
Accredited Standards Committee X9 January 8, 1999
Title: X9-Financial Services
Accredited by the
American National Standards Institute

Working Draft
AMERICAN NATIONAL STANDARD

X9.63-199x
 Public Key Cryptography For The Financial Services Industry:
Key Agreement and Key Transport Using Elliptic Curve Cryptography

Notice -- This document is a draft document. It has not yet been processed through the consensus
procedures of X9 and ANSI.
Many changes which may greatly affect its contents can occur before this document is completed.
The working group may not be held responsible for the contents of this document.
Implementation or design based on this draft is at the risk of the user. No advertisement or
citation implying compliance with a "Standard" should appear as it is erroneous and misleading to
so state.
Copies of the draft proposed American National Standard will be available from the X9 Secretariat
when the document is finally announced for two months public comment. Notice of this
announcement will be in the trade press.

Secretariat: American Bankers Association
Standards Department

1120 Connecticut Ave., N.W.
Washington, DC 20036

© 1998 American Bankers Association
All rights reserved

- i -

Foreword

Business practice has changed with the introduction of computer-based technologies. The substitution of electronic
transactions for their paper-based predecessors has reduced costs and improved efficiency. Trillions of dollars in
funds and securities are transferred daily by telephone, wire services, and other electronic communication
mechanisms. The high value or sheer volume of such transactions within an open environment exposes the financial
community and its customers to potentially severe risks from accidental or deliberate disclosure, alteration,
substitution, or destruction of data. This risk is compounded by interconnected networks, and the increased number
and sophistication of malicious adversaries. Electronically communicated data may be secured through the use of
symmetrically-keyed encryption algorithms (e.g. ANSI X9.52, Triple-DEA) keyed via public-key cryptography-
based key management techniques.
This standard, X9.63-199x, Public Key Cryptography For The Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography, defines a suite of mechanisms for use in key management
applications. These mechanisms are based on the elliptic curve analogue of the Diffie-Hellman key agreement
mechanism. Because the mechanisms are based on the same fundamental mathematics as the Elliptic Curve Digital
Signature Algorithm (ECDSA) (see [8]), additional efficiencies and functionality may be obtained by combining
these and other cryptographic techniques.
While the techniques specified in this standard are designed to facilitate the secure establishment of cryptographic
data for the keying of symmetrically-keyed algorithms (e.g. DEA, TDEA), the standard does not guarantee that a
particular implementation is secure. It is the responsibility of the financial institution to put an overall process in
place with the necessary controls to ensure that the process is securely implemented. Furthermore, the controls
should include the application of appropriate audit tests in order to verify compliance.
The user’s attention is called to the possibility that compliance with this standard may require use of an invention
covered by patent rights. By publication of this standard, no position is taken with respect to the validity of potential
claims or of any patent rights in connection therewith. The patent holders have, however, filed a statement of
willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to
applicants desiring to obtain such a license. Details may be obtained from the X9 Secretariat,
Suggestions for the improvement or revision of this standard are welcome. They should be sent to the X9 Secretariat,
American Bankers Association, 1120 Connecticut Avenue, N.W., Washington D.C. 20036.
This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on
Financial Services, X9. Committee approval of the standard does not necessarily imply that all the committee
members voted for its approval.
At the time that this standard was approved, the X9 Committee had the following members:
Harold Deal, Chairman
Alice Droogan, Vice Chairman
Cynthia Fuller, Secretariat
Organization Represented Representative
[To be furnished]
The X9F subcommittee on Data and Information Security had the following members:
Glenda Barnes, Chairman
Organization Represented Representative
[To be furnished]
The X9F1 working group, which developed this standard, had the following members:
M. Blake Greenlee, Chairman
Organization Represented Representative
[To be furnished]

- ii -

Contents

1 SCOPE ... 1

2 DEFINITIONS, ABBREVIATIONS AND REFERENCES .. 1

2.1 DEFINITIONS AND ABBREVIATIONS.. 1
2.2 SYMBOLS AND NOTATION ... 6
2.3 REFERENCES ... 7

3 APPLICATION... 8

3.1 GENERAL... 8
3.2 THE SCHEMES IN THIS STANDARD... 8
3.3 IMPLEMENTING THE SCHEMES SECURELY ... 9
3.4 ANNEXES... 9

4 MATHEMATICAL CONVENTIONS .. 10

4.1 FINITE FIELD ARITHMETIC... 10
4.1.1 The Finite Field Fp.. 10

4.1.2 The Finite Field F2m .. 10
4.2 ELLIPTIC CURVES AND POINTS .. 13

4.2.1 Point Compression Technique for Elliptic Curves over Fp (Optional) ... 13

4.2.2 Point Compression Technique for Elliptic Curves over F2m (Optional).. 13
4.3 DATA CONVERSIONS ... 13

4.3.1 Integer-to-Octet-String Conversion .. 13
4.3.2 Octet-String-to-Integer Conversion .. 14
4.3.3 Field-Element-to-Octet-String Conversion ... 14
4.3.4 Octet-String-to-Field-Element Conversion ... 15
4.3.5 Field-Element-to-Integer Conversion ... 15
4.3.6 Point-to-Octet-String Conversion ... 15
4.3.7 Octet-String-to-Point Conversion ... 16

5 CRYPTOGRAPHIC INGREDIENTS... 16

5.1 ELLIPTIC CURVE DOMAIN PARAMETER GENERATION AND VALIDATION... 16
5.1.1 Elliptic Curve Domain Parameter Generation and Validation over F p.. 17

5.1.2 Elliptic Curve Domain Parameter Generation and Validation over F 2m.. 17
5.2 KEY PAIR GENERATION AND PUBLIC KEY VALIDATION.. 18

5.2.1 Key Pair Generation Primitive ... 19
5.2.2 Public Key Validation Primitive ... 19

5.3 CHALLENGE GENERATION PRIMITIVE.. 20
5.4 DIFFIE-HELLMAN PRIMITIVE.. 20
5.5 MQV PRIMITIVE ... 21
5.6 AUXILIARY FUNCTIONS ... 21

5.6.1 Associate Value Function.. 21
5.6.2 Cryptographic Hash Functions ... 22
5.6.3 Key Derivation Functions ... 22

5.7 MAC SCHEMES ... 23
5.7.1 Tagging Transformation ... 23
5.7.2 Tag Checking Transformation .. 23

5.8 ASYMMETRIC ENCRYPTION SCHEMES ... 23

- iii -

5.8.1 Elliptic Curve Encryption Scheme .. 24
5.8.2 Elliptic Curve Augmented Encryption Scheme ... 25

5.9 SIGNATURE SCHEME.. 26
5.9.1 Signing Transformation .. 26
5.9.2 Verifying Transformation.. 27

6 KEY AGREEMENT SCHEMES... 27

6.1 EPHEMERAL UNIFIED MODEL SCHEME.. 27
6.2 1-PASS DIFFIE-HELLMAN SCHEME .. 28

6.2.1 Initiator Transformation ... 29
6.2.2 Responder Transformation ... 29

6.3 STATIC UNIFIED MODEL SCHEME.. 29
6.4 COMBINED UNIFIED MODEL WITH KEY CONFIRMATION SCHEME.. 30

6.4.1 Initiator Transformation ... 31
6.4.2 Responder Transformation ... 32

6.5 1-PASS UNIFIED MODEL SCHEME.. 33
6.5.1 Initiator Transformation ... 33
6.5.2 Responder Transformation ... 33

6.6 FULL UNIFIED MODEL SCHEME ... 34
6.7 FULL UNIFIED MODEL WITH KEY CONFIRMATION SCHEME... 35

6.7.1 Initiator Transformation ... 36
6.7.2 Responder Transformation ... 37

6.8 STATION-TO-STATION SCHEME ... 37
6.8.1 Initiator Transformation ... 38
6.8.2 Responder Transformation ... 39

6.9 1-PASS MQV SCHEME .. 40
6.9.1 Initiator Transformation ... 40
6.9.2 Responder Transformation ... 41

6.10 FULL MQV SCHEME... 41
6.11 FULL MQV WITH KEY CONFIRMATION SCHEME .. 42

6.11.1 Initiator Transformation ... 43
6.11.2 Responder Transformation ... 43

7 KEY TRANSPORT SCHEMES .. 44

7.1 1-PASS TRANSPORT SCHEME... 45
7.1.1 Initiator Transformation ... 45
7.1.2 Responder Transformation ... 46

7.2 3-PASS TRANSPORT SCHEME... 46
7.2.1 Initiator Transformation ... 47
7.2.2 Responder Transformation ... 47

8 ASN.1 SYNTAX... 48

ANNEX A (NORMATIVE) NORMATIVE NUMBER-THEORETIC ALGORITHMS 49

A.1 AVOIDING CRYPTOGRAPHICALLY WEAK CURVES ... 49
A.1.1 The MOV Condition .. 49
A.1.2 The Anomalous Condition... 49

A.2 PRIMALITY .. 49
A.2.1 A Probabilistic Primality Test... 49
A.2.2 Checking for Near Primality ... 50

A.3 ELLIPTIC CURVE ALGORITHMS.. 50
A.3.1 Finding a Point of Large Prime Order ... 50
A.3.2 Selecting an Appropriate Curve and Point ... 50
A.3.3 Selecting an Elliptic Curve Verifiably at Random .. 51
A.3.4 Verifying that an Elliptic Curve was Generated at Random ... 52

- iv -

A.4 PSEUDORANDOM NUMBER GENERATION .. 53
A.4.1 Algorithm Derived from FIPS 186 .. 53

ANNEX B (INFORMATIVE) MATHEMATICAL BACKGROUND .. 55

B.1 THE FINITE FIELD Fp.. 55
B.2 THE FINITE FIELD F2m.. 55

B.2.1 Polynomial Bases .. 56
B.2.2 Trinomial and Pentanomial Bases .. 57
B.2.3 Normal Bases .. 57
B.2.4 Gaussian Normal Bases .. 58

B.3 ELLIPTIC CURVES OVER Fp .. 58
B.4 ELLIPTIC CURVES OVER F2m .. 59

ANNEX C (INFORMATIVE) TABLES OF TRINOMIALS, PENTANOMIALS, AND GAUSSIAN NORMAL
BASES.. 63

C.1 TABLE OF GNB FOR F2m.. 63
C.2 IRREDUCIBLE TRINOMIALS OVER F2 .. 74
C.3 IRREDUCIBLE PENTANOMIALS OVER F2 ... 78
C.4 TABLE OF FIELDS F2m WHICH HAVE BOTH AN ONB AND A TPB OVER F2 .. 84

ANNEX D (INFORMATIVE) INFORMATIVE NUMBER-THEORETIC ALGORITHMS............................. 85

D.1 FINITE FIELDS AND MODULAR ARITHMETIC.. 85
D.1.1 Exponentiation in a Finite Field ... 85
D.1.2 Inversion in a Finite Field .. 85
D.1.3 Generating Lucas Sequences .. 85
D.1.4 Finding Square Roots Modulo a Prime .. 86
D.1.5 Trace and Half-Trace Functions... 86

D.1.6 Solving Quadratic Equations over F2m ... 87
D.1.7 Checking the Order of an Integer Modulo a Prime .. 87
D.1.8 Computing the Order of a Given Integer Modulo a Prime ... 88
D.1.9 Constructing an Integer of a Given Order Modulo a Prime ... 88

D.2 POLYNOMIALS OVER A FINITE FIELD ... 88
D.2.1 GCD’s over a Finite Field... 88

D.2.2 Finding a Root in F2m of an Irreducible Binary Polynomial .. 88
D.2.3 Change of Basis 89
D.2.4 Checking Binary Polynomials for Irreducibility ... 91

D.3 ELLIPTIC CURVE ALGORITHMS.. 91
D.3.1 Finding a Point on an Elliptic Curve .. 91
D.3.2 Scalar Multiplication (Computing a Multiple of an Elliptic Curve Point) .. 92

ANNEX E (INFORMATIVE) COMPLEX MULTIPLICATION (CM) ELLIPTIC CURVE GENERATION
METHOD .. 93

E.1 MISCELLANEOUS NUMBER-THEORETIC ALGORITHMS... 93
E.1.1 Evaluating Jacobi Symbols ... 93
E.1.2 Finding Square Roots Modulo a Power of 2 ... 94
E.1.3 Exponentiation Modulo a Polynomial .. 94
E.1.4 Factoring Polynomials over Fp (Special Case)... 94
E.1.5 Factoring Polynomials over F2 (Special Case)... 95

E.2 CLASS GROUP CALCULATIONS.. 95
E.2.1 Overview ... 95
E.2.2 Class Group and Class Number.. 95
E.2.3 Reduced Class Polynomials .. 96

E.3 COMPLEX MULTIPLICATION... 98

- v -

E.3.1 Overview ... 98
E.3.2 Finding a Nearly Prime Order over Fp... 99
E.3.3 Finding a Nearly Prime Order over F2

m ... 101

E.3.4 Constructing a Curve and Point (Prime Case) ... 102
E.3.5 Constructing a Curve and Point (Binary Case) .. 103

ANNEX F (INFORMATIVE) AN OVERVIEW OF ELLIPTIC CURVE SYSTEMS....................................... 105

ANNEX G (INFORMATIVE) COMPARISON OF ELLIPTIC CURVES AND FINITE FIELDS.................. 106

ANNEX H (INFORMATIVE) SECURITY CONSIDERATIONS... 108

H.1 THE ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM.. 108
H.1.1 Software Attacks.. 109
H.1.2 Hardware Attacks ... 110
H.1.3 Key Length Considerations ... 110

H.2 ELLIPTIC CURVE DOMAIN PARAMETERS ... 110
H.3 KEY PAIRS... 112
H.4 KEY ESTABLISHMENT SCHEMES.. 112

H.4.1 The ECDLP and Key Establishment Schemes...112
H.4.2 Security Attributes and Key Establishment Schemes .. 113
H.4.3 Security Attributes of the Schemes in this Standard .. 113
H.4.4 Appropriate Key Lengths .. 115

H.5 VALIDATION ISSUES .. 116

ANNEX I (INFORMATIVE) ALIGNMENT WITH OTHER STANDARDS .. 119

ANNEX J (INFORMATIVE) PATENTS... 120

ANNEX K (INFORMATIVE) EXAMPLES .. 121

ANNEX L (INFORMATIVE) REFERENCES.. 122

- vi -

Figures

Figure 1 – Data Types and Conversion Conventions.. 14
Figure 2 - Ephemeral Unified Model Scheme... 27
Figure 3 – 1-Pass Diffie-Hellman Scheme.. 28
Figure 4 - Static Unified Model Scheme... 29
Figure 5 - Combined Unified Model with Key Confirmation Scheme.. 30
Figure 6 - 1-Pass Unified Model Scheme ... 33
Figure 7 - Full Unified Model Scheme ... 34
Figure 8 - Full Unified Model with Key Confirmation Scheme.. 35
Figure 9 – Station-to-Station Scheme ... 38
Figure 10 - 1-Pass MQV Scheme.. 40
Figure 11 - Full MQV Scheme.. 41
Figure 12 - Full MQV with Key Confirmation Scheme.. 42
Figure 13 - 1-Pass Key Transport Scheme.. 45
Figure 14 - 3-Pass Key Transport Scheme.. 46

- vii -

Tables

Table C-1 – The type of GNB that shall be used for F2m. ... 63
Table C-2 – Irreducible trinomials xm + xk + 1 over F2.. 74
Table C-3 – Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2. ... 78
Table C-4 – Values of m for which the field F2m has both an ONB and a TPB over F2. .. 84
Table G-1 – Fp

* and E(Fq) Group Information ... 106
Table G-2 – Comparison of Notation in ANSI X9.42 and ANSI X9.63... 106
Table G-3 – ANSI X9.42 and ANSI X9.63 Setup .. 107
Table G-4 – ANSI X9.42 and ANSI X9.63 Key Generation .. 107
Table G-5 – Comparison of the Full Unified Model Scheme ... 107

Table H-1 - Computing power required to compute logarithms with the Pollard-ρ method. 109
Table H-2 – Attributes Provided by Key Establishment Schemes .. 115
Table H-3 - Validation Methods and the Risks they Mitigate... 118

X9.63-199x

- 1 -

X9.63-1998, Public Key Cryptography For The Financial Services
Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography

1 Scope
This Standard defines key establishment schemes which employ asymmetric cryptographic techniques. The
arithmetic operations involved in the operation of the schemes take place in the algebraic structure of an elliptic
curve over a finite field.
Both key agreement and key transport schemes are specified.
The schemes may be used by two parties to compute shared keying data which may then be used by symmetric
schemes to provide cryptographic services like data confidentiality and data integrity.
Supporting mathematical definitions and examples are also provided.

2 Definitions, Abbreviations and References

2.1 Definitions and Abbreviations
addition rule
An addition rule describes the addition of two elliptic curve points P1 and P2 to produce a third elliptic curve point
P3. (See Annexes B.3 and B.4.)
associate value
Given an elliptic curve point and corresponding elliptic curve parameters, the associate value is an integer associated
with the point. (See Section 5.6.1.)
asymmetric cryptographic algorithm
A cryptographic algorithm that uses two related keys, a public key and a private key; the two keys have the property
that, given the public key, it is computationally infeasible to derive the private key.
auxiliary function
An auxiliary function is a transformation that forms part of a cryptographic scheme but is auxiliary rather than
central to the goal of the scheme.
base point (G)
A distinguished point on an elliptic curve of large prime order n.
basis
A representation of the elements of the finite field F2m. Two special kinds of basis are polynomial basis and normal
basis. (See Annex B.2.)
binary polynomial
A polynomial whose coefficients are in the field F2. When adding, multiplying, or dividing two binary polynomials,
the coefficient arithmetic is performed modulo 2.
bit string
A bit string is an ordered sequence of 0’s and 1’s.
certificate
The public key and identity of an entity together with some other information, rendered unforgeable by signing the
certificate with the private key of the Certification Authority which issued that certificate. In this Standard the term
certificate shall mean a public-key certificate.
Certification Authority (CA)
A Center trusted by one or more entities to create and assign certificates.

X9.63-199x

- 2 -

challenge
Data sent from U to V during an execution of a protocol which in part determines V’s response. In this Standard,
challenges will be bit strings at least 80 bits in length.
characteristic 2 finite field
A finite field containing 2m elements, where m ≥ 1 is an integer.
compressed form
Octet string representation for a point using the point compression technique described in Section 4.2. (See also
Section 4.3.6.)
cryptographic hash function
A (mathematical) function which maps values from a large (possibly very large) domain into a smaller range. The
function satisfies the following properties:
1. it is computationally infeasible to find any input which maps to any pre-specified output;
2. it is computationally infeasible to find any two distinct inputs which map to the same output.
cryptographic key (key)
A parameter that determines the operation of a cryptographic function such as:
1. the transformation from plaintext to ciphertext and vice versa,
2. the synchronized generation of keying material,
3. a digital signature computation or verification.
cryptographic protocol
A cryptographic scheme in which an ordered sequence of sets of data is passed between two entities during an
ordinary operation of the scheme.
cryptographic scheme
A cryptographic scheme consists of an unambigous specification of a set of transformations capable of providing a
cryptographic service when properly implemented and maintained.
cryptography
The discipline which embodies principles, means and methods for the transformation of data in order to hide its
information content, prevent its undetected modification, prevent its unauthorized use, or a combination thereof.
cryptoperiod
The time span during which a specific key is authorized for use or in which the keys for a given system may remain
in effect.
cyclic group
The group of points E(Fq) is said to be cyclic if there exists a point P∈E(Fq) of order n, where n = #E(Fq). In this
case, E(Fq) = {kP: 0 ≤ k ≤ n-1}.
data confidentiality
The assurance provided to entity U that data is unintelligible to entities other than U and V.
data integrity
The assurance provided to entity U that data has not been modified by entities other than U and V.
data origin authentication
The assurance provided to entity U that data is from V.
digital signature
The result of a cryptographic transformation of data which, when properly implemented, provides the services of:
1. origin authentication,
2. data integrity, and
3. signer non-repudiation.
EC
Elliptic curve.
ECDLP
Elliptic Curve Discrete Logarithm Problem. (See Annex H.)
ECDSA
Elliptic Curve Digital Signature Algorithm.
elliptic curve
An elliptic curve over Fq is a set of points which satisfy a certain equation specified by 2 parameters a and b, which
are elements of a field Fq. (See Section 4.2.)

X9.63-199x

- 3 -

elliptic curve key pair (Q, d)
Given particular elliptic curve domain parameters, an elliptic curve key pair consists of an elliptic curve public
key (Q) and the corresponding elliptic curve private key (d).
elliptic curve private key (d)
Given particular elliptic curve domain parameters, an elliptic curve private key, d, is a statistically unique and
unpredictable integer in the interval [1, n-1], where n is the prime order of the base point G.
elliptic curve public key (Q)
Given particular elliptic curve domain parameters, and an elliptic curve private key d, the corresponding elliptic
curve public key, Q, is the elliptic curve point Q = dG, where G is the base point. Note that Q will never equal 2,
since 1 ≤ d ≤ n-1.
elliptic curve domain parameters
Elliptic curve domain parameters are comprised of a field size q, indication of basis used (in the case q = 2m), an
optional SEED, two elements a, b in Fq which define an elliptic curve E over Fq, a point G = (xG,yG) of prime order
in E(Fq), the order n of G, and the cofactor h.
See Sections 5.1.1.1 and 5.1.2.1 for a complete specification of elliptic curve domain parameters.
elliptic curve point
If E is an elliptic curve defined over a field Fq, then an elliptic curve point P is either: a pair of field elements (xp, yp)
(where xp, yp ∈ Fq) such that the values x = xp and y = yp satisfy the equation defining E, or a special point 2 called
the point at infinity.
encryption scheme
An encryption scheme is a cryptographic scheme capable of providing data confidentiality.
entity
A party involved in the operation of a cryptographic system.
entity authentication
The assurance provided to entity U that entity U has been involved in a real-time communication with entity V.
ephemeral
Ephemeral data is relatively short-lived. In this Standard ephemeral data is data specific to a particular execution of a
cryptographic scheme.
explicit key authentication
The assurance provided to entity U that only entities U and V are possibly capable of computing the session key and
that the entities U and V are actually capable of computing the session key.
flow
A flow in a protocol is a set of data sent from U to V or received by U from V at a particular stage of an operation of
the protocol.
forward secrecy
The assurance provided to entity U that the session key established between entities U and V will not be
compromised by the compromise of either entity’s static secret key in the future. Also known as perfect forward
secrecy.
Gaussian normal basis (GNB)
A type of normal basis that can be used to represent the elements of the finite field F2m. (See Section 4.1.2.2.)
hash function
See cryptographic hash function.
hash value
The result of applying a cryptographic hash function to a bit string.
hybrid form
Octet string representation for both the compressed and uncompressed forms of an elliptic curve point. (See Section
4.3.6.)
implicit key authentication
The assurance provided to entity U that only entities U and V are possibly capable of computing the session key.
initiator
An entity involved in an operation of a protocol that sends the first flow of the protocol.

X9.63-199x

- 4 -

irreducible binary polynomial
A binary polynomial f(x) is irreducible if it does not factor as a product of two or more binary polynomials, each of
degree less than the degree of f(x).
key
See cryptographic key.
key agreement scheme
A key agreement scheme is a key establishment scheme in which the keying data established is a function of
contributions provided by both entities in such a way that neither party can predetermine the value of the keying data.
key-compromise impersonation resilience
The assurance provided to entity U during an execution of a key establishment scheme that the compromise of U’s
static private key has not enabled the impersonation of V to U.
key confirmation
The addition of flows to a key establishment scheme providing implicit key authentication so that explicit key
authentication is provided.
key derivation function
A key derivation function is a function which takes as input a shared secret value and outputs keying data suitable for
later cryptographic use.
key establishment schemes
A key establishment scheme is a cryptographic scheme which establishes keying data suitable for subsequent
cryptographic use by cryptographic schemes to its legitimate users. Key agreement schemes and key transport
schemes are types of key establishment schemes.
keying data
Data suitable for use as cryptographic keys.
keying material
The data (e.g., keys, certificates and initialization vectors) necessary to establish and maintain cryptographic keying
relationships.
key transport schemes
A key transport scheme is a key establishment scheme in which the keying data established is determined entirely by
one entity.
known-key security
The assurance provided to entity U that the session key established by an execution of a key establishment scheme
will not be compromised by the compromise of other session keys.
MAC scheme
A MAC scheme is a cryptographic scheme capable of providing data origin authentication and data integrity.
non-repudiation
The assurance provided to entity U that U is able to prove to a third party that data is from V.
normal basis (NB)
A type of basis that can be used to represent the elements of the finite field F2m. (See Annex B.2.3.)
octet
An octet is a bit string of length 8. An octet is represented by a hexadecimal string of length 2. The first hexadecimal
digit represents the four leftmost bits of the octet, and the second hexadecimal digit represents the four rightmost bits
of the octet. For example, 9D represents the bit string 10011101. An octet also represents an integer in the interval
[0, 255]. For example, 9D represents the integer 157.
octet string
An octet string is an ordered sequence of octets.
optimal normal basis (ONB)
A type of Gaussian normal basis that can be used to represent the elements of the finite field F2m. (See Section
4.1.2.2.) There are two kinds of ONB, called Type I ONB and Type II ONB.
order of a curve
The order of an elliptic curve E defined over the field Fq is the number of points on E, including 2. This is denoted
by #E(Fq).

X9.63-199x

- 5 -

order of a point
The order of a point P is the smallest positive integer n such that nP =�2�(the point at infinity).
owner
The entity whose identity is associated with a private/public key pair.
pentanomial
A polynomial of the form xm + xk3 +xk2 +xk1+ 1, where 1 ≤ k1 < k2 < k3 ≤ m-1.
pentanomial basis (PPB)
A type of polynomial basis that can be used to represent the elements of the finite field F2m. (See Annex B.2.2.)
point compression
Point compression allows a point P = (xp, yp) to be represented compactly using xp and a single additional bit ~yp

derived from xp and yp .(See Section 4.2.)
polynomial basis (PB)
A type of basis that can be used to represent the elements of the finite field F2m. (See Annex B.2.1.)
prime finite field
A finite field containing p elements, where p is an odd prime number.
private key
In an asymmetric (public-key) system, that key of an entity’s key pair which is known only by that entity.
protocol
See cryptographic protocol.
public key
In an asymmetric key system, that key of an entity’s key pair which is publicly known.
reduction polynomial
The irreducible binary polynomial f(x) of degree m that is used to determine a polynomial basis representation of
F2m.
responder
An entity involved in an operation of a protocol that does not send the first flow of the protocol.
scalar multiplication
If k is a positive integer, then kP denotes the point obtained by adding together k copies of the point P. The process
of computing kP from P and k is called scalar multiplication.
SEED
Random value input into a pseudo-random bit generator (PRBG) algorithm.
session key
A key established by a key establishment scheme.
shared secret value
An intermediate value in a key establishment scheme from which keying data is derived.
signature scheme
A signature scheme is a cryptographic scheme capable of providing data origin authentication, data integrity, and
non-repudiation.
static
Static data is relatively long-lived. In this Standard static data is data common to a number of executions of a
cryptographic scheme.
statistically unique
For the generation of n-bit quantities, the probability of two values repeating is less than or equal to the probability
of two n-bit random quantities repeating.
symmetric cryptographic scheme
A cryptographic scheme in which each transformation is controlled by the same key.
trinomial
A polynomial of the form xm + xk + 1, where 1 ≤ k ≤ m-1.
trinomial basis (TPB)
A type of polynomial basis that can be used to represent the elements of the finite field F2m. (See Annex B.2.2.)
type I ONB
A kind of optimal normal basis. (See Section 4.1.2.2.)

X9.63-199x

- 6 -

type II ONB
A kind of optimal normal basis. (See Section 4.1.2.2.)
uncompressed form
Octet string representation for an uncompressed elliptic curve point. (See Section 4.3.6.)
unknown key-share resilience
The assurance provided to entity U that, if entities U and V share a session key, V does not mistakenly believe the
session key is shared with an entity other than U.
valid elliptic curve domain parameters
A set of elliptic curve domain parameters that have been validated using the method specified in Section 5.1.1.2
or Section 5.1.2.2.
XOR
Bitwise exclusive-or (also bitwise addition mod 2) of two bit strings of the same bit length.
x-coordinate
The x-coordinate of an elliptic curve point, P =(xp, yp), is xp.
y-coordinate
The y-coordinate of an elliptic curve point, P =(xp, yp), is yp.

2.2 Symbols and Notation
[X] Indicates that the inclusion of the bit string or octet string X is optional.
[x, y] The interval of integers between and including x and y.

x Ceiling: the smallest integer ≥ x. For example, 5 = 5 and 5.3 = 6.

x Floor: the largest integer ≤ x. For example, 5 = 5 and 5.3 = 5.

x mod n The unique remainder r, 0 ≤ r ≤ n - 1, when integer x is divided by n. For example, 23 mod 7 = 2.

x ≡ y (mod n) x is congruent to y modulo n. That is, (x mod n) = (y mod n).
a, b Elements of Fq that define an elliptic curve E over Fq.
avf(P) The associate value of the EC point P. (See Section 5.6.1.)
B MOV threshold. A positive integer B such that taking discrete logarithms over FqB

 is at least as

difficult as taking elliptic curve logarithms over Fq. For this Standard, B shall be ≥20.
d Elliptic curve private key.
E An elliptic curve over the field Fq defined by a and b.
E(Fq) The set of all points on an elliptic curve E defined over Fq and including the point at infinity 2.
#E(Fq) If E is defined over Fq, then #E(Fq) denotes the number of points on the curve (including the point

at infinity 2). #E(Fq) is called the order of the curve E.

f The length of n in bits; f=log2n.

F2m The finite field containing q = 2m elements, where m is a positive integer.
Fp The finite field containing q = p elements, where p is a prime.
Fq The finite field containing q elements. For this Standard, q shall either be an odd prime number (q

= p, p > 3) or a power of 2 (q = 2m).
G A distinguished point on an elliptic curve called the base point or generating point.
gcd(x, y) The greatest common divisor of integers x and y.
h h = #E(Fq)/n, where n is the order of the base point G. h is called the cofactor.

l The length of a field element in octets; l = t / 8.
lmax Upper bound on the largest prime divisor of the cofactor h.
log2 x The logarithm of x to the base 2.
m The degree of the finite field F2m.
mod Modulo.
mod f(x) Arithmetic modulo the polynomial f(x). If f(x) is a binary polynomial, then all coefficient

arithmetic is performed modulo 2.
mod n Arithmetic modulo n.

X9.63-199x

- 7 -

n The order of the base point G. For this Standard, n shall be greater than 2160 and 4√q, and shall be
a prime number. n is the primary security parameter. See Annex H for more information.

2 A special point on an elliptic curve, called the point at infinity. This is the additive identity of the
elliptic curve group.

p An odd prime number.
P An EC point.
q The number of elements in the field Fq.
Q Elliptic Curve public key.
rmin Lower bound on the desired (prime) order n of the base point G. For this Standard rmin shall be

>2160.

t The length of a field element in bits; t = log2 q. In particular, if q = 2m, then a field element in

F2m can be represented as a bit string of bit length t = m.
T In the probabilistic primality test (Annex A.2.1), the number of independent test rounds to execute.

For this Standard T shall be ≥50.
Tr Trace function. (See Annex D.1.5.)
U, V An entity or a bit string denoting the identity of an entity. Usually U is used to denote the initiator

of a protocol and V the responder.
xp The x-coordinate of a point P.
||X|| Length in octets of the octet string X.
X||Y Concatenation of two strings X and Y. X and Y are either both bit strings, or both octet strings.

X ⊕ Y Bitwise exclusive-or (also bitwise addition mod 2) of two bit strings X and Y of the same bit length.
yp The y-coordinate of a point P.
~yp The representation of the y-coordinate of a point P when point compression is used.

z or Z A shared secret value.
Zp The set of integers modulo p, where p is an odd prime number.
Positional notation is used to indicate the association of a value to a particular entity, to indicate the life expectancy
of a value, or to indicate the association of a value to a particular scheme. For example:
— dU is an EC private key owned by entity U.
— Ze is an ephemeral shared secret value.
— Genc is an EC base point associated with an encryption scheme.
— Qs,V is a static EC public key owned by entity V.
Occasionally positional notation is also used to indicate a counter value associated with some data, or to indicate the
base in which a particular value is being expressed if there is some possibility of ambiguity. For example, Hash1

denotes the value of Hashi when the counter i has value 1, and 0116 denotes that the value 01 is written in
hexadecimal.
With the exception of notation that has been well-established in other documents, where possible in this Standard
capital letters will be used in variable names that denote bit strings or octet strings, and capital letters will be
excluded from variable names that denote field elements or integers. For example, d is used to denote the integer that
specifies an EC private key, and MacData is used to denote the bit string to be tagged using a MAC scheme.
Primed variables denote variables whose validity has not been verified. For example, MacTag’ denotes the purported
tag on MacData, and Qe,V’ denotes the purported ephemeral EC public key of entity V.

2.3 References
The following standards contain provisions which, through reference in this text, constitute provisions of this
American National Standard. At the time of publication, the editions indicated were valid. All standards are subject
to revision, and parties to agreements based on this American National Standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below. Accredited Standards Committee
X9 (ASC X9) maintains a register of currently valid financial industry standards.
ANSI X3.92-1981, Data Encryption Algorithm.
ANSI X9.19-1996, Financial Institution Retail Message Authentication .
ANSI X9.30-1993, Part 2: Public key cryptography using irreversible algorithms for the financial services industry:
The Secure Hash Algorithm 1 (SHA-1) (Revised).

X9.63-199x

- 8 -

ANSI X9.62-1999, Public key cryptography for the financial services industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA).
ANSI X9.71-199x, NWI. 1998. Working draft.

3 Application

3.1 General
The explosion in the use of electronic media to expedite commerce and financial transactions in recent years has led
to the need for well-established cryptographic schemes that can provide services such as data integrity and data
confidentiality.
Symmetric schemes such as Triple DEA make an attractive choice for the provision of these services - systems using
symmetric techniques are efficient, and their security requirements are well-understood. Furthermore, these schemes
have been standardized (for example in [1] and [3]) to facilitate interoperability between systems.
However, the major drawback with the implementation of such schemes is that any two communicating entities must
establish in advance a shared secret key. As the size of a system or the number of entities using a system explodes,
this can lead to a key management problem.
An attractive solution to this key management problem is for a system to employ asymmetric techniques that allow
any pair of entities to establish a shared secret key suitable for use by a symmetric scheme despite the fact that the
two entities may never have previously engaged in a secure communication together.
Such asymmetric techniques are known as asymmetric key establishment schemes.

3.2 The Schemes in this Standard
This Standard specifies asymmetric key establishment schemes. Both key agreement and key transport schemes are
specified. The operation of each of the schemes employs arithmetic operations in the group of points on an elliptic
curve defined over a finite field.
The asymmetric key establishment schemes in this Standard are used by an entity U who wishes to establish a
symmetric key with another entity V. Each entity has an EC key pair. If U and V simultaneously execute a scheme
with corresponding keying material as input, then at the end of the execution of the scheme, U and V will share
keying data. The keying data can then be used to supply keys for symmetric algorithms. The precise method used to
keys supply for symmetric algorithms from the keying data, for example setting parity bits or supplying three keys
for Triple DEA, is beyond the scope of this Standard.
This Standard specifies a variety of asymmetric key establishment schemes. Each of the mechanisms, when
implemented securely and embedded within a cryptographic system in an appropriate manner, is capable of
providing two entities with a shared secret key suitable for use in symmetric algorithms like Triple DEA.
A variety of schemes are specified because of the wide variety of services that it may or may not be desirable for a
key establishment scheme to provide depending on the environment in which the scheme is going to be used. The
secret key may be agreed by both entities or transported from one entity to the other. Known-key security may be
more or less desirable. Any combination of the services of entity authentication, key-compromise impersonation, and
forward secrecy may be required. These are implementation specific decisions which this Standard attempts to
facilitate.
However, this Standard recommends that any implementation of the schemes specified provides explicit key
authentication of any key agreed using the key establishment schemes. Many of the schemes specified here do not
directly provide explicit key authentication, and thus these schemes should be embedded in systems in such a way
that explicit key authentication is additionally provided unless it is determined that explicit key authentication is not
required. For each of the schemes specified here one extension with key confirmation is provided as an example of
how explicit key confirmation may be provided. Further examples can be found in ANSI X9.70 [9].
The schemes in this Standard employ other cryptographic transformations in their operation. The transformations
used are: the Data Encryption Algorithm (DEA) specified in [1], the DEA-based MAC specified in [3], the Secure
Hash Algorithm (SHA-1) specified in [5], the Elliptic Curve Digital Signature Algorithm (ECDSA) specified in [8],
and HMAC specified in [10].

X9.63-199x

- 9 -

3.3 Implementing the Schemes Securely
During the description of each scheme specified in this Standard, a list of prerequisites for the operation of the
scheme is given. These prerequisites must be satisfied by any implementation of the scheme.
Two common prerequisites for the implementation of schemes in this Standard are that all entities involved in the use
of the schemes are provided with an authentic copy of the elliptic curve parameters being used and that every entity
is provided with a genuine copy of every other entity’s static public key. The latter binding between an entity and its
static public key may be accomplished by using a Certification Authority which generates a certificate in accordance
with the procedures specified in [7].
However, satisfying the stated prerequisites is not enough to insure the security of an implementation.
The secure implementation of the schemes in this Standard is also dependent upon:
1. The prevention of unauthorized disclosure, use, modification, substitution, insertion, and deletion of an

entity’s static private key ds.
2. The prevention of unauthorized modification, substitution, insertion, and deletion of the elliptic curve

parameters being used.
3. The secure implementation of the transformations involved in an execution of a scheme so that the integrity

and confidentiality of the computations involved is maintained.
Note that this includes the secure destruction of any ephemeral values involved in the operation of a scheme. Note
also, however, that the effect of some of the most common breaches in the above requirements may be minimized by
the selection of an appropriate scheme that provides, for example, the service of forward secrecy or known-key
security.
Finally, secure implementation of the schemes does not guarantee the security of the operation of the
implementation. It is the responsibility of the operator to put an overall process in place with the necessary controls
to insure the secure operation. The controls should include the application of appropriate audit tests in order to verify
compliance with this Standard.

