Welcome Back

10 Years On!

Quality of Service &

Bandwidth Management in RouterOS v.6

Oluyinka Thomas

thomolar@yahoo.com MikroTik User Meeting Lagos, Nigeria 28th November, 2017

About Me

- Electrical/Electronics Engineering graduate from University of Ibadan, Nigeria
- Worked briefly with Procter & Gamble P&G
- Worked mostly in the Oil & Gas upstream service industry
 - Coiled Tubing Services Schlumberger

About Me

- Passionate about IT & Telecommunication
- VSAT installer partner for Taide Network AS
 - Taide became Vizada then became part of Astrium
- Love MikroTik RouterOS to bits

- Started using RouterOS from v.2.9
- Certified in MTCNA, MTCRE, MTCINE, Certified Trainer

Agenda

- Define Quality of Service
- Define Bandwidth Management
- Highlight Benefits of Both
- Discuss Implementation Tools for Both
- Examine RouterOS Screenshots on Winbox
- Implementation Examples
- Summary & Conclusion

What is Quality of Service (QoS)?

- Refers to traffic prioritization and resource reservation control mechanisms
- Ability to provide different priorities to different applications, users or data flows
- Guarantee a certain level of performance to a data flow

Objective of QoS

- Anybody can deploy internet services
- Identify what affects overall satisfaction of the client
- Capture traffic usage patterns & customize router to dynamically work for them
- Key objective of QoS is differentiation

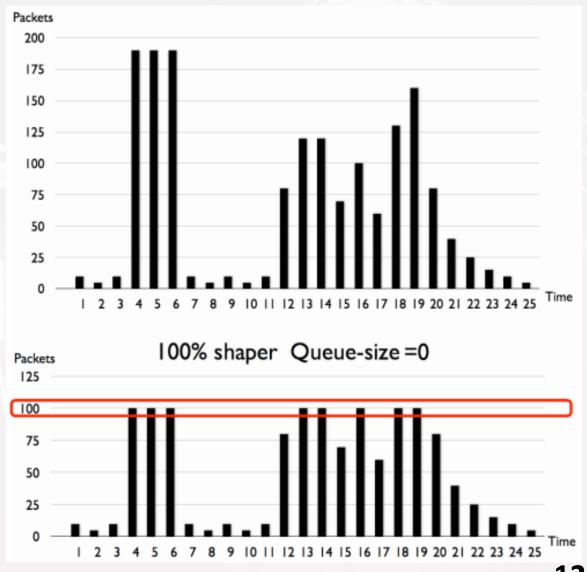
Bandwidth Management

- The process of measuring and controlling the communications (traffic, packets) on a network link
- Objective is to avoid filling the link to capacity or overfilling the link
- Results in network congestion and poor performance of the network if not done

Benefits to ISP's

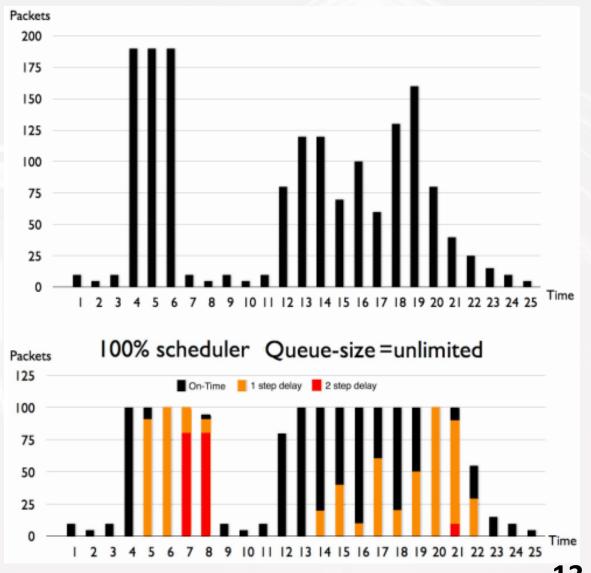
- High-cost traffic networks are major assets for ISP's
- Gives the intangible yet significant benefit of seeing what internet traffic is flowing through the network
- Allows ISPs to tier their services to guarantee particular QoS
- Reduces costs and increases the menu of products offered

Benefits to Enterprises

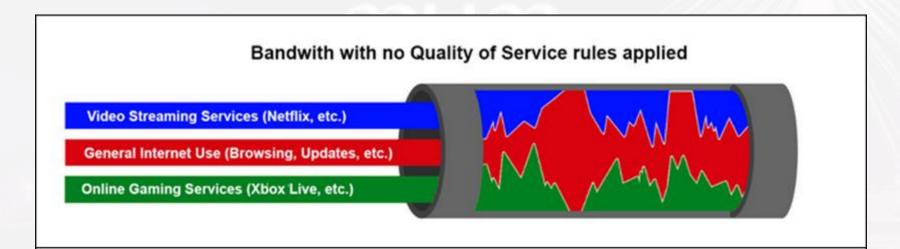

- Applications are centrally hosted at the head office
- Remote offices are expected to pull data from central databases and server farms
- Ensures business-oriented traffic gets priority over best-effort non-critical traffic
- A good means for companies to avoid purchasing additional bandwidth, while properly managing existing resources

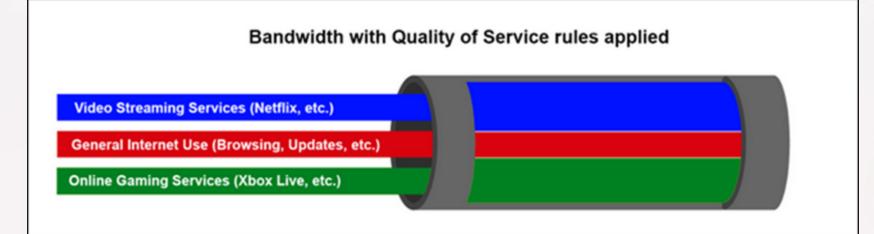
Bandwidth Management in ROS

- MikroTik RouterOS is one of the most advanced and easy to configure operating system for bandwidth management
- Traffic shaping (Rate Limiting)
 - HTB and PCQ
- Traffic equalizing (Rate Scheduler)
 - RED, FIFO, SFQ


Rate Limiting

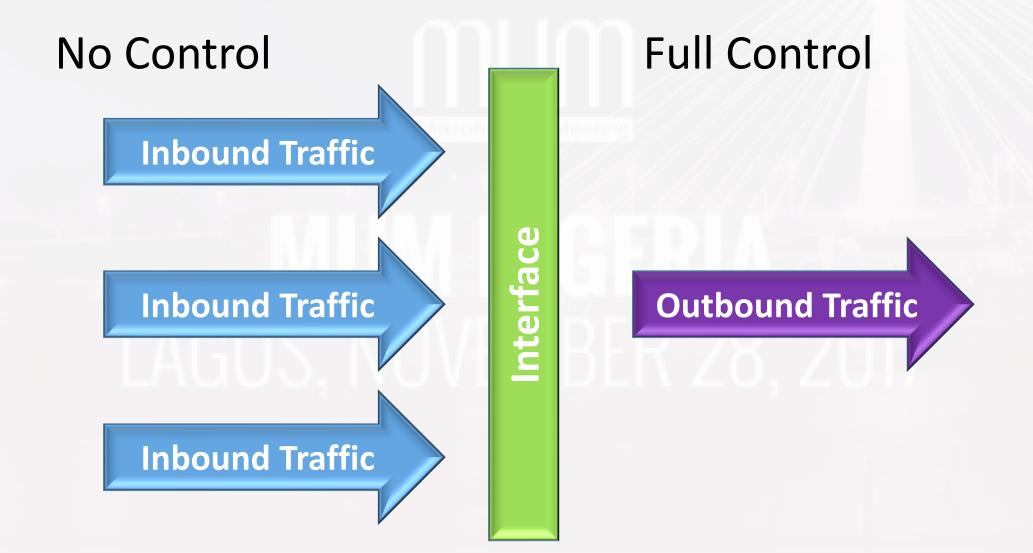
- Assume max-limit is '100'
- 100% shaper has no queue size
- Therefore packets are dropped when it reaches 100
- In this example about 22% is dropped
- Result: Latency is low




Rate Scheduler

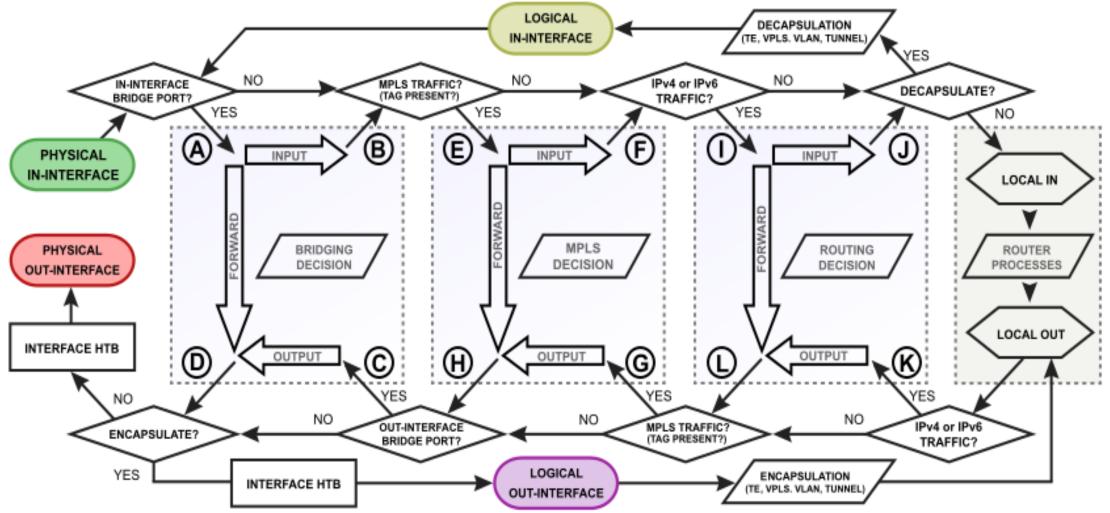
- Assume max-limit is '100'
- Queue size is unlimited
- Therefore no packets are dropped when it reaches 100
- In this example 39% are delayed once, 11% delayed twice
- Result: Latency is high

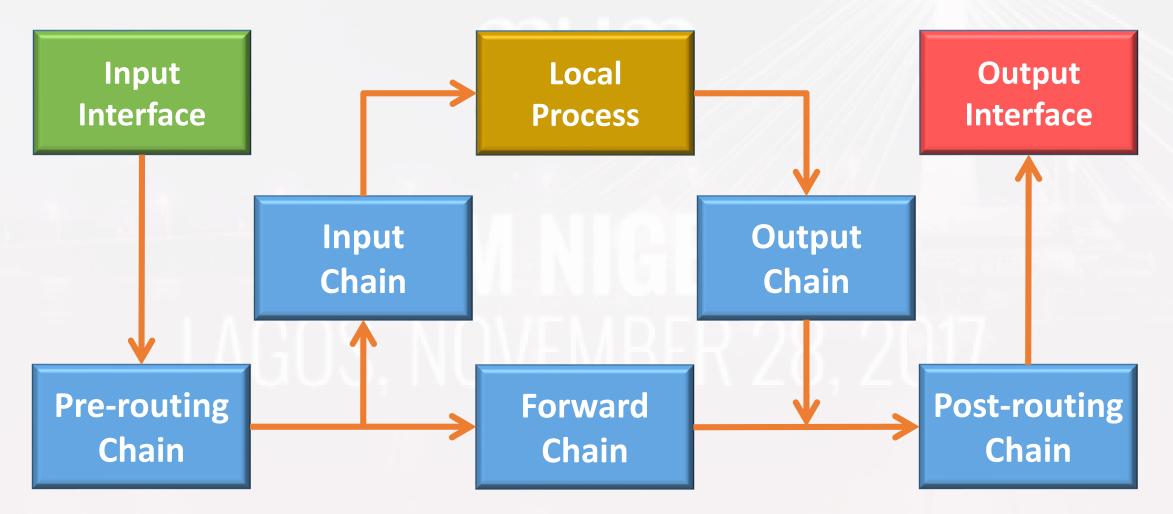
Bandwidth with & without QoS



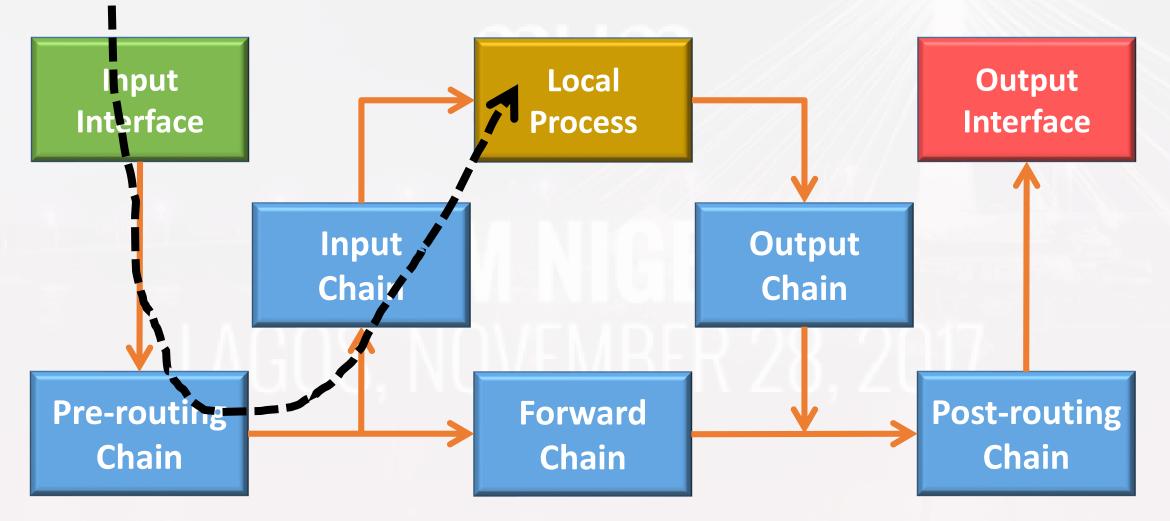
Fundamental Concepts

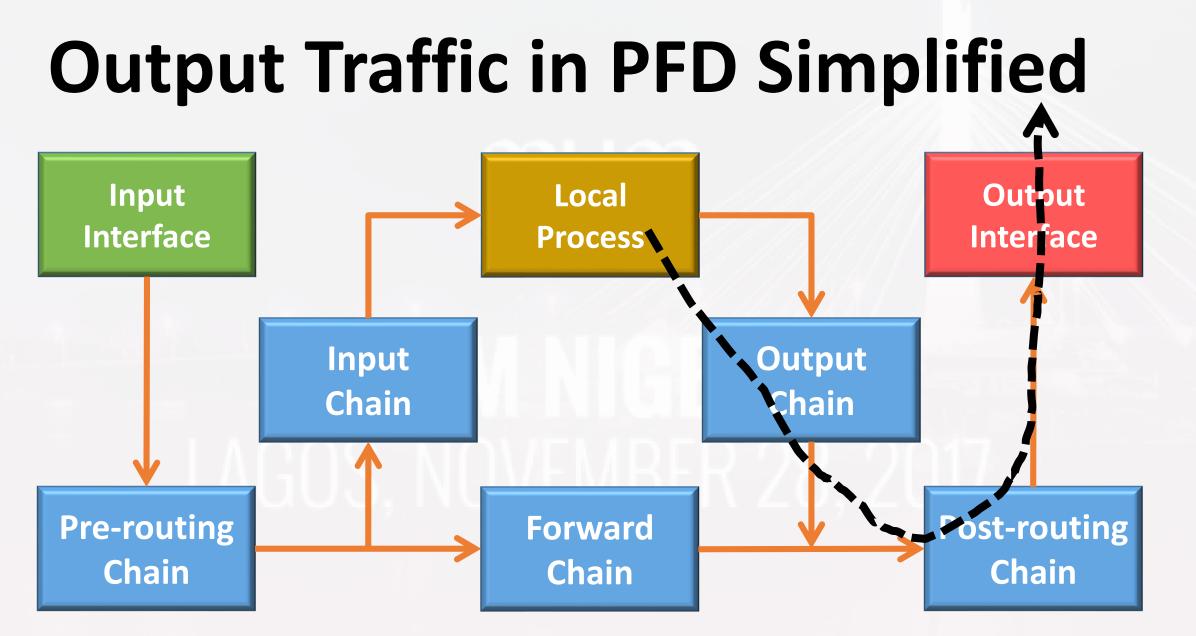
- We have no control on how much traffic is being sent to an interface
- Traffic control can only be done as the traffic leaves from the interface
- Hence, all control is done on the outbound interface irrespective of upload or download


Traffic Control to an Interface

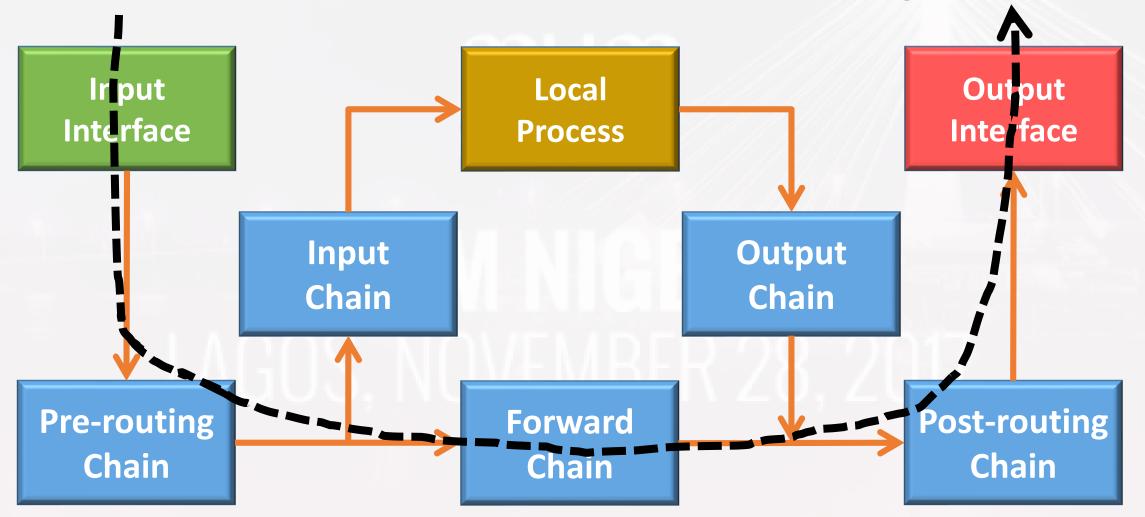

Tools for Implementing BWM & QoS

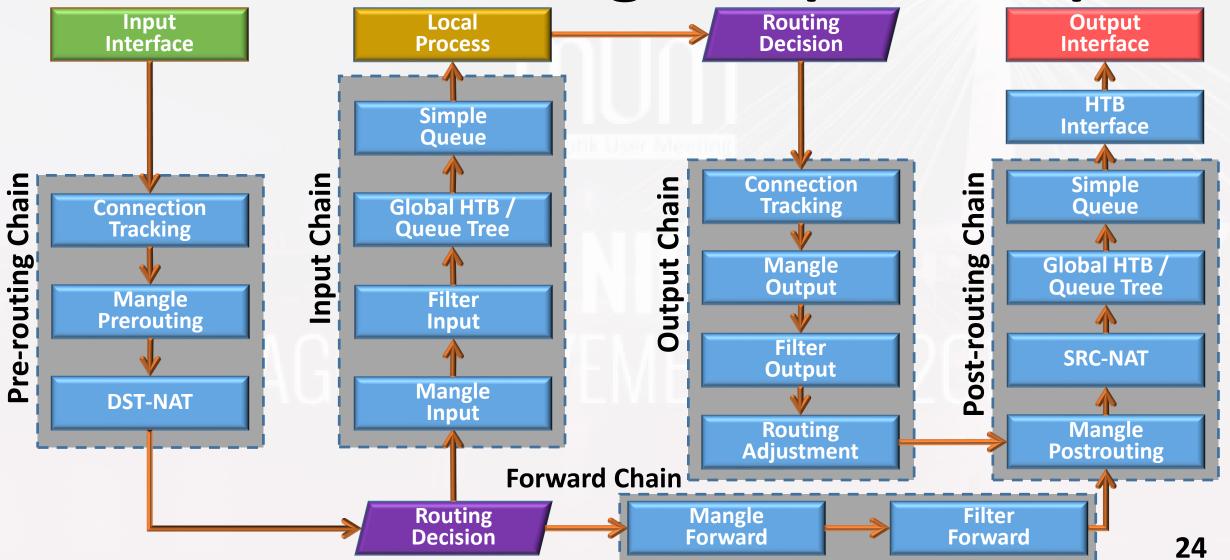
- Packet Flow Diagram (ROS v.6)
- Mangle
- Address List
- Simple Queues
- Hierarchical Token Bucket, HTB
- Queue Tree
- Per Connection Queue, PCQ

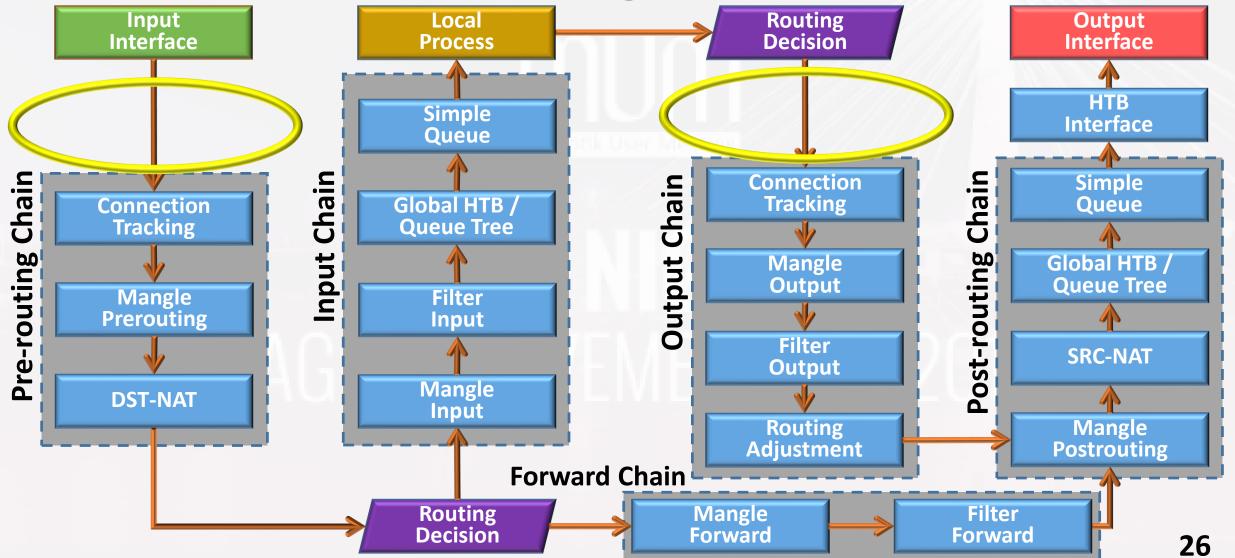

- Created to form a basis of understanding how packets flow through MikroTik router
- Used to determine where, when and what actions can be taken at any given point
- Knowledge helps to simplify complicated tasks within the RouterOS facilities

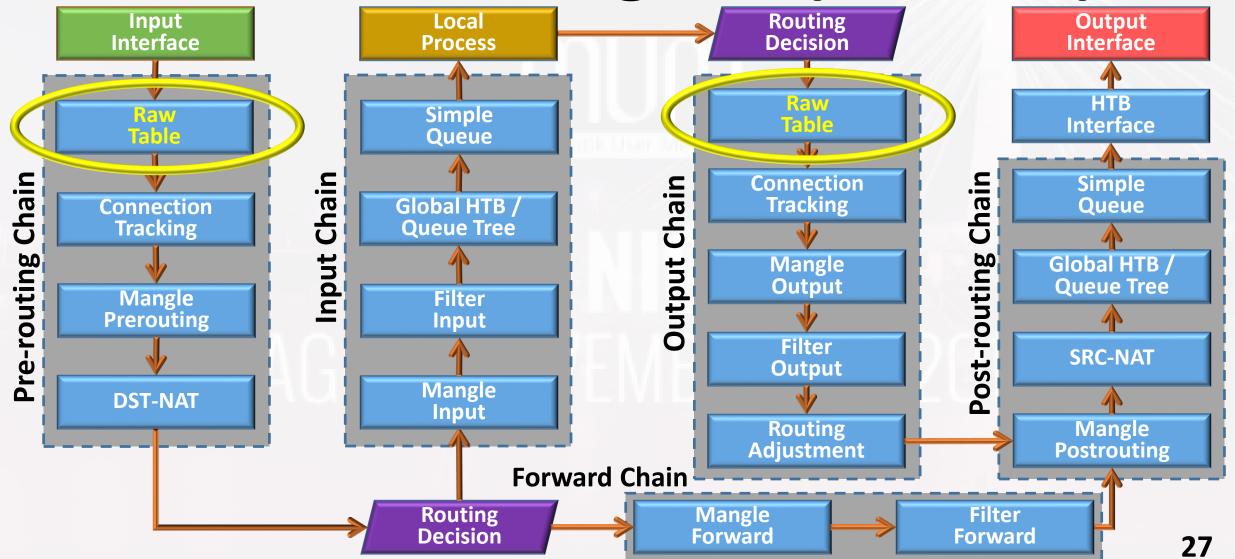


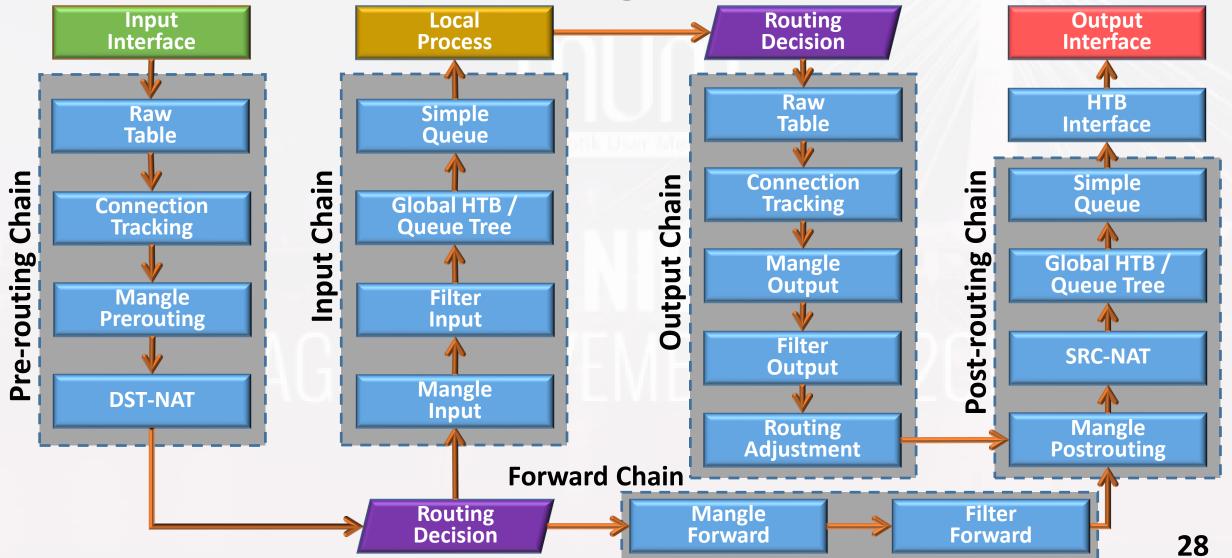
Packet Flow Simplified Diagram




Input Traffic in PFD Simplified


Forward Traffic in PFD Simplified



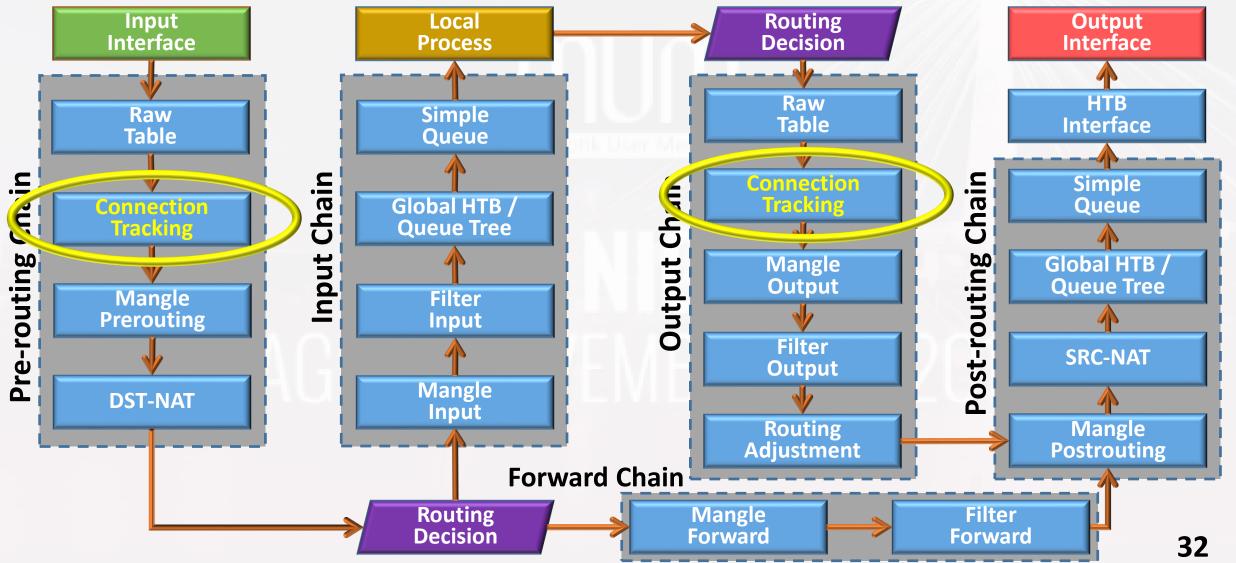


Distributed Denial-of-Service (DDoS)

- A DDoS attack occurs when multiple systems flood the bandwidth or resources of a targeted system
- The incoming disruptive traffic comes from different IP addresses
- This effectively makes it impossible to stop the attack simply by using ingress filtering
 - Connection tracking, a CPU intensive process, already engaged

Raw Table

- Very useful tool for DDOS attack mitigation
- Allows to selectively bypass or drop packets before connection tracking
 - Significantly reducing load on CPU
- Does not have matchers that depend on connection tracking (like connection-state, L-7, etc)
- If packet is marked to bypass connection tracking packet de-fragmentation will not occur


$IP \rightarrow Firewall \rightarrow Raw \rightarrow +$

🛫 Switch	Addresses	Firewall
°t <mark>8</mark> Mesh	Cloud	Filter Rules NAT Mangle Raw Service Ports Connections Address Lists Layer7 Protocols
IP ♪	DHCP Client	
🖉 MPLS 🛛 🗅	DHCP Relay	
😹 Routing 💦 🗈	DHCP Server	# Action Chain Src. Address Dst. Address Proto Src. Port Dst. Port In. Inter C
🌐 System	DNS	
🙊 Queues	Firewall	
Files	Hotspot	
📄 Log	IPsec	New Raw Rule
🧟 Radius	Neighbors	
🄀 Tools 🛛 🗅	Packing	General Advanced Extra Action OK
🔚 New Terminal	Pool	Chain: prerouting Cancel
🔜 MetaROUTER	Routes	Src. Address:
🕭 Partition	SMB	Src. Address:
Make Supout.rif	SNMP	Dst. Address: Disable
🖸 😧 Manual	Services	
🔘 New WinBox	Settings	Protocol: Comment
🖉 📃 Exit	Socks	Src. Port: Copy
	TFTP	
e	Traffic Flow	Dst. Port:

Connection Tracking

- A way to see what connections are making their way to, from & though the router
- Required for several Firewall facilities in the router to function
 - NAT, Mangle, Filter, etc will stop working if disabled
- Displays source & destination IP addresses and ports associated with a specific connection
- A CPU intensive feature

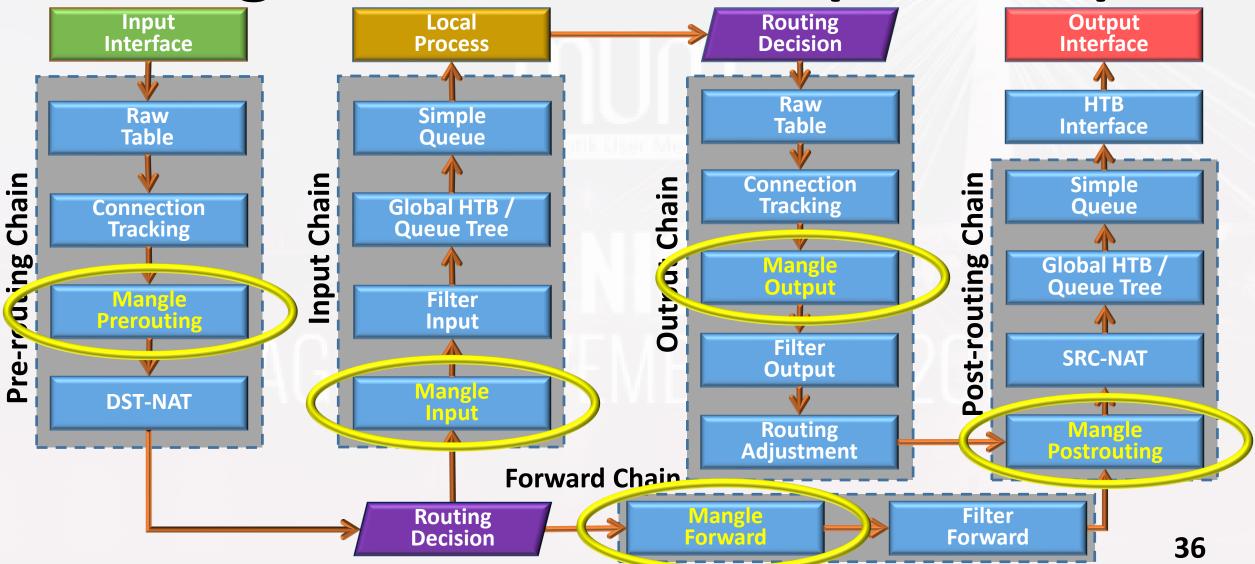
Connection Tracking in PFD (ROS v.6)

$IP \rightarrow Firewall \rightarrow Connections$

WinBox

	Firew				nn	not	ion	C	
7		dII	\neg			ELI		5	
-									
	ARP	Firewall							
tch sh	Accounting	Filter Rules	NAT Mangle	Raw	Service Ports	Connections	Address Lists	Layer7 Protocol	s
sri >	Addresses	- 7	Tracking		7				
LS N	Cloud		Src. Address	Ust	. Address	/ Proto	Connection Mark	∇ Timeout	TCP State
	DHCP Client		192.168.88.242.+1		9.49.21:443	6 (tcp)			established
ng 🗅	DHCP Relay	SACFs 1	192.16 ⁹ So.243:411	155 52.	9.49.21:443	6 (tcp)		01:13:37	established
m 🗈			122.168.88.243:412	209 52.	9.49.21:443	6 (tcp)		02:19:23	established
Jes	DHCP Server		192.168.88.243:412	211 52.	9.49.21:443	6 (tcp)			established
c.,	DNS	1	192.168.88.243:412			6 (tcp)			established
			192.168.88.243:412		9.49.21:443	6 (tcp)			established
	Firewall		192.168.88.243:412		9.49.21:443	6 (tcp)			established
	Hotspot		192.168.88.243:41			6 (tcp)			established
IS	IDees		192.168.88.243:413		9.49.21:443	6 (tcp)			established
s 🗅	IPsec		192.168.88.243:414			6 (tcp)			established
Terminal	Neighbors		192.168.88.243:41			6 (tcp)			established
	Packing		192.168.88.243:410			6 (tcp)			established
ROUTER			192.168.88.243:410			6 (tcp)			established
on	Pool		192.168.88.243:418			6 (tcp)			established
	Routes		192.168.88.243:42			6 (tcp)			established
Make Supout.rif			192.168.88.243:42			6 (tcp)			established
al	SMB		192.168.88.243:42			6 (tcp)			established
nual	SNMP		192.168.88.243:423			6 (tcp)			established
WinBox			192.168.88.243:423			6 (tcp)			established
	Services		192.168.88.243:42			6 (tcp)			established
	Settings		192.168.88.242:44		9.68.198:443	6 (tcp)			established
			192.168.88.242:60			6 (tcp)			established
	Socks	SACFs 1	192.168.88.242:413	312 52.	9.87.70:80	6 (tcp)		17:00:41	established

Mangle


- Marks IP connections (bidirectional) and packets (unidirectional) with special marks
- These marks are used for future processing within the same router
 - Filter, Queue and Routing facilities use these marks
- Used to modify some fields in the IP header
 - DSCP (TOS), TTL and MSS fields can be changed

Mangle

- Mangle rules are organised in 5 default chains
 - Prerouting
 - Input
 - Forward
 - Output
 - Postrouting

Custom user-defined chains can be added

Mangle Chains in PFD (ROS v.6)

$IP \rightarrow Firewall \rightarrow Mangle \rightarrow +$

🛫 əwilch °t¦8 Mesh 255 IP Ø MPLS 🐹 Routing 💮 System 🗢 Queues Files Log 🧟 Radius 💥 Tools New Terminal 💄 Make Supout.rif Manual Solution New WinBox Exit

	ARP	Fin
	Accounting	Fi
	Addresses	
<u> </u>	Cloud	
<u> </u>	DHCP Client	
	DHCP Relay	
	DHCP Server	
Y	DNS	
	Firewall	N
_	Firewall Hotspot	N
>		N G
	Hotspot	
	Hotspot IPsec	
	Hotspot IPsec Neighbors	
	Hotspot IPsec Neighbors Packing	
>	Hotspot IPsec Neighbors Packing Pool	

Firewall												
	Filter Rules NAT		Mangle	langle Raw		Service Ports Co		nnections Add		ess Lists	Lay	er7 Protocols
_	+ -	00 Reset Counters				00 Reset All Counters						
_	#	A _tion	Chain	!!	Proto	Src. Por	t	Dst. Port		I (Bytes		Packets
	0	iump	prerouting		6 (tcp)					1000	2 KîB	13 902
	1	@jump	prerouting		17 (u					8.	8 MiB	61 133
_	7.	i 🔊 jump	prerouting							327	.1 KiB	8 085
	3	🖉 ma	tcp-servic	es	6 (tcp)	1024-65535		20-21			0 B	0
Λ	4	🥒 таг		es	6 (tep) 513-655			22			0 B	0
-	5	🥒ar	tcp-servic	es	6 (tcp)	1024-65	535	23			0 B	0
	New Mar	igle Rule									0 B	0
	General Advance										0 B	0
			ed Extra	Actio	n Stati	n Statistics			OK			0
_		Ŧ		Cancel			1 KiB	4 190				
			hain: pren	outing				Cancel			0 B 0 B	0
		Src. Add	dress:			•			Apply			0
-											0 B 960 B	16
		Dst. Address:							Disable		0 B	0
								8 KiB	9 387			
	Protocol:						•	Co	mmeri	t	0 8	0
												U

Address List

- Allows to create action for multiple IPs at once
- Possible to automatically add an IP address to the address list
- IP address can be added to the address list permanently or for a defined timeout period
- Address list can contain one IP address, an IP range or a whole subnet

$IP \rightarrow Firewall \rightarrow Address \ Lists \rightarrow +$

- JWILCH		
° <mark>t</mark> 8 Mesh	ARP	Firewall
😇 IP 🗈 🗅	Accounting	Filter Rules NAT Mangle Raw Service Ports Connections Address Lists Laye
MPLS N	Addresses	+ × × - 7
📈 Routing	Cloud	Name V Address Timeout
isstem ►	DHCP Client	;;; My src-nated local network hosts
Queues	DHCP Relay	nat-addr 172,100,153.0/24 ;;; Mobile phones
Files	DHCP Server	
	DNS	··· My local network
	Firewall	● local-addr 172.168.153 d/24 X ● illegal-addr 10.0.0.0/d
🥵 Radius	Hotspot	;;; Could be my local a laress block; need to check
💥 Tools 🗈	IPsec	X ● illegal-addr 1/2.16.0.0/12 X ● illegal-addr 192.168.0.0/16
New Terminal	Neighbors	
📑 Make Supout.rif		New Firewall Address List
😧 Manual	Packing	Name: T OK
New WinBox	Pool	
Exit	Routes	
	SNMP	Timeout: Apply
Bo	Services	Disable
/in	Settings	
5	Socks	Comment
cerOS WinBox	TFTP	Сору
er	Traffic Flow	Remove

1.in00+

Queues

- Limit data rate for IP addresses, subnets, protocols, ports, interfaces and other parameters
- Prioritize some packet flows over others
- Configure traffic bursts for faster web browsing
- Share available traffic among users equally, depending on the load
- Limit peer-to-peer traffic

Queue Properties

- Imit-at: Normal data rate that is guaranteed to a target
- max-limit: Maximal data rate that is allowed for a target to reach, if available
- **burst-threshold**: Basically, this is burst on/off switch
- **burst-limit**: Maximal data rate which can be reached while the burst is active
- burst-time: Period of time over which the average data rate is calculated (not the time of actual burst)

Queue Properties

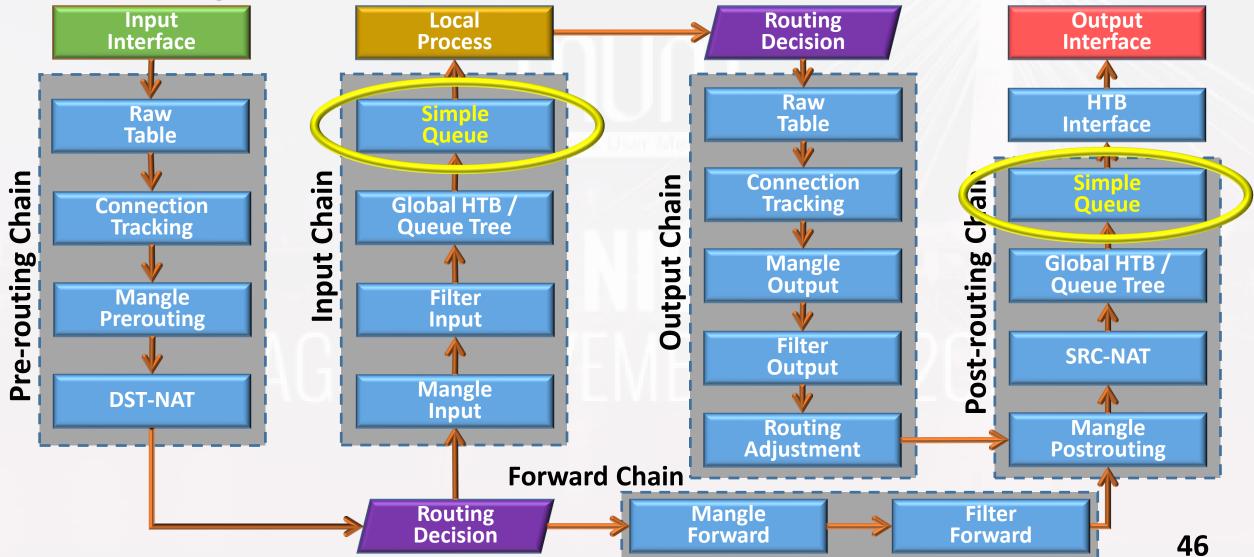
- parent: Top queue in the HTB that assigns bandwidth to the child queues below
- priority: Responsible for distribution of remaining parent queue's traffic to child queues so that they are able to reach max-limit
- packet marks: Use marked packets from Firewall → Mangle
- **queue type**: Choose queue type created Queue \rightarrow Type
- bucket size: A function of token bucket & max-limit

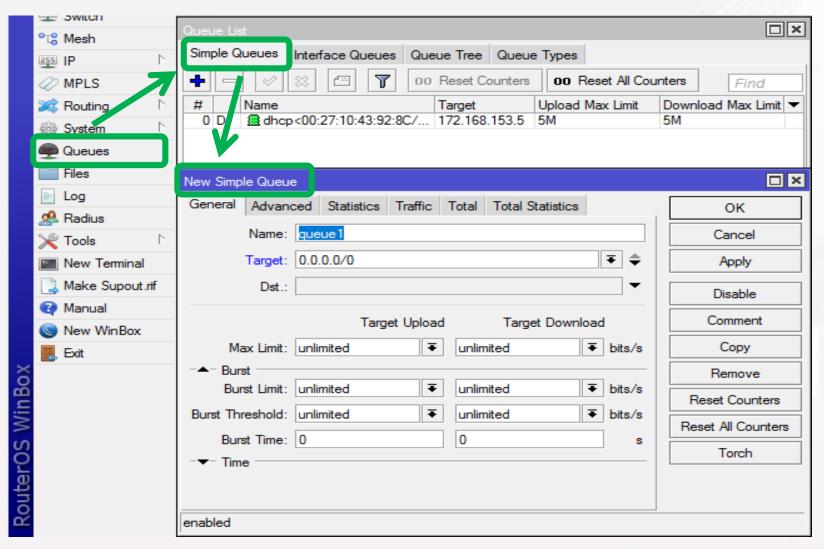
Simple Queues

- The simplest way to limit data rate for specific IP addresses, interfaces and/or subnets
 - Limit client's download (↓) speed, upload (个) speed and total speed (↓ + 个) independently
- All rules are processed sequentially from top

Simple Queues (ROS v.6)

- Not only for "simple" tasks anymore
- Traffic identified based on src-address, interface, dst-address, etc, hence no need to mark packets
- Fast hash algorithm, especially on multicore hardware
 - Number of simple queues no more relevant
 - Can have thousands of them without heavily loading CPU
- Can be easily created dynamically or by scripting

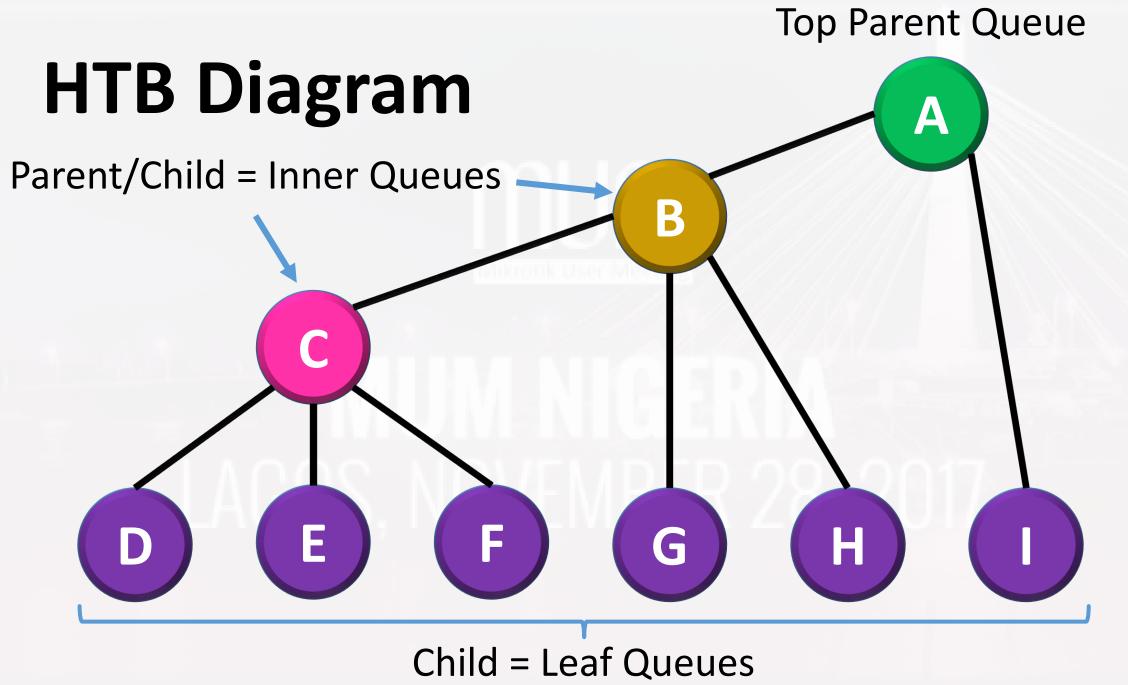

Simple Queues Caution

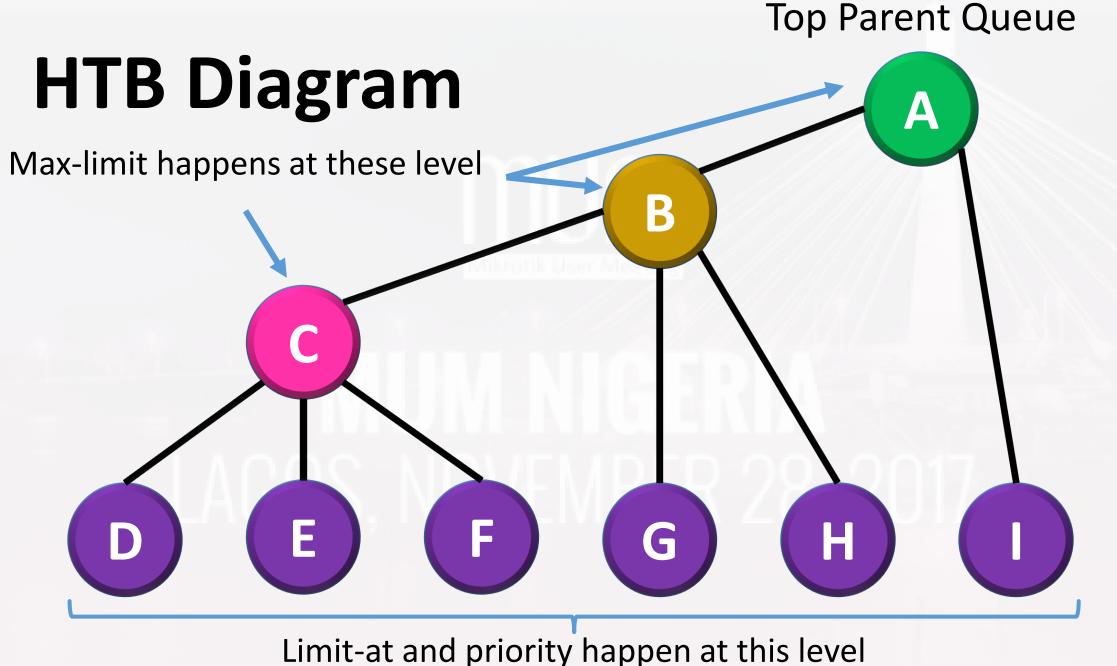

 FastTrack rule in Firewall → Filter needs to be disabled for Simple Queues to work

LAGOS, NOVEMBER 28, 2017

Simple Queue in PFD (ROS v.6)

Queues \rightarrow Simple Queues \rightarrow +


Nin00+


Hierarchical Token Bucket (HTB)

- Classful queuing method that is useful for handling different kinds of traffic
- Allows to create a hierarchical queue structure
- Determines relations between queues
 - Like "parent-child" or "child-child"
 - Priority, burst possibility, etc

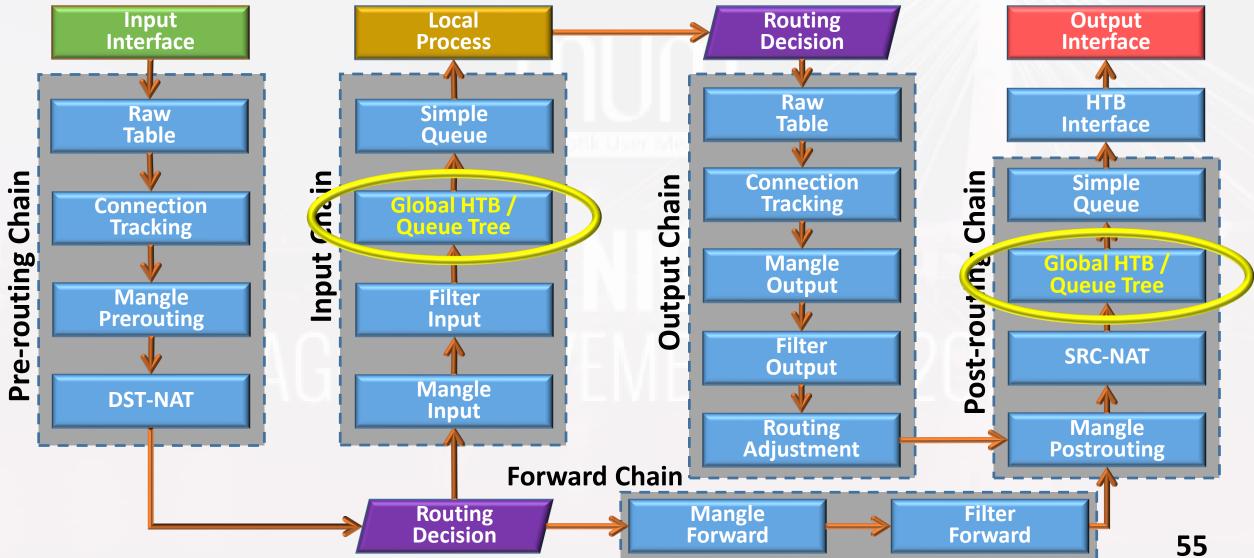
HTB in RouterOS

- Bandwidth management implementation in RouterOS is mostly based on HTB
- Three basic steps required to create HTB:
 - Match and mark traffic
 - Create rules/policies to mark traffic
 - Attach policy for specific interface(s)

Queues \rightarrow Queue Tree \rightarrow +

		Queue List											
	₽₽₽ ►	Queue Lisi											
	🖉 MPLS 🛛 🗅	Simple Queue	es Inte	erface Q	ueues Queue	Tree Queue 1	Types						
	🌌 Routing 💦 🗅					Reset Counters 00 Reset All Counters							
	🎲 System 🗈					eser Counters	Do Reser Air Counters						
	🙊 Queues	Name	A	Parent	Packet Marks	Limit At (bits/s)	Max Limit (bits/s)	Avg. Rate	Queued Bytes E	By			
	Files	<u> a</u> A	****************	global				0 bps					
	Eog	₿B		A				0 bps					
	A Radius	1		B				0 bps					
				C				0 bps					
			_	C				0 bps					
	New Terminal	_		C				0 bps					
] Make Supout.rif		G H	B				0 bps 0 bps					
	🕜 Manual	<u></u>		A				0 bps					
	🔘 New WinBox			~				0 0 0 0 0	00				
	📕 Exit												
×													
R													
in l													
3													
S													
5													
PrOS WinBox													

HTB Configuration Caution


- Limit-at and priority will not work if there is no parent in the hierarchy
- Limit-at and priority happen at the leaf queues

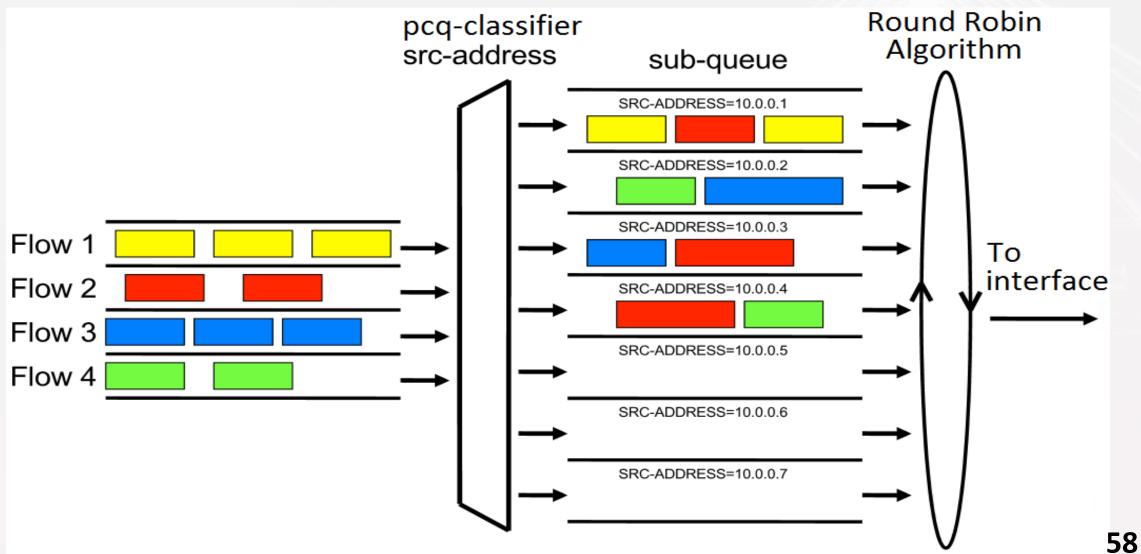
LAGOS, NOVEMBER 28, 2017

Queue Trees

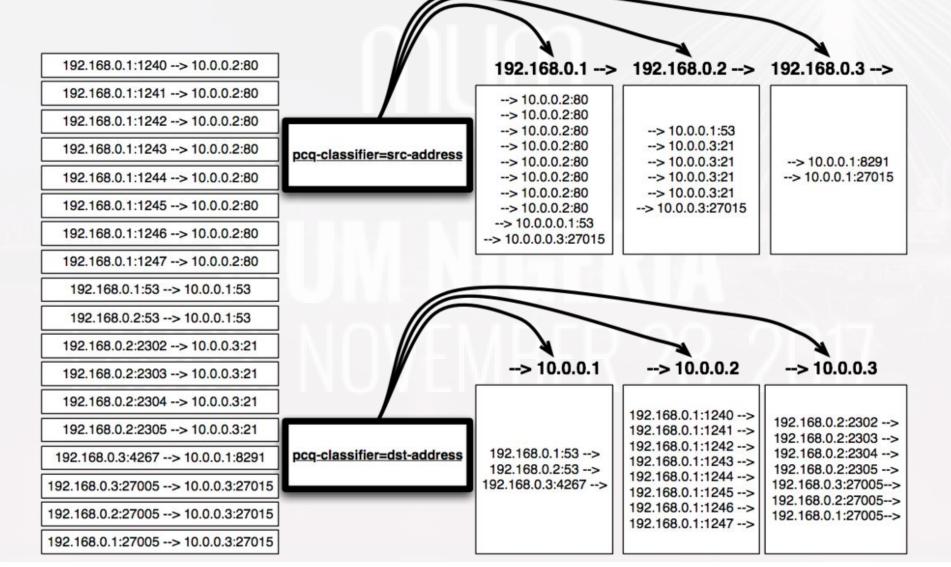
- Unidirectional queue in one of the HTBs
- Requires 2 rules per full duplex traffic control
- All rules are processed simultaneously
 - Highly efficient on CPU load
- Parent, priority & packet mark are very important for efficient operation

Queue Tree in PFD (ROS v.6)

Queues \rightarrow Queue Tree \rightarrow +

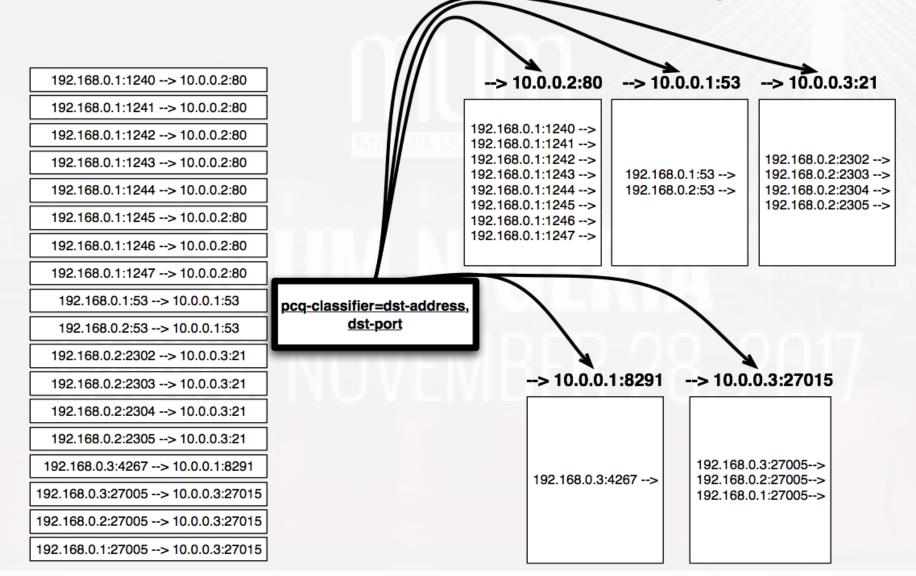

		Queue List										
	Z MPLS ►	Simple Queues Interface Queues Queue Tree Queue Types										
	🐹 Routing 🗈 🗈	+	t Counters	oo Rese	t All Count	unters Find						
	🎲 System 🗈	System Parent P		Packet M.	. Priority	Limit At	Max Limit	Avg. Rate	Queued Bytes	Bytes	Packets 🔻	
			global		8		20M	80 bps	0 B	14.3 MiB	17 615	
		🔒 download	total-downloa		8	10M				2019.6	1 749 3	
	📄 Files			-		5M				0 B	0	
	📄 Log	dtner-download-tr	total-downloa	other-fwd	8	5M				0 B	0	
	A Radius	New Queue					20M			2212.0		
		Conord Co. II II				[10M			0 B	0	
	🄀 Tools 🛛 🗅	General Statistics			OK		5M			0 B	0	
	🔚 New Terminal	Make Supout.rif Parent: global					15M	160 bps	UB	206.7	1 133 6	
] Make Supout.rif			T	Apply							
	😢 Manual											
	New WinBox	Packet Marks:			Disable							
	📙 Exit	Queue Type: default-smal	l	=	Commer	t						
ŏ		Priority: 8			Сору		ckets queued	ł				
Pros WinBox		Bucket Size: 0.100			Remove	;			traff	filedownlo	386. ad 386.	
3		Limit At:	▼ bi	its/s	Reset Cour	ters						
õ		Max Limit:	▼ bi	its/s	eset All Cou	unters				heavyu rfwd-traff	17.	
a									othe	an worran	17.	

56


Per Connection Queue (PCQ)

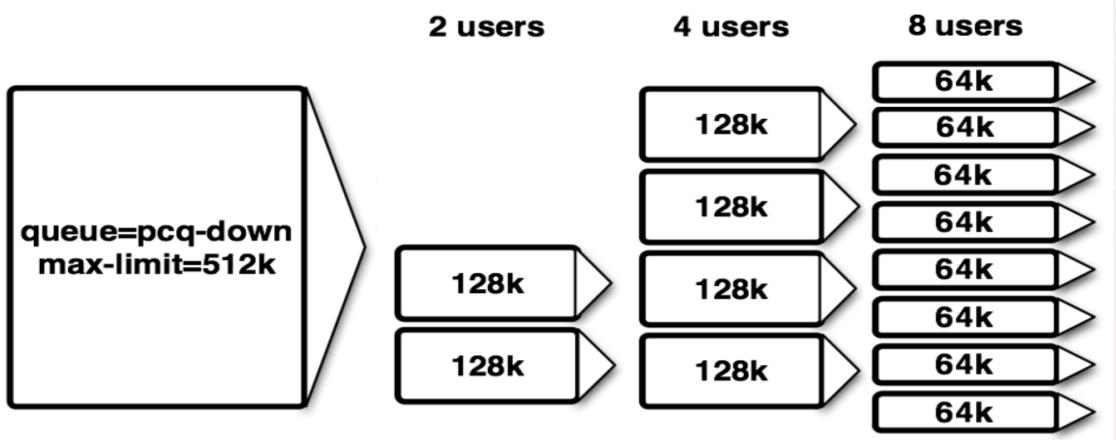
- Queue type for optimizing large QoS deployments by limiting per 'sub-stream'
- Substitute multiple queues with one
- Using flow identifiers to differentiate traffic
- Several classifiers can be used:
 - Source/destination IP address
 - Source/destination port

PCQ Flow

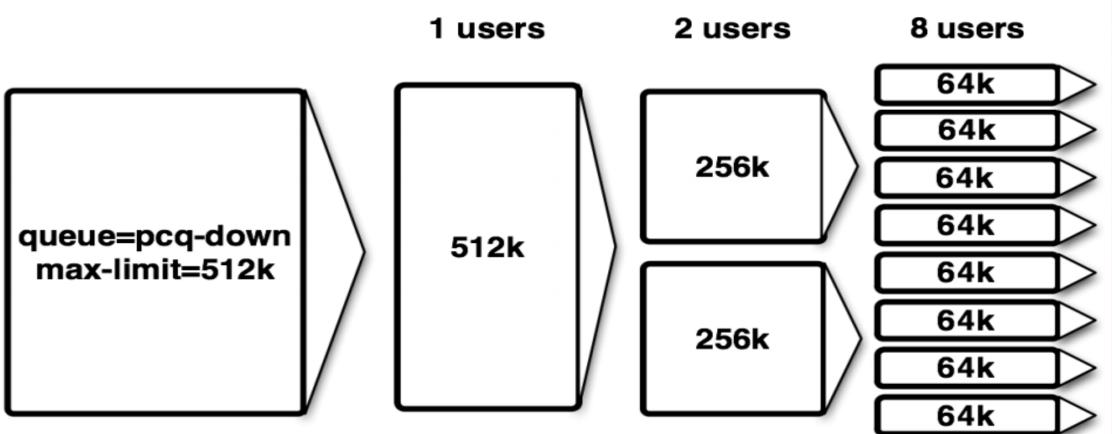


PCQ Classification Example

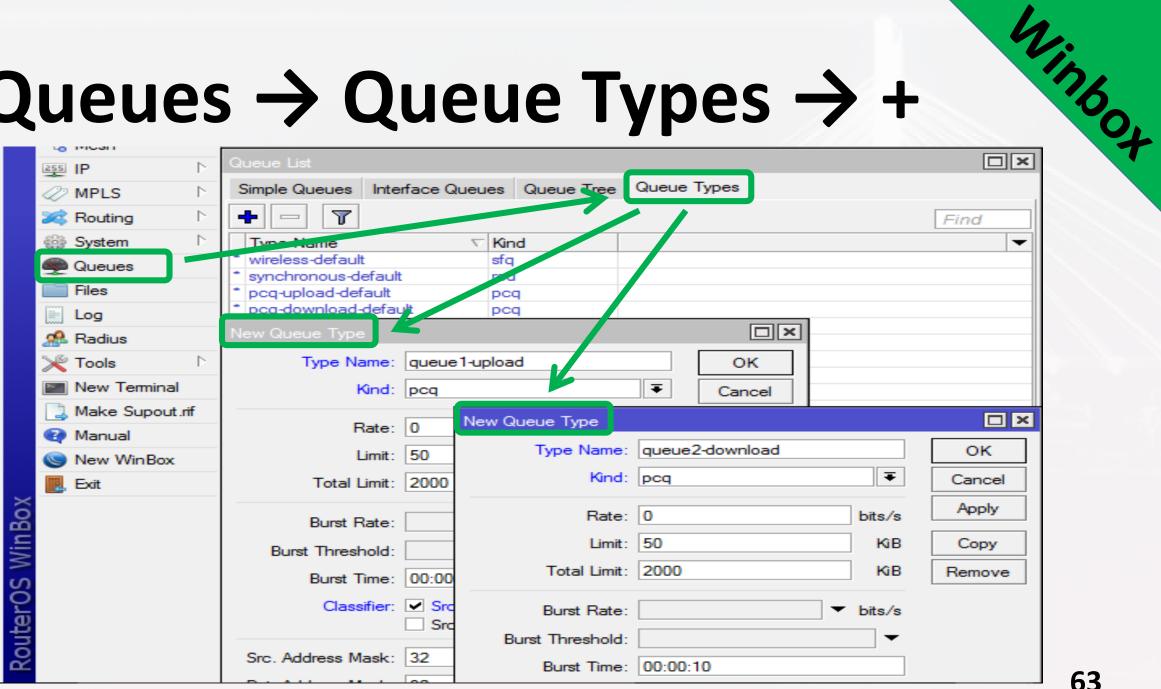
59


PCQ Classification Example

60



pcq-rate=128000



PCQ in Action

pcq-rate=0

Queues \rightarrow Queue Types \rightarrow +

PCQ Configuration Caution

- PCQ takes its data from Connection Tracking
 - Connection Tracking must be enabled
- If both limits (pcq-rate and max-limit) are unspecified, queue behavior can be imprecise
- So it is strongly suggested to have at least one of these options set

Simple Queues & Queue Tree Combo

- A major aspect of QoS is traffic prioritization
- A major aspect of Bandwidth Management is client limitation
- Prioritization can be done on Forward Mangle & Queue Tree
- Limitation can be done with Simple Queue by targeting IP address

Implementation Summary

- We used Mangle, Address List, Simple Queues and Queue Tree:
 - Mark packets by traffic type in Mangle Chain
 - Classify clients by IP address in Address List
 - Prioritize and limit traffic by type in Global HTB
 - Limit traffic per client in Simple Queue
 - Utilize PCQ to ensure a good Quality of Experience

Conclusion

- MikroTik RouterOS is one of the most advanced (and easy to configure) OS for bandwidth management and QoS
- Understanding the packet flow diagram is required to set the ball rolling
- A knowledgeable combination of the right tools (mangle, simple queue, queue tree, etc) will bring about the desired results

Acknowledgements

- This presentation would not have been possible without the vision behind TikTube
 - Thank you MikroTik & the Latvia crew
 - Please, kindly rename your YouTube Channel to TikTube
- Valens Riyadi
 - King of QoS

 He has several related video presentations & PDF slides online

Thank you

MUM NIGERIA LAGOS, NOVEMBER 28, 2017

Questions