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1. Introduction 

 Goal 

To learn the fundamental properties and limitations of computability (i.e., the ability to solve 
problems by computational means) 

 Major Milestones 

 Invariance 
in formal descriptions of computable functions -- Church's Thesis 

 Undecidability 
by computer programs of any dynamic (i.e., behavioral) properties of computer programs 
based on their text 

 Major Topics 

 Models 
of computable functions 

 Decidable vs undecidable 
properties 

 Feasible vs infeasible 

problems -- P NP 
 Formal Languages 

(i.e., languages whose sentences can be parsed by computer programs) 

 

●     1.1 Preliminaries 
●     1.2 Representation of Objects 
●     1.3 Codings for the Natural Numbers 
●     1.4 Inductive Definition and Proofs 
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1.1 Preliminaries 
We will study a variety of computing devices. Conceptually we depict them as being ``black boxes'' of 
the form 

Figure 1.1:Black box computing device

 

where x is an input object of type X (i.e., x  X) and y is an output object of type Y. Thus, at this level 

the device computes a function f : X  Y defined by f (x) = y. 

●     For some computing devices the function f will be a partial function which means that for some 

inputs x the function is not defined (i.e., produces no output). In this case we write f (x) .  

Similarly, we write f (x)  whenever f on input x is defined. 

●     The set of all inputs on which the function f is defined is called its domain (denoted by dom f), 

and is given by dom f  =  {x : f (x)  }. 

●     Also, the range of a function f (denoted by ran f), and is given by ran f  =  {y : x  dom f, y 

= f (x)}. 

We will also be interested in computing devices which have multiple inputs and outputs, i.e., which can 
be depicted as follows: 

Figure 1.2:Multiple input-output computing device
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1.1 Preliminaries

where x1,..., xn are objects of type X1,..., Xn (i.e., x1  X1,..., xn  Xn), and y1,..., ym are objects of type 

Y1,..., Ym. Thus, the device computes a function 

f : X1 x ... x Xn  Y1 x ... x Ym    

 

defined by f (x1,..., xn) = (y1,..., ym). Here we use X1 x ... x Xn to denote the cartesian product, i.e., 

X1 x ... x Xn = {(x1,..., xn) : x1  X1,..., xn  Xn}.    

 

●     We also use Xn to denote the cartesian product when X1 = X2 = ... = Xn = X. 

●     Of course, since X1 x ... x Xn is just some set X and Y1 x ... x Ym is some set Y, the situation with 

multiple inputs and outputs can be viewed as a more detailed description of a single input-output 
device where the inputs are n-tuples of elements and the outputs are m-tuples of elements. 

●     We use in to denote xi, xi + 1,..., xn where i n, and n to denote 1n (i.e., x1,..., xn). 

Besides viewing computing devices as mechanisms for computing functions we are also interested in 
them as mechanisms for computing sets. 

●     Given a set X the characteristic function of X (denoted by ) is given by 
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●     A computing device (which computes the function f) can ``compute'' a set X in 3 different ways: 
1. 

it can compute the characteristic function  of the set X, i.e., f = . 

2. 
its domain is equal to X, i.e., X = dom f. In this case we say that the device is an acceptor 
(or a recognizer) for the set X. 

3. 
its range is equal to X, i.e., X = ran f. In this case we say that the device is a generator for 
the set X. 
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1.2 Representation of Objects 

We use  to denote the set {0, 1, 2,...} of Natural Numbers, and we use  for the set {0, 1} of Binary 
Digits. We are most interested in functions over , but in reality numbers are abstract objects and not 
concrete objects. Therefore it will be necessary to deal with representations of the natural numbers by 
means of strings over some alphabet. 

●     An alphabet  is any finite set of symbols { ,..., }. The symbols themselves will be 

unimportant, so we will use 1 for , ..., and n for , and denote by  the set {1,..., n}. 

●     A word over the alphabet  is any finite string a1 ... aj of symbols from  (i.e., x = a1 ... aj). We 

denote by  the set of all words over the alphabet . 

●     The length of a word x = a1 ... aj (denoted by | x |) is the number j of symbols contained in x. 

●     The null or empty word (denoted by ) is the (unique) word of length 0. 
●     Given two words x = a1 ... aj and y = b1 ... bk, the concatenation of x and y (denoted by x . y) is the 

word a1 ... ajb1 ... bk. Clearly, | x . y | = | x | + | y |. We will often omit the . symbol in the 

concatenation of x and y and simply write xy. 
●     The word x is called an initial segment (or prefix) of the word y if there is some word z such that 

y = x . z. 

●     For any symbol a  , we use am to denote the word of length m consisting of m a's. 

●     We often refer to a set of strings over an alphabet  as a language. 
●     We extend concatenation to sets of strings over an alphabet  as follows:  

If X, Y  , then 

X . Y = {x . y : x  X    and    y  Y}    

X(0) = { }    

X(n + 1) = X(n) . X,        for    n  0    

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node5.html (1 of 2) [12/23/2006 12:02:24 PM]



1.2 Representation of Objects

X* = X(n)    

X+ = X(n)    

 

Thus X(n)is the set of all ``words'' of length nover the ``alphabet'' X. 
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1.3 Codings for the Natural Numbers 

We will introduce a correspondence between the natural numbers and strings over  which is 

different from the usual number systems such as binary and decimal representations.  

Table 1.1:Codings for the 
Nautral Numbers

*

0 0

1 1 1 1

2 10 2 2

3 11 11 3

4 100 12 4

5 101 21 11

6 110 22 12

7 111 111 13

8 1000 112 14

9 1001 121 21

10 1010 122 22

11 1011 211 23
 

The codings via  and  are one-to-one and onto. The coding via * is not -- 010 = 10. 

 The function  :   , 

providing the one-to-one and onto map is defined inductively as follows: 
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1.3 Codings for the Natural Numbers

(0) =    

 

Next, suppose that (x) = d1 ... dj, and let k jbe the greatestinteger such that dk n(so k= 0 if d1= ... 

= dj= n). Then, 

(x + 1) =    

 

 The function  :   , 

which is the inverse for  is defined as follows:  

Let x   be the string aj ... a1a0. Then, 

(x) = (aj ... a1a0)    

 = ai x ni    

 = aj x nj + ... + a1 x n + a0    
 

 Observe that 

(x . y) = (x) x n | y | + (y),  

e.g., 16 = 3 x 22 + 4 = (11 . 12) = (1112). 
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1.4 Inductive Definition and Proofs 

An inductive definition over the natural numbers  usually takes the form: 

f (0, y) = g(y)    
f (n + 1, y) = h(n, y, f (n, y))    

 

where g and h are previously defined. 

 Example of inductive definition 

y0 = 1    
yn + 1 = yn x y    

 

so that g(y) = 1 and h(x, y, z) = zxy. 

 Definitions involving ``...'' are usually inductive. 

 Example of ... definition 

ai = a0 + a1 + ... + an    

 

The inductive equivalent is: 

ai = a0    
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ai = ai + an + 1    

 

so that g(y) = a0and h(x, y, z) = z+ ax + 1. 

Most ``recursive'' procedures are really just inductive definitions. 

Induction Principle I: For any proposition P over , if  
1) P(0) is true, and  
2) n, P(n)  P(n + 1) is true,  
then n, P(n) is true. 

 
1) is called the Basis Step  
2) is called the Induction Step 

The validity of this principle follows by a ``Dominoe Principle'' 

 P(0) means ``0 falls'': 
 

  
 P(n)  P(n + 1) means ``if n falls, then n + 1 falls'': 

 

  

Combining these two parts, we see that ``all dominoes fall'': 
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1.4 Inductive Definition and Proofs

 

  

 Example of inductive proof 

Let P(n) :     i = . 

 Basis Step: 
Show P(0) is true 

i = 0 =    

 

 Induction Step: 
Let n be arbitrary and assume P(n) is true. This assumption is called the Induction Hypothesis, 
viz. that 

i =    

 

Then, 

i = i + (n + 1)    
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1.4 Inductive Definition and Proofs

 =  + (n + 1)    

 =    

 =    

 

Note: Line 1 uses the inductive definition of  (here ai = i).  

Line 2 uses the Induction Hypothesis; and  
Line 4 is P(n + 1), so we have shown P(n)  P(n + 1). 

By reasoning similar to that for Induction Principle I, we also have 

Induction Principle II: For any proposition P over the positive integers, if  
1) P(0) is true, and  
2) n,( i < n + 1, P(i))  P(n + 1) is true,  
then n, P(n) is true. 

 
Here 2) means ``If 0, 1, 2,..., n falls, then n + 1 falls''. Note that `` i < n + 1, P(i)'' is really shorthand for `` 

i, i < n + 1  P(i)''. 

 
Induction Principle II is needed for inductive definitions like the one for the fibonacci numbers: 

f (0) = 0    
f (1) = 1    

f (n + 1) = f (n) + f (n - 1)    
 

However, some domains of interest do not have such a ``linear'' structure as the natural numbers. For 
example, the set * has a ``tree'' structure: 

Figure 1.3:Structure of *
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1.4 Inductive Definition and Proofs

Thus each word x  * has two successors: x . 0 and x . 1. 

 Example of inductive definition over  

The reversal function  such that (a1 ... an) = an ... a1 is defined inductively by: 

( ) =    

(x . a) = a . (x)    

 

Thus, we see that inductive defintions over have the general form: 

f ( , y) = g(y)    

f (x . a, y) = ha(x, y, f (x, y)),        for each    a     

 

Principle III: For any proposition P over , if  

1) P( ) is true, and  
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1.4 Inductive Definition and Proofs

2) x  ,( a  , P(x)  P(x . a)) is true,  

then x  , P(x) is true. 

 
The validity of this principle also follows from a ``Dominoe Principle'' 

 P( ) means ``  falls'': 
 P(x)  P(x . a) means ``if x falls, then x . a falls'': 

These combined yield ``all dominoes fall'' when they are arranged according to the structure of . 

Figure 1.4:Top view

 Example of inductive proof over  

Let P(x)  a  , (a . x) = (x) . a

 Basis Step: 
Show P( ) is true 

(a . ) = (a) = (  . a) = a . ( ) = a .  = a =  . a = ( ) . a    

 

 Induction Step: 
Let x be arbitrary and assume P(x) is true, so the Induction Hypothesis is 
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1.4 Inductive Definition and Proofs

a  , (a . x) = (x) . a    

 

Then, for any a, b

(a . (x . b)) = ((a . x) . b)    

 = b . (a . x)    

 = b . ( (x) . a)    

 = (b . (x)) . a    

 = (x . b) . a    

 

So P(x . a) is true. Therefore, x , a , (a . x) = (x) . a.  

Note: Lines 1 and 4 use the associativity of . ;  

Lines 2 and 5 use the definition of ;  

and Line 3 use the Induction Hypothesis. 
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2. Models of Computation 

 Memoryless Computing Devices 

 Boolean functions and Expressions 
 Digital Circuits 
 Propositional Logic 

 Finite Memory Computing Devices 

 Finite state machines 
 Regular expressions 

 Unbounded Memory Devices 

 Loop programs 
 (Partial) recursive functions 
 Random access machines 
 First-order number theory 

 Other Aspects 

 Non-deterministic devices 
 Probabilistic devices 

 

●     2.1 Memoryless Computing Devices 
●     2.2 Digital Circuits 
●     2.3 Propositional Logic 
●     2.4 Finite Memory Devices 
●     2.5 Regular Languages 
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2.1 Memoryless Computing Devices 

A boolean function is any function f : n  m, and thus has the schematic form 

Figure 2.1:Multiple input-output computing device

We will be concerned here primarily with the case where m = 1. Since  has finite cardinality, the 
domain of f is finite, and f can be represented by means of a finite table with 2n entries. 

Example 2.1    
Table 2.1:
Example 
boolean 
function

x1 x2 x3 f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1
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2.1 Memoryless Computing Devices

1 1 0 1

1 1 1 1
 
It is also possible to represent a boolean function by means of a boolean expression. A boolean 
expression consists of boolean variables ( x1, x2,...), boolean constants (0 and 1), and boolean 

operations ( , , and ), and is defined inductively as follows: 

1. 
Any boolean variable x1, x2,... and any boolean constant 0, 1 is a boolean expression; 

2. 
If e1 and e2 are boolean expressions, then so are ( e1), (e1  e2), and (e1  e2). 

The operations ,  ,  are defined by the table:  
 

Table 2.2:Boolean operations

x1 x2 x1 x1  x2 x1  x2

0 0 1 0 0

0 1  1 0

1 0 0 1 0

1 1  1 1
 
so that ,  ,  represent boolean functions. In general, every boolean expression with n variables 
represents some boolean function f : n  . 

Conversely, we have 

Theorem 2.1   Every boolean function f : n   is represented by some boolean expression with 
n variables.

Example 2.2   

The function given in Example 2.1 above can be represented by the boolean expression 
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2.1 Memoryless Computing Devices

( x1  x2  x3)  (x1  x2  x3)  (x1  x2),    

 

i.e., 

f (x1, x2, x3) = ( x1  x2  x3)  (x1  x2  x3)  (x1  x2).    

 

 Terminology: 

�❍     A literal is either a variable (e.g., xj) or its negation (e.g., xj). 

�❍     A term is a conjunction (i.e., e1  ...  ek) of literals e1,..., ek. 

�❍     A clause is a disjunction (i.e., e1  ...  ek) of literals e1,..., ek. 

�❍     A boolean expression is a DNF (disjunctive normal form) expression if it is a disjunction 
of terms. 

�❍     A monomial is a one-term DNF expression. 
�❍     A boolean expression is a CNF (conjunctive normal form) expression if it is a conjunction 

of clauses. 

 The previous theorem is proved by constructing a DNF expresssion for any given boolean function. 
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2.2 Digital Circuits
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2.2 Digital Circuits 
We can ``implement'' boolean functions using digital logic circuits consisting of ``gates'' which compute 
the operations , , and , and which are depicted as follows: 

Figure 2.2:Digital 
logic gates

Example 2.3 (circuit for function of Example 2.1)   

Figure 2.3:Digital logic circuit
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2.3 Propositional Logic
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2.3 Propositional Logic 
If we interpret the boolean value 0 as ``FALSE'' ( F) and the boolean value 1 as ``TRUE'' ( T), then the 
boolean operations become ``logical operations'' which are defined by the following ``truth tables'': 

 
Table 2.3:Logical operations

x1 x2 x1 x1  x2 x1  x2

F F T F F

F T  T F

T F F T F

T T  T T
 
Then the boolean variables become ``logical variables'', which take on values from the set V = {T,F}. 
Analagously, boolean expressions become ``logical expressions'' (or ``propositional sentences''), and are 
useful in describing concepts. 

Example 2.4   Suppose x1, x2, x3, x4, x5, x6 are propositional variables which are interpreted as follows:  

x1 -- "is a large mammal"  

x2 -- "lives in water"  

x3 -- "has claws"  

x4 -- "has stripes"  

x5 -- "hibernates"  

x6 -- "has mane"  

Then the propositional statement x1  x2  (x4  x5  x6) defines a concept for a class of 

animals which inclues lions and tigers and bears! 

      

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node11.html (1 of 2) [12/23/2006 12:03:06 PM]



2.3 Propositional Logic

Next: 2.4 Finite Memory Devices Up: 2. Models of Computation Previous: 2.2 Digital Circuits 
Bob Daley  
2001-11-28  
©Copyright 1996  
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or 
portion thereof) is accompanied by this copyright notice. 
Copying for any commercial use including books, journals, course notes, etc., is prohibited. 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node11.html (2 of 2) [12/23/2006 12:03:06 PM]



2.4 Finite Memory Devices
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2.4 Finite Memory Devices 
We construct finite memory devices be adding a finite number of memory cells (``flip-flops''), which can 
store a single bit (0 or 1), to a logical circuit as depicted below: 

Figure 2.4:Finite memory 
device

Here, zi is the current contents of memory cell i, and zi+ is the contents of that memory cell at the next 

unit of time (i.e., clock cycle). 

Of course, memory cells themselves can be realized by digital circuits, e.g., the following cicuit realizes 
a flip-flop: 

Figure 2.5:Flip Flop
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2.4 Finite Memory Devices

The device operates as follows: At each time step, the current input values x1,..., xn are combined with 

the current memory values z1,..., zk to produce via the logical circuit the output values y1,..., ym and 

memory values z1+,..., zk+ for the next time cycle. Then, the device uses the next input combination of 

x1,..., xn and z1,..., zk (i.e., the previously calculated z1+,..., zk+) to compute the next output y1,..., ym and 

the next memory contents z1+,..., zk+, and so on. 

Of course, at the beginning of the computation there must be some initial memory values. In this way we 
see that such a device transforms a string of inputs (i.e., a word over *) into a string of outputs. 

A device that has k memory cells will have 2k combinations of memory values or states . Of course, 
depending on the circuitry, not all combinations will be realizable, so the device may have fewer actual 
states. 

We formalize matters as follows: 

●     We regard the pattern of bits x1,..., xn as encoding the letters of some input alphabet , and 

similarly y1,..., ym as encoding the letters of some output alphabet . 

●     We let Q denote the set of possible states (i.e., legal combinations of z1,..., zk). 

As indicated above , , and Q need not have cardinality that is a power of 2. 

●     Since the output ( y1,..., ym) depends on the input ( x1,..., xn) and the current memory state ( z1,...

zk), we have an output function  : Q x   . 

●     Similarly, since the next memory state ( z1+,...zk+) depends on the input and the current memory 
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2.4 Finite Memory Devices

state, we have a state transition function  : Q x   Q. 
●     When the device begins its computation on a given input its memory will be in some initial state 

q0. 

Therefore, such a device can be abbreviated as a tuple 

M = , , Q, , , q0 .    

 

We depict M schematically as follows: 

Figure 2.6:Schematic for Finite State Automaton

While this model of a finite memory device clearly models the computation of functions f :   

 with finite memory, we need only consider a restricted form which are acceptors for languages over 

 (i.e., subsets of strings from ). In this restricted model we replace the output function  by a 

set of specially designated states F  Q called final states . The purpose of F is to indicate which input 

words are accepted by the device. 

Definition 2.1   A deterministic finite state automation (DFA) is a 5-tuple 
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2.4 Finite Memory Devices

M = , Q, , q0, F ,    

 

where  is the input alphabet, Q is the finite set of states, q0 is the initial state, F  Q is the set of 

final states, and  : Q x   Q is the state transition function.

●     We say that an input x = a1 ... aj is accepted by the DFA M = , Q, , q0, F  if there is a 

sequence of states p1,..., pj + 1 such that p1 is the initial state q0 and pj + 1  F and for each i j, 

(pi, ai) = pi + 1. 

●     We say that a language X   is accepted by the DFA M if and only if every word x  X is 

accepted by M. 
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2.5 Regular Languages 

The class of regular languages over  is defined by induction as follows: 

1. 

the sets , { }, and {a} for each a   are regular languages; 

2. 
if R1 and R2 are regular languages, then so are R1  R2, R1 . R2, and R1*. 

In other words, the class of regular languages is the smallest class of subsets of  containing , {

}, and {a} for each a  , and closed under the operations of set union, set concatenation, and *. 

We define the class of regular expressions for denoting regular sets by induction as follows: 

1. 

, , and a are regular expressions for , { }, and {a}, respectively; 

2. 
if r1 and r2 are regular expressions for the regular sets R1 and R2, then (r1  r2), (r1 . r2), and 

(r1*) are regular expressions for R1  R2, R1 . R2, and R1*, respectively. 

Theorem 2.2   Every regular language is accepted by some deterministc finite automaton, and 
conversely every language accepted by some deterministic finite automaton is a regular language.
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3. Loop Programs
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3. Loop Programs 

The programming language LOOP over  consists of: 

 Program Variables: 

 (also U,V,W,Y,Z with subscripts) 

 Elementary Statements: 

 Input Statements: 

INPUT(  

 Output Statements: 

OUTPUT(Y1) 

 Assignment Statements: 

  

  

  

 Control Structures: 

 For Statements: 
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3. Loop Programs

FOR   

           .  
           .  
           .  
ENDFOR 

 Until Statements: 

UNTIL   

           .  
           .  
           .  
ENDUNTIL

 

●     3.1 Semantics of LOOP Programs 
●     3.2 Other Aspects 
●     3.3 Complexity of LOOP Programs 
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3.1 Semantics of LOOP Programs
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3.1 Semantics of LOOP Programs 

[X1] denotes the contents of the variable . 

 logical values: 

 FALSE 
is zero 

 TRUE 
is any non-zero value 

 INPUT(  

-- input [X1],...,[Xn] 

 OUTPUT(Y1) 

-- output [Y1] 

  

-- replace [X1] with  

  

-- replace [X1] with x, where (x) = ([X1]) + 1 

  

-- replace [X1] with [Y1] 

 For Statement: 

FOR   
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3.1 Semantics of LOOP Programs

body   

ENDFOR  

-- repeat body of loop ([X1]) times 

 Until Statement: 

UNTIL   

body   

ENDUNTIL  

-- repeat body of loop until [X1]  

Definition 3.1   A LOOP-program over  is a sequence of LOOP statements S1,..., Sn such that 

1. 
S1 is an input statement 

2. 
Sn is an output statement 

3. 
and none of S2, ..., Sn - 1 are input or output statements. 

