Playing with RouterOS's VLANs

By Lorenzo Busatti

UNITED STATES ON APRIL 04 - 05, 2019

Lorenzo Busatti - Grosseto – ITALY

- Founder of Grifonline S.r.l. [ISP] 1997
- A user of MikroTik since 2006
- Founder of Linkwave [WISP] 2006
- MikroTik Trainer since 2010:

MTCNA, MTCWE, MTCRE, MTCTCE, MTCUME,

MTCINE, MTCIPv6E, MTCSE

Member of RIPE, AMS-IX, MIX-IT

OUTING & WIRELE

Proud member of RoutedWorld.com

- Access Point Redundancy (2011 Las Vegas/US 2012 Warsaw/PL)
- A redundant router for \$79,99 (2012 Dubai/UAE)
- Peering the World (Fortaleza 2014/BR 2015 Prague/CZ 2016 Copenhagen/DK)
- The mAP and the mAP lite: The wireless swiss knife always in your pocket (2016 Dallas/US)
- UserManager: a free radius server for Wireless, Hotspot, PPP, users and DHCP. (2016 Copenhagen/DK)
- NetFlow: what happens in your network? (2016 Ljubljana/SL)
- What's new in wireless since RouterOS v6.37 (2017 Milan/IT)

ROUTING & WIRELE

- The evolution of the wireless package 6.40-6.42 (2018 Berlin/DE)
- Common MikroTik OSPF mistakes and how to avoid them (2019 Vienna/A)

Founder (2016) of the

High Quality Training Classes

One of the founders (2017) of the Riga Bootcamp!

The Schedule

• 2 0 1 9

THE FULL SCHEDULE

https://www.mikrotik.camp

RIGA

lahtia

Dedicated to Max

Abstract

RouterOS allows you to work with VLANs in different ways.

By software, by the switch chip and by the bridges .

This presentation will try to cover the pros/cons of these approaches and to show some tips.

VLANs seem to be simple to deploy, but can actually be very complex.

Even simple operations can be tricky if you don't know where and how to put your hands.

While delivering many training courses I discovered that VLANs are often used improperly: that's why I made this presentation ⁽³⁾

The target of this presentation is to understand how you can made the VLANs in these 3 places and the differences between them.

Is not a step-by-step tutorial about all the VLANs things.

A virtual LAN (VLAN) is any broadcast domain that is partitioned and isolated at the data link layer (OSI layer 2), invented by Dr. W. David Sincoskie and then described in the first edition of the IEEE 802.1Q standard in the 2003.

They are made adding a VLAN ID header [0-4095] into Ethernet header:

A VLAN is a VPN (without authentication and without encryption).

I'm used to say that's for free \bigcirc

ROUTING & WIRELESS

ADEM

The definitions of the "port role" are not uniformed as standard, they are usually different between vendors.

But the following ones are almost universally adopted by technicians.

VLAN Terms

Tagged: All packets forwarded by the interface contain VLAN information.

Untagged: Packets forwarded by the interface are untagged.

Access port: Belong to one VLAN – Port is untagged

Hybrid port: Multiple VLANs can be untagged and tagged

Trunk port: Carry multiple VLANs on a single physical link

Today is possible to manage the VLANs in RouterOS in 3 different main places:

- They are managed in the same manner?
- They can be setup using the same commands?
- They have the same performances?

No, No and No.

So let me show you the differences between them and you will enjoy the VLANs under RouterOS ^(C)

These are **software** VLANs,

I mean that the traffic will

affect and will be affected by the **CPU**.

Interfaces

They are available on **any** the RouterOS devices.

These are hardware VLANs,

The traffic will be managed

by the switch chip at wire speed and will **not**

affect the CPU.

💬 Switch

They are only available on the RouterOS devices with the **switch chip**.

The VLANs managed in the

bridge can be **software or**

hardware, depending of the presence of the switch chip and how is configured!

Your knowledge will determine if the CPU will be affected or not!

We have different "places" to manage them, and with different performances, due the evolution of RouterOS and the MikroTik hardware devices in the last decade.

That's why is up to you to know the differences.

