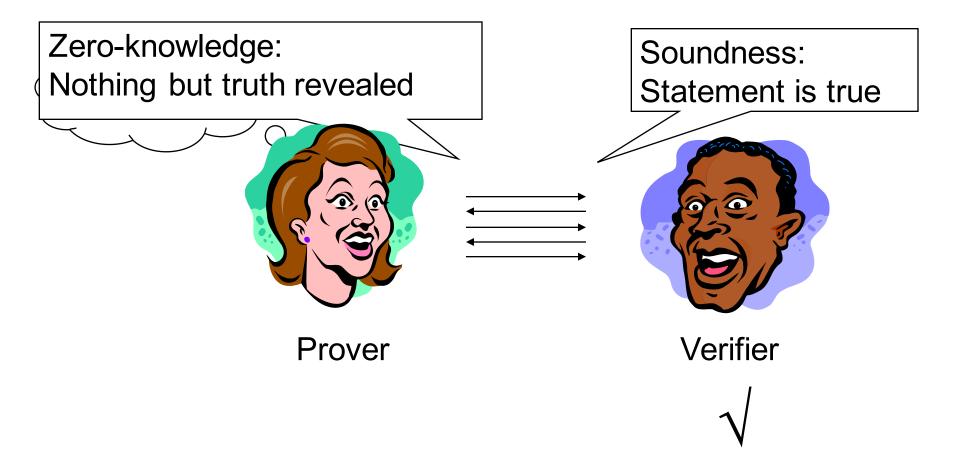


Efficient Zero-Knowledge Proofs

Jens Groth
University College London

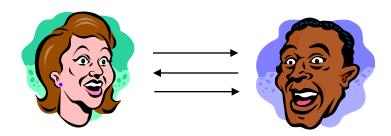
Zero-knowledge proof

Statement

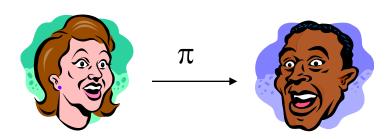


Round complexity

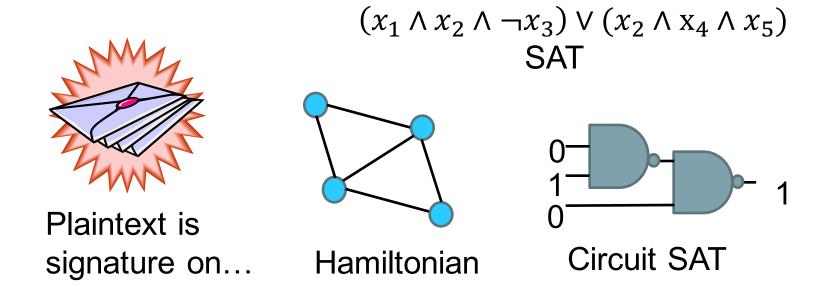
Interactive zero-knowledge proof



Non-interactive zero-knowledge proof



Statements



- Statements are $\phi \in L$ for a given NP-language L
- Prover knows witness w such that $(\phi, w) \in R_L$
 - But wants to keep the witness secret!

Proof system (Setup, Prove, Verify)

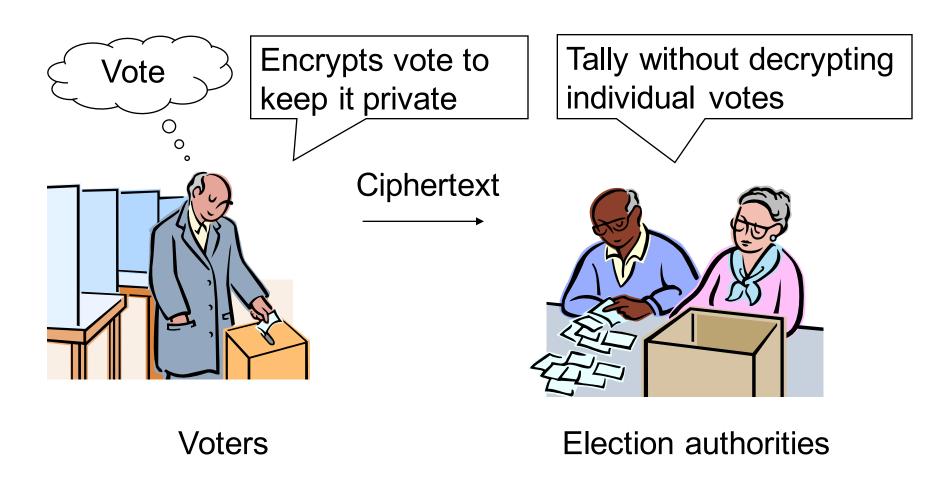
- Setup $(1^{\lambda}) \rightarrow crs$:
 - Sometimes we assume a trusted setup. This is in particular required for non-interactive zero-knowledge.
- $\langle \text{Prove}(crs, \phi, w); \text{Verify}(crs, \phi) \rangle \rightarrow \text{accept/reject}$
 - Stateful algorithms Prove and Verify interact. In the end Verify accepts or rejects the proof.

In non-interactive proofs the prover generates a proof using $\text{Prove}(crs, \phi, w) \to \pi$ and the verifier runs $\text{Verify}(crs, \phi, \pi)$ to decide whether to accept or reject

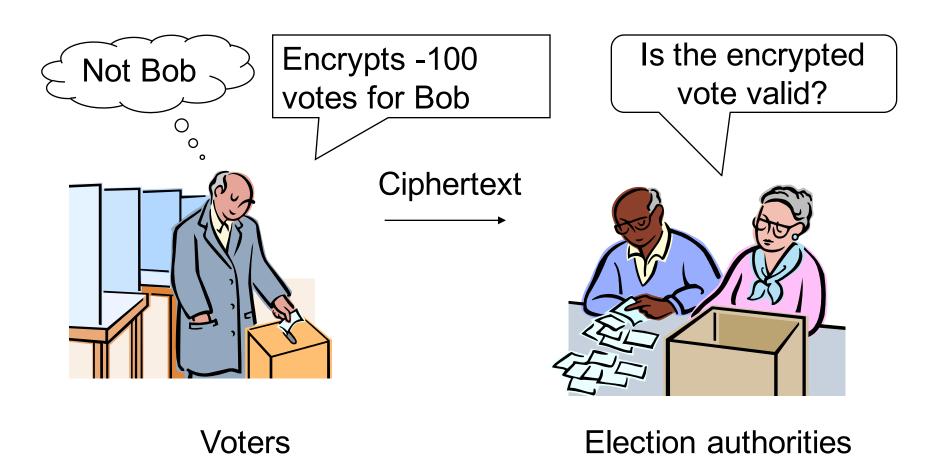
Zero-knowledge proofs

- Completeness
 - Prover can convince the verifier when statement is true
- Soundness
 - Cheating prover cannot convince the verifier when statement is false
- Zero-knowledge
 - No leakage of information (except truth of statement)
 even if interacting with a cheating verifier
 - Defined as there being a simulator that can produce a transcript without knowing the witness (and therefore not leaking anything about the witness)

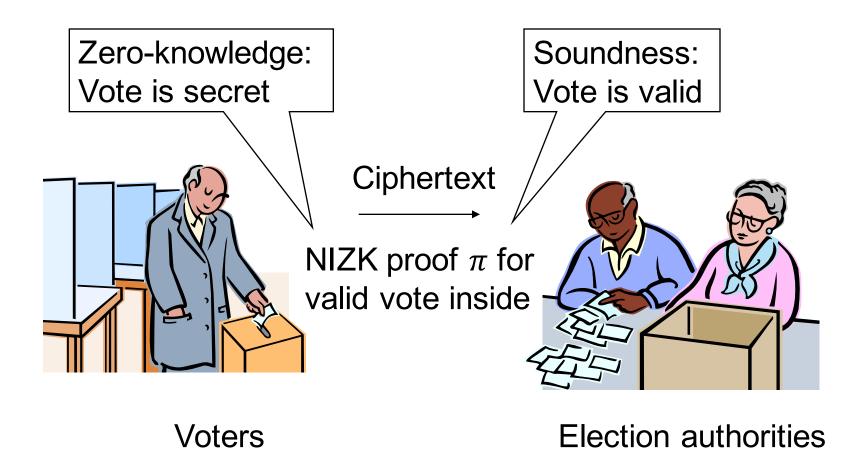
Internet voting



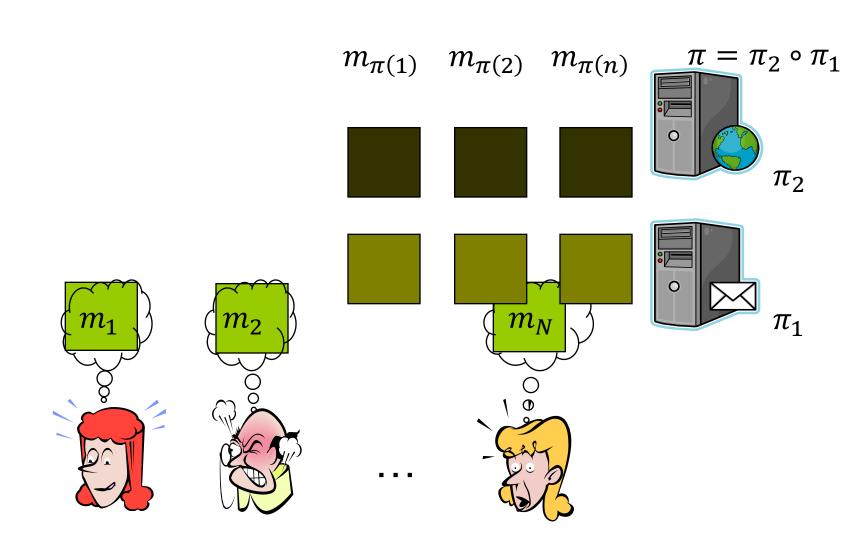
Election fraud



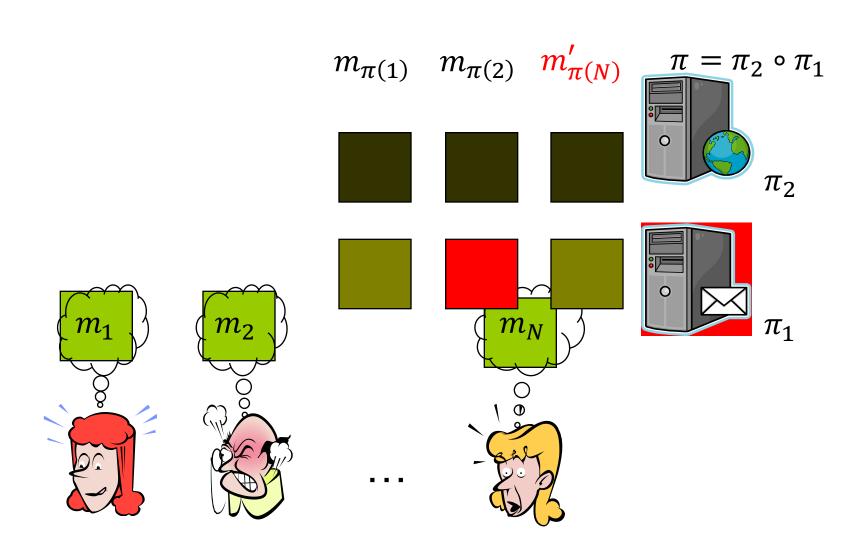
Zero-knowledge proof as solution



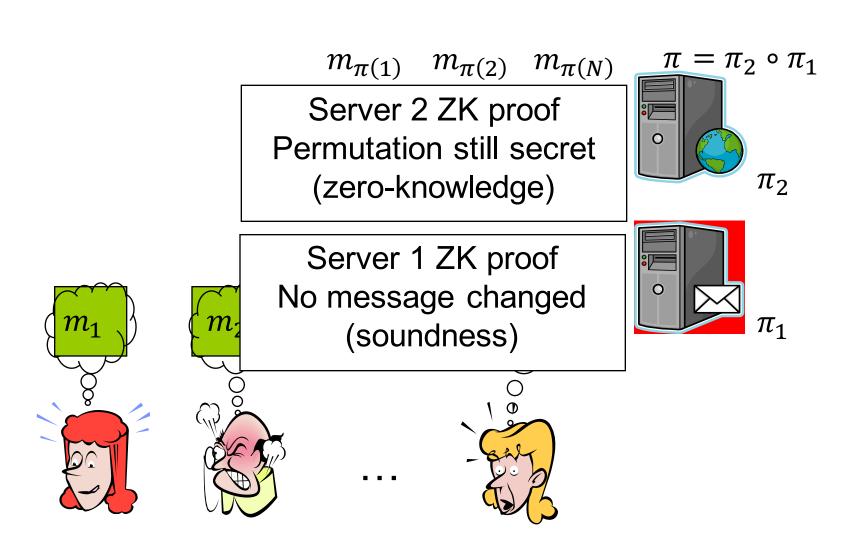
Mix-net: Anonymous message broadcast



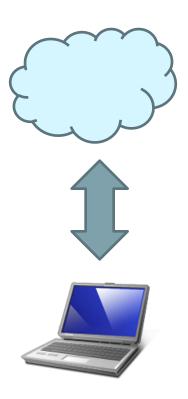
Problem: Corrupt mix-server



Solution: Zero-knowledge proof



Verifiable outsourced computation



- Client outsources computation to the cloud
- Gets back result based on its own data and cloud data
- Cloud gives zero-knowledge proof that result is correct

Ring and group signatures

- Want to sign as member of group
- Anonymous within group
- Core techniques
 - NIZK proof that signer is member of group
 - Or NIZK proof that signer has signature certifying membership

Zerocoin

Coin spending

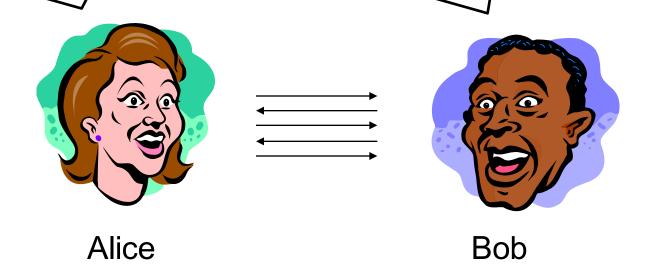
Reveal serial number

Anonymity

Each coin has unique secret serial number known only to owner Use zero-knowledge proof to demonstrate one of the coins has revealed serial number

Preventing deviation (active attacks) by keeping people honest

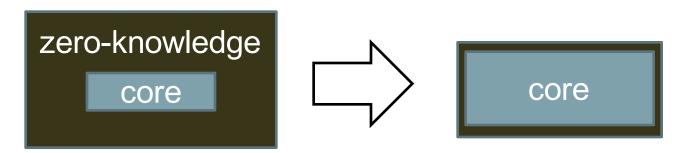
Yes, here is a zeroknowledge proof that everything is correct Did you follow the protocol honestly without deviation?



From malicious adversary to honest but curious adversary

Vision

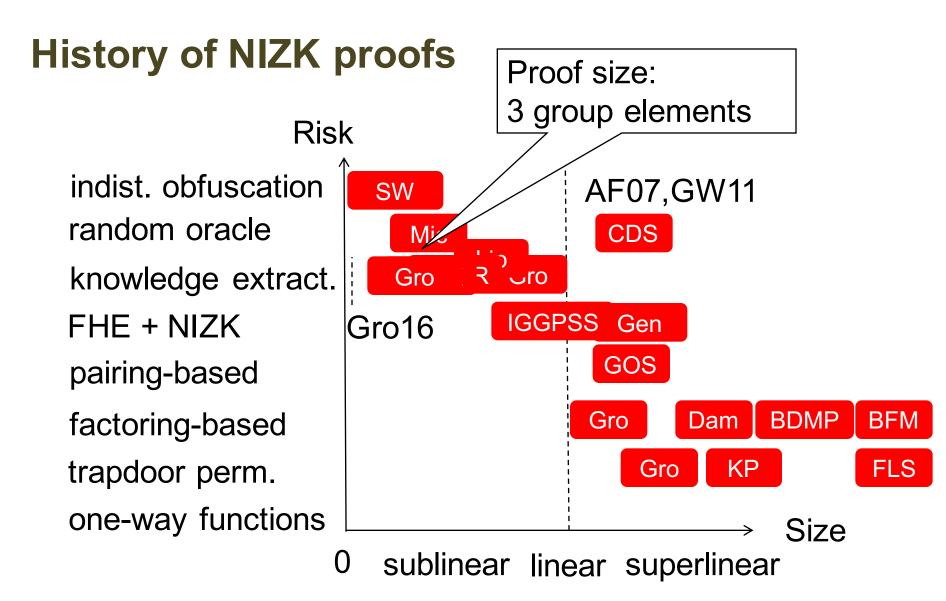
- Main goal
 - Efficient and versatile zero-knowledge proofs
- Vision
 - Negligible overhead from using zero-knowledge proofs



Security against active attacks standard feature

Performance parameters

- Prover's computation
 - Time and memory
- Verifier's computation
 - Time and memory
- Communication
 - Bits transmitted
 - Number of messages exchanged



Groth EUROCRYPT 2016

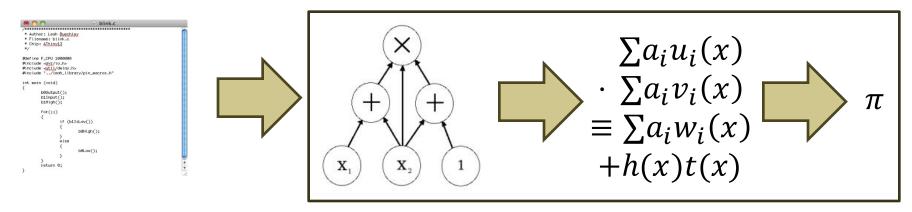
Rounds	Prover	Verifier	Communication
Non-interactive	N exponentiations	$ \phi $ exponentiations	3 group elements

- Arithmetic circuit
 - N multiplication gates
 - $|\phi|$ public input wires
- NIZK argument
 - Perfect completeness
 - Perfect zero-knowledge
 - Computational soundness
 - Generic group model

zk-SNARK Succinct Non-interactive Argument of Knowledge

Verifiable computation zk-SNARKs

- Pinnocchio, Libsnark, Pantry, Buffet,...
- Prove program P with input x outputs y
 - Zero-knowledge useful if part of x is secret



Libsnark implementation

- 4x faster prover, 200B proofs

Prime order bilinear groups

- Gen(1^k) generates $(p, G_1, G_2, G_T, e, g, h)$
- G_1, G_2, G_T finite cyclic groups of prime order p generated by g, h and e(g, h)
- Bilinear map
 - $-e(g^a,h^b) = e(g,h)^{ab}$
- Generic group operations efficiently computable
 Deciding group membership, group multiplications, pairing

Asymmetric bilinear groups (Type III): No efficiently computable isomorphism between G_1 and G_2

Additive notation

- Given bilinear group $(p, G_1, G_2, G_T, e, g, h)$ define $[a]_1 = g^a$ $[b]_2 = h^b$ $[c]_T = e(g, h)^c$ and use additive notation for elements in brackets
- The generators can now be written $[1]_1$, $[1]_2$, $[1]_T$
- Define dot products using linear algebra notation $[\vec{a}]_* \cdot \vec{b} = [\vec{a} \cdot \vec{b}]_* \quad [\vec{a}]_1 \cdot [\vec{b}]_2 = [\vec{a} \cdot \vec{b}]_T$
- And for matrix multiplication

$$M[\vec{a}]_* = [M\vec{a}]_*$$

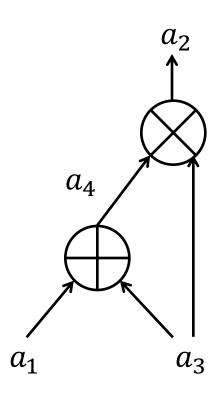
Pairing-based SNARK

- NP-relation R with statements ϕ and witnesses w
- Common reference string
 - Generate $(\vec{\sigma}_1, \vec{\sigma}_2, \tau)$ ← Setup(R)
 - Let common reference be $(R, [\vec{\sigma}_1]_1, [\vec{\sigma}_2]_2)$
- Proof
 - (Π_1, Π_2) ← ProofMatrix (R, ϕ, w)
 - $\pi = ([\vec{\pi}_1]_1, [\vec{\pi}_2]_2) = (\Pi_1[\vec{\sigma}_1]_1, \Pi_2[\vec{\sigma}_2]_2)$
- Verification
 - $(T_1, ..., T_\eta) \leftarrow \text{Test}(R, \phi)$
 - Accept the proof π if and only if for all T_1, \dots, T_η

$$\begin{bmatrix} \vec{\sigma}_1 \\ \vec{\pi}_1 \end{bmatrix}_1 \cdot T_i \begin{bmatrix} \vec{\sigma}_2 \\ \vec{\pi}_2 \end{bmatrix}_2 = [0]_T$$

