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Christopher Nolan’s science fiction movie Interstellar offers a variety of opportunities for stu-
dents in elementary courses on general relativity theory. This paper describes such opportunities,
including: (i) At the motivational level, the manner in which elementary relativity concepts underlie
the wormhole visualizations seen in the movie. (ii) At the briefest computational level, instructive
calculations with simple but intriguing wormhole metrics, including, e.g., constructing embedding
diagrams for the three-parameter wormhole that was used by our visual effects team and Christo-
pher Nolan in scoping out possible wormhole geometries for the movie. (iii) Combining the proper
reference frame of a camera with solutions of the geodesic equation, to construct a light-ray-tracing
map backward in time from a camera’s local sky to a wormhole’s two celestial spheres. (iv) Imple-
menting this map, for example in Mathematica, Maple or Matlab, and using that implementation
to construct images of what a camera sees when near or inside a wormhole. (v) With the stu-
dent’s implementation, exploring how the wormhole’s three parameters influence what the camera
sees—which is precisely how Christopher Nolan, using our implementation, chose the parameters for
Interstellar ’s wormhole. (vi) Using the student’s implementation, exploring the wormhole’s Einstein
ring, and particularly the peculiar motions of star images near the ring; and exploring what it looks
like to travel through a wormhole.

I. INTRODUCTION

A. The Context and Purposes of this paper

In 1988, in connection with Carl Sagan’s novel
Contact,1 later made into a movie,2 one of the authors
published an article in this journal about wormholes as a
tool for teaching general relativity (Morris and Thorne3).

This article is a follow-up, a quarter century later, in
the context of Christopher Nolan’s movie Interstellar4

and Kip Thorne’s associated book The Science of Inter-
stellar5. Like Contact, Interstellar has real science built
into its fabric, thanks to a strong science commitment
by the director, screenwriters, producers, and visual ef-
fects team, and thanks to Thorne’s role as an executive
producer.

Although wormholes were central to the theme of Con-
tact and to many movies and TV shows since then, such
as Star Trek and Stargate, none of these have depicted
correctly a wormhole as it would be seen by a nearby
human. Interstellar is the first to do so. The authors of
this paper, together with Christopher Nolan who made
key decisions, were responsible for that depiction.

This paper has two purposes: (i) To explain how Inter-
stellar ’s wormhole images were constructed and explain
the decisions made on the way to their final form, and (ii)
to present this explanation in a way that may be useful
to students and teachers in elementary courses on general
relativity.

B. The status of wormholes in the real universe

Before embarking on these explanations, we briefly de-
scribe physicists’ current understanding of wormholes,
based on much research done since 1988. For a thorough
and readable, but non-technical review, see the recent
book Time Travel and Warp Drives by Allen Everett
and Thomas Roman.6 For reviews that are more techni-
cal, see papers by Friedman and Higuchi7 and by Lobo8.

In brief, physicists’ current understanding is this:

• There is no known mechanism for making worm-
holes, either naturally in our universe or artifi-
cially by a highly advanced civilization, but there
are speculations; for example that wormholes in
hypothetical quantum foam on the Planck scale,√
G~/c3 ∼ 10−35 m, might somehow be enlarged

to macroscopic size.6,9

• Any creation of a wormhole where initially there
is none would require a change in the topology
of space, which would entail, in classical, non-
quantum physics, both negative energy and closed
timelike curves (the possibility of backward time
travel)—according to theorems by Frank Tipler and
Robert Geroch.7 It is likely the laws of physics for-
bid this. Likely but not certain.

• A wormhole will pinch off so quickly that nothing
can travel through it, unless it has “exotic matter”
at its throat—matter (or fields) that, at least in
some reference frames, has negative energy density.
Although such negative energy density is permit-
ted by the laws of physics (e.g. in the Casimir ef-
fect, the electromagnetic field between two highly
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conducting plates), there are quantum inequalities
that limit the amount of negative energy that can
be collected in a small region of space and how long
it can be there; and these appear to place severe
limits on the sizes of traversable wormholes (worm-
holes through which things can travel at the speed
of light or slower).6 The implications of these in-
equalities are not yet fully clear, but it seems likely
that, after some strengthening, they will prevent
macroscopic wormholes like the one in Interstellar
from staying open long enough for a spaceship to
travel through. Likely, but not certain.

• The research leading to these conclusions has been
performed ignoring the possibility that our uni-
verse, with its four spacetime dimensions, resides in
a higher dimensional bulk with one or more large
extra dimensions, the kind of bulk envisioned in
Interstellar ’s “fifth dimension.” Only a little is
known about how such a bulk might influence the
existence of traversable wormholes, but one intrigu-
ing thing is clear: Properties of the bulk can, at
least in principle, hold a wormhole open without
any need for exotic matter in our four dimensional
universe (our “brane”).8 But the words “in princi-
ple” just hide our great ignorance about our uni-
verse in higher dimensions.

In view of this current understanding, it seems very
unlikely to us that traversable wormholes exist naturally
in our universe, and the prospects for highly advanced
civilizations to make them artificially are also pretty dim.

Nevertheless, the distances from our solar system to
others are so huge that there is little hope, with rocket
technology, for humans to travel to other stars in the next
century or two;10 so wormholes, quite naturally, have be-
come a staple of science fiction.

And, as Thorne envisioned in 1988,3 wormholes have
also become a pedagogical tool in elementary courses
on general relativity—e.g., in the textbook by James
Hartle.11

C. The genesis of our research on wormholes

This paper is a collaboration between Caltech physi-
cist Kip Thorne, and computer graphics artists at Double
Negative Visual Effects in London. We came together in
May 2013, when Christopher Nolan asked us to collab-
orate on building, for Interstellar, realistic images of a
wormhole, and also a fast spinning black hole and its
accretion disk, with ultra-high (IMAX) resolution and
smoothness. We saw this not only as an opportunity to
bring realistic wormholes and black holes into the Holly-
wood arena, but also an opportunity to create images of
wormholes and black holes for relativity and astrophysics
research.

Elsewhere12 we describe the simulation code that we
wrote for this: DNGR for “Double Negative Gravita-

tional Renderer”, and the black-hole and accretion-disk
images we generated with it, and also some new insights
into gravitational lensing by black holes that it has re-
vealed. In this paper we focus on wormholes—which are
much easier to model mathematically than Interstellar ’s
fast spinning black hole, and are far more easily incorpo-
rated into elementary courses on general relativity.

