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Abstract. A constant of 222 appears in the security bounds of the Galois/Counter Mode of Op-
eration, GCM. In this paper, we first develop an algorithm to generate nonces that have a high
counter-collision probability. We show concrete examples of nonces with the counter-collision prob-
ability of about 220.75/2128. This shows that the constant in the security bounds, 222, cannot be
made smaller than 219.74 if the proof relies on “the sum bound.” We next show that it is possible to
avoid using the sum bound, leading to improved security bounds of GCM. One of our improvements
shows that the constant of 222 can be reduced to 32.
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1 Introduction

The Galois/Counter Mode of Operation, GCM, is a widely deployed authenticated encryption scheme. It
was designed by McGrew and Viega [17,18] in 2004, and has been adopted by NIST as the recommended
blockcipher mode of operation in 2007 [6]. A large number of standards include GCM, e.g., it is included
in TLS [28], ISO/IEC [10], NSA Suite B [21], and IEEE 802.1 [9]. A cryptographic competition on
authenticated encryption schemes, called CAESAR, has been launched in 2013 [5], and it defines GCM
as the benchmark algorithm of the competition. There are a large number of results studying the security
of GCM. Ferguson showed a forgery attack against the use of short tags [7]. Joux showed a partial key
recovery attack under the nonce-reuse setting [13]. Weak keys of GHASH, a polynomial hash function
employed in GCM, was studied by Handschuh and Preneel [8], followed by Saarinen [27], Procter and
Cid [23], and Bogdanov [4]. Other results related to GCM include [1,30,29], and Rogaway [25] presented
a comprehensive survey on various aspects of GCM.

For the provable security aspect of GCM, the original proposal by McGrew and Viega [17,18] included
proofs of the security. Later, Iwata, Ohashi, and Minematsu [11] pointed out a flaw in the proofs of [17,18]
with counter examples that invalidate them. They also presented corrected proofs, but the security bounds
are larger than the original ones, roughly by a factor of 222.

The counter examples invalidate the proofs in [17,18], but they do not exclude the possibility that the
original security bounds of [17,18] can still be proved, and in [11], an open question about the possibility
of improving the security bounds of [11] was posed, which is the main question we consider in this paper.
GCM relies its security on the use of a nonce, and the nonce determines the initial counter value. A
collision on counter values, or a counter-collision, leads to an attack on GCM, and the counter-collision
probability needs to be small. The crux of [11] is the development of a method to derive an upper bound on
the counter-collision probability. [11] showed that the upper bound is obtained by solving a combinatorial
problem involving arithmetic additions and xor’s, and security bounds are derived by applying the sum
bound to the counter-collision probability.

In this paper, we first develop an algorithm to generate nonces that have a high counter-collision
probability. The problem is reduced to determining an equation that has as many solutions as possible,
and the equation involves an arithmetic addition, finite field multiplications, and xor’s. We show that
it can be converted into a problem of solving a system of linear equations over GF(2), with a selection
process of several constants in a greedy method. As a result, we obtain concrete examples of nonces that
have a counter-collision probability of about 220.75/2128 = 2−107.25, and the results were verified by a
program. With the same setting, the upper bound of [11] on the counter-collision probability is about
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222.75/2128 = 2−105.25. This implies that, as long as we follow the proof strategy, in particular the use of
the sum bound, the security bounds of [11] are tight within a factor of about 4.

A natural question is then whether it is possible to avoid using the sum bound in the proofs. We next
answer this question positively, and we show that the avoidance indeed yields strong security bounds of
GCM. We present two types of improvements. The first improvement reduces the constant, 222, appears in
the security bounds in [11], to 32. The new security bounds improve the security bounds in [11] by a factor
of 217, and they show that the security of GCM is actually close to what was originally claimed in [17,18].
Another improvement gives security bounds that are better than the first ones for long data. Specifically,
if the average plaintext length to be authenticated and encrypted is longer than about 2 Gbytes, then
the second improvement gives a stronger guarantee of security.

2 Preliminaries

We write {0, 1}∗ for the set of all finite bit strings, and for an integer ℓ ≥ 0, we write {0, 1}ℓ for the
set of all ℓ-bit strings. For X ∈ {0, 1}∗, |X| is its length in bits, and |X|ℓ = ⌈|X|/ℓ⌉ is its length in
ℓ-bit blocks. We write ε for the empty string. For X,Y ∈ {0, 1}∗, their concatenation is written as
X ∥Y , (X,Y ), or XY . The bit string of ℓ zeros is written as 0ℓ ∈ {0, 1}ℓ, and ℓ ones is written as
1ℓ ∈ {0, 1}ℓ. The prefix 0x is used for the hexadecimal notation. For example, 0x28 is 00101000 ∈ {0, 1}8.
For X ∈ {0, 1}∗ and an integer ℓ such that |X| ≥ ℓ, msbℓ(X) denotes the most significant (the leftmost)
ℓ bits of X, and lsbℓ(X) denotes the least significant (the rightmost) ℓ bits of X. For X ∈ {0, 1}∗ such

that |X| = jℓ for some integer j ≥ 1, its partition into ℓ-bit blocks is written as (X[1], . . . , X[j])
ℓ← X,

where X[1], . . . , X[j] ∈ {0, 1}ℓ are unique bit strings that satisfy X[1] ∥ . . . ∥X[x] = X. For integers
a and ℓ satisfying 0 ≤ a ≤ 2ℓ − 1, we write strℓ(a) for the ℓ-bit binary representation of a, i.e., if
a = aℓ−12

ℓ−1 + · · · + a12 + a0 for aℓ−1, . . . , a1, a0 ∈ {0, 1}, then strℓ(a) = aℓ−1 . . . a1a0 ∈ {0, 1}ℓ. For
X = xℓ−1 . . . x1x0 ∈ {0, 1}ℓ, let int(X) be the integer xℓ−12

ℓ−1 + · · · + x12 + x0. For a finite set X , we
write #X for its cardinality, and X

$← X for a procedure of assigning X an element sampled uniformly
at random from X .

Throughout this paper, we fix a blockcipher E : K × {0, 1}n → {0, 1}n, where n is its block length
in bits, which is fixed to n = 128, and K is a non-empty set of keys. The permutation specified by
K ∈ K is written as EK , and C = EK(M) denotes the ciphertext of a plaintext M ∈ {0, 1}n under
the key K ∈ K. The set of n-bit strings, {0, 1}n, is also regarded as the finite field with 2n elements
which is written as GF(2n). An n-bit string an−1 . . . a1a0 ∈ {0, 1}n corresponds to a formal polynomial
a(x) = an−1 + an−2x + · · · + a1x

n−2 + a0x
n−1 ∈ GF(2)[x]. The irreducible polynomial used in GCM is

p(x) = 1+ x+ x2 + x7 + x128, which is assumed to be the underlying polynomial throughout this paper.

3 Specification of GCM

We follow the description in [11], which follows the specification in [17,18] with minor notational changes.
GCM takes two parameters: a blockcipher E : K×{0, 1}n → {0, 1}n and a tag length τ , where 64 ≤ τ ≤ n.
If we use E and τ as parameters, then we write the corresponding GCM as GCM[E, τ ], and we write
GCM-E for its encryption algorithm and GCM-D for its decryption algorithm. These algorithms are
defined in Fig. 1. In GCM-E and GCM-D, we use two subroutines defined in Fig. 2. The first one is
the counter mode encryption, denoted by CTR, and the other one is the polynomial hash function over
GF(2n), denoted by GHASH. See Fig. 3 for the overall structure of GCM-E , and Fig. 4 for the subroutines
used therein.

The encryption algorithm, GCM-E , takes a key K ∈ K, a nonce N ∈ {0, 1}∗, associated data A ∈
{0, 1}∗, and a plaintext M ∈ {0, 1}∗ as input, and returns a pair of a ciphertext C ∈ {0, 1}∗ and a tag
T ∈ {0, 1}τ . We require 1 ≤ |N | ≤ 2n/2 − 1, 0 ≤ |A| ≤ 2n/2 − 1, and 0 ≤ |M | ≤ n(232 − 2), and it holds

that |C| = |M |. We write (C, T ) ← GCM-EN,A
K (M). The decryption algorithm, GCM-D, takes a key

K ∈ K, a nonce N ∈ {0, 1}∗, associated data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ
as input, and returns either a plaintext M ∈ {0, 1}∗ or the distinguished invalid symbol denoted by ⊥.
We write M ← GCM-DN,A

K (C, T ) or ⊥ ← GCM-DN,A
K (C, T ).

We use the increment function, denoted by inc, in the definition of CTR. It takes a bit string X ∈
{0, 1}n as input, and we regard the least significant (the rightmost) 32 bits of X as a non-negative integer,
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Algorithm GCM-EN,A
K (M)

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)
4. m← |M |n
5. S ← CTRK(I[0],m)
6. C ←M ⊕msb|M|(S)

7. T̃ ← EK(I[0])⊕ GHASHL(A,C)

8. T ← msbτ (T̃ )
9. return (C, T )

Algorithm GCM-DN,A
K (C, T )

1. L← EK(0n)
2. if |N | = 96 then I[0]← N ∥ 0311
3. else I[0]← GHASHL(ε,N)

4. T̃ ∗ ← EK(I[0])⊕ GHASHL(A,C)

5. T ∗ ← msbτ (T̃
∗)

6. if T ̸= T ∗ then return ⊥
7. m← |C|n
8. S ← CTRK(I[0],m)
9. M ← C ⊕msb|C|(S)

10. return M

Fig. 1. Definitions of GCM-EN,A
K (M) and GCM-DN,A

K (C, T )

Algorithm CTRK(I[0],m)

1. for j ← 1 to m do
2. I[j]← inc(I[j − 1])
3. S[j]← EK(I[j])
4. S ← (S[1], S[2], . . . , S[m])
5. return S

Algorithm GHASHL(A,C)

1. a← n|A|n − |A|
2. c← n|C|n − |C|
3. X ← A ∥ 0a ∥C ∥ 0c ∥ strn/2(|A|) ∥ strn/2(|C|)
4. (X[1], . . . , X[x])

n← X
5. Y ← 0n

6. for j ← 1 to x do
7. Y ← L · (Y ⊕X[j])
8. return Y

Fig. 2. Definitions of CTRK(I[0],m) and GHASHL(A,C)

and then increment the value by one modulo 232. That is, we have

inc(X) = msbn−32(X) ∥ str32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, incr(X) means that we apply inc onX for r times, and inc−r(X) means that we apply the inverse
function of inc on X for r times. By convention, we let inc0(X) = X, and we thus have I[j] = incj(I[0]) for
0 ≤ j ≤ m in the 2nd line in the definition of CTR. In the definition of GHASH, the multiplication in the
7th line is over GF(2n). We note that when |N | ̸= 96, we have GHASHL(ε,N) = X[1] ·Lx⊕· · ·⊕X[x] ·L,
where X = (X[1], . . . , X[x]) = N ∥ 0n|N |n−|N | ∥ strn(|N |).

Let Perm(n) be the set of all permutations on {0, 1}n, and we call P
$← Perm(n) a random permu-

tation. Let GCM[Perm(n), τ ] be GCM where we use a random permutation P as the blockcipher EK .
We write GCM-EP for its encryption algorithm and GCM-DP for its decryption algorithm. Similarly, let

Rand(n) be the set of all functions from {0, 1}n to {0, 1}n, and we call F
$← Rand(n) a random function.

Let GCM[Rand(n), τ ] be GCM where we use F as EK . We write GCM-EF for its encryption algorithm
and GCM-DF for its decryption algorithm.

4 Security Definitions

An adversary is a probabilistic algorithm that has access to one or two oracles. We write AO for an
adversary A that has access to an oracle O, and AO1,O2 for A that has access to two oracles O1 and O2.
Following [2,24], we consider privacy and authenticity of GCM.

A privacy adversary A has access to a GCM encryption oracle or a random-bits oracle. The GCM
encryption oracle, which we write EncK , takes (N,A,M) as input and returns (C, T )← GCM-EN,A

K (M).

The random-bits oracle, $, takes (N,A,M) as input and returns (C, T )
$← {0, 1}|M |+τ . The privacy

advantage of A is defined as

Advpriv
GCM[E,τ ](A)

def
= Pr

[
K

$← K : AEncK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·) ⇒ 1

]
,
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if |N | = 96

N 0311

I[0]

if |N = 96

ε N

GHASHL

I[0]

I[0]M

CTRK

S

C

msb|M|

A C

msbτ

T

I[0]

GHASHLEK

Fig. 3. Overall structure of (C, T )← GCM-EN,A
K (M)

N [1] N [2]

L L L

strn(|N |)N [m] 0∗

L

Y

I[1]

S[1]

I[2]

S[2]

I[m]

S[m]

S

I[0]

inc inc

EK EK

inc

EK

Fig. 4. Subroutines S ← CTRK(I[0],m) and Y ← GHASHL(A,C), where (A,C) = (ε,N), N = (N [1], . . . , N [m]),
|N [1]| = · · · = |N [m− 1]| = n, and 1 ≤ |N [m]| ≤ n

where the first probability is defined over the randomness of K
$← K and A, and the last one is over the

randomness of $ and A. We assume that privacy adversaries are nonce-respecting: if A makes q queries
and N1 . . . , Nq are nonces used in the queries, then it holds that Ni ̸= Nj for 1 ≤ i < j ≤ q.

An authenticity adversary A has access to two oracles, GCM encryption and decryption oracles.
The GCM encryption oracle, EncK , is described as above. The GCM decryption oracle, DecK , takes
(N,A,C, T ) as input and returns M ← GCM-DN,A

K (C, T ) or ⊥ ← GCM-DN,A
K (C, T ). The authenticity

advantage of A is defined as

Advauth
GCM[E,τ ](A)

def
= Pr

[
K

$← K : AEncK(·,·,·),DecK(·,·,·,·) forges
]
,

where the probability is defined over the randomness of K
$← K and A. If A makes a query (N,A,M)

to EncK and receives (C, T ), then we assume that A does not subsequently make a query (N,A,C, T ) to
DecK . We also assume that A does not repeat a query to DecK . We define that A forges if at least one
of the responses from DecK is not ⊥. We assume that authenticity adversaries are nonce-respecting with
respect to encryption queries. That is, assume that A makes q queries to EncK and q′ queries to DecK ,
where N1, . . . , Nq are the nonces used for EncK , and N ′

1, . . . , N
′
q′ are the nonces for DecK . We assume

that Ni ̸= Nj holds for 1 ≤ i < j ≤ q, but Ni = N ′
j may hold for some 1 ≤ i ≤ q and 1 ≤ j ≤ q′, and

N ′
i = N ′

j may also hold for some 1 ≤ i < j ≤ q′.

5 GCM Security Bounds in [11,12] Need 881145

5.1 Review of Results in [11,12]

We first review results from [11,12]. Consider a privacy adversary A, and suppose that A makes q queries
(N1, A1,M1), . . . , (Nq, Aq,Mq), where |Ni|n = ni and |Mi|n = mi. Then the total plaintext length is
m1 + · · · + mq, and the maximum nonce length is max{n1, . . . , nq}. The following privacy result was
proved.

Proposition 1 ([11,12]). Let Perm(n) and τ be the parameters of GCM. Then for any A that makes
at most q queries, where the total plaintext length is at most σ blocks and the maximum nonce length is
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at most ℓN blocks,

Advpriv
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + 1)2

2n
+

222q(σ + q)(ℓN + 1)

2n
. (1)

Suppose that an authenticity adversary A makes q queries (N1, A1,M1), . . . , (Nq, Aq,Mq) to EncK and
q′ queries (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A

′
q′ , C

′
q′ , T

′
q′) to DecK , where |Ni|n = ni, |Ai|n = ai, |Mi|n = mi,

|N ′
i |n = n′

i, |A′
i|n = a′i, and |C ′

i|n = m′
i. Then the total plaintext length is m1 + · · ·+mq, the maximum

nonce length is max{n1, . . . , nq, n
′
1, . . . , n

′
q′}, and the maximum input length is max{a1 + m1, . . . , aq +

mq, a
′
1 +m′

1, . . . , a
′
q′ +m′

q′}. The following authenticity result was proved.

Proposition 2 ([11,12]). Let Perm(n) and τ be the parameters of GCM. Then for any A that makes at
most q encryption queries and q′ decryption queries, where the total plaintext length is at most σ blocks,
the maximum nonce length is at most ℓN blocks, and the maximum input length is at most ℓA blocks,

Advauth
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + q′ + 1)2

2n
+

222(q + q′)(σ + q + 1)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
. (2)

We see that a non-small constant, 222, appears in (1) and (2). In what follows, we recall how the constant
was introduced by reviewing the proof of Proposition 1. We first replace a random permutation P with
a random function F . We have

Advpriv
GCM[Perm(n),τ ](A) ≤ Advpriv

GCM[Rand(n),τ ](A) +
0.5(σ + q + 1)2

2n

from the PRP/PRF switching lemma [3].
Now assume that A makes q queries, and for 1 ≤ i ≤ q, let (Ni, Ai,Mi) be the i-th query, where

|Mi|n = mi. Let the initial counter value, Ii[0], be Ii[0] ← GHASHL(ε,Ni) if |Ni| ̸= 96, and Ii[0] ←
Ni ∥ 0311 otherwise. We also let the counter value, Ii[j], be Ii[j] ← incj(Ii[0]) for 1 ≤ j ≤ mi. With this
notation, we have the following list of counter values.

I1[0], I1[1], . . . , I1[m1]
I2[0], I2[1], . . . , I2[m2]

...
Iq[0], Iq[1], . . . , Iq[mq]

(3)

At this point, we are ready to define a bad event. We say that the bad event occurs if we have at least
one of the following events:

Case (A). Ii[j] = 0n holds for some (i, j) such that 1 ≤ i ≤ q and 0 ≤ j ≤ mi.
Case (B). Ii[j] = Ii′ [j

′] holds for some (i, j, i′, j′) such that 1 ≤ i′ < i ≤ q, 0 ≤ j′ ≤ mi′ , and 0 ≤ j ≤ mi.

As analyzed in detail in [12, Appendix D], the absence of the bad event implies that, each time A makes
a query (Ni, Ai,Mi), A obtains a uniform random string of |Mi| + τ bits, which in turn implies that
the adaptivity of A does not help and we may fix the q queries (N1, A1,M1), . . . , (Nq, Aq,Mq) of A. We
evaluate the probability of the bad event based on the randomness of L. For simplicity, we write PrL[E]

for Pr[L
$← {0, 1}n : E] for an event E. We have

Advpriv
GCM[Rand(n),τ ](A) ≤ Pr

L
[Case (A) holds] + Pr

L
[Case (B) holds] . (4)

The first probability is easy to evaluate and we have

Pr
L
[Case (A) holds] ≤

∑
1≤i≤q,0≤j≤mi

Pr
L
[Ii[j] = 0n] ≤ (σ + q)(ℓN + 1)

2n
, (5)

since incj(Ii[0]) = 0n is a non-trivial equation in L of degree at most ℓN + 1 over GF(2n) if |Ni| ̸= 96,
and hence the probability is at most (ℓN + 1)/2n, or we never have the event if |Ni| = 96.

The second probability can also be evaluated as the first one by using “the sum bound,” and we obtain

Pr
L
[Case (B) holds] ≤

∑
1≤i′<i≤q,0≤j′≤mi′ ,0≤j≤mi

Pr
L

[
Ii[j] = Ii′ [j

′]
]
. (6)
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It remains to evaluate PrL
[
Ii[j] = Ii′ [j

′]
]
for each (i, j, i′, j′), and we have the following four cases to

consider: |Ni| = |Ni′ | = 96, |Ni| ̸= 96 and |Ni′ | = 96, |Ni| = 96 and |Ni′ | ̸= 96, and |Ni|, |Ni′ | ̸= 96.
The case |Ni| = |Ni′ | = 96 is easy to analyze and we have PrL

[
Ii[j] = Ii′ [j

′]
]
= 0. If |Ni| ̸= 96 and

|Ni′ | = 96, then we have PrL
[
Ii[j] = Ii′ [j

′]
]
≤ (ℓN + 1)/2n since incj(Ii[0]) = incj

′
(Ii′ [0]) is a non-trivial

equation in L of degree at most ℓN +1 over GF(2n). The analysis for the case |Ni| = 96 and |Ni′ | ̸= 96 is
the same as the previous case. The analysis of the last case, |Ni|, |Ni′ | ̸= 96, is not simple, and we review
the notation used in [11,12].

For 0 ≤ r ≤ 232− 1 and two distinct nonces N and N ′ which are not 96 bits, let the counter-collision,
denoted by CollL(r,N,N ′), be the event

incr(GHASHL(ε,N)) = GHASHL(ε,N
′). (7)

We say PrL[CollL(r,N,N ′)] a counter-collision probability. Recall that Ii[j] = Ii′ [j
′] is equivalent to

incj(Ii[0]) = incj
′
(Ii′ [0]), where Ii[0] ← GHASHL(ε,Ni) and Ii′ [0] ← GHASHL(ε,Ni′), and this can be

written as CollL(r,N,N ′) with (r,N,N ′) = (j − j′, Ni, Ni′) if j − j′ ≥ 0, and (r,N,N ′) = (j′− j,Ni′ , Ni)
otherwise.

Now define Yr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

Yr
def
=

{
str32(int(Y ) + r mod 232)⊕ Y | Y ∈ {0, 1}32

}
, (8)

and write its cardinality as αr
def
= #Yr. We let αmax

def
= max{αr | 0 ≤ r ≤ 232 − 1}. The following result

was proved.

Proposition 3 ([11,12]). For any 0 ≤ r ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96
bits, it holds that PrL[CollL(r,N,N ′)] ≤ αr(ℓN + 1)/2n, where |N |n, |N ′|n ≤ ℓN .

Yr can be used to replace the arithmetic addition by r in incr(X) with the xor of some constant. That
is, we convert incr(X) into X ⊕ (096 ∥Y ) for some Y ∈ {0, 1}32, and as argued in [11], Yr exhaustively
covers all the possible constants, and it must be the case that Y ∈ Yr. Note that the constant is of the
form (096 ∥Y ) and the most significant 96 bits can be fixed to 096, as inc has no effect on these bits. For
simplicity, for any Y ∈ {0, 1}32, let [[Y ]] = (096 ∥Y ).

In [11], a recursive formula to compute the value of αr was presented, and the value of αmax was
shown to be αmax = 3524578, where the equality holds when r = 0x2aaaaaab, 0xaaaaaaab, 0x55555555,
and 0xd5555555. We have 3524578 ≤ 222, and this yields PrL

[
Ii[j] = Ii′ [j

′]
]
≤ 222(ℓN + 1)/2n for the

last case, which is the source reason why we have this constant in (1) and (2).
A question is if we really need the constant, or if we can make it smaller.

5.2 Case r = 0x55555555

Our approach to the question is to derive the values of r, N , and N ′ where PrL[CollL(r,N,N ′)] is large,
or equivalently, the equation CollL(r,N,N ′) has as many solutions (in L) as possible. We now present
our main result of this section.

Theorem 1. There exist 0 ≤ r ≤ 232 − 1 and two distinct nonces N and N ′ such that |N | = |N ′| = 128
and PrL[CollL(r,N,N ′)] ≥ 1762290/2n.

Proof. Let r = 0x55555555, and let N and N ′ be the following values.{
N = 0x8d44009c dc550100 00000000 00000000

N ′ = 0x5b6dbdd9 f3b151d9 d1bc4145 ecb396ef
(9)

Then CollL(r,N,N ′) is equivalent to

incr(U · L2 ⊕ V · L) = U ′ · L2 ⊕ V · L, (10)

where U = N , U ′ = N ′, and V = 0x00000000 00000000 00000000 00000080. Note that V is the
hexadecimal form of |N | = |N ′| = 128. Now Yr consists of αmax constants, and we can list all these
constants by listing str32(int(Y ) + r mod 232) ⊕ Y for all Y ∈ {0, 1}32. Let Yr = {Y1, . . . , Yαmax} be the
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concrete representation of Yr. We can solve (in L) the equation U ·L2⊕V ·L⊕ [[Yℓ]] = U ′ ·L2⊕V ·L for all

Yℓ ∈ Yr, which gives us L =
[
(U ⊕ U ′)−1 · [[Yℓ]]

]1/2
, and see if this L satisfies (10). We find that 1762290

values of L satisfy (10), which was verified by using a program, and hence we have PrL[CollL(r,N,N ′)] ≥
1762290/2n. ⊓⊔

With the same value of r = 0x55555555, the values of N and N ′ in the following list give the same
probability. {

N = 0x215c004e 6e2a8080 00000000 00000000

N ′ = 0xab48deec f9d8a8ec e8de20a2 f659cb77
(11){

N = 0x1bb000e9 9f71db00 00000000 00000000

N ′ = 0xb0085245 fd3dc69e 9de41b1a 943d314f
(12){

N = 0x77500027 37154040 00000000 00000000

N ′ = 0xd35a6f76 7cec5476 746f1051 7b2ce5bb
(13)

Theorem 1 suggests that, for the particular value of r = 0x55555555, there exist N and N ′ with
PrL[CollL(r,N,N ′)] ≥ 1762290/2n = 881145(ℓN + 1)/2n, where |N |n = |N ′|n = ℓN = 1. Specifically,
the result shows that the constant, αmax, in Proposition 3 for the case r = 0x55555555 cannot be made
smaller than 881145. Therefore, as long as we make use of the sum bound in (6) to derive the upper
bound on PrL[Case (B) holds], the constants in (1) and (2) cannot be made smaller than 881145. Since
3524578 ≤ 221.75 and 881145 ≥ 219.74, we may conclude that (1) and (2) are tight up to a constant factor
of about 4 if we use the sum bound. We next present how we have derived the values of N and N ′ in (9).

5.3 Deriving N and N ′

Recall that our goal is to derive r, N , and N ′ where CollL(r,N,N ′) defined in (7) has as many solutions
in L as possible. We decided to focus on r = 0x55555555 since this is one of the four values of r that is
potential to have the maximum number of solutions. We also decided to focus on the case |N | = |N ′| =
128, since even with this restricted length of nonces, we still have about 2256 possible search space of N
and N ′. With the setting, (7) is equivalent to

incr(U · L2 ⊕ V · L) = U ′ · L2 ⊕ V · L, (14)

where r = 0x55555555 and V = 0x00000000 00000000 00000000 00000080 are now fixed, and U = N
and U ′ = N ′ are the variables we are searching for.

Converting incr(X) into X ⊕ [[Yℓ]]. As mentioned in the proof of Theorem 1, Yr consists of αmax con-
stants, and let Yr = {Y1, . . . , Yαmax} be the concrete representation of Yr. Now instead of directly con-
sidering (14), we consider the following simultaneous equation.{

incr(U · L2 ⊕ V · L) = U · L2 ⊕ V · L⊕ [[Yℓ]] (15)

(U ⊕ U ′) · L2 = [[Yℓ]] (16)

(15) is the conversion of the arithmetic addition by r in the left hand side of (14) using some constant
Yℓ ∈ Yr, and then we obtain (16) by simplifying (14) after the conversion with Yℓ ∈ Yr used in (15),
where the term V · L cancels out. Note that the conversion of (15) is always possible, and (14) holds if
and only if (16) holds, and hence (14) is equivalent to (15) and (16) holding for some Yℓ ∈ Yr.

Deriving Conditions on X for incr(X) = X ⊕ [[Yℓ]]. Suppose that we fix some Yℓ from Yr, and convert
incr(X) into X ⊕ [[Yℓ]]. Now we observe that the equality of incr(X) = X ⊕ [[Yℓ]] imposes restrictions on
some bits of X. For instance, when Yℓ = 0x55555555, then X must be of the form

X = ∗ · · · ∗︸ ︷︷ ︸
96 bits

∗0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0︸ ︷︷ ︸
32 bits

7



in binary, where ∗ can be 0 or 1, i.e., if X = x127 . . . x0 is the binary representation of X, it must be the
case that x30 = 0 ∧ x28 = 0 ∧ · · · ∧ x0 = 0. When Yℓ = 0xefffffff, then X must be of the form

X = ∗ · · · ∗︸ ︷︷ ︸
96 bits

∗0010101010101010101010101010101︸ ︷︷ ︸
32 bits

in binary. Using Yℓ = 0x55555555 fixes 16 bits of X, and Yℓ = 0xefffffff fixes 31 bits of X. The
condition and the number of bits we have to fix depend on the value of Yℓ. We have to fix from 16 to 31
bits of X, and these are two extreme cases that have the minimum number and the maximum number
of conditions. On average, around 20 bits are fixed. Let C(Yℓ) be the set of conditions to replace incr(X)
to X ⊕ [[Yℓ]]. We represent C(Yℓ) as a column vector

C(Yℓ) =

x127...
x0

 ,

where xi ∈ {∗, 0, 1}. Let I(Yℓ) be the set of indices with xi ̸= ∗, i.e., I(Yℓ) = {i | xi ̸= ∗}. We note that
127, . . . , 32 are not in I(Yℓ) as x127, . . . , x32 are all ∗.

Given Yℓ, there are several approaches to write down C(Yℓ). For instance, a possible approach is to
follow the framework in [20], or to use the tool [14] developed in [15,16]. For completeness, we present in
Appendix A an algorithm that directly gives us the conditions.

Decomposition into Bits. Let us continue focusing on Yℓ from Yr that we have fixed. We can solve (16)

with respect to L, and we obtain L =
[
(U ⊕ U ′)−1 · [[Yℓ]]

]1/2
=

[
(U ⊕ U ′)−1 · [[Yℓ]]

]2127
. Now we consider

the argument, U ·L2⊕V ·L, of incr of (15). With this L, the argument becomes U · (U ⊕U ′)−1 · [[Yℓ]]⊕V ·[
(U ⊕ U ′)−1 · [[Yℓ]]

]2127
. At this point, instead of treating U and U ′ as variables, we let W = (U ⊕ U ′)−1

and regard U and W as variables. With this replacement, we have L =
[
W · [[Yℓ]]

]2127
, and the argument

becomes

U ·W · [[Yℓ]]⊕ V ·W 2127 · [[Yℓ]]
2127 . (17)

It is well known that a multiplication by a constant and a squaring operation over GF(2n) are linear
operations in GF(2), e.g., see [7]. We make an observation that, if we decompose (17) into bits using
U = u127 . . . u0 and W = w127 . . . w0 as variables, then each bit of the first term, U ·W · [[Yℓ]], can be

represented by using u127w127, . . . , u127w0, . . . , u0w127, . . . , u0w0, and the second term, V ·W 2127 · [[Yℓ]]
2127 ,

can be represented by using w127, . . . , w0. The first term consists of terms of the form uiwj , a total of
128 × 128 = 16384 variations, and we replace the term uiwj with a monomial s128i+j . Let z127 . . . z0 be
the decomposition of (17) into bits. Then we can represent zi as a linear function of s16383, . . . , s0 and
w127, . . . , w0. In other words, there is a linear function fi that describes zi as

zi = fi(s16383, . . . , s0, w127, . . . , w0).

Let us define a binary row vector rowi, which is associated to fi, of length 16384 + 128 that lists the
coefficients of s16383, . . . , s0, w127, . . . , w0. We can collect them into a 128 × (16384 + 128) binary matrix
M to write

z127...
z0

 = M · S,where M =

row127...
row0

 and S def
=



s16383
...
s0
w127
...
w0


.

S is the column vector that consists of the variables we are searching for. We note that M depends on
Yℓ, and we thus write M(Yℓ) to describe the dependency.

Recall that z127 . . . z0 is the decomposition of (17) into bits. The equality of (15) holds if C(Yℓ) is
satisfied. In other words, we require

xi = fi(s16383, . . . , s0, w127, . . . , w0)

holds for all i ∈ I(Yℓ).
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Deriving U and W . Let us still focus on Yℓ from Yr. For C(Yℓ) =
[
x127 · · · x0

]tr
, where xi ∈ {∗, 0, 1} and

Xtr is the transposition of a row vector X, let C̃(Yℓ) be a column vector that is obtained from C(Yℓ) by

removing ∗. Suppose that C̃(Yℓ) consists of s elements, and let us represent it as C̃(Yℓ) =
[
xi1 · · · xis

]tr
.

Note that we have I(Yℓ) = {i1, . . . , is}. Let M̃(Yℓ) =
[
rowi1 · · · rowis

]tr
be a matrix that consists of the

relevant s row vectors rowi1 , . . . , rowis of M(Yℓ) =
[
row127 · · · row0

]tr
. Now we can apply the Gaussian

elimination to solve a system of linear equations

C̃(Yℓ) = M̃(Yℓ) · S (18)

to derive s16383, . . . , s0, w127, . . . , w0, and if we can further derive u127, . . . , u0 that are consistent with

them, then this gives us U and W that have L =
[
W · [[Yℓ]]

]2127
as a solution to (15) and (16).

We next extend this to deal with multiple constants from Yr. Suppose that we choose j constants
Yℓ1 , . . . , Yℓj from Yr. We combine the conditions of (18) into a single system of linear equations

C̃(Yℓ1)
...

C̃(Yℓj )

 =

M̃(Yℓ1)
...

M̃(Yℓj )

 · S. (19)

If we can derive s16383, . . . , s0, w127, . . . , w0 and u127, . . . , u0 that are consistent with them, then this gives

us U and W that have L1 =
[
W · [[Yℓ1 ]]

]2127
, . . . , Lj =

[
W · [[Yℓj ]]

]2127
as j solutions to (15) and (16).

Our Algorithm. We are now ready to present our algorithm to derive U and W . It turns out that it is
not possible to solve (19) if we use all the αmax constants from Yr. Therefore, we need to choose some
of the constants from Yr, and this turns out to be a non-trivial task. We follow a greedy method and
our approach is to list Y1, . . . , Yαmax in the increasing order of the number of conditions #I(Yℓ). For the
constants with the same number of conditions, we list them in the lexicographic order. Assume that
Yr = {Y1, . . . , Yαmax} is listed with this order.

1. First, initialize C̃ as an empty binary column vector, and M̃ as a binary 0× (16384 + 128) matrix.

2. Next, execute Steps 3 and 4 for i = 1 to αmax.

3. Apply the Gaussian elimination to the following system of linear equations and see if it can be solved.[
C̃

C̃(Yi)

]
=

[
M̃

M̃(Yi)

]
· S (20)

4. If (20) has a solution, then let C̃←

[
C̃

C̃(Yi)

]
and M̃←

[
M̃

M̃(Yi)

]
.

5. Finally, return C̃ and M̃.

Result. The execution of the algorithm gives us M̃ of the form presented in Fig. 5. The matrix is in the
row echelon form where the lower left part of the elements are zeros.

We can arbitrarily fix w19, . . . , w0, and then w57, . . . , w20 are uniquely determined. We then arbitrarily
fix w76, . . . , w58, and then w127, . . . , w77 are uniquely determined. At this point, all the bits of W =
w127 . . . w0 are fixed, and we substitute them into s128i+j = uiwj and see if we can determine U =
u127 . . . u0.

It turns out that it is indeed possible if we let w76, . . . , w58w19, . . . , w0 = 039, which gives us W =
0xa288088a 02a88000 00eff100 0e100000, and N = U and N ′ = U ′ = U ⊕ W−1 presented in (9),
where the bits of U that can be fixed to any value are fixed to 0. Other results in (11), (12), and (13)
are obtained with different values of w76, . . . , w58w19, . . . , w0, which are 0381 for (11), 03710 for (12), and
03711 for (13).
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Fig. 5. The output M̃ of our algorithm

5.4 Applications to Other Values of r

The algorithm presented in the previous section can be naturally applied to other values of r. We present
in Fig. 6 results of applying our algorithm on several values of r. The figure in #L shows the number
of solutions (in L) that we can cover, and this suggests that we have identified N and N ′ such that
PrL[CollL(r,N,N ′)] ≥ #L/2n. The figure in #L/(ℓN + 1) is normalized by dividing #L with the degree
(ℓN +1) of the polynomial, and we have ℓN = 1 in our algorithm. The figure in αr shows the value of αr,
and Proposition 3 states that we have PrL[CollL(r,N,N ′)] ≤ αr(ℓN + 1)/2n for any N and N ′.

We see that, for these values of r, our algorithm gives N and N ′ such that the counter-collision
probability is close to the upper bound in Proposition 3, and this suggests that Proposition 3 is tight up
to a factor of about 4 to 16 depending on the value of r. However, there are other values of r where our
algorithm does not work. We see that for r = 0x2aaaaaab and 0xd5555555, it fails to give N and N ′

with a high counter-collision probability.
The existence of N and N ′ with a high counter-collision probability even for several values of r

suggests that, if we rely on the sum bound in (6), the constants in security bounds in (1) and (2) cannot
be significantly reduced. Now a natural question is whether it is possible to avoid using the sum bound,
and if so, whether this leads to improved security bounds. In the next section, we answer these questions
positively.

6 Improving GCM Security Bounds

6.1 Avoiding the Sum Bound

For 0 ≤ r < r′ ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96 bits, consider deriving the

upper bound on PrL[CollL(r,N,N ′) ∨ CollL(r
′, N,N ′)], i.e., PrL

[
incr(I[0]) = I ′[0] ∨ incr

′
(I[0]) = I ′[0]

]
,

where I[0] ← GHASHL(ε,N) and I ′[0] ← GHASHL(ε,N
′). The first step is to replace the arithmetic

additions by r and r′ with the xor of some constants Y ∈ Yr and Y ′ ∈ Yr′ . We obtain the following
upper bound.

Pr
L
[I[0]⊕ [[Y ]] = I ′[0] for some Y ∈ Yr ∨ I[0]⊕ [[Y ′]] = I ′[0] for some Y ′ ∈ Yr′ ] (21)

The proof in [11,12] relies on the sum bound, and (6) suggests the use of∑
Y ∈Yr

Pr
L

[
I[0]⊕ [[Y ]] = I ′[0]

]
+

∑
Y ′∈Yr′

Pr
L

[
I[0]⊕ [[Y ′]] = I ′[0]

]
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r #L #L/(ℓN + 1) αr

0x00000005 17 23.09 26.48

0x00000055 59 24.88 29.07

0x00000555 298 27.22 211.60

0x00005555 1930 29.91 214.09

0x00055555 13115 212.68 216.49

0x00555555 90134 215.46 218.77

0x05555555 667663 218.35 220.77

0x55555555 1762290 219.75 221.75

0x2aaaaaab 35 24.13 221.75

0xaaaaaaab 1762290 219.75 221.75

0xd5555555 35 24.13 221.75

Fig. 6. Summary of application of our algorithm to several values of r

as the upper bound on (21). We now present the following simple lemma.

Lemma 1. Fix 0 ≤ r < r′ ≤ 232 − 1, and consider Y ∈ {0, 1}32 such that Y ∈ Yr and Y ∈ Yr′ . Then

there does not exist X ∈ {0, 1}n that satisfies incr(X) = X⊕ [[Y ]] and incr
′
(X) = X⊕ [[Y ]] simultaneously.

Proof. Suppose for a contradiction that there exists X ∈ {0, 1}n that satisfies both incr(X) = X ⊕ [[Y ]]

and incr
′
(X) = X ⊕ [[Y ]]. From incr(X) = incr

′
(X), we have incr

′−r(X) = X. This is a contradiction as

r′ − r ̸≡ 0 mod 232, and hence lsb32(inc
r′−r(X)) and lsb32(X) cannot take the same value. ⊓⊔

It follows from Lemma 1 that∑
Y ∈Yr

Pr
L

[
I[0]⊕ [[Y ]] = I ′[0]

]
+

∑
Y ′∈Yr′\Yr

Pr
L

[
I[0]⊕ [[Y ′]] = I ′[0]

]
(22)

is also an upper bound on (21). If the cardinality of Yr ∩Yr′ is small, then (22) does not seem to give us
any improvement. However, it turns out that there is a non-obvious effect of considering the cardinality
of Yr ∩ Yr′ , and (22) indeed gives us improved security bounds on GCM.

This observation motivates us to consider another upper bound on (21), which is∑
Y ∈Yr∪Yr′

Pr
L

[
I[0]⊕ [[Y ]] = I ′[0]

]
. (23)

In what follows, we present improved security bounds of GCM with (22) and (23).

6.2 Towards Improved Security Bounds

Consider an adversary A in the privacy game. As outlined in Sect. 5.1, we may focus on non-adaptive
adversaries and consider the list of counter values in (3). The privacy advantage can be derived as (4),
and PrL [Case (A) holds] is obtained as (5). We focus on PrL [Case (B) holds], i.e., we are interested in
the probability of having a collision Ii[j] = Ii′ [j

′] for some (i, j, i′, j′), where 1 ≤ i′ < i ≤ q, 0 ≤ j′ ≤ mi′ ,
and 0 ≤ j ≤ mi. For each 2 ≤ i ≤ q, we have at most (m1 + 1) + (m2 + 1) + · · ·+ (mi−1 + 1) + (i− 1)mi

cases of (j, i′, j′) to consider. To see this, we observe that for Ii[0], we need to consider

Ii[0] ∈ {Ii′ [0], Ii′ [1], . . . , Ii′ [mi′ ]} for some 1 ≤ i′ < i, (24)

and thus for j = 0, we have (m1 +1)+ (m2 +1)+ · · ·+ (mi−1 +1) cases of (i′, j′) to consider. See Fig. 7
(left). For Ii[1], Ii[2], . . . , Ii[mi], we consider

Ii[1] ∈ {I1[0], I2[0], . . . , Ii−1[0]},
Ii[2] ∈ {I1[0], I2[0], . . . , Ii−1[0]},

...
Ii[mi] ∈ {I1[0], I2[0], . . . , Ii−1[0]},

(25)
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I1[0]
inc
−→ I1[1] · · ·

inc
−→ I1[m1]

...

Ii [0]
inc
−→ Ii [1] · · ·

inc
−→ Ii [mi ]

...

Ii−1[0]
inc
−→ Ii−1[1] · · ·

inc
−→ Ii−1[mi−1]

Ii[0]
inc
−→ Ii[1] · · ·

inc
−→ Ii[mi]

I1[0]
inc
−→ I1[1] · · ·

inc
−→ I1[m1]

...

Ii [0]
inc
−→ Ii [1] · · ·

inc
−→ Ii [mi ]

...

Ii−1[0]
inc
−→ Ii−1[1] · · ·

inc
−→ Ii−1[mi−1]

Ii[0]
inc
−→ Ii[1] · · ·

inc
−→ Ii[mi]

Fig. 7. Cases of (i′, j′) to consider for j = 0 (left) and for 1 ≤ j ≤ mi (right)

and we thus have (i − 1) cases of (i′, j′) for each 1 ≤ j ≤ mi. See Fig. 7 (right). We note that we can
exclude the cases Ii[j] = Ii′ [j

′] for 1 ≤ j ≤ mi, 1 ≤ i′ < i, and 1 ≤ j′ ≤ mi′ , as these cases are covered
in (24) or in another case of (25).

So far, we have proceeded as was done in [11,12]. Now for 0 ≤ a ≤ b ≤ 232−1 and two distinct nonces
N and N ′ which are not 96 bits, let CollL([a..b], N,N ′) denote the event

incr(GHASHL(ε,N)) = GHASHL(ε,N
′) for some a ≤ r ≤ b.

We see that (24) is equivalent to inc0(Ii′ [0]) = Ii[0] ∨ inc1(Ii′ [0]) = Ii[0] ∨ · · · ∨ incmi′ (Ii′ [0]) = Ii[0] for
some 1 ≤ i′ < i, and the probability can be evaluated as∑

1≤i′<i

Pr
L
[CollL([0..mi′ ], Ni′ , Ni)] . (26)

With respect to (25), we rearrange them as Ii′ [0] ∈ {Ii[1], Ii[2], . . . , Ii[mi]} for some 1 ≤ i′ < i. We see
that this is equivalent to inc1(Ii[0]) = Ii′ [0] ∨ inc2(Ii[0]) = Ii′ [0] ∨ · · · ∨ incmi(Ii[0]) = Ii′ [0] for some
1 ≤ i′ < i, and the upper bound on the probability can be evaluated as∑

1≤i′<i

Pr
L
[CollL([1..mi], Ni, Ni′)] ≤

∑
1≤i′<i

Pr
L
[CollL([0..mi], Ni, Ni′)] . (27)

6.3 Improving the Security Bounds with (22)

To apply (22) on (26) and (27), we define Wr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

W0
def
= Y0 and Wr

def
= Yr \ (Y0 ∪ Y1 ∪ · · · ∪ Yr−1) for r ≥ 1.

We denote its cardinality as wr
def
= #Wr and let wmax

def
= max{wr | 0 ≤ r ≤ 232 − 1}. We show the

following lemma.

Lemma 2. For 0 ≤ m ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96 bits, it holds that
PrL[CollL([0..m], N,N ′)] ≤ wmax(m+ 1)(ℓN + 1)/2n, where |N |n, |N ′|n ≤ ℓN .

Proof. Recall that CollL([0..m], N,N ′) is the event inc0(I[0]) = I ′[0]∨ inc1(I[0]) = I ′[0]∨· · ·∨ incm(I[0]) =
I ′[0], and the probability can be evaluated as∑

0≤r≤m

∑
Y ∈Yr\(Y0∪Y1∪···∪Yr−1)

Pr
L

[
I[0]⊕ [[Y ]] = I ′[0]

]
≤

∑
0≤r≤m

wmax(ℓN + 1)

2n
,

since I[0]⊕ [[Y ]] = I ′[0] is a non-trivial equation in L over GF(2n) of degree at most ℓN + 1. ⊓⊔

It follows that

(26) + (27) ≤
∑

1≤i′<i

wmax(mi′ + 1)(ℓN + 1)

2n
+

∑
1≤i′<i

wmax(mi + 1)(ℓN + 1)

2n
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≤ wmax(ℓN + 1)

2n

 ∑
1≤i′<i

(mi′ + 1)

+ (i− 1)(mi + 1)

 ,

and by taking the summation with respect to i, we obtain PrL [Case (B) holds] ≤ wmax(q−1)(σ+q)(ℓN +
1)/2n, since

∑
2≤i≤q

 ∑
1≤i′<i

(mi′ + 1)

+ (i− 1)(mi + 1)

 ≤ (q − 1)(σ + q).

From (5), PrL [Case (A) holds] + PrL [Case (B) holds] is at most

(σ + q)(ℓN + 1)

2n
+

wmax(q − 1)(σ + q)(ℓN + 1)

2n
≤ wmaxq(σ + q)(ℓN + 1)

2n
,

and it remains to evaluate the value of wmax, which is shown in the lemma below.

Lemma 3. wmax ≤ 32.

A proof is presented in Appendix B.
We are now ready to present the improved security bound based on (22).

Theorem 2. With the same notation as in Proposition 1, we have

Advpriv
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + 1)2

2n
+

32q(σ + q)(ℓN + 1)

2n
. (28)

We have focused on the privacy result, but the authenticity result can also be obtained as follows.

Theorem 3. With the same notation as in Proposition 2, we have

Advauth
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + q′ + 1)2

2n
+

32(q + q′)(σ + q + 1)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
. (29)

Proofs follow the corresponding proofs in [12, Appendix D] for privacy and [12, Appendix E] for authen-
ticity. For privacy, the difference is the analysis of Case (B) in [12, Appendix D], which is presented in this
section, and for authenticity, the difference is the analysis of Case (B) and Case (D) in [12, Appendix E],
where we can directly apply the analysis of this section.

6.4 Improving the Security Bounds with (23)

To apply (23) on (26) and (27), we define Zr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

Zr
def
= Y0 ∪ Y1 ∪ · · · ∪ Yr,

and denote its cardinality as zr
def
= #Zr. We also let zmax

def
= max{zr | 0 ≤ r ≤ 232 − 1}. We show the

following lemma.

Lemma 4. For 0 ≤ m ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96 bits, it holds that
PrL[CollL([0..m], N,N ′)] ≤ zmax(ℓN + 1)/2n, where |N |n, |N ′|n ≤ ℓN .

Proof. The upper bound on PrL[CollL([0..m], N,N ′)] can be evaluated as

∑
Y ∈Y0∪Y1∪···∪Ym

Pr
L

[
I[0]⊕ [[Y ]] = I ′[0]

]
≤ zmax(ℓN + 1)

2n
,

since I[0]⊕ [[Y ]] = I ′[0] is a non-trivial equation of degree at most ℓN + 1. ⊓⊔
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It follows that

(26) + (27) ≤ 2
∑

1≤i′<i

zmax(ℓN + 1)

2n
≤ 2(i− 1)zmax(ℓN + 1)

2n
,

and by taking the summation with respect to i, we obtain PrL [Case (B) holds] ≤ zmaxq
2(ℓN +1)/2n. We

use (5) to have

Pr
L
[Case (A) holds] + Pr

L
[Case (B) holds] ≤ (σ + q)(ℓN + 1)

2n
+

zmaxq
2(ℓN + 1)

2n
,

and it remains to evaluate the value of zmax, which is stated in the following lemma.

Lemma 5. zmax ≤ 232.

We have Zr ⊆ {0, 1}32, and hence the lemma follows. We note that the analysis is tight, as str32(r) is
always included in Yr, and the union Y0 ∪ Y1 ∪ · · · ∪ Y232−1 covers {0, 1}32.

We have the following improved security bound based on (23).

Theorem 4. With the same notation as in Proposition 1, we have

Advpriv
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + 1)2

2n
+

(σ + q)(ℓN + 1)

2n
+

232q2(ℓN + 1)

2n
. (30)

The authenticity theorem is given as follows.

Theorem 5. With the same notation as in Proposition 2, we have

Advauth
GCM[Perm(n),τ ](A) ≤

0.5(σ + q + q′ + 1)2

2n
+

(σ + q + q′)(ℓN + 1)

2n

+
232q(q + q′)(ℓN + 1)

2n
+

q′(ℓA + 1)

2τ
. (31)

6.5 Discussions

We present a comparison of the three privacy bounds in (1), (28), and (30). We see that (28) is always
smaller than (1), hence we focus on the comparison between (28) and (30). By simplifying (28) ≤ (30),
we obtain (

32− 1

q

)(
σ

q
+ 1

)
≤ 232.

This suggests that if σ/q, the average block length of each query, is at most 232/32 blocks, then (28) is
smaller, where 232/32 blocks amount to 2 Gbytes from n = 128. Similarly, for authenticity, (29) is always
better than (2). By simplifying (29) ≤ (31), we obtain

σ

q

(
32− 1

q + q′

)
+

1

q
+ 32 ≤ 232.

As with the case of privacy, this suggests that if σ/q is at most 232/32 blocks, which is about 2 Gbytes,
then (29) gives a better bound than (31).

7 Conclusions

In this paper, we developed an algorithm to generate nonces that have a high counter-collision probability,
and showed concrete examples of nonces as the results of our experiments. This implies that, if we use the
sum bound in the security proof, then the security bounds of [11,12] are tight within a factor of about 4.
We next showed that it is possible to avoid using the sum bound. We presented improved security bounds
of GCM, and one of our security bounds suggests that the security of GCM is close to what was originally
claimed by the designers in [17,18].

There are several interesting research directions. With respect to the generation of nonces, it would
be interesting to extend our algorithm to handle nonces of different lengths. It would also be interesting
to study the security of variants of GCM, including SGCM [26] and MGCM [19].
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A Deriving C(Yℓ)

We convert incr(X) into X⊕ [[Yℓ]], and we present the algorithm described in Sect. 5.2 to derive C(Yℓ) for

given Yℓ. As we may ignore the most significant 96 bits of X, we let X̃ = x31 . . . x0, where xi ∈ {∗, 0, 1}.
We have 0 ≤ r ≤ 232 − 1, and let str32(r) = r31 . . . r0 and Yℓ = y31 . . . y0 be the decomposition of r and

Yℓ into bits. The algorithm takes r and Yℓ ∈ Yr as input, and returns conditions X̃ = x31 . . . x0, where
xi ∈ {∗, 0, 1}, so that the equality of str32(int(X̃) + r mod 232) = X̃ ⊕ Yℓ holds. The algorithm outputs

⊥ if there is no X̃ that satisfies the equality. The algorithm starts from i = 0 to i = 31 sequentially by
checking if we can determine xi from ri and yi. The algorithm is presented in Fig. 8, and it works as
follows.

Case ri = yi = 0. In this case, xi can take any value, and we let xi ← ∗.
Case ri = yi = 1. In this case, we may have a carry to the next bit, i.e., (i + 1)-st bit, so we consider

ri+1 and yi+1 as well.

– Suppose that we have ri+1 = yi+1. If xi = 1, then we have a carry in the arithmetic addition,
and this yields a contradiction in the (i + 1)-st bit. Therefore, we necessary have xi = 0 in this
case.

– Suppose that ri+1 ̸= yi+1. xi = 0 implies a contradiction in the (i+ 1)-st bit, and hence xi must
be 1 so that we necessary have a carry. We update the value of r by adding 2i+1 to handle the
effect of the carry.

Case ri ̸= yi. This case means that there does not exist xi that maintains the equality of xi+ri = xi⊕yi.

B Proof of Lemma 3

Let x and c be integers such that 0 ≤ x ≤ 31 and 0 ≤ c ≤ 2x − 1. Throughout the proof of Lemma 3, we
abuse the notation and regard an integer 0 ≤ a ≤ 232 − 1 and its 32-bit binary representation, str32(a),
identically. For a 32-bit string a31 . . . a0, the i-th bit refers to ai. We show the proof of Lemma 3 with the
following two claims.

Claim. 2x + c ∈ Y2x−c.

Proof. We have 2x + c ∈ Y2x−c if there exists Y ∈ {0, 1}32 that satisfies Y + (2x − c) = Y ⊕ (2x + c),
which is equivalent to 2x + c = (Y + (2x − c)) ⊕ Y . Now let Y ← str32(c). Then the right hand side
is (c + (2x − c)) ⊕ c, which is equal to the left hand side from 0 ≤ c ≤ 2x − 1. Therefore, we have
2x + c ∈ Y2x−c. ⊓⊔

Claim. 2x + c ̸∈ Yr for 0 ≤ r < 2x − c.

Proof. Let d be an integer such that c < d ≤ 2x. We show that there does not exist Y ∈ {0, 1}32 that
satisfies 2x + c = (Y + 2x − d)⊕ Y , implying 2x + c ̸∈ Y2x−d. From c < d ≤ 2x, we have 2x + c = 2x ⊕ c
and 2x − d = 2x − 1− (d− 1) = (2x − 1)⊕ (d− 1).

We first consider the case d − 1 = c. We see that the 0-th bit of 2x + c is different from the 0-th bit
of 2x − d. Therefore, there does not exist Y that satisfies 2x + c = (Y + 2x − d)⊕ Y .
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Algorithm for C(Yℓ)

1. for i← 0 to 30 do
2. if ri = 0 ∧ yi = 0 then
3. xi ← ∗
4. else if ri = 1 ∧ yi = 1 then
5. if ri+1 = yi+1 then
6. xi ← 0
7. else
8. xi ← 1
9. r ← r + 2i+1 mod 232

10. end if
11. else
12. return ⊥
13. end if
14. end do
15. if r31 ̸= y31 then
16. return ⊥
17. end if
18. x31 ← ∗
19. return x31 . . . x0

Fig. 8. Algorithm that outputs C(Yℓ) from r and Yℓ

We next consider the case d−1 > c. Let d′ = d−1, and let str32(c) = c31 . . . c0 and str32(d
′) = d′31 . . . d

′
0

be the binary representations of c and d′. Define ℓ
def
= max{i | d′i ̸= ci}. Then we have d′ℓ = 1 and cℓ = 0

from d− 1 > c. This implies that the ℓ-th bit of 2x + c and the ℓ-th bit of 2x − d are both 0. Now from
d′ℓ+1 = cℓ+1 and the fact that the (ℓ + 1)-st bit of 2x and the (ℓ + 1)-st bit of 2x − 1 are different, we
necessary have that the (ℓ+ 1)-st bit of 2x + c and the (ℓ+ 1)-st bit of 2x − d are different. In order the
equality of 2x + c = (Y + 2x − d) ⊕ Y to hold, we must have a carry to the (ℓ + 1)-st bit in computing
Y + 2x − d. However, it is impossible to have the carry since the ℓ-th bit of 2x − d is 0. Therefore, there
does not exist Y that satisfies 2x + c = (Y + 2x − d)⊕ Y . ⊓⊔

The two claims show 2x + c ∈ W2x−c. Now any integer between 1 and 232 − 1 can be uniquely
represented in the form of 2x+c for some 0 ≤ x ≤ 31 and 0 ≤ c ≤ 2x−1. The uniqueness follows from the
fact that, if (x, c) ̸= (x′, c′), then 2x+c ̸= 2x

′
+c′. We note that 0 cannot be represented in the form of 2x+c,

which is an element of Y0, and is not included in Yr for r ≥ 1, since 0 = (Y +r)⊕Y cannot hold for r ≥ 1.
This implies that Wr for r ≥ 1 can be written as Wr = {2x + c | r = 2x − c, 0 ≤ x ≤ 31, 0 ≤ c ≤ 2x − 1}.
We can specifically list the elements of Wr as

Wr = {231 + (231 − 2x + c), 230 + (230 − 2x + c), . . . , 2x+1 + (2x+1 − 2x + c), 2x + c},

where x = ⌈log2 r⌉ and c = r − 2x. This proves #Wr = 32− ⌈log2 r⌉, and hence we have wmax ≤ 32. ⊓⊔

We present in Table 1 a list of r and Wr defined over {0, 1}8 instead of {0, 1}32. That is, we let Yr =
{str8(int(Y )+r mod 28)⊕Y ∈ {0, 1}8}, andWr is defined asW0 = Y0 andWr = Yr\(Y0∪Y1∪· · ·∪Yr−1)
for r ≥ 1. Wr is not in the list for r = 0x00 and r = 0x81, . . . , 0xff. We have Wr = {0x00} for r = 0x00

and Wr = ∅ for r = 0x81, . . . , 0xff. We see that the list supports our claims.
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Table 1. List of (r,Wr)

r Wr

0x01 {0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff}
0x02 {0x02, 0x06, 0x0e, 0x1e, 0x3e, 0x7e, 0xfe}
0x03 {0x05, 0x0d, 0x1d, 0x3d, 0x7d, 0xfd}
0x04 {0x04, 0x0c, 0x1c, 0x3c, 0x7c, 0xfc}
0x05 {0x0b, 0x1b, 0x3b, 0x7b, 0xfb}
0x06 {0x0a, 0x1a, 0x3a, 0x7a, 0xfa}
0x07 {0x09, 0x19, 0x39, 0x79, 0xf9}
0x08 {0x08, 0x18, 0x38, 0x78, 0xf8}
0x09 {0x17, 0x37, 0x77, 0xf7}
0x0a {0x16, 0x36, 0x76, 0xf6}
0x0b {0x15, 0x35, 0x75, 0xf5}
0x0c {0x14, 0x34, 0x74, 0xf4}
0x0d {0x13, 0x33, 0x73, 0xf3}
0x0e {0x12, 0x32, 0x72, 0xf2}
0x0f {0x11, 0x31, 0x71, 0xf1}
0x10 {0x10, 0x30, 0x70, 0xf0}
0x11 {0x2f, 0x6f, 0xef}
0x12 {0x2e, 0x6e, 0xee}
0x13 {0x2d, 0x6d, 0xed}
0x14 {0x2c, 0x6c, 0xec}
0x15 {0x2b, 0x6b, 0xeb}
0x16 {0x2a, 0x6a, 0xea}
0x17 {0x29, 0x69, 0xe9}
0x18 {0x28, 0x68, 0xe8}
0x19 {0x27, 0x67, 0xe7}
0x1a {0x26, 0x66, 0xe6}
0x1b {0x25, 0x65, 0xe5}
0x1c {0x24, 0x64, 0xe4}
0x1d {0x23, 0x63, 0xe3}
0x1e {0x22, 0x62, 0xe2}
0x1f {0x21, 0x61, 0xe1}
0x20 {0x20, 0x60, 0xe0}

r Wr

0x21 {0x5f, 0xdf}
0x22 {0x5e, 0xde}
0x23 {0x5d, 0xdd}
0x24 {0x5c, 0xdc}
0x25 {0x5b, 0xdb}
0x26 {0x5a, 0xda}
0x27 {0x59, 0xd9}
0x28 {0x58, 0xd8}
0x29 {0x57, 0xd7}
0x2a {0x56, 0xd6}
0x2b {0x55, 0xd5}
0x2c {0x54, 0xd4}
0x2d {0x53, 0xd3}
0x2e {0x52, 0xd2}
0x2f {0x51, 0xd1}
0x30 {0x50, 0xd0}
0x31 {0x4f, 0xcf}
0x32 {0x4e, 0xce}
0x33 {0x4d, 0xcd}
0x34 {0x4c, 0xcc}
0x35 {0x4b, 0xcb}
0x36 {0x4a, 0xca}
0x37 {0x49, 0xc9}
0x38 {0x48, 0xc8}
0x39 {0x47, 0xc7}
0x3a {0x46, 0xc6}
0x3b {0x45, 0xc5}
0x3c {0x44, 0xc4}
0x3d {0x43, 0xc3}
0x3e {0x42, 0xc2}
0x3f {0x41, 0xc1}
0x40 {0x40, 0xc0}

r Wr

0x41 {0xbf}
0x42 {0xbe}
0x43 {0xbd}
0x44 {0xbc}
0x45 {0xbb}
0x46 {0xba}
0x47 {0xb9}
0x48 {0xb8}
0x49 {0xb7}
0x4a {0xb6}
0x4b {0xb5}
0x4c {0xb4}
0x4d {0xb3}
0x4e {0xb2}
0x4f {0xb1}
0x50 {0xb0}
0x51 {0xaf}
0x52 {0xae}
0x53 {0xad}
0x54 {0xac}
0x55 {0xab}
0x56 {0xaa}
0x57 {0xa9}
0x58 {0xa8}
0x59 {0xa7}
0x5a {0xa6}
0x5b {0xa5}
0x5c {0xa4}
0x5d {0xa3}
0x5e {0xa2}
0x5f {0xa1}
0x60 {0xa0}

r Wr

0x61 {0x9f}
0x62 {0x9e}
0x63 {0x9d}
0x64 {0x9c}
0x65 {0x9b}
0x66 {0x9a}
0x67 {0x99}
0x68 {0x98}
0x69 {0x97}
0x6a {0x96}
0x6b {0x95}
0x6c {0x94}
0x6d {0x93}
0x6e {0x92}
0x6f {0x91}
0x70 {0x90}
0x71 {0x8f}
0x72 {0x8e}
0x73 {0x8d}
0x74 {0x8c}
0x75 {0x8b}
0x76 {0x8a}
0x77 {0x89}
0x78 {0x88}
0x79 {0x87}
0x7a {0x86}
0x7b {0x85}
0x7c {0x84}
0x7d {0x83}
0x7e {0x82}
0x7f {0x81}
0x80 {0x80}
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