if you give free() addresses of stack buffers or other memory not
allocated by malloc (). Some functions call malloc() on your behalf, such as strdup(), and are
documented that you need to free() their return values.

realloc()

realloc() resizes a chunk of memory that has been previously allocated. Essentially, realloc() does
something like:

void *cheesyRealloc (void *ptr, size t size) {
void *newMem = malloc (size);
memcpy (newMem, ptr, size);
free (ptr);
return newMem;
} // cheesyRealloc

realloc()’d blocks can therefore move in the heap, so if you have multiple pointers to the same
starting address you may need to update them all after reallocating the block. You could have the
pointer live in one place and wrap an API around it, or you could use two memory objects: a smaller
one that will not move, like a tree node, and a larger one that the smaller one points to, like the user-
editable label for the tree node. The larger object can be reallocated, but only the tree node needs to
update the address change.

As you would expect, realloc() has optimizations so that it does not have to do the allocate/copy/
free procedure every time a block is reallocated. As noted above, sometimes the block returned from
malloc() is actually larger than what you asked for. realloc() can just say, “OK, you can now use the
rest of the block.” There are also games realloc() can play. There maybe be a free block in another
bucket that is contiguous with the block of memory you want to reallocate. In this case, realloc()
gloms that second block onto the first and lets you use the space without changing addresses on you.

But in any case, be sure to assign the return value of realloc() back to your pointer. Otherwise, you
can have a lurking problem:

163



Chapter 7 Memory

Node *blah = malloc (sizeof(Node) * 20);

realloc (blah, sizeof(Node) * 40); // this is bad!

Sometimes it will work, sometimes not. Always assign the return value of realloc.
blah = realloc (blah, sizeof(Node) * 40);

Even then, this code could cause problems. If there is not enough room for the new block, realloc()
will return NULL, but otherwise it will leave the original memory block untouched. If you do not
otherwise hang on to the original pointer, you would leak the block. The reallocf() function will free
the memory block if it cannot successfully complete the reallocation.

calloc()

malloc() does not initialize the memory it returns to you, so you’ll probably have a bunch of stale junk
in the memory you get. A pretty common idiom is to allocate a chunk of memory and zero it out so
that it is safer to use:

void *memory = malloc (sizeof(Node) * 50);
memset (memory, 0, sizeof(Node) * 50);

You can also use calloc() to do this in one operation:
void *calloc(size t nelem, size t elsize);

The arguments to calloc() assume that you are allocating an array. It’s just doing a multiplication
behind the scenes. So,

memory = calloc (sizeof(Node), 50);

gives identical results to the two-step sequence above. It is better to use calloc() because the OS
can do some optimizations behind the scenes, like allowing the kernel to reserve the memory, but
not actually allocate it. It can then give you zero-filled pages when it is actually accessed. When you
memset () a block of memory, you are writing to every page, causing them all to be marked as dirty.

alloca()
void *alloca(size t size);

alloca() (for alloc automatic) allocates memory for you on the call stack. This means that allocation
is very fast, being just some pointer adjustments. You also do not need to perform an explicit free()
on your memory to release it. When the function ends, the stack frame just goes away and with it the
chunk of the frame that contains the allocated memory. As with stuff that appears too good to be true,
there is always a catch. Don’t go nuts and overflow your stack with lots of local storage, especially

if you use recursion or if your code could be run in a threaded environment where stack sizes are
much more limited. Also, using alloca() with runtime-calculated allocation sizes can confuse some
performance tools.

Even though the manpage for alloca() says, “This is machine dependent, its use is discouraged,” it
is still a documented API you can use, and it can be useful at times. Also, C99 lets you declare local-
variable arrays with a variable size, just like in C++, which works in a way very similar to alloca().

164



Memory Ownership Issues

Memory Ownership Issues

One of the difficulties involved when using dynamic memory is determining who is responsible
for freeing a piece of allocated memory when nobody else is using it. This is known as memory
ownership. There are many different solutions to this problem, each with their own tradeoffs and
benefits, as witnessed by Java and Cocoa garbage collection, C++ RAII (resource acquisition is
initialization), and Cocoa’s reference counting.

There are no uniform rules for memory ownership for Unix and C library calls, so you pretty much
need to check the manpage for the calls in question (which is usually a good idea anyway). For
instance:

e getenv() returns a char *, but you do not need to free it since the environment variables are all
stored in a global array and getenv () just returns a string contained in that array.

e strdup() returns a char *, which you do need to free since it allocates memory on your behalf.

* Some calls take buffers, which you can malloc or create on the stack and you are responsible for
freeing the memory when you are done. A subset of these calls can be given NULL for the buffer
argument, and they will allocate memory on your behalf. getcwd () behaves like this.

* Some other calls will give you a reference to memory that they own (usually some kind of global
buffer), such as ctime() for converting a Unix time into a character constant.

* Finally, there are some APIs that wrap dynamic memory allocation in an API and depend on you to
use that API to create and destroy objects, such as opendir() and closedir() for iterating through
the contents of directories.

Nodepools

And, of course, you can use any of these techniques for modules and APIs that you create, choosing
the one that is most appropriate. It is perfectly fine for you to do your own memory allocation out of

a big block, if that gives you better behavior. Example 7.4 shows a common suballocation technique
using a memory pool. A memory pool is an allocator for vending identically-sized objects, very handy
for things like tree or list nodes.

Example 7.4 nodepool.m

// nodepool.m -- A simple memory pool for vending like-size pieces of
// memory. An example of custom memory management.

// gcc -Wall -std=c99 -g -0s -framework Foundation -o nodepool nodepool.m
#import <Foundation/Foundation.h>

#import <stdio.h>
#import <stdlib.h>

// The free list that runs through all the blocks

typedef struct BWPoolElement {
struct BWPoolElement *next;

165



Chapter 7 Memory

} BWPoolElement;

@interface BWNodePool : NSObject {
unsigned char *memblock; // A big blob of bytes.
BWPoolElement *freelist; // Pointer to the head of the freelist.
size t nodeSize;
size t count;

}

- (id) initWithNodeSize: (size t) nodeSize count: (size t) count;
- (void *) allocNode;
- (void) freeNode: (void *) nodePtr;

@end // BWNodePool

@implementation BWNodePool

- (void) weaveFreeListFrom: (unsigned char *) startAddress
forCount: (size t) theCount {
unsigned char *scan = startAddress;
for (int i = 0; i < theCount; i++) {
if (freelist == NULL) {
freelist = (BWPoolElement *) scan;
freelist->next = NULL;
} else {
BWPoolElement *temp = (BWPoolElement*) scan;
temp->next = freelist;
freelist = temp;
}
scan += nodeSize;

}

} // weaveFreelListFrom

- (id) initWithNodeSize: (size t) theNodeSize count: (size t) theCount {
if ((self = [super init])) {
nodeSize = theNodeSize;
count = theCount;

// Make sure there's enough space to store the pointers for the freelist.

if (nodeSize < sizeof(BWPoolElement)) {
nodeSize = sizeof(BWPoolElement);
h

// Allocate memory for the block.
memblock = malloc (nodeSize * count);

// Walk through the block building the freelist.
[self weaveFreelListFrom: memblock forCount: theCount];

}
return self;

} // initWithNodeSize

- (void) dealloc {
free (memblock);
[super dealloc];

166



Nodepools

} // dealloc

- (void *) allocNode {

if (freelist == NULL) {
// We're out of space, so just throw our hands up and
// surrender for now. You can grow the pool by keeping an
// array of memblocks and creating a new one when the previous
// block fills up.
fprintf (stderr, "out of space in node pool. Giving up\n");
abort ();

}

// take a new node off of the freelist
void *newNode = freelist;
freelist = freelist->next;
return newNode;
} // allocNode
- (void) freeNode: (void *) nodePtr {
// Stick the freed node at the head of the freelist.
((BWPoolElement *)nodePtr)->next = freelist;
freelist = nodePtr;
} // freeNode

@end // BWNodePool

// The node we're using the nodepool for.
#define NODE BUF SIZE 137

typedef struct ListNode {

int someData;
struct ListNode *next;
} ListNode;

void haveFunWithPool (int nodeCount) {
NSLog (@"Creating nodes with the node pool");

BWNodePool *nodePool =
[ [BWNodePool alloc] initWithNodeSize: sizeof(ListNode)
count: nodeCount];
ListNode *node = NULL, *prev = NULL;

for (int i = 0; i < nodeCount; i++) {
node = [nodePool allocNode];
node->someData = i;
// If you wish, you can do some extra work.

// Construct a linked list through the nodes
node->next = prev;
prev = node;

}
NSLog (@"Cleaning up");

167



Chapter 7 Memory

// Destroy all the nodes at once. If each node has memory management
// obligations, you would need to walk the list of nodes.
[nodePool release];

NSLog (@"Done");

} // haveFunWithPool

void haveFunWithMalloc (int nodeCount) {
NSLog (@"Creating nodes with malloc");

ListNode *node = NULL, *prev = NULL;

for (int i = 0; i < nodeCount; i++) {
node = malloc (sizeof(ListNode));
node->someData = i;
// If you wish, you can do some extra work.

// Construct a linked list through the nodes
node->next = prev;
prev = node;

}

ListNode *head = node;

NSLog (@"Cleaning up");

while (head != NULL) {
ListNode *node = head;
head = head->next;
free (node);

}
NSLog (@"Done");

} // haveFunWithMalloc

int main (int argc, char *argv[]) {
int count;

if (argc !'= 3) {
fprintf (stderr, "usage: %s -p|-m #\n", argv[0]);

fprintf (stderr, " exercise memory allocation\n");
fprintf (stderr, " -p to use a memory pool\n");

fprintf (stderr, " -m to use malloc\n");

fprintf (stderr, " # number of nodes to play with\n");
return 1;

}

count = atoi (argv[2]);

if (strcmp(argv[1], "-p") == 0) {
haveFunWithPool (count);

} else {
haveFunWithMalloc (count);

}

return 0;

} // main

168



Debugging Memory Problems

Once the pool is created, allocations and frees are constant time, being just a couple of pointer
operations. malloc() usually takes longer due to the complexity of its internal data structures. If your
pool nodes don’t reference other objects, you can delete everything from the pool in one operation.
Here are some timings (in seconds) of runs of the program on a 2010 model MacBook Pro. Timings
come from the time command:

Count Pool malloc()
20,000,000 0.62 2.86
100,000,000 3.12 14.19

This shows there can be, under some circumstances, benefit to doing your own allocation. Generally, it
is better to test first to find out what your bottlenecks are before implementing your own allocator, but
it’s nice to have the option when you need it.

You can override the new operator in C++ to use a pool for allocations. In one C++ project I worked on,
I had a class that supported chained array subscripts for digging into a compacted data structure, with
code performing access like flavor['page']1['sect']['styl']1[5]. This was very convenient coding-
wise, but it caused a lot of temporary objects to be created and destroyed. A pool was put under this
class’ operator new, and performance improved by an order of magnitude.

One thing to note in the nodepool.m code is that it doesn’t handle the pool growing case. You cannot
just realloc() the memory block because it could move in memory, leaving the freelist pointers
dangling, as well as any pointers the objects being allocated might have, such as the linked list
pointers. This can be fixed by having an array of memory pointers; when you run out of memory,
create a new block, add it to the array, and weave the freelist through the new block.

Operations on the nodepool are not thread-safe. There are exercises to make it thread safe in
Chapter 20: Multithreading and Chapter 22: Grand Central Dispatch.

Debugging Memory Problems

Errors in memory management cause a huge number of problems when programming in C and can
lead to difficult-to-track-down bugs since the manifestation of a problem can happen long after the
actual program error happened.

Common API issues

When malloc() cannot allocate memory, it returns NULL. Many programmers tend to ignore NULL
results from malloc (). The conventional wisdom was that if memory really is exhausted, then the
system is in some pretty serious trouble and is swapping heavily. In that case, it is just easier to crash
and restart. Plus, it can be tedious to check the return value of malloc() all the time. In these days
of systems with many gigabytes of RAM, it’s possible for an app to fill up its address space before
physical memory is exhausted, so the system will not be swapping.

i0S will let you know when you are running short on memory by giving you low-memory warnings,
such as calling the UIApplication delegate method -applicationDidReceiveMemoryWarning: as well
as UIViewController’s -viewDidUnload.

The typical Cocoa idiom of allocation and initialization

169



Chapter 7 Memory

NSArray *array = [[NSArray alloc] init];
[array addObject: myObject];

glosses over allocation problems. alloc may return a nil object, and since Objective-C messages to
nil are legal, in the face of an allocation problem, this code will propagate this nil object without
complaint.

If you are paranoid, and/or want to be robust in low memory conditions for your own allocations,
you can put a wrapper around malloc() (say a safeMalloc() or use preprocessor tricks to rename
malloc() itself) that on a NULL return from malloc() will attempt to free memory and try the
allocation again, and perhaps call abort () when things are in complete dire straits.

You can get garbage collectors for C and C++ to do automatic cleanup of memory, and Objective-C 2.0
has introduced garbage collection for Cocoa.

Another common API issue is not assigning the return value of realloc(). Your program can work
fine until the block of memory moves. Then you are pointing to old memory. If that old memory does
not get reused right away, things will seem to work fine until the most inconvenient moment, when
things will fall apart.

Only free allocated memory once: do not try to free the same pointer twice. That will usually lead to a
crash as the malloc() data structures get confused. Also do not try to free memory you got from some
other API, unless it explicitly says you can call free() on it. For instance, opendir () allocates a chunk
of memory and returns it to you, but do not free() that memory, use closedir().

Lastly, do not access memory you have just freed. The old (stale) data may still be there, but that is
something you do not want to depend on, especially in a threaded environment.

Memory corruption

Memory corruption happens when a piece of code writes data into an unexpected location in memory.
At best, you will try writing into memory you do not have access to and will crash. At worst, you will
slightly corrupt some data structure, which will manifest itself in an error millions of instructions in
the future or even on another run of your program. The most common kinds of memory errors in C are
buffer overruns and dangling pointers.

Buffer overruns are when you think you have a certain amount of memory at your disposal, but you
actually have less than that amount allocated. A classic example is forgetting to account for the trailing
zero byte for C string termination.

For instance:

char *stringCopy = malloc (strlen(mystring));
strepy (stringCopy, mystring);

You have just written one byte past the end of your allocated block of memory. To correct this, you
need to account for that extra byte:

char *stringCopy = malloc (strlen(string) + 1);
strcpy (stringCopy, string);

Ideally, you should use a variant of the call that takes the buffer length:

char *stringCopy = malloc (strlen(string) + 1);

170



Memory corruption

strncpy (stringCopy, string, strlen(string) + 1);
Even in the case where you have an insufficient buffer size, it will not write randomly off the end.

Off-by-one errors, also called “obiwans” or “fence-post errors,” can also cause a buffer overrun. For
example:

void doStuff () {
ListNode nodes[20];
char stringBuffer([1024];

int i;
for (i = 0; i <= 20; i++) {
nodes[i].stuff = i;

}
} // doStuff

The loop runs from 0 through 20, which will execute the body of the loop 21 times. The last time
through, the loop is indexing past the end of the nodes array and (most likely) has just trashed the
beginning of the stringBuffer array.

Another nasty side effect of buffer overruns is that malicious data could clobber the stack in such a
way that program control will jump to an unexpected place when the function returns. Many cracker
exploits work like this.

Dangling pointers are memory addresses stored in pointer variables that no longer have any correlation
with the memory they should be pointing to. Uninitialized pointers can cause this, as can forgetting to
assign the return value of realloc(). You can get dangling pointers if you do not propagate the address
of something when it moves or is changed. For example:

char *g username;

const char *getUserName () {
return g username;
}

void setUserName (const char *newName) {
free (g _username);
g username = strdup (newName); // performs a malloc

}
Now consider this scenario:

name = getUserName(); // say it is address 0x1000, "markd"
setUserName ("bork"); // the memory at address 0x1000 has been freed
printf (name); // using a dangling pointer now

This is fundamentally an error in memory ownership. Does someone own the memory after calling
getUserName()? It could be part of getUserName()’s contract that changing the username invalidates
previously vended pointers. But still, this is a programming error that will most likely lead to a crash.

The OS X malloc() libraries have built-in tools to help track down some of these conditions. You
can control these tools by setting environment variables and then running your program. If you
are debugging a GUI app, you can run it from the command line by doing open /path/to/your/
AppBundle.app. Xcode 4 will let you control these tools from the GUIL

$ export MallocHelp=1

171



Chapter 7 Memory

will display help when your run your program. This is bash syntax. (C Shell users would use setenv
MallocHelp 1). When you are done using MallocHelp, you can remove the environment variable by
using the unset command. C Shell users would use unsetenv.

MallocGuardEdges

This puts a 4KB page with no permissions before and after large blocks. This will catch buffer
overruns before and after the allocated block. The size of a “large block™ is undefined, but
experimentally, 12K and larger seem to be considered large blocks.

MallocStackLogging and MallocStackLoggingNoCompact

These turn on stack frame recording for memory management calls for later use by tools like
malloc_history.The difference is that MallocStackLoggingNoCompact remembers the malloc history
even after the block has been released.

MallocScribble

This writes over-freed blocks with a known value, (0x55), which will catch attempts to reuse memory
blocks. This is a bad pointer value, an odd address, which will cause addressing errors if it gets
dereferenced.

Example 7.5 shows MallocScribble in action.

Example 7.5 mallocscribble.m

// mallocscribble.m -- exercise MallocScribble

// Run this, then run after setting the MallocScribble environment
// variable to 1.

// gcc -o mallocscribble mallocscribble.m

#import <stdio.h> // for printf()
#import <stdlib.h> // for malloc()
#import <string.h> // for strcpy()

typedef struct Thingie {
char blah[16];
char string[30];

} Thingie;

int main (void) {
Thingie *thing = malloc (20);
strcpy (thing->string, "hello there");
printf ("before free: %s\n", thing->string);
free (thing);
printf ("after free: %s\n", thing->string);
return 0;

} // main

Without anything set in the environment:

172



Memory leaks

$ ./mallocscribble
before free: hello there
after free: hello there

And after:

$ export MallocScribble=1

$ ./mallocscribble

malloc[20701]: enabling scribbling to detect mods to free blocks
mallocscribble(5239) malloc: enabling scribbling to detect mods to free blocks
before free: hello there

after free: UUUUUUUUUUUUUUUUUUUUUUUUULUULULU

Guard Malloc

Xcode ships with libgmalloc (Guard Malloc), which is an aggressive debugging malloc library geared
to catch memory overrun errors.

Each memory allocation is placed on its own virtual memory page when libgmalloc is enabled, with
the end of the buffer placed at the end of the page’s memory. The next page is kept unallocated. You
will generate a signal if you try to access beyond the end of the buffer. This will immediately catch
run-off-the-end errors.

When memory is freed, libgmalloc deallocates its virtual memory, causing subsequent reads or writes
to cause a bus error. Because of the extra pressure put on the virtual memory system, your application
can run ten to one hundred times slower, so you probably don’t want to run this all of the time. But
when you need help tracking down nasty memory corruption problems, this can be a life-saver.

To enable libgmalloc, set the environment variable DYLD INSERT LIBRARIES to have the value /usr/
lib/libgmalloc.dylib. This will cause the libgmalloc library to be loaded and override the existing
definitions of malloc() and free(). You can either set this in your environment before running the
program:

$ export DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib

or set it in gdb before running your program:

(gdb) set env DYLD_INSERT_LIBRARIES /usr/lib/libgmalloc.dylib

1ldb has a similar syntax:

(lldb) set env-vars DYLD_INSERT_LIBRARIES=/usr/lib/libgmalloc.dylib

The debugger will halt execution of your program when your program reads or writes off of the end of
a dynamically allocated chunk of memory. You can then poke around and see what went wrong.

Memory leaks

Another common memory-related error is memory leaks. These are bits of memory that get allocated
and never deallocated. Memory leaks frequently happen when you assign a pointer to a new value but
do not free the old value:

char *somestring;
somestring = strdup ("hello"); // performs a malloc() and a string copy.
somestring strdup ("there");

173



Chapter 7 Memory

The first string, “hello,” has been leaked. This memory can never be freed because the address was not
preserved. On desktop systems, a little memory leaked here or there, aside from being a bit sloppy,

is not all that bad when you have gobs of RAM coupled with unused memory getting paged back to
disk. What are the real killers are leaks that happen often, like inside of a loop, or every time the user
does a common operation. Leaking 100 bytes is not too bad. Leaking 100 bytes every time the user
presses a key in a word processor can be deadly. Applications in Mac OS X tend to run for long periods
of time, so the user may forget about an app, then click on it in the Dock to do something with it. A
small memory leak can really add up when your program can be running for weeks between restarts.
i0S devices have very constrained memory compared to desktop computers. Any memory leaks can
quickly exhaust the available memory and will cause the operating system to kill your application
outright.

One easy way to tell if your program is leaking is to run top or Activity Monitor, find your application in
the list, and watch the VSIZE column. You probably have a memory leak if that number is continually
increasing

OS X comes with the leaks command that will grovel around in your program’s address space and
find unreferenced memory. leaks is a good quick check to see if you have any leaks. It walks your
program’s address space like a garbage collector, looking for pointers into malloc () blocks. If it can’t
find one, leaks will report a leak, along with a dump of some of the bytes near the start of the block. If
the leaked chunk of memory is an instance of an Objective-C object, leaks will show the name of the
class:

$ leaks BorkGraph

Process 21669: 26306 nodes malloced for 2042 KB
Process 21669: 154 leaks for 5120 total leaked bytes.
Leak: 0x011f3c50 size=40

0x77eb239b 0x00000020 0x011f3cald 0x00000001 W.#. ... X
0x00000065 0x00000065 OxO000OOE65 OxOEEE0000 ...e...e...e....
0x011b8ded 0x011b8e30 Ox00000000 O0xOOOEE000  ....... 0........
Leak: 0x011f3ca®d size=48 string 'xrvt'
Leak: 0x02634eb0 size=32 instance of 'NSAffineTransform'
0xa287e7ac 0x40cch65b 0x80000000 0x80000000 el @[
0x40ccb65b 0xc226542a 0Oxc2f88fc7 0x00000000 @..[.XT*........

Memory leaks in Cocoa

In addition to malloc()-related memory leaks, you can also leak memory in Cocoa programs by not
being careful with your retain and release calls. Example 7.6 intentionally leaks some objects.

For instance:

Example 7.6 objectleak.m

// objectleak.m -- Leak some Cocoa objects

//gcc -Wall -std=c99 -g -framework Foundation -o objectleak objectleak.m
#import <Foundation/Foundation.h>

int main (void) {
NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

NSMutableArray *array = [[NSMutableArray alloc] init];
for (int i = 0; 1 < 20; i++) {

174



Other Tools

NSNumber *number = [[NSNumber alloc] initWithInt: il; // retain count of 1
[number retain];
[array addObject: number]; // number has retain count of 2

}

[array release]; // Each of the numbers have retain counts of 1.
// Therefore we've leaked each of the numbers

[pool drain];

sleep (5000);

// Now would be a good time to run leaks.
exit 0;

} // main

Each of the NSNumber objects still has a retain count of one after the array is released, so they have
been leaked. The leaks tool can show you these leaks:
$ leaks objectleak
Process 5409: 924 nodes malloced for 208 KB
Process 5409: 6 leaks for 192 total leaked bytes.
Leak: 0x10010d770 size=32 zone: DefaultMallocZone 0x100004000
instance of 'NSCFNumber', type 0bjC, implemented in Foundation

0x70bbe6e8 0x00007fff Ox00001683 0x00000002 P
0x0000000e OxO00000000 OxOO000000 OxO60000000  ................

Other Tools

ps

The ps command, short for “process status,” has some features for keeping tabs on your program’s
memory use. Here is one use of ps:

$ ps auxw | grep something-interesting

where something-interesting is the PID or program name of interest. So, something like
$ ps auxw | grep Finder

will show some information about the Finder process:

markd 229 0.0 1.9 2912584 33136 ?? S  0:43.11 /System/ \
Library/CoreServices/Finder.app/Contents/Mac0S/Finder -psn 0 2621

In order, the columns are:

1. Owner of the process (markd).
2. Process ID (229).

3. CPU currently taken (0.0%).

4. Real memory in use (1.9%).

175



Chapter 7 Memory

5. Virtual size, the total footprint of the program. The virtual size for 64-bit processes is very large due
to the large volume of zero pages.

6. Resident set size, how much is living in RAM right now. This is 33136K, or about 33 megs.
7. Controlling terminal (not important).

8. Process state (more about this in Chapter 18: Multiprocessing).

9. Total CPU time consumed by the process (43 seconds).

10. Command with arguments that started the process.

Relating to memory, the fifth and sixth columns are the most interesting. You can look at just those
with the command

ps -ax -o user,pid,vsz,rss,command
which will show the owner, the PID, the virtual size,the resident size, and the command:

$ ps -ax -o user,pid,vsz,rss,command

USER PID VSZ RSS COMMAND

root 1 2456676 588 /sbin/launchd

root 10 2459596 1688 /usr/libexec/kextd

root 11 2452680 3760 /usr/sbin/DirectoryService
root 12 2444544 352 /usr/sbin/notifyd

root 13 2446808 808 /usr/sbin/diskarbitrationd
root 14 2474544 2440 /usr/libexec/configd

root 15 2457096 420 /usr/sbin/syslogd

ps can show a wealth of information about what is running on your system. You can run this repeatedly
to see if your program (or any other) seems to be growing without bounds. Check out the manpage for
more.