Definition 3.2   A LOOP-program P over  computes the (partial) function f : ( )n   if 

and only if 

1. 
the input statement of P has n variables; 

2. 
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3.1 Semantics of LOOP Programs

for all x1,..., xn, when P is executed    with x1,..., xn as its input, 

(a) 

P halts if and only if f (x1,..., xn) , 

(b) 
if P halts, then P outputs f (x1,..., xn). 

 Execution of a LOOP program involves: 

1. 
initially all variables have value 0 

2. 
statements are executed according to the ``obvious'' semantics in the ``obvious'' order. 

 Observe that the choice of alphabet  enters into consideration only through I/O and the 

``internal representation'' or ``semantics'' of the program. We could have taken as our primitive operation 

 (for each a   instead of  and then the choice of  would have been much 

more evident. 

Example 3.1   The following program computes the function f (x) = x 1, where the operation  

(called ``monus'') is defined by: 

x y =    

 

INPUT(   

FOR   

          Z1  Y1  

          Y1  Y1 + 1  
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3.1 Semantics of LOOP Programs

ENDFOR  
OUTPUT(Z1) 

Notation 3.3   Let P be a LOOP-program with input statement  

INPUT(  and output statement OUTPUT(Y1). We denote by P- the result of 

removing from P its input and output statements, and we denote by U1   the 

sequence of statements: 

  

           .  
           .  
           .  

  

  
U1  Y1 

We can implement other control structures using FOR and UNTIL loops. First, we need a program BLV 
for the function blv (``boolean / logical value'') define by: 

blv(x) =    

 

and we need a program NEG for the function neg (``logical negation'') defined by: 

neg(x) =    

 

The program BLV is given by 
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3.1 Semantics of LOOP Programs

INPUT(   

Z1  0  

FOR   

          Z1  0  

          Z1  Z1 + 1  

ENDFOR  
OUTPUT(Z1) 

and the program NEG is given by: 

INPUT(   

  

Z2  Z2 + 1  

FOR   

          Z2  0  

ENDFOR  
OUTPUT(Z2) 

Then the if-then-else control structure, that takes the form 

IF  

S1 

ELSE 

S2 

ENDIF 
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3.1 Semantics of LOOP Programs

where S1 and S2 stand for lists of statements, can be implemented by: 

  

FOR  

S1 

ENDFOR  

  

FOR  

S2 

ENDFOR 
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3.2 Other Aspects 
●     We can construct non-deterministic LOOP programs by adding statements of the form 

SELECT(  

which assigns either a 0 or a 1 non-deterministically to the variable . 

●     We can construct probabilistic LOOP programs by adding statements of the form 

PRASSIGN(  

which assigns either a 0 or a 1 probabilistically with probability to the variable . 

We distinguish between deterministic, non-deterministic, and probabilistic LOOP programs by using the 
notation DLOOP, NLOOP, and PLOOP, respectively. 
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3.3 Complexity of LOOP Programs
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3.3 Complexity of LOOP Programs 
Definition 3.4   If P is a deterministic LOOP program (a program without SELECT or PRASSIGN 

statements) over  with input variables  and all variables included in 

, then we define the following complexity measures for P. 

DLPtimeP( n) =    

 

DLPspaceP( n) =    

 

where  denotes the contents of register  at step t of the computation of P on input n.
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4. Primitive Recursive Functions 
The class of primitive recursive functions is defined inductively as follows: 

 Base functions: 

 Null function: 

N(x) = 0, for any x   

 Successor function: 

S(x) = x + 1, for any x   

 Projection functions: 

Pjn( n) = xj, for any 1 j n, and any n  n

 Operations: 

 Substitution: 
Given integers m and n, and functions g : m  , and h1,..., hm, where hj : n 

 , then f : n   is defined from g, h1,..., hm via substitution if for any 

n  n, 

f ( n) = g(h1( n),..., hm( n)).    

 

 Primitive recursion: 
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4. Primitive Recursive Functions

Given an integer n, and functions g : n - 1  , and h : n + 1  , then f : 
n   is defined from g and h via primitive recursion if for any y   and any 

2n  n - 1, 

f (0, 2n) = g( 2n)    

f (y + 1, 2n) = h(y, f (y, 2n), 2n).    

 

Definition 4.1   A function f : n   is primitive recursive if it can be obtained from the base 
functions (null, successor, and projections) by finitely many applications of the operations of 
substitution and primitive recursion.

●     Thus, the class of primitive recursive functions is the smallest class containing the base functions 
and closed under the operations of substitution and primitive recursion. 

●     If in the definition of primitive recursion n = 1, then the schema takes the form: 

f (0) = c    
f (y + 1) = h(y, f (y))    

 

for some constant cand some function h. 

●     We could have defined the primitive recursive functions over  instead of  by replacing S 

with k successors Sa(y) = y . a for each a  ; and by replacing primitive recursion over  

with primitive recursion over  which takes the form: 

f ( , 2n) = g( 2n)    

f (y . a, 2n) = ha(y, f (y, 2n), 2n)        a     
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4. Primitive Recursive Functions

●     Addition is primitive recursive as seen by the following application of the operation of primitive 
recursion: 

0 + x = x    
y + 1 + x = (y + x) + 1    

 

Actually, the formal definition takes the form (where add(y, x) = y+ x) 

add(0, x) = P11(x)    

add(y + 1, x) = S(P23(y, add(y, x), x))    
 

●     We can then define multiplication ( mult(y, x) = y x x) using primitive recursion applied to the 
null function and addition: 

mult(0, x) = N(x)    
mult(y + 1, x) = add(P23(y, mult(y, x), x), P33(y, mult(y, x), x))    

 

or less formally, 

0 x x = 0    
y + 1 x x = (y x x) + x    

 

●     Sometimes, as is the case with addition and multiplication, it is more natural or convenient to 
allow the recursive definition to occur over a variable other than the first variable. This is 
permissable since we can use the projection functions to rearrange the variables in any order we 
wish. For example, we can define the function 

add'(x, y) = add(P22(x, y), P12(x, y))    
 = add(y, x)    
 

so that in effect we have: 
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4. Primitive Recursive Functions

x + 0 = x    
x + y + 1 = (x + y) + 1    

 

●     The function blv is also primitive recursive: 

blv(0) = 0    
blv(y + 1) = 1    

 

Or, formally 

blv(0) = 0    
blv(y + 1) = S(N(P12(y, blv(y))))    

 

●     Similarly, the function neg is primitive recursive 

neg(0) = 1    
neg(y + 1) = 0    

 

Proposition 4.1   Every primitive recursive function is a total function, i.e., defined on all natural 
numbers.

Proof: The proof is by induction on the definition of a primitive recursive function f. Clearly, all the 
base functions are total functions. Next, if f is defined by substitution from g and h1,..., hm, then f is total 

whenever g and h1,..., hm are total. 

Suppose f is defined by primitive recursion from g and h, and suppose by induction hypothesis that g and 

h are total functions. We prove by induction that for every y  , f (y, 2n) . First, f (0, 2n) , 

since f (0, 2n) = g( 2n) and g is total. Next, assuming that f (y, 2n) , we see that f (y + 1, 2n) 

, since f (y + 1, 2n) = h(y, f (y, 2n), 2n) and h is total. 
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4.1 Primitive Recursive Expressibility
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4.1 Primitive Recursive Expressibility 

An n-ary predicate on  is a subset of n 

P( n) is TRUE  n  P    

 

i.e., P = { n : P( n)is TRUE}. 

Thus sets and predicates are interchangeable. The characteristic function of a predicate P is the function 

 defined by 

( n) =    

 

Definition 4.2   A predicate P is primitive recursive if and only if  is primitive recursive.

Conversely, given any 0 - 1 valued function f, we can associate with a predicate Pf and a set Sf defined 

by 

Pf( n) is TRUE  f ( n) = 1    

 

Sf = { n : f ( n) = 1}    
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4.1 Primitive Recursive Expressibility

 

Proposition 4.2   If P and Q are primitive recursive predicates with the same number of variables, then 
so are P, P  Q, and P  Q.

Proof: The characteristic functions of these predicates are given in terms of  and  as follows: 

( n) = neg( ( n))    

( n) = ( n) x ( n)    

( n) = blv( ( n) + ( n))    

 

Proposition 4.3   If P1,..., Pm are pairwise disjoint primitive recursive predicates over n and f1,..., fm + 

1 are primitive recursive functions over n, then so is the function g : n   defined by 

g( n) =    

 

Proof: 
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4.1 Primitive Recursive Expressibility

g( n) = (f1( n) x ( n)) + ... + (fm( n) x ( n))    

                  + (fm + 1( n) x ( n))    

 

Definition 4.3 (Bounded Quantifiers)   If P(y, n) is a n + 1-ary predicate, then we define the n + 1-ary 

predicates y xP(y, n) and y xP(y, n) as follows: 

y xP(y, n)  there is some    y x    such that    P(y, n)    

y xP(y, n)  for all    y x, P(y, n)    

 

We abbreviate y xP(y, n) by y xP and y xP(y, n) by y xP.

Proposition 4.4   If P is a primitive recursive predicate, then so are  

y xP and y xP.

Proof: We show only that  is primitive recursive, since  

y xP(y, n) = y x P(y, n). 

 (which we abbreviate by ) is defined as follows: 

(0, n) = (0, n)    
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(x + 1, n) = (x, n)  (x + 1, n)    

 = blv(add(P2n + 2(x, (x, n), n),    

         (S(P1n + 2(x, (x, n), n)),    

                 P3n + 2(x, (x, n), n),...,    

                 Pn + 2n + 2(x, (x, n), n)))    
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4.2 Equivalence between models 
In order to compare primitive recursive functions with functions computed by LOOP programs over 

 we need to interpret functions computed by such programs as functions over . 

Definition 4.4   Let P be a LOOP program over  and let fP : ( )n   be the function 

computed by P. The we say that P computes the numer-theoretic function f : n  , where 

f ( n) = (fP( (x1),..., (xn)))    

 

Theorem 4.5   Every primitive recursive function is computed by some LOOP program which contains 
no UNTIL loops.

Proof: We prove this by induction on the number of operations used in the definition of the given 
primitive recursive function f. 

 Induction basis: 
Base functions 

 Case 1: 
The null function N is computed by the program 

INPUT(   

  

OUTPUT(  

 Case 2: 
The successor function S is computed by the program 
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INPUT(   

  

OUTPUT(  

 Case 3: 
The projection function Pjn is computed by the program 

INPUT(   

OUTPUT(  

 Induction step: 
Operations 

 Case 1: 
Suppose 

f ( n) = g(h1( n),..., hm( n)).    

 

and let P, Q1,..., Qmbe LOOPprograms (without UNTILloops) for g, h1,..., hm, respectively. The 

following program computes f, where Z1,...,Zm,Y1,...,Ynand W1are new program variables which 

do not occur in any of P, Q1,..., Qm. 

INPUT(Y1,...,Yn)  

Z1  Q1(Y1,...,Yn)  

           .  
           .  
           .  
Zm  Qm(Y1,...,Yn)  

W1    
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OUTPUT(W1) 

 Case 2: 
Suppose 

f (0, 2n) = g( 2n)    

f (y + 1, 2n) = h(y, f (y, 2n), 2n).    

 

for y and 2n n - 1, and suppose Pand Qare LOOPprograms (without UNTILloops) 

for gand h, respectively. The following program computes f, where Y1,...,Yn,Z1, and W1are new 

program variables not occurring in Por Q. 

INPUT(Y1,...,Yn)  

Z1    

W1  0  

FOR Y1 TIMES DO  

          Z1  Q(W1,Z1,Y2,...,Yn)  

          W1  W1 + 1  

ENDFOR  
OUTPUT(Z1) 

 The above proof is really an informal proof, since we haven't proved formally that the programs are 

correct. We do that now. 

 Induction basis: 
Base functions 

 Case 1: 
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INPUT(   

  

OUTPUT(  

The output of this program is always , and since ( ) = 0, this program correctly 

computes the null function N. 
 Case 2: 

INPUT(   

  

OUTPUT(  

Let x   be the input to S, then the input to this program is (x), and the output is 

that string [  such that 

([    

 

 Case 3: 

INPUT(   

OUTPUT(  

Given input n  n to Pjn, the output of this program is (xj), and since (

(xj)) = xj = Pjn( n), the program is correct. 

 Induction step: 
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Operations 
 Case 1: 

INPUT(Y1,...,Yn)  

Z1  Q1(Y1,...,Yn)  

           .  
           .  
           .  
Zm  Qm(Y1,...,Yn)  

W1    

OUTPUT(W1) 

The Induction Hypothesis is that 

g( m) = (fP( (y1),..., (ym)))    

 

and for each 1 j m

hj( n) = (fQj
( (x1),..., (xn)))    

 

Given inputs n nto f, at the end of this program  

[Zj] = fQj
( (x1),..., (xn)) for all 1 j m, and hence 

([W1]) = ofP(fQ1
( (x1),..., (xn)),...,    

                 fQm
( (x1),..., (xn)))    

 = ofP( o ofQ1
( (x1),..., (xn)),...,    
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                 o ofQm
( (x1),..., (xn)))    

 = ofP( oh1( n),...,    

                 ohm( n))    

 = g(h1( n),..., hm( n))    

 = f ( n)    

 

where odenotes the operation of function composition. 
 Case 2: 

(Left as an exercise) 

Theorem 4.6   Every number-theoretic function computed by a LOOP program without UNTIL loops is 
primitive recursive.

Proof: Let P be a given LOOP program without UNTIL loops of the form: 

INPUT(   

  

OUTPUT(  

Let  be a list of all the variables occurring in P, and let Y1,...,Ym be a list of 

``imaginary'' loop control variables needed by the internal implementation of FOR loops. We define by 
induction on the number of steps used in the construction of P- a set of primitive recursive functions fP-j 

of r + m variables such that if r and m are the values of the variables  and Y1,...,
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Ym at the beginning of the execution of P-, then for each 1 j r, fP-j( r, m) is the (numerical) 

value of the variable  at the end of the execution of P-, and similarly for each 1 j m, fP-r + j( r,

m) is the value of the imaginary loop contol variable Yj at the end of the execution of P-. Of course, if 

P- doesn't halt (which it will always do), then the value of fP-r + j( r, m) is undefined. 

Having defined fP-j, then the primitive recursive function which P computes is given by 

f ( n) = fP-k( n, 0,..., 0)    

 = fP-k(P1n( n),..., Pnn( n), Nn( n),..., Nn( n))    

 

where Nn( n) = N(P1n( n)) = 0. 

 Induction basis: 

 Case 1: 

P- is . Then, 

fP-i( r, m) = Nr + m( r, m)    

 

and for all j i, 

fP-j( r, m) = Pjr + m( r, m)    
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 Case 2: 

P- is . Then, 

fP-i( r, m) = S(Pir + m( r, m))    

 

and for all j i, 

fP-j( r, m) = Pjr + m( r, m)    

 

 Case 3: 

P- is . Then, 

fP-i( r, m) = Ptr + m( r, m)    

 

and for all j i, 

fP-j( r, m) = Pjr + m( r, m)    

 

 Induction step: 

 Case 1: 
P- is of the form: 

P1  

P2 
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where, of course P1and P2are lists of LOOPstatements which do not include any I/O statements 

(or UNTILloops). Then, 

fP-j( r, m) = fP2
j(fP1

1( r, m),..., fP1
r + m( r, m)).    

 

 Case 2: 
P- is of the form: 

FOR  

Q 

ENDFOR 

Suppose that this is the tthFORloop thus far encountered in the construction of P-. We first define 
via primitive recursion a set of primitive recursive functions gQjof r+ marguments such that if 

r, mare the values of the variables before entering this FORloop, then gQj( r, y1,..., yt,..., 

ym) is the value of the jthvariable after ytconsecutive executions of the loop body Q. First, 

gQr + t( r, m) = Pr + tr + m( r, m).    

 

Next, for j r+ t, 

gQj( r, y1,..., 0,..., ym) = Pjr + m( r, m)    

gQj( r, y1,..., yt + 1,..., ym) = fQj(gQ1( r, y1,..., yt,..., ym),...,    
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 =         gQr + m( r, y1,..., yt,..., ym)).    

 

Then, the primitive recursive function fP-jis defined by 

fP-j( r, m) = gQj( r, y1,..., Pir + m( r, m),..., ym).    

 

 Technically, the ``recursive'' definition of gQj is not primitive recursive, since for each j, the 

definition of gQj depends on gQ1,..., gQr + m, i.e., on all gQj. This is an example of the ``simultaneous 

inductive definition'' of a set of functions. We will show that this form of recursion as well as other 
general forms of recursion are all constructible from primitive recursive functions. 
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4.3 Primitive Recursive Expressibility (Revisited) 

Definition 4.5 (Bounded Minimization)   The function f : n + 1   is obtained from the 

predicate P of n + 1 arguments by bounded minimization if for all x, n 

f (x, n) =    

 

We use f (x, n) = min y x[P(y, n)] to denote that f is obtained from P via bounded minimization.

Proposition 4.7   If P is a primitive recursive predicate, then so is any function f obtained from P via 
bounded minimization.

Proof: If f (x, n) = min y x[P(y, n)], then we define f by induction as follows: 

f (0, n) = 1 (0, n)    

 

f (x + 1, n) =    
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Proposition 4.8   Integer division is primitive recursive.

Proof: 

x/y = min z x[(z + 1) x y > x].    
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4.4 General Recursion 

Definition 4.6   Given functions g : n  , h : n + 2  , and a total function r :  
  such that r(0) = 0 and r(x) < x for all x > 0, then f : n + 1   is defined from g, h and 

r via recursion, if for any n  n 

f (0, n) = g( n)    

f (y, n) = h(y, f (r(y), n), n)        for any    y > 0.    

 

Proposition 4.9   If f is defined by recursion from (primitive / partial) recursive functions g, h, and r, 
then f is (primitive / partial) recursive.

Proof: First define the function r* by 

r*(0, x) = x    
r*(y + 1, x) = r(r*(y, x))    

 

and the function q by 

q(x) = min y x[r*(y, x) = 0]    

 

The value q(y) specifies the number of steps in the building-up process for f (y, n). 

Since r is total (primitive) recursive and r(x) < x for any x > 0, we see that r* and q are also total 
(primitive) recursive. Also, q(x) = 0  x = 0. Next define the (primitive / partial) recursive function 
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H as follows: 

H(0, y, z, n) = z    

H(m + 1, y, z, n) = h(r*(q(y) (m + 1), y), H(m, y, z, n), n)    

 

We prove by induction for all m q(y) that 

H(m, y, g( n), n) = f (r*(q(y) m, y), n)    

 

from which it follows 

f (y, n) = H(q(y), y, g( n), n)    

 

so that f is (primitive / partial) recursive. 

 Induction basis: 

H(0, y, g( n), n) = g( n)    

 = f (0, n) = f (r*(q(y), y), n)    

 

 Induction step: 

Suppose that H(m, y, g( n), n) = f (r*(q(y) m, y), n), then 
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H(m + 1, y, g( n), n) = h(r*(q(y) (m + 1), y), H(m, y, g( n), n), n)    

 = h(r*(q(y) (m + 1), y), f (r*(q(y) m, y), n), n)    

 = f (r*(q(y) (m + 1), y), n)    
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4.5 String Operations 

Fix an alphabet  = {1,..., k}. We adopt the convention of using u, v, and w to denote strings over 

. We define the following elementary string functions:  

Suppose w = an ... a1a0  , then 

endk(w) = a0    
rsfk(w) = an ... a1    

 

Proposition 4.10   The functions endk and rsfk are primitive recursive in the sense that oendko  

and orsfko  are primitive recursive.

Proof: The functions are defined as follows: 

rsfk(x) = (x 1)/k    

endk(x) = x (rsfk(x) x k)    

 

To see that these are correct, observe that if w = (x) = an ... a1a0, then x 1 = an x kn + ... + a1 x k + 

(a0 - 1), where 0 a0 - 1 < k, so that rsfk(x) = an x kn - 1 + ... + a2 x k + a1 as required. Given the 

correctness of rsfk, the correctness of endk is immediate. 
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Proposition 4.11   The string functions | w  and u . v (i.e., length and concatenation) are primitive 

recursive.

Proof: String length over  is defined by 

| x  = min y x[rsfk*(x, y) = 0],    

 

where rsfk* is defined by 

rsfk*(x, 0) = x    

rsfk*(x, y + 1) = rsfk(rsfk*(x, y)).    
 

and concatenation over  is defined by 

x . y = x x k | y  + y.    

 

Proposition 4.12   The following string predicates and functions are primitive recursive. 

occk(u, w)  the string u occurs in the string w.    

prek(u, w) = the prefix of the first occurrence of u in w.    
sufk(u, w) = the suffix of the first occurrence of u in w.    

repk(u, v, w) = the result of replacing the first occurrence of u in w by v.    
 

For prek and sufk we require that if u does not occur in w, then the value of the function is w + 1.

