
USE IMPROVE EVANGELIZE

OpenSolaris:
Dynamic Tracing: DTrace
(abbreviated from Jim Mauro's Usenix preso)

Harry J Foxwell, PhD
Principal Consultant
Oracle Corporation

harry.foxwell@oracle.com

2

USE IMPROVE EVANGELIZE

Acknowledgements
● Some of this material represents an aggregation and consolidation of

existing material, including the original Usenix paper*. A significant
amount of the material contained in these slides was inserted from
the slide sets, blogs, emails, letters, post cards, faxes, telegrams
and sticky notes of others:

● Stefan Parvu
● Brendan Gregg
● Bryan Cantrill
● Mike Shapiro
● Adam Leventhal
● Jon Haslam
● Bart Smaalders
● Jarod Jenson
● Chad Mynhier
● Jim Fiori
● Jonathan Adams

● John Birrell
● Simon Ritter
● Angelo Rajadurai
● Bob Netherton
● Peter Karlsson
● Roch Bourbonnais
● Richard McDougall
● Keith McGuigan
● John Levon
● Chip Bennett
● Jim Mauro

*http://www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf

3

USE IMPROVE EVANGELIZE

Resources
● DTrace documentation

http://wikis.sun.com/display/DTrace/Documentation

● DTrace tutorials, scripts, etc
http://www.solarisinternals.com/wiki/index.php/DTrace_Topics

● DTrace community (lots 'o stuff)
http://www.opensolaris.org/os/community/dtrace/

● DTrace ToolKit
http://www.brendangregg.com/dtrace.html#DTraceToolkit

● Blogs, blogs, blogs
http://blogs.sun.com

http://blogs.sun.com/

4

USE IMPROVE EVANGELIZE

Scripts!
● Sample commands and scripts

/usr/demo/dtrace/*.d (on Solaris 10 and OpenSolaris)

http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_One_Liners

http://www.nbl.fi/~nbl97/solaris/dtrace/index.html

http://www.solarisinternals.com/si/dtrace/index.php

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

http://www.solarisinternals.com/wiki/index.php/DTrace_Topics_One_Liners
http://www.nbl.fi/~nbl97/solaris/dtrace/index.html
http://www.solarisinternals.com/si/dtrace/index.php
http://www.opensolaris.org/os/community/dtrace/dtracetoolkit/

5

USE IMPROVE EVANGELIZE

What is DTrace?
● DTrace is a facility for the dynamic instrumentation of

production systems, for the purpose of troubleshooting
and analysis.

– First introduced in Solaris 10 (3/05)

– Ported to Mac OS X and FreeBSD

– but not Linux (See SystemTap instead)

● DTrace is many things, in particular:
– An instrumentation framework

– A programming language

● DTrace provides observability across the entire software
stack from one tool. This allows you to examine software
execution like never before.

– Instrument kernel and user software in a unified fashion

6

USE IMPROVE EVANGELIZE

System Analysis
● Traditional development and debugging tools are

tightly bound to the language and/or development
framework
– SunStudio, IDE tools, etc

– Lack system view process only or kernel only)

● System tools lack correlation to the workload
– sar, mpstat, vmstat, iostat, etc

– You can see what the system is doing, but...

● Hard to debug transient problems with truss(1),
pstack(1), prstat(1M), etc

● Only mdb(1) designed for systemic problems, but
intended for postmortem analysis

– mdb(1) is useful for some live system views

7

USE IMPROVE EVANGELIZE

DTrace
● A powerful framework for real-time analysis

and observability. System and process centric
● Dynamic instrumentation of the kernel and

applications
● Dynamically interpreted language allows for

arbitrary actions and predicates in multiple
points of instrumentation

● Designed for live production systems:
– a totally safe way to inspect live data on

production systems

USE IMPROVE EVANGELIZE

DTrace's system-wide view
allows you to “connect the
dots!”, correlating system

activity to the workload

“what's the
system doing?”

“what are the
processes doing?”

9

USE IMPROVE EVANGELIZE

DTrace

An Observability Revolution

● Ease-of-use and instant gratification engenders
serious hypothesis testing

● Instrumentation directed by high-level control
language (not unlike AWK or C) for easy
scripting and command line use
– Build your DTrace toolbox

● Comprehensive probe coverage and powerful
data management allow for concise answers to
arbitrary questions
– What are these system calls, and who's executing

them?

10

USE IMPROVE EVANGELIZE

DTrace
● Safe and comprehensive: tens-of-thousands of

data monitoring points (dtrace -l)
– Inspect kernel and user space

● Reduced costs: problems usually found in
minutes or hours, not days or weeks

● Flexibility: DTrace lets you create your own
custom programs to dynamically instrument
the system

● No need to instrument your applications via
source code modifications; no need to stop or
restart them

11

USE IMPROVE EVANGELIZE

The Entire Software Stack
● How did you analyze these?

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

 Dynamic Languages

Hardware

Examples:

Java, JavaScript, ...

compiled code, /usr/bin/*

/usr/lib/*

VFS, DNLC, UFS,
ZFS, TCP, IP, ...
sd, st, hme, eri, ...

man -s2

NIC, disk data controller, CPU

File Systems

12

USE IMPROVE EVANGELIZE

The Entire Software Stack
● It was possible, but difficult.

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

Previously:

debuggers

truss -ua.out

apptrace, sotruss

prex; tnf*
lockstat
mdb

truss

kstat, PICs, guesswork

File Systems

13

USE IMPROVE EVANGELIZE

The Entire Software Stack
● DTrace is all seeing:

Kernel
Memory
allocation SchedulerDevice Drivers

Syscall Interface

Libraries

User Executable

Dynamic Languages

Hardware

DTrace visibility:

Yes, with providers

Yes

Yes

Yes

Yes

Yes (to some extent,
very recent)

File Systems

14

USE IMPROVE EVANGELIZE

Syscall Example
● Using truss,

$ truss date
execve("/usr/bin/date", 0x08047C9C, 0x08047CA4) argc = 1
resolvepath("/usr/lib/ld.so.1", "/lib/ld.so.1", 1023) = 12
resolvepath("/usr/bin/date", "/usr/bin/date", 1023) = 13
xstat(2, "/usr/bin/date", 0x08047A58) = 0
open("/var/ld/ld.config", O_RDONLY) = 3
fxstat(2, 3, 0x08047988) = 0
mmap(0x00000000, 152, PROT_READ, MAP_SHARED, 3, 0) = 0xFEFB0000
close(3) = 0
mmap(0x00000000, 4096, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_ANON, -1
sysconfig(_CONFIG_PAGESIZE) = 4096
[...]

Only examine 1 process

Output is
limited to
provided
options

truss slows down the target (probe effect)

15

USE IMPROVE EVANGELIZE

Syscall Example
● Using DTrace

dtrace -n 'syscall:::entry { printf("%16s %x %x", execname, arg0, arg1); }'
dtrace: description 'syscall:::entry ' matched 233 probes
CPU ID FUNCTION:NAME
 1 75943 read:entry Xorg f 8047130
 1 76211 setitimer:entry Xorg 0 8047610
 1 76143 writev:entry Xorg 22 80477f8
 1 76255 pollsys:entry Xorg 8046da0 1a
 1 75943 read:entry Xorg 22 85121b0
 1 76035 ioctl:entry soffice.bin 6 5301
 1 76035 ioctl:entry soffice.bin 6 5301
 1 76255 pollsys:entry soffice.bin 8047530 2
[...]

You choose the output

Watch every processMinimum performance cost

You can select which syscall(s)

16

USE IMPROVE EVANGELIZE

DTrace Features*
● Dynamic

Instrumentation
● Unified

Instrumentation
● Arbitrary-context

kernel
instrumentation

● Data integrity
● Arbitrary actions

● Predicates
● High-level control

language
● Scalable data

aggregation
● Speculative tracing
● Scalable architecture
● Virtualized

consumers

*http://www.sun.com/bigadmin/content/dtrace/dtrace_usenix.pdf

17

USE IMPROVE EVANGELIZE

What is DTrace For?
● Troubleshooting performance problems

– Profile applications and the kernel

– latency measurements

– Looking for areas for improvement even when performance is
acceptable

● Troubleshooting software bugs
– Proving what the problem is, and isn't.

– Measuring the magnitude of the problem.

● Detailed observability
– Observing the kernel

– Observing devices, such as disk or network activity.

– Observing applications, whether they are from Sun,
3rd party, or in-house.

18

USE IMPROVE EVANGELIZE

A Few Words on Operating System
Support of DTrace...

19

USE IMPROVE EVANGELIZE

DTrace in Solaris/OpenSolaris
● Check out Bryan's blog on DTrace's 5th birthday

for some cool history and trivia
http://blogs.sun.com/bmc/

● DTrace was integrated into Solaris 10, and
available with Solaris 10 3/05

● Additional features added in subsequent releases
– OpenSolaris on the leading edge

● Use the Wiki site for most recent documentation
http://wikis.sun.com/display/DTrace/Documentation

● Solaris Process Privileges enable non-root users to
use DTrace (e.g. in zones!)
dtrace_user, dtrace_proc, dtrace_kernel

http://blogs.sun.com/bmc/
http://wikis.sun.com/display/DTrace/Documentation

20

USE IMPROVE EVANGELIZE

DTrace in Mac OS X
● Added to Leopard (10.5)
● Not all providers implemented

– e.g. sched not there...

– some are intentionally omitted (DRM issue!)
● Instruments is built on DTrace
● pid provider, and plockstat are implemented!

macosx> plockstat -A -p 37476
^C
Mutex hold

Count nsec Lock Caller

 1057 55473 0x16886fc4 0x1fec60
 62 490985 0x605845c 0x1fec60
 741 20183 0x58395cc 0x1fec60
 72 194605 0x58395cc 0x1fec60
 5 558552 0x605845c 0x1fec60
 50 52090 0x16886fc4 0x1fec60

21

USE IMPROVE EVANGELIZE

DTrace in FreeBSD
● DTrace is available in FreeBSD, beginning with the

7.1 beta bits
– Currently downloadable from the FreeBSD site

● After installing, you need to do a kernel build, reboot,
and load the dtrace module
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dtrace-enable.html

– Don't forget “kldload dtraceall” after you reboot! (I did, even though it's in the
documentation!)

● Several providers not yet implemented
● Thus far, I have limited experience with the FreeBSD

DTrace functionality
freebsd# uname -a
FreeBSD freebsd.localdomain 7.1-BETA FreeBSD 7.1-BETA #0: <...> i386
freebsd# dtrace -l | wc -l
 33198

freebsd#

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/dtrace-enable.html

22

USE IMPROVE EVANGELIZE

DTrace Components
● Probes

– A point of instrumentation and data generation

● Providers
– A major component of DTrace, Providers manage

probes of specific types, and for a specific area of the
system

• syscall, io, sched, proc, vminfo, etc

● Consumers
– Users of the framework

 dtrace(1), lockstat(1), plockstat(1),
intrstat(1)

23

USE IMPROVE EVANGELIZE

DTrace User Components
● Predicates

– User-defined conditional statements evaluated when
probes fire

– Provides a control flow mechanism for your D
programs – data pruning at the source

● Actions
– What to do when the probe fires

Data to gather
Timestamps for profiling
Many other actions supported

24

USE IMPROVE EVANGELIZE

DTrace – What Happens
● dtrace command compiles the D language Script.
● Intermediate code checked for safety (like java).
● The compiled code is executed in the kernel by

DTrace.
● DTrace instructs the provider to enable the probes
● As soon as the D program exits all instrumentation

removed
● No limit (except system resources) on number of D

scripts that can be run simultaneously
● Different users can debug the system simultaneously

without causing data corruption or collision issues.

25

USE IMPROVE EVANGELIZE

DTrace – The Big Picture

dtrace(1M)
lockstat(1M)

plockstat(1M)

libdtrace(3LIB)

dtrace(7D)

DTrace

script.d

userland

kernel

dtrace
consumers

sysinfo vminfo fasttrap

sdtsyscall fbtproc
dtrace
providers

io sched

26

USE IMPROVE EVANGELIZE

DTrace – On The Inside - Safety

● Inside interpreter: in the kernel space that interprets
instructions and verifies that each pointer is safe to
access or read

● Protection against memory violations – accessing a
userland memory address results in a disabled probe

● No loops, avoids the Halting Problem
– “Given a description of a program and its initial

input, determine whether the program, when
executed on this input, ever halts (completes).
The alternative is that it runs forever without
halting. We say that the halting problem is
undecidable over Turing machines.”

– http://en.wikipedia.org/wiki/Halting_problem

http://en.wikipedia.org/wiki/Halting_problem

27

USE IMPROVE EVANGELIZE

DTrace Safety – A Bit More...
● “...the most fundamental is the principle of safety: DTrace

must not be able to accidentally induce system failure.” *
● Probes are provided by instrumentation providers that

guarantee their safety *

– Users are not permitted to arbitrarily select
instrumentation points

● While in probe context, DTrace itself must not call into any
facilities in the kernel-at-large *
– Probe context – protection against recursion

● Safe execution of user probe actions and predicates
– Non-native execution: runs in a virtual machine

– DTrace D programs compiled into a safe intermediate
format for execution, and validated for safety

* http://blogs.sun.com/bmc/entry/dtrace_safety - Bryan Cantrill

http://blogs.sun.com/bmc/entry/dtrace_safety

28

USE IMPROVE EVANGELIZE

Running DTrace
● Only root allowed to run DTrace by default

– Solaris, OS X and FreeBSD
● In Solaris, process privileges can grant dtrace permission to

non-root users;
$ ppriv -l | grep dtrace

dtrace_kernel Allow DTrace kernel-level tracing

dtrace_proc Allow DTrace process-level tracing. Allow process-level tracing probes
to be placed and enabled in processes to which the user has perms

dtrace_user Allow DTrace user-level tracing. Allow use of the syscall and profile
DTrace providers to examine processes for which the user has
permissions

– Enable using usermod utility
usermod -K defaultpriv=basic,dtrace_kernel,\
dtrace_proc,dtrace_user username

29

USE IMPROVE EVANGELIZE

DTrace Framework
● Probes and Providers
● Actions and Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

30

USE IMPROVE EVANGELIZE

DTrace Probes
● A point of instrumentation, made available by a

provider, which has a unique name
● A four-tuple name uniquely identifies every probe;
provider:module:function:name

– provider: the DTrace provider that manages the probe (DTrace
kernel module)

– module: kernel module or user library where the probe is
located

– function: kernel or user function containing the probe

– name: represents an entry point in that function (e.g. entry or
return), or has a meaningful name (e.g. io:::start,
proc:::exec)

– missing component means wildcard

31

USE IMPROVE EVANGELIZE

Probes
● Anchored Probes

– Instrument a specific point in code, e.g.

fbt:ufs:ufs_read:entry

io:::start

ip:::receive

● Unanchored Probes
– Are not associated with a specific location in code

– Do not have a module or function component to their
name

– profile and tick

profile-997hz, tick-10sec

32

USE IMPROVE EVANGELIZE

Probes
● List probes

– Use dtrace(1M) with the '-l' option

– For each probe the four-tuple name will be displayed,
probe components are ':' separated

– List all probes:
$ dtrace -l

– List all probes offered by syscall provider:

$ dtrace -lP syscall

– List all probes offered by the ufs module:
$ dtrace -lm ufs

– List all providers:
$ dtrace -l | awk '{print $2}' | sort -u

33

USE IMPROVE EVANGELIZE

Probes
– List all read function probes:

$ dtrace -l -f read

● Enabling probes
– Activate a probe by not using '-l' option

– Default action with enabled probes- the CPU, the
probe number and name are displayed whenever the
probe fires

– Enable all probes from nfs and ufs module:
$ dtrace -m nfs,ufs

– Enable all read function probes:
$ dtrace -f read

– Enable all probes from io provider:
$ dtrace -P io

34

USE IMPROVE EVANGELIZE

Probes
● BEGIN and END

– BEGIN: fires each time a trace request is
made

dtrace -n BEGIN

dtrace: description 'BEGIN' matched 1 probe

CPU ID FUNCTION:NAME

 0 1 :BEGIN

^C

– END: fires when the trace finishes
dtrace -n END

dtrace: description 'END' matched 1 probe

^C

CPU ID FUNCTION:NAME

 0 2 :END

35

USE IMPROVE EVANGELIZE

Probes
● ERROR

– The ERROR probe fires when a runtime error is
encountered

dhcp-s> dtrace -n 'dtrace:::BEGIN { myvar = *(char *)NULL; } dtrace:::ERROR { printf("OOoopppsss....\n"); }'
dtrace: description 'dtrace:::BEGIN ' matched 2 probes
CPU ID FUNCTION:NAME
 1 3 :ERROR OOoopppsss....

dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address (0x0) in action #1 at DIF offset 16
^C

dhcp-s> dtrace -qn 'dtrace:::BEGIN { myvar = *(char *)NULL; } dtrace:::ERROR { printf("OOoopppsss....\n"); }'
OOoopppsss....
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN): invalid address (0x0) in action #1 at DIF offset 16

^C

36

USE IMPROVE EVANGELIZE

Probes
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”, pid); }

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

37

USE IMPROVE EVANGELIZE

Probes and DTrace Built-in Variables
● Among the many built-in variables provided by DTrace, there

are probe-specific variables available when a probe fires
– Function call argument list. Arguments passed to a function

instrumentable through an “entry” probe are available as either:

int64_t arg0, arg1,, arg9 – args available as raw 64 bit integers

args[0], args[1],, args[9] – typed args, corresponding to the
specific data types of the arg list

● Probes in some providers have a specific arg list made
available by the provider

– e.g. the IO provider arg list of pointers to a buf structure,
devinfo structure and fileinfo structure when IO
provider probes fire

● You need to RTFM to determine what args are available
for a given provider !!!

– For function entry arg lists, you need man pages, kernel
source, or just mdb(1) on a running Solaris system

38

USE IMPROVE EVANGELIZE

Providers
● A methodology for instrumenting the system
● Providers offer all probes to the DTrace

framework
● DTrace framework confirms to providers when

a probe is activated
● Providers pass the control to DTrace when a

probe is enabled
● Example of providers: syscall, lockstat, fbt, io,

mib

39

USE IMPROVE EVANGELIZE

Providers
● Providers do a couple interesting things for

us...
– Manage probes

– Abstract a complex subsystem with intuitive probes,
enabling and enhancing observability and analysis

sched:::oncpu

io:::start

etc...

– You can use DTrace effectively to track application
and kernel activity in areas of the kernel that you
may not be familiar with

40

USE IMPROVE EVANGELIZE

Provider Documentation
● Some providers assume a little background

knowledge, other providers assume a lot.
Knowing where to find supporting
documentation is important.

● Where do you find documentation on -
– Syscalls?

– User Libraries?

– Application Code?

– Kernel functions?

41

USE IMPROVE EVANGELIZE

Provider Documentation
● Additional documentation may be found

here,

Target Provider Additional Docs

syscalls syscall man(2)

libraries pid:lib* man(3C)

app code pid:a.out source code, ISV, developers

raw kernel fbt Solaris Internals 2nd Ed,
http://cvs.opensolaris.org

http://cvs.opensolaris.org/

42

USE IMPROVE EVANGELIZE

Providers
nv98> dtrace -l | awk '{ print $2}' | sort -u
PROVIDER
Xserver767
dtrace
fbt
fsinfo
io
ip
lockstat
lx-syscall
mib
proc
profile
sched
sdt
syscall
sysevent
sysinfo
vminfo

macosx> dtrace -l | awk '{ print $2}' | sort -u
PROVIDER
dslockstat87530
dtrace
fbt
io
lockstat
mach_trap
mds66
plockstat16190
plockstat16191
plockstat16192
proc
profile
syscall
vminfo
macosx>

43

USE IMPROVE EVANGELIZE

Providers – dtrace
● dtrace

– Aforementioned BEGIN, END, ERROR probes

– Useful for printing headers (BEGIN), data summary
(END), and gathering more information on errors
(ERROR)

– The ERROR probe provides args with additional
information
• arg1 – EPID of probe that caused the error
• arg2 – Index of the action that caused the fault
• arg3 – DIF action
• arg4 – Fault type
• arg5 – Value particular to fault type

44

USE IMPROVE EVANGELIZE

Providers - syscall
● Manages probes where “applications meet the

kernel”
● Two probes for each system call

– entry

– return

● Arguments
– entry – arg0...argn – the arg list to the system call

– return – arg0 and arg1 – return value

– D variable errno provide system call failure info

● Note some system calls do not directly map to
syscall probefuncs

– System V IPC

45

USE IMPROVE EVANGELIZE

Providers – profile & tick
● Time-based interrupt firing

– profile – fires on all CPUs

– tick – fires on only 1 CPU

● Specify interval in probe
– hz, sec or s, min or m, msec or ms, usec or u, etc

● Two args
– arg0 – PC if in the kernel (sys mode)

– arg1 – PC if in user (usr mode)

– Very handy for system-wide profiling...
profile-997hz / arg0 != 0 / { … } Am I in the kernel?
profile-997hz / arg1 != 0 / { … } Am I in user land?

46

USE IMPROVE EVANGELIZE

Provider - tick take 2
● tick-nnn also handy for

– Building scripts that provide output at intervals (like
the *stat commands)

tick-1sec { print(data); clear(data); }

– Bail-out mechanism
tick-500ms { print(data); exit(0); }

47

USE IMPROVE EVANGELIZE

Providers - sdt
● Statically Defined Tracing

– Probes inserted at points of interest in the kernel

– Allows the programmer to add probes to code with
meaningful names without creating a new provider,
using DTrace macros (sys/sdt.h);

DTRACE_PROBE(name);

DTRACE_PROBE1(name, type1, arg1);

DTRACE_PROBE2(name, type1, arg1, type2, arg2);

DTRACE_PROBE3(name, type1, arg1, type2, arg2, type3, arg3);

DTRACE_PROBE4(name, type1, arg1, type2, arg2, type3, arg3, type4, arg4);

●

48

USE IMPROVE EVANGELIZE

Providers - fbt
● Function boundary tracing

– Enable probes at kernel function entry and return
points

– Use requires some knowledge of the kernel

● Args
– On entry probes, the arguments passed to the

function are available as;

args[] array – typed
arg0 … argn – int64_t's

– On return probes, function return values available in
args[1]

49

USE IMPROVE EVANGELIZE

Kernel Function Args...
mdb(1) & dtrace(1) – Perfect Together
mdb -k
Loading modules: [unix krtld genunix specfs dtrace ufs sd ip sctp usba fcp fctl nca nfs random sppp lofs crypto
ptm logindmux md isp cpc fcip ipc]
> ufs_read::nm -f ctype
C Type
int (*)(struct vnode *, struct uio *, int, struct cred *, struct caller_context *)
> ::print -t struct vnode
{
 kmutex_t v_lock {
 void * [1] _opaque
 }
 uint_t v_flag
 uint_t v_count
 void *v_data
 struct vfs *v_vfsp
 struct stdata *v_stream
 enum vtype v_type
 dev_t v_rdev
 struct vfs *v_vfsmountedhere
 struct vnodeops *v_op
 struct page *v_pages
 pgcnt_t v_npages
 ...
 char *v_path
 ...
}

dtrace -n 'ufs_read:entry { printf("%s\n",stringof(args[0]->v_path));}'
dtrace: description 'ufs_read:entry ' matched 1 probe
CPU ID FUNCTION:NAME
 1 16777 ufs_read:entry /usr/bin/cut

 1 16777 ufs_read:entry /usr/bin/cut

 1 16777 ufs_read:entry /usr/bin/cut

 1 16777 ufs_read:entry /usr/bin/cut

 1 16777 ufs_read:entry /lib/ld.so.1

 1 16777 ufs_read:entry /lib/ld.so.1
....

50

USE IMPROVE EVANGELIZE

Providers - sysinfo
● DTrace probes that enable gathering values of kernel

statistics – sys kstats;
nv98> kstat -n sys
module: cpu instance: 0
name: sys class: misc
bawrite 139
bread 1122
bwrite 1418
canch 66
. . .

● Args
arg0 – Value by which the statistic will be incremented

arg1 – Pointer to the current value

arg2 – pointer to the cpu_t of the CPU the statistic is being
incremented on

51

USE IMPROVE EVANGELIZE

Providers - vminfo
● Similar to sysinfo – probes that correspond

to named vm kstats
– arg0 – value by which the stat will be incremented

– arg1 – pointer to the current value of the stat

● Enables correlation of virtual memory
events to processes/threads

#dtrace -n 'vminfo / execname != “dtrace” / { @vm[execname]=count(); }'

52

USE IMPROVE EVANGELIZE

Providers - proc
● Events related to processes

– create, exec, lwp-create, signals, etc

● The args vary, depending on which specific
probe is enabled
/usr/demo/dtrace/whoexec.d

53

USE IMPROVE EVANGELIZE

Providers - pid
● Using DTrace to look up into userland!