In our modelling of Interstellar ’s wormhole, we pre-
tended we were engineers in some arbitrarily advanced
civilization, and that the laws of physics place no con-
straints on the wormhole geometries our construction
crews can build. (This is almost certainly false; the quan-
tum inequalities mentioned above, or other physical laws,
likely place strong constraints on wormhole geometries,
if wormholes are allowed at all—but we know so little
about those constraints that we chose to ignore them.)
In this spirit, we wrote down the spacetime metrics for
candidate wormholes for the movie, and then proceeded
to visualize them.

D. Overview of this paper

We begin in Sec. II by presenting the spacetime metrics
for several wormholes and visualizing them with embed-
ding diagrams — most importantly, the three-parameter
“Dneg wormhole” metric used in our work on the movie
Interstellar. Then we discuss adding a Newtonian-type
gravitational potential to our Dneg metric, to produce
the gravitational pull that Christopher Nolan wanted,
and the potential’s unimportance for making wormhole
images.

In Sec III we describe how light rays, traveling back-
ward in time from a camera to the wormhole’s two celes-
tial spheres, generate a map that can be used to produce
images of the wormhole and of objects seen through or
around it; and we discuss our implementations of that
map to make the images seen in Interstellar. In the Ap-
pendix we present a fairly simple computational proce-
dure by which students can generate their own map and
thence their own images.

In Sec. IV we use our own implementation of the map
to describe the influence of the Dneg wormhole’s three
parameters on what the camera sees.

Then in Secs. V and VI, we discuss Christopher Nolan’s
use of these kinds of implementations to choose the pa-
rameter values for Interstellar ’s wormhole; we discuss the
resulting wormhole images that appear in Interstellar,
including that wormhole’s Einstein ring, which can be
explored by watching the movie or its trailers, or in stu-
dents’ own implementations of the ray-tracing map; and
we discuss images made by a camera travelling through
the wormhole, that do not appear in the movie.

Finally in Sec. VII we present brief conclusions.
Scattered throughout the paper are suggestions of cal-

culations and projects for students in elementary courses
on general relativity. And throughout, as is common in
relativity, we use “geometrized units” in which Newton’s
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gravitational constant G and the speed of light c are set
equal to unity, so time is measured in length units, 1 s =
c×1 s = 2.998 × 108 m; and mass is expressed in length
units: 1 kg = (G/c2)×1 kg = 0.742 × 10−27 m; and the
mass of the Sun is 1.476 km.

II. SPACETIME METRICS FOR WORMHOLES,
AND EMBEDDING DIAGRAMS

In general relativity, the curvature of spacetime can
be expressed, mathematically, in terms of a spacetime
metric. In this section we review a simple example of this:
the metric for an Ellis wormhole; and then we discuss the
metric for the Double Negative (Dneg) wormhole that we
designed for Interstellar.

A. The Ellis wormhole

In 1973 Homer Ellis13 introduced the following met-
ric for a hypothetical wormhole, which he called a
“drainhole”:14

ds2 = −dt2 + d`2 + r2(dθ2 + sin2 θ dφ2) , (1)

where r is a function of the coordinate ` given by

r(`) =
√
ρ2 + `2 , (2)

and ρ is a constant.
As always in general relativity, one does not need to

be told anything about the coordinate system in order
to figure out the spacetime geometry described by the
metric; the metric by itself tells us everything. Deducing
everything is a good exercise for students. Here is how
we do so:

First, in −dt2 the minus sign tells us that t, at fixed
`, θ, φ, increases in a timelike direction; and the absence
of any factor multiplying −dt2 tells us that t is, in fact,
proper time (physical time) measured by somebody at
rest in the spatial, {`, θ, φ} coordinate system.

Second, the expression r2(dθ2+sin2 θ dφ2) is the famil-
iar metric for the surface of a sphere with circumference
2πr and surface area 4πr2, written in spherical polar co-
ordinates {θ, φ}, so the Ellis wormhole must be spheri-
cally symmetric. As we would in flat space, we shall use
the name “radius” for the sphere’s circumference divided
by 2π, i.e. for r. For the Ellis wormhole, this radius is

r =
√
ρ2 + `2.

Third, from the plus sign in front of d`2 we infer that `
is a spatial coordinate; and since there are no cross terms
d`dθ or d`dφ, the coordinate lines of constant θ and φ,
with increasing `, must be radial lines; and since d`2 has
no multiplying coefficient, ` must be the proper distance
(physical) distance traveled in that radial direction.

Fourth, when ` is large and negative, the radii of

spheres r =
√
ρ2 + `2 is large and approximately equal to

|`|. When ` increases to zero, r decreases to its minimum

r

φ

2ρ

FIG. 1. Embedding diagram for the Ellis wormhole: the
wormhole’s two-dimensional equatorial plane embedded in
three of the bulk’s four spatial dimensions.

value ρ. And when ` increases onward to a very large
value, r increases once again, becoming approximately
`. This tells us that the metric represents a wormhole
with throat radius ρ, connecting two asymptotically flat
regions of space, `→ −∞ and `→ +∞.

In Hartle’s textbook,11 a number of illustrative calcu-
lations are carried out using Ellis’s wormhole metric as
an example. The most interesting is a computation, in
Sec. 7.7, of what the two-dimensional equatorial surfaces
(surfaces with constant t and θ = π/2) look like when
embedded in a flat 3-dimensional space, the embedding
space. Hartle shows that equatorial surfaces have the
form shown in Fig. 1—a form familiar from popular ac-
counts of wormholes.

Figure 1 is called an “embedding diagram” for the
wormhole. We discuss embedding diagrams further in
Sec. II B 3 below, in the context of our Dneg wormhole.

Thomas Müller and colleagues15 have visualized an El-
lis wormhole in various environments by methods similar
to those that we lay out below.

B. The Double Negative three-parameter
wormhole

The Ellis wormhole was not an appropriate starting
point for our Interstellar work. Christopher Nolan, the
movie’s director, wanted to see how the wormhole’s visual
appearance depends on its shape, so the shape had to be
adjustable, which was not the case for the Ellis wormhole.

So for Interstellar we designed a wormhole with three
free shaping parameters and produced images of what
a camera orbiting the wormhole would see for various
values of the parameters. Christopher Nolan and Paul
Franklin, the leader of our Dneg effort, then discussed the
images; and based on them, Nolan chose the parameter
values for the movie’s wormhole.

In this section we explain our three-parameter Double
Negative (Dneg) wormhole in three steps: First, a vari-
ant with just two parameters (the length and radius of
the wormhole’s interior) and with sharp transitions from
its interior to its exteriors; then a variant with a third
parameter, called the lensing length, that smooths the
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φ
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2ρ

FIG. 2. Embedding diagram for the wormhole with sharp
transition, Eqs. (1) and (3).

transitions; and finally a variant in which we add a grav-
itational pull.

1. Wormhole with sharp transitions

Our wormhole with sharp transitions is a simple cylin-
der of length 2a, whose cross sections are spheres, all
with the same radius ρ; this cylinder is joined at its ends
onto flat three-dimensional spaces with balls of radius ρ
removed. This wormhole’s embedding diagram is Fig.
2. As always, the embedding diagram has one spatial
dimension removed, so the wormhole’s cross sections ap-
pear as circles rather than spheres.

Using the same kinds of spherical polar coordinates as
for the Ellis wormhole above, the spacetime metric has
the general wormhole form (1) with

r(`) = ρ for the wormhole interior, |`| ≤ a , (3)

= |`| − a+ ρ for the wormhole exterior, |`| > a .

2. Dneg wormhole without gravity

Our second step is to smooth the transitions between
the wormhole interior |`| < a (the cylinder) and the two
external universes |`| > a. As we shall see, the smoothed
transitions give rise to gravitational lensing (distortions)
of the star field behind each wormhole mouth. Such grav-
itational lensing is a big deal in astrophysics and cosmol-
ogy these days; see, e.g., the Gravitational Lensing Re-
source Letter16; and, as we discuss in Sec. V C, it shows
up in a rather weird way, in Interstellar, near the edges
of the wormhole image.

Somewhat arbitrarily, we chose to make the transi-
tion have approximately the same form as that from the
throat (horizon) of a nonspinning black hole to the exter-
nal universe in which the hole lives. Such a hole’s met-
ric (the “Schwarzschild metric”) has a form that is most
simply written using radius r as the outward coordinate

rather than proper distance `:

ds2 = −(1−2M/r)dt2+
dr2

1− 2M/r
+r2(dθ2+sin2 θ dφ2) ,

(4)
where M is the black hole’s mass. Comparing the spa-
tial part of this metric (t =constant) with our general

wormhole metric (1), we see that d` = ±dr/
√

1− 2M/r,
which can easily be integrated to obtain the proper dis-
tance traveled as a function of radius, `(r). What we
want, however, is r as a function of `, and we want it
in an analytic form that is easy to work with; so for our
Dneg wormhole, we choose a fairly simple analytic func-
tion that is roughly the same as the Schwarzschild r(`):

Outside the wormhole’s cylindrical interior, we chose

r = ρ+
2

π

∫ |`|−a
0

arctan

(
2ξ

πM

)
dξ (5a)

= ρ+M
[
x arctanx− 1

2
ln(1 + x2)

]
, for |`| > a ,

where

x ≡ 2(|`| − a)

πM . (5b)

(Students might want to compare this graphically with

the inverse of the Schwarzschild ` =
∫
dr/
√

1− 2M/r,
plotting, e.g., r−ρ for our wormhole as a function of |`|−
a; and r− 2M of Schwarzschild as a function of distance
from the Schwarzschild horizon r = 2M .) Within the
wormhole’s cylindrical interior, we chose, of course,

r = ρ for |`| < a . (5c)

These equations (5) for r(`), together with our general
wormhole metric (1), describe the spacetime geometry of
the Dneg wormhole without gravity.

For the Schwarzschild metric, the throat radius ρ is
equal to twice the black hole’s mass (in geometrized
units), ρ = 2M. For our Dneg wormhole we choose the
two parameters ρ and M to be independent: they rep-
resent the wormhole’s radius and the gentleness of the
transition from the wormhole’s cylindrical interior to its
asymptotically flat exterior.

We shall refer to the ends of the cylindrical interior,
` = ±a, as the wormhole’s mouths. They are spheres
with circumferences 2πρ.

3. Embedding diagrams for the Dneg wormhole

We construct embedding diagrams for the Dneg worm-
hole (and any other spherical wormhole) by comparing
the spatial metric of the wormhole’s two-dimensional
equatorial surface ds2 = d`2 + r2(`)dφ2 with the spa-
tial metric of the embedding space. Doing so is a good
exercise for students. For the embedding space we choose
cylindrical coordinates with the symmetry axis along the
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r

2a2ρ

φ

W

FIG. 3. Embedding diagram for the Dneg wormhole with
parameters a/ρ = 1 (length 2a of cylindrical section equal
to its diameter 2ρ) and M/ρ = 0.5, which corresponds to a
lensing width W/ρ = 0.715.

wormhole’s center line. Then (as in Figs. 1 and 2), the
embedding space and the wormhole share the same ra-
dial coordinate r and angular coordinate φ, so with z the
embedding-space height above the wormhole’s midplane,
the embedding-space metric is ds2 = dz2 + dr2 + r2dφ2.
Equating this to the wormhole metric, we see that17

dz2 + dr2 = d`2, which gives us an equation for the
height z of the wormhole surface as a function of dis-
tance ` through the wormhole:

z(`) =

∫ `

0

√
1− (dr/d`′)2d`′ . (6)

By inserting the Dneg radius function (5) into this ex-
pression and performing the integral numerically, we ob-
tain the wormhole shapes shown in Fig. 3 and Figs. 7 and
9 below.

The actual shape of this embedding diagram depends
on two dimensionless ratios of the Dneg metric’s three
parameters: the wormhole’s length-to-diameter ratio
2a/2ρ = a/ρ, and its ratio M/ρ. For chosen values of
these ratios, the wormhole’s size is then fixed by its in-
terior radius ρ, which Christopher Nolan chose to be one
kilometer in Interstellar, so with the technology of the
movie’s era the wormhole’s gravitational lensing of our
galaxy’s star field can be seen from Earth, but barely
so.18

In the embedding diagram of Fig. 3, instead of depict-
ing M, we depict the lateral distance W in the embed-
ding space, over which the wormhole’s surface changes
from vertical to 45 degrees. ThisW is related toM by19

W = 1.42953...M (7)

We call this W the wormhole’s Lensing width, and we

often use it in place of M as the wormhole’s third pa-
rameter.