Can be created and managed from

Interfaces -> VLAN

I CAPSMAN	auforen Link Inthomach	Com Toronal	TD Towner			UDDD	Des des s	LTE
Interfaces Interfaces	errace List Ethernet	EOIP TUNNEL	IP Tunne	GRE TUNNE		VRRP	Bonding	LIE
🤶 Wireless 🛛 🛨 🖃 🖉								
Sig Bridge Name	🛆 Туре		MTU /	Actual MTU	L2 MTU	Tx		
PPP R R R R R R R R R R R R R R R R R R	VLAN		1500	1500	1594			0 bps
🕎 Switch								
°t8 Mesh								
255 IP								
🧷 MPLS 🗈								
🌌 Routing 💦 🖹								
🍪 System 🗅								
Sector Queues								
Files								
Log								

	New Interface	
Name of the interface	General Loop Protect Status Traffic	ОК
	Name: Man1	Cancel
	Type: VLAN	Apply
	MTU: 1500	Disable
	Actual MTU:	Comment
	L2 MTU:	Сору
The VLAN ID	MAC Address:	Remove
	ARP: enabled	Torch
	ARP Timeout:	
	VLAN ID: 1	
The 12 interface whome to	Interface: ether4	
The L2 interface where to	Use Service Tag	
ADD the tag (at egress) or		
check and remove it (at		
·		
ingress)		
	enabled running slave	

DEM

Useful to send some kind of traffic to the cpu, to run a service in a VLAN (dhcp, PPP, etc.).

Will appear as a "virtual interface".

Cuick Set	Interface Li	st									
	Interface	Interface List	Ethernet	EoIP Tunnel	IP Tunn	el GRE Tunne	el VLAN	VRRP	Bonding	LTE	
2 Wireless	+ -	*	7								[
😹 Bridge	D Name	A A	Туре И АМ		MTU 1500	Actual MTU	L2 MTU 1594	Tx		0 bos	F
PPP		3111			1000	1300	1377			0 DPS	**
🙄 Switch											

With the software VLANs you can TAG/UNTAG a traffic from any L2 interface.

Pros: can be used on **any device** (with or without the switch chip) even on the CHRs.

Cons: will use the CPU

Can be created and managed from

Switch -> Port / VLAN / Rule

For each ethernet port you can setup the <u>VLAN Mode</u> for ingress traffic as:

Disabled: will not check VLANs

fallback: checks for tagged traffic, forwards all untagged traffic.

Check/secure: checks for tagged traffic, drops all untagged traffic

Switch Port <ether< th=""><th>·4></th><th></th><th></th></ether<>	·4>		
Name:	ether4		ОК
Switch:	switch1		Cancel
VLAN Mode:	disabled	Ŧ	Apply
VLAN Header:	check disabled		
Default VLAN ID:	fallback secure		
Tograss Data:		•	
		_	
Egress Rate:		•	
	Limit Broadcasts		
	Limit Unknown Unicast	s	
	Limit Unknown Multica	sts	

The <u>VLAN Header</u> sets action which is performed on the port for **egress traffic** as:

add-if-missing: adds a
VLAN tag on egress traffic.
Should be used for trunk ports.

always-strip: removes a VLAN tag on egress traffic. Should be used for access ports.

leave-as-is: does not add
nor removes a VLAN tag on
egress traffic. Should be used for
hybrid ports.

OUTING & WIRELE

E

Switch Port <ether< th=""><th>·4></th><th></th></ether<>	·4>	
Name:	ether4	ОК
Switch:	switch1	Cancel
VLAN Mode:	disabled T	Apply
VLAN Header:	leave as is	
Default VLAN ID:	add ir missing always strip leave as is	
Ingress Rate:	•	
Egress Rate:	•	
	Limit Broadcasts	
	Limit Unknown Unicasts	
	Limit Unknown Multicasts	

The <u>default VLAN ID</u> is used when

vlan-header=alwaysstrip

and for hybrid ports to tag untagged traffic.

	Switch Port <ether< th=""><th>·4></th><th></th></ether<>	·4>	
	Name:	ether4	ОК
	Switch:	switch1	Cancel
	VLAN Mode:	disabled 🗧	Apply
	VLAN Header:	leave as is 🗧	
	Default VLAN ID:	0	
	Ingress Rate: Egress Rate:	▼ ▼	
Г		 Limit Broadcasts Limit Unknown Unicasts Limit Unknown Multicasts 	

Depending the chip switch functionality will be possible to create VLANs based rules also.

						_	
Swib	ch						
Swi	tch Port	Port Is	olation	Host	VLAN	Rule	
÷		2 🐹	T				
#	Switch	1	Ports				Src. MAC A
	New Swit	ch Rule					
	Match	Action					ОК
		Swite	:h: <mark>swit</mark>	ch1		₹	Cancel
		Por	ts:			÷	Apply
	Src. MA	C Addre:	55:			•	Disable
	Dst. MA	C Addre:	55:			•	Сору
	MA	C Protoc	ol:			-	Remove
	- ▲ ₩LA	4N					
0 ite	VLA	N Head	er:			•	
		VLAN I	.D:			•	
	VLA	AN Priori	iy:			•	
	- ▼ -IP					_	
	- ▼ - IP 6	6					

Using the switch chip you can create almost any kind of port with the VLANs. Useful to manage VLANs "like in a switch".

Pros: will not use the CPU, able to provide wire speed

Cons: available only on devices provided with a chip switch, different functions depending the **chip model (check the specs before buy!)**.

Since version 6.41 RouterOS had major changes to the bridge configuration.

Today the bridge must be used for setting up basic switching functions (if your hardware have a chip switch).

The main VLAN setting is vlan-filtering which globally controls vlanawareness and VLAN tag processing in the bridge.

lf vlan_filtering=no,

bridge ignores VLAN tags and cannot modify VLAN tags of packets.

Turning on vlan-filtering enables all bridge VLAN related functionality.

Can be created and managed from

Bridge -> VLANs

The list of VI AN IDs	Bridge VLAN <1>		
	Bridge:	bridge_lan 🗧	ОК
	VLAN IDs:	1 🔷	Cancel
	Tagged:	ether4 🔻 🜩	Apply
Interfaces with a VLAN tag	Untagged:	ether1 🗧 🖨	Disable
adding action in egress	Current Tagged:		Comment
	Current Untagged:		Сору
			Remove
Interfaces with a VLAN tag			
removing action in egress			
0 0			
	enabled		

Port VLAN ID (**pvid**):

specifies which VLAN the **untagged ingress** traffic is assigned to.

Bridge Port <eth< th=""><th>er1></th><th></th><th></th><th></th></eth<>	er1>			
General STP	VLAN S	Status		ОК
PVID:	1			Cancel
Frame Types:	admit all		₹	Apply
] [Ingres	s Filtering acking		Disable
				Comment
				Сору
				Remove
enabled		inactive	Hw. Offload	±

Ingress Filtering:

Will check if the **ingress port** is a member of the received VLAN ID in the bridge VLAN table.

Bridge Port <eth< th=""><th>ner1></th><th></th><th></th><th></th><th></th><th></th></eth<>	ner1>					
General STP	VLAN	Status				ОК
PVID:	1					Cancel
Frame Types:	admit a	I			₹	Apply
	Ingré	ess Filter Stacking	ing			Disable
						Сору
						Remove
enabled		inactiv	/e	H	w. Offload	ł

Tag Stacking:

Forces all packets to be treated as untagged packets. Packets on **ingress port** will be tagged with another VLAN tag regardless if a VLAN tag already exists. The packets will be tagged with a VLAN ID that matches

the pvid value.

Bridge Port <eth< th=""><th>er1></th><th></th><th></th></eth<>	er1>		
General STP	VLAN Status		ОК
PVID:	1		Cancel
Frame Types:	admit all	 ₹	Apply
	Ingress Filtering		Disable
			Comment
			Сору
			Remove
enabled	inactive	 Hw. Offload	

But as I told you before, the bridge can be:

A bridge can be "hardware" if:

- the device have a switch chip;
- The ports have the hw=yes
- We're using a bridge "function" that is supported by that switch chip.

If all the above conditions are satisfied then the cpu will not be used for these tasks.

The Hardware Offloading, when available and enabled, will do the job. The status bar will tell us when is activated (=hardware).

Hw Offload in the bridge, based on the chip switch model

RouterBoard/[Switch Chip] Model	Features in Switch menu	Bridge STP/RSTP	Bridge MSTP	Bridge IGMP Snooping	Bridge DHCP Snooping	Bridge VLAN Filtering	Bonding
CRS3xx series	+	+	+	+	+	+	+
CRS1xx/CRS2x x series	+	+	-	+ 1	+ 1	-	-
[QCA8337]	+	+	-	-	+ 2	-	-
[Atheros8327]	+	+	-	-	+ 2	-	-
[Atheros8227]	+	+	-	-	-	-	-
[Atheros8316]	+	+	-	-	+ 2	-	-
[Atheros7240]	+	+	-	-	-	-	-
[MT7621]	+	-	-	-	-	-	-
[RTL8367]	+	-	-	-	-	-	-
[ICPlus175D]	+	-	-	-	-	-	-

As show in the previous table, currently only CRS3xx series devices are capable of using bridge VLAN filtering and hardware offloading at the same time.

Using the bridge you can create almost any kind of port with the VLANs. Useful to manage VLANs "like in a switch" and "like in a bridge" also ^(C).

Pros: Very fexible configs, but will use the CPU (or not) depending the hardware and the settings that you made.

Cons: will use the CPU (or not) depending the hardware and the settings that you made. **(check the specs before buy!)**

VLANs examples

Are you now looking for some practical examples about the VLANs?

Check on wiki.mikrotik.com: there are plenty examples of the VLANs in these different "flavours"

(hoping that now you understand the differences between them)

Wrap up

I hope you enjoyed my presentation and that you learned the differences about the VLANs on RouterOS.

✓ Plan your setup using the right hardware.

✓ Please don't make a mess with the VLANs!

See you in Riga!

THE FULL SCHEDULE

Thank you for listening!

Q & A

https://routing.wireless.academy routing@wireless.academy

