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Abstract

We describe an SPA attack on an 8-bit smart card implementation of the Serpent
block cipher. Our attack uses measurements taken during an on-the-fly key expansion
together with linearity in the cipher’s key schedule algorithm to drastically reduce the
search time for an initial key. An implementation finds 256-bit keys in 3.736 ms on
average. Our work shows that linearity in key schedule design and other cryptographic
applications should be carefully evaluated for susceptibility to side-channel attacks and
that search algorithm design can greatly speed up side-channel attacks.
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1 Introduction

In 1997, the National Institute of Standards and Technology issued a call for proposals
for the Advanced Encryption Standard (AES), a block cipher that would replace the Data
Encryption Standard (DES). Serpent [1] was selected as one of five finalists, and although
another cipher, Rijndael, ultimately triumphed, Serpent was a strong contender in the final
round and is still available for use. The principles used in Serpent’s design provide insights
for future cryptosystem design, so it is instructive to assess its vulnerability to certain types
of cryptanalysis. We show that the Serpent key schedule algorithm is susceptible to a side-
channel attack related to its use of a modified linear feedback shift register (LFSR). Since
LFSRs are very common in block cipher design and other cryptographic applications (cf.
Schneier [14]), our results suggest that cryptographic applications employing LFSRs and
modified LFSRs should be carefully evaluated when side-channel attacks are a concern. Our
work also shows that search algorithm design, in this case based on standard techniques
from linear algebra, can greatly lower the expected time for a side-channel attack.

We consider side-channel attacks known as a power analysis attacks, which are performed
by measuring the power utilization of a processor or ASIC as it performs cryptographic

∗kjc@umich.edu
†timm@umich.edu
‡jvanlav@umich.edu

1



operations. The first investigation of power analysis attacks was due to Kocher et al. [4].
They observed that the power consumed by a CMOS chip varies depending on the values
operated on, so attackers may obtain information about data manipulated by the low-level
processor. Since microprocessors perform operations on fixed-sized blocks of data, these
variations actually reveal the sum of the bits, or the Hamming weight, of each data block.
We base our attack on empirical studies which have shown the feasibility of determining
Hamming weights of byte-length register loads executed by smart cards [8, 10, 7, 12].

Kocher et al. [4] identify two types of power attacks: differential power analysis (DPA)
attacks and simple power analysis (SPA) attacks. A DPA attack correlates particular plain-
text or key bits with variations in the power profiles from a large number of encryptions
made with the same key. An SPA attack may, in theory, require only a single power profile,
though in practice measurement error often necessitates multiple executions. It is generally
more difficult to determine whether a particular cipher is susceptible to an SPA attack be-
cause this form of attack usually depends on particular vulnerabilities in the cipher design
(e.g., in the case of Serpent, linearity in the key schedule algorithm).

Validation and testing of block ciphers often focus on their encryption algorithms [15],
but security of key expansion algorithms is also important, particularly when considering
side-channel attacks. In 1999 Biham and Shamir [2] gave a very preliminary appraisal
of power attack susceptibility of various AES candidate ciphers. They observed that the
Serpent key schedule applies a linear feedback shift register to the initial key to generate the
entire prekey (followed by an application of non-linear S-boxes to create the final round key),
but speculated that the Hamming weights of the intermediate key values will most likely
not yield any useful information about the key. The results here refute this speculation,
illustrating that SPA attacks are not always easy to discern.

Previous work has produced power analysis attacks on DES [10] and AES (Rijndael).
Those on AES include both DPA attacks [11] and SPA attacks on the key schedule algorithm
[6, 16]. The work here is, to the best of our knowledge, the first power analysis attack
on Serpent and the first that makes extensive use of the properties of LFSRs. Several
researchers have looked at techniques for thwarting power analysis attacks [9, 7], but we do
not consider their applicability here.

2 The Serpent Block Cipher

Serpent was designed and submitted as an AES candidate proposal by Ross Anderson, Eli
Biham, and Lars Knudsen [1]. We will follow their notation and terminology; in particu-
lar, all values are represented in little-endian notation. In this section we present a brief
description of Serpent’s encryption algorithm and key schedule algorithm.

