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Abstract. The recently introduced Galois/Counter Mode (GCM) of op-
eration for block ciphers provides both encryption and message authenti-
cation, using universal hashing based on multiplication in a binary finite
field. We analyze its security and performance, and show that it is the
most efficient mode of operation for high speed packet networks, by using
a realistic model of a network crypto module and empirical data from
studies of Internet traffic in conjunction with software experiments and
hardware designs. GCM has several useful features: it can accept IVs of
arbitrary length, can act as a stand-alone message authentication code
(MAC), and can be used as an incremental MAC. We show that GCM is
secure in the standard model of concrete security, even when these fea-
tures are used. We also consider several of its important system-security
aspects.

1 Introduction

The Galois/Counter Mode (GCM) of operation for block ciphers was designed to
meet the need for an authenticated encryption mode that can efficiently achieve
speeds of 10 gigabits per second and higher in hardware, can perform well in
software, and is free of intellectual property restrictions. It was recently submit-
ted to several standards venues, including the NIST Modes of Operation process
[16], IEEE 802.1AE Link Security [19], where it is the mandatory-to-implement
cryptoalgorithm in the current draft standard, and IPsec [22]. In the following,
we consider its performance and security.

The counter mode of operation (CTR) has become the mode of choice for
high speed applications, because it can be efficiently pipelined in hardware imple-
mentations. However, it provides no message authentication. GCM incorporates
CTR and builds on it by adding a message authentication code (MAC) based on
universal hashing [23, 14]. It uses polynomial hashing in the finite field GF (2w),
the core operation of which is multiplication by a fixed field element. The binary
field multiplication can be implemented easily in hardware, and can be made
surprisingly efficient in software via table-driven methods. Additionally, GCM
can be used as a stand-alone MAC, and can be used as an incremental MAC [1].

This paper is structured as follows. In Section 1.1 we review existing work on
authenticated encryption with associated data (AEAD) methods [17]. In Section
2 we briefly review the GCM definition. In Section 3 we analyze and describe its



performance in hardware are software, and compare it to other AEAD modes of
operation. In Section 4, we review our analysis of GCM in the concrete model;
proofs of our results are provided in the Appendices. In Section 5 we consider
several important system-security aspects.

1.1 Overview of Authenticated Encryption Modes

Recently, many authenticated encryption modes have been proposed, because
of the efficiency and usability benefits of the combined approach. The first such
mode was Jutla’s IAPM (Integrity-Aware Parallelizable) mode [11]. The better
known OCB (Offset Code Book) mode [18] is a refinement of IAPM. Both of
these modes are parallelizable, making them suitable for high-speed hardware
implementations (though they cannot take complete advantage of pipelining; see
Section 3). Independently, Gligor and Donescu proposed several authenticated
encryption modes [9]. All of the above modes are covered by patents, which
has motivated some other work in this space. CCM [24] uses a single key and
combines CTR mode with CBC-MAC to produce an authenticated encryption
scheme. However, CCM is not suited to high-speed implementations, because
CBC-MAC is neither pipelinable nor parallelizable. EAX [5] is a patent-free
mode similar to CCM, combining CTR with the OMAC [10] variant of CBC-
MAC. OMAC cannot be pipelined or parallelized, so neither can EAX. However,
EAX solves some minor issues unique to CCM: it is not on-line, meaning that
the message length must be known before one can start processing the message,
and there are cases in which it does not preserve word alignment. CWC mode
[13] is both patent-free and fully parallelizable; it combines CTR with a MAC
based on a universal hash function over GF (2127−1). Due to its use of an integer
multiply operation, CWC is relatively expensive to implement in hardware.

One useful feature of many authenticated encryption schemes is the ability
to authenticate associated data that is not part of the message, such as packet
headers. IAPM and OCB are the only two modes we have discussed that have
no facilities for this. Another interesting feature, introduced by EAX, is the
ability to accept arbitrary-length IVs (most modes use IVs no longer than the
cipher block width). This facility increases the usability of the mode, but has the
disadvantage of requiring additional processing - particularly in hardware, where
a pipeline stall caused by IV processing can significantly impact throughput.
GCM supports arbitrary sized IVs, but is optimized for the 12-byte case. As
with most modes, GCM uses a single key, supports additional authenticated
data, preserves data alignment in all cases, and is on-line.

GCM’s design draws from several sources. It uses CTR for encryption, and
uses a polynomial hash, like CWC, but with a relatively inexpensive binary field.
Its architecture follows that of the Universal Security Transform [15], which
enables it to be efficiently pipelined.



2 GCM Definition

We briefly review the definition of GCM, closely following its specification [16],
but considering a block cipher with a width of w ≥ 64 bits, instead of focusing
on the 128-bit wide Advanced Encryption Standard (AES) [21]. We assume that
w is even. The two main functions that GCM uses are block cipher encryption
and multiplication over the field GF (2w); it defines a particular field, but its
details are irrelevant to our analysis. The block cipher encryption of the value
X ∈ {0, 1}w with the key K is denoted as E(K, X). The multiplication of two
elements X, Y ∈ GF (2w) is denoted as X · Y , and the addition of X and Y is
denoted as X⊕Y . The function len(S) takes a bit string S with a length between
zero and 2w/2 and returns a w/2-bit string containing the nonnegative integer
describing the number of bits in its argument, with the least significant bit on
the right. The expression 0l denotes a string of l zero bits, and A‖B denotes the
concatenation of two bit strings A and B. The function MSBt(S) takes a bit
string S and returns the bit string containing only the leftmost t bits of S, and
the symbol {} denotes the bit string with zero length.

The authenticated encryption operation takes as inputs a secret key K, ini-
tialization vector IV , a plaintext P , and additional authenticated data A, and
gives as its outputs a ciphertext C and an authentication tag T . These values
are bit strings with lengths given as follows:

len(P ) is between 0 and (232 − 2)w bits

len(A) is between 0 and 2w/2 bits

len(IV ) is between 1 and 2w/2 bits (1)
len(C) is the same as len(P )
len(T ) is a parameter t ≤ w, which is fixed for each fixed key.

The secret key has a length appropriate to the block cipher, and is only used as
an input to that cipher. For each fixed value of K, each value of the IV must
be distinct, but those values need not have equal lengths. The authenticated
decryption operation has five inputs: K, IV,C,A, and T , as defined above. It
has only one output, either the plaintext value P or the special symbol FAIL
that indicates that its inputs are not authentic.

During the encryption and decryption processes, the bit strings P , C, and A
are broken up into w-bit blocks. We let n and u denote the unique pair of positive
integers such that the total number of bits in the plaintext is (n−1)w+u, where
1 ≤ u ≤ w. The plaintext consists of a sequence of n bit strings, in which the
bit length of the last bit string is u, and the bit length of the other bit strings is
w. The sequence is denoted P1, P2, . . . , Pn−1, P

∗
n , and the bit strings are called

data blocks, although the last bit string, P ∗
n , may not be a complete block.

Similarly, the ciphertext is denoted as C1, C2, . . . , Cn−1, C
∗
n, where the number

of bits in the final block C∗
n is u. The additional authenticated data A is denoted

as A1, A2, . . . , Am−1, A
∗
m , where the last bit string A∗

m may be a partial block
of length v, and m and v denote the unique pair of positive integers such that



the total number of bits in A is (m− 1)w + v and 1 ≤ v ≤ w. The authenticated
encryption operation is defined by the following equations:

H = E(K, 0w)

Y0 =

{
IV ‖0311 if len(IV ) = w − 32
GHASH(H, {}, IV ) otherwise.

Yi = incr(Yi−1) for i = 1, . . . , n (2)
Ci = Pi ⊕ E(K, Yi) for i = 1, . . . , n− 1
C∗

n = P ∗
n ⊕MSBu(E(K, Yn))

T = MSBt(GHASH(H,A, C)⊕ E(K, Y0))

Successive counter values are generated using the function incr(), which treats
the rightmost 32 bits of its argument as a nonnegative integer with the least
significant bit on the right, and increments this value modulo 232. More formally,
the value of incr(F‖I) is F‖(I + 1 mod 232). The function GHASH is defined
by GHASH(H,A, C) = Xm+n+1, where the inputs A and C are formatted as
described above, and the variables Xi for i = 0, . . . ,m + n + 1 are defined as

Xi =



0 for i = 0
(Xi−1 ⊕Ai) ·H for i = 1, . . . ,m− 1
(Xm−1 ⊕ (A∗

m‖0w−v)) ·H for i = m

(Xi−1 ⊕ Ci−m) ·H for i = m + 1, . . . ,m + n− 1
(Xm+n−1 ⊕ (C∗

n‖0w−u)) ·H for i = m + n

(Xm+n ⊕ (len(A)‖len(C))) ·H for i = m + n + 1.

(3)

3 Performance

We considered the performance of various modes of operation of the AES-128
block cipher in both hardware and software. We use a simple model of a network
crypto module in order to analyze the performance of different AEAD modes
under realistic conditions. The module consists of a device that accepts a con-
tinuous stream unprotected data packets on one interface and then outputs the
stream of encrypted and authenticated packets out another interface. We assume
that the key is present in the module, and that the mode and data encapsulation
are fixed, in order to focus on the data processing performance. We assume that
the module contains a clock which runs at a fixed rate. In general, the number of
clock cycles C(s) required to process a packet with s bytes varies as a function
of s. We assume that the packet sizes are distributed probabilistically, where the
probability of having size s is P[S = s]. The expected number of clocks per byte
C of the module is C =

∑
s C(s)f(s), where

f(s) =
P[S = s]∑
r rP[S = r]

(4)



is the expected fraction of bytes that are carried in packets of size s. The function
f(s) is important because it can be empirically observed. Studies of Internet
traffic reveal a predominance of small packets, with peaks in the distribution of
packet sizes at 44, 552, 576, and 1500 bytes, and very few packets with larger
sizes [7], reflecting the nature of the TCP/IP protocol family. About half of the
data on the Internet is carried in packets of 576 bytes or less, and most of the
remainder is carried in packets of about 1500 bytes. We defined the Internet
Performance Index (IPI) as the expected number of bits processed per clock
cycle when the packet distribution has the values f(1500) = .6, f(576) = .2,
f(552) = .15, and f(44) = .05, using data from [7]. This index is a useful
indicator of the performance of a crypto module that protects IP traffic using
e.g. the Encapsulating Security Payload (ESP) [12] in tunnel mode, the protocol
which underlies most Virtual Private Networks.

3.1 Hardware

A typical high-speed AES-128 implementation consists of a pipeline of ten units,
each of which implements a single AES round. At each clock cycle, data moves
from one unit to the next, and 128 bits enter the pipeline and the same number
leave the pipeline as output. In the following, we describe and analyze the best
GCM, CWC, and OCB implementations that use a single instance of this AES
pipeline. We disregard the other modes, since they use cipher block chaining
and thus cannot be implemented in this manner. In our performance analysis
we determine the value of C(s) for each mode and tabulate the results, and also
compare the circuit costs for the modes. Data from multiple packets may be in
the module simultaneously. To account for this fact, we measure C(s) by counting
the number of cycles between the time when the last data from one protected
packet leaves the module and when the initial data from the next protected
packet leaves the module. Our hardware implementation model is not detailed,
but it very effectively reveals the effects of pipeline stalls on performance; a stall
occurs when a circuit is not generating outputs for some number of clock cycles.

GCM can easily take advantage of the AES pipeline (Figure 1, top), as long
as a 96-bit IV is used (as is recommended for high-speed implementations). We
use a finite-field multiplier over GF (2w) that executes in a single clock cycle.
An important property of the mode is that the counter Y0 that is used to en-
crypt the GHASH output can immediately follow the other counters through
the AES pipeline, so that after the plaintext is encrypted, only one additional
clock is needed to compute the authentication tag. Thus GCM can achieve
C(s) = ds/16e + 1 by having the data from each packet immediately follow
that of the previous packet through the pipeline. CWC is similar but requires
an additional AES encryption to process the authentication tag. This causes a
pipeline stall of 10 clock cycles during which the tag passes through the AES
pipeline; thus for CWC, C(s) = ds/16e+ 11.

In OCB (Figure 1, bottom), the AES pipline is used in three distinct ways: to
encrypt the IV, to encrypt the plaintext, and to compute the authentication tag.
The pipeline stalls for ten clock cycles while the IV is being encrypted. After that



computation, the stall continues for another ten clock cycles, until the plaintext
that is being encrypted appears at the output of the pipeline as ciphertext.
After all of the plaintext has been encrypted, the ‘checksum’ value is encrypted;
this operation requires only a single clock cycle, because the data from the IV-
encryption of the next packet can follow the data from the checksum-encryption
through the pipeline. Thus OCB can achieve COCB = ds/16e + 21. In Table
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Fig. 1. Pipelined high-speed implementations of AES-128 GCM (top) and AES-128
OCB (bottom). During each clock cycle, 128 bits of data move across each arrow.
Some details have been omitted for clarity.

1, we compare the GCM, CWC, and OCB implementations described above.
Various data sizes are included, along with the Internet Performance Index, and
throughput is shown in bits per clock cycle. GCM excels the other modes in
every category, especially at shorter lengths, because it keeps its pipeline full. In
a crypto module that can process 128 bits per clock cycle, an ten-cycle pipeline
stall has a considerable opportunity cost: 160 bytes could be encrypted during
that time. GCM performance on the IPI is over twice that of CWC and over three
times that of OCB. The circuit cost of GCM is higher than that of OCB because
of its finite-field multiplier, but GCM is still the most economical mode for high-
speed operation. Even in the unlikely case that this multiplier required a circuit
as large as the entire AES pipeline, a single GCM instance would have higher
throughput on Internet data than three OCB implementations, while having
less total circuit area. The cost of a single-clock GF (2128)-multiplier has been



estimated at 30% of the cost of the AES-128 pipeline; a detailed analysis of this
cost is beyond the scope of this paper. The circuit cost of CWC is significantly
higher than that of GCM because it uses an integer multiplier rather than a
binary-field multiplier.

Table 1. Hardware performance in bits per clock cycle, with three significant digits,
for a variety of packet sizes and the Internet Performance Index (IPI).

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 IPI

GCM 64.0 71.1 91.4 93.9 102 114 120 124 124 126 127 128 77.7
CWC 10.7 13.1 23.7 25.6 34.1 53.9 75.9 97.0 98.0 109 115 125 35.3
OCB 5.82 7.19 13.6 14.8 20.5 35.3 55.4 79.6 80.8 96.4 105 123 22.8

3.2 Software

We tested software implementations of GCM, EAX, CCM, CWC, and OCB,
each instantiated with the AES-128 cipher [21]. We also included CBC with
HMAC-SHA1 to represent common current practice. We used the best available
implementation of each mode, modified to use the fastest available AES imple-
mentation. All experiments took place on a 1Ghz Motorola G4 CPU using the
GNU C compiler version 3.3 with full optimization. In this enviornment, AES-
128 itself ran at 25 cycles per byte1. Qualitatively similar results were found
on an Intel P4 [8]. We tested GCM with both of the GHASH implementation
strategies described in its specification, using 256 byte and 4Kb tables with
Shoup’s method [20] and 64Kb with the straightforward method. Table 2 shows
our results. GCM has the best performance for the Internet Performance Index
and on packets up to 576 bytes, while OCB has the best performance on larger
packets. This result is easy to understand: OCB uses one more AES encryption
per packet, while GCM does a GF (2w)-multiply operation per block that OCB
does not. The point at which their performance is equal reflects the number of
multiplies that can be done in the time taken for a single AES encryption.

3.3 Other Applications

GCM can be used in an authentication-only mode, in which the data to be
authenticated is included in A and the plaintext has zero length. In this mode
(called GMAC), GCM has even more compelling advantages over most other
modes because it avoids calling the block cipher once per block of data. (CWC
is the only other mode with this property.) For instance, GMAC in our software

1 Faster implementations have been reported for some environments, but are not pub-
licly available. It would be interesting to see if a table-driven GHASH implementation
could benefit from these implementation techniques.



Table 2. Software performance in bits per kilocycle (or equivalently, megabits per sec-
ond on a 1GHz processor) to three significant digits, on various packet sizes, and the
Internet Performance Index (IPI), for various AES-128 modes of operation. GCM256,
GCM4K, and GCM64K refer to GCM with 256, 4K, and 64K byte table sizes, respec-
tively. The highest entry in each column is highlighted.

Bytes 16 20 40 44 64 128 256 552 576 1024 1500 8192 IPI

GCM64K 136 167 227 253 223 263 267 273 273 266 266 258 268
GCM4K 116 140 190 207 192 213 229 237 233 239 247 240 240
GCM256 88.4 107 148 160 177 162 171 183 184 181 183 182 182
OCB 89.5 85.7 140 150 185 225 255 261 265 273 275 282 260
CWC 45.7 51.9 73.4 75.5 88.1 104 116 127 126 131 124 135 121
EAX 46.0 44.9 73.4 80.0 102 129 148 157 160 165 167 174 156
CCM 91.3 88.9 123 133 142 171 163 168 168 174 172 175 168
CBC-HMAC 6.3 8.0 15.2 16.6 23.4 39.0 64.5 96.0 97.0 117 129 156 88.6

test environment can process 1500-byte packets in 10.2 cycles per byte, whereas
PMAC (OCB used as a stand-alone MAC) requires 27.6 cycles per byte.

The Secure Real-time Transport Protocol (SRTP) encrypts and authenticates
real-time traffic, such as conversational voice, at the transport layer [4]. Typical
plaintext sizes for this traffic include 20 bytes for the G.729 encoding, and 80
bytes for the G.721 encoding; GCM’s performance on short packets makes it
ideal for this application.

4 Security

The security of GCM stands on a single cryptographic conjecture: the block
cipher E is assumed to be a secure pseudorandom permutation (PRP). To para-
phrase Occam, we do not multiply conjectures beyond necessity. This require-
ment is met when E cannot be distinguished from a random permutation by
an adversary that can choose its inputs and view its outputs. To formalize this
idea, we use standard definitions from concrete security analysis, following [3].
The permutation oracle has the same interface as does the block cipher E with
a fixed key. It takes as input a plaintext in {0, 1}w and returns a ciphertext in
{0, 1}w. We consider the experiment in which the adversary is given access to a
permutation oracle and is challenged to determine whether it is the block cipher
E with a randomly selected key (we denote this event as BE), or a random per-
mutation (which we denote as Bc

E). Each of these cases occurs with probability
of 1/2. During the experiment, the adversary makes queries to the oracle and
receives its responses. Afterwards, the adversary returns a bit that indicates its
guess as to the content of the oracle. We denote as D the event that it guesses
that BE occurred, and denote as Dc the guess that Bc

E occured.
We define the distinguishing advantage AE as the adversary’s true positive

probability less her false positive probability, that is,

AE = P[D | BE]−P[D | Bc
E]. (5)



Here we use the conventional notation that P[X ] denotes the probability that the
event X occurs, and P[X | Y] = P[X ∩ Y]/P[Y] denotes the probability that X
occurs, given that the event Y has occured. We also use X∩Y to denote the event
in which both events X and Y occur, and use X c to denote the complement of X ,
that is, the event that X does not occur. We make the simplifying assumption
that AE > 0, because an adversary that is consistently wrong can turn itself
into one that is consistently right by just inverting its output. Thus the value
AE ranges between 0 and 1, inclusive.

Our model for the security of an AEAD system follows Rogaway [17]. The
authenticated encryption oracle models the GCM authenticated encryption op-
eration. It takes as input the bit strings IV,A, and P and returns the bit strings
C and T , whose lengths obey the restrictions of Equations 1. The authenticated
decryption oracle accepts inputs of the form (IV,A, C, T ) and returns as its out-
puts either the special symbol FAIL or the plaintext P , where all of the bit
strings are as defined above. We let the adversary choose the IVs, but assume
that she is nonce-respecting and will not submit the same IV value to the same
oracle multiple times (though she is free to submit a value to both oracles). We
allow the adversary to interleave queries to these oracles. For our definition of
confidentiality, we use the indistinguishability of ciphertext from random under a
chosen plaintext attack and indistinguishability of plaintext from random under
a chosen ciphertext attack. This strong definition has been shown to be equiva-
lent to several other definitions [2]. Under these assumptions, GCM encryption
is secure if an adversary presented with these oracles cannot tell if they contain
GCM with a randomly selected key ( we denote this event as BGCM) or if C
and T are a random function of the other inputs (which we denote as Bc

GCM).
Each of these cases occurs with probability 1/2. GCM uses E as a pseudorandom
function (PRF). In our analysis, we make use of the well-known result on the
use of a PRP as a PRF [3]. Our definition of PRF security considers the exper-
iment in which we are given access to the function oracle, and are challenged
to determine whether it contains a true random function or a PRF. That oracle
has the same interface as does the permutation oracle; unlike that oracle, the
function oracle may not be invertible. We use the convention that BPRF denotes
the PRF case and Bc

PRF denotes the random function case. The advantage of
a PRF-distinguisher is given by APRF = P[D | BPRF] −P[D | Bc

PRF]. The dis-
tinguishing advantage against a PRF is similar to that against a PRP, and has
similar properties. The following Lemma bounds APRF in terms of AE .

Lemma 1 (A PRP can be a good PRF). The advantage APRF of an ad-
versary in distinguishing a w-bit PRP E from a random function is bounded by
APRF ≤ AE + q(q − 1)2−w−1, where AE is the adversary’s advantage in distin-
guishing E from a random permutation, and the value q is the number of queries
to the function oracle.

Theorem 1 (GCM Encryption is Secure). If there is an adversary that can
distinguish GCM encryption from a random function with advantage AGCM,
when the output of that function is limited to q queries to the authenticated
encryption and decryption oracles, where len(C)+ len(A) ≤ l and len(IV ) ≤ lIV



for each query, then that adversary can distinguish E from a random permutation
with advantage AE, where

AE ≥ AGCM − q22−w−1(dl/we2 + 2dlIV/w + 1edl/w + 1e)− qdl/w + 1e2−t.

