

Redis Cookbook

Redis Cookbook

Tiago Macedo and Fred Oliveira

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Redis Cookbook
by Tiago Macedo and Fred Oliveira

Copyright © 2011 Tiago Macedo and Fred Oliveira. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Jasmine Perez
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
August 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Redis Cookbook, the image of the mouse opossum, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30504-8

[LSI]

1311195806

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. An Introduction to Redis . 1
When to use Redis 1

Problem 1
Solution 1

Installing Redis 3
Problem 3
Solution 3
Discussion 3

Using Redis Data Types 7
Problem 7
Solution 7
Discussion 7

2. Clients . 9
Using Redis from the Command Line 9

Problem 9
Solution 9
Discussion 9

Using Redis from Python with redis-py 10
Problem 10
Solution 10
Discussion 10

Using Redis from Ruby with redis-rb 11
Problem 11
Solution 11
Discussion 11

Using Redis with Ruby on Rails 12
Problem 12
Solution 12

v

Discussion 12

3. Leveraging Redis . 15
Using Redis as a Key/Value Store 15

Problem 15
Solution 15
Discussion 16

Inspecting Your Data 20
Problem 20
Solution 21
Discussion 21

Implementing OAuth on Top of Redis 22
Problem 22
Solution 22
Discussion 22

Using Redis’s Pub/Sub Functionality to Create a Chat System 26
Problem 26
Solution 26
Discussion 27

Implementing an Inverted-Index Text Search with Redis 30
Problem 30
Solution 31
Discussion 31

Analytics and Time-Based Data 35
Problem 35
Solution 35
Discussion 35

Implementing a Job Queue with Redis 39
Problem 39
Solution 39
Discussion 39

Extending Redis 42
Problem 42
Solution 43
Discussion 43

4. Redis Administration and Maintenance . 45
Configuring Persistence 45

Problem 45
Solution 45
Discussion 46

Starting a Redis Slave 47
Problem 47

vi | Table of Contents

Solution 47
Discussion 47

Handling a Dataset Larger Than Memory 48
Problem 48
Solution 48
Discussion 48

Upgrading Redis 49
Problem 49
Solution 49
Discussion 51

Backing up Redis 51
Problem 51
Solution 51
Discussion 52

Sharding Redis 53
Problem 53
Solution 53
Discussion 54

Appendix: Finding Help . 55

Table of Contents | vii

Preface

Introduction
Redis is a data structure server with an in-memory dataset for speed. It is called a data
structure server and not simply a key value store because Redis implements data struc-
tures allowing keys to contain binary safe strings, hashes, sets and sorted sets, as well
as lists. This combination of flexibility and speed makes Redis the ideal tool for many
applications.

Redis first started in early 2009 as a key value store developed by Salvatore Sanfilippo
in order to improve the performance of his own LLOOGG, an analytics product. Redis
grew in popularity after getting support from people and companies in the developer
world and has since been supported by VMware, who hired Salvatore and Pieter
Noordhuis to work full-time on the project.

Today, Redis is used by companies large and small doing both large and small tasks.
Companies like Engine Yard, Github, Craigslist, Disqus, Digg, and Blizzard are part of
the growing list of Redis adopters. An extended list of people working with Redis is
available on the project’s official site at http://redis.io.

There are often several ways to solve problems using Redis. This book, while not a
tutorial on Redis, key value stores, or data structures, gives you recipes for solving
specific problems with Redis that you can then adapt to your own problem set. Many
of these recipes have come up because we’ve used them in our own jobs, solving our
own problems.

Each of these recipes solves a specific problem using Redis, including a quick intro-
duction to the problem, the solution, and a longer discussion with insight into how the
solution works. Redis is, while simple in nature, quite extensive when it comes to func-
tionality to manipulate and store data. This volume will thus not cover every single
command extensively. It will, however, give you the basics on solving specific problems
with it, in hopes that our solutions guide you to your own.

ix

http://redis.io

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Redis Cookbook by Tiago Macedo and Fred
Oliveira (O’Reilly). Copyright 2011 Tiago Macedo and Fred Oliveira,
978-1-449-30504-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

x | Preface

mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449305048

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

D

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449305048
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgements
We thank Pieter Noordhuis for thoroughly reviewing several chapters of our book, our
editor Andy Oram for his work on making us look good, Salvatore Sanfilippo for his
words of encouragement, and our respective companies for the extra free time to write
this book.

xii | Preface

CHAPTER 1

An Introduction to Redis

This chapter discusses some of Redis’s basic concepts. We’ll look into when Redis is a
great fit, how to install the server and command-line client on your machines, and
Redis’s data types.

When to use Redis

Problem
Nearly every application has to store data, and often lots of fast-changing data. Until
recently, most applications stored their data using relational database management
systems (RDBMS for short) like Oracle, MySQL, or PostgreSQL. Recently, however, a
new paradigm of data storage has emerged from the need to store schema-less data in
a more effective way—NoSQL. Choosing whether to use SQL or NoSQL is often an
important first step in the design of a successful application.

Solution
There are two important thing to consider when choosing whether to use SQL or
NoSQL to store your data: its nature and your usage pattern. Some data is a great fit
for a relational storage engine, while other data benefits from the schema-free nature
of a NoSQL engine like Redis or its alternatives. If you don’t rely on a particular RDBMS
feature and need the performance or scalability of a NoSQL database, that might in
fact be the ideal choice. So in order to decide whether your data should be stored in a
RDBMS or NoSQL engine, you need to look into a few specific things that will help
you make a decision. Also bear in mind that quite often the ideal solution will be to use
both.

1

Are your application and data a good fit for NoSQL?

When working on the web, chances are your data and data model keep changing with
added functionality and business updates. Evolving the schema to support these
changes in a relational database is a painful process, especially if you can’t really afford
downtime—which people most often can’t these days, because applications are
expected to run 24/7. As a case in point, in a recent presentation on MongoDB, Jeremy
Zawodny of Craigslist mentioned how changing the schema on their database typically
takes a two month-long toll on their post archival service.

Examples of data that are a particularly good fit for nonrelation storage are transactional
details, historical data, and server logs. These are normally highly dynamic, changing
quite often, and their storage tends to grow quite quickly, further compounding the
problem of adjusting the schema to store them. They also don’t typically feel “rela-
tional”—that is, the data in them doesn’t tend to fan out in relationships to other types
of data. That’s a good indication that they can use something other than a RDBMS.

Another way to gauge the fit for NoSQL is to look at whether you find yourself
denormalizing your data for performance reasons, and no longer benefit from some of
the advantages of a relational system, such as consistency and redundancy checks.

One thing to keep in mind is that NoSQL databases generally don’t provide ACID
(atomicity, consistency, isolation, durability), or do it only partially. This allows them
to make a few tradeoffs that wouldn’t be possible otherwise. Redis provides partial
ACID compliance by design due to the fact that it is single threaded (which guarantees
consistency and isolation), and full compliance if configured with appendfsync
always, providing durability as well.

Performance can also be a key factor. NoSQL databases are generally faster, particularly
for write operations, making them a good fit for applications that are write-heavy.

All this being said, and even though NoSQL feels more flexible, there are also great
arguments to be made for storing relational data in a RDBMS. If you have predictable
data that is a great fit for normalization, you can reap the benefits of using a relational
data storage engine. Always look at the data before making a decision.

Don’t believe the hype

NoSQL databases such as Redis are fast, scale easily, and are a great fit for many modern
problems. But as with everything else, it is important to always choose the right tool
for the job. Play to the strengths of your tools by looking at what you’re storing, how
often you’ll access it, and how data (and its schema) might change over time.

Once you’ve weighted all the options, picking between SQL (for stable, predictable,
relational data) and NoSQL (for temporary, highly dynamic data) should be an easy
task. Doing this kind of thinking in advance will save you many headaches in future
data migration efforts.

2 | Chapter 1: An Introduction to Redis

There are also big differences between NoSQL databases that you should account for.
For example, MongoDB (a popular NoSQL database) is a feature-heavy document
database that allows you to perform range queries, regular expression searches, index-
ing, and MapReduce. You should weigh all the factors when choosing your database.
As we said earlier, the questions boil down to what your data looks like and what your
usage pattern is.

For example, Redis is extremely fast, making it perfectly suited for applications that
are write-heavy, data that changes often, and data that naturally fits one of Redis’s data
structures (for instance, analytics data). A scenario where you probably shouldn’t use
Redis is if you have a very large dataset of which only a small part is “hot” (accessed
often) or a case where your dataset doesn’t fit in memory.

Installing Redis

Problem
You want to install Redis on your computer.

Solution
There are several ways to install Redis on your computer or server, but the best and
most flexible option is to compile it yourself. Nevertheless, depending on your distri-
bution or operating system, there are other options.

Discussion

Compiling From Source

Redis evolves very quickly and package maintainers have a hard time keeping up with
the latest developments. Since Redis doesn’t have any external dependencies, compi-
lation and installation are very straightforward, so we recommend you do it yourself.
Redis should build cleanly in most Linux distributions, Mac OS X, Solaris, and Cygwin
on Windows.

1. Downloading the source

You can download Redis from the official site or directly from the Github
project, either using Git or your browser to fetch a snapshot of one the branches
or tags. This allows you get to get development versions, release candidates, etc.

2. Compiling

Redis compilation is straightforward. The only required tools should be a C com-
piler (normally GCC) and Make. If you want to run the test suite, you also need
Tcl 8.5.

Installing Redis | 3

http://en.wikipedia.org/wiki/MapReduce
http://redis.io/download
https://github.com/antirez/redis
https://github.com/antirez/redis

After unpacking the source and changing your terminal path to the source direc-
tory, just type:

make

This will compile Redis, which on a modern computer should take less than 10
seconds. If you’re using a x86_64 system but would like an x86 build (which uses
less memory but also has a much lower memory limit), you can do so by passing
along 32bit to Make:

make 32bit

After compiling Redis, particularly if you’re building a development version, you
should run the test suite to ensure that the server is behaving as expected.

make test

3. Installing

After compiling Redis, you can go ahead and run it:

cd src && ./redis-server

However, you might find it more convenient to install it to another location in your
system. The Makefile wlll also help you do that:

make install

This will install Redis binaries to /usr/local/bin. If you wish to install to another
location, you can pass it to make. For instance:

make install /opt/local

This will install the binaries in /opt/local/bin.

After installating the Redis server, you should also copy the configuration file
(redis.conf) to a path of your choice, the default being /etc/redis.conf. If your con-
figuration file is in a different path from the default, you can pass it along as a
parameter to redis-server:

/usr/local/bin/redis-server /alternate-location-for-redis-config.conf

Installing on Linux

Most modern Linux distributions have Redis packages available for installation, but
keep in mind that these are normally not up-to-date. However, if you prefer to use
these, the installation procedure is much simpler:

Debian/Ubuntu

sudo apt-get install redis-server

Fedora/Redhat/CentOS

sudo yum install redis

4 | Chapter 1: An Introduction to Redis

Gentoo

sudo emerge redis

This approach has a few advantages: by using your package management system, you
can more easily keep software up-to-date, and you’ll most likely get at least security
and stability updates. Besides that, you’ll also get startup scripts and an environment
more suited to your distribution (user accounts, log files, database location, etc).

Installing on Windows

Although Redis is not officially supported on Windows for several reasons—notably
the lack of a copy-on-write fork()—the community provides a few ports. Due to Win-
dows’ limitations, Redis MinGW builds execute operations such as BGSAVE and
BGREWRITEAOF in the foreground (thus blocking the Redis process) and Cygwin builds
don’t use CoW, which makes background operations very slow, particularly for large
database sizes. Be sure to disable automatic saving in the config file (especially for
MinGW builds) and use SAVE only when needed.

Beware that for performance and stability reasons, the Windows versions of Redis are
not recommended for production use. Consider using a native or virtualized Linux/
UNIX environment instead. Despite that, you might find these versions useful for
development or testing.

Cygwin
Cygwin is a UNIX-like environment for Windows that implements most of the
POSIX API, thereby enabling you to build and run Redis on Windows. Cygwin is
the easiest way to compile Redis on Windows. From the Cygwin environment, you
can download the Redis source and build it following the steps described in
“Compiling From Source” on page 3. Some users might have licensing issues (due
to Cygwin’s use of the GPL).

ServiceStack maintains a page with a few builds (both x86 and x86_64) along with
their open source C# client.