2.1 The Serpent Encryption Algorithm

Serpent is a 32-round substitution-permutation cipher with 128-bit block size and a 256-bit
initial key. Both the encryption algorithm and the key schedule algorithm use 8 S-boxes
S0, S1, S2, . . . , S7, each of which maps a 4-bit input to a 4-bit output. The encryption
algorithm first applies an initial permutation IP to a 128-bit block plaintext. Each of the
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following 31 rounds, numbered 0, 1, . . . , 30, follows the same pattern. In round j, the 128-
bit input block is XOR-ed with a round key K̂j , then an S-box substitution is effected by
replicating S(j mod8) 32 times and applying it in parallel, and finally a linear transformation
is applied. The last round (round 31) differs only in that the linear transformation is replaced
an additional XOR with a round key K̂32. After the last round, the algorithm applies the
permutation IP−1.

2.2 The Serpent Key Expansion Algorithm

Encryption with Serpent requires a 256-bit initial key, but the input key supplied by the
user can be any length up to 256 bits. To any initial key of length less than 256, the key
schedule algorithm appends (on the MSB end) a 1 followed by enough 0’s to increase the
total key length to exactly 256 bits.

Throughout this paper, wi will denote a 32-bit word, bi will denote a single bit with
wi = b32ib32i+1 · · · b32i+31. The initial key (following the indexing scheme used in [1]) is

w−8w−7w−6 · · ·w−1 = b−256b−255b−254 · · · b−1,

from which the prekey
w0w1w2 · · ·w131 = b0b1b2 · · · b4223

is derived using the recurrence

wi = (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i) ≪ 11. (1)

Here ⊕ is bitwise-XOR, i is the 32-bit binary representation of the integer i, φ is the first
32 bits of the binary representation the fractional part of the Golden Ratio (in hexadecimal
this is 9e3779b9), and ≪ 11 indicates a left rotational shift by 11 bits.

Next, words k0, k1, k2 · · · k131 are derived using the eight S-boxes as follows. S-box
S((3−j) mod 8) is replicated 32 times and applied in parallel to w4jw4j+1w4j+2w4j+3 to obtain
k4jk4j+1k4j+2k4j+3. The round keys used by Serpent’s encryption algorithm are K̂j =
IP(k4jk4j+1k4j+2k4j+3), for j = 0, 1, 2, . . . , 32.

2.3 Serpent Key Expansion Observations

The designers of Serpent refer to (1) as an “affine recurrence,” as both XOR and left
rotational shifts are linear operations. Due to the 11-bit left rotation, this is not the type
of recurrence occurring in the standard definition of an LFSR [14] (or in the more general
definition of an LFSR over a finite field [5]). However, we may use a modified LFSR that
stores 8 consecutive 32-bit words of the output stream. The next word wi in the output
stream is computed as a linear function of the register contents. Following this is a 32-bit
register shift (rather than a 1-bit shift, as in a true LFSR) and the insertion of wi in the
register.

Our attack exploits the linear relationship between bits of Serpent’s prekey. While the
Serpent key schedule does include a set of S-boxes to eliminate this linearity in the actual
round keys used for encryption, they are not introduced until after the entire prekey has
been generated. As a result, every prekey bit b0, b1, b2, . . . , b4223 can be computed using some
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subset of bits from the 256-bit initial key b−256b−255 · · · b−1 along with one bit to represent
the aggregated constants from i and φ. We provide the details in the next section.

The 11-bit left rotational shift could be used to obtain additional Hamming weight
measurements and reduce the search space. Typical smart card architectures, including
those used in smart card implementations of Serpent published during the AES evaluation
period [3, 13], are equipped with only single-bit rotate and shift operations. However, rather
than assuming that each rotation will require distinct single-bit shift operations, we assume
that power traces are measured only immediately after the 11-bit shift. While the pre-shift
measurements are not used in the present version of our attack, the additional information
they provide would likely be valuable for error correction and other attack optimizations.

Our attack is restricted to smart card implementations where the key expansion is
performed on the fly. It would still be possible to obtain power measurements if the entire
set of round keys were pre-loaded into memory, but we would only obtain the Hamming
weights of bytes after the S-box transformation. The linearity that we exploit among bits
of the intermediate prekey is not present in the final round keys due to the non-linear design
of the S-boxes. However, for many smart cards where memory usage and size are critical
factors, pre-loading and storing 33 128-bit round keys would be prohibitively expensive,
particularly since many protocols call for frequent key replacement. Additionally, many
documents from the AES evaluation process reported key expansion times and praised the
low RAM usage made possible by Serpent’s on-the-fly key schedule, implying that on-the-fly
key expansion is a reasonable expectation in most cases [13, 15].

