am Windows

Windows 10 Mitigation Improvements

David Weston, Windows Offensive Security Research (OSR)
Matt Miller, Microsoft Security Response Center (MSRC)

August, 2016

This presentation is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

s Microsoft

Microsoft's approach to data-driven software defense

ow we've adapted red teams to accelerate learnings

Latest & greatest mitigation features in Windows 10

Problem: Augmentmg Preventative Security

% X X Attackers are agile, adaptive, and results
Tr— = focused — effective techniques often
0 00 don'tmap to security boundaries

Market value for exploits is 10x
vulnerabilities — preventative security is
focused on lowest value asset

% Preventative Security

» Preventative Strategy — SDL “Find all the
bugs” before shipping

« Static Security Boundaries

* Focus on component level security —
customer assets, configuration, 3" party
software largely out-of-scope

W/
I
!
i

Attackers invest in developing tool sets
and libraries — no proactive disruption,

* Investigation of exploit and other attack)
J P reactive response only after attacks

techniques out-of-scope

« Engineering driven - Focus on

abstraction to support scale and process .
The cost for attackers is unknown — The

current approach to security is abstracted
from attacks — security effectiveness
against real attacks unknown

« Mitigation design and offensive security
research is ad-hoc and specialized

o o o o o o o e o e

"Assume breach” mitigation strategy augments preventative security

'ware Defense

ol 0101
1010
0101

Strategy: Data-Driven So

4+
4+ H B
I I

Analyze Build Evaluate

Analyze comprehensive Security engineers explore Windows Offensive

set of real world data mitigation concepts with Security Research Team
Identify opportunities product owners (OSR) evaluates

for tactical attack Security engineers mitigations and attempts
disruption and future prototype or productize to identify bypasses
strategic hardening mitigation design Mitigation flaws are

addressed

External Data Sources

I Internal Data Sources I

Microsoft Security

Root Cause Exploit

Telemetry)
Techniques

MSRC Reports

i

Threat intelligence
Partnerships \

Exploit
Analysis
Data Store

©

Open Source/Social
Media

Multi-Dimensional
Exploit Analysis

Exploit Data Process

©

REDTEAM Operations

Ad-hoc internal exploit
development

Mitigation
Insights

ils

Surface Impact

Analysis: High-level vulnerability & exploit trends

of Microsoft RCE/EOP CVEs by patch year % of Microsoft RCE & EOP CVEs
e exploited within 30 days of patch

400 414 100%
95%
90%
350 . 85%
........ 80%
300 75%
w0 R 057 " >0 ggoﬁo
LLL mm e %
>2% e ?

o o B B E
O 200 50%
® e 199 45%
""""" 40%
150 ————— = s 35‘%2
...... 133 1 30%
100 . 11 25%
) 20%
15%

50

122;2 24 18 19 25

0 0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Patch Year Patch Year
E Total e Linear (Total) B Exploited within 30 days of patch B Not known to be exploited

Vulnerabilities are increasing while evidence of actual exploits is decreasing due to mitigation investments

Analysis: Flash Exploit Technique Trends

Exploit Techniques used in Public Flash Exploits (2013-2015)

Prevalence of linear heap corruption
drove adoption of Heap randomization
for Flash on Windows

o)
Arbitrary ~ Bypass:ASLR: Bypass i ASLR Bypass :: DEP :: Code Primitive :: Arbitrary ~ Primitive :: Virtual Table Bypass :: DEP :: Code 70 A"
y RW :: Predictable Region Pre on Rleuse. ROP :: Stack Memory RW :: ByteArray Pointer Overwrite Reuse :: ROP :: Allocate u Use After Free
r Leng Heap Spraying
0, o o 8
ptio 60% W Uninitialized Use
Exploit Technique .
50% B Type Confusion
5 W Stack Corruption
40%
1 .
W Heap Corruption
30%

W Arbitrary Corruption

Worked with Adobe to mitigation via .
Vector Length and ByteArray Mitigations 0%

0%

2013 2014 2015

Exploit technique trend analysis drives new or improved mitigations

Success Story: Internet Explorer

Legend

. Oday exploit in Internet Explorer

. New Internet Explorer Security Feature

4/23/2014 - 5/1/2014 ;50 After-Free hardening v1
CVE-2014-1776

2/12/2014 - 3/11/2014

CVE-2014-0327/19/2014 - 3/11)2
CVE-2014-03

4/1/2014

1/1/2014

6/8/2014

5/1/2014 - 5/13/2014
CVE 2014-1815

7/6/2014
Use-After-Free hardening v,

g%

OWM---)‘-

10/1/2014

7/1/2014

Out-0

11/7/2014

CFG Windows 8.1 Shipped (Optional Update)
CFG for Windows 8.1 Shipped (Default

8/3/2014

f-Date Java Blocking

1/1/2015

7/5/2015

8/18/2015

CVE-2015-2502

Type Protector Shipped

v

10/1/2015
MemGC IE 11

10/1/2015

Year

Patched

RCE CVE

Zero Day
RCE CVE

2013

2014

2015

116

226

188

A focus on mitigations for disruption of invariant techniques used in exploits (ROP, Heap Spraying, UAF)

In 2015 only 6 days with a known zero day Internet Explorer RCE exploit in-the-wild (down from 45, 135)

Vulnerability volume has increased but number of zero day exploits has decreased

Mitigations were a key factor in zero day reduction trends

Microsoft Services Security: Assume Breach
w Prevent Breach

Azure, O365 and other have evolved

the “assume breach” security Zhrdeat model

methodolo
et 2y

III:OCUS on what happgns after a Security development lifecycle

security boundary” is assumed (SDL)

breached

Detection, Containment, Response,

and Recover B Assume Breach

Services “Redteams” used to model

breaches, evaluate detection, and Central security monitors

simulate response process

Hypothesis: We can use the assume breach approach to model exploitation and

drive mitigations

Challenges with Adapting "Assume Breach”
 Mitigations are primarily reactive

I I CFG: suppress sensitive APIs
If dr|Ven by ITW data Flash: Eliminate RWX ATL thunks

« Reactive mitigations take time to Junctions: Prevent sandbox processes
from creating NTFS junctions — TH1

develop Fonts: Move font parsing to user mode
sandbox
 New prOdUCtS do not get Edge: Prevent content processes from
: 11 1 _ " creating child processes
approprlate mltlgathnS Untll Edge: Enable win32k system call
they are attacked restrictions

» We do not get accurate metrics
on exploit and attack
development

How do we design effective mitigations proactively?

REDTEAM: Windows and Devices

Model real-world attacks

» Model attacks based on = Measure Time-to- = Break-it-you-bought-it
ecosystem analysis and Compromise (MTTC) / work with teams to
threat intelligence Pwnage (MTTP) address issues

= Evaluate the customer- = |dentify invariant = Design mitigations to
promises from an attack techniques for mitigation drive up MTTC/MTTP
perspective metrics

= Simulate a real-world

" Provide data sets of incident response before it " Enumerate business and

detection-and-response occurs (process, owners, legal risk
. messaging)

= Attack the full stack in = Show business value,
production configuration = Provide detection guidance priorities, and
(software, configuration, for Defenders investments needs with
hardware, OEMs) demonstrable attacks

Assume Breach: An Inside Look at Cloud Service Provider Security - Russinovich

https://www.rsaconference.com/writable/presentations/file_upload/exp-w01_assume-breach-an-inside-look-at-cloud-service-provider-security.pdf

REDTEAM Offensive Modeling Outcomes

The Offensive Security Research team (OSR) operating for over a year in the
Windows and Devices group

Focused on end-to-end exploitation of common software/hardware
scenarios — most without a prior known public attack

Proactively discovered many new exploit techniques — drove mitigations
into new versions of Windows prior to public use of technique

Exploit invariants shared with Defender/ATP (BLUETEAM) to drive detection
In-the-wild

Demonstrated fundamental new memory corruption techniques and
designed new general RCE mitigation for future version of Windows

Offensive security modeling is now a core pillar of Microsoft

security strategy

Mitigation Improvements In
Windows 10

L ayered, data-driven software defense in Windows 10

Our Make it difficult & costly to find, exploit, and
Strateqgy leverage software vulnerabilities
Eliminate entire classes of vulnerabilities
Our
Tactics

Break epr0|tat|on techniques
Contaln damage & prevent persistence

Limit the window of opportunity to epr0|t

Acknowledgements

Many teams and individuals worked very hard on what we are about to talk about

Internet Explorer, Edge, & Chakra

SmartScreen

Visual Studio

Windows & Devices Group (WDG)

Microsoft Security Response Center (MSRC)
& C+E Security

Microsoft Research (MSR)

Dave Buchthal, Shubham Chopra, Crispin Cowan, Bo Cupp, Mike Decker, Jim Fox, Matt Gradwohl, John Hazen, C.J.
Hebert, Forbes Higman, Michael Howell, Sermet Iskin, Rick James, Riff Jiang, Venkat Kudallur, Louis Lafreniere, Curtis
Man, Ed Maurer, Bruce Morgan, Kamen Moutafov, Zach Murphy, Vidya Nallathimmayyagari, Justin Rogers, Todd
Sahl, Saranya Kalpathy Seshadri, Bob Schroder, Kirk Sykora, Jason Weber

Costas Boulis, Ryan Colvin, Jeb Haber, Jeff McKune, Anthony Penta

Natalia Glagoleva, Shayne Hiet-Block, Jim Hogg, Jim Radigan, Asmaa Taha, YongKang Zhu

Patrick Azzarello, Vassil Bakalov, Jasika Bawa, Thorsten Brunklaus, Brandon Caldwell, Eric Douglas, Dustin Duran,
Michael Fortin, Daniel Frampton, Saruhan Karademir, Leif Kornstaedt, Aaron Lahman, Arun Kishan, Ryan Kivett,
Daniel Libby, Niraj Majmudar, Dave Midturi, Cody Nicewanner, Roman Porter, Maliha Qureshi, Jordan Rabet, Vijesh
Shetty, Nathan Starr, Brady Thornton, Prabhakar Hampanna Vrushabendrappa, Landy Wang, David Weston, Arden
White, Arthur Wongtschowski

Chris Betz, Joe Bialek, Tim Burrell, Suha Can, Sweety Chauhan, Vishal Chauhan, Richard van Eeden, Stephen Fleming,
Swamy Shivaganga Nagaraju, Nitin Kumar Goel, John Lambert, Ken Johnson, Matt Miller, Michael Plucinski, Shawn
Richardson, Axel Souchet, Gavin Thomas

Richard Black, Miguel Castro, Manuel Costa, Austin Donnelly

We would also like to thank our Mitigation Bypass & Defense Bounty participants for helping us improve our defenses!

Our sincere apologies to anyone who we have unintentionally failed to list — so many people have contributed!

Eliminating classes of
vulnerabilities

We move beyond the "hand-to-hand combat” of finding and fixing individual issues by identifying
ways to eliminate entire classes of vulnerabilities

Goal: Increase attacker cost of finding exploitable vulnerabilities

We closely study vulnerability root cause trends

Microsoft security engineers categorize the root cause of every vulnerability and look for patterns

Stack corruption issues have

100% —— - been essentially eliminated
90%
80%
70%

60% .
00, Use after free issues rose

40% dramatically in 2013 & 2014

zg; but have since decreased

10%
0%

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Heap Out-Of-bOUndS read
B Use After Free B Heap Corruption B Other @ Type Confusion type ConfUSiOn and DLL ’

O Heap OOB Read @ Uninitialized Use O Stack Corruption

planting have increased

Root causes of Windows, Internet Explorer, and Edge Remote Code Execution (RCE) CVEs by patch year

Memory Garbage Collection (MemGC)

The vast majority of the use after free issues we observed were in our DOM engine in Internet Explorer

// 1. Allocate object
p = new COptionElement();

Without

p->Foo(),

// 3. Use freed object

// 2. Free object
MemGC delete p;

Attacker reallocates p as
a new type

// 2. Zero object, but don't free
ZeroMemory(p, sizeof(T));

Applies to

// 3. Garbage collection phase
frees all objects with no references
(stack, registers, heap)

Eliminate entire classes of vulnerabilities Edge on Windows 10 and backported to IE9+ on Windows Vista+

MemGC is a conservative
garbage collector (GC) for
our DOM engine that

makes DOM use after free
iIssues non-exploitable

First shipped

July, 2015 (Windows 10 RTM)

Type confusion protection

In late 2014, we began investigating ways to eliminate type confusion issues as these were being increasingly reported

We found that ~50% were due to bad casts Of which ~50% appeared to be recurring patterns

IE Type Confusion Cases Bad Casts

M CTreeNode/CGeneratedTreeNaode

W CMarkupfCSecurityContext

W TableCellBlock/ComputedContentM
easureBlock

N Bad Casting
CCaretTracker/CSelTrackServices

 Variant Type Mismatch
¥ Incorrect / Missing Checks m NameThbl

Branching on a wrong CTreePos
m ContainerBox,/SvgContainerBox

M CTreePos/CTreeDataPos

M Element/CTreeDataPos

Categories of type confusion issues observed from 2012 through 2014 Classes that were involved in type confusions resulting from bad casts

We introduced additional checks to eliminate ~50% of type confusions (recurring bad casts and branching on wrong CTreePos)

Applies to First shipped

Eliminate entire classes of vulnerabilities Edge and IE11 on Windows 10 and backported to IE10+ on Windows 7+ July, 2015 (Windows 10 RTM)

Fdge attack surface reduction

With the Edge browser, we also seized the opportunity to drastically reduce the attack surface exposed to the web

In the past year

v'No Iegacy document modes Edge had 56% fewer RCE CVEs
‘/ | . . VBS . JS . compared to Internet Explorer

NO egacy Scrlpt englnes (Crlpt’ Crlpt) Internet Explorer RCE CVEs decreased
v'"No Vector Markup Language (VML) -
v

No Toolbars | o
v"No Browser Helper Objects (BHOs)
‘/NO ACtIVGX ContrOIS Internet Explorer 81 47

0 50 100 150
Tons of code was removed as a result! SR LIS = e S
B H2 (Feb 2016 - Jul 2016)

Applies to First shipped

Eliminate entire classes of vulnerabilities Edge on Windows 10 July, 2015 (Windows 10 RTM)

Breaking exploitation
techniques

We assume that we won't be able to eliminate all vulnerabilities, so we look for ways to break the
techniques that attackers can use to exploit them

Goal: Increase attacker cost of developing a reliable exploit for a vulnerability

Exploiting vulnerabilities has become increasingly difficult

Exploitation used to be simple Now, it is much more involved

Circa 2003; exploit steps for CVE-2003-0344 The Info leak era of v" Place array length at a predictable
: oo location (via heap spray/massage)
‘/ 1 software exptlottation .)
Trlgger stack buffer overrun Fermin Serna, Black Hat 2012 v MOdlfy.array leng.th via memory .
v Overwrite return address with corruption, enabling arbitrary read/write
: " " Exploits start relying v" Use arbitrary read/write to discover DLL
v Exploits start relying on address space base address
reerte-shelcose—frormthrestac non ASLR DL ' ' .
I [R(t)% 'Qf;ﬁg‘j};‘;g‘ v Construct ROP payload by searching for
v" Arbitrary native code execution ® to bypass DEP code sequences in the DLL

v" Corrupt C++ virtual table pointer and

Windows 8 adds trigger virtual method call to first gadget

Internet Explorer 8 Force ASLR; IE10 v" Execute ROP payload (typically to make
enables DEP enables it shellcode executable)

Kills heap Kills all predictable v" Execute arbitrary native code
images

2006 2007 2008 2009 2010 2011 2012 PANE 2014 2015 2016
\ A A J

! ! !
Code heap spraying era Non-ASLR DLL era Arbitrary read/write era

Windows Vista
enables ASLR

Kills (most)
predictable images

spraying of code

v" Escape the sandbox (or operate inside it)

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/windows/browser/ms03_020_ie_objecttype.rb

User mode exploit mitigations

o4-bit browsing by default

Heap spraying has been a standard technique used by nearly every browser exploit

Heap spraying example from Metasploit [1]

32-bit address space (2GB)

64-bit address space (128TB)

var memory = new Array();
function sprayHeap(shellcode, heapSprayAddr, heapBlockSize) {
var index;
var heapSprayAddr_hi = (heapSprayAddr >> 16).toString(16);
var heapSprayAddr_lo = (heapSprayAddr & oxffff).toString(16);
while (heapSprayAddr_hi.length < 4) { heapSprayAddr_hi = "@" + heapSprayAddr_hi; }
while (heapSprayAddr_lo.length < 4) { heapSprayAddr_lo = "0" + heapSprayAddr_lo; }

var retSlide = unescape("%u" + heapSprayAddr_hi + "%u" + heapSprayAddr_lo);
while (retSlide.length < heapBlockSize) { retSlide += retSlide; }
retSlide = retSlide.substring(®, heapBlockSize - shellcode.length);

var heapBlockCnt = (heapSprayAddr - heapBlockSize) / heapBlockSize;
for (index = ©@; index < heapBlockCnt; index++) {
memory[index] = retSlide + shellcode;

}

Heap sprayed data

High Entropy ASLR
introduces 1TB of
random variance into
where heaps start
(24 bits of entropy)

[1] https://github.com/rapid7/metasploit-framework/blob/master/data/js/memory/heap_spray.js

Majority of Windows 10 devices are running a 64-bit version of Windows & Edge

32-bit address space is small and easy to spray

64-bit address space with High Entropy ASLR
makes traditional heap spraying impractical

Attackers must have an additional information disclosure

Applies to First shipped

Breaking exploitation techniques Edge on Windows 10

July, 2015 (Windows 10 RTM)

Compile time Runtime

while (1)

{
if (this.s[index][j] == ex@@e10cae && this.s[index][j+8x@9] == @u1234) void FOO(. ..) {
{ . . , , // SomeFunc is address-taken *Update valid call target data
soundobjref =,thls'sllndex][3+wm]; // and may be called indirectly with metadata from PE image
dec = soundobjref-cvaddr-1; .
K K Object->FuncPtr = SomeFunc;
this.s[index][dec/4-2] = cvaddr+2*4+4%4;
break; }
’ Metadata is automatically added to the image which
Soes identifies functions that may be called indirectly Process
; *Map valid call target data
H : Start
_ void Bar(...) {
/* Run Payload */ // Compiler-inserted check to
this.sound.toString(); — TranSf,ers control to a // verify call target is valid
stack pivot ROP gadget _guard_check_icall(Object->FuncPtr); o
Object->FuncPtr(xyz); Indirect «Perform O(1) validity check
} Call *Terminate process if invalid

With CFG in place, traditional ROP gadgets and other invalid functions target

A lightweight check is inserted prior to indirect calls
which will verify that the call target is valid at runtime

cannot be called indirectly

[1] https://github.com/rapid7/metasploit-framework/blob/abd76c50000e75bcac0616b96cd8583e1df3927f/external/source/exploits/CVE-2014-0322/AsXploit.as

Applies to First shipped

Breaking exploitation techniques Edge on Windows 10 and IE11 on Windows 8.1+ November, 2014 (Windows 8.1 Update 3)

Control Flow Guard Bypasses & Enhancements

Like all mitigations, CFG has by design limitations that place constraints on its overall effectiveness

v" Return addresses are not protected v Valid functions can be called out of context v “Fail-open” design for compatibility

Since shipping CFG, researchers have identified bypasses and additional enhancements have been made

Non-enlightened Just-in-Time (JIT) compilers

Mitigated in latest version of Edge on Windows 10 (Chakra, Adobe Flash, and WARP)
can be abused

Multiple non-instrumented indirect calls

reported to our Mitigation Bypass Bounty Mitigated in latest version of Edge on Windows 10

NtContinue/longjmp — mitigated for all CFG enabled apps on Windows 10

VirtualProtect/VirtualAlloc — mitigated in latest version of Edge on Windows 10
Calling sensitive APIs out of context
LoadLibrary — mitigated in latest version of Edge on Windows 10 via code integrity

WinExec — mitigated in Edge on Windows 10 anniversary edition via child process policy

Corrupting return addresses on the stack Known limitation that we intend to address with new technology (e.g. with Intel CET)

We are continuing to explore ways to improve CFG to more strongly prevent control-flow hijacking

https://technet.microsoft.com/en-us/security/dn425049.aspx

- bi . |

Code integrity & image load restrictions

Exploits can attempt to inject and run arbitrary code by causing a malicious DLL to be loaded

Windows 10 allows processes to enable code integrity and image load restrictions to prevent malicious DLLs from being loaded

“LoadLibrary” via JavaScript
. Download a DLL by XMLHttp:'eyquest object, the file will be temporari?y saved DLL Ioad I ng restriCtionS oL pported by
in the cache directory of IE; ' Windows 10

. Use "Scripting.FileSystemObject" to search the cache directory to find that

DLL;
. Use "Scripting.FileSystemObject" to create a directory named "System32", v On|y DrODeH\/ SIg ned IMades can be loaded
copy the DLL into that directory, and named it as "shell32.dII*; (MicrOSOﬁ WHQL Store or DRM Slg ﬂed)

. Modify the "SystemRoot" environment variable of current process via
"WScript.Shell" object to the upper directory of the "System32" directory
created just now;

. Create "Shell. Application” object, trigger to loading v Binaries on remote devices (U N C/\/\/e b DA\/)

“%SystemRoot%\System32\shell32_dII".
g y cannot be loaded

bib&khat

Example of such an attack provided by Yang Yu @ Black Hat USA 2014

An additional benefit: these restrictions help prevent unwanted DLLs from being injected into processes that enable them

Applies to First shipped

Breaking exploitation techniques Edge on Windows 10 and opt-in for other apps November, 2015 (Windows 10 1511 update)

https://www.blackhat.com/docs/us-14/materials/us-14-Yu-Write-Once-Pwn-Anywhere.pdf
https://blogs.windows.com/msedgedev/2015/11/17/microsoft-edge-module-code-integrity/

Dynamic code restrictions = sessermsesse

Nearly all exploits rely on creating new executable code pages that contain their shellcode
Windows 10 allows processes to enable dynamic code generation restrictions which imposes WAX invariants

Code Is immutable Data cannot become code

Code pages cannot become writable via Data pages cannot become executable via
VirtualProtect or initially allocated as WX VirtualProtect or initially allocated as WX

Combined with image load restrictions, this prevents all forms of unsigned arbitrary code injection within a process

Applies to First shipped

Breaking exploitation techniques Opt-in by process on Windows 8.1+ August, 2013 (Windows 8.1 RTM)

Kernel mode exploit mitigations

Windows 10 Virtualization-Based Security (VBS)

Hyper-V on Windows 10 enables a suite of robust protection features for the host and guest kernels

Virtual Secure Mode (VSM) architecture Mitigations enabled by Hyper-V & VSM

Normal Mode (VTLO)

v" Hyper Guard

* Prevents maodification of key MSRs, control
registers, and descriptor table registers

* Example: SMEP cannot be disabled

Windows

Secure Mode (VTLT)

e e e e e e

Secure Kernel
User User v" Hypervisor-Enforced Code Integrity (HVCI)
mode mode » Only properly signed kernel pages can
— - 7 N el become executable
mode | eolltiiiooill bl [plesiiin Ll mode

y : v" Robust even if an attacker can perform arbitrary
ypervisor read/write in VTLO kernel

https://channel9.msdn.com/Blogs/Seth-Juarez/Windows-10-Virtual-Secure-Mode-with-David-Hepkin

Applies to First shipped

Breaking exploitation techniques Windows 10 with Hyper-V enabled July, 2015 (Windows 10 RTM)

Windows Kernel 64-bit ASLR Improvements

Predictable kernel address space layout has made it easier to exploit certain types of kernel vulnerabilities

64-bit kernel address space layout is now dynamic Various address space disclosures have been fixed
47 39 38 30 29 21 20 12 11 0
Linear address PML4 Directory ptr Directory Table Offset 4 Page tab|e Self_map and PEN database A
randomized
+ Dynamic value relocation fixups are used to
256
Systiem Fegfon FRJLA eniifes am preserve constant address references
randomized
¥ Non-paged pool v SIDT/SGDT kernel address disclosure is prevented
v Paged pool Getting Physical when Hyper-V is enabled
v' System cache P * Hypervisor traps these instructions and hides
v PEN database x ot the true descriptor base from CPL>0
7 Page tables R
v .. and soon x omote bypase v GDI shared handle table no longer discloses
512 kernel addresses

===============

Applies to First shipped

Breaking exploitation techniques Windows 10 64-bit kernel August, 2016 (Windows 10 Anniversary Edition)

Enabling opt-in mitigations

Mitigation How to opt-in

Control Flow Guard Compile and link with /guard:cf (requires Visual Studio 2015 Update 2+)

« SetProcessMitigationPolicy with ProcessimagelLoadPolicy

Image lese esileles UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

» SetProcessMitigationPolicy with ProcessSignaturePolicy

PR G ITIEEE/E7 (ESMETns UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

» SetProcessMitigationPolicy with ProcessDynamicCodePolicy

DHIEITIIE Gl & Mo UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY

Child process restrictions UpdateProcThreadAttribute with PROC_THREAD_ATTRIBUTE_CHILD_PROCESS_POLICY

« Set HypervisorEnforcedCodelntegrity (REG_DWORD) to 1 in

e HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard

For more information: https://aka.ms/setprocessmitigationpolicy

https://aka.ms/setprocessmitigationpolicy

Containing damage &
preventing persistence

We assume that we won't be able to prevent exploitation in all cases, so we look for ways to effectively isolate and
contain the damage if a vulnerability is successfully exploited

Goal: Increase attacker cost of effectively leveraging an exploit for a vulnerability

AppContainer (AC)

AppContainer provides strong sandboxing and isolation for applications on Windows

v~ Store apps all run within an

Win32 Store App User Mode Font Edge Al
Process AppContainer Driver Host
AppContainer Manager Content Adobe Flash

v" Font parsing is now done in

AppContainer B
op user mode within an AC

AppContainer AppContainer

v" Edge uses a multi-AC design
for isolation

System Call Filter

New in Windows 10 Anniversary
Edition

v" Adobe Flash has now been
moved to its own AC

Win32k.sys Font

Windows kernel .
Parsing

System Calls

Security boundary Microsoft will address vulnerabilities that can violate AC security boundary
AppContainer . , . : :
I;':operties Capability-based resource access Network, file, registry, and device access are restricted (both read and write) v Win32k system call ﬁltermg 1S
Locked down process No symbolic links, reduced attack surface, and various mitigations on by default enabled for Edge

Applies to First shipped

Containing damage & preventing persistence Multiple applications August, 2012 (Windows 8)

Limiting the window of
opportunity to exploit

Assuming all else fails, we look to have effective tools and processes to limit the scope and window of opportunity for
attackers to leverage an exploit for a vulnerability

Goal: Minimize an attacker’s return on investment from the use of an exploit for a vulnerability

Reducing the attacker’s window of opportunity

Ra p I d |y « Mobilize engineering teams to quickly understand and develop a fix for

Respond

a vulnerability

Ra Id | « Use SmartScreen and other technologies to protect customers from in-
p y the-wild attacks

 Enable Microsoft Active Protection Program (MAPP) partners to protect

P rOte Ct the broader ecosystem

 Broadly deploy and install security updates to quickly minimize the
affected population size

Conclusion

Security is more than just the code you write

We apply our strategy beyond Microsoft by working with our partners to help improve Windows platform security

We've worked closely with Adobe to help harden Flash Player We've worked with Intel to help design CET

v" Control-flow Enforcement Technology
Legend 11/15/2014 - CVE-2015-5122 4/20/2015 c ET
. Exploited within 10 days of patch clmeoTee UEAISEE SUEUEEE ()
. Exploited as Oday C\ E :‘w liﬂxj\m 1 | i
— _— e e .. 'L% it * Indirect branch tracking via
1/16/2015 CVE-2014-4130 CVE-2015-3104 CVYE-2015-2419 (\/E—HHE—L;".%
CVE-2015-0310 55> 5/26/2015 5/5/2016 E N D B RAN C H
CVE 2015- CVE-2015-3090 7/7/R015 CVE-2016-4171
/2072015 . X " 4/4/2016
cvé/ii/wzzlogiw CVE-2014:0 Eqw , ‘ N 5/574/2/920@15/;031/5071;\/%2/24/2015 CVE-2016-1019 ° R dd . H
N\ H N R eturn address protection via
CVE-2014-0497 NQVE=2014-0569 /o019 ce-do1d-4i3 h d k
11/11/2074 Nwraors | S shadow Stac
L E-2014-8440 CVE-2015-0359
‘ v" Hardware-assists for helping to mitigate
@, 0 (4 L 9 @, @0,

control-flow hijacking & ROP

April 2014 July 2014 October 2014 Januan y 2015 April 2015 July 2015 October 2015 Januar y 2016 April 2016 July 2016

Array Length : s
ByteArray Isolation Flash out-of-process

Preview specification:

https://software.intel.com/sites/default/files/managed/
4d/2a/control-flow-enforcement-technology-
preview.pdf

CFG/JIT hardening Heap Hardening UAF Hardening

https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Measuring the impact of our strategy so far

We've made measurable progress on improving customer safety

v"The number of Microsoft vulnerabilities exploited within 30 days of a patch has
continued to decline Y/Y despite increases in the number of vulnerabilities being
addressed each year

v"In the last two years, no zero day exploits for Microsoft RCE vulnerabilities have been
found in-the-wild that work against Internet Explorer 11 on Windows 8.1+

v Since releasing Edge one year ago, there have been no zero day exploits found in-the-
wild targeting Edge

Windows 10 and Edge are always up-to-date Our data-driven and red team assisted

and offer strong defenses against modern
threats

approach strongly positions us to identify &
deliver impactful mitigations

Microsoft Edge RCE on WIP Bounty Program

* Submit a remote code execution (RCE) vulnerability for Microsoft Edge

The bugs reported should be on the most recent Windows Insider Preview slow build
Program duration is August 4 2016 to May 15 2017

Only eligible reported on the latest WIP slow builds will be paid a bounty

This continues our effort in finding bugs in the earlier stages of development
Microsoft will pay up to $1,500 for the first external report received on an internally
known issue

Microsoft will pay up to $15,000 on a previously unknown RCE on Edge

- Functioning Proof of Report Payout range
Vulnerability type Exploit concept Quality (USD) *
Remote Code Execution in Required Required High Up to 515,000
Microsoft Edge on recent |No Required | High Up to $6,000
builds of WIP slow No Required Low Up to $1,500

—= Microsoft

© 2016 Microsoft. All rights reserved. Microsoft, Windows and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries. The information herein is for informational purposes only and represents the current view of
Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information
provided after the date of this presentation. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