Proof: 
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occk(x, z)  y1 z y2 z [z = y1 . x . y2].    

prek(x, z) = min y1 z y2 z [z = y1 . x . y2].    

sufk(x, z) = min y2 z [z = prek(x, z) . x . y2].    

repk(x, y, z) = prek(x, z) . y . sufk(x, z).    
 

Corollary 4.13   If g and ha for each a   are (primitive / partial) recursive functions, then so is the 

function f defined by 

f ( , n) = g( n)    

f (y . a, n) = ha(y, f (y, n), n),        for each    a     

 

Proof: Define the (primitive / partial) recursive function H by 

H(y, z, n) =    

 

Then 
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f (y . a, n) = ha(y, f (y, n), n)    

 = H(y . a, f (rsfk(y . a), n), n)    

 

so that f is defined by recursion from g, H, and rsfk. But, clearly rsfk(x) < x for all x > 0, so that the result 

follows from Proposition 4.9. 

Exercise 4.1   Show that if g is a primitive recursive function and P is a primititve recursive predicate, 
then are the following are also primitive recursive functions and predicates. 

min y g(x) [P(y, n)]  

max y g(x) [P(y, n)]  

y g(x) [P(y, n)]  

y g(x) [P(y, n)] 

Exercise 4.2   Show that the following are primitive recursive: 

x y  

x = y  

x  y  

xy 
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4.6 Coding of Tuples 
As an application of the above we show how to code n-tuples of integers in a primitive recursive 

fashion. We simply view x1,..., xn as a string over  consisting of n strings over  separated by 

the symbol ``,'' (which is the k+1st symbol of  and as such does not belong to . Thus, the 

function of n arguments which produces this string, which we denote by x1,..., xn , is primitive 

recursive via 

x1,..., xn  = x1 . , . ... . , . xn.    

 

Note that x1,..., xn  is simply some primitive recursive function of n arguments which we could 

have denoted by fn (x1,..., xn). Next the projection functions  for each 1 j n are defined by 

(x) = xj,        where    x = x1,..., xn .    

 

In order to see that  is primitive recursive, we must first define some useful primitive recursive 

functions. We use ',' (instead of k + 1) when we wish to refer to the special separation symbol ``,''. 

●     The function nock(j, x), which gives the number of occurrences of the symbol j in the string x 

over . 

nock(j, ) = 0    
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nock(j, x . a) =    

 

●     Then, the predicate tup(n, x), which specifies whether or not x codes an n-tuple, is given by 

tup(n, x)  nock + 1(',', x) = n 1    

 

●     Next, we define the function prtk(j, x, n), which gives the part in the string x over  between 

the nth and the n+1st occurrence of the symbol j, 

prtk(j, x, n) =    

 

Observe, that if x has n occurrences of j, then prtk(j, x, n) gives the part of x between the nth 

occurrence of j in x and the end of x. 

●     Next, we define the primitive recursive uniform projection function as follows: 

(n, j, x) =    
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Finally, the projections are defined by 

(x) = (n, j, x).    

 

Thus  . together with ,..., establish a one-to-one correspondence between all n-

tuples of natural numbers and all strings over with n- 1 occurrences of `` ,''. Furthermore, 

the uniform projection function allows for the decoding of every natural number as a unique 
tuple of natural numbers. 

As another application of coding we at last show that it is possible to define several functions 
simultaneously by induction. 

Proposition 4.14   Let g1,..., gm and h1,..., hm be (primitive / partial) recursive functions. Then the 

functions f1,..., fm defined by 

fi(0, n) = gi( n)    

fi(y + 1, n) = hi(y, f1(y, n),..., fm(y, n), n)    

 

for each 1 i m, are also (primitive / partial) recursive.

Proof: Define G and H by 

G( n) = g1( n),..., gm( n)    

H(y, z, n) = h1(y, (z),..., (z), n),...,    

         hm(y, (z),..., (z), n)    
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and then the function F by 

F(0, n) = G( n)    

F(y + 1, n) = H(y, F(y, n), n)    

 

Clearly, G, H and hence F are (primitive / partial) recursive. We first show by induction that 

F(y, n) = f1(y, n),..., fm(y, n) .    

 

 Induction basis: 

F(0, n) = G( n)    

 = g1( n),..., gm( n)    

 = f1(0, n),..., fm(0, n)    

 

 Induction step: 

Assume that F(y, n) = f1(y, n),..., fm(y, n) . Then, 

F(y + 1, n) = H(y, F(y, n), n)    

 = H(y, f1(y, n),..., fm(y, n) , n)    

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node24.html (4 of 6) [12/23/2006 12:03:57 PM]



4.6 Coding of Tuples

 = h1(y, f1(y, n),..., fm(y, n), n),...,    

     hm(y, f1(y, n),..., fm(y, n), n),    

 = f1(y + 1, n),..., fm(y + 1, n) .    

 

Therefore, we see that fi(y, n) = (F(y, n)), and so f1,..., fmare each (primitive / partial) 

recursive. 

●     We now see in retrospect that in the proof of Theorem 4.6 the definition of the functions gQj are 

legitimate primitive recursive definitions. 
●     We can now see that it suffices to consider only (primitive / partial) recursive functions of one 

variable. Suppose f is a (primitive / partial) recursive function of n variables and let f1 be the 

(primitive / partial) recursive function defined by f1(x) = f ( (x),..., (x)). Then, for any 

input x1,..., xn  n to f, we see that 

f (x1,..., xn) = f1( x1,..., xn ).    

 

Therefore, every (primitive / partial) recursive function of nvariables can be replaced by a 

(primitive / partial) recursive function of one variable whose input is x1,..., xn instead of 

x1,..., xn. Furthermore, we can easily implement (primitive / partial) recursive functions with 

outputs by ``interpreting'' outputs as tuples. 
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5. Diagonalization Arguments 

 Observe that there clearly are LOOP programs which compute non-total functions: 

INPUT(   

UNTIL Y1 TRUE DO  

ENDUNTIL  
OUTPUT(Y1) 

Thus, because of the foregoing we must add some operation which can transform total functions into 
non-total functions to our set of primitive recursive functions in order to capture all the functions 
computed by LOOP programs. In fact, we now give an argument which shows that all models of 
computability must include some non-total functions. 

Proverb 5.1   To define something (e.g., a function) which does not have a specified property, make it 
different from all those things (i.e., functions) which do have that property.

Arguments that use this proverb are called diagonalization arguments. 

Example 5.1   There exist uncountably many total functions from  to . 

Proof: Let f0, f1,... be some list of the countably many functions from  to . Consider the following 

tableau:  
Table 5.1:Diagonalization 

Construction

f0(0) f0(1) f0(2) f0(3) f0(4) o o o

f1(0) f1(1) f1(2) f1(3)     

f2(0) f2(1) f2(2) f2(3)     
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f3(0) f3(1) f3(2) f3(3)     

f4(0)    f4(4)    

o     o   

o      o  

o       o

 
Then the function fo(n) = fn(n) + 1 is clearly different from each function on the list. Moereover, since 

each function on the list is total, so is fo. 

 Many arguments by contradiction are in fact diagonalization arguments in disguise. 

Example 5.2   The cardinality of the power set 2X of any set X is greater than the cardinality of X itself. 

Proof: We denote the cardinality of a set Y by #Y. Clearly, #X #2X, since we can define a function h : 

X  2X by h(x) = {x}. Now suppose g : X  2X is any function. We show that g cannot be onto 
(so 2X must have more elements than X). Define 

Xd = {x  X : x g(x)}.    

 

If g is onto, then there is some element y  X such that g(y) = Xd. Consider the question whether y  

Xd: 

y  Xd  y g(y)  y Xd        contradiction!    

 

y Xd  y  g(y)  y  Xd        contradiction!    
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Therefore, no g : X  2X can be onto. We can also give an explicit diagonalization argument as 

follows: Let fk = , so 

fk(x) =    

 

Then, define 

fo(x) =    

 

Then, fo is a total 0 - 1 valued function on X, i.e., it is the characteristic function of some subset Xo of X. 

But, Xo  2X and Xo is different from each set g(k), so g cannot be onto. Observe! 

Xo= {x : fo(x) = 1}    

 = {x : fx(x) = 0}    

 = {x : x g(x)}    

 = Xd    
 

●     Under the assumption that the class of effectively computable functions should be countable and 
that programs for them should be effectively listable, we can show that the effectively 
computable functions must contain some non-total functions, i.e., functions which are undefined 
for some inputs. 

In the proof above that there are uncountably many total functions from  to  if we let fn be 

the function computed by the nth program in the effective listing of programs for computable 
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functions, we see that if all fn are total, then so is fo. 

But, fo is also effectively computable (intuitively) since on input n we simply find the nth 
program; run it on input n; and then add 1 to the result. 

Thus the list cannot contain all the effectively computable functions, which contradicts our 
assumption. Thus, the list must contain some non-total function. 

●     This argument also shows that there cannot exist any effective listing of all and only the total 
computable functions. 
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6. Partial Recursive Functions 

Notation 6.1   We use , , ,... to denote (possible) partial functions.  

We use f, g, h,... to denote total functions.  

(x)  means that (x) is defined (convergent), i.e., x  dom .  

(x)  means that (x) is undefined (divergent), i.e., x dom .  

 =  means that for all x either both (x)  and (x) , or (x)  and (x)  and (x) = 

(x).

Definition 6.2   The function  : n   is obtained from the function  : n + 1   

via minimization if for all n  n 

( n) =    

 

( n) = min y[ (y, n)  0] denotes that  is obtained from  via minimization.

●     The intuitive basis for minimization is that of an unbounded search for the first y satisfying the 

property that (y, n)  0. In this regard, since  may be a non-total function, we must be 

sure that (k, n)  for all 0 k < m before testing (m, n). 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node26.html (1 of 4) [12/23/2006 12:04:14 PM]



6. Partial Recursive Functions

●     If P is a predicate, then min yP(y, n) means min y[ (y, n)  0]. 

Definition 6.3   A function is partial recursive if it can be obtained from the base functions (null, 
successor, projections) by finitely many applications of the operations of substitution, primitive 
recursion, and minimization. 

●     A partial recursive function which is total is called total recursive. 

●     A predicate P is a recursive predicate if  is a total recursive function. 

Theorem 6.1   Every partial recursive function is computed by a LOOP program.

Proof: We need only add to Theorem 4.5 an additional case in the induction step dealing with the 
operation of minimization. 

 Case 3: 
Suppose 

( n) = min y[ (y, n)  0]    

 

and let Pbe a LOOPprogram for and let Y1,...,Yn,Z1,W1be new program variables which do not 

occur in P. The program for is given by: 

INPUT(Y1,...,Yn)  

W1    

UNTIL W1 TRUE DO  

          Z1  Z1 + 1  

          W1    

ENDUNTIL  
OUTPUT(Z1) 
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Theorem 6.2   Every number-theoretic function computed by a LOOP program is partial recursive.

Proof: We need only add to the proof of Theorem 4.6 an additional case in the induction step dealing 
with UNTIL loops: 

 Case 3: 
Suppose P- is of the form 

UNTIL  

Q 

ENDUNTIL 

Let this be the tthloop (of any kind), and let Ytbe an imaginary program variable which will be used to 

count the number of times through the UNTILloop, and let gQjbe the set of functions defined previously 

in the proof of Theorem 4.6. Define, 

h( r, m) = min yt [gQi( r, y1,..., yt,..., ym)  0].    

 

Then, 

fP-j( r, m) = gQj( r, y1,..., h( r, m),..., ym).    

 

Theorem 6.3   Fix some alphabet . The class of number-theoretic functions computed by LOOP 

programs over  is identical to the class of partial recursive functions.
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 Observe, that there is an effective (i.e., computable) procedure which given a LOOP program over 

 constructs (an expression for) the partial recursive function which computes it. Conversely, there is 

also an effective procedure which given a partial recursive function constructs a LOOP program over 

 which computes it. 

 Observe also that for any LOOP program text, the partial recursive function which computes it is 

independent of the alphabet  which is used to specify its semantics. 

 Observe further, however, that the complexity of a LOOP program does depend on the alphabet 

, since it depends on the length of the internal and I/O representation used. Specifically, since for 

any k > 1, | (x) | = logkx , where y  denotes the least integer y, but | (x) | = x, we see 

that between any two alphabets of more than one symbol, the respective complexity measures are related 

by a constant factor, whereas between  and any other alphabet consisting of more than one symbol 

the difference in complexity can be exponential. 
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7. Random Access Machines 
A random access machine is an idealized computer with a random access memory consisting of a finite 
number of idealized registers (i.e., they can hold any sized number) R1, R2,... whose contents are strings 

over some alphabet , and which has a finite set of machine instructions. The set of machine 

instructions are as follows:  

Table 7.1:RAM Machine Instructions

Machine Assembly Effect

Instruction Language  

1/m/j; jmp1 Rm/j  

         .          . jmpa: if a is the leftmost

         .          . symbol of Rm, then GoTo

         .          . line j of the program

k/m/j; jmpk Rm/j  

k + 1/m; suc1 Rm  

         .          . suca: concatenate

         .          . an a to the right

         .          . end of Rm

2k/m; suck Rm  

2k + 1/m; inp Rm input a value into Rm

2k + 2/m; out Rm output a value from Rm
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2k + 3/m; lsf Rm delete leftmost symbol of Rm

 

Definition 7.1   A RAM-program over  is a sequence of RAM statements S1,..., Sn such that for some 

1 < m < n, 

1. 
S1,..., Sm are the only input statements 

2. 
Sn is the only output statement 

3. 

and no conditional jump statement in Sm + 1, ..., Sn - 1 can cause a jump to any line m. 

Definition 7.2   A RAM-program P over  computes the (partial) function f : ( )n   if 

and only if 

1. 
there are n input statements of P; 

2. 

for all x1,..., xn, when P is executed    with x1,..., xn as its input, 

(a) 

P halts if and only if f (x1,..., xn) , 

(b) 
if P halts, then P outputs f (x1,..., xn). 

 Execution of a RAM program involves: 

1. 
initially all registers have value 0 

2. 
statements are executed according to the ``obvious'' semantics in the ``obvious'' order. 

Proposition 7.1   Every function computed by a LOOP program is also computed by a RAM program.

Proof: (Left as an exercise) 
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7.1 Parsing RAM Programs 

Every RAM program over  is a string over the alphabet   {/,;}  , i.e., the / and ; 

are the k+1st and k+2nd letters of , respectively. We will use '/' and ';' to denote (the codes of) 

these special symbols. We now show that given any natural number, regarding it as a string over 

, there is a primitive recursive function which ``parses'' that number. 

●     First suppose that x codes a RAM instruction (minus the ``;''). We define primitive recursive 
functions opc, reg, gto, which produce, respectively, the opcode part of x, the register named in x, 
and the goto part of x (if x codes a conditional jump instruction). 

opc(x) = prek + 2('/', x)    

 

reg(x) =    

 

gto(x) =    

 

●     Next, we define a primitive recursive predicate ins(x) which determines whether x codes a legal 
instruction (minus the ``;''): 
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ins(x)  ( occk + 2(';', x))  (opc(x) 2k + 3)    

           (opc(x) > 0)  (reg(x) > 0)    

           (opc(x) k  nock + 2('/', x) = 2)    

           (opc(x) > k  nock + 2('/', x) = 1)    

 

●     Suppose now that x codes a RAM program. We define primitive recursive functions lng(x) and lne
(j, x) which give, respectively, the number of lines of x and the jth line (ie., instruction) of x: 

lng(x) = nock + 2(';', x)    

lne(j, x) = prtk + 2(';', x, j 1)    

 

●     Next, define primitive recursive programs nrg(x) and mxr(x) which give, respectively, the 
number of arguments of program x (i.e., the number of input statements), and the maximum 
number of any register used in x. 

nrg(x) = minm lng(x)[ j m[j > 0  opc(lne(j, x)) = 2k + 1]    

                   j lng(x)[j > m  opc(lne(j, x))  2k + 1]]    

mxr(x) = miny x    j lng(x)[j > 0  reg(lne(j, x)) y]    

 

●     Then, we define the primitive recursive predicate prg(x) which specifies whether or not x codes a 
legal program: 

prg(x)  j lng(x)[j > 0  ins(lne(j, x))]  (nrg(x) > 0)    

           (nrg(x) < lng(x))  (opc(lne(lng(x), x) = 2k + 2)    

           j lng(x) 1 [opc(lne(j, x))  2k + 2]    
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           j lng(x)[j > 0  opc(lne(j, x)) k    

                 nrg(x) < gto(lne(j, x)) lng(x)]    
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7.2 Simulation of RAM Programs 

We now show how to simulate the execution of a RAM program (coded by) p over  on inputs (coded by) 

y = x1,..., xn . Thus, p is a string over  and y is a string over . In order to do this we need 

at each step to record the ``state'' of the program execution, which will be given by the pair j, z , where j 

is the current line number, and z codes the current values of the registers used by p (so z will be a mxr(p) 
tuple). 

●     First, we need to show that the primitive operations of RAM programs are primitve recursive. We 
define primitive recursive functions val(p, z, j), lnd(p, z, j), lsf(p, z, j), suc(a, p, z, j), and inp(p, z, j, m), 
which give, respectively, the current value of register j, the leftmost symbol of register j, the result of 
deleting the leftmost symbol of register j, the result of adding the symbol a to the right end of register 
j, and the result of copying m into register j: 

val(p, z, j) =    

 

lnd(p, z, j) = rsfk + 1*(val(p, z, j), | val(p, z, j) 1)    

inp(p, z, j, m) = isg(p, z, j) . repk + 1(val(p, z, j), m, sufk + 1(isg(p, z, j), z))    

lsf(p, z, j) = inp(p, z, j, sufk + 1(lnd(p, a, j), val(p, z, j)))    
suc(a, p, z, j) = inp(p, z, j, val(p, z, j) . a)    

 

where isg(p, z, j) = val(p, z, 1) . ',' . ... . ',' . val(p, z, j 1) . ','. 

●     We can now simulate the execution of RAM programs. We define two primitive recursive functions nxl
(p, y, z, j), which gives the next line of program p on input y to be executed given that the current 
register values are z and the current line is j; and nxv(p, y, z, j), which gives the next values of the 
registers for program p on input y given that the current register values are z and the current line is j: 
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nxl(p, y, z, j) =    

 

nxv(p, y, z, j) =    

 

●     Now we define the primitive recursive function sim(p, y, m), which gives the pair j, z  which 

codes the current line and the current register values after m steps of the computation of p on input y: 

sim(p, y, 0) = 1, zro(mxr(p))    

sim(p, y, m + 1) = nxl(p, y, (sim(p, y, m)), (sim(p, y, m))),    

         nxv(p, y, (sim(p, y, m)), (sim(p, y, m)))    

 

where zro(n) = 0,..., 0 . 

●     Next, we define the partial recursive function stp(p, y), which gives the number of steps in the 
computation of p on input y if p halts on input y: 

stp(p, y) = min t[ (sim(p, y, t)) = lng(p)]    
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●     Now, we can define the ``universal'' partial recursive function (p, y), which gives the result, if 

any, of the computation of p on input y: 

(p, y) =    

 

 Observe that if p does not code a legal program then (p, y) is undefined for all y. We define an 

indexing or Gödel numbering { } of the RAM computable functions (of one argument) by letting  

denote the partial recursive function computed by the RAM program (with code) i. Observe that since every 
partial recursive function is computable by a LOOP program, and hence in turn by a RAM program, every 

partial recursive function is included in the list { }. The promised effective translation of RAM programs 

into partial recursive functions is given by the following. 

Theorem 7.2   For the indexing { } given above there is a ``universal'' partial recursive function  

such that for all x and y, (x, y) = (y).

●     This result is not specific to RAM programs and partial recursive functions. We could have just as well 
written a LOOP program which transforms partial recursive function definitions into RAM programs. 

●     Since every partial recursive function is computable by a RAM program, there exists a RAM program 

Punv which computes the function , i.e., a RAM program which interprets (i.e., an ``interpreter'' 

for) other RAM programs and simulates their execution. 

●     Observe that in the process of defining  only one application of (unbounded) minimization was 

used. Therefore, every partial recursive function can be computed by a LOOP program which uses 
only one UNTIL loop! 

 The equivalence of LOOP computable, RAM computable and the class of partial recursive functions 

gives empirical evidence for Church's Thesis, which states that the class of partial recursive functions yield a 
formalization of our intuitive notion of effectively computable function. 
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7.3 Index Theorem 
Theorem 7.2 shows that we can effectively interpret RAM programs. We now show that we can also 
effectively transform them. In particular, we show 

Theorem 7.3   For every m, n  , there is a primitive recursive function Smn such that for every 

RAM program p of m + n agruments, Smn(p, x1,..., xm) is a RAM program of n arguments such that 

(y1,..., yn) = (x1,..., xm, y1,..., yn)    

 

The inutitive meaning of Theorem 7.3 is that given any RAM program p of m + n arguments and any set 
of fixed values x1,..., xm we can build these as constants into p and construct a program Smn(p, x1,..., xn) 

of the remaining n arguments which behaves exactly like p with its first m arguments fixed to be x1,..., 

xm. This will allow us to build data into programs. We will suppose that x1,..., xm and y1,..., yn are coded 

as tuples and so will denote them by x and y, respectively. Thus, we need to show that (y) = 

(x, y). 

We can imagine the structure of p consisting of m input statements (which will be replaced), followed by 
the remaining n input statements, followed by the remainder of p. 

Figure 7.1:Index Theorem Transformation
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Proof: First, the primitive recursive function isgk + 1(p, z, j), mentioned previously, is defined by: 

isgk + 1(p, z, j) = min y1 z y2 z [z = y1 . y2  nock + 1(',', y1) = j]    

 

Exercise 7.1   Show that if g is a primitive recursive function of n + 1 arguments, then the function 
defined by 

f (x, n) = g(j, n)    

 = g(1, n) ... g(x, n)    

 

is primitive recursive. Observe that f (0, n) should have the value 0.

One key part of the required transformation is to replace an input statement by a block of statements 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node30.html (2 of 5) [12/23/2006 12:04:29 PM]



7.3 Index Theorem

which assign a specified fixed value z to the variable Rm of the assignment statement. More precisely, 

we need to replace the statement 

inpRm 

by the block of statements 

suca1
Rm  

  .  
  .  
  .  
sucan

Rm 

where the specified value z = a1 ... an. This replacement is effected by the primitive recursive function rcp

(z, m), which is defined by 

rcp(z, m) = (k + smb(z, j)) . '/' . m . ';'    

 

where smb(z, j) is the primitive recursive function which gives the jth symbol (from the left) of the string 
z. 

Then, the block of such copy statements for the m-tuple x is given by 

cpb(p, m, x) = rcp( (m, j, x), reg(lne(j, p)))    

 

Next, we need to adjust the goto parts of the rest of the program in order to account for the change in the 
number of lines. The function adl(z, r, s) adjusts the goto part of the instruction coded by z by + r if r > 
0, and by - s if r = 0, and is defined by 
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adl(z, r, s) =    

 

and the result of adjusting all the lines of a program p is given by 

adp(p, r, s) = adl(lne(j, p), r, s) . ';'    

 

Finally, we can express the definition of the transfoirmation Smn by 

Smn(p, x) = sufk + 2(isgk + 2(p, m,';'), isgk + 2(p, m + n,';))    

      . cpb(p, m, x)    

      . adp(sufk + 2(isgk + 2(p, m + n,';'), p), | x  + 1 (2 x m),    

                 (2 x m) 1  | x )    

 

The number | x  + 1 (2 x m) arises from the fact that the net increase in length due to the copy 

block is equal to the length of x minus the m lines which are replaced. Observe, that it is possible for this 
number to be negative (e.g., when each element of the m-tuple x is a 0). 
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7.4 Other Aspects 
●     We can construct non-deterministic RAM programs by adding instructions of the form 

2k + 4/j1/j2;        njp j1 or j2 

which non-deterministically selects one of two lines (j1or j2) to jump to. 

●     We can construct probabilistic RAM programs by adding instructions of the form 

2k + 5/j1/j2;        pjp j1 or j2 

which selects with probability one of two lines (j1or j2) to jump to. 

We distinguish between deterministic, non-deterministic, and probabilistic RAM programs by using the 
notation DRAM, NRAM, and PRAM, respectively. 

      
Next: 7.5 Complexity of RAM Programs Up: 7. Random Access Machines Previous: 7.3 Index 
Theorem 
Bob Daley  
2001-11-28  
©Copyright 1996  
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or 
portion thereof) is accompanied by this copyright notice. 
Copying for any commercial use including books, journals, course notes, etc., is prohibited. 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node31.html [12/23/2006 12:04:32 PM]



7.5 Complexity of RAM Programs

      
Next: 8. Acceptable Programming Systems Up: 7. Random Access Machines Previous: 7.4 Other 
Aspects  

7.5 Complexity of RAM Programs 

Definition 7.3   If P is a deterministic RAM program (a DRAM program) over  with n inputs and 

which uses only registers R1,...,Rr , then we define the following complexity measures for P. 

DRMtimeP( n) =    

 

DRMspaceP( n) =    

 

where Rit denotes the contents of register Ri at step t of the computation of P on input n.

Proposition 7.4   The following predicates are primitive recursive: 

QDRMtime(p, n, y)  [DRMtimep( n) y]    

QDRMspace(p, n, y)  [DRMspacep( n) y]    

 

Proof: For time complexity, we have 
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QDRMtime(p, n, y)  z (y  | xi )[ (sim(p, n , z)) = lng(p)].    

 

For space complexity, observe that given a fixed amount of space, it is possible for a computation to 
enter an infinite computation loop within that amount of space. In this case, since the space complexity is 
still undefined, the predicate QDRMspace must respond with False. Moreover, if the program is ever in the 

situation where it is about to execute an instruction with a current memory contents that is identical to an 
instruction and memory contents combination that it encountered earlier, then clearly it is in such an 
infinite loop. Thus, the number of distinct instruction-memory combinations is an upper bound on the 
number of steps a program can execute in an a priori given amount of space before it is certain to be in 
an infinite loop. Given this analysis we now define 

QDRMspace(p, n, y)  z lng(p) x ky    [ (sim(p, n , z)) = lng(p)    

           z1 z    [ | (sim(p, n , z1))  + 1 mxr(p) y]],    

 

where the term 1 mxr(p) is (minus) the number of commas in the internal representation of the 

contents of the registers of p. 

Proposition 7.5   For each DRAM program p there exist constants c1, c2 such that 

DRMtimep( n) c1c2 x DRMspace
p( n)    

DRMspacep( n) DRMtimep( n)    

 

Proof: The first inequality follows from the analysis given preceding the primitive recursive definition of 
QDRMspace in Proposition 7.4. The second inequality follows since the only RAM instructions which can 
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increase the space beyond that occupied by the input is the suca instruction, which can only increase it by 

one symbol. 

Proposition 7.6   Let p be any DLOOP program over , and let p' be the equivalent DRAM program 

over  constructed in Proposition 7.1. There exist constants c1, c2, and c3 such that 

DRMtimep'( n) c1 x (DLPtimep( n))c2    

DRMspacep'( n) c3 x DLPspacep( n)    
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8. Acceptable Programming Systems 
We now wish to examine the properties of computable functions without getting bogged down with the 
details of any of the particular models which we have heretofore studied. Therefore, we generalize our 
notion of (standard) model of computable function. 

Definition 8.1   A programming system is a listing , ,... (denoted by { }) which includes all of 

the partial recursive functions (of one variable) over . A acceptable programming system is a 

programming system { } for which 

1. 

there exists a universal program unv such that (i, x) = (x) for all i and x; and 

2. 

there is a total recursive S-m-n function Smn such that (y) = (x, y) for all i, m-tuples 

x, and n-tuples y. 

We will abbreviate Smn by S whenever it is clear how many arguments it takes.

Theorem 8.1   Let { } be any acceptable programming system, and let { } be any programming 

system. Then, { } is acceptable if and only if there exist total recursive functions f and g such that for 

all i,  =  and  = .

Proof: Since { } is acceptable, there exist partial recursive  and total recursive S such that 

(i, x) = (x)    

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node33.html (1 of 4) [12/23/2006 12:04:40 PM]



8. Acceptable Programming Systems

(y) = (x, y).    

 

 Case ( ): 

Since { } is also acceptable, there exist partial recursive  and total recursive S' such that 

(i, x) = (x)    

(y) = (x, y).    

 

Now, since { } is a listing of allpartial recursive functions, there is an index (i.e., program code) 

esuch that = . Then, we define 

f (i) = S(e, i)    
 

so that 

(x) = (i, x) = (i, x) = (x) = (x).    

 

Similarly, there exists an index e'such that = , and we define g(i) = S'(e', i) so that (x) = 

(x). 

 Case ( ): 
Suppose f and g are total recursive functions such that 

 =         and         =    
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Then, we can define the universal function for { } by 

(i, x) = (f (i), x) = (x) = (x).    

 

Finally, we define the function S'for { } by 

S'(i, x) = g(S(f (i), x))    
 

so that 

(y) = (y) = (y) = (x, y) = (x, y).    

 

Definition 8.2   A program transformation is any total recursive function whose domain and range are 
programs (i.e., indices) for partial recursive functions.

Observe that this definition is vacuous in the sense that every number can be interpreted as a program. 
However, it is useful for its intensional aspect. 

 

●     8.1 General Computational Complexity 
●     8.2 Algorithmically Unsolvable Problems 
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8.1 General Computational Complexity 
One of the most important behavioral aspects of a computation is the complexity of the computation, i.
e., the amount of computation resources used during that computation. It will play a key role in many of 
the proofs which follow, so we now define a general notion of computational complexity which is 
suitable for our generalized model of computability. 

Definition 8.3   Let { } be any acceptable programming system. A listing of partial functions { } 

is a computational complexity measure for { } if it satisfies: 

1. 

dom  = dom , i.e., for all i, x, (x)   (x) ; 

2. 

(x) y is a recursive predicate in i, x, and y. 

Clearly, the complexity measures defined for LOOP and RAM programs satisfy the first condition of a 
general computational complexity measre. It is also clear from Proposition 7.4 (and its analog for LOOP 
programs) that the second condition is satisfied by these complexity measures as well. 

Proposition 8.2   If { } is a computational complexity measure for { }, then  is a partial 

recursive function for each i.

Proof: 

(x) = min y[ (x) y].    
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Proposition 8.3   There is a program transformation  such that  = .

Proof: Define 

h(i, x) = min y[ (x) y]    

 = (x)    

 

Let e be a program for h, i.e., (i, x) = h(i, x), then by the S-m-n function which exists for { }, 

(x) = (i, x) = h(i, x) = (x)    

 

Therefore, we define (i) = S(e, i), so that  = . 

 Nearly all program transformations which we will encounter will be defined in this way using the S-

m-n function. 

Theorem 8.4 (Recursive Relatedness of Complexity Measures)   Let { } and { } be acceptable 

programming systems, and let g be a total recursive function such that  =  for all i. Let { } 

and { } be computational complexity measures for { } and { }, respectively. Then, there exists 

a total recursive function r such that for all i and for all x i, 

(x) r(x, (x))        and    

(x) r(x, (x))    
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Proof: Define the total recursive function r as follows: 

r(x, z) = max j x { (x), (x) : (x) z    or    (x) z}    

 

Then, for all x i, 

r(x, (x)) = max j x { (x), (x) : (x) (x)    

                                     or    (x) (x)}    

 max { (x), (x)}    

 (x)    

 

Similarly, r(x, (x)) (x), for all x i. 

We fix some arbitrary acceptable programming system { } and computational complexity measure {

} for it which we will use from now on. 

Proposition 8.5   There is a program transformation g such that for all x, ran  = dom .

Proof: Define the partial recursive function  by, 

(x, y) = min z[ ( (z)) (z) and ( (z)) = y]    
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First, observe the  is indeed partial recursive, since we can write ( (x), y) for (y) (where 

 is the program transformation of Proposition 8.3), and (x, y) for (y). Next we have 

(x, y)  z1, z2  [ (z1) z2 and (z1) = y]    

  y  ran    

 

Let i be a program for , so  = , and define g(x) = S(i, x), so that (y) = (x, y). Then, 

y  dom   (y)   y  ran .    

 

Therefore, ran  = dom . 

Proposition 8.6   There is a program transformation h such that for all x, ran  = dom .

Proof: Define the partial recursive function  by 

(x, 0) = (min z[ ( (z)) (z)])    

 

(x, y + 1) =    
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Let i be such that  = , and define h(x) = S(i, x), so that (y) = (x, y). We consider two 

cases: 

 Case 1: 

dom  = .  

In this case, since dom  = dom , we see that (x, y)  for all y, so that ran  = 

 = dom . 

 Case 2: 

dom   .  

Observe first that since dom   , the function  must be total recursive. For each y  

dom , clearly (x, y, (y) ) = y, so that dom   ran . On the other 

hand, if (x, y) = z  (x, y - 1) (including the case y = 0), then we have that (z)

(y), so that (z)  and ran   dom . 

Notation 8.4   For any predicate P, we write x P(x) (or P(x) i.o.) if there exist infinitely many 

numbers x for which P(x) is true. We also write x P(x) (or P(x) a.e.) if for all but finitely many 
numbers x P(x) is true. The expressions i.o. and a.e. are abbreviations for ``infinitely often'' and ``almost 
everywhere'', respectively.

Theorem 8.7   For any total recursive function t there exists a total recursive function f such that if  

= f, then for all x i, (x) > t(x).

Proof: Proof is by diagonalization using Proverb 5.1. Define the total recursive function 
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f (x) = max{ (x) + 1 : j x and (x) t(x)}.    

 

Thus, if  = f and x i, then (x) > t(x), since otherwise we would have 

(x) = f (x) = max{ (x) + 1 : j x  (x) t(x)}    

 (x) + 1.    

 

Thus, we see that there are functions which are functions which are a.e. difficult to compute with respect 
to any given complexity measure. We observe that we cannot improve this result to everywhere difficult 
to compute, since we can always ``speed-up'' the computation of any function on finitely many of its 
inputs by building in a table with the corresponding outputs and then computing the function on those 
inputs by table lookup. 
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8.2 Algorithmically Unsolvable Problems 
Theorem 8.8 (Unsolvability of the Halting Problem)   The function f such that for all x and y, 

f (x, y) =    

 

is not recursive.

Proof: Define the total function g(x) = f (x, x), and the partial function  by 

(x) =    

 

If  is partial recursive, then there is a program i such that  = , but then 

(i) = (i) = 0  g(i) = 0  (i)    

 

which is a contradiction. Therefore,  cannot be partial recursive, so that g and hence f cannot be total 

recursive. 
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 The following set  (referred to as the ``Halting Problem'') plays an important role in 

undecibability results: 

 = {x : (x)  }.    

 

Corollary 8.9   The set  (and its complement ) is not recursive.

We will be able to show that there are many such problems which are algorithmically unsolvable. One 
of the major techniques is to reduce one problem to another, i.e., to show that if one problem were 
solvable then the other would also be solvable. 

Definition 8.5   Let X, Y  . We say that X is many-one reducible to Y (denoted by X Y), if 

there is a total recursive function f such that for all x, x  X  f (x)  Y. We write X  Y 

whenever X Y and Y X.

Proposition 8.10   If Y is a recursive set and X Y, then X is also recursive.

Proof: Let f be a total recursive function such that x  X  f (x)  Y. Then, the characteristic 

function of X is given by  = of, i.e., 

(x) = 1  (f (x)) = 1.    

 

Proposition 8.11   The following sets are not recursive: 

= {x : dom  is finite}    

= {x :  is total}    
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Proof: Define the partial recursive function  by 

(x, y) = (x, x) (x, x).    

 

Then, 

(x, y) =    

 

Let i be such that  =  and define the total recursive function f by f (x) = S(i, x), so that (y) = 

(x, y). Let  be the everywhere undefined partial recursive function. Clearly, 

 =    

 

Therefore, x    f (x)  , hence . By Proposition 8.10 if  

were a recursive set, then so would  be recursive, contradicting Corollary 8.9. Similarly, x  

 f (x)  , and , so if  were recursive so would  be, again a 

contradiction. 

Definition 8.6   For any class C of partial recursive functions, we define the set of programs  

(called an index set) for these functions by 
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Theorem 8.12 (Rice's Theorem)    is recursive if and only if either  of .

Proof: Clearly,  and  are recursive sets. So, suppose that  and . Let  be 

the everywhere undefined partial recursive function, and assume without loss of generality that   

C. Since , there is some partial recursive function  such that  C. Let i be such that 

 = , and define the partial recursive function 

(x, y) = (i, y) + ( (x, x) (x, x)).    

 

Then, 

(x, y) =    

 

Let j be such that  = , and define the program transformation f by f (x) = S(j, x), so that (y) 

= (x, y). Then, 

 =    
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Therefore, x    f (x)  , so that , and so  cannot be recursive. 

 Rice's Theorem says in essence that there are no non-trivial apsects of the behavior of a program 

which are algorithmically determinable given only the text of the program. By trivial we mean that 
either no programs have that behavior or all programs have that behavior. As such, Rice's Theorem 
represents an extremely severe limitation on the power of algorithms. 
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9. Recursively Enumerable Sets 

Definition 9.1   A set X is recursively enumerable (or r.e.) if and only if X = ran , for some partial 

recursive function .

By Propositions 8.5 and 8.6 we have 

Corollary 9.1   A set X is recursively enumerable if and only if X = dom , for some partial recursive 

function .

Corollary 9.2   A set X is recursively enumerable if and only if either X =  or X = ran f for some total 

recursive function f.

 Thus, we see that the class of sets generated by partial recursive functions is identical to the class of 

sets accepted by partial recursive functions. 

Proposition 9.3   A set is recursive if and only if both it and its complement are recursively enumerable.

Proof: Since  is clearly recursive and r.e., it suffices to consider only non-empty sets. 

 ( ): 
Since the recursive sets are closed under complementation, it suffices to show that every non-

empty recursive set is recursively enumerable. Let X be recursive and let y  X. Then, X is 

enumerated by the function 
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f (x) =    

 

 ( ): 

Suppose X is non-empty and enumerated by the total recursive function f and that  is non-
empty and enumerated by the total recursive function g. Then, 

(x) =    

 

Proposition 9.4   a)  is recursively enumerable.  

b)  is not recursively enumerable.

Proof:  = dom , where (x) = (x). Since  is r.e., if  were r.e., then by Proposition 9.3 

 would be recursive, which would contradict Corollary 8.9. 

Proposition 9.5   If Y is recursively enumerable and X Y, then X is recursively enumerable.

Proof: Let Y = dom , for some partial recursive function , and let f be a total recursive function 

such that x  X  f (x)  Y. Define  = of, so that 

(x)   (f (x))   f (x)  Y  x  X.    
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Hence, X is r.e. 

Definition 9.2   A set Z is called complete for the class of recursively enumerable sets with respect to the 

reducibility  (called many-one complete) if and only if Z is r.e. and for all r.e. sets X, X Z.

Proposition 9.6    is complete for the class of recursively enumerable sets with respect to .

Proof: Clearly,  is r.e.. Now, let X be any r.e. set and let x be such that X = dom . Define the 

program transformation f by 

(z) = (j).    

 

Then, 

y  X  (y)  (z)   for all z    

  (z)   for some z    

  (f (x, y))    

 

Define g(y) = f (x, y). Then, y  X  g(y)  , so X . 

Proposition 9.7   The set  is not recursively enumerable.

Proof: Let the partial recursive  and total recursive f be as defined in Proposition 8.11. Then, 
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dom  =    

 

Therefore, x    f (x)  , so , and by Proposition 9.5, if  were 

r.e., then so would  be, which contradicts Proposition 9.4. 

Definition 9.3   A function is called finite if and only if it has a finite domain.

●     Thus, if C is the class of all finite functions, then . 

●     We can effectively enumerate the class of finite functions as follows: Since each finite function f 

consists of only finitely many pairs (x1, y1),..., (xn, yn), we can code f by x1, y1 ,..., xn, yn

. Next, we define the recursive function  by 

(z, x) =    

 

Let ibe such that = , and let = . Then, for any finite function fwith code z, 

(z, x) = f(x), and hence = f. Also, if zdoes not code any finite function, then = , the 

everywhere undefined partial recursive function (which is a finite function). Thus, { } is an 

effective enumeration of the class of all finite functions. 

●     We fix { } as the above effective enumeration of the class of all finite functions. 
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 Observe that there is a very important distinction to be made between effectively enumerating a 

class C of functions, and effectively enumerating the class  of all programs for those functions. To 

enumerate C we need only enumerate one program for each function in C. Thus, the effective 
enumerability of the class of all finite functions does not contradict Proposition 8.11. 

We now consider two lemmas which are very useful for demonstrating that a set  is not r.e., where 

C is a class of partial recursive functions. 

Lemma 9.8 (Closure Under Finite Subfunctions)   If  is r.e. and   C, then there is some finite 

function   C such that   .

Proof: Let  be r.e., let   C, and define a program transformation g such that 

(y) =    

 

Suppose  has no finite subfunctions which also belong to C. If x , then  = , so g(x)  

. If x  , then  is a finite subfunction of  (since (y)  for all y (x)), so 

g(x) . Thus, x    g(x)  , and hence . But then, since  is r.

e.,  is r.e., which is a contradiction. 

Therefore,  must contain some finite subfunction   , which also belongs to C. 

Corollary 9.9   The set  is not recursively enumerable.
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9. Recursively Enumerable Sets

Lemma 9.10 (Closure Under Superfunctions)   If  is recursively enumerable and   C, then for 

any partial recursive function  if   , then   C.

Proof: Let  be r.e. and let   C, and suppose that  is a partial recursive function for which 

  . Define the partial recursive function  by 

(x, y) = min z[ (x) z or (y) z]    

 = min{ (x), (y)}.    

 

Define the program transformation h such that 

(y) =    

 

Assume that  C. We claim that 

 =    

 

Presuming the claim is true, we have x    h(x)  , so that , so  

can't be r.e., which is a contradiction. 
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9. Recursively Enumerable Sets

To show that claim first suppose that x  , then (x) . 

if (y) , then (x, y)  and (x) > (x, y);  

if (y) , then (x, y) , 

so that in either case (y) = (y). 