This result is similar to that for counter mode, with a quadratic term in the
amount of plaintext. It also has a term that is quadratic in q linear in both l
and lIV, which is due to the fact that collisions in the counter values are more
likely when the lengths of the IVs that are hashed becomes greater. This term
is dominant when lIV > l. The implication is that when long IVs are used, fewer
queries should be made before a key is changed. However, in most cases lIV will
be no greater than l, and thus the accommodation of variable length IVs comes
at negligible security cost.

The authentication tag size t affects the security of GCM encryption, but
its effect is relatively weak. The term containing 2−t in the bound on AE does
not dominate that value as long as t ≥ w − lg (qdl/we+ dlIV/we) + 1. Because
qdl/we cannot exceed 2w/2 without adversely affecting security, this condition
reduces to t ≥ w/2.

4.1 Authentication

We use the standard model for the security of a MAC in the presence of a
chosen-message attack, in which an adversary is given access to a tag generation
oracle and a message/tag verification oracle. The adversary can pass messages to
the tag generation oracle and construct any message/tag pairs that it likes and
send these to the verification oracle. Queries to the oracles can be interleaved
by the adversary, if desired. The forgery advantage FGCM is the probability that
the adversary can get the verification oracle to accept a message/tag pair other
than one generated by the tag generation oracle, after making q queries to the
tag-generation oracle and the verification oracle.

Theorem 2 (GCM authentication is secure). An adversary with forgery
advantage FGCM against GCM has a distinguishing advantage AE against the
pseudorandom permutation E used in GCM of at least FGCM−q22−w−1(dl/we2+
2dlIV/w + 1edl/w + 1e)− q(dlIV/w + 1e2−w + dl/w + 1e2−t).

4.2 AES GCM Security

To tie our analysis to current practice, we apply it to the AES GCM specification
for IPsec [22], for which lIV = 96 and t = 96. Any of the AES key lengths (of
128, 192, and 256 bits) can be used; for each variant, the block width w = 128.
We use the typical Internet maximum packet size of 1500 bytes (l ≤ 12000). The
security of AES-N -GCM (for N=128, 192, or 256) is captured in the following
corollary.

Corollary 1. If there are no attacks against AES-N that can distinguish it from
a random permutation with advantage greater than AAES-N , and no more than
q packets are processed, then



– there are no distinguishing attacks against AES-N -GCM that work with dis-
tinguishing advantage greater than AAES-N + q22−116 − q2−89.4, and

– there are no forgery attacks against AES-N -GCM that work with forgery
advantage greater than AAES-N + q22−116 − q2−89.4 − q2−128.

In these equations, the key size appears implicitly in the value of AAES-N . To
provide a concrete example, these results show that, if AES is indistinguishable
from a random permutation, and fewer than 248 packets are protected, then the
attacker’s advantage is no more than 2−18.

5 Other Security Aspects

We next consider system-security aspects. Having shown GCM secure when used
properly, we consider what can go wrong. One often overlooked aspect of mode
security is the consequence of IV misuse. It is well known that reusing a key/IV
pair in CTR results in a loss of confidentiality for the messages that used the
common IV value. Since GCM is built on top of CTR, it shares this property.
However, the reuse of an IV in the GCM authenticated encryption operation
(e.g. on the sender’s side) causes even worse problems. It allows the attacker
to solve for the underlying GHASH key H, making subsequent forgeries trivial
and also enabling the attacker to choose IVs that will cause colliding counters.
However, the reuse of an IV in the authenticated decryption operation (on the
receiver’s side) does not cause this problem. If an attacker convinces a receiver
to decrypt multiple messages with the same IV, she still cannot exploit this
situation to glean information about H. Fortunately, it is often comparatively
easy for a sender to protect against IV reuse, for example, by using a simple
message counter as an IV. Additionally, GCM’s ability to accept an arbitrary-
length IVs makes it easier to ensure all IVs are unique, by including any possible
distinguishing information, no matter how verbose. Interestingly, CWC avoids
some of these issues by using the underlying block cipher to encrypt the output
of its universal hash function. But this aspect of its design is responsible for
causing the pipeline stalls that significantly degrade CWC’s performance.

It is possible that H = E(K, 0w) = 0, and in this case, GHASH(H,A, C) =
0w for all values of A and C. If E behaves as a random permutation, then
the expected number of keys for which H = 0w is the fraction 2−w times the
number of keys. This fact does not degrade the effectiveness of the message
authentication; it is implicitly dealt with in the proof of security. When H = 0w,
the authentication tags will not be predictable; that case is no easier to detect
than any other value of the key. However, that value causes all IVs to hash to the
same value (if 96-bit IVs are not used). For this reason, some users may want to
avoid using that key, e.g. by using the convention that H is set to a fixed value
whenever the zero value is detected at key setup time. Of course, that key is so
unlikely to arise in practice that its effect on the bounds in the security proofs
are negligible, and it is equally reasonable not to bother to check for it.
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A Properties of GHASH

We now show that GHASH has the properties that we need, in the next three
straightforward lemmas.

Lemma 2 (GHASH is xor almost universal). The function GHASH is
dl/w+1e2−t-almost xor universal when its second and third inputs are restricted
so that their lengths sum to l or fewer bits and its output is truncated to t bits.