3.4 Annexes
The annexes to this Standard provide additional requirements and information on the schemes and primitives
specified in this Standard and their implementation.
The following normative annex is an integral part of the standard which, for reasons of convenience, is placed after
all other normative elements.

Annex Contents
A Normative Number-Theoretic Algorithms

The following informative annexes give additional information which may be useful to implementors of this
Standard.

Annex Contents
B Mathematical Background
C Tables of Trinomials, Pentanomials and Gaussian Normal Bases
D Informative Number-Theoretic Algorithms
E Complex Multiplication (CM) Elliptic Curve Generation

Method
F An Overview of Elliptic Curve Systems
G Comparison of Elliptic Curves and Finite Fields
H Security Considerations
I Alignment with Other Standards
J Examples
K Patents
L References

X9.63-199x

- 10 -

4 Mathematical Conventions

4.1 Finite Field Arithmetic
This section describes the representations that shall be used for the purposes of conversion for the elements of the
underlying finite field Fq. For this Standard, q shall either be an odd prime (q = p, p > 3) or a power of 2 (q = 2m).
Implementations with different internal representations that produce equivalent results are allowed. Mathematics
background and examples are provided in Annex B.

4.1.1 The Finite Field Fp

If q = p is an odd prime, then the elements of the finite field Fp shall be represented by the integers 0, 1, 2, ..., p−1.

1. The multiplicative identity element is the integer 1.
2. The zero element is the integer 0.

3. Addition of field elements is integer addition modulo p: that is, if a, b∈Fp, then a + b = (a + b) mod p.

4. Multiplication of field elements is integer multiplication modulo p: that is, if a, b∈Fp, then a . b = (a . b)
mod p.

4.1.2 The Finite Field F2m

If q = 2m, then the elements of the finite field F2m shall be represented by the bit strings of bit length m.

There are numerous methods for interpreting the elements of the finite field F2m. Two such methods are a polynomial
basis (PB) representation (see Annex B.2.1) and a normal basis (NB) representation (see Annex B.2.3). A trinomial
basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases; these bases are described in
Section 4.1.2.1. A Gaussian normal basis (GNB) is a special type of normal basis; these bases are described in
Section 4.1.2.2.
One of TPB, PPB, or GNB shall be used as the basis for representing the elements of the finite field F2m in
implementing this Standard, as described in Sections 4.1.2.1 and 4.1.2.2.
NOTES:
1. TPB, PPB, and GNB have been chosen because they are apparently the most common representations currently used for F2m

over F2, and because they lead to efficient arithmetic for F2m over F2.
2. An optimal normal basis (ONB) is a special type of Gaussian normal basis that yields efficient field arithmetic. Table C-4 in
Annex C lists the values of m, 160 ≤ m ≤ 2000, for which the field F2m has both an ONB representation and a TPB
representation.
3. Annex D.2.3 describes one method for converting the elements of F2m from one representation to another.
4. When doing computations in F2m, all integer arithmetic is performed modulo 2.

4.1.2.1 Trinomial and Pentanomial Basis Representation
A polynomial basis representation of F2m over F2 is determined by an irreducible binary polynomial f(x) of degree
m; f(x) is called the reduction polynomial. The set of polynomials {xm-1, xm-2, … , x,1} forms a basis of F2m over F2,
called a polynomial basis. The elements of F2m are the bit strings of a bit length which is exactly m. A typical

element a ∈ F2m is represented by the bit string a = (am-1am-2 …a1a0), which corresponds to the polynomial a(x) = am-

1x
m-1 + am-2x

m-2 +…+ a1x + a0.
1. The multiplicative identity element (1) is represented by the bit string (00…001).
2. The zero element (0) is represented by the bit string of all 0’s.
3. Addition of two field elements is accomplished by XORing the bit strings.
4. Multiplication of field elements a and b is defined as follows. Let r(x) be the remainder polynomial

obtained upon dividing the product of the polynomials a(x) and b(x) by f(x) over F2 (i.e. the coefficient
arithmetic is performed modulo 2). Then a . b is defined to be the bit string corresponding to the polynomial
r(x).

See Annex B.2.1 for further details and an example of a polynomial basis representation.

A trinomial over F2 is a polynomial of the form xm + xk + 1, where 1 ≤ k ≤ m-1. A pentanomial over F2
is a

polynomial of the form xm + xk3 + xk2 + xk1 + 1 where 1 ≤ k1 < k2 < k3 ≤ m-1.

X9.63-199x

- 11 -

A trinomial basis representation of F2m is a polynomial basis representation determined by an irreducible trinomial
f(x) = xm + xk + 1 of degree m over F2. Such trinomials only exist for certain values of m. Table C-2 in Annex C lists

an irreducible trinomial of degree m over F2 for each m, 160 ≤ m ≤ 2000, for which an irreducible trinomial of
degree m exists. For each such m, the table lists the smallest k for which xm + xk + 1 is irreducible over F2.
A pentanomial basis representation of F2m is a polynomial basis representation determined by an irreducible

pentanomial f(x) = xm + xk3 + xk2 + xk1 + 1 of degree m over F2. Such pentanomials exist for all values of m ≥ 4.

Table C-3 in Annex C lists an irreducible pentanomial of degree m over F2 for each m, 160 ≤ m ≤ 2000, for which
an irreducible trinomial of degree m does not exist. For each such m, the table lists the triple (k1, k2, k3) for which (i)
xm + xk3 + xk2+ xk1 + 1 is irreducible over F2; (ii) k1 is as small as possible; (iii) for this particular value of k1, k2 is as
small as possible; and (iv) for these particular values of k1 and k2, k3 is as small as possible.

Rules for selecting the polynomial basis

1. If a polynomial basis representation is used for F2m where there exists an irreducible trinomial of degree m
over F2, then the reduction polynomial f(x) shall be an irreducible trinomial of degree m over F2. To
maximize the chances for interoperability, the reduction polynomial used should be xm + xk + 1 for the
smallest possible k. Examples of such polynomials are given in Table C-2 in Annex C.

2. If a polynomial basis representation is used for F2m where there does not exist an irreducible trinomial of
degree m over F2, then the reduction polynomial f(x) shall be an irreducible pentanomial of degree m over
F2. To maximize the chances for interoperability, the reduction polynomial used should be xm + xk3 + xk2 +
xk1 + 1, where (i) k1 is as small as possible; (ii) for this particular value of k1, k2 is as small as possible; and
(iii) for these particular values of k1 and k2, k3 is as small as possible. Examples of such polynomials are
given in Table C-3 in Annex C.

4.1.2.2 Gaussian Normal Basis Representation
A normal basis for F2m over F2 is a basis of the form N = α α α α, , , ,2 2 22 1

K
m−o t, where α ∈F2m. Normal basis

representations have the computational advantage that squaring an element can be done very efficiently (see Annex
B.2.3). Multiplying distinct elements, on the other hand, can be cumbersome in general. For this reason, it is
common to specialize to a class of normal bases, called Gaussian normal bases, for which multiplication is both
simpler and more efficient.
Gaussian normal bases for F2m exist whenever m is not divisible by 8. The type of a Gaussian normal basis is a
positive integer measuring the complexity of the multiplication operation with respect to that basis. Generally
speaking the smaller the type, the more efficient the multiplication. For a given m and T, the field F2m can have at
most one Gaussian normal basis of type T. Thus it is proper to speak of the type T Gaussian normal basis over F2m.
The Gaussian normal bases of types 1 and 2 have the most efficient multiplication rules of all normal bases. For this
reason, they are called optimal normal bases. The type 1 Gaussian normal bases are called Type I optimal normal
bases, and the type 2 Gaussian normal bases are called Type II optimal normal bases.

The elements of the finite field F2m are the bit strings of bit length which is exactly m. A typical element a ∈ F2m is

represented by the bit string a = (a0a1…am-2am-1).
1. The multiplicative identity element (1) is represented by the bit string of all 1’s.
2. The zero element (0) is represented by the bit string of all 0’s.
3. Addition of two field elements is accomplished by XORing the bit strings.
4. Multiplication of field elements is described in Sections 4.1.2.2.2 and 4.1.2.2.3.

Rules for selecting the normal basis representation

1. If there exists a GNB of type 2 for F2m, then this basis shall be used.
2. If there does not exist a GNB of type 2 for F2m, but there does exist a GNB of type 1, then the type 1 GNB

shall be used.
3. If neither a type 1 GNB nor a type 2 GNB exists for F2m, then the GNB of smallest type shall be used.

X9.63-199x

- 12 -

Table C-1 in Annex C lists the type of the GNB that shall be used for F2m for each m, 160 ≤ m ≤ 2000, for which m
is not divisible by 8.

4.1.2.2.1 Checking for a Gaussian Normal Basis
If m > 1 is not divisible by 8, the following algorithm tests for the existence of a Gaussian normal basis for F2m of a
given type.
Input: An integer m > 1 not divisible by 8; a positive integer T.
Output: If a type T Gaussian normal basis for F2m exists, the message “true”; otherwise “false.”
1. Set p = Tm + 1.
2. If p is not prime then output “false” and stop.
3. Compute via Annex D.1.8 the order k of 2 modulo p.
4. Set h = Tm / k.
5. Compute d = gcd (h, m).
6. If d = 1 then output “true”; else output “false”.

4.1.2.2.2 The Multiplication Rule for a Gaussian Normal Basis

The following procedure produces the rule for multiplication with respect to a given Gaussian normal basis.
Input: Integers m > 1 and T for which there exists a type T Gaussian normal basis B for F2m.
Output: An explicit formula for the first coordinate of the product of two elements with respect to B.
1. Set p = Tm + 1.
2. Generate via Annex D.1.9 an integer u having order T modulo p.
3. Compute the sequence F (1), F (2), …, F (p–1) as follows:

3.1 Set w = 1.
3.2 For j from 0 to T–1 do

3.2.1 Set n = w.
3.2.2 For i from 0 to m–1 do

3.2.2.1 Set F (n) = i.
3.2.2.2 Set n = 2n mod p.

3.2.3 Set w = uw mod p.
4. If T is even, then set J = 0, else set

J = a b a bk m k m k k
k

m

− + − + − −
=

+∑ 1 2 1 2 1 1
1

2

/ /

/ c h
5. Output the formula

c0 = J + a bF k F p k
k

p

+ −
=

−

∑ 1
1

2

a f a f

4.1.2.2.3 A Multiplication Algorithm for a Gaussian Normal Basis

The formula given in Section 4.1.2.2.2 for c0 can be used to multiply field elements as follows. For
u = (u0 u1 … um–1), v = (v0 v1 … vm–1),

let F(u, v) be the expression derived with c0 = F (a, b).

Then the product (c0 c1 . . . cm–1) = (a0 a1 . . . am–1) × (b0 b1 . . . bm–1) can be computed as follows.
1. Set (u0 u1 … um–1) = (a0 a1 … am–1).
2. Set (v0 v1 … vm–1) = (b0 b1 … bm–1).
3. For k from 0 to m – 1 do

3.1 Compute ck = F (u, v).
3.2 Set u = LeftShift(u) and v = LeftShift(v), where LeftShift denotes the circular

left shift operation.
4. Output c = (c0 c1 … cm–1).

X9.63-199x

- 13 -

4.2 Elliptic Curves and Points
An elliptic curve E defined over Fq is a set of points P = (xp, yp) where xp and yp are elements of Fq that satisfy a
certain equation, together with the point at infinity denoted by 2. Fq is sometimes called the underlying field.
If q = p is an odd prime (so the underlying field is Fp) and p > 3, then a and b shall satisfy 4a3 + 27b2 /≡ 0 (mod p),
and every point P = (xp, yp) on E (other than the point 2) shall satisfy the following equation in Fp:

yp
2 = xp

3 + axp + b.
If q = 2m is a power of 2 (so the underlying field is F2m), then b shall be non-zero in F2m, and every point P = (xp, yp)
on E (other than the point 2) shall satisfy the following equation in F2m:

yp
2 + xpyp = xp

3 + axp
2 + b.

For further background on elliptic curves, see Annex B.3 and B.4.
An elliptic curve point P (which is not the point at infinity 2) is represented by two field elements, the x-coordinate
of P and the y-coordinate of P: P =(xp, yp). The point can be represented compactly by storing only the x-coordinate
xp and a certain bit ~yp derived from the x-coordinate xp and the y-coordinate yp. The next subsections describe the

technique that shall be used to recover the full y-coordinate yp from xp and ~yp , if point compression is used.

4.2.1 Point Compression Technique for Elliptic Curves over Fp (Optional)
Let P = (xp, yp) be a point on the elliptic curve E : y2 = x3 + ax + b defined over a prime field Fp. Then ~yp is defined

to be the rightmost bit of yp.
When the x-coordinate xp of P and the bit ~yp are provided, then yp can be recovered as follows.

1. Compute the field element α = xp
3 + axp +b mod p.

2. Compute a square root β of α mod p. (See Annex D.1.4.) It is an error if the output of Annex D.1.4 is “no
square roots exist”.

3. If the rightmost bit of β is equal to ~yp , then set yp = β. Otherwise, set yp = p-β.

4.2.2 Point Compression Technique for Elliptic Curves over F2m (Optional)
Let P = (xp, yp) be a point on the elliptic curve E : y2 + xy = x3 + ax2 + b defined over a field F2m. Then ~yp is

defined to be 0 if xp = 0; if xp ≠ 0, then ~yp is defined to be the rightmost bit of the field element yp.xp
-1.

When the x-coordinate xp of P and the bit ~yp are provided, then yp can be recovered as follows.

1. If xp = 0, then yp = b2m-1
. (yp is the square root of b in F2m.)

2. If xp ≠ 0, then do the following:

2.1. Compute the field element β = xp + a + bxp
-2 in F2m.

2.2. Find a field element z such that z2 + z = β using the algorithm described in Annex D.1.6. It is an
error if the output of Annex D.1.6 is “no solutions exist”.

2.3. Let ~z be the rightmost bit of z.

2.4. If ~yp ≠~z , then set z = z + 1, where 1 is the multiplicative identity.

2.5. Compute yp = xp.z.

4.3 Data Conversions
The data types in this Standard are octet strings, integers, field elements and elliptic curve points. Figure 1 provides a
cross-reference for the sections defining conversions between data types that shall be used in the algorithms specified
in this Standard. The number on a line is the section number where the conversion technique is specified. Examples
of conversions are provided in Annex K.

4.3.1 Integer-to-Octet-String Conversion
Input: A non-negative integer x, and the intended length k of the octet string satisfying:

X9.63-199x

- 14 -

28k > x.
Output: An octet string M of length k octets.
1. Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.
2. The octets of M shall satisfy:

x = 28

1

k i
i

i

k

M−

=
∑ a f .

4.3.2 Octet-String-to-Integer Conversion
Input: An octet string M of length k octets.
Output: An integer x.
1. Let M1, M2, ..., Mk be the octets of M from leftmost to rightmost.
2. M shall be converted to an integer x satisfying:

x = 28

1

k i
i

i

k

M−

=
∑ a f .

Field
Element

Octet
String

Point

Integer
Section 4.3.1

Section 4.3.3 Section 4.3.4

Section 4.3.5

Section 4.3.6Section 4.3.7

Section 4.3.2

Figure 1 – Data Types and Conversion Conventions

4.3.3 Field-Element-to-Octet-String Conversion
Input: An element α in the field Fq.

Output: An octet string S of length l = t / 8 octets, where t = log2 q.

1. If q is an odd prime, then α must be an integer in the interval [0, q - 1]; α shall be converted to an octet
string of length l octets using the technique specified in Section 4.3.1.

2. If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the bits of α from leftmost to
rightmost. Let S1, S2, …, Sl be the octets of S from leftmost to rightmost. The rightmost bit sm shall become
the rightmost bit of the last octet Sl, and so on through the leftmost bit s1, which shall become the (8l - m +
1)th bit of the first octet S1. The leftmost (8l - m) bits of the first octet S1 shall be zero.

X9.63-199x

- 15 -

4.3.4 Octet-String-to-Field-Element Conversion
Input: An indication of the field Fq used, and an octet string S of length l = t / 8 octets, where t = log2 q.

Output: An element α in Fq.

1. If q is an odd prime, then convert S to an integer α using the technique specified in Section 4.2.2. It is an

error if α does not lie in the interval [0, q - 1].

2. If q = 2m, then α shall be a bit string of length m bits. Let s1, s2, …, sm be the bits of α from leftmost to
rightmost. Let S1, S2, …, Sl be the octets of S from leftmost to rightmost. The rightmost bit of the last octet
Sl shall become the rightmost bit sm, and so on through the (8l – m + 1)th bit of the first octet S1, which shall
become the leftmost bit s1. The leftmost (8l - m) bits of the first octet S1 are not used.

4.3.5 Field-Element-to-Integer Conversion
Input: An element α in the field Fq.
Output: An integer x.

1. If q is an odd prime then x = α (no conversion is required).

2. If q = 2m, then α must be a bit string of length m bits. Let s1, s2, …, sm be the bits of α from leftmost to

rightmost. α shall be converted to an integer x satisfying:

x = 2
1

m i
i

i

m

s−

=
∑ a f .

4.3.6 Point-to-Octet-String Conversion
The octet string representation of the point at infinity 2 shall be a single zero octet PC = 00.

An elliptic curve point P = (xp , yp) which is not the point at infinity shall be represented as an octet string in one of
the following three forms:
1. compressed form.
2. uncompressed form.
3. hybrid form.
NOTE— The hybrid form contains information of both compressed and uncompressed forms. It allows an implementation to
convert to either compressed form or to uncompressed form.
Input: An elliptic curve point P = (xp ,yp), not the point at infinity.
Output: An octet string PO of length l + 1 octets if the compressed form is used, or of length 2l +1 octets if the

uncompressed or hybrid form is used. (l = (log2 q)/8.)
1. Convert the field element xp to an octet string X1. (See Section 4.3.3.)
2. If the compressed form is used, then do the following:

2.1. Compute the bit ~yp . (See Section 4.2.)

2.2. Assign the value 02 to the single octet PC if ~yp is 0, or the value 03 if ~yp is 1.

2.3. The result is the octet string PO = PC || X1.
3. If the uncompressed form is used, then do the following:

3.1. Convert the field element yp to an octet string Y1. (See Section 4.3.3.)
3.2. Assign the value 04 to the single octet PC.
3.3. The result is the octet string PO = PC || X1 ||Y1.

4. If the hybrid form is used, then do the following:
4.1. Convert the field element yp to an octet string Y1. (See Section 4.3.3.)
4.2. Compute the bit ~yp . (See Section 4.2.)

4.3. Assign the value 06 to the single octet if ~yp is 0, or the value 07 if ~yp is 1.

4.4. The result is the octet string PO = PC || X1 ||Y1.

X9.63-199x

- 16 -

4.3.7 Octet-String-to-Point Conversion
Input: An octet string PO of length l + 1 octets if the compressed form is used, or of length 2l + 1 octets if the

uncompressed or hybrid form is used (l = (log2 q) / 8), and field elements a, b which define an elliptic
curve over Fq.

Output: An elliptic curve point P = (xp , yp), not the point at infinity.
1. If the compressed form is used, then parse PO as follows: PO = PC || X1, where PC is a single octet, and X1

is an octet string of length l octets. If uncompressed or hybrid form is used, then parse PO as follows: PO =
PC || X1 ||Y1, where PC is a single octet, and X1 and Y1 are octet strings each of length l octets.

2. Convert X1 to a field element xp. (See Section 4.3.4.)
3. If the compressed form is used, then do the following:

3.1. Verify that PC is either 02 or 03. (It is an error if this is not the case.)
3.2. Set the bit ~yp to be equal to 0 if PC = 02, or 1 if PC = 03.

3.3. Convert (xp,
~yp) to an elliptic curve point (xp ,yp). (See Section 4.2.)

4. If the uncompressed form is used, then do the following:
4.1. Verify that PC is 04. (It is an error if this is not the case.)
4.2. Convert Y1 to a field element yp. (See Section 4.3.4.)

5. If the hybrid form is used, then do the following:
5.1. Verify that PC is either 06 or 07. (It is an error if this is not the case.)
5.2. Perform either step 5.2.1 or step 5.2.2:

5.2.1. Convert Y1 to a field element yp. (See Section 4.3.4.)
5.2.2. Set the bit ~yp to be equal to 0 if PC = 06, or 1 if PC = 07. Convert (xp,

~yp) to an elliptic

curve point (xp, yp). (See Section 4.2.)
6. If q is a prime, verify that yp

2 = xp
3 + axp + b (mod p). (It is an error if this is not the case.)

If q = 2m, verify that yp
2 + xpyp = xp

3 + axp
2 + b in F2m. (It is an error if this is not the case.)

7. The result is P = (xp ,yp).
NOTE— If hybrid form is used, an implementation may optionally check that yp and yp are consistent (see steps 5.2.1 and
5.2.2). This may be particularly appropriate prior to elliptic curve domain parameter validation and public key validation.

5 Cryptographic Ingredients
This section specifies the various cryptographic ingredients that are required by the key agreement and key transport
schemes. These ingredients include primitives, auxiliary functions, and schemes.
These ingredients are also employed by various other ANSI standards - for example [9].

5.1 Elliptic Curve Domain Parameter Generation and Validation
This section specifies the primitives that shall be used to generate EC domain parameters and validate EC domain
parameters.
In this Standard, EC domain parameters will be shared by a number of entities using a particular system. In some
schemes, distinct parameter sets may be used for calculations involving entities’ static keys and for calculations
involving entities’ ephemeral keys, and in other schemes, the same parameter set must be used for both ephemeral
and static calculations.
In all cases, the EC domain parameters may be public; the security of the system does not rely on these parameters
being secret.
The primitives specified here allow EC domain parameters to be generated in any manner subject to some security
constraints. The primitives optionally support an additional feature allowing EC domain parameters to be generated
verifiably at random.
The primitives specified differ depending on the characteristic of the underlying field. Thus, Section 5.1.1 describes
the primitives that shall be used for parameter generation and validation in the case that the underlying field is Fp,
and Section 5.1.2 describes the primitives that shall be used in the case that the underlying field is F2m.
The parameter generation primitives will be used whenever EC domain parameters are generated for a system.
Furthermore, many of the schemes specified in this Standard require a valid set of EC domain parameters to be held
by each entity involved in the operation of the scheme. Thus, in all cases, the generator of the system parameters will

X9.63-199x

- 17 -

use the appropriate parameter validation primitive to check the validity of the generated parameters. The validation
primitives may additionally be used by the entities using the parameters to check their validity.
Note that in all cases n is the primary security parameter. In general, as n increases, the security of the EC scheme
also increases. See Annex H for more information.

5.1.1 Elliptic Curve Domain Parameter Generation and Validation over Fp

5.1.1.1 Elliptic Curve Domain Parameter Generation over Fp Primitive

EC domain parameters over Fp shall be generated using the following routine.
Input: This routine does not take any input.
Actions: The following actions are taken:
1. Choose as the field size a prime p with p>3, a lower bound rmin for the point order, and a trial division

bound lmax. (See Annex H for advice on the implications of these decisions.)
2. Select EC domain parameters using the method described in Annex A.3.2 on input p, rmin, and lmax.
Output: This routine outputs:
1. The field size q = p which defines the underlying finite field Fq, where p>3 shall be a prime number.
2. (Optional) A bit string SEED of length at least 160 bits, if the elliptic curve was randomly generated in

accordance with Annex A.3.3.

3. Two field elements a and b in Fq which define the equation of the elliptic curve E: y2 ≡ x3+ax+b (mod p).

4. Two field elements xG and yG in Fq which define a point G=(xG,yG) of prime order on E (note that G ≠ 2).

5. The order n of the point G (it must be the case that n>2160 and n>4√q).
6. The cofactor h = #E(Fq)/n.

5.1.1.2 Elliptic Curve Domain Parameter Validation over Fp Primitive
The following transformation shall be used to validate EC domain parameters over Fp.
Input: The input of the validation transformation is a purported set of EC domain parameters consisting of p’, a’, b’,

G’ =(xG’,yG’), n’, and h’, and optionally the purported seed SEED’ used in the generation process.
Actions: The following checks are made:
1. Verify that p’ is an odd prime number. (See Annex A.2.1.)
2. Verify that a’, b’, xG’ and yG’ are integers in the interval [0,p’-1].
3. If the EC was randomly generated in accordance with Annex A.3.3, verify that SEED’ is a bit string of

length at least 160 bits, and that a’ and b’ were suitably derived from SEED’. (See Annex A.3.4.)

4. Verify that 4(a’) 3 + 27(b’) 2 ≠ 0 (mod p’).

5. Verify that (yG’) 2 ≡ (xG’) 3+(a’)(xG’)+(b’) (mod p’).
6. Verify that n’ is prime and that n’>2160. (See Annex A.2.1.)
7. Verify that n’G’ = 2. (See Annex D.3.2.)

8. Check that n’>4√p’, compute h = (√p’+1)2/n’ and verify that h’=h.
9. Verify that the MOV and Anomalous conditions hold. (See Annex A.1.)
Output: If any of the above verifications has failed, then output ‘invalid’ and reject the EC domain parameters.

Otherwise, output ‘valid’, and accept the EC domain parameters.
NOTE— Step 8 of the above transformation (and also step 9 of Section 5.1.2.2) verifies that the value of the purported cofactor
h’ is correct in the case that n’>4√q’. The case that n’ ≤ 4√q’ is excluded; there are methods for verifying the cofactor h’ in this
case, but these methods are not described here because the general methods are cumbersome and elliptic curves used in practice
usually have n ≈ q so that the condition n’>4√q’ will be satisfied.

5.1.2 Elliptic Curve Domain Parameter Generation and Validation over F2m

5.1.2.1 Elliptic Curve Domain Parameter Generation over F2m Primitive
EC domain parameters over F2m shall be generated using the following routine.
Input: This routine does not take any input.
Actions: The following actions are taken:

X9.63-199x

- 18 -

1. Choose a field size 2m, a lower bound rmin for the point order, and a trial division bound lmax. (See Annex H
for advice on the implications of these decisions.)

2. Choose a basis to use to represent the elements of F2m (either TPB, PPB, or GNB). If TPB or PPB is
chosen, also choose an appropriate reduction polynomial f(x) of degree m over F2 to use. (See Section
4.1.2.)

3. Select EC domain parameters using the method described in Annex A.3.2 on input 2m, rmin, and lmax.
Output: This routine outputs:
1. The field size q=2m which defines the underlying finite field Fq.
2. An indication of the basis to be used to represent the elements of the field (TPB, PPB, or GNB), and a

reduction polynomial f(x) of degree m over F2 if TPB or PPB is indicated.
3. (Optional) A bit string SEED of length at least 160 bits, if the EC was randomly generated in accordance

with Annex A.3.3.
4. Two field elements a and b in Fq which define the equation of the elliptic curve E: y2+xy = x3+ax2+b.

5. Two field elements xG and yG in Fq which define a point G=(xG,yG) of prime order on E (note that G≠�2).

6. The order n of the point G (it must be the case that n>2160 and n>4√q).
7. The cofactor h = #E(Fq)/n.

5.1.2.2 Elliptic Curve Domain Parameter Validation over F2m Primitive
The following transformation shall be used to validate EC domain parameters over F2m.
Input: The input of the validation transformation is a purported set of EC domain parameters consisting of q’=2m’,

a’, b’, G’=(xG’,yG’), n’, h’, and an indication of the type of basis to be used to represent F2m’ together with,
when appropriate, a purported reduction polynomial f(x)’, and optionally the purported seed SEED’ used in
the generation process.

Actions: The following checks are made:
1. Verify that 2m’ is a power of two.
2. If the type of basis indicated is TPB, verify that f(x)’ is a trinomial of degree m’ which is irreducible over

F2. (See Table C-2 or Annex D.2.4.) If the type of basis indicated is a PPB, verify that an irreducible
trinomial of degree m’ does not exist, and that f(x)’ is a pentanomial of degree m’ which is irreducible over
F2. (See Table C-3 or Annex D.2.4.) If the type of basis indicated is GNB, verify that m’ is not divisible by
8.

3. Verify that a’, b’, xG’ and yG’ are bit strings of length m’ bits.
4. If the EC was randomly generated in accordance with Section A.3.3, verify that SEED’ is a bit string of

length at least 160 bits, and that b’ was suitably derived from SEED’. (See Annex A.3.4.)

5. Verify that b’≠0.

6. Verify that (yG’) 2 + xG’yG’ = (xG’) 3+(a’)(xG’) 2+(b’) in F2m’.
7. Verify that n’ is prime and that n’>2160. (See Annex A.2.1.)
8. Verify that n’G’=2. (See Section D.3.2.)

9. Check that n’>4√q’, compute h =  (√q’+1)2/n’  and verify that h’=h.
10. Verify that the MOV and Anomalous conditions hold. (See Annex A.1.)
Output: If any of the above verifications has failed, then output ‘invalid’ and reject the EC domain parameters.

Otherwise, output ‘valid’, and accept the EC domain parameters.

5.2 Key Pair Generation and Public Key Validation
This section specifies the primitives that shall be used to generate EC key pairs and to validate EC public keys.
The key pair generation primitive will be used during the generation of entities’ key pairs. In some schemes, the
primitive will be used to produce static key pairs, and in other schemes, the primitive will be used to produce
ephemeral key pairs.
Public key validation will be used during the validation of an entity’s public keys. Sometimes this validation process
will be carried out by a trusted Center such as a Certification Authority that wishes to bind an entity to its static
public key. At other times this process will be carried out by an entity who wishes to validate the purported
ephemeral public key of another entity.

X9.63-199x

- 19 -

5.2.1 Key Pair Generation Primitive
EC key pairs shall be generated using the following transformation:
Input: The input of the generation transformation is a valid set of EC parameters q, a, b, xG, yG, n, and h along with

an indication of the basis used if q=2m. Note that it is assumed that the parameters have been validated using
the primitives described in Sections 5.1.1.2 and 5.1.2.2.

Actions: The following actions are taken:
1. Select a statistically unique and unpredictable integer d in the interval [1,n-1]. It is acceptable to use a

random or pseudorandom number. If a pseudorandom number is used, it shall be generated using one of the
procedures of Annex A.4 or of an ANSI X9 approved standard. If a pseudorandom number is used, optional
information to store with the private key are the seed values and the particular pseudorandom generation
method used. Storing this optional information helps allow auditing of the key generation process.
If a pseudorandom generation method is used, the seed values used in the generation of d may be
determined by internal means, be supplied by the caller, or both - this is an implementation choice. In all
cases, the seed values have the same security requirements as the private key value. That is, they must be
protected from unauthorized disclosure and be unpredictable.

2. Compute the point Q=(xQ,yQ)=dG. (See Annex D.3.2.)
Output: The key pair (d,Q), where Q is the public key and d is the private key.

5.2.2 Public Key Validation Primitive
Public key validation refers to the process of checking the arithmetic properties of a public key. It prevents various
forms of attack, for example so-called small subgroup attacks, which rely on the use of an invalid public key. See
Annex H for further discussion.
When an entity U is required to validate a public key in this Standard, four methods of public key validation are
acceptable. Only one of the methods must be carried out, although in many cases greater assurance may be obtained
by carrying out more than one of the methods.
The four acceptable methods are:
1. U performs explicit public key validation of the public key itself by using the appropriate technique

described in Section 5.2.2.1 or 5.2.2.2.
2. U performs implicit public key validation of the public key itself by generating the public key itself using

trusted routines.
3. U receives assurance that a party trusted for the lifetime of any key combined with the public key being

validated using the Diffie-Hellman primitives or the MQV primitive, has validated the public key by using
the appropriate technique described in Section 5.2.2.1 or 5.2.2.2.

4. U receives assurance that a party trusted for the lifetime of any key combined with the public key being
validated using the Diffie-Hellman primitives or the MQV primitive, has implicitly validated the public key
by generating the public key itself using trusted routines.

Typically when U accepts assurance from another party that party is a CA. However on occassion U may accept the
assurance of another entity as well as a CA. For example in the Station-to-Station scheme, U receives an ephemeral
public key from V in a signed string. U combines the public key with its own ephemeral public key using the Diffie-
Hellman primitive. It is acceptable for U to accept the validity of the ephemeral public based on the knowledge that
V generated the key because V is trusted for the lifetime of U’s ephemeral public key.

5.2.2.1 Standard Public Key Validation Primitive
An EC public key shall be validated in the following manner when it is going to be used by the standard Diffie-
Hellman primitive:
Input: The input of the validation transformation is a valid set of EC domain parameters q, a, b, xG, yG, n, and h,

along with an indication of the basis used if q=2m, together with the purported public key Q’=(xQ’,yQ’). Note
that it is assumed that the parameters have been validated using the primitives described in Sections 5.1.1.2
and 5.1.2.2.

Actions: The following checks are made:
1. Verify that Q’ is not the point at infinity 2.
2. Verify that xQ’ and yQ’ are elements in the field Fq. (That is, verify that xQ’ and yQ’ are integers in the

interval [0,p-1] in the case that q=p is an odd prime, or that xQ’ and yQ’ are bit strings of length m bits in the
case that q=2m.)

X9.63-199x

- 20 -

3. If q=p is an odd prime, verify that (yQ’) 2 ≡ (xQ’) 3+axQ’+b (mod p). If q=2m, verify that (yQ’) 2+xQ’yQ’ =

(xQ’) 3+a(xQ’) 2+b in F2m.
4. Verify that nQ’=2. (See Annex D.3.2.)
Output: If any one of the above verifications fail, then output ‘invalid’ and reject the public key. Otherwise output

‘valid’ and accept the public key.
NOTE— If there is more than one public key available, it may also be checked that no two public keys are the same.

5.2.2.2 Embedded Public Key Validation Primitive
An EC public key shall be validated in the following manner when it is going to be used by the Diffie-Hellman with
cofactor primitive or the MQV primitive:
Input: The input of the embedded validation transformation is a valid set of EC domain parameters q, a, b, xG, yG, n,

and h, along with an indication of the basis used if q=2m, together with the purported public key
Q’=(xQ’,yQ’). Note that it is assumed that the parameters have been validated using the primitives described
in Sections 5.1.1.2 and 5.1.2.2.

Actions: The following checks shall be made:
1. Verify that Q’ is not the point at infinity 2.
2. Verify that xQ’ and yQ’ are elements in the field Fq. (That is, verify that xQ’ and yQ’ are integers in the

interval [0,p-1] in the case that q=p is an odd prime, or that xQ’ and yQ’ are bit strings of length m bits in the
case that q=2m.)

3. If q=p is an odd prime, verify that (yQ’) 2 ≡ (xQ’) 3+axQ’+b (mod p). If q=2m, verify that (yQ’) 2+xQ’yQ’ =

(xQ’) 3+a(xQ’) 2+b in F2m.
Output: If any one of the above verifications has failed, then output ‘invalid’ and reject the public key. Otherwise

output ‘valid’ and accept the public key.

5.3 Challenge Generation Primitive
This section specifies the primitive that shall be used to generate challenges to be used by the schemes in this
Standard.
The challenge generation primitive will be used to generate challenges in the 3-pass key transport scheme specified
in Section 7.
Challenges shall be generated using the following transformation:

Input: An integer challengelen which is the length in bits of the challenge required. challengelen shall be ≥80.
Actions: Select a statistically unique and unpredictable bit string Challenge of length challengelen. It is acceptable

to use a random or a pseudorandom string. If a pseudorandom string is used, it shall be generated using one
of the procedures of Annex A.4 or of an ANSI X9 approved standard. If a pseudorandom number is used,
optional information to store with the challenge are the seed values and the particular pseudorandom
generation method used. Storing this optional information helps allow auditing of the challenge generation
process.
If a pseudorandom generation method is used, the seed values used in the generation of Challenge may be
determined by internal means, be supplied by the caller, or both - this is an implementation choice.

Output: The bit string Challenge.
NOTE— If more than one challenge is generated, it may be checked that no two challenges are the same.

5.4 Diffie-Hellman Primitive
This section specifies the Diffie-Hellman primitive that shall be used by the key establishment schemes in this
Standard.
This primitive derives a shared secret value from one entity’s secret key and another entity’s public key when the
keys share the same EC parameters. If two entities both correctly execute this primitive with corresponding keys as
inputs, they will produce the same value.
The calculation of the shared secret value incorporates co-factor multiplication. Co-factor multiplication is
computationally efficient and helps to prevent security problems like small subgroup attacks (see [42].)
The shared secret value shall be calculated as follows:

X9.63-199x

- 21 -

Prerequisites: The prerequisite is a set of EC domain parameters q, a, b, G, n, and h, along with an indication of the
basis used if q=2m, which has been validated using the techniques described in Sections 5.1.1.2 and 5.1.2.2.

Input: The Diffie-Hellman primitive takes as input:
1. an EC private key d.
2. an EC public key Q.
The public key Q will have been validated as specified in Section 5.2.2.
Actions: The following actions are taken:
1. Compute the point P=hdQ. (See Section D.3.2.)

2. Check P≠2. If P=2, output ‘invalid’ and stop.
3. Set z=xP, where xP is the x-coordinate of P.

Output: z∈Fq as the shared secret value.

5.5 MQV Primitive
This section specifies the MQV primitive that shall be used by the key agreement schemes specified in this Standard.
This primitive derives a shared secret value from two secret keys owned by U and two public keys owned by V when
all the keys share the same EC parameters. If two entities both correctly execute this primitive with corresponding
keys as inputs, they will produce the same value.
The calculation of the shared secret value incorporates co-factor multiplication. Co-factor multiplication is
computationally efficient and helps to prevent security problems like small subgroup attacks (see [42].)
The shared secret value shall be calculated as follows:
Prerequisites: The prerequisite is a set of EC domain parameters q, a, b, G, n, and h, along with an indication of the

basis used if q=2m, which has been validated using the techniques described in Sections 5.1.1.2 and 5.1.2.2.
Input: The MQV primitive takes as input:
1. two EC key pairs (d1,U,Q1,U) and (d2,U,Q2,U) owned by U.
2. two EC public keys Q1,V and Q2,V owned by V.
The key pairs (d1,U,Q1,U) and (d2,U,Q2,U) will have been generated using the key pair generation primitive specified in
Section 5.2.1. The public keys Q1,V and Q2,V will have been validated as specified in Section 5.2.2.
Actions: The following actions are taken:
1. Compute the integer:

implicitsigU = d2,U+(avf(Q2,U)×d1,U) (mod n).
2. Compute the EC point:

P = h × implicitsigU × (Q2,V+(avf(Q2,V)×Q1,V)).
(See Section D.3.2.)

3. Check P≠�2. If P=2, output ‘invalid’ and stop.
4. Set z=xP, where xP is the x-coordinate of P.

Output: z∈Fq as the shared secret value.

5.6 Auxiliary Functions
This section specifies three types of auxiliary functions that will be used by some of the key agreement schemes and
key transport schemes specified in this Standard: associate value functions, cryptographic hash functions and key
derivation functions.

5.6.1 Associate Value Function
This section specifies the associate value function that shall be used by the schemes in this Standard.
The associate value function will be used to compute an integer associated with an elliptic curve point.
The associate value function will be used by the MQV family of key agreement schemes specified in Section 6.
The associate value function shall be calculated as follows:
Input: The input to the associate value function is:
1. A valid set of EC domain parameters q, a, b, G, n, h along with an indication of the basis used if q=2m.

2. A point P≠2 on the EC defined by the parameters q, a, b, G, n, h.
Actions: Perform the following computations:

X9.63-199x

- 22 -

1. Convert xP to an integer using the convention specified in Section 4.3.5.
2. Calculate:

xP’ = xP (mod 2
f/2

).
3. Calculate:

avf(P) = xP’ + 2
f/2

.
Output: The integer avf(P) as the associate value of P.

5.6.2 Cryptographic Hash Functions
This section specifies the cryptographic hash functions that shall be used by the schemes in this Standard.
The hash functions will be used to calculate the hash value associated with a bit string.
The hash functions will be used by the key derivation function specified in Section 5.6.3.
Any ANSI-approved hash function which offers 80 bits of security or more may be used, i.e. any ANSI-approved
hash function whose output is 160 bits or more. Possibilities therefore include the hash function SHA-1. SHA-1 is
specified in [5].
Hash values shall be calculated as follows:
Preprequisites: The prerequisite for the operation of the hash function is that an ANSI-approved hash function has

been chosen. We denote the maximum length of the input to the hash function by hashmaxlen and the
length of the output of the hash function by hashlen.

Input: The input to the hash function is a bit string Data of length less than hashmaxlen bits.
Actions: Calculate the hash value corresponding to Data as:

Hash=H(Data)
using the established hash function.

Output: The bit string Hash of length hashlen bits.
Note that the hash function operates on bit strings of length less than hashmaxlen bits. For example, SHA-1 operates
on bit strings of length less than 264 bits. In the sequel it is assumed that all hash function calls are indeed on bit
strings of length less than hashmaxlen bits. Any scheme attempting to call the hash function on a bit string of length
greater than or equal to hashmaxlen bits shall output ‘invalid’ and stop.

5.6.3 Key Derivation Functions
This section specifies the key derivation function that shall be used by the schemes in this Standard.
The key derivation function will be used to derive keying data from a shared secret bit string.
The key derivation function will be used by the key agreement schemes to compute keying data from a shared secret
value. The key derivation function will also be used by the asymmetric encryption schemes.
The key derivation function that will be used is a simple hash function construct.
Keying data shall be calculated as follows:
Prerequisites: The prerequisite for the operation of the key derivation function is that an ANSI-approved hash

function has been chosen as specified in Section 5.6.2.
Input: The input to the key derivation function is:
1. A bit string Z which is the shared secret value.

2. An integer keydatalen less than hashlen×(232–1) which is the length in bits of the keying data to be
generated.

3. (Optional) A bit string SharedInfo which consists of some data shared by the two entities intended to share
the secret value Z.

Ingredients: The key derivation function employs one of the hash functions specified in Section 5.6.2.
Actions: The key derivation function is computed as follows:
1. Initiate a 32-bit, big-endian bit string counter as 0000000116.

2. For i=1 to keydatalen/hashlen, do the following:
2.1 Compute Hashi = H(Z || counter || [SharedInfo]).
2.2 Increment counter.
2.3 Increment i.

3. Let Hash!keydatalen/hashlen denote Hashkeydatalen/hashlen if keydatalen/hashlen is an integer, and let it denote the

(keydatalen - (hashlen×keydatalen/hashlen)) leftmost bits of Hashkeydatalen/hashlen otherwise.
4. Set KeyData = Hash1||Hash2||…||Hashkeydatalen/hashlen-1||Hash!keydatalen/hashlen.

X9.63-199x

- 23 -

Output: The bit string KeyData of length keydatalen bits.

Note that the key derivation function produces keying data of length less than hashlen×(232–1) bits. In the sequel we

assume that all key derivation function calls are indeed for bit strings of length less than hashlen×(232–1) bits. Any

scheme attempting to call the key derivation function for a bit string of length greater than or equal to hashlen×(232–
1) bits shall output ‘invalid’ and stop.

5.7 MAC schemes
This section specifies the tagging transformation and the tag checking transformation associated with the message
authentication code (MAC) schemes that shall be used by the schemes in this Standard.
Each MAC scheme will be used as follows. The sender will use the tagging transformation to compute the tag on
some data. The recipient, after being sent the data and tag, will check the validity of the tag using the tag checking
transformation.
The MAC schemes will be used by some key agreement schemes to provide key confirmation and by the augmented
encryption scheme in Section 5.8.2.
Any ANSI-approved MAC that offers 80 bits of security or more may be used, i.e. any ANSI-approved MAC that
uses keys of length 80 bits or more and that outputs tags of length 80 bits or more. Possibilities therefore include the
2-key scheme based on the DEA algorithm [1] specified in [3], and HMAC specified in ANSI X9.71 [10]. (Note that
use of the MAC specified in ANSI X9.9 is not permitted.)
The appropriate choice of MAC scheme in a particular application will depend on the operating environment. Issues
involved in the decision will often include security requirements and available cryptographic primitives.
The MAC scheme is specified as follows.
Prerequisites: The prerequisite for the operation of the MAC scheme is that an ANSI-approved MAC scheme has

been chosen. We denote by mackeylen the length in bits of the keys used by the MAC scheme.

5.7.1 Tagging Transformation
Data shall be tagged using the tagging transformation specified as follows:
Input: The tagging transformation takes as input:
1. A bit string MacData to be MACed.
2. A bit string MacKey of length mackeylen bits to be used as the key.
Actions: Calculate the tag as:

MacTag = MACMacKey(MacData),
where MACMacKey(MacData) denotes the computation of the tag on MacData under MacKey using the
tagging transformation of the established ANSI-approved MAC scheme.

Output: The bit string MacTag.

5.7.2 Tag Checking Transformation
The purported tag on data shall be checked using the tag checking transformation specified as follows:
Input: The tag checking transformation takes as input:
1. The data which is a bit string MacData.
2. The purported tag for MacData which is a bit string MacTag’.
3. A bit string MacKey of length mackeylen bits to be used as the key.
Actions: Calculate the tag for MacData under the key MacKey as:

MacTag = MACMacKey(MacData)
using the tagging transformation of the established ANSI-approved MAC.

Output: If MacTag’=MacTag output ‘valid’, otherwise output ‘invalid’.

5.8 Asymmetric Encryption Schemes
This section specifies the asymmetric encryption schemes that shall be used by the schemes in this Standard.
Each of the asymmetric encryption schemes will be used as follows. The sender will use the encryption
transformation of the scheme to encrypt some data. The recipient, after being sent the encrypted data, will decrypt
the encrypted data using the decryption transformation of the scheme.
The asymmetric encryption schemes will be used by the key transport schemes specified in Section 7.

X9.63-199x

- 24 -

Two encryption schemes are specified. The schemes are designed to provide security against attacks of different
kinds. The Elliptic Curve Encryption Scheme is designed to provide security against passive or chosen plaintext
attacks in which attacker attempts to compromise the scheme using only knowledge of an entity’s public key. The
Elliptic Curve Augmented Encryption Scheme is designed to provide security against both chosen plaintext and
chosen ciphertext attacks in which an attacker additionally attempts to exploit knowledge gained by somehow
learning the decryption of some ciphertext.
Use of the Elliptic Curve Augmented Encryption Scheme is therefore recommended because security against chosen
ciphertext attacks is required in order for the key transport schemes in Section 7 to provide the known-key security
service. The Elliptic Curve Encryption Scheme should be used only when it is determined appropriate – for example
when known-key security is not required.

5.8.1 Elliptic Curve Encryption Scheme
The Elliptic Curve Encryption Scheme is specified as follows.
Prerequisites: The prerequisite for the operation of the Elliptic Curve Encryption Scheme is a set of EC domain

parameters q, a, b, G, n, and h along with an indication of the basis used if q=2m. The parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2. Finally, an ANSI-approved hash function shall have been chosen for use with the key derivation
function.

5.8.1.1 Encryption Transformation
Data shall be encrypted as follows:
Input: The input to the encryption transformation is:
1. A bit string EncData of length encdatalen which is the data to be encrypted.
2. A EC public key Q owned by the recipient.
3. (Optional) A bit string of data SharedData, which is shared by the sender and the recipient.
The EC public key Q shall correspond to the EC domain parameters q, a, b, G, n, h. Q may have been validated as
specified in Section 5.2.2.
Ingredients: The encryption transformation employs the key pair generation primitive specified in Section 5.2.1, the

Diffie-Hellman primitive specified in Section 5.4, and the key derivation function specified in Section 5.6.3.
Actions: Encrypt the bit string EncData as follows:
1. Generate an ephemeral key pair (de,Qe) corresponding to the EC domain parameters q, a, b, G, n, and h,

using the key pair generation primitive defined in Section 5.2.1.
2. Convert Qe to a bit string QE using the convention specified in Section 4.3.6.

3. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field element z∈Fq from
de and Q. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Convert z∈Fq to a bit string Z using the convention specified in Section 4.3.3.
5. Use the key derivation function defined in Section 5.6.3 with the established hash function to generate

keying data EncKey of length encdatalen from Z and [SharedData].

6. Compute MaskedEncData = EncData⊕EncKey.
Output: Output the bit string QE||MaskedEncData as the encryption of EncData.

5.8.1.2 Decryption Transformation
The decryption transformation shall be calculated as follows:
Input: The input to the decryption transformation is:
1. A bit string QE’||MaskedEncData’ purporting to be the encryption of a bit string.
2. An EC private key d owned by the recipient.
3. (Optional) A bit string of data SharedData which is shared by the sender and the recipient.
The private key d shall have been generated using the key pair generation primitive specified in Section 5.2.1.
Ingredients: The decryption transformation employs public key validation as specified in Section 5.2.2, the Diffie-

Hellman primitive specified in Section 5.4, and the key derivation function specified in Section 5.6.3.
Actions: Decrypt the bit string QE’||MaskedEncData’ consisting of the encoding of a purported elliptic curve point

Qe’, and a bit string MaskedEncData’ of length maskedencdatalen as follows:

X9.63-199x

- 25 -

1. Validate the ephemeral public key Qe’ as specified in Section 5.2.2. If the validation primitive outputs
‘invalid’, output ‘invalid’ and stop.

2. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field element z∈Fq from d
and Qe’. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convert z∈Fq to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function specified in Section 5.6.3 with the established hash function to generate

keying data EncKey of length maskedencdatalen from Z and [SharedData].

5. Compute EncData = MaskedEncData’⊕EncKey.
Output: Output EncData as the decryption of QE’||MaskedEncData’.

5.8.2 Elliptic Curve Augmented Encryption Scheme
The Elliptic Curve Augmented Encryption Scheme is specified as follows.
Prerequisites: The prerequisite for the operation of the Elliptic Curve Augmented Encryption Scheme is a set of EC

domain parameters q, a, b, G, n, and h along with an indication of the basis used if q=2m. The parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2. In addition entities using the scheme will have established which ANSI-approved MAC
scheme specified in Section 5.7 they will use. We denote by mackeylen the length in bits of the keys used
by the established MAC scheme. Finally, an ANSI-approved hash function shall have been chosen for use
with the key derivation function.

5.8.2.1 Encryption Transformation
Data shall be encrypted as follows:
Input: The input to the encryption transformation is:
1. A bit string EncData of length encdatalen which is the data to be encrypted.
2. A EC public key Q owned by the recipient.
3. (Optional) Two bit strings of data, SharedData1 and SharedData2, which are shared by the sender and the

recipient.
The EC public key Q shall correspond to the EC domain parameters q, a, b, G, n, h. Q may have been validated as
specified in Section 5.2.2.
Ingredients: The encryption transformation employs the key pair generation primitive specified in Section 5.2.1, the

Diffie-Hellman primitive specified in Section 5.4, the tagging transformation of the established MAC
scheme specified in Section 5.7, and the key derivation function specified in Section 5.6.3.

Actions: Encrypt the bit string EncData as follows:
1. Generate an ephemeral key pair (de,Qe) corresponding to the EC domain parameters q, a, b, G, n, and h,

using the key pair generation primitive defined in Section 5.2.1.
2. Convert Qe to a bit string QE using the convention specified in Section 4.3.6.

3. Use the Diffie-Hellman primitive defined in 5.4 to derive a shared secret field element z∈Fq from de and Q.
If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Convert z∈Fq to a bit string Z using the convention specified in Section 4.3.3.
5. Use the key derivation function defined in Section 5.6.3 with the established hash function to generate

keying data KeyData of length encdatalen+mackeylen from Z and [SharedData1]. Parse KeyData as an
encryption key EncKey of length encdatalen and a MAC key MacKey of length mackeylen, i.e. parse
KeyData as:

KeyData = EncKey||MacKey.

6. Compute MaskedEncData=EncData⊕EncKey.
7. Compute the tag MacTag on the bit string:

MacData = MaskedEncData||[SharedData2]
under the MAC key MacKey using the tagging transformation of the established MAC scheme as specified
in Section 5.7.

Output: Output the bit string QE||MaskedEncData||MacTag as the encryption of EncData.

X9.63-199x

- 26 -

5.8.2.2 Decryption Transformation
The decryption transformation shall be calculated as follows:
Input: The input to the decryption transformation is:
1. A bit string QE’||MaskedEncData’||MacTag’ purporting to be the encryption of a bit string.
2. An EC private key d owned by the recipient.
3. (Optional) Two bit strings of data, SharedData1 and SharedData2, which are shared by the sender and the

recipient.
The private key d shall have been generated using the key pair generation primitive specified in Section 5.2.1.
Ingredients: The decryption transformation employs public key validation as specified in Section 5.2.2, the Diffie-

Hellman primitive specified in Section 5.4, the tag checking transformation of the established MAC scheme
specified in Section 5.7, and the key derivation function specified in Section 5.6.3.

Actions: Decrypt the bit string QE’||MaskedEncData’||MacTag’ consisting of the encoding of a purported elliptic
curve point Qe’, a bit string MaskedEncData’ of length maskedencdatalen, and a bit string MacTag’ of the
appropriate length as follows:

1. Validate the ephemeral public key Qe’ using public key validation as specified in Section 5.2.2. If the
validation primitive outputs ‘invalid’, output ‘invalid’ and stop .

2. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field element z∈Fq from d
and Qe’. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convert z∈Fq to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function specified in Section 5.6.3 with the established hash function to generate

keying data KeyData of length maskedencdatalen+mackeylen from Z and [SharedData1]. Parse KeyData as
an encryption key EncKey of length maskedencdatalen and a MAC key MacKey of length mackeylen, i.e.
parse KeyData as:

KeyData = EncKey||MacKey.

5. Compute EncData=MaskedEncData’⊕EncKey.
6. Verify that MacTag’ is the tag on MaskedEncData||[SharedData2] under the key MacKey using the tag

checking transformation of the established MAC scheme specified in Section 5.7. If the tag checking
transformation outputs ‘invalid’, output ‘invalid’ and stop.

Output: Output EncData as the decryption of QE’||MaskedEncData’||MacTag’.

5.9 Signature Scheme
This section specifies the signature scheme that shall be used by the schemes in this Standard.
The signature scheme will be used as follows. The sender will use the signing transformation to compute a signature
on some data. The recipient, after being sent the data and signature, will check the validity of the signature using the
verifying transformation.
The signature scheme will be used by the 3-pass key transport scheme specified in Section 7.2.
The signature scheme supported is the Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is specified in
[8]. ECDSA shall be implemented as specified in [8].
Prerequisites: The prerequisite for the operation of the ECDSA is a set of EC domain parameters q, a, b, G, n, and h

along with an indication of the basis used if q=2m. The parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

5.9.1 Signing Transformation
The transformation specified as follows shall be used to sign data:
Input: The input to the signing transformation is:
1. A bit string SignData to be signed.
2. An elliptic curve private key d owned by the sender.
The private key d shall correspond to the EC parameters q, a, b, G, n, h, and shall have been generated using the
primitive specified in Section 5.2.1.
Actions: Compute the integers rsig and ssig which comprise the signature on SignData as specified in [8].
Output: The pair of integers rsig and ssig.

X9.63-199x

- 27 -

5.9.2 Verifying Transformation
The transformation specified as follows shall be used to verify a purported signature:
Input: The input to the verifying transformation is:
1. The data which is a bit string SignData.
2. A pair of integers rsig’ and ssig’ which are the purported signature of SignData.
3. An EC public key Q owned by the sender.
The public key Q shall correspond to the EC parameters q, a, b, G, n, h, and may have been validated as specified in
Section 5.2.2.
Actions: Verify the purported signature using the verification transformation specified in [8].
Output: Output ‘valid’ if the verification transformation confirms that rsig’ and ssig’ are a valid signature of

SignData, otherwise output ‘invalid’.

6 Key Agreement Schemes
This section describes the key agreement schemes specified in this Standard.
In each case, the key agreement scheme is used by an entity who wishes to agree on keying data with another entity.
In some cases the protocols specified are ‘symmetric’, and so it suffices to describe just one transformation. In other
cases the protocols are ‘asymmetric’, and so it is necessary to describe two transformations, one of which is
undertaken by U if U is the initiator, and one of which is undertaken by V if V is the responder.
In the specification of each transformation, equivalent computations that result in identical output are allowed.
Each of the key agreement schemes has certain prerequisites. These are conditions that must be satisfied by an
implementation of the scheme. However the specification of mechanisms that provide these prerequisites is beyond
the scope of this Standard.
Section H.4.3 provides guidance to the services which each scheme may be used to provide.
Each scheme is described in two ways. First a flow diagram of the ordinary operation of the scheme between two
entities U and V is provided. This flow diagram is for descriptive purposes only. Then a formal specification is given
which describes the actions entities must take to use the scheme to establish keying data.
The flow diagrams are intended to aid understanding of the mechanics of the ‘ordinary’ operation of the schemes in
which flows are faithfully relayed between two entities. Note that in ‘real-life’, there is no reason to assume that
flows are relayed faithfully between two entities…that is why the schemes must be formally specified in a more
technical fashion.
When examining the flow diagrams, the following points should be noted:
— For clarity of exposition, optional fields such as Text and SharedData are omitted.
— kdf(Z) denotes the output of the key derivation function specified in Section 5.6.3 called on input Z.
— ENC and DEC respectively denote the encryption and decryption transformations associated with one of the

asymmetric encryption schemes specified in Section 5.8. The subscripts immmediately following ENC and
DEC denote the keys being used in the operation of the appropriate transformation. Similarly, SIG denotes
the signing transformation associated with the signature scheme ECDSA specified in Section 5.9, and MAC
denotes the tagging transformation of one of the MAC schemes specified in Section 5.7.

6.1 Ephemeral Unified Model Scheme
This section specifies the ephemeral Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 2 illustrates the use of the ephemeral Unified Model scheme.

Figure 2 - Ephemeral Unified Model Scheme

Next the formal specification of the scheme is given.
The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on
keying data with another entity no matter whether they are the initiator or the responder.
If two entities U and V simultaneously execute the transformation with corresponding keying material as input, then
U and V will compute the same keying data.

X9.63-199x

- 28 -

Prerequisites: The following are the prerequisites for the use of the scheme: Each entity has an authentic copy of the
system’s EC domain parameters to be used with ephemeral keys qe, ae, be, Ge, ne, and he along with an
indication of the basis used if q=2m. These parameters shall have been generated using the parameter
generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated
using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2. Finally, each entity shall have
chosen an ANSI-approved hash function for use with the key derivation function.

Note that validation of the EC domain parameters has not necessarily been carried out by U but may instead have
been carried out by a party trusted by U. Note also that the subscript e is a slight abuse of notation. It is used to
indicate that the parameters are associated with ephemeral key pairs rather than to indicate that the parameters
themselves are ephemeral.
U shall execute the following transformation to agree on keying data with V:
Input: The input to the key agreement transformation is:
1. A purported ephemeral EC public key Qe,V’ owned by V.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Note that Qe,V’ may be received either at the start of the execution of the protocol, or at the appropriate stage during
the execution of the protocol.
Ingredients: The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public

key validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, and the key derivation function
in Section 5.6.3.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters qe, ae, be, Ge, ne, and he. Send Qe,U to V.
2. Verify that the purported key Qe,V’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,U, the purported public key Qe,V’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.
5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Ze and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.2 1-Pass Diffie-Hellman Scheme
This section specifies the 1-pass Diffie-Hellman scheme.
First the scheme is illustrated in a flow diagram. Figure 3 illustrates the use of the 1-pass Diffie-Hellman scheme.

Figure 3 – 1-Pass Diffie-Hellman Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.2.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.2.2 to agree on keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters q, a, b, G, n, and h along

with an indication of the basis used if q=2m. These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore the parameters shall have been
validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

X9.63-199x

- 29 -

2. Each entity allowed to act as a responder shall be bound to a static key pair associated to the system’s
elliptic curve domain parameters q, a, b, G, n, h. The binding shall include the validation of the static public
key as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.2.1 Initiator Transformation
U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, the Diffie-

Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters q, a, b, G, n, and h. Send Qe,U to V.

2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value z∈Fq from the private key
de,U, the static public key Qs,V, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Convert z to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.2.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A purported ephemeral EC public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The key agreement transformation employs public key validation in Section 5.2.2, the Diffie-Hellman

primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters q, a, b, G, n, and h as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value z∈Fq from the private key
ds,V, the purported public key Qe,U’, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Convert z to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.3 Static Unified Model Scheme
This section specifies the static Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 4 illustrates the use of the static Unified Model scheme.

Figure 4 - Static Unified Model Scheme

Next the formal specification of the scheme is given.

X9.63-199x

- 30 -

The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on
keying data with another entity no matter whether they are the initiator or the responder.
If entities U and V simultaneously execute the transformation with corresponding keying material as input, then U
and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static

keys qs, as, bs, Gs, ns, and hs along with an indication of the basis used if q=2m. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keys qs, as, bs, Gs, ns, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.
Note that validation of Qs,V has not necessarily been carried out by U, but may instead have been carried out, for
example, by the CA issuing the binding between V and Qs,V.
U shall execute the following transformation to agree on keying data with V:
Input: The input to the key agreement transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The key agreement transformation employs the Diffie-Hellman primitive in Section 5.4 and the key

derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,U, the public key Qs,V, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

2. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
3. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Zs and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.4 Combined Unified Model with Key Confirmation Scheme
This section specifies the combined Unified Model with key confirmation scheme. The scheme is a hybrid of the
ephemeral Unified Model scheme and the static Unified Model scheme in which a MAC is used to provide key
confirmation.
First the scheme is illustrated in a flow diagram. Figure 5 illustrates the use of the combined Unified Model with key
confirmation scheme.

Figure 5 - Combined Unified Model with Key Confirmation Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.4.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.4.2 to agree on keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with

ephemeral keys qe, ae, be, Ge, ne, and he along with an indication of the basis used if q=2m. These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.

X9.63-199x

- 31 -

Furthermore the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2.

2. U has an authentic copy of the system’s elliptic curve domain parameters to be used with static keys qs, as,
bs, Gs, ns, and hs along with an indication of the basis used if q=2m. These parameters shall have been
generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

3. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keys qs, as, bs, Gs, ns, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier
will be denoted by the bit string U.

4. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen is used to denote the length of the keys used by the MAC scheme chosen.

5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.4.1 Initiator Transformation
U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData1 of length shareddata1len bits and a bit string SharedData2 of length

shareddata2len bits which consist of some data shared by U and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters qe, ae, be, Ge, ne, and he. Send Qe,U to V.
2. Then receive from V a purported ephemeral public key Qe,V’, an optional bit string Text1, and a purported

tag MacTag1’. If these values are not received, output ‘invalid’ and stop.
3. Verify that the purported key Qe,V’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,U, the public key Qs,V, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

5. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
6. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

MacKey of length mackeylen bits from the shared secret value Zs and the shared data [SharedData1].
7. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’

corresponding to V’s purported ephemeral public key, the bit string QEU corresponding to U’s ephemeral
public key, and if present Text1:

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1].
8. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking transformation

of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.

9. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU
corresponding to U’s ephemeral public key, the bit string QEV’ corresponding to V’s purported ephemeral
public key, and optionally a bit string Text2:

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2].
10. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7:
MacTag2 = MACMacKey(MacData2).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and if present Text2

to V.

X9.63-199x

- 32 -

11. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,U, the purported public key Qe,V’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

12. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.
13. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Ze and the shared data [SharedData2].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.4.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder.
Input: The input to the responder transformation is:
1. A purported ephemeral public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData1 of length shareddata1len bits and a bit string SharedData2 of length

shareddata2len bits which consist of some data shared by U and V.
Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.
2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,V,Qe,V) for the

parameters qe, ae, be, Ge, ne, and he.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,V, the public key Qs,U, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

4. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

MacKey of length mackeylen bits from the shared secret value Zs and the shared data [SharedData1].
6. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV

corresponding to V’s ephemeral public key, the bit string QEU’ corresponding to U’s purported ephemeral
public key, and optionally a bit string Text1:

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1].
7. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.
MacTag1 = MACMacKey(MacData1).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U the ephemeral public
key Qe,V, if present the bit string Text1, and MacTag1.

8. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not received,
output ‘invalid’ and stop.

9. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’
corresponding to U’s purported ephemeral public key, the bit string QEV corresponding to V’s ephemeral
public key, and if present the bit string Text2:

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2].
10. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking

transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

11. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,V, the purported public key Qe,U’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

12. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.
13. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Ze and the shared data [SharedData2].

X9.63-199x

- 33 -

Output: The bit string KeyData as the keying data of length keydatalen bits.

6.5 1-Pass Unified Model Scheme
This section specifies the 1-pass Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 6 illustrates the use of the 1-pass Unified Model scheme.

Figure 6 - 1-Pass Unified Model Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.5.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.5.2 to agree on keying data with U if V is the protocol’s responder.
The essential difference between the role of the initiator and the role of the responder in the scheme is that the
initiator contributes an ephemeral key pair but the responder does not.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters q, a, b, G, n, and h along

with an indication of the basis used if q=2m. These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters q,
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.5.1 Initiator Transformation
U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator:
Input: The input to the key agreement transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, the Diffie-

Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters q, a, b, G, n, and h. Send Qe,U to V.

2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,U, the public key Qs,V, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

3. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.

4. Use the Diffie-Hellman primitive in 5.4 to derive a shared secret value zs∈Fq from the private key ds,U, the
public key Qs,V, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’, output ‘invalid’
and stop.

5. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
6. Concatenate Ze and Zs to form the shared secret value Z = Ze||Zs.
7. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.5.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder:

X9.63-199x

- 34 -

Input: The input to the responder transformation is:
1. A purported ephemeral EC public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The responder transformation employs public key validation as specified in Section 5.2.2, the Diffie-

Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters q, a, b, G, n, and h as specified in

Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.

2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
ds,V, the purported public key Qe,U’, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.

4. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,V, the public key Qs,U, and the parameters q, a, b, G, n, and h. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

5. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
6. Concatenate Ze and Zs to form the shared secret value Z = Ze||Zs.
7. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.6 Full Unified Model Scheme
This section specifies the full Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 7 illustrates the use of the full Unified Model scheme.

Figure 7 - Full Unified Model Scheme

Next the formal specification of the scheme is given.
The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on
keying data with another entity no matter whether they are the initiator or the responder.
If U and V simultaneously execute the transformation with corresponding keying material as input, then U and V will
compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with

ephemeral keys qe, ae, be, Ge, ne, and he along with an indication of the basis used if q=2m. These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static
keys qs, as, bs, Gs, ns, and hs along with an indication of the basis used if q=2m. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

3. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keys qs, as, bs, Gs, ns, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2.

4. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.
U shall execute the following transformation to agree on keying data with V:
Input: The input to the key agreement transformation is:
1. A purported ephemeral EC public key Qe,V’ owned by V.

X9.63-199x

- 35 -

2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public

key validation in Section 5.2.2 or the embedded public key validation primitive in Section 5.2.3, the Diffie-
Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters qe, ae, be, Ge, ne, and he. Send Qe,U to V.
2. Verify that the purported key Qe,V’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,U, the purported public key Qe,V’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.

5. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,U, the public key Qs,V, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

6. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
7. Concatenate Ze and Zs to form the shared secret value Z = Ze||Zs.
8. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.7 Full Unified Model with Key Confirmation Scheme
This section specifies the full Unified Model with key confirmation scheme. The scheme adds flows to the full
Unified Model scheme so that explicit key authentication may be supplied. A MAC scheme is used to provide key
confirmation.
First the scheme is illustrated in a flow diagram. Figure 8 illustrates the use of the full Unified Model with key
confirmation scheme.

Figure 8 - Full Unified Model with Key Confirmation Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.7.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.7.2 to agree keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with

ephemeral keys qe, ae, be, Ge, ne, and he along with an indication of the basis used if q=2m. These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static
keys qs, as, bs, Gs, ns, and hs along with an indication of the basis used if q=2m. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

3. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keys qs, as, bs, Gs, ns, hs. The binding shall include the validation of the static public key

X9.63-199x

- 36 -

as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier
will be denoted by the bit string U.

4. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen will denote the length of the keys used by the chosen MAC scheme.

5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.7.1 Initiator Transformation
U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters qe, ae, be, Ge, ne, and he. Send Qe,U to V.
2. Then receive from V a purported ephemeral public key Qe,V’, an optional bit string Text1, and a purported

tag MacTag1’. If these values are not received, output ‘invalid’ and stop.
3. Verify that the purported key Qe,V’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,U, the purported public key Qe,V’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

5. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.

6. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,U, the public key Qs,V, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

7. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
8. Form the shared secret bit string Z as Z = Ze||Zs.
9. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Z and the shared data
[SharedData].

10. Parse the leftmost macdatalen bits of KeyData! as a MAC key MacKey and the remaining bits as keying
data KeyData.

11. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’
corresponding to V’s purported ephemeral public key, the bit string QEU corresponding to U’s ephemeral
public key, and if present Text1:

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1].
12. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking transformation

of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.

13. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU
corresponding to U’s ephemeral public key, the bit string QEV’ corresponding to V’s purported ephemeral
public key, and optionally a bit string Text2:

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2].
14. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7:
MacTag2 = MACMacKey(MacData2).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and if present Text2

to V.
Output: The bit string KeyData as the keying data of length keydatalen bits.

X9.63-199x

- 37 -

6.7.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A purported ephemeral public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.
2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,V,Qe,V) for the

parameters qe, ae, be, Ge, ne, and he.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze∈Fq from the private key
de,V, the purported public key Qe,U’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.

5. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value zs∈Fq from the private key
ds,V, the public key Qs,U, and the parameters qs, as, bs, Gs, ns, and hs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

6. Convert zs to a bit string Zs using the convention specified in Section 4.3.3.
7. Form the shared secret bit string Z as Z = Ze||Zs.
8. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Z and the shared data
[SharedData].

9. Parse the leftmost mackeylen bits of KeyData! as a MAC key MacKey and the remaining bits as keying data
KeyData.

10. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV
corresponding to V’s ephemeral public key, the bit string QEU’ corresponding to U’s purported ephemeral
public key, and optionally a bit string Text1:

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1].
11. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.
MacTag1 = MACMacKey(MacData1).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U the ephemeral public
key Qe,V, if present the bit string Text1, and MacTag1.

12. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not received,
output ‘invalid’ and stop.

13. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’
corresponding to U’s purported ephemeral public key, the bit string QEV corresponding to V’s ephemeral
public key, and if present the bit string Text2:

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2].
14. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking

transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

Output: The bit string KeyData as the keying data of length keydatalen bits.

6.8 Station-to-Station Scheme
This section specifies the Station-to-Station scheme. The scheme uses a signature scheme to authenticate the
ephemeral Unified Model scheme and provide mutual explicit key authentication.

X9.63-199x

- 38 -

First the scheme is illustrated in a flow diagram. Figure 9 illustrates the use of the Station-to-Station scheme.

Figure 9 – Station-to-Station Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.8.1 to agree keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.8.2 to agree keying data with U if V is the protocol's responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with

ephemeral keys qe, ae, be, Ge, ne, and he. These parameters shall have been generated using the parameter
generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated
using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with a
signature scheme qsig, asig, bsig, Gsig, nsig, and hsig along with an indication of the basis used if q=2m. These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

3. Each entity shall be bound to a static signing key pair associated to the system’s elliptic curve domain
parameters for signing qsig, asig, bsig, Gsig, nsig, and hsig. The binding may include the validation of the public
signature as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier
will be denoted by the bit string U.

4. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen will denote the length of the keys used by the MAC scheme chosen.

5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.8.1 Initiator Transformation
U shall execute the following transformation to agree keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen which consists of some data shared by U and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2., public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, one of the MAC schemes in Section 5.7, and the signature scheme specified in Section 5.9.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U; Qe,U) for the

parameters qe, ae, be, Ge, ne, and he. Send Qe,U to V .
2. Then receive from V a purported ephemeral public key Qe,V’, a pair of integers rsig1’ and ssig1’ purporting

to be a signature, a purported tag MacTag1’, and an optional bit string Text1. If this data is not received,
output ‘invalid’ and stop.

3. Verify that the purported key Qe,V’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in
Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4. Form the bit string consisting of the bit string QEV’ corresponding to V’s purported ephemeral public key,
the bit string QEU corresponding to U’s ephemeral public key, U’s identifier, and if present Text1:

Data1 = QEV’ || QEU || U || [Text1].
5. Verify that rsig1’ and ssig1’ are a valid signature of Data1 under V’s public signature key Qsig,V

corresponding to the EC domain parameters qsig, asig, bsig, Gsig, nsig, and hsig, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

X9.63-199x

- 39 -

6. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze in Fq from the private key
de,U, the purported ephemeral public key Qe,V’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive
outputs ‘invalid’, output ‘invalid’ and stop.

7. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.
8. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Ze and the shared data
[SharedData].

9. Parse the leftmost macdatalen bits of KeyData! as a MAC key MacKey and the remaining bits as keying
data KeyData.

10. Verify that MacTag1’ is the tag for Data1’ under the key MacKey using the tag checking transformation of
the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs ‘invalid’,
output ‘invalid’ and stop.

11. Form the bit string consisting of the bit string QEU corresponding to U’s ephemeral public key, the bit
string QEV’ corresponding to V’s purported ephemeral public key, V’s identifier, and optionally a bit string
Text2:

Data2 = QEU || QEV’ || V || [Text2].
12. Sign Data2 using U’s private signing key dsig,U corresponding to the parameters qsig, asig, bsig, Gsig, nsig, and

hsig, using the signing transformation of the signature scheme in Section 5.9. If the signing transformation
outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the integers rsig2

and ssig2 as the signature of Data2.
13. Calculate the tag MacTag2 on Data2 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7:
MacTag2 = MACMacKey(Data2).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send rsig2, ssig2, MacTag2 and if
present Text2 to V.

Output: The bit string KeyData as the keying data of length keydatalen bits.

6.8.2 Responder Transformation
V shall execute the following transformation to agree keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A purported ephemeral public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen which consists of some data shared by U and V.
Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2., public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, one of the MAC schemes in Section 5.7, and the signature scheme specified in Section 5.9.

Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters qe, ae, be, Ge, ne, and he as specified in

Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.
2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,V; Qe,V) for the

parameters qe, ae, be, Ge, ne, and he.
3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value ze in Fq from the private key

de,V, the purported public key Qe,U’, and the parameters qe, ae, be, Ge, ne, and he. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convert ze to a bit string Ze using the convention specified in Section 4.3.3.
5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Ze and the shared data
[SharedData].

6. Parse the leftmost macdatalen bits of KeyData! as a MAC key MacKey and the remaining bits as keying
data KeyData.

7. Form the bit string consisting of the bit string QEV corresponding to V’s ephemeral public key, the bit string
QEU’ corresponding to U’s purported ephemeral public key, U’s identifier, and if optionally a bit string
Text1:

Data1 = QEV || QEU’ || U || [Text1].

X9.63-199x

- 40 -

8. Sign Data1 using V’s private signing key dsig,V corresponding to the parameters qsig, asig, bsig, Gsig, nsig, and
hsig, using the signing transformation of the signature scheme in Section 5.9. If the signing transformation
outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the integers rsig1

and ssig1 as the signature of Data1.
9. Calculate the tag MacTag1 on Data1 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7:
MacTag1 = MACMacKey(Data1).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send Qe,V, rsig1, ssig1, MacTag1

and if present Text1 to U.
10. Then receive from U a pair of integers rsig1’ and ssig1’ purporting to be a signature, a purported tag

MacTag2’, and an optional bit string Text2. If these values are not received, output ‘invalid’ and stop.
11. Form the bit string consisting of the bit string QEU’ corresponding to U’s purported ephemeral public key,

the bit string QEV corresponding to V’s ephemeral public key, V’s identifier, and if present the bit string
Text2:

Data2 = QEU’ || QEV || V || [Text2].
12. Verify that rsig2’ and ssig2’ are a valid signature of Data2 under U’s public signature key Qsig,U

corresponding to the EC domain parameters qsig, asig, bsig, Gsig, nsig, and hsig, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

13. Verify that MacTag2’ is the tag for Data2’ under the key MacKey using the tag checking transformation of
the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs ‘invalid’,
output ‘invalid’ and stop.

Output: The bit string KeyData as the keying data of length keydatalen bits.

6.9 1-Pass MQV Scheme
This section specifies the 1-pass MQV scheme.
First the scheme is illustrated in a flow diagram. Figure 10 illustrates the use of the 1-pass MQV scheme.

Figure 10 - 1-Pass MQV Scheme

Next a formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.9.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in Section
6.9.2 to agree keying data with U if V is the protocol’s responder.
The essential difference between the role of the initiator and the role of responder in the scheme is that the initiator
contributes an ephemeral key pair but the responder does not.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters q, a, b, G, n, and h along

with an indication of the basis used if q=2m. These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters q,
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.9.1 Initiator Transformation
U shall execute the following transformation to agree on keying datawith V if U is the protocol’s initiator:
Input: The input to the key agreement transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.

X9.63-199x

- 41 -

2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U
and V.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, the MQV
primitive in Section 5.5, the associate value function in Section 5.6.1, and the key derivation function in
Section 5.6.3.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters q, a, b, G, n, and h. Send Qe,U to V.

2. Use the MQV primitive in Section 5.5 to derive a shared secret value z∈Fq from the key pairs
(d1,U,Q1,U)=(ds,U,Qs,U) and (d2,U,Q2,U)=(de,U,Qe,U), the public key Q1,V=Q2,V=Qs,V, and the parameters q, a, b,
G, n, and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convert z to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.9.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A purported ephemeral EC public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The responder transformation employs public key validation in Section 5.2.2, the MQV primitive in

Section 5.5, the associate value function in Section 5.6.1, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:
1. Verify that the purported key Qe,U’ is a valid key for the parameters q, a, b, G, n, and h as specified in

Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.

2. Use the MQV primitive in Section 5.5 to derive a shared secret value z∈Fq from the key pair
(d1,V,Q1,V)=(d2,V,Q2,V)=(ds,V,Qs,V), the public keys Q1,U=Qs,U and Q2,U=Qe,U’, and the parameters q, a, b, G, n,
and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convert z to a bit string Z using the convention specified in Section 4.3.3.
4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.10 Full MQV Scheme
This section specifies the full MQV scheme.
First the scheme is illustrated in a flow diagram. Figure 11 illustrates the use of the full MQV scheme.

Figure 11 - Full MQV Scheme

Next the formal specification of the scheme is given.
The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on
keying data with another entity no matter whether they are the initiator or the responder.
If U and V simultaneously execute the transformation with corresponding keying material as input, then U and V will
compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters q, a, b, G, n, and h along

with an indication of the basis used if q=2m. These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

X9.63-199x

- 42 -

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters q,
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.
U shall execute the following transformation to agree on keying data with V:
Input: The input to the key agreement transformation is:
1. A purported ephemeral EC public key Qe,V’ owned by V.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public

key validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section
5.6.1, and the key derivation function in Section 5.6.3.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters q, a, b, G, n, and h. Send Qe,U to V.
2. Verify that the purported key Qe,V’ is a valid key for the parameters q, a, b, G, n, and h as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the MQV primitive in Section 5.5 to derive a shared secret value z∈Fq from the key pairs
(d1,U,Q1,U)=(ds,U,Qs,U) and (d2,U,Q2,U)=(de,U,Qe,U), the public keys Q1,V=Qs,V and Q2,V=Qe,V’, and the
parameters q, a, b, G, n, and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Convert z to a bit string Z using the convention specified in Section 4.3.3.
5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of length keydatalen bits from the shared secret value Z and the shared data [SharedData].
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.11 Full MQV with Key Confirmation Scheme
This section specifies the full MQV with key confirmation scheme. The scheme adds flows to the full MQV scheme
so that explicit key authentication may be supplied. A MAC scheme is used to provide key confirmation.
First the scheme is illustrated in a flow diagram. Figure 12 illustrates the use of the full MQV with key confirmation
scheme.

Figure 12 - Full MQV with Key Confirmation Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
6.11.1 to agree on keying data with V if U is the protocol’s initiator, and V uses the transformation specified in
Section 6.11.2 to agree keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters q, a, b, G, n, and h along

with an indication of the basis used if q=2m. These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters q,
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2. The
key binding shall include a unique identifier for each entity (e.g. distinguished names). All identifiers shall
be bit strings of the same length entlen bits. Entity U’s identifier will be denoted by the bit string U.

3. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen denotes the length of keys used by the chosen MAC scheme.

4. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

X9.63-199x

- 43 -

6.11.1 Initiator Transformation
U shall execute the following transformation to agree on keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section 5.6.1,
the key derivation function in Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:
1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,U,Qe,U) for the

parameters q, a, b, G, n, and h. Send Qe,U to V.
2. Then receive from V a purported ephemeral public key Qe,V’, an optional bit string Text1, and a purported

tag MacTag1’. If these values are not received, output ‘invalid’ and stop.
3. Verify that the purported key Qe,V’ is a valid key for the parameters q, a, b, G, n, and h as specified in

Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4. Use the MQV primitive in Section 5.5 to derive a shared secret value z∈Fq from the key pairs
(d1,U,Q1,U)=(ds,U,Qs,U) and (d2,U,Q2,U)=(de,U,Qe,U), the public keys Q1,V=Qs,V and Q2,V=Qe,V’, and the
parameters q, a, b, G, n, and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

5. Convert z to a bit string Z using the convention specified in Section 4.3.3.
6. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Z and the shared data
[SharedData].

7. Parse the leftmost mackeylen bits of KeyData! as a MAC key MacKey and the remaining bits as keying data
KeyData.

8. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV’
corresponding to V’s purported ephemeral public key, the bit string QEU corresponding to U’s ephemeral
public key, and if present Text1:

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1].
9. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag checking transformation

of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.

10. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU
corresponding to U’s ephemeral public key, the bit string QEV’ corresponding to V’s purported ephemeral
public key, and optionally a bit string Text2:

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2].
11. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7:
MacTag2 = MACMacKey(MacData2).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 and if present Text2

to V.
Output: The bit string KeyData as the keying data of length keydatalen bits.

6.11.2 Responder Transformation
V shall execute the following transformation to agree on keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A purported ephemeral public key Qe,U’ owned by U.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U

and V.
Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section 5.6.1,
the key derivation function in Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

X9.63-199x

- 44 -

1. Verify that the purported key Qe,U’ is a valid key for the parameters q, a, b, G, n, and h as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (de,V,Qe,V) for the
parameters q, a, b, G, n, and h.

3. Use the MQV primitive in Section 5.5 to derive a shared secret value z∈Fq from the key pairs
(d1,V,Q1,V)=(ds,V,Qs,V) and (d2,V,Q2,V)=(de,V,Qe,V), the public keys Q1,U=Qs,U and Q2,U=Qe,U’, and the
parameters q, a, b, G, n, and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Convert z to a bit string Z using the convention specified in Section 4.3.3.
5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData! of length mackeylen+keydatalen bits from the shared secret value Z and the shared data
[SharedData].

6. Parse the leftmost mackeylen bits of KeyData! as a MAC key MacKey and the remaining bits as keying data
KeyData.

7. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string QEV
corresponding to V’s ephemeral public key, the bit string QEU’ corresponding to U’s purported ephemeral
public key, and optionally a bit string Text_1:

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1].
8. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.
MacTag1 = MACMacKey(MacData1).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U the ephemeral public
key Qe,V, if present the bit string Text1, and MacTag1.

9. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this data is not received,
output ‘invalid’ and stop.

10. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string QEU’
corresponding to U’s purported ephemeral public key, the bit string QEV corresponding to V’s ephemeral
public key, and if present the bit string Text2:

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2].
11. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag checking

transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

Output: The bit string KeyData as the keying data of length keydatalen bits.

7 Key Transport Schemes
This section describes the key transport schemes specified in this Standard.
In each case, the key transport scheme is used by an entity who wishes to establish keying data with another entity.
Both protocols specified are ‘asymmetric’, so it is necessary to describe two transformations, one of which is
undertaken by U if U is the initiator, and one of which is undertaken by V if V is the responder.
In the specification of each transformation, equivalent computations that result in identical output are allowed.
Each of the key transport schemes has certain prerequisites. These are conditions that must be satisfied by an
implementation of the scheme. However the specification of mechanisms that provide these prerequisites is beyond
the scope of this Standard.
Section H.4.3 provides guidance to the services which each scheme may be used to provide.
Each scheme is described in two ways. First a flow diagram of the ordinary operation of the scheme between two
entities U and V is provided. This flow diagram is for illustrative purposes only. Then a formal specification is given
which describes the actions entities must take to use the scheme to establish keying data.
These flow diagrams are intended to aid understanding of the mechanics of the ‘ordinary’ operation of the schemes
in which flows are relayed faithfully between two entities. Note that in ‘real-life’, there is no reason to assume that
flows are relayed faithfully between two entities…that is why the schemes must be formally specified in a more
technical fashion.
When examining the flow diagrams, the following points should be noted:
— For clarity of exposition, optional fields such as Text and SharedData are omitted.
— kdf(Z) denotes the output of the key derivation function specified in Section 5.6.3 called on input Z.

X9.63-199x

- 45 -

— ENC and DEC respectively denote the encryption and decryption transformations associated with one of the
asymmetric encryption schemes specified in Section 5.8. The subscripts immmediately following ENC and
DEC denote the keys being used in the operation of the appropriate transformation. Similarly, SIG denotes
the signing transformation associated with the signature scheme ECDSA specified in Section 5.9, and MAC
denotes the tagging transformation of one of the MAC schemes specified in Section 5.7.

7.1 1-Pass Transport Scheme
This section specifies the 1-pass transport scheme.
First the scheme is illustrated in a flow diagram. Figure 13 illustrates the use of the 1-pass key transport scheme.

Figure 13 - 1-Pass Key Transport Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified U uses the transformation specified in Section
7.1.1 to establish keying data with V if U is the protocol’s initiator, and V uses the transformation specified in
Section 7.1.2 to establish keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with an

asymmetric encryption scheme q, a, b, G, n, and h along with an indication of the basis used if q=2m. These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

2. Each entity allowed to act as a responder shall be bound to a static encryption key pair associated to the
system’s elliptic curve domain parameters q, a, b, G, n, h. The binding may include the validation of the
public key as specified in Section 5.2.2.

3. Each entity allowed to act as an initiator shall be bound to a unique identifier (e.g. distinguished names). All
identifiers shall be bit strings of same length entlen bits. Entity U’s identifier will be denoted by the bit
string U.

4. Each entity shall have decided whether to use the Elliptic Curve Encryption Scheme in Section 5.8.1 or the
Elliptic Curve Augmented Encryption Scheme in Section 5.8.2.

5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function
during encryption and decryption.

7.1.1 Initiator Transformation
U shall execute the following transformation to establish keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. A bit string KeyData of length keydatalen bits which is the keying data to be transported.
2. (Optional) Two bit strings SharedData1 and SharedData2 which consist of some data shared by U and V.
Ingredients: The initiator transformation employs the encryption transformation of the appropriate asymmetric

encryption scheme in Section 5.8.
Actions: Keying data shall be derived as follows:
1. Form the bit string consisting of U’s identifier, the keying data KeyData, and optionally a bit string Text:

EncData = U || KeyData || [Text].
2. Encrypt EncData under V’s static public encryption key Qenc,V corresponding to the EC domain parameters

q, a, b, G, n, and h, with the optional inputs SharedData1 and SharedData2, using the encryption
transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the encryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the encryption transformation outputs
a bit string EncryptedData as the encryption of EncData.

3. Send EncryptedData to V.
Output: The bit string KeyData of length keydatalen bits as the keying data.

X9.63-199x

- 46 -

NOTE— Including a key counter field in the optional Text field may help to prevent known key attacks.

7.1.2 Responder Transformation
V shall execute the following transformation to establish keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:
1. A bit string EncryptedData’ purporting to be the encryption of a bit string.
2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) Two bit strings SharedData1 and SharedData2 which consist of some data shared by U and V.
Ingredients: The responder transformation employs the decryption transformation of the appropriate asymmetric

encryption scheme in Section 5.8.
Actions: Keying data shall be derived as follows:
1. Decrypt the bit string EncryptedData’ using V’s static private decryption key denc,V corresponding to the EC

domain parameters q, a, b, G, n, and h, with the optional inputs SharedData1 and SharedData2, using the
decryption transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the decryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the decryption transformation outputs
a bit string EncData of length encdatalen bits as the decryption of the bit string.

2. If encdatalen<entlen+keydatalen, output ‘invalid’ and stop.
3. Parse the first entlen bits of EncData as the purported identifier U’ of U, and the next keydatalen bits of

EncData as keying data KeyData.
4. Verify that U’=U; if not, output ‘invalid’ and stop.
Output: The bit string KeyData of length keydatalen bits as the keying data.

7.2 3-Pass Transport Scheme
This section specifies the 3-pass transport scheme. The scheme uses a signature scheme to provide explicit key
authentication for a session key transported using the 1-pass transport scheme specified in Section 7.1.
First the scheme is illustrated in a flow diagram. Figure 14 illustrates the use of the 3-pass key transport scheme.

Figure 14 - 3-Pass Key Transport Scheme

Next the formal specification of the scheme is given.
The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation specified in Section
7.2.1 to establish keying data with V if U is the protocol’s initiator, and V uses the transformation specified in
Section 7.2 to establish keying data with U if V is the protocol’s responder.
If U executes the initiator transformation and V simultaneously executes the responder transformation with
corresponding keying material as input, then U and V will compute the same keying data.
Prerequisites: The following are the prerequisites for the use of the scheme:
1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with an

asymmetric encryption scheme qenc, aenc, benc, Genc, nenc, and henc along with an indication of the basis used if
q=2m. These parameters shall have been generated using the parameter generation primitives in Sections
5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation
primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with a
signature scheme qsig, asig, bsig, Gsig, nsig, and hsig along with an indication of the basis used if q=2m. These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

3. Each entity shall be bound to a static signing key pair associated to the system’s elliptic curve domain
parameters for signing qsig, asig, bsig, Gsig, nsig, and hsig. The binding may include the validation of the public
signature as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier
will be denoted by the bit string U.

X9.63-199x

- 47 -

4. Each entity allowed to act as an initiator shall be bound to a static encryption key pair associated to the
system’s elliptic curve domain parameters for encryption qenc, aenc, benc, Genc, nenc, and henc. The binding may
include the validation of the public encryption key as specified in Section 5.2.2.

5. Each entity shall have decided whether to use the Elliptic Curve Encryption Scheme in Section 5.8.1 or the
Elliptic Curve Augmented Encryption Scheme in Section 5.8.2.

6. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function
during encryption and decryption.

7. Each entity shall have decided what length the challenges it uses will be. challengelen denotes the length

chosen. Note that challengelen must be ≥80.

7.2.1 Initiator Transformation
U shall execute the following transformation to establish keying data with V if U is the protocol’s initiator:
Input: The input to the initiator transformation is:
1. An integer keydatalen which is the length in bits of the keying data to be generated.
2. (Optional) Two bit strings SharedData1 and SharedData2 which consist of some data shared by U and V.
Ingredients: The initiator transformation employs the challenge generation primitive specified in Section 5.3, the

signature scheme specified in Section 5.9, and the decryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions: Keying data shall be derived as follows:
1. Use the challenge generation primitive in Section 5.3 to generate a challenge ChallengeU of length

challengelen bits. Send ChallengeU to V.
2. Then receive from V a purported challenge ChallengeV’, a bit string EncryptedData’ purporting to be the

encryption of a bit string, an optional bit string Text1, and a pair of integers rsig1’ and ssig1’ purporting to be
a signature. If this data is not received, output ‘invalid’ and stop.

3. Verify that ChallengeV’ is a bit string of length challengelen bits. If not, output ‘invalid’ and stop.
4. Decrypt the bit string EncryptedData’ using U’s private decryption key denc,U corresponding to the EC

domain parameters qenc, aenc, benc, Genc, nenc, and henc, with the optional inputs SharedData1 and
SharedData2, using the decryption transformation of the appropriate asymmetric encryption scheme in
Section 5.8. If the decryption transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the
decryption transformation outputs a bit string EncData of length encdatalen bits as the decryption of the bit
string.

5. If encdatalen<entlen+keydatalen, output ‘invalid’ and stop.
6. Parse the first entlen bits of EncData as the purported identifier V’ of V, and the next keydatalen bits of

EncData as keying data KeyData.
7. Verify that V’=V; if not, output ‘invalid’ and stop.
8. Form the bit string consisting of ChallengeV’, ChallengeU, U’s identifier, the bit string EncryptedData’, and

if present Text1:
SignData1 = ChallengeV’ || ChallengeU || U || EncryptedData’ || [Text1].

9. Verify that rsig1’ and ssig1’ are a valid signature of SignData1 under V’s public signature key Qsig,V

corresponding to the EC domain parameters qsig, asig, bsig, Gsig, nsig, and hsig, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

10. Form the bit string consisting of ChallengeU, ChallengeV’, V’s identifier, and optionally a bit string Text_2:
SignData2 = ChallengeU || ChallengeV’ || V || [Text2].

11. Sign SignData2 using U’s private signing key dsig,U corresponding to the parameters qsig, asig, bsig, Gsig, nsig,
and hsig, using the signing transformation of the signature scheme in Section 5.9. If the signing
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the
integers rsig2 and ssig2 as the signature of SignData2.

12. Send to V the bit string Text2 if present, and rsig2 and ssig2.
Output: The bit string KeyData of length keydatalen bits.

7.2.2 Responder Transformation
V shall execute the following transformation to establish keying data with U if V is the protocol’s responder:
Input: The input to the responder transformation is:

X9.63-199x

- 48 -

1. A purported challenge ChallengeU’ from U.
2. A bit string KeyData of length keydatalen bits which is the keying data to be transported.
3. (Optional) Two bit strings SharedData1 and SharedData2 which consist of some data shared by U and V.
Ingredients: The responder transformation employs the challenge generation primitive specified in Section 5.3, the

signature scheme specified in Section 5.9, and the encryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions: Keying data shall be derived as follows:
1. Verify that ChallengeU’ is a bit string of length challengelen bits. If not, output ‘invalid’ and stop.
2. Use the challlenge generation primitive in Section 5.3 to generate a challenge ChallengeV of length

challengelen bits.
3. Form the bit string consisting of V’s identifier, KeyData, and optionally a bit string Text1:

EncData = V || KeyData || [Text1].
4. Encrypt EncData under U’s public encryption key Qenc,U corresponding to the EC domain parameters qenc,

aenc, benc, Genc, nenc, and henc, with the optional inputs SharedData1 and SharedData2, using the encryption
transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the encryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the encryption transformation outputs
a bit string EncryptedData as the encryption of EncData.

5. Form the bit string consisting of ChallengeV, ChallengeU’, U’s identifier, the bit string EncryptedData, and
optionally a bit string Text1:

SignData1 = ChallengeV || ChallengeU’ || U || EncryptedData || [Text1].
6. Sign SignData1 using V’s private signing key dsig,V corresponding to the parameters qsig, asig, bsig, Gsig, nsig,

and hsig, using the signing transformation of the signature scheme in Section 5.9. If the signing
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the
integers rsig1 and ssig1 as a signature of SignData1.

7. Send ChallengeV, the bit string EncryptedData, if present Text1, and rsig1 and ssig1 to U.
8. Then receive from U an optional bit string Text2, and a purported signature rsig2’ and ssig2’. If this data is

not received, output ‘invalid’ and stop.
9. Form the bit string consisting of ChallengeU’, ChallengeV, V’s identifier, and if present Text2:

SignData2 = ChallengeU’ || ChallengeV || V || [Text2].
10. Verify that the pair rsig2’ and ssig2’ is a valid signature of SignData2 under U’s public signature key Qsig,U

corresponding to the EC domain parameters qsig, asig, bsig, Gsig, nsig, and hsig, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

Output: The bit string KeyData of length keydatalen bits.

8 ASN.1 Syntax
[[This section will be added later.]]

X9.63-199x

- 49 -

Annex A
(normative)

Normative Number-Theoretic Algorithms

A.1 Avoiding Cryptographically Weak Curves
Two conditions, the MOV condition and the Anomalous condition, are described to ensure that a particular elliptic
curve is not vulnerable to two known attacks on special instances of the elliptic curve discrete logarithm problem.

A.1.1 The MOV Condition
The reduction attacks of Menezes, Okamoto and Vanstone [55] and Frey and Ruck[30] reduce the discrete logarithm

problem in an elliptic curve over Fq to the discrete logarithm in the finite field FqB for some B ≥ 1. The attack is only
practical if B is small; this is not the case for most elliptic curves. The MOV condition ensures that an elliptic curve
is not vulnerable to these reduction attacks. Most elliptic curves over a field Fq will indeed satisfy the MOV
condition.
Before performing the algorithm, it is necessary to select an MOV threshold. This is a positive integer B such that
taking discrete logarithms over FqB is at least as difficult as taking elliptic discrete logarithms over Fq. For this

Standard, a value B ≥ 20 is required. Selecting B ≥ 20 also limits the selection of curves to non-supersingular curves
(see Annex H.1). This algorithm is used in elliptic curve domain parameter validation (see Section 5.1) and elliptic
curve domain parameter generation (see Annex A.3.2).
Input: An MOV threshold B, a prime-power q, and a prime n. (n is a prime divisor of #E(Fq), where E is an elliptic

curve defined over Fq.)
Output: The message “true” if the MOV condition is satisfied for an elliptic curve over Fq with a base point of order

n; the message “false” otherwise.
1. Set t = 1.
2. For i from 1 to B do

2.1. Set t = t.q mod n.
2.2. If t = 1, then output “false” and stop.

3. Output “true”.

A.1.2 The Anomalous Condition
Smart [67] and Satoh and Araki [64] showed that the elliptic curve discrete logarithm problem in anomalous curves
can be efficiently solved. An elliptic curve E defined over Fq is said to be Fq-anomalous if #E(Fq) = q. The

Anomalous condition checks that #E(Fq) ≠ q; this ensures that an elliptic curve is not vulnerable to the Anomalous
attack. Most elliptic curves over a field Fq will indeed satisfy the Anomalous condition.
Input: An elliptic curve E defined over Fq, and the order u = #E(Fq).
Output: The message “true” if the Anomalous condition is satisfied for E over Fq; the message “false” otherwise.
1. If u = q then output “false”; otherwise output “true”.

A.2 Primality

A.2.1 A Probabilistic Primality Test
If n is a large positive integer, the following probabilistic algorithm (the Miller-Rabin test) [48] will determine
whether n is prime or composite. This algorithm is used in elliptic curve domain parameter validation (see Section
5.1), and in checking for near primality (see Annex A.2.2).
Input: A large odd integer n, and a positive integer T.
Output: The message “probable prime” or “composite”.
1. Compute v and an odd value for w such that n-1 = 2vw.
2. For j from 1 to T do

2.1. Choose random a in the interval [2, n-1].
2.2. Set b = aw mod n.

X9.63-199x

- 50 -

2.3. If b = 1 or n-1, go to Step 2.6.
2.4. For i from 1 to v-1 do

2.4.1 Set b = b2 mod n.
2.4.2 If b = n-1, go to Step 2.6.
2.4.3 If b = 1, output “composite” and stop.
2.4.4 Next i.

2.5. Output “composite” and stop.
2.6. Next j.

3. Output “probable prime”.
If the algorithm outputs “composite”, then n is a composite integer. The probability that the algorithm outputs
“probable prime” when n is a composite integer is less than 2-2T. Thus, the probability of an error can be made

negligible by taking a large enough value for T. For this Standard, a value of T ≥ 50 shall be used.
The probabilistic and deterministic primality tests to appear in a forthcoming ANSI X9 Standard on prime generation
[11] may be used instead of the test described in this section.

A.2.2 Checking for Near Primality
Given a trial division bound lmax, a positive integer h is said to be lmax-smooth if every prime divisor of h is at most
lmax. Given a positive integer rmin, the positive integer u is said to be nearly prime if u = hn for some probable prime

value of n such that n ≥ rmin and some lmax-smooth integer h. The following algorithm checks for near primality. The
algorithm is used in elliptic curve domain parameter generation (see Annex A.3.2).
Input: Positive integers u, lmax, and rmin.

Output: If u is nearly prime, a probable prime n ≥ rmin and a lmax-smooth integer h such that u = hn. If u is not nearly
prime, the message “not nearly prime”.

1. Set n = u, h = 1.
2. For l from 2 to lmax do

2.1. If l is composite, then go to Step 2.3.
2.2. While (l divides n)

2.2.1 Set n = n / l�and h = h.l.
2.2.2 If n < rmin, then output “not nearly prime” and stop.

2.3. Next l.
3. If n is a probable prime (see Annex A.2.1), then output h and n and stop.
4. Output “not nearly prime”.

A.3 Elliptic Curve Algorithms

A.3.1 Finding a Point of Large Prime Order
If the order #E(Fq) = u of an elliptic curve E is nearly prime, the following algorithm efficiently produces a random
point on E whose order is the large prime factor n of u = hn. The algorithm is used in elliptic curve domain
parameter generation (see Annex A.3.2).
Input: A prime n, a positive integer h not divisible by n, and an elliptic curve E over the field Fq with #E(Fq) = u.
Output: If u = hn, a point G on E of order n. If not, the message “wrong order”.
1. Generate a random point R (not�2) on E. (See Annex D.3.1.)
2. Set G = hR.
3. If G = 2, then go to Step 1.
4. Set Q = nG.

5. If Q ≠ 2, then output “wrong order” and stop.
6. Output G.

A.3.2 Selecting an Appropriate Curve and Point
Given a field size q, a lower bound rmin for the point order, and a trial division bound lmax, the following procedure
shall be used for choosing a curve and arbitrary point. The algorithm is used to generate elliptic curve domain
parameters (see Sections 5.1.1.1 and 5.1.2.1).

X9.63-199x

- 51 -

Input: A field size q, lower bound rmin, and trial division bound lmax. (See the notes below for guidance on selecting
rmin and lmax.)

Output: Field elements a, b ∈ Fq which define an elliptic curve over Fq, a point G of prime order n ≥ rmin, n>4√q on
the curve, and the cofactor h = #E(Fq)/n.

1. If it is desired that an elliptic curve be generated verifiably at random, then select parameters (SEED, a, b)
using the technique specified in Annex A.3.3.1 in the case that q = 2m, or the technique specified in Annex
A.3.3.2 in the case that q = p is an odd prime. Compute the order u of the curve defined by a and b (see
Note 5 below).
Otherwise, use any alternative technique to select a, b ∈ Fq which define an elliptic curve of known order u.
(See Note 7 and Note 8 for two such techniques.)

2. In the case that q is a prime, verify that (4a3+27b2) /≡ 0 (mod p). The curve equation for E is:
y2 = x3 + ax + b.

In the case that q = 2m, verify that b ≠ 0. The curve equation for E is:
y2 + xy = x3 + ax2 + b.

3. Test u for near primality using the technique defined in Annex A.2.2. If the result is “not nearly prime”,

then go to Step 1. Otherwise, u = hn where h is lmax-smooth, and n ≥ rmin, n>4√q is probably prime.

4. Check the MOV condition (see Annex A.1.1) with inputs B ≥ 20, q, and n. If the result is “false”, then go to
Step 1.
Check the Anomalous condition (see Annex A.1.2). If the result is “false”, then go to Step 1.

5. Find a point G on E of order n. (See Annex A.3.1.)
6. Output the curve E, the point G, the order n, and the cofactor h.
NOTES:
1. rmin shall be selected so that rmin > 2160. The security level of the resulting elliptic curve discrete logarithm problem can be
increased by selecting a larger rmin (e.g. rmin > 2200).
2. If q is prime, then the order u of an elliptic curve E over Fq satisfies q+1–2√q≤ u ≤ q+1+2√q. Hence for a given q, rmin should
be ≤ q+1-2√q.
3. If q = 2m, then the order u of an elliptic curve E over Fq satisfies q+1–2√q≤ u ≤ q+1+2√q, and u is even. Hence for a given q,
rmin should be ≤ (q+1–2√q)/2.
4. lmax is typically a small integer (e.g. lmax = 255).
5. The order #E(Fq) can be computed by using Schoof's algorithm [65]. Although the basic algorithm is quite inefficient, several
dramatic improvements and extensions of this method have been discovered in recent years. Currently, it is feasible to compute
orders of elliptic curves over Fp where p is as large as 10499, and orders of elliptic curves over F2m where m is as large as 1300.
Cryptographically suitable elliptic curves over fields as large as F2196 can be randomly generated in about 5 hours on a
workstation (see [50] and [51]).
6. One technique for selecting an elliptic curve of known order is to use the Weil Theorem which states the following. Let E be
an elliptic curve defined over Fq, and let t = q + 1− #E(Fq). Let α and β be the complex numbers α = (t+√(t2−4q))/2 and β = (t −
√(t2−4q))/2. Then #E(Fqk) = qk+1−α k−β k for all k ≥ 1.
7. The Weil Theorem can be used to select a curve over F2m when m is divisible by a small number l as follows. First select a
random elliptic curve E: y2 + xy = x3 + ax2 + b, b ≠ 0, where a, b ∈ F2

l. Note that since l divides m, F2
l is contained in F2

m.
Compute #E(F2

l); this can easily be done exhaustively since l is small. Then compute #E(F2
m) using the Weil Theorem with q =

2l and k = m/l. This method of selecting curves is called the Weil method.
8. Another technique for selecting an elliptic curve of known order is to use the Complex Multiplication (CM) method. This
method is described in detail in Annex E.
Annex K presents sample elliptic curves which may be used to ensure the correct implementation of this Standard.

A.3.3 Selecting an Elliptic Curve Verifiably at Random
In order to verify that a given elliptic curve was indeed generated at random, the defining parameters of the elliptic
curve are defined to be outputs of the hash function SHA-1 (as specified in ANSI X9.30 Part 2 [5]). The input
(SEED) to SHA-1 then serves as proof (under the assumption that SHA-1 cannot be inverted) that the parameters
were indeed generated at random. (See Annex A.3.4.) The algorithms in this section are used in Annex A.3.2.

A.3.3.1 Elliptic curves over F2m

Input: A field size q = 2m.
Output: A bit string SEED and field elements a, b ∈ F2m which define an elliptic curve over F2m.

Let t = m, s = (t −1)/160, and h = t −160.s.

X9.63-199x

- 52 -

1. Choose an arbitrary bit string SEED of bit length at least 160 bits. Let g be the length of SEED in bits.
2. Compute H = SHA-1(SEED), and let b0 denote the bit string of length h bits obtained by taking the h

rightmost bits of H.
3. For i from 1 to s do:

Compute bi = SHA-1((SEED + i) mod 2g).
4. Let b be the field element obtained by the concatenation of b0,b1,…,bs as follows:

b = b0 || b1 || ... || bs.
5. If b = 0, then go to step 1.
6. Let a be an arbitrary element in F2m.
7. The elliptic curve chosen over F2m is:

E: y2+xy = x3+ax2+b.
8. Output (SEED, a, b).

A.3.3.2 Elliptic curves over Fp
Input: A prime field size p.
Output: A bit string SEED and field elements a, b ∈ Fp which define an elliptic curve over Fp.

Let t = log2 p, s = (t −1)/160, and h = t −160.s.
1. Choose an arbitrary bit string SEED of bit length at least 160 bits. Let g be the length of SEED in bits.
2. Compute H = SHA-1(SEED), and let c0 denote the bit string of length h bits obtained by taking the h

rightmost bits of H.
3. Let W0 denote the bit string of length h bits obtained by setting the leftmost bit of c0 to 0. (This ensures that

r < p.)
4. For i from 1 to s do:

Compute Wi = SHA-1((SEED + i) mod 2g).
5. Let W be the bit string obtained by the concatenation of W0, W1,…, Ws as follows:

 W = W0 || W1 || ... || Ws.

6. Let w1, w2, . . . , wt be the bits of W from leftmost to rightmost. Let r be the integer r wi
t i

i

t

= −

=
∑ 2

1

.

7. Choose integers a, b ∈ Fp such that r.b2 ≡ a3 (mod p). (It is not necessary that a and b be chosen at
random.)

8. If 4a3+27b2 ≡ 0 (mod p), then go to step 1.
9. The elliptic curve chosen over Fp is:

E : y2 = x3+ax+b.
10. Output (SEED, a, b).

A.3.4 Verifying that an Elliptic Curve was Generated at Random
The technique specified in this section verifies that the defining parameters of an elliptic curve were indeed selected
using the method specified in Annex A.3.3.

A.3.4.1 Elliptic curves over F2m

Input: A bit string SEED and a field element b∈ F2m.
Output: Acceptance or rejection of the input parameters.

Let t = m, s = (t −1)/160, and h = t −160.s.
1. Compute H = SHA-1(SEED), and let b0 denote the bit string of length h bits obtained by taking the h

rightmost bits of H.
2. For i from 1 to s do:

Compute bi = SHA-1((SEED + i) mod 2g).
3. Let b’ be the field element obtained by the concatenation of b0,b1,…,bs as follows:

b’ = b0 || b1 || ... || bs.
4. If b = b’ , then accept; otherwise reject.

X9.63-199x

- 53 -

A.3.4.2 Elliptic curves over Fp

Input: A bit string SEED and field elements a, b∈ Fp.
Output: Acceptance or rejection of the input parameters.

Let t = log2 p, s = (t −1)/160, and h = t −160.s.

1. Compute H = SHA-1(SEED) and let c0 denote the bit string of length h bits obtained by taking the h
rightmost bits of H.

2. Let W0 denote the bit string of length h bits obtained by setting the leftmost bit of c0 to 0.
3. For i from 1 to s do:

Compute Wi = SHA-1((SEED + i) mod 2g).
4. Let W’ be the bit string obtained by the concatenation of W0, W1,…, Ws as follows:

W’ = W0 || W1 || ... || Ws.

5. Let w1, w2, . . . , wt be the bits of W from leftmost to rightmost. Let r’ be the integer ′ = −

=
∑r wi

t i

i

t

2
1

.

6. If r’.b2 ≡ a3 (mod p), then accept; otherwise reject.

A.4 Pseudorandom Number Generation
Any implementation of this standard requires the ability to generate random or pseudorandom integers. These
randomly or pseudorandomly generated integers are selected to be between 1 and n-1 inclusive, where n is a prime
number. If pseudorandom numbers are desired, they shall be generated by the techniques given in this section or in
an ANSI X9 approved standard.

A.4.1 Algorithm Derived from FIPS 186
The algorithm described in this section employs a one-way function G(t, c), where t is 160 bits, c is b bits (160 ≤ b ≤
512), and G(t, c) is 160 bits. One way to construct G is via the Secure Hash Algorithm (SHA-1), as defined in ANSI
X9.30 Part 2 [5]. A second method for constructing G is to use the Data Encryption Algorithm (DEA) as specified in
ANSI X3.92 [1]. The construction of G by these techniques is described in Annexes A.4.1.1 and A.4.1.2,
respectively.
In the algorithm specified below, a secret b-bit seed-key XKEY is used. If G is constructed via SHA-1 as defined in
Annex A.4.1.1, then b shall be between 160 and 512. If DEA is used to construct G as defined in Annex A.4.1.2,
then b shall be equal to 160. The algorithm optionally allows the use of a user provided input.

Input: A prime number n, positive integer l, and integer b (160 ≤ b ≤ 512).
Output: l pseudorandom integers k1, k2, . . . , kl in the interval [1, n-1].

1. Let s = log2 n + 1 and f = s /160.
2. Choose a new, secret value for the seed-key, XKEY. (XKEY is of length b bits.)
3. In hexadecimal notation, let:

t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0.
This is the initial value for H0 || H1 || H2 || H3 || H4 in SHA-1.

4. For i from 1 to l do the following:
4.1. For j from 1 to f do the following:

4.1.1. XSEEDi,j = optional user input.
4.1.2. XVAL = (XKEY + XSEEDi,j) mod 2b.
4.1.3. xj = G(t, XVAL).
4.1.4. XKEY = (1 + XKEY + xj) mod 2b.

4.2. Set ki = ((x1 || x2 || … || xf) mod (n - 1)) +1.
5. Output (k1, k2, . . . , kl).
NOTE— The optional user input XSEEDi,j in step 4.1.1 permits a user to augment the seed-key XKEY with random or
pseudorandom numbers derived from alternate sources. The values of XSEEDi,j must have the same security requirements as the
seed-key XKEY. That is, they must be protected from unauthorized disclosure and be unpredictable.

X9.63-199x

- 54 -

A.4.1.1 Constructing the Function G from the SHA-1
G(t,c) may be constructed using steps (a)-(e) in Annex 3.3 of ANSI X9.30 Part 2 [5]. Before executing these steps,
{Hj} and M1 must be initialized as follows:
1. Initialize the {Hj} by dividing the 160-bit value t into five 32-bit segments as follows:

t = t0 || t1 || t2 || t3 || t4.
Then Hj = tj for j = 0 through 4.

2. There will be only one message block, M1, which is initialized as follows:
M1 = c || 0512-b.

(The first b bits of M1 contain c, and the remaining (512-b) bits are set to zero.)
Then steps (a) through (e) of Section 3.3 of ANSI X9.30 Part 2 [5] are executed, and G(t,c) is the 160-bit string
represented by the five words:

H0 || H1 || H2 || H3 || H4

at the end of step (e).

A.4.1.2 Constructing the Function G from the DEA
G(t, c) may be constructed using the DEA (Data Encryption Algorithm) as specified in ANSI X3.92 [1].
Let a ⊕ b denote the bitwise exclusive-or of bit strings a and b, and let a || b denote the concatenation of bit strings.

If b1 is a 32-bit string, then b1′ denotes the 24 least significant bits of b1.
In the following, DEAK (A) represents ordinary DEA encryption of the 64-bit block A using the 56-bit key K. Now
suppose t and c are each 160 bits. To compute G(t,c):
1. Write:

t = t1 || t2 || t3 || t4 || t5.

c = c1 || c2 || c3 || c4 || c5.
In the above, ti and ci are each 32 bits in length.

2. For i from 1 to 5 do:
xi = ti ⊕ ci.

3. For i from 1 to 5 do:
b1 = c((i+3) mod 5)+1

b2 = c((i+2) mod 5)+1

a1 = xi

a2 = x(i mod 5)+1 ⊕ x((i+3) mod 5)+1

yi,1 || yi,2 = DEAb1’ || b2
(a1|| a2),

where yi,1 and yi,2 are each 32 bits in length.
4. For i from 1 to 5 do:

zi = yi,1 ⊕ y((i+1) mod 5)+1,2 ⊕ y((i+2) mod 5)+1,1.

5. Let G(t,c) = z1 || z2 || z3 || z4 || z5.

X9.63-199x

- 55 -

Annex B
(informative)

Mathematical Background

B.1 The Finite Field Fp
Let p be a prime number. There are many ways to represent the elements of the finite field with p elements. The most
commonly used representation is the one defined in this section.
The finite field Fp is comprised of the set of integers:

{0,1,2,..., p−1}
with the following arithmetic operations:
— Addition: If a, b ∈ Fp, then a + b = r, where r is the remainder when the integer a + b is divided by p, r ∈

[0, p-1]. This is known as addition modulo p (mod p).
— Multiplication: If a, b ∈ Fp, then ab = s, where s is the remainder when the integer ab is divided by p, s ∈

[0, p-1]. This is known as multiplication modulo p (mod p).
Let Fp

* denote all the non-zero elements in Fp. In Fp, there exists at least one element g such that any non-zero
element of Fp can be expressed as a power of g. Such an element g is called a generator (or primitive element) of
Fp

*. That is:

Fp
* = {gi : 0 ≤ i ≤ p−2}.

The multiplicative inverse of a = gi ∈ Fp
* , where 0 ≤ i ≤ p − 2, is:

a-1 = gp-1-i.

Example 1: The finite field F2.
F2 = {0, 1}. The addition and multiplication tables for F2 are:

+ 0 1
0 0 1
1 1 0

• 0 1
0 0 0
1 0 1

Example 2: The finite field F23.
F23 = {0,1,2,...,22}. Examples of the arithmetic operations in F23 are:
1. 12 + 20 = 32 mod 23 = 9, since the remainder is 9 when 32 is divided by 23.
2. 8 . 9 = 72 mod 23 = 3, since the remainder is 3 when 72 is divided by 23.
The element 5 is a generator of F23

*. The powers of 5 modulo 23 are:
50 = 1 51 = 5 52 = 2 53 = 10 54 = 4 55 = 20
56 = 8 57 = 17 58 = 16 59 = 11 510 = 9 511 = 22
512 = 18 513 =21 514 = 13 515 = 19 516 = 3 517 = 15
518 = 6 519 =7 520 = 12 521 = 14 522 =1.

B.2 The Finite Field F2m

There are many ways to construct a finite field with 2m elements. The field F2m can be viewed as a vector space of

dimension m over F2. That is, there exist m elements α0,α1,… ,αm-1 in F2m such that each element α ∈ F2m can be
uniquely written in the form:

α = a0α0 + a1α1 + …+am-1αm-1, where ai ∈ {0,1}.

Such a set {α0, α1, …, αm-1} of elements is called a basis of F2m over F2. Given such a basis, we can represent a
field element α as the binary vector (a0, a1, …, am-1). Addition of field elements is performed by bitwise XOR-ing the
vector representations.

X9.63-199x

- 56 -

There are many different bases of F2m over F2. Some bases lead to more efficient software and/or hardware
implementations of the arithmetic in F2m than other bases. In this section, two kinds of bases are discussed. Annex
B.2.1 introduces polynomial bases which use polynomial addition, multiplication, division and remainder. Annex
B.2.2 introduces special kinds of polynomial bases called trinomial and pentanomial bases. Annex B.2.3 introduces
normal bases. Annex B.2.4 introduces special kinds of normal bases called Gaussian normal bases (GNB).

B.2.1 Polynomial Bases
Let f(x)= xm+ fm-1x

m-1+ …+ f2x
2+ f1x+ f0 (where fi ∈ F2 for i = 0, ..., m-1) be an irreducible polynomial of degree m

over F2, i.e., f(x) cannot be factored as a product of two or more polynomials over F2, each of degree less than m. f(x)
is called the reduction polynomial. The finite field F2m is comprised of all polynomials over F2 of degree less than m:

F2m = {am-1x
m-1 + am-2x

m-2 + ... + a1x + a0 : ai ∈ {0,1}}.
The field element (am-1x

m-1 + am-2x
m-2 + ... + a1x + a0) is usually denoted by the bit string (am-1...a1a0) of length

m, so that:
F2m = {(am-1... a1a0): ai ∈ {0,1}}.

Thus the elements of F2m can be represented by the set of all bit strings of length m. The multiplicative identity
element (1) is represented by the bit string (00…01), while the zero element is represented by the bit string of all 0’s.

Field elements are added and multiplied as follows:

B.2.1.1 Field addition
Field elements are added as follows:

(am-1...a1a0) + (bm-1…b1b0) = (cm-1…c1c0)

where ci = ai ⊕ bi. That is, field addition is performed componentwise.

B.2.1.2 Field multiplication
Field elements are multiplied as follows:

(am-1...a1a0) . (bm-1…b1b0) = (rm-1…r1r0),
where the polynomial (rm-1x

m-1+…+ r1x+ r0) is the remainder when the polynomial:

(am-1x
m-1 +… + a1x + a0) × (bm-1x

m-1 +… + b1x + b0)
is divided by f(x) over F2.
This method of representing F2m is called a polynomial basis representation, and {xm-1, …, x2, x, 1} is called a
polynomial basis of F2m over F2.

Note that F2m contains exactly 2m elements. Let F2m* denote the set of all non-zero elements in F2m. There exists at
least one element g in F2m such that any non-zero element of F2m can be expressed as a power of g. Such an element
g is called a generator (or primitive element) of F2m. That is:

F2m* = {gi
 : 0 ≤ i ≤ 2m - 2}.

The multiplicative inverse of a = gi ∈ F2m*, where 0 ≤ i ≤ 2m - 2, is:

a-1 = g2m-1-i.

Example 3: The finite field F24 using a polynomial basis representation.

Take f(x) = x4 + x +1 over F2; it can be verified that f(x) is irreducible over F2. Then the elements of F24 are:

(0000) (1000) (0100) (1100) (0010) (1010) (0110) (1110)

(0001) (1001) (0101) (1101) (0011) (1011) (0111) (1111).

As examples of field arithmetic, we have:
(1101) + (1001) = (0100), and

(1101) × (1001) = (1111)

X9.63-199x

- 57 -

since:

x x x x x x

x x x x x x x

x x x f x

3 2 3 6 5 2

4 2 3 2

3 2

1 1 1

1 1

1

+ + + = + + +

= + + + + + + +

= + + +

c hc h
c hc h c h

afmod

i.e., x3 + x2 + x +1 is the remainder when (x3 + x2 +1) × (x3 +1) is divided by f(x).
The multiplicative identity is (0001).

F
*
24 can be generated by the element α = x. The powers of α are:

α0 = (0001) α1 = (0010) α2 = (0100) α3 = (1000)
α4 = (0011) α5 = (0110) α6 = (1100) α7 = (1011)
α8 = (0101) α9 = (1010) α10 = (0111) α11 = (1110)
α12 = (1111) α13 = (1101) α14 = (1001).

B.2.2 Trinomial and Pentanomial Bases
A trinomial basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases. A trinomial over F2

is a polynomial of the form xm + xk + 1, where 1 ≤ k ≤ m -1. A pentanomial over F2
is a polynomial of the form xm +

xk3 +xk2 +xk1+ 1, where 1 ≤ k1 < k2 < k3 ≤ m-1.

A trinomial basis representation of F2m is a polynomial basis representation determined by an irreducible trinomial
f(x) = xm + xk + 1 of degree m over F2. Such trinomials only exist for certain values of m. Example 3 above is an
example of a trinomial basis representation of the finite field F24 .

A pentanomial basis representation of F2m is a polynomial basis representation determined by an irreducible

pentanomial f(x) = xm + xk3 +xk2 +xk1+ 1 of degree m over F2. Such pentanomials exist for all values of m ≥ 4.

B.2.3 Normal Bases
A normal basis of F2m over F2 is a basis of the form:

{β, β2, β22
, ..., β2

m-1
},

where β ∈ F2m. Such a basis always exists. Given any element α ∈ F2m, we can write α β=
=

−

∑ai
i

m
i2

0

1

, where ai ∈

{0,1}. This field element α is denoted by the binary string (a0a1a2. . . am-1) of length m, so that:

F2m = {(a0a1…am-1): ai ∈{0,1}}.

Note that, by convention, the ordering of bits is different from that of a polynomial basis representation (Annex
B.2.1).

The multiplicative identity element (1) is represented by the bit string of all 1’s (11. . .11), while the zero element is
represented by the bit string of all 0’s.
Since squaring is a linear operator in F2m, we have:

α β β β2 2 2
2

0

1
2 2

0

1

1
2

0

1

1 0 2

1

= = = =
=

−

=

−

−
=

−

− −∑ ∑ ∑+

a a a a a ai
i

m

i
i

m

i
i

m

m m

i i ie j b gK ,

with indices reduced modulo m. Hence a normal basis representation of F2m is advantageous because squaring a field
element can then be accomplished by a simple rotation of the vector representation, an operation that is easily
implemented in hardware.

X9.63-199x

- 58 -

B.2.4 Gaussian Normal Bases
In Example 3, the field F24 was described using polynomial multiplication, division and remainders. A Gaussian

normal basis representation, as defined in Section 4.1.2.2, may also be used to construct the field F24 .

Example 4: The finite field F24 using a Gaussian normal basis representation.

As in Example 3, the elements of F24 are the binary 4-tuples:

(0000) (0001) (0010) (0011) (0100) (0101) (0110) (0111)

(1000) (1001) (1010) (1011) (1100) (1101) (1110) (1111).

Field elements are added and multiplied as follows:
Field addition:

(a0a1a2a3) + (b0b1b2b3) = (c0c1c2c3)

where ci = ai ⊕ bi. In other words, field addition is performed by simply XORing the vector representation.
Field multiplication: The setup for multiplication is done as follows. See Section 4.1.2.2 for a description of the steps
that are performed.
(See Section 4.1.2.2.2 for a description of the setup steps performed below.)
For the type 3 normal basis for F24 , the values of F are given by:

F (1) = 0 F (5) = 1 F (9) = 0
F (2) = 1 F (6) = 1 F (10) = 2
F (3) = 0 F (7) = 3 F (11) = 3
F (4) = 2 F (8) = 3 F (12) = 2.

Therefore, after simplifying one obtains:
c0 = a0 (b1 + b2 + b3) + a1 (b0 + b2) + a2 (b0 + b1) + a3 (b0 + b3).

Here c0 is the first coordinate of the product:

(c0 c1...cm–1) = (a0 a1...am–1) × (b0 b1...bm–1).
The other coordinates of the product are obtained from the formula for c0 by cycling the subscripts modulo m. Thus:

c1 = a1 (b2 + b3 + b0) + a2 (b1 + b3) + a3 (b1 + b2) + a0 (b1 + b0),
c2 = a2 (b3 + b0 + b1) + a3 (b2 + b0) + a0 (b2 + b3) + a1 (b2 + b1),
c3 = a3 (b0 + b1 + b2) + a0 (b3 + b1) + a1 (b3 + b0) + a2 (b3 + b2).

(See Section 4.1.2.2.3 for a description of the setup steps performed below.)
We have F(u, v) = u0 (v1 + v2 + v3) + u1 (v0 + v2) + u2 (v0 + v1) + u3 (v0 + v3).
If:

a = (1000) and b = (1101),
then:

c0 = F ((1000), (1101)) = 0,
c1 = F ((0001), (1011)) = 0,
c2 = F ((0010), (0111)) = 1,
c3 = F ((0100), (1110)) = 0,

so that c = ab = (0010).

B.3 Elliptic Curves over Fp

Let p > 3 be a prime number. Let a, b ∈ Fp be such that 4a3 + 27b2 ≠ 0 in Fp. An elliptic curve E(Fp) over Fp defined
by the parameters a and b is the set of solutions (x, y), for x,y ∈Fp, to the equation: y2 = x3 + ax + b, together with an
extra point�2, the point at infinity. The number of points in E(Fp) is denoted by #E(Fp). The Hasse Theorem tells us
that:

p+1−2√p ≤ #E(Fp) ≤ p+1+2√p.
The set of points E(Fp) forms a group with the following addition rules:

X9.63-199x

- 59 -

1. 2 + 2 =�2.
2. (x, y) + 2 = 2�+ (x, y) = (x, y) for all (x, y) ∈ E(Fp).
3. (x, y) + (x,-y) = 2 for all (x, y) ∈ E(Fp) (i.e., the negative of the point (x, y) is -(x, y) = (x,-y)).
4. (Rule for adding two distinct points that are not inverses of each other)

Let (x1,y1) ∈ E(Fp) and (x2,y2) ∈ E(Fp) be two points such that x1 ≠ x2.
Then (x1,y1) + (x2,y2) = (x3,y3), where:

x3 = λ2−x1−x2, y3 = λ (x1− x3)−y1, and λ =
y y

x x
2 1

2 1

−
−

.

5. (Rule for doubling a point)

Let (x1, y1) ∈ E(Fp) be a point with y1 ≠ 0.
Then 2(x1, y1) = (x3, y3), where:

x3 = λ2−2x1, y3 = λ(x1−x3) − y1, and λ =
3

2
1
2

1

x a

y

+
.

The group E(Fp) is abelian, which means that P1+P2 = P2+P1 for all points P1 and P2 in E(Fp). The curve is said to
be supersingular if #E(Fp) = p+1; otherwise it is non-supersingular. Only non-supersingular curves shall be in
compliance with this standard (see Annex H).

Example 5: An elliptic curve over F23.
Let y2 = x3 + x + 1 be an equation over F23. Here a = 1 and b = 1. Then the solutions over F23 to the equation of the
elliptic curve are:

(0,1) (0,22) (1,7) (1,16) (3,10) (3,13) (4,0) (5,4) (5,19)
(6,4) (6,19) (7,11) (7,12) (9,7) (9,16) (11,3) (11,20) (12,4)
(12,19) (13,7) (13,16) (17,3) (17,20) (18,3) (18,20) (19,5) (19,18).

The solutions were obtained by trial and error. The group E(F23) has 28 points (including the point at infinity�2). The
following are examples of the group operation.
1. Let P1 = (3,10), P2 = (9,7), P1 + P2 = (x3, y3). Compute:

λ =
y y

x x
2 1

2 1

7 10

9 3

3

6

1

2

−
−

= −
−

= − = −
 = 11 ∈ F23,

x3 = λ2 - x1 - x2 = 112 - 3 - 9 = 6 - 3 - 9 = -6 = 17,
y3 = λ(x1 - x3) - y1 = 11(3 - 17) - 10 = 11(9) - 10 = 89 = 20.

Therefore P1 + P2 = (17, 20).
2. Let P1 = (3, 10), 2P1 = (x3, y3). Compute:

λ =
3

2

3 3 1

20

5

20

1

4
1
2

1

2
x a

y

+ =
+

= =
c h

 = 6,

x3 = λ2 - 2x1 = 62 - 6 = 30 = 7,
y3 = λ(x1 - x3) - y1 = 6(3 - 7) - 10 = -24 - 10 = -11 = 12.

Therefore 2P1 = (7, 12).

B.4 Elliptic Curves over F2m

A non-supersingular elliptic curve E(F2m) over F2m defined by the parameters a, b ∈ F2m, b ≠ 0, is the set of solutions

(x, y), x∈F2m, y∈F2m, to the equation y2 + xy = x3 + ax2 + b together with an extra point�2, the point at infinity. The

number of points in E(F2m) is denoted by #E(F2m). The Hasse Theorem tells us that:

q + 1 − 2√q ≤ #E(F2m) ≤ q + 1 + 2√q,

where q = 2m. Furthermore, #E(F2m) is even.
The set of points E(F2m) forms a group with the following addition rules:

X9.63-199x

- 60 -

1. 2 + 2 =�2.

2. (x, y) + 2 = 2�+ (x, y) = (x, y) for all (x, y) ∈ E(F2m).

3. (x, y) + (x, x + y) = 2 for all (x, y) ∈ E(F2m) (i.e., the negative of the point (x, y) is − (,)x y = (x, x + y)).

4. (Rule for adding two distinct points that are not inverses of each other)

Let (x1, y1) ∈ E(F2m) and (x2, y2) ∈ E(F2m) be two points such that x1 ≠ x2. Then
(x1, y1) + (x2, y2) = (x3, y3), where:

x3 = λ2 + λ + x1 + x2 + a, y3 = λ(x1 + x3) + x3 + y1, and λ =
y y

x x
1 2

1 2

+
+

.

5. (Rule for doubling a point)

Let (x1, y1) ∈ E(F2m) be a point with x1 ≠ 0. Then 2(x1, y1) = (x3, y3), where:

x3 = λ2 + λ + a, y3 = x1
2 + (λ + 1) x3, and λ = x1 +

y

x
1

1

.

The group E(F2m) is abelian, which means that P1 + P2 = P2 + P1 for all points P1 and P2 in E(F2m).

We now give two examples of elliptic curves over F24 . Example 6 uses a trinomial basis representation for the field,

and Example 7 uses an optimal normal basis representation.

Example 6: An elliptic curve over F24 .

A trinomial basis representation is used for the elements of F24 . Consider the field F24 generated by the root α = x of

the irreducible polynomial:

f(x) = x4 + x + 1.
(See Example 3.) The powers of α are:

α0 = (0001) α1 = (0010) α2 = (0100) α3 = (1000)

α4 = (0011) α5 = (0110) α6 = (1100) α7 = (1011)

α8 = (0101) α9 = (1010) α10 = (0111) α11 = (1110)

α12 = (1111) α13 = (1101) α14 = (1001) α15 = α0 = (0001).
Consider the non-supersingular elliptic curve over F24 with defining equation:

y2 + xy = x3 + α4x2 + 1.

Here, a = α4 and b = 1. The notation for this equation can be expressed as follows, since the multiplicative identity is
(0001):

(0001) y2 + (0001) xy = (0001) x3 + (0011) x2 + (0001).
Then the solutions over F24 to the equation of the elliptic curve are:

(0, 1) (1, α6) (1, α13) (α3, α8) (α3, α13) (α5, α3) (α5, α11)

(α6, α8) (α6, α14) (α9, α10) (α9, α13) (α10, α1) (α10, α8) (α12, 0) (α12, α12).

The group E(F24) has 16 points (including the point at infinity�2). The following are examples of the group

operation.

1. Let P1 = (x1, y1) = (α6, α8), P2 = (x2, y2) = (α3, α13), and P1 + P2 = (x3, y3). Then:

λ =
y y

x x
1 2

1 2

8 13

6 3

+
+

= +
+

α α
α α

 = α,

x3 = λ2 + λ + x1+ x2 + a = α2 + α + α6 + α3 + α4 = 1,

X9.63-199x

- 61 -

y3 = λ(x1 + x3) + x3 + y1 = α(α6 + 1) +1 + α8 = α13.
2. If 2P1 = (x3, y3), then:

λ = x1 +
y

x
1

1

 = α6 +
α
α

8

6
 = α3,

x3 = λ2 + λ + a = α6 + α3 + α4 = α10 ,

y3 = x1
2 + (λ+1)x3 = α12 + (α3+1)α10 = α8.

Example 7: An elliptic curve over F24 .

An optimal normal basis representation is used for the elements of F24 . Consider the field F24 given by the Type I

optimal normal basis representation. α = (1100) is a generator for the non-zero elements, and (1111) is the
multiplicative identity. The powers of α are:

α0 = (1111) α1 = (1100) α2 = (0110) α3 = (0100)

α4 = (0011) α5 = (1010) α6 = (0010) α7 = (0111)

α8 = (1001) α9 = (1000) α10 = (0101) α11 = (1110)

α12 = (0001) α13 = (1101) α14 = (1011) α15 = α0 = (1111).

Consider the non-supersingular curve over F24 defined by the equation:

E : y2 + xy = x3 + α3.

Here, a = 0 and b = α3. The notation for this equation can be expressed as follows since the multiplicative identity is
(1111):

(1111) y2 + (1111) xy = (1111) x3 + (0100).
The solutions over F24 to the elliptic curve equation are:

 (0, α9) (α, 0) (α,α) (α3, α5) (α3, α11) (α4, α3) (α4, α7)

(α5, α3) (α5, α11) (α6, 0) (α6, α6) (α8, α3) (α8, α13)

(α11, 0) (α11, α11) (α12, α8) (α12, α9) (α13, α2) (α13, α14).

Since there are 19 solutions to the equation in F24 , the group E(F24) has 19 + 1 = 20 elements (including the point at

infinity). This group turns out to be a cyclic group. If we take G = (α3, α5) and use the addition formulae, we find
that:

1G = (α3, α5) 2G = (α4, α3) 3G = (α13, α2) 4G = (α, 0) 5G = (α12, α8)

6G = (α8, α3) 7G = (α11, 0) 8G = (α5, α11) 9G = (α6, 0) 10G = (0, α9)

11G = (α6, α6) 12G = (α5, α3) 13G = (α11, α11) 14G = (α8, α13) 15G = (α12, α9)

16G = (α,α) 17G = (α13, α14) 18G = (α4, α7) 19G = (α3, α11) 20G = �2.

X9.63-199x

- 62 -

X9.63-199x

- 63 -

Annex C
(informative)

Tables of Trinomials, Pentanomials, and Gaussian Normal
Bases

C.1 Table of GNB for F2m

Table C-1 – The type of GNB that shall be used for F2m.

Table C-1.a: This table lists each m, 160 ≤ m ≤ 300, for which m is not divisible by 8.

m type m type m type m type
161 6 196 1 230 2 266 6

162 1 197 18 231 2 267 8

163 4 198 22 233 2 268 1

164 5 199 4 234 5 269 8

165 4 201 8 235 4 270 2

166 3 202 6 236 3 271 6

167 14 203 12 237 10 273 2
169 4 203 12 238 7 274 9
170 6 204 3 239 2 275 14
171 12 205 4 241 6 276 3
172 1 206 3 242 6 277 4
173 2 207 4 243 2 278 2
174 2 209 2 244 3 279 4
175 4 210 2 245 2 281 2
177 4 211 10 246 11 282 6
178 1 212 5 247 6 283 6
180 1 214 3 250 9 285 10
181 6 215 6 251 2 286 3
182 3 217 6 252 3 287 6
183 2 218 5 253 10 289 12
185 8 219 4 254 2 290 5
186 2 220 3 255 6 291 6
187 6 221 2 257 6 292 1
188 5 222 10 258 5 293 2
189 2 223 12 259 10 294 3
190 10 225 22 260 5 295 16
191 2 226 1 261 2 297 6
193 4 227 24 262 3 298 6
194 2 228 9 263 6 299 2
195 6 229 12 265 4 300 19

X9.63-199x

- 64 -

Table C-1.b: The type of GNB that shall be used for F2m.

This table lists each m, 301 ≤ m ≤ 474, for which m is not divisible by 8.

m type m type m type m type
301 10 345 4 388 1 431 2
302 3 346 1 389 24 433 4
303 2 347 6 390 3 434 9
305 6 348 1 391 6 435 4
306 2 349 10 393 2 436 13
307 4 350 2 394 9 437 18
308 15 351 10 395 6 438 2
309 2 353 14 396 11 439 10
310 6 354 2 397 6 441 2
311 6 355 6 398 2 442 1
313 6 356 3 399 12 443 2
314 5 357 10 401 8 444 5
315 8 358 10 402 5 445 6
316 1 359 2 403 16 446 6
317 26 361 30 404 3 447 6
318 11 362 5 405 4 449 8
319 4 363 4 406 6 450 13
321 12 364 3 407 8 451 6
322 6 365 24 409 4 452 11
323 2 366 22 410 2 453 2
324 5 367 6 411 2 454 19
325 4 369 10 412 3 455 26
326 2 370 6 413 2 457 30
327 8 371 2 414 2 458 6
329 2 372 1 415 28 459 8
330 2 373 4 417 4 460 1
331 6 374 3 418 1 461 6
332 3 375 2 419 2 462 10
333 24 377 14 420 1 463 12
334 7 378 2 421 10 465 4
335 12 379 12 422 11 466 1
337 10 380 5 423 4 467 6
338 2 381 8 425 6 468 21
339 8 382 6 426 2 469 4
340 3 383 12 427 16 470 2
341 8 385 6 428 5 471 8
342 6 386 2 429 2 473 2
343 4 387 4 430 3 474 5

X9.63-199x

- 65 -

Table C-1.c: The type of GNB that shall be used for F2m.

This table lists each m, 475 ≤ m ≤ 647, for which m is not divisible by 8.

m type m type m type m type
475 4 518 14 562 1 605 6
476 5 519 2 563 14 606 2
477 46 521 32 564 3 607 6
478 7 522 1 565 10 609 4
479 8 523 10 566 3 610 10
481 6 524 5 567 4 611 2
482 5 525 8 569 12 612 1
483 2 526 3 570 5 613 10
484 3 527 6 571 10 614 2
485 18 529 24 572 5 615 2
486 10 530 2 573 4 617 8
487 4 531 2 574 3 618 2
489 12 532 3 575 2 619 4
490 1 533 12 577 4 620 3
491 2 534 7 578 6 621 6
492 13 535 4 579 10 622 3
493 4 537 8 580 3 623 12
494 3 538 6 581 8 625 36
495 2 539 12 582 3 626 21
497 20 540 1 583 4 627 20
498 9 541 18 585 2 628 7
499 4 542 3 586 1 629 2
500 11 543 2 587 14 630 14
501 10 545 2 588 11 631 10
502 10 546 1 589 4 633 34
503 6 547 10 590 11 634 13
505 10 548 5 591 6 635 8
506 5 549 14 593 2 636 13
507 4 550 7 594 17 637 4
508 1 551 6 595 6 638 2
509 2 553 4 596 3 639 2
510 3 554 2 597 4 641 2
511 6 555 4 598 15 642 6
513 4 556 1 599 8 643 12
514 33 557 6 601 6 644 3
515 2 558 2 602 5 645 2
516 3 559 4 603 12 646 6
517 4 561 2 604 7 647 14

X9.63-199x

- 66 -

Table C-1.d: The type of GNB that shall be used for F2m.

This table lists each m, 648 ≤ m ≤ 821, for which m is not divisible by 8.

m type m type m type m type
649 10 692 5 735 8 779 2
650 2 693 6 737 6 780 13
651 2 694 3 738 5 781 16
652 1 695 18 739 4 782 3
653 2 697 4 740 3 783 2
654 14 698 5 741 2 785 2
655 4 699 4 742 15 786 1
657 10 700 1 743 2 787 6
658 1 701 18 745 10 788 11
659 2 702 14 746 2 789 14
660 1 703 6 747 6 790 3
661 6 705 6 748 7 791 2
662 3 706 21 749 2 793 6
663 14 707 6 750 14 794 14
665 14 708 1 751 6 795 10
666 22 709 4 753 16 796 1
667 6 710 3 754 10 797 6
668 11 711 8 755 2 798 6
669 4 713 2 756 1 799 22
670 6 714 5 757 16 801 12
671 6 715 4 758 6 802 6
673 4 716 5 759 4 803 2
674 5 717 18 761 2 804 5
675 22 718 15 762 10 805 6
676 1 719 2 763 22 806 11
677 8 721 6 764 3 807 14
678 10 722 26 765 2 809 2
679 10 723 2 766 6 810 2
681 22 724 13 767 6 811 10
682 6 725 2 769 10 812 3
683 2 726 2 770 5 813 4
684 3 727 4 771 2 814 15
685 4 729 24 772 1 815 8
686 2 730 13 773 6 817 6
687 10 731 8 774 2 818 2
689 12 732 11 775 6 819 20
690 2 733 10 777 16 820 1
691 10 734 3 778 21 821 8

X9.63-199x

- 67 -

Table C-1.e: The type of GNB that shall be used for F2m.

This table lists each m, 822 ≤ m ≤ 995, for which m is not divisible by 8.

m type m type m type m type
822 3 866 2 909 4 953 2
823 10 867 4 910 18 954 49
825 6 868 19 911 2 955 10
826 1 869 12 913 6 956 15
827 14 870 2 914 18 957 6
828 1 871 6 915 10 958 6
829 10 873 2 916 3 959 8
830 14 874 9 917 6 961 16
831 2 875 12 918 10 962 14
833 2 876 1 919 4 963 4
834 2 877 16 921 6 964 9
835 6 878 15 922 10 965 2
836 15 879 2 923 2 966 7
837 6 881 18 924 5 967 16
838 7 882 1 925 4 969 4
839 12 883 4 926 6 970 9
841 12 884 27 927 4 971 6
842 5 885 28 929 8 972 5
843 6 886 3 930 2 973 6
844 13 887 6 931 10 974 2
845 8 889 4 932 3 975 2
846 2 890 5 933 2 977 8
847 30 891 2 934 3 978 6
849 8 892 3 935 2 979 4
850 6 893 2 937 6 980 9
851 6 894 3 938 2 981 32
852 1 895 4 939 2 982 15
853 4 897 8 940 1 983 14
854 18 898 21 941 6 985 10
855 8 899 8 942 10 986 2
857 8 900 11 943 6 987 6
858 1 901 6 945 8 988 7
859 22 902 3 946 1 989 2
860 9 903 4 947 6 990 10
861 28 905 6 948 7 991 18
862 31 906 1 949 4 993 2
863 6 907 6 950 2 994 10
865 4 908 21 951 16 995 14

X9.63-199x

- 68 -

Table C-1.f: The type of GNB that shall be used for F2m.

This table lists each m, 996 ≤ m ≤ 1169, for which m is not divisible by 8.

m type m type m type m type
996 43 1039 4 1083 10 1126 7
997 4 1041 2 1084 3 1127 6
998 2 1042 18 1085 18 1129 4
999 8 1043 2 1086 7 1130 5

1001 6 1044 7 1087 4 1131 8
1002 5 1045 6 1089 4 1132 13
1003 4 1046 6 1090 1 1133 2
1004 5 1047 36 1091 6 1134 2
1005 4 1049 2 1092 15 1135 10
1006 3 1050 10 1093 4 1137 6
1007 18 1051 12 1094 15 1138 6
1009 10 1052 5 1095 14 1139 24
1010 5 1053 12 1097 14 1140 5
1011 6 1054 3 1098 9 1141 12
1012 3 1055 2 1099 4 1142 23
1013 2 1057 4 1100 5 1143 16
1014 2 1058 14 1101 6 1145 8
1015 6 1059 14 1102 3 1146 2
1017 16 1060 1 1103 2 1147 6
1018 1 1061 6 1105 18 1148 5
1019 2 1062 3 1106 2 1149 14
1020 9 1063 4 1107 10 1150 19
1021 10 1065 2 1108 1 1151 6
1022 3 1066 6 1109 12 1153 22
1023 4 1067 8 1110 2 1154 2
1025 6 1068 7 1111 22 1155 2
1026 2 1069 10 1113 10 1156 3
1027 6 1070 2 1114 22 1157 8
1028 17 1071 10 1115 6 1158 6
1029 8 1073 30 1116 1 1159 4
1030 7 1074 13 1117 6 1161 12
1031 2 1075 6 1118 2 1162 9
1033 4 1076 3 1119 2 1163 32
1034 2 1077 18 1121 2 1164 9
1035 6 1078 6 1122 1 1165 6
1036 7 1079 14 1123 4 1166 2
1037 8 1081 12 1124 3 1167 8
1038 6 1082 9 1125 8 1169 2

X9.63-199x

- 69 -

Table C-1.g: The type of GNB that shall be used for F2m.

This table lists each m, 1170≤ m ≤ 1342, for which m is not divisible by 8.

m type m type m type m type
1170 1 1213 12 1257 14 1300 1
1171 6 1214 3 1258 1 1301 20
1172 3 1215 14 1259 14 1302 3
1173 6 1217 24 1260 7 1303 16
1174 7 1218 2 1261 10 1305 12
1175 24 1219 4 1262 6 1306 1
1177 18 1220 5 1263 24 1307 8
1178 2 1221 8 1265 2 1308 7
1179 8 1222 6 1266 17 1309 18
1180 21 1223 2 1267 6 1310 2
1181 12 1225 10 1268 17 1311 22
1182 3 1226 5 1269 2,4 1313 6
1183 10 1227 34 1270 6 1314 5
1185 2 1228 1 1271 2 1315 4
1186 1 1229 2 1273 6 1316 5
1187 8 1230 3 1274 2 1317 10
1188 19 1231 16 1275 2 1318 7
1189 24 1233 2 1276 1 1319 18
1190 3 1234 25 1277 20 1321 6
1191 28 1235 6 1278 2 1322 6
1193 6 1236 1 1279 10 1323 2
1194 2 1237 16 1281 6 1324 15
1195 12 1238 2 1282 1 1325 6
1196 17 1239 4 1283 6 1326 7
1197 4 1241 20 1284 3 1327 4
1198 7 1242 5 1285 18 1329 2
1199 2 1243 4 1286 6 1330 9
1201 6 1244 3 1287 18 1331 2
1202 5 1245 14 1289 2 1332 11
1203 4 1246 6 1290 1 1333 4
1204 3 1247 18 1291 10 1334 3
1205 12 1249 10 1292 3 1335 44
1206 6 1250 18 1293 6 1337 14
1207 6 1251 2 1294 7 1338 2
1209 38 1252 19 1295 2 1339 12
1210 9 1253 26 1297 4 1340 3
1211 2 1254 10 1298 5 1341 2
1212 1 1255 12 1299 22 1342 3

X9.63-199x

- 70 -

Table C-1.h: The type of GNB that shall be used for F2m.

This table lists each m, 1343 ≤ m ≤ 1516, for which m is not divisible by 8.

m type m type m type m type
1343 6 1387 16 1430 2 1474 9
1345 10 1388 11 1431 40 1475 8
1346 2 1389 4 1433 6 1476 25
1347 14 1390 10 1434 9 1477 6
1348 7 1391 12 1435 4 1478 2
1349 2 1393 4 1436 11 1479 8
1350 11 1394 2 1437 4 1481 2
1351 16 1395 20 1438 6 1482 1
1353 2 1396 13 1439 2 1483 10
1354 18 1397 8 1441 6 1484 17
1355 2 1398 2 1442 5 1485 10
1356 5 1399 18 1443 2 1486 15
1357 16 1401 2 1444 13 1487 6
1358 11 1402 9 1445 12 1489 10
1359 2 1403 6 1446 6 1490 5
1361 6 1404 7 1447 24 1491 16
1362 14 1405 6 1449 8 1492 1
1363 6 1406 3 1450 1 1493 14
1364 3 1407 6 1451 2 1494 3
1365 12 1409 2 1452 1 1495 6
1366 3 1410 42 1453 4 1497 18
1367 8 1411 6 1454 2 1498 1
1369 4 1412 29 1455 6 1499 2
1370 2 1413 26 1457 8 1500 7
1371 10 1414 3 1458 22 1501 6
1372 1 1415 8 1459 10 1502 3
1373 12 1417 40 1460 11 1503 10
1374 7 1418 2 1461 8 1505 2
1375 4 1419 8 1462 10 1506 10
1377 6 1420 3 1463 2 1507 4
1378 6 1421 2 1465 30 1508 5
1379 20 1422 10 1466 5 1509 2
1380 1 1423 4 1467 4 1510 10
1381 6 1425 2 1468 19 1511 2
1382 6 1426 1 1469 2 1513 4
1383 10 1427 6 1470 6 1514 9
1385 6 1428 21 1471 16 1515 12
1386 17 1429 4 1473 6 1516 3

X9.63-199x

- 71 -

Table C-1.i: The type of GNB that shall be used for F2m.

This table lists each m, 1517 ≤ m ≤ 1690, for which m is not divisible by 8.

m type m type m type m type
1517 6 1561 16 1604 3 1647 6
1518 2 1562 21 1605 32 1649 2
1519 12 1563 12 1606 7 1650 6
1521 6 1564 7 1607 6 1651 6
1522 1 1565 6 1609 10 1652 3
1523 14 1566 6 1610 6 1653 2
1524 5 1567 4 1611 8 1654 7
1525 4 1569 4 1612 15 1655 6
1526 11 1570 1 1613 6 1657 16
1527 14 1571 8 1614 7 1658 5
1529 14 1572 25 1615 16 1659 2
1530 1 1573 6 1617 4 1660 7
1531 6 1574 3 1618 1 1661 2
1532 3 1575 8 1619 8 1662 3
1533 2 1577 6 1620 1 1663 4
1534 3 1578 25 1621 18 1665 10
1535 8 1579 4 1622 6 1666 1
1537 16 1580 5 1623 10 1667 8
1538 5 1581 12 1625 8 1668 1
1539 2 1582 18 1626 2 1669 10
1540 3 1583 2 1627 18 1670 3
1541 2 1585 22 1628 9 1671 16
1542 11 1586 18 1629 8 1673 2
1543 4 1587 8 1630 7 1674 33
1545 28 1588 7 1631 6 1675 4
1546 6 1589 8 1633 12 1676 17
1547 6 1590 7 1634 5 1677 4
1548 1 1591 6 1635 38 1678 6
1549 4 1593 2 1636 1 1679 2
1550 3 1594 9 1637 38 1681 10
1551 8 1595 12 1638 10 1682 6
1553 6 1596 3 1639 28 1683 4
1554 10 1597 4 1641 28 1684 7
1555 12 1598 11 1642 9 1685 2
1556 11 1599 4 1643 6 1686 3
1557 4 1601 2 1644 3 1687 10
1558 6 1602 6 1645 6 1689 8
1559 2 1603 6 1646 15 1690 6

X9.63-199x

- 72 -

Table C-1.j: The type of GNB that shall be used for F2m.

This table lists each m, 1691 ≤ m ≤ 1863, for which m is not divisible by 8.

m type m type m type m type
1691 42 1734 2 1778 2 1821 2
1692 1 1735 10 1779 2 1822 18
1693 6 1737 4 1780 15 1823 6
1694 15 1738 6 1781 6 1825 10
1695 4 1739 8 1782 11 1826 6
1697 8 1740 1 1783 12 1827 14
1698 10 1741 22 1785 2 1828 9
1699 12 1742 3 1786 1 1829 2
1700 3 1743 6 1787 6 1830 18
1701 10 1745 2 1788 15 1831 6
1702 3 1746 1 1789 10 1833 26
1703 2 1747 10 1790 2 1834 10
1705 16 1748 5 1791 2 1835 2
1706 2 1749 2 1793 12 1836 5
1707 4 1750 6 1794 5 1837 4
1708 9 1751 8 1795 6 1838 2
1709 12 1753 4 1796 21 1839 8
1710 18 1754 9 1797 10 1841 6
1711 6 1755 2 1798 6 1842 25
1713 20 1756 21 1799 12 1843 6
1714 9 1757 8 1801 12 1844 5
1715 8 1758 2 1802 5 1845 2
1716 17 1759 18 1803 14 1846 7
1717 4 1761 6 1804 3 1847 6
1718 11 1762 9 1805 6 1849 12
1719 24 1763 2 1806 2 1850 2
1721 20 1764 5 1807 4 1851 28
1722 14 1765 18 1809 4 1852 3
1723 10 1766 2 1810 6 1853 14
1724 27 1767 4 1811 2 1854 2
1725 22 1769 2 1812 13 1855 6
1726 3 1770 14 1813 4 1857 14
1727 14 1771 40 1814 3 1858 6
1729 4 1772 5 1815 6 1859 2
1730 2 1773 2 1817 6 1860 1
1731 12 1774 3 1818 2 1861 40
1732 1 1775 6 1819 10 1862 6
1733 2 1777 4 1820 9 1863 2

X9.63-199x

- 73 -

Table C-1.k: The type of GNB that shall be used for F2m.

This table lists each m, 1864 ≤ m ≤ 2000, for which m is not divisible by 8.

m type m type m type m type
1865 14 1901 2 1937 8 1972 1
1866 2 1902 35 1938 2 1973 2
1867 10 1903 10 1939 4 1974 3
1868 5 1905 4 1940 11 1975 4
1869 4 1906 1 1941 18 1977 8
1870 10 1907 6 1942 3 1978 1
1871 8 1908 25 1943 20 1978 1
1873 6 1909 22 1945 16 1979 20
1874 5 1910 11 1946 6 1980 5
1875 12 1911 22 1947 4 1981 6
1876 1 1913 14 1948 1 1982 11
1877 8 1914 10 1949 18 1983 2
1878 7 1915 6 1950 3 1985 8
1879 4 1916 3 1950 3 1986 1
1881 16 1917 4 1951 22 1987 4
1882 25 1918 10 1953 2 1988 5
1883 2 1919 12 1954 10 1989 10
1884 5 1921 6 1955 2 1990 7
1885 4 1922 9 1956 3 1991 18
1886 3 1923 2 1957 4 1993 6
1887 4 1923 2 1958 2 1994 2
1889 2 1924 7 1959 2 1995 18
1890 9 1925 2 1961 2 1996 1
1891 10 1926 2 1962 50 1997 44
1892 5 1927 18 1963 4 1998 19
1893 4 1929 4 1964 29 1999 10
1894 3 1930 1 1965 2
1895 8 1931 2 1966 7
1897 4 1932 5 1967 8
1898 2 1933 12 1969 4
1899 18 1934 14 1970 5
1900 1 1935 14 1971 6

X9.63-199x

- 74 -

C.2 Irreducible Trinomials over F2

Table C-2 – Irreducible trinomials xm + xk + 1 over F2.

Table C-2.a: For each m, 160 ≤ m ≤ 609, for which an irreducible trinomial of degree m exists,
the table lists the smallest k for which xm + xk + 1 is irreducible over F2.

m k m k m k m k m k m k
161 18 236 5 308 15 383 90 458 203 527 47
162 27 238 73 310 93 385 6 460 19 529 42
166 37 239 36 313 79 386 83 462 73 532 1
167 6 241 70 314 15 388 159 463 93 534 161
169 34 242 95 316 63 390 9 465 31 537 94
170 11 244 111 318 45 391 28 468 27 538 195
172 1 247 82 319 36 393 7 470 9 540 9
174 13 249 35 321 31 394 135 471 1 543 16
175 6 250 103 322 67 396 25 473 200 545 122
177 8 252 15 324 51 399 26 474 191 550 193
178 31 253 46 327 34 401 152 476 9 551 135
180 3 255 52 329 50 402 171 478 121 553 39
182 81 257 12 330 99 404 65 479 104 556 153
183 56 258 71 332 89 406 141 481 138 558 73
185 24 260 15 333 2 407 71 484 105 559 34
186 11 263 93 337 55 409 87 486 81 561 71
191 9 265 42 340 45 412 147 487 94 564 163
193 15 266 47 342 125 414 13 489 83 566 153
194 87 268 25 343 75 415 102 490 219 567 28
196 3 270 53 345 22 417 107 492 7 569 77
198 9 271 58 346 63 418 199 494 17 570 67
199 34 273 23 348 103 420 7 495 76 574 13
201 14 274 67 350 53 422 149 497 78 575 146
202 55 276 63 351 34 423 25 498 155 577 25
204 27 278 5 353 69 425 12 500 27 580 237
207 43 279 5 354 99 426 63 503 3 582 85
209 6 281 93 358 57 428 105 505 156 583 130
210 7 282 35 359 68 431 120 506 23 585 88
212 105 284 53 362 63 433 33 508 9 588 35
214 73 286 69 364 9 436 165 510 69 590 93
215 23 287 71 366 29 438 65 511 10 593 86
217 45 289 21 367 21 439 49 513 26 594 19
218 11 292 37 369 91 441 7 514 67 596 273
220 7 294 33 370 139 444 81 516 21 599 30
223 33 295 48 372 111 446 105 518 33 601 201
225 32 297 5 375 16 447 73 519 79 602 215
228 113 300 5 377 41 449 134 521 32 604 105
231 26 302 41 378 43 450 47 522 39 606 165
233 74 303 1 380 47 455 38 524 167 607 105
234 31 305 102 382 81 457 16 526 97 609 31

X9.63-199x

- 75 -

Table C-2.b: Irreducible trinomials xm + xk + 1 over F2.

For each m, 610 ≤ m ≤ 1060, for which an irreducible trinomial of degree m exists, the table
lists the smallest k for which xm + xk + 1 is irreducible over F2.

m k m k m k m k m k m k
610 127 684 209 754 19 833 149 903 35 988 121
612 81 686 197 756 45 834 15 905 117 990 161
614 45 687 13 758 233 838 61 906 123 991 39
615 211 689 14 759 98 839 54 908 143 993 62
617 200 690 79 761 3 841 144 911 204 994 223
618 295 692 299 762 83 842 47 913 91 996 65
620 9 694 169 767 168 844 105 916 183 998 101
622 297 695 177 769 120 845 2 918 77 999 59
623 68 697 267 772 7 846 105 919 36 1001 17
625 133 698 215 774 185 847 136 921 221 1007 75
626 251 700 75 775 93 849 253 924 31 1009 55
628 223 702 37 777 29 850 111 926 365 1010 99
631 307 705 17 778 375 852 159 927 403 1012 115
633 101 708 15 780 13 855 29 930 31 1014 385
634 39 711 92 782 329 857 119 932 177 1015 186
636 217 713 41 783 68 858 207 935 417 1020 135
639 16 714 23 785 92 860 35 937 217 1022 317
641 11 716 183 791 30 861 14 938 207 1023 7
642 119 718 165 793 253 862 349 942 45 1025 294
646 249 719 150 794 143 865 1 943 24 1026 35
647 5 721 9 798 53 866 75 945 77 1028 119
649 37 722 231 799 25 868 145 948 189 1029 98
650 3 724 207 801 217 870 301 951 260 1030 93
651 14 726 5 804 75 871 378 953 168 1031 68
652 93 727 180 806 21 873 352 954 131 1033 108
654 33 729 58 807 7 876 149 956 305 1034 75
655 88 730 147 809 15 879 11 959 143 1036 411
657 38 732 343 810 159 881 78 961 18 1039 21
658 55 735 44 812 29 882 99 964 103 1041 412
660 11 737 5 814 21 884 173 966 201 1042 439
662 21 738 347 815 333 887 147 967 36 1044 41
663 107 740 135 817 52 889 127 969 31 1047 10
665 33 742 85 818 119 890 183 972 7 1049 141
668 147 743 90 820 123 892 31 975 19 1050 159
670 153 745 258 822 17 894 173 977 15 1052 291
671 15 746 351 823 9 895 12 979 178 1054 105
673 28 748 19 825 38 897 113 982 177 1055 24
676 31 750 309 826 255 898 207 983 230 1057 198
679 66 751 18 828 189 900 1 985 222 1058 27
682 171 753 158 831 49 902 21 986 3 1060 439

X9.63-199x

- 76 -

Table C-2.c: Irreducible trinomials xm + xk + 1 over F2.

For each m, 1061 ≤ m ≤ 1516, for which an irreducible trinomial of degree m exists, the table
lists the smallest k for which xm + xk + 1 is irreducible over F2.

m k m k m k m k m k m k
1062 49 1140 141 1212 203 1287 470 1366 1 1441 322
1063 168 1142 357 1214 257 1289 99 1367 134 1442 395
1065 463 1145 227 1215 302 1294 201 1369 88 1444 595
1071 7 1146 131 1217 393 1295 38 1372 181 1446 421
1078 361 1148 23 1218 91 1297 198 1374 609 1447 195
1079 230 1151 90 1220 413 1298 399 1375 52 1449 13
1081 24 1153 241 1223 255 1300 75 1377 100 1452 315
1082 407 1154 75 1225 234 1302 77 1380 183 1454 297
1084 189 1156 307 1226 167 1305 326 1383 130 1455 52
1085 62 1158 245 1228 27 1306 39 1385 12 1457 314
1086 189 1159 66 1230 433 1308 495 1386 219 1458 243
1087 112 1161 365 1231 105 1310 333 1388 11 1460 185
1089 91 1164 19 1233 151 1311 476 1390 129 1463 575
1090 79 1166 189 1234 427 1313 164 1391 3 1465 39
1092 23 1167 133 1236 49 1314 19 1393 300 1466 311
1094 57 1169 114 1238 153 1319 129 1396 97 1468 181
1095 139 1170 27 1239 4 1321 52 1398 601 1470 49
1097 14 1174 133 1241 54 1324 337 1399 55 1471 25
1098 83 1175 476 1242 203 1326 397 1401 92 1473 77
1100 35 1177 16 1246 25 1327 277 1402 127 1476 21
1102 117 1178 375 1247 14 1329 73 1404 81 1478 69
1103 65 1180 25 1249 187 1332 95 1407 47 1479 49
1105 21 1182 77 1252 97 1334 617 1409 194 1481 32
1106 195 1183 87 1255 589 1335 392 1410 383 1482 411
1108 327 1185 134 1257 289 1337 75 1412 125 1486 85
1110 417 1186 171 1260 21 1338 315 1414 429 1487 140
1111 13 1188 75 1263 77 1340 125 1415 282 1489 252
1113 107 1190 233 1265 119 1343 348 1417 342 1490 279
1116 59 1191 196 1266 7 1345 553 1420 33 1492 307
1119 283 1193 173 1268 345 1348 553 1422 49 1495 94
1121 62 1196 281 1270 333 1350 237 1423 15 1497 49
1122 427 1198 405 1271 17 1351 39 1425 28 1500 25
1126 105 1199 114 1273 168 1353 371 1426 103 1503 80
1127 27 1201 171 1276 217 1354 255 1428 27 1505 246
1129 103 1202 287 1278 189 1356 131 1430 33 1508 599
1130 551 1204 43 1279 216 1358 117 1431 17 1510 189
1134 129 1206 513 1281 229 1359 98 1433 387 1511 278
1135 9 1207 273 1282 231 1361 56 1434 363 1513 399
1137 277 1209 118 1284 223 1362 655 1436 83 1514 299
1138 31 1210 243 1286 153 1364 239 1438 357 1516 277

X9.63-199x

- 77 -

Table C-2.d: Irreducible trinomials xm + xk + 1 over F2.

For each m, 1517 ≤ m ≤ 2000, for which an irreducible trinomial of degree m exists, the table
lists the smallest k for which xm + xk + 1 is irreducible over F2.

m k m k m k m k m k m k
1518 69 1590 169 1673 90 1756 99 1838 53 1927 25
1519 220 1591 15 1674 755 1759 165 1839 836 1929 31
1521 229 1593 568 1676 363 1764 105 1841 66 1932 277
1524 27 1596 3 1678 129 1767 250 1844 339 1934 413
1526 473 1599 643 1679 20 1769 327 1846 901 1935 103
1527 373 1601 548 1681 135 1770 279 1847 180 1937 231
1529 60 1602 783 1687 31 1772 371 1849 49 1938 747
1530 207 1604 317 1689 758 1774 117 1854 885 1940 113
1534 225 1606 153 1692 359 1775 486 1855 39 1943 11
1535 404 1607 87 1694 501 1777 217 1857 688 1945 91
1537 46 1609 231 1695 29 1778 635 1860 13 1946 51
1540 75 1612 771 1697 201 1780 457 1862 149 1948 603
1542 365 1615 103 1698 459 1782 57 1863 260 1950 9
1543 445 1617 182 1700 225 1783 439 1865 53 1951 121
1545 44 1618 211 1703 161 1785 214 1866 11 1953 17
1548 63 1620 27 1705 52 1788 819 1870 121 1956 279
1550 189 1623 17 1708 93 1790 593 1871 261 1958 89
1551 557 1625 69 1710 201 1791 190 1873 199 1959 371
1553 252 1628 603 1711 178 1793 114 1878 253 1961 771
1554 99 1630 741 1713 250 1798 69 1879 174 1962 99
1556 65 1631 668 1716 221 1799 312 1881 370 1964 21
1558 9 1633 147 1719 113 1801 502 1884 669 1966 801
1559 119 1634 227 1721 300 1802 843 1886 833 1967 26
1561 339 1636 37 1722 39 1804 747 1887 353 1969 175
1562 95 1638 173 1724 261 1806 101 1889 29 1974 165
1564 7 1639 427 1726 753 1807 123 1890 371 1975 841
1566 77 1641 287 1729 94 1809 521 1895 873 1977 238
1567 127 1642 231 1734 461 1810 171 1900 235 1980 33
1569 319 1647 310 1735 418 1814 545 1902 733 1983 113
1570 667 1649 434 1737 403 1815 163 1903 778 1985 311
1572 501 1650 579 1738 267 1817 479 1905 344 1986 891
1575 17 1652 45 1740 259 1818 495 1906 931 1988 555
1577 341 1655 53 1742 869 1820 11 1908 945 1990 133
1578 731 1657 16 1743 173 1823 684 1911 67 1991 546
1580 647 1660 37 1745 369 1825 9 1913 462 1993 103
1582 121 1663 99 1746 255 1828 273 1918 477 1994 15
1583 20 1665 176 1748 567 1830 381 1919 105 1996 307
1585 574 1666 271 1750 457 1831 51 1921 468 1999 367
1586 399 1668 459 1751 482 1833 518 1924 327
1588 85 1671 202 1753 775 1836 243 1926 357

X9.63-199x

- 78 -

C.3 Irreducible Pentanomials over F2

Table C-3 – Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

Table C-3.a: For each m, 160 ≤ m ≤ 488, for which an irreducible trinomial of degree m does
not exist, a triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1

+ 1 is irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
160 1, 2, 117 243 1, 2, 17 326 1, 2, 67 410 1, 2, 16
163 1, 2, 8 245 1, 2, 37 328 1, 2, 51 411 1, 2, 50
164 1, 2, 49 246 1, 2, 11 331 1, 2, 134 413 1, 2, 33
165 1, 2, 25 248 1, 2, 243 334 1, 2, 5 416 1, 3, 76
168 1, 2, 65 251 1, 2, 45 335 1, 2, 250 419 1, 2, 129
171 1, 3, 42 254 1, 2, 7 336 1, 2, 77 421 1, 2, 81
173 1, 2, 10 256 1, 2, 155 338 1, 2, 112 424 1, 2, 177
176 1, 2, 43 259 1, 2, 254 339 1, 2, 26 427 1, 2, 245
179 1, 2, 4 261 1, 2, 74 341 1, 2, 57 429 1, 2, 14
181 1, 2, 89 262 1, 2, 207 344 1, 2, 7 430 1, 2, 263
184 1, 2, 81 264 1, 2, 169 347 1, 2, 96 432 1, 2, 103
187 1, 2, 20 267 1, 2, 29 349 1, 2, 186 434 1, 2, 64
188 1, 2, 60 269 1, 2, 117 352 1, 2, 263 435 1, 2, 166
189 1, 2, 49 272 1, 3, 56 355 1, 2, 138 437 1, 2, 6
190 1, 2, 47 275 1, 2, 28 356 1, 2, 69 440 1, 2, 37
192 1, 2, 7 277 1, 2, 33 357 1, 2, 28 442 1, 2, 32
195 1, 2, 37 280 1, 2, 113 360 1, 2, 49 443 1, 2, 57
197 1, 2, 21 283 1, 2, 200 361 1, 2, 44 445 1, 2, 225
200 1, 2, 81 285 1, 2, 77 363 1, 2, 38 448 1, 3, 83
203 1, 2, 45 288 1, 2, 191 365 1, 2, 109 451 1, 2, 33
205 1, 2, 21 290 1, 2, 70 368 1, 2, 85 452 1, 2, 10
206 1, 2, 63 291 1, 2, 76 371 1, 2, 156 453 1, 2, 88
208 1, 2, 83 293 1, 3, 154 373 1, 3, 172 454 1, 2, 195
211 1, 2, 165 296 1, 2, 123 374 1, 2, 109 456 1, 2, 275
213 1, 2, 62 298 1, 2, 78 376 1, 2, 77 459 1, 2, 332
216 1, 2, 107 299 1, 2, 21 379 1, 2, 222 461 1, 2, 247
219 1, 2, 65 301 1, 2, 26 381 1, 2, 5 464 1, 2, 310
221 1, 2, 18 304 1, 2, 11 384 1, 2, 299 466 1, 2, 78
222 1, 2, 73 306 1, 2, 106 387 1, 2, 146 467 1, 2, 210
224 1, 2, 159 307 1, 2, 93 389 1, 2, 159 469 1, 2, 149
226 1, 2, 30 309 1, 2, 26 392 1, 2, 145 472 1, 2, 33
227 1, 2, 21 311 1, 3, 155 395 1, 2, 333 475 1, 2, 68
229 1, 2, 21 312 1, 2, 83 397 1, 2, 125 477 1, 2, 121
230 1, 2, 13 315 1, 2, 142 398 1, 3, 23 480 1, 2, 149
232 1, 2, 23 317 1, 3, 68 400 1, 2, 245 482 1, 2, 13
235 1, 2, 45 320 1, 2, 7 403 1, 2, 80 483 1, 2, 352
237 1, 2, 104 323 1, 2, 21 405 1, 2, 38 485 1, 2, 70
240 1, 3, 49 325 1, 2, 53 408 1, 2, 323 488 1, 2, 123

X9.63-199x

- 79 -

Table C-3.b: Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

For each m, 490 ≤ m ≤ 811, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1 + 1 is
irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
491 1, 2, 270 571 1, 2, 408 653 1, 2, 37 734 1, 2, 67
493 1, 2, 171 572 1, 2, 238 656 1, 2, 39 736 1, 2, 359
496 1, 3, 52 573 1, 2, 220 659 1, 2, 25 739 1, 2, 60
499 1, 2, 174 576 1, 3, 52 661 1, 2, 80 741 1, 2, 34
501 1, 2, 332 578 1, 2, 138 664 1, 2, 177 744 1, 2, 347
502 1, 2, 99 579 1, 3, 526 666 1, 2, 100 747 1, 2, 158
504 1, 3, 148 581 1, 2, 138 667 1, 2, 161 749 1, 2, 357
507 1, 2, 26 584 1, 2, 361 669 1, 2, 314 752 1, 2, 129
509 1, 2, 94 586 1, 2, 14 672 1, 2, 91 755 1, 4, 159
512 1, 2, 51 587 1, 2, 130 674 1, 2, 22 757 1, 2, 359
515 1, 2, 73 589 1, 2, 365 675 1, 2, 214 760 1, 2, 17
517 1, 2, 333 591 1, 2, 38 677 1, 2, 325 763 1, 2, 17
520 1, 2, 291 592 1, 2, 143 678 1, 2, 95 764 1, 2, 12
523 1, 2, 66 595 1, 2, 9 680 1, 2, 91 765 1, 2, 137
525 1, 2, 92 597 1, 2, 64 681 1, 2, 83 766 1, 3, 280
528 1, 2, 35 598 1, 2, 131 683 1, 2, 153 768 1, 2, 115
530 1, 2, 25 600 1, 2, 239 685 1, 3, 4 770 1, 2, 453
531 1, 2, 53 603 1, 2, 446 688 1, 2, 71 771 1, 2, 86
533 1, 2, 37 605 1, 2, 312 691 1, 2, 242 773 1, 2, 73
535 1, 2, 143 608 1, 2, 213 693 1, 2, 250 776 1, 2, 51
536 1, 2, 165 611 1, 2, 13 696 1, 2, 241 779 1, 2, 456
539 1, 2, 37 613 1, 2, 377 699 1, 2, 40 781 1, 2, 209
541 1, 2, 36 616 1, 2, 465 701 1, 2, 466 784 1, 2, 59
542 1, 3, 212 619 1, 2, 494 703 1, 2, 123 786 1, 2, 118
544 1, 2, 87 621 1, 2, 17 704 1, 2, 277 787 1, 2, 189
546 1, 2, 8 624 1, 2, 71 706 1, 2, 27 788 1, 2, 375
547 1, 2, 165 627 1, 2, 37 707 1, 2, 141 789 1, 2, 5
548 1, 2, 385 629 1, 2, 121 709 1, 2, 9 790 1, 2, 111
549 1, 3, 274 630 1, 2, 49 710 1, 3, 29 792 1, 2, 403
552 1, 2, 41 632 1, 2, 9 712 1, 2, 623 795 1, 2, 137
554 1, 2, 162 635 1, 2, 64 715 1, 3, 458 796 1, 2, 36
555 1, 2, 326 637 1, 2, 84 717 1, 2, 320 797 1, 2, 193
557 1, 2, 288 638 1, 2, 127 720 1, 2, 625 800 1, 2, 463
560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2, 102
562 1, 2, 56 643 1, 2, 153 725 1, 2, 331 803 1, 2, 208
563 1, 4, 159 644 1, 2, 24 728 1, 2, 51 805 1, 2, 453
565 1, 2, 66 645 1, 2, 473 731 1, 2, 69 808 1, 3, 175
568 1, 2, 291 648 1, 2, 235 733 1, 2, 92 811 1, 2, 18

X9.63-199x

- 80 -

Table C-3.c: Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

For each m, 812 ≤ m ≤ 1131, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1 + 1 is
irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
813 1, 2, 802 901 1, 2, 581 973 1, 2, 113 1053 1, 2, 290
816 1, 3, 51 904 1, 3, 60 974 1, 2, 211 1056 1, 2, 11
819 1, 2, 149 907 1, 3, 26 976 1, 2, 285 1059 1, 3, 6
821 1, 2, 177 909 1, 3, 168 978 1, 2, 376 1061 1, 2, 166
824 1, 2, 495 910 1, 2, 357 980 1, 2, 316 1064 1, 2, 946
827 1, 2, 189 912 1, 2, 569 981 1, 2, 383 1066 1, 2, 258
829 1, 2, 560 914 1, 2, 4 984 1, 2, 349 1067 1, 2, 69
830 1, 2, 241 915 1, 2, 89 987 1, 3, 142 1068 1, 2, 223
832 1, 2, 39 917 1, 2, 22 989 1, 2, 105 1069 1, 2, 146
835 1, 2, 350 920 1, 3, 517 992 1, 2, 585 1070 1, 3, 94
836 1, 2, 606 922 1, 2, 24 995 1, 3, 242 1072 1, 2, 443
837 1, 2, 365 923 1, 2, 142 997 1, 2, 453 1073 1, 3, 235
840 1, 2, 341 925 1, 2, 308 1000 1, 3, 68 1074 1, 2, 395
843 1, 2, 322 928 1, 2, 33 1002 1, 2, 266 1075 1, 2, 92
848 1, 2, 225 929 1, 2, 36 1003 1, 2, 410 1076 1, 2, 22
851 1, 2, 442 931 1, 2, 72 1004 1, 2, 96 1077 1, 2, 521
853 1, 2, 461 933 1, 2, 527 1005 1, 2, 41 1080 1, 2, 151
854 1, 2, 79 934 1, 3, 800 1006 1, 2, 63 1083 1, 2, 538
856 1, 2, 842 936 1, 3, 27 1008 1, 2, 703 1088 1, 2, 531
859 1, 2, 594 939 1, 2, 142 1011 1, 2, 17 1091 1, 2, 82
863 1, 2, 90 940 1, 2, 204 1013 1, 2, 180 1093 1, 2, 173
864 1, 2, 607 941 1, 2, 573 1016 1, 2, 49 1096 1, 2, 351
867 1, 2, 380 944 1, 2, 487 1017 1, 2, 746 1099 1, 2, 464
869 1, 2, 82 946 1, 3, 83 1018 1, 2, 27 1101 1, 2, 14
872 1, 2, 691 947 1, 2, 400 1019 1, 2, 96 1104 1, 2, 259
874 1, 2, 110 949 1, 2, 417 1021 1, 2, 5 1107 1, 2, 176
875 1, 2, 66 950 1, 2, 859 1024 1, 2, 515 1109 1, 2, 501
877 1, 2, 140 952 1, 3, 311 1027 1, 2, 378 1112 1, 2, 1045
878 1, 2, 343 955 1, 2, 606 1032 1, 2, 901 1114 1, 2, 345
880 1, 3, 221 957 1, 2, 158 1035 1, 2, 76 1115 1, 2, 268
883 1, 2, 488 958 1, 2, 191 1037 1, 2, 981 1117 1, 2, 149
885 1, 2, 707 960 1, 2, 491 1038 1, 2, 41 1118 1, 2, 475
886 1, 2, 227 962 1, 2, 18 1040 1, 2, 429 1120 1, 3, 386
888 1, 2, 97 963 1, 2, 145 1043 1, 3, 869 1123 1, 2, 641
891 1, 2, 364 965 1, 2, 213 1045 1, 2, 378 1124 1, 2, 156
893 1, 2, 13 968 1, 2, 21 1046 1, 2, 39 1125 1, 2, 206
896 1, 2, 19 970 1, 2, 260 1048 1, 3, 172 1128 1, 3, 7
899 1, 3, 898 971 1, 2, 6 1051 1, 3, 354 1131 1, 2, 188

X9.63-199x

- 81 -

Table C-3.d: Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

For each m, 1132 ≤ m ≤ 1456, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1 + 1 is
irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
1132 1, 2, 20 1219 1, 2, 225 1296 1, 2, 379 1376 1, 2, 1201
1133 1, 2, 667 1221 1, 2, 101 1299 1, 2, 172 1378 1, 2, 362
1136 1, 2, 177 1222 1, 2, 215 1301 1, 2, 297 1379 1, 2, 400
1139 1, 2, 45 1224 1, 2, 157 1303 1, 2, 306 1381 1, 2, 56
1141 1 2 134 1227 1, 2, 361 1304 1, 3, 574 1382 1, 3, 58
1143 1, 2, 7 1229 1, 2, 627 1307 1, 2, 157 1384 1, 2, 1131
1144 1, 2, 431 1232 1, 2, 225 1309 1, 2, 789 1387 1, 2, 33
1147 1, 2, 390 1235 1, 2, 642 1312 1, 2, 1265 1389 1, 2, 41
1149 1, 2, 221 1237 1, 2, 150 1315 1, 2, 270 1392 1, 2, 485
1150 1, 2, 63 1240 1, 2, 567 1316 1, 2, 12 1394 1, 2, 30
1152 1, 2, 971 1243 1, 2, 758 1317 1, 2, 254 1395 1, 2, 233
1155 1, 2, 94 1244 1, 2, 126 1318 1, 3, 94 1397 1, 2, 397
1157 1, 2, 105 1245 1, 2, 212 1320 1, 2, 835 1400 1, 2, 493
1160 1, 2, 889 1248 1, 2, 1201 1322 1, 2, 538 1403 1, 2, 717
1162 1, 2, 288 1250 1, 2, 37 1323 1, 2, 1198 1405 1, 2, 558
1163 1, 2, 33 1251 1, 2, 1004 1325 1, 2, 526 1406 1, 2, 13
1165 1, 2, 494 1253 1, 2, 141 1328 1, 2, 507 1408 1, 3, 45
1168 1, 2, 473 1254 1, 2, 697 1330 1, 2, 609 1411 1, 2, 200
1171 1, 2, 396 1256 1, 2, 171 1331 1, 2, 289 1413 1, 2, 101
1172 1, 2, 426 1258 1, 2, 503 1333 1, 2, 276 1416 1, 3, 231
1173 1, 2, 673 1259 1, 2, 192 1336 1, 2, 815 1418 1, 2, 283
1176 1, 2, 19 1261 1, 2, 14 1339 1, 2, 284 1419 1, 2, 592
1179 1, 2, 640 1262 1, 2, 793 1341 1, 2, 53 1421 1, 2, 30
1181 1, 2, 82 1264 1, 2, 285 1342 1, 2, 477 1424 1, 2, 507
1184 1, 2, 1177 1267 1, 2, 197 1344 1, 2, 469 1427 1, 2, 900
1187 1, 2, 438 1269 1, 2, 484 1346 1, 2, 57 1429 1, 2, 149
1189 1, 2, 102 1272 1, 2, 223 1347 1, 2, 61 1432 1, 2, 251
1192 1, 3, 831 1274 1, 2, 486 1349 1, 2, 40 1435 1, 2, 126
1194 1, 2, 317 1275 1, 2, 25 1352 1, 2, 583 1437 1, 2, 545
1195 1, 2, 293 1277 1, 2, 451 1355 1, 2, 117 1439 1, 2, 535
1197 1, 2, 269 1280 1, 2, 843 1357 1, 2, 495 1440 1, 3, 1023
1200 1, 3, 739 1283 1, 2, 70 1360 1, 2, 393 1443 1, 2, 413
1203 1, 2, 226 1285 1, 2, 564 1363 1, 2, 852 1445 1, 2, 214
1205 1, 2, 4 1288 1, 2, 215 1365 1, 2, 329 1448 1, 3, 212
1208 1, 2, 915 1290 1, 2, 422 1368 1, 2, 41 1450 1, 2, 155
1211 1, 2, 373 1291 1, 2, 245 1370 1, 2, 108 1451 1, 2, 193
1213 1, 2, 245 1292 1, 2, 78 1371 1, 2, 145 1453 1, 2, 348
1216 1, 2, 155 1293 1, 2, 26 1373 1, 2, 613 1456 1, 2, 1011

X9.63-199x

- 82 -

Table C-3.e: Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

For each m, 1458 ≤ m ≤ 1761, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1 + 1 is
irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
1459 1, 2, 1032 1536 1, 2, 881 1619 1, 2, 289 1690 1, 2, 200
1461 1, 2, 446 1538 1, 2, 6 1621 1, 2, 1577 1691 1, 2, 556
1462 1, 2, 165 1539 1, 2, 80 1622 1, 2, 1341 1693 1, 2, 137
1464 1, 2, 275 1541 1, 2, 4 1624 1, 2, 1095 1696 1, 2, 737
1467 1, 2, 113 1544 1, 2, 99 1626 1, 2, 191 1699 1, 2, 405
1469 1, 2, 775 1546 1, 2, 810 1627 1, 2, 189 1701 1, 2, 568
1472 1, 2, 613 1547 1, 2, 493 1629 1, 2, 397 1702 1, 2, 245
1474 1, 2, 59 1549 1, 2, 426 1632 1, 2, 211 1704 1, 3, 55
1475 1, 2, 208 1552 1, 2, 83 1635 1, 2, 113 1706 1, 2, 574
1477 1, 2, 1325 1555 1, 2, 254 1637 1, 2, 234 1707 1, 2, 221
1480 1, 2, 285 1557 1, 2, 20 1640 1, 2, 715 1709 1, 2, 201
1483 1, 2, 1077 1560 1, 2, 11 1643 1, 2, 760 1712 1, 2, 445
1484 1, 2, 61 1563 1, 2, 41 1644 1, 2, 236 1714 1, 2, 191
1485 1, 2, 655 1565 1, 2, 18 1645 1, 2, 938 1715 1, 2, 612
1488 1, 2, 463 1568 1, 2, 133 1646 1, 2, 435 1717 1, 2, 881
1491 1, 2, 544 1571 1, 2, 21 1648 1, 2, 77 1718 1, 2, 535
1493 1, 2, 378 1573 1, 2, 461 1651 1, 2, 873 1720 1, 2, 525
1494 1, 2, 731 1574 1, 2, 331 1653 1, 2, 82 1723 1, 2, 137
1496 1, 2, 181 1576 1, 2, 147 1654 1, 3, 201 1725 1, 2, 623
1498 1, 2, 416 1579 1, 2, 374 1656 1, 2, 361 1727 1, 2, 22
1499 1, 2, 477 1581 1, 2, 160 1658 1, 2, 552 1728 1, 2, 545
1501 1, 2, 60 1584 1, 2, 895 1659 1, 2, 374 1730 1, 2, 316
1502 1, 2, 111 1587 1, 2, 433 1661 1, 2, 84 1731 1, 2, 925
1504 1, 2, 207 1589 1, 2, 882 1662 1, 3, 958 1732 1, 2, 75
1506 1, 2, 533 1592 1, 2, 223 1664 1, 2, 399 1733 1, 2, 285
1507 1, 2, 900 1594 1, 2, 971 1667 1, 2, 1020 1736 1, 2, 435
1509 1, 2, 209 1595 1, 2, 18 1669 1, 2, 425 1739 1, 2, 409
1512 1, 2, 1121 1597 1, 2, 42 1670 1, 2, 19 1741 1, 3, 226
1515 1, 2, 712 1598 1, 2, 385 1672 1, 2, 405 1744 1, 2, 35
1517 1, 2, 568 1600 1, 2, 57 1675 1, 2, 77 1747 1, 2, 93
1520 1, 2, 81 1603 1, 2, 917 1677 1, 2, 844 1749 1, 2, 236
1522 1, 2, 47 1605 1, 2, 46 1680 1, 2, 1549 1752 1, 2, 559
1523 1, 2, 240 1608 1, 2, 271 1682 1, 2, 354 1754 1, 2, 75
1525 1, 2, 102 1610 1, 2, 250 1683 1, 2, 1348 1755 1, 2, 316
1528 1, 2, 923 1611 1, 2, 58 1684 1, 2, 474 1757 1, 2, 21
1531 1, 2, 1125 1613 1, 2, 48 1685 1, 2, 493 1758 1, 2, 221
1532 1, 2, 466 1614 1, 2, 1489 1686 1, 2, 887 1760 1, 3, 1612
1533 1, 2, 763 1616 1, 2, 139 1688 1, 2, 921 1761 1, 2, 131

X9.63-199x

- 83 -

Table C-3.f: Irreducible pentanomials xm + xk3 + xk2 + xk1 + 1 over F2.