Suppose on the other hand that x  , then (x)  and (x, y) . 

if (y) , then since   , (y)  = (y), so in either case (y) = 

(y);  

if (y) , then (x) (x, y), so (y) = (y). 

Thus, the claim and hence the lemma is proved. 

Corollary 9.11   The set  = {x :  is not total}, the complement of , is not recursively 

enumerable.

Proof: Any total function extends the everywhere undefined function , which belongs to . 

Theorem 9.12 (Rice's Theorem for R.E. Sets)   Let C be any class of partial recursive functions. Then, 

 is recursively enumerable if and only if there is some r.e. set Z such that for 

all x,   C  z  Z,   .

Proof: 
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9. Recursively Enumerable Sets

 ( ): 
Let Z be a (non-empty) r.e. set such that 

   

 

Define the partial recursive function by 

(w) =    

 

where the total recursive function fis such that Z= ran f. Observe, that , if true, will 

eventually be discovered, since it entails checking that has the proper outputs on a finite set of 

inputs. Let x . Then, for some z Z. Let ybe such that f(y) = z, so that ( x, y ) 

= x. Also, if ( x, y ) , then ( x, y ) = xand , so x . Therefore, 

. 

 ( ): 

Let i be such that , and let g be a total recursive function such that  = 

 for all z. Define the recursively enumerable set Z by Z = dom ( og), so that 

z  Z  (g(z))   g(z)     

 

Suppose C. Then by Lemma 9.8there is some z Zsuch that . On the other hand, 

suppose for some z Z. Then, Cand by Lemma 9.10 C. 
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10. Recursion Theorem 

 Special Case: 

There exists a program e such that (x) = e. 

 Cell Analogy: 

Figure 10.1:Cell Analogy

 Replication Process: 

Figure 10.2:Replication Process
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10. Recursion Theorem

 General Cell: 

Figure 10.3:General Cell

 General Replication: 

Figure 10.4:General Replication

Observation 10.1   

Cell x with genetic information y  
 ``program'' x with ``data'' y  
 S(x, y) 

Mimicing replication in a general cell we find that for some program x (which does only replication) 

(y, z) = S(y, y)    
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so that by the S-m-n function, 

(z) = S(y, y).    

 

Now, let y = x, so 

(z) = S(x, x).    

 

Finally, letting e = S(x, x), we have for all z 

(z) = e.    

 

 The program e is program x with data x. 

Theorem 10.1 (General Form of Recursion Theorem)   For every partial recursive function  : 2 

  there is a program e such that for all x, (e, x) = (x).

Proof: Let i be a program such that 

(y, x) = (S(y, y), x).    

 

Then, (x) = (S(y, y), x). Let y = i and e = S(i, i), then we have 

(x) = (x) = (S(i, i), x) = (e, x).    
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Theorem 10.2 (Fixed-Point Form of Recursion Theorem)   For every program transformation f :  

  there is a program e such that  = .

Proof: Let f :    be a total recursive function and define the partial recursive function  by 

(y, x) = (x).    

 

Then, by Theorem 10.1 there exists a program e such that (x) = (e, x) = (x). 

Proposition 10.3   For every program transformation f : 3  , there exists a program 

transformation g : 2   such that  =  for all i and j.

Proof: Define the partial recursive function  by 

(y, i, j, x) = (x).    

 

By Theorem 10.1 there exists a program e such that (i, j, x) = (e, i, j, x). Let g(i, j) = S(e, i, j). 

Then, 

(x) = (x) = (i, j, x) = (e, i, j, x)    

 = (x)    

 = (x)    
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10. Recursion Theorem

As a consequence of the General Form of the Recursion Theorem we will, whenever we need to, assume 
that programs which we construct have copies of themselves built into them. 

 

●     10.1 Applications of the Recursion Theorem 
�❍     10.1.1 Machine Learning 
�❍     10.1.2 Speed-Up Theorem 
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10.1 Applications of the Recursion Theorem 

Corollary 10.4   The set  is not recursively enumerable.

Proof: Suppose that  is r.e., and let f be a total recursive function such that ran f = . 

Define the partial recursive function  by 

(x, y) =    

 

By the Recursion Theorem there is a program e such that (e, y) = (y), so that 

(y) =    

 

Suppose that  is total. Then, e   and so e  ran f, but by the definition of , we see that 

z f (z)  e, which is a contradiction. On the other hand, suppose that  is not total. Then, e 

ran f, but again from the definition of  we see that z f (z) = e, which again is a contradiction. 

Therefore, no such function f can exist. 

Proposition 10.5 (Inefficiency Lemma)   There exists a program transformation g : 2   such 
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that 

dom  = dom   dom    

 

and 

x  dom [ (x) = (x)  (x) > (x)].    

 

Proof: Define the program transformation f : 3   by 

(x) =    

 

By Proposition 10.3 there exists a program transformation g : 2   such that  = 

. Then, we have 

(x) =    

 

Therefore, if (x) , then (x) = (x) and (x) > (x). 

 

●     10.1.1 Machine Learning 
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●     10.1.2 Speed-Up Theorem 
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10.1.1 Machine Learning 

Figure 10.5:Learning By Example Scenario

●     We view a learning algorithm (or inductive inference machine) as a total recursive function M 
which takes as input a finite portion of the graph of some (total recursive) function f and produces 
as output (the code of) some program p which is its conjecture for f. 

●     We say that M learns a function f in the limit if eventually it converges to a fixed conjecture 
which is a correct program for f. 

●     We now formalize these notions: If {xi} denotes a sequence of numbers x0, x1,..., then 

xn = x    

 

means that m n m xn= x(or equivalently n xn= x). In this case we say that {xi} 

converges in the limit tox. 
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Given a total function f :   , we denote by f | n, the finite subfunction of f consisting of f 

restricted to the set {0, 1, 2,..., n}, and code it by f (0),..., f (n) . 

Definition 10.1   We say that a total recursive function M is a total learner if M conjectures only 

programs for total functions, i.e., x  is a total recursive function.

Definition 10.2   We say that the total learner M learns a function f syntactically in the limit (written f 

 SYN t [M]) if and only if the sequence of conjectures pn = M(f | n) by M on f converges to a 

correct program p for f, i.e., 

 (Convergence Criterion) 

pn = p, and 

 (Correctness Criterion) 

 = f. 

We denote by R the class of all total recursive functions. 

We denote by SYN t  the class of sets of functions which can be learned with respect to SYN t -

type learning: 

SYN t  = {S  R : M S  SYN t [M]}.    

 

Theorem 10.6   R SYN t .

Proof: Given any M we can define via the Recursion Theorem a function   R such that  

SYN t [M] by 

(0) = e    

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node39.html (2 of 3) [12/23/2006 12:05:09 PM]



10.1.1 Machine Learning

(x + 1) = 1 + (x + 1).    

 

Observe that since for all y   R, the function   R. Let pn = M(  | n). Suppose now 

that there is some program p such that p = pn, and let m be so large that n m pn = p. 

Then, 

(m + 1) = 1 + (m + 1) = 1 + (m + 1),    

 

so that M cannot converge in the limit to a correct program for . 

Observe that although M has the index e available to it, it can't produce e as its answer, since in general e 
might not compute a total function. 
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10.1.2 Speed-Up Theorem 

From the definition of DLPtime that it is possible to ``speed-up'' (i.e., reduce) the computation time and 
space for any recursive function be choosing a program over a larger alphabet. Here, we imagine that we 
have an acceptable programming system consisting of LOOP programs (or RAM programs) over all 
possible alphabets, where the alphabet on which a program is based is included in its coding. We have also 
observed that any program for a recursive function can be sped-up on finitely many of its inputs by 
building a finite table for those inputs into that program. 

Definition 10.3   Let h be a total recursive function. A program i is called h-optimal for a partial recursive 
function f if and only if 

 = f    

 

and 

j  = f  x (x) h( (x)).    

 

Thus, modulo h, the program i is as fast as any program for f.

Question 10.1   Does there exist a total recursive function h such that every partial recursive function has 
an h-optimal program?

Theorem 10.7 (Speed-Up)   For every total recursive function h there exists a total recursive function f 
such that 

i  = f  j  = f and x (x) > h( (x))    
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Corollary 10.8   For every total recursive function h there exists a total recursive function f that has no h-
optimal program.

Figure 10.7:Repeated Speed-Up

Definition 10.4   A complexity sequence for a total recursive function f is a set of total functions {ti} such 

that 

1. 

n j  = f and tn a.e. 

2. 

j  = f  m tm  a.e. 

Thus a complexity sequence {ti} is cofinal with {  :  = f}.

Figure 10.7:Complexity Sequence
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If we can construct a complexity sequence {ti} for a function f such that hotn + 1 tn a.e., then f has h-

speed-up: 

 = f  m tm  a.e.    

  j  = f and tm + 1 a.e.    

  j  = f and ho hotm + 1 tm  a.e.    

 

Proof: (of Speed-Up Theorem) 

 Construction of f: 

The construction of f is a modification of the standard diagonalization argument (see Theorem 8.7), 
but is biased against smaller programs (which have less information content). We can assume 
without loss of generality that h is strictly increasing, i.e., h(x) > x. 
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(x) =    

 

Define, f = , where the function  is yet to be determined. 

 Observe, by (*) that  can affect only one argument x in the definition of f. 

For the present we will assume that  is total, so that f is also total. We first have that 

 = f  x j (x) > (x - j) (10.1)

 

This is so because if x j and (x - j), then since (u = v = 0), f (x) 1 + (x). 

 Construction of Table v: 

Next, 

u v  = f. (10.2)

 

By our previous observation, we have for all u and v, 

 =         a.e.    

 

Figure 10.8:Speed-Up Table
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The required ``table'' vis given by 

v = x1, f (x1) ,..., xu - 1, f (xu - 1) ,    

 

where for each j, 1 j<u, xjwas the only value affected by diagonalization against . 

 Construction of function r: 

Next, there exists a total recursive function r such that 

r(x) > x    
 

and 

i u v x  (x) r(max{ (y) : 0 y x - u}). (10.3)

 

We define 
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g(i, u, v, x, z) =    

 

Then define 

r(z) = max{g(i, u, v, x, z), z + 1 : i, u, v, x z}.    

 

Then, for all x u, 

r(max{ (y) : 0 y x - u}) g(i, u, v, x, max{ (y) : 0 y x - u})    

 (x)    

 

Observe, that in the definition of r the maximum is taken over all i z, which may include programs i for 

non-total functions. Observe also that r is strictly increasing. 

 Construction of complexity sequence {tn}: 

We now construct the complexity sequence {tn}. Define, 

tn(x) = (x - n).    

 

Suppose = f, then by (10.1) for x jwe have (x) > (x- j) = tj(x). Thus, condition (2) in the 

definition of a complexity sequence is satisfied. 

Suppose  is such that 
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(x + 1) h(r( (x))), (10.4)

 

so that (x+ 1) > (x), since hand rare strictly increasing functions. 

Then, using (10.3), that  is increasing, and (10.4) we have, 

h( (x)) h(r(max{ (y) : 0 y x - u}))    

 h(r( (x - u)))    

 (x - u + 1) = (x - (u - 1)) = tu - 1(x).    

 

Therefore, given n, by (10.2) there exists a j( j= (i, n+ 1, v), for an appropriate v) such that 

 = f         and         ho tn        a.e.    

 

so that condition (1) in the definition of a complexity sequence is satisfied. Moreover, 

tm(x) = (x - m) h(r( (x - (m + 1))))    

 h( (x - (m + 1)))    

 (hotm + 1)(x)    

 

Thus, {tn} is the desired complexity sequence. 

 Construction of an approporiate : 

Define 
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(i, x) =    

 

By the Recursion Theorem there exists an i0such that (i0, x) = (x) for all x. Then, clearly (x) 

>h(r( (x- 1))). Observe, also that is total, which can be proved by induction on the domain of 

. 

      
Next: 11. Non-Deterministic Computations Up: 10.1 Applications of the Recursion Theorem Previous: 
10.1.1 Machine Learning 
Bob Daley  
2001-11-28  
©Copyright 1996  
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or 
portion thereof) is accompanied by this copyright notice. 
Copying for any commercial use including books, journals, course notes, etc., is prohibited. 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node40.html (8 of 8) [12/23/2006 12:05:14 PM]



11. Non-Deterministic Computations

      
Next: 11.1 Complexity of Non-Deterministic Programs Up: Lecture Notes for CS 2110 Introduction to 
Theory Previous: 10.1.2 Speed-Up Theorem  

11. Non-Deterministic Computations 
●     Recall that non-deterministic LOOP programs (i.e., NLOOP programs) are obtained by adding the 

following SELECT statement: 

SELECT(  

which assigns either a 0 or a 1 non-deterministically to the variable . 

●     Similarly, non-deterministic RAM programs (i.e., NRAM programs) are obtained by adding the 
following JUMP instruction: 

2k + 4/j1/j2;        njp j1 or j2 

which non-deterministically selects one of two lines (j1or j2) to jump to. 

●     We will investigate non-deterministic computations by means of NRAM programs, but we could could 
equally use NLOOP programs. 

Definition 11.1   Given an NRAM program P and an input x, an accepting computation of P on x is any legal 
sequence of instruction executions of P for which that last instruction executed is the output instruction of P, i.
e., for which P halts.

Definition 11.2   We say that the NRAM program P accepts the input x if and only if there exists some 
accepting computation of P on x. We define the set accepted by the NRAM program P by 

LP = {x  :  P accepts x}.    

 

Thus, a non-deterministic computation has the following tree-like structure, where each node of the tree 
represents a non-deterministic branch point (i.e., execution of a njp  instruction). 

Figure 11.1:Non-Deterministic Computation
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Instead of viewing the execution of a njp  instruction as a non-deterministic selection of a branch point, we 
can imagine that it corresponds to a bifurcation of a process which is executing the program and which creates 
two child processes each of which branches to one of the two possible branch points, and such that when a 
child process halts, it will cause its parent process to halt, etc. Thus, and alternate (and perhaps more realistic) 
view of non-determinism is as unbounded parallelism. 

Theorem 11.1   Every set accepted by a NRAM program can be accepted by a DRAM program.

Proof: It suffices to show that every set accepted by an NRAM program is the domain of some partial 
recursive function. Recall in the construction of the universal partial recursive function for DRAM programs 
we defined primitive recursive functions nxl and nxv, which computed the next line and next register contents 
during the simulation. However, since the program which we now wish to simulate is non-deterministic, it is 
no longer the case that the next line to be executed is determined by (i.e., is a function of) the current line and 
current contents. Instead, we now construct a primitive recursive predicate Nxl which decides whether or not a 
given line can leagally be the next line. Moreover, since the sequence of computation steps is no longer 
determined by the program and input, we will define a predicate Acc that will decide whether or not a given 
sequence of program states represents an accepting computation. 

First we need to provide some parsing predicates which allow us to parse NRAM programs: 

go1(x) =    
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go2(x) =    

 

which produce the two branch points of the njp  instruction coded by x. We also need to define the predicates 
Ins(x) and Prg(x) which decide whether or not x codes a legal instuction and program respectively. Then, we 
define the primitive recursive predicate 

Nxl(p, y, z, j, r)  (opc(lne(j, p))  2k + 4  r = nxl(p, y, z, j))    

         (opc(lne(j, p)) = 2k + 4    

                 (r = go1(lne(j, p))  r = go2(lne(j, p))))    

 

Next, let w code for a comma separated sequence s0, s1,..., sn of numbers each of which is interpreted as a pair 

representing a state (line number, register contents) of the program p during its execution. 

Then, the predicate Acc(p, y, w), where p codes the program and y codes the input, is defined by: 

Acc(p, y, w)  (lin(w, 0) = 1  con(w, 0) = zro(mxr(p))))    

         (lin(w, nock + 1(',', w)) = lng(p))    

         j < nock + 1(',', w)[Nxl(p, y, con(w, j), lin(w, j), lin(w, j + 1))    

                 nxv(p, y, con(w, j), lin(w, j)) = con(w, j + 1)]    
 

where lin(w, j) and con(w, j) give the line number and register contents for the jth state in w and are defined by 

lin(w, j) = (prtk + 1(',', w, j))    

con(w, j) = (prtk + 1(',', w, j)).    

 

Finally, we see that 
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Lp = dom    

 

where the partial recursive function  is defined by 

(y) = minw[Acc(p, y, w)].    

 

 

●     11.1 Complexity of Non-Deterministic Programs 
●     11.2 NP-Completeness 
●     11.3 Polynomial Time Reducibility 
●     11.4 Finite Automata (Review) 
●     11.5 PSPACE Completeness 
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11.1 Complexity of Non-Deterministic Programs 

Definition 11.3   Let P be a NRAM program over  (where k > 1), then we define the following 

complexity measures for P. 

NRAMtimeP(x) =    

 

NRAMspaceP(x) =    

 

where Rit denotes the contents of register Ri at step t of the computation of P on input x.

Thus, for non-deterministic computations the complexity is defined in terms of the most efficient (with 
respect to time or space) accepting computation. The rationale for this is that since the program is 
allowed to ``guess'' an accepting computation it might as well be allowed to guess the most efficient 
accepting computation. Observe that the most space efficient accepting computation need not be the 
most time efficient one, and vice versa. 

Definition 11.4   We define the following (deterministic) complexity classes: 
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DPTIME = {L  :   DRAM  program P and a polynomial function t such that    

                 P computes  and x    DRAMtimeP(x) t( | x | )}.    

DPSPACE = {L  :   DRAM  program P and a polynomial function t such that    

                 P computes  and x    DRAMspaceP(x) t( | x | )}.    

 

●     Aliases for DPTIME is , and for DPSPACE is . 
●     The definitions of DPTIME and DPSPACE are independent of the (standard) model of 

computation used (see Proposition 7.6). 

Definition 11.5   We define the following (non-deterministic) complexity classes: 

NPTIME = {L  :   NRAM  program P and a polynomial function t such that    

                 P accepts L and x  L    NRAMtimeP(x) t( | x | )}.    

NPSPACE = {L  :   NRAM  program P and a polynomial function t such that    

                 P accepts L and x  L    NRAMspaceP(x) t( | x | )}.    

 

●     Aliases for NPTIME is , and for NPSPACE is . 
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Non-Deterministic Programs  

11.2 NP-Completeness 
Definition 11.6   We say that a function f is polynomial-time computable if and only if there is some DRAM 

program P and a polynomial function t such that P computes the function f and DRAMtimeP(x) t( | x | ). We say 

that the set Y is polynomial-time reducible to the set X (written Y X) if and only if there exists a polynomial-

time computable function f such that y  Y  f (y)  X.

 Observe if f is computable in polynomial time t, then | f (x) | t( | x | ). 

Definition 11.7   A set X is called NP-complete if and only if X is complete for  with respect to , i.e., X 

  and Y X for all Y  .

Definition 11.8   A propositional formula B is called satisfiable if and only if there exists some assignment of truth 
values to its variables which makes the value of B true.

Example 11.1   Let B = (x1  x2)  ( x1  x3)  ( x1  x2  x3). Then B is satisfiable via the 

assignment x1 = T, x2 = F, x3 = T. 

Definition 11.9   SAT is the set of all satisfiable propositional formulas in conjunctive normal form.

Proposition 11.2   SAT  .

Proof: A non-deterministic algorithm works as follows:  
Given a propositional formula B with variables x1,..., xn, it: 

●     guesses (correctly, if possible) a satisfying truth assignment to x1,..., xn; 

●     verifies that the chosen assignment to x1,..., xn makes the value of B true, and if so, accepts. 

Thus, if B  SAT, then there is some assignment to x1,..., xn, so the algorithm will ``guess' it and so will accept. If 
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B SAT, then no guess will make the value of B true, so the algorithm does not accept. 

Figure 11.2:Non-Deterministic Computation for B= (x1 x2) ( x1 x3) ( x1 x2 x3)

Theorem 11.3   SAT is NP-complete.

Proof: It suffices to show that every set X   is polynomial-time reducible to SAT. Let X   and let P 

be a NRAM program over  which accepts X in polynomial time p, i.e., x  X  NRAMtimeP(x) p( | x 

| ). We construct for each x a propositional formula Bx in conjunctive normal form such that x  X  Bx is 

satisfiable. 

The propositional formula Bx must be satisfiable if and only if there is an accepting computation of P on input x, so 

we will need to describe NRAM computation by means of propositional variables and formulas. Let m be the 
number of lines of P and let w be the maximum number register named in P. Let x = a1 ... an, so | x | = n. We will 

represent the contents of each register by a string of length p(n) over , where we use the k+1st symbol as a 

blank  to pad (to the right) the actual contents so the representation is exactly of length p(n). Length p(n) 
suffices since we can add at most one symbol per time step to the contents of any register and since the length of 
the input is included in the computation time. 

We first introduce polynomially many propositional variables as follows: 

 
Table 11.1:Variables for Bx
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Variable Intended meaning

SMB[t : i : r : s] At time t the symbol in position i of register r is s

LIN[t : j] At time t the current line number is j
 
We also introduce notation for the various symbols which occur in any given line j (depending on the type of 
instruction). 