Proof. We consider two distinct inputs (A,C) and (A′, C ′), then analyze the
probability of the event that

GHASH(H,A, C)⊕GHASH(H,A′, C ′) = a‖z, (6)

for some fixed t-bit value a and any value of the t-bit variable z (which we use to
account for the truncation of the GHASH ouput). We assume that these inputs
are formatted as described in Section 2, in which A,C,A′, and C ′ consist of
m,n,m′, and n′ w-bit blocks, respectively, the final blocks of which have lengths
v, u, v′, and u′, respectively. We let p = max(m + n, m′ + n′) denote the number
of blocks in the longer input. We define the blocks Di, D

′
i for 1 ≤ i ≤ p + 1 as

Di =



Ai for i = 1, . . . ,m− 1
A∗

m‖0w−v for i = m

Ci for i = m + 1, . . . ,m + n− 1
C∗

m‖0w−u for i = m + n

len(A)‖len(C) for i = m + n + 1
0w for m + n + 2, . . . , p + 1.

(7)

We similarly define the blocks D′
i for based on the input (A′, C ′).

The condition that GHASH(H,A, C) ⊕ GHASH(H,A′, C ′) = a‖z can be
expressed as R(H) = 0, where the polynomial R of degree at most p + 1 over
GF (2w) is defined by

R(H) = (a‖z)⊕
p⊕

i=1,

(Di ⊕D′
i) ·Hi. (8)

There are at most p+1 values of H ∈ G for which R(H) = 0 holds. This follows
from the fact that an dth degree polynomial over GF (2w) has at most d distinct
roots (this is the fundamental theorem of algebra over a finite field; see, for
example, [6, Theorem 15.8.2]), and the fact that R is nonzero. The probability
that R(H) = 0 holds, given that H is chosen at random from GF (2w), is (p +
1)/2w ≤ dl/w +1e2−w, when the cumulative length of the inputs is restricted to
l bits.

For each vector D, there is a unique pair (A,C) where both A and C are
bit strings as described in Section 1, and vice-versa. This is because the last
element of D unambiguously encodes the lengths of both A and C. Thus, the



probability that R(H) = 0 holds for any two given messages (A,C) and (A′, C ′),
and a given vector a‖z, is equal to the probability that GHASH(H,A, C) ⊕
GHASH(H,A′, C ′) = a‖z. Because there are 2w−t possible values for z, Equation
6 holds with probability dl/w+1e2−w×2w−t = dl/w+1e2−t for any given values
of (A,C), (A′, C ′), and a ∈ {0, 1}t. �

Lemma 3 (h is unlikely to collide). The bound

P[h(H, IV ) = incrj(h(H, IV ′)) | H R← GF (2w)] ≤ dl/w + 1e2−w, (9)

holds for the function h defined in Equation 16, for any values of j, IV , and IV ′,
where the inputs IV and IV ′ are distinct and are allowed to have any lengths
up to lIV bits.

Proof. We call the event that h(H, IV ) = incrj(h(H, IV ′)) as E , for short. We
separately consider the following cases:

1. len(IV ) = len(IV ′) = w − 32,
2. len(IV ) = w − 32 and len(IV ′) 6= w − 32, and
3. len(IV ) 6= w − 32 and len(IV ′) = w − 32, and
4. len(IV ) 6= w − 32 and len(IV ′) 6= w − 32.

In case 1, h(H, IV ) = IV ‖031‖1 and h(H, IV ′) = IV ′‖031‖1. Because of the fact
that IV and IV ′ are distinct and the fact that the increment function does not
alter the leftmost w − 32 bits of its input, the probability of a collision is zero.
In case 2 when E occurs it follows that

h(H, IV ′) = incr−j(IV ‖031‖1) = IV ‖(1− j mod 232).

(Here we rely on the implicit conversion of non-negative integers to their repre-
sentation as binary vectors; the important fact is that this conversion is unique
and invertible.) This condition can be re-expressed as R(H) = 0, where the
polynomial R of degree n′ + 1 over GF (2w) is defined by R =

⊕n′+1
i=1, Ri · Hi

with the coefficients

Ri =


IV ‖(1− j mod 232) for i = 0,
IV ′

i ‖0p for 1 < i ≤ n′,
(0w/2‖len(IV ′)) for i = n′ + 1

(10)

where n′ = dlen(IV ′)/we and p = len(IV ′) mod w is the number of padding
bits in the n′th coefficient. There are at most n′ + 1 values of H ∈ G for which
R(H) = 0 holds, since that it is the number of distinct roots of R. This fact is
true for any value of j, since each value of j corresponds to a distinct polynomial.
Thus the probability of E , given that H is chosen at random from GF (2w), is
(n′ + 1)/2w ≤ dlIV/w + 1e2−w. Case 3 is identical to case 2 after a relabeling
of IV and IV ′. In Case 4, the probability that h(H, IV ) = h(H, IV ′) is equal
to the probability that GHASH(H, {}, IV ) = GHASH(H, {}, IV ′), which is no
greater than dlIV/w+1e2−w from Lemma 2. The claimed result holds in all four
cases. �



Lemma 4 (h is unlikely to return zero). The function h defined in Equation
16 satisfies

P[h(H, IV ) = 0w | H R← GF (2w)] ≤ dlIV/w + 1e2−w for all IV : len(IV ) ≤ lIV.

Proof. When len(IV ) = w−32, then the probability is equal to zero. Otherwise,
the condition that h(H, IV ) = 0 can be re-expressed as R(H) = 0, where the
polynomial R has the coefficients

Ri =


0 for i = 0,
IVi−1 for i = 1 ≤ n + 1
0w/2‖len(IV ) for i = n + 1,

(11)

and n = dlen(N)/we. There are no more than dlIV|/w + 1e values of H that
satisfy this equation, because each of those values is a root of R(H) = 0 over
GF (2w). Because H is chosen at random, the probability that R(H) = 0 is no
more than dlIV/w + 1e2−w. �

B Proofs of Theorems 1 and 2

We first prove Theorem 2, which shows that GCM is a good MAC, then we
prove Theorem 1, which shows that GCM’s encryption is effective. This order is
important, since we use results from the analysis of the forgery probability when
analyzing encryption. We start by reviewing message authentication based on
universal hashing.

