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Abstract. A new implementation of the GHASH function has been recently 

committed to a Git version of OpenSSL, to speed up AES-GCM. We identified 

a bug in that implementation, and made sure it was quickly fixed before 

trickling into an official OpenSSL trunk. Here, we use this (already fixed) bug 

as a real example that demonstrates the fragility of AES-GCM’s authentication 

algorithm (GHASH). One might expect that incorrect MAC tag generation 

would only cause legitimate message-tag pairs to fail authentication (which is 

already a serious problem). However, since GHASH is a “polynomial 

evaluation” MAC, the bug can be exploited for actual message forgery.  

Keywords: AES-GCM, GHASH, polynomial evaluation MAC, message 

forgery, OpenSSL.  

1 Introduction 

AES-GCM (Galois Counter Mode; [1]) is considered to be a most efficient NIST 

standard Authenticated Encryption scheme. Its software implementation on modern 

processors is an important optimization target, and various improvements have been 

introduced in the last few years (e.g., [2], [4]).  

Recently (February 2013 [8]), a new implementation of the function 

'gcm_ghash_clmul' was been committed (by OpenSSL Development Team member 

A. Polyakov) to the “Git” version of OpenSSL [7], and was awaiting interception in 

the next revision (1.0.2) of this library.  

Since [8] was committed and also passed all of the built-in OpenSSL tests, it is fair 

to assume if it had not been intercepted, it would have appeared in the next OpenSSL 

version (1.0.2). We uncovered a bug in [8], and to stop it from appearing in an official 

OpenSSL version, we notified OpenSSL (March 5, 2013); the bug was fixed 

immediately (March 6; [9]). Therefore, the current situation allows us to analyze a 

real vulnerability (not just theoretical), but without pointing to a real exposure. We 

emphasize the following: although the message forgery vulnerability that we report 

here can be reproduced from the references and examples we provide, the actual 

security threat is already removed (even from the development version).  

As we show here, the cryptographic construction that underlies the GHASH 

algorithm can extend the effect of an implementation bug (at least the discussed one) 
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beyond an obvious “interoperability problem”, where legitimate message-tag pairs 

fail authentication. It can actually be exploited for message forgery.  

Interestingly, the implementation in [8] passed all of the OpenSSL built-in 

OpenSSL test vectors  (at that time; we added a new test vector to this battery [10]). 

Therefore, this incident shows yet another alarming example for the fact that passing 

a handful of test vectors is not enough to validate a cryptographic implementation.   

The paper is organized as follows. Section 2 discusses some preliminaries. Section 

3 describes the bug and its root cause. Section 4 demonstrates how an adversary can 

exploit the bug and create a message forgery. In Section 5, we analyze a few aspects 

of AES-GCM code optimizations, and point to a more efficient AES-GCM 

implementation than the one offered by the OpenSSL Git version [8] (and [9]). 

2 Preliminaries 

AES-GCM [1] combines AES-CTR mode for the encryption, and the GHASH 

algorithm for the authentication. The GHASH algorithm is a special form of the 

Carter-Wegman polynomial evaluation MAC. Each 16-bytes block of the 

authenticated data is multiplied by a different power of the hash key (H), where 

computations occur in some specific binary finite field that we denote here by 

GF_GCM(2
128

) (subtleties related to this field and its operations are discussed in [4]).  

The data that is authenticated by AES-GCM is the ciphertext, and optionally some 

additional clear-text (called Additional Authenticated Data and denoted AAD 

hereafter). In the final steps of the GHASH computations, the lengths of the ciphertext 

and the AAD are concatenated, formatted as a 16-bytes block, and consumed into the 

GHASH computations (to prevent length extension attacks). Figure 1 illustrate the 

AES-GCM algorithm.  