 
Table 11.2:Constants for Bx

Constant Description Instruction Type

rj Register named in line j All, except njp 

sj Symbol named in line j jmp and suc

gj Goto part of line j jmp

gj1 First goto part of line j njp 

gj2 Second goto part of line j njp 

 
●     Part of the definition of Bx will be devoted to making sure that the intended interpretation of the above 

variables is in fact the actual meaning. 
●     In order to describe in a more readable form the formula Bx, we introduce the following notation. Let E(z) 

be some propositional formula with variable symbol z, where E(z) is well formed for all u z v. Then, 

E(z)   stands for   E(u)  E(u + 1)  ...  E(v)    

 

E(z)   stands for   E(u)  E(u + 1)  ...  E(v)    

 

●     Observe that if A1,..., Au and B1,..., Bv are literals, then the formula A1  ...  Au  B1  ...  Bv is 
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logically equivalent to A1  ...  Au  B1  ...  Bv, and so is a single disjunction of literals. 

●     To further enhance the readibility of Bx we will assign types to certain variables and abbreviate quantifiers 

over these variables as indicated in the following table. 

 
Table 11.3:Quantifiers for Bx

Var. Type Range

t time 0 t p(n)

i positions 1 i p(n)

r registers 1 r w

s symbols 1 s k + 1

j lines 1 j m

 

●     We will also use the abbreviation s  E(s) (read ``there exists a unique s such that E(s)'') for the 

expression 

s  E(s)  s1 ( E(s1)  E(s2))    

 

Observe that the above expression is in conjunctive normal form. Similarly, j E(j) stands for 

j  E(j)  j1 ( E(j1)  E(j2))    
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In this context the meaning of the quantifiers t<p(n), i>n, etc., should also be clear. 

●     The formula Bx consists of the conjunction of several ``subformulas'' B1,..., B6 which are defined below, i.

e., Bx = B1  ...  B6. 

 B1: 

The formula B1 asserts that at each point in time each bit position of each register contains a unique symbol: 

t  i  r  s  SMB[t : i : r : s]    

 

 B2: 

The formula B2 asserts that at each point in time there is a unique current line number: 

t  j  LIN[t : j]    

 

 B3: 

The formula B3 asserts that the computation begins correctly: 

LIN[0 : 1]  r  i  SMB[0 : i : r :  ]    

 

 B4: 

The formula B4 asserts that at some point in time the last line of P is reached: 

t  LIN[t : m]    

 

 B5: 

The formula B5, which is a conjunction of subformulas B5.1,..., B5.5, asserts that at any point in time the 

next line to be executed is legally reachable from the current line: 
 B5.1: 
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t < p(n)  LIN[t : m]  LIN[t + 1 : m]    

 

Each of the following subformulae are included for each line j of the specified type: 
 B5.2: 

for each line j which is not a jmp, njp , or out instruction 

t < p(n)  LIN[t : j]  LIN[t + 1 : j + 1]    

 

 B5.3: 

for each line j which is a jmp instruction 

t < p(n)  LIN[t : j]  SMB[t : 1 : rj : sj]  LIN[t + 1 : j + 1]    

 

 B5.4: 

for each line j which is a jmp instruction 

t < p(n)  LIN[t : j]  SMB[t : 1 : rj : sj]  LIN[t + 1 : gj]    

 

 B5.5: 

for each line j which is a njp  instruction 

t < p(n)  LIN[t : j]  LIN[t + 1 : gj1]  LIN[t + 1 : gj2]    

 

 B6: 

The formula B6, which is a conjunction of subformulas B6.1,..., B6.9, asserts that at any point in time the 

next register contents are correctly calculated: 
 B6.1: 

for each line j and for all r  rj or for all r if line j is a njp  or jmp instruction 

t < p(n)  i  s  LIN[t : j]  SMB[t : i : r : s]  SMB[t + 1 : i : r : s]    
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 B6.2: 

for line 0 which is an inp instruction and time 1 

i n  SMB[1 : i : r0 : ai]    

 

 B6.3: 

for line 0 which is an inp instruction and time 1 

i > n  SMB[1 : i : r0 :  ]    

 

 B6.4: 

for each line j which is a suc instruction 

t < p(n)  i  s k  LIN[t : j]  SMB[t : i : rj : s]    

 SMB[t + 1 : i : rj : s]    
 

 B6.5: 

for each line j which is a suc instruction 

t < p(n)  i < p(n)  LIN[t : j]  SMB[t : i : rj :  ]    

 SMB[t : i + 1 : rj :  ]  SMB[t + 1 : i + 1 : rj : sj]    

 

 B6.6: 

for each line j which is a suc instruction 

t < p(n)  i < p(n)  LIN[t : j]  SMB[t : i : rj :  ]    

 SMB[t : i + 1 : rj :  ]  SMB[t + 1 : i + 1 : rj :  ]    
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 B6.7: 

for each line j which is a suc instruction 

t < p(n)  LIN[t : j]  SMB[t : 1 : rj :  ]  SMB[t + 1 : 1 : rj : sj]    

 

 B6.8: 

for each line j which is an lsf instruction 

t < p(n)  i < p(n)  s  LIN[t : j]  SMB[t : i + 1 : rj : s]    

 SMB[t + 1 : i : rj : s]    
 

 B6.9: 

for each line j which is an lsf instruction 

t < p(n)  LIN[t : j]  SMB[t + 1 : p(n) : rj :  ]    

 

This completes the construction of the formula Bx. To complete the proof it is necessary to prove by induction on 

the time t that 

1. 
if Bx is satisfiable, then there exists an accepting computation for P on input x. The accepting computation 

is constructed from the satisfying assignment to the variables of Bx; and 

2. 
if P accepts input x, then there is a satisfying assignment to the variables of Bx. The satisfying assignment is 

constructed from the accepting computation of P on input x. 

Proposition 11.4   For any set X, if X is NP-complete and X  , then  = .

Proof: Clearly,   . Let X be NP-complete and suppose X  , so that there exists some DRAM 

program Q which accepts X in polynomial time. Next, let Y  . Then, since Y X, there is some 
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polynomial-time computable function f such that y  Y  f (y)  X. Thus, y  Y  f (y)  X  

Q accepts f (y). Hence, there is a polynomial time acceptor for Y that, given y, computes f (y) and applies Q to f (y). 

Therefore, Y  , and so   . 

Proposition 11.5   For any sets X and Y, if X is NP-complete and Y   and X Y, then Y is also NP-

complete.

Proof: This follows from the transitivity of the relation , i.e., from the fact that the composition of two 

polynomial-time computable functions is polynomial-time computable. 

Notation 11.10   Let V be a set of propositional variables. Then we use  to denote an arbitrary truth assignment 
to the variables of V, i.e.,  : V  {T,F}. Given any propositional formula B we denote by Var(B) the set of 

variables occurring in B. If Var(B)  V, then the truth assignment  above determines uniquely a truth value for 

B which we denote by (B). In these terms, then, a CNF formula B = C1  ...  Cn is satisfiable if and only if 

there exists a  : Var(B)  {T,F} such that (Ci) = T for all 1 i n

The next two results involve specializing the NP-completeness of SAT to restricted cases of the satisfiability 
problem which retain the property of being NP-complete. In each case beginning with a propositional formula B = 

C1  ...  Cn in conjunctive normal form, we construct a new CNF formula  belonging to the restricted 

satisfiability class by replacing each clause Ci by a set of clauses ,..., , whose variables are those of Ci 

plus some new variables  that are used nowhere else and such that 

1. 
for each truth assignment  to Var(B) for which (Ci) = T, there is an extension of  to a truth 

assignment  to Var(B)   such that ( ) = T for all 1 j mi; and 

2. 

given any truth assignment  to Var(B)   such that ( ) = T for all 1 j mi, we have 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node43.html (9 of 19) [12/23/2006 12:05:33 PM]



11.2 NP-Completeness

(Ci) = T. 

It then follows that C1  ...  Cn is satisfiable if and only if (   ...  )  ...  (   ... 

 ) is satisfiable. Finally, as in the case of the general satisfiability problem it will be easy to see that 

each of the restricted cases belongs to  by guessing an assignment of truth values and then verifying that all 
the appropriate conditions are satisfied. 

Definition 11.11   3SAT is the set of all satisfiable propositional formulas in conjunctive normal form which have 
exactly 3 literals per clause.

Proposition 11.6   3SAT is NP-complete.

Proof: Clearly, 3SAT  . Let B = C1  ...  Cn be a propositional formula in conjunctive normal form. 

For each clause Ci containing k literals, where k  3, we replace Ci with a set of clauses ,..., , that 

contain new variables in addition to those of Ci such that Ci will be satisfiable by a truth assignment  if an only if 

all of ,...,  are satisfiable by a truth assignment  extending . The proof is broken naturally into 

the following three cases: 

 Case 1: 
Ci = w, for some literal w. Define 

= (w    )    

= (w    )    

= (w    )    

= (w    )    

 

where and are new propositional variables. 

 Case 2: 
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Ci = (w1  w2), for literals w1, w2. Define 

= (w1  w2  )    

= (w1  w2  )    

 

where is a new propositional variable. 

 Case 3: 
Ci = (w1  w2  ...  wk), for literals w1,..., wk, where k > 3. Define 

 = (w1  w2  )    

 

and for 1 <j k- 3, a clause asserting `` wj + 1 '' 

 = (   wj + 1  )    

 

and finally a clause asserting `` wk - 1 wk'' 

 = (   wk - 1  wk)    

 

In Cases 1 and 2, given a truth assignment  to the variables of Ci such that (Ci) = T, any extension  of  

will work, since all combinations of the new variables  are included. In Case 3, we extend  to  by 

assigning truth values to the variables ,...,  in order as follows: 

  (w1  w2)    
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and for 1 < j k - 3, 

  (wj + 1  ).    

 

Conversely, suppose that ( ) = T for all 1 j mi. Then, in Cases 1 and 2, since  is of the form Ci 

 , where  contains only new variables, there is some j such that ( ) = F, so (Ci) = T. In Case 

3, we suppose that (wj) = F for all 1 j < k, and show by induction that ( ) = T for all 1 j k - 3, and 

hence (wk) = T, so (Ci) = T. 

Definition 11.12   Let (1/3)SAT be the set of all satisfiable propositional formulas with three literals per clause for 
which there is a satisfying assignment which makes exactly one literal per clause true.

Proposition 11.7   (1/3)SATis NP-complete.

Proof: Clearly (1/3)SAT  . Let B = C1  ...  Cn be a propositional formula in conjunctive normal form. 

We construct a new CNF propositional formula  by replacing each clause Ci of B by a conjunction of clauses 

  ...  . If Ci = (x  y  z), where x, y, z are the three literals of Ci, then   ...   

contain new variables (not used elsewhere) , , , , ,  and , , , , ,  as 

follows: 

 = (x    )  

 = (y    )  

 = (z    )  

 = (     )  
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 = (     )  

 = (     )  

 = (     )  

 = (     )  

 = (     ) 

Suppose first that  is a truth assignment to the variables of B such that (Ci) = T. We will construct a truth 

assignment  which extends  such that ( ) = T for all 1 j 9, and such that exactly one literal per 

clause is true. We first observe that the clauses   ...   are so constructed that the following 

relationships hold: 

x  y       

x  z       

y  z       

 

We consider three cases: 

 Case 1: 
(x) = (y) = (z) = T:  

Then from the above equivalences the assignment  is unique, and  assigns T to 

, , , , , and , 

and assigns Fto 

, , , , , and . 
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 Case 2: 
Exactly two of x, y, z are assigned T by :  
Suppose for definiteness that z is the unique literal such that (z) = F. Then, by the above equivalences, 

 must assign T to 

 and , 

and assign Fto 

, , , and . 

Next, there are two possible completions of the assignment . Either assigns Tto 

, , and  

and Fto 

, , and , 

or assigns Tto 

, , and , 

and Fto 

, , and . 

 Case 3: 
Exactly one of x, y, z are assigned T by :  

Suppose for definiteness that x is the unique literal such that (x) = T. Clearly,  must assign F to  

and . There are again two possible completions of the assignment . Either  assigns T to 
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, , , and  

and Fto 

, , , , , and , 

or assigns Tto 

, , , and , 

and Fto 

, , , , , and . 

The two possible assignments are summarized in the following tables: 

 
Table 11.4:Alternative 1

x y z

T T T F F F T T T F F F T T T

T T F F F T T F F F F F T T T

T F T F T F F T F F F F T T T

F T T T F F F F T F F F T T T

T F F F T F F T F F F T T F F

F T F F F T T F F T F F F F T

F F T T F F F F T F T F F T F
 
 

Table 11.5:Alternative 2

x y z

T T T F F F T T T F F F T T T

T T F F F F T T T F F T T F F
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T F T F F F T T T F T F F T F

F T T F F F T T T T F F F F T

T F F F F T T F F F T F F T F

F T F T F F F F T F F T T F F

F F T F T F F T F T F F F F T
 

Suppose on the other hand that  is a truth asignment such that ( ) = T for all 1 j 9, where exactly 

one literal per clause is true under the assignment . Suppose also that (x) = F and (y) = F. We then show 

that (z) = T, so that (Ci) = T. Since (x) = F and ( ) = T, we have 

( ) = T and ( ) = F 

or 

( ) = F and ( ) = T. 

Similarly, since (y) = F and ( ) = T, we have 

( ) = T and ( ) = F 

or 

( ) = F and ( ) = T. 

Next, since ( ) = T and ( ) = T, we have 

( ) = T and ( ) = T 

or 
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( ) = T and ( ) = T. 

In the first case from ( ) = T we have 

( ) = F 

and from ( ) = T we have 

( ) = F. 

Similarly, in the second case from ( ) = T we have 

( ) = F 

and from ( ) = T we have 

( ) = F. 

Thus, in either case we have 

( ) = F and ( ) = F 

so that from ( ) = T we have (z) = T. 

 Choosing of the assignment  in Proposition 11.7 can be viewed as a game on the following graph where 

one must choose exactly one node of each colored triangle. Note that doing so will require choosing exactly one of 
x, y, z. 
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Figure 11.3:(1/3)SATGame

Definition 11.13   Let + (1/3)SAT denote the set of all satisfiable propositional formulas belonging to (1/3)SAT in 
which there are no negated variables, i.e., all literals are single variables.

Corollary 11.8   + (1/3)SAT is NP-complete.

Proof: Given a formula B = C1  ...  Cn we first add two special variables t and f and the special clause 

 = (t  f  f ). 

Since exactly one literal in each clause must be assigned T, we see that any such assignment which makes  

true, must assign T to t and F to f. Then for each variable x  Var(B), we introduce a new variable , and the 

clause 
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 = (x    f ). 

Thus, any appropriate assignment to  which makes  true, must assign the opposite truth values to x and 

, so   x. Then, we replace each clause Ci by the clause , where  is obtained by replacing every 

negated literal of the form x with the positive literal . 
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11.3 Polynomial Time Reducibility 
We can now show that many other problems X are NP-complete by reducing + (1/3)SAT to X and using 
Proposition 11.5. 

Definition 11.14   Let  be a finite alphabet and let V = {xi} be a set of symbols which is disjont from 

. The symbols of V are called string variables. A pattern  is any non-null string over   V. Let 
 be a pattern which contains n different variables. Without loss of generality we may assume that the 

variables of  are x1,..., xn. Given non-empty strings s1,..., sn  , then [x1  s1,..., xn  

sn] is the result of simultaneously substituting sj for all occurrences of xj, for all 1 j n. The pattern 

language L  generated by  is defined by 

L  = { [x1  s1,..., xn  sn]  :  s1,..., sn  }.    

 

Definition 11.15   Define PATMEM as the set of all pairs , t , where  is a pattern and t  

, such that t  L .

Proposition 11.9   PATMEM is NP-complete.

Proof: It is easy to see that given  and t a non-deterministic algorithm can simply guess strings s1,..., 

sn wuch that [x1  s1,..., xn  sn] = t and verify this fact in polynomial time, since all sj must 

satisfy | sj |  | t |. Thus, PATMEM  . 

To see that PATMEM is NP-complete we show that + (1/3)SAT PATMEM. Let B = C1  ...  Cm 
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be a CNF propositional formula, where Ci = (wi, 1  wi, 2  wi, 3), and where wi, j is a positive literal, 

and let x1,..., xn be the variables of B. Let a,b be two distinct symbols of . We construct a pattern  

whose string variables are identical to the propositional variables of B. The pattern  is defined by 

 = a a a ... a a 

where for each 1 i m, 

 = wi, 1wi, 2wi, 3. 

The string t is defined by 

t = at1at2a ... atma 

where for each 1 i m, 

ti = bbbb. 

Suppose now that B is satisfiable by a truth assignment  which assigns T to exactly one literal per 
clause. We then construct a string assignment  to the string variables of  as follows: 

(xj) =    

 

Since  makes exactly one literal per clause true (and two literals per clause false),  assigns to  

the string bbbb = ti. Therefore, t  L . 

Suppose on the other hand that t  L  and let  be the corresponding assignment of strings from 
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 to the variables of . Then, clearly each  must generate the string ti = bbbb, so that for each i 

exactly one of wi, 1, wi, 2, wi, 3 is assigned the string bb by , and the other two are assigned the string 

b by . We then construct a truth assignment  to the propositional variables of B as follows: 

(xj) =    

 

It is clear that  assigns T to exactly one literal per clause of B. 

Definition 11.16   An instance of the Knapsack Problem (denoted by s1,..., sn;c ) consists of a set of 

integers s1,..., sn, called sizes, and an integer c, called the capacity. An instance of the Knapsack Problem 

is called solvable if and only if there is some set of indices J  {1,..., n} such that c = sj. We 

define KNAPSACK as the set of all solvable instances of the Knapsack Problem.

Proposition 11.10   KNAPSACK is NP-complete.

Proof: It is easy to see that KNAPSACK  , since a non-deterministic algorithm can, given an 

instance s1,..., sn;c  

1. 

guess a subset J  {1,..., n}, and 

2. 

verify that c = sj. 

We show that + (1/3)SAT KNAPSACK. Let B = C1  ...  Cm be a CNF propositional formula, 
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where Ci = (wi, 1  wi, 2  wi, 3), and where wi, j is a positive literal, and let x1,..., xn be the variables 

of B. We define an instance s1,..., sn;c  of the Knapsack Problem as follows:  

For each variable xj we define a weight 

sj = 4i, 

where Ij = {i  :  xj occurs in Ci}. The knapsack capacity is defined by 

c = 4i. 

Suppose s1,..., sn;c   KNAPSACK. Let J be such that c = sj. We define a truth assignment 

 to x1,..., xn as follows: 

(xj) =    

 

We first observe that since there are only three literals per clause each ``bit'' 4i in the capacity c must be 

generated by some size sj such that i  Ij. Further, since the coefficient of 4i is 1 (and not 2 or 3), the 

assignment  must assign T to exactly one literal of each clause Ci. Thus, B  + (1/3)SAT. 

Suppose on the other hand that B  + (1/3)SAT. Define 

J = {j  :  (xj) = T}. 
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Then it is easy to see that sj = 4i = c. Thus, s1,..., sn;c   KNAPSACK. 

      
Next: 11.4 Finite Automata (Review) Up: 11. Non-Deterministic Computations Previous: 11.2 NP-
Completeness 
Bob Daley  
2001-11-28  
©Copyright 1996  
Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or 
portion thereof) is accompanied by this copyright notice. 
Copying for any commercial use including books, journals, course notes, etc., is prohibited. 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node44.html (5 of 5) [12/23/2006 12:05:39 PM]



11.4 Finite Automata (Review)
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Reducibility  

11.4 Finite Automata (Review) 
In this section we review the majors results for finite state machines. From Definition 2.1 we see that a 

deterministic finite automaton (DFA) M consists of , Q, , q0, F , where  is the input alphabet, Q is the 

finite set of states, q0 is the start state, F is the set of final states, and  : Q x   Q is the state transition 

function. 

 Observe that for a DFA the state transition function  must be defined for all inputs and all states. 

We depict the internal state transition behavior of M by means of a labelled directed graph GM as follows:  

The nodes of GM are the states of M, and there is a directed edge from q1 to q2 labelled a whenever (q1, a) = 

q2, and is depicted as: 

Figure 11.4:State Transition

We also depict the initial state q0 and final states qf  F as: 

Figure 11.5:Initial and Final States
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Definition 11.17   For any DFA M the language LM accepted by M is the set of all input strings x = a1 ... an such 

that there is a path from the initial state q0 to some final state qf  F with label a1 ... an, i.e., 

Figure 12.11:Accepting Computation Path

Definition 11.18   A non-deterministic finite state automaton (NFA) M consists of , Q, , I, F , where  

is the input alphabet, Q is the finite set of states, I  Q is the set of start states, F is the set of final states, and 

 : Q x (   { })  2Q is the (non-deterministic) state transition function.

 Observe that we allow -transitions for NFA's. 

Definition 11.19   For any NFA M the language LM accepted by M is the set of all input strings x = a1 ... an such 

that there is a path from some initial state qi  I to some final state qf  F with label a1 ... an.

Theorem 11.11   The class of languages accepted by NFA's is the same as the class of languages accepted by 
DFA's.
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Proof: ( ): This is immediate since given a DFA M = , Q, , q0, F , we construct an equivalent NFA 

 = , Q, , I, F , where I = {q0} and (q, a) = { (q, a)}. 

