
SECURITY PAPER
Preparation Date: 11 Dec 2016

Art of Anti Detection – 1

Introduction to AV & Detection
Techniques

Prepared by:

Ege BALCI

Penetration Tester

ege.balci<at>invictuseurope.com

INVICTUS

2

Security

TABLE OF CONTENT
1. Abstract:..3

2. Introduction..3

3. Terminology... 3

4. Common Techniques... 4
4.1 Obfuscation... 4
4.2 Packers..4
4.3 Crypters.. 5

5. The Problem About Crypters & Packers...5
5.1 PE Injection:...5

6. Perfect Approach..6

7. Heuristic Engines.. 10

8. Decrypt Shellcode...10

9. Dynamic Analysis Detection..11
9.1 Is Debugger Present:..12
9.2 Load Fake Library..13
9.3 Get Tick Count.. 13
9.4 Number Of Cores...14
9.5 Huge Memory Allocations..14
9.6 Trap Flag Manipulation... 15
9.7 Mutex Triggered WinExec..15

10. Proper Ways To Execute Shellcodes...16
10.1 HeapCreate/HeapAlloc:..16
10.2 LoadLibrary/GetProcAddress:..16
10.3 GetModuleHandle/GetProcAddress:...16

11. Multi Threading... 17

12. Conclusion..18

13. References:...19

INVICTUS

3

Security

1. Abstract:

This paper will explain effective methods for bypassing the static, dynamic and
heuristic analysis of up to date anti-virus products. Some of the methods are
already known by public but there are few methods and implementation tricks
that is the key for generating FUD(Fully Undetectable) malware, also the size of
the malware is almost as important as anti-detection, when implementing these
methods i will try to keep the size as minimum as possible. this paper also
explains the inner workings of anti-viruses and windows operating system,
reader should have at least intermediate C/C++ and assembly knowledge and
decent understanding of PE file structure.

2. Introduction

Implementing anti detection techniques should be specific for each malware type,
all the methods explained in this paper will also work for all kind of malware but
in this paper mainly focuses on stager meterpreter payloads because
meterpreter is capable of all the things that all other malware does, getting a
meterpreter session on remote machine allows many things like privilege
escalation, credential stealing, process migration, registry manipulation and allot
more post exploitation, also meterpreter has a very active community and it’s
very popular among security researchers.

3. Terminology

Signature Based Detection:
Traditional antivirus software relies heavily upon signatures to identify malware.
Substantially, when a malware arrives in the hands of an antivirus firm, it is
analysed by malware researchers or by dynamic analysis systems. Then, once it
is determined to be a malware, a proper signature of the file is extracted and
added to the signatures database of the antivirus software.

Static Program Analyze:
Static program analysis is the analysis of computer software is performed
without actually executing programs.
In most cases the analysis is performed on some version of the source code, and
in the other cases, some form of the object code.

Dynamic Program Analyze:
Dynamic program analysis is the analysis of computer software that is performed
by executing programs on a real or virtual processor. For dynamic program
analysis to be effective, the target program must be executed with sufficient test
inputs to produce interesting behavior.

Sandbox:
In computer security, a sandbox is a security mechanism for separating running
programs. It is often used to execute untested or untrusted programs or code,
possibly from unverified or untrusted third parties, suppliers, users or websites,
without risking harm to the host machine or operating system.

INVICTUS

4

Security

Heuristic Analysis:
Heuristic analysis is a method employed by many computer antivirus programs
designed to detect previously unknown computer viruses, as well as new variants
of viruses already in the "wild".Heuristic analysis is an expert based analysis that
determines the susceptibility of a system towards particular threat/risk using
various decision rules or weighing methods. MultiCriteria analysis (MCA) is one of
the means of weighing. This method differs from statistical analysis, which bases
itself on the available data/statistics.

Entropy:
In computing, entropy is the randomness collected by an operating system or
application for use in cryptography or other uses that require random data. This
randomness is often collected from hardware sources, either pre-existing ones
such as mouse movements or specially provided randomness generators. A lack
of entropy can have a negative impact on performance and security.