Resource limits

Because Unix is a multi-user system, there are safeguards in the OS to keep processes from
dominating, and possibly bringing down, the system by consuming too many resources. There are a
number of different resources that are controlled:

RLIMIT DATA Maximum size (bytes) of the data segment for a process, that is, the maximum
size of the heap plus initialized + uninitialized data segments.

RLIMIT RSS Maximum size (bytes) to which a process’ resident set may grow. That is,
maximum amount of physical RAM to be given.

RLIMIT STACK Maximum size (bytes) of the stack segment. How deep your program stack
can get. This does not apply to the stacks that threads use.

RLIMIT MEMLOCK Maximum size (bytes) which a process can lock (wire) into memory with the
mlock() function.

There are also resources not related to memory:

176



Resource limits

RLIMIT FSIZE Maximum size (bytes) of a file that may be created.

RLIMIT NOFILE Maximum number of simultaneously open files.

RLIMIT NPROC Maximum number of simultaneous processes for the current user.
RLIMIT CPU Maximum amount of CPU time (in seconds).

RLIMIT CORE Largest size (in bytes) of core files.

Resource limits are expressed as a soft limit and a hard limit. When the soft limit is exceeded, the
program may receive a signal, which is like a software interrupt. (Signals are discussed in depth in
Chapter 5: Exceptions, Error Handling, and Signals.) The soft limits are usually lower than hard limits,
but you can raise them to the hard limit. You can lower the hard limit, but you can never raise the hard
limit unless you are running with superuser privileges.

Example 7.7 shows you the hard and soft limits currently in force:

Example 7.7 limits.m
// limits.m -- See the current resource limits.
// gcc -g -Wall -o limits limits.m

#import <sys/resource.h> // for the RLMIT * constants

#import <errno.h> // for errno
#import <stdio.h> // for printf() and friends
#import <string.h> // for strerror()

typedef struct Limit {
int resource;
const char *name;

} Limit;
Limit limits[] = {
{ RLIMIT DATA, "data segment maximum (bytes)" },
{ RLIMIT RSS, "resident size maximum (bytes)" },
{ RLIMIT STACK, "stack size maximum (bytes)" },
{ RLIMIT MEMLOCK, "wired memory maximum (bytes)" },
{ RLIMIT FSIZE, "file size maximum (bytes)" },
{ RLIMIT NOFILE, "max number of simultaneously open files" },
{ RLIMIT NPROC, "max number of simultaneous processes" },
{ RLIMIT CPU, "cpu time maximum (seconds)" },
{ RLIMIT CORE, "core file maximum (bytes)" }

};

// Turn the rlim t value in to a string, also translating the magic
// "infinity" value to something human readable
void stringValue (rlim t value, char *buffer, size t buffersize) {
if (value == RLIM INFINITY) strcpy (buffer, "infinite");
else snprintf (buffer, buffersize, "%l1d", value);
} // stringValue

// Right-justify the first entry in a field width of 45, then display

// two more strings.
#define FORMAT STRING "%45s: %-10s (%s)\n"

177



Chapter 7 Memory

int main (void)
Limit *scan
Limit *stop

limits;

nn e

scan + (sizeof(limits) / sizeof(*limits));

printf (FORMAT STRING, "limit name", "soft-limit", "hard-limit");

while (scan < stop) {
struct rlimit rl;

if (getrlimit (scan->resource, &rl) == -1) {
fprintf (stderr, "error in getrlimit for %s: %d/%s\n",
scan->name, errno, strerror(errno));

} else {
char softLimit[20];
char hardLimit[20];

stringValue (rl.rlim cur, softLimit, 20);
stringValue (rl.rlim max, hardLimit, 20);

printf (FORMAT STRING, scan->name, softLimit, hardLimit);

}

SCan++;

}

return 0;
} // main

Here is the output on a OS X 10.6, MacBook Pro system:

limit name:

data segment maximum (bytes):

resident size maximum (bytes):

stack size maximum (bytes):

wired memory maximum (bytes):

file size maximum (bytes):

max number of simultaneously open files:
max number of simultaneous processes:
cpu time maximum (seconds):

core file maximum (bytes):

All things considered, the system is pretty kind to us.

soft-limit
infinite
infinite
8720000
infinite
infinite
256

266
infinite

0

hard-limit)
infinite)
infinite)
67104768)
infinite)
infinite)
infinite)
532)
infinite)
infinite)

(
(
(
(
(
(
(
(
(
(

You can read the current resource limits by using getrlimit() as shown in the code above, and you
can change the resource limits by using setrlimit() and passing it an appropriately filled in struct

rlimit.

Example 7.8 is a program that will attempt to open the same file over and over. It is easier to show
resource limits with files than trying to overflow the stack.

Example 7.8 openfiles.m

// openfiles.m -- Exhaust open-files resource limit.

// gcc -Wall -std=c99 -o openfiles openfiles.m

#import <errno.h> // for errno
#import <fcntl.h> // for O RDONLY
#import <stdio.h> // for fprintf()
#import <stdlib.h> // for exit, open

178



Resource limits

#import <string.h> // for strerror

int main (int argc, char *argv[]) {
if (argc > 2) {
fprintf (stderr, "usage: %s [open-file-rlimit]\n", argv[0]);

return 1;
}
if (argc == 2) {
struct rlimit rl = { .rlim _cur = atoi (argv[1]),
.rlim_max = RLIM INFINITY };
if (setrlimit(RLIMIT NOFILE, &rl) == -1) {
fprintf (stderr, "error in setrlimit for RLIM NOFILE: %d/%s\n",
errno, strerror(errno));
exit (1);
}
}
for (int i = 0; i < 260; i++) {
int fd = open ("/usr/include/stdio.h", O RDONLY);
printf ("%d: fd is %d\n", i, fd);
if (fd < 0) break;
}
return 0;
} // main

When run, this happens:

$ ./openfiles
0: fd is 3
1: fd is 4

251: fd is 254
252: fd is 255
253: fd is -1

Notice that fd starts becoming -1, the error code return value from open (), because it cannot open the
file. fd maxes out at 255, which correlates with the result of 1imits.m (Example 7.7), which said that
the maximum number of simultaneously open files was 256. There are already the 3 files opened for
us, stdin, stdout, stderror, which count as open files against the resource limit.

When run with an argument, the program changes the soft limit. Here are some sample runs:

./openfiles 10
fd is
fd is
fd is
is
fd is
fd is
fd is
fd is

NOURWNRO®H
—
o

T oooONO UL W

1

./openfiles 1000000
: fd is 3
: fd is 4

= oW

179



Chapter 7 Memory

2: fd is 5

257: fd is 260
258: fd is 261
259: fd is 262

Setting lower resource limits can be useful when you are spawning off other programs, discussed in
Chapter 18: Multiprocessing. If you do not trust the other programs, or want to constrain their limits,
you can fork, call setrlimit() on yourself in the child process, and then exec the child process, which
will run under the reduced limits.

Miscellaneous tools

The heap command lists all the malloc()-allocated buffers in the heap of a program. Give it the PID or
name of the program to examine.

heap is interesting when pointed at a Cocoa program because it shows Objective-C classes. Here is
stuff from objectleak.m (edited down):

Zone DefaultMallocZone 0x7000:

Zone DefaultMallocZone 0x100004000: Overall size: 9215KB;
925 nodes malloced for 208KB (2% of capacity);
largest unused: [0x100826800-8037KB]

Zone DefaultMallocZone 0x7000: 558 nodes -
32KB[4] 8KB[2] 4KB[2] ... 48[66] 32[258] 16[246]

Found 490 0bjC classes in process 5307
Found 40 CFTypes in process 5307

Zone DefaultMallocZone 0x7000: 558 nodes (92560 bytes)

COUNT BYTES AVG  CLASS NAME TYPE BINARY
803 156992 195.5 non-object
51 1936 38.0 NSCFString 0bjC Foundation
20 640 32.0  NSCFNumber 0bjC Foundation
10 640 64.0 NSCFDictionary O0bjC Foundation
8 512 64.0 CFBasicHash CFType CoreFoundation
5 560 112.0 NSRecursivelLock 0bjC Foundation

We can see that we have a number of strings and numbers allocated.

malloc_history will show you a history of memory activity. This requires that you set
MallocStackLogging to 1 in your environment before running.

Example 7.9 is a program that does some memory manipulations and then sleeps:

Example 7.9 mallochistory.m

// mallochistory.m -- Do some memory allocation to show off malloc history.
// Be sure to set the environment variable MallocStackLoggingNoCompact to 1.
// Then run this program, and while

// it sleeps at the end, run 'malloc_history pid -all by size' or

// 'malloc_history pid -all by count'

180



Miscellaneous tools

// gcc -g -std=c99 -Wall -o mallochistory mallochistory.m

#import <unistd.h> // for getpid(), sleep()
#import <stdlib.h> // for malloc()
#import <stdio.h> // for printf

void func2 () {
char *stuff;

for (int i = 0; i < 3; i++) {
stuff = malloc (50);
free (stuff);

}
stuff = malloc (50);
// so we can use the malloc history address feature
printf ("address of stuff is %p\n", stuff);
// intentionally leak stuff
} // func2

void funcl () {
int *numbers = malloc (sizeof(int) * 100);
func2 ();
// intentionally leak numbers

} // funcl

int main (void) {
printf ("my process id is %d\n", getpid());
funcl ();

sleep (600);
return 0;
} // main

When run, this program prints:
$ export MallocStackLoggingNoCompact=1
$ ./mallochistory
mallochistory(5889) malloc: recording malloc stacks to disk using standard recorder
mallochistory(5889) malloc: stack logging compaction turned off;
size of log files on disk can increase rapidly
address of stuff is 0x1001002e0
Then in another terminal, see who has manipulated the block:
$ malloc_history 5889 0x1001002e0

Call [2] [arg=50]: thread ab4cdfa® |0x1 | start | main | funcl
| func2 | malloc | malloc_zone malloc

You can also see what stuff is currently allocated and who did it. In this case, the stack entries are
ordered by size. Stuff that is purely overhead has been removed.

$ malloc history 5889 -all by size
Looks like printf() and friends use a 4K buffer to do their work:

1 calls for 4096 bytes: thread ab4cdfa@ |0x1 | start | main | printf
| vfprintf U |  vfprintf |  swsetup | _ smakebuf | malloc

181



Chapter 7 Memory

| malloc zone malloc
Here is the numbers array:

1 calls for 400 bytes: thread a@4cdfa® | start | main | funcl
| malloc | malloc_zone malloc

And the final malloc() from func2().

1 calls for 50 bytes: thread ab4cdfa® | start | main | funcl
| func2 | malloc | malloc zone malloc

You can get info about a block from inside of gdb with the info malloc command:

$ export MallocStackLoggingNoCompact=1
$ gdb ./mallochistory

(gdb) run

address of stuff is 0x1001002e0

~C

(gdb) info malloc 0x1001002e0

Alloc: Block address: 0x00000001001002e0@ length: 50

Stack - pthread: 0x7fff70c8ec20 number of frames: 6
0: Ox7fff85695f2e in malloc zone malloc
1: 0x7fff85694208 in malloc
2: 0x100000dc3 in func2 at mallochistory.m:19
3: 0x100000ele in funcl at mallochistory.m:39
4: 0x100000e51 in main at mallochistory.m:46
5: 0x100000da0@ in start

Dealloc: Block address: 0x00000001001002e0

Stack - pthread: 0x7fff70c8ec20 number of frames: 5
0: Ox7fff8569863e in free
1: 0x100000dd0® in func2 at mallochistory.m:18
2: 0x100000ele in funcl at mallochistory.m:39
3: 0x100000e51 in main at mallochistory.m:46
4: 0x100000dad in start

This shows the stack traces, with file and lines when debug information is known, for each malloc
history occurrence.

Instruments also has extensive tools for monitoring and analyzing memory allocation.

vm_stat
vm_stat shows some Mach virtual memory statistics. Here it is for my system right now:

Mach Virtual Memory Statistics:
Mach Virtual Memory Statistics:

(page size of 4096 bytes)
(page size of 4096 bytes)

Pages free: 43272.
Pages active: 251918.
Pages inactive: 107189.
Pages speculative: 457165.
Pages wired down: 123854.
"Translation faults": 632401789.
Pages copy-on-write: 2381892.
Pages zero filled: 54419747.
Pages reactivated: 787236.
Pageins: 1472149.

182



Objective-C Garbage Collection

Pageouts: 800691.
Object cache: 87 hits of 648951 lookups (0% hit rate)

You could run vm_stat at different points in time to see if your system is swapping (lots of pageins and
pageouts). The manpage has information on each of the entries.

Objective-C Garbage Collection

Objective-C 2.0 adds garbage collection to the language as a replacement to the traditional retain /
release reference counting scheme. Garbage collection is automatic object memory management. The
garbage collector figures out what objects are being referred to by other objects, and the collector will
destroy the object if nobody has any interest in it. This is familiar behavior to programmers who have
used languages like Java or Python, where memory management “just happens.”

Objective-C garbage collection is opt-in. You can choose to use GC or continue to use reference
counting. iOS does not currently support GC, so you must use reference counting there. Apple
recommends using GC for new apps, but you can retrofit older applications to use it. Xcode is

an example of a large application that has been retrofitted to use GC. Adopting GC limits you to
OS X 10.5 or later since it was first introduced in Leopard. It can also be difficult to adopt if your
existing application uses a lot of non-Cocoa code, such as Carbon or C++ libraries.

Objective-C GC is designed for Objective-C code and Objective-C objects since that is where most of
the code for the platform is being written and optimized. Because Objective-C is a superset of C, we
still have pointers, and those can complicate some memory management scenarios.

Apple’s GC is a conservative, generational, and concurrent garbage collector. A conservative garbage
collector never copies or moves pointers. Once you allocate memory, it sticks to the address where it
first lands. This means you can allocate a buffer and then pass it to C functions and not worry about the
memory floating away unexpectedly.

A generational garbage collector assumes that new objects turn to garbage quickly. Objects tend to
stick around as they get older. A generational collector concentrates on new objects when looking

for garbage and only looks at older objects a fraction of the time rather than scanning every object on
every garbage collection cycle. Apple claims that 90% of objects are recovered with 10% of the effort
when using the generational model.

A concurrent garbage collector runs on its own thread. It can also be collecting objects while other
objects are being allocated. Apple’s collector doesn’t stop all the threads at once when collecting, and
it tries not to interrupt any thread for very long. Threads that don’t use any Objective-C code won’t be
stopped at all by the collector. There is a thread-local collector for each thread, which also improves
GC concurrency.

How to use it

Turning on GC is easy. Just turn on the Objective-C Garbage Collection setting in Xcode’s build
settings. Use the Required setting for new projects, which is equivalent to the gec command-line flag
-fobjc-gc-only. This means that all of your code will run in a GC environment, and all frameworks
and plug-ins must support garbage collection. The Supported setting is for frameworks that can run in
either GC mode or with reference counting. - fobjc-gc is the command-line flag to use for this case.

To verify that garbage collection is enabled, you can ask NSGarbageCollector:

183



Chapter 7 Memory

if ([NSGarbageCollector defaultCollector] != nil) {
NSLog (@"GC active");

} else {
NSLog (@"GC not active");

Assignment of pointers becomes memory management once GC is enabled. Example 7.10 contains a
class that has a string instance variable. An instance of the class is created and assigned to a stack-local
variable. The collector is run, and nothing happens. There is still a valid reference to the object. The
local variable is then set to a nil value, and the collector is run again. The collector realizes that there
are no more references to the object, calls the - finalize method, which prints out that the object is
dying, and then the memory is reclaimed.

Example 7.10 gc-sample.m

// gc-sample.m -- A simple GC app that shows it working.

// gcc -fobjc-gc-only -g -Wall -framework Foundation -o gc-sample gc-sample.m

#import <Foundation/Foundation.h>
#import <objc/objc-auto.h> // for GC runtime API

@interface Snorgle : NSObject {
int number;
}

- (id) initWithNumber: (int) num;
@end // Snorgle

@implementation Snorgle
- (id) initWithNumber: (int) num {
if ((self = [super init])) {

number = num;
}

return (self);
} // initWithNumber

- (void)finalize {
NSLog (@"finalized %d", number);
[super finalizel;

} // finalize

@end // Snorgle

int main (void) {
NSGarbageCollector *gc = [NSGarbageCollector defaultCollector];

if (gc != nil) NSLog (@"GC active");

objc startCollectorThread ();

Snorgle *snl = [[Snorgle alloc] initWithNumber: 1];
NSLog (@"collect with snorgle object still live.");
[gc collectExhaustivelyl];

sleep (2);

snl = nil;

184



How to use it

NSLog (@"collect after removing reference");
[gc collectExhaustively];

sleep (2);
return 0;
} // main

Most applications you will write won’t need to explicitly invoke the collector or start the collector
thread as is done here. NSApplication takes care of those details for you. There’s a little more work
required on the part of command-line tools that do not have a user interface.

Here is Example 7.10 when run:

$ ./gc-sample

2010-06-22 23:33:23.861 gc-sample[6023:903] GC active

2010-06-22 23:33:23.864 gc-sample[6023:903] collect with snorgle object still live.
2010-06-22 23:33:25.864 gc-sample[6023:903] collect after removing reference
2010-06-22 23:33:25.865 gc-sample[6023:903] finalized 1

The act of assigning an object to a pointer causes it to stay alive. Removing the reference to the object,
whether by assigning the pointer to nil or by pointing it to another object, causes the object to be
collected eventually.

Accessor methods become trivial to write in the GC world. Just assign the new value to your instance
variable and return the value:

- (void) setBlah: (Blah *) newBlah {
blah = newBlah;
} // setBlah

- (Blah *) blah {
return blah;
} // blah

There is no need to check that you are re-setting a previous value. There is also no need to use
@synchronized to get atomic assignments, as those are handled automatically by the GC machinery.

Retain cycles are a problem when using reference counting memory management. Object A retaining
B retaining C retaining A forms a cycle that will never get released. This is why delegate objects are
not retained and why child objects do not retain their parents. If you have cycles of objects in GC, with
A pointing to B, B pointing to C, and C pointing back to A, the collector will notice when there are no
external references to any of those objects and will collect the entire cycle.

Nib loading works differently between the GC and reference-counted worlds. When nib files are
loaded in a reference-counted application, top-level objects in the nib file leak by default. They do not
get released. These objects will get collected and will go away under GC. If you have a top-level nib
object that you do not want to disappear, then you need to store self someplace the collector knows
about, such as a global, to get it rooted. For AppController style classes created in MainMenu.nib files,
you can make it a delegate of the File’s Owner (NSApplication). This is sufficient to keep it from being
collected.

There are some Cocoa subsystems that require explicit disconnection before an object is
destroyed. GC can handle some of these, such as unregistering with an NSNotificationCenter.

185



Chapter 7 Memory

NSNotificationCenter uses weak references to registered objects. Weak references are described
below.

Other subsystems, such as timers and KVO, need to disassociate the object. You can do this in
-finalize, but see below about problems with -finalize. You can also construct your class interface
so that there is an explicit “termination of service,” or shutdown call, which can then unhook from
these subsystems.

How it works

Cocoa GC manages all Objective-C objects, can manage Core Foundation objects like CFString and
CFArray, and can also manage some forms of non-object memory.

The GC memory model is divided into four areas:
* global variables in the static data segment

* local variables on thread stacks

* the GC heap, where all collectable memory lives
* the malloc() zone

The first three play a role in the GC’s behavior, while the malloc() zone is never touched or looked at
by the collector.

The collector scans memory to figure out what is alive. It starts with some well-known root locations,
specifically globals and local variables, and then scans through memory looking for things. Things to
make it go.

* instance variables and globals of Objective-C object types

* instance variables and globals marked as __strong (There is more on strong and weak references
below.)

¢ some thread stacks, those that have an associated NSThread
* some heap blocks that have been explicitly allocated as collectable and that should be scanned

The collector scans all of these areas looking for things that look like pointers. It then builds a data
structure of connected and unconnected objects. Objects that have a connection up to a root are good.
Objects that do not have such a connection are considered garbage and put on a list. After the collector
does its scan, it walks the garbage list. It zeroes out weak references to garbage, sends -finalize to
every object in the garbage, and reclaims the memory.

The collector does not look at instance variables and globals of C pointer types nor heap blocks from
malloc() or vm_allocate(). This can cause problems if you put addresses of collectable objects into
malloc’d blocks. The collector will not see these references, so it might collect an object before it is
actually garbage.

In OS X 10.6, the GC heap is limited to 32 gigabytes of memory in 64-bit applications. If you need to
control more memory than that, perhaps you are loading a lot of graphics tiles or caching a lot of pages

186



Strong and weak references

from a database. You will want to put the data that does not contain pointers to other objects into the
malloc zone and reference the malloc’d memory from collected objects.

You can use NSGarbageCollector methods like -collectIfNeeded and -collectExhaustively

to hint to the collector that now would be a good time to do some cleanup. Any place where you
performed explicit autorelease pool manipulations would be a good place to tickle the collector. The
collector is automatically triggered at the bottom of the application’s event loop.

Strong and weak references

A pointer pointing to a chunk of collectable memory can be a strong or a weak reference. A strong
reference tells the collector not to collect the object since someone is using it. The collector finds
objects by following strong references. Once all strong reference to an object are removed, the object is
collected.

A weak reference tells the collector that you have an interest in the object being pointed to — but not
enough of an interest to force the object to stay around once all of its strong references are gone. The
pointer to that object is set to nil when a weak-referenced object is collected.

Object pointers are strong by default. You annotate non-object pointers with __strong:
int *  strong footCountRef;

If you got some collectable memory and then assigned it to footCountRef, the collector will make sure
the object is not collected. If the strong were missing from that declaration, the collector would not
consider this a reference to the memory. Unless this is a local variable, which is considered a strong
reference.

The compiler generates write barriers to catch assignments to variables with strong reference. A write
barrier is simply a function call, like objc_assign_ivar() or objc_assign_global(), which can

be found in the objc-auto.h header. The write barriers update the collector’s view of the world and
then update the variable’s value in memory. Stack-based variables do not cause write barriers to be
generated for the sake of efficiency. Instead, the collector scans the entire stack looking for pointers
rather than using write barriers.

Weak references are automatically zero-filled when the object it points to is deleted. When accessing
a weak reference, you either see the object or you get nil. This means you will not get dangling
references.

In addition to generating a write barrier when a weak reference variable is changed, the compiler
generates a read barrier. The read barrier catches the case when the pointed-to object has been collected
and then zeros out the reference for the case when the collector has not already gotten around to
zeroing out the reference by the time you access it.

Weak references are restricted to instance and global variables only. You cannot have a weak local
variable. There is nothing the compiler can do to tell the collector when it scans call stacks that a local
variable is weak. Weak references are more expensive than strong references because of this read
barrier. Strong references are normal memory reads, but weak reference reads go through the read
barrier function. Also, threads can block on the read barrier while weak references are being cleared.

The compiler only generates read and write barriers for Objective-C compiled code. .m and .mm files
get it for free, but not . c or . cpp files. You can use the barrier calls yourself if you need to.

187



Chapter 7 Memory

Finalize methods

The -dealloc method is never called when using GC. Instead, when an object meets its ultimate
demise, the collector calls the object’s -finalize method to let the object do any final cleanup.
Finalize methods are not nearly as convenient as they sound and should be avoided if at all possible.

After the collector makes its pass through objects to see what is garbage, it clears out the weak
references to the objects. Then the finalize methods are called in an arbitrary order. Messaging
objects in your finalizer might find you sending messages to an object that has already been finalized.
The finalizers also have to be thread safe. They can be called on the collector thread or in some other
thread. Also, your object might be messaged after it was finalized due to finalize methods being called
in an arbitrary order. You also cannot depend on when the finalize method will be called.

These restrictions make using finalizers inconvenient for doing non-memory-related cleanup, such
as closing files or terminating a network connection. Rather than combining resource management
and memory management together, Apple recommends adding a specific “all done” call to your API,
like a -closeFile or -terminateNetworkConnection. By doing this, you can get by without having
any finalize method at all. If you have memory buffers that need to be collected, consider using an
NSMutableData or NSAllocateCollectable(), which will get cleaned up automatically.

Unlike Java, you cannot resurrect an object in its finalize by assigning it somewhere to make the object
alive. You will get a runtime error if you try this.

Non Objective-C objects

In addition to Objective-C objects, the collector can deal with Core Foundation objects, as well as
arbitrary blocks of collectable memory. CF*Ref objects are collector-disabled GC objects and are not
considered GC types, so a Core Foundation pointer is not considered a __strong pointer. If you do
want to make a CF object collectable, you should CFRelease() it or call CFMakeCollectable().

