
Not-quite-so-broken TLS 1.3 mechanised

conformance checking

David Kaloper-Meršinjak
University of Cambridge

Hannes Mehnert
University of Cambridge

Abstract

We present a set of tools to aid TLS 1.3 implementors, all derived
from a single TLS implementation/model. These include an automated
offline TLS protocol conformance checker, a test oracle validating recorded
sessions, a tool replicating recorded sessions with other implementations,
and an interactive online handshake visualisation.

The conformance checker repeatedly runs a user-provided TLS imple-
mentation, attempting to establish TLS sessions with it; the checker ex-
plores the TLS parameter space to determine feature coverage of the pro-
vided implementation. The test oracle takes a recorded session between
two endpoints and decides whether the session was conformant with the
specification. The replication utility re-runs one side of a recorded session
against another TLS implementation, and observes its behaviour. The on-
line visualisation accepts connections from clients and presents the TLS
session as an interactive sequence diagram.

All of these tools are based on our clean-slate nqsb-TLS implemen-
tation/model. It already supports TLS 1.0-1.2, and interoperates with a
broad range of other TLS implementations. We are currently extending
nqsb-TLS with TLS 1.3 support, and tracking the progress of the TLS 1.3
draft, adapting our implementation/model accordingly.

We invite the community to use our tools while implementing the TLS
1.3 RFC, and provide feedback on deviations in the interpretation thereof.
This process enables the community to converge to a single, mechanically
checkable TLS 1.3 model, as implemented by nqsb-TLS.

1 Introduction

TLS has a long history of implementation flaws [5]. These originate from the
difficulties in interpreting the loose prose it is specified in; from the complexity
of the protocol and the challenges in implementing it; and from the fact that
there is no mechanised way of checking that implementations conform to the
written specification.

The draft TLS 1.3 specification does not improve this situation. It still
relies solely on the prose specification to convey the definition of the protocol,
and provides no ways of mechanically checking the conformance to it. We

1



anticipate early implementations will continue to suffer from interoperability
and conformance problems.

Building on nqsb-TLS [4], our TLS implementation/model, we started imple-
menting the TLS 1.3 draft. Our contribution is a set of concrete tools aimed at
filling the gap of automated conformance checking of TLS 1.3 implementations.

Initial usage might uncover discrepancies between nqsb-TLS and the RFC.
Since nqsb-TLS is written in a high-level functional language, we are able to
quickly adapt to such findings and fix discrepancies. In this way, we can work
with the community on refining our interpretation of the draft standard, making
nqsb-TLS the common agreed-upon executable model of TLS 1.3.

nqsb-TLS supports earlier TLS protocol versions and interoperates well with
widely deployed TLS implementations. Our TLS 1.3 support is a work in
progress, as the 1.3 protocol draft is still under development, and there are
no available implementations to check interoperability against.

Our tools are still a work in progress, but we expect to be able to present
them fully working at TRON. Some of the tools are already available for earlier
versions of TLS.

nqsb-TLS is available from https://nqsb.io.

2 Description

One might think that a suite of static test vectors would be sufficient for TLS.
Due to the stateful nature of TLS, and being a cryptographic protocol, its proto-
col state space is enormous and not easily exhaustively coverable with test vec-
tors. The TLS 1.3 draft includes new features, such as version downgrade pro-
tection, certificate selection methodology, post-handshake authentication, and
caching of server configuration for 0-RTT and PSK identities for resumption.
These features cause the state space to grow even more. Based on our nqsb-
TLS implementation/model we developed several tools, intended to aid TLS 1.3
developers to assess the conformance to the specification:

• a dynamic conformance checker, which automatically explores the state
space of a given TLS executable;

• a test oracle, which validates whether a recorded TLS session conforms to
the nqsb-TLS model;

• a replication tool, which re-runs a recorded TLS session against another
implementation; and

• a visualisation, which renders interactive sequence diagrams of TLS ses-
sions on a website.

Conformance checker The first tool is a dynamic testing tool. This tool is
run against a stand-alone executable under test, as illustrated in Figure 1. The
executable will receive a file descriptor as an argument, and must attempt to

2

https://nqsb.io


nqsb-TLS
TLS under
test

data

control

Figure 1: Conformance checker testing an executable. The checker can explore
multiple execution paths, inducing the tested executable to fork, in order to
preserve and roll-back its state.

establish a TLS session over it, acting either as client or server. The executable
can do so by internally running an arbitrary TLS implementation, which does
not need to be modified beforehand. The tool will run the executable under test
and proceed to perform a TLS handshake with it. Once it reaches a choice point,
a place in the protocol where an implementation’s behaviour is not uniquely
constrained by the standard, it generates possible responses. It will then take
a snapshot of the process running the executable under test, and proceed with
the TLS handshake. After completion, it will return to the choice point, restart
the tested process from the snapshot, and pick the next possible response. This
is repeated until the set of possible reponses is exhausted. As there can be more
than one choice point in succession, the checker in effect enumerates the tree
of computations generated by possibilities in the initial configuration state and
subsequent underconstrained choices.

This behaviour is made possible by extending nqsb-TLS with backtrack-
ing behaviour and protocol knowledge about underconstrained features in the
protocol. The executable under test is dynamically instrumented by injecting
an ELF initialiser into the process during the linking phase, which allows the
checker to externally cause it to fork itself at choice points.

After enumerating the space of choices, the testing tool presents sequences
of choices which led to protocol failures. We can optionally visually present the
failing conversations (see below).

In this way, the checker serves the role that would traditionally be served
by a larger suite of (positive) test vectors. Instead of saving a large corpus of
tests which an implementation can be tested against, our checker can instead
explore its behaviour dynamically. This allows us to side-step the basic problem
of testing a cryptographic protocol, the fact that the data observably exchanged
on the wire is encrypted and different between separate executions, even if they
take logically the same path. That arrangements allows us to provide the tests in
a more compact form, as a single executable, and allows us to provide additional
interactive features.

Test oracle The second tool is an offline test oracle, which validates recorded
TLS sessions against the nqsb-TLS model. The test oracle can validate the client

3



endpoint, the server endpoint, or both endpoints. It has to be provided with
a recorded TLS session (as the data of the underlying TCP stream), and the
secrets that were used within that session. An implementation under test need
to be modified to dump its per-connection secrets, such as the PEM-encoded
private part of the keyshare, in order to use the test oracle. This is the only
change needed to an implementation under test. The test oracle will re-run
the (nqsb) protocol logic, committing to the same choices that the recorded
implementations choose, and decide whether the conversation as a whole can be
accepted as valid.

The test oracle starts by deriving its configuration from the recorded session
and secrets. For each recorded received byte sequence, it executes the proto-
col logic, and compares the output with the recorded sent byte sequence. The
comparison does not check for a byte equality, but normalises regarding frag-
mentation, ordering of extensions, and other varieties which do not affect the
semantics. Selection of choice points, such as server/client-random, protocol
version, ciphersuite, etc., is done by forward-lookup in the recorded session.

The outcome can either be that the recorded session and the test oracle agree
on a result, or they disagree. A discrepancy between nqsb-TLS and the recorded
session indicates an error, either in the tested TLS stack or in nqsb-TLS, or an
ambiguity in what TLS actually is.

The test oracle complements the conformance checker, in a sense: while
the conformance checker actively probes an implementation to decide whether
its behaviour is conformant, the test oracle is the offline equivalent, capable of
validating prerecorded TLS sessions after the fact.

Replication The third tool is a replication utility. It requires the same input
as the test oracle: a recorded session and the secrets. The replication utility
executes either the client side by connecting via a socket, or the server side by
listening on a socket. It re-runs the recorded session against the implementation
under test, comparing the recorded output against the received output.

This tool enables a developer to test a specific behaviour observed between
two stacks with other stacks. If this spots behaviour that is only loosely specified
in the RFC, the recorded session and its rendered sequence diagram can be used
to clearly communicate the observed and desired behaviour to the standards
committee.

The replay utility contemplates both the test oracle and the dynamic testing
by executing a single recorded session against another implementation. It does
not need to be a valid session in order to be replayed, thus it opens the possibility
for developing a corpus of negative test sessions.

Trace visualisation The fourth tool is a sequence diagram visualisation.
nqsb-TLS can internally record traces of its behaviour, and the visualisation
is capable of converting those traces into sequence diagrams.

A live visualisation for earlier TLS versions is available at https://tls.

openmirage.org, a screenshot shown in Figure 2. This runs as a stand-alone

4

https://tls.openmirage.org
https://tls.openmirage.org


Figure 2: Screenshot of the visualisation at https://tls.openmirage.org.

5

https://tls.openmirage.org


server: it accepts a TLS client, records the handshake, and renders a sequence
diagram of the just established TLS handshake in the web browser. Users can
explore details of the messages by clicking on the messages.

We plan to develop a visualisation utility which receives a recorded TLS
session and the secrets as input, and renders the sequence diagram as a pdf
using LATEX.

The trace visualisation complements the previous tools by presenting se-
quence diagrams of TLS sessions, which are easier to understand and follow
than packet dumps.

3 Related Work

Testing of TLS implementations is done by fuzzing tools which send random
input to a listening server. Recently several researchers [1, 3] investigated state
machine exploration of TLS implementations. Their motivation is to find illegal
state transitions which destroy the security properties of TLS. In contrast to
these approaches, we provide a tool suite to automatically explore the features
of a TLS implementation by covering the space of allowed transitions.

Websites such as https://sslabs.com test the protocol conformance and
assess the security of a specific configuration. Our goal is to provide tools which
aid TLS implementors, rather than tools which test a specific site configuration.

miTLS [2] is a reference implementation of TLS. Its primary focus is pro-
viding a formalised security proof of TLS. Instead, we aim to provide testing
tools to aid the implementors of the upcoming TLS 1.3 specification. In future,
we want to compare the behaviour of our nqsb-TLS model with the miTLS
implementation, once a version with TLS 1.3 support is released.

4 Conclusion

TLS has long suffered from the absence of any means to mechanically check
conformance to the written standard. We propose a way to bridge this gap by
repurposing our model/implementation as a set of conformance testing tools,
which TLS implementors can use to detect interoperability flaws early on. By
discussing the sources of such discrepancies, the community can clarify the
meaning of the RFC, and we will adapt nqsb-TLS if needed. Through this pro-
cess, the community can help to make nqsb-TLS the agreed-upon executable
reference model of TLS 1.3.

References

[1] Beurdouche, B., Delignat-Lavaud, A., Kobeissi, N., Pironti, A.,
and Bhargavan, K. Flextls: A tool for testing TLS implementations. In
9th USENIX Workshop on Offensive Technologies (WOOT 15) (Washing-
ton, D.C., Aug. 2015), USENIX Association.

6

https://sslabs.com


[2] Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., and
Strub, P.-Y. Implementing TLS with verified cryptographic security. In
Security and Privacy (2013).

[3] de Ruiter, J., and Poll, E. Protocol state fuzzing of TLS implementa-
tions. In 24th USENIX Security Symposium (USENIX Security 15) (Wash-
ington, D.C., Aug. 2015), USENIX Association, pp. 193–206.

[4] Kaloper-Meršinjak, D., Mehnert, H., Madhavapeddy, A., and
Sewell, P. Not-quite-so-broken TLS: Lessons in re-engineering a secu-
rity protocol specification and implementation. In 24th USENIX Security
Symposium (USENIX Security 15) (Washington, D.C., 2015), USENIX As-
sociation, pp. 223–238.

[5] Meyer, C., and Schwenk, J. Lessons learned from previous SSL/TLS
Attacks - a brief chronology of attacks and weaknesses. Cryptology ePrint
Archive, Report 2013/049, 2013.

7


	Introduction
	Description
	Related Work
	Conclusion