MinGW
MinGW is a Windows port of the GNU CC compiler (GCC) and the GNU binutils.
Because it builds native Windows binaries, it doesn’t suffer from the same licensing
issues as Cygwin.

Since MinGW doesn’t provide a POSIX API, the Redis source code needs to be
modified in order to build. Dušan Majkić’s fork on Github is regularly updated
and also adds a Windows Service for easier management.

Installing Redis | 5

http://code.google.com/p/servicestack/wiki/RedisWindowsDownload
https://github.com/ServiceStack/ServiceStack.Redis
https://github.com/dmajkic/redis

Installing on Mac OS X

There are several ways to install Redis on Mac OS X. They all require you to have the
XCode developer tools installed, which includes libraries and compilers. If you are a
developer on a Mac, chances are you already have this package installed. If you don’t,
you can either download it from Apple’s developers website or run “Install Developer
Tools” on your Mac’s installation DVDs.

You can manually compile Redis from source by following the steps earlier in this
chapter. Most people, however, prefer the convenience of a package manager such as
Fink, MacPorts, or Homebrew. A Redis package isn’t available on Fink, so we’ll cover
the other two.

MacPorts defines itself as “an easy to use system for compiling,
installing, and managing open source software.” It is based on the FreeBSD Ports sys-
tem, and to a large extent can be used in the exact same way.

In order to install Redis through MacPorts, you need to first install the package man-
agement system. There’s an extensive guide on how to do that at guide.macports.org.
Once you’ve installed MacPorts, installing the Redis package is as simple as:

port install redis

Since Redis has no direct dependencies, the actual compilation and installation process
is quite speedy. You will then be ready to start using Redis.

Homebrew is the latest entrant in the Mac package manage-
ment scene. Being relatively new means that not every package you might be looking
for is available on it—even though they make contributions very easy—but if you’re
looking for a tool that developers use often, chances are that it’s going to be available
through a Homebrew recipe.

You can install Homebrew by following the detailed instructions available over at
Github, but it is usually as simple as running the following command:

ruby -e "$(curl -fsSLk https://gist.github.com/raw/323731/install_homebrew.rb)"

Once that’s done, you’ll be ready to install packages using the Homebrew recipes sys-
tem. Installing Redis is just a matter of typing:

brew install redis

You can then run redis-server manually or install it into the Mac’s own LaunchServices
so that it starts when you reboot your computer. You can edit the configuration
file /usr/local/etc/redis.conf to tweak it to your liking, and then start the server:

redis-server /usr/local/etc/redis.conf

Installing through MacPorts.

Installing through Homebrew.

6 | Chapter 1: An Introduction to Redis

http://developer.apple.com
http://guide.macports.org/#using

Using Redis Data Types

Problem
You need to understand Redis data types in order to make better use of them for specific
applications.

Solution
Unlike most other NoSQL solutions and key-value storage engines, Redis includes
several built-in data types, allowing developers to structure their data in meaningful
semantic ways. Predefined data types add the benefit of being able to perform data-
type specific operations inside Redis, which is typically faster than processing the data
externally. In this section, we will look at the data types Redis supports, and some of
the thinking behind them.

Discussion
Unlike most other NoSQL solutions and key-value storage engines, Redis includes
several built-in data types, allowing developers to structure their data in meaningful
semantic ways—with the added benefit of being able to perform data-type specific
operations inside Redis, which is typically faster than processing the data externally.
In this section, we will look at the data types Redis supports, and some of the thinking
behind them.

Before we dive into the specific data types, it is important to look at a few things you
should keep in mind when designing the key structure that holds your data:

• Be consistent when defining your key space. Because a key can contain any char-
acters, you can use separators to define a namespace with a semantic value for your
business. An example might be using cache:project:319:tasks, where the colon
acts as a namespace separator.

• When defining your keys, try to limit them to a reasonable size. Retrieving a key
from storage requires comparison operations, so keeping keys as small as possible
is a good idea. Additionally, smaller keys are more effective in terms of memory
usage.

• Even though keys shouldn’t be exceptionally large, there are no big performance
improvements for extremely small keys. This means you should design your keys
in such a way that combines readability (to help you) and regular key sizes (to help
Redis).

With this in mind, keys like c:p:319:t or user 123 would be bad—the first
because it is semantically crude, and the latter because it includes whitespace.
On the other hand, keys like cache:project:319:tasks, lastchatmessage, or

Using Redis Data Types | 7

464A1E96B2D217EBE87449FA8B70E6C7D112560C are good, because they’re semantically
meaningful. Note that the last example of an SHA1 hash is, while hard to guess and
predict, semantically meaningful and quite useful if you are storing data related to an
object for which you can consistently calculate a hash.

Strings

The simplest data type in Redis is a string. Strings are also the typical (and frequently
the sole) data type in other key-value storage engines. You can store strings of any kind,
including binary data. You might, for example, want to cache image data for avatars
in a social network. The only thing you need to keep in mind is that a specific value
inside Redis shouldn’t go beyond 512MB of data.

Lists

Lists in Redis are ordered lists of binary safe strings, implemented on the idea of a linked
list. This means that while getting an element by a specific index is a slow operation,
adding to the head or tail of the data structure is extremely fast, as it should be in a
database. You might want to use lists in order to implement structures such as queues,
a recipe for which we’ll look into later in the book.

Hashes

Much like traditional hashtables, hashes in Redis store several fields and their values
inside a specific key. Hashes are a perfect option to map complex objects inside Redis,
by using fields for object attributes (example fields for a car object might be “color”,
“brand”, “license plate”).

Sets and Sorted Sets

Sets in Redis are an unordered collection of binary-safe strings. Elements in a given set
can have no duplicates. For instance, if you try to add an element wheel to a set twice,
Redis will ignore the second operation. Sets allow you to perform typical set operations
such as intersections and unions.

While these might look similar to lists, their implementation is quite different and they
are suited to different needs due to the different operations they make available. Mem-
ory usage should be higher than when using lists.

Sorted sets are a particular case of the set implementation that are defined by a score
in addition to the typical binary-safe string. This score allows you to retrieve an ordered
list of elements by using the ZRANGE command. We’ll look at some example applications
for both sets and sorted sets later in this book.

8 | Chapter 1: An Introduction to Redis

CHAPTER 2

Clients

In this chapter, we’ll look into some of the ways you can connect to Redis. We’ll begin
with the most basic option: Redis’s command-line client, the redis-cli command.
Then we’ll look at ways to integrate Redis with common programming languages such
as Ruby and Python.

Using Redis from the Command Line

Problem
Often you might find yourself in need of firing a simple Redis query, either to set or
change a variable, flush a database, or perhaps take a look at your data. With Redis
you can achieve this directly from the command line.

Solution
Redis ships with a command line client: redis-cli. Redis-cli is a fully featured interactive
client, supporting line editing, history, and tab completion. By using help followed by
a Redis command, you can also get help on how each command works.

You can use redis-cli to connect to a local or remote host Redis server and call com-
mands by passing them as arguments (or piping them in) or by using its interactive
mode.

Discussion
You can get a list of the command line options by typing:

redis-cli -h

The most typical usage scenarios would be something like the following, to connect to
a remote server in interactive mode:

9

redis-cli -h serverip

The following connects to a local server running on a nondefault port in interactive
mode:

redis-cli -p 6380

The following connects to a local server on the default port (6379), executes the
INFO command, and returns you to your original shell:

redis-cli INFO

You can also use pipes and output redirection for a more powerful interaction:

cat command_list.txt | redis-cli > command_output.txt

Using Redis from Python with redis-py

Problem
You want to access and manipulate data in your Redis server with Python.

Solution
Install and use Andy McCurdy’s redis-py using pip, easy_install, or from the source
code.

Discussion
Python’s package index tool (pip) and easy_install make it trivial to install and start
using redis-py. A couple of commands will get you going. Let’s start by looking at how
you install redis-py using pip:

 pip install redis-py

Alternatively, if you’re using easy_install, the installation command would be:

 easy_install redis

From this point on, connecting to Redis in Python is as simple as issuing import
redis, connecting to the server, and executing regular Redis commands. Here’s an
example:

>>> import redis
>>> redis = redis.Redis(host='localhost', port=6379, db=0)
>>> redis.smembers('circle:jdoe:soccer')
set(['users:toby', 'users:adam', 'users:apollo', 'users:mike'])
>>> redis.sadd('circle:jdoe:soccer', 'users:fred')
True
>>> redis.smembers('circle:jdoe:soccer')
set(['users:toby', 'users:adam', 'users:apollo', 'users:mike', 'users:fred'])

10 | Chapter 2: Clients

https://github.com/andymccurdy/redis-py

In order to squeeze a bit more performance out of your Redis and Python setup, you
may want to install the Python bindings for Hiredis, a C-based Redis client library
developed by the Redis authors. You can install the bindings by also using either pip
or easy_install:

 pip install hiredis

or using easy_install:

 easy_install hiredis

redis-py will then automatically detect the Python bindings and use Hiredis to connect
to the server and process responses—hopefully much faster than before.

Using Redis from Ruby with redis-rb

Problem
You want to access and manipulate data in your Redis server by using the Ruby
programming language.

Solution
Use Ezra Zygmuntowicz’s redis-rb library to access and manipulate Redis data from
Ruby applications.

Discussion
redis-rb is a full-fledged Redis client in Ruby created by Ezra Zygmuntowicz. In order
to use it from Ruby, you should start by installing the Ruby gem with the gem install
redis command. You can then use the Redis ruby gem to manipulate data in your Redis
server instance. You can test your redis-rb installation straight from interactive Ruby
(or irb for short):

 > require 'rubygems'
 => true
 > require 'redis'
 => true

If you get a true response when requiring the Redis gem, you are good to go. redis-rb
makes it easy to call regular Redis methods by using the traditional Ruby language
syntax. Here are a few examples where we use Redis’s set, get, and smembers com-
mands. Note that we start off by actually connecting to the redis-server instance by
instantiating the Redis class:

 > r = Redis.new
 => #<Redis client v2.2.0 connected to redis://127.0.0.1:6379/0 (Redis v2.2.11)>
 > r.set 'hellofoo','hellobar'
 => "OK"

Using Redis from Ruby with redis-rb | 11

https://github.com/ezmobius/redis-rb

 > r.get 'hellofoo'
 => "hellobar"
 > r.sadd 'parkdogs', 'fido'
 => true
 > r.sadd 'parkdogs', 'rudolph'
 => true
 > r.sadd 'parkdogs', 'rex'
 => true
 > r.smembers 'parkdogs'
 => ["rex", "rudolph", "fido"]

In these examples, we cut a little bit of the irb output for brevity and simplicity.

As you can see, using Redis from inside a Ruby script (or full-blown application) is
quite trivial. In the next recipe, we’ll look into how we can build upon what we just
learned to use Redis from a Ruby on Rails-based application.

Using Redis with Ruby on Rails

Problem
You want to store and access data in Redis from a Ruby on Rails application.

Solution
Use Ezra Zygmuntowicz’s redis-rb library to access and manipulate Redis data from
Ruby on Rails.

Discussion
If you already have a Ruby on Rails application, you can add Redis support to it by
adding the following line to your Gemfile:

gem 'redis'

and by creating a file inside your config/initializers directory with the following initial-
izer to connect your application to Redis:

$redis = Redis.new

This will create a global variable called $redis with which you can manipulate data and
run commands on the engine. You can pass the :host and :port options to the
Redis.new method in order to connect to a specific host and port instead of the default
localhost:6379. redis-rb also lets you connect to Redis by using a Unix socket by pass-
ing the parameter :path.

Once these two steps are done, you are ready to start using Redis from Ruby on Rails.
You can test out your setup by accessing and using the $redis variable from your Rails
console by running:

12 | Chapter 2: Clients

rails console

and exploring Redis commands to get and set specific keys, hashes, sets, or lists.

Adding Redis functionality to ActiveRecord models

Let’s imagine you have a User model and a Book model and you wanted to store a list
of books that person owns by using a Redis set, thus allowing you to do creative things
like seeing books users have in common easily. In this case, you could implement the
following methods in the User model:

class User < ActiveRecord::Base
 def books
 b = $redis.smembers("books:#{self.id}")
 Book.where :id => b
 end

 def addbook(book)
 $redis.sadd("books:#{self.id}", book.id)
 end

 def delbook(book)
 $redis.srem("books:#{self.id}", book.id)
 end

 def common(user)
 c = $redis.sinter("books:#{self.id}", "books:#{user.id}")
 Book.where :id => c
 end
end

From this point, on it would be trivial to use the methods we just implemented from
anywhere in our application, or from the Rails console. You could specify things like
User.first.books to grab the first user’s list of books, or maybe User.first.add
book(Book.first) to add the first book on your database to your user’s collection.