4. Dneg wormhole with gravity

Christopher Nolan asked for the movie’s spacecraft En-
durance to travel along a trajectory that gives enough
time for the audience to view the wormhole up close be-
fore Cooper, the pilot, initiates descent into the worm-
hole’s mouth. Our Double Negative team designed such a
trajectory, which required that the wormhole have a grav-
itational acceleration of order the Earth’s, ∼ 10m/s2, or
less. This is so weak that it can be described accurately
by a Newtonian gravitational potential Φ of magnitude
|Φ| � c2 = 1 (see below), that shows up in the time part
of the metric. More specifically, we modify the worm-
hole’s metric (1) to read

ds2 = −(1 + 2Φ)dt2 + d`2 + r2(dθ2 + sin2 θ dφ2) . (8)

The sign of Φ is negative (so the wormhole’s gravity will
be attractive), and spherical symmetry dictates that it
be a function only of `.

According to the equivalence principle, the gravita-
tional acceleration experienced by a particle at rest out-
side or inside the wormhole (at fixed spatial coordinates
{`, θ, φ} = constant) is the negative of that particle’s 4-
acceleration. Since the 4-acceleration is orthogonal to
the particle’s 4-velocity, which points in the time direc-
tion, its gravitational acceleration is purely spatial in the
coordinate system {t, `, θ, φ}. It is a nice exercise for stu-
dents to compute the particle’s 4-acceleration and thence
its gravitational acceleration. The result, aside from neg-
ligible fractional corrections of order |Φ|, is

g = −(dΦ/d`) eˆ̀ , (9)

where eˆ̀ is the unit vector pointing in the radial direc-
tion. Students may have seen an equation analogous to
(8) when space is nearly flat, and a calculation in that
case which yields Eq. (9) for g (e.g. Sec. 6.6 of Hartle11).
Although for the wormhole metric (8), with r given by
Eqs. (5) or (2), space is far from flat, Eq. (9) is still
true—a deep fact that students would do well to absorb
and generalize.

It is reasonable to choose the gravitational acceleration
g = |g| = |dΦ/d`| to fall off as ∼ 1/(distance)2 as we
move away from the wormhole mouth; or at least faster
than ∼ 1/(distance). Integrating g = |dΦ/d`| radially
and using this rapid falloff, the student can deduce that
the magnitude of Φ is of order g times the wormhole’s
radius ρ. With a gravitational acceleration g = |g| <∼ 10
m/s2 and ρ = 1 km, this gives |Φ| ∼ |g|ρ <∼ 104(m/s)2 ∼
10−12. Here we have divided by the speed of light squared
to bring this into our geometrized units.

Such a tiny gravitational potential corresponds to a
slowing of time near the wormhole by the same small
amount, no more than a part in 1012 [cf. the time part
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of the metric (8)]. This is so small as to be utterly unim-
portant in the movie, and so small that, when computing
the propagation of light rays through the wormhole, to
ultrahigh accuracy we can ignore Φ and use the Dneg
metric without gravity. We shall do so.

III. MAPPING A WORMHOLE’S TWO
CELESTIAL SPHERES ONTO A CAMERA’S SKY

A. Foundations for the Map

A camera inside or near a wormhole receives light rays
from light sources and uses them to create images. In this
paper we shall assume, for simplicity, that all the light
sources are far from the wormhole, so far that we can
idealize them as lying on “celestial spheres” at `→ −∞
(lower celestial sphere; Saturn side of the wormhole in the
movie Interstellar) and `→ +∞ (upper celestial sphere;
Gargantua side in Interstellar); see Fig. 4. (Gargantua
is a supermassive black hole in the movie that humans
visit.) Some light rays carry light from the lower celestial
sphere to the camera’s local sky (e.g. Ray 1 in Fig. 4);
others carry light from the upper celestial sphere to the
camera’s local sky (e.g. Ray 2). Each of these rays is a
null geodesic through the wormhole’s spacetime.

On each celestial sphere, we set up spherical polar co-
ordinates {θ′, φ′}, which are the limits of the spherical
polar coordinates {θ, φ} as ` → ±∞. We draw these
two celestial spheres in Fig. 5, a diagram of the three di-
mensional space around each wormhole mouth, with the
curvature of space not shown. Notice that we choose to
draw the north polar axes θ = 0 pointing away from each
other and the south polar axes θ = π pointing toward

Ray 1

Ray
 2

Ra
y 2

camera’s
local sky

Upper Celestial Sphere 

Lower Celestial Sphere

FIG. 4. Embedding diagram showing light rays 1 and 2
that carry light from a wormhole’s lower and upper celestial
spheres, to a camera. The celestial spheres are incorrectly de-
picted close to the wormhole; they actually are very far away,
and we idealize them as at ` = ±∞.

each other. This is rather arbitrary, but it feels comfort-
able to us when we contemplate the embedding diagram
of Fig. 4.

We assume the camera moves at speeds very low com-
pared to light speed (as it does in Interstellar), so rel-
ativistic aberration and doppler shifts are unimportant,
Therefore, when computing images the camera makes, we
can treat the camera as at rest in the {`, θ, φ} coordinate

upper celestial sphere

camera’s
local sky

Gargantua side
  of wormhole

ex = eˆ

ey = eφ̂

ez = − eθ̂

θcs

φcs

Wormhole’s
upper mouth

lower celestial sphere

camera’s
local sky

  Saturn side
  of wormhole

θcs

ex = eˆ

ey = eφ̂

ez = − eθ̂

φcs

θ

φ

θ
=

0

Wormhole’s
lower mouth

FIG. 5. The two sides of the wormhole, with a camera on
each side at θc = π/2 (equatorial plane), φc = 0, and `c > a
on the Gargantua side; `c < −a on the Saturn side.
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system.

We can think of the camera as having a local sky,
on which there are spherical polar coordinates {θcs, φcs}
(“cs” for camera sky; not to be confused with celestial
sphere!); Fig. 5. In more technical language, {θcs, φcs}
are spherical polar coordinates for the tangent space at
the camera’s location.

A light ray that heads backward in time from the cam-
era (e.g. Ray 1 or 2 in Fig. 4), traveling in the {θcs, φcs}
direction, ultimately winds up at location {θ′, φ′} on one
of the wormhole’s two celestial spheres. It brings to
{θcs, φcs} on the camera’s sky an image of whatever was
at {θ′, φ′} on the celestial sphere.

This means that the key to making images of what
the camera sees is a ray-induced map from the camera’s
sky to the celestial spheres: {θ′, φ′, s} as a function of
{θcs, φcs}, where the parameter s tells us which celestial
sphere the backward light ray reaches: the upper one
(s = +) or the lower one (s = −).

In the Appendix we sketch a rather simple computa-
tional procedure by which students can compute this map
and then, using it, can construct images of wormholes
and their surroundings; and we describe a Mathematica
implementation of this procedure by this paper’s compu-
tationally challenged author Kip Thorne.

B. Our DNGR Mapping and Image Making

To produce the IMAX images needed for Interstellar,
at Double Negative we developed a much more sophisti-
cated implementation of the map within within a com-
puter code that we call DNGR12 (Double Negative Grav-
itational Renderer). In DNGR, we use ray bundles (light
beams) to do the mapping rather than just light rays.
We begin with a circular light beam about one pixel in
size at the camera and trace it backward in time to its
origin on a celestial sphere using the ray equations (A.7),
plus the general relativistic equation of geodesic devi-
ation, which evolves the beam’s size and shape. At the
celestial sphere, the beam is an ellipse, often highly eccen-
tric. We integrate up the image data within that ellipse
to deduce the light traveling into the camera’s circular
pixel. We also do spatial filtering to smooth artifacts and
time filtering to mimic the behavior of a movie camera
(when the image is changing rapidly), and we sometimes
add lens flare to mimic the effects of light scattering and
diffraction in a movie camera’s lens.

Elsewhere12 we give some details of these various “bells
and whistles”, for a camera orbiting a black hole rather
than a wormhole. They are essentially the same for a
wormhole.

However, fairly nice images can be produced without
any of these bells and whistles, using the simple proce-
dure described in the Appendix, and thus are within easy
reach of students in an elementary course on general rel-
ativity.

IV. THE INFLUENCE OF THE WORMHOLE’S
PARAMETERS ON WHAT THE CAMERA SEES

For Christopher Nolan’s perusal in choosing Interstel-
lar ’s wormhole parameters, we used our map to make
images of the galaxy in which the black hole Gargantua
resides, as viewed from the Saturn side of the wormhole;
see below. But for this paper, and the book5 that Thorne
has written about the science of Interstellar, we find it
more instructive, pedagogically, to show images of Saturn
and its rings as seen through the wormhole from the Gar-
gantua side. This section is a more quantitative version
of a discussion of this in Chap. 15 of that book.5

Figure 6 shows the simple Saturn image that we placed
on the lower celestial sphere of Fig. 5, and a star field that
we placed on the upper celestial sphere (the Gargantua
side of the wormhole). Both images are mapped from
the celestial sphere onto a flat rectangle with azimuthal
angle φ running horizontally and polar angle θ vertically.
In computer graphics, this type of image is known as a
longitude-latitude map.21

FIG. 6. (a) The image of Saturn placed on the lower celes-
tial sphere of Fig. 5. [From a composition of Cassini data by
Mattias Malmer20.] (b) The star-field image placed on the up-
per celestial sphere. [Created by our Double Negative artistic
team]. These images are available in high resolution, for use
by students, at http://www.dneg.com/dneg_vfx/wormhole.

A. Influence of the Wormhole’s Length

In Fig. 7 we explore the influence of the wormhole’s
length on the camera-sky image produced by these two
celestial spheres. Specifically, we hold the wormhole’s
lensing width fixed at a fairly small value, W = 0.05ρ,

http://www.dneg.com/dneg_vfx/wormhole
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FIG. 7. Images of Saturn on the camera sky, as seen through
the wormhole, for small lensing width, W = 0.05ρ and vari-
ous wormhole lengths, from top to bottom, 2a/ρ = 0.01, 1, 10.
The camera is at ` = 6.25ρ + a; i.e., at a distance 6.25ρ
from the wormhole’s mouth—the edge of its cylindrical inte-
rior. [Adapted from Fig. 15.2 of The Science of Interstellar5,
and used by permission of W. W. Norton & Company, Inc.
TM & c© 2015 Warner Bros. Entertainment Inc. (s15), and
Kip Thorne. Interstellar and all related characters and ele-
ments are trademarks of and c©Warner Bros. Entertainment
Inc. (s15). The images on the right may be used under the
terms of the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 (CC BY-NC-ND 3.0) license. Any further dis-
tribution of these images must maintain attribution to the
author(s) and the title of the work, journal citation and DOI.
You may not use the images for commercial purposes and if
you remix, transform or build upon the images, you may not
distribute the modified images.]

and we vary the wormhole’s length from 2a = 0.01ρ (top
picture), to 2a = ρ (middle picture), to 2a = 10ρ (bottom
picture).

Because Saturn and its rings are white and the sky
around it is black, while the star field on the Gargantua
side of the wormhole is blue, we can easily identify the
edge of the wormhole mouth as the transition from black-
and-white to blue. (The light’s colors are preserved as the

1
24

3

FIG. 8. Light rays that travel from Saturn, though the Dneg
wormhole, to the camera, producing the images in Fig. 7.
[Adapted from Fig. 15.3 of The Science of Interstellar5.]

light travels near and through the wormhole because we
have assumed the wormhole’s gravity is weak, |Φ| � 1;
there are no significant gravitational frequency shifts.)

Through a short wormhole (top), the camera sees a
large distorted image of Saturn nearly filling the right
half of the wormhole mouth. This is the primary image,
carried by light rays that travel on the shortest possible
paths through the wormhole from Saturn to camera, such
as the black path in Fig. 8. There is also a very thin,
lenticular, secondary image of Saturn, barely discernable,
near the left edge of the wormhole mouth. It is brought
to the camera by light rays that travel around the left side
of the wormhole (e.g. path 2 in Fig. 8)—a longer route
than for the primary image. The lenticular structure at
the lower right is blue, so it is a secondary gravitationally
lensed image of the blue star field that resides on the
camera’s side of the wormhole.

As the wormhole is lengthened (middle of Fig. 7), the
primary and secondary images move inward and shrink
in size. A lenticular tertiary image emerges from the
mouth’s right edge, carried by rays like 3 in Fig. 8 that
wrap around the wormhole once; and a fourth faint,
lenticular image emerges from the left side, carried by
rays like 4 that wrap around the wormhole in the oppo-
site direction, one and a half times.

As the wormhole is lengthened more and more (bottom
of Fig. 7), the existing images shrink and move inward
toward the mouth’s center, and new images emerge, one
after another, from the right then left then right... sides
of the mouth.

