
Automated Crowdturfing Attacks and Defenses in
Online Review Systems

Yuanshun Yao

ysyao@cs.uchicago.edu

University of Chicago

Bimal Viswanath

viswanath@cs.uchicago.edu

University of Chicago

Jenna Cryan

jennacryan@cs.uchicago.edu

University of Chicago

Haitao Zheng

htzheng@cs.uchicago.edu

University of Chicago

Ben Y. Zhao

ravenben@cs.uchicago.edu

University of Chicago

ABSTRACT
Malicious crowdsourcing forums are gaining traction as sources

of spreading misinformation online, but are limited by the costs of

hiring and managing human workers. In this paper, we identify a

new class of attacks that leverage deep learning language models

(Recurrent Neural Networks or RNNs) to automate the generation

of fake online reviews for products and services. Not only are these

attacks cheap and therefore more scalable, but they can control rate

of content output to eliminate the signature burstiness that makes

crowdsourced campaigns easy to detect.

Using Yelp reviews as an example platform, we show how a two

phased review generation and customization attack can produce

reviews that are indistinguishable by state-of-the-art statistical

detectors. We conduct a survey-based user study to show these

reviews not only evade human detection, but also score high on

“usefulness” metrics by users. Finally, we develop novel automated

defenses against these attacks, by leveraging the lossy transfor-

mation introduced by the RNN training and generation cycle. We

consider countermeasures against our mechanisms, show that they

produce unattractive cost-benefit tradeoffs for attackers, and that

they can be further curtailed by simple constraints imposed by

online service providers.

CCS CONCEPTS
• Security and privacy → Social aspects of security and pri-
vacy; • Computing methodologies → Natural language gen-
eration; Neural networks;

KEYWORDS
Web Security; Crowdturfing; Fake Review; Opinion Spam

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00

https://doi.org/10.1145/3133956.3133990

1 INTRODUCTION
The Internet is no longer the source of reliable information it once

was. Today, misinformation is being used as a tool to harm com-

petitors, win political campaigns, and sway public opinion. Clashes

between conflicting accounts occur daily on social networks and

online discussion forums, and the trustworthiness of many online

information sources is now in question.

One highly effective weapon for spreading misinformation is the

use of crowdturfing campaigns [30, 46, 74], where bad actors pay

groups of users to perform questionable or illegal actions online.

Crowdturfing marketplaces are the corrupt equivalents of Amazon

Mechanical Turk, and are rapidly growing in China, India and

the US [30, 74]. For example, an attacker can pay workers small

amounts to write negative online reviews for a competing business,

often fabricating nonexistent accounts of bad experiences or service.

Since these are written by real humans, they often go undetected

by automated tools looking for software attackers.

Thankfully, two factors limit the growth and impact of crowd-

turfing campaigns. First, they require monetary compensation for

each task performed. Larger campaigns can incur significant cost

on an attacker, and this limits the scale of many campaigns. Sec-

ond, the predictable reaction of workers often produce actions (and

output) synchronized in time, which can be effectively used as a

feature to classify and identify crowdturfing campaigns [30, 74].

A more knowledgeable attacker can apply adversarial techniques

(e.g. poisoning training data, targeted evasion) against machine

learning (ML) classifiers, but such techniques have limited impact,

and require significant coordination across workers [73].

But just as ML classifiers can effectively detect these attacks,

advances in deep learning and deep neural networks (DNNs) can

also serve to make these attacks much more powerful and diffi-

cult to defend. Specifically, we believe that in limited application

contexts, DNNs have reached a point where they can produce suffi-

ciently clear and correct content effectively indistinguishable from

those produced by humans. To illustrate our point, we focus on

the domain of online reviews for e-commerce products and ser-

vices, where millions of users upload reviews to sites such as Yelp,

TripAdvisor and Amazon. Online reviews tend to be short, and

focused on a limited range of topics defined by the application

domain, e.g. quality of food and service at a restaurant. We believe

that well designed and tuned DNNs are now capable of producing

realistic online reviews. If successful, attack campaigns using DNN-

based fake reviews would be much more powerful, because they

are highly scalable (no per-review payments to human writers) and

ar
X

iv
:1

70
8.

08
15

1v
1

 [
cs

.C
R

]
 2

7
A

ug
 2

01
7

https://doi.org/10.1145/3133956.3133990

harder to detect, as scripts can control the rate of review generation

to avoid the telltale burstiness that makes crowdsourced reviews

so easily detectable [30, 73].

In this paper, we identify a class of attacks based on DNN-based

fake review generation. We demonstrate that DNN-based review

generators are practical and effective, using a combination of ML-

trained review generation and context-based customization. Using

Yelp restaurant reviews as a target platform, we show empirically

that synthetic reviews generated by our tools are effectively indis-

tinguishable from real reviews by state-of-the-art detectors relying

on linguistic features. We carry out a user study (N=600) and show

that not only can these fake reviews consistently avoid detection

by real users, but they provide the same level of user-perceived

“usefulness” as real reviews written by humans.

We then examine potential defenses, and propose anML-classifier

based defense that leverages the inherent computational limitations

of most RNNs against the attacker. This leverages the fact that gen-

erative language models build fixed memory presentations of the

entire training corpus, which limits the amount of information that

can be captured from the training corpus. We show that the cycle

of processing real reviews through a RNN-based model training

and text generation is lossy, and the resulting loss can be detected

by comparing the character level distribution of RNN-generated re-

views against those written by real users. We also consider potential

countermeasures, and show that increasing model complexity pro-

duces diminishing returns in evasion, while resource costs increase

dramatically.

In summary, our work produces several key takeaways:

(1) We demonstrate the feasibility of automated generation of

product reviews for online review sites, using a RNN-based

approach for review generation and customization. Our key

insight is that while automated generation of arbitrary length

content is challenging, generation of shorter text in fixed

application domains is practical today.

(2) We show that RNN-based synthetic reviews are robust against

state of the art statistical andML-based detectors. In addition,

our user-study shows they are largely indistinguishable from

real reviews to human readers, and appear to provide similar

levels of “usefulness” utility as determined by readers.

(3) We propose a novel defense that leverages the information

loss inherent in an RNN training process to identify statisti-

cally detectable variations in the character-level distribution

of machine-generated reviews. We show that our defense is

robust against countermeasures, and that avoiding detection

involves the attacker paying rapidly accelerating costs for

diminishing returns.

We believe this is a practical new attack that can have significant

impact on not only user-generated review sites like Yelp, but poten-

tial attacks on content generation platforms such as Twitter and

online discussion forums. We hope these results will bring attention

to the problem and encourage further analysis and development of

new defenses.

2 PRELIMINARIES
We begin our discussion with backgroundmaterial on online review

systems, and content generation based on deep learning networks

(RNNs in particular). For simplicity, we focus our discussion on

online review systems such as Yelp, Amazon and TripAdvisor.

2.1 Crowdsourced Attacks on Review Systems
Most popular e-commerce sites today rely on user feedback to

rate products, services, and online content. Crowdsourced feedback

typically includes a review or opinion, describing a user’s experience

of a product or service, along with a rating score (usually on a 1 to

5 scale).

Unfortunately, many review systems are plagued by fake reviews,
e.g., Yelp [7], Amazon [37], iTunes [40] and TripAdvisor [6], where

an attacker manipulates crowd opinion using fake or deceptive

reviews. To boost their reputation or to damage that of a competitor,

businesses can solicit fake reviews that express an overly positive

or negative opinion about a business [7, 30, 74]. Studies on Yelp

found that a one star rating increase for restaurants can lead to a

5–9% boost in revenue [34].

Sites like Yelp and Amazon have been consistently engaged in a

cat and mouse battle with fake reviews, as attackers try to adapt

and bypass various defense schemes [18]. Yelp’s review filter system
flags suspicious reviews and even raises an alert to the consumer if

a business is suspected of engaging in large-scale opinion manipu-

lation [80].

Recently, attacks have been known to generate highly deceptive

(authentic looking) fake reviews written by paid users. Much of

this comes from malicious crowdsourcing marketplaces, known as

crowdturfing systems, where a large pool of human workers provide

on-demand effort for completing various malicious tasks [54, 59]. In

the next section, we introduce an attack powered by an AI program

that can replace human writers and achieve high attack success.

2.2 Our Attack Model
We assume the attacker’s goal is to use an AI program to generate

fake reviews that are indistinguishable from real reviews written

by human users. We only focus on the generation of review text,

which is crucial to deceive users and to manipulate their opinion.

We do not consider the manipulation of metadata associated with

a review or reviewer. Metadata can include any information other

than the textual content, e.g., reviewer reputation, review history,

posting date and IP address.

Key Insight. There have been significant recent advances in build-

ing probabilistic generative language models on Neural Networks,

specifically Recurrent Neural Networks (RNNs). Even trained on

large datasets, RNNs have generally fallen short in producing writ-

ing samples that truly mimic human writing [50]. However, our

insight is that the quality of RNN-generated text is likely more than

sufficient for applications relying on domain-specific, short length

user-generated content, e.g., online reviews.

Assumptions.

• The attacker has access to a corpus of real reviews to train

the generative language model. Popular sites like Yelp have

already released large review datasets [79]. Attackers can also

Attacker Human Writer

(a) Human-based attack.

Attacker AI Program

(b) Machine-based attack.

Figure 1: Fake review attack: Human-based vs. Machine-
based.

download reviews, or large review datasets made public by

researchers [15, 35, 38].

• The attacker has knowledge of the domain of a product (e.g.,
cameras) or business (e.g., restaurants, clothing stores) which

allows training on a review corpus that matches the domain.

• The attacker has access to sufficient computational resources

for training neural networks. Today, commodity GPU ma-

chines can efficiently train DNNs, and can be easily purchased

or accessed in the Cloud [36].

2.3 RNNs vs. Crowdsourced Authors
Traditional attacks using fake reviews typically hire human writers

to write reviews. Instead, our work considers automated, machine-

based review attacks leveraging DNN-based language models (see

Figure 1). Here, we compare the two approaches and highlight the

benefits of automated review attacks.

The key difference between these two approaches is the quality

of writing in the generated text content. To influence user opin-

ion and alter decisions, fake reviews need to be written in such

a way to mimic content written by real users. Broken grammar,

misspellings and broken context can make a review appear fake. Ex-

isting machine-based text generations techniques, such as n-gram
models and template-based models are known to have limitations in

generating realistic-looking text [42, 77]. Hence, the reviews gener-

ated based on those techniques are likely to be identified as fake

by readers [82]. In contrast, a generative RNN model can generate

much more coherent text [2, 43], but still falls short for larger types

of content [50].

There are some obvious benefits to using a software-controlled

RNN to generate fake reviews. First, it removes the cost of paying

human writers, which costs $1-$10 per review on Yelp according

to prior work [55]. To further obtain an independent estimate, we

search Blackhat SEO Forum
1
for “Yelp reviews,” and observe an

average price of $19.6 per review based on a random sample of 20

posts. Perhaps more importantly, software generators can control

the specific timing and output of reviews, so they are harder to de-

tect. When attackers launch large-scale fake review campaigns

1
https://www.blackhatworld.com/

Target Char

Sequence

Input Char

 Sequence

‘t’

‘h’

‘h’ ‘i’ ‘s’

t = 2 t = 3 t = 4

‘i’ ‘s’ ‘ ’

‘ ’

t = 5

‘i’

‘i’

t = 6

‘s’

‘s’

t = 7

‘ ’

t = 1

Input Layer Hidden Layer Output Layer

Figure 2: RNN generative model training.

using human writers, workers tend to rapidly generate the re-

quested reviews, producing a burst in new reviews that is easily

detected [30, 73].

2.4 RNN as a Text Generative Model
We provide background on text generation using Recurrent Neural

Networks.

Neural Networks are computational models that use a connected

network of neurons to solve machine learning tasks. Neurons serve

as the basic computational units in a Neural Network. In this work,

we focus on a specific class of Neural Networks known as Recurrent

Neural Networks (RNNs), which are better suited for sequential

data. RNNs can learn from a large corpus of natural language text

(character or word sequences), to generate text at different levels

of granularity, i.e. at the character level or word level. We focus

on a character-level RNN due to its recent success on generating

high quality text [14, 28]. Also, the memory and computational cost

required to train a character-level RNN is lower than word-level

RNN since number of words is significantly larger than number of

valid characters in the English Language.

RNN Training. As mentioned before, traditional language models

(e.g., n-gram models) exhibit limited performance when trained

on long text sequences since they are able to look back only a

few steps of the sequence. RNN solves this problem by building a

more sophisticated “memory” model which maintains long term

information about what it has seen so far. In an RNN, “memory” is

a set of high dimensional weights (hidden states) learned during

the training stage to capture information about all characters seen

in the training sequence.

Figure 2 illustrates the training process of an RNN-based text

generation model. At each time step t , a new character xt is fed as

input to a memory unit of the RNN that maintains a hidden state ht,

and provides an output ot. Then it compares the current output ot

with the desired output, which is the next character in the text. The

error between them is computed and the hidden states are updated

towards the direction where the error is minimized. After multiple

iterations of updates, the hidden layer will eventually capture the

relationship between each input character and all characters prior

to it, i.e. the conditional probability distribution P(xt+1|(x1, . . . , xt)).
Text Sampling. After an RNN model is trained, text can be gener-

ated by feeding a character, say x̃0, to the trained RNN. The RNN

returns a probability distribution that defines which characters are

likely to occur next, i.e. P(x̃1 |x̃0). We stochastically sample from

this distribution to obtain the next character x̃1. Next, by feeding

https://www.blackhatworld.com/

Target Review PlatformOnline Review Corpus

RNN Training Initial Review Generation

Trained RNN

Uncustomized Review

Review Customization

Existing Reviews

Customized Review

Figure 3: Overview of our attack methodology.

x̃1 back in to the RNN, we obtain another probability distribution

predicting the next character, i.e. P(x̃2 |x̃0, x̃1). This process can be

repeated to generate continuous text x̃0, x̃1, x̃2, . . . , x̃N.

Temperature Control. An important parameter that we can ma-

nipulate during the sampling stage is temperature. Temperature is a

parameter used in the softmax function during the sampling stage

when converting the output vector ot to a probability distribution.

Formally:

P(xt |(x1, . . . , xt-1)) = softmax(o
t
) (1)

eachot is a N-dimentional vector where N is the size of the character

vocabulary. The softmax function is defined as:

P(softmax(ot) = k) = e
o
k

t
/T∑

N

j=1
e
o
j

t
/T

(2)

Here, o
k

t
represents the component of the output corresponding

to the character class k (in the vocabulary), at time t , for a given
temperature, T .

Temperature controls the “novelty” of generated text. Tempera-

tures lower than 1 amplifies the difference in the sampling probabil-

ity for each character. In other words, this reduces the likelihood of

the RNN to pick characters with lower probabilities, in preference of

more common characters. As a result, this constrains the sampling,

and generates less diverse text, and more potentially repetitive

patterns. As temperature increases, the variation of sampling prob-

ability for each character diminishes, and the RNN will generate

more “novel” and diverse text. But along with diversity comes a

higher risk of mistakes (e.g., spelling errors, context inconsistency

errors etc.).

3 ATTACK METHODOLOGY AND SETUP
We focus our study on Yelp, the most popular site for collecting

and sharing crowdsourcing user reviews. Yelp’s review system is

representative of other review systems, e.g., Amazon or TripAdvi-

sor. In this section, we describe details of our attack methodology,

datasets and training setup.

3.1 Attack Methodology
Our attack methodology is illustrated in Figure 3. At a high level,

the attack consists of two main stages: (1) The first stage starts

by training a generative language model on a review corpus. The

language model is then used to generate a set of initial reviews. (2)

In the second stage, a customization component further modifies

these reviews to capture specific information about the target entity

(e.g., names of dishes in a seafood restaurant), and produces the

final targeted fake review. In our experiments, the customizable

content is extracted from a reference dataset, composed of existing

reviews associated with the target entity. If there are no existing

reviews, an attacker can build a reference dataset using reviews of

entities in the same category (e.g., seafood restaurants) as the target.
Restaurant category metadata is available on Yelp and similar sites,

and can be used to identify similar entities.

Generating Initial Reviews. First, the attacker chooses a training
dataset that matches the domain of the target entity. For example, to

generate reviews targeting restaurants, the attacker would choose a

dataset of restaurant reviews. Next, the attacker trains a generative

RNN model using the dataset. Afterwards, the attacker generates

review text using the sampling procedure in Section 2.4. Note that

the attacker is able to generate reviews at different temperatures.

Review Customization. In general, there is no control over the

topic or context (e.g., name of a food in a restaurant) generated

from the RNN model, since the text is stochastically sampled based

on the character distribution. To better target an entity (e.g., restau-
rant), we further capture the context by customizing the generated

reviews with domain-specific keywords. This is analogous to crowd-

sourced fake review markets, where workers are typically provided

additional information about the target entity for a writing task [59].

The information consists of specific nouns (e.g., names of dishes)

to be included in the written review. Based on this observation, we

propose an automated noun-level word replacement strategy.

Our method works by replacing specific words (nouns) in the

initial review with new words that better capture the context of the

target entity. This involves three main steps:

(1) Choose the type of contextual information to be captured. The
attacker first chooses a keyword C that helps to identify the

context. For example, if the attacker is targeting a restaurant,

the keyword can be “food,” which will capture the food-related

context. If the target is an online electronic accessories store,

then the keyword can be “accessory” or “electronics.”

(2) Identify words in reviews of the reference dataset that capture
context. Next, our method identifies all the nouns in the refer-

ence dataset that are relevant to the keyword C . Relevancy is

estimated by calculating lexical similarity using WordNet [44],

a widely used lexical database that groups English words into

sets of synonyms and measures their concept relatedness [51].

We identify a set of words p in the reference dataset that have

high lexical similarity with the keyword C , using a similarity

I love this place. I love their

sushi. The salmon and ramen are

also delicious. I will continue to

come here anytime I am in town.

Review 1: Easily my favorite Italian restaurant. I love the taster menu, everything is amazing on it. I

suggest the carpaccio and the asparagus. Sadly it has become more widely known and becoming diffi-

cult to get a reservation for prime times.

Review 2: I come here every year during Chrismas and I absolutely love the pasta! Well worth the price!

Review 3: Excellent pizza, lasagna and some of the best scallops I've had. The dessert was also exten-

sive and fantastic.

I love this place. I love their aspar-

agus. The scallops and pasta are

also delicious. I will continue to

come here anytime I am in town.

Initial Review Customized Review

Reviews From the Reference Dataset

Figure 4: Example of review customization.

threshold MINsim. The set of words p captures the context of

the target entity.

(3) Identify words in initial reviews for replacement. Finally, we find
all the nouns in the review set R that are also relevant toC using

the same method in Step 2. We replace them by stochastically

sampling words in p based on the lexical similarity score.

A detailed version of the above algorithm is available in Appen-

dix A. Figure 4 shows an example of customizing an initial review

that has language more suitable for a Japanese restaurant, to a

review more suitable for an Italian restaurant. The nouns to be

replaced in the initial review are marked in green, and replacement

nouns are marked in blue. Note that we choose this noun-level

replacement strategy because of its simplicity, and there is scope

for further improvement of this technique.

