
Paper V: Attack on Sun's

MIDP Reference

Implementation of SSL



Attack on Sun's MIDP Reference

Implementation of SSL

Kent Inge Simonsen, Vebjørn Moen, and Kjell Jørgen Hole

Abstract

Key generation on resource-constrained devices is a challenging task.
This paper describes a proof-of-concept implementation of an attack on
Sun's reference implementation of the Mobile Information Device Pro�le
(MIDP). It is known that this implementation has a �aw in the generation
of the premaster secret in SSL. The attack recovers the symmetric keys
and plaintext from an SSL session.

1 Introduction

Running Java programs on resource-constrained devices like cellular phones and
personal digital assistants require a specialized run-time environment. The Con-
nected Limited Device Con�guration (CLDC) [1] provides a set of Application
Programming Interfaces (APIs) and a virtual machine for this environment. To-
gether with a pro�le such as the Mobile Information Device Pro�le (MIDP) [2],
it provides the possibility to develop Java applications to run on devices with
limited memory, processing power, and graphical capabilities.

MIDP is a collection of APIs building on CLDC, providing some more ad-
vanced capabilities. Applications that comply with this standard are called
MIDlets. Many companies have been involved in the development of MIDP,
including Ericsson, NEC, Nokia, Palm Computing, Research In Motion (RIM),
DoCoMo, LG TeleCom, Samsung, and Motorola.

MIDP has support for the Hyper Text Transfer Protocol (HTTP), where
the information is sent in the clear, and secure HTTP, denoted HTTPS, which
supports authentication, con�dentiality, and integrity. The security of HTTPS
is provided by Secure Socket Layer (SSL), or its successor Transport Layer
Security (TLS).

As with many other cryptographic protocols, the security of SSL and TLS
depends on generating secret key material. The randomness used in the process
of generating the key material decides the strength of the resulting keys.

The �rst version of SSL in Netscape was shown to create key material using
time [3] as input to a Pseudo-Random Number Generator (PRNG); this input
is called a seed. Seeding with time is a common mistake, since it is di�cult
to get access to a good seed on a general purpose computer. Creating truly
random numbers on a deterministic device such as a computer is impossible.
We need to access a hardware source to get some randomness�strong sources
of randomness include thermal noise and a radioactive decay source. Creating
good random numbers in a constrained environment such as a cellular phone is

85



Client
1

2

3

4

5

6

7

8

9

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

ChangeCipherSpec

Finished

Finished

Server

Figure 1: The 9 messages that SSL uses to establish an encrypted communica-
tion channel.

truly a challenge, but the security in SSL and most other crypto systems depend
on a source for randomness.

It is known [4] that the reference implementation of MIDP provided by Sun
has a �aw in the generation of the premaster secret, from which the message
authentication and encryption keys in SSL are derived, due to seeding a PRNG
with time. We describe an implementation of an attack on an SSL session be-
tween a server and a client using Sun's MIDP reference implementation which
successfully recovers the SSL premaster secret, and consequently the authenti-
cation and encryption keys used in the SSL session.

In Section 2 we give a brief introduction to SSL, Section 3 considers ran-
domness, Section 4 describes the attack on SSL in MIDP, as well as the imple-
mentation of the attack, and Section 5 concludes the paper.

2 SSL

This section is not meant to give a complete description of the SSL protocol; for
a complete description [5] is recommended. We will consider the simplest case
of SSL, namely establishing an encrypted communications channel.

The situation is that a client wants to establish a secure session with a server.
To do this the client and server exchange SSL messages. Figure 1 shows the
SSL handshake used to establish a share secret.

1. ClientHello: The client asks the server to begin the negotiation of the
security services used by SSL. This message contains �elds for a version
number (3.0 for SSLv3 and 3.1 for TLS), and a 32-byte nonce used as seed
in the generation of the premaster secret. The SSL speci�cation suggests
that 4 of these 32 bytes contain the time and date to avoid client reuse

86 Paper V: Attack on Sun's MIDP Reference Implementation of SSL



of this 32-byte random number. A session ID to identify the speci�c SSL
session, a list of cryptographic primitives that the client can support, and
some more �elds not mentioned here are also a part of the ClientHello.

2. ServerHello: The server responds to the ClientHello. This message
contains �elds for a version number, a 32-byte nonce where 4 bytes are
used for time and date, a session ID number, a CipherSuite �eld which de-
termines the cryptographic parameters, such as algorithms and key sizes.
The ServerHello also contains some more �elds not discussed here.

3. Certificate: The server sends a certi�cate containing the public key
information.

4. ServerHelloDone: Tells the client that the server is �nished with the
initial negotiation messages.

5. ClientKeyExchange: The client generates the premaster secret, encrypts
it with the public key received in the server certi�cate and sends the result
to the server.

6. ChangeCipherSpec: This message tells the server that from now on any
message received from the client will be encrypted with the agreed algo-
rithm and key.

7. Finished: This message from the client to the server allows the server
to verify that the negotiation has been successful. It contains a hash of
key information, and contents of all previous SSL handshake messages
exchanged by the client and server. Also notice that this message is en-
crypted.

8. ChangeCipherSpec: This message tells the client that from now on all
messages from the server will be encrypted.

9. Finished: The client can now verify that the SSL negotiation has been
successful. Just as for the �nished message from the client it contains
a hash of key information, and contents of all previous SSL handshake
messages, and it is also encrypted.

After �nishing the above protocol the client and the server share symmetric keys
for message authentication and encryption, and using the certi�cate received
from the server in message 3 the client can verify that it is talking to the correct
server. Note however that the described SSL negotiation does not allow the
server to authenticate the client. Observe also that �Finished� messages can
be used by the server and the client to verify that the other part has the correct
key.

3 Randomness and PRNGs

The security of SSL rests on the infeasibility of testing all possible keys used for
encryption. If the key space is too large, then the brute-force attack will take
too much time. But if an attacker can reduce the number of keys to be tested,
she might be able to crack the key.

3 Randomness and PRNGs 87



Many applications use easily available sources of randomness to create an
initial value, or seed. This seed is then used as input to a PRNG. The PRNG
expands the seed into a longer, random-looking bit stream. For a non-security
application the seed only needs to change every time the program runs, but
when we use it to generate cryptographic keys, the seed also needs to be as
unpredictable and unguessable as the key itself for an attacker.

Consider a system using 128-bit keys. A brute-force attack on such a system
would need to check on average 2127 keys, which is a huge number and clearly
infeasible on a modern computer. What happens if these 128 bits are generated
with a PRNG? Assuming that all the details about the PRNG are known to the
attacker, the security of the cryptographic key now depends upon the seed. In
other words, the number of possible seeds gives the number of possible crypto-
graphic keys. If the PRNG is seeded with milliseconds since midnight, January
1, 1970 in the GMT timezone, and the attacker knows which year the seed is
created, she only needs to check 365 · 24 · 3, 600 · 1, 000 = 31, 536, 000, 000 ≈ 235

di�erent keys, which is a relatively small task for a modern computer.
Using PRNGs to create cryptographic keys requires that there exists at least

as many equally likely seeds as possible keys, to avoid that the PRNG reduces
the e�ective key length.

3.1 Creating a seed

The seed is essential for the security of the system. RFC 4086 [6] gives some rec-
ommendations for security in randomness. Essentially there are two strategies:
either use a reliable hardware source of randomness or use a mixing function to
combine several more or less random inputs to create a �pool� of random data,
e.g. Yarrow [7] and /dev/random in GNU/Linux.

Radioactivity decay source, Gaussian white noise and spinning disks [6, 8] are
all examples of hardware sources of randomness. A small addition in hardware
and software to access these sources, could solve the seed problem.

The /dev/random in GNU/Linux is an RNG which collects environmental
noise from devices and other sources into an entropy pool, and keeps an estimate
of the number of available bits in the entropy pool. When random numbers are
requested they are created from the pool. Gutmann [9] describes some pratical
solutions of how to create random numbers for use in cryptographical protocols
and for key material.

4 The Attack

The source code for Sun's reference implementation of MIDP is available for
download from Sun, but it does not contain the source code for SSL and the
PRNG. By decompiling the SSL.jar which comes with the compiled version of
MIDP we obtained the Java byte code, and from that we discovered how the
seeding of the PRNG is implemented.

The PRNG is seeded with the current time in milliseconds and 16 static
bytes. The PRNG also allows manual seeding, but this is not used in the
reference implementation. First, we give a brief overview of how the PRNG
works and what the idea of the attack is, then more details are given in the
remainder of the section.

88 Paper V: Attack on Sun's MIDP Reference Implementation of SSL



The PRNG uses the MD5 hash function to mix input and the current state,
and it is reseeded with current time and the previous seed for each block of data
that is generated. The entire MD5 output is used, which gives a block size of
16 bytes.

During the SSL handshake a PRNG object is constructed on the client. The
PRNG object generates a 32-byte nonce sent in the clear, as well as a 48-byte
premaster secret which is sent encrypted. The �rst two bytes of the 48 bytes
used for the premaster secret are discarded to make room for some version
information.

The PRNG is seeded 5 times with time in milliseconds, and one can be
certain that all the time seeds come in proximity of each other. Since the
nonces are sent in the clear, it seems reasonable to split the process in two
parts. First, the time seeds used to create the client nonce are found so that we
can synchronize our clock with the clock on the device, and then we guess the
next three time seeds that lead to the premaster secret.

For each suggestion for the premaster secret we need to generate the encryp-
tion/decryption and message authentication keys, decrypt a package and check
the Message Authentication Code (MAC) value.

4.1 The PRNG

The handshake procedure uses the same PRNG object to create the nonce and
the premaster secret. The pseudo code version of the decompiled PRNG from
Sun's reference implementation of MIDP is shown in Figure 2.

When the PRNG is constructed it initializes the MD5 digest and the update-
Seed() method is called, where a time seed together with a constant are used
to create the �rst state. The updateSeed() method feeds the current state and
the current time in milliseconds in that order and calls the doFinal() method
whose output is the next state. The digest is reset after every doFinal().

The generateData() method writes the pseudo random data to an array
(which it takes as an argument). When it runs out of random data, every 16
bytes, it digests the current state and calls the updateSeed() method. The
data resulting from hashing the current state is said to be the pseudo random
data, and is written to the array until it is full, or more data is needed. Note
that randomBytes is a global array.

The generation of the nonce and premaster in the MIDP SSL is illustrated
in Figure 3. The client generates 5 di�erent 16-byte values with this PRNG, the
�rst two outputs are used for the known nonce and the three next outputs are
used for the unknown premaster secret. To generate the �rst 16-byte, a 16-byte
constant and current time in milliseconds are hashed and the output is the �rst
state, which again is hashed to yield the �rst 16-byte of output. At the same
time the state and current time in milliseconds are digested and the output is
the next state. The next four outputs needed to create the nonce and premaster
secret, are generated in a similar manner; digest the state to get the output,
and digest the state together with current time to get the next state.

4.2 The attack step-by-step

1. Sni� an SSL session and record the starting time.

4.1 The PRNG 89



constructor() {

initialize digest;

updateSeed();

}

updateSeed() {

digest.update(seed);

digest.update(currentTimeMillis);

seed = digest.doFinal();

}

generateData(byte[] buf, int off, int len) {

int i = 0;

int byteAvailable = 16;

while(true) {

if(bytesAvailable == 0) {

randomBytes = digest.doFinal(seed);

updateSeed();

bytesAvailable = 16;

}

while(bytesAvailable > 0) {

if (i == len)

return;

buf[off+i] = randomBytes[--bytesAvailable];

i++;

}

}

}

Figure 2: Pseudo code of the PRNG from Sun's reference implementation of
MIDP.

90 Paper V: Attack on Sun's MIDP Reference Implementation of SSL



Figure 3: How MD5 is utilized to generate the pseudo random data used for
nonce and premaster in the reference implementation of MIDP SSL. The 16-byte
constant is known from the decompiled Java byte code.

4.2 The attack step-by-step 91



2. Retrieve the client nonce and the server nonce. These are sent in the clear
in the ClientHello and ServerHello messages.

3. Decide the start and stop time, i.e., in which time interval did the client
seed the PRNG.

4. Since the client nonce is sent in clear, we know the �rst and second output
of the PRNG. Find the value between start and stop time that was used
to create the �rst 16 bytes of the client nonce by trying all possible values.

5. When the time seed that were used to generated the �rst 16 bytes is found,
the PRNG can be set in the correct state. Then try all possible time seeds
from the start time until the stop time, until the next 16 bytes of the
nonce is found.

6. We now know exactly when the client's nonce was created according to the
clients internal clock. Using this information we try to �nd the premaster
secret which the client generates a short time after creating the nonce.
Exactly how short this time is, is determined by the client device, its load,
the speed of the network connection and many such factors. The amount
of uncertainty about the time period in which the premaster secret is
generated a�ects the complexity of the search for the premaster secret.
Use the time seeds found in step 4 and 5 to set the state of the PRNG,
then generate all possible values for the next three time seeds. Then use
the suggested values together with the client nonce and server nonce to
generate a candidate for the premaster secret and check if it is correct.

for each t1 in time interval

for each t2 in time interval ≥ t1

for each t3 in time interval ≥ t2

premaster = generatePreMasterCandidate(

PRNG_state,t1,t2,t3)

check(premaster)

4.3 Checking the premaster

There are several approaches to check if the suggested premaster secret is cor-
rect. One good suggestion is to create the keys used in SSL (encryption and
message authentication keys) based on the premaster secret. Then we decrypt
a package and attempt to verify the MAC. If the MAC veri�es, we have a sug-
gestion for the premaster secret. Any false positives can be eliminated by using
more packets and MACs.

One other method is to use the Finished packets in the SSL handshake pro-
tocol, which contain a hash of the key material together with other known data.
Yet another method could be a known plaintext attack on an SSL connection.

4.4 Time complexity

Given a start time tstart and �nished time tstop then ∆t = tstop− tstart denotes
how many milliseconds the SSL handshake takes on the device we are attacking.
Using the client nonce and guessing the �rst time seed of the PRNG takes
O (∆t) time, and guessing the second time seed also takes O (∆t) time. Notice

92 Paper V: Attack on Sun's MIDP Reference Implementation of SSL



that this step allows us to synchronize with the device, i.e., we know the exact
time on the device, which gives us an exact t̂start, t̂stop for the generation and
∆t̂ = t̂stop − t̂start.

We need to guess three time seeds to generate a suggestion for the premaster

secret, which have time complexity O
((

∆t̂
)3

)
. However, since the time seeds

are generated sequentially with approximately the same amount of work between
each generation, it is possible to implement the attack so that it divides ∆t̂ into
three time-slots and searches the �rst time-slot for the �rst time seed, and
so on... Estimated time complexity for the search for the premaster secret is

O
((

1/3 ·∆t̂
)3

)
= 1/27 · O

((
∆t̂

)3
)
. Resulting in a total time complexity of:

2 · O (∆t) +
1
27
· O

((
∆t̂

)3
)

.

4.5 Implementation

The attack was tested with a simple SSL client MIDlet written in J2ME and
a simple SSL server implemented in J2SE. We used Ethereal [10] to sni� the
tra�c between the two programs and recover one encrypted SSL package. The
attack code guessed keys and decrypted the package and checked the MAC
value, utilizing methods from TinySSL [11] for key generation, decryption and
MAC calculation.

The MIDlet �rst ran on a Nokia 6600 and a SonyEricsson P900 over GPRS.
However, we were unable to recover the time from the client nonce, which led
to the conclusion that these phones do not use the same implementation of the
PRNG as Sun's reference implementation.

The same MIDlet was then tested on the emulator in Sun J2ME Wireless
Toolkit 2.1 over the loop back interface, where the attack successfully recovered
the shared premaster secret.

4.5.1 How long to �nd the keys?

On average an SSL handshake took approximately 20�30 seconds over GPRS
with both the SonyEricsson P900 and the Nokia 6600; the timings include the
time it took to enter user input requested by the phones during an SSL connec-
tion.

When we tested the attack on the emulator we measured the handshake to
take less than 200 milliseconds. To further simulate a proper phone we used
∆t = 40s, and recovered the premaster secret in less than a second on a laptop
with an Intel Pentium M processor running at 1600MHz. It is likely that the
attack on an SSL connection between a real phone and a server will take more
time, since all the seeds to the PRNG were created within 25 milliseconds on
the emulator.

5 Conclusion

We have shown that Sun's reference implementation of SSL in MIDP is vulnera-
ble to a key recovery attack because of a bad choice of seed to the PRNG. There

4.5 Implementation 93



is a solution to this problem: �nd a better seed. However, this might prove dif-
�cult to implement on the software layer of resource constrained devices and
the manufacturers of these devices should make hardware randomness available
for software developers.

It is also unclear whether or not the developers of mobile phones have solved
the problem with cryptographic randomness, history have shown how easy it is
to do the generation of random data in an insecure manner.

References

[1] JSR 139 Expert Group, Connected Limited Device Con�guration, Version
1.1. Sun microsystems, 2003.

[2] JSR 118 Expert Group,Mobile Information Device Pro�le for Java 2 Micro
Edition. Java Community Process, 2002.

[3] I. Goldberg and D. Wagner, �Randomness and the Netscape browser,� Dr.
Dobb's Journal, pp. 66�70, January 1996.

[4] D. Povey, �Wireless Java security,� Java Developer's Journal, last visited:
May 26, 2006. [Online]. Available: http://java.sys-con.com/read/37377.
htm

[5] S. Thomas, SSL and TLS Essentials: Securing the Web. Wiley Computer
Publishing, 2000.

[6] D. Eastlake, J. Schiller, and S. Crocker, �Randomness Requirements
for Security,� RFC 4086 (Best Current Practice), June 2005. [Online].
Available: http://www.ietf.org/rfc/rfc4086.txt

[7] J. Kelsey, B. Schneier, and N. Ferguson, �Yarrow-160: Notes on the
design and analysis of the yarrow cryptographic pseudorandom number
generator,� in Selected Areas in Cryptography, no. Generators, 1999, pp.
13�33. [Online]. Available: citeseer.ist.psu.edu/kelsey99yarrow.html

[8] D. Davis, R. Ihaka, and P. Fenstermacher, �Cryptographic randomness from
air turbulence in disk drives,� in CRYPTO '94: Proceedings of the 14th
Annual International Cryptology Conference on Advances in Cryptology.
London, UK: Springer-Verlag, 1994, pp. 114�120.

[9] P. Gutmann, �Software generation of practical strong random numbers,� in
Proceedings of the Seventh USENIX Security Symposium, 1998, pp. 243�
257.

[10] Ethereal network protocol analyzer, last visited: June 12th, 2006. [Online].
Available: http://www.ethereal.com/

[11] TinySSL, last visited: June 12th, 2006. [Online]. Available: http:
//www.xwt.org/javadoc/org/xwt/TinySSL.html

94 Paper V: Attack on Sun's MIDP Reference Implementation of SSL