For a short wormhole, all these images were already
present, very near the wormhole’s edge; but they were
so thin as to be unresolvable. Lengthening the wormhole
moved them inward and made them thick enough to see.
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B. Influence of the Wormhole’s Lensing Width

In Fig. 9 we explore the influence of the wormhole’s
lensing width on what the camera sees. We hold its
length fixed and fairly small: equal to its radius, 2a = ρ.

For small lensing width W = 0.014ρ (top), the tran-
sition from the wormhole’s cylindrical interior to its
asymptotically flat exterior is quite sharp; so, not sur-
prisingly, the camera sees an exterior, blue star field that
extends with little distortion right up to the edge of the
wormhole mouth.

By contrast, when the lensing width is larger, W =
0.43ρ (bottom), the external star field is greatly distorted
by gravitational lensing. The dark cloud on the upper
left side of the wormhole is enlarged and pushed out of
the cropped picture, and we see a big secondary image
of the cloud on the wormhole’s lower right and a ter-
tiary image on its upper left. We also see lensing of the
wormhole mouth itself: it is enlarged; and lensing of the
image that comes through the wormhole from the Saturn
side. The lenticular secondary image of Saturn near the
mouth’s left edge is thickened, while the primary image
is shrunken a bit and moved inward to make room for a
new tertiary image on the right.

Students could check their wormhole imaging code by
trying to reproduce one or more images from Figs. 7 and
9, using the images in Fig. 6 on their celestial spheres.
Having done so, they could further explore the influence
of the wormhole parameters on the images the camera
sees.

V. INTERSTELLAR’S WORMHOLE

After reviewing images analogous to Figs. 7 and 9, but
with Saturn replaced by the stars and nebulae of Inter-
stellar ’s distant galaxy (the galaxy on the Gargantua side
of the wormhole; Fig. 10), Christopher Nolan made his
choice for the parameters of Interstellar ’s wormhole.

He chose a very short wormhole: length 2a = 0.01ρ as
in the top panel of Fig. 7; for greater lengths the multi-
ple images would be confusing to a mass audience. And
he chose a modest lensing width: W = 0.05ρ also as in
the top panel of Fig. 7 and in between the two lensing
widths of Fig. 9. This gives enough gravitational lensing
to be interesting (see below), but far less lensing than
for a black hole, thereby enhancing the visual distinc-
tion between Interstellar ’s wormhole and its black hole
Gargantua.

A. Interstellar ’s Distant Galaxy

For Interstellar, a team under the leadership of authors
Paul Franklin and Eugénie von Tunzelmann constructed
images of the distant galaxy through a multistep process:

The distant end of the wormhole was imagined to be
in the distant galaxy and closer to its center than we are

FIG. 9. Images of Saturn on the camera sky, as seen through
a wormhole with fixed length equal to the wormhole radius,
2a = ρ, and for two lensing widths: W = 0.014ρ (top) and
W = 0.43 (bottom). [Adapted from Fig. 15.4 of The Science
of Interstellar5, and used by permission of W. W. Norton
& Company, Inc. TM & c© Warner Bros. Entertainment
Inc. (s15), and Kip Thorne. The images on the right may be
used under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license.
Any further distribution of these images must maintain at-
tribution to the author(s) and the title of the work, journal
citation and DOI. You may not use the images for commer-
cial purposes and if you remix, transform or build upon the
images, you may not distribute the modified images.]

to the center of our Milky Way. Consequently the view
of the surrounding galaxy must be recognisably different
from the view we have from Earth: larger and brighter
nebulae, more dense dust, with brighter and more nu-
merous visible stars. This view was created as an artistic
task.

Nebulae were painted (by texture artist Zoe Lord), us-
ing a combination of space photography and imagination,
covering a range of colour palettes. These were combined
with layers of painted bright space dust and dark, silhou-
etted dust channels, to create a view of the galaxy with
as much visual depth and complexity as possible.

Star layout was achieved by taking real star data as
seen from Earth and performing various actions to make
the view different: the brightest stars were removed from
the data set (to avoid recognisable constellations) and
the brightnesses of all the other stars were increased and
shuffled. The result was a believably natural-looking star
layout which was unrecognisable compared to our famil-
iar view of the night sky from Earth.

Figure 10 is one of our distant-galaxy images, showing
nebulae, space dust and stars.
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FIG. 10. An image of stars and nebulae in Interstellar ’s dis-
tant galaxy (the galaxy on the Gargantua side of the worm-
hole), created by our Double Negative artistic team. This
image is available in high resolution, for use by students, at
http://www.dneg.com/dneg_vfx/wormhole.

B. View through Interstellar ’s Wormhole

When we place this distant-galaxy image on the upper
celestial sphere of Fig. 5 and place a simple star field on
the lower celestial sphere, within which the camera re-
sides, then the moving camera sees the wormhole images
shown in Interstellar and its trailers; for example, Fig.
11.

Students can create similar images, using their imple-
mentation of the map described in the Appendix, and
putting Fig. 10 on the upper celestial sphere. They could
be invited to explore how their images change as the cam-
era moves farther from the wormhole, closer, and through
it, and as the wormhole parameters are changed.

C. The Einstein Ring

Students could be encouraged to examine closely the
changing image of the wormhole in Interstellar or one
of its trailers, on a computer screen where the student
can move the image back and forth in slow motion. Just
outside the wormhole’s edge, at the location marked by
a dotted circle in Fig. 11, the star motions (induced by
camera movement) are quite peculiar. On one side of
the dotted circle, stars move rightward; on the other,
leftward. The closer a star is to the circle, the faster it
moves; see Fig. 12.

The circle is called the wormhole’s Einstein ring. This
ring is actually the ring image, on the camera’s local sky,
of a tiny light source that is precisely behind the worm-
hole and on the same end of the wormhole as the camera.
That location, on the celestial sphere and precisely op-
posite the camera, is actually a caustic (a singular, focal
point) of the camera’s past light cone. As the camera
orbits the wormhole, causing this caustic to sweep very
close to a star, the camera sees two images of the star, one
just inside the Einstein ring and the other just outside it,
move rapidly around the ring in opposite directions. This
is the same behavior as occurs with the Einstein ring of

FIG. 11. An image of the distant galaxy seen through Inter-
stellar ’s wormhole. The dotted pink circle is the wormhole’s
Einstein ring. [From a trailer for Interstellar. Created by
our Double Negative team. TM & c© Warner Bros. En-
tertainment Inc. (s15). This image may be used under the
terms of the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 (CC BY-NC-ND 3.0) license. Any further dis-
tribution of these images must maintain attribution to the
author(s) and the title of the work, journal citation and DOI.
You may not use the images for commercial purposes and if
you remix, transform or build upon the images, you may not
distribute the modified images.]

a black hole (see e.g. Fig. 2 of our paper on black-hole
lensing12) and any other spherical gravitational lens, and
it is also responsible for long, lenticular images of distant
galaxies gravitationally lensed by a more nearby galaxy.22

Students, having explored the wormhole’s Einstein ring
in a DVD or trailer of the movie, could be encouraged
to go learn about Einstein rings and/or figure out for
themselves how these peculiar star motions are produced.
They could then use their own implementation of our
map to explore whether their explanation is correct.

VI. TRIP THROUGH THE WORMHOLE

Students who have implemented the map (described in
the Appendix) from the camera’s local sky to the celes-
tial spheres could be encouraged to explore, with their
implementation, what it looks like to travel through the
Dneg wormhole for various parameter values.

We ourselves did so, together with Christopher Nolan,
as a foundation for Interstellar ’s wormhole trip. Because

http://www.dneg.com/dneg_vfx/wormhole
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FIG. 12. A close-up of Interstellar’s wormhole. The long,
streaked stars alongside the Einstein ring are a result of mo-
tion blur: the virtual camera’s shutter is open for a fraction
of a second (in this case, approximately 0.02 seconds) during
which the stars’ lensed images appear to orbit the wormhole,
causing the curved paths seen here. [From Interstellar, but
cropped. Created by our Double Negative team. TM & c©
Warner Bros. Entertainment Inc. (s15). This image may be
used under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 (CC BY-NC-ND 3.0) license.
Any further distribution of these images must maintain at-
tribution to the author(s) and the title of the work, journal
citation and DOI. You may not use the images for commer-
cial purposes and if you remix, transform or build upon the
images, you may not distribute the modified images.]

the wormhole Nolan chose to visualize from the outside
(upper left of Fig. 7; images in Figs. 10 and 12) is so
short and its lensing width so modest, the trip was quick
and not terribly interesting, visually—not at all what
Nolan wanted for his movie. So we generated additional
through-the-wormhole clips for him, with the wormhole
parameters changed. For a long wormhole, the trip was
like traveling through a long tunnel, too much like things
seen in previous movies. None of the clips, for any choice
of parameters, had the compelling freshness that Nolan
sought.

Moreover, none had the right feel. Figure 13 illus-
trates this problem. It shows stills from a trip through
a moderately short wormhole with a/ρ = 0.5 — stills
that students could replicate with their implementation.
Although these images are interesting, the resulting ani-
mated sequence is hard for an audience to interpret. The
view of the wormhole appears to scale up from its center,
growing in size until it fills the frame, and until none of
the starting galaxy is visible; at this point only the new

galaxy can be seen, because we now are actually inside
that new galaxy. This is hard to interpret visually. Be-
cause there is no parallax or other relative motion in the
frame, to the audience it looks like the camera is zooming
into the center of the wormhole using the camera’s zoom
lens. In the visual grammar of filmmaking, this tells the
audience that we are zooming in for a closer look but we
are still a distance from the wormhole; in reality we are
travelling through it, but this is not how it feels.

It was important for the audience to understand that
the wormhole allows the Endurance to take a shortcut
through the higher dimensional bulk. To foster that un-
derstanding, Nolan asked the visual effects team to con-
vey a sense of travel through an exotic environment, one
that was thematically linked to the exterior appearance
of the wormhole but also incorporated elements of pass-
ing landscapes and the sense of a rapidly approaching
destination. The visual effects artists at Double Nega-
tive combined existing DNGR visualisations of the worm-
hole’s interior with layers of interpretive effects animation
derived from aerial photography of dramatic landscapes,
adding lens-based photographic effects to tie everything
in with the rest of the sequence. The end result was a
sequence of shots that told a story comprehensible by a
general audience while resembling the wormhole’s inte-
rior, as simulated with DNGR.

VII. CONCLUSION

As we wrote this paper, we became more and more
enthusiastic about the educational opportunities pro-
vided by our Interstellar experience. The tools we used
in building, scoping out, and exploring Interstellar ’s
wormhole—at least those discussed in this paper—should
be easily accessible to fourth year undergraduates study-
ing relativity, as well as to graduate students. And the

FIG. 13. Still frames of a voyage through a short wormhole
(a/ρ = 0.5) with weak lensing (W/ρ = 0.05), as computed
with our DNGR code.
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movie itself, and our own route to the final wormhole
images in the movie, may be a strong motivator for stu-
dents.

Appendix: The Ray-Induced Map from the
Camera’s Local Sky to the Two Celestial Spheres

In this appendix we describe our fairly simple proce-
dure for generating the map from points {θcs, φcs} on the
camera’s local sky to points {θ′, φ′, s} on the wormhole’s
celestial sphere, with s = + for the upper celestial sphere
and s = − for the lower.

1. The Ray Equations

As we discussed in Sec. III A, the map is generated by
light rays that travel backward in time from the camera
to the celestial spheres. In the language of general rela-
tivity, these light rays are null (light-like) geodesics and
so are solutions of the geodesic equation

d2xα

dζ2
+ Γαµν

dxµ

dζ

dxν

dζ
= 0 . (A.1)

Here the Γαµν are Christoffel symbols (also called connec-
tion coefficients) that are constructable from first deriva-
tives of the metric coefficients, and ζ is the so-called affine
parameter, which varies along the geodesic.

This form of the geodesic equation is fine for analytical
work, but for numerical work it is best rewritten in the
language of Hamiltonian mechanics. Elsewhere23 one of
us will discuss, pedagogically, the advantages and the
underpinnings of this Hamiltonian rewrite.

There are several different Hamiltonian formulations of
the geodesic equation. The one we advocate is sometimes
called the “super-Hamiltonian” because of its beauty and
power, but we will stick to the usual word “Hamiltonian”.
The general formula for this Hamiltonian is23,24

H(xα, pβ) =
1

2
gµν(xα)pµpν . (A.2)

Here gµν are the contravariant components of the met-
ric, xα is the coordinate of a photon traveling along the
ray, and pα is the generalized momentum that is canoni-
cally conjugate to xα and it turns out to be the same as
the covariant component of the photon’s 4-momentum.
Hamilton’s equations, with the affine parameter ζ play-
ing the role of time, take the standard form

dxα

dζ
=
∂H

∂pα
= gανpν , (A.3a)

dpα
dζ

= − ∂H
∂xα

= −1

2

∂gµν

∂xα
pµpν . (A.3b)

In the first of Eqs. (A.3), the metric raises the index on
the covariant momentum, so it becomes pα = dxα/dζ, an

expression that may be familiar to students. The second
expression may not be so familiar, but it can be given as
an exercise for students to show that the second equation,
together with pα = dxα/dζ, is equivalent to the usual
form (A.1) of the geodesic equation.

For the general wormhole metric (1), the superhamil-
tonian (A.2) has the simple form

H =
1

2

[
−p2t + p2` +

p2θ
r(`)2

+
p2φ

r(`)2 sin2 θ

]
. (A.4)

Because this superhamiltonian is independent of the
time coordinate t and of the azimuthal coordinate φ, pt
and pφ are conserved along a ray [cf. Eq. (A.3b)]. Since
pt = dt/dζ = −pt, changing the numerical value of pt
merely renormalizes the affine parameter ζ; so without
loss of generality, we set pt = −1, which implies that ζ is
equal to time t [Eq. (A.6) below]. Since photons travel
at the speed of light, ζ is also distance travelled (in our
geometrized units where the speed of light is one).

We use the notation b for the conserved quantity pφ:

b = pφ . (A.5a)

Students should easily be able to show that, because we
set pt = −1, this b is the ray’s impact parameter rela-
tive to the (arbitrarily chosen25) polar axis. Because the
wormhole is spherical, there is a third conserved quantity
for the rays, its total angular momentum, which (with
pt = −1) is the same as its impact parameter B relative
to the hole’s center

B2 = p2θ +
p2φ

sin2 θ
. (A.5b)

By evaluating Hamilton’s equations for the wormhole
Hamiltonian (A.4) and inserting the conserved quanti-
ties on the right-hand side, we obtain the following ray
equations:

dt

dζ
= −pt = 1 , (A.6)

which reaffirms that ζ = t (up to an additive constant);
and, replacing ζ by t:

d`

dt
= p` , (A.7a)

dθ

dt
=
pθ
r2

, (A.7b)

dφ

dt
=

b

r2 sin2 θ
(A.7c)

dp`
dt

= B2 dr/d`

r3
, (A.7d)

dpθ
dt

=
b2

r2
cos θ

sin3 θ
. (A.7e)

These are five equations for the five quantities
{`, θ, φ, p`, pθ} as functions of t along the geodesic (ray).
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It is not at all obvious from these equations, but they
guarantee (in view of spherical symmetry) that the lat-
eral (nonradial) part of each ray’s motion is along a great
circle.

These equations may seem like an overly complicated
way to describe a ray. Complicated, maybe; but near
ideal for simple numerical integrations. They are stable
and in all respects well behaved everywhere except the
poles θ = 0 and θ = π, and they are easily implemented
in student-friendly software such as Mathematica, Maple
and Matlab.

2. Procedure for Generating the Map

It is an instructive exercise for students to verify the
following procedure for constructing the map from the
camera’s local sky to the two celestial spheres:

1. Choose a camera location (`c, θc, φc). It might best
be on the equatorial plane, θc = π/2, so the coor-
dinate singularities at θ = 0 and θ = π are as far
from the camera as possible.

2. Set up local Cartesian coordinates centered on the
camera, with x along the direction of increasing
` (toward the wormhole on the Saturn side; away
from the wormhole on the Gargantua side), y along
the direction of increasing φ, and z along the direc-
tion of decreasing θ,

ex = eˆ̀ , ey = eφ̂ , ez = −eθ̂ . (A.8)

Here eˆ̀, eθ̂ and eφ̂ are unit vectors that point in

the `, θ, and φ directions. (The hats tell us their
lengths are one.) Figure 5 shows these camera basis
vectors, for the special case where the camera is in
the equatorial plane. The minus sign in our choice
ez = −eθ̂ makes the camera’s ez parallel to the
wormhole’s polar axis on the Gargantua side of the
wormhole, where ` is positive.

3. Set up a local spherical polar coordinate system for
the camera’s local sky in the usual way, based on
the camera’s local Cartesian coordinates; cf. Eq.
(A.9a) below.

4. Choose a direction (θcs, φcs) on the camera’s local
sky. The unit vector N pointing in that direction
has Cartesian components

Nx = sin θcs cosφcs , Ny = sin θcs sinφcs ,

Nz = cos θcs . (A.9a)

Because of the relationship (A.8) between bases,
the direction n of propagation of the incoming ray
that arrives from direction −N, has components in
the global spherical polar basis

nˆ̀ = −Nx , nφ̂ = −Ny , nθ̂ = +Nz . (A.9b)

5. Compute the incoming light ray’s canonical mo-
menta from

p` = nˆ̀ , pθ = rnθ̂ , pφ = r sin θnφ̂ (A.9c)

(it’s a nice exercise for students to deduce these
equations from the relationship between the covari-
ant components of the photon 4-momentum and
the components on the unit basis vectors). Then
compute the ray’s constants of motion from

b = pφ = r sin θnφ̂ ,

B2 = p2θ +
p2φ

sin2 θ
= r2(n2

θ̂
+ n2

φ̂
) . (A.9d)

6. Take as initial conditions for ray integration that
at t = 0 the ray begins at the camera’s loca-
tion, (`, θ, φ) = (`c, θc, φc) with canonical momenta
(A.9c) and constants of motion (A.9d). Numeri-
cally integrate the ray equations (A.7), subject to
these initial conditions, from t = 0 backward along
the ray to time ti = −∞ (or some extremely nega-
tive, finite initial time ti). If `(ti) is negative, then
the ray comes from location {θ′, φ′} = {θ(ti), φ(ti)}
on the Saturn side of the wormhole, s = −. If
`(ti) is positive, then the ray comes from location
{θ′, φ′} = {θ(ti), φ(ti)} on the Gargantua side of
the wormhole, s = +.

3. Implementing the map

Evaluating this map numerically should be a moder-
ately easy task for students.

Kip Thorne, the author among us who is a total klutz
at numerical work, did it using Mathematica, and then
used that map—a numerical table of {θ′, φ′, s} as a func-
tion of {θcs, φcs}—to make camera-sky images of what-
ever was placed on the two celestial spheres. For image
processing, Thorne first built an interpolation of the map
using the Mathematica command ListInterpolation;
and he then used this interpolated map, together with
Mathematica’s command ImageTransformation, to
produce the camera-sky image from the images on the
two celestial spheres.
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