

Problem:

“Assume breach” mitigation strategy augments preventative security

• Preventative Strategy – SDL “Find all the
bugs” before shipping

• Static Security Boundaries

• Focus on component level security –
customer assets, configuration, 3rd party
software largely out-of-scope

• Investigation of exploit and other attack
techniques out-of-scope

• Engineering driven - Focus on
abstraction to support scale and process

• Mitigation design and offensive security
research is ad-hoc and specialized

Preventative Security
Attackers are agile, adaptive, and results
focused – effective techniques often
don’t map to security boundaries
• S

Market value for exploits is 10x
vulnerabilities – preventative security is
focused on lowest value asset

Attackers invest in developing tool sets
and libraries – no proactive disruption,
reactive response only after attacks

The cost for attackers is unknown – The
current approach to security is abstracted
from attacks – security effectiveness
against real attacks unknown

Strategy:

Analyze
Analyze comprehensive
set of real world data

Identify opportunities
for tactical attack
disruption and future
strategic hardening

Build
Security engineers explore
mitigation concepts with
product owners

Security engineers
prototype or productize
mitigation design

Evaluate
Windows Offensive
Security Research Team
(OSR) evaluates
mitigations and attempts
to identify bypasses

Mitigation flaws are
addressed

E
xt

e
rn

a
l
D

a
ta

 S
o

u
rc

e
s

In
te

rn
a
l
D

a
ta

 S
o

u
rc

e
s

Exploit Data

Root Cause Exploit
Techniques

Attack
Surface

Mitigation
Impact

24 18 19 25

61
43

25

21 18 18

97
93 114 130

157
156

116

266 282 396

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Patch Year

% of Microsoft RCE & EOP CVEs

exploited within 30 days of patch

Exploited within 30 days of patch Not known to be exploited

Vulnerabilities are increasing while evidence of actual exploits is decreasing due to mitigation investments

121
111

133

155

218

199

141

287

300

414

0

50

100

150

200

250

300

350

400

450

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

#
 o

f
C

V
E
s

Patch Year

of Microsoft RCE/EOP CVEs by patch year

Total Linear (Total)

Analysis: High-level vulnerability & exploit trends

Analysis:

Exploit technique trend analysis drives new or improved mitigations

0

10

20

30

40

50

60

70

80

90

Primitive :: Arbitrary

Memory RW :: Flash

Vector Length

Corruption

Bypass :: ASLR ::

Predictable Region ::

Heap Spraying

Bypass :: ASLR ::

Predictable Region

Bypass :: DEP :: Code

Reuse :: ROP :: Stack

Pivot

Primitive :: Arbitrary

Memory RW :: ByteArray

- DomainMemory

Primitive :: Virtual Table

Pointer Overwrite

Bypass :: DEP :: Code

Reuse :: ROP :: Allocate

Executable Code ::

VirtualProtect

P
e
rc

e
n

ta
g

e
 o

f
U

se

Exploit Technique

Exploit Techniques used in Public Flash Exploits (2013-2015)

1

1

4

6

1

1

1

2
2

1

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2013 2014 2015

Use After Free

Uninitialized Use

Type Confusion

Stack Corruption

Heap Corruption

Arbitrary Corruption

Success Story:

1/1/2014 1/1/2016
4/1/2014 7/1/2014 10/1/2014 1/1/2015 4/1/2015 7/1/2015 10/1/2015

5/1/2014 - 5/13/2014

CVE-2014-1815

4/23/2014 - 5/1/2014

CVE-2014-1776

2/12/2014 - 3/11/2014

CVE-2014-03222/19/2014 - 3/11/2014

CVE-2014-0324

6/8/2014

Use-After-Free hardening v1

7/6/2014

Use-After-Free hardening v2

8/3/2014

Out-of-Date Java Blocking

11/7/2014

CFG Windows 8.1 Shipped (Optional Update) 2/11/2015

CFG for Windows 8.1 Shipped (Default)

0day exploit in Internet Explorer

New Internet Explorer Security Feature

10/1/2015

MemGC IE 11

8/18/2015

CVE-2015-2502

7/5/2015

Type Protector Shipped

Year
Patched

RCE CVE

Zero Day

RCE CVE

2013 116 8

2014 226 4

2015 188 1

• A focus on mitigations for disruption of invariant techniques used in exploits (ROP, Heap Spraying, UAF)

• In 2015 only 6 days with a known zero day Internet Explorer RCE exploit in-the-wild (down from 45, 135)

• Vulnerability volume has increased but number of zero day exploits has decreased

• Detection, Containment, Response,
and Recover

Redteams

Assume Breach

Assume Breach

War game exercises

Central security monitors

Live site penetration test

Prevent Breach
Threat model

Code review

Security development lifecycle
(SDL)

Security testing

Hypothesis: We can use the assume breach approach to model exploitation and
drive mitigations

“Assume Breach”

How do we design effective mitigations proactively?

PWN2OWN & Data Influenced Mitigations

CFG: suppress sensitive APIs

Flash: Eliminate RWX ATL thunks

Junctions: Prevent sandbox processes

from creating NTFS junctions – TH1

Fonts: Move font parsing to user mode

sandbox

Edge: Prevent content processes from

creating child processes

Edge: Enable win32k system call

restrictions

REDTEAM:
Model real-world attacks

 Model attacks based on

ecosystem analysis and

threat intelligence

 Evaluate the customer-

promises from an attack

perspective

 Provide data sets of

detection-and-response

 Attack the full stack in

production configuration

(software, configuration,

hardware, OEMs)

Identify security gaps

 Measure Time-to-

Compromise (MTTC) /

Pwnage (MTTP)

 Identify invariant

techniques for mitigation

 Simulate a real-world

incident response before it

occurs (process, owners,

messaging)

 Provide detection guidance

for Defenders

Demonstrate impact

 Break-it-you-bought-it

work with teams to

address issues

 Design mitigations to

drive up MTTC/MTTP

metrics

 Enumerate business and

legal risk

 Show business value,

priorities, and

investments needs with

demonstrable attacks

Assume Breach: An Inside Look at Cloud Service Provider Security - Russinovich

https://www.rsaconference.com/writable/presentations/file_upload/exp-w01_assume-breach-an-inside-look-at-cloud-service-provider-security.pdf

BLUETEAM

REDTEAM

Offensive security modeling is now a core pillar of Microsoft
security strategy

Internet Explorer, Edge, & Chakra

Dave Buchthal, Shubham Chopra, Crispin Cowan, Bo Cupp, Mike Decker, Jim Fox, Matt Gradwohl, John Hazen, C.J.

Hebert, Forbes Higman, Michael Howell, Sermet Iskin, Rick James, Riff Jiang, Venkat Kudallur, Louis Lafreniere, Curtis

Man, Ed Maurer, Bruce Morgan, Kamen Moutafov, Zach Murphy, Vidya Nallathimmayyagari, Justin Rogers, Todd

Sahl, Saranya Kalpathy Seshadri, Bob Schroder, Kirk Sykora, Jason Weber

SmartScreen Costas Boulis, Ryan Colvin, Jeb Haber, Jeff McKune, Anthony Penta

Visual Studio Natalia Glagoleva, Shayne Hiet-Block, Jim Hogg, Jim Radigan, Asmaa Taha, YongKang Zhu

Windows & Devices Group (WDG)

Patrick Azzarello, Vassil Bakalov, Jasika Bawa, Thorsten Brunklaus, Brandon Caldwell, Eric Douglas, Dustin Duran,

Michael Fortin, Daniel Frampton, Saruhan Karademir, Leif Kornstaedt, Aaron Lahman, Arun Kishan, Ryan Kivett,

Daniel Libby, Niraj Majmudar, Dave Midturi, Cody Nicewanner, Roman Porter, Maliha Qureshi, Jordan Rabet, Vijesh

Shetty, Nathan Starr, Brady Thornton, Prabhakar Hampanna Vrushabendrappa, Landy Wang, David Weston, Arden

White, Arthur Wongtschowski

Microsoft Security Response Center (MSRC)

& C+E Security

Chris Betz, Joe Bialek, Tim Burrell, Suha Can, Sweety Chauhan, Vishal Chauhan, Richard van Eeden, Stephen Fleming,

Swamy Shivaganga Nagaraju, Nitin Kumar Goel, John Lambert, Ken Johnson, Matt Miller, Michael Plucinski, Shawn

Richardson, Axel Souchet, Gavin Thomas

Microsoft Research (MSR) Richard Black, Miguel Castro, Manuel Costa, Austin Donnelly

8 12 11 18
31 27 28

102 181

133

26

13 13

21 30

24 13
15

18
18

45

19

9
12

9
12

19 18
11

3

3

23

31

0 1

3
10

2
4 1

5
20

18
111 1

0 1 2
1 3

3 17
29 13

2 4

2 3 3
1 3 4 6 11 5

8 10
4 6 6 3 1 1 2 1 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Use After Free Heap Corruption Other Type Confusion

Heap OOB Read Uninitialized Use Stack Corruption

Tactic Applies to First shipped

Eliminate entire classes of vulnerabilities Edge on Windows 10 and backported to IE9+ on Windows Vista+ July, 2015 (Windows 10 RTM)

// 1. Allocate object

p = new COptionElement();

// 2. Free object

delete p;

// 3. Use freed object

p->Foo();

Attacker reallocates p as

a new type

// 2. Zero object, but don’t free

ZeroMemory(p, sizeof(T));

// 3. Garbage collection phase

frees all objects with no references

(stack, registers, heap)

Tactic Applies to First shipped

Eliminate entire classes of vulnerabilities Edge and IE11 on Windows 10 and backported to IE10+ on Windows 7+ July, 2015 (Windows 10 RTM)

Tactic Applies to First shipped

Eliminate entire classes of vulnerabilities Edge on Windows 10 July, 2015 (Windows 10 RTM)

No legacy document modes

No legacy script engines (VBScript, JScript)

No Vector Markup Language (VML)

No Toolbars

No Browser Helper Objects (BHOs)

No ActiveX controls 81

22

47

34

0 50 100 150

Internet Explorer

Edge

H1 (Aug 2015 - Jan 2016)

H2 (Feb 2016 - Jul 2016)

CVE-2003-0344

 Trigger stack buffer overrun

 Overwrite return address with
predictable address of a “JMP ESP”

 Execute shellcode from the stack

 Arbitrary native code execution 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

The Info leak era of

software exploitation

 Place array length at a predictable
location (via heap spray/massage)

 Modify array length via memory
corruption, enabling arbitrary read/write

 Use arbitrary read/write to discover DLL
base address

 Construct ROP payload by searching for
code sequences in the DLL

 Corrupt C++ virtual table pointer and
trigger virtual method call to first gadget

 Execute ROP payload (typically to make
shellcode executable)

 Execute arbitrary native code

 Escape the sandbox (or operate inside it)

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/ms03_020_ie_objecttype.rb

var memory = new Array();
function sprayHeap(shellcode, heapSprayAddr, heapBlockSize) {

var index;
var heapSprayAddr_hi = (heapSprayAddr >> 16).toString(16);
var heapSprayAddr_lo = (heapSprayAddr & 0xffff).toString(16);
while (heapSprayAddr_hi.length < 4) { heapSprayAddr_hi = "0" + heapSprayAddr_hi; }
while (heapSprayAddr_lo.length < 4) { heapSprayAddr_lo = "0" + heapSprayAddr_lo; }

var retSlide = unescape("%u" + heapSprayAddr_hi + "%u" + heapSprayAddr_lo);
while (retSlide.length < heapBlockSize) { retSlide += retSlide; }
retSlide = retSlide.substring(0, heapBlockSize - shellcode.length);

var heapBlockCnt = (heapSprayAddr - heapBlockSize) / heapBlockSize;
for (index = 0; index < heapBlockCnt; index++) {

memory[index] = retSlide + shellcode;
}

}

 Place array length at a predictable location (via heap spray/massage)

Tactic Applies to First shipped

Breaking exploitation techniques Edge on Windows 10 July, 2015 (Windows 10 RTM)

[1] https://github.com/rapid7/metasploit-framework/blob/master/data/js/memory/heap_spray.js

 Corrupt a C++ virtual table pointer and trigger virtual method call to first gadget

Compile time Runtime

Metadata is automatically added to the image which

identifies functions that may be called indirectly

void Foo(...) {
// SomeFunc is address-taken
// and may be called indirectly
Object->FuncPtr = SomeFunc;

}

A lightweight check is inserted prior to indirect calls

which will verify that the call target is valid at runtime

void Bar(...) {
// Compiler-inserted check to
// verify call target is valid
_guard_check_icall(Object->FuncPtr);
Object->FuncPtr(xyz);

}

•Update valid call target data

with metadata from PE image

Image

Load

•Map valid call target data
Process

Start

•Perform O(1) validity check

•Terminate process if invalid

target

Indirect

Call

Tactic Applies to First shipped

Breaking exploitation techniques Edge on Windows 10 and IE11 on Windows 8.1+ November, 2014 (Windows 8.1 Update 3)

 Return addresses are not protected  Valid functions can be called out of context  “Fail-open” design for compatibility

Non-enlightened Just-in-Time (JIT) compilers

can be abused
Mitigated in latest version of Edge on Windows 10 (Chakra, Adobe Flash, and WARP)

Multiple non-instrumented indirect calls

reported to our Mitigation Bypass Bounty
Mitigated in latest version of Edge on Windows 10

Calling sensitive APIs out of context

NtContinue/longjmp – mitigated for all CFG enabled apps on Windows 10

VirtualProtect/VirtualAlloc – mitigated in latest version of Edge on Windows 10

LoadLibrary – mitigated in latest version of Edge on Windows 10 via code integrity

WinExec – mitigated in Edge on Windows 10 anniversary edition via child process policy

Corrupting return addresses on the stack Known limitation that we intend to address with new technology (e.g. with Intel CET)

Bypass Status

https://technet.microsoft.com/en-us/security/dn425049.aspx

Example of such an attack provided by Yang Yu @ Black Hat USA 2014

 Execute arbitrary native code

 Only properly signed images can be loaded
(Microsoft, WHQL, Store, or DRM signed)

 Binaries on remote devices (UNC/WebDAV)
cannot be loaded

Tactic Applies to First shipped

Breaking exploitation techniques Edge on Windows 10 and opt-in for other apps November, 2015 (Windows 10 1511 update)

https://www.blackhat.com/docs/us-14/materials/us-14-Yu-Write-Once-Pwn-Anywhere.pdf
https://blogs.windows.com/msedgedev/2015/11/17/microsoft-edge-module-code-integrity/

 Execute arbitrary native code

Tactic Applies to First shipped

Breaking exploitation techniques Opt-in by process on Windows 8.1+ August, 2013 (Windows 8.1 RTM)

Data cannot become code

Data pages cannot become executable via

VirtualProtect or initially allocated as WX

Code is immutable

Code pages cannot become writable via

VirtualProtect or initially allocated as WX

Tactic Applies to First shipped

Breaking exploitation techniques Windows 10 with Hyper-V enabled July, 2015 (Windows 10 RTM)

https://channel9.msdn.com/Blogs/Seth-Juarez/Windows-10-Virtual-Secure-Mode-with-David-Hepkin

Secure Kernel

Windows

 Hyper Guard

• Prevents modification of key MSRs, control
registers, and descriptor table registers

• Example: SMEP cannot be disabled

 Hypervisor-Enforced Code Integrity (HVCI)

• Only properly signed kernel pages can
become executable

 Robust even if an attacker can perform arbitrary
read/write in VTL0 kernel

Tactic Applies to First shipped

Breaking exploitation techniques Windows 10 64-bit kernel August, 2016 (Windows 10 Anniversary Edition)

 Page table self-map and PFN database are
randomized

• Dynamic value relocation fixups are used to
preserve constant address references

 SIDT/SGDT kernel address disclosure is prevented
when Hyper-V is enabled

• Hypervisor traps these instructions and hides
the true descriptor base from CPL>0

 GDI shared handle table no longer discloses
kernel addresses

Page tables

Non-paged pool

…

Paged pool

System cache

PML4 Directory ptr Directory Table Offset

System region PML4 entries are
randomized

 Non-paged pool

 Paged pool

 System cache

 PFN database

 Page tables

 … and so on

Non-paged pool

System cache

Page tables

…

Paged pool

Paged pool

System cache

…

Non-paged pool

Page tables

Mitigation How to opt-in

Control Flow Guard Compile and link with /guard:cf (requires Visual Studio 2015 Update 2+)

Image load restrictions
• SetProcessMitigationPolicy with ProcessImageLoadPolicy

• UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

Code integrity restrictions
• SetProcessMitigationPolicy with ProcessSignaturePolicy

• UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

Dynamic code restrictions
• SetProcessMitigationPolicy with ProcessDynamicCodePolicy

• UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

Child process restrictions • UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_CHILD_PROCESS_POLICY