– No code modifications required – it's all dynamic!

pid1234:shared_object:function:name

pid3402:libc:malloc:entry

● PIDs can be set using the DTrace $target
macro

– Set when either -c <command> or -p <PID> is used

'pid$target:::entry { @[probemod, probefunc] =
count() }' -c date

54

USE IMPROVE EVANGELIZE

Providers - plockstat
● User level lock statistics

– Similar to what lockstat(1) does for kernel lock stats

– User mutex locks and Reader/Writer locks

● Check out the -V option...
– Will generate the actual D executing...
plockstat -V -A -p 840 > pl.out 2>&1

55

USE IMPROVE EVANGELIZE

Providers
● io

– disk input and output requests

– I/O by device, process, size, filename

● mib
– counters for management information bases

– IP, IPv6, ICMP, IPSec

● sched
– kernel scheduler events

– on-cpu, off-cpu, resume, preempt

56

USE IMPROVE EVANGELIZE

Providers
● fsinfo

– file system operations of interest

● ip
– network events (packet send/receive)

57

USE IMPROVE EVANGELIZE

Providers
● DTrace refers to most providers as “Stable”

providers
– The probes and args will not change across releases

– Provides for building a toolbox that will work indefinitely

– io, sched, proc, vminfo, sysinfo, fpuinfo, mib, etc, are all stable
providers

– fbt is not, since fbt by definition instruments the kernel
functions entry and return points.

– It is generally recommended to stick with stable providers, at
least while you're getting started

– Check the documentation for the specific stability level of a
provider

– New providers under development!

58

USE IMPROVE EVANGELIZE

Providers, cont.
● Examples

– proc:::exec

– sched:::oncpu

– fbt:ufs:ufs_read:entry

– syscall::read:entry{ printf(“Process %d”, pid);
}

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::start

59

USE IMPROVE EVANGELIZE

The D language
● A simple (?) dynamically interpreted language

used by dtrace(1M)
● Similar to C language and awk(1):

– Supports ANSI C operators and has support for strings

– Supports several variable types, including built-in
variables: pid, execname, timestamp, curthread, etc

● No control-flow constructs:
– loops, if statements

● Arithmetic may only be performed on integers
in D programs, floating-point arithmetic is not
permitted in D

•

60

USE IMPROVE EVANGELIZE

A DTrace D Program
probe
/ optional predicate /
{

clause
what to do when the probe(s) fire, and the predicate,
if present, evaluates true

}

Example;

syscall::read:entry
/ execname == “java” /
{

@reads[pid, fds[arg0].fi_pathname] = count();
}

Or, via the command line;

#dtrace -n 'syscall::read:entry / execname == “java” /
{ @reads[pid, fds[arg0].fi_pathname] = count(); }'

61

USE IMPROVE EVANGELIZE

The D language, cont.
● Data Types

– Integer types

char
short
int
long
long long

– Float types

float
double
long double

– String type

string

62

USE IMPROVE EVANGELIZE

The D language, cont.
● Operators

– Arithmetic Operators, similar as in ANSI C

+ - * / %
may only be performed on integer operands, or on pointers
not applicable on floats

– Relational Operators

>, >=, <, <=, ==, !=

– Logical Operators

&&, ||, ^^

– Assignment Operators, similar as in ANSI C

 =, +=, ANSI-C compliant

63

USE IMPROVE EVANGELIZE

The D language, cont.
● Variables: no need to declare them
● Scalar Variables

– represents integers, strings, pointers

– Three different types that define the variable scope;

Global

Thread-Local

Clause-Local

– created automatically – D figures out the type

64

USE IMPROVE EVANGELIZE

The D Language
● Global variables

– Visible in every clause of the D program

– name and data storage location define once

Global variable x

Explicit variable
declaration, not needed.
You can do this outside

probe clause

dtrace:::BEGIN
{

x = 123;
}

int n;
dtrace:::END
{

n = 456;
printf(“n: %d, x: %d\n”,n,x);

}

65

USE IMPROVE EVANGELIZE

The D language, cont.
● Thread-local variables

– Variable storage local to each OS thread

– Useful for setting trace flags

– Use the “self->” identifier to declare a thread-local variable

– Example which associates a thread-local variable called flag in
function entry to trace desired kernel thread in corresponding return
function

syscall::write:entry
/ pid == 3406 /
{

self->flag = 1;
}
syscall::write:return
/ self->flag /
{

self->flag = 0;
....

66

USE IMPROVE EVANGELIZE

The D language, cont.
● Thread-local variables useful for computing the

time spent in functions
● Example:
syscall::read:entry
{

self->st = timestamp;
}
syscall::read:return
/ self->st / /* this is the same as “self->st != 0” */
{

self->rt = timestamp – self->st;
self->st = 0;
printf(“PID %d, read time: %d\n”, pid, self->rt);

}

67

USE IMPROVE EVANGELIZE

The D language, cont.
● Clause-Local Variables

– Their storage is reused for each program clause

– Similar to automatic variables in a C, C++, or Java
language

– Are created on their first assignment

– Referenced and assigned by using “this->” operator
BEGIN
{
 this->secs = timestamp / 1000000000;
 ...
}

68

USE IMPROVE EVANGELIZE

The D language, cont.
● Associative Arrays

– Collection of data elements

– No predefined number of elements

– Used to simulate hashes or data dictionaries

– Very simple to use and different than a scalar array

– Defined as: name[key] = expression

e.g.: a[123,”abc”] = 456

(a is associative array: a[int, string] stores an integer)

69

USE IMPROVE EVANGELIZE

The D language, cont.
● Built-in Variables

– pid: the current process ID

– execname: the current executable name

– timestamp: the time since boot, in nanoseconds

– curthread: the current thread

– probeprov, probemod, probefunc and probename
identify the current probe name fields

● External Variables
– used in some other parts: OS, kernel modules. e.g:

`kmem_flags, `physmem

70

USE IMPROVE EVANGELIZE

The D language, cont.
● Scripting in D
● Easy to create D scripts to hold one or more

probe clauses
● All D scripts end in dot d (script_name.d)
● Add the interpreter as the first line in the script

#!/usr/sbin/dtrace -s
● Or create the script and run as;

#dtrace -s ./script.d

71

USE IMPROVE EVANGELIZE

Actions & Subroutines
● Taken when a probe fires
● Indicated by following a probe specification

with “{ action }”
● Actions trace data and modify state external to

DTrace
– Data recording actions operate on the principle buffer

– The default action when a probe fires is to generate the
CPU ID the probe fired on, the numeric ID of the
DTrace probe, and the probe function and name

● Subroutines affect internal DTrace state

72

USE IMPROVE EVANGELIZE

Actions, cont.
● Data Recording Actions

– trace(expression)

records the result of trace to the directed buffer
trace(pid)traces the current process id

trace(execname)traces the current application name

– printf()

traces a D expression
allows output style formatting
printf(“execname is %s”, execname);

– printa(aggregation)

used to display and format aggregations
printa(@agg1)
printa(“%-@32s, %-@8d\n”,@execs, @pids);

mailto:%25-@32s

73

USE IMPROVE EVANGELIZE

Actions, cont.
● Data Recording Actions

– stack()

records a kernel stack trace
dtrace -n 'syscall::open:entry{ stack(); }'

– ustack()

records a user process stack trace
allows to inspect userland stack processes
dtrace -n 'syscall::open:entry{ ustack(); }' -c ls

– jstack()

similar with ustack(), but specifically for Java
more space for deeper stack frames and longer symbol strings

74

USE IMPROVE EVANGELIZE

Actions, cont.
● Destructive Actions

- used to change the state of the system
- use with caution, it is disabled by default!!

Process Destructive Results

stop() Stops the process which has executed the probe
raise() Used to signal a process at a precise point during execution
copyout, copyoutstr()
system()

Kernel Destructive Results

breakpoint()
panic() Triggers a panic. Used to force a crash dump

chill()

Stops the system abd transfers the control to the kernel
debugger

A sophisticated routine to inject a short delay. Used for timings
measurements

75

USE IMPROVE EVANGELIZE

Actions, cont.
● Special Actions

- exit(int) - stop tracing and exits

- Other subroutines:
alloca() – allocates a n size bytes buffer

basename() - formats the path names

copyin() - creates a buffer and returns its address

copyinstr() - creates a buffer and returns its address

rand() - returns a weak pseudo-random number

strlen() - returns the length of a string in bytes

strjoin() - returns a string as a concatenation of str1 and str2

76

USE IMPROVE EVANGELIZE

Actions, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”, pid);
}

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

77

USE IMPROVE EVANGELIZE

Predicates
● D expressions that define a conditional test
● Allow actions to only be taken when certain

conditions are met. A predicate has this
form: /predicate/

● The actions will be activated only if the value
of the predicate expression is true

● Used to filter and meet certain conditions: look
only for a process which has the pid = 1203,
match a process which has the name firefox-
bin

78

USE IMPROVE EVANGELIZE

Predicates, cont.
● Examples

– syscall:::

– syscall:::entry

– syscall:::return

– syscall::read:entry{ printf(“Process %d”, pid);
}

– syscall::write:entry/execname=="firefox-bin"/
{ @[probefunc] = count(); }

– sysinfo:::readch{ trace(execname); exit(0); }

– sysinfo:::writech

– io:::

79

USE IMPROVE EVANGELIZE

Aggregations
● Used to aggregate data and look for trends
● Simple to generate reports about: total system

calls used by a process or an application, the
total number of read or writes by process...

● Has the general form:
@name[keys] = aggfunc(args)@name[keys] = aggfunc(args)

● There is no need to use other tools like:
awk(1), perl(1)

● The general definition of aggregating function:
f(f(x0) ∪ f(x1) ∪ ... ∪ f(xn)) = f(x0 ∪ x1 ∪ ... ∪ xn)

80

USE IMPROVE EVANGELIZE

Aggregations
● Aggregating functions

– count() : the number of times called, used to count for
instance the total number of reads or system calls

– sum() : the total value of the specified expressions

– avg() : the arithmetic average of the specified
expression

– min() : the smallest value of the specified expression

– max(): the largest value of the specified expression

– quantize() : a power-of-two frequency distribution,
simple to use to draw distributions

● Non-aggregating functions
– mode and median

81

USE IMPROVE EVANGELIZE

Aggregations, cont.
● What's going on with my system ?

dtrace -n syscall:::entry

● Difficult to read, start aggregating...
dtrace -n 'syscall:::entry{@[execname] = count();}'

● Filter on read system call
dtrace -n
'syscall::read*:entry{@[execname]=count();}'

● Add the file descriptor information
dtrace -n
'syscall::read*:entry{@[execname,arg0]=count();}'

82

USE IMPROVE EVANGELIZE

Aggregations, cont.
● Drill-down and get a distribution of each read

by application name
syscall::read*:entry

{

 self ->ts=timestamp;

}

syscall::read*:return

/self -> ts/

{

 @time[execname] = quantize(timestamp – self->ts);

 self->ts = 0;

}

83

USE IMPROVE EVANGELIZE

Aggregations, cont.
● Data normalization

– used to aggregate over a specific constant reference:
e.g.: system calls per second

– normalize()

– denormalize()

● Truncate
– used to minimize the aggregation results, keep certain

top results

– trunc(aggregation, trunc value)

84

USE IMPROVE EVANGELIZE

Pointers and Arrays
● Pointers determines which location in memory

we are referencing
● Similar mechanism as in ANSI-C
● Safe access and control of pointers by DTrace
● Invalid memory access and alignment checks

BEGIN

{

 x = (int *)NULL;

 y=*x;

 trace(y);

}

85

USE IMPROVE EVANGELIZE

Pointers and Arrays, cont.
● Support for scalar arrays, similar with C/C++
● Indexed from 0, fixed length
● Sometimes used to access certain OS array

data structures
● Defined as: int a[int]

Example: int a[4]; 4 elements: a[0], a[1], a[2], a[3]

● Scalar and associative arrays
Item Predefined Size Consecutive storage order Form
Scalar Array Yes Yes int a[4]

Associative Array No No a[123,”abc”]

86

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

87

USE IMPROVE EVANGELIZE

Strings
● Support for strings in D
● Built-in data type very easy to use
● Strings constants defined between “ “
● String assignment using = operator

– Example: s = “my string”;

● String comparation using the relational
operators (<, >, <=, >=, ==, !=)
– Example: execname == “firefox-bin”

● Comparation is done byte-by-byte as in C like
in strcmp(3C) routine

88

USE IMPROVE EVANGELIZE

DTrace Framework
● Introduction
● Probes, Providers, Actions, Predicates
● The D language
● Aggregations
● Pointers and Arrays
● Strings
● Structs and Unions
● Output formatting
● Speculative tracing

89

USE IMPROVE EVANGELIZE

Output formatting
● Special routines to format the output: trace(),

printf() or printa()
● For specific output format use built-in printf()

– printf(“execname is %s”, execname);

– printf(“%d spent %d secs in read\n”,
pid, timestamp – t);

● For aggregations use printa()
– printa(“Aggregation is:”, @a);

– printa(@count);

● Basic trace()
– trace(execname);

90

USE IMPROVE EVANGELIZE

DTrace Methods and Use
● Learning the mechanics of DTrace is great,

but DTrace is, after all, a tool
● Like any tool, it's usefulness depends on

the skill set and experience of the user
● The great news is DTrace is really easy to

use!
– It's easy to so simple things in DTrace that tell you a

LOT about what your system and application is
doing

● With time and experience, you'll only get
better at root-causing sticky problems

91

USE IMPROVE EVANGELIZE

DTrace One Liners
● System Calls Count by Application

$ dtrace -n 'syscall:::entry{@[execname] =
count();}'

● System Calls Count by Application and Process
$ dtrace -n 'syscall:::entry{@[execname,pid]
= count();}'

● How many times a file has been opened
$ dtrace -n
'syscall::open:entry{@[copyinstr(arg0)] =
count();}'

92

USE IMPROVE EVANGELIZE

DTrace One Liners
● Files Opened by process

$ dtrace -qn
'syscall::open*:entry{ printf("%s
%s\n",execname,copyinstr(arg0)); }'

● Read Bytes by process
$ dtrace -n 'sysinfo:::readch{ @[execname] =
sum(arg0);}'

● Write Bytes by process
$ dtrace -n 'sysinfo:::writech{ @[execname]
= sum(arg0);}'

93

USE IMPROVE EVANGELIZE

DTrace One Liners, cont.
● How big a read is

$ dtrace -n 'syscall::read:entry{@[execname]
= quantize(arg2);}'

● How big a write is
$ dtrace -n
'syscall::write:entry{@[execname] =
quantize(arg2);}'

● Disk size by process
$ dtrace -qn 'io:::start{printf("%d %s
%d\n",pid,execname,args[0]->b_bcount); }'

94

USE IMPROVE EVANGELIZE

DTrace One Liners, cont.
● High system time

$ dtrace -n profile-501'{@[stack()] =
count()}END{trunc(@, 25)}'

● What processes are using fork
$ dtrace -n 'syscall::fork*:entry{printf("%s
%d",execname,pid);}'

95

USE IMPROVE EVANGELIZE

The DTraceToolkit

Brendan Gregg developed the toolkit
Stefan Parvu wrote the slides

96

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit elements
● Categories
● Free your mind
● Examples

97

USE IMPROVE EVANGELIZE

Introduction
● The DTraceToolkit is a collection of useful

documented scripts developed by the
OpenSolaris DTrace community built on top of
DTrace framework

● Available under www.opensolaris.org
● Ready DTrace scripts
● The toolkit contains:

– the scripts

– the man pages

– the example documentation

– the notes files

– the tutorials

http://www.opensolaris.org/

98

USE IMPROVE EVANGELIZE

Introduction, cont.

DTrace Framework

 A
p

p
lic

at
io

n
s

 C
p

u

 D
is

k

 K
e

rn
e

l

 N
e

tw
o

rk

 M
e

m
o

ry

 P
ro

c
es

se
s

 S
y

st
e

m

 E
x

tr
a

, U
s

er
, S

y
st

e
m

DTraceToolkit

Script Categories: collection
of D scripts

99

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit elements
● Categories
● Free your mind
● Examples

100

USE IMPROVE EVANGELIZE

Installation and Setup
● Download the toolkit

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

● Installation Notes
– gunzip and "tar xvf" the file

– run ./install – default installation /opt/DTT

– read Guide to find out how to get started

– a list of scripts is in Docs/Contents

● Setup DTT
– PATH=$PATH:/opt/DTT/Bin

– MANPATH=$MANPATH:/opt/DTT/Man

 (assuming the toolkit was installed in /opt/DTT)

http://www.opensolaris.org/os/community/dtrace/dtracetoolkit

101

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Examples

102

USE IMPROVE EVANGELIZE

Toolkit Elements

103

USE IMPROVE EVANGELIZE

Toolkit Elements, cont.
● Categories

– Apps – scripts for certain applications: Apache, NFS
– Cpu – scripts for measuring CPU activity
– Disk – scripts to analyse I/O activity
– Extra – other categories
– Kernel – scripts to monitor kernel activity
– Locks – scripts to analyse locks
– Mem – scripts to analyse memory and virtual memory
– Net – scripts to analyse activity of the network

interfaces, and the TCP/IP stack
– Proc – scripts to analyse activity of a process
– System – scripts to measure system wide activity
– User – scripts to monitor activity by UID
– Zones – scripts to monitor activity by zone

104

USE IMPROVE EVANGELIZE

Toolkit Elements, cont.
● Documentation

– Man/: all scripts are documented as UNIX manual pages

– Docs/: a generic place to find the documentation

– Docs/Notes/: several short guides about toolkit's
commands

– Docs/Example/: examples of command usage

– Docs/Content/: complete list of all commands

– Docs/Faq/: DTT Frequently Asked Questions

105

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Examples

106

USE IMPROVE EVANGELIZE

Categories
● Applications

– Used to measure and report certain metrics from
applications like: Apache Web server, NFS client,
UNIX shell

– httpdstat.d: computes real-time Apache web
statistics: the number of connections, GET, POST,
HEAD and TRACE requests

– nfswizard.d: used to measure the NFS client activity
regarding response time and file accesses

– shellsnoop: captures keystrokes, used to debug and
catch command output. Use with caution !

– weblatency.d: counts connection speed delays, DNS
lookups, proxy delays, and web server response time.
Uses by default Mozilla browser

107

USE IMPROVE EVANGELIZE

Categories, cont.
● Cpu

– Reports and list the CPU activity like: cross calls,
interrupt activity by device, time spent servicing
interrupts, CPU saturation

– cputypes.d: lists the information about CPUs: the
number of physical install CPUs, clock

– loads.d: prints the load average, similar to uptime

– intbycpu.d: prints the number of interrupts by CPU

– intoncpu.d: lists the interrupt activity by device;
example: the time consumed by the ethernet driver, or
the audio device

– inttimes.d: reports the time spent servicing the
interrupt

108

USE IMPROVE EVANGELIZE

Categories, cont.
● Cpu

– xcallsbypid.d – list the inter-processor cross-calls by
process id. The inter-process cross calls is an indicator
how much work a CPU sends to another CPU

– dispqlen.d – dispatcher queue length by CPU,
measures the CPU saturation

– cpuwalk.d – identify if a process is running on
multiple CPUs concurrently or not

– runocc.d – prints the dispatcher run queue, a good
way to measure CPU saturation

109

USE IMPROVE EVANGELIZE

Categories, cont.
● Disk

– Analyses I/O activity using the io provider from
DTrace: disk I/O patterns, disk I/O activity by process,
the seek size of an I/O operation

– iotop: a top like utility which lists disk I/O events by
processes

– iosnoop: a disk I/O trace event application. The utility
will report UID, PID, filename regarding for a I/O
operation

– bitesize.d: analyse disk I/O size by process

– seeksize.d: analyses the disk I/O seek size by
identifying what sort I/O operation the process is
making: sequential or random

110

USE IMPROVE EVANGELIZE

Categories, cont.

● Disk
– iofile.d: prints the total I/O wait times. Used to debug

applications which are waiting for a disk file or resource

– iopattern: computes the percentage of events that were of a
random or sequential nature. Used easily to identify the type of
an I/O operation and the average, totals numbers

– iopending: prints a plot for the number of pending disk I/O
events. This utility tries to identify the "serialness" or
"parallelness" of the disk behavior

– diskhits: prints the load average, similar to uptime

– iofileb.d: prints a summary of requested disk activity by
pathname, providing totals of the I/O events in bytes

111

USE IMPROVE EVANGELIZE

Categories, cont.
● FS

– Analyses the activity on the file system level: write
cache miss, read file I/O statistics, system calls
read/write

– vopstat: traces the vnode activity

– rfsio.d: provides statistics on the number of reads: the
bytes read from file systems (logical reads) and the
number of bytes read from physical disk

– fspaging.d: used to examine the behavior of each I/O
layer, from the syscall interface to what the disk is
doing

– rfileio.d: similar with rfsio.d but reports by file

112

USE IMPROVE EVANGELIZE

Categories, cont.

● Kernel
– Analyses kernel activity: DNLC statistics, CPU time consumed

by kernel, the threads scheduling class and priority

– dnlcstat: inspector of the Directory Name Lookup Cache
(DNLC)

– cputimes: print CPU time consumed by the kernel, processes or
idle

– cpudist: print CPU time distributions by kernel, processes or idle

– cswstat.d: prints the context switch count and average

– modcalls.d: an aggregation for kernel function calls by module

113

USE IMPROVE EVANGELIZE

Categories, cont.
● Kernel

– dnlcps.d: prints DNLC statistics by process

– dnlcsnoop.d: snoops DNLC activity

– kstat_types.d: traces kstat reads

– pridist.d: outputs the process priority distribution.
Plots which process is on the CPUs, and under what
priority it is

– priclass.d: outputs the priority distribution by
scheduling class. Plots a distribution

– whatexec.d: determines the types of files which are
executed by inspected the first four bytes of the
executed file

114

USE IMPROVE EVANGELIZE

Categories, cont.
● Locks

– Analyses lock activity using lockstat provider

– lockbydist.d: lock distribution by process name

– lockbyproc.d: lock time by process name

115

USE IMPROVE EVANGELIZE

Categories, cont.
● Memory

– This category analyses memory and virtual memory
things: virtual memory statistics, page management,
minor faults

– vmstat.d: a vmstat like utility written in D

– vmstat-p.d: a vmstat like utility written in D which does
display what “vmstat -p” does: reporting the paging
information

– xvmstat: a much improved version of vmstat which
does count the following numbers: free RAM, virtual
memory free, major faults, minor faults, scan rate

116

USE IMPROVE EVANGELIZE

Categories, cont.
● Memory

– swapinfo.d: prints virtual memory info, listing all
memory consumers related with virtual memory
including the swap physical devices

– pgpginbypid.d: prints information about pages paged
in by process id

– minfbypid.d: detects the biggest memory consumer
using minor faults, an indication of memory
consumption

117

USE IMPROVE EVANGELIZE

Categories, cont.
● Network

– These scripts analyse the activity of the network
interfaces and the TCP/IP stack. Some scripts are
using the mib provider. Used to monitor incoming

– icmpstat.d: reports ICMP statistics per second, based
on mib

– tcpstat.d: prints TCP statistics every second, retrieved
from the mib provider: TCP bytes received and sent,
TCP bytes retransmitted

– udpstat.d: prints UDP statistics every second,
retrieved from the mib provider

– tcpsnoop.d: analyses TCP network packets and
prints the responsible PID and UID. Useful to detect
which processes are causing TCP traffic

118

USE IMPROVE EVANGELIZE

Categories, cont.
● Network

– connections: prints the inbound TCP connections. This
displays the PID and command name of the processes
accepting connections

– tcptop: display top TCP network packets by process.
It can help identify which processes are causing TCP
traffic

– tcpwdist.d: measures the size of writes from
applications to the TCP level. It can help identify which
process is creating network traffic

119

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– Analyses process activity: system calls/process, bytes
written or read by process, files opened by process,

– sampleproc: inspect how much CPU the application
is using

– threaded.d: see how well a multithreaded application
uses its threads

– writebytes.d: how many bytes are written by process

– readbytes.d: how many bytes are read by process

– kill.d: a kill inspector. What how signals are send to
what applications

– newproc.d: snoop new processes as they are
executed

120

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– syscallbyproc.d & syscallbypid.d: system calls by
process or by PID

– filebyproc.d: files opened by process

– fddist: a file descriptor reporter, used to print
distributions for read and write events by file
descriptor, by process. Used to determine which file
descriptor a process is doing the most I/O with

– pathopens.d: prints a count of the number of times
files have been successfully opened

– rwbypid.d: reports the no. of read/writes calls by PID

– rwbytype.d: identifies the vnode type of read/write
activity - whether that is for regular files, sockets,
character special devices

121

USE IMPROVE EVANGELIZE

Categories, cont.
● Process

– sigdist.d: prints the number of signals received by
process and the signal number

– topsysproc: a report utility listing top number of
system calls by process

– pfilestat: prints I/O statistics for each file descriptor
within a process. Very useful for debug certain
processes

– stacksize.d: measures the stack size for running
threads

– crash.d: reports about crashed applications. Useful to
identify the last seconds of a crashed application

– shortlived.d: snoops the short life activity of some
processes

122

USE IMPROVE EVANGELIZE

Categories, cont.
● System

– Used to measure system wide activity

– uname-a.d: simulates 'uname -a' in D

– syscallbysysc.d: reports a total on the number od
system calls on the system

– sar-c.d: reports system calls usage similar to 'sar -c'

– topsyscall: prints a report of the top system calls on
the system

123

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Real Examples

124

USE IMPROVE EVANGELIZE

DTraceToolkit
● Introduction
● Installation and Setup
● Toolkit Elements
● Categories
● Free your mind
● Real Examples

125

USE IMPROVE EVANGELIZE

1.High System Calls
● A case where vmstat 1 reports a high number

of system calls
● What to do ?
● Count the total number of system calls
● Use a simple DTrace aggregation to find out

what application are responsible for that
● Think to enhance the aggregation for a better

reporting or better...
● Use DTT utilities to find out what is going on,

getting as well a nice report

126

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

127

USE IMPROVE EVANGELIZE

1.High System Calls, cont.
● Start a simple aggregation:
$ dtrace -n 'syscall:::entry{@[execname] =
count();}'

● Select the top consumer and start aggregating
again:
$ dtrace -n
'syscall:::entry/execname==”your-app”/
{@[probefunc] = count();}'

● Count the number of system calls globally:
$ dtrace -n 'syscall:::entry{@[probefunc]
= count();}'

● Better run topsysproc from Proc Category

128

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

129

USE IMPROVE EVANGELIZE

1.High System Calls, cont.

● Conclusions:
– Not able to see who does all those system calls using

basic utilities: vmstat, iostat, prstat

– Easy to detect and get the report about the top system
calls consumers using DTT utility: topsysproc

130

USE IMPROVE EVANGELIZE

2.High CPU Utilization
● There is a high CPU utilisation under the

system without any sign who is generating that
● What to do ?
● Does it help to run: prstat, mpstat, vmstat,

iostat ?
● Solve the problem by using: topsysproc, and

execsnoop from DTT

131

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from vmstat 1:

132

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from mpstat 1:

133

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● The output from prstat -a:

134

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● Run topsysproc:

135

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.
● Run execsnoop:

136

USE IMPROVE EVANGELIZE

2.High CPU Utilisation, cont.

● Conclusions:
– A high CPU utilisation was detected by vmstat and

prstat. However the CPU consumption was not easy
related to any process on the system

– Using DTT utilities: topsysproc and execsnoop the real
problem was very easily found and the process/owner
generating all the load was easy identified

137

USE IMPROVE EVANGELIZE

3.High Cross-Calls
● It has been detected on a multiprocessor

server a high number of inter-processor cross-
calls per second. This was discovered using
mpstat

● Inter-processor cross-calls is a number
indicating how often CPUs are sending the
work from one to another. A clear indication of
overhead

● Investigate using mpstat and see if it is easy to
find out who generates all these cross-calls

● Solve the problem by using: xcallsbypid.d from
DTT Cpu category

138

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.
● mpstat reports:

139

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.
● Run xcallsbypid.d from Cpu category:

140

USE IMPROVE EVANGELIZE

3.High Cross-Calls, cont.

● Conclusions:
– Solaris's mpstat was used to identify the high xcalls,

however mpstat was not reporting on who was
generating that big number

– Very easy to identify the process/application which
was generating lots of cross calls directly using DTT
utility: xcallsbypid.d

141

USE IMPROVE EVANGELIZE

4.Network Connections
● The network status utility netstat displays a

status of all network connections on a system
● With the current tools there is no easy way to

find out and co-relate a network connection
with a process or the owner of it

● Extra tools like lsof can list what connections
were made and by who

● What about incoming connections ?
● Solve the problem by using: tcptop, tcpsnoop

and connections utilities from DTT

142

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● Under Net category execute: tcpsnoop

143

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● To display top network packets run tcptop:

144

USE IMPROVE EVANGELIZE

4.Network Connections, cont.
● To monitor and check the incoming

connections run connections:

145

USE IMPROVE EVANGELIZE

4.Network Connections, cont.

● Conclusions:
– Not very easy to relate network connections to

processes on the system or list the top of connections

– Net category has a lot of scripts which can easily help
like: tcpsnoop, tcptop and connections

146

USE IMPROVE EVANGELIZE

5.Disk Utilization
● Disk utilisation can be monitored using iostat –

but to co-relate the utilisation with a process is
a hard mission

● There are tools to check CPU usage by
process but there are no tools to check disk
I/O by process

● The old good friend: iostat -xnmp
● I/O type: reading iostat data a SysAdmin can

describe if the I/O is sequential or random

147

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● It is important to know what type of I/O there

is: sequential or random
● How can you list what processes are

generating I/O, or list disk events or how much
a process is using the disk (size of the disk
event or the service time of the disk events) ?

● Easily use the following DTT scripts: iotop,
iosnoop from DTT root directory

148

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● One Liner says:

149

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● Run iotop:

150

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● Run now iosnoop:

151

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● How much the process reads...use bitesize.d:

152

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● Look for seek distance of the disk events. Run

seeksize.d to understand if the I/O is
sequential or not:

153

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● Other important DTT utilities used to measure

and analyse disk I/O events
● rwsnoop: snoops the read/write operations
● rwtop: used to display the top read/write

operations by process id
● opensnoop: used to snoop what files are being

open and by who. Very easy to discover what
processes are opening what files

154

USE IMPROVE EVANGELIZE

5.Disk Utilization, cont.
● rwtop and opensnoop:

155

USE IMPROVE EVANGELIZE

DTrace & Java

156

USE IMPROVE EVANGELIZE

DTrace and Java
● DTrace can be used to debug and observe

Java applications
● Easy to start: use jstack(), to display the Java

activity as a stack backtrace. jstack() based on
ustack()

● Useful to understand the I/O and scheduling
caused by your Java application

● Java 5: VM agents, shared libraries which are
dynamically loaded when the VM starts

● Java 6, Mustang, introduces two new
providers: hotspot and hotspot_jni

157

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● jstack()
● The simplest form to record a stack trace from

a Java application
– Not jstackstrsize default of 512 may need to be

increased

dtrace -x jstackstrsize=1k -n syscall: ...

● Delivered already with DTrace framework:
$ dtrace -n 'syscall:::entry/pid==xxx/
{jstack(40);}'

$ dtrace -n 'syscall:::entry/pid==xxx/
{@[jstack(40)] = count();}'

158

USE IMPROVE EVANGELIZE

jstack() Action
● jstack action prints mixed mode stack trace
● Both java frames and native (C/C++) frames are shown
● Only JVM versions 5.0_01 and later are supported
● jstack shows hex numbers for JVM versions before 5.0_01
 #!/usr/sbin/dtrace -s

syscall::pollsys:entry
/ pid == $1 / {

jstack(50,8192);
}

● first optional argument limits the number of frames shown
● second optional argument changes the string size
● jstackstrsize pragma / -x to increase buffer for all jstack()'s

159

USE IMPROVE EVANGELIZE

jstack()

160

USE IMPROVE EVANGELIZE

The dvm Provider
● java.net project to add DTrace support in

– 1.4.2 (libdvmpi.so)

– 1.5 (libdvmti.so)

– https://solaris10-dtrace-vm-agents.dev.java.net/

● Download shared libs
● Add location of libs to LD_LIBRARY_PATH

variable
● Set JAVA_TOOL_OPTIONS to

-Xrundvmti:all
● Name of provider - “dvm”

161

USE IMPROVE EVANGELIZE

The dvm Provider: Probes
● dvm probes and their signatures

vm-init(), vm-death()
thread-start(char *thread_name), thread-end()
class-load(char *class_name)
class-unload(char *class_name)
gc-start(), gc-finish()
gc-stats(long used_objects, long used_object_space)
object-alloc(char *class_name, long size)
object-free(char *class_name)
method-entry(char *class_name, char *method_name, char

*method_signature)
method__return(char *class_name, char *method_name, char

*method_signature)

162

USE IMPROVE EVANGELIZE

The dvm Provider: alloc and free

● Object allocation/deallocation

#!/usr/sbin/dtrace -qs
dvm$target:::object-alloc
{
 printf("%s allocated %d size objects\n”,
 copyinstr(arg0), arg1);
}

dvm$target:::object-free
{
 printf("%s freed %d size objects\n",
 copyinstr(arg0), arg1);
}

./java_alloc.d -p `pgrep -n java`

163

USE IMPROVE EVANGELIZE

The dvm Provider: Methods

● Count methods called

#!/usr/sbin/dtrace -s

dvm$target:::method-entry
{
 @[copyinstr(arg0),copyinstr(arg1)] = count();
}

./java_method_count.d -p `pgrep -n java`

164

USE IMPROVE EVANGELIZE

The dvm provider: Time Spent
● Time spent in methods

#!/usr/sbin/dtrace -s
dvm$target:::method-entry
{
 self->ts[copyinstr(arg0),copyinstr(arg1)] =
 vtimestamp;
}

dvm$target:::method-return
{
 @ts[copyinstr(arg0),copyinstr(arg1)] =
 sum(vtimestamp – self->ts[copyinstr(arg0),
 copyinstr(arg1)]);
}

./java_method.d -p `pgrep -n java`

165

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● VM Agents

– Some probes have a significant probe effect, and
require enabling when the JVM is started

-XX:+ExtendedDtraceProbes

jinfo -XX:+ExtendedDtraceProbes

166

USE IMPROVE EVANGELIZE

DTrace and Java, cont.
● Java 6, Mustang

– Added two new providers: hotspot and hotspot_jni

– Using these providers it is now possible to collect data
from your Java applications

– Hotspot_jni: probes related with Java Native Interface

– Hotspot provider:

VM Probes: Initialization and Shutdown
Thread statistics Probes
Class loading and unloading Probes
Garbage Collection Probes
Method Compilation Probes

167

USE IMPROVE EVANGELIZE

DTrace in JDK 6

● hotspot provider implements all dvm probes
plus extensions:
– Method compilation (method-compile-begin/end)

– Compiled method load/unload(compiled-method-
load/unload)

– JNI method probes.
 DTrace probes as entry and return from each JNI

method.
● Strings are now unterminated UTF-8 data.

Always use associated length value with
copyinstr().

168

USE IMPROVE EVANGELIZE

Method Compilation Probes

hotspot$1:::method-compile-begin {

 self->str = (char*) copyin(arg2, arg3+1);

 self->str[arg3] = '\0';

 self->classname = (string)self->str;

 self->str = (char*) copyin(arg4, arg5+1);

 self->str[arg5] = '\0';

 self->methodname = (string)self->str;

 printf(“Compile begin %s.%s\n”,

 self->classname, self->methodname);

}

169

USE IMPROVE EVANGELIZE

Exception Stack Trace

hotspot$1:::method-entry {

 self->ptr = (char*)copyin(arg1, arg2+1);

 self->ptr[arg2] = '\0';

 self->classname = (string)self->ptr;

 self->ptr = (char*)copyin(arg3, arg4+1);

 self->ptr[arg4] = '\0';

 self->methodname = (string)self->ptr;

}

hotspot$1:::method-entry

/self->classname == "java/lang/Throwable" &&

 self->methodname == "<init>"/

{

 jstack();

}

170

USE IMPROVE EVANGELIZE

JDK 6 DTrace Usage
● Certain probes are expensive

– Turned off by default

– object-alloc

– method-entry, method-return

– monitor probes
 monitor-wait, monitor-contended-enter, etc

● Requires you to start your application with the
flag
-XX:+ExtendedDTraceProbes

● Use -XX:
+DTrace{Alloc,Method,Monitor}Probes if
possible

171

USE IMPROVE EVANGELIZE

JDK6 hotspot_jni Provider
● Probes for Java Native Interface (JNI)
● Located at entry/return points of all JNI

functions
● Probe arguments are same as corresponding

JNI function arguments (for _entry probes)
● For XXX_return probes, probe argument is

return value
● Examples:

hotspot_jni$1:::GetPrimitiveArrayCritical_entry
hotspot_jni$1:::GetPrimitiveArrayCritical_return

172

USE IMPROVE EVANGELIZE

JDK 1.6 and DTrace
● Check out
/usr/jdk/jdk1.6.0_06/sample/dtrace

class_loading_stat.d The script collects statistics about loaded and
unloaded Java classes and dump current state to stdout every N seconds.

gc_time_stat.d The script measures the duration of a time spent in GC. The
duration is measured for every memory pool every N seconds.

hotspot_calls_tree.d The script prints calls tree of fired 'hotspot' probes.

method_compile_stat.d The script prints statistics about N methods with
largest/smallest compilation time every M seconds.

method_invocation_stat.d The script collects statistics about Java method
invocations.

method_invocation_stat_filter.d The script collects statistics about Java
method invocations. You can specify package, class or method name to
trace.

method_invocation_tree.d The script prints tree of Java and JNI method
invocations.

monitors.d The script traces monitor related probes.
object_allocation_stat.d The script collects statistics about N object

allocations every M seconds.

173

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Solaris Internals 2nd

– an update to Solaris Internals, for Solaris 10 and OpenSolaris. It covers
Virtual Memory, File systems, Zones, Resource Management, Process
Rights etc (all the good stuff in S10). This book is about 1100 pages

● New Solaris Performance and Tools !
– aimed at Administrators to learn about performance and debugging. It's

basically the book to read to understand and learn DTrace, MDB and the
Solaris Performance tools, and a methodology for performance
observability and debugging. This book is about 550 pages

174

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Build around OpenSolaris community
● Available under www.opensolaris.org

– The main page:

http://www.opensolaris.org/os/community/dtrace/

IRC on irc.freenode.net channels: #opensolaris, #dtrace

● The leaders:
– Bryan M. Cantrill

– Adam H. Leventhal

– Mike Shapiro

– Brendan Gregg

● Working with other communities

http://www.opensolaris.org/
http://www.opensolaris.org/os/community/dtrace/

175

USE IMPROVE EVANGELIZE

DTrace Community, cont.
● Jim Mauro and Richard McDougall: Solaris

Internals
– www.solarisinternals.com

● Lots of folks:
– http://www.opensolaris.org/os/community/dtrace/observers/

● How can you help ? Use, Improve and Use, Improve and
EvangelizeEvangelize

http://www.solarisinternals.com/
http://www.opensolaris.org/os/community/dtrace/observers/

176

USE IMPROVE EVANGELIZE

Future
● Visualization tools
● Integration with Java 6
● New providers: Apache, Sun Java System

Webserver
● DTrace and Zones: support already in Solaris

Express builds
● Better documentation and more scripts
● DTrace and other operating systems:

– FreeBSD: porting already done !

– Linux: using SystemTap still experimental !

177

USE IMPROVE EVANGELIZE

Database Supplement
● DTrace for Database Administrators

– Learn how to use DTrace

– Easy to use and experiment using DTraceToolkit

– Understand how the entire database engine works

– Special glasses: I/O monitoring

● DTracing Oracle!!!
● Real Case Examples

178

USE IMPROVE EVANGELIZE

Free your mind
● A new mentality when debugging and observe

with DTrace
● See the entire system
● Discover certain locations you want to

investigate and look
● Place probes there, where are you interested
● Wait and see when the probes are executing
● Observe these locations by discovering who,

how and when are accessed
● Gather the results by building a report

179

USE IMPROVE EVANGELIZE

Free your mind, cont.
● Using DTrace does not mean you should not

use anymore: vmstat, iostat, mpstat, etc.
● Try to understand every monitoring tool
● You don't have to do everything using

DTrace...e.g.: memory leaks use the best tool:
libumem, dbx

● Solaris has a very rich support for monitoring
and observability. Try to understand each tool
and what is good for: memory, disk, network,
cpu, tracing, process monitoring and debug,
kernel debug

180

USE IMPROVE EVANGELIZE

Coming Soon!

USE IMPROVE EVANGELIZE

Thank you! (and to Jim Mauro et al.)

“open” artwork and icons by chandan:
http://blogs.sun.com/chandan

Harry J Foxwell, PhD
harry.foxwell@oracle.com

http://blogs.sun.com/chandan

	Title Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	java-steps
	probes
	java-alloc
	java-method
	java-time
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	End