For efficiency, it is possible to defer the reduction modulo the GF_GCM(2
128

) 

polynomial (P hereafter), by aggregating the cumulative contribution of several 

blocks of the authenticated data, and reducing the result modulo P only then. Figure 2 

illustrates this method (details can be found in [2], [3], [4]). 
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AES-GCMK(IV, P, A): 

1. Let H = AESK(0
128
) 

2. Define J0, as follows: 

If bit_len(IV)=96, then J0=IV||0
31
||1 

If bit_len(IV)≠96, then let s=128∙bit_len(IV)/128-bit_len(IV),  
and let J0=GHASHH(IV||0

s+64
||[bit_len(IV)]64) 

3. Let C = GCTRK(inc32(J0), P) 

4. Let u = 128∙bit_len(C)/128 - bit_len(C)  

Let v = 128∙bit_len(A)/128 - bit_len(A) 
5. Define a block, S, as follows: 

S=GHASHH(A||0
v
||C||0

u
||[bit_len(A)]64||[bit_len(C)]64) 

6. Let T = GCTRK(J0,S) 

7. Return (C,T) 

 

GHASHH(DATA) (the bit length of DATA is assumed to be divisible by 128)  

1. Let N = bit_len(DATA)/128 

2. Let DATA = M1||M2||…||MN        (the Mj’s are 16-bytes blocks) 

3. Return ((…((((M1×H)+M2)×H)+M3)× H…)+MN)×H =  
M1×H

N
 + M2×H

N-1 
+ … + MN×H   

(operations (× and +) are in GF_GCM(2
128
)) 

 

Fig. 1. Top panel: AES-GCM flow. Bottom panel: GHASH calculation (for a buffer whose 

byte length is divisible by 16).  

 
The standard iterative GHASH computation  

Yi = [(Xi + Yi-1) • H] mod P 
Deeper iteration to aggregate the effect of multiple blocks  

(here shown up to 4): 

Yi = [(Xi + Yi-1) • H] mod P 

= [(Xi • H) + (Yi-1 • H)] mod P 

= [(Xi • H) + (Xi-1 + Yi-2) • H
2
] mod P 

= [(Xi • H) + (Xi-1 • H
2
) + (Xi-2 + Yi-3) • H

3
] mod P 

= [(Xi • H) + (Xi-1 • H
2
) + (Xi-2 • H

3
) + (Xi-3 + Yi-4) • H

4
] mod P 

(The symbol • represents carry-less multiplication) 

Fig. 2. GHASH optimization: deferring the reduction modulo P step, by aggregating (via carry-

less multiplications) the cumulative contribution of several data blocks.  

3 The bug in the OpenSSL Git version  

The bug in the GHASH implementation in [8] is found in the 'gcm_ghash_clmul' 

function, which implements GHASH using the PCLMULQDQ instruction (giving 

performance benefits on processors that support this instruction). It manifests itself 

when the underlying function ‘gcm_ghash_clmul’ is called with a ‘len’ parameter 

satisfying len > 64 and len mod 64 = 16 (‘len’ represents the byte length of the 

“GHASHED” buffer, and is assumed here to be divisible by 16).  

The code in [8] uses four block aggregation (see Figure 2), so the main loop of 

gcm_ghash_clmul accumulates the contribution of groups of four 16-bytes blocks in 

each iteration. When the main loop terminates, the function needs to handle the ‘tail’ 

– i.e., the remaining R = len/16 mod 4 blocks (R = 1, 2 or 3; for R=0, there is no tail).  
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The erroneous implementation mishandles the case where R = 1 and len > 64 as 

follows. Instead of GHASHING a single block, the code GHASHES two additional 

blocks, and the result is an incorrect authentication tag. In fact, the result is not even 

well defined, because the second (non-existent) block that is mistakenly incorporated 

into the tag’s computations is consumed from a location beyond the boundaries of the 

buffer that holds the message.  

In general, while generating the authentication tag of a message, the GHASH 

function may be called several times, to consume the message incrementally. For 

example, a typical usage would call GHASH once for the AAD, a second time for the 

ciphertext, and another final call for the padding block (that encodes the lengths). 

However, implementations may also call the GHASH more times, for a message that 

arrives in pieces. In the OpenSSL Git implementation [8], any single call to the 

GHASH function, with the len parameter as described above, corrupts the 

authentication tag for the entire message, and open the door for possible forgery. 

We describe the situation as follows. Consider an “initial” authentication tag value 

T, and its incremental “update”, accommodating a message (M). Let the message M 

consist of N > 4 blocks Mi, 1≤i≤N, with N mod 4=1. Suppose that M is placed in some 

memory buffer of 16N bytes, and the adjacent (in memory) 16-bytes block is J. The 

(correct) updated authentication tag is  

 

  ((    )   
 )  (    

   )  (    
 ) 

 

but instead, OpenSSL Git version code [8] computes  

 

 ̅  ((    )   
   )  (    

 )   (    
 )  (    ) 

 

In case J=0, we get: 

 

 ̅  [((    )   
 )  (    

   )   (    
 )]      ̅     

 

In Section 4, we show how to use the above equalities for message forgery.  

3.1 Test vectors  

The OpenSSL toolkit has a self-testing capability, where different cipher-suites are 

tested against a fixed set of Known Answers Test Vectors. For AES-GCM, OpenSSL 

included the following set of 19 test vectors: 18 vectors which are taken from the 

NIST GCM spec [6] (with up to 64 bytes of Plaintext, and up to 20 bytes of AAD), 

and a 19
th

 one, testing the case where the message that consists of only 128 bytes of 

AAD. None of these tests covers the case where the bug is manifested, and this is why 

the bug was not detected by OpenSSL’s self-testing utility.  

To fix this situation, we provided, together with the bug report, a test vector traps 

the problem in [8], and it was added to OpenSSL’s AES-GCM test vectors list [10]. 

This misfortunate failure shows that validating a cryptographic implementation 

requires more than checking a handful of Known Answers Tests.  
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4 Exploiting the bug for message forgery 

We provide here three examples that illustrate how the bug in [8] can be exploited for 

message forgery. These examples show a possible “man in the middle” attack in the 

following scenarios: 1) a message sent with a tag that is computed by the incorrect 

implementation can be forged, and pass authentication by a system that has a correct 

implementation; 2) a message sent with a correct tag can be forged, and pass 

authentication by a system that uses the incorrect implementation. 

The first type of attack requires that a) the adversary knows the 16-bytes value (J) 

that is found (in memory) after buffer that holds the authenticated data (when the 

GHASH computations are carried out); b) first block of the authenticated data is zero. 

The second type of attack requires the receiver to store (in memory) the incoming 

buffer in such a way that it is followed by a zero block (before the call to GHASH). 

These situations are conceivable.  

4.1 Example 1  

Consider a message M that consists of 80 bytes of AAD, where the leading 16 

bytes are zero. The authentication tag is computed by the erroneous implementation 

[8], and is validated authenticated by some correct implementation. The adversary 

intercepts the original message and replaces it by a new message that shifts the AAD 

to the left by 16 bytes, while injecting zeroes from the right. The adversary submits 

the original (erroneously computed) authentication tag. The erroneous implementation 

would accept the {M, tag} pair as valid. Figure 4 shows an example. 
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The encryption key: 

        [3da6c536d6295579c0959a7043efb503] 

The IV (12 bytes): 

        [2b926197d34e091ef722db94] 

The AAD (80 bytes): 

        [00000000000000000000000000000000] 

        [000102030405060708090a0b0c0d0e0f] 

        [101112131415161718191a1b1c1d1e1f] 

        [202122232425262728292a2b2c2d2e2f] 

        [303132333435363738393a3b3c3d3e3f] 

The correct authentication tag (16 bytes): 

        [69dd586555ce3fcc89663801a71d957b] 

The erroneous authentication tag produced by OpenSSL Git [8](16 bytes): 

        [8ba1670773352621a84abd476042f928] 

The forged message (80 bytes): 

        [000102030405060708090a0b0c0d0e0f] 

        [101112131415161718191a1b1c1d1e1f] 

        [202122232425262728292a2b2c2d2e2f] 

        [303132333435363738393a3b3c3d3e3f] 

        [00000000000000000000000000000000] 

The (correct) authentication tag of the forged AAD(16 bytes): 

        [8ba1670773352621a84abd476042f928] 

Fig. 3. Forgery Example 1. 

4.2 Example 2  

Consider a message M that consists of 32 bytes AAD, where the leading 16 bytes 

are zero, and additional 80 bytes of plaintext. The message is encrypted, and 

authentication tag is computed by the erroneous implementation [8]. It is decrypted 

and verified by a correct implementation. The adversary intercepts the original 

message {AAD, C, tag} and replaces it by a new message {AAD`,C`, tag}, that shifts 

{AAD, C} to the left by 16 bytes, while injecting zeroes from the right. The adversary 

uses the original authentication tag. The erroneous implementation would accept 

{AAD`, C`, tag} as valid. Figure 5 shows an example. 
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The encryption key: 

        [843ffcf5d2b72694d19ed01d01249412] 

The IV (12 bytes): 

        [dbcca32ebf9b804617c3aa9e] 

The AAD (32 bytes): 

        [00000000000000000000000000000000] 

        [101112131415161718191a1b1c1d1e1f] 

The Plaintext (80 bytes): 

        [000102030405060708090a0b0c0d0e0f] 

        [101112131415161718191a1b1c1d1e1f] 

        [202122232425262728292a2b2c2d2e2f] 

        [303132333435363738393a3b3c3d3e3f] 

        [404142434445464748494a4b4c4d4e4f] 

The Ciphertext (80 bytes): 

        [6268c6fa2a80b2d137467f092f657ac0] 

        [4d89be2beaa623d61b5a868c8f03ff95] 

        [d3dcee23ad2f1ab3a6c80eaf4b140eb0] 

        [5de3457f0fbc111a6b43d0763aa422a3] 

        [013cf1dc37fe417d1fbfc449b75d4cc5] 

The correct authentication tag (16 bytes): 

        [3b629ccfbc1119b7319e1dce2cd6fd6d] 

The erroneous authentication tag produced by OpenSSL Git [8] (16 bytes): 

        [6d0e162733eecd46fa16390d9e3e4e42] 

The forged AAD (32 bytes): 

        [101112131415161718191a1b1c1d1e1f] 

        [6268c6fa2a80b2d137467f092f657ac0] 

The forged Ciphertext (80 bytes): 

        [4d89be2beaa623d61b5a868c8f03ff95] 

        [d3dcee23ad2f1ab3a6c80eaf4b140eb0] 

        [5de3457f0fbc111a6b43d0763aa422a3] 

        [013cf1dc37fe417d1fbfc449b75d4cc5]  

        [00000000000000000000000000000000] 

The decrypted message (80 bytes): 

        [2fe07ad2c42397002415f38eac6b8b5a] 

        [8e44421b539c2f72a58b9238d80aef3a] 

        [ae1e897f86b62d8ee5a2f4f25d9d023c] 

        [6cee86900c7766504cc52e04b1c45059] 

        [417db39f73bb073a57f68e02fb10028a]  

The correct authentication tag of the forged message(16 bytes): 

        [6d0e162733eecd46fa16390d9e3e4e42] 

Fig. 4. Forgery Example 2. 

4.3 Example 3 

Consider a message M that consists of 128 bytes AAD, where there is a zero block, 

beginning with byte 96. The authentication tag is computed by either a correct 

implementation or by the erroneous implementation, and is authenticated by the 

erroneous implementation. The adversary intercepts the original message and replaces 

it by a new message that: shifts the first 112 bytes of the AAD, to the right, by 16 

bytes, while injecting zeroes from the left, and discarding spilled over data from the 

right. The adversary uses the original final 16 bytes of the message, and the original 

authentication tag. The erroneous implementation would accept the {M, tag} pair as 

valid. Figure 6 shows an example. 
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The encryption key: 

        [84d5733dc8b6f9184dcb9eba2f2cb9f0] 

The IV (12 bytes): 

        [35d319a903b6f43adbe915a8] 

The AAD (128 bytes): 

        [000102030405060708090a0b0c0d0e0f] 

        [101112131415161718191a1b1c1d1e1f] 

        [202122232425262728292a2b2c2d2e2f] 

        [303132333435363738393a3b3c3d3e3f] 

        [404142434445464748494a4b4c4d4e4f] 

        [505152535455565758595a5b5c5d5e5f] 

        [00000000000000000000000000000000] 

        [707172737475767778797a7b7c7d7e7f] 

The correct authentication tag (16 bytes): 

        [ed1b32c63ee51ea90320235df0b93cdc] 

The correct authentication tag produced by OpenSSL, when hashed as a 

whole (16 bytes): 

        [ed1b32c63ee51ea90320235df0b93cdc] 

The erroneous authentication tag produced by OpenSSL Gi [8], when 

hashing in incremental updates of 32,80 and 16 bytes: 

        [850fc587a698e3be0da023a7e9bb902f] 

The forged AAD (128 bytes): 

        [00000000000000000000000000000000] 

        [000102030405060708090a0b0c0d0e0f] 

        [101112131415161718191a1b1c1d1e1f] 

        [202122232425262728292a2b2c2d2e2f] 

        [303132333435363738393a3b3c3d3e3f] 

        [404142434445464748494a4b4c4d4e4f] 

        [505152535455565758595a5b5c5d5e5f] 

        [707172737475767778797a7b7c7d7e7f] 

The erroneous authentication tag produced by OpenSSL Git [8], when 

hashing in incremental updates of 32,80 and 16 bytes: 

        [ed1b32c63ee51ea90320235df0b93cdc] 

Fig. 5. Forgery Example 3. 

4.4 A comment on message forgery for polynomial evaluation MAC’s  

The above forgeries and the associated examples used the GHASH algorithm’s 

specifics. However, the general concept is not unique to GHASH, as we explain. 

Consider any MAC algorithm that operates as follows: a) using a polynomial 

evaluation over some finite field as an Almost Universal Hash Function; b) 

encrypting the polynomial value to create a MAC tag. The presence of a bug such as 

the one we discussed here, would lead to analogous forgeries in such MAC 

constructions.  

5 Analysis of the software AES-GCM implementation 

We are not sure what triggered the change (in February 2013) in OpenSSL’s AES-

GCM implementation (which, prior to that, was last modified in May 2010). We only 

point out that the OpenSSL patch [5] we posted just a few months before that change 
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(October 2012) had already indicated the option achieving better performance than 

the one in OpenSSL 1.0.1c (the latest at the time [5] was posted).   

The patch [5] targets high performance AES-GCM for processors that have AES-

NI and PCLMULQDQ instructions (e.g., 2
nd

 and 3
rd

 Generation Intel
®
 Core

™
 

processors, as well as on AMD Bulldozer). Performance is gained by interleaving the 

CTR mode that parallelizes encryption of 8 blocks, with GHASH that aggregates 8 

blocks (before reduction). This combination avoids the latency effect of the AES-NI 

(8-cycles in the 2
nd

 and 3
rd

 Generation Intel Core processors), while enjoying their 1-

cycle throughput.  

Regarding the aggregation level, it is unclear (to us) why for a long time (since 

May 2010), OpenSSL developers insisted on implementing only two blocks 

aggregation, and suddenly chose to increase aggregation level to four, while 

performance is still measured on the same processors. Perhaps (though this is not 

stated) they were inspired by the demonstrated method in [5] (as recommended in [2]) 

that have aggregation level of up to eight blocks. 

In addition, [5] uses a new reduction algorithm (developer in [4]). It is especially 

suitable for processors that have a fast PCLMULQDQ implementation, such as the 

coming Haswell processor [11], while being only slightly slower than the best 

possible performance achievable on the 2
nd

 and the 3
rd

 Generation Intel
®
 Core

™
 

processors. In other words, this offers a well-balanced optimization for existing and 

future architectures.  

Since GHASH is mostly used in the AES-GCM context, we argue that fusing the 

encryption and the authentication into a single function is natural (and has 

performance benefits as shown in [5]). OpenSSL’s implementation [8] (and [9]) still 

keeps the CTR encryption, separate from the GHASH computations, although in other 

cases this library does interleave two algorithms that are bundled together in their 

typical usage (e.g., in the function ‘aesni_cbc_sha1_enc’ that implements CBC-

SHA1). We could not find a performance advantage in separating the encryption from 

the authentication (at least not for the message sizes that we examined). Certainly, no 

advantage is manifested when comparing the performance offered by [8] to that 

offered by (the previously posted) [5], on current architectures. Furthermore, as could 

be verified later in 2013, when the new architecture appears, the performance gap 

between [5] and [8] will increase.  

6 Discussion 

OpenSSL is a most popular open source SSL/TLS suite, used in a variety of 

applications. As an open source project, it allows the community to help with finding 

bugs and security issues, such as the one we described here. Therefore, the situation 

described here allows us to discuss a real vulnerability that can be reproduced from 

[8], but without causing security exposure, since it is already fixed [9], [10].  

The bug that exposes the AES-GCM to message forgery is an interesting 

illustration of the fragility of polynomial evaluation MAC algorithms in general, and 

the GHASH in particular. 

Finally, we note that the implementation in [5] is faster than [8] on the current 

processors, and the gap is going to significantly increase in the soon-to-come 
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processors. Since the main advantage in AES-GCM is performance, we encourage 

serious consideration of the performance elements demonstrated in [5], including, 

among other items: balancing performance over processor generations, interleaving 

encryption and GHASHING, deep aggregation (we suggest 8 levels), and fast 

reduction modulo the GCM polynomial for processors with fast PCLMULQDQ.  

References  

1. M. Dworkin, “Recommendation for Block Cipher Modes of Operation: 

Galois/Counter Mode (GCM) for Confidentiality and Authentication,” Federal 

Information Processing Standard Publication FIPS 800-38D, April 2006 

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf 

2. S. Gueron, M. E. Kounavis. “Intel Carry-Less Multiplication Instruction and its 

Usage for Computing the GCM Mode (Rev. 2),” Intel Software Network, 2010, 

http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-

computing-the-gcm-mode/   

3. S. Gueron, M. E. Kounavis, “Efficient Implementation of the Galois Counter Mode 

Using a Carry-less Multiplier and a Fast Reduction Algorithm,” Information 

Processing Letters 110: pp. 549-553, July 2010. 

4. S. Gueron, “Fast GHASH computations for speeding up AES-GCM,” manuscript (to 

be published).  

5. S. Gueron, V. Krasnov, “[PATCH] Efficient implementation of AES-GCM, using 

Intel's AES-NI, PCLMULQDQ instruction, and the Advanced Vector Extension 

(AVX)”, October 2012, 

http://rt.openssl.org/Ticket/Display.html?id=2900 

6. D. McGrew, J. Viega, “The Galois/Counter Mode of Operation (GCM),” Submission 

to NIST Modes of Operation Process, January 2004, 

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-

spec.pdf  

7. OpenSSL GitWeb, http://git.openssl.org/gitweb/  

8. OpenSSL GitWeb,  

http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=273a808180e8bff35fb5113f

022f8c7c966ab8d1  

9. OpenSSL GitWeb, 

http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=28997596f2782d7b09203ac

4f01e1f6bf97663cd  

10. OpenSSL GitWeb, 

http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=ca303d333bb3ff61a946f

92b2569ee98ae18c3cb  

11. A. L. Shimpi, “Intel's Haswell Architecture Analyzed: Building a New PC and a New 

Intel”, May 2012, 

http://www.anandtech.com/show/6355/intels-haswell-architecture/8  

 

  

http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
http://software.intel.com/en-us/articles/carry-less-multiplication-and-its-usage-for-computing-the-gcm-mode/
http://rt.openssl.org/Ticket/Display.html?id=2900
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://git.openssl.org/gitweb/
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=273a808180e8bff35fb5113f022f8c7c966ab8d1
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=273a808180e8bff35fb5113f022f8c7c966ab8d1
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=28997596f2782d7b09203ac4f01e1f6bf97663cd
http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=28997596f2782d7b09203ac4f01e1f6bf97663cd
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=ca303d333bb3ff61a946f92b2569ee98ae18c3cb
http://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=ca303d333bb3ff61a946f92b2569ee98ae18c3cb
http://www.anandtech.com/show/6355/intels-haswell-architecture/8