Using Redis with Ruby on Rails | 13

CHAPTER 3

Leveraging Redis

In this chapter, we’ll look into how we can leverage Redis’s data structures, speed, and
flexibility to create complex systems and functionality, typically in a fraction of the time
we’d spend doing the same with a RDBMS. We’ll start by looking at ways to store
simple data sets, and work up from there in terms of complexity and interest.

Using Redis as a Key/Value Store

Problem
Most applications need to store temporary data about usage, configuration, or other
relevant information that might not be a great fit for the fixed structure of relational
databases. Traditionally, developers have resorted to hacking a table structure to
accommodate this data and using MySQL or another RDBMS to store it. In this recipe,
we’ll look at how we can use Redis and its built-in data types to store application data
in a lighter, faster, and looser manner.

Solution
Redis positions itself not simply as a key/value store but as a server for data structures
as well. This means that on top of typical key/value store functionality, it gives you
several ways to store and manipulate application data. We’ll use these structures and
commands to store application sample data: as examples, we’ll store usage counters in
regular keys, user objects in Redis hashes, and a circle-of-friend implementation (like
Google+) using sets.

15

Discussion

Storing application usage counters

Let’s begin by storing something quite basic: counters. Imagine we run a business social
network and want to track profile/page visit data. We could just add a column to
whatever table is storing our page data in our RDBMS, but hopefully our traffic is high
enough that updates to this column have trouble keeping up. We need something much
faster to update and to query. So we’ll use Redis for this instead.

Thanks to the atomicity of Redis commands (see “Using Redis Data
Types” on page 7 for more about data types and atomicity), we know that if we store
a counter key, we can use commands such as INCR (or INCRBY) and DECR (or DECRBY) to
increment or decrement its contained value. So by designing a proper namespace for
our data, maintaining our counters becomes a trivial one-operation endeavor.

There’s no actual convention for organizing keys in systems like Redis, but a lot of
people (including the authors) like to build keys out of keywords separated by colons,
so we’ll do that here. To store our social network page visit data, we could have a key
namespace such as visits:pageid:totals, which for a page ID of 635 would look like
visits:635:totals. If we already were storing visit data somewhere, we can first seed
redis with that data by setting our keys to the current values:

SET visits:1:totals 21389
SET visits:2:totals 1367894
(...)

On a visit to a given page, a simple INCR command would update the counter in Redis:

INCR visits:635:totals

We could then grab the page visits for any page, at any time by doing a simple GET
command by key:

GET visits:635:totals

You can also be smarter about the number of commands you run. Let’s say you’re
showing the visitor himself how many visits the page he’s looking at has had. Naturally,
you’ll be counting his own visit too, so you wouldn’t even have to do the last GET: you
can take advantage of the return value from the INCR command because it returns the
post-increment count. A simple pseudocode for visits and counters could look like this:

1. The visitor requests the page.

2. We INCR the visits counter related to the page (INCR visits:635:totals, for in-
stance).

3. We capture the return value of the INCR command.

4. We show the user the page with the return value.

16 | Chapter 3: Leveraging Redis

This way we guarantee that the user always sees real live counter data when looking at
the page, and that his own visited is counted too—all with a single Redis command.

Storing object data in hashes

As discussed in “Using Redis Data Types” on page 7, Redis’s implementation of hashes
makes for a perfect solution to store the object data applications typically use. In the
following example, we’ll look into how we might use hashes to store information on
users in a given system.

We’ll begin by designing a key namespace to store our users. As before, we’ll be sepa-
rating keywords with colons to generate a rich key that makes sense in our system. For
the sake of this recipe, we’ll go with something simple like keys in the form of
users:alias, where alias is a binary-safe string. So to store information about a user
called John Doe, we might build a hash called users:jdoe.

Let’s also assume we want to store a number of fields about our users, such as a full
name, email address, phone number, and number of visits to our application. We’ll
use Redis’s hash management commands—like HSET, HGET, and HINCRBY—to store this
information.

redis> hset users:jdoe name "John Doe"
(integer) 1
redis> hset users:jdoe email "jdoe@test.com"
(integer) 1
redis> hset users:jdoe phone "+1555313940"
(integer) 1
redis> hincrby users:jdoe visits 1
(integer) 1

With our hash built and in place, we can fetch single fields with HGET or the full hash
by using the HGETALL command, as exemplified here:

redis> hget users:jdoe email
"jdoe@test.com"
redis> hgetall users:jdoe
1) "name"
2) "John Doe"
3) "email"
4) "jdoe@test.com"
5) "phone"
6) "+1555313940"
7) "visits"
8) "1"

Using Redis as a Key/Value Store | 17

There are auxiliary commands like HKEYS, which return the keys stored in a particular
hash, and HVALS, which returns only the values. Depending on how you want to retrieve
your data, you may find it useful to use HGETALL or one of these to retrieve data from
Redis into your application.

redis> hkeys users:jdoe
1) "name"
2) "email"
3) "phone"
4) "visits"
redis> hvals users:jdoe
1) "John Doe"
2) "jdoe@test.com"
3) "+1555313940"
4) "1"

For a list of additional commands to manage our users hash, peruse the Redis official
documentation for hash commands, which includes its own set of examples on man-
aging data with hashes.

Storing user “Circles” using sets

To complete our look at some typical ways to store data in Redis, let’s look at how we
can use Redis’s support for sets to create functionality similar to the circles in the
recently launched Google+. Sets are a natural fit for circles, because sets represent
collections of data, and have native functionality to do interesting things like intersec-
tions and unions.

Let’s begin by defining a namespace for our circles. We want to store several circles for
each of our users, so it makes sense for our key to include a bit about the user and a bit
about the actual circle. As an example, John Doe’s family circle might have a key like
circle:jdoe:family. Similarly, his soccer practice buddies might be listed in a set with
the key circle:jdoe:soccer. There’s no set rule for key design, so always design them
in a way that is meaningful to your application.

Now that we know which keys to store our sets in, let’s create John Doe’s family and
soccer practice sets. Inside the set itself, we can list anything from user IDs to references
to other keys in Redis, so we’ll do the latter because it makes sense for us. This way if
we want to grab a list of users that belong to John’s family circle and show information
about them, we can use the result of our set operation to then grab the actual hashes
for each user (which might be stored as described in the previous section).

redis> sadd circle:jdoe:family users:anna
(integer) 1
redis> sadd circle:jdoe:family users:richard

18 | Chapter 3: Leveraging Redis

http://redis.io/commands#hash
http://redis.io/commands#hash

(integer) 1
redis> sadd circle:jdoe:family users:mike
(integer) 1
redis> sadd circle:jdoe:soccer users:mike
(integer) 1
redis> sadd circle:jdoe:soccer users:adam
(integer) 1
redis> sadd circle:jdoe:soccer users:toby
(integer) 1
redis> sadd circle:jdoe:soccer users:apollo
(integer) 1

Keep in mind that in the examples above we should be normalizing the members of
our set by using actual numbers for IDs rather than users:name. While the example
above works great, it may be a good idea for performance reasons to sacrifice a bit of
readability for more speed and memory efficiency.

Now we have a set called circle:jdoe:family with three values (in our case, these are
users:anna, users:richard, and users:mike) and a second one called circle:jdoe:soc
cer with four values (users:mike, users:adam, users:toby, and users:apollo). The val-
ues themselves are only strings, but by using strings that are meaninful to us (they’re
similar to our key design for user hashes), we can use the result of the SMEMBERS com-
mand to then get information on specific users. Here’s an example:

redis> smembers circle:jdoe:family
1) "users:richard"
2) "users:mike"
3) "users:anna"
redis> hgetall users:mike
(...)

Now that we know how to store information in sets, we can expand on this knowledge
and do interesting things like getting people who belong in both of John Doe’s sets (by
intersecting our family and soccer sets), or getting a full list of everyone John Doe has
added to circles in our system (by doing a union of John’s sets):

redis> sinter circle:jdoe:family circle:jdoe:soccer
1) "users:mike"
redis> sunion circle:jdoe:family circle:jdoe:soccer
1) "users:anna"
2) "users:mike"
3) "users:apollo"
4) "users:adam"
5) "users:richard"
6) "users:toby"

Using Redis as a Key/Value Store | 19

According to our results, Mike is in both John Doe’s family and soccer circles. By doing
a union of the two circles, we also get a full list of John’s friends in our system.

As you can see, Redis’s sets make it extremely easy to do what would normally involve
a number of queries in a typical RDBMS. It also does it extremely fast, making it an
ideal candidate to implement applications that require managing (and doing operations
with) sets. Circles are one example, but things like recommendations or even text search
are also good fits for sets. We’ll look at both of these examples in depth in later recipes.

Quick Reference for Key Operations
SET key value

Sets the key to hold the given value. Existing data is overwritten (even if of a dif-
ferent data type).

GET key
Returns the content held by the key. Works only with string values.

INCR key
Increments the integer stored at key by 1.

INCRBY key value
Performs the same operation as INCR, but incrementing by value instead.

DECR key
Decrements the integer stored at key by 1.

DECRBY key value
Performs the same operation as DECR, but decrementing by value instead.

Inspecting Your Data

Problem
While developing (or perhaps debugging) with Redis, you may find you need to take a
look at your data. Even though it’s not as simple (or powerful) as MySQL’s SHOW
TABLES; and SELECT * FROM table WHERE conditions; commands, there are ways of
viewing data with Redis.

20 | Chapter 3: Leveraging Redis

http://redis.io/commands/set
http://redis.io/commands/get
http://redis.io/commands/incr
http://redis.io/commands/incrby
http://redis.io/commands/decr
http://redis.io/commands/decrby

Solution
The Redis command that allows you to list your data is the KEYS command. Use it with
the supported wildcard matchers. Thus, the following command:

KEYS *

will return all the keys in your database. However, that is not enough, as you still may
not know what the key type is. That’s what the TYPE command is for:

TYPE keyname

This will tell you whether that key is a string, hash, list, set, or zset.

Discussion
The wildcard syntax of the KEYS command is limited but quite useful. It supports queries
like:

KEYS h*llo
Returns all keys starting in h and ending in llo.

KEYS h?llo
Returns keys that start with h, end with llo, and have exactly one character between
them.

KEYS h[ae]llo
Returns only the keys hallo and hello, if they exist.

Keep in mind that every time you use the KEYS command, Redis has to scan all the keys
in the database. Therefore, this can really slow down your server, so you probably
shouldn’t use it as a normal operation. If you need a list of all your keys (or a subset)
you might want to add those keys to a set and then query it.

Something else that might be useful if you’re debugging a running application is the
MONITOR command: it outputs the commands being sent to the server in real time.

Quick Reference for Debugging
KEYS pattern

Lists all the keys in the current database that match the given pattern.

TYPE key-name
Tells the type of the key. Possible types are: string, list, hash, set, zset, and none.

MONITOR
Outputs the commands received by the Redis server in real time.

Inspecting Your Data | 21

http://redis.io/commands/keys
http://redis.io/commands/type
http://redis.io/commands/monitor

Implementing OAuth on Top of Redis

Problem
In this recipe, we’ll implement a data model and interaction to support an OAuth v1.0a
API. This is usually achieved on top of MySQL or another RDBMS, but we’ll leverage
Redis’s data structures for a more efficient implementation.

Solution
We won’t be implementing the API or the OAuth interaction itself. Here we’re inter-
ested only in the data required for this sort of scenario. We’ll be storing five types of
data in Redis:

consumer keys
consumer secrets
request tokens
access tokens
nonces

So the needs are as follows: applications (consumers) are identified by their key and
secret, of which they have exactly one pair. Those consumers can have as many request
and access tokens as they desire, and the nonces should be unique per consumer/time-
stamp pair.

These types of data will be stored in hashes, sets, and strings depending on their specific
requirements and interactions.

Discussion

Initial setup

To start with, consumers must enter their data before they issue a request. Let’s put
this data in a hash with the consumer information. The key is the one we’ve stored for
the particular consumer when he or she registered with our system:

HMSET /consumers/key:dpf43f3p2l4k3l03 secret kd94hf93k423kf44 created_at 201103060000
 redirect_url http://www.example.com/oauth_redirect name test_application

Please ignore newlines in commands; they’re only for styling purposes.
A command should be issued all on one line.

This command gives us, for every application, a hash containing its “general” data,
which can be extended over time. The same could be achieved in Memcache either by

22 | Chapter 3: Leveraging Redis

storing all the values in different keys or by storing the data in some format like JSON
or YAML.

Quick Reference for Adding Values to Sets
HSET hash-name key value

Sets a value on a hash with the given key. As with other Redis commands, if the
hash doesn’t exist, it’s created.

HMSET hash-name key1 value1 [key2 value2 ...]
Allows you to set several values in a hash with a single command.

Getting a request token

In order to get a request token, consumers send their key, a timestamp, a unique gen-
erated nonce, a callback url, and a request signature that is a hash of the request path
and parameters using the consumer secret. (For security purposes, the consumer secret
is never sent—it’s a pre-shared secret since both parts know it).

The API provider needs to verify that the signature is correct using the key and secret,
check whether this nonce/timestamp combination was used previously (to prevent re-
playing), and generate a new request token.

In order to do so, the server needs to fetch the consumer data:

HGETALL /consumers/key:dpf43f3p2l4k3l03

and then check that this nonce hasn’t been used yet:

SADD /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182600 dji430splmx33448

Using a set to store the nonce data has a few advantages. First, sets assure uniqueness
(we’ll see in a minute how to tell whether the element was present already). Also, we
can delete all the nonces for past requests after a chosen period of time, by setting
expiration times on each one. For this application, let’s make the expiration time 30
minutes.

EXPIRE /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182600 1800

Now, if someone was to attempt to replay this request by sending the same timestamp
and nonce, issuing the same SADD command as before would return 0, indicating that
this value was already present in the set. Should this happen, the provider should refuse
to generate a new token.

After validating all the data, we need to create a token and matching secret:

HSET /request_tokens/key:dpf43f3p2l4k3l03 hh5s93j4hdidpola hdhd0244k9j7ao03

Implementing OAuth on Top of Redis | 23

http://redis.io/commands/hset
http://redis.io/commands/hmset

Quick Reference for Authorization Algorithm
HGETALL hash-name

Returns all the key/value pairs in the given hash.

SADD set-name element
Adds the element to the given set unless it’s already a member. The return value
is 1 if the element is added and 0 if it was already a member.

EXPIRE key seconds
Sets an expiration timeout on a key, after which it will be deleted. This can be used
on any type of key (strings, hashes, lists, sets or sorted sets) and is one of the most
powerful Redis features.

EXPIREAT key timestamp
Performs the same operation as EXPIRE, except you can specify a UNIX timestamp
(seconds since midnight, January 1, 1970) instead of the number of elapsed sec-
onds.

TTL key
Tells you the remaining time to live of a key with an expiration timeout.

PERSIST key
Removes the expiration timeout on the given key.

Redirections and consent

After successfully retrieving the request token, the consumer should redirect the user
to the API provider, which will authenticate the user and authorize the application to
access the user’s data. Should the user grant his permission, we’ll have to store it:

SET /authorizations/request_token:hh5s93j4hdidpola 16

Once that is done, we can redirect the user to the redirect URL we stored:

HGET /consumers/key:dpf43f3p2l4k3l03 redirect_url

Exchanging the request token for an access token

The access tokens are what the consumers need to authenticate with the API. These
are obtained by submitting the consumer key, request token, and secret that were pre-
viously fetched and generating an access token. Most APIs that rely on OAuth do so
for authentication purposes, so we’ll also check whether this access token was author-
ized by a user.

HGETALL /consumers/key:dpf43f3p2l4k3l03

As for the previous operations, we need to check whether the consumer key is valid
and matches an existing application.

HGET /request_tokens/key:dpf43f3p2l4k3l03 hh5s93j4hdidpola

24 | Chapter 3: Leveraging Redis

http://redis.io/commands/hgetall
http://redis.io/commands/sadd
http://redis.io/commands/expire
http://redis.io/commands/expireat
http://redis.io/commands/ttl
http://redis.io/commands/persist

We also need to check the request token and a failure to find it would probably mean
someone is attempting to reuse a request token which is not allowed by the spec.

GET /authorizations/request_token:hh5s93j4hdidpola

The last thing we need to check is which user authorized this application.

SADD /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182700 kllo9940pd9333jh
EXPIRE /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182600 1800

Once again, the nonce should be unique for this consumer—the output of SADD suffices
as sets assure uniqueness. A failure in any of the checks implies an invalid request and
therefore we shouldn’t generate an access token. If everything is OK, we can proceed:

HMSET /access_tokens/consumer_key:dpf43f3p2l4k3l03/access_token:nnch734d00sl2jdk
 secret pfkkdhi9sl3r4s00 user_id 16 created_at 20110306182600
HDEL /request_tokens/key:dpf43f3p2l4k3l03 hh5s93j4hdidpola
DEL /authorizations/request_token:hh5s93j4hdidpola

Perhaps somewhere in our application we allow users to see which applications have
access to their credentials. To facilitate the retrieval of that information, let’s add it to
a hash of client applications:

HSET /users/user_id:16/applications dpf43f3p2l4k3l03 nnch734d00sl2jdk

A follow-up feature would be to allow users to revoke access to these applications.
Doing so is trivial:

HDEL /users/user_id:16/applications dpf43f3p2l4k3l03
DEL /access_tokens/consumer_key:dpf43f3p2l4k3l03/access_token:nnch734d00sl2jdk

Our application logic might also define different expiration times for each new token,
perhaps even at the user’s request. Let’s say that in this case the user gave permission
for 24 hours (86400 seconds):

EXPIRE /access_tokens/consumer_key:dpf43f3p2l4k3l03/access_token:nnch734d00sl2jdk
 86400

Beware of one detail: if you are expiring the access tokens, you need either to check for
their existence (and remove them from the hash if they’re absent) before presenting the
user with the list of authorizated applications, or to do a regular clean-up operation
that checks that the keys in the /users/user_id:16/applications hash are still valid.

Quick Reference for Hash Operations
HGET hash-name key

Returns the value at key in the given hash.

HDEL hash-name key
Deletes a key/value pair in the given hash.

Implementing OAuth on Top of Redis | 25

http://redis.io/commands/hget
http://redis.io/commands/hdel

API Access

When the consumer is accessing the API, the process should be really simple: validate
the keys, secrets, signatures, and nonce.

HGETALL /consumers/key:dpf43f3p2l4k3l03
HGETALL /access_tokens/key:dpf43f3p2l4k3l03/access_token:nnch734d00sl2jdk
SADD /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182800 kllo9940pd9333jh
EXPIRE /nonces/key:dpf43f3p2l4k3l03/timestamp:20110306182600 1800

Using Redis’s Pub/Sub Functionality to Create a Chat System

Problem
You want to leverage Redis’s pub/sub functionality to create a light real-time chat sys-
tem with Node.js and Socket.IO.

Solution
Since Redis has native support for the publish/subscribe (or pub/sub) pattern, we can
easily use it in conjunction with Node.js and Socket.IO to quickly create a real-time
chat system.

The publish/subscribe pattern defines a way in which receivers subscribe to messages
that match a specific pattern (for instance, messages that are sent to a specific “chan-
nel”), and a way for an emitter to send messages to a message cloud. When a message
hits that cloud, clients that subscribe to messages of that kind will get the message. The
pattern allows then for emitters and clients to be loosely coupled—they don’t need to
know each other. They just need to be able to send messages in a given pattern, and
receive messages that match that pattern.

For a better understanding of how Publish/Subscribe works, see the Wikipedia page.

Redis has direct support for the pub/sub pattern, meaning that it lets clients subscribe
to specific channels matching a given pattern, and to publish messages to a given chan-
nel. This means that we can easily create channels like “chat:cars” for car-talk, or
“chat:sausage” for food-related conversation. The channel names are not related to the
Redis keyspace so you don’t have to worry about conflicts with existing keys. The pub/
sub functionality is supported by the following Redis commands:

PUBLISH
Publishes to a specific channel

SUBSCRIBE
Subscribes to a specific channel

UNSUBSCRIBE
Unsubscribes from a specific channel

26 | Chapter 3: Leveraging Redis

http://en.wikipedia.org/wiki/Publish/subscribe

PSUBSCRIBE
Subscribes to channels that match a given pattern

PUNSUBSCRIBE
Unsubscribes from channels that match a given pattern

With this knowledge, it is trivial to implement chat and notification systems, either for
end-users or to stream messages between logical parts of applications. Pub/sub can
even be used as a building block of a robust queueing system. Let’s look at our simple
implementation of an instant messaging chat system.

On the server side, Node and Socket.IO will take care of the network layer, and Redis
will act as a straightforward implementation of pub/sub that delivers messages between
clients. On the client side, we’ll use a hint of jQuery to process messages, and send data
to the server.

Discussion
For this recipe, we’ll assume that you have a recent installation of Node.js, as well as
npm in order to install the necessary node libraries to support the chat system
(Socket.IO and Redis). We’ll start by looking at how we install the necessary software
to build the chat solution, and then go through the code for the server and client sides
of the software.

Installing the necessary software

Let’s start off by installing the necessary node libraries using npm:

npm install socket.io
npm install redis

Implementing the server side code

On the server side, we’ll be running Redis and creating a Javascript file that we’ll run
with Node.js. This piece of code will take care of setting up a connection to Redis and
listening on a given port for connecting clients (either using websockets or flash—this
choice will be handled transparently by Socket.IO). Let’s go through our necessary
JavaScript code. Create a chat.js file containing the following code:

var http = require('http'),
io = require('socket.io'),
redis = require('redis'),
rc = redis.createClient();

These lines require the libraries we installed and create the variables we’ll use to access
Redis and Socket.IO. We’ll access Redis with the “redis” variable, and “io” will let us

Using Redis’s Pub/Sub Functionality to Create a Chat System | 27

access all the sockets that are connected to our server (web clients, who visit our chat
page).

The next thing we must do in our code is to set up an HTTP server system on top of
which Socket.io will do its websocket magic. Here are the lines to do that:

 server = http.createServer(function(req, res){
 // we may want to redirect a client that hits this page
 // to the chat URL instead
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end('<h1>Hello world</h1>');
 });

 // Set up our server to listen on 8000 and serve socket.io
 server.listen(8000);
 var socketio = io.listen(server);

If you have some experience with Node.js or Socket.IO, this code is pretty straightfor-
ward. What we’re basically doing is setting up an HTTP server, specifying how it will
reply to requests, making it listen on a port (in this case, we’re going to listen on port
8000), and attaching Socket.IO to it so that it can automatically serve the Socket.IO
JavaScript files and set up the websocket functionality.

Now we set up the small bits of Redis code to support our functionality. The Redis
client we set up with Node.js must subscribe to a specific chat channel, and deal with
messages on that channel when they arrive. So that’s what we do next:

 // if the Redis server emits a connect event, it means we're ready to work,
 // which in turn means we should subscribe to our channels. Which we will.
 rc.on("connect", function() {
 rc.subscribe("chat");
 // we could subscribe to more channels here
 });

 // When we get a message in one of the channels we're subscribed to,
 // we send it over to all connected clients.
 rc.on("message", function (channel, message) {
 console.log("Sending: " + message);
 socketio.sockets.emit('message', message);
 })

As you can see, our actual Redis code is extremely simple. All we do is listen for messages
on a specific channel, and when they arrive, we broadcast them to all clients that are
connected to us.

28 | Chapter 3: Leveraging Redis

Implementing the client side code

With the server side part completed, all we have to do is create a small page that con-
nects to Node.js, sets up Socket.IO on the client side, and then deals with incoming
and outgoing messages. So let’s create a page like that now. Here’s the main trunk for
a very simple HTML5 page:

 <!doctype html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Chat with Redis</title>
 </head>
 <body>
 <ul id="messages">
 <!-- chat messages go here -->

 </body>
 </html>

Now we need to include the two main pieces we need to get the functionality working:
jQuery and Socket.IO. We’ll grab the first from Google’s CDN, and the second from
our Node.js server (Socket.IO takes care of setting this up for you automatically). Insert
these two lines in the head section of your page:

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.1/jquery.min.js"></script>
<script src="http://localhost:8000/socket.io/socket.io.js"></script>

We’re now ready to connect to Node.js from this page and start listening to and pro-
cessing messages. Add the following code to your head section:

 <script>
 var socket = io.connect('localhost', { port: 8000 });

 socket.on('message', function(data){
 var li = new Element('li').insert(data);
 $('messages').insert({top: li});
 }
 </script>

This piece of JavaScript makes the client-side Socket.IO connect to our Node.js instance
on port 8000 and start listening to message events. When a message arrives, it creates
a new list element and adds it to the unordered list we had already added to our code.

Using Redis’s Pub/Sub Functionality to Create a Chat System | 29

Remember, this is very simple code and the resulting chat page will look ugly by default,
but it is also trivial to update it to look better.

All we’re missing at this point is a form and a way to send messages from one client to
the server so that they can be broadcast to everyone else. This is done with Socket.IO’s
emit function, which we already used on the server side as well. Write something like:

 <form id="chatform" action="">
 <input id="chattext" type="text" value="" />
 <input type="submit" value="Send" />
 </form>

 <script>
 $('#chatform').submit(function() {
 socket.emit('message', $('chattext').val());
 $('chattext').val(""); // cleanup the field
 return false;
 });
 </script>

When a client fills the form and clicks Send, jQuery will use our socket variable to emit
a message event to the server, which will then broadcast the message to everyone else.
The return false statement in the last script tag keeps the form from actually being
submitted. Our submission code is handled by Socket.IO.

Further improvements

In the previous sections, we built the main pieces of a chat system using Node.js,
Socket.IO, and Redis. There are many ways we could improve our code. Instead of
sending and receiving regular strings, we could create small JSON snippets that include,
with the message, a bit of metadata like a username or avatar. We could also improve
our server-side code to include multiple channels, or allow subscribing to several chan-
nels using a pattern. The possibilities are endless, and Redis’s pub/sub implementation
makes it trivial to implement robust solutions for chat or notifications.

Implementing an Inverted-Index Text Search with Redis

Problem
An inverted index is an index data structure that stores mappings of words (or other
content) to their locations in a file, document, database, etc. This is generally used to
implement full text search, but it requires previous indexing of the documents to be
searched.

30 | Chapter 3: Leveraging Redis

In this recipe, we’ll use Redis as the storage backend for a full-text search implemen-
tation.

Solution
Our implementation will use one set per word, containing document IDs. In order to
allow fast searches, we’ll index all the documents beforehand. Search itself is performed
by splitting the query into words and intersecting the matching sets. This will return
the IDs of the documents containing all the words we search for.*

Discussion

Indexing

Let’s say we have a hundred documents or web pages that we want to allows searches
on. The first step is indexing these. In order to do so, we should split the text into its
separate words and perhaps exclude stop words and words under three characters in
length. We’ll use a Ruby script to do this:

def id_for_document(filename)
 doc_id = $redis.hget("documents", filename)
 if doc_id.nil?
 doc_id = $redis.incr("next_document_id")
 $redis.hset("documents", filename, doc_id)
 $redis.hset("filenames", doc_id, filename)
 end
 doc_id
end

STOP_WORDS = ["the", "of", "to", "and", "a", "in", "is", "it", "you", "that"]
f = File.open(filename)
doc_id = id_for_document(filename)
f.each_line do |l|
 l.strip.split(/ |,|\)|\(|\;|\./).each do |word|
 continue if word.size <= 3 || STOP_WORDS.include?(word)
 add_word(word, doc_id)
 end
end

So, we’ve filtered the words that will be added to the index and generated unique IDs
for our documents. We still need the indexing function:

def add_word(word, doc_id)
 $redis.sadd("word:#{word}", doc_id)
end

So, for each each word that we find in our documents, we have created a new set
containing the IDs of the documents where that word can be found.

* This recipe is based on an example by Salvatore Sanfilippo released under the BSD license.

Implementing an Inverted-Index Text Search with Redis | 31

http://en.wikipedia.org/wiki/Stop_words
https://gist.github.com/120067

Searching

The advantage of inverted indexes is that search is really fast since most of the work is
done during the indexing of the document. In order to search, we only need to intersect
the sets of the words in our search query. The following code uses the redis-rb interface
to Redis to execute commands against the Redis server in our Ruby client program.

def search(*terms)
 document_ids = $redis.sinter(*terms.map{|t| "word:#{t}"})
 $redis.hmget("filenames", *document_ids)
end

SINTER set1 set2 .. intersects a given number of sets.

Scoring

The previous approach is somewhat limited and very simple, but easily extendable.
One thing we could do is rank our documents so that when returning search results,
we take a score under consideration: a higher score meaning more revelance (such as
if a word is in the subject or title of the document) or simply higher frequency. Let’s
change the indexing function to the following:

def add_word(word, doc_id)
 $redis.zincrby("word:#{word}", 1, doc_id)
end

Searching becomes a bit more complicated:

def search(*terms)
 document_ids = $redis.multi do
 $redis.zinterstore("temp_set", terms.map{|t| "word:#{t}"})
 $redis.zrevrange("temp_set", 0, -1)
 end.last
 $redis.hmget("filenames", *document_ids)
end

Notice the use of a multi function in the previous code. This is because we have a
potential race condition in the temp_set sorted set. Whenever you have two or more
commands that must both be applied before anyone else tries to access the data they
change (as we do here with ZINTERSTORE followed by ZREVRANGE), the potential for a race
condition exists.

32 | Chapter 3: Leveraging Redis

http://redis.io/commands/sinter

In order to avoid running into this race condition, while performing parallel search
queries, we must either use Redis’s MULTI/EXEC commands or be able to generate a
unique key for each search query. (In that case, we should also clean up after ourselves
and delete the temporary sorted set).

The MULTI and EXEC commands allow transactional behavior in Redis. All commands
written in a MULTI/EXEC block are assured to be run sequentially, which means that no
other Redis client gets served during the length of the block. In the previous example,
it eliminates the race condition in temp_set because other clients are unable to change
the value between the ZINTERSTORE and ZREVRANGE operations. Using DISCARD inside a
transaction will abort the transaction, discarding all the commands and return to the
normal state.

Since the commands are processed only after EXEC is called, only at that moment will
you receive the replies for all the commands inside the transaction. Therefore it’s im-
possible to use the response of a command run inside the transaction within the same
transaction. In order to achieve that, you’ll need to use WATCH.

redis-rb has no explicit EXEC call. Instead, the beginning and end of the block submitted
to your multi function mark the beginning and end of the transaction. At the end of
your block, redis-rb internally calls EXEC.

Quick Reference for Inverted-Index Algorithm
ZINCRBY zset-name increment element

Adds or increments the score of an element in a sorted set. As with ZADD and
SADD, the set will be created if it doesn’t exist.

ZINTERSTORE destination-zset number-of-zsets-to-intersect zset1 [zset2 ...]
[WEIGHTS weight1 [weight2 ...]] [AGGREGATE SUM | MIN | MAX]

Gets the intersection of a given number of ZSETS and store the result in a new
ZSET. It’s also possible to pass along a muliplication factor for each ZSET
(WEIGHTS) or to specify the aggregation function. By default, it’s a sum of the scores
in all the sets, but it can also be the maximum or minimum value.

ZREVRANGE zset-name start-index stop-index [WITHSCORES]
Returns the elements in the sorted set within the given range, in descending order.
The command can also optionally include the scores of the elements in the returned
result. The ZRANGE command performs the same operation, but in ascending order.

Implementing an Inverted-Index Text Search with Redis | 33

http://redis.io/commands/multi
http://redis.io/commands/exec
http://redis.io/topics/transactions
http://redis.io/commands/discard
http://redis.io/commands/watch
http://redis.io/commands/zincrby
http://redis.io/commands/zinterstore
http://redis.io/commands/zinterstore
http://redis.io/commands/zrevrange
http://redis.io/commands/zrange

Other improvements

There are many improvements that could be done for this search implementation:

Case sensitivity
We could make this example case-insensitive by downcasing (or upcasing) the
words before indexing and the search terms before querying.

Fuzzy searching
You might also be interested in implementing fuzzy searching as part of your search
application. It consists basically of taking common misspellings into consideration.
In our example, this would be done at the indexing phase by indexing the terms
along with the misspellings, either retrieved from a list or by using a specific algo-
rithm for that purpose (for example, a phonetic one).

Partial word matching
This can be very useful, but will also increase the memory usage of your index and
possibly give you many unwanted search results. In order to achieve this, you’d
have to decompose your words into substrings and index those. For example, to
index the word matching, you’d have to add all of these:

matching
mat
matc
match
matchi
matchin

And that’s assuming that you’ve set a minimum length of three characters and that
you’d always match at least the beginning of the word. If you’re interested in all
the possible combinations, you’d need to index many other substrings of that word.

The use of sorted sets is useful for both this and the previous enhancement (fuzzy
searching). You could leverage them to give lower scores to partial words (perhaps
proportional to the length of the word) and to the misspellings in order to improve
the quality of your search results.

INCR key
Increments the integer stored at key by 1.

INCRBY key value
Performs the same operation as INCR, but incrementing by value instead.

DECR key
Decrements the integer stored at key by 1.

DECRBYkey value
Performs the same operation as DECR, but decrementing by value instead.

34 | Chapter 3: Leveraging Redis

http://en.wikipedia.org/wiki/Phonetic_algorithm
http://redis.io/commands/incr
http://redis.io/commands/incrby
http://redis.io/commands/decr
http://redis.io/commands/decrby

Analytics and Time-Based Data

Problem
Storing analytics or other time-based data poses somewhat of a challenge for traditional
storage systems (like an RDBMS). Perhaps you want to do rate limiting on incoming
traffic (which requires fast and highly concurrent updates) or simply track visitors (or
more complex metrics) to your website and plot them on a chart.

While there are many ways of storing this kind of data in other systems, Redis is a
perfect candidate due to its powerful data structures.

Solution
Redis is ideally suited for storing this type of data, and for tracking events in particular.
The atomic and fast (in O(1) time) HINCR and HINCRBY commands, combined with fast
data look-ups, make it a good fit.

A good and memory-efficient way of storing this data in Redis is to use hashes to store
the counters, increment them using HINCRBY, and then fetch them using HGET and
HMGET. Finding the top elements is also easily achieved using the SORT command.

Discussion
For simplicity’s sake, in this example, we’ll track only hits. This could easily be exten-
ded to track any kind of events.

require 'rubygems'
require 'active_support/time'

def add_hit(id)
 $redis.sadd("clients", id)
 $redis.hincrby("stats/client:#{id}", "total", 1)
 $redis.hincrby("stats/client:#{id}", Date.today.to_s(:number), 1)
end

What we’re doing here is adding the ID for this user (which could be simply an IP
address, if we’re tracking visitors to a website) to a list of clients (or visitors) and then
logging hits in two different time slots: a “total” and a daily one. This allows us to track
hits per day and globally over time.

def hits(id, day = Date.today)
 $redis.hget("stats/client:#{id}", day.to_s(:number)).to_i
end

def over_limit?(id, limit)
 hits(id) > limit
end

Analytics and Time-Based Data | 35

This also allows us to enforce rate limiting by simply checking whether that client has
gone over the limit for a given time period.

Fetching data for a given period of time is also a trivial and efficient operation that can
be used to plot a chart or display the data in some other way:

def keys(beg_p, end_p)
 keys = []
 while beg_p <= end_p
 keys << if block_given?
 yield(beg_p.to_s(:number))
 else
 beg_p.to_s(:number)
 end
 beg_p += 1.day
 end

 keys
end

def stats_for_period(id, beginning_of_period, end_of_period)
 beg_p = Date.parse(beginning_of_period)
 end_p = Date.parse(end_of_period)

 $redis.hmget "stats/client:#{id}", *keys(beg_p, end_p)
end

We can also fetch the top clients for any “time slot” that we’re storing data for, using
the SORT command. SORT allows us to sort a set, sorted set, or list—in our case, the
clients set—optionally using external keys—our time slots—while specifying order,
offset, limit, etc.:

def top_clients(period = "total", limit = 5)
 $redis.sort("clients", :by => "stats/client:*->#{period}", :order => "DESC",
 :get => ["#", "stats/client:*->#{period}"], :limit => [0, limit])
end

This implementation, using hashes, is highly optimized for storage, retrieval, and up-
dating (all O(1) operations) but not for calculating the top users (particularly for a date
range). Should you require those operations—for example, when displaying a high-
score table—you can reimplement the sort using sorted sets, which guarantee that you
get your data sorted:

def add_hit(id)
 $redis.zincrby("stats/total", 1, id)
 $redis.zincrby("stats/#{Date.today.to_s(:number)}", 1, id)
end

def hits(id, day = Date.today)
 $redis.zrank("stats/#{day.to_s(:number)}", id)
end

def over_limit?(id, limit)
 hits(id) > limit

36 | Chapter 3: Leveraging Redis

end

def stats_for_period(id, beginning_of_period, end_of_period)
 beg_p = Date.parse(beginning_of_period)
 end_p = Date.parse(end_of_period)

 keys(beg_p, end_p) { |k| $redis.zrank("stats/#{k}", id) }
end

def top_clients(period = "total", limit = 5)
 $redis.zrevrange("stats/#{period}", 0, limit, :withscores => true)
end

def top_for_period(beginning_of_period, end_of_period, limit = 5)
 beg_p = Date.parse(beginning_of_period)
 end_p = Date.parse(end_of_period)

 result_key = "top/#{beg_p.to_s(:number)}/#{end_p.to_s(:number)}"
 return $redis.zrevrange(result_key, 0, limit, :withscores => true) if $redis.exists result_key

 $redis.multi do
 $redis.zunionstore result_key, keys(beg_p, end_p){|k| "stats/#{k}"}
 $redis.expire result_key, 10.minutes
 $redis.zrevrange result_key, 0, limit, :withscores => true
 end.last
end

Notice that we’re keeping the result of ZUNIONSTORE and setting an
expiration timestamp on it. That’s a common Redis pattern: caching the
result of a computationally expensive operation and, upon request,
checking the cache before redoing the operation.

In the previous example, where we’re using hashes, we could also store
the result of SORT (using the STORE option) and then check for its existence
in a similar way with EXISTS.

This particular example has a race condition: if the cache doesn’t exist,
we might end up doing the ZUNIONSTORE several times. Since the expected
output is the same or a more updated one, it might be better to live with
the race condition than to use WATCH and lock other clients while we’re
doing client side calculations (in this case, generating the keys).

When using sorted sets, these top operations are much more efficient (because the data
is already ordered) but your memory usage will be higher.

Analytics and Time-Based Data | 37

Quick Reference for Analytics Techniques
HINCRBY hash-name field increment-value

Increments an integer stored in a hash by increment-value. This command is sim-
ilar to INCRBY, but instead of increment strings, it’s used in hashes. The increment-
value can also be negative.

HMGET hash-name field1 [field2 ...]
Fetches several fields from a given hash. This command is similar to HGET, but
allows you to get several fields in a single operation.

SORT key [BY pattern] [LIMIT offset count] [GET pattern1 [GET pattern2 ...]] [ASC|
DESC] [ALPHA] [STORE destination]

Allows you to sort a list, set, or sorted set, comparing their values as numbers (if
ALPHA is specified, values are assumed to be strings). The sorting can also be done
using “external” keys, queried using a pattern from individual strings or hashes,
as in our previous example where we did:

SORT clients BY stats/client:*->20110407

The wildcard * is replaced with the members of the set, so the sorting is done based
on the values matching the field 20110407 in those hashtables. If we’re storing the
analytics data in strings instead of hashtables, we would omit ->:

SORT clients BY stats/client:*/20110407

Using the same patterns, you can also get more data (for example, the values you
used for sorting) in addition to the sorted list. Optionally, the output of SORT can
be stored in a list instead of returned. Please refer to the Redis documentation for
some examples.

ZRANK set-name member
Returns the rank (index) of the given member in the sorted set.

ZUNIONSTORE destination number-of-keys sorted-set1 [sorted-set2 ...] [WEIGHTS
weight1 [weight2 ...]] [AGGREGATE SUM|MIN|MAX]

Aggregates a collection of sorted sets and stores it as a new sorted set at destina
tion. Optionally, you can specify weights (a multiplication factor) per set and the
aggregation function: sum (the default), maximum scores, or minimum scores.

EXISTS key
Checks for the existence of a key. Returns 1 i the key exists, and 0 if it does not.

38 | Chapter 3: Leveraging Redis

http://redis.io/commands/hincrby
http://redis.io/commands/hmget
http://redis.io/commands/sort
http://redis.io/commands/sort
http://redis.io/commands/zrank
http://redis.io/commands/zunionstore
http://redis.io/commands/zunionstore
http://redis.io/commands/exists

Implementing a Job Queue with Redis

Problem
A typical use case for Redis has been a queue. Although this is owed mostly to Re-
sque (a project started by Github after trying all the other Ruby job queueing solutions).
In fact, there are several other implementations (Barbershop, qr, presque) and tutorials
(“Creating Processing Queues with Redis”). Nevertheless, it’s interesting in the context
of this book to give an example implementation (inspired by existing ones).

Solution
Let’s implement our queues on top of lists, which provide atomic push/pop operations
and have constant access time to the list’s head and tail. We’ll also keep a set that lists
all the existing queues for introspection purposes. Since sets assure uniqueness, we
don’t need to worry whether our queue already exists in the set.

Discussion

Enqueueing

Let’s begin with enqueueing. In order to do so, we need only to RPUSH into a key that
is either nil or contains a list. Redis lists contain strings, so we must serialize our data.
In this case, we opted for JSON.

def enqueue(queue_name, data)
 $redis.sadd("queues", queue_name)
 $redis.rpush("queue:#{queue_name}", data.to_json)
end

Let’s also write some auxiliary functions for such operations as emptying a queue,
removing it, checking its length, removing a job, and peeking into the queue to check
what the next job is:

def clear(queue_name)
 $redis.del("queues", "queue#{queue_name}")
end

def destroy(queue_name)
 self.clear(queue_name)
 $redis.srem("queues", "queue:#{queue_name}")
end

def length(queue_name)
 $redis.llen("queue:#{queue_name}")
end

def remove_job(queue_name, data)
 $redis.lrem("queue:#{queue_name}", 0, data.to_json)

Implementing a Job Queue with Redis | 39

https://github.com/blog/542-introducing-resque
https://github.com/blog/542-introducing-resque
http://nosql.mypopescu.com/post/426360602/redis-queues-an-emerging-usecase
http://blog.socklabs.com/post/699148412/creating-priority-influenced-jobs-with-barbershop-and
https://github.com/tnm/qr
http://lumberjaph.net/perl/2010/04/14/presque-a-redis-tatsumaki-based-message-queue.html
http://blog.meltingice.net/programming/creating-processing-queues-redis/

end

def peek(queue_name)
 $redis.lrange("queue:#{queue_name}", 0, 0)
end

Notice how we just delete the list (instead of using LTRIM) from Redis when emptying
the queue. This isn’t a problem as Redis treats a nonexisting value as an empty queue.
In fact, using the length function after emptying the queue with del will return 0.

Beware that removing a single element from a list isn’t cheap. Because lists are opti-
mized for head and tail access, in order to remove an element from the middle of the
list, Redis will have to iterate through it. You also need to know the exact value that
you want to remove—you can’t apply regular expressions or other matchers and you
can’t remove by index.

Quick Reference for Additions to Lists
When dealing with indexes, the head of the list is element 0. When counting from the
end, -1 refers to the last element, -2 to the next-to-last, etc.

RPUSH list-name value
Inserts the given value at the tail of the list-name list. Should this list be nil, it will
be created.

LPUSH list-name value
Like RPUSH, but inserts the element at the head o f the list.

LRANGE list-name start-index stop-index
Returns the list elements in the specified range (including the rightmost element
specified).

LTRIM list-name start-index stop-index
Trims the list so that it only contains the elements in the specified range. It’s similar
to the LRANGE command, but instead of just returning the elements, it trims the list.

LLEN list-name
Returns the length of the given list.

LREM list-name count value
Removes count occurrences of value from the list. If count is positive, the elements
are removed starting from the head, if it’s negative, they are removed starting from
the tail, and if it’s 0, all occurrences of value are removed.

Dequeueing

Our queue workers are now ready to start consuming the jobs. In order to dequeue
jobs from the queue, we can pop them one a time:

def dequeue(queue_name)
 $redis.lpop("queue:#{queue_name}")
end

40 | Chapter 3: Leveraging Redis

http://redis.io/commands/rpush
http://redis.io/commands/lpush
http://redis.io/commands/lrange
http://redis.io/commands/ltrim
http://redis.io/commands/llen
http://redis.io/commands/lrem

This previous approach has a problem, though: if there are no jobs in the queue, nothing
will be returned and we need to check again later. However, if we check too often, we’re
consuming both Redis and worker resources, and if we don’t check every few seconds
we add latency to our job processing. To resolve this problem, Redis offers a blocking
pop operation.

def dequeue(queue_name)
 $redis.blpop("queue:#{queue_name}", 60)
end

BLPOP is a blocking POP operation. If the list is empty, it blocks for up to the number
of seconds specified in the second argument, waiting for an element to be put on the
list. By reimplementing the dequeue method using a blocking pop, we solve that issue.
Our worker will be blocked on that method call until there is an element in the queue,
at which point it returns. We can also set a timeout for this operation so that, for
example, it returns after 60 seconds if no job is put on the queue.

def work(queue_name)
 while true do
 job = self.dequeue(queue_name)
 process_job(job) unless job.nil?
 end
end

If you’re not a using a blocking implementation, you should add a
“sleep” at the end of the loop. Otherwise you’ll end up using all your
CPU checking for jobs in an empty queue (assuming you’re not filling
it up quickly enough).

Implementing our job processing functionality is easy enough by just dequeuing and
processing jobs in a loop. What if we want to have multiple queues, representing higher
and lower priority jobs? Luckily, BLPOP supports multiple lists. (LPOP and RPOP work on
only one list.) People familiar with Unix and Linux system programming can see a
resemblance to the select(2) call, which simultaneously monitors several file handles
for activity.

def dequeue(queues)
 $redis.blpop(*queues.map{|q| "queue:#{q}"}.push(60))
end

def work(queues)
 while true do
 job = self.dequeue(queues)
 process_job(job) unless job.nil?
 end
end

work(['higher-priority', 'high-priority'])

The relevant change here is the way BLPOP is used. If passed multiple lists, it will block
waiting to return elements from the specified lists, using their order in its argument list

Implementing a Job Queue with Redis | 41

http://redis.io/commands/blpop

as the priority. In our example, if there are jobs in both the first list and the second list
in queues, the job from the first list will be returned first. Because queues are stored in
our queues set, we can start our workers without explicitly knowing the queue names.

work($redis.smembers("queues").map{|q| "queue:#{q}"})

Beware that this won’t respect the order of your queues because we’re simply grabbing
the set from Redis (with no order specified). To treat the queues in a priority order,
you’d need to use a sorted set and assign different scores to your queues.

Quick Reference for Removals from Lists
LPOP list-name

Removes and returns the element at the head of the list.

RPOP list-name
Like LPOP, but performs the action at the tail of the list.

BLPOP list-name1 [list-name2 ...] timeout-value
A blocking POP operation. It returns when any list has an element. If multiple lists
have elements, list-name1 takes precedence over list-name2, and so forth.

BRPOP list-name1 list-name2 ... timeout-value
Like BLPOP, but performs the action at the tails of the lists.

Although using lists is the most common way to implement queues in
Redis, you can also achieve similar behavior by using sets and the com-
mands SADD and SPOP if the order in which the commands are exe-
cuted is unimportant in your particular case. However, this has many
disadvantages: added overhead (sets usually require more memory) and
no blocking functions. There is at least one case where using sets over
lists could be an advantage: if your jobs are very heavy (slow or expensive
in terms of resources) and you’re bound to have many duplicated jobs.
The guarantee of uniqueness might be a decisive factor for you to choose
sets.

Extending Redis

Problem
While the Redis source is very readable and easily modifiable, you might find yourself
in need of an easier way to tweak or extend Redis. Perhaps you’d like a new command
or simply to modify the return value of an existing one. You might also be interested
in reducing the amount of traffic between your application and Redis while performing
a large number of operations.

42 | Chapter 3: Leveraging Redis

http://redis.io/commands/lpop
http://redis.io/commands/lpop
http://redis.io/commands/blpop
http://redis.io/commands/blpop

Solution
Something that has been introduced recently to Redis (and was widely requested by
users) is scripting. This has been achieved by integrating the Redis server with the Lua
C API.

Lua is a language that is often embedded into applications in order to provide scripting
functionality. The simplicity of Lua’s (and its C API’s) makes it a great, light-weight,
simple fit for Redis. Since Redis runs mostly as a single-threaded process, these scripts
have to be as efficient as possible; otherwise they’ll block other clients from using the
Redis server.

Although the future of Redis scripting is still uncertain (and won’t be included in Redis
2.4), it’s very likely that it will (at some point) be included in an official Redis release.
Until then, you can find it in the scripting branch.

Discussion
The scripting functionality consists of two simple commands: EVAL and EVALSHA, the
latter being used only to reduce bandwidth.

require 'rubygems'
require 'redis'

$redis = Redis.new
increx = <<LUA
 if redis("exists",KEYS[1]) == 1
 then
 return redis("incr",KEYS[1])
 else
 return nil
 end
LUA

$redis.eval(increx,1,:counter)

The previous example (straight from Salvatore Sanfilippo’s scripting release blog
post) implements a conditional increment functionality (the condition being the pre-
vious existence of the key). This code is not only readable but should also perform very
well. Previously, the way to achieve this (using a more direct approach such as the redis-
rb API we’ve used in this chapter) would be:

$redis.watch :counter
if $redis.exists :counter
 $redis.multi do
 $redis.incr :counter
 end
else
 $redis.unwatch
end

Extending Redis | 43

http://www.lua.org/
https://github.com/antirez/redis/tree/scripting
http://antirez.com/post/scripting-branch-released.html
http://antirez.com/post/scripting-branch-released.html

This implementation has an issue, however, because the client has to send at least three
separate operations to the server (WATCH, EXISTS, and the transaction block) as opposed
to the atomic EVAL. First, it might fail to increment the counter if there are concurrent
operations, because the counter key is modified which causes the transaction to abort.
And the three operations will most likely be slower.

However, depending on the length of your script, you might end up using a lot of
bandwith, as the scripts are not stored by the server and have to be sent along in every
call. Enter EVALSHA:

require 'digest/sha1'

def eval_script(body, *parameters)
 begin
 $redis.evalsha Digest::SHA1.hexdigest(body), parameters,size, *parameters
 rescue
 $redis.eval body, parameters.size, *parameters
 end
end

This command allows us to reuse previously executed scripts by sending their SHA1 hash
instead of their body. If the Redis server hasn’t seen this script before, it will return an
error and you can use EVAL instead. Whenever this functionality is present in your Redis
client, it should become completely transparent from a user’s perspective.

An interesting project that revolves around Redis scripting is Redis-ex-
tend, a repository of nonnative Redis commands implemented in Lua.

Quick Reference for Scripting
EVAL body number-of-parameters [param1 param2 ...]

Evaluates the Lua script contained in body. The parameters passed in this com-
mand are available to the Lua script.

EVALSHA hash number-of-parameters [param1 param2 ...]
Behaves similarly to EVAL if the SHA1 hash is known, otherwise raises an error.

44 | Chapter 3: Leveraging Redis

https://github.com/mkrecny/redis-extend
https://github.com/mkrecny/redis-extend

CHAPTER 4

Redis Administration and
Maintenance

In this chapter, we’ll try to focus on recipes related to operating Redis servers, instead
of programming applications or data modeling. These tasks vary widely, but include
starting a Redis slave, upgrading an existing server, performing backups, sharding, and
handling a dataset larger than your available memory.

Configuring Persistence

Problem
One of the advantages of Redis over other key/value stores like memcached is its support
for persistence—in fact, it even comes preconfigured with this support. This function-
ality enables you to perform some operations that wouldn’t be possible otherwise, like
upgrading your server without down time or performing backups.

Nevertheless, persistence should be configured in a way that suits your dataset and
usage patterns.

Solution
The default persistence model is snapshotting, which consists of saving the entire da-
tabase to disk in the RDB format (basically a compressed database dump). This can be
done periodically at set times, or every time a configurable number of keys changes.

The alternative is using an Append Only File (AOF). This might be a better option if
you have a large dataset or your data doesn’t change very frequently.

45

Discussion

Snapshotting

As previously stated, snapshotting is the default persistence mode for Redis. It asyn-
chronously performs a full dump of your database to disk, overwriting the previous
dump only if successful. Therefore, the latest dump should always be in your dbfile-
name location.

You can configure snapshotting using save seconds keys-changed statements in your
configuration file, in the following format:

save seconds keys-changed

The snapshot will occur when both conditions match. A typical example that ensures
that all your data is saved every few minutes is: save 600 1 which will perform a snap-
shot every 10 minutes if any key in your server has changed.

You can manually trigger snapshotting with the SAVE and BGSAVE commands. BGSAVE
forks the main Redis process and saves the DB to disk in the background. Redis executes
this operation itself if you have SAVE statements in your configuration file. SAVE per-
forms the same operation as BGSAVE but does so in the foreground, thereby blocking
your Redis server.

If you come to the conclusion that snapshotting is putting too much strain on your
Redis servers you might want to consider using slaves for persistence (by commenting
out all the save statements in your masters and enabling them only on the slaves), or
using AOF instead. In particular, if you have a big dataset or a dataset that doesn’t
change often, consider using AOF.

AOF

The Append Only File persistence mode keeps a log of the commands that change your
dataset in a separate file. Like most writes on modern operating systems, any data
logged to AOF is left in memory buffers and written to disk at intervals of a few seconds
using the system’s fsync call. You can configure how often the AOF gets synched to
disk by putting appendfsync statements in your configuration file. Valid options are
always, everysec, and no.

Disabling fsync is not safe, as it leaves the decision to your operating
system about when to actually write the data to disk.

AOF can be used together with snapshotting. But you might decide to suppress snap-
shots because they put too much load on your server. If you’re not snapshotting, be

46 | Chapter 4: Redis Administration and Maintenance

http://redis.io/commands/bgsave
http://redis.io/commands/save

sure to write the AOF to a RAID array or have at least one Redis slave that you can
recover data from in case of disaster.

BGREWRITEAOF rewrites the AOF to match the current database. Depend-
ing on how often you update existing data, this will greatly reduce the
size of the AOF. If your data changes very often, the on-disk file will
grow very fast, so you should compact it by issuing BGREWRITEAOF regu-
larly. The rewrite is done in the background.

Starting a Redis Slave

Problem
Database slaves are useful for a number of reasons. You might need them to load-
balance your queries, keep hot standby servers, perform maintenance operations, or
simply inspect your data.

Solution
Redis supports master-slave replication natively: you can have multiple slaves per mas-
ter and slaves connecting to slaves. You can configure replication on the configuration
file before starting a server or by connecting to a running server and using the
SLAVEOF command.

Discussion
In order to configure a Redis slave using the configuration file, you should add add the
following to your redis.conf:

slaveof master-ip-or-hostname masterport

Start or restart the server afterwards. Should your Redis master have password authen-
tication enabled, you’ll need to specify it as well:

masterauth master-password

If you want to turn a running Redis server into a slave (or switch to a different master),
you can do it using the SLAVEOF command:

SLAVEOF master-ip-or-hostname [masterport]

As in the previous example, if you’re using authentication, you’ll need to specify it
beforehand:

CONFIG SET masterauth password

Keep in mind that should your server restart, this configuration will be lost. Therefore,
you should also commit your changes to the configuration file.

Starting a Redis Slave | 47

http://redis.io/commands/bgrewriteaof
http://redis.io/commands/slaveof

CONFIG SET allows you to read configuration parameters from a running
Redis server. CONFIG GET enables you to set configuration parameters on
a running Redis server. Please refer to the documentation for these com-
mands’ parameters.

Handling a Dataset Larger Than Memory

Problem
Often you might find yourself with a dataset that won’t fit in your available memory.
While you could try to get around that by adding more RAM or sharding (which in
addition would allow you you to scale horizontally), it might not be feasible or practical
to do so.

Solution
Redis has supported a feature called Virtual Memory (VM) since version 2.0. This al-
lows you to have a dataset bigger than your available RAM by swapping rarely used
values to disk and keeping all the keys and the frequently used values in memory.
However, this has one downside: before Redis reads or performs an operation on
swapped values, they must be read into real memory.

Discussion
If you decide to use VM, you should be aware of its ideal use cases and the tradeoffs
you’re making.

• The keys are always kept in memory. This means that if you have a big number of
small keys, VM might not be the best option for you or you might have the change
your data structure and use large strings, hashes, lists, or sets instead.

• VM is ideal for some patterns of data access, not all. If you regularly query all your
data, VM is probably not a good fit because your Redis server might end up block-
ing clients in order to fetch the values from disk. VM is ideally suited for situations
when you have a reasonable amount of frequently accessed values that fit in mem-
ory.

• Doing a full dump of your Redis server will be extremely slow. In order to generate
a snapshot, Redis needs to read all the values swapped to disk in order to write
them to the RDB file (see “Configuring Persistence” on page 45). This generates a
lot of I/O. Due to this, it might be better for you to use AOF as a persistence mode.

• VM also affects the speed of replication, because Redis masters need to perform a
BGSAVE when a new slave connects.

48 | Chapter 4: Redis Administration and Maintenance

http://redis.io/commands/config-set
http://redis.io/commands/config-get

Still, there are scenarios where using VM makes sense. In order to enable it, you’ll need
to add this to your configuration file:

vm-enabled yes

There are other settings that you should pay attention to when enabling VM:

• vm-swap-file specifies the location of the swap file in your filesystem.

• vm-max-memory allows you to specify the maximum amount of memory Redis should
use before beginning to swap values. Beware that this is a soft limit, because keys
are always kept in memory and because Redis won’t swap values to disk while
creating a new snapshot.

• vm-pages specifies the number of pages in your swap file.

• vm-page-size defines the size of a page in bytes. The page size and the number of
pages are very important, because Redis won’t allocate more than one value to the
same page, so together these determine the amount of data your swap file can
handle.

• vm-max-threads is the maximum number of threads available to perform I/O op-
erations. Setting it to 0 enables blocking VM, which means that your Redis server
will block all clients when it needs to read a value from disk. Once again, depending
on your data access patterns, this may or may not be the best option.

As with any other disk-based database, Redis VM will perform better the faster your I/
O is. So the use of SSDs such as Flash is encouraged. You can read more about VM use
cases, configuration details, and tradeoffs in the official Redis documentation.

Upgrading Redis

Problem
At some point in the life of your system you might need to upgrade Redis. Unfortu-
nately, Redis can’t do online binary upgrades, and doing a server restart means that
your application won’t be able to talk to Redis for a (possibly long) period of time. But
that doesn’t mean that there aren’t other ways to achieve it without incurring down-
time. You might also want to move your current Redis database to another system for
maintenance purposes, a hardware upgrade, etc.

Solution
Our solution will involve starting a new Redis server in slave mode, switching over the
clients to the slave and promoting the new server to the master role. To make the
example easier to understand, let’s assume we have a Redis server listening on port
6379.

Upgrading Redis | 49

http://www.redis.io/topics/virtual-memory

It might be easier to start the slave on a new server than on the existing
one. This is because of memory requirements, and because you can re-
use the same configuration file, directories, and port for the slave,
changing only the hostname or IP address.

1. Install the new Redis version without restarting your existing server.

2. Create a new redis.conf, specifying that Redis runs on port 6380 (assuming you’re
on the same system—if you’re not, you can still use 6379 or any other available
port) and a different DB directory (you don’t want to have 2 Redis servers reading
or writing the same files).

3. Start the new server.

4. Connect to the new server and issue the command:

SLAVEOF localhost 6379

This will trigger a BGSAVE on the master server, and upon completion the new (slave)
server will start replicating. You can check the current status using the INFO com-
mand on the slave. When you see master_link_status:up, the replication is active.

5. Since your new Redis server is now up-to-date, you can start moving over your
clients to this new server. You can verify the number of clients connected to a server
with the INFO command; check the connected_clients variable.

6. When all your clients are connected to the slave server, you still have two tasks to
complete: disable the replication and shut down the master server.

INFO returns information about the server including replication status,
uptime, memory usage, number of keys per database and other statis-
tics.

1. Connect to the slave server and issue:

SLAVEOF NO ONE

This will stop replication and effectively promote your slave into a master. This is
important in Redis 2.2. as master servers are responsible for sending expirations
to their slaves.

2. Now connect to your old master server and issue:

SHUTDOWN

The old master server will perform a SAVE and shutdown.

3. Your new Redis system is up and running, but make sure that all your configuration
files, init scripts, backups, etc. are pointing to the right location and starting the
correct server. It’s easy to forget those routine operations, but you should at the
very least certify that nothing wrong will happen in case of a server restart.

50 | Chapter 4: Redis Administration and Maintenance

http://redis.io/commands/info

Discussion
Doing an online upgrade has a couple of (possibly steep) requirements: you need to
able to point your Redis clients to another server, either by use of a proxy, by having
failover built-in to your clients (so that they connect to a different server once you bring
the master down), or just by simply tell them to connect to another server. You’ll also
need to have at least twice as much memory available (possibly in a different system).

Beware that doing this might be dangerous, depending on how different the Redis
versions you are upgrading from and to. At the very least, it should be safe for updates
of minor versions of Redis. For major upgrades, each has caveats. For example, up-
grading from 2.0 to 2.2 should be fine so long as you don’t use EXPIRE, since the way
expirations are handled during expiration changed between these versions. Like every
other maintenance operation, make sure to test before doing it on your production
servers.

Backing up Redis

Problem
One issue comes up frequently when talking about NoSQL databases is backing up
your data. The notion that these are hard to back up, however, is mostly a mispercep-
tion since most of the techniques that you’d use to backup a relational database can
also be used for NoSQL databases.

If, for some distributed databases, grabbing a point-in-time snapshot of your data might
be tricky, this is certainly not the case with Redis. In this section, we’ll explain how to
achieve it depending on which Redis persistence model you’re using. We’ll assume
you’re running your servers on Linux, although filesystem-specific functionality might
also be available for other platforms.

Solution
Our proposed solution is heavily dependent on your Redis persistence model:

• With the default persistence model (snapshotting), you’re best off using a snapshot
as a backup.

• If you’re using only AOF, you’ll have to back up your log in order to be able to
replay it on startup.

• If you’re running your Redis in VM mode, you might want to use an AOF log for
the purpose of backups, as the use of snapshotting is not advised with VM.

It’s up to you to store your backup properly. Ideally, you’ll store at least a couple of
copies of it, have at least one offsite, and do it in a fully automated way. We’ll try to

Backing up Redis | 51

explain how to do backups for the different persistance models, but be sure to test your
own procedures. Be sure to also test your recovery procedures regularly.

Keep in mind that backing up your data might increase the strain on your production
systems. It’s probably a good idea to perform the backups on a slave Redis instance,
and to actually have slaves running at all times because promoting a new server to
master is probably quicker than restoring a backup.

Discussion

Snapshotting

Snapshotting is the default Redis persistance model. As mentioned earlier, depending
on your settings, Redis will persist its data to disk if m keys changed in n seconds. When
using this persistence mode, performing a backup is really simple. All you have to do
is copy the current snapshot to another location.

Use a copy, not a move, because if Redis crashes and restarts and the
snapshot is not there, you will end up losing all your data!

In case you want an up-to-date snapshot (instead of using the last one Redis did ac-
cording to your settings) you can trigger it by issuing:

redis-cli BGSAVE

and then waiting for the dump file to be updated. Be sure to compress the snapshot
before backing it up. That will probably reduce its size by at least a factor of 10.

Restoring a snapshot file is also quite simple. Simply shut down the server, put the
snapshot you want to restore in the dbfilename location configured by redis.conf, and
then start the server. This order is important, because when Redis shuts down, it per-
forms a snapshot, thus overwriting this file.

Append-Only Log (AOF)

If you’re using the AOF as the only persistence mode (you can also use it together with
snapshotting) the easiest way to do a backup is still to perform use a snapshot as de-
scribed in the previous section. However, if you’re using AOF, you’re most likely wor-
ried about losing data between snapshots. You may also be avoiding snapshots because
they put too much load on your server.

In order to recover when using the AOF, just do the same procedure you would for
snapshotting, but instead put your backup in the AOF location. On startup, Redis will
simply replay the log.

Be sure to remember to run BGREWRITEAOF regularly if you’re using AOF.

52 | Chapter 4: Redis Administration and Maintenance

Should your Redis server refuse to start due to a corrupted AOF—which can happen
if the server crashes or is killed while writing to the file—you can use the redis-check-
aof utility to fix your AOF:

redis-check-aof --fix filename

VM

If you are running Redis in VM mode, be sure to understand the tradeoffs. Starting or
stopping your server will take a long time if you have a big dataset. Performing a snap-
shot in order to back up your data might also take a long time. Nevertheless, if your
Redis instances are running with VM enabled, you should still perform backups. But
you’re probably best doing it in a slave that is not too busy serving requests.

If you have a big database, using BGSAVE to perform a snapshot is probably not feasable.
You’re most likely better off using AOF and rewriting it at regular intervals (depending
on how often your data changes, but you probably don’t want to do this too often).
Beware that while you’re performing a BGSAVE or BGREWRITEAOF, Redis will not write to
the VM. Therefore your memory usage might increase while it’s processing these back-
ground operations.

Since you’re backing up your AOF, the restoring procedure is exactly the same as in
the previous section: just copy over your AOF and start Redis.

Sharding Redis

Problem
Sharding is a horizontal partitioning tecnique often used with databases. It allows you
to scale them by distributing your data across several database instances. Not only does
this allow you to have a bigger dataset, as you can use more memory, it will also help
if CPU usage is the problem, since you can distribute your instances through different
servers (or servers with multiple CPUs).

In Redis’s case, sharding can be easily implemented in the client library or application.

Solution
Since Redis Cluster is still under development and should only be released sometime
later in 2011—with a beta most likely arriving in the summer—sharding is a useful
tecnique for scaling your application when your data no longer fits in a single server.

Currently there are three possibilities when it comes to sharding Redis databases:

Use a client with built-in sharding support
At this point, most Redis clients don’t support sharding. Notable exceptions are:

Sharding Redis | 53

Predis, a PHP client
Redisent, a PHP client
Rediska, a PHP client
Jedis, a Java client
scala-redis - a Scala client.

Build sharding support yourself on top of an existing client
This involves some programming that might not be too hard if you understand
your dataset and applications thoroughly. At the very least, you’ll have to imple-
ment a partitioning rule and handle the connections to the different servers.

Use a proxy that speaks the Redis protocol and does the sharding for you
Redis Sharding is a multiplexed proxy that provides sharding to any Redis client.
Instead of connecting directly to your Redis servers, you start a proxy and connect
to it instead. Unfortunately at this moment, sharding doesn’t support resharding
on the fly, so you’ll be unable to change the configuration of the cluster with the
proxy running.

Discussion
If you decide to implement sharding yourself, you should probably use consistent
hashing. This will ensure a minimal amount of remapping if you add or remove shards.

Sharding doesn’t remove the need for replication. Make sure your cluster is redundant
so that the loss of a server doesn’t imply any loss of data. Jeremy Zawodny described
on his blog the setup used at Craiglist, and Salvatore has written on the subject as well.

Something else to keep in mind is that (depending on your implementation) you will
not be able to perform some operations that affect multiple keys, because those keys
might be in different shards (servers). If you rely on these operations, you’ll need to
adjust your hashing algorithm to ensure that all the required keys will always be in the
same shard.

54 | Chapter 4: Redis Administration and Maintenance

https://github.com/nrk/predis
https://github.com/jdp/redisent
https://github.com/Shumkov/Rediska
https://github.com/xetorthio/jedis
https://github.com/debasishg/scala-redis
https://github.com/kni/redis-sharding
http://en.wikipedia.org/wiki/Consistent_hashing
http://en.wikipedia.org/wiki/Consistent_hashing
http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/
http://antirez.com/post/redis-presharding.html

APPENDIX

Finding Help

Should you find yourself in need of help with Redis or having problems, questions, or
doubts, there are several ways of reaching out for help and the Redis community is very
friendly and helpful.

• http://redis.io

This is the Redis official site. There you’ll be able to find the latest documentation,
command reference, articles, tutorials, downloads, and everything Redis related.

The site itself and the documentation it contains are GitHub projects. Should you
find any omissions or bugs, please contribute to this community effort.

• Mailing List

The Redis Mailing List is very active, and with more than 1500 members you’re
bound to find someone that can help you. If you have questions that the docu-
mentation can’t answer or need some tips on how to solve a specific problem, try
searching or emailing the list.

Given the volume of email messages that the list gets everyday, it’s without doubt
one of the best places to find information on Redis. Start by searching the existing
topics.

• IRC Channel

If you prefer to use IRC, you can also try the #redis IRC channel on Freenode.

• StackOverflow

StackOverflow is a Q&A site oriented towards programming issues. While the
Redis mailing list is probably the best option for Redis related questions, if you’re
a StackOverflow user you can use the “redis” tag when posting.

55

http://redis.io
https://github.com/antirez/redis-io
https://github.com/antirez/redis-doc
http://groups.google.com/group/redis-db
http://groups.google.com/group/redis-db/topics
http://webchat.freenode.net/?channels=redis
http://stackoverflow.com/
http://stackoverflow.com/questions/tagged/redis

About the Authors
Tiago Macedo is the infrastructure lead at 3scale Networks and has been working with
Redis for a couple of years. Prior to that, Tiago was working as a Ruby Developer for
Soocial and was a partner at Webreakstuff.

Fred Oliveira is a developer and designer hybrid. After living in Silicon Valley to work
with Techcrunch and Edgeio, Fred started Webreakstuff (a design, development, and
strategy consultancy) to provide services to companies and individuals. He is the co-
founder of the Web 2.0 Workgroup with Michael Arrington and Richard MacManus
and a 2005 Google Summer of Code alumni. These days his main focus is to craft online
experiences and help his clients build successful web-based products and services. He
is also an advisor to several startups and a mentor at 500 startups, a seed fund and
startup accelerator out of Mountain View, California.

Colophon
The animal on the cover of Redis Cookbook is a mouse opossum.

The cover image is from Johnson’s Natural History. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Chapter 1. An Introduction to Redis
	When to use Redis
	Problem
	Solution
	Are your application and data a good fit for NoSQL?
	Don’t believe the hype

	Installing Redis
	Problem
	Solution
	Discussion
	Compiling From Source
	Installing on Linux
	Installing on Windows
	Installing on Mac OS X
	Installing through MacPorts
	Installing through Homebrew

	Using Redis Data Types
	Problem
	Solution
	Discussion
	Strings
	Lists
	Hashes
	Sets and Sorted Sets

	Chapter 2. Clients
	Using Redis from the Command Line
	Problem
	Solution
	Discussion

	Using Redis from Python with redis-py
	Problem
	Solution
	Discussion

	Using Redis from Ruby with redis-rb
	Problem
	Solution
	Discussion

	Using Redis with Ruby on Rails
	Problem
	Solution
	Discussion
	Adding Redis functionality to ActiveRecord models

	Chapter 3. Leveraging Redis
	Using Redis as a Key/Value Store
	Problem
	Solution
	Discussion
	Storing application usage counters
	Storing object data in hashes
	Storing user “Circles” using sets

	Inspecting Your Data
	Problem
	Solution
	Discussion

	Implementing OAuth on Top of Redis
	Problem
	Solution
	Discussion
	Initial setup
	Getting a request token
	Redirections and consent
	Exchanging the request token for an access token
	API Access

	Using Redis’s Pub/Sub Functionality to Create a Chat System
	Problem
	Solution
	Discussion
	Installing the necessary software
	Implementing the server side code
	Implementing the client side code
	Further improvements

	Implementing an Inverted-Index Text Search with Redis
	Problem
	Solution
	Discussion
	Indexing
	Searching
	Scoring
	Other improvements

	Analytics and Time-Based Data
	Problem
	Solution
	Discussion

	Implementing a Job Queue with Redis
	Problem
	Solution
	Discussion
	Enqueueing
	Dequeueing

	Extending Redis
	Problem
	Solution
	Discussion

	Chapter 4. Redis Administration and Maintenance
	Configuring Persistence
	Problem
	Solution
	Discussion
	Snapshotting
	AOF

	Starting a Redis Slave
	Problem
	Solution
	Discussion

	Handling a Dataset Larger Than Memory
	Problem
	Solution
	Discussion

	Upgrading Redis
	Problem
	Solution
	Discussion

	Backing up Redis
	Problem
	Solution
	Discussion
	Snapshotting
	Append-Only Log (AOF)
	VM

	Sharding Redis
	Problem
	Solution
	Discussion

	Appendix. Finding Help