HVCI
• Set HypervisorEnforcedCodeIntegrity (REG_DWORD) to 1 in

HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard

For more information: https://aka.ms/setprocessmitigationpolicy

https://aka.ms/setprocessmitigationpolicy

Edge

Manager
AppContainer

Content
AppContainer

Store App
AppContainer

Adobe Flash
AppContainer

Win32
Process

User Mode Font
Driver Host

AppContainer

Tactic Applies to First shipped

Containing damage & preventing persistence Multiple applications August, 2012 (Windows 8)

 Store apps all run within an
AC

 Font parsing is now done in
user mode within an AC

 Edge uses a multi-AC design
for isolation

New in Windows 10 Anniversary
Edition

 Adobe Flash has now been
moved to its own AC

 Win32k system call filtering is
enabled for Edge

System Call Filter

AppContainer

Properties

Security boundary Microsoft will address vulnerabilities that can violate AC security boundary

Capability-based resource access Network, file, registry, and device access are restricted (both read and write)

Locked down process No symbolic links, reduced attack surface, and various mitigations on by default

• Mobilize engineering teams to quickly understand and develop a fix for

a vulnerability

Rapidly

Respond

• Use SmartScreen and other technologies to protect customers from in-

the-wild attacks

• Enable Microsoft Active Protection Program (MAPP) partners to protect

the broader ecosystem

Rapidly

Protect

• Broadly deploy and install security updates to quickly minimize the

affected population size

Rapidly

Update

 Control-flow Enforcement Technology
(CET)

• Indirect branch tracking via
ENDBRANCH

• Return address protection via
shadow stack

 Hardware-assists for helping to mitigate
control-flow hijacking & ROP

Preview specification:

https://software.intel.com/sites/default/files/managed/
4d/2a/control-flow-enforcement-technology-
preview.pdf

Legend

April 2014 July 2014 October 2014 January 2015 April 2015 July 2015 October 2015 January 2016 April 2016 July 2016

2/2/2015

CVE-2015-0313

1/20/2015

CVE-2015-0311

1/16/2015

CVE-2015-0310

3/20/2015

CVE-2014-0336

11/11/2014

CVE-2014-8440

10/14/2014

CVE-2014-0569

9/9/2014

CVE-2014-0556

Exploited within 10 days of patch

Exploited as 0day

Exploited within 30 days of patch

2/4/2014

CVE-2014-0497

4/28/2014

CVE-2014-0515

4/17/2015

CVE-2015-0359

5/26/2015

CVE-2015-3090

6/16/2015

CVE-2015-3104

6/27/2015

CVE-2015-3113

7/7/2015

CVE-2015-5119

7/17/2015

CVE-2015-5122

7/21/2015

CVE-2015-1671

2/27/15

CVE-2014-4130

7/24/2015

CVE-2015-2419

8/29/2015

CVE-2015-5560

10/13/2015

CVE-2015-7645

12/12/15

CVE-2015-8446

12/24/2015

CVE-2015-8651

12/29/2015

CVE-2016-1010

3/26/2016

CVE-2016-1001

4/4/2016

CVE-2016-1019

3/18/2016

CVE-2016-4117

5/5/2016

CVE-2016-4171

11/15/2014

CVE-2014-9163
2/11/2015

CVE-2015-3043

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

The number of Microsoft vulnerabilities exploited within 30 days of a patch has
continued to decline Y/Y despite increases in the number of vulnerabilities being
addressed each year

 In the last two years, no zero day exploits for Microsoft RCE vulnerabilities have been
found in-the-wild that work against Internet Explorer 11 on Windows 8.1+

Since releasing Edge one year ago, there have been no zero day exploits found in-the-
wild targeting Edge

Microsoft Edge RCE on WIP Bounty Program

Vulnerability type
Functioning

Exploit
Proof of
concept

Report
Quality

Payout range
(USD) *

Remote Code Execution in

Microsoft Edge on recent

builds of WIP slow

Required Required High Up to $15,000

No Required High Up to $6,000

No Required Low Up to $1,500

• Submit a remote code execution (RCE) vulnerability for Microsoft Edge
• The bugs reported should be on the most recent Windows Insider Preview slow build
• Program duration is August 4 2016 to May 15 2017

Only eligible reported on the latest WIP slow builds will be paid a bounty
• This continues our effort in finding bugs in the earlier stages of development
• Microsoft will pay up to $1,500 for the first external report received on an internally

known issue
• Microsoft will pay up to $15,000 on a previously unknown RCE on Edge