Generic group operations

Arithmetic circuit



 Write as quadratic equation

$$(a_1 + a_3) \cdot a_3 = a_2$$

 In general arithmetic circuit can be written as a set of equations of the form

$$\begin{split} \sum & a_i u_i \cdot \sum a_i v_i = \sum a_i w_i \\ \text{over variables } a_1, \dots, a_m \\ \text{and by convention } a_0 = 1 \end{split}$$

• Arithmetic circuit defines an NP-language with statements $(a_1, ..., a_\ell)$ and witnesses $(a_{\ell+1}, ..., a_m)$

Rewriting the circuit as polynomial equations

- Consider an equation $\sum a_i u_i \cdot \sum a_i v_i = \sum a_i w_i$
- Let $u_i(x), v_i(x), w_i(x)$ be polynomials such that $u_i(r) = u_i \quad v_i(r) = v_i \quad w_i(r) = w_i$
- Then equation satisfied if $\sum a_i u_i(x) \cdot \sum a_i v_i(x) \equiv \sum a_i w_i(x) \mod (x-r)$
- Pick degree n-1 polynomials $u_i(x), v_i(x), w_i(x)$ such that this holds for all equations, using distinct r_1, \dots, r_n for the n equations in the circuit
- Values $a_0, ..., a_m$ satisfy all equations if $\sum a_i u_i(x) \cdot \sum a_i v_i(x) \equiv \sum a_i w_i(x) \bmod \prod (x r_i)$

Quadratic arithmetic program

- A quadratic arithmetic program over \mathbf{Z}_p consists of polynomials $u_i(x), v_i(x), w_i(x), t(x) \in \mathbf{Z}_p[x]$
- It defines an NP-relation with
 - Statements $(a_1, ..., a_\ell)$
 - Witnesses $(a_{\ell+1}, \dots, a_m)$
 - Satisfying (using $a_0 = 1$ to handle constants) $\sum a_i u_i(x) \cdot \sum a_i v_i(x) \equiv \sum a_i w_i(x) \mod t(x)$

Knowledge soundness

Generic group adversary

- Random encodings $[\cdot]_i: \mathbb{Z}_p \to G_i$
- Gets encodings $[\vec{\sigma}_1]_1, [\vec{\sigma}_2]_2$
- Oracle access to polynomially many group additions and pairings Outline of proof we have soundness
- Generic group adversary must pick $(\phi, [A]_1, [C]_1, [B]_2)$ where $[A]_1, [C]_1$ are computed linearly from $[\vec{\sigma}_1]_1$ and $[B]_2$ from $[\vec{\sigma}_2]_2$
- We argue that generic adversary cannot learn non-trivial information about common reference string using generic group operations, so linear combinations chosen obliviously of $\vec{\sigma}_1$, $\vec{\sigma}_2$
- Careful analysis shows this choice is unlikely to satisfy verification equation

$$[A]_1 \cdot [B]_2 = [\alpha]_1 \cdot [\beta]_2 + \sum_{i=0}^{n} a_i \left[\frac{\beta u_i(x) + \alpha v_i(x) + u_i(x) + u_i(x)}{\gamma} \right]_1 \cdot [\gamma]_2 + [C]_1 \cdot [\delta]_2$$

 $i E_2$

...

Efficiency

Efficiency gain

- 1. Generic group model
- 2. Carefully crafted verification equations

Arithmetic circuits	Proof size	Prover	Verifier	Equations
[PGHR13] (symmetric)	8 <i>G</i>	7m + nE	ℓ E,11 P	5
This work (symmetric)	3 <i>G</i>	m + 3n E	ℓ E,3 P	1
[BCTV14]	7 <i>G</i> ₁ , 1 <i>G</i> ₂	$6m + n E_1, m E_2$	ℓE_1 , $12 P$	5
This work	2 <i>G</i> ₁ , 1 <i>G</i> ₂	$m + 3n E_1, n E_2$	$\ell E_1, 3 P$	1
Boolean circuits				
[DFGK14]	3 <i>G</i> ₁ , 1 <i>G</i> ₂	$m + n E_1$	ℓM_1 , 6 P	3
This work	2 <i>G</i> ₁ , 1 <i>G</i> ₂	$n E_1$	ℓM_1 ,3 P	1

Circuits with m wires, n gates, statement size ℓ ($\ell \ll n < m$) Group element G, exponentiation E, pairing P, multiplication M

Thanks

• Questions?