( ): Let M = , Q, , I, F  be an NFA. We construct an equivalent DFA  = ,  

as follows: 

= 2Q    

= I    

= {X  Q  :  X  F  }    

(X, a) = (q, a)    

 

Thus, the states of  are subsets of states of M. Then one completes the proof by showing that  on input x 

enters state X  2Q if and only if M on input x could enter (via the right choices) each sate q  X. 

 If the NFA M has n states, then the equivalent DFA  has 2n states. 

Proposition 11.12   Every regular language is accepted by some finite state automaton.

Proof: Let r be a regular expression. Then, an NFA with  transtions M such that LM = Lr is defined by 

induction on the length of r as follows: 

 Induction Basis: 

 Case 1: r = : 
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Figure 11.7:NFA for 

 Case 2: r = a, where a    { }: 

Figure 11.8:NFA for a { }

 Induction Step: 

Let 

M1 = , Q1, , I1, F1    

M2 = , Q2, , I2, F2    

 

be NFA's such that LM1
= Lr1

and LM2
= Lr2

. 

 Case 1: r = r1  r2: 

Figure 11.9:NFA for r1 r2

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (4 of 10) [12/23/2006 12:05:45 PM]



11.4 Finite Automata (Review)

 Case 2: r = r1 . r2: 

Figure 11.10:NFA for r1 . r2
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 Case 3: r = r1*: 

Figure 11.11:NFA for r1*

 If the length of the regular expression r is n (excluding parentheses), then the number of states of the 

equivalent NFA is 2n. 

Proposition 11.13   For every NFA M there is some regular expression r such that LM = Lr.

Proof: Let M = , Q, , I, F . The main idea is to compute the transitive closure of the (labelled) edge 

relation given by  in GM. More precisely, we construct via the standard transitive closure algorithm a regular 

expression r that describes the set of all labels of accepting paths in GM. Suppose Q = {q1,..., qn}. Let rij0 be a 

regular expression which denotes the finite set of labels from qi to qj in GM. Since every finite set of strings is a 

regular language, such a regular expression clearly exists. Consider the following algorithm from computing the 
transitive closure: 

for 1 i n do 

rii0  rii0   

endfor  

for 1 k n do 
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for 1 i, j n do 

rijk  rijk - 1  rikk - 1 . (rkkk - 1)* . rkjk - 1 

endfor 

endfor 

The required regular expression r is given by 

r = rijn.    

 

The correctness of the regular expression can be shown by proving by induction on k for 1 k n that rijk 

describes the set of all labels of paths from qi to qj via the intermediate nodes {q1,..., qk}. 

Figure 11.12:Paths from qito qjvia {q1,..., qk}
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Theorem 11.14   The class of regular languages is precisely the class of languages accepted by finite state 
automata.

Proposition 11.15   The class of regular languages is closed under complementation.

Proof: Let L be a regular language and let M = , Q, , q0, F  be a DFA such that LM = L. Define 

 = , Q, , q0, Q - F .    

 

Then, x  L   x LM. Thus, L  =  - L = , so  is a regular language. 

Theorem 11.16 (Pumping Lemma for Regular Languages)   For every regular language L there is a positive 

integer p (called the pumping length) such that for all s  L if | s | p, then there exist strings x, y, z such that s 

= x . y . z and 

1. 
| y | > 0, 

2. 

| xy | p, and 

3. 

for all i  0, xyiz  L. 

Proof: Suppose L is a regular language and that M = , Q, , q0, F  is a DFA such that LM = L. Choose p = 

#Q. Let s  L be such that | s | p. Thus, s = a1 ... an, where n p. Consider the accepting path for s: 

Figure 12.11:Accepting Computation Path

Since there are n + 1 > p states in this accepting path, there must exist two (least) indices j < k such that qj = qk. 
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Thus, overlaying qj and qk to form a loop we have: 

Figure 11.14:Accepting Computation Path with Loop

Choose x = a1 ... aj (the part before the loop), y = aj + 1 ... ak (the loop itself), and z = ak + 1 ... an (the part after the 

loop). Since j < k, we have | y | > 0, and since we chose the least pair j < k such that qj = qk, we have | xy | p. 

Finally, the path consisting of the part from q0 to qj, followed by any number of times (including 0) around the 

loop, followed by the part from qk to qn is an accepting path, i.e., xyiz  L for every i  0. 

Theorem 11.17   For every regular language L there exists a positive integer p such that L   if and only if 

s  L such that | s | < p.

Proof: Let L be a regular language and let p be the pumping length as given by the Pumping Lemma above. 

 Case ( ): 

Clearly, if s  L such that | s | < p, then L  . 

 Case ( ): 

Suppose L  , and let s  L. If | s | p, then by the Pumping Lemma for regular languages, s can be 

written as s = xyz where | y | > 0, so the string s1 = xz  L and | s1 | < | s |. By repeating this pruning 

process (if | s1 | p) we must eventually obtain a string s1  L such that | s1 | < p. 
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11.5 PSPACE Completeness 

Definition 11.20   A set X is called PSPACE-complete if and only if it is complete for the class  with 

respect to , i.e., X   and Y X for all Y  . 

Definition 11.21      is the set of all regular expressions r over  such that Lr  , i.e.,   .

Theorem 11.18      is PSPACE-complete.

The theorem follows from the following two propositions. 

Proposition 11.19       .

Proof: Let r be a regular expression of size n, and let M = , Q, , I, F  be an NFA with 2n states such that LM 

= Lr. Let  = ,  be a DFA with 22n states such that L  =  (i.e., the complement of 

LM). Then, using Theorem 11.17, we have 

Lr    L     z  L  | z | 22n.    

 

We give an algorithm that, when implemented on a DRAM, operates in O(n2) space and that decides whether or not 

L    by checking all paths in G  of length 22n to see if there is an accepting path. Actually, the 

algorithm cannot store the graph G  since it is of size exponential in n. Therefore, the algorithm will work with 

GM instead. Let Q = {q1,..., q2n}. The states of  will be coded as binary strings of length 2n in such a way that 

for all X   

bit i of state X is 1  qi  X.    
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By Theorem  11.11, 

X    (q  X  q F).    

 

The algorithm first constructs the NFA M and stores GM, which requires O(n2) space, and then executes the 

following program: 

for X   do 

if Access(I, X, 2n) then  

output(true) 

endif 

endfor  
output(false) 

The recursive subroutine Access(x1, x2, m) is defined by: 

input(X1, X2, Z)  

if Z = 0 then  

if X1 = X2 or a      X2 = (X1, a) then  

return(true) 

else 

return(false) 

endif 

endif  

for 0 X 22n - 1 do 
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if Access(X1, X, Z - 1) and Access(X, X2, Z - 1) then  

return(true) 

endif 

endfor  
return(false) 

In the subroutine Access checking whether or not X2 = (X1, a) involves checking whether or not q2  X2 q1 

 X1    q2  (q1, a), which can easily be done by consulting GM. Since the path length examined doubles with 

each recursive call (beginning at the lowest level), it is clear that all paths of length 22n are examined. Each 

recursive call to Access(x1, x2, m) requires O(n) space overhead for stacking the arguments x1, x2, m (2n space for 

each of x1 and x2, and log22n for m). The maximum depth of recursion is 2n, so the total space used by the 

algorithm is O(n2). 

Figure 11.15:Space Usage for Recursive Algorithm Access

In order to simplify the regular expression constructed in Proposition 11.20 below, we observe that for any DRAM 

program P over  which uses m registers (with one input instruction) we can construct a DRAM program  

over  =   {,} that uses exactly one register and such that L  = LP and for some constant c, 

DRAMspace (x) c  DRAMspaceP(x) for all x. The program  maintains in its one register a string of the form 
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z1 . , . ... . , . zm . , where z1,..., zm are the current contents of registers R1,..., Rm of P. It simulates each instruction of P 

by: 

1. 
exposing the right or left end (depending on the type of instruction) of the register mentioned in the 
instruction (if any); 

2. 
executing that instruction; 

3. 
returning the contents of its one register to the canonical form which begins with the contents of R1 at the 

left. 

Proposition 11.20   For any X  , X   .

Proof: Let X  . Then there is some DRAM program P over  which uses one register and has 

one input statement, and there is some polynomial function p such that x  X  DRAMspaceP(x) p( | x | ). 

We will construct an alphabet  and for each x a regular expression rx over  (in polynomial time) such that 

x  X  rx       

    .    

 

In other words, 

x X  Lrx
 =    

 

The construction of rx will be similar to the construction of Bx in Theorem 11.3 in that we will use regular 

expressions to describe computations. More precisely, the regular expression over  which we construct will 

describe non-accepting computations, i.e., if x X, then every string in  represents a non-accepting 

computation. 

As in Theorem 11.3 we let x = a1 ... an, so | x | = n, and let m be the number of lines of P. We use sj to denote the 

symbol (if any) mentioned in line j of P, and gj to denote the goto part (if any) of line j. We will represent the 
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register contents by a left justified string of length exactly p(n) over , where the k+1st symbol represents a 

blank (depicted by ). We will encode line numbers by using finitely many special additional symbols  = 

{b1,..., bm} not belonging to . The state of P at any point in time will be represented by the string of length p

(n) + 1 of the form 

bj . z 

where j is the current line number of P and z represents the current contents of the (only) register of P. Finally, a 
computation string will be represented by the string 

y0 . ... . yt . bm 

where t is the number of steps of P on input x, and yi is the representation of the state of P at the ith step. 

The regular expression rx = r1  r2  r3  r4  r5, where 

1. 
r1 describes all strings which don't represent accepting computations because they are syntactically ill-

formed; 
2. 

r2 describes all computation strings which don't start correctly; 

3. 
r3 describes all computation strings which don't end correctly; 

4. 
r4 describes all computation strings in which some line number does not follow correctly from the previous 

state; 
5. 

r5 describes all computation strings in which the register contents does not follow correctly from the 

previous state. 

We will use the following abbreviations: 

●     if W is a finite set of symbols {w1,..., ws}, then we use W to stand for the regular expression w1  ...  ws. 

●     if r is a regular expression, then we use ri for the concatenation of r with itself i times, where r0 = . 

Define  =   . 

1. 
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r1 = r1, 1  ...  r1, 6, where 

r1, 1 = (no line number)

r1, 2 =  .  . (only 1 line number)

r1, 3 =  . (line number not first)

r1, 4 =  . (line number not last)

r1, 5 =  .  .  . (contents too long)

r1, 6 = r1, 6, 0  ...  r1, 6, p(n) - 1 (contents too short)

where for all 0 j p(n) - 1 

r1, 6, j =  .  .  .  . . 

2. 
r2 = r2, 1  r2, 2, where 

r2, 1 = (  - b1) . (wrong initial line number)

r2, 2 = b1 .  .  . (initial contents not blank)

3. 

r3 =  . (  - bm) 

4. 

r4 = r4, 1  ...  r4, m, where for all 1 j < m: 

�❍     if j is not a conditional jump instruction 

r4, j =  . bj .  . (  - bj + 1) .  
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�❍     if j is a conditional jump statement r4, j = r4, j, 1  r4, j, 2, where 

r4, j, 1 =  . bj . sj .  . (  - bgj
) .   

r4, j, 2 =  . bj . (  - sj) .  . (  - bj + 1) .  

5. 

r5 = r5, 1  ...  r5, m, where for each 1 j m: 

�❍     if j is the input instruction r5, j = r5, j, 1  ...  r5, j, n + 1, where 

for each 1 i n  

r5, j, i = b1 .  . b2 .  . (  - ai) .   

and  

r5, j, n + 1 = b1 .  . b2 .  .  .  .  

�❍     if j is a conditional jump instruction r5, j = r5, j, a, where 

r5, j, a =  . bj .  . a .  . (  - a) .  

�❍     if j is a left shift instruction r5, j = r5, j, 0  . r5, j, a, where 

r5, j, a =  . bj .  . a .  . (  - a) .   

r5, j, 0 =  . bj .  .  .  

�❍     if j is a successor instruction r5, j = r5, j, 0  r5, j, 1  r5, j, a, where 

r5, j, a =  . bj .  . a .  . (  - a) .   

r5, j, 0 =  . bj .  .  .  .  .  .   

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node46.html (7 of 11) [12/23/2006 12:05:52 PM]



11.5 PSPACE Completeness

r5, j, 1 =  . bj .  .  .  .  . (  - sj) .  

 We observe that the alphabet over which the regular expression is defined depends on the program P. We can 

use a fixed alphabet  = {0, 1} by coding the ith symbol of  by the string 1 . 0i. 

Theorem 11.21    = .

Proof: Since     , it suffices to show for every X   that X   

. As in Proposition 11.20 we may assume that X = LP for some NRAM program P over  with one register and 

one input statement. Thus, we need only show how to modify the construction of Proposition 11.20 to handle njp  
instructions. If line j is an njp  instruction (with goto parts gj1 and gj2), then r5, j is the same as for comditional jump 

instructions, and 

r4, j =  . bj .  . (  - {bgj1
, bgj2

}) .  

Theorem 11.21 is usually obtained as a corollary to the following Theorem (known as Savitch's Theorem). 

Theorem 11.22   Let S be a function satisfying the following conditions: 

1. 

S(n) log2n; 

2. 
for some DRAM program P, S( | x | ) = DRAMspaceP(x) for all x. 

Then, for any NRAM program P such that NRAMspaceP(x) S( | x | ) there is an equivalent DRAM program  

such that LP = L  and there is a constant c1 such that DRAMspace (x) c1  (S( | x | )2).

Proof: As usual we may assume that P is an NRAM program over  with one register and one input statement. 

Let P have m lines. Let x be some input to P with | x | = n. As in Theorem 11.20 we represent a state of P by a string 

of length S(n) + 1 of the form bj . z, where bj is a special symbol representing line j (  = {b1,..., bm}) and z is a 
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string of length S(n) that represents the contents of P's one register. We construct a state transition graph GP for the 

computation of P on input x as follows. The nodes of GP are the strings belonging to  . . GP will be 

similar to the state transition graph of an NFA except that the edges will not be labelled with input symbols, but 
rather an edge from one state to another will mean that it is possible to go from the first state to the second by 
executing the current instruction of P with the current register contents. 

Then, there is an edge from bj . z1 to bi . z2 if and only if 

1. 
line j is an input instruction, z1 = , i = j + 1, and z2 = x; 

2. 
line j is a conditional jump instruction, z1 begins with sj, i = gj, and z2 = z1. 

3. 
line j is a conditional jump instruction, z1 does not begin with sj, i = j + 1, and z2 = z1. 

4. 
line j is a non-deterministic jump instruction, z1 = z2, and either i = gj1 or i = gj2; 

5. 
line j is a successor instruction, i = j + 1 and z2 = z1 . sj; 

6. 

line j is a left shift instruction, i = j + 1, and z1 = a . z2 for some a  . 

Then initial state of GM is b1 .  and the set of final states is 

F = bm . .    

 

The rest of the proof proceeds as in the proof of Theorem 11.20. If there is an accepting computation for P on input 

x, then there must be some path from the initial state to some final state of length m  kS(n), since otherwise there 

would be a loop in the non-deterministic computation which could be eliminated. We can rewrite m  kS(n)  2c  S
(n) for some constant c. We then use the same strategy as in Theorem 11.20 to search by divide-and-conquer the 
graph GP for such an accepting computation path, i.e., we execute the following program. 

for X  F do 
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if Access(b1 . , X, c  S(n)) then  

output(true) 

endif 

endfor  
output(false) 

The recursive soubroutine Access(x1, x2, m) is defined by: 

input(X1, X2, Z)  

if Z = 0 then  

if X1 = X2 or (X1, X2)  GP then  

return(true) 

else 

return(false) 

endif 

endif  

for 1 X 2c  S(n) do 

if Access(X1, X, Z - 1) and Access(X, X2, Z - 1) then  

return(true) 

endif 

endfor  
return(false) 

The algorithm does not store GP, but rather stores a copy of the program P, that it uses to decide whether of not (X1, 

X2)  GP, for any states X1 and X2. This can be done without using very much space. Again, as in the proof of 

Theorem 11.20 an analysis of the space required to store the recursive subroutine calls to Access shows that the 
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total space used is bounded by c1  (S(n))2, for some constant c1. 
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12.1 Grammars 
Example 12.1 (English fragment)      

sentence  = noun phrase  verb phrase  noun phrase   

noun phrase  = noun  | adjective  noun phrase   

verb phrase  = verb  | adverb  verb phrase   

adjective  = big | small | black | white | ...  

adverb  = slowly | quickly | secretly | ...  

noun  = boy | dog | cat | girl | ...  

verb  = likes | hates | hits | desires | ... 

This fragment generates (or derives) the following: 

big black dog hits small boy  
small cat secretly desires big black cat 

But it also generates: 

big small noun phrase  verb  black cat 

The former are called sentences and the latter are called sentential forms.

Definition 12.1   A grammar G is denoted by , V, R, S , where 

●      is a finite set of symbols called terminals; 
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●     V is a finite set of symbols disjoint from  called variables (or non-terminals); 

●     R is a finite set of productions (or rewrite rules) of the form x  y, where x, y  (   V)* 

and x  ; 

●     S  V is a special symbol called the start symbol (or axiom). 

Definition 12.2   If x  y is a production of the grammar G and w, z  (   V)*, then we say that 

wxz directly derives wyz in G (written wxz  wyz). Also, we say that x1 derives xn in G (written x1 

 xn) if and only if there exist strings x2,..., xn - 1  (   V)* such that x1  x2, x2  x3,..., xn 

- 1  xn.

Definition 12.3   The language generated by the grammar G is defined by LG = {x    :  S  x}.

Proposition 12.1   For every grammar G, x  y is a primitive recursive predicate.

Proof: Let G = , V, R, S , where R = {r1,..., rn}, and ri = xi  yi for each 1 i n. Then, 

x  y  Dr1
(x, y)  ...  Drn

(x, y),    

 

where 

Dri
  u x  v x    x = u . xi . v  y = u . yi . v.    

 

Theorem 12.2   For every grammar G the language LG is recursively enumerable.

Proof: We first code derivations x1  x2, x2  x3,..., xn - 1  xn by x1,..., xn . Then, the partial 
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recursive function  such that dom  = LG is given by 

(x) = minz(z = x1,..., xn  and x1 = S and xn = x    

         and m < n  xm  xm + 1)    

 

Theorem 12.3   For every NRAM program P there is a grammar G such that LP = LG.

Proof: We first observe that since the grammar G must output every string that P accepts on input, 
derivations in G will correspond to the reverse of accepting computations. Thus, it will not matter 
whether or not P is deterministic, since even if it were certain instructions result in a loss of information 
(i.e., are not reversible). For example, a left shift instruction loses the information regarding the leftmost 
symbol, so that in reversing such an instruction one must guess which symbol was deleted in the actual 

instruction execution. We will assume that P is an NRAM program over  with exactly one register 

and one input instruction. Suppose P has m lines. As usual we use sj, gj, gj1, and gj2 to denote the 

specific items mentioned in the instruction at line j of the program P. The current global state of program 
P during its execution will be represented by the string  . bj . z . , where j is the current line number 

and z is the current register contents. 

Then, the grammar G for P is defined as follows: 

G = , , R, S , 

where  = {b1,..., bm}  { 1,..., m}  { 1,..., m}  {S,  ,  }, and the set R of 

productions is defined to contain for each line j of P the following rules: 

1. 
if j is a conditional jump instruction, then 

bgj
 . sj  bj . sj    
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bj + 1 . a  bj . a        for all a   - {sj}    

 

2. 
if j is a non-deterministic jump instruction, then 

bgj1  bj    

bgj2  bj    

 

3. 
if j is a left shift instruction, then 

bj + 1  bj . a        for all a     

 

4. 
if j is a successor instruction, then 

bj + 1  j    

j . a . c  a . j . c        for all a, c     

j . sj .  j .    

a . j  j . a        for all a     

 . j   . bj    
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5. 
if j is the input instruction (i.e., j = 1), then 

 . b2  b1    

b1 . a  a . b1        for all a     

b1 .     

 

6. 
if j is the output instruction (i.e., j = m), then 

S   . bm .    

bm  bm . a        for all a     

 

The way in which the grammar G generates an output x which P accepts is to first generate by the rules 
for the output instruction the final contents of P's register when it reached the output instruction during 
some accepting computation. Then it successively reverses each instruction execution during the 
computation (guessing appropriate values). When it reaches the input instruction (so the contents of the 
register should be x) it erases all the special symbols  , b1,  leaving the terminal string x. 

Theorem 12.4   A set X is recursively enumerable if and only if X = LG for some grammar G.

Corollary 12.5   A set X is accepted by some NRAM program if and only if X is accepted by a DRAM 
program.

 Given the equivalences between languages generated by grammars and recursively enumerable sets, 

because of Rice's Theorem we see that most questions about the properties of languages generated by 
grammars are algorithmically undecidable. 
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12.2 Chomsky Classification of Languages 
 

Table 12.1:Chomsky Hierarchy

Name Productions Acceptor

grammar arbitrary (Non-det.)

  RAM Programs

context-sensitive x  y, Non-det.

(CSG) with | x |  | y | Linear Bounded Automata

 -or- (LBA)

 wAz  wyz,  

 with A  V, y   

context-free A  y, Non-det.

(CFG) with A  V, y  Push Down Automata

  (PDA)

right linear A  yB or A  y, (Non-det.)

(RLG) with A, B  V, y  Finite State Automaton

  (FSA)
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12.3 Context Sensitive Languages 
Example 12.2   The grammar 

S  aBC    

S  SABC    

CA  AC    

BA  AB    

CB  BC    

aA  aa    

aB  ab    

bB  bb    

bC  bc    

cC  cc    

 

generates the language {anbncn  :  n 1}. 

For example, we have 

S  SABC  aBCABC  aBACBC  aBABCC  aABBCC    

  aaBBCC  aabBCC  aabbCC  aabbcC  aabbcc    
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12.4 Linear Bounded Automata 
Definition 12.4   A linear bounded automaton is an NRAM program P that operates in linear space, i.e., 
for some constant c 

x  dom P    NRAMspaceP(x) c | x | .    

 

Theorem 12.6   For every context sensitive grammar G, there is a linear bounded automaton P such that 
LP = LG

Proof: Given some x  LG, the NRAM program P can ``guess'' each step of a derivation of x by starting 

with S and at each step guessing the next string in the derivation and verifying that it follows by some 
rule of G from the current string. If the input string x ever appears as the current string in the derivation, 

then P halts. Since G is context sensitive, each string in the derivation must be of length  | x |, and 

since P needs only a fixed number of strings of this length (x, the current string, and the guessed next 
string), it operates in linear space. 

Theorem 12.7   For every linear bounded automaton P there is a context sensitive grammar G such that 
LG = LP.

Proof: Let P be a one register LBA over  such that for some constant c, x  dom P   

 NRAMspaceP(x) c | x |. 

We first replace P be an equivalent LBA P1 over  such that 
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x  dom P1    NRAMspaceP1
(x)  | x | .    

 

P1 operates by viewing each symbol of  as a string of c symbols over   {  } . 

Next we replace P1 by an equivalent by an equivalent LBA P2 over , where 

x  dom P2    NRAMspaceP2
(x)  | x | ,    

 

and the symbol  is used as a special blank symbol and every successor instruction is immediately 

preceded by a left shift instruction. P2 simulates P1 as follows: 

1. 
every time P1 executes a left shift instruction, P2 executes the same left shift instruction, but also 

adds a blank symbol to the right end of P1's register; 

2. 
every time P1 executes a successor instruction, P2 

(a) 
exposes (on the right) the non-blank right end of the register by rotating (leftwards) the 
register contents; 

(b) 
removes a blank symbol from the left end; 

(c) 
executes the same successor instruction; 

(d) 
and reshifts (leftward) the register contents so that all the blank symbols are on the right 
end. 

Careful examination of P2 reveals that it is also the case that every left shift instruction is immediately 

followed by a successor instruction, so that these instructions always occur in pairs. 

We now show how to construct a CSG G such that LG = LP2
. For the most part the construction is the 

same as in Theorem 12.3. Observe first of all that all of the productions are context sensitive except 
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those given for successor instructions (see 4) and the input instruction (see 5). We deal with these two 
exceptions separately. The only rule in 4) which is not context sensitive is the rule 

j . sj .   j .    

 

We eliminate this kind of rules by using the fact that in P2 every successor instruction is immediately 

preceded by a left shift instruction, and vice versa. Suppose j is a successor instruction so that j - 1 is a 
left shift instruction, then we replace parts 3) and 4) in the construction in Theorem 12.3 by the 
following rules: 

bj + 1  j    

j . a . c  a . j . c        for all a, c     

j . sj .  j . a .          for all a     

c . j . a  j . a . c        for all a, c     

 . j   . bj - 1    

 

The non-context sensitive rules for the input instruction are simply intended to remove the special 
grammatical markers  , bj,  that were introduced by the rules for the output instruction. We can 

eliminate the necessity of having the special symbols by adding special diacritical marks to all the 

symbols of  (thereby increasing the size of our alphabet) which play the same roles as these special 

symbols. For example, we could replace the first rule of part 6) with the rule 

http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node51.html (3 of 6) [12/23/2006 12:06:17 PM]



12.4 Linear Bounded Automata

S  a  bm        for all a     

 

and we could replace the second rules of part 6) with the rules 

c  bm  a  bm . c        for all a, c     

 

With careful analysis one can eliminate the use of all the special symbols in all the rules, although there 
are numerous special cases to consider. 

Theorem 12.8   Every context sensitive language is a primitive recursive set.

Proof: First of all, a linear bounded automaton can be simulated by a DRAM program that recognizes 
the context sensitive language and that operates in polynomial space, i.e., there is a constant c such that 

on input x it uses at most c | x  space. But, the latter is a primitive recursive function, and DRAM 

programs which operate within primitive recursive time or space bounds compute primitive recursive 
functions. 

Theorem 12.9   The class of context sensitive languages is closed under intersection.

Proof: Let L1 and L2 be two CSL's and let P1 and P2 be two one register LBA's such that L1 = LP1
 and L2 

= LP2
. Then the following two-register LBA P accepts L1  L2. 

inp R1  

``copy R1 to R2''  

P1-  

``copy R2 to R1''  

P2-  

out R1 
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Theorem 12.10   The Emptiness Problem for context sensitive languages is undecidable.

Proof: We show that if the question LP =  for an arbitrary LBA P were algorithmically decidable (i.e., 

{P  :  LP = } were recursive) then the Halting Problem would be algorithmically decidable. Let P be 

an arbirary DRAM program with one register over  with m lines. Let x be an arbitrary input to P. We 

represent an accepting computation of P on input x in the usual way by strings of the form 

y0 .   ...   . yt    

 

where t is the number of steps of the computation, yi represents the state of P on input x at the ith step 

and is of the form 

bj . z    

 

where j is the line number at step i and z represents the register contents at step i. Further, we may 
assume that by padding with blanks the lengths of all the yi are identical. 

We construct an LBA  with two registers, that depends on both P and x, and that will accept only 

valid computation strings of the above form. The LBA  does this by first copying its input from R1 

to R2 and shifting left to remove the first state from the second copy. After that it removes symbols from 

R1 and R2 until it reaches the end of R2 and verifies that the input string was a valid computation string 

by checking that 

1. 
| yi | = | yi + 1 | and it must encounter symbols of  simultaneously in both R1 and R2; 

2. 
y0 is the initial state; 
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3. 
yt is the final state; 

4. 
yi + 1 follows from yi by a legal instruction execution of P on input x. 

Thus, P halts on input x if and only if  accepts some input. 
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12.5 Context Free Languages 
Example 12.3   Let the context free grammar G have the following rules: 

S  aAS    

S  a    

A  SbA    

A  ba    

 

Then the string aabbaa  LG via the derivation 

S  aAS  aAa  aSbAa  aabAa  aabbaa    

 

Observe, that the string aabbaa can also be derived using the leftmost derivation 

S  aAS  aSbAS  aabAS  aabbaS  aabbaa    

 

Theorem 12.11   For each context free grammar G and each x  LG there is a leftmost derivation of x 

in G.

Definition 12.5   A derivation tree for a string w in a context free grammar G = , V, R, S  is a tree 

satisfying: 

1. 
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every vertex has a label, which is a symbol of V  ; 
2. 

the label of the root is S; 
3. 

every interior node has a label from V; 
4. 

if a vertex has a label A and the X1,..., Xk are the labels of the immediate descendants of the 

vertex in order from left to right, then the rule A  X1 ... Xk must belong to R; 

5. 
w equals the concatenation of the labels of the leaf vertices from left to right. 

Theorem 12.12   Let G = , V, R, S  be a context free grammar. Then S  x if and only if there 

is a derivation tree in G for x.

Example 12.4   Let G be as in Example 12.3 and let w = aabbaa. Then a derivation tree for w in G is: 

Figure 12.8:Derivation tree for aabbaa

 

In the above example by inspection we see that the following are also derivation trees in G: 

Figure 12.2:Derivation tree for abaa
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Figure 12.3:Derivation tree for aababbaa

 

Basic Property of Derivation Trees:  
Given a derivation tree with repeated non-terminals on some path: 

Figure 12.4:Derivation tree for with repeated non-terminal
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then the tree can be 

 Pruned 
to obtain the tree: 

Figure 12.5:Derivation tree after pruning 
repeated non-terminal

 

 Grafted 
to obtain the tree: 

Figure 12.6:Derivation tree after grafting repeated non-terminal
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12.6 Push Down Automata 
Definition 12.6   A push down automaton (PDA) M is a system  

, Q, , , q0,  , F , where 

1. 
 is a finite set of symbols called the input alphabet; 

2. 
Q is a finite set of states; 

3. 
 is a finite set of symbols called the stack alphabet; 

4. 

q0  Q is the initial state; 

5. 

   is the start symbol; 

6. 

F  Q is the set of final states; 

7. 

 is a mapping from Q x (   { }) x  to finite subsets of Q x . 

Figure 12.7:Schematic for Push Down Automaton
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The semantics of the state transition function  is defined as follows: 

For any q  Q, a  , A   

(q, a, A) = {(p1, ),...,(pm, )},    

 

where for each 1 i m, pi  Q and    means that the PDA M is in state q reading input symbol a with 

the symbol A on top of its stack, can for any 1 i m replace A with , advance the input head one symbol to the right, 

and enter state pi;  

For any q  Q, A   

(q, , A) = {(p1, ),...,(pm, )},    

 

where for each 1 i m, pi  Q and    means that the PDA M is in state q, with the symbol A on top of its 

stack, can for any 1 i m replace A with , and without advancing its input head enter state pi. 

Definition 12.7   An instantaneous description (ID) for a PDA M is a triple (q, w, ), where q  Q (the current state), w 

  (the remaining input string), and    (the current stack contents). We define the relation 

(q, a . w,  . A)  (p, w,  . )    

 

where a    { }, p, q  Q, A  , and ,   , whenever (p, )  (q, a, A). 

Also, if I and J are ID's then I  J if and only if there exists a sequence of ID's I0,..., In such that 

I = I0  I1 ... In - 1  In = J    

 

Definition 12.8   The language accepted by empty stack of a PDA M, denoted by NM is defined by 

NM = {w : (q0, w,  )  (p, , ) for some p  Q}.    

 

The language accepted by final state of a PDA M, denoted by LM is defined by 
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LM = {w : (q0, w,  )  (p, , ) for some p  F,   }.    

 

Theorem 12.13    
For every PDA M1 there is a PDA M2 such that NM1

 = LM2
.  

For every PDA M1 there is a PDA M2 such that LM1
 = NM2

.

Example 12.5   Let M = {0, 1},{q1, q2},{R, B, G}, , q1, R, , where  is defined by: 

(q1, 0, R) = {(q1, RB)}    

(q1, 0, G) = {(q1, GB)}    

(q1, 0, B) = {(q1, BB),(q2, )}    

(q1, 1, R) = {(q1, RG)}    

(q1, 1, B) = {(q1, BG)}    

(q1, 1, G) = {(q1, GG),(q2, )}    

(q1, , R) = {(q2, )}    

(q2, 0, B) = {(q2, )}    

(q2, 1, G) = {(q2, )}    

(q2, , R) = {(q2, )}    

 

Then, NM = {w . (w)  :  w  {0, 1}*}. 

Then on input 0110 the computation proceeds as follows: 

input state stack

110 q1 R

0 10 q1 RB

01  0 q2 RBG

011 q2 RB

0110 q2 R
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0110 q2

So the PDA stops and accepts. 

Theorem 12.14   For every CFG G there is a PDA M such that LG = NM.

Proof: Let G = , V, R, S  be the given CFG. The define the PDA M = , Q,   V, , q0,  ,  in such a 

way that for each w, w  LG if and only if M accepts w. The PDA M will proceed by reversing the derivation of w in G 

based on a derivation tree. We first define a macro instruction: 

(q, , ) = {(p, Z)},  

where q, p  Q, Z  V, and   (   V)*, such that M in state q replaces  = ...  on the stack (where  is 

on the top of the stack) by Z. 

(q, , ) = {(p, Z)} :    

(q, , ) = {(q. .n - 1, )}    

(q. .n - 1, , ) = {(q. .n - 2, )}    

    

(q. .1, , ) = {(p, Z)}    

 

The PDA M is then defined by: 

(q0, a, Z) = {(q0, a . Z)}         for Z     

(q0, , x) = {(q0, A)}         for A  x  R    

(q0, , S) = {(q1, )}    

(q1, ,  ) = {(q1, )}    

 

One then easily shows by induction on the length of the derivation/computation that M accepts w if and only if w  LG. 

Example 12.6   Let G be as in Example 12.3 and let w = aabbaa. 

Figure 12.8:Derivation tree for aabbaa
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Then, the computation by M on w as defined in Theorem 12.14 is: 

input state stack rule

abbaa q0  

aa baa q0  aa S  a

aa baa q0  aS  

aabba q0  aSbba A  ba

aabba q0  aSbA A  SbA

aabba q0  aA  

aabbaa q0  aAa S  a

aabbaa q0  aAS S  aAS

aabbaa q0  S  

aabbaa q1  

aabbaa q1  

Lemma 12.15   For every CFG G = , V, R, S  there exists a CFG  = , V, , S  such that LG = L  and 

 contains no rules of the form A  B where A, B  V.
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Proof: If R contains the rule A  B, then replace it by the set of rules {A  x  :  B  x  R}. This replacement 

occurs one rule at a time, where the rules are ordered according to the lefthand side non-terminal, and rules of the form A 
 A are immediately removed. Clearly, LG = L . 

Theorem 12.16 (Pumping Lemma)   For every CFG G there exists a positive integer p such that for any z  LG such that | z 

| p, z can be written as z = uvwxy, where | vwx | p, | v | > 0 or | x | > 0, and uviwxiy  LG for all i  0.

Proof: Let n = max{ | x |   :  A  x  R} and let k = #V. Define p = nk + 1. Suppose z  LG is such that | z | p. Let T be 

a derivation tree for z. Since the maximum length of the righthand side of any rule is n, the maximum branching of T is 

also n. Therefore, since | z | nk + 1, there must be some path in the tree T of length k + 1 (having k + 2 

vertices). Furthermore, since there are at most k non-terminals, there must be some path with some repeated non-terminal A 
on it. Consider the following schematic for the derivation tree T. We can choose the segment vwx of z in such a way that it 
is derived from the first occurrence of a repeated non-terminal A from the bottom of the tree. In this way we see that | vwx 

| nk + 1. Furthermore, since we can assume that there are no rules of the form A  B, where A, B  V, we have that 

either | v | > 0 or | x | > 0. By the Basic Property of derivation trees repeated grafting (and pruning for the case i = 0) 
yields derivation trees for the strings uviwxiy. 

Figure 12.9:Pumping Down

 

Figure 12.10:Pumping Up
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Theorem 12.17   For each CFG G there exist integers p and q such that 

1. 

LG   if and only if z  LG     | z | < p 

2. 

LG is infinite if and only if z  LG    p  | z | < q. 

Proof: Let n = max{ | x |   :  A  x  R} and let k = #V. Define p = nk + 1 and let q = 2p. 

1. 

Clearly, if z  LG such that | z | p, then LG  . Suppose LG   and let z  LG. If | z | p, then by the 

Pumping Lemma for CFG's, z can be written as z = uvwxy and the string z1 = uwy  LG and either | v | > 0 or | x | > 0, so | z1 

| < | z |. By repeating this pruning process (if | z1 | p) we must eventually obtain a string z1  LG such that | z1 | < p. 

2. 

Suppose z  LG such that p  | z | q. By the Pumping Lemma for CFG's we have that z can be written as z = 

uvwxy, where | v | > 0 or | x | > 0, and the string uviwxiy  LG for all i  0. Clearly, LG is infinite. 

Suppose LG is infinite. Then there must exist a string z  LG such that | z | q. Using the Pumping Lemma again we see 
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that z = uvwxy and the string z1 = uwy  LG is such that | z1 |  | z | - p > p (since | vwx | p). By repeating this 

pruning process (if | z1 | q) we must eventually obtain a string z1  LG such that p  | z1 | < q. 

Example 12.7   Let L = {anbncn  :  n 1}. Then L is a CSL, but L is not a CFL. 

Proof: Clearly, L is infinite, so the Pumping Lemma applies to L (assuming that L were a CFL). Let p be the pumping 
length specified in the Pumping Lemma for L. Let z = apbpcp, so z can be written z = uvwxy, where | v | > 0 or | x | > 0 , and 

| vwx | p, and uviwxiy  L for all i  0. 

Observe first that v and x can contain at most one letter. For example, if v = ab, then v2 = abab and uv2wx2y L. 

Next, we then see that the string uv2wx2y cannot have equal numbers of a's, b's and c's, since at most two of the letters a, b 
and c can be pumped up. 

Proposition 12.18   The class of context free languages is not closed under intersection.

Proof: Define the languages 

L1 = {anbmcm  :  n, m 1}    

 

and 

L2 = {ambmcn  :  n, m 1}    

 

The clearly, L1  L2 = {anbncn  :  n 1}, and so by the previous example is not a CFL. However, L1 and L2 are easily seen 

to be CFL's. The PDA M1 which accepts L1 operates as follows: 

1. 
M1 first scans past the a's checking that there is at least one a; 

2. 
M1 pushes all b's onto its stack, checking that there is at least one b and that there are no a's mixed in with the b's; 

3. 
M1 matches c's in the input with b's on the stack, reading a c and popping a b, checking that there are no a's or b's mixed in 

with the c's; 
4. 

M1 checks that both the input and the stack are empty simultaneously. 

Theorem 12.19   For any PDA M the language NM is context free.
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Proof: Let M = , Q, , , q0,  ,  be a given PDA. Define G = , V, R, S  as follows: 

V = {[q, A, p]  :  q, p  Q and A  } 

and R is the set of rules: 

1. 
S  [q0,  , q],  

for each q  Q; 

2. 
[q, A, qm + 1]  a[q1, B1, q2] ... [qm, Bm, qm + 1],  

for each q, q1,..., qm + 1  Q, each a    { }, and each A, B1,..., Bm  , where we have that (q, a, A) 

contains (q1, B1 ... Bm). (If m = 0, then the rule is [q, A, q1]  a). 

G is defined in such a way that for any input x, x  NM if and only if x  LG and a leftmost derivation of x in G 

corresponds to an accepting computation of x by M. Moreover, [q, A, p]  x if and only if x causes M to erase an A from 

its stack by some sequence of computation steps beginning in state q and ending in state p. 

Example 12.8   Let M be the PDA given in Example 12.5 for the language L = {w . (w)  :  w  {0, 1}*}. The 

corresponding grammar G is: 

S  [q1, R, q]        for all q  Q    

[q1, R, q]  0[q1, B, [         for all q,    

[q1, G, q]  0[q1, B, [         for all q,    

[q1, B, q]  0[q1, B, [         for all q,    

[q1, B, q2]  0    

[q1, R, q]  0[q1, G, [         for all q,    

[q1, G, q]  0[q1, G, [         for all q,    

[q1, B, q]  0[q1, G, [         for all q,    

[q1, G, q2]  1    

[q1, R, q2]     
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[q2, B, q2]  0    

[q2, G, q2]  1    

[q2, R, q2]     

 

Consider the input 0110 to M: 

input state stack string / (rule)

110 q1 R [q1, R, q2]

   ( S  [q1, R, q2])

0 10 q1 RB 0[q1, B, q2][q2, R, q2]

   ( [q1, R, q2]  0[q1, B, q2][q2, R, q2])

01  0 q1 RBG 01q1, G, q2][q2, B, q2][q2, R, q2]

   ( [q1, B, q2]  1[q1, G, q2][q2, B, q2])

011 q2 RB 011[q2, B, q2][q2, R, q2]

   ( [q1, G, q2]  1)

0110 q2 R 0110[q2, R, q2]

   ( [q2, B, q2]  0)

0110 q2 0110

   ( [q2, R, q2]  )
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12.7 Regular Languages 

Theorem 12.20   Given an NFA M = , Q, , q0, F  there is a regular grammar G such that LG = 

LM.

Proof: The grammar G = , Q, R, q0  has the following rules: 

1. 

q1  aq2, whenever q2  (q1, a); 

2. 

q1  a, whenever q2  (q1, a) and q2  F. 

It is easy to see that each accepting computation path 

Figure 12.11:Accepting Computation Path

has the corresponding derivation 

q0  a1q1  a1a2q2  ...  a1 ... an - 1qn - 1  a1 ... an.    

 

Theorem 12.21   For each regular grammar G = , V, R, S  there is an NFA M such that LM = LG.
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Proof: The NFA M = , V  {qf}, , S,{qf}  has its state transition function  defined in such a 

way that 

1. 

B  (A, a), whenever A  aB  R; 

2. 

qf  (A, a), whenever A  a  R. 

Then, for any derivation 

S  a1A1  a1a2A2  ...  a1 ... an - 1An  a1 ... an.    

 

there is a corresponding computation 

Figure 12.12:Accepting Computation Path
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