3.2 RNN Training and Text Generation

Training Process. For all experiments, we use a Long Short-Term

Memory (LSTM) model [16], an RNN variant that has shown better

performance in practice [22]. We examine multiple RNN training

configurations used in prior work [14, 33] and determine the best

configuration empirically through experiments. The neural network

we used contains 2 hidden layers, each with 1,024 hidden units. For

training, the input string is split into batches of size 256. Training

loss is computed using cross-entropy [12], and weights are updated

using Adam [26] optimization, a common optimization technique

for neural network training. The model is trained for 20 epochs and

the learning rate is set to be 2×10-3 and decays to half of the current
rate every time when the loss increases for 5 successive batches. We

also monitor training loss and inspect generated reviews to avoid

underfitting or overfitting.

We pre-processed the review text by removing all extra white

space and non-ASCII characters. Additionally, we separate the re-

views in the corpus by the delimiter tokens “<SOR>” (start of review)

and “<EOR>” (end of review), so the model also learns when to

start and end a review by generating these two tokens. The RNN is

trained using a machine with Intel Core i7 5930K CPU and a Nvidia

TITAN X GPU. The training takes ∼72 hours.
Text Generation. Once we have trained the language model, we

can sample the review text at different temperatures. We generate

reviews at 10 different temperatures between 0 and 1: [0.1, 0.2, ...,

Dataset # of
Restaurants

of Fake
Reviews (%)

of Real
Reviews (%)

YelpBos [45] 1,028 28,151 (22.12%) 99,117

YelpSF [45] 3,466 90,777 (9.94%) 822,772

YelpZip [56] 4,204 84,484 (13.76%) 529,569

YelpNYC [56] 914 37,799 (10.48%) 322,858

YelpChi [48] 98 8,401 (12.83%) 57,061

Total 9,710 249,612 (11.99%) 1,831,377

Table 1: Summary of ground-truth dataset.

1]
2
. To start the text generation process, the model is seeded with

the start of review delimiter token. Conversely, the model identifies

the end of a review by generating the closing delimiter token.

For review customization, we chose the target keyword C to be

“food,” as a large number of nouns unsurprisingly relate to food. We

set the other parameter MINsim to 0.2. After customization, overall,

98.4% of the reviews have at least one word replaced. The reviews

not affected by the customization lack suitable content (or words)

that capture the context, including reviews that rarely mention any

food or dish in the text, e.g., “I love this place! Will be back again!!”

Generated Text Samples. Table 2 shows several examples of re-

views generated at different temperatures. At higher temperatures,

the RNN is more likely to generate novel content, while at lower

temperatures, the RNN produces repetitive patterns. We include

more examples of generated reviews in Appendix B.

3.3 Datasets
For our evaluation, we use different datasets of restaurant reviews

on Yelp. Each review in a dataset contains the text of the review, the

identity of the target restaurant and a desired rating score, ranging

from one to five stars. The rating score determines the sentiment

of the review and the desired textual content.

In the rest of the paper, we present results based on the genera-

tion of reviews tailored towards a five-star rating. This considers

the common scenario of an attack trying to improve the reputation

of a restaurant. Our attack methodology is general and would be

the same for other ratings as well. Appendix B presents examples of

generated reviews tailored towards one-star and three-star ratings.

Three disjoint datasets of Yelp reviews are used for generat-

ing and evaluating the attack: a training, ground-truth, and attack
dataset.

Training Datasets.We use the Yelp Challenge dataset to train the

RNN language model, containing a total of 4.1M reviews by 1M

reviewers, collectively targeting 144K businesses [79]. The dataset

covers restaurants in 11 cities, spread across 4 countries. We extract

reviews corresponding to different ratings, and found 617K reviews

with a five-star rating from 27K restaurants. In total, these five-star

reviews contain 57M words and 304M characters, a sufficiently

large dataset for training an RNN.

2
We do not experiment with temperatures beyond 1.0, because the sampling distribu-

tion would significantly diverge from the true distribution learned from the training

corpus, and lead to overly diverse and incoherent text.

Ground-truthDataset.This dataset, listed in Table 1, comprises of

multiple Yelp review datasets released by researchers. By providing

ground-truth information about existing fake and real reviews on

Yelp, this dataset enables us to build machine learning fake review

classifiers to evaluate our attack success (Section 4.1). Similar to

previous work [45, 48, 56], we treat Yelp filtered and unfiltered
reviews as ground-truth information for fake and real reviews. Yelp

attempts to filter reviews that are “fake, shill or malicious” [78],

but acknowledges imperfections in the accuracy of the filter [80].

However, given this is the best information currently available and

used by many prior studies on fake reviews, we use it to establish

ground-truth. In the rest of the paper, we use fake and real reviews
to refer to Yelp filtered and Yelp unfiltered reviews, respectively.

For each dataset, we only consider reviews targeting restaurants
3
.

The resulting dataset contains restaurants in NYC, Chicago, SF,

Boston, and several cities in NJ, VT, CT, and PA.

Attack Dataset. This dataset contains the reviews generated by

our RNN language model. We use the attack dataset to evaluate

attack performance (Section 4) and defense schemes (Section 5).

The datasets contain similar data to the ground-truth dataset,

except for replacing all fake reviews with our machine-generated

reviews. Using our RNN model, we generate reviews targeting each

restaurant in the ground-truth dataset using different temperatures.

For each temperature, we generate as many reviews as fake re-

views from Yelp for each restaurant, i.e. 249,612 machine-generated

reviews targeting 9,710 restaurants.

4 EVALUATING QUALITY OF
MACHINE-GENERATED REVIEWS

In this section, we evaluate the quality of machine-generated re-

views along two dimensions. First, we investigate whether gen-

erated reviews can bypass detection by existing algorithmic ap-

proaches. Second, we conduct an end-to-end user study, by pre-

senting restaurant reviews containing both generated reviews and

real reviews to human judges. Our goal is to understand whether

humans can distinguish generated reviews from real reviews.

4.1 Detection by Existing Algorithms
We focus on two popular algorithmic techniques to distinguish

machine-generated reviews from real reviews: (1) a supervised ML

scheme based on linguistic features, (2) a plagiarism detector to

check for duplications between machine-generated reviews and

training set (real) reviews.

ML-based Review Filter. Using machine learning classifiers to

detect fake reviews is a well studied problem [20, 48, 53]. Most of

the prior works rely on the observation that characteristics of fake

reviews deviate from real reviews along many linguistic dimen-

sions. We identified 5 groups of linguistic features, consisting of 77

features total that previously demonstrated strong discriminatory

power for distinguishing fake and real reviews. We describe the

features below:

• Similarity feature (1): Captures inter-sentence similarity within

a review at the word level. It is computed as the maximum

3
Since Yelp also includes reviews for non-restaurant business, e.g., hair salon and car

service.

cosine similarity between unigram features among all pairs of

sentences [10, 20, 31, 56].

• Structural features (4): Captures the structural aspects of a

review. Individual features include the number of words, the

number of sentences, the average sentence length (# of words)

and the average word length (# of characters) [20, 56].

• Syntactic features (6): Captures the linguistics properties of
the review based on parts-of-speech (POS) tagging. Features

include (distinct) percentages of nouns, verbs, adjectives and

adverbs, first personal pronouns, and second personal pro-

nouns [20, 31, 56].

• Semantic features (4): Captures the subjectivity and sentiment

of the reviews. Features include percentage of subjectivewords,

percentage of objective words, percentage of positive words

and percentage of negative words. All these features are de-

fined in SentiWordNet [3], a popular lexical resource for opin-

ion mining [31, 53, 56].

• LIWC features (62): The Linguistic Inquiry and Word Count

(LIWC) software [52] is a widely used text analysis tool in the

social sciences. It categorizes ∼4,500 keywords into ∼68 psy-
chological classes (e.g., linguistic processes, psychological pro-
cesses, personal concerns and spoken categories). We use the

percentage of word count in each class as a feature, and exclude

the features already included in the previous groups [48, 49].

We train a linear SVM classifier on the Yelp ground-truth dataset,

composed of real reviews (Yelp unfiltered reviews), and fake reviews

(Yelp filtered reviews). After training with all 77 linguistic features,

we tested the performance of the classifier on the Yelp attack dataset,

composed of real reviews and machine-generated reviews. We run

10-fold cross validation and report the average performance.

Evaluation of attack performance uses precision (percentage of

reviews flagged by the classifier that are fake reviews), and recall
(percentage of fake reviews flagged by the classifier). Figure 5 shows

the precision and recall of the classifier when applied to machine-

generated reviews generated from different temperatures (along

with real reviews), with lower values indicating higher performing

attacks. Overall, we observe high performing attacks at all temper-

atures. The best attack is at temperature 1.0, with a low precision

of 18.48%, and a recall of 58.37%. Low precision indicates the in-

ability of the ML classifier to distinguish between real reviews and

machine-generated reviews.

In Figure 5, we observe that attack performance increases with

temperature. To further understand this trend, we analyze how

the linguistic features of the generated text vary as we increase

temperature. In Figure 7, we compare the average value of a lin-

guistic feature of generated reviews with real reviews at different

temperatures. We show results for 3 linguistic features across 3 cat-

egories, and other features exhibit similar trends. In general, feature

values of the machine-generated reviews diverge from real reviews

at low temperatures, and converge as temperature increases, thus

making it harder to distinguish them from real reviews at high

temperatures.

PlagiarismDetector.Achieving reasonable linguistic quality does
not rule out the possibility of being fake. A simple attack involves

generating fake reviews by duplicating or partially copying from

real reviews. In such cases, the review quality would be quite good,

Temperature Generated Review Text

0.1

I love this place! I have been here a few times and have never been disappointed. The service

is always great and the food is always great. The staff is always friendly and the food is always

great. I will definitely be back and try some of their other food and service.