A function g(K, M) is ε-almost xor universal [14] if

P[g(K, M)⊕ g(K, M ′) = a | K R← {0, 1}n] ≤ ε for all M 6= M ′ and a. (12)

Here the expression K
R← {0, 1}n denotes the event that K is chosen at random

from the set {0, 1}n. We diverge slightly from the usual definition in order to
make our exposition more explicit2.

An ε-almost xor universal function can be combined with a pseudorandom
function to make a strong MAC. First, we analyze the security of the ideal case,
following Krawczyk [14]. We consider the message authentication code AXU-
MAC defined by T = R(N) ⊕ H(K, M), where the hash function H(K, M) is
ε-almost xor universal and R is a random function. Here M is a message, N is
a nonce and T is the tag corresponding to M and N .

Lemma 5 (AXU-MAC is secure). If H is ε-xor almost universal, then the
probability of success of a single forgery attempt against AXU-MAC is no greater
than ε.
2 In the standard definition, g would define a family of (unkeyed) hash functions, and

we would select a function from that family. Our keyed hash function corresponds
to the hash function family, and a particular value of the key K corresponds to a
particular function in that family.



Proof. The lemma follows directly from the properties of an xor-universal hash
function. We denote as (N,M ′, T ′) the 3-tuple that represents a forgery attempt,
and we assume that the adversary has access to a valid 3-tuple (N,M, T ), with
T = R(N)⊕H(K, M), for the same nonce value N . Then

P[ (N,M, T ) accepted ] = P[T ′ ⊕ T = H(K, M ′)⊕H(K, M)] ≤ ε. � (13)

The best strategy for forging messages is to choose values of M ⊕M ′ and T ′⊕T
such that the lower bound on the probability is met. A simple but important
corollary follows.

Corollary 2. The forgery advantage against AXU-MAC is no greater than qε,
whenever q queries to the authentication and verification oracles are allowed.

Proof. The probability that there are no successful forgeries against AXU-MAC
after q queries to each oracle is at least (1 − ε)q. The forgery advantage is no
more than 1 − (1 − ε)q ≤ qε, with the inequality following from using Taylor’s
theorem with remainder.

Proof of Theorem 2. We proceed by treating E as a PRF, not a PRP, then
rationalize this assumption using Lemma 1. We assume that we have a machine
that generates GCM message/tag pairs with forgery advantage FGCM, using a
chosen-message attack. We use this machine to distinguish between the case that
the oracle contains GCM implemented with E, which we denote as BPRF, and the
case of GCM implemented with a random function, which we denote as Bc

PRF.
We measure the advantage APRF defined above. We use the function oracle to
implement GCM, by replacing each invocation of E with an invocation to that
oracle, then run the machine and provide it with access to a tag-generation
oracle and a message/tag verification oracle. If the machine succeeds in forging
a message/tag pair, then we guess that event BPRF occurred, otherwise, we guess
that Bc

PRF occurred. We compute the hash key H by querying the function oracle
with the input value 0w at the very outset of the experiment, and set that key to
the value returned by the oracle. We denote the event that none of the counter
values Yi input to the function oracle during the experiment are equal to the
zero value 0w as Z. We also consider the event Y that all counter values are
distinct, for the entire run of the experiment, as used in the proof of Theorem 1.
Our analysis uses the following facts:

Fact 1. FGCM = P[D | BPRF], which follows directly from the defini-
tion of the forgery advantage.

Fact 2. For any three events A,B and C (with P[B] 6= 0),

P[A | B] =
P[A ∩B]

P[B]

=
P[A ∩B ∩ C]

P[B]
+

P[A ∩B ∩ Cc]
P[B]

=
P[A ∩B ∩ C]

P[B ∩ C]
P[B ∩ C]

P[B]
+

P[A ∩B ∩ Cc]
P[B ∩ Cc]

P[B ∩ Cc]
P[B]

= P[A | B ∩ C]P[C | B] + P[A | B ∩ Cc]P[Cc | B]. (14)



Fact 3. P[D | Bc
PRF ∩ Y ∩ Z] ≤ qdl/w+1e2−t, because when the events

Bc
PRF,Y, and Z occur in conjunction, Lemma 5 applies. When Bc

PRF

occurs, the hash key H is chosen uniformly at random, as required by
that lemma. When Z occurs, H is not used to encrypt any plaintext
block, and the adversary has no information about its value. Event Y
ensures that no output from g is used more than once. We also know
from Lemma 2 that GHASH is dl/w + 1e2−t almost xor universal.

Fact 4. P[Zc | Bc
PRF] ≤ (q − 1)dlIV/w + 1e2−w from Lemma 4.

We can express the PRF-distinguishing advantage APRF in terms of AGCM as

APRF = P[D | BPRF]−P[D | Bc
PRF]

= FGCM −P[D | Bc
PRF]

= FGCM −P[D | Bc
PRF ∩ (Y ∩ Z)c]P[(Y ∩ Z)c | Bc

PRF]

−P[D ∩ (Y ∩ Z) | Bc
PRF]P[Y ∩ Z | Bc

PRF],

≥ FGCM −P[(Y ∩ Z)c | Bc
PRF]−P[D ∩ (Y ∩ Z) | Bc

PRF]

≥ FGCM −P[(Y ∩ Z)c | Bc
PRF]− qdl/w + 1e2−t

≥ FGCM −P[Yc | Bc
PRF]−P[Zc | Bc

PRF]− qdl/w + 1e2−t

≥ FGCM −P[Yc | Bc
PRF]− (q − 1)dlIV/w + 1e2−w − qdl/w + 1e2−t,

≥ FGCM −P[Yc | Bc
PRF]− q(dlIV/w + 1e2−w + dl/w + 1e2−t). (15)

We rely on the fact that P[Yc | Bc
PRF] is extremely small to keep the advantage

low, and next consider that value. We define the function h, which is used in
GCM to compute the initial counter value Y0 based on the IV, so that we can
analyze its properties:

h(H,M) =

{
M‖031‖1 if len(M) = w − 32
GHASH(H, {},M) otherwise.

