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Practical Forgeries and Distinguishers against PAES∗

Jérémy JEAN†a), Ivica NIKOLIĆ†b), Nonmembers, Yu SASAKI††c), Member,
and Lei WANG†d), Nonmember

SUMMARY We present two practical attacks on the CAE-
SAR candidate PAES. The first attack is a universal forgery for any
plaintext with at least 240 bytes. It works for the nonce-repeating
variant of PAES and in a nutshell it is a state recovery based on
solving differential equations for the S-Box leaked through the
ciphertext that arise when the plaintext has a certain difference.
We show that to produce the forgery based on this method the
attacker needs only 211 time and data. The second attack is
a distinguisher for 264 out of 2128 keys that requires negligible
complexity and only one pair of known plaintext-ciphertext. The
attack is based on the lack of constants in the initialization of
the PAES which allows to exploit the symmetric properties of the
keyless AES round. Both of our attacks contradict the security
goals of PAES.
key words: PAES · universal forgery · distinguisher · symmetric
property · authenticated encryption

1. Introduction

The CAESAR competition [2] (Competition for Authenti-
cated Encryption: Security, Applicability, and Robust-
ness) has started in March 2014, and its goal is to im-
prove the understanding of the crypto community in the
area of authenticated ciphers through a public competi-
tion for submitting authenticated encryption schemes
that offer advantages over the widely used AES-GCM [3].
In total, 57 ciphers were submitted to the open call, and
in the following three years, through security analysis
and investigation of the implementations advantages,
it is expected that among these ciphers, a few to be
selected in a portfolio of recommended authenticated
schemes that are suitable for widespread adoption.

A number of the proposed CAESAR candidates (as
well as the benchmark AES-GCM) are based on the cur-
rent encryption standard: the AES family of block ci-
phers. The reason for this is twofold. First, the AES

has undergone an extensive analysis and is assumed
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that its security is well understood (or at least better
understood compared to all of the remaining unbroken
ciphers). Second, AES offers a large software implemen-
tation advantage on the latest processor through the
so-called AES-NI instruction set, i.e., modern processors
have dedicated instructions that allow to reduce the
execution time of the AES cipher calls.

In general, the CAESAR candidates based on the AES
use the block cipher in two ways: either as a whole
(or a variant consisting of at least a certain number of
rounds), or only its round function. The first type of
candidates (OCB [4], AES-COPA [5], etc, and AES-GCM)
are constructions that require calls to the full 10-round
AES-128 (or at least 4-round variants with independent
round keys). Usually, they are provable modes based
on security reduction to the security of AES, and thus
benefit from the current state-of-the-art cryptanalysis
of AES-128 [6]. The second type uses only the AES

round function and has no strict security proof, i.e., the
mode is not provably secure, however, the resistance
against common attacks is provided through ad-hoc
techniques. Such candidates (see AEGIS [7], PAES [8],
Tiaoxin-346 [9]) benefit from the good security prop-
erties and the software performance of the AES round
function. They tend to use less than 10 AES round calls
per message blocks, and as such are extremely fast.

1.1 Our Contributions

We provide a cryptanalysis of the CAESAR candidate
PAES [8] and show two attacks that contradict the secu-
rity claims given by the designers. Common for both
of the attacks are the low complexity requirements and
the misuse of the AES round function in PAES.

The first attack targets the nonce-repeating mode
of PAES (called PAES-8) and is a universal forgery attack
of any plaintext with at least 240 bytes. It requires 211

time and data complexity to fully recover the internal
state and to produce forgery. To launch the attack, we
use a special differential trail that can take two different
paths. By analyzing the ciphertext difference, the path
is uniquely determined and this leads a state recovery
based on the differential property of the AES S-Box. Our
attack shows that a mere differential analysis (often
given by providing the best differential characteristic
of a construction) is insufficient for proving security in
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the nonce-repeating mode, even when the candidates
guarantees multiple applications of AES round function.

The second attack comes in a form of a distin-
guisher for a class of 264 weak keys among the total
2128 keys of PAES. We show that if the attacker can
control the nonce, then a single pair of known plaintext
and corresponding ciphertext is sufficient to distinguish
PAES from an ideal authenticated encryption scheme.
The attack exploits the initialization phase of PAES that
does not use constants, while the AES round function
preserves certain symmetric properties when constants
are absent. The results of this paper are summarized in
Table 1.

1.2 Organization of the Paper

We recall the design details of the PAES submissions in
Section 2 and present the universal forgery attack on
PAES-8 in Section 3. Then, in Section 4 we introduce
the distinguisher for PAES in the context of weak keys,
and we conclude the paper in Section 5.

2. Description of PAES

The family of authenticated encryption (AE) algorithms
PAES has been submitted to the ongoing CAESAR com-
petition and consists of two concrete proposals: PAES-4
and PAES-8. As the name suggests, they both use the
AES design strategy [10].

The overall computation structure resembles a
stream cipher. First, an initialization is computed, i.e. a
large state is generated from the key K and the nonce N .
Second, the associated data A is injected to the state.
Third, it processes the input message and produces the
key stream by using a part of the state value, which
will be used to compute the ciphertext. Finally, the
state is mixed with the associated data length Alen and
and the message length Mlen as the finalization process,
and 128-bit tag T is produced from a part of the state.
The computation structure is illustrated in Figure 1. In
the paper, for simplicity, we assume that the associated
data is always set to empty. Note that our attacks
on PAES-8 work equally well when the associated data
is not an non-empty string (but our distinguisher on
PAES-4 requires the associated data to be empty).
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Fig. 1: Overall computation structure for PAES-8.
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Fig. 2: The round function StateUpdate(S,M). During
the processing of the plaintext, the XOR from S7 to S8

is absent.

The encryption takes as input a variable-length
plaintext, a 128-bit key, a 128-bit nonce and produces a
variable-length ciphertext and a 128-bit authentication
tag. The decryption takes as input a variable-length
ciphertext, a 128-bit key, a 128-bit nonce and a 128-bit
authentication tag and produces a variable-length plain-
text and a 128-bit authentication tag. If the computed
tag matches the received tag, it outputs the plaintext.
Otherwise, it outputs decryption failure symbol ⊥. The
difference between PAES-4 and PAES-8 lies in the size
of the internal state, which amounts to four 128-bit
blocks for the former, and eight 128-bit blocks for the
latter. A functional difference between these two vari-
ants is in the mode: PAES-4 has security claims only in
the nonce-respecting mode, while PAES-8 in both, the
nonce-respecting and nonce-repeating modes.

To simplify the presentation, in the sequel we de-
scribe only PAES-8, and only as authenticated encryp-
tion. The design resembles a stream cipher: it has
an initialization (where the key and the nonce are
loaded into the state), then it processes the input mes-
sage and produces the ciphertext, and finally in the
finalization it produces the tag. The internal state S
has eight words S1, S2, . . . , S8, each of 128 bits, i.e.,
|Si| = 128, i = 1, . . . , 8. The state update function
StateUpdate(S,M) is the round transformation and
uses eight keyless† AES-round calls (denoted further as
AES0) to update the state as depicted in Figure 2.

2.1 Initialization

The 128-bit master key K and the nonce N are loaded
into the eight words of the state, the state goes through
10 rounds and at the end the key is XORed to all eight
words of the state:

S1 = K ⊕N, S5 = L4(K)⊕ L7(N)

S2 = L(K)⊕ L3(N), S6 = L5(K)⊕ L3(N)

S3 = L2(K)⊕ L(N), S7 = L6(K)⊕ L5(N)

S4 = L3(K)⊕ L2(N), S8 = L7(K)⊕ L6(N)

for i = 1 to 10

S = StateUpdate(State, 0)

for i = 1 to 8

†We emphasize that all the AES calls are keyless, that is,
composed of SubBytes, ShiftRows and MixColumns (but no
AddRoundKey).
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Table 1: Attacks on PAES.

Design Supported Attack Attack mode Size of key class Time

nonce modes (out of 2128) complexity

PAES-4 respecting distinguisher respecting 264 1

PAES-8 respecting+repeating universal forgery repeating 2128 211

PAES-8 respecting+repeating distinguisher respecting+repeating 264 1
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Fig. 3: One round of the encryption.
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Fig. 4: One round of the decryption.

Si = Si ⊕K

where L is a linear transformation that operates on the
four 32-bit columns a, b, c, d of a 128-bit word a||b||c||d,
and is defined as L(a, b, c, d) = (b, c, d⊕a, a). With Li we
denote the i-th functional power of the transformation
L, e.g., L2 = L ◦ L.

2.2 Processing the plaintext

In one round, from 16-byte plaintext Pi, 16-byte cipher-
text Ci is obtained with one call to the StateUpdate
function (see Figure 3):

tmp = S7

StateUpdate(S, Pi)

Ri = tmp⊕ S7

Ci = Pi ⊕Ri

The decryption can be defined accordingly (see Figure 4),
where all the state but for S8 are updated and the
plaintext Pi is recovered as Ri ⊕ Ci and then the state
S8 is updated. The initialization, finalization and the
tag production is the same as the encryption process.
Note that so called Releasing Unverified Plaintext (RUP)
is not defined for the decryption. Thus, the recovered
P are output only if the tag authentication is successful.
Otherwise, the decryption failure symbol ⊥ is output.

2.3 Finalization and the tag production

Let Mlen be the 128-bit encoding of the message length.
Then, the tag T is produced after 10 rounds of the
StateUpdate function where the message input is set to
Mlen:

for i = 1 to 10

StateUpdate(S,Mlen)

T = S7 ⊕ S8

2.4 Claimed security of PAES

The claimed security of PAES is given in Table 2. We
emphasize in particular that 128-bit security is claimed
for the integrity of PAES in the nonce-repeating mode.

3. Practical universal forgery against PAES-8

In this section, we show a universal forgery attack for
PAES-8 in the nonce-repeating mode. The attack works
for any plaintext with length of at least 240 bytes, and
requires only a small time and data complexity. The
steps of the attack can be summarized as follows:

1. Inject differences in two consecutive plaintext
blocks such that they cancel in S8 with a high
probability.

2. The ciphertext difference after eight rounds will
reveal if the cancellation in S8 occurred and if so,
it will leak information about the state bits.

3. Once the state is recovered, the tag is produced by
going through the remaining of the transformations
of the (now) public construction.

3.1 Differential trail and detection of difference cancel-
lation

The differential trail used in the attack is given in Fig-
ure 5. We inject difference ∆α in the plaintext P0,
and try to cancel it with another difference ∆β in the
plaintext P1.

Interestingly, this type of trail has been discussed
by the designers of PAES (see [8, Figure 4.3]), however,
they focused on the standard case of propagating the
difference through eight rounds and tried to predict it.
On the other hand, we use a different approach: our
goal is not to predict the difference after eight rounds,
but only to detect if the initial differences in ∆α and
∆β have canceled.

By injecting the difference ∆α and ∆β according
to Figure 5, the differential trail can take two patterns:

1. The differences ∆α and ∆β cancel, thus only the



4
IEICE TRANS. FUNDAMENTALS, VOL.Exx–??, NO.xx XXXX 200x

Table 2: Bits of security goals of PAES [8, Table 3.1].
Goal Nonce-respecting Nonce-repeating

PAES-4/PAES-8 PAES-4 PAES-8

Confidentiality for the plaintext 128 - -

Integrity for the plaintext 128 - 128

Integrity for the associated data 128 - 128

Integrity for the public message number 128 - 128
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Fig. 5: Differential trail used in the attack. The bold
lines denote active state words.

words with bold lines are active as shown in Fig-
ure 5,

2. The differences ∆α and ∆β do not cancel and there
are additional active words. The trail for this case
is shown in Figure 6.

Both of the differential trails in Figure 5 and Fig-
ure 6, the difference appears from ∆R7. This makes the
analysis non-trivial to detect the occurrence of the can-
cellation between ∆α and ∆β. In the following section,
we explain how to detect the cancellation between ∆α
and ∆β. We further show the optimal choices of ∆α
and ∆β.

3.1.1 Choosing plaintext differences ∆α and ∆β

For an arbitrary difference ∆α in the plaintext P0, the
difference ∆β in the plaintext P1 should be chosen such
that it will cancel ∆α and thus will avoid activating the
state S8. Therefore, ∆α and ∆β are chosen so that the
cancellation can occur with a high probability – this
happens when ∆α has only one active byte. Let α and
β be the input and output difference transition of the
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Fig. 6: Differential trail when ∆α and ∆β does not can-
cel each other. The gray broken lines denote additional
active state words.

S-Box, i.e., α changes to β with a probability 2−6. Then,
∆α and ∆β are defined as

∆α = (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

∆β = MixColumns ◦ ShiftRows(β, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and thus ∆α after AES0 will change to ∆β with proba-
bility 2−6. We note that the difference α can be located
in any of the 16 bytes of the state. The above analysis
is depicted in Figure 7.
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𝑆ℎ𝑖𝑓𝑡 
𝑅𝑜𝑤𝑠 

𝑀𝑖𝑥 
𝐶𝑜𝑙𝑢𝑚𝑛𝑠 

Δ𝛼 = 𝛼 
𝑃0 𝑃1 

𝑀𝐶 ∘ 𝑆𝑅 𝛽  𝛽 
𝑷𝒓. = 𝟐−𝟔
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Fig. 7: Differential cancellation between ∆α and ∆β.
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3.1.2 Detecting the cancellation between ∆α and ∆β

We can detect if the cancellation occurred by observing
the differences in the ciphertexts Ci (or equivalently,
the difference in the key streams Ri) after eight rounds.
There are two possible cases:

• Cancellation occurred. From the trail on Fig-
ure 5, it follows that the difference ∆R8 ⊕ ∆R7

is obtained when ∆R7 goes through one AES0
round. (The focused AES0 round is stressed by
dotted circle in Figure 5.) It means that the dif-
ference in each of the 16 bytes of ∆R7 can pro-
duce the corresponding differences in the bytes of
ShiftRows−1◦MixColumns−1(∆R8⊕∆R7) through
the S-Box. We note that the probability of this
event is one when the cancellation occurred.
• Cancellation did not occur. If the cancella-

tion did not occur, then there are additional state
words with differences (marked with “∆ 6= 0” in
Figure 6). In this case, ∆R8 ⊕ ∆R7 is obtained
when ∆R7 ⊕∆X (where ∆X is the non-zero dif-
ference in S6) goes through AES0. In contrast to
the above case, now ∆R7 may not be able to pro-
duce ShiftRows−1 ◦ MixColumns−1(∆R8 ⊕ ∆R7)
through the S-Box. The gap of the probability of
this event enables us to distinguish two cases.

Two randomly chosen differences can be matched
through the S-Box with a probability 127/256 ≈ 2−1.
Without loss of generality, we can assume that ∆X is
active in all 16 bytes†. Therefore, when ∆α and ∆β
canceled each other, the probability of a 16-byte match
is 1, however, when they do not cancel each other, then
the probability drops to 2−16. As a result, we can easily
distinguish the above two cases, by analyzing ∆R7 and
∆R8.

The same distinguishing method can be applied to
4 additional rounds (see Figure 8). This way, we can
increase the probability of distinguishing the two cases,
and end up with a very low probability of matching
differences through S-Boxes in the case when ∆α and
∆β do not cancel. As we apply it to five rounds, the
probability becomes 2−5·16 = 2−80.

3.2 Recovery of state words

Assume that ∆α and ∆β have canceled (as demon-
strated above, we can single out the case when they
cancel). It means that we have the input difference ∆R7

and the output difference ∆R8⊕∆R7 of an active AES0
for the word S7, i.e.,

†The difference ∆X is produced after some initial differ-
ence goes through multiple AES rounds, thus we can assume
∆X is a random 16-byte difference. As a result, the probabil-
ity that in ∆X all 16 bytes are active is (1−1/256)16 ≈ 0.94,
which is high enough.
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𝚫𝐱 ≠ 𝟎 

≠ 𝟎 

≠ 𝟎 

≠ 𝟎 

≠ 𝟎 

Fig. 8: Extending the previous trail for 4 additional
rounds.

SubBytes(R7)⊕ SubBytes(R7 ⊕∆R7)

= ShiftRows−1 ◦ MixColumns−1(∆R8 ⊕∆R7).

As in S7, all 16 bytes are active (with a probability very
close to 1), we can easily find the values of the individual
bytes by the well-known method of solving 16 differential
equations of the form S(x ⊕∆input) ⊕ S(x) = ∆output

that come from the system using S-Box S. Each such
equation on average has two solutions, because if x is a
solution, then x ⊕∆input is also a solution. To find a
single solution for each byte, we repeat once the recovery
for different ∆α and ∆β. As a result, we can recover
the value of S7 at round 8 of the encryption.

Using the very same method, we can recover S7 at
rounds 9, 10, 11 and 12. For instance, for round 9, the
input (resp. output) difference of AES0 is ∆R7 ⊕∆R8

(resp. ∆R7 ⊕∆R8 ⊕∆R9). With the knowledge of the
values of 5 consecutive S7, we can uniquely recover the
values of S6, S5, S4, S3 at round 8 by simple computation
using those words.

We can recover two more S7 words (of additional
2 rounds) if we shift the round where we apply the
difference ∆α. Namely, we introduce ∆α at P2 instead
of P0 and introduce ∆β at P3. Hence, we will have the
values of S7 for 7 consecutive rounds.

The state word S8 is different compared to the
remaining seven words and it is not possible to recover
it by using the above method. Nevertheless, we can still
recover S8 at round 0 of the encryption based on the
differences ∆α and ∆β, i.e., we can recover the active
byte where the difference ∆α is non-zero. By repeating
the recovery with 16 different positions of active bytes,
we can deduce the whole state word S8 at round 0. As
S8 does not take feedback from any other word (but
the plaintext), we can easily find the value of S8 at any
round, including our target round 8. That is, with the
knowledge of S7 of seven consecutive rounds (8,9,...14)
which can be deduced as shown above, and S8 at round
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8, we can recover the full state at round 8.

3.3 Attack procedure

We now present the universal forgery attack. The goal of
the attack is to produce a tag of an arbitrary plaintext.
In our case, the attack works as long as the length of
the plaintext is at least 16 blocks (240 bytes). Our
forgery is based on a state recovery, i.e., if at some
round the whole state is known, then the tag can easily
be produced by performing the remaining operations of
the finalization, and therefore it can be produced offline.

Let P0, P1, . . . , P14 be the first 15 blocks of the
plaintext. Then, the forgery can be described with the
following Algorithm 1.

Algorithm 1: Universal forgery attack
1: Query the first 15 plaintext blocks of the target

(P0‖P1‖ · · · ‖P14), and obtain the key stream
R0, R1, · · · , R14.

2: for position = 1 to 16 do
3: for i = 1 to 27 do
4: Choose 1-byte difference ∆αi with active byte at

position and find the corresponding ∆βi.
5: Query (P0 ⊕∆αi‖P1 ⊕∆βi‖P2‖ · · · ‖P14) and obtain

the key stream Ri
0, · · · , Ri

14.
6: Check if the difference R7 ⊕Ri

7 can result in
R7 ⊕Ri

7 ⊕R8 ⊕Ri
8 by AES0.

7: Check the same property for additional 4 rounds.
8: Save the pairs that pass all the above checks.
9: end for

10: Recover the byte at position of the state word S8 at
round 0.

11: end for
12: Recover S7 at rounds 8,9,10,11,12.
13: for i = 1 to 27 do
14: Choose 1-byte difference ∆αi and find the corresponding

∆βi.
15: Query (P0‖P1‖P2 ⊕∆αi‖P3 ⊕∆βi‖P4‖ · · · ‖P14) and

obtain the key stream Ri
0, · · · , Ri

14.
16: Check if the difference R9 ⊕Ri

9 can result in
R9 ⊕Ri

9 ⊕R10 ⊕Ri
10 by AES0.

17: Check the same property for next 4 additional rounds.
18: Save the pairs that pass all the above checks.
19: end for
20: Recover S7 at rounds 13 and 14.
21: Deduce all the state words at round 8.
22: Go through the remaining of the transformations and

produce the tag.

The first loop is used to recover S8, and to recover
five S7, and the second to recover the remaining two S7.
Note, each of the loops (the inner loop of the first loop)
will produce two pairs, as the probability of the trail
in the top (∆α will be canceled by ∆β) is 2−6. In case
no good trails with probability 2−6 exist, the attacker
can switch to ones with probability 2−7 and run the
loops 28 times. Furthermore, as we have seen from the
previous analysis, a probability of false positives is very
low (around 2−80).

From the algorithm, it follows that the time com-
plexity of the attack is 16 · 27 + 27 ≈ 211 computations.
The data complexity is similar and comes in a form of
chosen plaintexts. To solve efficiently the differential
equations, the attack needs about 216 bytes in memory.

4. Practical distinguisher for a weak-key class
of PAES-4 and PAES-8

We continue our analysis by presenting a distin-
guisher for a class of 264 weak keys (out of 2128 keys)
in PAES-8. The distinguisher requires negligible time
complexity and only a single pair of known plaintext-
ciphertext and a chosen nonce. It exploits the lack of
constants in the design and the symmetric properties
of the keyless AES round function. We give a thorough
description of the distinguisher for the nonce-respecting
mode of PAES-8, as well as a brief description of a similar
distinguisher for the nonce-respecting mode PAES-4.

4.1 Symmetric properties of the AES round function

We first recall the known symmetric property of the AES
round function [11]. Namely, if a state is symmetric in
the sense that its two halves are equal, then the keyless
round function AES0 of the AES maintains this property.
We recall the property of [11] using block matrices, and
we introduce the following more general notations:

U(A,B) =

(
A A
B B

)
,

V (A,B) =

(
A B
B A

)
,

W (A,B) =

(
A B
A B

)
.

Additionally, we denote by U , V and W the associated
sets respectively for all possible values of the 2×2 block
matrices A and B. Finally, we denote M the constant
MDS matrix used in the AES round function, and observe
that:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


=

(
M1 M2

M2 M1

)
= V (M1,M2) ∈ V.

Property 1. Let S ∈ U . Then, AES0(S) ∈ U .

Proof. Let S = U(A,B) ∈ U , and write the bytes in S
as:
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(
A A
B B

)
=


x0 x4 x0 x4
x1 x5 x1 x5
x2 x6 x2 x6
x3 x7 x3 x7

 .

As the SubBytes operation applies the same bijection
to all the bytes in the state, we ignore it here as it
obviously preserves the structure. After the ShiftRows
operation, the state becomes

x0 x4 x0 x4
x5 x1 x5 x1
x2 x6 x2 x6
x7 x3 x7 x3

 def
=

(
A′ A′

B′ B′

)
,

thus it still belongs to U . Then, the MixColumns opera-
tion results in:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

×


x0 x4 x0 x4
x5 x1 x5 x1
x2 x6 x2 x6
x7 x3 x7 x3


=

(
M1 M2

M2 M1

)
×
(
A′ A′

B′ B′

)
=

(
M1A

′ ⊕M2B
′ M1A

′ ⊕M2B
′

M2A
′ ⊕M1B

′ M2A
′ ⊕M1B

′

)
def
=

(
A′′ A′′

B′′ B′′

)
∈ U .

Property 2. Let S ∈ W. Then, AES0(S) ∈ V, and
AES0(AES0(S)) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in
S as:

(
A B
A B

)
=


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 .

Again, we ignore the SubBytes operation as the applied
bijection preserves the structure of the internal states.
However, after the ShiftRows operation the state be-
comes:

x0 x2 x4 x6
x3 x5 x7 x1
x4 x6 x0 x2
x7 x1 x3 x5

 def
=

(
A′ B′

B′ A′

)
∈ V,

which is transformed by the subsequent MixColumns
transformation into the state:(

M1 M2

M2 M1

)
×
(
A′ B′

B′ A′

)
=

(
M1A

′ ⊕M2B
′ M1B

′ ⊕M2A
′

M2A
′ ⊕M1B

′ M2B
′ ⊕M1A

′

)

def
=

(
A′′ B′′

B′′ A′′

)
∈ V.

Let X
SR−→ X ′ denote that the state X changes to X ′

by the ShiftRows operation. After applying a second
keyless AES round, we get:

(
A′′ B′′

B′′ A′′

)
=


y0 y2 y4 y6
y1 y3 y5 y7
y4 y6 y0 y2
y5 y7 y1 y3


SR−→


y0 y2 y4 y6
y3 y5 y7 y1
y0 y2 y4 y6
y3 y5 y7 y1


def
=

(
A′′′ B′′′

A′′′ B′′′

)
∈ W,

and by the MixColumns:(
M1 M2

M2 M1

)
×
(
A′′′ B′′′

A′′′ B′′′

)
=

(
M1A

′′′ ⊕M2A
′′′ M1B

′′′ ⊕M2B
′′′

M2A
′′′ ⊕M1A

′′′ M2B
′′′ ⊕M1B

′′′

)
def
=

(
A′′′′ B′′′′

A′′′′ B′′′′

)
∈ W,

which concludes the proof.

Finally, we can represent the action of the keyless
AES round function AES0 on the three sets U , V and W
as follows on Figure 9.

U V W

AES0

AES0

AES0

Fig. 9: Action of AES0 of the symmetrical states from U ,
V and W.

4.2 Symmetric properties of the PAES transformations

Along with AES0, PAES uses a few more transformations,
in particular, the XOR and the linear transformation
L. We investigate here how these two transformations
preserve the class belongings.

Property 3. Let X be either U , V orW , and let S1, S2 ∈
X . Then, S1 ⊕ S2 ∈ X .

Proof. Let S1 = U(A1, B1), S2 = U(A2, B2) ∈ U .
Then:

S1 ⊕ S2 =

(
A1 A1

B1 B1

)
⊕
(
A2 A2

B2 B2

)
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=

(
A1 ⊕A2 A1 ⊕A2

B1 ⊕B2 B1 ⊕B2

)
∈ U .

Let S1 = V (A1, B1), S2 = V (A2, B2) ∈ V. Then:

S1 ⊕ S2 =

(
A1 B1

B1 A1

)
⊕
(
A2 B2

B2 A2

)
=

(
A1 ⊕A2 B1 ⊕B2

B1 ⊕B2 A1 ⊕A2

)
∈ V.

Let S1 = W (A1, B1), S2 = W (A2, B2) ∈ W. Then:

S1 ⊕ S2 =

(
A1 B1

A1 B1

)
⊕
(
A2 B2

A2 B2

)
=

(
A1 ⊕A2 B1 ⊕B2

A1 ⊕A2 B1 ⊕B2

)
∈ W.

Property 4. Let S ∈ W. Then, L(S) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in
S as:

S =

(
A B
A B

)
=


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 .

Then:

L(S) =L


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7



=


x2 x4 x6 ⊕ x0 x0
x3 x5 x7 ⊕ x1 x1
x2 x4 x6 ⊕ x0 x0
x3 x5 x7 ⊕ x1 x1

 ∈ W.

4.3 The distinguisher

To distinguish PAES, we use the first ciphertext C0 pro-
duced during the encryption of an arbitrary plaintext
P0 with a secret key K ∈ W and nonce N ∈ W. The
key K can be any of such 264 keys (the first two rows
equal to the second two rows), and the same structure
holds for the nonce N .

Recall the initialization process explained in Sec-
tion 2.1. The state words S1, S2, . . . , S8 are generated
from the key K and the nonce N . In short, K and N
are expanded with linear function L and 8 state words
are computed by their linear combinations. Then, state
update function is applied 10 times and finally K is
XORed with all of the 8 state words. We first inspect
how the state words S1, S2, . . . , S8 change the class be-
longings (either W or V) from the very first to the last

𝑁 𝐾 

𝑆2 𝑆1 𝑆4 𝑆3 𝑆6 𝑆5 𝑆8 𝑆7 

Expansion with 𝐿 and XOR 

∈ 𝑊 

∈ 𝑊 

𝑆2 𝑆1 𝑆4 𝑆3 𝑆6 𝑆5 𝑆8 𝑆7 

𝑆𝑡𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖 = 1) 

∈ 𝑉 

𝑆2 𝑆1 𝑆4 𝑆3 𝑆6 𝑆5 𝑆8 𝑆7 

𝑆𝑡𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖 = 2) 

∈ 𝑊 

𝑆2 𝑆1 𝑆4 𝑆3 𝑆6 𝑆5 𝑆8 𝑆7 

𝑆𝑡𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖 = 10) 

∈ 𝑊 

𝑆2 𝑆1 𝑆4 𝑆3 𝑆6 𝑆5 𝑆8 𝑆7 ∈ 𝑊 

⊕ 𝐾 ∈ 𝑊 

Fig. 10: Property propagation in the initialization step.

steps of the initialization phase:

• K,N ∈ W . By Properties 3 and 4 S1, S2, . . . , S8 ∈
W after the initial assignments in the initialization.

• After the first update. By Property 3, the XORs
do not change the class belongings, thus each
S6, S7, S8 stay in W after the XORs at the top
of the StateUpdate. Further, according to the
Property 2, AES0 changes the class from W to
V. Consequently, at the end of the first update,
Si ∈ V, i = 1, . . . , 8.

• The second update is similar to the previous one,
but this time the class of Si changes to W.

• . . .
• After the tenth update. The classes of all Si are
W.

• After the XORs of the key. As each Si is in W and
the key is in W , by Property 3, it follows that each
Si will be in W.

The propagation of the property during the initialization
is described in Figure 10.

We now focus on the production of the ciphertext
C0. After the initialization all the state words belong to
the class W , thus obviously tmp = S7 = W (A1, B1) ∈
W. Because S6, S7 ∈ W, S6 ⊕ S7 also belongs to the
class W due to Property 3. After the application of the
StateUpdate, S7 = V (A2, B2) ∈ V by Property 2. Thus,
from the definition of the ciphertext C0 = P0⊕tmp⊕S7,
we get:

C0 ⊕ P0 =

(
A1 B1

A1 B1

)
⊕
(
A2 B2

B2 A2

)
=

(
A1 ⊕A2 B1 ⊕B2

A1 ⊕B2 B1 ⊕A2

)
=

(
X Z
Y T

)
. (1)

The propagation of the property during the production
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AES0 AES0 AES0 

𝑆6 𝑆7 𝑃0  

𝐶0  

∈ 𝑊 ∈ 𝑊 
𝑊 

𝑊 

𝑊 

𝑉 𝑉 

𝑊⊕𝑉 

Fig. 11: Property propagation in the production of C0.

Algorithm 2: Distinguisher for weak keys
Input: a weak key K ∈ W
Output: b ∈ {0, 1}
1: Choose any N satisfying the form W.
2: Choose any 1-block message P0.
3: Make a single query of (N,P0) to the encryption oracle

and obtain the corresponding ciphertext C0.
4: Compute P0 ⊕ C0 and as in Eq. (1), divide it into four

sectors (X,Y, Z,W ).
5: Compute tmp← X ⊕ Y ⊕ Z ⊕W .
6: if tmp = 0 then
7: return b = 1. //The oracle is PAES.
8: else
9: return b = 0. //The oracle is ideal primitive.

10: end if

of C0 is described in Figure 11.
As shown in Eq. (1), only by looking the appear-

ance of the matrix, there is no method to detect that the
matrix is composed of two matrices; one belongs to the
class W and the other belongs to the class V . However,
we can still apply some computation to distinguish the
non-random behavior. Namely X⊕Y ⊕Z⊕T = 0, hence
the XOR of the four 32-bit blocks of the first ciphertext
and plaintext must result in a zero block. Therefore, we
have a distinguisher which requires negligible complex-
ity and only a single block of plaintext/ciphertexts to
distinguish PAES when instantiated with any of the 264

keys and nonces from the class W. We note that our
computer simulation confirmed the correctness of the
distinguisher.

Algorithm for Distinguisher

The goal of the distinguisher is determining if the inter-
acting oracle is PAES or ideal primitive (authenticated
encryption). The output of the distinguisher is deter-
mining bit b ∈ {0, 1}, where b = 1 suggests that the
oracle is PAES and b = 0 suggests that the oracle is
the ideal primitive. The above distinguisher can be
described in an algorithmic form as Algorithm 2.

4.4 Distinguisher for PAES-4

A similar distinguisher can be applied to PAES-4, in
which the internal state size is composed of four words.
A brief description of PAES-4 is given further.

In the initialization phase of PAES-4, the four state

𝑅𝑖 
AES0 AES0 AES0 AES0 

𝑃𝑖  

𝑆1 𝑆2 𝑆3 𝑆4 𝑃𝑖  

𝐶𝑖  

Fig. 12: StateUpdate(S,M) for PAES-4. During the
processing of the plaintext, the XOR from S3 to S4 is
absent.

words (S1, S2, S3, S4) are set exactly the same as the
first four words of PAES-8. Then, the state is updated
five times with the state update function of PAES-4, and
finally the key K is XORed to each of the state words.
The state update function for PAES-4 is described in
Figure 12.

We start the analysis by setting K,N ∈ W , which,
after the expansion with L and the XOR, makes
S1, S2, S3, S4 ∈ W. Then, the state update function
is applied 5 times, which makes S1, S2, S3, S4 ∈ V. As
a result, we end up with a different result than for
PAES-8, in which after 10 rounds all state words were
in the class W. In fact, this can be a problem for the
distinguisher on PAES-4 as after the subsequent XOR
of the key K ∈ W, the state words do not belong to a
particular class. Nevertheless, as long as the associated
data is empty, we can still apply the distinguisher.

After the initialization, the two middle state words
are S2 ⊕K and S3 ⊕K, where S2, S3 ∈ V and K ∈ W.
Obviously tmp = S3 ⊕ K = W (A1, B1) ⊕ V (A2, B2).
Furthermore, the XOR of two middle state words (just
before the application of the AES round to the third
word as shown in Figure 12) results in S2 ⊕K ⊕ S3 ⊕
K = S2 ⊕ S3 ∈ V, thus after the application of the
AES round function, this updated word Snew

3 belongs
to W. Finally, the key stream can be represented as
Snew
3 ⊕ tmp = W (A′1, B

′
1)⊕V (A2, B2), which yields the

same distinguisher as for PAES-8.

5. Concluding Remarks

We have shown two practical attacks on the CAESAR
candidate PAES: a universal forgery attack and a dis-
tinguisher, which contradict the security claims of this
authenticated encryption scheme.

Our analysis gives insights into possible misuses of
the AES round function. Although this transformation
per se provides excellent resistance against differential
and linear attacks (once it has been iterated several
times), by no means it is a sufficient proof of security
against all attacks. The designs based on the round
function that does not apply any constants, as we have
seen on the example of our distinguisher and the chosen-
key rotational distinguisher [12] of PAES, are susceptible
to attacks that exploit the symmetry of the AES trans-
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formations. Consequently, using random constants in
such designs should be taken as a requirement to de-
stroy those symmetric behaviors. Furthermore, as our
forgery attack shows, evaluating the differential prop-
erties in a straightforward manner (providing the best
in terms of probability differential characteristic), does
not guarantee security against differential attacks in the
nonce-repeating mode.

We would also like to emphasize the importance of
the technique used in the forgery attack on the nonce-
repeating mode. Due to the mode and the attack frame-
work, there is no need to provide a valid tag at the begin-
ning of the attack (forgery or state recovery). Hence the
attacker can focus only on finding a differential charac-
teristic that will leak differences in state words sufficient
for recovery based on solving differential equations. The
characteristic does not necessarily need to hold with a
high probability, but for the forgery on PAES this was re-
quired in the first two rounds only because there was an
alternative path that does not permit state recovery. In
general, the probability of the characteristic is irrelevant,
however, it is important for the characteristic to leak
input and output differences of non-linear operations
which subsequently will be used to recover the state bits.
We believe that this technique (improved or modified
variants) can be a valuable approach for cryptanalysis of
other CAESAR submissions and authenticated encryption
schemes.
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