4. Common Techniques

When it comes to reducing a malware’s detection score first things that comes in
mind are crypters, packers and code obfuscation. These tools and techniques are
still able to bypass good amount of AV product but because of the advancements
in cyber security field most of the tools and methods in the wild is outdated and
can’t produce FUD malware. For understanding the inner workings of these
techniques and tools i will give brief descriptions;

4.1 Obfuscation

Code obfuscation can be defined as mixing the source code of the binary without
disrupting the real function, it makes static analyzing harder and also changes
the hash signatures of the binary. Obfuscation can simply be implemented whit
adding few lines of garbage code or programmatically changing the execution
order of the instructions. This method can bypass good amount of AV product
but it depends on how much you obfuscate.

4.2 Packers

Executable packer is any means of compressing an executable file and combining
the compressed data with decompression code into a single executable. When
this compressed executable is executed, the decompression code recreates the
original code from the compressed code before executing it. In most cases this
happens transparently so the compressed executable can be used in exactly the
same way as the original. When a AV scanner scans a packed malware it needs
to determine the compression algorithm and decompress it. Because of files that
packed with packers are harder to analyze malware authors have a keen interest
on packers.

INVICTUS

5

Security

4.3 Crypters

Crypters are programs that encrypts the given binary for making it hard to
analyze or reverse engineer. A crypter exists of two parts, a builder and a stub,
builder simply just encrypts the given binary and places inside the stub, stub is
the most important piece of the crypter, when we execute the generated binary
first stub runs and decrypts the original binary to memory and then executes the
binary on memory via “RunPE” method(in most cases).

5. The Problem About Crypters & Packers

Before moving on to the effective methods, there are few thinks that needs to be
acknowledged about what is wrong in well-known techniques and tools. Today's
AV companies has already realized the danger, now instead of just searching for
malware signatures and harmful behavior they also search for signs of crypters
and packers. Compared to detecting malware detecting crypters and packers is
relatively easy because of they all have to do certain suspicious things like
decrypting the encrypted PE file and executing it on the memory.

5.1 PE Injection:

In order to fully explain the in memory execution of a PE image i have to talk
about how windows loads the PE files. Generally when compiling a PE file the
compiler sets the main module address at 0x00400000, while compile process all
the full address pointers and addresses at long jump instructions are calculated
according to main module address, at the end of compiling process compiler
creates a relocation table section in PE file, relocation section contains the
addresses of instructions that depends on the base address of the image, such as
full address pointers and long jump instruction.

INVICTUS

6

Security

While in execution of the PE image, operating system checks the availability of
the PE image’s preferred address space, if the preferred space is not available,
operating system loads the PE image to a random available address on memory,
before starting the process system loader needs to adjust the absolute addresses
on memory, with the help of relocation section system loader fixes the all
address dependent instructions and starts the suspended process. All this
mechanism is called “Address Layout Randomization”.

In order to execute a PE image on memory crypters needs to parse the PE
headers and relocate the absolute addresses, simply they have to mimic system
loader witch is very unusual and suspicious. When we analyze crypters written in
c or higher level languages in almost every cases we could see these windows
API functions called “NtUnmapViewOfSection” and “ZwUnmapViewOfSection”
these functions simply unmaps a view of a section from the virtual address
space of a subject process, they play a very important role at in memory
execution method called RunPE which almost %90 of crypters uses.

Of course AV products can’t just declare malicious for every program that uses
these windows API functions, but the order of using this functions matter a lot.
There are small percentage of crypters (mostly written in assembly) witch does
not uses these functions and performs the relocation manually, they are very
effective at the time but sooner or later usage of crypters will not be profitable
because of logically no non harmful program tries to mimic the system loader.
Another downside is huge entropy increase on input files, because of encrypting
the entire PE file, entropy will rise inevitably, when AV scanners detects unusual
entropy on a PE file they will probably mark the file as suspicious.

6. Perfect Approach

The concept of encrypting the malicious code is clever but the decryption
function should be obfuscated properly and when it comes to executing the
decrypted code in memory we have to do it without relocating the absolute
addresses, also there has to be a detection mechanism checking for weather the
malware is analyzing dynamically in a sand box or not, if detection mechanism
detects that malware is being analyzed by the AV then the decryption function
shouldn’t be executed. Instead of encrypting the entire PE file encrypting
shellcodes or only the .text section of the binary is much more suitable, it keeps
the entropy and size low and makes no changes to image headers and sections.

INVICTUS

7

Security

This will be the malware flow chart.

INVICTUS

8

Security

Our “AV Detect.” function will detect if the malware is being analyze dynamically
in a sandbox or not, if the function detects any sign of AV scanner then it will call
the main function again or just crash, if “AV Detect” function don’t finds any sign
of AV scanner it will call the “Decrypt Shellcode” function

This is meterpreter reverse TCP shellcode in raw format.

INVICTUS

9

Security

For keeping the entropy and size in appropriate value i will pass this shellcode to
simple xor cipher with a multi byte key, xor is not an encryption standard like
RC4 or blowfish but we don’t need a strong encryption anyway, AV products is
not going to try to decrypt the shellcode, making it unreadable and undetectable
for static string analysis is enough, also using xor makes decryption process
much faster and avoiding the encryption libraries in code will reduce the size a
lot.

This is the same meterpreter code XOR ciphered with key.

Because of we are writing a new piece of malware, our malware’s hash signature
will not be known by the anti virus products, so we don’t need to worry about
signature based detection, we will encrypt our shellcode and obfuscate our anti
detection/reverse engineering and decryption functions also these will be enough
for bypassing static/heuristic analysis phase, there is only one more phase we
need to bypass and it is the dynamic analysis phase, most important part is the
success of the “AV detect” function, before starting to write the function we need
to understand how heuristic engines of AV products works.

INVICTUS

10

Security

7. Heuristic Engines

Heuristic engines are basically statistical and rule based analyze mechanisms.
Their main purpose is detecting new generation(previously unknown) viruses by
categorizing and giving threat/risk grades to code fragments according to
predefined criterias, even when a simple hello world program scanned by AV
products, heuristic engine decides on a threat/risk score if the score is higher
then thresholds then the file gets marked as malicious. Heuristic engines are the
most advanced part of AV products they use significant amount of rules and
criterias, since no anti virus company releases blueprints or documentation about
their heuristic engines all known selective criterias about their threat/risk grading
policy are found with trial and error.

Some of the known rules about threat grading;
- Decryption loop detected
- Reads active computer name
- Reads the cryptographic machine GUID
- Contacts random domain names
- Reads the windows installation date
- Drops executable files
- Found potential IP address in binary memory
- Modifies proxy settings
- Installs hooks/patches the running process
- Injects into explorer
- Injects into remote process
- Queries process information
- Sets the process error mode to suppress error box
- Unusual entropy
- Possibly checks for the presence of antivirus engine
- Monitors specific registry key for changes
- Contains ability to elevate privileges
- Modifies software policy settings
- Reads the system/video BIOS version
- Endpoint in PE header is within an uncommon section
- Creates guarded memory regions
- Spawns a lot of processes
- Tries to sleep for a long time
- Unusual sections
- Reads windows product id
- Contains decryption loop
- Contains ability to start/interact device drivers
- Contains ability to block user input

When writing our AV detect and Decrypt Shellcode functions we have to be
careful about all this rules.

8. Decrypt Shellcode

Obfuscating the decryption mechanism is vital, most of AV heuristic engines are
able to detect decryption loops inside PE files, after the huge increase on
ransomware cases even some heuristic engines are build mainly just for finding
decryption routines, after they detect a decryption routine, some scanners waits
until ECX register to be “0” most of the time that indicates the end of loop, after

INVICTUS

11

Security

they reach the end of the decryption loop they will re analyze the decrypted
content of the file.

This will be the “Decrypt Shellcode” function

It is a for loop that makes logical xor operation between a shellcode byte and a
key byte, below and above assembly blocks literally does noting, they cover the
logical XOR operation with random bytes and jumps over them. Because of we
are not using any advanced decryption mechanism this will be enough for
obfuscating “Decrypt Shellcode” function.