(16)

For each query to the authenticated encryption oracle there is a sequence of
counter values Y0, Y1, . . . , Yn used as the input to E. For a given query with an
initialization vector IV , the sequence is equal to

h(H, IV ), incr(h(H, IV )), incr2(h(H, IV )), . . . , incrc−1(h(H, IV )),

where we use the notation that incrj() indicates j repeated applications of the
increment function, and incr−j() denotes j repeated applications of its inverse.
The number c of counters is given by c = dlen(P )/we+ 1 ≤ dl/we+ 1, where P
is the plaintext value associated with the value IV . When the counter sequences
for the queries with initialization vector values IV and IV ′ overlap, then

h(H, IV ) = incrj(h(H, IV ′)) for some j such that −c < j < c. (17)

From Lemma 3, we know that the probability of this event, for any fixed value of
j, is no greater than dlIV/w +1e2−w. Importantly, when Bc

PRF occurs, the value



of the hash key H is random, as is required by that Lemma. This probability
holds for each of the 2c − 1 possible values of j. The probability of a counter
collision between two queries is thus no more than ξ = dlIV/w+1edl/w+1e21−w.
The ith query has probability no greater than ξ of overlapping with each one
of the i − 1 counter sequences from one of the previous queries. Thus after q
queries, the probability of a collision is

P[Yc | Bc
PRF] ≤

q∑
i=2,

(i− 1)ξ =
q(q − 1)ξ

2

≤ q2dlIV/w + 1edl/w + 1e2−w. (18)

The result follows from combining Equations 15 and 18 with Lemma 1. �

Proof of Theorem 1. We assume that we have a distinguisherDGCM, the output of
which we denote d that can distinguish between those two cases with advantage
AGCM given by

AGCM = P[D | BGCM]−P[D | Bc
GCM]. (19)

We useDGCM to discern E from a random function as follows. We assume that we
are given access to a function oracle, which contains E if the event BPRF occured
and contains a true random function if Bc

PRF occured. We replace each invocation
of E in Equations 2 with a query to the function oracle. We run DGCM on the
resulting algorithm, and return whatever value that it returns. For each query
to this algorithm, there is a sequence of counter values Y0, Y1, . . . , Yn used as the
input to E (as defined in Equation 2). We define the event Y as the case in which
all of these counter values are distinct, across all counter sequences. We also
define the event F as the case in which there are no successful forgeries during
the distinguishing experiment. This latter case is important because an attacker
can use information gleaned from a chosen-ciphertext or chosen-associated-data
forgery to craft two distinct IV values that will cause a counter collision. This
attack can be used to distinguish BGCM from Bc

GCM, but cannot be used to
distinguish BPRF from Bc

PRF. We account for this fact by keeping explicit track
of the forgery probability in our bounds. For notational simplicity, we define the
event G = F ∩ Y. Our analysis uses the following facts:

Fact 1. P[D | BPRF] = P[D | BGCM], because the two cases BPRF and BGCM

provide equivalent inputs to the distinguisher.

Fact 2. P[D | Bc
PRF ∩ G]P[G | Bc

PRF] ≤ P[D | Bc
GCM], because the two cases

Bc
PRF ∩ Y and Bc

GCM provide equivalent inputs to the distinguisher. When
E is replaced by a random function whose inputs are distinct, the set of its



outputs form a random function with a larger range. Thus

P[D | Bc
PRF ∩ G]P[G | Bc

PRF] =
P[D ∩Bc

PRF ∩ G]
P[Bc

PRF ∩ G]
P[G ∩Bc

PRF]
P[Bc

PRF]

=
P[D ∩ F ∩ Y ∩Bc

PRF]
P[Bc

PRF]

=
P[D ∩ F ∩Bc

GCM]
P[Bc

GCM]
= P[D ∩ F | Bc

GCM]

≤ P[D | Bc
GCM]. (20)

The advantage APRF can be expressed in terms of AGCM as

APRF = P[D | BPRF]−P[D | Bc
PRF],

= P[D | BGCM]−P[D | Bc
PRF]

= P[D | BGCM]−P[D | Bc
PRF ∩ G]P[G | Bc

PRF]

−P[D | Bc
PRF ∩ Gc]P[Gc | Bc

PRF],

≥ P[D | BGCM]−P[D | Bc
GCM]−P[D | Bc

PRF ∩ Gc]P[Gc | Bc
PRF],

= AGCM −P[D | Bc
PRF ∩ Gc]P[Gc | Bc

PRF],

≥ AGCM −P[Gc | Bc
PRF]

≥ AGCM −P[Yc | Bc
PRF]−P[Fc | Bc

PRF]. (21)

We rely on the fact that the rightmost two terms of Equation 21 are extremely
small to keep the advantage low. The probability P[Yc | Bc

PRF] was bounded
in Equation 18. We next turn to P[Fc | Bc

PRF]. When the event Bc
PRF occurs,

Corollary 2 applies, and thus that probability is no more than qdl/w + 1e2−t

(where we also make use of Lemma 2). The result then follows from Equation
21 and Lemma 1. �


