
978-1-4799-5944-0/14/$31.00 c©2014 IEEE

High-Speed Implementation of bcrypt Password
Search using Special-Purpose Hardware

Friedrich Wiemer, Ralf Zimmermann
Horst Görtz Institute for IT-Security (HGI), Ruhr-University Bochum, Germany

Email: {friedrich.wiemer, ralf.zimmermann}@rub.de

Abstract—Using passwords for user authentication is still the
most common method for many internet services and attacks on
the password databases pose a severe threat. To reduce this risk,
servers store password hashes, which were generated using special
password-hashing functions, to slow down guessing attacks. The
most frequently used functions of this type are PBKDF2, bcrypt
and scrypt.
In this paper, we present a novel, flexible, high-speed implemen-
tation of a bcrypt password search system on a low-power Xilinx
Zynq 7020 FPGA. The design consists of 40 parallel bcrypt
cores running at 100 MHz. Our implementation outperforms
all currently available implementations and improves password
attacks on the same platform by at least 42%, computing 6,511
passwords per second for a cost parameter of 5.

I. INTRODUCTION

In the modern world, we constantly use online services in
our daily life. As a consequence, we provide information to
the corresponding service providers, e. g., financial services,
email providers or social networks. To prevent abuse like
identity theft, we encounter access-control mechanisms at
every step we make. While it is one of the older mechanisms,
password authentication is still one of the most frequently used
authentication methods on the internet even with the emerging
advanced login-procedures, e. g., single sign-on or two-factor
authentications.

To authenticate users for online services, these passwords
are stored on corresponding servers. As a consequence, an at-
tack on these databases, followed by a leak of the information,
pose a very high threat to the users and may form a single point
of failure, if the passwords are stored in plain text. Recent
examples of such leaks are the eBay1 or Adobe2 password
leaks, where several million passwords were stolen. To prevent
these attacks or at least raise the barrier of abuse, passwords
must be protected on the server. Instead of storing the password
as plaint text, a cryptographic hash of the password is kept. In
this case, a successful attacker has to recover the passwords
from the hash value, which should in theory be infeasible
due to the properties of the hash function. To prevent time-
memory trade-off techniques like rainbow tables, the password
is combined with a randomly chosen salt and the tuple

(s, h) = (salt, hash(salt, password))

is stored. Improvements to exhaustive password searches with
the aim to determine weak passwords exists. As passwords
are often generated from a specific character set, e. g., using

1cf. http://www.ebayinc.com/in_the_news/story/
ebay-inc-ask-ebay-users-change-passwords

2cf. https://adobe.cynic.al/

digits, upper- and lower-case characters, and may be length-
restricted, e. g., allowing six to eight characters, the search
space can be reduced considerably. This enables password re-
covery by brute-force or dictionary attacks. Recently, more ad-
vanced methods, e. g., probabilistic context-free grammars [1]
or Markov models [2], [3] were analyzed to improve the
password guesses and the success rate and thus reduce the
number of necessary guesses.

Apart from the generation of suitable password candidates,
the implementation has a high impact on the success. On
general-purpose CPUs, generic tools like John the Ripper
(JtR)3 or target-specific tools like TrueCrack4, addressing a
specific algorithm, in this case TrueCrypt volumes, use algo-
rithmic optimizations to gain a speedup when testing multiple
passwords. To further improve efficiency, not only the CPU
may be used: modern GPUs feature a large amount of parallel
processing cores at high clock-frequencies in combination with
large memory. As a prominent example, HashCat5 utilizes this
platform for high-performance hash computations.

The major problem remains that hash functions are very
fast to evaluate and thus enable fast attacks. Password-hashing
functions address this issue. These functions map a password
to key material for further usage and explicitly slow down
the computation time by making heavy use of the available
resources: the computation should be fast enough to validate
an honest user, but render password guessing infeasible. One
key idea to prevent future improvements in architectures from
breaking the efficiency of these function are flexible cost
parameters. These adjust the function in terms of time and/or
memory complexity.

The current standardized password-based key-derivation
function is PBKDF2 which is part of the Public-Key Cryp-
tography Standards (PKCS) [4]. Non-standardized alternatives
are bcrypt [5] and scrypt [6]. While the three functions are
considered secure, each has its own advantages and disadvan-
tages. This lead to the currently running password hashing
competition (PHC)6, which aims at providing well-analyzed
alternatives. Another purpose is discussing new ideas and
different security models with respect to the impact of special-
purpose hardware like modern GPUs, Application-Specific In-
tegrated Circuits (ASICs) or Field-Programmable Gate Arrays
(FPGAs).

Usually, the overall cost of large-scale attacks on cryp-

3cf. http://www.openwall.com/john
4cf. http://code.google.com/p/truecrack
5cf. http://hashcat.net/oclhashcat
6cf. https://password-hashing.net/

http://www.ebayinc.com/in_the_news/story/ebay-inc-ask-ebay-users-change- passwords
http://www.ebayinc.com/in_the_news/story/ebay-inc-ask-ebay-users-change- passwords
https://adobe.cynic.al/
http://www.openwall.com/john
http://code.google.com/p/truecrack
http://hashcat.net/oclhashcat
https://password-hashing.net/

tographic functions – and thus the feasibility of the attack
– is dominated by the power costs. For this reason, spe-
cialized hardware achieves excellent results due to its low
power consumption, especially when compared to general-
purpose architectures. This makes special-purpose hardware
very attractive for cryptanalysis in general [7], [8], [9], [10],
as well as in the context of password-hashing functions [11].

For the remainder of this paper, we focus on bcrypt as
the target function in the scope of efficient password-guessing
attacks and start with an overview on the currently available
implementations. In Section II-A, we describe the bcrypt
algorithm and the influence its tunable cost parameter.

With the goal of benchmarking energy-efficient password
cracking, [12] provided several implementations of bcrypt on
low-power devices, including an FPGA implementation in
December 2013. The authors used the zedboard (cf. II-B),
which combines an ARM processor and an FPGA, and split
the workload on both platforms. The FPGA computes the
time-consuming cost-loop of the algorithm while the ARM
manages the setup and post-processing. They reported up
to 780 passwords per second (pps) for a cost parameter of
5 and identified the highly unbalanced resource usage as a
drawback of the design. In August 2014, [13] presented a
new design, improving the performance to 4571 pps for the
same device and parameter, using the ARM only for JtR
to generate candidates and to transfer initialization values to
the FPGA. When they further optimized performance, the
zedboard became unstable (heat and voltage problems). Due to
these issues they also report a higher theoretical performance
of 8122 pps (derived from cost 12) and 7044 pps (simulated
using the larger Zynq 7045 FPGA).

Contribution: In this paper, we provide a practical and
efficient implementation of bcrypt on a low-power FPGA-
platform. Compared to the previous implementations on the
same device, we achieve a performance gain of 8.35 and
1.42, respectively. In addition, we implemented a simple on-
chip password generation to utilize free area in the fabric,
which splits a pre-defined password space and generates all
possible brute-force candidates. This creates a self-contained,
fully functional system (which may still use other sources for
password candidate checking), which we compare to other
currently available attack-platforms.

Outline: The rest of the paper is structured as follows:
We first introduce the necessary background information in
Section II, before we describe our implementation details in
the subsequent section and discuss our results, followed by
an evaluation of the costs of different attack scenarios, in
Section IV. Finally, our conclusion and perspectives for future
work form the last section.

II. BACKGROUND

In this section, we introduce the bcrypt algorithm and
outline the computationally expensive steps to motivate the
design decisions we made. The second part gives a short
overview of our two target FPGA families and their features.

A. The bcrypt password hash

Provos and Mazières published the bcrypt hash function [5]
in 1999, which, at its core, is a cost-parameterized, modified

version of the Blowfish encryption algorithm. The key concepts
are a tunable cost parameter and the pseudo-random access of
a 4 KByte memory. bcrypt is used as the default password
hash in OpenBSD since version 2.1 [5]. Additionally, it is the
default password hash in current versions of Ruby on Rails
and PHP.

bcrypt uses the parameters cost, salt, and key as input. The
number of executed loop iterations is exponential in the cost
parameter, cf. Algorithm II.1 (EksBlowfishSetup). The
computation is divided into two phases: First, Algorithm II.1
initializes the internal state, which has the highest impact
on the total runtime. Afterwards, Algorithm II.2 (bcrypt)
encrypts a fixed value repeatedly using this state.

In its structure, bcrypt makes heavy use of the Blowfish
encryption function. This is a standard 16-round Feistel net-
work, which uses SBoxes and subkeys determinded by the
current state. Its blocksize is 64-bit and during every round,
an f-function is evaluated: it uses the 32-bit input as four 8-
bit addresses for the SBoxes and computes (S0(a)+S1(b))⊕
S2(c) + S3(d) EksBlowfishSetup is a modified version
of the Blowfish key schedule. It computes a state, which
consists of 18 32-bit subkeys and four SBoxes – each 256
× 32 bits in size – which are later used in the encryption
process. The state is initially filled with the digits of π before
an ExpandKey step is performed: After adding the input key
to the subkeys, this step successively uses the current state to
encrypt blocks of its salt parameter and updates it with the
resulting ciphertext. In this process, ExpandKey computes
521 Blowfish encryptions. If the salt is fixed to zero, the
function resembles the standard Blowfish key schedule. An
important detail is that the input key is only used during the
very first part of the ExpandKey steps. bcrypt finally uses
EncryptECB, which is effectively a Blowfish encryption.

B. Special-Purpose Hardware

While general-purpose hardware, i. e., CPUs, offers a wide
variety of instructions for all kinds of programs and algorithms,
usually only a smaller subset is important for a specific task.
More importantly, the generic structure and design of the
architecture might impose restrictions and become cumber-
some, i. e., when registers are too small or memory access
latency becomes a bottleneck. Reconfigurable hardware like
FPGAs and special-purpose hardware like ASICs are far more
specialized – they are dedicated to a single task.

An FPGA consists of a large area of programmable logic
resources (the fabric), e. g., lookup tables (LUTs), shift reg-
isters, multiplexers and storage elements, and a fixed amount
of dedicated hardware modules, e. g., memory cores (BRAM),
digital signal processing units or even processor hardcores,
and can be specialized for a given task. In this work, we
target two different Xilinx FPGA families. The main platform
is zedboard, more precisely its Zynq-7000 XC7Z020 FPGA.
It is located in the low-power low-cost segment. The second
target is the Virtex-7 XC7VX485T FPGA which is a high-
performance device.

The Zynq-7000 consists mainly of a dual-core ARM Cortex
A9 CPU, while the fabric area and resources are comparable
to an Xilinx Artix-7 FPGA. The zedboard allows easy access
to the logic inside the fabric and memory modules via direct

Algorithm II.1: EksBlowfishSetup
Input: cost, salt, key
Output: state

1 state← InitState();
2 state← ExpandKey(state, salt, key);
3 Repeat (2cost) begin
4 state← ExpandKey(state, 0, salt);
5 state← ExpandKey(state, 0, key);
6 end
7 return state;

Algorithm II.2: bcrypt
Input: cost, salt, key
Output: hash

1 state← EksBlowfishSetup(cost, salt, key);
2 ctext← “OrpheanBeholderScryDoubt”;
3 Repeat (64) begin
4 ctext← EncryptECB(state, ctext);
5 end
6 return Concatenate(cost, salt, key);

memory access and provides several interfaces, e. g., AXI4,
AXI4-Stream, AXI4-Lite or Xillybus. It is a good choice for
hardware/software co-design and in the context of this work
provides a self-contained system including complex means for
password generation and fast hardware designs. The Virtex-7
on the other hand, offers a five times larger fabric area and
seven times more memory cores at the cost of more power
consumption and a higher device price.

III. IMPLEMENTING BCRYPT ON FPGAS

In this section, we describe our FPGA implementation of
a multi-core bcrypt cracker, capable of both on-chip password
generation and offline dictionary attacks. We start with the
general design decisions, the results of an early version of our
design and discuss the choices we made to improve the overall
design.

An efficient implementation should result in a balanced
usage of the available dedicated hardware and fabric resources
and maximize the number of parallel instances on the device.
In the case of bcrypt, using one dual-port BRAM resource to
store two SBoxes saves LUT resources, results in high clock
frequencies and relaxes the routing without creating wait-
states. To increase the utilization of the memory, we focused on
shared memory access without adding clock cycles to the main
computation. In the final design, one bcrypt core occupies three
BRAM blocks with two additional global memory resources
for the initialization values. This leads to an upper bound of
46 cores per zedboard (ignoring any extra BRAM usage of the
interface).

Considering a brute-force attack to benchmark the capa-
bilities of the FPGA, the interface can be minimalistic. We
use a bussystem with minimal bandwidth capacity, resulting
in a small on-chip area footprint. For this scenario, we chose
the following setup: During start-up, the host transfers a 128-
bit target salt and a 192-bit target hash to the FPGA. These
values are kept in two registers to allow access during whole
computation time. After filling the registers, all bcrypt cores
start to work in parallel. The password candidates are generated
on-chip. When the attack completes, a successful candidate is
transferred back to the host.

Our earlier design was built out of fully independent bcrypt
cores. Each core contained its own password register as well
as the memory for the initialization values. This effectively
removed all cross-dependencies and resulted in very short
routing delays and thus very high clock frequencies. Due to
Blowfish’s simple Feistel structure, only a small amount of
combinatoric logic was needed: Since the main work is done

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

S
alt R

egister
H

ash R
egister

Interface

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

bcrypt
quad core

bcrypt
core

bcrypt
core

bcrypt
core

bcrypt
core

Password
Generator

Password
Memory

quad core

100 M
H

z

100 M
H

z

Figure 1. Schematic Top-Level view of FPGA implementation. The design
uses multiple clock-domains: a (slow) interface clock and a fast bcrypt clock.
Each quad-core accesses the salt- and hash registers and consists of a dedicated
password memory, four bcrypt cores and a password generator.

via BRAM lookups. Nevertheless, storing the password in
fabric consumes far too much area and resulted in an unbal-
anced implementation. However, the timing results indicated
that more than 100 MHz should be possible.

In order to reduce the area footprint, we tried to share
resources and analyzed the algorithm for registers that are
not constantly accessed by all cores. We first removed the
initialization memory and used the free register resources to
implement a pipeline and buffer the signals such that the
critical path was unaffected by the change. Due to the required
memory access and the dual port properties, we also combined
four bcrypt cores with one password generator and password
memory. These quad-cores can schedule password accesses
with negligible overhead.

These changes reduced the area consumption by roughly
20% at the cost of one additional BRAM resource per quad-
core. Figure 1 shows the resulting design using multiple
parallel and independent quad-cores. Every bcrypt core starts
its operation with the initialization of the 256 SBox entries.
Within this timeslot, the password generator produces four
new passwords and writes them into the password memory.
By using the dual-port structure of the memory, two bcrypt
cores access their passwords in parallel. While these first two
cores uses the BRAM, the second pair of cores is stalled. This
leads to a delay of 19 clock cycles between both pairs.

The bcrypt core spents most of the time within Blowfish
encryptions, as these are used during the ExpandKey (521
times) and EncryptECB (3 times) steps. Thus, optimizing
the Blowfish core heavily improves the overall performance.
A naïve implementation needs two clock cycles per Blowfish
round: one to calculate the input of the f-function – and thus

Pi
S0

S1

S2

S3

f

Lefti Righti

Lefti+1 Righti+1

Figure 2. The normal Feistel-structure of one standard Blowfish round.
Note that the final XOR operation may be moved along the datapath.
By delaying it to the next round, we can resolve data dependencies and
compute one Blowfish round in one clock cycle more efficiently.

0 1addrcnt
rst

Left Right

01 addrcnt
rst

din

PA
PBfsbox

addr

dout

Figure 3. Blockdiagram of Blowfish core. The computation of the
delayed f-function is integrated into the left half and the result of the
modified data-path forms the memory address for the next f-function.

the addresses to the SBox entries – and one to compute the
XOR operation on the f-function output and the subkey.

Figure 2 shows the standard Blowfish Feistel round. We
moved the XORs along the datapath, changing the round
boundaries. This delay allows us to prefetch the subkeys from
the memory and resolve data-access dependencies to reduce
the cycle count to one per round.

The resulting Blowfish core is depicted in Figure 3. All
of the three XOR operations – the f-function’s output and the
subkeys PA and PB – are computed in every round, removing
all multiplexers from the design. As this would change the
Blowfish algorithm, we use the reset of the BRAM output
registers to suppress any invalid XOR operations during the
computation. This design leads to a very minimalistic control
logic and a very small Blowfish design in terms of area.
Concerning the critical path, the maximum delay comes from
the path from the SBox through the evaluation of the f-
function.

We have roughly a fourth of the available slices left when
we reach the limit of available memory blocks. These resources
can be utilized for the password generation. In its simplest
form, this is very efficient on-chip, as it only requires a small
amount of logical resources. For each password byte, one
counter and register store the current states. The initialization
value differs for every core and determines the search space.
The logic always generates two subsequent passwords and
enumerates over all possible combinations for a given character
set and maximum password length. When the state has been
updated correctly, it is mapped into ASCII representation and
written into the password memory. The generation process
finishes during the 256 initialization clock cycles, leaving
enough time to buffer the signals and ensure a low amount
of levels-of-logic.

Please note that with this design, even a slow and simple
interface capable of sending 320 bits and a start flag can use
the system for brute-force attacks. A more complex interface
– capable of fast data-transfer or even direct memory access
of the BRAM cores – easily enables dictionary attacks, as new
passwords are transferred directly into the password memory
during the long bcrypt computation. The on-chip password
generation may be removed or modified to work in a hybrid
mode.

IV. RESULTS

In this section we will present the results of our implemen-
tation. We used Xilinx ISE 14.7 and – if needed Xilinx Vivado
2014.1 – during the design flow and verified the design both
in simulation and on the zedboard after Place and Route.

Table I provides the post place-and-route results of the full
design on the zedboard. We implemented the design using ten
parallel bcrypt quad-cores and a Xillybus interface. The design
achieves a clock frequency of 100 MHz. The optimizations
from Section III reduced the LUT consumption to roughly
600 LUTs, the amount of BRAMs to 3.25 per single core. We
therefore can fit ten quad-cores – and thus 40 single cores –
on a zedboard, including the on-chip password generation.

The bcrypt cores need constant cycles c for hash genera-
tion, in detail:

cReset = 1

cDelay = 19

cbf = 18

ckey xor = 19

cInit = 256

cPipeline = n, (n = 2)

cupdateP = 9 · (cbf)

cupdateSBox = 512 · (cbf)

cExpandKey = ckey xor + cupP + cupSBox = 9, 397

cEncryptECB = 3 · 64 · (cbf − 1) = 3, 264

Following these values, one bcrypt hashing needs

cbcrypt = cReset + cPipeline + cInit + cDelay+

(1 + 2cost+1 · cExpandKey) + cEncryptECB

= 12, 939 + 2cost+1 · 9, 397

cycles to finish. This leads to a total of 614,347 cycles per
password (cost 5) and 76,993,163 (cost 12), respectively.

In order to compare the design with other architectures,
especially with the previous results on the zedboard, we
measured the power consumption of the board during a run-
ning attack and used (ocl)Hashcat to benchmark a Xeon E3-
1240 CPU (4 cores@3.1 GHz) and a GTX 750 Ti (Maxwell
architecture) as representatives for the classes of CPUs and
GPUs. Furthermore, we synthesized our quad-core architecture
on the Virtex 7 XC7VX485T FPGA, which is available on
the VC707 development board, and estimated the number of
available cores with respect to the area a new interface may
occupy. We assume a worst-case upper bound of 20W as the
power consumption for the full evaluation board. For the CPU

Table I. RESOURCE UTILIZATION OF DESIGN AND
SUBMODULES.

LUT FF Slice BRAM

Overall 64.8% 13.06% 93.29% 95.71%

quad-core 2,777 720 801 13
single core 617 132 197 3
Blowfish core 354 64 71 0
Password Generator 216 205 81 0

Table II. COMPARISON OF MULTIPLE IMPLEMENTATIONS AND
PLATFORMS, CONSIDERING FULL SYSTEM POWER CONSUMPTION.

cost parameter 5 cost parameter 12
Hashes
Second

Hashes
Watt Second

Hashes
Second

Hashes
Watt Second Power Price

zedboard 6,511 1,550 51.95 12.37 4.2W $319
Virtex-7 51,437 2,572 410.4 20.52 20W $3,495

Xeon E3-1240 6,210 20.7 50 0.17 300W $262
GTX 750 Ti 1,920 6.4 15 0.05 300W $120

[13] Epiphany 16 1,207 132.64 9.64 1.06 9.1W $149
[13] zedboard 4,571 682.24 64.83 9.68 6.7W $319

Xeon E3-1240∗

GTX 750 Ti∗
zedboard

Virtex-7
[13] Epiphany 16

[13] zedboard

101

102

103

104

105 H
s
H

Ws

Figure 4. Comparison of different implementations for cost parameter 5. Left
bars (red) show the hashes-per-seconds rate, right bars (green) the hashes-per-
watt-seconds rate. Results with ∗ were measured with (ocl)Hashcat. The axial
scale is logarithmic.

and the GPU attack, we also consider the complete system.
While there are smaller power supplies available, we consider
a 300W power supply, which is the recommended minimum
for the GPU to run stable.

Table II compares the different implementation platforms
for cost parameter of 5 and 12. For better comparison, Fig-
ure 4 shows the performance and efficiency graphically only
for the first case. Our zedboard implementation outperforms
the previous implementation from [13] by a factor of 1.42,
computing 6511 pps at a measured power consumption of only
4.2W compared to 6.7W of the previous implementation. Thus,
this implementation yields also a better power efficiency of
1550 pps per watt, which is more than twice as efficient as the
previous implementation. The CPU attack on a Xeon computes
5% less pps, at a significantly higher power consumption. Even
considering only the power consumption of the CPU itself of
80W, the efficiency of the zedboard is still about 20 times
higher. The estimated Virtex-7 design shows that the high-
performance board is a decent alternative to the zedboard: it
outperforms all other platforms with 51437 pps and has a very
high power-efficiency rating. The drawback is the high price
of $3495 for the development board.

To analyze the full costs of an attack, including the
necessary power consumption (at the price of 10.08 cents per
kWh7), we consider two different scenarios. The first uses the
fairly low cost parameter of 5 for a simple brute-force attack on

7Taken from the “Independent Statistics & Analysis U.S. Energy Infor-
mation Administration”, average retail price of electricity United States all
sectors. http://www.eia.gov/electricity/data/browser

passwords of length 8 with 62 different characters and requires
the runtime to be at most 1 month. We chose the considerably
low cost parameter for comparison with the related work, as it
is typically used for bcrypt benchmarks. However, this value
is insecure for practical applications, where a common choice
seems to be 12, which is also used in the related work. Thus,
we use this more reasonable parameter in the second setting.
Here, the adversary uses more sophisticated attacks and aims
for a reduction of the number of necessary password guesses
and for a reduced runtime of one day per cracked password:
We consider an adversary with access to meaningful, target-
specific, custom dictionaries – for example generated through
social engineering – and derivation rules. In [11], the authors
trained on a random subset of 90% from the leaked RockYou
passwords to attack the remaining 10% and estimated that
4 · 109 guesses are needed for about 67% chance of success,
which we use as a basis for the computational power.

Figure 5 shows the costs of running brute-force attacks in
the first scenario. To achieve the requested amount of password
tests in one month, we need 13564 single CPUs, 43872 GPUs,
10361 CPUs + GPUs, 12999 zedboards or 1645 Virtex-7
boards. The figure shows the total costs considering acquisition
costs (fixed cost) and the power consumption. It reveals the
infeasibility of CPUs for attacking password hashes, and even
more clearly the efficiency of special-purpose devices. Even
high-performance FPGAs like the Virtex-7 are more profitable
after only a few password cracks, than a combination of CPU
and GPU.

Figure 6 shows the costs of attacking multiple passwords
in the second scenario. Here, we need 30 CPUs, 102 GPUs,
23 CPUs + GPUs, 38 zedboards or 4 Virtex-7 boards. With
the higher cost parameter our current zedboard implementation
does not yield similar good results and thus [13] implementa-
tion is currently better suited for this attack when mounted on
a zedboard. With the higher cost parameter, their implemen-
tation can conceal an interface bottleneck coming from the
initialization of the bcrypt cores. As our implementation does
not suffer from this bottleneck, we can run several cores on a
bigger FPGA without negative consequences. Please note that
the Virtex-7, after amortizing its acquisition costs, outperforms
every other platform (reaching the break-even point with [13]
zedboard after attacking about 1500 passwords).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a highly optimized bcrypt
implementation on FPGAs. We use a quad-core structure to
achieve an optimal resource utilization and gain a speed-up
of 42% and – due to lower power consumption – increased

http://www.eia.gov/electricity/data/browser

10 20 30 40 50

5

7

10

15

20

Number of attacked passwords

To
ta

l
co

st
s

in
$1

00
0

00
0 break-even

CPU∗

GPU∗

CPU+GPU∗

Virtex-7
zedboard
[13] Epiphany
[13] zedboard

Figure 5. Total costs in millions USD for attacking n passwords of
length 8 from a set of 62 characters, with logarithmic scale. Each attack
finishes within one month. Both the acquisition costs for enough devices
and the total power costs where considered.

50 100 150 200

7

10

15

20

30

40

Number of attacked passwords

To
ta

l
co

st
s

in
$1

00
0

Figure 6. Total costs in thousands USD for attacking n passwords of
length 8 from a set of 62 characters using a cost parameter of 12 (which
is commonly recommended), with logarithmic scale. Each attack finishes
within one day, with a dictionary attack where 65% are covered (4 · 109

Tests).

power-efficiency by 127% compared to the previous results
on the same device. In the design we presented, the critical
path is still within the Blowfish core, resulting in a moderate
clock-frequency of 100 MHz. An idea to improve this is to
pipeline the encryption within a quad-core, interleaving the
computations of the core. This may shorten the critical path
further, allowing higher clock frequencies and more parallel
bcrypt cores due to shared resources.

We showed that it is possible to utilize the remaining fabric
area to implement a small on-chip password generation, which
is adaptable and may be combined with a dictionary attack,
e. g., for prefix and suffix modifications. These possibilities
should be evaluated and further analyzed, as the password
generation has a high impact on the success rate. Even more
importantly, using only off-chip password generation, i. e., by
using a CPU to generate passwords and transfer them to
the FPGA, introduces two potential bottlenecks: the software
implementation itself and the data bus. With the combination
of off-chip creation and on-chip modification, it should be
possible to reduce the risk of these bottlenecks even in large
and highly parallelized clusters: We can use the password
generator construction for simple mangling rules and relax the
interface or dedicate several cores to brute-force attacks, while
others work on a dictionary. This leads to more possible trade-
offs in terms of interface speed vs. area consumption.

In our attack scenarios, we considered modern repre-
sentatives of CPUs as well as GPUs and benchmarked the
(ocl)Hashcat bcrypt implementation on these platforms. We
compared the total costs of low-power and high-performance
devices in two scenarios: simple brute-force with a fixed
runtime of 1 month (cost 5) and an advanced attack with a
timeframe of 1 day (cost 12). In both cases, the high power
consumption of CPUs and GPUs renders large-scale attacks
infeasible, as our FPGA implementation not only outperforms
these devices but also requires significantly less power.

Interestingly, in combination with improved methods to
derive suitable password candidates, the overall costs when
using a fast and power-efficient FPGA implementation are not
as high as expected for reasonable parameters. As a result, we
should evaluate and adjust the parameters used in practice to
withstand the advances in technology and intelligent password
generation.

REFERENCES

[1] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
Cracking Using Probabilistic Context-Free Grammars,” in IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, 2009, pp.
391–405.

[2] A. Narayanan and V. Shmatikov, “Fast Dictionary Attacks on Pass-
words Using Time-Space Tradeoff,” in Proc. 12th ACM conference on
Computer and communications security. New York, NY, USA: ACM,
2005, pp. 364–372.

[3] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito, “Omen: An
improved password cracker leveraging personal information,” Available
as arXiv:1304.6584, 2013.

[4] B. Kaliski, “PKCS #5: Password-Based Cryptography Specification
Version 2.0,” RFC 2898, Sept. 2000, http://tools.ietf.org/html/rfc2898.

[5] N. Provos and D. Mazières, “A Future-Adaptable Password Scheme,”
in USENIX Annual Technical Conference, FREENIX Track, 1999, pp.
81–91.

[6] C. Percival, “Stronger Key Derivation via Sequential Memory-Hard
Functions,” Presentation at BSDCan’09. Available online at http://www.
tarsnap.com/scrypt/scrypt.pdf, 2009.

[7] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp, “Cryptanal-
ysis with COPACOBANA,” IEEE Transactions on Computers, vol. 57,
no. 11, pp. 1498–1513, November 2008.

[8] T. Güneysu, C. Paar, G. Pfeiffer, and M. Schimmler, “Enhancing COPA-
COBANA for advanced applications in cryptography and cryptanalysis,”
in Proceedings of the Conference on Field Programmable Logic and
Applications (FPL 2008), 2008, pp. 675–678.

[9] T. Gendrullis, M. Novotný, and A. Rupp, “A Real-World Attack
Breaking A5/1 within Hours,” IACR Cryptology ePrint Archive, vol.
2008, p. 147, 2008.

[10] R. Zimmermann, T. Güneysu, and C. Paar, “High-Performance Integer
Factoring with Reconfigurable Devices,” in Field Programmable Logic
and Applications (FPL), 2010 International Conference on, Aug 2010,
pp. 83–88.

[11] M. Dürmuth, T. Güneysu, M. Kasper, C. Paar, T. Yalçin, and R. Zim-
mermann, “Evaluation of Standardized Password-Based Key Deriva-
tion against Parallel Processing Platforms,” in Computer Security –
ESORICS 2012, 2012, pp. 716–733.

[12] K. Malvoni, “Energy-efficient bcrypt cracking,” Bergen,
Norway, Dec. 2013, presentation given at PasswordCon
Bergen, 2013. Slides online at: http://www.openwall.
com/presentations/Passwords13-Energy-Efficient-Cracking/
Passwords13-Energy-Efficient-Cracking.pdf.

[13] K. Malvoni, Solar Designer, and J. Knezovic, “Are Your Passwords
Safe: Energy-Efficient Bcrypt Cracking with Low-Cost Parallel
Hardware,” in 8th USENIX Workshop on Offensive Technologies
(WOOT 14). San Diego, CA: USENIX Association, Aug.
2014. [Online]. Available: https://www.usenix.org/conference/woot14/
workshop-program/presentation/malvani

http://tools.ietf.org/html/rfc2898
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.openwall.com/presentations/Passwords13-Energy-Efficient-Cracking/Passwords13-Energy-Efficient-Cracking.pdf
http://www.openwall.com/presentations/Passwords13-Energy-Efficient-Cracking/Passwords13-Energy-Efficient-Cracking.pdf
http://www.openwall.com/presentations/Passwords13-Energy-Efficient-Cracking/Passwords13-Energy-Efficient-Cracking.pdf
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani

	Introduction
	Background
	The bcrypt password hash
	Special-Purpose Hardware

	Implementing bcrypt on FPGAs
	Results
	Conclusion and Future Work
	References