0.5

I love this place. I have been going here for years and it is a great place to hang out with friends

and family. I love the food and service. I have never had a bad experience when I am there.

0.7

My family and I are huge fans of this place. The staff is super nice and the food is great. The

chicken is very good and the garlic sauce is perfect. Ice cream topped with fruit is delicious

too. Highly recommended!

1.0

I had the grilled veggie burger with fries!!!! Ohhhh and taste. Omgggg! Very flavorful! It was

so delicious that I didn’t spell it!!

Table 2: Example of the generated five-star fake reviews targeting at a buffet restaurant in NYC. More examples of generated
reviews are included in the Appendix B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
e
te

c
ti
o
n
 P

e
rf

o
rm

a
n
c
e

Temperature

Precision

Recall

Figure 5: Performance of linguistic classifier on detecting
machine-generated reviews.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

P
la

g
ia

ri
s
m

 S
c
o
re

Temperature

Machine-generated Review

Real Review

Figure 6: Plagiarism similarity score. Each point shows me-
dian, 25th and 75th percentile of the score distribution.

 3

 3.3

 3.6

 3.9

 4.2

 4.5

 0 0.2 0.4 0.6 0.8 1

W
o

rd
 L

e
n
g

th
 (

#
 o

f
c
h

a
r)

Temperature

Machine-generated Review

Real Review

(a) Average word length (structural feature)

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

V
e

rb
s
 (

%
)

Temperature

Machine-generated Review

Real Review

(b) Ratio of verb usage (syntactic feature)

 0

 4

 8

 12

 16

 20

 0 0.2 0.4 0.6 0.8 1

P
o

s
it
iv

e
 W

o
rd

s
 (

%
)

Temperature

Machine-generated Review

Real Review

(c) Ratio of positive word usage (semantic feature)

Figure 7: Change of linguistic feature values when temperature varies.

and would pass the linguistic filter. Standard solution is to rely

on plagiarism checkers to identify the duplicate or near-duplicate

reviews. Given that the RNN model is trained to generate text

similar to the training set, we examine if the machine-generated

reviews are duplicates or near-duplicates of reviews in the training

set.

To conduct a plagiarism check, we assume that the service

provider has access to a database of reviews used for training the

RNN. Next, given a machine-generated review, the service provider

runs a plagiarism check by comparing it with reviews in the data-

base. This is a best case scenario for a plagiarism test, and helps us

understand its potential to detect generated reviews.

We use Winnowing [63], a widely used method to identify dupli-

cate or near-duplicate text. For a suspicious text, Winnowing first

generates a set of fingerprints by applying a hashing function to

a set of substrings in the text, and then compares the fingerprints

between the suspicious text and the text in database. Similarity be-

tween two reviews is computed using Jaccard Similarity [5] of their

fingerprints generated from Winnowing. The plagiarism similarity

score for a single review is computed as the max similarity with all

the other reviews in the dataset, and ranges from 0 to 1 (1 indicates

identical reviews).

We pick a random sample of 10K machine-generated reviews for

the plagiarism test, and the database (for comparison) includes the

entire Yelp training dataset. Figure 6 shows the quantiles of similar-

ity scores at different temperatures. Each point shows median, 25th

and 75th percentile of the plagiarism score distribution. In addi-

tion, we also show the similarity score distribution for real reviews,

which serves as a baseline for comparison. Note that scores for real

reviews do not vary with temperature. We obverse that plagiarism

scores of machine-generated reviews are low at all temperatures

(lower score represents smaller probability of copying) and decrease

as temperature increases. In addition, machine-generated reviews

and real reviews show similar plagiarism scores, thus making them

harder to distinguish. For example, at temperature 1.0, if we set a

plagiarism score threshold such that 95% of real reviews are not

flagged, we observe that 96% of machine-generated reviews still by-

pass the check. Thus, it remains hard to detect machine-generated

reviews using a plagiarism checker without inadvertently flagging

a large number of real reviews. This shows that the RNN does not

simply copy the existing reviews from the training set.

4.2 Evaluation by User Study
Regardless of how well machine-generated reviews perform on

statistical measures and tests, the real test is whether they can

pass for real reviews when read by human users. In this section,

we conduct an end-to-end user study to evaluate whether human

examination can detect machine-generated reviews. In practice,

service providers are known to involve human content moderators

to separatemachine-generated reviews from real reviews [69]. More

importantly, these tests will tell us how convincing these reviews

are to human readers, and whether they will accomplish their goals

of manipulating user opinions.

User Study to Detect Machine-Generated Reviews. To mea-

sure human performance, we conduct surveys
4
on Amazon Me-

chanical Turk (AMT
5
). Each survey includes a restaurant name,

description (explaining the restaurant category and description

provided by the business on Yelp), and a set of reviews, which in-

cludes machine-generated reviews and real reviews written for that

restaurant. We then ask each worker to mark reviews they consider

to be fake, using any basis for their judgment.

For our survey, we choose 40 restaurants with the most number

of reviews in our ground-truth dataset. For each restaurant, we

generate surveys, each of which include 20 random reviews, out of

which some portion (X) are machine-generated reviews, and the

rest are real reviews from Yelp. The number X is randomly selected

between 0 to 5 so that the expected ratio of fake reviews (12.5%)

matches the real world setting (11.99% in Table 1). Additionally, we

control the quality of real reviews shown in the surveys to cover

the full range of usefulness. We leverage the review usefulness (a
simple count of the number of users who found the review to be

useful) metadata provided by Yelp for each review.

4
Prior to conducting our study, we submitted a human subject protocol and received

approval from our local IRB board.

5
https://www.mturk.com/

For each of our 40 restaurants, we generated reviews using 5

different temperature parameters: [0.1, 0.3, 0.5, 0.7, 1.0]. We give

each unique survey to 3 different workers, giving us a total of 600

surveys. Out of these 600 responses, we discarded 6 because they

did not mark the gold standard reviews. Gold standard reviews are

basically strings of random characters (i.e. meaningless text), that

looks clearly fake to any worker. Lastly, we only request master
workers6 located in the US to guarantee English literacy. We show

an example of our survey in the Figure 15(a) in Appendix C.

Figure 8 shows the human performance results as we vary the

temperature. First, we observe that machine-generated reviews

appear quite robust against a human test. Under the best configura-

tion, the precision is only 40.6% with a recall of 16.2%. In addition,

similar to algorithmic detection, attack performance improves as

temperature increases. This is surprising, since we would expect

that reviews at the extreme high or low temperature parameters

would be easily flagged (either too repetitive or too many gram-

matical/spelling errors). We saw earlier that higher temperature

produced reviews more statistically similar to real reviews, but ex-

pected errors to make those reviews detectable by humans. Instead,

it seems that human users are much more sensitive to repetitive

errors than they are to small spelling or grammar mistakes. We do

observe that the best attack performance occurs at a high temper-

ature of 0.7, which is marginally better than the performance at

temperature of 1.0.

Helpfulness of Machine-Generated Reviews. Previously, we
showed that humans tend to mark many machine-generated re-

views as real. This raises a secondary question: Formachine-generated
reviews that are not caught by humans, do they still have sufficient
quality to be considered useful by a user? Answering this question,
takes us a step further towards generating highly deceptive fake

reviews. We run a second round of AMT surveys to investigate this

question.

In each survey, we first asked the workers to mark reviews as

fake or real. Additionally, for the reviews marked as real, we asked

for a rating of the usefulness of the review on a scale from 1 to 5

(1 as least useful, 5 as most useful). An example of the survey is

shown in the Figure 15(b) in Appendix C. We conduct the survey

using reviews generated at a temperature of 0.7, which gave the

best performance from the previous round. Also, in this round, we

test on 80 restaurants and hire 5 workers for each restaurant. The

rest of the survey configuration remains the same as the first round.

We received all 400 responses and discarded 5 of them for failing

the gold standard review. The average usefulness score of false

negatives (unflagged machine-generated reviews) is close to that

of true negatives (unflagged Yelp real reviews): machine-generated

reviews have an average usefulness score of 3.15, which is close to

the average usefulness score of 3.28 for real Yelp reviews. That is to

say, workers think of unflagged machine generated reviews almost

as useful as real reviews.

Overall, our experiments find machine-generated reviews very

close to mimicking the quality of real reviews. Furthermore, the

attacker is incentivized to generate reviews at high temperatures,

as such reviews appear more effective at deceiving users.

6
https://www.mturk.com/mturk/help?helpPage=worker#what_is_master_worker

https://www.mturk.com/
https://www.mturk.com/mturk/help?helpPage=worker#what_is_master_worker

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n
P

er
fo

rm
an

ce

Temperature

Precision

Recall

Figure 8: Performance of human judgment on detecting
machine-generated review.

5 DEFENDING AGAINST
MACHINE-GENERATED REVIEWS

In this section, we propose a supervised learning scheme to detect

machine-generated reviews with high accuracy.

Assumption. We assume that the service provider has access to a

limited set of reviews generated by an attacker’s language model

and a set of real reviews available on the review site.

Why is defense challenging? Fundamentally, we are trying to de-

velop a machine learning classifier capable of detecting the output

of another MLmodel. In an ideal scenario, this seems impossible, be-

cause the generator model and detector are likely using the exactly

same metrics on the same inputs (or training datasets). Thus, any

metric that an ML detector is capable of detecting can be accounted

for by the ML-based generator.

Key Insight. Figure 9 shows the key intuition behind our defense.

While we expect that an attacker is aware of any metric used by

the ML detector for detection, we can find a sufficiently “complex”

metric where accurately capturing (and reproducing) the metric

requires an extremely large RNN infrastructure that is beyond the

means of most attackers. This leverages the fact that a generative

language model builds a fixed memory representation of the entire

training corpus, which limits the amount of information that can be

learned from a training corpus. More specifically, we observe that

text produced naturally (e.g., by a human) diverges from machine

generated text when we compare the character level distribution,
even when higher level linguistic features (e.g., syntactic, semantic

features) might be similar. Such divergence in the character level

distribution is primarily due to the information loss inherent in the

machine-generation process, which is a function of the modeling

power of the RNN used.

We note that the character level distribution metric is appropri-

ate for our purposes, because it is the lowest level metric being

modeled by our RNN, and therefore most likely to become a com-

plexity bottleneck for the RNN. An attacker might consider an RNN

generator that trains using word-level distributions. Fortunately

(for our purposes), word-level distributions are more complex and

difficult to model, both because the number of words is combi-

natorially larger than number of valid characters in the English

Limited Size Model

Training Reviews Generated Reviews

Figure 9: Key insight of our defense. During the training pro-
cess, the language model builds a fixed memory represen-
tation of the large training corpus and its representativity
is limited by the model size. The information loss incurred
during the training would propagate to the generated text,
leading to statistically detectable difference in the underly-
ing character distribution between the generated text and
human text.

language, and because such a model would need to add additional

rules for valid punctuation. Therefore, an RNN generator target-

ing word-level distributions would be even more computationally

constrained (thus incur more information loss), and intuitively, our

defense would work at least as well as on a character-level RNN.

5.1 Proposed Methodology
More concretely, consider the following attack scenario: The at-

tacker trains on a set of human generated reviews RT and builds a

character-level RNN language model M, to generate a set of reviews

RF. Even when RT is chosen in such a way that RF becomes linguis-

tically similar to the real reviews RL on the site, we can statistically

detect variations in the character level distribution between RF and

RL.

Algorithm 1 provides details of the method. The service provider

maintains access to the set of known machine-generated reviews

RF, along with the set of real reviews RL, and aims to determine

whether a given test review T is fake or real. Based on our insight,

we expect the character-level distribution of reviews in set RF to

statistically diverge from that of reviews in set RL.

The character-level probability distribution P(Xt+1=xt+1|x1, ..., t),
gives the probability of predicting the next character, given the

sequence of preceding characters. To capture the divergence in the

character distribution, the defender first builds an RNN language

model RNNF using the set of machine-generated reviews RF and

another language model RNNL using RL. Next, given a test review

T , we feed the review, character by character, into each RNN model

to obtain two character distributions, providing statistical repre-

sentations of review T for each model. Finally, if the log-likelihood

ratio of the test review’s character distribution closely fits the model

RNNF, then we flag the review as fake.

5.2 Defense Evaluation
We evaluate our defense scheme along two directions. First, we

study the detection performance of our scheme and how it compares

to an ML scheme based on linguistic features (Section 4.1). Second,

we investigate the robustness of our approach to evade detection

against two attacker strategies.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
e
te

c
ti
o
n
 P

re
c
is

io
n

Temperature

Proposed Defense

Linguistic Classifier

(a) Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

D
e
te

c
ti
o
n

 R
e
c
a
ll

Temperature

Proposed Defense

Linguistic Classifier

(b) Recall

Figure 10: Performance of proposed defense and linguistic classifier (Sec-
tion 4.1).

 0

 0.2

 0.4

 0.6

 0.8

 1

2K 10K 20K 100K 200K

D
e
te

c
ti
o
n
 F

-s
c
o
re

Training Sample Size for Defense RNN

Proposed Defense Linguistic Classifier

Figure 11: Detection performance given
different sizes of defense training sam-
ples.

Algorithm 1 Proposed Defense

▷ input-RF:machine-generated review training set, RL:real re-

view training set, T:test review

1: procedure Defense(RF, RL, T)
2: N← length(T)

3: RNNF← trainRNN(RF)

4: RNNL← trainRNN(RL)

5: for t = 1:N-1 do
6: feed Xt into RNNF

7: LF← PF(Xt+1=xt+1|x1, ..., t)

8: feed Xt into RNNL

9: LL← PL(Xt+1=xt+1|x1, ..., t)

10: Lt← − log
LL

LF

▷ negative log-likelihood ratio

11:
¯L ←

∑
N-1

i=1
Li

N-1

12: if ¯L > 0 then
13: return FAKE

14: else
15: return REAL

We follow a standard RNN model training process to train RNNF

and RNNL. We refer to them as defense RNN. Unless otherwise
stated, we report performance on 2,000 test reviews (balanced set

of real and machine-generated reviews) in the remainder of this

section.

Detection Performance. To first understand the performance in a

potential best case scenario, we evaluate our scheme by considering

a large amount of ground-truth information. Our ground-truth set

consists of 120K machine-generated reviews, from our Yelp attack

dataset (Section 3.3), and 120K additional real reviews. We set the

model configuration for the defense RNN to be the following: 1,024

hidden units, 2 hidden layers, batch size of 128 and 20 training

epochs.

As a baseline for comparison, we compute detection performance

using the ML scheme described in Section 4.1, which we refer to as

the linguistic classifier. Note that the ML scheme is based on high

level linguistic features and trained using the same ground-truth

set of machine-generated and real reviews. We expect the linguistic

classifier to perform better than the results in Section 4.1 because

the training data now includes machine-generated reviews that we

aim to identify directly.

Figure 10 shows the detection performance when we train and

test on text generated at different temperatures. Our approach

achieves high precision and recall at all temperatures, i.e. over 0.98
precision and 0.97 recall. Additionally, we outperform the linguis-

tic classifier at most temperatures, and the gap between the two

schemes increases at higher temperatures (e.g., temperature > 0.6).

At temperature 1.0, our scheme achieves an F-score (the harmonic

mean of precision and recall) of 0.98, while the linguistic approach

only achieves an F-score of 0.55. Interestingly, the linguistic classi-

fier shows high detection performance at low temperatures. This

trend can be explained by our earlier finding that linguistic features

diverge more from the real reviews at low temperatures (Figure 7).

Next, we study performancewhenwe limit the amount of ground-

truth used for training and focus on text generated at temperature

1.0. Figure 11 shows performance when training data size varies

Training

Samples

Hidden

Unit Size

Layer

Size

Batch

Size

Training

Epoch

2K 128 1 16 50

10K 256 1 32 50

20K 512 1 56 30

100K 768 2 128 20

200K 1,024 2 128 20

Table 3: Training configurations of defense models when de-
fense training sample size varies.

Hidden

Unit Size

Training

Samples

Layer

Size

Batch

Size

Training

Epoch

128 10K 1 32 50

256 50K 1 56 50

512 100K 1 128 30

768 500K 2 256 20

1,024 617K 2 256 20

2,048 617K 2 256 50

Table 4: Training configurations of attack models when at-
tack model size varies.

from 2,000 to 200K samples. Each training dataset is a balanced

dataset of machine-generated and real reviews. The RNN model

configuration used for defense for each training set size is detailed

in Table 3. Our scheme significantly outperforms the linguistic clas-

sifier for all datasets and achieves a high F-score of 0.80 using only

1,000 machine-generated reviews (2,000 training dataset). Consid-

ering the fact that service providers have taken considerable effort

to build large fake review datasets (∼250K fake reviews in Table 1),

1,000 reviews is a relatively small sample of known fake reviews.

Thus, unlike the linguistic classifier, our defense scheme performs

well with highly limited ground-truth information.

Evading Detection by Increasing Attack Model Quality. The
attacker can evade detection by improving the quality of the RNN

generative model or increasing the memory size of the model. A

higher quality model would generate more “natural” text, and thus

reduce the divergence in the character distribution. However, this

strategy comes with a higher cost for the attack. Training a larger

RNN model requires more training data to be collected, more com-

putational resources (e.g., GPUs with more memory and computa-

tional capacity), while also imposing additional training time. It is

hard to quantify the increase in attack cost when accounting for all

these factors. Instead, we focus on the impact on training time as

the attacker varies model quality to evade detection.

We vary the attack model size (number of hidden units) from

128 to 2,048. We also vary other model parameters, and the size of

the training dataset to avoid underfitting or overfitting. Details of

the attack models are described in Table 4. For the defense RNN,

we use a configuration based on 2K training samples in Table 3.

Figure 12 shows the tradeoff between decreases in detection per-

formance (F-score) and increases in training time for the attacker.

In general, when the attacker trains a larger model, our defense per-

formance would degrade: when doubling the model size from 128 to

256 cells, detection performance drops by 3.95% with training time

increasing by 71.86%. As the model size grows further, attacker’s

gain in evasion rate slows, while the matching training time accel-

erates significantly. This is due to the increase in computational

complexity: from model size 1,024 to 2,048, defense performance

only decreases by 2.70% but the attacker’s training time raises by

435.1%.

In practice, larger models would require a significantly larger

training set as well. For example, Jozefowicz et al. [21] trained a 2-

layer RNN with 8, 192 hidden units on a dataset with ∼0.8B words,

14x larger than our training dataset, to achieve state-of-the-art

model performance. Therefore, the computational cost and amount

of training data required to train a larger model would become

prohibitively expensive for all but the most resourceful attackers.

Next, we show there are other ways to further diminish the

power of any resource-based countermeasures by the attacker. We

observe that our defense scheme performs better on longer reviews,

as the scheme has more data to capture divergence in the character

distribution. Based on this observation, we propose a simple policy

for the service provider to further raise the bar for evasion: set amin-

imum review length. Figure 13 shows how detection performance

varies as we increase the minimum review length requirement

against an attack model with 1, 024 hidden units. Note that the

average review length on Yelp Training Data (Section 3.3) is 483

characters. When we increase the minimum length requirement to

300 characters (i.e. still below the average), F-score increases from

0.80 to 0.86, which nullifies the attack success gained by increasing

model size from 512 to 1,024 hidden units (from Figure 12). This

means that the attacker now must aim for training a significantly

larger attack model, at the expense of increased training cost, to

overcome the reduction in attack success.