9. Dynamic Analysis Detection

Also while writing the sandbox detection mechanism we need to obfuscate our
methods, if the heuristic engine detects any sign of anti reverse engineering
methods it would be very bad for malware’s threat score.

INVICTUS

12

Security

9.1 Is Debugger Present:

Our first AV detection mechanism will be checking for debugger in our process
There is a windows API function for this operation it ”Determines whether the
calling process is being debugged by a user-mode debugger.” but we will not use
it because of most AV products are monitoring the win API calling statements,
they probably detect and treat this function as a anti reverse engineering method.
Instead of using the win API function we will go and look at the “BeingDebuged”
byte at PEB block.

With some inline assembly this piece of code points a pointer to the
BeingDebuged byte in PEB block, if debugger present it will check again until a
overflow occurs in stack, when an overflow occurs the stack canaries will trigger
an exception and process will be closed, this is the shortest way to exit the
program. Manually checking the BeingDebuged byte will bypass good amount of
AV product but still some AV products have taken measures about this issue so
we need to obfuscate the code for avoiding the static string analysis.

INVICTUS

13

Security

Adding exact jump instruction after all operation will not effect our purpose but
adding garbage bytes between jumps will obfuscate the code and avoid static
string filters.

9.2 Load Fake Library

In this method we will try to load a non existing dll on runtime. Normally when
we try to load a non existing dll, HISTENCE returns NULL, but some dynamic
analysis mechanisms in AV products allows such cases in order to further
investigate the execution flow of the program.

9.3 Get Tick Count

In this method we will be exploiting the time deadline of AV products. In most
cases AV scanners are being designed for end user, they need to be user friendly
and suitable for daily usage this means they can’t spend too much time for
scanning files they need to scan files as quickly as possible. At first malware
developers used “sleep()” function for waiting until the scan complete, but
nowadays this trick almost never works, every AV product skips the sleep
function when they encountered one. We will use this against them , below code

INVICTUS

14

Security

uses a win API function called “GetThickCount()” this function “Retrieves the
number of milliseconds that have elapsed since the system was started, up to
49.7 days.” we will use it to get the time passed since OS booted, then try to
sleep 1 second, after sleep function we will check weather sleep function is
skipped or not by comparing the two GetTickCout() value.

9.4 Number Of Cores

This method will simply check the number of processor cores on the system.
Since AV products can’t afford allocating too much resource from host computer
we can check the core number in order to determine are we in a sandbox or not.
Even some AV products does not support multi core processing so they shouldn’t
be able to reserve more than 1 processor core to their sandbox environment.

9.5 Huge Memory Allocations

This method also exploits the time deadline on each AV scan, we simply allocate
nearly 100 Mb of memory then we will fill it with NULL bytes, at the end we will
free it.

When the programs memory starts to grow on runtime eventually AV scanners
will end the scan for the sake of not to spend too much time on a file, this
method can be used multiple times. This is a very primitive and old technique
but it still bypasses good amount of scanners.

INVICTUS

15

Security

9.6 Trap Flag Manipulation

The trap flag is used for tracing the program. If this flag is set every instruction
will raise “SINGLE_STEP” exception. Trap flag can be manipulated in order thwart
tracers. We can manipulate the trap flag with below code,

9.7 Mutex Triggered WinExec

This method is very promising because of its simplicity, we create a condition for
checking whether a certain mutex object already exists on the system or not.

If “CreateMutex” function does not return already exists error we execute the
malware binary again, since most of the AV products don’t let programs which
are dynamically analyzing to start new processes or access the files outside the
AV sandbox, when the already exist error occurs execution of the decrypt
function may start. There are much more creative ways of mutex usage in anti-
detection.

INVICTUS

16

Security

10. Proper Ways To Execute Shellcodes

Starting with Windows Vista, Microsoft introduced Data Execution Prevention or
DEP, a security feature that can help prevent damage to your computer by
monitoring programs from time to time. Monitoring ensures that running
program uses system memory efficiently. If there is any instance of a program
on your computer using memory incorrectly, DEP notices it, closes the program
and notifies you. That means you can’t just put some bytes to an char array and
execute it, you need to allocate a memory region with read, write and execute
flags using windows API functions.

Microsoft has several memory manipulation API functions for reserving memory
pages, most of the common malware in the field uses the “VirtualAlloc” function
for reserving memory pages, as you can guess common usage of functions helps
AV products with defining detection rules, using other memory manipulation
functions will also do the trick and they may attract less attention.

I will list several shellcode execution methods with different memory
manipulation API function,

10.1 HeapCreate/HeapAlloc:

Windows also allows creating RWE heap regions.

10.2 LoadLibrary/GetProcAddress:

LoadLibrary and GetProcAddress WINAPI function combination allows us to use
all other win api functions, with this usage there will be no direct call to the
memory manipulation function and malware will probably be less attractive.

10.3 GetModuleHandle/GetProcAddress:

This method does not even use the LoadLibrary function it takes advantage of
already loaded kernel32.dll, GetModuleHandle function retrieves the module

INVICTUS

17

Security

handle from an already loaded dll, this method is possibly one of the most silent
way to execute shellcode.

11. Multi Threading

It is always harder to reverse engineer multi threaded PE files, it is also
challenging for AV products, multi threading approach can be used with all
execution methods above so instead of just pointing a function pointer to
shellcode and executing it creating a new thread will complicate things for AV
scanners plus it allow us to keep executing the “AV Detect” function while
executing the shellcode at same time.

Above code executes the shellcode with creating a new thread, just after creating
the thread there is a infinite while loop that is executing bypass av function, this
approach will almost double the effect of our bypass av function, bypass AV
function will be keep checking for sandbox and dynamic analysis signs while
shellcode runs, this is also vital for bypassing some advanced heuristic engines
that waits until the execution of the shellcode.

INVICTUS

18

Security

12. Conclusion

Towards the end there are few more thinks that needs to be covered about
compiling the malware, when compiling the source, safeguards like stack savers
need to be on and striping the symbols is vital for hardening the reverse
engineering process of our malware and reducing the size, compiling on visual
studio is recommended because of the inline assembly syntax that used in this
paper.

When all of this methods combined, generated malware is able to bypass 35
most advanced AV product,

POC Video:https://pentest.blog/art-of-anti-detection-1-introduction-to-av-
detection-techniques

INVICTUS

19

Security

13. References:

[1] - https://en.wikipedia.org/wiki/Antivirus_software
[2] - https://en.wikipedia.org/wiki/Static_program_analysis
[3] - https://en.wikipedia.org/wiki/Dynamic_program_analysis
[4] - https://en.wikipedia.org/wiki/Sandbox_(computer_security)
[5] - https://en.wikipedia.org/wiki/Heuristic_analysis
[6] - https://en.wikipedia.org/wiki/Entropy
[7] - https://en.wikipedia.org/wiki/Address_space_layout_randomization
[8] - https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366553(v=vs.85).aspx
The Antivirus Hacker’s Handbook
The Rootkit Arsenal: Escape and Evasion: Escape and Evasion in the Dark
Corners of the System
http://venom630.free.fr/pdf/Practical_Malware_Analysis.pdf
http://pferrie.host22.com/papers/antidebug.pdf
https://www.symantec.com/connect/articles/windows-anti-debug-reference
https://www.exploit-db.com/docs/18849.pdf
http://blog.sevagas.com/?Fun-combining-anti-debugging-and

	Abstract:
	Introduction
	Terminology
	Common Techniques
	Obfuscation
	Packers
	Crypters
	The Problem About Crypters & Packers
	PE Injection:
	Perfect Approach
	Heuristic Engines
	Decrypt Shellcode
	Dynamic Analysis Detection
	Is Debugger Present:
	Load Fake Library
	Get Tick Count
	Number Of Cores
	Huge Memory Allocations
	Trap Flag Manipulation
	Mutex Triggered WinExec
	Proper Ways To Execute Shellcodes
	HeapCreate/HeapAlloc:
	LoadLibrary/GetProcAddress:
	GetModuleHandle/GetProcAddress:
	Multi Threading
	Conclusion
	References:

