
AES-GCM-SIV: Specification and Analysis

Shay Gueron1, Adam Langley2, and Yehuda Lindell3?

1 University of Haifa, Israel and Amazon Web Services
2 Google, Inc.

3 Bar-Ilan University, Israel

July 16, 2017

Abstract. In this paper, we describe and analyze the security of the AES-GCM-SIV mode of operation,
as defined in the CFRG specification [10]. This mode differs from the original GCM-SIV mode that
was designed in [11] in two main aspects. First, the CTR encryption uses a 127-bit pseudo-random
counter instead of a 95-bit pseudo-random value concatenated with a 32-bit counter. This construction
leads to improved security bounds when encrypting short messages. In addition, a new key derivation
function is used for deriving a fresh set of keys for each nonce. This addition allows for encrypting up
to 250 messages with the same key, compared to the significant limitation of only 232 messages that
were allowed with GCM-SIV (which inherited this same limit from AES-GCM). As a result, the new
construction is well suited for real world applications that need a nonce-misuse resistant Authenticated
Encryption scheme. We explain the limitations of GCM-SIV, which motivate the new construction,
prove the security properties of AES-GCM-SIV, and show how these properties support real usages.
Implementations are publicly available in [8]. We remark that AES-GCM-SIV is already integrated into
Google’s BoringSSL library [1] and is deployed for ticket encryption in QUIC [17].

Preamble for the July 2017 edition

We would like to thank Tetsu Iwata and Yannick Seurin for alerting us to the fact that we had
erroneously assumed that one of the terms in the security bounds of AES-GCM-SIV was dominated
by another term. (Specifically, ε′, the advantage of the adversary A′; see comments on pages 11
and 12 of the previous version of this paper). Thus, while the security proof was correct, the
example concrete bounds were overly optimistic, most notably for very large messages.

This July 2017 update fixes the concrete bounds that were given in the previous version, and some
other small errors pointed out by Iwata & Seurin. Detailed proofs for the bounds will soon be
released in [12].

? Suppored by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office.

1 Introduction

The concept of Authenticated Encryption with Additional Authenticated Data (AEAD) couples confidentiality
and integrity in a mode of operation that should be easy for practitioners to use correctly. The most popular
AEAD today, AES-GCM [13,14], is seeing widespread use due to its attractive performance, which is enhanced
by AES and polynomial multiplication instructions that are now part of many modern processor architectures.
However (like most AEADs), it suffers catastrophic failures of confidentiality and integrity if two distinct
messages happen to be encrypted, under the same key, with the same nonce. While the requirements for
AEADs specify that the pair of (key, nonce) shall only ever be used once, and thus prohibit such failures,
there are cases where, in practice, guaranteed uniqueness of nonces is a concern. Nonce-misuse resistant
AEADs [15] do not suffer from this problem. For this class of AEADs, encrypting two messages with the same
nonce only discloses whether the messages were equal or not. This is the minimum amount of information
that a deterministic algorithm can leak in this situation.

Gueron and Lindell [11] proposed efficient constructions for a nonce-misuse resistant AEAD (nmrAEAD)
scheme, called GCM-SIV, that can use the same CPU instructions that accelerate AES-GCM. (Hereafter,
GCM-SIV refers to the two-key variant of [11], with AES as the block cipher.) GCM-SIV takes an integer
k ≤ 32 as part of its context, which limits the message lengths to at most 2k − 1 blocks. The default value
is k = 32 (i.e., messages can take the maximum length that GCM-SIV supports). GCM-SIV has different
performance characteristics for encryption and decryption. For encryption, it is slower than AES-GCM,
because achieving nonce-misuse resistance requires, by definition, two (serialized) passes over the data.
Nevertheless, optimized implementations run GCM-SIV (for 128-bit keys) at less than one cycle per byte on
modern processors (roughly 2/3 of the speed of nonce-respecting AES-GCM). On the other hand, GCM-SIV
decryption runs at almost the same speed as AES-GCM.

GCM-SIV is formally described in [11] (a formal description can be derived from Fig. 1). Informally, the
algorithm uses a hash key (K1) and an encryption key (K2), applies a universal hash function (GHASH)
with K1 to the encoded AAD (additional authentication data) and MSG (plaintext to be encrypted), and
generates an authentication tag by AES-encrypting the hash value, XOR-ed with the nonce, under K2.
Finally, the plaintext MSG is encrypted with AES in CTR mode, using K2, and with an initial counter
derived from the authentication tag. This strategy means that the initial counter (effective nonce for the
CTR encryption) is pseudorandom for every different nonce/message pair. Thus, even if the actual nonce
repeats, the effective nonce used to mask the encryption is different for different messages. The initial counter
is of length n− k bits, and the value that is incremented is of length k bits (this is like in AES-GCM where
k = 32 is fixed). Thus, the maximum message length is 2k − 1 blocks. In the general constructions in [11],
an arbitrary pseudorandom function F was referred to; here the specific instantiation is either AES128 or
AES256, and this affects the length of the key K2. The security bounds of GCM-SIV were proven in [11,
Theorem 4.3], as follows:

Theorem 1 (Theorem 4.3 of [11] (2-Key GCM-SIV)). The GCM-SIV mode of operation is a nonce-
misuse resistant authenticated encryption scheme. Furthermore, for any fixed parameter k < n in GCM-SIV
determining the maximum message length of 2k − 1, and for every adversary A attacking the GCM-SIV
construction, making qE encryption queries and qD decryption queries, there exists an adversary A′ for
distinguishing F from a random function, such that

AdvmrAE
Π (A) < 2 ·Advprf

F (A′) +

(
d M̄n e+ 1

)
· (qE(A) + qD(A))2

2n−1
+
qE(A)2

2n−k−2
(1)

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qE(A) + 2qd(A) + L
n , the value L is the overall length of all encrypted or

decrypted messages, and M̄ is an upper bound on the length of all encryption and decryption queries including
the length of the message plus the AAD1.

1 For simplicity, we ignore an additive term qD(A)/2n, which is dominated by (implied) qD(A)2/2n. We also assume
that AES satisfies its design goals, and implicitly ignore PRP advantage of AES.

2

In Theorem 1, t(A′) and t(A) denote the running times for adversaries A and A′, respectively, and qf is the
number of oracle queries to the pseudorandom function oracle (for adversaries distinguishing a pseudorandom
function from a random one). Recall that in the specific GCM-SIV instantiation, the pseudorandom function
F is AES (with key K2).

Safety margins for using GCM-SIV, and the implied limit on the lifetime of a key. A loose
interpretation of Theorem 1 is that an adversary against GCM-SIV, who uses a given budget of encryp-
tion/decryption queries, has advantage that is at most twice the advantage that any adversary has, for
distinguishing AES outputs from random (using roughly the same time and queries budget), plus the two last
terms in the RHS of (1). The term qE(A)2/2n−k−2 represents the probability that “randomized” IV’s, which
are used for the encryption, would collide. If we assume that a usage requires support for messages with the
maximal allowed length of 232 − 1 blocks (k = 32), this term is qE(A)2/294. Note also that this bound in (1)
is essentially tight: after encrypting ∼ 247 messages, there is a high probability of a collision in the 95-bit
pseudorandom value TAG[126 : k] (recall that k = 32) that initializes the CTR block used in the encryption
step (see Step 16 in Fig. 1). Since such a collision results in the use of the same stream for encryption, we
must place a limit on the number of GCM-SIV encryptions that provides safe security margins. This limit
should handle the collision probability as a minimum (note that there are larger terms in the RHS of (1)).

In order provide a recommendation on the maximal number of GCM-SIV encryptions (with the same
key), it is useful to refer to NIST’s guidelines [5] for AES-GCM with a random 96-bit IV (or any IV whose
bitlength is not 96), which faces an analogous situation. The NIST requirement is that the probability of an
IV collision should not exceed 2−32, and this is translated in [5] to limiting the allowed number of encryptions
with AES-GCM using a random IV to 232. With the same rationale, a limit of 231 GCM-SIV encryptions
(with the same key) is appropriate, as a minimum, since (231)2/294 = 2−32. On top of this, we wish to require
that all of the terms in the security bounds that appear in (1) will be bounded by ∼ 2−32, and this imposes
even stricter constraints in the maximal allowed number of encryptions. Unfortunately, the implied restriction
on the lifetime of a single key is problematic for some real usages that wish to deploy GCM-SIV (e.g., when
relatively short messages are encrypted at very high frequency). AES-GCM-SIV is designed to address this
problem.

AES-GCM-SIV – the CFRG proposal. Due to the aforementioned limitation on the allowed number
of encryptions using GCM-SIV, the concrete CFRG proposal [10] (which we call AES-GCM-SIV) differs in
two important ways:

1. Key derivation: The most important difference is that encryption begins by deriving keys from a master
key and the nonce. This provides the property that “independent” keys are used for different nonces.
This derivation must be carried out carefully in order to obtain good security bounds. In particular, a
careless method will itself suffer from birthday bounds on collisions and so may not yield very good
bounds. In addition, the key derivation method must also be efficient. We set our goal to achieve a simple
and efficient key derivation mechanism, where the derived keys can be distinguished from random with
advantage of at most 2−32, even after ∼ 264 derivations.

2. Counter generation: As mentioned above, GCM-SIV essentially generates a 95-bit pseudorandom value
that initializes the counter block in the encryption phase. Similarly to the SIV mode of operation [15],
we initialize the counter block to be (almost) a full random block. This provides much better collision
bounds when many short messages are encrypted.

In addition to the above, AES-GCM-SIV differs from GCM-SIV in the exact specification of the universal
hash function used in the tag generation. GCM-SIV uses the GHASH function of AES-GCM; in contrast,
AES-GCM-SIV uses a hash function that we call POLYVAL, which is very similar to GHASH but avoids the
byte swapping which slows down implementations. Our optimized implementation of POLYVAL is 1.2 times
faster than the GHASH implementation in OpenSSL 1.0.2k.

As is formally shown in [12], the dominating term in the security bound for AES-GCM-SIV is reduced

from qE(A)2

2n−m−2 to max
{
Q·Bmax2

2n+1 ,
∑Q
i=1(NiE)2

2n−m−2

}
, where Q is the number of different nonces used (in encryption or

decryption queries), Bmax is the maximum number of blocks encrypted with a single nonce, and N i
E is the

3

number of messages encrypted with the ith nonce. As can clearly be seen, in the typical case where nonces
repeat infrequently, this reduces the bound from a term that is quadratic in the number of encryptions to a
term that is (almost) linear in the number of encryptions. Thus, for a large number of encryptions, a much
better security margin is achieved. We have:

Theorem 2 (Corollary 6.3 of [12] – informal). Assume the standard bounds regarding the indistin-
guishability of AES from a random permutation and a random function. Then, for every nonce adversary A
attacking AES-GCM-SIV using Q ≤ 264 different nonces in both encryption and decryption queries, querying
the ith nonce with N i

E different messages, and querying any single nonce with at most Bmax blocks overall
and maximum message-length 2m for any single message, we have that A’s advantage in the nonce-misuse
resistance experiment is at most

3Q

296
+
Q ·Bmax2

2129
+

∑Q
i=1(N i

E)2

2126−m .

We remark that this is an informal description of the bound, and it also assumes that the overall length
of all decryption queries is less than Q ·Bmax2; this holds in typical applications (the possible exception is
where the adversary can issue decryption queries with extremely long AAD, and the system would agree to
process them).

An example use case – QUIC. AES-GCM-SIV can be used anywhere where nonce-misuse resistance is
desired, with security bounds that are never lower than GCM-SIV, and are significantly higher in some cases.
For one example of such a use case, we consider a scenario where a large number of (not necessarily short)
messages are encrypted by a single “user”, and it is difficult to ensure that nonces are always unique. We
remark that such a “user” can be an application that runs over multiple servers. A real world example of
such a scenario is QUIC.

QUIC [17] is a new transport protocol that is designed to improve the perceived performance of connection-
oriented web applications that are currently using TCP, while providing security protection that is comparable
to that of TLS. QUIC needs to encrypt “source-address tokens”, such that a cluster of servers can recognize
them in the future, but without clients being able to forge them. Simply adding a MAC would suffice, but for
future-proofing they should also be confidential. All servers can share a fairly long-lived secret key, but the
servers need to be able to create these tokens quickly, and independently. Since a central allocation system
for nonces is not operationally viable, random selection of nonces is the only possibility. AES-GCM’s limit of
232 random nonces (per key) suggests that, even if the system rotated these secret keys daily, it could not
issue more than about 50K tokens per second. However, in order to process DDoS attacks the system may
need to sustain issuance of several hundred million per second. A similar problem arises in TLS with session
tickets [2]. Although the demands are significantly reduced in this context, a limit of 50K tickets per second
is still insufficient for many sites, and thus plain AES-GCM is unsuitable for this as well. AES-GCM-SIV is a
possible solution. Indeed, AES-GCM-SIV is already integrated into BoringSSL [1] (Google’s fork of OpenSSL),
and Google is planning to use AES-GCM-SIV for QUIC’s source-address tokens.

Organization. In Section 2, we present general preliminaires, as well as a description of the POLYVAL
universal hash function. Then, in Section 3, we present an intermediate mode of operation, denoted GCM-
SIV+, that differs from GCM-SIV by generating the counter as an almost full random block and used
POLYVAL instead of GHASH. We analyze the security bounds of this scheme as part of our modular
analysis of AES-GCM-SIV. Following this, in Section 4 we present our key derivation function and analyze its
properties. The full AES-GCM-SIV mode of operation is then derived in Section 5 by incorporating the key
derivation function into GCM-SIV+. Finally, in Section 6 we provide performance results and comparisons,
and in Section 7 we discuss the bounds obtained in different usage scenarios.

2 Preliminaries and Notation

2.1 General Notation

In this section, we present some general notation; this notation appears in [10] and is reproduced here for the
sake of clarity and completeness.

4

Let n > 0 be an integer, and let {0, 1}n be the set of all n-bit strings. An element in A ∈ {0, 1}n is
identified as an n-bit string A = an−1an−2 . . . a0, where, for 0 ≤ j ≤ n − 1, aj is the bit in position j of
A. By convention, we write here the strings with the most significant bit (an−1) in the leftmost position,
and the least significant bit (a0) in the rightmost position. We view {0, 1}n, interchangeably, as the set of
integers between 0 and 2n − 1, where the string A corresponds to the binary representation of the integer
Ã =

∑n−1
j=0 aj2

j . With the above writing convention, a0 = Ã (mod 2).

Let 0 ≤ i < 232 be an integer, and let str be a 32-bit string. Then, IntToString32(i) is the 32-bit
string that encodes the binary representation of i, and StringToInt32(str) is the integer x whose 32-bit
binary representation is str. For example, IntToString32(230 − 5) = 00111111111111111111111111111011 and
StringToInt32(00000000000000000000000000001011) = 11. For 64 bits and integers 0 ≤ i < 264, we use
IntToString64 and StringToInt64 analogously. Repeating bits can also denoted with a superscript that counts
the repetition, for example 0127 is the string of 127 zero bits.

Let X = X[` − 1 : 0] be a string of ` bits, and let k1, k2 be such that 0 ≤ k1 < k2 ≤ ` − 1. Then,
bitlen(X) = `, and if ` is divisible by 8 (i.e., X is a string of bytes), bytelen(X) = `/8. The notation X[k2 : k1]
represent the sub string of X, with k2− k1 + 1 bits, from the appropriate positions. Concatenation of strings
is denoted by ‖. For example, if ` = 16 and X is the string that holds the binary representation of the integer
37449, then X[15 : 0]=1001001001001001, bitlen(X) = 16, bytelen(X) = 2, X[12 : 8] = 10010.

A ”block” is a string of 128 bits (16 bytes). A block X is denoted by its bits as X[127 : 0], and can also
be denoted as a string of 16 bytes B15B14 . . . B0. By convention, we write the most significant byte (B15) in
the leftmost position, and the least significant bit (B0) in the rightmost position. We use AES128(K, X) /
AES256(K, X) to denote the AES encryption of a block X, using the key K of 128/256 bits, respectively. For
example, if ZERO is the block of 128 zero bits, then AES128 (ZERO, ZERO) is written, as a 16-byte string
under our convention, as 2e2b34ca59fa4c883b2c8aefd44be966. Here, the least significant byte of A (0x66) is
in the rightmost position. Bits number 0, 64, 127 are, respectively, a0 = 0, a64 = 0, a127 = 0.

We define the operation ByteSwap as follows. If X = B15B14 . . . B0 is a block, then ByteSwap(X) =
B0B1 . . . B14B15, i.e., the block which has the same bytes as X, but written in the reverse order. For example,

ByteSwap (2e2b34ca59fa4c883b2c8aefd44be966) = 66e94bd4ef8a2c3b884cfa59ca342b2e.

According to the relevant context, we view, interchangeably, elements in the set {0, 1}n, as elements in
the finite field GF [2n] with 2n elements. These elements are formal binary polynomials of degree n− 1, and

thus the string A = an−1an−2 . . . a0 ∈ {0, 1}n corresponds to the polynomial A = A(x) =
∑n−1
j=0 ajx

j . A
specific representation of the field is defined by choosing an irreducible reduction polynomial, Q(x), of degree
exactly n, and defining the field operations + and ⊗ through polynomial arithmetic modulo Q(x). Such a

representation is denoted by F2n [x]
/
Q(x). Here, field addition + is polynomial addition in the ring Z2[x]

(which corresponds to a bitwise XOR of the corresponding bit strings). Field multiplication A(x)⊗B(x) is
the polynomial D(x) = A(x) × B(x) (mod Q(x)), where × denotes polynomial multiplication in the ring
Z2[x], and the polynomial division modulo Q(x) is carried out over Z2[x]. The multiplicative unit and the
zero element in F are the 128-bit strings 0127‖1 and 0128, respectively.

2.2 The Polynomial Evaluation Hash Function POLYVAL

AES-GCM-SIV uses a polynomial evaluation hash function called POLYVAL, rather than the GHASH
function, used by AES-GCM. We define this function here, and compare it to GHASH in Section 2.3.

We choose a representation of the finite field with 2128 elements via the reduction polynomial Q(x) ≡
x128 + x127 + x126 + x121 + 1 (i.e., GF (2128)[x]

/(
x128 + x127 + x126 + x121 + 1

)
). For short, we denote the

field in this representation by F. Let “•” be the following operation in F. For every A1, A1 ∈ F,

A1 •A2 = A1 ⊗A2 ⊗ x−128. (2)

5

Definition 1 (F∗) We denote the set F∗ = {(X1, . . . , Xv) | v ≥ 1, X1, . . . , Xv ∈ F} of all vectors of length
at least 1 of arbitrary elements in F. A vector in F∗ is called a “message”. For a specific message X1, . . . , Xu,
we say that the length of the message is u.

Definition 2 (The POLYVAL Hash Function) Define POLY V AL : F×F∗ → F to be a keyed function
with key-space F, message space F∗ and range F. We denote the key by H ∈ F, and define
Hj = Hj ⊗ x−128(j−1), for j = 1, 2, . . . , s and s any positive integer. Then, the polynomial evaluation
hash of the message X1, X2, . . . , Xs, using the hash key H, is defined by

POLY V AL(H,X1, X2, . . . , Xs) = X1 •Hs +X2 •Hs−1 + . . .+Xs−1 •H2 +Xs •H1. (3)

The POLYVAL family of hash functions is defined to be the set {POLY V AL(H, ·)}H∈F.

We remark that using the definition in (2), the POLYVAL definition in (3) is equivalent to

POLY V AL(H,X1, X2, . . . , Xs) =

s∑
i=1

(
Xi ⊗Hs−i+1 ⊗ x−128·(s−i+1)

)
(4)

Iterative computation of POLYVAL: In order to compute POLYVAL efficiently, first observe that
Hj can be computed iteratively by setting H1 = H and then Hj = Hj−1 • H, for j = 2, . . . , s. Likewise,
POLYVAL can be computed iteratively using Horner’s method by setting S0 = 0 and Sj = (Sj−1 +Xj) •H,
for j = 1, . . . , s. Finally, the output is POLY V AL(H,X) = Ss.

Security. The GCM-SIV construction, that we build upon, uses an ε-XOR universal family of hash functions.
We define this notion now and then prove that POLYVAL achieves the definition.

Definition 3 (ε-XOR universal family of hash functions) Let H = {hH : F∗ → F}H∈F be a family of
hash functions that are indexed by a hash key H ∈ F. H is an ε-XOR universal family of hash functions if,
for any two distinct inputs X,Y ∈ F∗, and any element A ∈ F, it holds that

Pr
H∈F

[hH(X)⊕ hH(Y) = A] ≤ ε(n).

Lemma 3. POLYVAL is an ε-XOR universal family of hash functions with ε = smax/2128, where smax is
an upper bound on the length of the input messages.

Proof. Let H ∈ F be a hash key, and let A ∈ F be an element. Let X1, X2, . . . , Xs1 and Y1, Y2, . . . , Ys2 be
two distinct messages of lengths s1 and s2, respectively, such that smax ≥ s1 ≥ s2 ≥ 1. By prepending zero
elements to the shorter message, we may assume that s1 = s2 = s (since zero elements do not change the
result), and denote Zj = Xj + Yj , j = 1, . . . , s. Note that at least one of the Zj values (not necessarily Zs) is
nonzero, since X 6= Y . Given the above, the equality

POLY V AL(H,X1, X2, . . . , Xs) + POLY V AL(H,Y1, Y2, . . . , Ys) = A

is equivalent to
POLY V AL(H,Z1, Z2, . . . , Zs) = A. (5)

Denoting W = H ⊗ x−128, and using the equivalent definition in Eq. (4), we conclude that the equality in
Eq. (5) is equivalent to

Z1 ⊗W s + . . . Zs ⊗W −A = 0. (6)

Equation (6) implies that W is a root of a non-zero polynomial of degree at most s over the field F. Now,
every H ∈ F defines a unique W , and thus when H is uniformly distributed we have that W is uniformly
distributed. Since there are at most s roots of the polynomial in Eq. (6), we have that the probability that a
uniform W is a root is at most s

2128 . Since s ≤ smax, we obtain the desired bound of smax
2128 . ut

We remark that Lemma 3 holds as long as all messages have unique encodings. That is, denote by
Encode(AAD, MSG) the encoding of the additional authenticated data AAD and plaintext message MSG, as
described in Lines 10–11 of Figure 1. Then, since the last block contains the length of AAD concatenated with the
length of MSG (in a unique way), we have that for every (AAD, MSG), (AAD′, MSG′) with (AAD, MSG) 6= (AAD′, MSG′),
it holds that Encode(AAD, MSG) 6= Encode(AAD′, MSG′).

6

2.3 Choosing POLYVAL Over GHASH

In this section we explain the reason for using the POLYVAL hash function in AES-GCM-SIV, rather than
the GHASH function which is used in AES-GCM. Indeed, both leverage the same properties of polynomial
hashing and, as we show now, are very closely related. The following lemma from [9], shows the relation
between POLYVAL and GHASH.

Lemma 4. The POLYVAL and GHASH functions fulfill the following identity

POLY V AL(H,X1, X2, . . . , Xs)

= ByteSwap (GHASH (ByteSwap(H ⊗ x),ByteSwap(X1),ByteSwap(X2), . . . ,ByteSwap(Xs))) .

Lemma 4 shows that it is possible to compute POLYVAL by using a given function that computes
GHASH. This can be done by calling that function with a byte-swapped hash key multiplied by x ∈ F and
byte-swapped input blocks, and then byte swapping the result. Such an implementation can be useful in
cases where an implementer wishes to re-use software/hardware in an existing AES-GCM implementation.
However, this requires additional byte swapping which comes at a cost.

We now show that a direct implementation of POLYVAL is preferable to a direct implementation of
GHASH on x86-64 architectures (with AES-NI and PCLMULQDQ instructions). On such architectures, the
computations of GHASH require a transformation of the hash key, plus a byte swap of every message block.
By contrast, direct computations of POLYVAL, carried out in F as described above save the need to for byte
swapping and transforming the hash key. In this light, the identity in (7) is expressing a saving of unnecessary
operations that GHASH adds.

Experimental results. We implemented POLYVAL and compared its running time to the highly optimized
implementation of GHASH in OpenSSL 1.0.2k. (The results appear in Figure 4 in Section 6.) Asymptotically,
POLYVAL is 1.2 times faster than GHASH and is faster for all byte lengths.

3 The Intermediate GCM-SIV+ Mode of Operation

In this section, we describe a variant of the original GCM-SIV [11], denoted GCM-SIV+. This variant is
presented separately for the sake of providing a modular analysis of AES-GCM-SIV. GCM-SIV+differs from
GCM-SIV in two ways; first, the POLYVAL hash function is used instead of the GHASH function, and the
initial block is not defined to be of length 128−m− 1 bits (where 2m− 1 is the maximum number of message
blocks), but rather to be of length n− 1 bits. This algorithm is described in Fig. 1, with its differences to
GCM-SIV.
We now prove that the bound of Theorem 1 for GCM-SIV applies also to GCM-SIV+, but with one important
difference. In Theorem 1, the value k is the fixed parameter determining the length of the tag in GCM-SIV.
In contrast, in the following theorem, the value m (that replaces k) is the maximum-length of any message
encrypted by the adversary. Thus, the order of quantifiers regarding k and m in the following theorem is
different to that of Theorem 1. This makes a big difference if many small messages are encrypted. We remark
that this way of determining the counter is the same as in the SIV construction of [16], but differs from
GCM-SIV in [11].

Theorem 5 (Security bounds of GCM-SIV+.). The GCM-SIV+mode of operation is a nonce-misuse
resistant authenticated encryption. Furthermore, for every adversary A attacking GCM-SIV+, making qE
encryption queries of maximum length 2m − 1 with m ≤ 32, and qD decryption queries, there exists an
adversary A′ for distinguishing F from a random function, such that

AdvmrAE
Π (A) < 2 ·Advprf

F (A′) +
qE(A)2

2n−m−2
+

(M + 1) · (qE(A) + qD(A))2

2n−1
(7)

where t(A′) ≤ 6 · t(A) and qf (A′) ≤ 2qE(A) + 2qD(A) + L
n , the value L is the overall length of all encrypted

or decrypted messages, and M is an upper bound, over all encryption and decryption queries, on the number
of blocks in a message plus the AAD2.
2 Again, ignoring a dominated additive term qD(A)/2n.

7

GCM-SIV+ (encryption-keylength, K1, K2, N, AAD, MSG)

1. Context: encryption-keylength (= 128 or 256)

0 <= m <= 32 such that MSG length is at most 2^m-1 blocks.

2. Keys: K1 (128 bits), K2 (128 or 256 bits)

3. If encryption-keylength = 128, AES = AES128, else AES = AES256

4. Input: AAD, MSG, N (96 bits)

5. Padding:

6. A = Zero pad AAD to the next 16 bytes boundary (d blocks)

7. M = Zero pad MSG to the next 16 bytes boundary (v blocks)

8. (denote M by blocks as: M0, M1, ..., M(v-1).)

9. Encrypting and Authenticating:

10. L1 = (bytelen(AAD)*8); L2 = (bytelen(MSG)*8)

11. LENBLK = IntToString64(L1) || IntToString64(L2)

12*. T = POLYVAL (K1, A || M || LENBLK)

13. TAG = AES (K2, 0 || (T XOR N) [126:0])

14. for i = 0, 1, ..., v-1 do

15*. Low32(i) = (StringToInt32(TAG[31:0]) + i) mod 2^{32}

16*. CTRBLK_i = 1 || TAG[126:32] || IntToString32(Low32(i))

17. CTi = AES (K2, CTRBLK_i) XOR Mi

18. end do

19. Set C = CT0, CT1, ..., CT(v-1)

20. if length(MSG) != length(CT)

21. Chop off lsbytes of CT(v-1) to make lengths equal

22. Output: C = (CT0, CT1, ..., CT(v-1)), TAG

------------GCM-SIV-------------

12*. GCM-SIV used GHASH instead of POLYVAL

15-16*. GCM-SIV set CTRBLK_i = 1 || TAG[126:k] || IntToString32(i)

Fig. 1. Specification of GCM-SIV+. The differences between GCM-SIV+and GCM-SIV are in Steps 12*, 15* and 16*.

Proof. The statement follows from the proof of Theorem 4.3 in [11], using the fact that POLYVAL is a
universal hash function (Lemma 3; this relies on the prefix-free encoding due to Lines 10–11 in Figure 1, as

mentioned after the proof of Lemma 3) and the fact that the qE(A)2

2n−m−2 factor is due to the collision probability
in TAG[126 : m] in GCM-SIV. Thus, we conclude the proof of the proposition by showing that with the

counter method of GCM-SIV+, the collision probability is qE(A)2

2n−m−2 where 2m − 1 is the maximum message
length. This follows from a standard birthday analysis, based on the length of TAG being n−m− 1. ut

4 DeriveKey – Efficient Key Derivation With Good Bounds

We describe a new Key Derivation Function (KDF) here, that is both efficient to implement and obtains very
good bounds. Recall that our goal is to obtain a simple and efficient design, where the indistinguishability
(from random) of the derived keys is at most to 2−32 even after ∼ 264 derivations.

The KDF works by truncating outputs of a pseudorandom permutation. Concretely, we apply the AES
pseudorandom permutation to the input nonce and an index, and truncate each 128-bit output to 64 bits.
Thus, a 128-bit key is derived by applying AES twice, and a 256-bit key is derived by applying AES four
times. In GCM-SIV+, we require an AES key of length 128 or 256, and a POLYVAL hash key of length 128.
Thus, the KDF involves 4 AES invocations for AES128 and 6 AES invocations for AES256. We use a nonce of
96-bits, since this is standard practice for existing AES-GCM interfaces. The algorithm is described in Fig. 2.

Intuitively, truncating the output of AES is advantageous since it lowers the distinguishing probability of
AES from a pseudorandom function. Specifically, using a random permutation has the disadvantage that

8

DeriveKey(K, N)

Context: encryption-keylength (= 128 or 256)

if encryption-keylength = 128 AES is AES128, else AES is AES256

Key: K

Input: N (96 bits)

If encryption-keylength =128 then repeats = 4, else repeats = 6

for i from 0 to repeats-1 do

Tj = AES (K, N [95:0] || IntToString32 (i))

end

K1 = T1 [63:0] || T0 [63:0]

If keylength=128 then

K2 = T3 [63:0] || T2 [63:0]

else

K2 = T5 [63:0] || T4 [63:0] || T3 [63:0] || T2 [63:0]

end

Output: K1 (128 bits), K2 (128 or 256 bits)

Fig. 2. DeriveKey uses the KDF key K to derive two new keys: K1 (128 bits) and K2 (128 or 256 bits).

derived keys are distinguishable from random at around the birthday bound. In contrast, a random function
suffers from no such limitation, and thus a pseudorandom function (versus permutation) is advantageous in
this sense.

The following lemma is proven in [6], which explores the problem of distinguishing the truncation of a
randomly chosen permutation from a random function. The upper bound on the distinguishing advantage
(originally due to [18]), is simplified in [6] to the easy-to-use form

Advn,m(q̃) ≤ min

(
q̃2

2n+1
,

q̃

2
m+n

2

, 1

)
(8)

where q̃ ≤ 3
4 · 2

n is the number of queries, and where the (randomly chosen) the permutation over n bits is
truncated to n−m bits (for some 1 ≤ m < n). We comment that Gilboa and Gueron [7] have recently proved
that this bound is essentially tight. Plugging in n = 128 and m = 64 as in our DeriveKey procedure, we have:

Lemma 6 (The DeriveKey advantage). Let A be an adversary that makes at most Q ≤ 3
24 · 2

128 queries
to DeriveKey (obtaining Q pairs of keys, K1 (128 bits), K2 (128 or 256 bits)). Then,

Advprf
DeriveKey(A) ≤ Advprp

AES(A′) + min

{
36Q2

2129
,

6Q

296
, 1

}
(9)

where adversary A′ makes at most 6Q AES oracle queries.

Proof. To obtain one pair of keys (K1 and K2), DeriveKey computes at most 6 AES operations using the
KDF key (for the 128-bit case, only 4 AES operations are required). Suppose an adversary A makes at most
Q ≤ 3

242128 queries to DeriveKey, and obtains Q pairs of keys K1, K2. Then, within Eq. (8), we can set
q̃ = 6Q, n = 128 and m = 64, and derive that

q̃2

2n+1
=

36Q2

2129
and

q̃

2
m+n

2

=
6Q

296

and the bound on the number of queries q̃ ≤ 3
4 · 2

n is equivalent to 6Q ≤ 3
4 · 2

n, implying that Q ≤ 3
24 · 2

n.
Finally, since AES is a pseudorandom permutation and not a truly random permutation, the bound includes
Advprp

AES(A′), which is A′’s advantage in distinguishing AES from a random permutation. This completes the
proof. ut

9

Actual DeriveKey bounds. The crucial point to observe in Eq. (9) is that the advantage is the minimum of
O(Q/296) and O(Q2/2192). Thus, the birthday bound of Q ≈ 264 for distinguishing AES from a pseudorandom
function does not arise here. Rather, at Q = 264, the distinguishing advantage is only 6

232 since the linear term

of 6Q
296 is much smaller for large Q. Thus, it is possible to derive far more keys than by using counter-mode3.

It is worth noting that for small values of Q, the quadratic term is smaller; however, the minimum is so small
in these cases this is irrelevant. In conclusion, using the NIST bounds for AES-GCM that allow for 2−32

advantage, we are still able to derive approximately 264 different keys.

Observe that 36Q2

2129 < 6Q
296 if and only if Q < 233/6. Since we are interested in large values of Q, and since

the bounds are so small for Q < 233/6, we use the bound 6Q
296 from here on.

Efficiency. In order to compute DeriveKey, the number of AES invocations is 4 with encryption-keylength
= 128, and 6 with encryption-keylength = 256. Importantly, these AES computations are parallelizable.
Furthermore, the AES key schedule for the master key K can be pre-computed and cached, and so we can
ignore the key expansion overhead. Thus, on a modern CPU with AES instructions (AES-NI) with throughput
of 1 cycle and latency of 4 cycles, DeriveKey consumes ∼ 50 cycles in the first case, and ∼ 65 in the second
case, which is inconsequential in most situations.

5 The AES-GCM-SIV Mode of Operation

We are now finally ready to formally present AES-GCM-SIV. As we have mentioned, AES-GCM-SIV differs
from GCM-SIV in the use of POLYVAL, in the way the counter is defined in encryption, and due to the
use of key derivation in every encryption. As such, AES-GCM-SIV can be viewed as a two-step procedure:
a derivation of a per-nonce key from the master key, followed by the application of GCM-SIV+using the
derived keys. The algorithm is described in Fig. 3.

AES-GCM-SIV(keylength, K, N, AAD, MSG)

Key: K (Master Key)

Context: encryption-keylength (= 128 or 256)

If keylength=128, AES is AES128, else AES is AES256

Input: AAD, MSG, N (96 bits)

Encrypt:

(Record_Hash_key, Record_Enc_key) = DeriveKey(K, N)

(C, TAG) = GCM-SIV+(Record_Hash_key, Record_Enc_key, N, AAD, MSG)

Output: (C, TAG)

Fig. 3. An outline of AES-GCM-SIV.

5.1 The Security of AES-GCM-SIV

In order to derive the exact security bounds for AES-GCM-SIV, we can simply combine the bound for
GCM-SIV+ in Theorem 5 together with the key derivation bound in Lemma 6. However, using a naive
multi-key composition will yield bounds that are not very satisfactory in some settings. We therefore rely on
the analysis carried out in [12] who prove very strong security bounds for AES-GCM-SIV. The following is
proven in [12]:

Theorem 7 (AES-GCM-SIV bounds – Theorem 6.2 of [12]). Assume the standard bounds regarding
the indistinguishability of AES from a random permutation and a random function. Then, for every nonce
adversary A attacking AES-GCM-SIV using Q ≤ 264 different nonces, querying the ith nonce with N i

E

3 If keys are derived by running AESK(i) for i = 1, 2, . . ., then after 264 key derivations, the derived keys cannot
be argued to be indistinguishable from random. This is because a truly random key derivation mechanism would
provide some colliding keys.

10

encryption queries and N i
D decryption queries, the number of blocks processed with the ith nonce in both

encryption and decryption queries is Bi, the longest AAD is less than 2a blocks and the longest message is
less than 2m blocks, we have that A’s advantage in the nonce-misuse resistance experiment is at most

3Q

296
+

Q3

3 · 22κ
+
Q ·Bmax2

2129
+

5TE
2κ+1

+
(2a + 2m) ·

∑Q
i=1N

i
D

2128
+

∑Q
i=1(N i

E)2

2126−m .

where Bmax = max{Bi}Qi=1, κ is the key length, and TE is the offline preprocessing time that the adversary
uses to attack multikey AES.

As shown in [12], for Q ≤ 264 and AES with key-size 128 or above, it holds that the 3Q
296 term dominates

Q3

3·22κ and so the latter can be removed. Likewise, in many (if not most) applications, one can assume that

(2a+2m) ·
∑Q
i=1N

i
D < Q ·Bmax2/2, and thus Q·Bmax2

2n+1 dominates
(2a+2m)·

∑Q
i=1N

i
D

2n . Finally, for all “reasonable”

adversaries, we have that 5TE
2κ+1 is very small, and so can be ignored. This gives us the following very simple

bound.

Theorem 8 (Corollary 6.3 of [12] – informal). Assume the standard bounds regarding the indistin-
guishability of AES from a random permutation and a random function. Then, for every nonce adversary A
attacking AES-GCM-SIV using Q ≤ 264 different nonces in both encryption and decryption queries, querying
the ith nonce with N i

E different messages, and querying any single nonce with at most Bmax blocks overall
and maximum message-length 2m for any single message, we have that A’s advantage in the nonce-misuse
resistance experiment is at most

3Q

296
+
Q ·Bmax2

2129
+

∑Q
i=1(N i

E)2

2126−m .

5.2 Using AES-GCM-SIV Randomly Selected Nonces

In this section, we consider the case that AES-GCM-SIV is used with a randomly generated IV, rather than
with nonces guaranteed to be distinct. Recall that with AES-GCM, it is not possible to encrypt more than
232 messages, since this will yield a collision in the IV with probability over 2−32. This is therefore very
limited. When using a nonce-misuse resistant scheme, the results are fundamentally different. This is due to
the fact that a small number of collisions will not cause any harm (beyond knowing if the same or a different
message was encrypted when the IV repeated). Thus, excellent bounds can be obtained.

This can be analyzed using the following theorem:

Theorem 9 (Theorem 2 of [19].). Let 2 ≤ r ≤ q ≤ A. Let q balls be thrown, one by one (independently)
at random, into A bins. Let MultiColl(A, q, r) denote the event (called r multi-collision) that there exists at

least one bin that contains at least r balls. Denote µ(A, q, r) = qr

r!×Ar−1 . Then,

Pr[MultiColl(A, q, r)] ≤
(
q
r

)
Ar−1

≤ µ(A, q, r) (10)

(under the simplifying assumption that 3 (or 2) multi-collision are rare, and therefore, the number of repeating
nonces does not change the counting in a significant way. A bound on this number can be derived, to support
this assumption). By Theorem 9, the probability that at least one IV repeats at least 4 times out of Q
randomly selected 96-bit values is at most µ(96, Q, 4) = Q4/

(
24 · 2288

)
. This value is smaller than 3Q

296 (in
the bound given in Theorem 8) for any Q ≤ 264, and so can be ignored. We thus have that the exact same
bounds of Theorem 8 holds also for the case of random IVs. Using this fact, it was further shown in [12] that

the term
∑Q
i=1(NiE)2

2126−m in Theorem 8 is insignificant, and thus the bound is reduced to just

3Q

296
+
Q ·Bmax2

2129
.

11

Thus, whereas AES-GCM with a random IV is limited to just 232 encryptions, with AES-GCM-SIV it is even
possible to encrypt Q = 264 messages of length 212 each, or Q = 248 messages of length 220 each; see Table 1.
This is very significant for applications like QUIC where random IVs are needed, or in the general case where
simply keeping state is undesirable.

5.3 Clarifying the Concrete Bounds

In Table 1, we provide concrete examples of the bounds that we obtain. In this table, Q is the number of
unique nonces used for both encryption and decryption, and each nonce is assumed to be repeated N i

E times.
The maximum plaintext length for any message is 2m − 1 bytes.

Consider the case of a passive attacker who is looking to exploit a collision, or distinguish outputs from
random, and observes encrypted traffic. Then, Q×N i

E would be the maximum number of messages encrypted
(assume no AAD for simplicity), and the bounds given cover both confidentiality and indistinguishability.
NIST requires, for AES-GCM with random nonces, that the probability of a collision (and thus a failure of
confidentiality) is at most 2−32, limiting AES-GCM to 232 messages. This table shows that AES-GCM-SIV
can be used to encrypt many more messages while still meeting this requirement.

So, for example, the first row of the table captures the case where 255 encryptions (or decryptions) of
64KiB messages are performed and, for arbitrary reasons, a nonce may end up being repeated 1,024 times.
(This would take over a year at a rate of one billion encryptions per second.) Despite this, AES-GCM-SIV
still meets the NIST requirements.

This example also shows that AES-GCM-SIV can encrypt a larger amount of data than AES-GCM.
AES-GCM is limited to 232 messages of 232 blocks, giving 268 bytes total. In this case, AES-GCM-SIV is
encrypting 245 × 210 × 216 = 271 blocks (i.e., 275 bytes).

An active attacker can submit attempted forgeries with a chosen nonce and length (of message and AAD).
For example, he can clearly choose nonces in a way that (artificially) exceeds the limit on the number of
repeats of a nonce (N i

E). Of course, a collision may occur in this case. However, that collision is overwhelmingly
likely to happen between two of the attacker’s messages—gaining him nothing.

12

Scheme Q N i
E 2m Q·Bmax2

2129

∑Q
i=1

(Ni
E)2

2126−m

AES-GCM-SIV (nonce) 245 210 216 2−32 2−45

232 215 216 2−35 2−48

225 26 230 2−32 2−59

232 1 230 2−35 2−62

1 231 216 2−34 2−47

242 28 216 2−39 2−52

264 210 23 2−39 2−39

264 215 1 2−33 2−31

264 28 28 2−33 2−38

248 210 214 2−33 2−44

248 28 216 2−33 2−46

264 210 210 2−25 2−32

248 210 216 2−29 2−42

232 210 224 2−29 2−50

AES-GCM-SIV (random nonce) 264 - 212 2−35 -

248 - 220 2−35 -

Table 1. Example parameters and security bounds for dominant terms (exponent rounded to nearest integer). Recall
that Q is the number of different nonces in encryption and decryption queries, N i

E is the number of messages encrypted
per nonce (we assume all are equal), and 2m−1 is the maximum message length. Observe that Bmax = (N i

E +N i
D) ·2m

when all messages are of maximum length. Bounds that are unacceptable are colored in red. See more explanations in
the text.

6 Performance Results

This section provides some performance numbers. The measurements were taken on the microarchitecture
codename “Skylake” (single core; Intel Turbo Boost Technology, Intel Hyper-Threading Technology, and
Enhanced Intel Speedstep Technology disabled). On this processor, the latency and throughput of the AES
and PCLMULQDQ instructions are, 4 and 1 cycles, respectively.

Fig. 4 shows the performance of POLYVAL and GHASH. As can be clearly seen, POLY V AL is always
faster than GHASH, and tends to 20% faster as messages grow. This is therefore significant.

of bytes GHASH POLYVAL Speedup

cycles cycles (POLYVAL over GHASH)

16 49 36 1.36

256 119 109 1.09

512 212 184 1.15

2,048 765 640 1.20

4,096 1,507 1,252 1.20

Fig. 4. The performance of POLYVAL and GHASH for different input lengths. Measurements were taken on the
microarchitecture codename “Skylake”. The GHASH numbers reflect the implementation of OpenSSL (1.0.2k).

Fig. 5 compares the performance of AES-GCM-SIV and GCM-SIV+, for different message lengths, and for
key sizes 128 and 256 bits. These measure our optimized code. In addition, we show the performance of AES-
GCM for the same lengths. The AES-GCM code that we measured is the OpenSSL (1.0.2k) implementation,

13

using the OpenSSL speed utility4; the results were converted to cycles and cycles per-byte (C/B). Note
that this utility does not include the Init step. As a result (due to the structure of the OpenSSL code), this
also means that the encryption of the mask first counter block (1000000000000000000000000000000) is
not measured5. Therefore, to make a consistent comparison, the OpenSSL results needed to be adjusted by
adding the cost of one encryption. We used a very generous estimation as follows: for the 128 bit case, we
added 45 cycles, and for the 256 bit case, we added 60 cycles. These adjustments have negligible impact for
long messages, but are noticeable for short ones. They are incorporated in the results shown in Fig. 5.

Message Length AES-GCM-SIV GCM-SIV+ AES-GCM AES-GCM-SIV GCM-SIV+ AES-GCM

(bytes) 128-bit key 128-bit key 128-bit key 256-bit key 256-bit key 256-bit key

ENC / DEC ENC / DEC ENC / DEC ENC / DEC ENC / DEC ENC / DEC

16 cycles 257 / 358 129 / 133 129 / 141 306 / 445 152 / 194 154 / 201

64 cycles 361 / 456 261 / 227 193 / 190 441 / 546 292 / 305 219 / 215

1,024 C/B 1.37 / 1.17 1.25 / 0.94 0.84 / 0.79 1.69 / 1.48 1.53 / 1.22 1.1 / 1.05

2,048 C/B 1.14 / 0.88 1.09 / 0.76 0.76 / 0.71 1.43 / 1.16 1.36 / 1.03 1.00 / 0.97

4,096 C/B 1.04 / 0.76 1.01 / 0.71 0.68 / 0.67 1.31 / 1.03 1.26 / 0.96 0.93 / 0.92

8,192 C/B 0.98 / 0.69 0.97 / 0.66 0.66 / 0.65 1.24 / 0.95 1.22 / 0.92 0.91 / 0.9

16,384 C/B 0.96 / 0.66 0.95 / 0.65 0.64 / 0.64 1.21 / 0.92 1.20 / 0.9 0.89 / 0.89

Fig. 5. The performance of AES-GCM-SIV, GCM-SIV+, and AES-GCM (with a random 96-bit IV), with 128-bit
and 256-bit keys. The measurements were taken on the micro-architecture codename “Skylake”. The performance
numbers are in processor cycles for short messages (16 and 64 bytes), and in cycles per byte (C/B) for long messages
(1KB-16KB). See explanations in the text.

As can be seen in Fig. 5, for large messages, AES-GCM-SIV and GCM-SIV+ decryption is have comparable
decryption times to AES-GCM. Furthermore, encryption is approximately 50% more expensive that AES-
GCM. This is due to the fact that full nonce-misuse resistance requires two passes. Nevertheless, for messages
of 8KB and over with AES-128, the time is still under 1 C/B. It is also clear that the addition of the key
derivation in AES-GCM-SIV (over GCM-SIV+) is inconsequential for large messages. For relatively short
messages of length 1KB, the key derivations adds only about 10%. Given the improved bounds achieved by
this derivation, we find the tradeoff very favorable.

In contrast, we do note that for very short messages (e.g., 16 bytes), the additional cost in percentage is
very considerable. In typical applications, for such short messages, the difference in actual time is hardly
measurable. However, when this is not the case, and the number of overall encryptions stays within acceptable
bounds, then GCM-SIV+ can be used.

7 Remarks and Conclusions

The goal of achieving fast nonce misuse resistant authenticated encryption is an important one. The GCM-SIV
mode of operation [11] achieves very high performance. However, its security bounds are not optimal. In
particular, when encrypting many short messages, or when a nonce repeats very frequently, the concrete
security margins degrade. The SIV [15] and GCM-SIV [11] schemes both have a security bound that is
typically dominated by q2/2n−k, where q is the overall number of encryptions.6 Our primary aim in designing

4 For example, openssl speed -evp aes-128-gcm, and openssl speed -decrypt -evp aes-256-gcm.
5 Technically, the speed utility measures AES-GCM with a fixed key and repeating nonces, which does not really

represent a legitimate usage of the cipher, rather a performance characteristic.
6 We remark that in the SIV scheme, 2k is the longest message encrypted in actuality, whereas in GCM-SIV 2k is an

a priori bound on the maximum size of the message. In this sense, SIV and GCM-SIV+ have essentially the same
bound of approximately q2/2n−k.

14

AES-GCM-SIV (over the original GCM-SIV) was to provide better bounds, as required in some applications
where encryptions are issued at a very high rate and nonces may repeat. AES-GCM-SIV achieves a significantly
better bound than SIV and GCM-SIV, reducing the quadratic dependency on the number of queries to an

almost linear dependency. As can be seen in Theorem 8, the dominating term for most parameters is Q·Bmax2

2129

where Q equals the number of different nonces used in encryption and decryption queries, and Bmax is the
maximum number of blocks processed with any given nonce. (Of course, there are other terms in the bound,
but this dominates in many cases.)

An interesting artifact of the security bound that we derive is that the security margin obtained depends
on how many times the nonce repeats. To go to the extreme, if the same nonce is used always then we have
that Q = 1 and N1

E is the total number of encrypted message. In this case, Bmax = N1
E · 2m. In this case, if

m = 220 and N1
E = 244, then Q·Bmax2

2129 = 2128

2129 = 1
2 which is not secure. This should be contrasted with the

case that a different nonce is used always. In such a case, when encrypting 244 messages of length 220 each,

we have that Q = 244 and Bmax = 220 and so Q·Bmax2

2129 = 284

2129 = 2−45, which is not even close to the limit.

When discussing this work, we found a widespread misunderstanding of the term “nonce-misuse resistant”.
Many people appear to expect the security of a nonce-misuse resistant scheme to be completely unaffected
by the number of times that a nonce is reused. Thus, while it is a convenient shorthand to distinguish
schemes that tolerate repeated nonces (e.g., AES-GCM-SIV) from those that do not (e.g., AES-GCM and
ChaCha20-Poly1305), nonce-misuse resistance is not necessarily a “binary” property. In particular, it is not
binary for the case of AES-GCM-SIV, and as we have shown the security bounds of AES-GCM-SIV change
as the number of repeated nonces varies.

As such, it is important to understand what security is actually guaranteed by nonce-misuse resistance.
First and foremost, nonce-misuse resistant schemes reveal when the same plaintext is encrypted using the
same nonce, and this is well understood. Due to this, some have concluded that if an application guarantees
unique plaintexts, then the same nonce can be safely reused in every encryption. Although this is true in some
sense, it is also true that the security bounds can be degraded, as we have shown in this paper. Thus, it is
not recommended to purposefully use AES-GCM-SIV with the same nonce (unless the number of encryptions
is small enough so that the quadratic bound is small). We stress that if the same nonce is used always, then
AES-GCM-SIV is no worse than previous schemes; however, AES-GCM-SIV can achieve far better bounds
and it is worth taking advantage of this.

We believe that AES-GCM-SIV is well suited to applications where independent servers need to work
with the same key, and where nonce repetition is a real threat. In such cases, it is not possible to enjoy
the better bounds available for encryption schemes that utilize state to ensure unique nonces in every
encryption. Encryption of TLS session tickets and QUIC’s source-address tokens are good examples of use
cases that are particularly well suited, because all large deployments of TLS and QUIC will involve multiple,
geographically-separated servers encrypting with a common key. However, we remark that AES-GCM-SIV
provides excellent bounds for all sets of parameters and so is a good choice in general. Also, as we have shown,
its performance is extremely good on processors with AES-NI instructions.

We conclude by remarking that applications that encrypt files with random keys, and wrap those keys
with a master key, are another example where AES-GCM-SIV is well suited. The key-wrapping step involves
encrypting very short messages (just one or two blocks for a symmetric key, possibly with one additional AAD
block) with a common key. In this situation m < 2 and thus Theorem 8 suggests that using a fixed nonce
with AES-GCM-SIV provides comfortable security bounds, even for very large numbers of wrapped keys.
Specifically, since Bmax < NE · 4 where NE denotes the total number of encryptions, the security bound is

dominated by 16NE
2

2126−m = NE
2

2120 , which is acceptable even up to NE = 244. In this case, one might wish to cache
the result of the KDF. We remark that this is the same as using GCM-SIV+ directly, with a fixed nonce.

Technical comments. The code used for the performance measurements in this paper can be found at
https://github.com/Shay-Gueron/AES-GCM-SIV, and is available for general use. The current version of
BoringSSL also supports AES-GCM-SIV. The latest version of the CFRG specification can always be found
at https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv. At the time of writing, the most current
version is version five.

15

https://github.com/Shay-Gueron/AES-GCM-SIV
https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv

Acknowledgments

This research was supported by the PQCRYPTO project, which was partially funded by the European
Commission Horizon 2020 research Programme, grant #645622, by the ISRAEL SCIENCE FOUNDATION
(grant No. 1018/16), and by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

References

1. BoringSSL, https://boringssl.googlesource.com/boringssl/
2. RFC5077: Transport Layer Security (TLS) Session Resumption without Server-Side State, https://tools.

ietf.org/html/rfc5077#section-4

3. A. Abdalla and M. Bellare. Increasing the Lifetime of a Key: A Comparative Analysis of the Security of
Re-keying Techniques. In ASIACRYPT 2000, Springer (LNCS 1976), pages 546–559, 2000.

4. M. Bellare and B. Tackmann. The Multi-User Security of Authenticated Encryption: AES-GCM in TLS 1.3. In
CRYPTO 2016, Springer (LNCS 9814), pages 2470276, 2016.

5. M. Dworkin. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) for
Confidentiality and Authentication. Federal Information Processing Standard Publication FIPS 800-38D, 2006.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

6. S. Gilboa and S. Gueron. How many queries are needed to distinguish a truncated random permutation from a
random function?. To appear in the Journal of Cryptology.

7. S. Gilboa and S. Gueron. The Advantage of Truncated Permutations. Manuscript, 2016. https://arxiv.org/
abs/1610.02518.

8. S. Gueron, AES-GCM-SIV, https://github.com/Shay-Gueron/AES-GCM-SIV
9. S. Gueron, A new interpretation for the GHASH authenticator of AES-GCM. manuscript, 2017.

10. S. Gueron, A. Langley and Y. Lindell. AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption.
CFRG Draft, 2016. https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv

11. S. Gueron and Y. Lindell. GCM-SIV: Full Nonce Misuse-Resistant Authenticated Encryption at Under One
Cycle per Byte. In the 22nd ACM Conference on Computer and Communications Security (CCS), page 109–119,
2015.

12. S. Gueron and Y. Lindell. Better Bounds for Block Cipher Modes of Operation via Nonce-Based Key Derivation.
Manuscript, 2017.

13. D.A. McGrew and J. Viega The Galois/Counter Mode of Operation (GCM). http://csrc.nist.gov/groups/
ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf

14. D.A. McGrew and J. Viega The Security and Performance of the Galois/Counter Mode (GCM) of Operation.
In INDOCRYPT 2004, Springer (LNCS 3348), pages 343–355, 2004.

15. P. Rogaway and T. Shrimpton. Deterministic Authenticated Encryption: A Provable-Security Treatment of the
Key-Wrap Problem. In EUROCRYPT 2006, Springer (LNCS 4004), pages 373–390, 2006.

16. P. Rogaway and T. Shrimpton. The SIV Mode of Operation for Deterministic Authenticated-Encryption (Key
Wrap) and MisuseResistant Nonce-Based Authenticated-Encryption. Available from http://csrc.nist.gov/

groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf (2007)
17. QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic
18. A. J. Stam, Distance between sampling with and without replacement, Statist. Neerlandica 32 (1978), no. 2,

81–91.
19. K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota. Birthday Paradox for Multi-collisions. Proceedings of the

9th International Conference on Information Security and Cryptology, Springer (LNCS 4296), pages 29–40,
2006.

16

https://boringssl.googlesource.com/boringssl/
https://tools.ietf.org/html/rfc5077#section-4
https://tools.ietf.org/html/rfc5077#section-4
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://arxiv.org/abs/1610.02518
https://arxiv.org/abs/1610.02518
https://github.com/Shay-Gueron/AES-GCM-SIV
https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
https://www.chromium.org/quic

	AES-GCM-SIV: Specification and Analysis