The -retain, -release, and -autorelease methods are turned into no-ops when GC is active, being
short-circuited in the method dispatch machinery. Therefore, autoreleasing a CF object will not do
anything, and the object will leak.

As mentioned earlier, pointers to collectable memory should not be stored in a block of
memory received from malloc() because the collector will not scan those blocks to see if the
memory reference is still there. You can get a block of collectable memory, though, by calling
NSAllocateCollectable():
void * strong NSAllocateCollectable (NSUInteger size,

NSUInteger options);
void * strong NSReallocateCollectable (void *ptr, NSUInteger size,

NSUInteger options);

options can be zero or the bitwise OR of these flags:

* NSScannedOption : This tells the collector that it should scan the block looking for pointers to other
bits of collectable memory. By default, the collector does not scan blocks returned by these calls.

* NSCollectorDisabledOption : This tells the collector not to attempt to collect the block.

Do not use memmove () or memcpy () to move the contents of collected memory around. Instead use
objc_memmove_collectable():

188



External reference counts

void *objc_memmove_collectable (void *dst, const void *src,
size t size);

This makes sure that the collector will catch any strong reference changes.

External reference counts

Even though GC objects seem like they don’t have a reference count, they actually do, but it defaults to
zero. When this reference count is zero, the collector assumes that it is in control of the object and will
clean it up when it thinks there are no more strong references to it. When this reference count is non-
zero, the collector leaves it alone. You can use this to keep an object alive if you are storing it in a place
where the collector will not look.

You increase this reference count by calling CFRetain() or using NSGarbageCollector’s
-disableCollectorForPointer. Likewise, decrease the reference count by calling CFRelease() or
using NSGarbageCollector’s -enableCollectorForPointer. CFMakeCollectable() is equivalent to
CFRelease() but does not look nearly as weird in code as creating a CF object, immediately releasing
it, and then proceeding to use the object. If you use the external reference counts, you still need to
worry about retain cycles.

The "new" collection classes

Weak references are useful when you are caching data. When the cached data is removed for whatever
reason, the weak references to it are zeroed out. It would be nice if the Cocoa collection classes
(NSArray, NSSet, etc) supported automatic removal via weak references. Unfortunately, these
collections cannot contain nil values.

Luckily, there were a couple of function pointer based quasi-objects that have been in Cocoa since the
early NeXTStep days, NSMapTable and NSHashTable. In comparison to the rest of Cocoa, the API was
strongly C-flavored and not object-oriented at all. Apple has taken these classes, objectified them, and
made them useful in the GC world.

NSMapTable is like a dictionary with keys and values, but you can have keys and/or values that are held
weakly. Entries are removed when one of the associated objects is collected. NSHashTable is like a set,
with entries that can be removed when the object is collected. A new class, NSPointerArray, has been
introduced that behaves like an NSArray, but can hold nil values.

There are many, many ways to configure these collection classes, with over 30 for NSMapTable, to fine-
tune their behavior between objects, C pointers, and weak and strong references, whether through the
use of flags, or using an NSPointerFunctions object.

NSMapTable provides a set of conveniences for common scenarios:

mapTableWithStrongToStrong0Objects;
mapTableWithWeakToStrongObjects;
mapTableWithStrongToWeakObjects;
mapTableWithWeakToWeakObjects;

+ + + +
—~———
R
cocoa
el

GC and threads

Threads created via NSThread will have their stacks crawled by the collector looking for active
references. Threads created by the pthread API will not be collected unless you make an NSThread

189



Chapter 7 Memory

call in that thread or create an autorelease pool. That will register the thread with the collector.
Performance-critical threads, like audio or video playback, should not be collected. The collector can
temporarily interrupt a thread to do its work.

Be aware of race conditions if you pass GC memory from one thread to another. The memory might
get collected before the thread starts and can add its own reference. This is a good place to use the
external reference counts: increase the external reference count before starting the thread and then
decrement it inside of the new thread.

Debugging

The main problems that can come up with GC involve objects that are collected too soon, usually
because of a missing write barrier, or objects that are never collected and therefore leak. This is usually
because of an unexpected reference.

gdb has two GC-related commands: info gc-references and info gc-roots. Give these commands
an object pointer, and they will either tell you what references it or tell you the shortest path from a GC
root.

There are a couple of environment variables you can set to control GC behavior::

* 0BJC_PRINT GC : setto YES to see the GC status of the application and any loaded libraries.
* AUTO LOG COLLECTIONS : set to YES to see collections as they happen.

* 0BJC_USE_TLC : set to NO to turn off the thread-local collector. Some instruments do not play well
with the thread-local collector, so you’ll want to turn off TLC if Instruments is behaving oddly.

* 0BJC_DISABLE GENERATIONAL : setto YES to turn off the generational algorithm and force the

collector to do a full collection every time.

Exercises

1. Add pool growing to nodepool.m.

2. Profile nodepool with Shark or Instruments. What’s the major bottleneck for -allocNode? What
causes it? How would you fix it?

3. Find all the errors in Example 7.11, some of which are memory related. (I found nine.)

Example 7.11 memerror.m

// memerror.m -- try to find (and fix!) all the memory-related errors in
// this program

// Take a string from the command line. Make a linked-list out of it in
// reverse order. Traverse it to construct a string in reverse. Then clean
// up afterwards.

// gcc -w -g -0 memerror memerror.m

190



Exercises

#import <stdio.h>
#import <stdlib.h>
#import <string.h>

typedef struct CharNode {
char theChar;
struct CharNode *next;
} CharNode;

// Build a linked list backwards, then walk the list.
void reverselt (char *stringbuffer) {

CharNode *head, *node;

char *scan, *stop;

// Clear out local vars
head = node = NULL;

// Find the start and end of the string so we can walk it
scan stringbuffer;
stop = stringbuffer + strlen(stringbuffer) + 1; // trailing null

// Walk the string
while (scan < stop) {
if (head == NULL) {
head = malloc (sizeof(CharNode*));
head->theChar = *scan;
head->next = NULL;
} else {
node = malloc (sizeof(CharNode*));
node->theChar = *scan;
node->next = head;
head = node;
}
scan++;

}

// 0k, re-point to the buffer so we can drop the characters
scan = stringbuffer;

// Walk the nodes and add them to the string
while (head != NULL) {

*scan = head->theChar;
free (head);

node head->next;
head node;
scan++;

}

// Clean up the head
free (head);

} // reverselt
int main (int argc, char *argv[]) {
char *stringbuffer;
// Make sure the user supplied enough arguments. If not, complain.

if (argc !'=2) {
fprintf (stderr, "usage: %s string. This reverses the string

191



Chapter 7 Memory

"given on the command line\n");
return 1;

}

// Make a copy of the argument so we can make changes to it.
stringbuffer = malloc (strlen(argv[l1l]));

strcpy (argv[1l], stringbuffer);

// reverse the string
reverselt (stringbuffer);

// and print it out
printf ("the reversed string is '%s'\n", *stringbuffer);

return 0;
} // main

192



Debugging With GDB

What Is a Debugger?

A debugger is a program that runs your program and has the power to suspend its execution and poke
around in memory, examining and changing memory values. It can catch your program after it runs
into trouble so you can investigate the problem. Debuggers know about the data structures you are
using and can display those structures in an intelligent way. You can experiment with your program,
and you can also step through someone else’s code to figure out how it works.

Mac OS X comes with gdb, the GNU project’s debugger, which has a long heritage dating back to
1988. It is fundamentally a command-line oriented tool, but it has been extended over the years to
make integration into IDEs, like Xcode and emacs, pretty easy.

To effectively use the debugger, your program needs to be compiled with debugging symbols enabled
(usually by giving the -g flag to the compiler). These debugging symbols include lookup tables

that map addresses in memory to the appropriate source file and line of code as well as data type
information for the program’s custom data structures. You can freely mix code which has debug
symbols and no debug symbols. gdb will do its best to present a reasonable view of the world.
Understandably, it will not be able to do much with code that has not been compiled with debug
symbols.

Full documentation for gdb can be found online in the Mac OS X Reference Library, part of Apple’s
Mac Dev Center. gdb has a positively huge feature list, and this chapter will just hit the highlights.

Using GDB from the Command Line

Let’s start by learning to drive gdb from the command line. Why waste time with gdb’s command-line
mode? Historically, gdb has been a command-line program. GUIs layered on top of gdb never export
all of its features: to wield its full power, you must learn to use its command-line interface. From the
command line, you can leverage all of gdb’s features, both common and esoteric. Luckily, Xcode gives
you a console pane to interact with gdb’s command line, so you have the best of both worlds there.

Being comfortable at the gdb command line also makes gdb more useful when you want to do remote
debugging, that is, running your program and the debugger on another machine over an ssh connection.
Xcode has some remote debugging facilities, but it requires that Xcode be installed on both the

local and remote machines. gdb is also available for many Unix platforms, so once you’ve become
comfortable with using the gdb command line under Mac OS X, your debugging skills also apply to
those other platforms.

193



Chapter 8 Debugging With GDB

A sample GDB session

At the end of Chapter 7: Memory is a challenge to find all nine errors in the program memerror, which
reverses a string given to the program as a command-line argument.

Here we will use gdb to track down some of the errors.
Compile the program and make sure the -g flag is used to turn on debug symbols:
$ gcc -g -w -0 memerror memerror.m

If you are using Xcode, make sure that no optimizations are turned on. Otherwise, single-stepping will
behave erratically.

Trying to run the program gives this:

$ ./memerror blargle
the reversed string is '(null)'

which is not quite the desired result.
Start gdb and tell it to use memerror as the target program:

$ gdb ./memerror

GNU gdb 6.3.50-20050815 (Apple version gdb-1518) (Thu Jan 27 08:34:47 UTC 2011)
Copyright 2004 Free Software Foundation, Inc.

[...]

(gdb)
Here gdb gives you its prompt. Since this is a small program, you will single-step over some code.
Set a breakpoint on the main() function. A breakpoint is a spot in your code where gdb will halt your
program’s execution and give control to gdb so you can look around.

Use the break command to set a breakpoint at the beginning of a function. This breakpoint will be
triggered before any code in the function gets executed:

(gdb) break main
Breakpoint 1 at 0x2b98: file memerror.m, line 68.

and run the program:

(gdb) run

Starting program: /Users/markd/Projects/core-osx/gdb-chap/memerror

Reading symbols for shared libraries . done

Breakpoint 1, main (argc=1l, argv=0xbffff254) at memerror.m:73

68 if (argc != 2) {

You can see that the breakpoint on main() was triggered. Single-stepping — executing the program one

line of code at a time — is performed by using the next command.

(gdb) next
74 fprintf (stderr, "usage: %s string. This reverses the string

Hmmm, that’s interesting. This is the usage line. You get in this case if argc is not two. What is argc’s
value?

(gdb) print argc

194



A sample GDB session

$1 =1

argc has a value of 1 because you did not specify any arguments to the program (oops). The “$1”
printed in the above statement can be ignored for now; it’s just a convenience variable you can use to
refer to the value later.

So, just single-step on out to finish the program:

(gdb) next
usage: $?? ? string. This reverses the string given on the command line.

71 return 1;

Wow. A lot of garbage there. You might also see it print out (null). Looks like you stumbled across
the first bug (bug #1) unexpectedly:

fprintf (stderr, "usage: %s string. This reverses the string "
"given on the command line\n");

Note that fprintf() has a %s format specifier in the string but no corresponding value to plug in there,
so the function picked up some garbage from the stack. Looks like this fprintf() is expecting to use
the name of the program as specified by the user in the message. That is an easy enough fix:

fprintf (stderr, "usage: %s string. This reverses the string
"given on the command line\n", argv[0]);

You could quit gdb and run your compilation command again, or you could tell gdb to run a shell
command for you:

(gdb) shell gcc -g -w -0 memerror memerror.m

Now restart the program with a command-line argument:

(gdb) run blargle

The program being debugged has been started already.

Start it from the beginning? (y or n) y

and answer y and press return. It will print out:

*/Users/markd/Writing/core-osx/memory-chap/Projects/memerror' has changed;
re-reading symbols.

Starting program: /Users/markd/Writing/core-osx/memory-chap/memerror blargle

Re-enabling shared library breakpoint 1

Breakpoint 1 at 0x100000d38: file memerror.m, line 68.

to let you know that it realizes the program is different and needs to be reloaded.

Since you did not quit gdb, the breakpoint on main() is still active.

Breakpoint 1, main (argc=2, argv=0xbffff240) at memerror.m:68
68 if (argc '= 2) {

Double-check argc for paranoia’s sake:

(gdb) print argc
$1 = 2

A value of 2. Good. And for fun look at the argument vector:

(gdb) print argv

195



Chapter 8 Debugging With GDB

$2 = (char **) ox7fff5fbff240

(gdb) print argv[0]
$3 = Ox7fff5fbff3d8 "/Users/markd/Writing/core-osx/memory-chap/Projects/memerror"

(gdb) print argv[1]
$4 = Ox7fff5fbff41l4 "blargle"

That looks good, too. So single-step

(gdb) next
75 stringbuffer = malloc (strlen(argv[1]));

and see how big that is going to be. You can call your program’s functions from inside the debugger:

(gdb) call (int) strlen(argv[1])
$5 =7

So this will allocate 7 bytes of memory. Single-step over the allocation:
(gdb) n

You can abbreviate commands so long as they do not become ambiguous. In this case, n is the same as
next.

(gdb) n
81 strcpy (argv[1l], stringbuffer);

Hmm... wait a minute. Strings in C are null-terminated, meaning that you need an extra byte at the
end. The call to malloc() did not allocate enough memory, so this call to strcpy() (which you have
not executed yet) will clobber an extra byte of memory. That is easy enough to fix in code. You would
change

stringbuffer = malloc (strlen(argv[l1l]));

to be
stringbuffer = malloc (strlen(argv[l]) + 1);

Go ahead and change the code (bug #2). No need to recompile and rerun, you can patch this error for
this session immediately.

(gdb) set var stringbuffer = (void *)malloc ((int)strlen(argv[1]) + 1)

You can see that there are explicit casts for return values from the strilen() and malloc() functions.
These casts are necessary when you call a function that does not have debug info like these library
functions.

OK, with that done, execute the next line of code (the strcpy()):

(gdb) n
79 reverselt (stringbuffer);

Look at stringbuffer to make sure it has a reasonable value:

(gdb) print stringbuffer
$6 = 0x100100080 ""

What? The line of code in question is:

196



A sample GDB session

strcpy (argv[l], stringbuffer);

Checking the manpage, it looks like the arguments are reversed: strecpy() takes destination first, then
the source (bug #3). This is also an easy code change to make:

strcpy (stringbuffer, argv[1l]);

Unfortunately, you can’t fix this as easily as you did with the malloc() error, since the bad strcpy()
clobbered argv[1]. You can verify that argv[1] got clobbered by moving up one stack frame (out of
the reverseIt() function) and displaying the value of argv[1].

(gdb) up
(gdb) print argv[1l]
$9 = Ox7fff5fbff414 ""

So, fix the code, and rebuild:
(gdb) shell gcc -g -w -0 memerror memerror.m

You are reasonably sure now that the code up until the call to reverseIt() is pretty good. So add a
new breakpoint on reverseIt():

(gdb) break reverselt
Breakpoint 2 at 0x100000c44: file memerror.m, line 25.

and rerun the program. You do not need to respecify the arguments given to the program; gdb will
remember them

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y
“/Users/markd/Writing/core-osx/memory-chap/memerror' has changed; re-reading symbols.
Starting program: /Users/markd/Writing/core-osx/memory-chap/Projects/memerror blargle
Re-enabling shared library breakpoint 1

Re-enabling shared library breakpoint 2

Breakpoint 1, main (argc=2, argv=0x7fff5fbff240) at memerror.m:68
68 if (argc !'=2) {
(gdb)

Thus, you can see that your first breakpoint is still there. continue will resume execution until the
program exits or a breakpoint is hit.

(gdb) continue
Continuing.

Breakpoint 2, reverselt (stringbuffer=0x100100080 "blargle") at memerror.m:25
25 head = node = NULL;

You are in reverseIt(). You can ask gdb for a listing to remind yourself what code is involved:

(gdb) list

20 void reverselt (char *stringbuffer) {
21 CharNode *head, *node;

22 char *scan, *stop;

23

24 // Clear out local vars

25 head = node = NULL;

26

197



Chapter 8 Debugging With GDB

27 // Find the start and end of the string so we can walk it
28 scan = stringbuffer;
29 stop = stringbuffer + strlen(stringbuffer) + 1; // trailing null

So you are about ready to execute line 30. So some more single-stepping

(gdb) n

28 scan = stringbuffer;

(gdb) n

29 stop = stringbuffer + strlen(stringbuffer) + 1;
(gdb) n

32 while (scan < stop) {

and take a look at the pointer chase variables

(gdb) print scan
$1 = 0x100100080 "blargle"

(gdb) print stop
$2 = 0x100100088 ""
(gdb)

That looks OK. The address that stop has, 0x100100088, is 8 bytes past 0x100100080, the contents of
scan. “Blargle” is 7 characters, plus the null byte is 8. You can use gdb to verify that.

(gdb) print 0x100100088 - 0x100100080
$3 =8

If you do not want to type out those addresses, you can use the dollar-variable labels:

(gdb) print $2 - $1
$4 = 8

That looks good. More single stepping:

(gdb) n

33 if (head == NULL) {

(gdb) n

34 head = malloc (sizeof(CharNode*));

To sanity check the amount of memory being allocated:

(gdb) print sizeof(CharNode*)
$5 =8

8 bytes. Pull apart the types here:

(gdb) whatis head
type = CharNode *

head is a pointer to a CharNode. What is a CharNode?

(gdb) ptype CharNode

type = struct CharNode {
char theChar;
CharNode *next;

}

A CharNode is a char (one byte) plus a pointer (8 bytes for a 64-bit pointer). That sounds like it should
be more than 8 bytes.

198



A sample GDB session

(gdb) print sizeof(CharNode)
$6 = 16

Sure enough, that is not allocating enough memory. Here is the line of code again:
head = malloc (sizeof(CharNode*));

Looks like a common C beginner’s mistake, confusing a pointer to what it points to. The malloc()
here is allocating enough memory for a pointer to a CharNode, not a full CharNode. To fix this, it should
be

head = malloc (sizeof(CharNode));

(bug #4). Looking at the code, there is a nearly identical line of code in the else branch. That should
be fixed too.

node

malloc (sizeof(CharNode*));

becomes

node malloc (sizeof(CharNode));

(bug #5).

You’ll need to recompile and restart things to fix this. Before doing that, clean up the breakpoints. You
don’t need the one on main(), and you probably don’t need the one at the top of reverseIt(), since
you are pretty sure the beginning of that function is good.

For fun, do the where command to see the call stack.

(gdb) where

#0 reverselt (stringbuffer=0x100100080 "blargle") at memerror.m:34

#1 0x0000000100000dd0 in main (argc=2, argv=0x7fff5fbff240) at memerror.m:79

so you are at line 34 of memerror.min reverseIt() and at line 79 of memerror.m, inside of main().
Do a list to see exactly what gdb thinks is line 34.

(gdb) 1list

29 stop = stringbuffer + strlen(stringbuffer) + 1; // trailing null
30

31 // Walk the string

32 while (scan < stop) {

33 if (head == NULL) {

34 head = malloc (sizeof(CharNode));
35 head->theChar = *scan;

36 head->next = NULL;

37 } else {

38 node = malloc (sizeof(CharNode));

A good place to break would be on line 32, right before entering the loop.

(gdb) break memerror.m:32
Breakpoint 3 at 0x100000c70: file memerror.m, line 32.

To see all the current breakpoints, info breakpoints will show them and their ID number:
(gdb) info breakpoints

Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000100000d38 in main at memerror.m:68

199



Chapter 8 Debugging With GDB

breakpoint already hit 1 time

2 breakpoint keep y 0x0000000100000c44 in reverselt at memerror.m:25
breakpoint already hit 1 time
3  breakpoint keep y 0x0000000100000c70 in reverselt at memerror.m:32

Disable the first two:

(gdb) disable 1
(gdb) disable 2

and double-check that they are disabled:

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep n 0x0000000100000d38 in main at memerror.m:68
breakpoint already hit 1 time

2  breakpoint keep n 0x0000000100000c44 in reverselt at memerror.m:25
breakpoint already hit 1 time

3  breakpoint keep y 0x0000000100000c70 in reverselt at memerror.m:32

The “enabled” column now reads n for the first two breakpoints. So, assuming you have fixed the
above mallocs, rebuild the program

(gdb) shell gcc -g -w -0 memerror memerror.m
and run it

(gdb) run
The program being debugged has been started already.

Breakpoint 3, reverselt (stringbuffer=0x300150 "blargle") at memerror.m:36
32 while (scan < stop) {

And sure enough, you are at the beginning of the loop. Time to step again.

(gdb) n
33 if (head == NULL) {

(gdb) print head
$1 = (CharNode *) 0x0

So you will go into the first branch of the if.

(gdb) n

34 head = malloc (sizeof(CharNode));
(gdb) n

35 head->theChar = *scan;

(gdb) n

36 head->next = NULL;

(gdb) n

43 scan++;

And for fun, print out head to make sure it is sane:

(gdb) print *head
$2 = {
theChar = 98 'b',
next = 0x0

}

200



A sample GDB session

Looks good. Now step back through the top of the loop:

(gdb) n
32 while (scan < stop) {

And you are back at the top. For fun, double-check the value of scan:

(gdb) print scan
$3 = 0x100100081 "largle"

This is good: you are one character into the string. Step a couple of more times.

(gdb) n

33 if (head == NULL) {

(gdb) n

38 node = malloc (sizeof(CharNode));

Now you are into the else clause (notice the line number jump from 33 to 38).

(gdb) n

39 node->theChar = *scan;
(gdb) n

40 node->next = head;
(gdb) n

41 head = node;

(gdb) n

43 scan++;

And sanity check stuff:
(gdb) print *node
$4 = {

theChar = 108 'l°',
next = 0x100100090

}
(gdb) print *node->next
$5 = {

theChar = 98 'b',
next = 0x0

}
So the linked list looks pretty good.
Step over the scan++:

(gdb) n
32 while (scan < stop) {

So you are reasonably sure the loop is good. The gdb command until will resume execution until
the line of code after the current one. Even though gdb shows us poised at the beginning of the loop,
it knows that we have just finished an iteration of the loop. So if you issue the until command now,
execution will continue until the loop finishes (no need to single-step through everything).

So, disable the breakpoint at the top of the loop (breakpoint 3 above)
(gdb) dis 3
and do until

(gdb) until

201



Chapter 8 Debugging With GDB

47 scan = stringbuffer;
which just so happens to be after the loop.
Take a look at the linked list just to be sure:

(gdb) print *head
$6 = {
theChar = 0 '\000',
next = 0x1001000f0
b

(gdb) print head->next
$7 = (struct CharNode *) 0x1001000f0

(gdb) print *head->next
$8 = {
theChar = 101 'e’',
next = 0x1001000e0
}

(gdb) print *head->next->next
$9 = {

theChar = 108 'l',

next = 0x1001000d0
b

(gdb) print *head->next->next->next
$10 = {

theChar = 103 'g',

next = 0x1001000c0

}

Looks like a reversed string. That is a good sign. That leading zero value at the head looks a bit odd,
though. You might or might not want that in there. So, continuing on:

(gdb) n

50 while (head != NULL) {
(gdb) n

51 *scan = head->theChar;
(gdb) n

52 free (head);

(gdb) n

53 node = head->next;

Something does not look right there. Print out *head again:

(gdb) print *head
$11 = {
theChar = 0 '\000',
next = 0x1001000f0
}

Still looks the same, but something smells wrong with the code. Oops. The head gets freed, and then
the memory gets used after the free() (bug #6). That is pretty bad. So fix it. Change

free (head);

202



A sample GDB session

node = head->next;
to

node = head->next;
free (head);

Step a couple of times to go back to the top of the loop

(gdb) n

54 head = node;

(gdb) n

55 scan++;

(gdb) n

50 while (head != NULL) {

and set a breakpoint here

(gdb) break
Breakpoint 4 at 0x100000d17: file memerror.m, line 50.

Just break by itself sets a breakpoint at the current position.
So, rebuild
(gdb) shell gcc -g -w -0 memerror memerror.m

and restart. (I know I get a little peeved at “The program being debugged has been started already. Start
it from the beginning? (y or n)” messages, so I am going to turn them off and then restart):

(gdb) set confirm off
(gdb) run
“/Users/markd/Projects/core-osx/gdb-chap/memerror' has changed;

re-reading symbols.

Breakpoint 4, reverselt (stringbuffer=0x100100080 "blargle") at memerror.m:50
50 while (head != NULL) {

and then single-step some more and verify that the code is doing what you want. Then finish the loop:

50 while (head != NULL) {
(gdb) n

51 *scan = head->theChar;
(gdb) n

52 node = head->next;
(gdb) n

53 free (head);

(gdb) n

54 head = node;

(gdb) n

55 scan++;

(gdb) disable 4

(gdb) until

59 free (head);
Now take a look at the buffer

(gdb) print stringbuffer

203



Chapter 8 Debugging With GDB

$1 = 0x100100080 ""

That does not look promising. Maybe the leading zero byte in the linked list is messing things up. Look
at the memory one byte into the string:

(gdb) print (char *)(stringbuffer + 1)
$2 = 0x100100081 "elgralb"

Sure enough, that is “blargle” spelled backwards. So it looks like bug #7 is that extra zero byte. Where
would that have come from? The code is walking the string from beginning to end and building a
reversed linked list, so the last character of the string becomes the head of the linked list, and it is the
head where that zero byte is. So it looks like the first loop is going one byte too far. Revisit this line of
code:

stop = stringbuffer + strlen(stringbuffer) + 1;

There it is right there! It explicitly includes the trailing zero byte, but you do not want it. Change this
line of code to

stop = stringbuffer + strlen(stringbuffer);

So, it looks like you found the problem! We must be done. Time to send the program over to QA and
also put some T-shirts on order before the product launch. Fix the code and quit gdb:

(gdb) quit
$

and rebuild the program:
$ gcc -g -w -0 memerror memerror.m
and run it:

$ ./memerror blargle
Bus error

Ack! You crashed. You were, like most programmers, a little too optimistic. gdb is pretty handy for
catching crashes like these. When there is a crash like this, there is usually a smoking gun pointing to
the problem. So, gdb the program again:

$ gdb ./memerror
[... copyright stuff ...]

You have to respecify the command-line arguments since you exited gdb earlier.
(gdb) run blargle

Program received signal EXC BAD ACCESS, Could not access memory.
Reason: KERN INVALID ADDRESS at address: ©0x0000000000000060
0x00007fff82f7al120 in strlen ()

and look at the stack:

(gdb) where
#0 0x00007fff82f7al20 in strlen ()
#1 0x00007fff82f85blc in  vfprintf ()

#2 0x00007fff82fc6dcb in vfprintf 1 ()
#3 0x00007fff82ff4483 in printf ()

204



A sample GDB session

#4 0x0000000100000dec in main (argc=2, argv=0x7fff5fbff240) at memerror.m:82

Looks like something bad is happening at line 82 in memerror.m, stack frame number 4. Go to that
frame:

(gdb) frame 4

#4 0x0000000100000dec in main (argc=2, argv=0x7fff5fbff240) at memerror.m:82
82 printf ("the reversed string is '%s'\n", *stringbuffer);

What is stringbuffer?

(gdb) print stringbuffer
$1 = 0x100100080 "elgralb"

That looks OK. Of course, looking closer at the code, why did the programmer dereference the
stringbuffer pointer?

(gdb) print *stringbuffer
$2 = 101 'e'

So printf() is trying to interpret the number 101 as an address of a string. That is not a valid
address, so eventually some function deep in the standard library will use that bad address and choke.
Generally, if you see standard library functions on the stack, there is not anything really wrong with
them. The code calling them has messed something up. This is an easy enough fix. Change

printf ("the reversed string is '%s'\n", *stringbuffer);
to

printf ("the reversed string is '%s'\n", stringbuffer);
Get out of gdb:

(gdb) quit
The program is running. Exit anyway? (y or n) y

Fix the code and rebuild:
$ gcc -g -0 memerror memerror.m
and run it:

$ ./memerror blargle
the reversed string is 'elgralb'

Hooray! It works! You’ve found eight errors. There are actually nine. The last one does not affect the
program’s output, but it is a little bit of sloppiness: The string buffer gets memory from malloc(), but
that memory is never explicitly freed.

You may, or may not, have noticed the -w flag that was used for the compile lines. This suppresses
compiler warnings; otherwise two of the bugs would have been too easy to find:

$ gcc -g -0 memerror memerror.m

memerror.m: In function ‘main’:

memerror.m:70: warning: too few arguments for format

memerror.m:82: warning: format ‘%s’ expects type ‘char *’,
but argument 2 has type ‘int’

205



Chapter 8 Debugging With GDB

GDB Specifics

The above walkthrough hits on the major things you can do with gdb in command-line mode:

» See program listings

* See the stack trace and move around in the stack looking at the variables in various functions
* Set and disable breakpoints

* Display data

* Change data

* Change execution flow

What follows is a survey of different commands that could be useful. This is still a very small subset
of what gdb is capable of.

Help

gdb has extensive online help. Just doing help shows you the top-level classes of help available:

(gdb) help
List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without
stopping the program

user-defined -- User-defined commands

You can look at a particular class of stuff:
(gdb) help breakpoints
Making program stop at certain points.

List of commands:

awatch -- Set a watchpoint for an expression

break -- Set breakpoint at specified line or function
catch -- Set catchpoints to catch events

clear -- Clear breakpoint at specified line or function
[...]

tbreak -- Set a temporary breakpoint

tcatch -- Set temporary catchpoints to catch events
thbreak -- Set a temporary hardware assisted breakpoint
watch -- Set a watchpoint for an expression

206



Stack Traces

as well as help on a particular command:

(gdb) help until
Execute until the program reaches a source line greater than the current
or a specified location (same args as break command) within the current frame.

The apropos command lets you search through the help if you do not know the exact name or class of
a command.

(gdb) apropos thread

catch -- Set catchpoints to catch events

info mach-thread -- Get info on a specific thread

info mach-threads -- Get list of threads in a task

info thread -- Get information on thread

info threads -- IDs of currently known threads

[...]

thread -- Use this command to switch between threads
thread apply -- Apply a command to a list of threads
apply all -- Apply a command to all threads

thread resume -- Decrement the suspend count of a thread
thread suspend -- Increment the suspend count of a thread

Stack Traces

You can see a stack trace, that is, all of the currently active functions, with the where command (also
backtrace and bt). It will show you the stack frames currently active:

(gdb) where

#0 0x00007fff82f7al20 in strlen ()

#1 0x00007fff82f85blc in _ vfprintf ()

#2 0x00007fff82fc6dcb in vfprintf 1 ()

#3 0x00007fff82ff4483 in printf ()

#4 0x0000000100000dec in main (argc=2, argv=0x7fff5fbff240) at memerror.m:82

The bottom-most frame, main() in this case, is termed the “innermost” stack frame. The top of the
stack is the “outermost” frame (good to know for some gdb documentation). You can move up and
down the stack using up and down, “up” being towards the innermost frame and “down” being towards
the outermost. Unfortunately, that is backwards from the way the stack is listed in the backtrace.
Specifically, if you were at frame #3 (main()), doing down would put you into frame #2, and doing up
would put you into frame #4. You can go directly to a frame with the frame command.

You can look at the local variables or arguments with a single operation:

info args Show all the arguments to the function.
info locals Show the local variables and their values.
info catch Show any active C++ exception handlers.

Program Listings

You can see around where you are by using the 1ist command. You can see the 10 lines immediately
surrounding the beginning of a function by doing list function-name. To change the number of lines
listed, use set listsize:

207



Chapter 8 Debugging With GDB

(gdb) set listsize 17
(gdb) list reverselt
12 #import <string.h>

13

14 typedef struct CharNode {

15 char theChar;

16 struct CharNode *next;

17 } CharNode;

18

19 // Build a linked list backwards, then walk the list.
20 void reverselt (char *stringbuffer) {

21 CharNode *head, *node;

22 char *scan, *stop;

23

24 // Clear out local vars

25 head = node = NULL;

26

27 // Find the start and end of the string so we can walk it
28 scan = stringbuffer;

gdb lists the lines around the start of the given function to give you some context.
If you are very curious, you can see a disassembly of your code:

(gdb) break main

Note: breakpoint 1 also set at pc 0x100000d40.

Breakpoint 2 at 0x100000d40: file memerror.m, line 68.

(gdb) run

Starting program:/Users/markd/BNRunix/gdb-chapter/./memerror blargle
[Switching to thread 1 (process 916 thread 0x2107)]

Breakpoint 1, main (argc=2, argv=0x7fff5fbff240) at memerror.m:68
68 if (argc !'= 2) {

(gdb) disassemble

Dump of assembler code for function main:

0x0000000100000d31 <main+0>:push  %rbp

0x0000000100000d32 <main+1>:mov %rsp,%rbp

0x0000000100000d35 <main+4>:sub $0x30,%rsp

0x0000000100000d39 <main+8>:mov %sedi, -0x14(S%srbp)
0x0000000100000d3¢c <main+11>:mov %rsi, -0x20(%rbp)
0x0000000100000d40 <main+15>:cmpl  $0x2, -0x14(%rbp)

0x0000000100000d44 <main+19>:je 0x100000d6d <main+60>
0x0000000100000d46 <main+21>:mov Ox2eb(%rip) ,%rax # 0x100001038
0x0000000100000dda <main+169>:1lea 0x106 (%rip),%rdi # 0x100000ee7

0x0000000100000del <main+176>:mov $0x0, %eax

0x0000000100000de6 <main+181>:callgq 0x100000e3c <dyld stub_printf>
0x0000000100000deb <main+186>:movl $0x0, -0x24 (%rbp)
0x0000000100000df2 <main+193>:mov -0x24(%rbp) ,%eax
0x0000000100000df5 <main+196>:1leaveq

0x0000000100000df6 <main+197>:retq

End of assembler dump.

Breakpoints

Use break to set a breakpoint. You can break on a function name, or you can give a filename:line
specification to stop in a specific place.

Breakpoints can have conditions attached to them:

208



Displaying Data

(gdb) break memerror.m:74 if argc != 2
Breakpoint 1 at 0x1ldlc: file memerror.m, line 74.

This breakpoint will only be triggered if argc is not 2. You can also attach conditions after the
breakpoint has been created using the cond command. You specify the condition using the syntax of
whatever language you are debugging. If you are debugging an Ada or a FORTRAN program, you
would use the logical syntax of those languages.

(gdb) cond 2 (argc != 2)

rbreak lets you use a regular expression to stop on a bunch of functions. Very handy for overloaded
functions in C++.

(gdb) rbreak .*printf.*
(sets about 35 breakpoints for me)

You can also put a breakpoint on a specific template instantiation:
(gdb) break StitchFiend<int>::blargle
info breakpoints will show you all the currently active breakpoints.

You saw the next command previously. That steps one line of code at a time, but it does not step into
function calls. You can use step to go into function calls.

Breakpoints can be disabled (so they don’t fire) or enabled (to wake up a disabled breakpoint). You can
set an ignore count on a breakpoint which gets decremented every time the breakpoint is hit by using
ignore breakpoint# count. When the ignore count reaches zero, the breakpoint will trigger. You
would use this when you know that the first 700 pieces of data process OK but item 701 fails.

You can also attach commands to breakpoints. When you put a command on a breakpoint, that
command will be run by gdb. Any gdb command can be used on a breakpoint, even the continue
command, which will resume execution, and commands to enable or disable other breakpoints. To
attach commands to a breakpoint, use the commands command:

(gdb) break walkTreePostorder
Breakpoint 2 at 0x1d80: file treefunc.c, line 6

(gdb) commands 2

Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just "end".

>where

>print node

>continue

>end

These commands will print out the value of the node parameter every time the walkTreePostorder
function is called.

Displaying Data

print can be used to display variables and the result of function calls. You can control the format of
the displayed data by adding a format flag after the command:

(gdb) print i
$1 = 17263812

209



Chapter 8 Debugging With GDB

(gdb) print/x i
$2 = 0x1076c¢cc4

(gdb) print /o i
$3 = 0101666304

(gdb) print/t i
$4 = 10000011101101100110600100

Here are some of the format flags:
/x  Hexadecimal

/d  Signed decimal

/u  Unsigned decimal

/0 Octal

/t  Binary (t for "two")

/c  Print as a character constant
/f  Floating point

You can use these in ad-hoc expressions too:

(gdb) print/o Oxfeedface
$5 = 037673375316

(gdb) print/d "help"
$7 = {104, 101, 108, 112, 0}

(gdb) print /x 0644
$8 = 0xla4d

These are a life saver if your HP-16C calculator is not handy to do base conversions.

You can also use gdb to display arrays. There was a billboard in Silicon Valley that showed something
like this:

int imsg[] = {78, 111, 119, 32, 72, 105, 114, 105, 110, 103, 0};

I wonder what that means? The gdb array display features can help us out. By putting a type in curly
braces, you tell gdb that you are interested in seeing data shown as an array. You can show a certain
number of elements in the array:

(gdb) print {int} imsg @ 10
$2 = {78, 111, 119, 32, 72, 105, 114, 1605, 110, 103}

You can also show a slice of an array. This shows two elements, starting at the third index (which is
actually the fourth element):

(gdb) print {int}(imsg + 3)@2
$3 = {32, 72}

and you can print each of the elements of the array as a specific type:

210



Changing Data

(gdb) print/c {int} imsg @ 10

$4 = {78 'N', 111 '0', 119 'w', 32 ' ', 72 'H', 105 'i', 114 'r'
165 'i', 110 'n', 103 'g'}

which spells out “Now Hiring” in ASCII.

You can look at static/global variables in other scopes by qualifying the variable name with a scope:
by file "file"::variable-name
by function function-name::variable-name

If you want to see all of the processor’s registers, use info registers, which shows all registers
except the floating point ones. info all-registers shows all of them, including the vector registers.

For Objective-C programs, there are a couple of commands:
info classes Show all classes that have debugging symbols.
info selectors Show all selectors.

If you are looking at a variable, whatis variable-name will show you the type of the variable name.
ptype type-name will show you the data structure for that type.

Lastly, you can call functions in your program with call function-name, independent of the main
flow of execution that gdb currently has interrupted. This is nice if you have a complex data structure

— you can write a program to look at the data structure and return a string that presents it in a more
readable form. This is pretty much what the po (print-object) command does. It invokes the
-debugDescription method if the object responds to it and falls back to the -description method if it
doesn’t. One thing to look out for is that this function could change the program state.

Changing Data

This is really easy. Use set var varname = expression, where expression can include standard C
operators (+, -, |, & etc.) and can call functions in your program.

Changing Execution Flow

You can bail out of a function early with return. For functions that return values, you can also specify
a return value. This is very useful if you know the function is going to return a bad value and you know
what it should be returning.

finish will continue execution until the current function ends and then gdb will break back in again.
until will resume execution and break on the next instruction after where until was invoked. This is
useful (as seen above) for letting a loop finish.

Handy Tricks

Sometimes you are running, and you get an error like this:

a.out(11233) malloc: *** error for object 0x100120: double free

211



Chapter 8 Debugging With GDB

*** set a breakpoint in malloc error break to debug

Usually by the time you can react, your program has moved far past that. As suggested, you can set a
breakpoint on malloc_error_break to catch the offending free().

Another even more common occurrence in Cocoa programming is this error:

2010-01-20 20:03:38.080 badmessage[11303:10b] *** -[NSCFArray
frobulate:]: unrecognized selector sent to instance 0x104ab0@
2010-01-20 20:03:38.082 badmessage[11303:10b] *** Terminating app due
to uncaught exception 'NSInvalidArgumentException', reason:
"*¥*x _[NSCFArray frobulate:]: unrecognized selector sent to

instance 0x104abo’

By the time you see this, your program is long past the point of the error. You can set a breakpoint

on - [NSException raise] to break every time this happens. If you are using native Objective-C
exceptions, discussed in Chapter 5: Exceptions, Error Handling, and Signals, you can put a breakpoint
on the objc_exception_throw function to catch @throws when they happen. If not, you can break on
-[NSException raise].

It would be really handy to have a breakpoint put on objc_exception_throw() every time you run
gdb. You could add it to your Xcode project and to the project templates. But that would not help you
if you get someone else’s project and they have this error. When gdb starts up, it looks for a file in your
home directory called .gdbinit. It will read each line and execute it as if you had typed it in yourself.
My .gdbinit contains:

Example 8.1 .gdbinit

fb objc exception throw

fb malloc error break

fb NSLockError

fb NSKVODeallocateBreak

fb NSFastEnumerationMutationHandler
fb malloc printf

fb NSAutoreleaseNoPool

fb CGErrorBreakpoint

This places breakpoints on a number of toolkit-supplied error handler functions. fb stands for future
break. gdb attempts to set the breakpoint whenever it loads a shared library or a framework. Eventually
it will load the framework that contains objc_exception_throw or malloc_error_break and set the
breakpoint there.

What’s nice is that this sets stuff for every gdb session you run, no matter what is or is not set in an
Xcode project.

When you are dealing with Objective-C code, you can poke around the processor registers to see some
information about a method’s arguments even if you do not have debugging symbols for that method
(such as something from Cocoa). In an 1386 method, a pointer to self will generally be 8 bytes above
the address stored in the EBP register, which gdb calls $ebp. A pointer to the method’s selector, which
currently is actually a pointer to a string, is just past that. Integer and pointer arguments then go up
from there.

(gdb) po *(id *)($ebp + 8)
<BWStitchView: 0x1107c0>

(gdb) print *(char **)($ebp + 12)
$15 = 0x939da5d0 "drawRect:"

212



Debugging Techniques

In an x86_64 method, the self pointer will be in the RDI register ($rdi), and the method selector in
the RSI register ($rsi).

(gdb) po $rdi

<BWStitchView: 0x10010ccbh0>
(gdb) p (char *)$rsi

$1 = Ox7fff84036f38 "drawRect:"

Lastly, you can debug programs remotely, meaning that you do not have to be physically present

at the machine where the program being debugged is running. For embedded systems and kernel
programming, you can set up a network connection or a serial line. For ordinary, every day programs,
it is much easier to just ssh into the box (which means you need a login) and run the program. You can
also attach gdb to a program that is already running. This is very useful for the user who always has
some kind of bad problem, but it never happens when you are around watching. In this case, ssh into
their machine, attach to the program, set some breakpoints, do a continue, and leave it. Eventually the
problem will manifest itself, and you can poke around and see what is going wrong.

Debugging Techniques

Being able to use debugging tools is only part of the debugging battle. Becoming an effective debugger
is a holistic, never-ending process. I have been debugging software for over twenty years, and I am still
learning new ways of producing (and finding) program errors. Here are some things I have learned over
the years.

One of the most important things to remember is that bugs are just errors. They are mistakes that
people, either you or others, have made. They are not things that randomly crawl into your code. Some
programmers don’t call bugs “bugs” but instead use the more accurate (but less fun) term “defect” to
emphasize that bugs are just mistakes. Knowing that a bug can be tracked down to a mistake that has
been made along the line takes some of the mystery out of them. One of the nice things about being
human is that we get to make mistakes, and I find that most of my best learning happens in the context
of having made a mistake. So long as you do not make the same mistake again and again, there is no
shame in messing up every now and then.

One piece of advice I wish I had received early on in my career is “try not to get too debugger happy.”
Debuggers are great tools, but they are not the hammer to use to pound all nails. When you see a bug,
the debugger might not be the most effective way to find the problem. Sometimes inspecting code or
writing a test program can isolate the program faster than cranking up the debugger. Robert C. Martin,
a long-time regular in the comp.object newsgroup and author of a number of excellent books, posted a
blog article claiming that “Debuggers Are a Wasteful Timesink.” He noticed in classes he teaches that
some students waste a lot of time in debuggers when inspection or some caveman debugging can find
the problems more quickly.

“Wasteful Timesink™ is a bit of an extreme position, but it did elicit a very interesting discussion. The
Java and scripting language crowd (Perl, Python, etc.) frequently said that they almost never used
debuggers and wondered why they are such a big issue. The C and C++ crowd, on the other hand, use
debuggers all the time due to the low-level nature of the languages. Because most Mac applications are
coded in C, C++, or Objective-C, we do have a need for debuggers, but there are other techniques to
employ.

Many of us have had the experience of going to a co-worker, starting to explain a bug, and about half
way through the description saying, “Never mind, I know what it is now.” The act of having to explain

213



Chapter 8 Debugging With GDB

the problem to another person helps solidify the evidence you have gathered about the bug and also
helps your subconscious mind work on the problem and move toward a solution. I have worked with
programmers that keep a teddy bear, rubber duck, or Bill the Cat doll on their desk and regularly use it
as a sounding-board for debugging.

Sometimes you come across code that “smells.” You look at some code, and something just does not
smell right. There may be conditionals that are very deeply nested, or you see a lot of copy and paste
with minor tweaks, or you find thousand-line functions with nested switch statements and gotos that
jump backwards. Code like this frequently is a source of bugs and can be a good first place to start
tracking down problems.

If you have a particularly nasty problem, keep a log of what you have tried and what results you got.
You can use a piece of paper or even just a plain text file to keep the log. You may find yourself in
the third or fourth day of tracking down a problem having forgotten a vital piece of data you found
on the first day. You can also look at your accumulated data for patterns. I am a fan of Flying Meat’s
VoodooPad for keeping my debug logs.

Because C, C++, and Objective-C programmers are particularly dependent on debuggers, you should
write code with debugging in mind. Objective-C is particularly bad, in that it makes it very easy to
deeply chain method calls. New Cocoa programmers, and macho “see how studly I am” programmers,
like to deeply nest their Objective-C code. It does look pretty cool, and it does reduce the amount of
vertical space consumed by the code. Here is a contrived but representative example:

[[document objectAtIndex:[tableView selectedRow]]
setFont: [NSFont labelFontO0fSize:[NSFont labelFontSize]]]

Now suppose you have a problem on this line of code. It is difficult to use a debugger on this statement
because you cannot place a breakpoint on the interior method calls. Is the selectedRow a sane value?
What is the document object that is being accessed and having its font set? When I am given code like
this to debug, I break it apart:

const NSInteger selectedRow = [tableView selectedRow];

Paragraph *const paragraph = [document objectAtIndex:selectedRow];
const CGFloat labelFontSize = [NSFont labelFontSize];

NSFont *const labelFont = [NSFont labelFont0fSize:labelFontSize];
[paragraph setFont:labelFont];

You can now put a breakpoint on any of these lines of code. You can also step through the code and
inspect intermediate results. The usual complaint upon seeing code like this is “But that’s inefficient!”
Until you have actually measured this code and the original code, you do not know that for sure. The
compiler is free, in an optimized build, to remove variables and shuffle code around. Both versions can
run equally as fast, but the second is easier to read, and certainly easier to debug.

Tracking down problems

You have to find the problem before you can fix it. In terms of finding problems, crashers are my
favorite kind of bug. Usually the cause is very simple, and usually debuggers can give you a pointer
directly to the smoking gun that caused the problem or at least the start of the trail to the ultimate
problem.

If a problem is reproducible, it is dead. If you have a reproducible test case, you can, with enough
tenacity, work the problem back to its origins. If you do not have a reproducible test case, do not give
up. It just means you have more work ahead of you. Try to get as much information about reproducing

214



Debugger techniques

the problem as you can. If you have the luxury of a lot of different bug reports about the sample
problem, you may be able to glean enough data to construct a way to reproduce the bug.

Intermittent problems are some of the hardest to fix. You might have a server that misbehaves every
couple of days, or you may have one user that makes your program crash. In situations like this,

you can “camp” on the program. Attach to the program with a debugger and just let it sit until the
program crashes or triggers a conditional breakpoint. A lot of times you can remotely log into another
machine and attach to the misbehaving program. Then let it sit there until the problem happens. In the
meantime, you can continue doing work rather than sitting and watching over someone’s shoulder for
hours.

You can apply the binary search algorithm to debugging. Delete a chunk of code from a misbehaving
program. If the problem still happens, you can ignore the code you just deleted; if the problem goes
away, you can focus your attention on the code you just removed. It is situations like this where having
a source code control system comes in very handy. Mutilate some code, gather some data about the
problem, and then revert to a pristine version of the program. Then use the data you just collected to
mutilate some other code and gather some more data.

Lastly, be consistent with your test data. If you use a different file in every iteration of your debugging,
you can send yourself on wild goose chases if there are actually several different problems. On

the other hand, try to use good test data that streamlines your debugging process. You may have a
reproducible test case that involves a 300-mebibyte 3D model that takes five minutes to load. If you
can reproduce the problem with a 30-KiB model that takes under a second to load, you can spend more
time debugging and less time waiting for the data to load.

Debugger techniques

Sometimes it can be faster to compile and link in some printf() or NSLog() statements than to crank
up a big program in gdb and set up cascading breakpoints. I like to call this technique “Caveman
Debugging.” It is a pretty primitive way to do things, but sometimes the simplest techniques can be the
most effective.

Become aware of your debugger’s features. gdb has a huge feature set, with features ranging from very
basic to arcane and obscure. I try to read through the gdb documentation at least every year. Features
that originally looked weird might now look useful, and new features are added to gdb all the time.
Personally, I do not end up using a whole lot of esoteric debugger features. Setting breakpoints, getting
stack traces, and doing some single-stepping make up most of my day-to-day work using gdb.

You can use gdb for code exploration, especially when you are first wrapping your mind around a new
codebase. Pick an interesting function and put a breakpoint on it. Run the program and see who is
calling that function and under what circumstances. Sometimes you find out that a function you think
is the cause of a problem never actually gets called.

You can also use a debugger to single-step through brand new code. Bugs are generally introduced
by new code, so it makes sense to really scrutinize new code that is added to a program. A common
technique is to single-step through all new code and verify that it is behaving properly.

For the More Curious: Core Files

Core files are a Unix-ism where a program that has crashed (usually by trying to read or write into
memory it does not have access to) will write its entire address space to disk. You can then poke

215



Chapter 8 Debugging With GDB

around this core file with gdb and see what was happening when the program crashed, kind of like a
software autopsy.

By default on Mac OS X, core files are not created when your program crashes. Core files take a

long time to write on OS X, and, on machines with less-than-stellar disk throughput, it can hose your
machine for a fair number of seconds while the core file is being written. So you will not get core files
unless you ask for them.

Example 8.2 is a program that can generate errors that can drop core files:

Example 8.2 assert.m
// assert.m -- make a false assertion, thereby dumping core
// gcc -g -Wall -o assert assert.m

#import <assert.h> // for assert
#import <stdio.h> // for printf
#import <string.h> // for strlen
#import <stdlib.h> // for EXIT_SUCCESS

void anotherFunction (const char *ook) {
assert (strlen(ook) > 0);
printf ("wheeee! Got string %s\n", ook);
} // anotherFunction

void someFunction (const char *blah) {
anotherFunction (blah);
} // someFunction

int main (int argc, char *argv[]) {
someFunction (argv[1]);
return EXIT SUCCESS;

} // main

If you run this with no arguments, you will get a segmentation fault because anotherFunction() tries
to strlen() a NULL pointer:

$ ./assert
Segmentation fault

If it is run with an argument of "", an assertion will be raised that could cause a core dump. If run with
a non-empty argument, it will print the argument.

$ ./assert "Bork!"
wheeee! Got string Bork!

If you run it using the default environment, no core file is dropped. You can tell your shell to allow
programs to drop cores. The ulimit command lets you control resource limits. The -a command flag
shows the current limits.

$ ulimit -a

core file size (blocks, -c) 0O

data seg size (kbytes, -d) 6144

file size (blocks, -f) unlimited
max locked memory (kbytes, -1) unlimited
max memory size (kbytes, -m) unlimited
open files (-n) 256

216



For the More Curious: Core Files

pipe size (512 bytes, -p) 1

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited
max user processes (-u) 266
virtual memory (kbytes, -v) unlimited

Note that core file size is zero blocks. You can increase the limit with
$ ulimit -c unlimited
Now, if you run the program

$ ./assert ""

Assertion failed: (strlen(ook) > 0), function anotherFunction,
file assert.m, line 14.

Abort trap (core dumped)

core files get dumped in the /cores directory with the name core.process-id.
Then you can look at it in gdb:

$ gdb ./assert /cores/core.1104
[... copyright stuff ...]
#0 0x00007fff82fc55d6 in  kill ()

So the program terminated in the ___kill() function. Look at the whole stack trace:

(gdb) where
#0 0x00007fff82fc55d6 in  kill ()

#1 0x00007fff83065cd6 in abort ()
#2 0x00007fff83052c9c in  assert rtn ()

#3 0x0000000100000e2f in anotherFunction (o0ok=0x7fff5fbff699 "") at assert.m:11
#4 0x0000000100000e5b in someFunction (blah=0x7fff5fbff699 "") at assert.m:16
#5 0x0000000100000e7c in main (argc=2, argv=0x7fff5fbff528) at assert.m:20
Move to the third stack frame:

(gdb) frame 4

#3 0x0000000100000e2f in anotherFunction (ook=0x7fff5fbff699 "") at assert.m:11
11 assert (strlen(ook) > 0);

This is the assert, the smoking gun, so you know exactly what happened.

You can turn off core dumps by doing

$ ulimit -c 0O

One place where core files are very useful is for crashes that happen out in the field, where the user can
send you the core file for later dissection. However, having them run a shell and set limits might not be
practical. You can programmatically tell the system you want to drop a core file even if the shell limit
is zero. Recall the discussion in Chapter 7: Memory of process resource limits. One of the resource
limits is RLIMIT CORE, the largest size (in bytes) of core files. You can use the resource limit calls to
increase the coredump size. Example 8.3 is a modified assert.m:

Example 8.3 assert2.m

// assert2.m -- make a false assertion, thereby dumping core

217



Chapter 8 Debugging With GDB

// gcc -std=c99 -g -Wall -o assert2 assert2.m

#import <assert.h> // for assert
#import <stdio.h> // for printf
#import <string.h> // for strlen
#import <stdlib.h> // for EXIT SUCCESS
#import <sys/resource.h> // for setrlimit
#import <errno.h> // for errno

void anotherFunction (const char *ook) {
assert (strlen(ook) > 0);
printf ("wheeee! Got string %s\n", ook);
} // anotherFunction

void someFunction (const char *blah) {
anotherFunction (blah);
} // someFunction

void enableCoreDumps (void) {
struct rlimit rl = {

.rlim_cur = RLIM_INFINITY,
.rlim_max = RLIM_INFINITY
};
if (setrlimit(RLIMIT_CORE, &rl) == -1) {

fprintf(stderr, "error in setrlimit for RLIMIT_CORE: %d (%s)\n",
errno, strerror(errno));

}
} // enableCoreDumps

int main (int argc, const char *argv[]) {
enableCoreDumps();
someFunction(argv([1l]);
return EXIT SUCCESS;

} // main

If you run it now, you get a core file:

$ ./assert2 ""

Assertion failed: (strlen(ook) > 0), function anotherFunction,
file assert2.m, line 16.

Abort trap (core dumped)

To use this in a real program, you might want to put in some secret way that the user can execute that
function to allow core dumping. Like, “Command-Shift-Option-click the About box OK button, and
you will get a debug panel. Check the Core Dump check box and then do whatever it is that crashes the
program.”

For the More Curious: Stripping

Debugging symbols are pretty big and can bloat your executable. A simple Cocoa application of mine
weighs in at 262K with debug symbols, whereas without the symbols it is about 30K. Depending on
the application, keeping debug symbols around might not be a bad thing. For a high-traffic web server
application, we kept the debug symbols to make diagnosing production problems easier (and it really
came in handy sometimes). If your program has 500 megs of graphics and support files, a couple of

218



For the More Curious: Stripping

hundred K of debug symbols probably is not too bad. On the other hand, if you are writing smaller
downloadable applications, the extra hundred K or a meg could be a significant barrier to your program
being used. Having debug symbols also makes it easier for people to reverse-engineer your code.

To strip the debug symbols, you can either rebuild your program using the Deployment target in Xcode,
or you can just run the strip program against the executable. For instance:

$ ls -1 BorkPad
-rwxr-xr-x 1 markd staff 262780 Aug 19 21:10 BorkPad
$ strip BorkPad
$ ls -1 BorkPad
-rwxr-xr-x 1 markd staff 30608 Aug 20 21:37 BorkPad

So what happens if your program crashes out in the field? If you can get a core file, you can load
the core file into a gdb session with an unstripped version of your executable and be able to debug
symbolically. For example, use the assert2 program, make a stripped copy, and generate a core file:

$ cp assert2 stripped

$ strip stripped

$ ./stripped ""

Assertion failed: (strlen(ook) > 0), function anotherFunction,
file assert2.m, line 16.

Abort trap (core dumped)

If you gdb the stripped program, the stack traces are not very useful:
$ gdb ./stripped /cores/core.2342

(gdb) bt

#0 0x9001b52c in kill ()

#1 0x9005ceec in abort ()

#2 0x00001d18 in dyld stub exit ()

#3 0x00001c20 in ?7? (
#4 0x00001c64 in ?7?
#5 0x00001ca4 in ?7?

(
(
#6 0x00001978 in ?7? (
#7 0x000017f8 in ?7? (

———

But if you use the original, unstripped file, you have good stack traces:
$ gdb assert2 /cores/core.2342
(gdb) bt
#0 0x9001b52c in kill ()
#1 0x9005ceec in abort ()
#2 0x00001d18 in dyld stub exit ()
#3 0x00001c20 in anotherFunction (ook=0xbffffb87 "\000"...)
at assert2.m:19
#4 0x00001c64 in someFunction (blah=0xbffffb87 "\000"...)
at assert2.m:27
#5 0x00001cad4 in main (argc=2, argv=0xbffffadc) at assert2.m:37
#6 0x00001978 in start (argc=2, argv=0xbffffadc, envp=0xbffffae8)
at /SourceCache/Csu/Csu-45/crt.c:267
#7 0x000017f8 in start ()

If you do not want to mess with gdb, or the user emails you a stack trace from the crash reporter, you
can use atos to map the address to a symbol to see what function and line caused the problem.

219



Chapter 8 Debugging With GDB

$ atos -0 assert2 0x00001lcad
~main (assert2.m:38)

$ atos -0 assert2 0x00001c20
_anotherFunction (assert2.m:21)

More Advanced GDB Commands

Threads

gdb supports debugging threaded programs. We have lots to say about threading issues in Chapter 20:
Multithreading, but for now, here are some useful commands relating to threads.

info threads

thread apply

220

Shows information about all the currently active threads. Here is something from a
simple Cocoa program while the Page Setup dialog is active:

(gdb) info threads

3 process 128 thread 0x213 0x70978 in mach _msg overwrite trap()
2 process 128 thread 0x1f7 0x70978 in mach msg overwrite trap()
*1 process 128 thread 0x163 0x70978 in mach _msg overwrite trap()

You can change between threads with the thread command and then poke around
and see what it is doing:

(gdb) thread 3
[Switching to thread 3 (process 1208 thread 0x2123)]
#0 0x70000978 in mach _msg overwrite trap ()

(gdb) bt

#0 0x70000978 in mach _msg overwrite trap ()

#1 0x70005a04 in mach msg ()

#2 0x7017bf84 in _ CFRunLoopRun ()

#3 0x701b70ec in CFRunLoopRunSpecific ()

#4 0x7017b8cc in CFRunLoopRunInMode ()

#5 0x7061be08 in XIOAudioDeviceManager::NotificationThread ()
#6 0x706141cO in CAPThread::Entry ()

#7 0x7002054c in pthread body ()

Apply a command to a list of threads. You can use all to run the same command
in all threads.

(gdb) thread apply all where

Thread 2 (process 1208 thread 0x1f07):

#0 0x70000978 in mach msg overwrite trap ()
#1 0x70005a04 in mach msg ()

#2 0x70026a2c in pthread become available ()
#3 0x70026724 in pthread exit ()

#4 0x70020550 in pthread body ()

Thread 1 (process 1208 thread 0x1603):
#0 0x70000978 in mach msg overwrite trap ()
#1 0x70005a04 in mach msg ()



Threads

#2 0x7017bf84 in  CFRunLoopRun ()

#3 0x701b70ec in CFRunLoopRunSpecific ()
#4 0x7017b8cc in CFRunLoopRunInMode ()

#23 0x7938bed0® in NSApplicationMain ()

#24 0x000036b4 in start ()

#25 0x000034e4 in start ()

#0 0x70000978 in mach msg overwrite trap ()

When debugging, one thread is always the focus of debugging, known as the current thread. You can
break in particular threads if you wish, using thread apply thread# break .... When the program
stops, all threads stop, and when the program starts (even just doing a step), all threads potentially start
as well. Note that during the time of the single-step, the other threads can run full bore. The single-
stepping only applies to the current thread.

You can change this behavior using the set scheduler-locking mode command. The default mode is
off — threads run as just described. You can also set scheduler-locking on to run only the current
thread during all gdb commands, or set scheduler-locking step to run only the current thread
during step commands, but otherwise let the other threads run as normal. You can view the current
mode using show scheduler-locking. When scheduler locking is in effect, you must be careful not to
deadlock the application when calling functions from gdb.

221



This page intentionally left blank



DTrace

DTrace is a dynamic tracing facility developed by Sun Microsystems for the Solaris operating
system. DTrace lets administrators and developers explore the system and understand how it works.
It can help you track down program bugs and performance problems. DTrace was introduced with
Mac OS X 10.5. Prior to 10.5, ktrace served a similar, but more limited, purpose.

Overview

The heart of DTrace is the probe, where a probe is a named point in executing code. There are probes
corresponding to kernel events, function calls, Objective-C message sends, system calls, and many
other interesting events, as shown in Figure 9.1. Mac OS X includes tens of thousands of probes, and
the count grows with each new OS release. You can add probes to your own applications and libraries
to help in profiling and debugging the actions of your own code.

Figure 9.1 DTrace probes

O @) o o O @)
o O o ) o o ) o O o
©) O @)
o o °2%o0 4 °© 5 o °o °o
o O ) oo O o O
© 6% 00 0 o0 © ©
o O O O O
OO © o0 O o O o O
o O O o @] O o O o O
O ©) o O o o @)
User-space User-space DTrace
Kernel-space Kernel-space
(@] @] 1) o
(@] @) @) O @) O
o O
O O o 080 OO O o o O O
%0 o o O
(@] (@] (@] O 0O fe) O
O O O o O O O
O % o OO 10
o oo 4 ¢ o

Probes are dynamically inserted as needed when you run an experiment. There is no impact on the
system if probes are not engaged because the instrumentation is completely dynamic. This makes
DTrace safe to use on a production system to diagnose runtime problems. Probes are implemented
similarly to APE (Application Enhancer) or mach_inject (), where some slight of hand is performed

223



Chapter 9 DTrace

to make a function branch to a different place by changing the first few instructions of the function.
Therefore, there is no instrumentation code present for inactive probes and no performance degradation
when not using DTrace. All probes are automatically disabled once your DTrace experiment ends.
Probes are reference-counted, so you can run multiple experiments in parallel.

Providers are what provide the probes. For example, the syscall provider allows probes to be placed
on system calls. The profile provider triggers probes at regular time intervals.

The command-line application dtrace is your gateway to all of DTrace’s features. It can list the probes
available to you, generate a header file for new probes you wish to add to your code, and trace system
behavior. During tracing it engages probes and can aggregate and display data that it has gathered
during the tracing.

You can use probes to trigger context-sensitive actions of your own design. The actions you associate
with a probe can include getting a stack trace, looking at a time stamp, examining the argument to

a function, or examining the return value from a function. Thus, another way to look at probes is as
programmable sensors scattered throughout the system. You can attach code to each of the sensors

to analyze system activity. The DTrace “workflow” is shown in Figure 9.2, with a script being fed to
dtrace, being run in the kernel, accumulating data, and eventually reporting it back to the user.

Figure 9.2 DTrace workflow

pid
D provider
Script
objc Output to
provider terminal or
dtrace Instruments

User-space \ /

Kernel-space

syscall
D per-CPU provider
Prof_ile Program > data
provider accumulator
proc
prcf\t/)itder provider

The D language

Actions are written using the “D” programming language. D is yet another scripting language, this
time one which is heavily influenced by C. A large subset of C is supported along with a special set

224



Scripts

of functions specifically geared to analyzing system behavior. D programs actually run in kernel-
land. Before being run, they are compiled into a safe intermediate form similar to Java bytecode and
validated for safety. This is one reason why DTrace is safe to use in a production environment without
danger of crashing or corrupting the system.

DTrace scripts conventionally use the filename extension .d. Apple supplies a number of sample
scripts in the /usr/bin/ directory that are worth perusing.

Scripts

Example 9.1 is a sample DTrace script.

Example 9.1 keventwatch.d

/* Watch entry into kevent() */
syscall::kevent:entry
/execname == "dirwatcher" || execname == "DirectoryServic"/

{

printf("%s called kevent()", execname);

You can see that D uses C-style /* comments */. Modern C / C++ style comments (//) are not
supported.

Here is how you run it:

$ sudo dtrace -s keventwatch.d
dtrace: script 'keventwatch.d' matched 1 probe
CPU ID  FUNCTION:NAME
1 17238 kevent:entry DirectoryServic called kevent()
0 17238 kevent:entry dirwatcher called kevent()
0 17238 kevent:entry dirwatcher called kevent()
1 17238 kevent:entry DirectoryServic called kevent(
1 17238 kevent:entry DirectoryServic called kevent(

)

)

Use sudo because DTrace requires root privileges to run. This makes it less convenient than ktrace,
which could run as an ordinary user (useful when diagnosing program problems in the field on
someone else’s machine). The -s flag tells dtrace to read a D program from a given file, similar to
the -s flag you would give the shell or perl to execute the contents of a file. You can also use the
Unix “shebang” technique and include #! /usr/sbin/dtrace -s at the top of a file and make the file
executable to automatically invoke DTrace when the script is run.

This particular example watches all calls to kevent (), the primary kqueue interface, across the system.
The script prints out the name of the program that called the function, provided it is either the program
DirectoryServic[es], or the dirwatcher sample from Chapter 16: kqueue and FSEvents.

The DTrace output includes the CPU the particular kevent () was run on, the integer ID of the probe,
the name of the probe, and then the output from our printf() statement. You can suppress the default
output by giving dtrace the -q, for quiet, flag.

A D script is built from a collection of clauses. Example 9.1 has just one clause, but you can have
arbitrarily many clauses. A clause is made up of three components:

» The probe description, which describes what it is you want to trace. In this case, we’re tracing the
entry into the kevent() system call.

225



Chapter 9 DTrace

* A set of actions enclosed by curly braces. If there are no actions supplied, just an empty set of
braces, the name of the probe is printed out whenever it fires. In this case, we are printing out a line
of text that includes a process name.

* An optional predicate, delimited by slashes. The actions are run only if the predicate evaluates
to a true value. In this example, we are limiting the tracing to two programs. You can see all the
programs across the system that call kevent () by removing the predicate.

Probes

A probe is a location or activity to which a set of actions can be bound. The syntax for specifying a
probe is a colon specified list of up to four items:

* Provider - the instrumentation to be used. Some providers you will encounter are syscall to monitor
system calls, io for disk io, and many others.

* Module - a specific program location. It could be the name of the module the probe is located in. It
could also be the name of a kernel module or the name of a user library.

* Function - A specific function name.
* Name - An indication of the probe’s semantic meaning. entry and return are common ones.

In keventwatch.d, the only probe was syscall: :kevent:entry. The provider is syscall, there is no
module, the function is kevent, and the name is entry. Missing probe components are interpreted as
wildcards, matching everything they can. The probe description is evaluated from right to left in case
there are fewer than four components are specified. You can use shell-style globbing characters for
wildcarding: *, 7, [*...]

For example,
* syscall::open:entry will trace entries into the open() system call.

* syscall::open*:entry will trace any entries into functions that start with “open.” This will match
open, open_extended, and open_no_cancel.

* syscall:::entry will trace the entry into any system call.

* syscall::: will trace all probes published by syscall. There were 869 of these on an OS X 10.6.8
system.

There are a number of ways to explore the set of probes available on your system.

The command dtrace -1 (dash ell) will print out every probe that is available in the kernel. On this
system, there are a lot of them:

$ sudo dtrace -1 | wc -1
88632

This actually doesn’t count all the available probes. Some are dynamically generated, such as the
profiling probes discussed later. You can set probes on functions and Objective-C methods in user-
space, so there is no real upper bound to the number of probable spots. There are also a number of

226



Providers

probes that exist per running program. At the time the previous command was run, there were thirteen
Cocoa applications being run as well. Quitting one application reduced the total probe count to 87576.

You can redirect dtrace -1 out to a file and search through it with your favorite text editor. You can
also see what probes match a given description with the -1i flag. Here you can see what matches the
examples listed earlier:

$ sudo dtrace -1 -i syscall::open:entry

ID PROVIDER MODULE FUNCTION NAME
18649 syscall open entry
$ sudo dtrace -1 -i "syscall::open*:entry"
ID PROVIDER MODULE FUNCTION NAME
18649 syscall open entry
19193 syscall open_extended entry
19435 syscall open_nocancel entry

$ sudo dtrace -1 -i syscall:::entry | wc -1
435

$ sudo dtrace -1 -i syscall::: | wc -1
869

syscall::open*:entry is quoted on the command line to prevent the shell from expanding the
asterisk.

You can enable and manage thousands of probes. The more probes you enable, the longer it takes your
script to start up because DTrace needs to enable each of the probes and some time to disable each of
the probes when the experiment ends.

Providers

A provider is a facility that publishes the probes that you use in your D script. There are a number of
built-in providers.

BEGIN and END providers

These are actually called dtrace: : :BEGIN and dtrace: : : END, but they are usually used as just BEGIN
and END. The BEGIN probe fires when the D script begins execution, and the END probe fires when the
script finishes. Example 9.2 shows using the BEGIN and END probes.

Example 9.2 begin-end.d

BEGIN
{
trace("begin the beguine");
exit(0);
}
END
{
trace ("that's all, folks...");
}
Run it:

$ sudo dtrace -s begin-end.d

227



Chapter 9 DTrace

dtrace: script 'begin-end.d' matched 2 probes

CPU D FUNCTION:NAME
3 1 :BEGIN  begin the beguine
0 2 :END  that's all, folks...

The trace function is like printf, but it does not take any formatting arguments. It also automatically
generates a newline.

There is also a dtrace: : : ERROR probe that fires when an error happens, such as attempting to
dereference a NULL pointer.

pid provider

The pid provider lets you restrict a probe to a particular process ID. If you know that Safari is process
ID 1313, you can get a list of all available probes with this command:

$ sudo dtrace -1 -i "pid1313:::" > safari.txt

This might not actually work depending on how much RAM you have. You can try something similar
on a smaller application like TextEdit.

DTrace allows you to access command-line arguments within the script. $1 is the first argument
after all of arguments that dtrace will consume, $2 is the next one, and so on. Hard-coding a pid is
unpleasant to do, so you will typically use $1 to pass a particular process ID on the command-line.

malloc-pid.d tells you when a particular application has called malloc() and how much memory was
asked for.

Example 9.3 malloc-pid.d

pid$1l:1ibSystem.B.dylib:malloc:entry
{

}
Run it like this:

printf ("malloc of %d bytes for %s\n", arg0@, execname);

$ sudo dtrace -q -s malloc-pid.d 1313

malloc of 32 bytes for Safari

malloc of 32 bytes for Safari

malloc of 512 bytes for Safari

malloc of 2048 bytes for Safari

malloc of 512 bytes for Safari

malloc of 620 bytes for Safari

~C

The -q flag is used to suppress the usual output from dtrace. The first non-dtrace
argument is “1313,” which is the value of $1 in the script. The probe actually becomes
pid1313:1ibSystem.B.dylib:malloc:entry. Because dtrace’s default output has been suppressed, it
was necessary to add a newline to Example 9.3’s printf statement.

Notice that the script never ends. You need to interrupt it with Control-C in the terminal to make it
stop.

syscall provider

The syscall provider supplies system call entry and return probes. For example:

228



profile provider

* syscall::read:entry - probe whenever a process reads from a file descriptor

e syscall::kill:entry - run the action whenever a process calls kill()

profile provider

profile provides timed event probes. These are frequently used to display accumulated state at
intervals. The tick name is used to specify the time, with a number to indicate the time and a suffix to
specify the time unit to use. Example 9.4 shows the timer in action.

Example 9.4 lubdub.d

profile:::tick-5sec

{

trace("five second timer");
}
profile:::tick-1min
{

trace("one minute timer");
}
profile:::tick-800msec
{

trace("800 millisecond timer");
}

This script prints out their messages after the indicated times. A sample run looks like this:

$ sudo dtrace -s lubdub.d
dtrace: script 'lubdub.d' matched 3 probes

CPU ID FUNCTION:NAME
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
0 17368 :tick-5sec five second timer
0 17370 :tick-800msec 800 millisecond timer
0 17370 :tick-800msec 800 millisecond timer
~C

Valid suffixes are nsec, usec, msec, for nano-, micro-, and milli- seconds. (ns, us, and ms are valid
abbreviations.) sec, min, hour, and day are for longer values. (s, m, h, d are valid abbreviations.) There
is also hz for hertz, frequency per second.

proc provider

The proc provider gives you process-level information, such as program launches and exits.
Example 9.5 shows you when new processes have been created:

Example 9.5 execs.d

proc:::exec-success

{

229



Chapter 9 DTrace

trace(execname);

}
A sample run looks like this:

$ sudo dtrace -s execs.d
dtrace: script 'execs.d' matched 2 probes

CPU ID FUNCTION :NAME

0 18488 __mac_execve:exec-success s

0 18488 __mac_execve:exec-success  pwd

0 18495 posix_spawn:exec-success  iChat

0 18495 posix_spawn:exec-success  iChatAgent
~C

Is and pwd were performed in a Terminal window while iChat was launched in the Dock.

fbt provider

Another provider is the unpronounceable fbt provider, which stands for function boundary transition.
These are probes inside of the kernel. An fbt probe is triggered when a function is entered or exited.
Use the probe name entry or return to run an action when a function is entered or exited. On this
Snow Leopard system, there are 18 thousand fbt probes:

$ sudo dtrace -1 -i fbt:::
18531

| we -1

You can look at some of the available probes:

$ sudo dtrace -1 -i fbt:::
ID PROVIDER

| head -8

MODULE FUNCTION NAME

41 fbt mach_kernel AllocateNode entry
42 fbt mach_kernel AllocateNode return
43 fbt mach_kernel Assert entry
44 fbt mach_kernel Assert return
45 fbt mach_kernel BF decrypt entry
46 fbt mach_kernel BF decrypt return
47 fbt mach_kernel BF encrypt entry
Actions

Actions are the lines of code you write that execute whenever a probe is fired. You can assign values to
variables, perform computations, and aggregate values over time.

D has no flow control, so there are no if statements and no loops. You can simulate if statements by
using predicates, discussed below. The ternary operator (?:) is available, too.

The lack of loops is understandable. DTrace scripts, after they are compiled and verified, are run
inside of the kernel. It would be a bad thing to have an unintentional infinite loop occur, locking up the
system.

Variables

What is a programming language without variables? D has a number of kinds of variables. Simple
(scalar) variables are familiar to those of us used to C, along with structures, associative arrays,
aggregates, and even pointers.

230



Variables

Simple variables match C’s standard types: char, int, short, long, long long, and all of their
unsigned variants. You can perform the usual C-style casting between them. The size of these depend
on the OS kernel’s data model: a Long on a 32 bit kernel would be 32 bits, and 64 bits on a 64 bit
kernel. There are no floating point variables. You can display floating point values you get from
probes, but you cannot perform floating point math. You cannot cast from a float to an integer value.

You don’t need to declare a variable before you use it, just assign it, and the variable will use the type
of the first assignment. You cannot declare a variable and assign it a value at the same time.

Variables are global by default. Typically you will declare the variable, if you choose to, outside of any
clauses and then assign it an initial value inside of a BEGIN clause. Variables are zeroed initially.

The standard C operators (+, -, *, /, ++, etc) all work as expected, as do comparison operators (<, >, !
=, etc). & and | | are available in logical statements, as is ~*, which is a logical XOR. XOR evaluates
to true if exactly one operand is true. Logical OR and AND perform short-circuit evaluation, but XOR
does not. Both expressions for an XOR are always evaluated.

Variables can have string values as well. Comparison operators with strings behave as if you had called
strcmp() on the strings.

Example 9.6 sings a familiar song:

Example 9.6 beer.d

int bottles; /* optional */

BEGIN

{
bottles = 99;

}

profile:::tick-1lsec

{
printf("%d bottles of beer on the wall\n", bottles);
printf("%d bottles of beer.\n", bottles);
printf("take one down, pass it around\n");
printf("%d bottles of beer on the wall\n\n", bottles);
bottles--;

}

END

{
printf("that's all, folks...");

}

Run it like usual and interrupt it when you have had enough.

$ sudo dtrace -qs beer.d

99 bottles of beer on the wall
99 bottles of beer.

take one down, pass it around
99 bottles of beer on the wall

98 bottles of beer on the wall
98 bottles of beer.

take one down, pass it around
98 bottles of beer on the wall

231



Chapter 9 DTrace

~C
that's all, folks...

Scoped variables

There are two additional scopes for variables: per-thread, and per-clause. Thread-local variables

are useful when you want to enable a probe and perform some work with individual thread. You
prefix a thread-local variable with self->. A thread’s identity is unique over the lifetime of a system,
so you won’t get any weird collisions that might happen if a kernel thread ID gets reused. A per-
clause variable is like a static local variable in C. It is only in scope when a particular clause is being
executed. Prefix clause-local variables with this->.

Built-in variables

D provides a number of built-in scalar variables. There are no built-in thread-local or clause-local
variables.

int64 t arg@, argl, ... arg9; The first ten input arguments to a probe, as 64-bit integers.
Undefined arguments are zero-filled.

args|[] Typed arguments to the current probe, using an integer index.
For instance, the read system call is prototyped like

ssize t read(int fildes, void *buf, size t nbyte);

So args[0] will be an integer, the file descriptor; args[1] will
be a pointer value, and args[2] is typed size t, the size of the
buffer.

cwd Current working directory of the process that owns the thread
that is triggering the probe.

errno Error value returned by the last system call executed by the
thread.

execname Name of the executable that triggered the probe.

pid Process id of the executable that triggered the probe.

stackdepth Current thread’s stackframe depth.

timestamp, vtimestamp Current values of a nanosecond timestamp. The absolute value

have no real meaning, but you use them to calculate delta values.
timestamp is wall-clock time, and vtimestamp is per-CPU time,
minus DTtrace overhead.

probeprov, probemod, Names of the four parts of the probe specification.
probefunc, probename

These last four are handy for knowing which particular probe is firing, especially if you have one
probe specification that matches multiple probes. Example 9.7 traces all system calls made across the
system.

232



Built-in variables

Example 9.7 syscalls.d
syscall:::
/execname != "dtrace"/

{
}

printf ("%s fired in %s\n", probefunc, execname);

This produces a lot of output:

$ sudo dtrace -gs syscalls.d
sigprocmask fired in WindowServer
__semwait signal fired in fseventsd
lstat fired in fseventsd
getattrlist fired in backupd
__semwait signal fired in mds
gettimeofday fired in Snak
gettimeofday fired in Snak
gettimeofday fired in Adium
gettimeofday fired in Adium
kevent fired in DirectoryServic
getrusage fired in Skype
getrusage fired in Skype

~C

The /execname != "dtrace"/ predicate is there to filter out system calls from dtrace, of which there

are many. The clause will only be run if the name of the executable that triggered the probe was not
dtrace.

You can access kernel and application data structures from your D script. You can reference a symbol
external to DTrace, such as a kernel data structure, by prefixing the name with the backtick: .
Example 9.8 displays the system load average every five seconds. Remember that there are no floating
point calculations available, so the integer and decimal components of the load average, stored in the
avrunnable structure, must be calculated independently.

Example 9.8 loadaverage.d

profile:::tick-5sec

{
this->fscale = “averunnable.fscale;
this->loadInteger = “averunnable.ldavg[0] / this->fscale;
this->loadDecimal = (( averunnable.ldavg[0] % this->fscale) * 100)
/ this->fscale;
printf ("%d.%d\n", this->loadInteger, this->loadDecimal);
}

A sample run:

sudo dtrace -gqs loadaverage.d

COHKRFFMHW®¥
N
Tl

233



Chapter 9 DTrace

The machine had been used to perform an end-to-end build of a product which raised the load average.
Here you can see the system “cooling off.”

Functions

D provides a number of functions you can use in your action scripts. Here is a sampling.

printf Standard C-style printf function

trace Displays its argument, using a default format based on the type. Also
appends a newline for you.

printa Print aggregate values, described in more detail below.

ustack Print the user level stack trace. If the process exits or is killed before the
DTrace experiment has completed, DTrace might not be able to resolve the
program counter, so you will get hex values rather than symbolic values.

exit Terminate execution early. Otherwise, you have to type Control-C to quit.

copyin, copyinstr DTrace scripts execute in kernel scope. Consider probing a system call
like write(), which takes a pointer to a buffer with the data to be written.
There is a problem if you want to use the contents of the buffer in your
action. The pointer is to an address in user-space, and DTrace is running
in kernel-space. Use one of these functions to get the data from user-space
into kernel-space.

void *copyin (uintptr_t addr, size t size)

Copies the specified size in bytes from the given user-space address into
a DTrace scratch buffer and returns the address of the buffer. If there is
insufficient scratch space available, or the given address is bad, an error is
generated.

string copyinstr (uintptr_t addr)

Copies a zero-terminated C string from user-space into a scratch buffer and
returns the buffer’s address. You can use the returned address as a string.

Arrays

D provides associative arrays that are similar to hashtables and dictionaries in other languages. The
index into the array can be a n-tuple of values, separated by commas. arrayname[pid, probefunc,
"bork"] = 23; is a valid assignment. The types of the array index must match for every assignment,
and the assigned values must be uniform. You cannot nest arrays.

Example 9.9 calculates the wall-clock time it takes to execute the read() system call:

Example 9.9 readtime.d

syscall::read:entry

234



C arrays

{
}

self->ts[pid, probefunc] = timestamp;

syscall::read:return
/self->ts[pid, probefunc] != 0/
{
delta = timestamp - self->ts[pid, probefunc];
printf ("read in %s took %d nsecs\n", execname, delta);

}

And a sample run:

$ sudo dtrace -qs ./readtime.d

read in Terminal took 18469 nsecs

read in emacs-1386 took 14714 nsecs

read in Terminal took 11391 nsecs

read in Terminal took 26777 nsecs

read in emacs-i386 took 23776797 nsecs

~C

The predicate is there to prevent the script from starting in the middle of a read and getting bad values
in the timestamp calculation. If there was no corresponding start time, the time calculation code is
skipped. The array is stored as a thead-local variable with self-> so that an application that is using
read() in multiple threads won’t get confused.

C arrays

Interestingly enough, D supports C-style arrays — address plus offset. D can access kernel and
application data structures, which include pointers and arrays. You can dereference pointers and
access arrays with the usual C syntax. D makes sure that all array and pointer access is safe, so you
do not have to worry about triggering a SEGV in kernel-land. Your script may be terminated, and the
dtrace: ::ERROR probe triggered.

Predicates

Predicates are logical expressions that are enclosed by slashes. The action code is run if the expression
evaluates to a true value when a probe fires. You can have the same probe used with different
predicates and different action blocks. Clauses are executed in the order they appear in the source file.

Aggregates

Aggregates are DTrace’s way of accumulating a lot of individual pieces of data into a more useful
overall view. Seeing individual read () times can be useful, if a bit voluminous. Having a min / max /
average of read times may be much more interesting.

The syntax for using a DTrace aggregate looks a bit like using array.
@name[key] = aggfunc();

The leading at-sign means that an aggregate is being used, and the assignment is a function rather than
an expression. There are a number of aggregating functions:

count() Keeps count of the number of times it is called.

235



Chapter 9 DTrace

sum(expression) Accumulates the total value of the expression over time.
avg(expression) Accumulates the arithmetic average of the expression over time.
min(expression) Keeps the smallest expression that is seen over time.

max (expression) Keeps the largest expression that is seen over time.
quantize(expression) Keeps a power-of-two frequency distribution of the values of

the given histogram. The value of the expression increments the
value in a histogram bucket. When the program exits, dtrace
prints an ASCII chart showing the bucket values.

lquantize(expression, lower- Similar to quantize, but uses a linear frequency distribution
bound, upper-bound, step- rather than a power-of-two distribution.
value)

OK, so what does all that mean? Here are some examples. Example 9.10 counts the number of times
the read() system call is made by any process.

Example 9.10 countread.d
syscall::read:entry

@calls[execname] = count();

}

A sample run:

$ sudo dtrace -s ./countread.d
dtrace: script './countread.d' matched 1 probe

~C
VoodooPad Pro 1
socketfilterfw 1
mds 12
DirectoryServic 21
fseventsd 22
Safari 62
Terminal 86
emacs-1i386 141

dtrace helpfully displays aggregates for you when it exits. Unfortunately, this can make a mess if you
have a couple of aggregates going. Example 9.11 counts the number of read calls and maintains the
average calltime:

Example 9.11 avgread-1.d

syscall::read:entry

{
@calls[execname] = count();
self->ts = timestamp;

}

syscall::read:return
/self->ts/

236



Aggregates

delta = timestamp - self->ts;
@averagetime[execname] = avg(delta);

}

Some output from this script:

$ sudo dtrace -qs avgread-1.d

~C
VoodooPad Pro 1
csh 1
securityd 2
open 10
Preview 40
emacs-i386 55
Terminal 122
Terminal 7998
emacs-i386 10062
VoodooPad Pro 10232
open 15512
securityd 17807
Preview 28280

There are counts and average times in there, but it is hard to tell where the counts stop and the average
times begin. Example 9.12 controls the output by creating an END probe and using printa() to print

out the aggregate.

Example 9.12 avgread-2.d

syscall::read:entry

{

self->ts = timestamp;
}
syscall::read:return
/self->ts/
{

delta = timestamp - self->ts;
@averagetime[execname] = avg(delta);
@callcount[execname] = count();

@mintime[execname] = min(delta);
@maxtime[execname] = max(delta);
self->ts = 0;

}

END

{
printf ("average time\n");
printa ("%20s %@d\n", @averagetime);
printf ("\ncall count\n");
printa ("%20s %@d\n", @callcount);
printf ("\nmintime\n");
printa ("%20s %@d\n", @mintime);
printf ("\nmaxtime\n");
printa ("%20s %@d\n", @maxtime);

}

237



Chapter 9 DTrace

The script in action:

$ sudo dtrace -gqs avgread-2.d
~C
average time
Terminal 7941
emacs-i386 9985
mDNSResponder 17781
Safari 24666
VoodooPad Pro 55339
fseventsd 527863979
mds 551164939

call count
mDNSResponder
emacs-i386
Terminal
mds
fseventsd
VoodooPad Pro 270
Safari 622

o WN

Charts are always fun. Example 9.13 aggregates read times, but this time, the times are represented as a
histogram on process exit.

Example 9.13 avgquant.d

syscall::read:entry

{

self->ts = timestamp;
}
syscall::read:return
/self->ts/
{

delta = timestamp - self->ts;
@quanttime[execname] = quantize(delta);

}

This is what a sample run looks like:

$ sudo dtrace -qs avgquant.d

Password:
~C
securityd
value -------- Distribution -------- count
4096 | 0
8192 |(QREEEEEEEREEEREEEEEEER 1
16384 |(EEEEEEEEELREECEEEEEEEA 1
32768 | 0
open
value -------- Distribution -------- count
2048 | 0
4096 |QEEEEEEEEEEEEEEQ 4
8192 |(@EEEEEEEEREER 3
16384 |@QEEEQQQ 2

238



Aggregate-related functions

32768 |@EEE 1
65536 | 0
Preview
value -------- Distribution -------- count
2048 | 0
4096 |QEEEEEEEEEEEER 9
8192 |EEEEEEECEEEERECREEEEQ 13
16384 |eeeee 3
32768 |@@ 1
65536 | 0

Aggregate-related functions

There are several functions you can apply to an aggregate as a whole.

normalize, denormalize Sometimes the values in an aggregate are not as useful as they
could be. For example, you might have a sum of read times in an
aggregate, but you may be more interested in read times over a
period of time. The normalize function takes an aggregate and a
scalar as arguments. The values of the aggregate are divided by the
scalar value. The aggregate values are not permanently changed, so
you can use denormalize to return to the original values.

clear Removes all of the values but leaves the keys. Sometimes it may
be interesting to know that a key has had a non-zero value in an
aggregate.

trunc Removes values as well as keys. trunc by itself will truncate the

entire aggregate. trunc with a positive value will preserve the N
largest values. trunc with a negative value will preserve the N
smallest values.

Also, when a variable such as an array or an aggregate is assigned a zero value, DTrace will garbage
collect the memory. When you are done with an array or an aggregate before the script ends, assign it
to zero to conserve memory.

Random Leftovers

The C preprocessor

DTrace can run your script through the C preprocessor before the code is compiled. You can use all
of the standard preprocessor features to make macros with common code and include C header files
to include type definitions of library types. The D compiler automatically loads the set of C type
descriptions for the kernel.

Pragmas

DTrace has a number of tunable parameters you can change via pragmas. Some useful ones:

#pragma D option quiet same as passing -q on the command-line

239



Chapter 9 DTrace

#pragma D option flowindent dtrace prints the name of the function if an action is empty. If
you turn on this pragma, DTrace will indent function call names
based on call depth, giving you a call trace.

Example 9.14 is a script that traces the flow of function calls in the kernel for the open () system call
when invoked by the Is command-line tool:

Example 9.14 trace-ls.d

#pragma D option flowindent

BEGIN
{
printf("waiting for 'ls'");
}
syscall::open:entry
/execname == "ls" && guard++ == 0/
{
self->tracelt = 1;
}
fbt:::
/self->tracelt/
{
}

syscall:::return
/self->tracelt/
{
self->tracelt = 0;
exit (0);
}

Below is a sample run, truncated for brevity. This script uses an “ambush” technique to wait for a
program to start running. Run dtrace in one terminal and perform an Is in another one.

$ sudo dtrace -s ./trace-ls.d
dtrace: script './trace-ls.d' matched 16834 probes
CPU FUNCTION
1 | :BEGIN waiting for 'ls'

-> open
-> pthread testcancel
-> open_nocancel
-> vfs context current
<- vfs context current
-> vfs context proc
-> get bsdthreadtask info
<- get bsdthreadtask info
-> falloc
-> lck mtx lock
<- lck mtx lock
-> falloc_locked
-> fdalloc
<- fdalloc
-> proc_ucred
<- proc_ucred

[cNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo)

240



Objective-C

-> mac_file check create
-> mac_policy list conditional busy
<- mac_policy list conditional busy
<- mac_file check create

[cNoNoNo)

Here is a dissection of the clauses of the script:
#pragma D option flowindent
Indent the call graph

BEGIN
{

}

syscall::open:entry
/execname == "ls" && guard++ == 0/

{
}

printf("waiting for 'ls'");

self->tracelt = 1;

This clause is interested in the open() system call. When an open() call is made in a process called
“Is,” set the traceIt flag. The predicate makes us wait until we see Is before doing anything. The
guard variable is to make sure we only trace one particular open call. This will protect the script from
getting confused if there are multiple Is processes running, or if it uses open() in multiple threads.

fbt:::
/self->tracelt/
{

}

This action is invoked any time a kernel function is entered or exited. The kernel does a lot of stuff,
and we are only interested in these function call transitions if the script is actively tracing. Because of
the predicate of the previous action, we will only have one thread in one process tracing through the
execution of open()..

syscall:::return
/self->tracelt/

{
self->tracelt = 0;

exit (0);
}

This probe is triggered on any system call exit. For the great majority of system call exits in the
system, we just not interested. If the traceme thread-local variable is set, then that means this is an
interesting thread — the one that is tracing the open() system call of our Is process. If traceIt is a true
value, execute the code. Clear out the traceIt flag, so that any subsequent system call exits in Is are
triggered. Then finally terminate the script.

Objective-C

Apple has extended dtrace to trace Objective-C method invocations, using a special objc provider.
Some calls can be caught by the pid probe:

241



Chapter 9 DTrace

pid$1l:AppKit:*:entry

traces the entry into any AppKit method.
pid$1l:AppKit:*NSControl*:entry

traces the entry into any NSControl method.

The objc probe is like the pid probe, which requires a process ID. You can specify the pid explicitly,
or by using the $1 built-in variable to take the first argument for the script. Trace an instance method:

objc$1:NSControl:-cell:return
Trace an instance method that takes an argument:
objc$1:NSControl:-setEnabled?:return

Both DTrace and Objective-C treat colons as important delimiters. Use the ?, match one character
wildcard, to tell DTrace to match the Objective-C colons.

Trace an instance method that takes more than one argument:
objc$1:NSView: -convertRect?toView?:entry

You can trace class messages by using a leading + on the method name.

Exercises

1. Make beer.d actually stop when it runs out of bottles.

2. The stack trace returned by ustack() can be used as an index in an array or an aggregate. See how
many unique stack traces in an application of your choice end up calling malloc().

242



10

Performance Tuning

It has happened to all of us: you subject your program to real world data and discover that performance
is sub-optimal, ranging from “could be faster” to “locks up instantly and CPU fans reach Mach 3.”
Finding out what the performance problem is can be a difficult task. Many times we think we know
where the problem is, but we turn out to be wrong. Luckily, there are a number of tools available to
give definite metrics of where the program spends its time and what kind of pressure it puts on the OS
in general.

The End of Free Performance

Over the last several decades, computer performance has been doubling about every 18 months, a
figure attributable to Moore’s Law, which states that “The number of transistors in microchips will
double about every 18 months.” For a long time, this doubling of transistors translated into doubling of
performance and was helped along by increases in the clock frequency of the processors, which went
from megahertz to gigahertz.

As software developers, we have had the luxury of writing sub-optimal code while improvements in
computer hardware have masked inefficiencies. This has allowed us to tackle larger, more interesting
problems without having to obsess over every cycle; and let us use simpler algorithms with more
expensive orders of complexity.

The major chip manufacturers have hit a hard barrier in the race to crank up clock speeds due to
problems with the speed of light and heat dissipation. Moore’s Law regarding those transistors is still
in force, though. Manufacturers are still cramming more and more transistors into their processors,
but these transistors are being used in other places. In particular, they are being used to increase
parallelism.

CPUs have a great deal of internal parallelism, allowing multiple integer and floating point units

to do calculations in parallel as well as vector units that operate on multiple pieces of data with a
single instruction. In addition to separate processor units, CPUs these days are also multicore and
hyperthreaded architectures. Multicore chips have several distinct CPUs on one physical chip. These
processors operate in parallel to each other and have their own logic units. Hyperthread processors
have two or more threads operating in parallel in a single CPU. Hyperthreads still share stuff like
processor cache and math units, but it still allows the processor to chew through more instructions in a
given time period. These can be combined, allowing an 8-core MacPro to appear to have 16 processors.
Parallelism in GPUs, the graphical processing units found on graphics cards, is progressing even faster
than with CPUs. It is not uncommon for a GPU to have 256 processors all running in parallel.

Parallel code is becoming more and more prevalent to take advantage of these multicore and
hyperthreaded architectures. Parallel code usually is the domain of the more advanced programmers

243



Chapter 10 Performance Tuning

because of the difficulty in the writing correct concurrent programs. As you saw in Chapter 20:
Multithreading, there are many issues that make parallel development difficult. More programmers
will be needing to learn about this world and its problems so that we (as an industry) can continue
developing software that behaves correctly and has the performance the users have come to expect.
Tech such as Grand Central Dispatch helps alleviate some of the problems inherent in parallel
programming, but it is still difficult to get right.

The design decisions occurring on the hardware side of the world have an impact on us living on the
software side. Writing efficient code is coming back into style because we cannot count on processors
“just getting faster” to help us.

The fact that users are dealing with ever-growing sets of data does not help the problem either. As
computers get more powerful, users are using them to do more stuff to larger data sets. Consider
iPhoto. People first used iPhoto to manage small libraries of relatively small photos. Now that we have
terabyte hard drives, 16 core machines, and cheap high megapixel digital cameras, users are creating
huge photo libraries of enormous images. Users will expect to be able to sling around ever larger sets
of data as time goes on. They will not particularly care to hear any excuses about the gigahertz barrier.

Approaches To Performance

The key to keeping on top of your performance is to use profiling tools. Profile early, and profile
often. Catch performance issues early in your development so you don’t build a lot of code around
an inefficient core. If you use Instruments, Shark, or other performance tools regularly, you can see
possible performance issues on the horizon before they come close and bite you.

Be sure to profile with each new revision of the OS and on new hardware as it comes out. As Apple
changes Mac OS X under the hood, things that were optimal may now be suboptimal and vice-versa.
Hardware changes can change the game performance-wise. Consider look-up tables, which are a
common way to avoid doing calculation. On PowerPC G4 and older processors, using a look-up table
was often a big win, but the G5 could do a lot of calculation in the time it took to load data from
memory. Having situations like this can be a real problem if you have to support older versions of the
OS or if you want to optimally target vastly different hardware.

Be careful to not totally contort your design early on in a noble quest for Optimal Performance. You
might be addressing performance issues that do not have a real impact on your final product. Reports
from profilers are not gospel. A report may highlight a performance problem, but the problem may
be something that doesn’t need fixing. If a problem highlighted by a profiler will not affect the user
experience of your program or if it is something that rarely happens, you can put your energies into
optimizing something else.

Finally, do not just profile your development builds. If you use different compiler flags for deployment
builds, especially with higher optimization levels, you will want to do some profiling on your final
build so that you do not waste time fixing code paths that will change with compiler optimizations.

Major Causes of Performance Problems

Performance problems typically come from one or more of 5 major areas: algorithms, memory, CPU,
disk, and graphics. Granted, that is pretty much everything your program interacts with in the machine.
You can use performance tools to look at each aspect of computer performance in isolation to get a
better handle on your overall performance issues, even if one problem is causing problems in several
categories.

244



Memory

Memory

Even though modern machines have vast amounts of memory, RAM is still a scarce resource. Once
your app or other apps on the system fill up memory, Mac OS X starts sending memory pages to
disk, destroying performance. On iOS devices, your program may be killed outright in low-memory
situations.

Typically if you optimize to reduce your memory usage (optimizing for space), you will often get
reductions in execution time because the processor is not waiting for that extra data to arrive from
memory. Also, because Mac OS X is a shared system with daemons running, with each user running
lots of programs of their own, and potentially multiple users logged in, it is good to be conservative
with your memory usage. This can be a tough discipline when each process has its own wide-open
address space to play in, especially when using 64-bit addressing.

Locality of Reference

“Locality of reference” describes memory accesses that happen near each other. Reading a hundred
bytes off one 4k page is faster than reading one byte off a hundred different pages scattered across

the address space. When you ask for data from memory, the processor actually grabs a sequence of
bytes, known as a cache line, under the assumption that you will be accessing memory in a contiguous
manner. From the processor’s point of view, it is just as fast to grab a 64-byte cache line as it is to
grab a 4-byte integer. So, if you set up your loops to operate on memory sequentially, you can see a
performance boost.

Example 10.1 creates a large two dimensional global array and accesses it in two different ways.

Example 10.1 locality.m

// locality.m -- time locality of reference
#include <stdio.h> // for printf
#include <stdlib.h> // for EXIT SUCCESS
#include <time.h> // for time t, time()

// gcc -g -std=c99 -o locality locality.m

#define ARRAYSIZE 20000
int a[ARRAYSIZE][ARRAYSIZE]; // make a huge array

int main (int argc, char *argv[]) {

// Walk the array in row-major order, so that once we're done
// with a page we never bother with it again.
time t starttime = time(NULL);
for (int i = 0; i < ARRAYSIZE; i++){

for(int j = 0; j < ARRAYSIZE; j++){

alilljl = 1;

}
}
time t endtime = time (NULL);

printf("row-major: %d operations in %ld seconds.\n",
ARRAYSIZE * ARRAYSIZE, endtime - starttime);

245



Chapter 10 Performance Tuning

// Walk the array in column-major order. It ends up touching a bunch of
// pages multiple times.

starttime = time(NULL);
for (int j = 0; j < ARRAYSIZE; j++){
for(int i = 0; i < ARRAYSIZE; i++){
alilljl = 1;
h
}
endtime = time (NULL);

printf("column-major: %d operations in %ld seconds.\n",
ARRAYSIZE * ARRAYSIZE, endtime - starttime);

return EXIT SUCCESS;

} // main

Here is a sample run:

$ ./locality
row-major: 400000000 operations in 3 seconds.
column-major: 400000000 operations in 27 seconds.

A simple reversal of the for loops can result in a 9x performance penalty! The first loop follows the
way that C has the array’s memory organized, as shown in Figure 10.1. This loop accesses adjacent
bytes, and as it works through the array, it has good locality of reference. Memory pages are accessed
only once, and after the loop has stopped manipulating memory on a page, that page is no longer used.

Figure 10.1 Good memory access pattern

_’,,,-~"’”””” Memory
Pages

1 A

VHUH

246



Memory

The second loop works “across the grain,” as shown in Figure 10.2. It ends up hitting every page used
by the array every time through the loop. This puts a lot of pressure on the virtual memory system
because every page stays “warm,” causing the kernel to keep shuffling its least-recently-used page lists.
The first loop, because it does not touch a page once the work is done, is nicer to the kernel. Once the
page ages out of the kernel’s data structures, it is never seen again.

Figure 10.2 Bad memory access pattern

A 4] 4] 4

Memory
— Pages

Caches

One common way to boost performance is caching, where you keep around some loaded or calculated
data in memory. If you are not careful, this technique can have drawbacks in a system that employs
virtual memory and paging. Recall that memory that hasn’t been accessed recently can be paged out
to disk and the space in RAM can be used by other processes. i10S devices do not page data to disk, so
dirty pages are always resident.

If do you choose to cache information, it is best to split up your cache data and the metadata that
describes the cached data. You don’t want to use an architecture like Figure 10.3, which mixes the
cache data and the metadata.

Figure 10.3 Bad locality of reference

cache

cache data data

cache data I cache data

metadata
metadata
metadata
metadata

Instead, organize your data as shown in Figure 10.4. Keep your metadata together because you will
have good locality of reference when walking through your cache looking for expired objects. You can
even do your own form of virtual memory: if a cache entry has not been used in a while or if you get

247



Chapter 10 Performance Tuning

an i0OS memory warning, you can remove your data blob from memory and then load it again when
needed.

Figure 10.4 Good locality of reference

slels|sislSlZ|e|ele g
R RS L T ]
IR IR E-1 -1 E-1E-15-15-1k:] ©
JARCh Bl Bl Bo) ey el B o) ) g
°|o|T|o|o|o|0||(B|T 5]
E|E|E[E|E|E|E|E|E|E £

/

cache data C;:g N cache data e cache data

Memory is the New 1/O

The motivation that drives programmers to cache data read from disk is that I/O from disk is hideously
expensive. Waiting for one disk I/O can cost hundreds of thousands (or more) CPU cycles that could be
put to better use.

With today’s processors, memory subsystems, and bus architectures, RAM has become like 1/O.
Sometimes accessing memory can be extremely slow compared to CPU speed. For example, according
to an Apple tech note, a G5 could do 16 to 50 vector adds in the time it takes to load a cache line from
memory. And the situation can get even worse with modern processors.

The “precalculate and store in memory” technique can become a bottleneck compared to brute-force
calculations. The CPU can grind through some calculations faster than the fetch from memory, and
the look-up table can force more important data out of the CPU caches. The tech note goes on to say
“In one example, vector code that converts unsigned char data to float and then applies a 9th order
polynomial to it is still marginally faster than hand tuned scalar code that does a lookup into a 256
entry lookup table containing floats.”

Level-1 Cache, the cache memory nearest the CPU logic units, has an area for instructions, but it is
only 32 to 64 kilobytes large, per core. Optimizations that increase code length, like loop unrolling
and 64-bit code in general, can blow out this cache, requiring code to be continually brought in from
RAM. It becomes a balancing act between the size of code, what you calculate, and what you store
and retrieve. Sometimes trial-and-error is the way to go to see what technique results in the best
performance, especially if you have high-performance scientific modeling that will have long runtimes
or if you are dealing with large volumes of data quickly, such as when processing video.

Semantics of the C language can get in the way, optimization-wise, especially with regards to memory.
If the compiler knows how a particular chunk of memory is being accessed, it can cache the values

in registers or even avoid loading data that has already been loaded. Because C has pointers, there

can be aliasing problems. There may be a pointer elsewhere in the process that is pointing to (and
could conceivably modify) a piece of memory that the compiler could otherwise optimize access to.
This is why languages that do not have pointers, like FORTRAN, can perform much more aggressive
optimizations.

248



CPU

When using a data structure through a pointer or a global variable in a loop, the compiler will emit
code to reload that location in memory each time through the loop. It does this just in case the value
was changed by someone else, either in another thread or by a function called inside the loop. Making
a local variable to hold the global’s value lets the compiler figure out that this data is not going to
change and thus avoids the memory hit each time through the loop.

CPU

CPU usage is the metric that most programmers think about first when confronted with an optimization
issue. “My app is pegging the CPU, and I need to speed it up.” Typically when CPU usage becomes

a dominant factor, the root cause is a slow algorithm. It might have a high level of complexity, or it
might just be a poor implementation. In almost all cases, changing your algorithm will give you more
speedups than most other kinds of code or system tweaking. The classic example is changing from a
bubble-sort, an order O(N 2 algorithm), to a quicksort or merge sort, which is O(n log n).

Sometimes a bad implementation of an algorithm can wreak havoc. For instance, a programming error
turned strstr() in one version of SunOS 4.1.x from an O(N) operation to a worthless O(Nz) one:

while (c < strlen(string)) {
// do stuff with string[c]
}

Recall that C strings do not store their length. A string is just a sequence of bytes terminated by zero.
strlen() has to traverse the entire string counting characters. There are tricks you can use to do the
work in greater than one-byte chunks, but it’s still an O(N) operation. In this particular case, the length
of the string is not going to change, so there is no reason to take the length every time through the loop.

Luckily, high CPU usage can be easily discovered by noticing that the CPU meter is pegged in Activity
Monitor, that top is showing your app consuming 99% of the available CPU power, or that your laptop
case has started glowing. The sampling and profiling tools discussed later in this chapter are ideal for
tracking down the cause of these problems.

Disk

Disk access is very slow — many orders of magnitude slower than accessing memory. In general, if you
can avoid disk I/O, do so. If you are planning on caching data from disk, remember that the virtual
memory system also uses the disk. If you cache a large amount of data, you could end up causing the
VM system to do disk I/O. This is a very bad situation because you have now exchanged one disk read
(from disk into memory) into a read and a write to page it out and then another read to page it back in
from the disk into memory.

Locality of reference plays a part when optimizing disk access when VM paging involved. With bad
locality of reference, you end up touching lots of pages. These pages cause other pages to “age out” of
the VM cache and get sent to disk. Eventually you will touch them again which could cause disk I/O to
retrieve the data on those pages.

You can avoid some of the expense of disk I/O by not doing the work at all. Putting windows into
different .nib files and loading them on demand is a common technique. If you do not need to show
the window, there is no reason to load it in memory.

Similarly, if you have a large database of information, accessing it piecemeal can yield significant
speedups over loading the whole thing into memory. Using memory-mapped files can avoid disk
activity because only the parts of the file being touched will make their way into memory.

249



Chapter 10 Performance Tuning

Graphics

The Quartz graphics engine in Mac OS X puts a lot of pressure on the memory system. Quartz uses
large graphic buffers, one for each window visible on the screen. There are also compositing operations
to render the user’s desktop. Quartz also uses the CPU to do some of its drawing effects, although
many of these operations have been migrated to the graphics processing units on the graphics card.
There are some operations that do not work well on the GPU, so these must be done on the CPU.

The key to optimizing graphics is to avoid drawing when you can. Use the Quartz Debug utility, shown
in Figure 10.5, to see where you are doing unnecessary drawing. The most commonly used features are
in the Drawing Information panel. Autoflush drawing causes drawing operations to appear on the screen
as soon as they happen rather than being batched for the next update. Areas to the screen that are drawn
to can be made to flash so you can see where you are drawing. Identical screen updates are highlighted
in a different color so you can see where redundant work is happening.

Figure 10.5 Quartz Debug

(%] localhost

& Enable Quartz Debug (™~ 3ET)
¥ Hardware Acceleration
& Enable Quartz Extreme
B Force QuartzGL
B Dizable 2D Acceleration
¥ Drawing Information
B Auroflush drawing
B Flash screen updates
@ Flaszh identical screen updates
B Mo delay after flash
B Show tracking rectangles

* Beam Sync

NSView has some features that let you decide which parts of the view need to be redrawn and which
ones do not. You can hit-test the rectangle that is passed to NSView’s drawRect: method and only
perform drawing calls for items that live in that rectangle. This rectangle tends to be the union of all of
the area that needs redrawing, so you can consult getRectsBeingDrawn: and needsToDrawRect: to hit-
test against the areas that need to be redrawn.

One aspect of Quartz drawing that catches some programmers off guard is that overlapping lines in
a single path can be very expensive. A lot of work happens at line crossings, such as anti-aliasing the

250



Before using any of the profiling tools

intersections, as well as making sure that transparent colors do not get “painted” multiple times at the
crossings and appear darker. If you need to draw lots of overlapping lines, especially if you are using

opaque colors and do not care about antialiasing, you can get much better performance by drawing a

bunch of small paths instead.

Before using any of the profiling tools

Forget any assumptions you may have about where the performance problems may be. Programmers
are notoriously bad about predicting where performance problems are; otherwise, the problems would
already be fixed. One programmer I worked with was convinced that file loading and disk I/O was

the slow part of his program when loading files, and he was spending a lot of effort to optimize disk
access. After a quick session with Shark, the problem actually turned out to be the marshaling of data
into a tree so that NSOutlineView could use it. The time spent in actual file /O was minimal.

Keep good notes on what you do and the measurements you make so that you can apply the
optimizations to other situations. By keeping a record of execution times (for instance), you can tell if
your optimization attempts are helping or are actually making the problem worse.

When tracking down performance problems, throw a large data set at your application. With the file-
loading issue mentioned earlier, some of the test data were 5K files that took a second or two to load.
That’s too small a window in which to figure anything out. If your application is designed to edit 50-
page research papers, then throw a 500- or 5000-page document at it. The larger data sets should make
O(N?) algorithms stand out like the proverbial sore thumb. If your program is responsive when editing
5000-page documents, it should give the user a really nice experience when they are using it to edit 50-
page documents. Do not bother with more than two or three orders of magnitude more data, since that
much more data will probably require a redesign of your data structures and may become suboptimal
for smaller data sets.

There is some debate over when you should optimize. One school of thought is “premature
optimization is the root of all evil,” and you should wait until the end of your development cycle to
identify and fix performance problems. Unfortunately, that can require re-engineering large chunks
of the product if there is a deeply-rooted bottleneck. Another school of thought is to act like you are
on a diet and adopt a constant discipline about performance. The downside to that is that premature
optimization can obscure the design and the code and make it harder to track down program errors
before shipping.

As with most everything in life, the middle ground is a good place to live. Keep an eye out for
algorithms that can be improved, but do not obfuscate code to trim every cycle you can too early in
the development process. Throw large data sets at your program often. Do not wait until right before
a trade show or a launch to subject your program to what the customer will throw at it. Keep an eye
on your memory usage so that it does not grow too large too quickly. Also be sure to run the program
in the user’s environment. If you are writing a desktop app, be sure to have Safari and iTunes running,
since the user will probably be using those apps, too. If your application is a memory pig and makes
iTunes skip, you will definitely get some user complaints.

Command-Line Tools

Mac OS X comes with a number of command-line tools for tracking down particular types of
performance problems. The nice thing about the command line is that you can remotely log into

251



Chapter 10 Performance Tuning

a machine and watch things as they happen. They also don’t interfere with your application’s user
interface.

time

The simplest tool is time. It times command execution and shows you clock time, CPU time in
userspace, and CPU time spent in the kernel. Here is a run of /usr/bin/time on TextEdit. The time
measured was the time starting TextEdit up, loading /usr/share/dict/words, and then scrolling from
the top to the bottom.

$ time /Applications/TextEdit.app/Contents/Mac0S/TextEdit
real 0Oml4.619s
user  0ml.257s
sys 0m0.180s

This is 14 seconds of clock time, one second in user space, and less than a second in the kernel.
The C shell has its own version of time that gives more information:

)
i)

time /Applications/TextEdit.app/Contents/Mac0S/TextEdit
2.515u 0.226s 0:15.01 18.1% 0+0k 22+43io0 Opf+Ow

This is 2.5 seconds in user space, 0.2 seconds in kernel space, and fifteen seconds clock time. The
18.1% is a utilization percentage: the ratio of user + system times to real time. Following the time
information is memory information: shared + unshared memory usage, input + output operations,
number of pagefaults and swaps. OS X seems not to report the shared + unshared memory usage.

time is very handy when comparing optimizations. Run a baseline or two with time, make the
optimization, then try time again. If you are optimizing CPU usage and discover CPU time figures
going up, you should reconsider that particular optimization.

dtruss

Many Unix systems have a utility that will show all of the system calls a program makes. On Solaris,
it is called truss; on Linux, it’s strace. Mac OS X 10.4 has ktrace (kernel tracing), and Mac OS X 10.5
and later have a similar utility, dtruss, based on DTrace.

dtruss requires root privileges to run because DTrace requires them. Run it like this:
$ sudo dtruss 1s

This will generate a couple of hundred lines of output, like

SYSCALL(args) = return

getpid (0x7FFF5FBFF600, Ox7FFFFFE00050, 0x0) = 9234 0

open nocancel("/dev/urandom\@", 0x0, 0x0) =30

read nocancel(0x3, "...", 0x6C) = 108 0

close nocancel(0x3) =00

issetugid(0x100000000, Ox7FFF5FBFF8C8, Ox7FFF5FC40530) =0 0

geteuid(0x100000000, Ox7FFF5FBFF8C8, 0x0) =00

The output is not terribly easy to read, but there is a lot of information there. As Is started up, it called
getpid(), which returned the value 9234, the process ID for Is. After the function exited, errno was
zero. If there was an error, dtruss would print a result like this:

252



fs_usage and sc_usage

stat64("grausenstein\0", Ox7FFF5FBFEFBO, 0x1) = -1 Err#2
with a return value of -1, and errno set to 2.

Being able to see the system call traffic can be a great debugging aid, especially if you have a program
that will not start. You can see if the program is trying to load a missing shared library or if it needs
some configuration file that is not supplied.

System call tracking can be a performance-tuning aid, too. You might discover a lot of one-byte writes
that can be coalesced into a single operation, you may have given a bad timeout to kevent () so that it
returns a lot sooner than you expect, or you can see why your program is blocking unexpectedly.

fs_usage and sc_usage

fs_usage and sc_usage are programs run as the root user that also show system call activity. fs_usage
shows file system information, and sc_usage shows system call information.

Here is BigShow, the Big Nerd Ranch slide show application, about to start paging through slides:

$ sudo fs_usage

password:

18:38:06 open /Preferences/com.apple.dock.plist 0.00005 BigShow
18:38:06 fstat 0.00000 BigShow
18:38:06 read 0.00029 BigShow
18:38:06 close 0.00002 BigShow
18:38:06 open com.apple.dock.0003931024a6.plist 0.00015 BigShow
18:38:06 PAGE_IN 0.00070 W BigShow
18:38:06 open /Library/Preferences/Network 0.00008 BigShow
18:38:06 open com.apple.systempreferences.plist 0.00005 BigShow

Part of Cocoa is looking at the plist for the dock, presumably for getting size and location information
so that it can properly place a window. You can see the open, a stat to get the size of the file, the

file being read, and its close. Unlike dtruss, there is not an easy way to correlate specific calls like a
read() with the file descriptor it is using, but fs_usage does show you how much time it took. fs_usage
can be run on a system-wide basis, which can be handy if you have a problem that is slowing the
entire machine down. fs_usage is also useful when you have a program that accesses the hard drive
unexpectedly and you want to track down who is responsible.

One really snazzy feature of fs_usage can be seen when used on applications that make Carbon file-
system calls. If you set the environment variable DYLD IMAGE SUFFIX to debug, fd_usage will show
the Carbon calls being made. Here is a peek at an old copy of Mozilla running:

18:34:38 GetCatInfo 0.000174 LaunchCFMApp
18:34:38 PBMakeFSSpec (0, 0x0, 0x0, 0x0) LaunchCFMApp
18:34:38 getattrlist .vol/280763/Mozilla.app 0.000032 LaunchCFMApp
18:34:38 PBMakeFSSpec 0.000064 LaunchCFMApp
18:34:38 GetCatInfo (-100, 0x0, O0x0, 0x0) LaunchCFMApp

18:34:38 getattrlist .vol/280763/Mozilla.app 0.000046 LaunchCFMApp

sc_usage shows system calls for a program in a manner like top, with a continually updating display.
Here is a snapshot from Safari:

Safari 12 preemptions 189 context switches 8 threads 16:05:42
0 faults 706 system calls 0:00:07

253



Chapter 10 Performance Tuning

TYPE NUMBER CPU_TIME WAIT TIME

System Idle 00:06.608(00:00.922)
System Busy 00:00.368(00:00.065)
Safari Usermode 00:00.109

mach_msg_trap 2004(382) 00:00.013 00:17.878(00:02.978) 3
kevent 20(3) 00:00.000 00:05.531(00:01.005) W
semwait_signal 2(1) 00:00.000 00:05.496(00:01.003) W
select 13 00:00.000 00:05.076(00:01.004) W
CURRENT_TYPE LAST_PATHNAME_WAITED FOR CUR_WAIT _TIME THRD# PRI
mach msg trap 00:00.016 0 46
mach msg trap 00:00.150 1 46
semwait signal 00:00.496 2 47
kevent 00:00.481 3 49
workq_ops 00:00.478 4 47
select 00:01.391 5 46
mach msg trap 00:01.391 6 62
bsdthread terminate 00:05.019 7 47

The CPU_TIME column is the amount of CPU time consumed, and WAIT TIME is the absolute time the
process waits.

If you think you have I/O performance problems, these two programs can help you track down the
specific calls that could be causing problems.

top

Unix systems are complex beasts composed of multiple programs interacting. Sometimes performance
problems manifest as overall system slowness while each program looks just fine in isolation. The
dtruss and sc_usage utilities are useful for monitoring system calls in a particular program. top, on the
other hand, can be used to monitor all the programs on the system. Running top without arguments
will show the familiar OS information (memory distributions, load average). By default, it orders
programs by launch order (most recent program listed first). This is useful if you are monitoring a
recently launched program. The -u flag will sort the list by CPU usage.

top can also count and show system-wide events. top -e shows VM (virtual memory), network
activity, disk activity, and messaging stats:

$ top -e

Processes: 70 total, 4 running, 66 sleeping, 260 threads 16:09:30
Load Avg: 0.19, 0.28, 0.24 CPU usage: 6.27% user, 5.51% sys, 88.20% idle
SharedLibs: 7424K resident, 7276K data, OB linkedit.

MemRegions: 9361 total, 451M resident, 17M private, 290M shared.

PhysMem: 798M wired, 1062M active, 427M inactive, 2287M used, 1809M free.

VM: 168G vsize, 1041M framework vsize, 339589(0) pageins, 278055(0) pageouts.
Networks: packets: 2550949/3311M in, 1667316/160M out.

Disks: 561048/8214M read, 976911/21G written.

PID  COMMAND %CPU TIME #TH #WQ #POR #MRE RPRVT RSHRD RSIZE VPRVT
9317 top 3.8 00:00.63 1/1 0 24 33 920K 244K 1496K 17M
9316- WebKitPlug 0.3 00:03.47 6 2 110 245 9584K 30M 15M 49M
9306 Safari 0.2 00:12.02 11 2 167 533 97M 53M 153M  265M
9299 csh 0.0 00:00.04 1 © 15 26 612K 592K 1160K 17M

254



Stochastic profiling

9268 mdworker 00:00.36 50 77 4388K 19M 12M 29M
9202 bash 00:00.03 17 25 320K 244K 976K  9576K
9198 csh 00:00.02 17 26 580K 592K  1164K 9648K
9197 login 00:00.02 22 54 472K 312K 1608K 10M
9180 ssh 508K 244K  1812K 9588K

8900 Preview
8886 WebKitPlug
8850 Activity M
8700 VDCAssista
8697- Snak

125 268 20M 73M 45M 28M
28 51 544K 244K 988K  40M
106 243 5360K 75M 15M 25M
90 73 384K 19M 3104K 23M
192 232 3788K 43M 11M 40M

HOOOOOOOOO
L NoNoNoNoNoNoNoNoNo]
[cNo)

[oNo)
= o
[e) N <)

N ©
~N B
UOANNNRFRFFRRFRRFRW
HHEFFERFNFRFOOOOK
N
N
N
(6]

~
=

There is a lot of information here. 70 processes, 260 threads system-wide. Shared libraries take about
7 megabytes of memory, 1.8 gigs of physical memory free, 168 gigs of virtual memory allocated,
network and disk I/Os. Each process has information such as the number of threads, work queues,
mach ports, and memory regions. Resize your terminal window to see more columns, such as virtual
size, process state, page faults, bsd system calls made, etc.

top -e shows cumulative output, while top -d will show things in a delta mode. The update interval
is one second. That can be changed by using the -s flag to control the number of seconds between
intervals.

Stochastic profiling

One useful low-tech tool is “stochastic profiling,” where you run the program in the debugger and
interrupt it occasionally to see what is on the call stack. If you see the same function(s) on the stack
over and over again, you know where to start looking. This technique is handy if you are on a platform
or in a situation where traditional performance tools are not available or do not work. Plus, it’s fast and
easy, especially if you are already running your program in a debugger.

sample

You can do some profiling from the command-line to answer quick-and-dirty “what is happening
here?” kinds of questions. The sample program will sample a process at 10-millisecond intervals and
then build a snapshot of what the program was doing. You can give sample a pid or give it the partial
name of a program:

$ sample iTunes 5
Sampling process 216 each 10 msecs 500 times
Sample analysis of process 216 written file /tmp/iTunes 216.sample.txt

The resulting trace file shows a bunch of call stacks, one for each thread, along with the number of
times it found those particular functions on a call stack. Here’s an example of one thread that is waiting
in a run loop.

434 Thread_1103
434 pthread body
434 dyld stub binding helper
434 CFRunLoopRun
434 CFRunLoopRunSpecific
434 _ CFRunLoopRun
434 mach_msg

434 mach _msg_trap

434 mach_msg_ trap

255



Chapter 10 Performance Tuning

This is the same output you get when sampling processes in Activity Monitor.

Precise Timing with mach_absolute_time()

Command-line tools are a great place to benchmark snippets of code, which is useful for those cases
where you can isolate an algorithm or a programming technique out of your full application. A dozen-
line or a couple-hundred-line command-line tool is a much more tractable problem than a million-line
application. Not every problem can be put into a little benchmark, but enough of them can to make it a
useful technique.

The nice thing about command-line programs is you can use the time command to get absolute figures
of the running time of the program making it easy to compare and contrast changes you make to your
target program.

But sometimes the time command does not have enough granularity. You might want more precise
timing, or you may just be interested in timing a specific part of your program. You might not be
interested in the time it takes to load the data to feed your algorithm. If loading the data takes 3 times
as long as it takes the algorithm to run, you will want to do timing inside of the program yourself.

Mach, Mac OS X’s kernel, provides some functions you can use for precise timing.
mach_absolute_time() reads the CPU time base register and reports the value back to you. This time
base register serves as the basis for other time measurements in the OS:

uint64 t mach_absolute_time (void);

mach_absolute_time() returns values based on the CPU time, so it is not directly usable for getting
time values because you do not know what time span each increment of the counter represents.

To translate mach_absolute_time()’s results to nanoseconds, use mach_timebase_info() to get the
scaling of mach_absolute_time()’s values:

kern_return_t mach_timebase_info (mach timebase info t info);
Where mach_timebase info_t is a pointer to this struct:
struct mach timebase info {
uint32 t numer;
uint32 t denom;
I

mach_timebase_info() fills in the struct with the fraction to multiply the result of
mach_absolute_time() by to calculate nanoseconds. Multiply the result of mach_absolute_time() by
numer and divide by denom.

Example 10.2 shows how to use these two functions. The code times how long it takes to call
mach_timebase_info() and printf(). For real-life code, you would want to put something more
interesting in there to time.

Example 10.2 machtime.m

// machtime.m -- exercise mach absolute time()

#import <mach/mach time.h> // for mach_absolute time() and friends

256



GUI Tools

#import <stdio.h> // for printf()
#import <stdlib.h> // for abort()

// gcc -g -Wall -o machtime machtime.m

int main (void) {
uint64 t start = mach_absolute time ();

mach timebase info data t info;

if (mach _timebase info (&info) == KERN SUCCESS) {
printf ("scale factor : %u / %u\n", info.numer, info.denom);

} else {
printf ("mach timebase info failed\n");
abort ();

}

uint64 t end = mach absolute time ();
uint64 t elapsed = end - start;
uint64 t nanos = elapsed * info.numer / info.denom;

printf ("elapsed time was %lld nanoseconds\n", nanos);
return 0;

} // main

And here it is in action:

$ ./machtime

scale factor : 1 /1

elapsed time was 55055 nanoseconds
$ ./machtime

scale factor : 1 /1

elapsed time was 95363 nanoseconds
$ ./machtime

scale factor : 1 /1

elapsed time was 46839 nanoseconds

On this system, a 2010 Macbook Pro, the numerator and denominator of the conversion are both
one. Some older machines, such as the original TiBook, had the numerator of the conversion at
1,000,000,000 and the denominator at 24,965,716, resulting in a scale value of 40.05. So there were
about 40 nanoseconds for each increment of mach_absolute_time().

Outside of the second run, it takes about 50,000 nanoseconds, or 50 microseconds to do the work
between the two timings. So what’s up with that middle run being twice as long as the others? When
you are dealing with time values this short, anything can perturb them. Maybe some dynamic library
lookup was necessary for that second run. Maybe iTunes was running and was loading a new track.
Maybe Time Machine kicked in. For a real benchmark, you would run it for a longer period of time to
hide those small one-time-only blips. And of course, you would run the benchmark a couple of times to
get a good average and iron out the noise.

GUI Tools

Mac OS X comes with a number of GUI performance tools which are a good deal more powerful and
easier to use than the command-line tools.

257



Chapter 10 Performance Tuning

Activity Monitor

Each Mac OS X system includes the Activity Monitor application in the system’s Utilities folder.

Figure 10.6 Activity Monitor

[ NN &) Activity Monitor —
O (7 ] 3 [ Al Processes +] (Q Filter
Quit Process Inspect Sample Process Show Filter
PID | Process Name User % CPU w | Threads Real Mem | Kind P D
9407 g Xcode markd 155.3 9 61.0MB Intel (64 biny ¥ ' TOCESS
0 kernel_task roat 13 67 198.2 MB Intel v User
8697 £ Snak markd 11 5 11.5 ME Intel v % CPU
39 hidd root 1.0 5 1.5 MB Intel (4 bin ~ CPU Time
59 WindowServer _windowsen 0.8 5 75.6 MB Intel (64 bin | ¥ # Threads
8850 BB Activity Monitor markd 0.7 3 24.5 ME Intel (64 bit) # Ports
861 activitymonitord root 0.7 1 1.7 MB Intel (64 bity v Real Memory
83 Dock markd 0.4 3 17.7 MB Intel {64 bit) Real Private Memory
25 coreservicesd roat 0.1 4 37.6 MB Intel (64 bit) Real Shared Memory
35 mds root 0.0 5 59.2 ME Intel (64 bit) Virtual Private Memor\;
40 fseventsd root 0.0 16 3.4 MB Intel (64 bit) Messages Sent
11 DirectoryService root 0.0 6 5.0 ME Intel (64 bit) Messages Received
v Kind
[ CPU | System Memory = Disk Activity = Disk Usage = Network ! . Sudden Termination
CPU Usage
% User:  75.50 || Threads: 272
% System: 6.25 || Processes: 67
% Idle:  18.25 |
Y

Activity Monitor shows basic information for each process in the table view, and you can pop up the
contextual menu to dig into lower-level information. The pane at the bottom of the window lets you
see colorful charts and graphs concerning the system as a whole. The Sample Process button runs the
sample command and puts the output into a window. Sampling is handy for seeing what a locked-up
process is blocked on.

Instruments

Instruments is Apple’s suite of profiling tools. The Instruments application is itself a generic program
allowing you to configure sets of individual tools, called instruments, to trace whatever information
you specifically want to learn about your application. Many of Instruments’ instruments can profile the
system as a whole in addition to focusing on a single process.

You can run Instruments directly from the Finder, or you can choose to Profile in Xcode. You can
edit the Profile scheme in Xcode to pick a default template to use when profiling, or you can have
Instruments prompt you on launch. You can also run the instruments command-line tool to record a
performance profile without running the GUI.

258



Instruments

Window layout

The Instruments user interface was inspired by Garage Band but without the wood-grain window
treatment (bummer). Figure 10.7 shows a blank template with the Leaks and Allocations instruments
already dragged over from the Library window.

Figure 10.7 Instruments and Library windows

8eno Instruments5 (=] eoco Library
@@@ [0 Classuiider 3 ] [(©[O[@]( ~»00:00:000 |[(D][=2]O Q- Category (CTios )
Record T " « Run 0 of 0 > -
0O arget Inspection Range View Library Search T

Instruments f4.00' 16760

use with Allocations instrument to give memory address histories.

y T < instrument to give memory ade
» %L&aks o ; 9 v
ralyzes the (-5 ST Rl e T R T T T T

[} Sleep/Wake - Views recorded power logs.

"5 Sampler - Samples all threads of a process
LA ataregular interval.

shift + % to zoom In, Cantrol + % 10 Zoom Out, Option + & to Time Filte

@] O 1]
Wl Allocations + » HH Statistics %  Object Summary Y - QFilte

The left side of the Instruments window holds the different instruments that will be used to record
profile activity. The track pane in the middle is where profile data will be displayed. The bottom part of
the window shows more detailed information about a recorded trace, described a bit later.

The Toolbar

The toolbar at the top of the window has controls for recording a profile, controls for pausing it, and a
loop control used when playing back user interface actions.

The Target menu selects the trace target for the document. The target tells Instruments which process
or processes to gather information about. “All Processes” tells Instruments to collect system-wide
information. Not all instruments support system-wide data collection.

The inspection range controls let you narrow your focus to a particular span of time. Perhaps you have
to fiddle with your application a bit before you get to the part you really want to profile. You can adjust
the inspection range to exclude the fiddly part. To set the inspection range, you move the playback
head to the beginning of your interesting time range and click the left-hand Inspection Range button.
Then move the playback head to the end of the range and click the right-hand button. Option-dragging
in the trace area will also set the inspection range.

The LCD-style screen in the middle of the toolbar is the Time/Run control. It shows how much time
has elapsed while recording or how long a completed trace is. The “Run X of Y buttons let you
navigate between multiple profiling runs done in the current session. The view buttons open and close

259



Chapter 10 Performance Tuning

various side panels, just like the similar-looking icons in Xcode do. From left to right, they control the
instruments pane (left), the detail pane (bottom), and the extended detail pane (right).

Looking at memory leaks

Figure 10.8 shows the Instruments window after it has collected some data. The blank template was
used with the Leaks and Allocations instruments dragged over from the library. The target application
is Cycling Fusion’s ClassBuilder™ app, which I was working on at the time this chapter was being
written.

Figure 10.8 Instruments window after running the application

00 Instruments5 =
@@@ (0. Classtuilder | (@ [Q[ @ ][ ~ 00:00:42 © Q- Category )
Record Target Inspection Range Run 1of1 i View Library Search

Instruments 10:00

<O aks (i) .
g . A

L Allocations i
%20 !

lotoo

@ O [1]

Mg Allocations % , EH Statistics # ) Object Summary =
* Heapshot Analysis Craph  Category Live Bytes #Living |# Transitory Overall Bytes # Overally |#Al\acatmns {Net / Overall}
( Mark Heap ) ®  * All Allocations = 2.43 MB 31221 88657 24.71 MB 119878 - .
v Allocation Lifespan O] Malloc 32 Bytes 213.84 KB 6843 8947 493.44 KB 15790 (I m
® All Objects Created ] Malloc 16 Bytes 145.05 KB 9283 5783 235.41 KB 15066
O Created & Still Living (] CFString 50.27 KB 1208 8017 397.03 KB 9225 [l
O Created & Destroyed [J cFBasicHash (value-st... 51.03 KB 674 5042 390.55 KB 5716 |l
v Call Trea (] Malloc 64 Bytes 48.25 KB 772 4646 338.62 KB 5418 |
[ CFBasicHash 34.05 KB 772 4468 202.03 KB sz40 i
[J CFString (store) 11.81 KB 28 5115 G83.34 KB 5143
] Malloc 48 Bytes 65.06 KB 1388 2569 185.48 KB 3057 I
(] Malloc 96 Bytes 57.66 KB 615 3300 367.03 KB 3915 I
(] Malloc 8 Bytes 13.23 KB 1693 2113 29.78 KB 3812
(] Malloc 80 Bytes 73.12 KB 936 2666 281.41 KB 3602 W
i ! (] CFBasicHash (key-store) 35.81 KB 530 2433 238.11 KB 2963 I
R g __NSArrayM 8.03 KB 257 2281 79.31 KB 2538 |
» Specific Data Mining [] CFNumber 7.83 KB 469 1532 36.4B KB 2001 I
O _NSArrayl 2.97 KB 32 1712 41.03 KB 1744
[ Malloc 1.00 KB 101.00 KB 101 1620 1.68 MB 1721 | 3
[T P £13 Biaas 1 1428 4z 20wn 1404
/]

Notice that the track pane has some content now. The Leaks instrument has a stacked bar chart with the
number of leaks discovered (top) and the count of leaked bytes (bottom). The Allocations instrument
shows the amount of allocated memory. The Leaks instrument takes memory snapshots at relatively
large intervals, defaulting to ten seconds, which explains why the leak markers do not correspond to
growth in the allocation trace.

Scrubbing the playhead back and forth in the timeline shows little “inspection flags,” tooltip windows
that show data in the trace for that point in time. Figure 10.9 shows that the Leaks instrument found 29
individual leaks responsible for 4.62KB of leaked memory. The total application memory footprint due
to memory allocation is about 2 megabytes.

260



Instruments

Figure 10.9 Playhead detail popups.

@00 Instruments5
ITIO@ | v ClassBuilder | || ~»00:80:42 @

Instruments 00:00

=
]
1
> caling (N =
3 ‘ SRS S5 59 | eaks Discovered 4.62 KB

1

The detail panel is visible at the bottom of the window. The Allocations tool is currently selected in
Figure 10.8, so the details panel is showing information about the allocations, including some colored
bar graphs that show current and total allocations for different sizes of memory blocks and different
kinds of objects.

Now let’s figure out where the memory leaks actually happened. Figure 10.10 has the Leaks instrument
selected. The details panel by default will show you everything it can, but you can narrow the timeline
down with the Inspection Range to a particular span of time, and the details panel will update itself
accordingly.

261



Chapter 10 Performance Tuning

Figure 10.10 Detail panel showing leaked blocks

@No Instruments5 —
()(@)@) (o cwssmiger ] [(@]O]@][~00:00:42 0 Q- Al Fields
Record Target Inspection Range " Run 1of1 i View Library Search
Instruments log.00 ! o ! t ! ! ! ! TaL.00 ! !
|
h
——
» ﬁmlo(aﬂons (]
I e ——
et Leaks +  HH Leaked Blocks % ; Leaked Blocks =
¥ Snapshots Leaked Object # |Address Size Responsible Library |Responsible Frame
# Automatic Snapshotting ¥ NSPathStore2 12 < multiple > 2.25 KB Foundation +[NSPathStore2
Snapshot Interval (sec) 1.5 |[] | PUlBezierPath 11 < multiple > 704 Bytes ClassBuilder -[GRRidePrafileView
Starus: ke o »CGPath 11 < multiple > 2.06 KB CoreGraphics CGTypeCreatelnstanceWithAllocator
»GeneralBlock-160 7 < multiple > 1.09 KB CoreGraphics add_chunk
Snapshot Now ¥ GeneralBlock-160 6 < multiple > 960 Bytes CoreGraphics add_chunk
¥ Leaks Configuration > UlBezierPath 5 < multiple > 320 Bytes ClassBuilder -[GRRideProfileView
[ Gather Leaked Memory Contents #CGPath 4 < multiple > 768 Bytes CoreGraphics CGTypeCreatelnstanceWithAllocator
' Grouping P CGPath 4 < multiple > 768 Bytes CoreGraphics CGTypeCreatelnstanceWithAllocator
O Individual Leaks - NSPathStore2 3 < multiple > 768 Bytes Foundation +[NSPathStore2
@ Identical Backtraces »CeneralBlock-160 3 < multiple > 480 Bytes CoreGraphics add_chunk
v Call Tree »CGPath 2 < multiple > 384 Bytes CoreGraphics CGTypeCreatelnstanceWithAllocator
Separate by Thread F CeneralBlock-160 2 < multiple > 320 Bytes CoreGraphics add_chunk
»GeneralBlack-160 2 < multiple > 320 Bytes CoreGraphics add_chunk
GeneralBlock-160 0x1d3060 160 Bytes CoreGraphics add_chunk
UlBezierPath Ox1d2dd0 64 Bytes ClassBuilder -[GRRideProfileView
I Call Tree Constraints
1 Specific Data Mining A

The bottom half of the window is broken up into two panes. The left pane holds various instrument-
specific controls that can be used to modify the display in the details pane. They don’t modify the data
that has been collected, just how it is presented.

There are two Xcode-style jump bars in the window. The one in the instrument pane lets you choose
which instrument you are looking at. It currently displays the Leaks instrument, but you can get a
list of all the instruments in the document by clicking on it. You can also click the instrument trace

directly to change the contents of the detail pane. The detail pane on the right has a jump bar that lets
you change the view of the data. As you dig deeper into the data, the jump bar will let you back out to
a higher-level view.

The detail area shows a lot of information: the kind of leaked memory, whether it’s an Objective-C
object or a chunk of memory, how many of those were leaked, how much memory was leaked, which
library allocated the memory, and what the function or method actually caused the allocation.

Even though Foundation and CoreGraphics are listed as the responsible libraries, this does not mean
the library itself is mishandling memory. It just means that Foundation or CoreGraphics allocated
memory on behalf of the code that ultimately caused the leak. There are several graphics-related
classes and libraries in the leak list: UIBezierPath, CGPath, and the CoreGraphics framework. The leak
is probably graphics-related.

262



Instruments

Figure 10.11 shows that the disclosure triangle next to UIBezierPath has been clicked, revealing a
list of individually leaked objects. There are 11 objects for a total of 704 bytes. The arrow-in-a-circle
button, properly called the focus button or the follow link button, replaces the contents of the detail
pane with additional information about the object you are focusing on. Clicking on the focus button
next to the first UIBezierPath takes you to Figure 10.12, which has the allocation history for memory
located at address 0x1c3850. Over the course of time, some strings have lived here, an NSThread
private class, a CFData, and some hash tables. The last allocation is most interesting one: a malloc()
that was never freed. This is one of the leaks.

Figure 10.11

800

@ O [

% Leaks s

v Snapshots

# Automatic Snapshetting
Snapshot Interval (sec)
Status: Idle

100 [}
L)

8 Snapshot Now J
v Leaks Configuration

[ Gather Leaked Memory Contents
v Grouping

O Individual Leaks

@ Identical Backtraces

v Call Tree

O Separate by Thread

Invert Call Tree

Hide Missing Symbaols

Ol Hide System Libraries

] Show Obj-C Only

Ol Flatten Recursion

I~ Call Tree Constraints

» Specific Data Mining

B Instruments5

~ 00:00:42 o

Run1of1 >

Individual leaked memory blocks

[ Q- All Fields

 EH Leaked Blocks % ) Leaked Blocks
Leaked Object
PNSPathStore2

FGeneralBlock-160
FGeneralBlock-160
F-UlBezierPath
FCGPath

ek

# Address
12 < multiple >

VUIBezierPath 11 < multiple >
| Ulbezierbath | l0x1c3850 ©

UlBezierPath 0x1c3850
UlBezierPath Ox1cldad
UlBezierPath Ox1cidad
UlBezierPath 0x1c1580
UlBezierPath 0x1b4360
UlBezierPath 0x1b4360
UlBezierPath Oxlac940
0Oxlac940
UlBezierPath 0x1933f0
UlBezierPath 0x17f9a0

PCGPath 11 < multiple >

7 < multiple >
6 < multiple >
5 < multiple >
4 < multiple >

1.09 KB
960 Bytes
320 Bytes
768 Bytes

Size ible Library ible Frame

2.25 KB Foundation +[NSPathStore2 '

704 Bytes ClassBuilder -[GRRideProfileView r"
~[GRRideProfileView I

&4 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

&4 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

&4 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

64 Bytes ClassBuilder -[GRRideProfileView

&4 Bytes ClassBuilder -[GRRideProfileView o

2.06 KB CoreGraphics CGTypeCreatelnstanceWithAllocator

CoreGraphics
CoreGraphics
ClassBuilder

CoreGraphics

e

add_chunk

add_chunk

-[GRRideProfileView
CGTypeCreatelnstanceWithAllocator

- PR T

v

)

263



Chapter 10 Performance Tuning

Figure 10.12

¢ ) EH Leaked Blocks  ;

# |Category Event Type Timest... RefCt Address Size Responsible Lib...
Gy RO GuLuLa T mETaOTw R e
7 CF5tring Free 00:10.38... 0 Ox1c3B50 -32 Foundation
8 CF5tring Malloc 00:10.38... 1 0x1c3850 32 Foundation
9 CFString Free 00:10.38... 0 0x1c3850 -32 Foundation
10 CF5tring Malloc 00:10.38... 1 0x1c3850 32 Foundation
11 CF5tring Free 00:10.38... 0 Ox1c3B50 -32 Foundation
12 _NsThreadPerforminfo Malloc 00:10.38... 1 Ox1c3850 32 Foundation
13 _NsThreadPerforminfo Free 00:10.66... 0 0x1c3850 -32 Foundation
14 CFData (store) Realloc 00:10.68... 1 Dx1c3850 64 liblockdown.dylib
15 CFData (store) Realloc 00:10.68... 1 Oxlabc50 256 liblockdown.dylib
16 CFData (store) Realloc 00:10.68... 1 Dxba7al0 1024 liblockdown.dylib
17 CFData (store) Free 00:10.68... 0 0Oxba7a00 -1024 liblockdown . dylib
18 CFBasicHash (value-store)  Malloc 00:10.68... 1 0x1c3850 64 liblockdown.dylib
19 CFBasicHash (value-store)  Free 00:10.68... 0 0x1c3850 -64 liblockdown.dylib
20 CFBasicHash (key-store} Malloc 00:10.68... 1 Dx1c3850 64 liblockdown.dylib
21 CFBasicHash (key-store} Free 00:10.68... 0 0x1c3850 -64 liblockdown .dylib
22 CF5tring Malloc 00:10.68... 1 0x1c3850 64 Foundation
3 CF5tring Free 00:10.6 Dx1c3850 Foundallun
FIEEIE_-

Leaked Blocks

0x1c3850 History

Memory allocation history

Responsible Caller

e T B LT
~[NSPlaceholderstring ini...
~[NSPlaceholderstring ini...
-[NSPlaceholderstring ini...
~[NSPlaceholderstring ini...
~[NSPlaceholderstring ini...
-[NSObject(NSThreadPerf...
-[_NSThreadPerforminfo ...
lockconn_send_message
lockconn_send_message
lockconn_send_message
lockconn_send_message
lockconn_receive_message
send_get_value
lockconn_receive_message
send_goodbye
~[NSPlaceholderstring ini...
-[NSAutoreleasePool release]

-[GRRideProfileView upda.._| |

W

A

The extended detail panel was opened by clicking on the right-hand View icon. The panel slides in
from the right and shows a stack trace relating to what is selected in the detail view. Selecting the

bottom entry from the allocation history will show the stack trace in Figure 10.13. The stack trace has
library classes grayed out with the application’s classes, or at least those classes and functions that have
debug symbols, in black. It is pretty obvious who the culprit is.

264




Instruments

Figure 10.13 Object leak stack trace

B Instruments5

A~ 00:00:42 @

Run 1of 1 >

(Q~ Al Fields

Extended Detai

v
| I w General "y
iscovercd S | Category. UlBezierPath
I Type: Malloc
Eytes Painter: 0x1c3850
{ Retain Count: 1
Size: 64
 Stack Trace - Q
1 ﬂ calloc
i E‘ class_createlnstance
! [ +INsobjectiNSObject) allocWithZone:|
| [ +INsobjectivsobjec) alloc]
0 - [GRRideProfileView updateCurveMetrics]
i . -[GRRideProfileView seticclass:]
| -|GRClassChooserCell seticclass:)
M O[] Y -(GRClassChooserviewController tablevie.
st Leaks $) EH Leaked Blocks ¢>- Leaked Blocks ;}OxchBSU History = ﬂ -[UITableView(UITableViewinternal) _create
v # |Category EvemtType | Timest. RefCt | Address size  Responsible Lib ﬂ -(UITableView{UITableViewlnternal) _create
@ Automatic Snapshotting 7 crsuing  Free 001038 0 nlcassn 32 roumdamien & (UTENIeVIEMLUTabIeiewPrivate) upcac
Snapshot Interval (sec)  [10.0 @ 8 CFstring  Malloc 00:10.38 1 Ox1c3850 32 Foundation I -(ormaleview tayoursubwiews)
Status: ldle 9 CFString  Free 00:10.38 0 0x1c3850 -32 Foundation I3 -tumiewiCatayerDelegate) layoutsublayer
( Snapshot Now b} 10 CFString  Malloc 00:10.38 1 0x1c3850 32 Foundation Eﬂ -[NSObject(NSObject) performSelector:with...
+ Leaks Configuration 11 CFstring Free 00:10.38 0 0x1c3850 =32 Foundatfon E -[CALayer layoutSublayers]
O Gather Leaked Memory Contents 12 _NSThre... Malloc 00:10.38 1 0x1c3850 32 Fuundal!un E CAlayerLayoutlfNeeded
¥ Grouping 13 _NSThre... Free 00:10.66 0 0x1c3850 -32 Foundation , ECA"(cmrex(:'mmmil_[ran;n((inn((A"Tr.:m,
TS 14 CFData (... Realloc 00:10.68 1 0x1c3850 64 liblockdown.dylibl | [T Ca Transaction:commit)
@ Identical Backtraces ISl ea Toc DOETUIGS MEXVaheSis BN bl iy ECA"Transa((ion"nhservtr callbacki__CFRu.
e 16 CFData (.. Realloc 00:10.68 1 0xba7a00 1024 liblackdown.dyli B _crruncoor.s CALLING. OUT 0 A
= 17 CFData (... Free 00:10.68 0 Oxba7a00  -1024 liblockdown.dyli = o AL
(Sl 7 Wi 18 CFBasicH... Malloc 00:10.68 1 0x1c3850 64  liblackdown.dylibf} |l —CFRUnLoopDOObservers
dinvert Call Tree 19 CFBasicH... Free 00:10.68 0 0x1c3850 64 liblockdown.dylibj} L] _CFRunLoopRun
A 20 CFBasicH... Malloc 00:10.68 1 0x1c3850 64 liblockdown.dylibl| ||| CFRunLoopRunspecific
Sl Lied= 21 CFBasicH... Free 00:10.68 0 Ox1c3850 liblackdawn.dylib) | |7 CFRunLoopRuninbode
O Show Obj-C Only 22 CFString  Malloc 00:10.68 1 Ox1c3850 Foundation [ csevemmunviodal
A [Recursian 23 CFstring  Free 0 0x1c3850 Foundation P Gsevemhun s
mnilgfioersf ClassBuilder M
I Specific Data M

Most of the time you do not really care what toolbox classes are on the stack. They are often just
implementation detail noise. You can use the slider at the bottom to pare down the stack to more
interesting stack frames, typically those at the boundaries of libraries. Figure 10.14 shows the full stack
trace on the left with the reduced stack trace on the right.

265



Chapter 10 Performance Tuning

Figure 10.14 Full and reduced stack traces

- [GRRideProfileView updateCurveMetrics] is the source of the leak. To actually see the code,
double-click its entry in the stack trace. The details panel will show you the code, as shown in

Figure 10.15.

266

w Stack Trace
c_—a| calloc

sl class_createlnstance
+[NSObjectiNSObject) allocWithZone:]
+[NSObject(NSObject) alloc]
-|GRRideProfileView updateCurveMetrics)
. -|GRRideProfileView setlcclass:)
-|GRClassChooserCell seticclass:]
-|GRClassChooserViewController tableVie. ..

-|UITableView{UITableViewinternal) _create...

& a

=

E -|UITableView{UITableViewlnternal) _cre