3 Key Schedule Power Analysis Attack

We begin by rewriting recurrence (1) to express the relation between bits rather than words.
Regard these expressions as linear equations over GF(2), the field of order 2, with + and
· denoting addition and multiplication modulo 2. To simplify notation, let φi be the bit
in position i in the binary representation of the fractional part of φ, bini(j) be the bit in
position i in the 32-bit binary representation of j, and

ci = φ((i+11) mod 32) + bin((i+11) mod 32)(i).

We require two cases to handle wraparound from the 11-bit rotational shift. For 0 ≤ i ≤
4223,

bi = bi−21 + bi−85 + bi−149 + bi−245 + ci, if 0 ≤ (i mod 32) ≤ 20; (2)
bi = bi−53 + bi−117 + bi−181 + bi−277 + ci, if 21 ≤ (i mod32) ≤ 31. (3)

This recurrence uses two different linear combinations of previous bits to produce an output
bit, whereas a true LFSR uses only one.1

1If allowed to proceed indefinitely, the Serpent key expansion would produce an ultimately periodic
sequence, so it could, in principle, be implemented by an LFSR. However, the register length would be
prohibitively large.
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By iterating (2) and (3) we can derive a expression for each bit bi, 0 ≤ i ≤ 4223, of the
prekey as a linear combination of bits bi, −256 ≤ i ≤ −1, of the initial plus a constant:

bi =
255∑

j=0

ai,j · bj−256 + di, for i = 0, . . . , 4223.

Taking

b = (b0, b1, . . . , b4223)t,

d = (d0, d1, . . . , d4223)t,

x = (b−256, b−255, . . . , b−1)t,

(where vt is the transpose of vector v) and

A =




a0,0 a0,1 · · · a0,255

a1,0 a1,1 · · · a1,255
...

...
. . .

...
a4223,0 a4223,1 · · · a4223,255


 ,

we can rewrite the system of equations as

b = Ax + d. (4)

Note that if we run the key schedule algorithm on an initial key x = 0, the resulting prekey
will be d0d1 · · · d4223, so we can compute d. If we run the key schedule algorithm on the
initial key with bit bj−256 equal to 1 and all other bits 0, the resulting prekey will be
a0,ja1,j · · · a4223,j ⊕ d0d1 · · · d4223, so we can compute the columns of A. From equation (4),
we can solve for x if we know b. Unfortunately, power analysis gives only the Hamming
weights of the bytes that comprise b, not b itself. It is difficult to work with the Hamming
weights in GF(2), but the parity of the Hamming weight of a byte is just the sum of its bits
in GF(2). Thus, denoting the parity of the i-th byte by hi for i = 0, 1, . . . , 527, we have
the following system of linear equations in GF(2):

hi =
7∑

j=0

b8i+j , for i = 0, 1, . . . , 527.

Again, rewrite this system in matrix notation, taking b′ = (h0, h1, . . . , h527)t and T to be
a 528 × 256 matrix such that b′ = Tb. Apply T to both sides of (4) and set A′ = TA,
d′ = Td. The result is

b′ = A′ x + d′,

a system of 528 linear equations in 256 unknowns. We know b′, A′, and d′, so we solve for
x by standard methods.

Set e′ = b′+d′ and use Gauss-Jordan elimination to reduce the augmented matrix [A′|e′]
to reduced row echelon form [A′′|e′′] (we used the computer algebra program Mathematica
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to do this); A′′ turns out to be of the form

A′′ =




D
D 0

D
. . .

D
0




where D is the 25×32 matrix in Figure 1. More precisely, A′′ is formed as follows. Replace
the main diagonal entries of an 8 × 8 matrix with D and all entries off the main diagonal
with the 25 × 32 0-matrix (this is the tensor product I ⊗D where I is the 8 × 8 identity
matrix); then add an additional 328 rows of 0’s to form a 528× 256 matrix.

D =




1 - - - - - - - - - - - - - - - - - - - - - - - - 1 1 1 1 1 1 1
- 1 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - -
- - 1 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - -
- - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - -
- - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1 - - -
- - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1 - -
- - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1 -
- - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - - 1
- - - - - - - - 1 - - - - - - - - - - - - - - - - 1 1 1 1 1 1 1
- - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - - - -
- - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - - -
- - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - - -
- - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - - -
- - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 - -
- - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1 -
- - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - 1
- - - - - - - - - - - - - - - - 1 - - - - - - - - 1 1 1 1 1 1 1
- - - - - - - - - - - - - - - - - 1 - - - - - - - 1 - - - - - -
- - - - - - - - - - - - - - - - - - 1 - - - - - - - 1 - - - - -
- - - - - - - - - - - - - - - - - - - 1 - - - - - - - 1 - - - -
- - - - - - - - - - - - - - - - - - - - 1 - - - - - - - 1 - - -
- - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - 1 - -
- - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - 1 -
- - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - 1
- - - - - - - - - - - - - - - - - - - - - - - - 1 1 1 1 1 1 1 1




Figure 1: The 25× 32 matrix D. For readability, 0’s are replaced with hyphens.

Thus, the rank of A′ is 200 so the parities of the prekey Hamming weights contain 200
bits of information about the 256-bit initial key. Therefore, among the 256 bits of the initial
key there are 56 bits (whose positions can be determined in advance) that will determine
the other 200 bits of the initial key. That is, the search space is of size 256, already a
significant improvement over a brute-force algorithm. Examination of A′′ shows an even
more dramatic reduction in search space size because the linear system A′′ x = e′′ can be
decomposed into 8 linear systems of the form

Dy = c (5)

For example, to solve for w−8 we take c = (e′′0, e
′′
1, . . . , e

′′
24)

t. The linear system (5) has 25
equations and 32 unknowns, hence 27 solutions; they are given by vectors of the form c′+v,
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where c′ is the 32-dimensional vector formed by appending seven 0’s to c, and v is a vector
in the null space of D. Since D is in reduced row echelon form, the last seven columns of
D, suitably extended, determine a basis for the null space of D (see Figure 2). By taking
all possible linear combinations of these basis vectors, we generate the 27 vectors v needed
for a solution.

v1 = (1, 1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -)t,

v2 = (1, -, 1, -, -, -, -, -, 1, -, 1, -, -, -, -, -, 1, -, 1, -, -, -, -, -, 1, -, 1, -, -, -, -, -)t,

v3 = (1, -, -, 1, -, -, -, -, 1, -, -, 1, -, -, -, -, 1, -, -, 1, -, -, -, -, 1, -, -, 1, -, -, -, -)t,

v4 = (1, -, -, -, 1, -, -, -, 1, -, -, -, 1, -, -, -, 1, -, -, -, 1, -, -, -, 1, -, -, -, 1, -, -, -)t,

v5 = (1, -, -, -, -, 1, -, -, 1, -, -, -, -, 1, -, -, 1, -, -, -, -, 1, -, -, 1, -, -, -, -, 1, -, -)t,

v6 = (1, -, -, -, -, -, 1, -, 1, -, -, -, -, -, 1, -, 1, -, -, -, -, -, 1, -, 1, -, -, -, -, -, 1, -)t,

v7 = (1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -, 1, 1, -, -, -, -, -, -, 1)t.

Figure 2: A basis of the null space of D. For readability, 0’s are replaced with hyphens.

The next step is to check, for each wi, i = −8,−7, . . . ,−1, each of the 27 solutions
of the appropriate instantiation of (5) against the actual Hamming weights of the bytes
of wi (rather than their parities). This generates a set of 32-bit candidate words for wi;
as we shall see, the number of candidate words is much smaller than 27. By taking all
combinations of candidate words for w−8, w−7, . . . , w−1 we generate a set of potential 256-
bit initial keys. For each of these we execute the key expansion algorithm and compare the
resulting Hamming weight values to the recorded measurements. We halt a key expansion
and eliminate a potential initial key as soon as we find a discrepancy in the Hamming
weights. Any potential initial key that matches all 528 measured Hamming weights is a
solution.

4 Theoretical and Experimental Results

In this section we will compute the expected number of key expansions for the attack
described in the last section, then present runtime data for an implementation of the attack.

For the expected number of key expansions, first compute the expected number of
candidate words for a given wi. Let Xi be the random variable giving the number of
candidate words for wi. Arguments of Xi are 32-dimensional column vectors representing
wi, so Xi(y) = |{y′ | y′ is a candidate word for y}|. By definition, y′ is a candidate word
for y if and only if y and y′ produce the same value in the linear system (5) (i.e., Dy = Dy′)
and the four bytes of y have the same Hamming weights as their counterparts in y′. We
wrote a C++ program to enumerate |{Xi = k}| (where {Xi = k} = {y : Xi(y) = k}) for
each k and then computed Pr{Xi = k} = |{Xi = k}|/232. There are just 26 values of k for
which |{Xi = k}| is nonzero; they are given in the table in Figure 3 together with the values
for |{Xi = k}| and Pr{Xi = k}. We summarize this information in the bar graph of Figure 4
with the values in the column labeled Pr{Xi = k} given as percentages and values for k ≥ 13
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aggregated. The expected number of candidate words is E[Xi] =
∑

k k·Pr{Xi = k} ≈ 4.407.
The variance is E[X2

i ]−E[Xi]2 ≈ 9.208, so the standard deviation is approximately 3.035.

k |{Xi = k}| Pr{Xi = k} k |{Xi = k}| Pr{Xi = k}
1 584780016 0.136 15 9152640 0.00213
2 774870656 0.180 16 8592640 0.00200
3 675478272 0.157 18 15543360 0.00362
4 607470080 0.141 20 5653760 0.00132
5 250100480 0.0582 21 37632 0.00000876
6 631576512 0.147 24 1881600 0.000438
7 149599744 0.0348 28 448 0.000000104
8 169612928 0.0395 30 470400 0.000110
9 210228480 0.0489 35 62720 0.0000146

10 72110080 0.0168 36 70560 0.0000164
12 117933312 0.0275 40 62720 0.0000146
13 6289920 0.00146 56 896 0.000000209
14 3386880 0.000789 70 560 0.000000130

Figure 3: Frequencies of wi’s with k candidate words and the corresponding probabilities.
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Figure 4: Bar graph of the data from the table of Figure 3.

The number of key expansions is
∏
−8≤i≤−1 Xi. The random variables Xi are indepen-

dent so the expected number of key expansions is E[Xi]8 ≈ 142253.43 ≈ 217.12. That is,
the Hamming weights of the initial key bytes together with Hamming weight parities of the
prekey determine, on average, all but about 17 bits of the 256-bit initial key.

We obtained experimental results by running multiple simulations on an Intel(R)
Core(TM)2 CPU 6400 machine running at 2.13 GHz. The operating system was 64-bit
Red Hat Enterprise Linux 4. We restricted our testing to 256-bit initial keys, since a viable
attack on 256-bit inputs will be capable of computing a 128 or 192-bit key as well. As noted
in the introduction, this study did not investigate the effects of power measurement error
in the Hamming weights.

In our data a trial is the time required to execute the attack and retrieve the set of
initial keys that generate a prekey matching all measured Hamming weight values. The
results for 106 randomly generated initial keys were as follows.

• The attack found a unique and correct result in 100% of the trials.
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• Total user time for all trials was 62 minutes 16.019 seconds (plus 1.621 seconds of
system time), so the average time to find one initial key was 3.736 milliseconds.

• The average number of key expansions per attack was 142184.54, within 0.05% of the
predicted number derived above.

In the (exceedingly rare) worst case, finding the initial key would require 708 key ex-
pansions and take our attack about half a year. However, the prekey generated by the
modified LFSR can be derived from any 8-byte substring. A small change would enable our
algorithm to find eight consecutive prekey bytes at a considerable time savings.

5 Conclusion and Future Work

The results here show that Hamming weight measurements from 8-bit smart card imple-
mentations of Serpent’s key schedule reveal enough side channel information to uniquely
determine a 256-bit initial key in a few milliseconds. More generally, we have shown that
LFSRs may be very susceptible to SPA attacks and that algorithm design can greatly ac-
celerate side channel attacks.

How does measurement error affect this type of attack? VanLaven et al. [16] presented
an error-robust SPA attack on the AES key schedule. We suspect that the attack presented
here can be made error-robust, as well, since we use only the first 200 rows of the reduced
row echelon matrix [A′′|e′′]. The remaining 328 rows could be used for error correction.
Also, pre-shift Hamming weights could be used.

The Rijndael and Serpent key schedule algorithms, we now know, are susceptible to
SPA attacks. Are the key schedules of the other three AES finalists, Twofish, RC6, and
Mars, also vulnerable?

A final question concerns the linear algebra of side channel attacks on LFSRs. We have
seen that Hamming weight parities dramatically reduce search time for a Serpent initial
key. Is this true in general for LFSRs? How much speedup should one expect?
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