Evading Detection by Generating Reviews at Different Tem-
peratures. When reviews from a language model are detected

as fake, one would expect the attacker to build a new language

model (thus raising the cost) for the next attack. Instead, the at-

tacker can try to evade further detection by generating new reviews

using the existing model, by changing the temperature parameter

(without re-training). While our scheme can detect reviews at dif-

ferent temperatures when we have ground-truth information at

those temperatures (Figure 10), performance remains unclear when

ground-truth information is unavailable. Put differently: Using a
defense scheme trained on reviews at a specific temperature, can we
detect reviews generated at other temperatures? If this is possible,

it would allow the service provider to defend against such attacks

without having to collect new ground-truth information.

We investigate the above scenario in Figure 14, where we train

the linguistic classifier and our scheme at a specific temperature

(Ttrain) and evaluate detection performance at all other tempera-

tures (Ttest). Both Ttrain and Ttest are from 0.1 to 1. The training

configuration is same as the one used for 2K training samples in

Table 3.

As expected, the linguistic classifier exhibits poor defensive

power at higher temperatures. At low temperatures, we see that a

defense trained at a given temperature maintains effectiveness at

temperatures in the “neighborhood” of that region, possibly due to

similar linguistic characteristics in the temperature neighborhood.

However, the performance drops quickly when Ttrain and Ttest are

far apart.

On the other hand, our approach shows an interesting trend.

Unlike the linguistic classifier, our performance maintains robust-

ness whenever Ttrain > Ttest. This is because a review generated

at a high temperature would include both infrequent and frequent

patterns from the training sequence. As a result, a defense trained

at a higher temperature can capture the frequent sequences present

in the character distribution of a review at a lower temperature.

Hence, our defense scheme maintains high performance even when

Ttrain and Ttest are distant as long as Ttrain ≥ Ttest. It should be

noted that the attacker has an incentive to generate reviews at high

temperatures because they are more likely to deceive users (Sec-

tion 4.2). As such, the service provider can likely obtain some initial

ground-truth information about reviews at high temperatures, and

thus build a robust defense.

6 RELATEDWORK

Text Generation. There are a number of natural language genera-

tion techniques based on pre-defined templates [57, 58, 70]. These

systems usually require some domain knowledge and well-designed

rules. Recently, learning-based approaches became popular, i.e.
building a statistical model to learn the language information from

a large corpus. In these cases, the quality of the generated text

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

 0

 100

 200

 300

 400

D
e
te

c
ti
o
n
 F

-s
c
o
re

T
ra

in
in

g
 T

im
e
 (

H
o
u
rs

)

Attack Model Size

F-score

Training Time

Figure 12: Detection performance against attacks generated
by different models and their training costs.

 0.6

 0.7

 0.8

 0.9

 1

 0 150 300 450 600 750 900

D
e
te

c
ti
o
n
 F

-s
c
o
re

Minimum Review Length (# of characters)

Figure 13: Detection performance when the minimum review
length is restricted.

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Temperature of Training

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e

m
p

e
ra

tu
re

 o
f

T
e

s
t

 0

 0.2

 0.4

 0.6

 0.8

 1

(a) Linguistic classifier

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Temperature of Training

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
e

m
p

e
ra

tu
re

 o
f

T
e

s
t

 0

 0.2

 0.4

 0.6

 0.8

 1

(b) Our method

Figure 14: Detection performance (F-score) of training and
then applying at different temperatures.

highly correlates with the model quality. Previous work shows that

well-trained RNN models outperform simpler language models like

N-gram [21] and RNN-based language models have appeared as

a promising approach to generate text [14, 67]. Researchers have

also achieved successful results in generating text for different

domains, including email responses [23], image description [24],

movie dialogues [64] and online social network conversations [65].

Our work is closest to studies by Lipton et al. [33], Hovy [17]

and Lappas [27]. Lipton et al. [33] also studies product review gen-

eration using an RNN, but does not consider an adversarial setting.

Hovy [17] performed a preliminary investigation of n-gram-based

review generation in an adversarial setting. Unlike our research,

they do not consider more sophisticated generative models (RNN)

to evade detection, and do not consider any robust defenses or

countermeasures. Lastly, Lappas [27] analyzes fake reviews from

the attacker’s perspective to determine the factors that enable a

successful attack, but does not consider automatic generation of

reviews.

Neural Networks and Security.Most prior studies on applying

Neural Networks focus on improving existing defenses against

various network and web security vulnerabilities. Work in this

category mainly includes proposals to improve network intrusion

detection [8, 25], malware classification [62, 66, 81], and password-

based authentication systems [39].

Similar to our work, a few studies also investigate the feasibil-

ity of attacking online systems using Deep Neural Networks. This

includes proposals to automatically solve CAPTCHAs using Con-

volutional Neural Networks [13, 60], and automatically generate

malware domains using Generative Adversarial Networks [1]. To

the best of our knowledge, our work is the first to explore attacks

on online review systems using Deep Neural Networks.

Crowdturfing and Review Spam Detection. Prior work char-

acterized crowdturfing marketplaces that supply human labor to

enable attacks on a variety of online platforms, such as review sys-

tems, social media, and search engines [29, 73, 74]. In addition, work

by Wang et al. investigates detection of malicious crowdworkers

using machine learning and explores the robustness of machine

learning classifiers against evasive tactics by crowdworkers. Fur-

thermore, researchers have extensively studied detection of opinion

spam or fake reviews in online review systems using features based

on review content [32, 48, 53] and a variety of metadata [10, 19, 20].

We differ from these studies by focusing on automatically gener-

ating fake reviews that can evade detection by advanced machine

learning classifiers and human investigation.

7 DISCUSSION & CONCLUSION
In this work, we focus on the potential for misuse of deep learning

models in the context of attacking online review platforms. Our

work shows how RNNs can generate deceptive yet realistic looking

reviews targeting restaurants on Yelp. An extensive evaluation of

the quality of generated reviews indicates the difficulty in detecting

such reviews using existing algorithmic approaches, and even by

human examination (which serves as an end-to-end test of our

attack).

We propose a novel approach to defend against RNN-based fake

reviews, by leveraging a fundamental limitation of an RNN-based

model: information loss incurred during the training process when fit-
ting a large training dataset to a fixed size statistical model.Due to the
information loss, generated reviews diverge from real reviews when

comparing their character-level distribution, evenwhen higher level

linguistic characteristics are preserved. Our scheme, based on su-

pervised learning, can detect machine-generated reviews with high

accuracy (F-score ranging from 0.8 to 0.98 depending on the amount

of available ground-truth) and outperforms existing ML-based fake

review filters.

FutureWork. In terms of potential future work, one direction is to

consider the role that user and contentmetadata can play in both the

attack and defense perspectives. Metadata can be crucial in terms of

deceiving users (e.g., by increasing the number of friends/contacts

on the site) and in assisting defenses [10, 19, 20, 31, 47, 71, 75] (e.g.,
by analyzing the patterns in timestamps of user activites). Orches-

trating the general behavior of user accounts using deep learning

to bypass metadata based defenses could be an interesting research

challenge. Second, while we limit ourselves to the domain of on-

line review systems and fake review attacks, deep learning-based

generative text models can be applied to launch attacks in other

scenarios as well. We highlight two of these possible application

scenarios.

Strengthening Sybil Attacks. Attackers can use our techniques to

generate realistic looking text-based user behavior patterns [4], e.g.,
posting, commenting and messaging. This can help attackers make

Sybil (fake) accounts indistinguishable from legitimate accounts

based on textual content. A special case of this involves launching

an impersonation attack in online social networks [11].

Fake News Generation. Identifying fake news, i.e. “a made-up story

with an intention to deceive” [61], currently remains an open chal-

lenge [9]. The research community has started to explore the possi-

bility of automating the detection process by building an AI-assisted

fact-checking pipeline [41, 72, 76]. We believe that AI can not only

assist fake news detection but also generate fake news. Given the

availability of large-scale news datasets [68], an attacker can poten-

tially generate realistic looking news articles using a deep-learning

approach (RNN). And due to its low economic cost, the attacker

can pollute social media newsfeeds with a large number of fake

articles.

We hope our results will bring more attention to the problem

of malicious attacks based on deep learning language models, par-

ticularly in the context of fake content on online services, and

encourage the exploration and development of new defenses.

A REVIEW CUSTOMIZATION DETAILS
We show the details of review customization process (Section 3.1)

in Algorithm 2.

B MORE EXAMPLES OF THE GENERATED
FAKE REVIEWS

We present examples of generated reviews targeting a specific

restaurant (description shown below). The samples are generated

under different temperatures and from the models trained using

five-star, three-star and one-star Yelp training review corpus.

Target Restaurant Description

ExperienceMKT, a market-to-table San Francisco restaurant and bar. Taste your

way through ultra-creative handcrafted cocktails, small plates for sharing, and

steaks from the finest California ranches. Meet friends and relax in our retro

urban-chic atmosphere. In the heart of SoMa - with panoramic fifth-floor views

of Market Street and downtown - this is one of San Francisco’s best restaurant

venues for social drinks and dining.

B.1 Machine-generated One-Star Reviews
Generated with temperature 0.1

I was so excited to try this place out for the first time and the food was awful. I

ordered the chicken sandwich and it was so salty that I could not eat it. I was so

disappointed that I was so disappointed in the food. I was so disappointed that

I was so disappointed with the service.

Generated with temperature 0.3
I had a drink at this restaurant. I was there for a couple of months. The restau-

rant was clean but the food was not good. The service was very slow and the

service is so bad. I would not recommend this place to anyone.

Generated with temperature 0.5
The worst place I’ve ever been too. I waited for a while and the place was not

available and the service was absolutely terrible. The server was rude and not

apologetic and unprofessional. I will not be going back to this location.

Generated with temperature 0.7
I have been here twice, very expensive for what you get. We stayed here before

at our table and were seated in a line for 15 minutes and the restaurant was

full and the cashier recommended the drinks and they forgot the cookie cover

charge and we were told it was not an issue. I would never recommend this

place to anyone.

Generated with temperature 1.0
DONOTWASTE YOUR TIME ANDMONEY! The absolute worst service I have

ever experienced. This place is a joke. The waitress was rude and said she would

put the manager to come out but never happened. I wish I could give zero star.

B.2 Machine-generated Three-Star Reviews
Generated with temperature 0.1

The food was good but not great. I had the lasagne and the sauce was a little

too sweet for my taste. The salad was good but the sauce was a little too sweet

for my taste. The sauce was a little too salty for my tastes. The sauce was a little

too sweet for my taste.

Generated with temperature 0.3
I’ve had the fried chicken and the chicken breast with chicken soup with sweet

potato fries. I don’t know what a lot of the meat was on the salty side as well.

The sauce was a bit salty and didn’t have much flavor. The salad was tasty and

well presented but the bread was super tasty.

Generated with temperature 0.5
I was here for a weekend brunch and the food was ok. I love the pizza that is

a chain restaurant. I think the service is excellent. I had the spaghetti and they

were very good and the hot dog was good. I got the red velvet chocolate cake

special which was very good but the service was a little slow. The food was

good, but not up to par with other places nearby.

Generated with temperature 0.7

Algorithm 2 Review Customization

▷ input: R-initial review, T-reference review set, C-topic key-

word, MINsim-similarity threshold

1: procedure Review Customization(R, T, C, MINsim)

▷ find nouns in R close to C

2: P← ∅
3: for t ∈ T do
4: for n ∈ Nouns(t) do
5: if similarity(n, C) > MINsim then
6: P← P

⋃
n

▷ find nouns in R also close to C, replace by sampling from P

7: for n ∈ Nouns(R) do
8: if similarity(n, C) > MINsim then
9: S← ∅
10: for p ∈ P do
11: S← S

⋃
similarity(n, p)

12: z← softmax(S)

13: n
∗← sample from P based on z

14: replace n by n
∗

15: return R

The food wasn’t bad. The cupcakes are okay and the service is excellent but the

prices are a bit high. I do like the fresh made salad and drink specials. I would

recommend this place for a place to grab a bite for a couple of times.

Generated with temperature 1.0
Came here for lunch today and the place was pretty empty. The steak was good

but the chicken they had a little less oily and overcooked. I would recommend

this place if you are looking for a cheap place to stop by.

B.3 Machine-generated Five-Star Reviews
Generated with temperature 0.1

I have been going to this place for a few years now and I have never had a bad

experience. The service is great! They are always so friendly and helpful. I will

definitely be back and I will be back for sure!

Generated with temperature 0.3
This place is amazing! The bartenders are absolutely amazing. The pasta is de-

licious and I love their pastries and it is amazing. I love the breakfast, friendly

staff and the price is very reasonable. I have never had a bad experience here. I

will be back for sure!

Generated with temperature 0.5
I love this place. I went with my brother and we had the vegetarian pasta and

it was delicious. The beer was good and the service was amazing. I would defi-

nitely recommend this place to anyone looking for a great place to go for a great

breakfast and a small spot with a great deal.

Generated with temperature 0.7
I have been a customer for about a year and a half and I have nothing but great

things to say about this place. I always get the pizza, but the Italian beef was

also good and I was impressed. The service was outstanding. The best service I

have ever had. Highly recommended.

Generated with temperature 1.0
The food here is freaking amazing, the portions are giant. The cheese bagel was

cooked to perfection and well prepared, fresh & delicious! The service was fast.

Our favorite spot for sure! We will be back!

C SCREENSHOTS OF USER STUDY SURVEYS
C.1 Fake/Real Review Detection
Figure 15(a) shows a screenshot of the survey designed for examin-

ing human performance on machine-generated review detection.

C.2 Review Helpfulness Rating
Figure 15(b) shows another screenshot of the second round sur-

vey designed for collecting the helpfulness score of the machine-

generated reviews.

ACKNOWLEDGMENTS
We wish to thank our anonymous reviewers for their construc-

tive feedback, and William Yang Wang for insightful discussions.

This project was supported by NSF grants CNS-1527939 and CNS-

1705042. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of any funding agencies.

REFERENCES
[1] Hyrum S. Anderson, Jonathan Woodbridge, and Bobby Filar. 2016. DeepDGA:

Adversarially-tuned domain generation and detection. In Proc. of AISecWorkshop.
[2] Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012.

Deep neural network language models. In Proc. NAACL-HLT Workshop.
[3] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. 2010. SentiWordNet

3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In

Proc. of LREC.
[4] Yazan Boshmaf, Ildar Muslukhov, Konstantin Beznosov, and Matei Ripeanu.

2012. Key challenges in defending against malicious socialbots. In Proc. of LEET
Workshop.

[5] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.

1997. Syntactic clustering of the web. In Proc. of WWW.

[6] CNBC 2014. TripAdvisor fined $600,000 for fake reviews. https://www.cnbc.com/

2014/12/23/tripadvisor-fined-600000-for-fake-reviews.html. (2014).

(a) Examining human performance on machine-generated review detection.

(b) Collecting helpfulness rating of the machine-generated reviews.

Figure 15: Screenshots of the survey designed for end-to-end
user study.

[7] Cynthia Boris 2013. Study shows an increase in local competition encourages

negative review fraud on Yelp. http://www.marketingpilgrim.com/2013/11/study-

shows-an-increase-in-local-competition-encourages-negative-review-fraud-on-

yelp.html. (2013).

[8] Bo Dong and Xue Wang. 2016. Comparison deep learning method to traditional

methods using for network intrusion detection. In Proc. of ICCSN.
[9] Fake news challenge 2017. http://www.fakenewschallenge.org. (2017).

[10] Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos, and Riddhi-

man Ghosh. 2013. Exploiting burstiness in reviews for review spammer detection.

Proc. of ICWSM .

https://www.cnbc.com/2014/12/23/tripadvisor-fined-600000-for-fake-reviews.html
https://www.cnbc.com/2014/12/23/tripadvisor-fined-600000-for-fake-reviews.html
http://www.fakenewschallenge.org

[11] Oana Goga, Giridhari Venkatadri, and Krishna P. Gummadi. 2015. The doppel-

gänger bot attack: Exploring identity impersonation in online social networks.

In Proc. of IMC.
[12] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT

press.

[13] Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet.

2013. Multi-digit number recognition from street view imagery using deep

convolutional neural networks. arXiv:1312.6082 (2013).
[14] Alex Graves. 2013. Generating sequences with recurrent neural networks.

arXiv:1308.0850 (2013).
[15] F. Maxwell Harper and Joseph A. Konstan. 2016. The movielens datasets: History

and context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2016), 19.
[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.

[17] Dirk Hovy. 2016. The enemy in your own camp: How well can we detect

statistically-generated fake reviews–An adversarial study. In Proc. of ACL (Short
Paper).

[18] Jeff Roberts 2015. Amazon sues people who charge $5 for fake reviews. http:

//fortune.com/2015/10/19/amazon-fake-reviews. (2015).

[19] Nitin Jindal and Bing Liu. 2007. Review spam detection. In Proc. of WWW.

[20] Nitin Jindal and Bing Liu. 2008. Opinion spam and analysis. In Proc. of WSDM.

[21] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.

2016. Exploring the limits of language modeling. arXiv:1602.02410 (2016).
[22] Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. 2015. An empirical

exploration of recurrent network architectures. In Proc. of ICML.
[23] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins,

Balint Miklos, Greg Corrado, László Lukács, Marina Ganea, Peter Young, and

others. 2016. Smart reply: Automated response suggestion for email. In Proc. of
KDD.

[24] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for

generating image descriptions. In Proc. of CVPR.
[25] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. 2017.

LSTM-based system-call language modeling and robust ensemble method for

designing host-based intrusion detection systems. In Proc. of ICLR.
[26] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv:1412.6980 (2014).
[27] Theodoros Lappas. 2012. Fake reviews: The malicious perspective. In Proc. of

NLDB.
[28] Rémi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from

structured data with application to the biography domain. In Proc. of EMNLP.
[29] Kyumin Lee, Prithivi Tamilarasan, and James Caverlee. 2013. Crowdturfers,

campaigns, and social media: Tracking and revealing crowdsourced manipulation

of social media. In Proc. of ICWSM.

[30] Kyumin Lee, Steve Webb, and Hancheng Ge. 2014. The dark side of micro-task

marketplaces: Characterizing fiverr and automatically detecting crowdturfing. In

Proc. of ICWSM.

[31] Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu. 2011. Learning to identify

review spam. In Proc. of IJCAI.
[32] Jiwei Li, Myle Ott, Claire Cardie, and Eduard H. Hovy. 2014. Towards a general

rule for identifying deceptive opinion spam. In Proc. of ACL.
[33] Zachary C. Lipton, Sharad Vikram, and Julian McAuley. 2015. Capturing meaning

in product reviews with character-Level generative text models. arXiv:1511.03683
(2015).

[34] Michael Luca and Georgios Zervas. 2016. Fake it till you make it: Reputation,

competition, and Yelp review fraud.Management Science 62, 12 (2016), 3412–3427.
[35] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,

and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In

Proc. of NAACL-HLT.
[36] Marco Chiappetta 2016. Amazon boosts cloud-computing

performance with new, GPU-accelerated AWS instances.

http://www.forbes.com/sites/marcochiappetta/2016/09/30/amazon-boosts-

cloud-computing-performance-with-new-gpu-accelerated-aws-instances.

(2016).

[37] Mary Pilon 2009. A fake Amazon reviewer confesses. http://blogs.wsj.com/wallet/

2009/07/09/delonghis-strange-brew-tracking-down-fake-amazon-raves. (2009).

[38] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks of

substitutable and complementary products. In Proc. of KDD.
[39] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer,

Nicolas Christin, and Lorrie Faith Cranor. 2016. Fast, lean and accurate: Modeling

password guessability using neural networks. In Proc. of Usenix Security.
[40] Miguel Helft 2010. Charges settled over fake reviews on iTunes. http://www.

nytimes.com/2010/08/27/technology/27ftc.html. (2010).

[41] Rada Mihalcea and Carlo Strapparava. 2009. The lie detector: Explorations in the

automatic recognition of deceptive language. In Proc. of ACL-IJCNLP.
[42] Tomáš Mikolov. 2012. Statistical language models based on neural networks.

PhD Thesis, Brno University of Technology (2012).

[43] Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Čer-

nockỳ. 2011. Empirical evaluation and combination of advanced language mod-

eling techniques. In Proc. of Interspeech.
[44] George A. Miller. 1995. WordNet: A lexical database for English. Commun. ACM

38, 11 (1995), 39–41.

[45] Arash Molavi Kakhki, Chloe Kliman-Silver, and Alan Mislove. 2013. Iolaus:

Securing online content rating systems. In Proc. of WWW.

[46] Marti Motoyama, Damon McCoy, Kirill Levchenko, Stefan Savage, and Geof-

frey M. Voelker. 2011. Dirty jobs: The role of freelance labor in web service abuse.

In Proc. of SEC.
[47] Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun Hsu, Malu

Castellanos, and Riddhiman Ghosh. 2013. Spotting opinion spammers using

behavioral footprints. In Proc. of KDD.
[48] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie S Glance. 2013.

What yelp fake review filter might be doing?. In Proc. of ICWSM.

[49] Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T. Hancock. 2011. Finding

deceptive opinion spam by any stretch of the imagination. In Proc. of NAACL-
HLT.

[50] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of

training recurrent neural networks. In Proc. of ICML.
[51] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. 2004. Word-

Net::Similarity: Measuring the relatedness of concepts. In Proc. of HLT-NAACL
(Demonstration Paper).

[52] JamesW. Pennebaker, Cindy K. Chung, Molly Ireland, Amy Gonzales, and Roger J.

Booth. 2007. The development and psychometric properties of LIWC2007. Tech-
nical Report (2007).

[53] Jakub Piskorski, Marcin Sydow, and Dawid Weiss. 2008. Exploring linguistic fea-

tures for web spam detection: a preliminary study. In Proc. of AIRWeb Workshop.
[54] Posting positive reviews 2017. http://postingpositivereviews.blogspot.com.

(2017).

[55] Mahmudur Rahman, Bogdan Carbunar, Jaime Ballesteros, and Duen Horng Polo

Chau. 2015. To catch a fake: Curbing deceptive yelp ratings and venues. Statistical
Analysis and Data Mining: The ASA Data Science Journal 8, 3 (2015), 147–161.

[56] Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection:

Bridging review networks and metadata. In Proc. of KDD.
[57] Ehud Reiter, Robert Dale, and Zhiwei Feng. 2000. Building natural language

generation systems. Vol. 33. MIT Press.

[58] Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu, and Ian Davy. 2005. Choos-

ing words in computer-generated weather forecasts. Artificial Intelligence 167,
1-2 (2005), 137–169.

[59] Reviews that stick website order form 2017. http://www.formstack.com/forms/

?1653778-I3QqcHV4xC. (2017).

[60] Chen Rui, Yang Jing, Hu Rong-gui, and Huang Shu-guang. 2013. A novel LSTM-

RNN decoding algorithm in CAPTCHA recognition. In Proc.of IMCCC.
[61] Sabrina Tavernise 2016. As fake news spreads lies, more read-

ers shrug at the truth. https://www.nytimes.com/2016/12/06/us/

fake-news-partisan-republican-democrat.html. (2016).

[62] Joshua Saxe and Konstantin Berlin. 2015. Deep neural network based malware

detection using two dimensional binary program features. In Proc. of MALWARE.
[63] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Winnowing: local

algorithms for document fingerprinting. In Proc. of SIGMOD.
[64] Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and

Joelle Pineau. 2016. Hierarchical neural network generative models for movie

dialogues. In Proc. of AAAI.
[65] Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for

short-text conversation. In Proc. of ACL-IJCNLP.
[66] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing

functions in binaries with neural networks. In Proc. of Usenix Security.
[67] Ilya Sutskever, James Martens, and Geoffrey Hinton. 2011. Generating text with

recurrent neural networks. In Proc. of ICML.
[68] The 20 newsgroups data set 2008. http://qwone.com/~jason/20Newsgroups/.

(2008).

[69] Tom Slee 2014. In praise of fake reviews. https://thenewinquiry.com/essays/

in-praise-of-fake-reviews. (2014).

[70] Ross Turner, Somayajulu Sripada, and Ehud Reiter. 2010. Generating approximate

geographic descriptions. In Proc. of EMNLP.
[71] Bimal Viswanath, Muhammad Ahmad Bashir, Muhammad Bilal Zafar, Simon

Bouget, Saikat Guha, Krishna P. Gummadi, Aniket Kate, and Alan Mislove. 2015.

Strength in numbers: Robust tamper detection in crowd computations. In Proc.
of COSN.

[72] Andreas Vlachos and Sebastian Riedel. 2014. Fact Checking: Task definition and

dataset construction. In Proc. of ACL.
[73] GangWang, TianyiWang, Haitao Zheng, and Ben Y. Zhao. 2014. Man vs. machine:

Practical adversarial detection of malicious crowdsourcing workers. In Proc. of
Usenix Security.

[74] Gang Wang, Christo Wilson, Xiaohan Zhao, Yibo Zhu, Manish Mohanlal, Haitao

Zheng, and Ben Y. Zhao. 2012. Serf and turf: crowdturfing for fun and profit. In

Proc. of WWW.

http://fortune.com/2015/10/19/amazon-fake-reviews
http://fortune.com/2015/10/19/amazon-fake-reviews
http://blogs.wsj.com/wallet/2009/07/09/delonghis-strange-brew-tracking-down-fake-amazon-raves
http://blogs.wsj.com/wallet/2009/07/09/delonghis-strange-brew-tracking-down-fake-amazon-raves
http://www.nytimes.com/2010/08/27/technology/27ftc.html
http://www.nytimes.com/2010/08/27/technology/27ftc.html
http://postingpositivereviews.blogspot.com
http://www.formstack.com/forms/?1653778-I3QqcHV4xC
http://www.formstack.com/forms/?1653778-I3QqcHV4xC
https://www.nytimes.com/2016/12/06/us/fake-news-partisan-republican-democrat.html
https://www.nytimes.com/2016/12/06/us/fake-news-partisan-republican-democrat.html
http://qwone.com/~jason/20Newsgroups/
https://thenewinquiry.com/essays/in-praise-of-fake-reviews
https://thenewinquiry.com/essays/in-praise-of-fake-reviews

[75] Guan Wang, Sihong Xie, Bing Liu, and Philip S. Yu. 2011. Review graph based

online store review spammer detection. In Proc. of ICDM.

[76] William Yang Wang. 2017. “Liar, liar pants on fire”: A new benchmark dataset

for fake news detection. In Proc. of ACL 2017.
[77] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke,

and Steve Young. 2015. Semantically conditioned lstm-based natural language

generation for spoken dialogue systems. In Proc. of EMNLP.
[78] Why Yelp has a review filter 2009. https://www.yelpblog.com/2009/10/

why-yelp-has-a-review-filter. (2009).

[79] Yelp dataset challenge 2017. https://www.yelp.com/dataset_challenge. (2017).

[80] Yelp’s review filter explained 2010. https://www.yelpblog.com/2010/03/

yelp-review-filter-explained. (2010).

[81] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec:

deep learning in Android malware detection. In Proc. of SIGCOMM (Demonstration
Paper).

[82] Qing Zhang, David Y. Wang, and Geoffrey M. Voelker. 2014. DSpin: Detecting

automatically spun content on the web. In Proc. of NDSS.

https://www.yelpblog.com/2009/10/why-yelp-has-a-review-filter
https://www.yelpblog.com/2009/10/why-yelp-has-a-review-filter
https://www.yelp.com/dataset_challenge
https://www.yelpblog.com/2010/03/yelp-review-filter-explained
https://www.yelpblog.com/2010/03/yelp-review-filter-explained

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Crowdsourced Attacks on Review Systems
	2.2 Our Attack Model
	2.3 RNNs vs. Crowdsourced Authors
	2.4 RNN as a Text Generative Model

	3 Attack Methodology and Setup
	3.1 Attack Methodology
	3.2 RNN Training and Text Generation
	3.3 Datasets

	4 Evaluating Quality of Machine-Generated Reviews
	4.1 Detection by Existing Algorithms
	4.2 Evaluation by User Study

	5 Defending Against Machine-generated reviews
	5.1 Proposed Methodology
	5.2 Defense Evaluation

	6 Related Work
	7 Discussion & Conclusion
	A Review Customization Details
	B More Examples of the Generated Fake Reviews
	B.1 Machine-generated One-Star Reviews
	B.2 Machine-generated Three-Star Reviews
	B.3 Machine-generated Five-Star Reviews

	C Screenshots of User Study Surveys
	C.1 Fake/Real Review Detection
	C.2 Review Helpfulness Rating

	References