For each m, 1762 ≤ m ≤ 2000, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial xm + xk3 + xk2 + xk1 + 1 is
irreducible over F2.

m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3) m (k1, k2, k3)
1762 1, 2, 318 1826 1, 2, 298 1883 1, 2, 1062 1941 1, 2, 1133
1763 1, 2, 345 1827 1, 2, 154 1885 1, 2, 813 1942 1, 2, 147
1765 1, 2, 165 1829 1, 2, 162 1888 1, 2, 923 1944 1, 2, 617
1766 1, 2, 1029 1832 1, 3, 1078 1891 1, 2, 1766 1947 1, 2, 1162
1768 1, 2, 1403 1834 1, 2, 210 1892 1, 3, 497 1949 1, 2, 621
1771 1, 2, 297 1835 1, 2, 288 1893 1, 2, 461 1952 1, 3, 65
1773 1, 2, 50 1837 1, 2, 200 1894 1, 3, 215 1954 1, 2, 1226
1776 1, 2, 17 1840 1, 2 195 1896 1, 2, 451 1955 1, 2, 109
1779 1, 3, 1068 1842 1, 2, 799 1897 1, 2, 324 1957 1, 2, 17
1781 1, 2, 18 1843 1, 2, 872 1898 1, 2, 613 1960 1, 2, 939
1784 1, 2, 1489 1845 1, 2, 526 1899 1, 2, 485 1963 1, 2, 1137
1786 1, 2, 614 1848 1, 2, 871 1901 1, 2, 330 1965 1, 2, 364
1787 1, 2, 457 1850 1, 2, 79 1904 1, 2, 337 1968 1, 3, 922
1789 1, 2, 80 1851 1, 2, 250 1907 1, 2, 45 1970 1, 2, 388
1792 1, 2, 341 1852 1, 2, 339 1909 1, 2, 225 1971 1, 2, 100
1794 1, 2, 95 1853 1, 2, 705 1910 1, 3, 365 1972 1, 2, 474
1795 1, 2, 89 1856 1, 2, 585 1912 1, 2, 599 1973 1, 2, 438
1796 1, 2, 829 1858 1, 2, 1368 1914 1, 2, 544 1976 1, 3, 1160
1797 1, 2, 80 1859 1, 2, 120 1915 1, 2, 473 1978 1, 2, 158
1800 1, 2, 1013 1861 1, 2, 509 1916 1, 2, 502 1979 1, 2, 369
1803 1, 2, 248 1864 1, 2, 1379 1917 1, 2, 485 1981 1, 2, 96
1805 1, 2, 82 1867 1, 2, 117 1920 1, 2, 67 1982 1, 2, 1027
1808 1, 2, 25 1868 1, 2, 250 1922 1, 2, 36 1984 1, 2, 129
1811 1, 2, 117 1869 1, 2, 617 1923 1, 4, 40 1987 1, 2, 80
1812 1, 2, 758 1872 1, 3, 60 1925 1, 2, 576 1989 1, 2, 719
1813 1, 3, 884 1874 1, 2, 70 1928 1, 2, 763 1992 1, 2, 1241
1816 1, 2, 887 1875 1, 2, 412 1930 1, 2, 155 1995 1, 2, 37
1819 1, 2, 116 1876 1, 2, 122 1931 1, 2, 648 1997 1, 2, 835
1821 1, 2, 326 1877 1, 2, 796 1933 1, 2, 971 1998 1, 3, 1290
1822 1, 3, 31 1880 1, 2, 1647 1936 1, 2, 117 2000 1, 2, 981
1824 1, 2, 821 1882 1, 2, 128 1939 1, 2, 5

X9.63-199x

- 84 -

C.4 Table of Fields F2m which have both an ONB and a TPB over F2

Table C-4 – Values of m, 160 ≤ m ≤ 2000, for which the field F2m has both an ONB and a TPB over F2.

162 292 431 606 743 858 1034 1170 1306 1492 1703 1926
172 303 438 612 746 866 1041 1178 1310 1505 1734 1938
174 316 441 614 756 870 1049 1185 1329 1511 1740 1948
178 329 460 615 761 873 1055 1186 1338 1518 1745 1953
180 330 470 618 772 876 1060 1199 1353 1530 1746 1958
183 346 473 639 774 879 1065 1212 1359 1548 1769 1959
186 348 490 641 783 882 1090 1218 1372 1559 1778 1961
191 350 495 650 785 906 1103 1223 1380 1570 1785 1983
194 354 508 651 791 911 1106 1228 1398 1583 1790 1986
196 359 519 652 809 930 1108 1233 1401 1593 1791 1994
209 372 522 658 810 935 1110 1236 1409 1601 1806 1996
210 375 540 660 818 938 1116 1238 1425 1618 1818
231 378 543 676 820 953 1119 1265 1426 1620 1838
233 386 545 686 826 975 1121 1271 1430 1636 1854
239 388 556 690 828 986 1122 1276 1452 1649 1860
268 393 558 700 831 993 1134 1278 1454 1666 1863
270 414 561 708 833 998 1146 1282 1463 1668 1866
273 418 575 713 834 1014 1154 1289 1478 1673 1889
278 420 585 719 846 1026 1166 1295 1481 1679 1900
281 426 593 726 852 1031 1169 1300 1482 1692 1906

X9.63-199x

- 85 -

Annex D
(informative)

Informative Number-Theoretic Algorithms

D.1 Finite Fields and Modular Arithmetic

D.1.1 Exponentiation in a Finite Field
If a is a positive integer and g is an element of the field Fq, then exponentiation is the process of computing ga.
Exponentiation can be performed efficiently by the binary method outlined below. The algorithm is used in Annexes
D.1.2 and D.1.4.
Input: A positive integer a, a field Fq, and a field element g.
Output: ga.
1. Set e = a mod (q-1). If e = 0, then output 1.
2. Let e = erer-1...e1e0 be the binary representation of e, where the most significant bit er of e is 1.
3. Set x = g.
4. For i from r-1 down to 0 do

4.1. Set x = x2.
4.2. If ei = 1, then set x = gx.

5. Output x.
There are several variations of this method which can be used to speed up the computations. One such method which
requires some precomputations is described in [24]. See also Knuth [45].

D.1.2 Inversion in a Finite Field
If g ≠ 0 is an element of the field Fq, then the inverse g-1 is the field element c such that gc = 1. The inverse can be

found efficiently by exponentiation since c = gq-2. Note that if q is prime and g is an integer satisfying 1 ≤ g ≤ q - 1,

then g-1 is the integer c, 1 ≤ c ≤ q - 1, such that gc ≡ 1 (mod q).

Input: A field Fq, and a non-zero element g ∈ Fq.
Output: The inverse g-1.
1. Compute c = gq-2 (see Annex D.1.1).
2. Output c.
An even more efficient method is the extended Euclidean Algorithm [45].

D.1.3 Generating Lucas Sequences
Let P and Q be nonzero integers. The Lucas sequences Uk and Vk for P, Q are defined by:

U0 = 0, U1 = 1, and Uk = PUk-1 - QUk-2 for k ≥ 2.

V0 = 2, V1 = P, and Vk = PVk-1 - QVk-2 for k ≥ 2.
This recursion is adequate for computing Uk and Vk for small values of k. The following algorithm can be used to
efficiently compute Uk and Vk modulo an odd prime p for large values of k. The algorithm is used in Annex D.1.4.
Input: An odd prime p, integers P and Q, and a positive integer k.
Output: Uk mod p and Vk mod p.

1. Set ∆ = P2 - 4Q.
2. Let k = kr kr-1...k1 k0 be the binary representation of k, where the leftmost bit kr of k is 1.
3. Set U = 1, V = P.
4. For i from r - 1 down to 0 do

4.1. Set (U,V) = (UV mod p, V U2 2

2

+ ∆c h mod p).

4.2. If ki = 1 then set (U,V) = (PU V+a f
2

 mod p, PV U+ ∆a f
2

 mod p).

5. Output U and V.

X9.63-199x

- 86 -

D.1.4 Finding Square Roots Modulo a Prime
Let p be an odd prime, and let g be an integer with 0 ≤ g < p. A square root (mod p) of g is an integer y with 0 ≤ y <
p and:

y2 ≡ g (mod p).

If g = 0, then there is one square root (mod p), namely y = 0. If g ≠ 0, then g has either 0 or 2 square roots (mod p).
If y is one square root, then the other is p-y.
The following algorithm determines whether g has square roots (mod p) and, if so, computes one. The algorithm is
used in Section 4.2.1 and Annex D.3.1.

Input: An odd prime p, and an integer g with 0 < g < p.
Output: A square root (mod p) of g if one exists; otherwise, the message “no square roots exist.”

Algorithm 1: for p ≡ 3 (mod 4), that is p = 4u + 3 for some positive integer u.
1. Compute y = gu+1 mod p via Annex D.1.1.
2. Compute z = y2 mod p.
3. If z = g, then output y. Otherwise output the message “no square roots exist.”

Algorithm 2: for p ≡ 5 (mod 8), that is p = 8u + 5 for some positive integer u.

1. Compute γ = (2g)u mod p via Annex D.1.1.

2. Compute i = 2gγ2 mod p.

3. Compute y = gγ(i - 1) mod p.
4. Compute z = y2 mod p.
5. If z = g, then output y. Otherwise output the message “no square roots exist.”

Algorithm 3: for p ≡ 1 (mod 4), that is p = 4u + 1 for some positive integer u.
1. Set Q = g.

2. Generate random P with 0 ≤ P < p.
3. Using Annex D.1.3, compute the Lucas sequence elements:

U=U2u+1 mod p, V=V2u+1 mod p.

4. If V2 ≡ 4Q (mod p) then output y = V/2 mod p and stop.

5. If U /≡ ±1 (mod p) then output the message “no square roots exist” and stop.
6. Go to Step 2.

D.1.5 Trace and Half-Trace Functions
If α is an element of F2m, the trace of α is:

Tr(α) = α + α2 + α22
 + ... + α2m-1

.

The value of Tr(α) is 0 for half the elements of F2m, and 1 for the other half. The trace can be computed as follows.
The methods are used in Annex D.1.6.
Normal basis representation used for elements of F2m:
If α has representation (α0 α 1...α m-1), then:

Tr(α) = α 0 ⊕ α 1 ⊕ ... ⊕ α m-1.

Polynomial basis representation used for elements of F2m:
1. Set T = α.
2. For i from 1 to m - 1 do

2.1. T = T 2 + α.
3. Output T.
If m is odd, the half-trace of α is:

α + α 2
2

 + α 2
4

 + ... + α 2
m-1

.

If F2m is represented by a polynomial basis, the half-trace can be computed efficiently as follows. The method is used
in Annex D.1.6.

X9.63-199x

- 87 -

1. Set T = α.
2. For i from 1 to (m - 1)/2 do

2.1. T = T 2.
2.2. T = T 2 + α.

3. Output T.

D.1.6 Solving Quadratic Equations over F2m

If β is an element of F2m, then the equation:

z2 + z = β
has 2-2T solutions over F2m , where T = Tr(β). Thus, there are either 0 or 2 solutions. If β = 0, then the solutions are

0 and 1. If β ≠ 0 and z is a solution, then the other solution is z+1.
The following algorithms determine whether a solution z exists for a given β, and if so, computes one. The
algorithms are used in point compression (see Section 4.2.2) and in Annex D.3.1.

Input: A field F2m along with a basis for representing its elements; and an element β ≠ 0.
Output: An element z for which z2 + z = β if any exist; otherwise the message “no solutions exist”.
Algorithm 1: for normal basis representation.
1. Let (β0 β1...β m-1) be the representation of β.
2. Set z0 = 0.
3. For i from 1 to m-1 do

3.1. Set zi = zi-1 ⊕ βi.
4. Set z = (z0 z1...zm-1).

5. Compute γ = z2 + z.

6. If γ = β, then output z. Otherwise, output the message “no solutions exist”.

Algorithm 2: for polynomial basis representation, with m odd .
1. Compute z = half-trace of β via Annex D.1.5.

2. Compute γ = z2 + z.

3. If γ = β, then output z. Otherwise, output the message “no solutions exist”.

Algorithm 3: works in any polynomial basis.

1. Choose a random τ ∈ F2m.
2. Set z = 0 and w = β.
3. For i from 1 to m - 1 do

3.1. Set z = z2 + w2τ.
3.2. Set w = w2 + β.

4. If w ≠ 0, then output the message “no solutions exist” and stop.

5. Compute γ = z2 + z.

6. If γ = 0, then go to Step 1.
7. Output z.

D.1.7 Checking the Order of an Integer Modulo a Prime
Let p be a prime and let g satisfy 1 < g < p. The order of g modulo p is the smallest positive integer k such that gk ≡ 1
(mod p). The following algorithm tests whether or not g has order k modulo p.
Input: A prime p, a positive integer k, and an integer g with 1 < g < p.
Output: “true” if g has order k modulo p, and “false” otherwise.
1. Determine the prime divisors of k.
2. If gk /≡ 1 (mod p), then output “false” and stop.
3. For each prime l dividing k do

X9.63-199x

- 88 -

3.1. If gk/l�≡ 1 (mod p), then output “false” and stop.
4. Output “true”.

D.1.8 Computing the Order of a Given Integer Modulo a Prime
Let p be a prime and let g satisfy 1 < g < p. The following algorithm determines the order of g modulo p. The
algorithm is efficient only for small p. It is used in Annex D.1.9.
Input: A prime p and an integer g with 1 < g < p.
Output: The order k of g modulo p.
1. Set b = g and j = 1.
2. Set b = gb mod p and j = j + 1.
3. If b > 1 then go to Step 2.
4. Output j.

D.1.9 Constructing an Integer of a Given Order Modulo a Prime
Let p be a prime and let T divide p–1. The following algorithm generates an element of Fp of order T. The algorithm
is efficient only for small p. The algorithm is used in Annex D.2.3.
Input: A prime p and an integer T dividing p–1.
Output: An integer u having order T modulo p.
1. Generate a random integer g between 1 and p.
2. Compute via Annex D.1.8 the order k of g modulo p.
3. If T does not divide k then go to Step 1.
4. Output u = gk/T mod p.

D.2 Polynomials over a Finite Field

D.2.1 GCD’s over a Finite Field
If f(t) and g(t) ≠ 0 are two polynomials with coefficients in the field Fq, then there is a unique monic polynomial d(t)
with coefficient also in Fq of largest degree which divides both f(t) and g(t). The polynomial d(t) is called the
greatest common divisor or gcd of f(t) and g(t). The following algorithm (the Euclidean algorithm) computes the gcd
of two polynomials. The algorithm is used in Annex D.2.2.

Input: A finite field Fq and two polynomials f(t), g(t) ≠ 0 over Fq.
Output: d(t) = gcd(f(t) , g(t)).
1. Set a(t) = f(t), b(t) = g(t).

2. While b(t) ≠ 0
2.1. Set c(t) = the remainder when a(t) is divided by b(t).
2.2. Set a(t) = b(t).
2.3. Set b(t) = c(t).

3. Let α be the leading coefficient of a(t) and output α-1a(t).

D.2.2 Finding a Root in F2m of an Irreducible Binary Polynomial
If f(t) is an irreducible binary polynomial of degree m, then f(t) has m distinct roots in the field F2m. A random root
can be found efficiently using the following algorithm. The algorithm is used in Annex D.2.3.
Input: An irreducible binary polynomial f(t) of degree m, and a field F2m.
Output: A random root of f(t) in F2m.
1. Set g(t) = f(t).
2. While deg(g) > 1

2.1. Choose random u ∈ F2m.
2.2. Set c(t) = ut.
2.3. For i from 1 to m-1 do

2.3.1. c(t) = (c(t)2 + ut) mod g(t).
2.4. Set h(t) = gcd(c(t), g(t)).

X9.63-199x

- 89 -

2.5. If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
2.6. If 2deg(h) > deg(g), then set g(t) = g(t)/h(t); else g(t) = h(t).

3. Output g(0).

D.2.3 Change of Basis
Given a field F2m and two (polynomial or normal) bases B1 and B2 for the field over F2, the following algorithm
allows conversion between bases B1 and B2.
1. Let f(t) be the field polynomial of B2. That is,

1.1. If B2 is a polynomial basis, let f(t) be the (irreducible) reduction polynomial of degree m over F2.
1.2. If B2 is a Type I optimal normal basis, let:

f(t) = tm+ t m-1+ t m-2+...+ t +1.
1.3. If B2 is a Type II optimal normal basis, let:

f(t) = t j

j m
m j m j

0≤ ≤
− +

∑
p

where the notation a p b means that in the binary representations

a = ui
i2∑ , b = wi

i2∑ ,

we have ui ≤ wi for all i.

1.4. If B2 is a Gaussian normal basis of Type T ≥ 3, then:
1.4.1. Set p = T m + 1.
1.4.2. Generate via Annex D.1.9 an integer u having order T modulo p.
1.4.3. For k from 1 to m do

ek = exp
2

0

1 k j

j

T u i

p

πF
HG

I
KJ=

−

∑ .

1.4.4. Compute the polynomial

g (t) = t ek
k

m

−
=

∏b g
1

(The polynomial g(t) has integer coefficients.)
1.4.5. Output f (t) = g (t) mod 2.
Note: The complex numbers ek must be computed with sufficient accuracy to identify each
coefficient of the polynomial g(t). Since each such coefficient is an integer, this means that the
error incurred in calculating each coefficient should be less than 1/2.

2. Let γ be a root of f(t) computed with respect to B1. (γ can be computed using the technique defined in
Annex D.2.2.)

3. Let Γ be the matrix:

Γ =

L

N

MMMM

O

Q

PPPP

−

−

− − − −

γ γ γ
γ γ γ

γ γ γ

0 0 0 1 0 1

1 0 1 1 1 1

1 0 1 1 1 1

, , ,

, , ,

, , ,

K

K

M M O M

L

m

m

m m m m

where the entries γi,j are defined as follows:
3.1. If B2 is a polynomial basis, then:

X9.63-199x

- 90 -

1 0 0 0 1 0 1

1 0 1 1 1 1

2
2 0 2 1 2 1

1
1 0 1 1 1 1

=

=

=

=

−

−

−

−
− − − −

γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

, , ,

, , ,

, , ,

, , ,

K

K

K

M

K

m

m

m

m
m m m m

c h
c h
c h

c h
with respect to B1. (The entries γ i,j are computed by repeated multiplication by γ .)

3.2. If B2 is a Gaussian normal basis (of any type T ≥ 1), then:

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

=

=

=

=

−

−

−

− − − −

−

0 0 0 1 0 1

2
1 0 1 1 1 1

4
2 0 2 1 2 1

2
1 0 1 1 1 1

1

, , ,

, , ,

, , ,

, , ,

K

K

K

M

K

m

m

m

m m m m

m

c h
c h
c h

c h
with respect to B1. (The entries γ i,j are computed by repeated squaring of γ .)

4. If an element has representation (β 0β 1...β m-1) with respect to B2, then its representation with respect to B1

is

(α 0α 1...α m-1) = (β 0β 1...β m-1) Γ.

If an element has representation (α0α1...αm-1) with respect to B1, then its representation with respect to B2 is

(β 0β 1...β m-1) = (α 0α 1...α m-1) Γ −1,

where Γ −1denotes the mod 2 inverse of Γ .

Example:
Suppose that B1 is the polynomial basis (mod t4 + t +1), and B2 is the Type I optimal normal basis for F24 . Then f(t) =

t4 + t3 + t2 + t + 1, and a root is given by γ = (1100) with respect to B1. Then:
γ

γ
γ
γ

=

=

=

=

()

()

()

()

1100

1111

1010

1000

2

4

8

so that:

Γ =

L

N

MMMM

O

Q

PPPP

1 1 0 0

1 1 1 1

1 0 1 0

1 0 0 0
and:

Γ− =

L

N

MMMM

O

Q

PPPP
1

0 0 0 1

1 0 0 1

0 0 1 1

1 1 1 1

.

X9.63-199x

- 91 -

If λ = (1001) with respect to B2, then its representation with respect to B1 is:

(0100) = (1001) Γ.

If λ = (1011) with respect to B1, then its representation with respect to B2 is:

(1101) = (1011) Γ −1.

D.2.4 Checking Binary Polynomials for Irreducibility
If f(x) is a binary polynomial, then f(x) can be tested efficiently for irreducibility using the following algorithm. The
algorithm is used in Section 5.1.2.2.
Input: A binary polynomial f(x).
Output: The message “true” if f(x) is irreducible over F2; the message “false” otherwise.
1. Set d = degree of f(x).
2. Set u(x) = x.

3. For i from 1 to d/2 do
3.1. Set u(x) = u(x)2 mod f(x).
3.2. Set g(x) = gcd(u(x) + x, f(x)).

3.3. If g(x) ≠ 1, then output “false” and stop.
4. Output “true”.

D.3 Elliptic Curve Algorithms

D.3.1 Finding a Point on an Elliptic Curve
The following algorithms provide an efficient method for finding an arbitrary point (other than�2) on a given elliptic
curve over a finite field. These algorithms are used in Annexes A.3.1 and A.3.2.

Case I: Curves over Fp

Input: A prime p and the parameters a and b of an elliptic curve E over Fp.
Output: An arbitrary point (other than�2) on E.

1. Choose a random integer x with 0 ≤ x < p.

2. Set α = x3 + ax + b mod p.

3. If α = 0 then output (x, 0) and stop.
4. Apply the appropriate algorithm from Annex D.1.4 to look for a square root (mod p) of α.
5. If the output of Step 4 is “no square roots exist,” then go to Step 1. Otherwise the output of Step 4 is an

integer y with 0 < y < p such that y2 ≡ α (mod p).
6. Output (x, y).

Case II: Curves over F2m.
Input: A field F2m and the parameters a and b of an elliptic curve E over F2m.
Output: A randomly generated point (other than�2) on E.

1. Choose a random element x in F2m.

2. If x = 0, then output (0, b2
m-1

) and stop.

3. Set α = x3 + ax2 + b.

4. If α = 0, then output (x, 0) and stop.

5. Set β = x-2 α.
6. Apply the appropriate algorithm from Annex D.1.6 to look for an element z for which z2 + z = β.
7. If the output of Step 6 is “no solutions exist,” then go to Step 1. Otherwise the output of Step 6 is a solution

z.
8. Set y = xz.
9. Output (x, y).

X9.63-199x

- 92 -

D.3.2 Scalar Multiplication (Computing a Multiple of an Elliptic Curve Point)
If k is a positive integer and P is an elliptic curve point, then kP is the point obtained by adding together k copies of
P. This computation can be performed efficiently by the addition-subtraction method outlined below.
Input: A positive integer k and an elliptic curve point P.
Output: The elliptic curve point kP.
1. Set e = k mod n, where n is the order of P. (If n is unknown, then set e = k instead.)
2. Let hr hr-1 ...h1 h0 be the binary representation of 3e, where the leftmost bit hr is 1.
3. Let er er-1...e1 e0 be the binary representation of e.
4. Set R = P.
5. For i from r-1 down to 1 do

5.1. Set R = 2R.
5.2. If hi = 1 and ei = 0, then set R = R + P.
5.3. If hi = 0 and ei = 1, then set R = R - P.

6. Output R.
Note: To subtract the point (x, y), just add the point (x, -y) (for the field Fp) or (x, x + y) (for the field F2m).
There are several variations of this method which can be used to speed up the computations. One such method which
requires some precomputations is described in [24]. See also Knuth [45].

X9.63-199x

- 93 -

Annex E
(informative)

Complex Multiplication (CM) Elliptic Curve Generation
Method

This Annex describes a method for generating an elliptic curve with known order. The method may be used for
selecting an appropriate elliptic curve and point (see Annex A.3.2).

E.1 Miscellaneous Number-Theoretic Algorithms
This section collects together some number-theoretic algorithms that are used in Annexes E.2 and E.3. These
algorithms are not used in any other sections of this Standard.

E.1.1 Evaluating Jacobi Symbols

The Legendre symbol:

If p > 2 is prime, and a is any integer, then the Legendre symbol
a

p

F
HG

I
KJ is defined as follows. If p divides a, then

a

p

F
HG

I
KJ =

0. If p does not divide a, then
a

p

F
HG

I
KJ equals 1 if a is a square modulo p and –1 otherwise. (Despite the similarity in

notation, a Legendre symbol should not be confused with a rational fraction; the distinction must be made from the
context.)

The Jacobi symbol:

The Jacobi symbol
a

n
FHIK is a generalization of the Legendre symbol. If n > 1 is odd with prime factorization:

n = pi
e

i

t
i

=
∏

1

,

and a is any integer, then the Jacobi symbol is defined to be

a

n

a

pii

t
eiFHIK=

F
HG

I
KJ=

∏
1

,

where the symbols
a

pi

F
HG

I
KJ are Legendre symbols. (Despite the similarity in notation, a Jacobi symbol should not be

confused with a rational fraction; the distinction must be made from the context.)

The values of the Jacobi symbol are ±1 if a and n are relatively prime and 0 otherwise. The values 1 and –1 are
achieved equally often (unless n is a square, in which case the value –1 does not occur at all).
The following algorithm efficiently computes the Jacobi symbol.
Input: An integer a and an odd integer n > 1.

Output: The Jacobi symbol
a

n
FHIK.

1. If gcd(a, n) > 1 then output 0 and stop.
2. Set x = a, y = n, J = 1.
3. Set x = (x mod y).
4. If x > y/2 then

4.1 Set x = y – x.

4.2. If y ≡ 3(mod 4) then set J = –J.
5. While 4 divides x

5.1 Set x = x/4.

X9.63-199x

- 94 -

6. If 2 divides x then
6.1 Set x = x/2.

6.2 If y ≡ ± 3 (mod 8) then set J = –J.
7. If x = 1 then output J and stop.

8. If x ≡ 3 (mod 4) and y ≡ 3 (mod 4) then set J = –J.
9. Switch x and y.
10. Go to Step 3.

If n is equal to a prime p, the Jacobi symbol can also be found efficiently using exponentiation via:
a

p

F
HG

I
KJ = a(p–1)/2 mod p.

E.1.2 Finding Square Roots Modulo a Power of 2
If r > 2 and a < 2r is a positive integer congruent to 1 modulo 8, then there is a unique positive integer b less than 2r–2

such that b2 ≡ a (mod 2r). The number b can be computed efficiently using the following algorithm. The binary
representations of the integers a, b, h are denoted as

a = ar–1...a1a0,
b = br–1...b1b0,
h = hr–1...h1h0.

Input: An integer r > 2, and a positive integer a ≡ 1 (mod 8) less than 2r.

Output: The positive integer b less than 2r–2 such that b2 ≡ a (mod 2r).
1. Set h = 1.
2. Set b = 1.
3. For j from 2 to r – 2 do

If hj+1 ≠ aj+1 then
Set bj = 1.
If j < r/2

then h = (h + 2j+1b – 22j) mod 2 r.
else h = (h + 2j+1b) mod 2 r.

4. If br–2 = 1 then set b = 2r–1 – b.
5. Output b.

E.1.3 Exponentiation Modulo a Polynomial
If k is a positive integer and f(t) and m(t) are polynomials with coefficients in the field Fq, then f(t)k mod m(t) can be
computed efficiently by the binary method outlined below.
Input: A positive integer k, a field Fq, and polynomials f(t) and m(t) with coefficients in Fq.
Output: The polynomial f(t)k mod m(t).
1. Let k = kr kr–1 ... k1 k0 be the binary representation of k, where the most significant bit kr of k is 1.
2. Set u(t) = f(t) mod m(t).
3. For i from r–1 downto 0 do

3.1 Set u(t) = u(t)2 mod m(t).
3.2 If ki = 1 then set u(t) = u(t) f(t) mod m(t).

4. Output u(t).

E.1.4 Factoring Polynomials over Fp (Special Case)
Let f(t) be a polynomial with coefficients in the field Fp, and suppose that f(t) factors into distinct irreducible
polynomials of degree d. (This is the special case needed in Annex E.3.) The following algorithm finds a random
degree-d factor of f(t) efficiently.
Input: A prime p > 2, a positive integer d, and a polynomial f(t) which factors modulo p into distinct irreducible

polynomials of degree d.
Output: A random degree-d factor of f(t).
1. Set g(t) = f(t).
2. While deg(g) > d

X9.63-199x

- 95 -

2.1 Choose u(t) = a random monic polynomial of degree 2d – 1.
2.2 Compute (via Annex E.1.3.)

c(t) = u t pd

()(/−1) 2 mod g(t).
2.3 Compute h(t) = gcd(c(t) – 1, g(t)) via Annex D.2.1.
2.4 If h(t) is constant or deg(g) = deg(h) then go to Step 2.1.
2.5 If 2 deg(h) > deg(g) then set g(t) = g(t) / h(t); else g(t) = h(t).

3. Output g(t).

E.1.5 Factoring Polynomials over F2 (Special Case)
Let f(t) be a polynomial with coefficients in the field F2, and suppose that f(t) factors into distinct irreducible
polynomials of degree d. (This is the special case needed in Annex E.3.) The following algorithm finds a random
degree-d factor of f(t) efficiently.
Input: A positive integer d, and a polynomial f(t) which factors modulo 2 into distinct irreducible polynomials of

degree d.
Output: A random degree-d factor of f(t).
1. Set g(t) = f(t).
2. While deg(g) > d

2.1 Choose u(t) = a random monic polynomial of degree 2d – 1.
2.2 Set c(t) = u(t).
2.3 For i from 1 to d – 1 do

2.3.1 c(t) = c(t)2 + u(t) mod g(t).
2.4 Compute h(t) = gcd(c(t), g(t)) via Annex D.2.1.
2.5 If h(t) is constant or deg(g) = deg(h) then go to Step 2.1.
2.6 If 2 deg(h) > deg(g) then set g(t) = g(t) / h(t); else g(t) = h(t).

3. Output g(t).

E.2 Class Group Calculations
The following computations are necessary for the complex multiplication technique described in Annex E.3.

E.2.1 Overview
A reduced symmetric matrix is one of the form

S
A B

B C
= F
HG

I
KJ

where the integers A, B, C satisfy the following conditions:
1. gcd(A, 2B, C) = 1,

2. |2B| ≤ A ≤ C,

3. If either A = |2B| or A = C, then B ≥ 0.
We will abbreviate S as [A, B, C] when typographically convenient.
The determinant D = AC – B 2 of S will be assumed throughout this section to be positive and squarefree (i.e.,
containing no square factors).
Given D, the class group H(D) is the set of all reduced symmetric matrices of determinant D. The class number h(D)
is the number of matrices in H(D).
The class group is used to construct the reduced class polynomial. This is a polynomial wD(t) with integer
coefficients of degree h(D). The reduced class polynomial is used in Annex E.3 to construct elliptic curves with
known orders.

E.2.2 Class Group and Class Number
The following algorithm produces a list of the reduced symmetric matrices of a given determinant D.
Input: A squarefree determinant D > 0.
Output: The class group H(D).

1. Let s be the largest integer less than D / 3 .

X9.63-199x

- 96 -

2. For B from 0 to s do

2.1. List the positive divisors A1, …, Ar of D + B 2 that satisfy 2B ≤ A ≤ D B+ 2 .
2.2. For i from 1 to r do

2.2.1. Set C = (D + B 2) / Ai.
2.2.2. If gcd(Ai, 2B, C) = 1 then

list [Ai, B, C].
if 0 < 2B < Ai < C then list [Ai, – B, C].

3. Output list.

Example:
D = 71. We need to check 0 ≤ B < 5.
— For B = 0, we have A = 1, leading to [1,0,71].

— For B = 1, we have A = 2,3,4,6,8, leading to [3, ±1,24] and [8, ±1,9].

— For B = 2, we have A = 5, leading to [5, ±2, 15].
— For B = 3, we have A = 8, but no reduced matrices.
— For B = 4, we have no divisors A in the right range.
Thus the class group is:

H(71) = {[1,0,71], [3, ±1,24], [8, ±1,9], [5, ±2, 15]}
and the class number is:

h(71) = 7.

E.2.3 Reduced Class Polynomials
Let:

F z z z

z z z z z z

j j j j j

j

() () ()/ ()/= + − +

= − − + + − − +

− +

=

∞

∑1 1

1

3 2 3 2

1

2 5 7 12 15

2 2e j
K

and:

θ π= − +F
HG

I
KJexp

D Bi

A
.

Let:

¦0(A, B, C) = θ –1/24 F(–θ) / F(θ 2),

¦1(A, B, C) = θ –1/24 F(θ) / F(θ 2),

¦2(A, B, C) = 2 θ 1/12F(θ 4) / F(θ 2).

Note: Since θ π< ≈−e 3 2 0 0658287/ . , the series F(z) used in computing the numbers ¦J(A, B, C) converges as

quickly as a power series in e−π 3 2/ .
If [A, B, C] is a matrix of determinant D, then its class invariant is

&(A, B, C) = (N λ BL 2–I/6 (¦J (A, B, C))K)
G

,
where:

G = gcd(D,3),

X9.63-199x

- 97 -

I

D

D D

D D

D

J

AC

C

A

K

D

D

D

L

A C A C AC D C

A C AC D C

A C A C D

=

≡
≡ /≡
≡ ≡
≡

R
S
||

T
||

=
R
S|
T|

=
≡
≡
≡

R
S|
T|

=

− + ≡
+ − ≡
− + ≡

3 1 6 7 8

0 3 8 0 3

2 3 8 0 3

6 5 8

0

1

2

2 1 6 8

1 3 7 8

4 5 8

5 8

2 1 3 6 7 8

5 3 8

2

2

2

if

if and

if and

if

for odd,

for even,

for even,

if

if

if

if odd or and even,

if and even,

if

,2, , mod ,

mod mod ,

mod mod ,

mod ,

,2, mod ,

, mod ,

mod ,

mod

,2, , , mod

mod and even,

if and even,

if odd,

if even,

if

or and odd

or and even,
if

or and odd
if and even,

A

A C AC D A

M
A

A

N

D

D AC

D AC

M
D

D AC
M D AC

A

C

− − ≡

R
S
||

T
||

= −
−

RST

=

≡
≡
≡
≡
≡

− ≡

R

S

||||

T

||||

−

−

2

1) 8

1) 8

1 5 6 7 8

1

1

1

5 8

3 8

7 8
1 6 8

7 8
3 8

2

2

,2, , , mod

()

()

mod

mod

mod
,2, mod

mod
mod

(/

(/

λ= e –
π
 iK/24.

If [A1, B1, C1], ..., [Ah ,Bh ,Ch] are the reduced symmetric matrices of (positive squarefree) determinant D, then the
reduced class polynomial for D is:

wD(t) = (t
j

h

−
=

∏
1

&(Aj, Bj, Cj)).

The reduced class polynomial has integer coefficients.
Note: The above computations must be performed with sufficient accuracy to identify each coefficient of the
polynomial wD(t). Since each such coefficient is an integer, this means that the error incurred in calculating each
coefficient should be less than 1/2.

Example:

w71(t) = t −F
HG

I
KJ

1

2
1 0 71f0 (, ,)

X9.63-199x

- 98 -

t
e i

−F
HG

I
KJ

− π /

(, ,24)
8

2
31f1 t

ei

− −F
HG

I
KJ

π /

(, ,24)
8

2
3 1f1

t
e i

−F
HG

I
KJ

−23 24

2
8 1

π /

(, ,9)f2 t
e i

− −F
HG

I
KJ

23 24

2
8 1

π /

(, ,9)f2

t
e i

+F
HG

I
KJ

−5 12

2
5 15

π /

(,2,)f0 t
e i

+ −F
HG

I
KJ

5 12

2
5 2 15

π /

(, ,)f0

= (t – 2.13060682983889533005591468688942503...)
(t – (0.95969178530567025250797047645507504...) +
(0.34916071001269654799855316293926907...) i)
(t – (0.95969178530567025250797047645507504...) –
(0.34916071001269654799855316293926907...) i)
(t + (0.7561356880400178905356401098531772...) +
(0.0737508631630889005240764944567675...) i)
(t + (0.7561356880400178905356401098531772...) –
(0.0737508631630889005240764944567675...) i)
(t + (0.2688595121851000270002877100466102...) –
(0.84108577401329800103648634224905292...) i)
(t + (0.2688595121851000270002877100466102...) +
(0. 84108577401329800103648634224905292...) i)

= t 7 – 2t 6 – t 5 + t 4 + t 3 + t 2 – t – 1.

E.3 Complex Multiplication

E.3.1 Overview
If E is a non-supersingular elliptic curve over Fq of order u, then:

Z = 4q – (q+1–u)2

is positive by the Hasse Theorem (see Annex C.3 and Annex C.4). Thus there is a unique factorization:
Z = DV2

where D is squarefree (i.e. contains no square factors). Thus, for each non-supersingular elliptic curve over Fq of
order u, there exists a unique squarefree positive integer D such that:
(*) 4q = W 2 + DV 2,
(**) u = q + 1 ± W
for some W and V.

We say that E has complex multiplication by D (or, more properly, by −D). We call D a CM discriminant for q.
If one knows D for a given curve E, one can compute its order via (*) and (**). As we shall see, one can construct
the curves with CM by small D. Therefore one can obtain curves whose orders u satisfy (*) and (**) for small D. The
near-primes are plentiful enough that one can find curves of nearly prime order with small enough D to construct.
Over Fq, the CM technique is also called the Atkin-Morain method. Over F2

m, it is also called the Lay-Zimmer

method. Although it is possible (over Fp) to choose the order first and then the field, it is preferable to choose the
field first since there are fields in which the arithmetic is especially efficient.
There are two basic steps involved: finding an appropriate order, and constructing a curve having that order. More
precisely, one begins by choosing the field size q, the minimum point order rmin, and trial division bound lmax. Given
those quantities, we say that D is appropriate if there exists an elliptic curve over Fq with CM by D and having
nearly prime order.

Step 1:
(Annex E.3.2 and Annex E.3.3, Finding a Nearly Prime Order):
Find an appropriate D. When one is found, record D, the large prime r, and the positive integer k such that u = kr is
the nearly prime curve order.

Step 2:

X9.63-199x

- 99 -

(Annex E.3.4 and Annex E.3.5, Constructing a Curve and Point):
Given D, k and r, construct an elliptic curve over Fq and a point of order r.

E.3.2 Finding a Nearly Prime Order over Fp

E.3.2.1 Congruence Conditions
A squarefree positive integer D can be a CM discriminant for p only if it satisfies the following congruence
conditions. Let:

K
p

r
=

+M
NM

P
QP

()

min

1 2

.

— If p ≡ 3 (mod 8), then D ≡ 2, 3, or 7 (mod 8).

— If p ≡ 5 (mod 8), then D is odd.

— If p ≡ 7 (mod 8), then D ≡ 3, 6, or 7 (mod 8).

— If K = 1, then D ≡ 3 (mod 8).
— If K = 2 or 3, then D /≡ 7 (mod 8).
Thus the possible squarefree D's are as follows:
If K = 1, then

D = 3, 11, 19, 35, 43, 51, 59, 67, 83, 91, 107, 115, ….

If p ≡ 1 (mod 8) and K = 2 or 3, then
D = 1, 2, 3, 5, 6, 10, 11, 13, 14, 17, 19, 21, ….

If p ≡ 1 (mod 8) and K ≥ 4, then
D = 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, ….

If p ≡ 3 (mod 8) and K = 2 or 3, then
D = 2, 3, 10, 11, 19, 26, 34, 35, 42, 43, 51, 58, ….

If p ≡ 3 (mod 8) and K ≥ 4, then
D = 2, 3, 7, 10, 11, 15, 19, 23, 26, 31, 34, 35, ….

If p ≡ 5 (mod 8) and K = 2 or 3, then
D = 1, 3, 5, 11, 13, 17, 19, 21, 29, 33, 35, 37, ….

If p ≡ 5 (mod 8) and K ≥ 4, then
D = 1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, ….

If p ≡ 7 (mod 8) and K = 2 or 3, then
D = 3, 6, 11, 14, 19, 22, 30, 35, 38, 43, 46, 51, ….

If p ≡ 7 (mod 8) and K ≥ 4, then
D = 3, 6, 7, 11, 14, 15, 19, 22, 23, 30, 31, 35, ….

E.3.2.2 Testing for CM Discriminants (Prime Case)
Input: A prime p and a squarefree positive integer D satisfying the congruence conditions from Annex E.3.2.1.
Output: If D is a CM discriminant for p, an integer W such that:

4p = W 2 + DV 2

for some V. (In the cases D = 1 or 3, the output also includes V.) If not, the message “not a CM
discriminant.”

1. Apply the appropriate technique from Annex D.1.4 to find a square root modulo p of –D or determine that
none exist.

2. If the result of Step 1 indicates that no square roots exist, then output “not a CM discriminant” and stop.
Otherwise, the output of Step 1 is an integer B modulo p.

3. Let A = p and C = (B 2 + D) / p.

4. Let S
A B

B C
= F
HG

I
KJ and U = F

HG
I
KJ

1

0
.

X9.63-199x

- 100 -

5. Until |2B| ≤ A ≤ C, repeat the following steps.

5.1. Let δ = +M
NM

P
QP

B

C

1

2
.

5.2. Let T =
−F

HG
I
KJ

0 1

1 δ
.

5.3. Replace U by T –1U.
5.4. Replace S by T t S T, where T t denotes the transpose of T.

6. If D = 11 and A = 3, let δ = 0 and repeat steps 5.2, 5.3 and 5.4.
7. Let X and Y be the entries of U. That is,

U
X

Y
= F
HG

I
KJ.

8. If D = 1 or 3 then output W = 2X and V = 2Y and stop.
9. If A = 1 then output W = 2X and stop.
10. If A = 4 then output W = 4X + BY and stop.
11. Output “not a CM discriminant.”

E.3.2.3 Finding a Nearly Prime Order (Prime Case)
Input: A prime p, a trial division bound lmax, and lower bound rmin for base point order.

Output: A squarefree positive integer D, a prime r with rmin ≤ r, and a smooth integer k such that u = kr is the order
of an elliptic curve modulo p with complex multiplication by D.

1. Choose a squarefree positive integer D, not already chosen, satisfying the congruence conditions of Annex
E.3.2.1.

2. Compute Annex E.1.1 the Jacobi symbol J =
−F

HG
I
KJ

D

p . If J = –1 then go to Step 1.

3. List the odd primes l dividing D.

4. For each l, compute Annex E.1.1 the Jacobi symbol J =
p

l
FHIK. If J = –1 for some l, then go to Step 1.

5. Test Annex E.3.2.2, whether D is a CM discriminant for p. If the result is “not a CM discriminant,” go to
Step 1. (Otherwise, the result is the integer W, along with V if D = 1 or 3.)

6. Compile a list of the possible orders, as follows.
— If D = 1, the orders are:

p + 1 ± W, p + 1 ± V.
— If D = 3, the orders are:

p + 1 ± W, p + 1 ± (W + 3V)/2, p + 1 ± (W – 3V)/2.

— Otherwise, the orders are p + 1 ± W.
7. Test each order for near-primality (Annex A.2.2.) If any order is nearly prime, output (D, k, r) and stop.
8. Go to Step 1.

Example:

Let p = 2192 – 264 – 1. Then:

p = 4X 2 – 2XY +
1

4

+ D
 Y 2 and p + 1 – (4X – Y) = r

where D = 235,
X = –31037252937617930835957687234,
Y = 5905046152393184521033305113,

and r is the prime:
r = 6277101735386680763835789423337720473986773608255189015329.

Thus there is a curve modulo p of order r having complex multiplication by D.

X9.63-199x

- 101 -

E.3.3 Finding a Nearly Prime Order over F2
m

E.3.3.1 Testing for CM Discriminants (Binary Case)
Input: A field degree d and a squarefree positive integer D ≡ 7 (mod 8).
Output: If D is a CM discriminant for 2 d, an odd integer W such that:

2 d+2 = W 2 + DV 2,
for some odd V. If not, the message “not a CM discriminant.”

1. Compute via Annex E.1.2 an integer B such that B 2 ≡ –D (mod 2d+2).
2. Let A = 2d+2 and C = (B 2 + D) / 2d+2.

3. Let S
A B

B C
= F
HG

I
KJ and U = F

HG
I
KJ

1

0
.

4. Until |2B| ≤ A ≤ C, repeat the following steps.

4.1 Let δ = +M
NM

P
QP

B

C

1

2
.

4.2 Let T =
−F

HG
I
KJ

0 1

1 δ
.

4.3 Replace U by T –1U.
4.4 Replace S by T t S T, where T t denotes the transpose of T.

5. Let X and Y be the entries of U. That is,

U
X

Y
= F
HG

I
KJ.

6. If A = 1, then output W = X and stop.
7. If A = 4 and Y is even, then output W = (4X + BY) / 2 and stop.
8. Output “not a CM discriminant.”

E.3.3.2 Finding a Nearly Prime Order (Binary Case)
Input: A field degree d, a trial division bound lmax, and lower bound rmin for base point order.

Output: A squarefree positive integer D, a prime r with rmin ≤ r, and a smooth integer k such that u = kr is the order
of an elliptic curve over F2

d with complex multiplication by D.

1. Choose a squarefree positive integer D ≡ 7 (mod 8), not already chosen.
2. Compute H = the class group for D via Annex E.2.2.
3. Set h = the number of elements in H.
4. If d does not divide h, then go to Step 1.
5. Test via Annex E.3.3.1 whether D is a CM discriminant for 2d. If the result is “not a CM discriminant,” go

to Step 1. (Otherwise, the result is the integer W.)

6. The possible orders are 2d + 1 ± W.
7. Test each order for near-primality via Annex A.2.2. If any order is nearly prime, output (D, k, r) and stop.
8. Go to Step 1.

Example:

Let q = 2155. Then:
4q = X 2 + DY 2 and q + 1 – X = 4r

where:
D = 942679,
X = 229529878683046820398181,
Y = –371360755031779037497,

and r is the prime:

X9.63-199x

- 102 -

r = 11417981541647679048466230373126290329356873447.
Thus there is a curve over Fq of order 4r having complex multiplication by D.

E.3.4 Constructing a Curve and Point (Prime Case)

E.3.4.1 Constructing a Curve with Prescribed CM (Prime Case)
Given a prime p and a CM discriminant D, the following technique produces an elliptic curve y2 ≡ x3 + a0x + b0

(mod p) modulo p with CM by D. (Note that there are at least two possible orders among curves with CM by D. The
curve constructed here will have the proper CM, but not necessarily the desired order. This curve will be replaced in
Annex E.3.4.2 by one of the desired order.)
For nine values of D, the coefficients of E can be written down at once:

D a0 b0

1 1 0
2 –30 56
3 0 1
7 –35 98
11 –264 1694
19 –152 722
43 –3440 77658
67 –29480 1948226
163 –8697680 9873093538

For other values of D, the following algorithm may be used.
Input: A prime modulus p and a CM discriminant D > 3 for p.
Output: a0 and b0 such that the elliptic curve:

y 2 ≡ x 3 + a0x + b0 (mod p)
has CM by D.

1. Compute w(t) = wD(t) mod p via Annex E.2.3.
2. Let W be the output from Annex E.3.2.2.
3. If W is even, then use Annex E.1.4 with d = 1 to compute a root s of wD(t) modulo p. Let:

V = (–1)D 2 4I/K s 24/(GK) mod p,
where G, I and K are as in Annex E.2.3. Finally, let:

a0 = –3(V + 64)(V + 16) mod p,
b0 = 2(V + 64)2 (V – 8) mod p.

4. If W is odd, then use Annex E.1.4 with d = 3 to find a cubic factor g (t) of wD(t) modulo p. Perform the
following computations, in which the coefficients of the polynomials are integers modulo p.

V t
t g t D

t g t D
()

mod () | ,

mod () | ,
=

− /
−

RST
24

8

3

256 3

if

if
a1(t) = –3(V(t) + 64) (V(t) + 256) mod g(t),
b1(t) = 2(V(t) + 64)2 (V(t) – 512) mod g(t),
a3(t) = a1(t)

3 mod g(t),
b2(t) = b1(t)

2 mod g(t).

Now let σ be a nonzero coefficient from a3(t), and let τ be the corresponding coefficient from b2(t). Finally,
let:

a0 = στ mod p,

b0 = στ 2 mod p.
5. Output (a0, b0).

Example:

If D = 235, then:

X9.63-199x

- 103 -

wD(t) = t 6 – 10t 5 + 22t 4 – 24t 3 + 16t 2 – 4t + 4.
If p = 2192 – 264 – 1, then:

wD(t) ≡ (t 3 – (5 + ϕ)t 2 + (1 – ϕ)t – 2) (t 3 – (5 – ϕ)t 2 + (1 + ϕ)t – 2) (mod p),

where ϕ�= 1254098248316315745658220082226751383299177953632927607231. The resulting coefficients are:
a0 = –2089023816294079213892272128,
b0 = –36750495627461354054044457602630966837248.

Thus the curve y 2 ≡ x 3 + a0x
 2 + b0 modulo p has CM by D = 235.

E.3.4.2 Choosing the Curve and Point (Prime Case)
Input: EC parameters p, k, and r, and coefficients a0, b0 produced by Annex E.3.4.1.
Output: A curve E modulo p and a point G on E of order r, or a message “wrong order.”

1. Select an integer ξ with 0 < ξ < p.

2. If D = 1 then set a = a0ξ mod p and b = 0.

If D = 3 then set a = 0 and b = b0ξ mod p.

Otherwise, set a = a0ξ 2 mod p and b = b0ξ 3 mod p.
3. Look for a point G of order r on the curve:

y2 ≡ x3 + ax + b (mod p)
via Annex A.3.1. (In the notation of Annex A.3.1, h = k and n = r.)

4. If the output of Annex A.3.1 is “wrong order” then output the message “wrong order” and stop.
5. Output the coefficients a, b and the point G.

The method of selecting ξ in the first step of this algorithm depends on the kind of coefficients desired. Two
examples follow.

— If D ≠ 1 or 3, and it is desired that a = –3, then take ξ to be a solution of the congruence a0ξ 2 ≡ –3 (mod

p), provided one exists. If one does not exist, or if this choice of ξ leads to the message “wrong order,” then

select another curve as follows. If p ≡ 3 (mod 4) and the result was “wrong order,” then choose p – ξ in

place of ξ; the result leads to a curve with a = –3 and the right order. If no solution ξ exists, or if p ≡ 1
(mod 4), then repeat Annex E.3.4.1 with another root of the reduced class polynomial. The proportion of

roots leading to a curve with a = –3 and the right order is roughly one-half if p ≡ 3 (mod 4), and one-quarter

if p ≡ 1 (mod 4).

— If there is no restriction on the coefficients, then choose ξ at random. If the output is the message “wrong
order,” then repeat the algorithm until a set of parameters a, b, G is obtained. This will happen for half the

values of ξ, unless D = 1 (one-quarter of the values) or D = 3 (one-sixth of the values).

E.3.5 Constructing a Curve and Point (Binary Case)

E.3.5.1 Constructing a Curve with Prescribed CM (Binary Case)
Input: A field F2

m, a CM discriminant D for 2m, and the desired curve order u.

Output: a and b such that the elliptic curve:
y2 + xy = x3 + ax2 + b

over F2
m has order u.

1. Compute w(t) = wD(t) mod 2 via Annex E.2.3.
2. Use Annex E.3.3.1 to find the smallest divisor d of m greater than (log2 D) – 2 such that D is a CM

discriminant for 2d.
3. Compute p(t) = a degree d factor modulo 2 of w(t). (If d = h, then p(t) is just w(t) itself. If d < h, p(t) is

found via Annex E.1.5.)

4. Compute α := a root in F2
m of p(t) = 0 via Annex D.2.2.

5. If 3 divides D

X9.63-199x

- 104 -

then set b = α
else set b = α 3

6. If u is divisible by 4, then set a = 0
else if m is odd, then set a = 1

else generate via Annex D.1.5 a random element a ∈ F2
m of trace 1.

7. Output (a, b).

Example:

If D = 942679, then:

wD(t) ≡ 1 + t2 + t6 + t10 + t12 + t13 + t16 + t17 + t20 + t22 + t24 + t27 + t30 + t33 + t35 + t36 + t37 +
t41 + t42 + t43 + t45 + t49 + t51 + t54 + t56 + t57 + t59 + t61 + t65 + t67 + t68 + t69 + t70 + t71 + t72 + t74 + t75 +
t76 + t82 + t83 + t87 + t91 + t93 + t96 + t99 + t100 + t101 + t102 + t103 + t106 + t108 + t109 + t110 + t114 + t117 +
t119 + t121 + t123 + t125 + t126 + t128 + t129 + t130 + t133 + t134 + t140 + t141 + t145 + t146 + t147 + t148 + t150 +
t152 + t154 + t155 + t157 + t158 + t160 + t161 + t166 + t167 + t171 + t172 + t175 + t176 + t179 + t180 + t185 + t186 +
t189 + t190 + t191 + t192 + t195 + t200 + t201 + t207 + t208 + t209 + t210 + t211 + t219 + t221 + t223 + t225 + t228 +
t233 + t234 + t235 + t237 + t238 + t239 + t241 + t242 + t244 + t245 + t248 + t249 + t250 + t252 + t253 + t255 + t257 +
t260 + t262 + t263 + t264 + t272 + t273 + t274 + t276 + t281 + t284 + t287 + t288 + t289 + t290 + t292 + t297 + t299 +
t300 + t301 + t302 + t304 + t305 + t306 + t309 + t311 + t312 + t313 + t314 + t317 + t318 + t320 + t322 + t323 + t325 +
t327 + t328 + t329 + t333 + t335 + t340 + t341 + t344 + t345 + t346 + t351 + t353 + t354 + t355 + t357 + t358 + t359 +
t360 + t365 + t366 + t368 + t371 + t372 + t373 + t376 + t377 + t379 + t382 + t383 + t387 + t388 + t389 + t392 + t395 +
t398 + t401 + t403 + t406 + t407 + t408 + t409 + t410 + t411 + t416 + t417 + t421 + t422 + t423 + t424 + t425 + t426 +
t429 + t430 + t438 + t439 + t440 + t441 + t442 + t443 + t447 + t448 + t450 + t451 + t452 + t453 + t454 + t456 + t458 +
t459 + t460 + t462 + t464 + t465 + t466 + t467 + t471 + t473 + t475 + t476 + t481 + t482 + t483 + t484 + t486 + t487 +
t488 + t491 + t492 + t495 + t496 + t498 + t501 + t503 + t505 + t507 + t510 + t512 + t518 + t519 + t529 + t531 + t533 +
t536 + t539 + t540 + t541 + t543 + t545 + t546 + t547 + t548 + t550 + t552 + t555 + t556 + t557 + t558 + t559 + t560 +
t563 + t565 + t566 + t568 + t580 + t585 + t588 + t589 + t591 + t592 + t593 + t596 + t597 + t602 + t604 + t606 + t610 +
t616 + t620 (mod 2).

This polynomial factors into 4 irreducibles over F2, each of degree 155. One of these is:
p(t) = 1 + t + t2 + t6 + t9 + t10 + t11 + t13 + t14 + t15 + t16 + t18 + t19 + t22 + t23 + t26 + t27 +

t29 + t31 + t49 + t50 + t51 + t54 + t55 + t60 + t61 + t62 + t64 + t66 + t70 + t72 + t74 + t75 + t80 + t82 + t85 + t86 +
t88 + t89 + t91 + t93 + t97 + t101 + t103 + t104 + t111 + t115 + t116 + t117 + t118 + t120 + t121 + t123 + t124 + t126

+ t127 + t128 + t129 + t130 + t131 + t132 + t134 + t136 + t137 + t138 + t139 + t140 + t143 + t145 + t154 + t155.
If t is a root of p(t), then the curve:

y 2+xy = x 3 + t3

over F2
155 has order 4r, where r is the prime:

r = 11417981541647679048466230373126290329356873447.

E.3.5.2 Choosing the Curve and Point (Binary Case)
Input: A field size F2

m, an appropriate D, the corresponding k and r from Annex E.3.3.2.

Output: A curve E over F2
m and a point G on E of order r.

1. Compute a and b via Annex E.3.5.1 with u = kr.
2. Find a point G of order r via Annex A.3.1. (In the notation of Annex A.3.1, h = k and n = r.)
3. Output the coefficients a, b and the point G.

X9.63-199x

- 105 -

Annex F
(informative)

An Overview of Elliptic Curve Systems

Many public-key cryptographic systems are based on exponentiation operations in large finite mathematical groups.
The cryptographic strength of these systems is derived from the believed computational intractability of computing
logarithms in these groups. The most common groups are the multiplicative groups of Zp (the integers modulo a
prime p) and F2m (characteristic 2 finite fields). The primary advantages of these groups are their rich theory, easily
understood structure, and straightforward implementation. However, they are not the only groups that have the
requisite properties. In particular, the mathematical structures known as elliptic curves have the requisite
mathematical properties, a rich theory, and are especially amenable to efficient implementation in hardware or
software.
The algebraic system defined on the points of an elliptic curve provides an alternate means to implement
cryptographic schemes based on the discrete logarithm problem. These protocols are described in the literature in the
algebraic system Zp, the integers modulo p, where p is a prime. For example, ANSI X9.42 [6] describes a suite of key
agreement mechanisms based on the Diffie-Hellman scheme defined over Zp. These mechanisms can also be defined
over the points on an elliptic curve.
Elliptic curve systems as applied to ElGamal protocols were first proposed in 1985 independently by Neil Koblitz
from the University of Washington, and Victor Miller, who was then at IBM, Yorktown Heights. The security of the
cryptosystems using elliptic curves hinges on the intractability of the discrete logarithm problem in the algebraic
system. Unlike the case of the discrete logarithm problem in finite fields, or the problem of factoring integers, there
is no subexponential-time algorithm known for the elliptic curve discrete logarithm problem. The best algorithm
known to date takes fully exponential time.
Associated with any finite field Fq there are on the order of q different (up to isomorphism) elliptic curves that can be
formed and used for the cryptosystems. Thus, for a fixed finite field with q elements and with a large value of q,
there are many choices for the elliptic curve group. Since each elliptic curve operation requires a number of more
basic operations in the underlying finite field Fq, a finite field may be selected with a very efficient software or
hardware implementation, and there remain an enormous number of choices for the elliptic curve.
This Standard describes the implementation of a suite of key establishment schemes which use elliptic curves over a
finite field Fq, where q is either a prime number or equal to 2m for some positive integer m.

X9.63-199x

- 106 -

Annex G
(informative)

Comparison of Elliptic Curves and Finite Fields

The elliptic curve key establishment schemes described in this Standard can also be described in the more traditional
setting of Fp

* (also denoted Zp
*), the multiplicative group of the integers modulo a prime. For example, many of the

key agreement schemes are elliptic curve analogs of the schemes described in ANSI X9.42 [6].
The following tables show the correspondence between the elements and operations of the group Fp

* and the elliptic
curve group E(Fq), as well as the correspondence between the ‘language’ of ANSI X9.42 and the ‘language’ of this
Standard.
Table G-1 compares the basic properties of the two underlying groups: Fp

* and E(Fq).

Table G-1 – Fp
* and E(Fq) Group Information

Group Fp
* E(Fq)

Group elements The set of integers {1,2,...,p-
1}

Points (x,y) which satisfy the defining
equation of the elliptic curve, plus the
point at infinity�2.

Group operation Multiplication modulo p Addition of points

Notation Elements: g1, g2 Elements: P1, P2

Multiplication: g1 × g2
Addition: P1 + P2

Exponentiation: gk Multiple of a point (also called scalar
multiplication): kP

Discrete logarithm
problem

Given g1 ∈ Fp
*
 and g2 = g1

k mod p,
find the integer k.

Given P1 ∈ E(Fq) and P2 = kP1, find
the integer k.

Diffie-Hellman problem Given gk1, gk2 ∈ Fp
*, find

gk1k2.
Given k1P, k2P ∈ E(Fq), find
k1k2P.

Table G-2 compares the notation used to describe analogous key agreement schemes in two ANSI standards: ANSI
X9.42 [6] and this Standard.

Table G-2 – Comparison of Notation in ANSI X9.42 and ANSI X9.63

X9.42

Notation

X9.63

Notation

q n

p #E(Fq)

g G

x ds

y Qs

r de

t Qe

X9.63-199x

- 107 -

Table G-3 continues the comparison between ANSI X9.42 and this Standard. In the table, the procedures for setting
up the key agreement schemes are compared.

Table G-3 – ANSI X9.42 and ANSI X9.63 Setup

X9.42 Setup X9.63 Setup

1. p and q are primes, q divides p-1.

2. g is an element of order q in Fp*.

3. The group used is: {g0, g1,
g2, ..., gq-1}.

1. E is an elliptic curve defined over the field Fq.

2. G is a point of prime order n in E(Fq).

3. The group used is: { �2, G,
2G, ..., (n-1)G}.

Table G-4 compares the key generation procedure used by ANSI X9.42 and this Standard.

Table G-4 – ANSI X9.42 and ANSI X9.63 Key Generation

X9.42 Key Generation X9.63 Key Generation

1. Select a random integer x in the interval [1,
q-1].

2. Compute y = gx mod p.

3. The private key is x.

4. The public key is y.

1. Select a statistically unique and
unpredictable integer d in the interval [1,
n-1].

2. Compute Q = dG.

3. The private key is d.

4. The public key is Q.

Finally Table G-5 looks more closely at one particular scheme which is specified in both ANSI X9.42 and this
Standard: the full Unified Model scheme.

Table G-5 – Comparison of the Full Unified Model Scheme

X9.42 X9.63

1. Select an ephemeral public key tU.

2. Receive an ephemeral public key tV.

3. Compute the shared secret values tV
rU and

yV
xU.

4. Derive keying data from the shared secret
values using a key derivation function.

1. Select an ephemeral public key Qe,U.

2. Receive an ephemeral public key Qe,V’.

3. Compute the shared secret values
[h]de,UQe,V’ and [h]ds,UQs,V.

4. Derive keying data from the shared secret
values using a key derivation function.

X9.63-199x

- 108 -

Annex H
(informative)

Security Considerations

This appendix is provided as an initial guidance for implementors of this Standard. This information should be
expected to change over time. Implementors should review the current state-of-the-art in attacks on the schemes at
the time of implementation.
Annex H.1 summarizes the best attacks known on the elliptic curve discrete logarithm problem, which is the basis for
the security of all elliptic curve systems. Annexes H.2 and H.3 discuss security issues for elliptic curve domain
parameters and elliptic curve key pairs, respectively. The security considerations discussed in Annexes H.1, H.2, and
H.3 affect all elliptic curve systems. Annex H.4 discusses security issues specific to key establishment schemes and,
in particular, the suite to key establishment schemes in this Standard. Annex H.5 discusses issues related to
validation of implementations of the schemes in this Standard.

H.1 The Elliptic Curve Discrete Logarithm Problem
Let E be an elliptic curve defined over a finite field Fq. Let G∈E(Fq) be a point of order n, where n is a prime
number and n>2160.

The elliptic curve discrete logarithm problem (ECDLP) is the following: given E, G and Q ∈E(Fq), determine the

integer l, 0 ≤ l ≤ n-1, such that Q = lG, provided that such an integer exists.

The best general algorithms known to date for ECDLP are the Pollard- ρ method [62] and the Pollard-λ method

[62]. The Pollard- ρ method takes about πn / 2 steps, where each step is an elliptic curve addition. The Pollard-

ρ method can be parallelized (see [68]) so that if m processors are used, then the expected number of steps by each

processor before a single discrete logarithm is obtained is (/) /πn m2 . The Pollard-λ method takes about 2 n
steps. It can also be parallelized (see [68]) so that if m processors are used, then the expected number of steps by

each processor before a single discrete logarithm is obtained is about () /2 n m.

Some special classes of elliptic curves, including supersingular curves, have been prohibited in this Standard by the
requirement of the MOV condition (see Annex A.1.1). These curves have been prohibited because there is a method
for efficiently reducing the discrete logarithm problem in these curves to the discrete logarithm problem in a finite
field.

Also, the special class of elliptic curves called Fq-anomalous curves have been prohibited by the requirement of the
Anomalous condition (see Annex A.1.2) because there is an efficient algorithm for computing discrete logarithms in
E(Fq) where E is an anomalous curve over Fq (i.e. #E(Fq) = q).

In April 1998, Gallant, Lambert, and Vanstone [31], and Wiener and Zuccherato [70] showed that the best

algorithms known for the ECDLP (including Pollard- ρ) can be sped up by a factor of √2. Thus the expected

running time of the Pollard- ρ method with this speedup is πn / 4 steps. They also showed that if E is an elliptic

curve defined over F2e , then the best algorithm known for the ECDLP in E(F2ed) can be sped up by a factor of √(2d).

This should be considered when doing a security analysis of curves generated using the Weil Theorem (see Note 6 in
Annex A.3.2).

X9.63-199x

- 109 -

For example, the binary anomalous curve E: y2+xy = x3+x2+1 has the property that #E(F2163) = 2n, where n is a 162-

bit prime. The ECDLP in E(F2163) can be solved in about 277 elliptic curve operations, which is 16 times less work

than the 281 elliptic curve operations required to solve the ECDLP for a random curve of similar order. Now, a field
operation in F2163 takes about the same time as a SHA-1 operation, and it takes about 6 field operations to do an

elliptic curve operation and about 2 more field operations to operate in the equivalence relation posited by the above
improved algorithm. Hence, it turns out that the improved algorithm takes roughly the same amount of work as it
does to find a collision in SHA-1.

To guard against existing attacks on ECDLP, one should select an elliptic curve E over Fq such that:
1. The order #E(Fq) is divisible by a large prime n > 2160;
2. The MOV condition (Annex A.1.1) holds; and
3 The Anomalous condition (Annex A.1.2) holds.
Furthermore, to guard against possible future attacks against special classes of non-supersingular curves, it is prudent
to select an elliptic curve at random. Annex A.3.3 describes a method for selecting an elliptic curve verifiably at
random.

H.1.1 Software Attacks
Assume that a 1 MIPS (Million Instructions Per Second) machine can perform 4x104 elliptic curve additions per
second. (This estimate is indeed high — an ASIC (Application Specific Integrated Circuit) built for performing
elliptic curve operations over the field F21 5 5 has a 40 MHz clock-rate and can perform roughly 40,000 elliptic

additions per second.) Then, the number of elliptic curve additions that can be performed by a 1 MIPS machine in
one year is

() () .4 10 60 60 24 365 24 40× ⋅ × × × ≈
Table H-1 shows the computing power required to compute a single discrete logarithm for various values of n. As an

example, if 10,000 computers each rated at 1,000 MIPS are available, and n ≈ 2160 , then an elliptic curve discrete
logarithm can be computed in 85,000 years.
Odlyzko [61] has estimated that if 0.1% of the world's computing power were available for one year to work on a
collaborative effort to break some challenge cipher, then the computing power available would be 108 MIPS years in
2004 and 1010 to 1011 MIPS years in 2014.

Table H-1 - Computing power required to compute logarithms with the Pollard-ρ method.

Field size (in
bits)

Size of n
(in bits)

πn / 4 MIPS years

163 160 280 8.5 x 1011

191 186 293 7.0 x 1015

239 234 2117 1.2 x 1023

359 354 2177 1.3 x 1041

431 426 2213 9.2 x 1051

Note: The strength of any cryptographic algorithm relies on the best methods that are known to solve the hard
mathematical problem that the cryptographic algorithm is based upon. The discovery and analysis of the best
methods for any hard mathematical problem is a continuing research topic. Users of this Standard should monitor the
state of the art in solving the ECDLP, as it is subject to change. The purpose of the above discussion is to describe
the current state of knowledge regarding attacks on the ECDLP.

X9.63-199x

- 110 -

H.1.2 Hardware Attacks
A more promising attack (for well-funded attackers) on elliptic curve systems would be to build special-purpose
hardware for a parallel search. Van Oorschot and Wiener [68] provide a detailed study of such a possibility. In their

1994 study, they estimated that if n ≈ ≈10 236 120 , then a machine with m = 325,000 processors that could be built
for about $10 million would compute a single discrete logarithm in about 35 days.
It must be emphasized that these estimates were made for specific elliptic curve domain parameters having

n ≈ ≈10 236 120 . This Standard mandates that the parameter n should satisfy

n > ≈2 10160 48 ,
and hence the hardware attacks are infeasible.

H.1.3 Key Length Considerations
It should be noted that for the software and hardware attacks described above, the computation of a single elliptic
curve discrete logarithm has the effect of revealing a single user’s private key. Roughly the same effort must be
repeated in order to determine another user’s private key.

If a single instance of the ECDLP (for a given elliptic curve E and base point G) is solved using the Pollard-λ
method, then the work done in solving this instance can be used to speed up the solution of other instances of the
ECDLP (for the same curve E and base point G). More precisely, if the first instance takes expected time t, then the

second instance takes expected time () .412 1 0− ≈t t . Having solved these two instances, the third instance takes

expected time () .3 2 0 32− ≈t t . Having solved these three instances, the fourth instance takes expected time

() .4 3 0 27− ≈t t . And so on. Thus, subsequent instances of the ECDLP (for a given elliptic curve and base
point G) become progressively easier. Another way of looking at this is that solving k instances of the ECDLP (for

the same curve E and base point G) takes only k as much work as it does to solve one instance of the ECDLP.
This analysis does not take into account storage requirements. Note also that the concern that successive logarithms
become easier is addressed in this Standard by ensuring that the first instance is infeasible to solve (via the
requirement that n > 2160).
In [21], Blaze et al. report on the minimum key lengths required for secure symmetric-key encryption schemes (such
as DES and IDEA). Their report provides the following conclusion:

To provide adequate protection against the most serious threats — well-funded commercial enterprises or
government intelligence agencies — keys used to protect data today should be at least 75 bits long. To
protect information adequately for the next 20 years in the face of expected advances in computing power,
keys in newly-deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we see that n should be at least 150 bits for short-term
security, and at least 180 bits for medium-term security. This extrapolation is justified by the following
considerations:
1. Exhaustive search through a k-bit symmetric-key cipher takes about the same time as the Pollard-ρ or

Pollard-λ algorithms applied to an elliptic curve having a 2k-bit parameter n.

2. Both exhaustive search with a symmetric-key cipher and the Pollard-ρ and Pollard-λ algorithms can be
parallelized with a linear speedup.

3. A basic operation with elliptic curves (addition of two points) is computationally more expensive than a
basic operation in a symmetric-key cipher (encryption of one block).

4. In both symmetric-key ciphers and elliptic curve systems, a “break” has the same effect: it recovers a single
private key.

H.2 Elliptic Curve Domain Parameters

Elliptic curve domain parameters are comprised of a field size q, an indication of basis used (in the case q=2m), an
optional SEED if the elliptic curve was generated verifiably at random, two elements a, b in Fq which define an

X9.63-199x

- 111 -

elliptic curve E over Fq, a point G=(xG , yG) of prime order in E(Fq), the order n of G, and the cofactor h. See
Sections 5.1.1.1 and 5.1.2.1 for a more detailed description of elliptic curve domain parameters.
1. Choice of basis. The basis of F2m

specifies the way of interpreting the bit strings that make up the elements

of F2m. There are two choices for the basis allowed in this Standard: a polynomial basis and a normal basis.
It is not a security consideration which basis to use, but all users of a set of elliptic curve domain parameters
must use the same basis externally. (Implementations with different internal representations that produce
equivalent results are allowed.).

2. Use of the canonical seeded hash (Annex A.3.3) to determine the elliptic curve equation (described by a
and b). For discrete logarithm based schemes, there is the possibility that a particularly poor choice of
domain parameters could lead to an attack. To address this, DSA for example requires the use of a
canonical seeded hash to generate the domain parameters p and q, as this provides an assurance that p and q
were generated arbitrarily. The analogous attack on elliptic curve based schemes does not apply as there are
no known poor choices for the elliptic curve domain parameters that are not already excluded by this
Standard. However, use of the canonical seeded hash can help mitigate fears about the possibility of new
special-purpose attacks which might be discovered in the future.
The use of a specific elliptic curve may allow performance improvements over the use of an arbitrary
elliptic curve. For these reasons, this Standard allows both the choice of a particular elliptic curve or the
generation of an arbitrary curve through the use of a canonical seeded hash function. An arbitrary curve may
be used when security considerations are so preeminent that the possible performance impact is not a factor
in the decision.

3. Choice of base point G. The choice of the base point G is not a security consideration as long as it has a
large prime order as required by this Standard. However, all users of a set of elliptic curve domain
parameters must use the same base point.

4. Elliptic curve domain parameter cryptoperiod considerations. A set of elliptic curve domain parameters may
be used by one party to generate a single key pair or by that party to generate multiple key pairs.
Alternatively, a group of parties could use the same set of parameters to generate multiple key pairs. How
many users and how many key pairs should be allowed for a specific set of elliptic curve domain parameters
is a policy decision.
Just as a single elliptic curve key pair has a cryptoperiod which is deemed appropriate for its individual
strength, so a set of elliptic curve domain parameters has a cryptoperiod which is deemed appropriate for its
collective strength; that is, for all the key pairs expected to be generated using it. As noted in Annex H.1.3,

for a given set of elliptic curve domain parameters, the cost to break k keys is only k times the cost to
break one key. As more and more monetary value becomes protected by a specific set of elliptic curve
domain parameters by allowing multiple users and multiple key pairs, there comes a point where it is
appropriate for a user to use a different set of elliptic curve domain parameters (i.e. a different elliptic
curve). This follows the general security principle of compartmentalization.
Potential concerns about breaking a second key (or subsequent keys) given that a first key (which used the
same elliptic curve domain parameters) has been broken are addressed in this Standard by the inability of an
adversary to break the first key. As this Standard mandates that the order n of the base point G be greater
than 2160, breaking the first key is thought to be infeasible.

5. How large the MOV threshold B (see Annex A.1) should be. The MOV threshold B is a positive integer B
such that taking discrete logarithms over FqB is at least as difficult as taking elliptic curve discrete

logarithms over Fq. For this Standard, B ≥ 20. For example, all elliptic curves over F2191, that are able to be
mapped into finite fields with an order up to around 23800 are eliminated from consideration. The value B =
20 is a conservative choice, and is sufficient to ensure resistance against the reduction attack.

6. What values to use for lmax and rmin when determining n, the order of the base point G (see Annex A.3.2).
The value rmin is the minimum value that is appropriate for n, the order of the base point G in the elliptic
curve domain parameters. For this Standard, rmin > 2160. For example, if the order of the underlying field is

2191, an appropriate value for rmin is ≈ 2185. When the order of the underlying field is larger, a larger rmin and
therefore a larger n is appropriate. Mitigating the choice is the fact that finding a curve satisfying stricter
requirements will take longer. The trial division bound lmax is the maximum size of all prime factors of the
cofactor h. In this Standard, the order of an elliptic curve will be a number u such that u = hn, where n is a
large prime factor (and the order of the base point G) and, h is a number whose prime factors are all less

X9.63-199x

- 112 -

than lmax. For example, if the order of the underlying field is 2191 and rmin is 2185, then an appropriate value
for lmax is 64.

7. Point compression. The representation of a point in compressed, uncompressed, or hybrid form is not a
security consideration.

H.3 Key Pairs
1. Associating public keys with elliptic curve domain parameters. It is very important that a public key and a

private key be cryptographically bound to their associated elliptic curve domain parameters. The
cryptographic binding of a public key with its associated elliptic curve domain parameters can be done by a
CA, who includes the elliptic curve domain parameters in the data portion of the public-key certificate.

2. Private key cryptoperiod considerations. It is appropriate to assign a cryptoperiod to a private key. That is,
explicitly state an amount of time for which the private key can be used. The cryptoperiod defined for a
particular private key is a policy decision. The strength of the key and the amount and value of information
that will be protected by it are considerations to take into account when determining an appropriate
cryptoperiod. Following the general security principle of compartmentalization, limiting the amount of
information protected by a particular key limits the amount of damage that might occur if the private key is
compromised. As the Standard mandates that the primary security parameter n be greater than 2160, as of
1999, it is considered infeasible for the best methods known for solving the ECDLP to discover the private
key. Users should monitor the state-of-the-art in solving the ECDLP to help determine an appropriate value
of n.

3. Public key cryptoperiod considerations. A public key can be considered valid for any period of time that the
associated private key is used.

4. Repeated private keys. If two users are using the same elliptic curve domain parameters and somehow
generate identical private key values, then compromise may occur. As the private key is a value between 1
and n-1 (inclusive), and n is required to be greater than 2160, a duplicate private key is only expected to
happen by chance (due to the birthday phenomenon) after about 280 key pairs have been generated. As 280 is
over 1 million million million million, this is not expected to happen. However, it is possible that a private
key might repeat due to a hardware or software error or a poorly-seeded pseudorandom number generator.
If this occurred, the public key Q would also repeat. One way to address this concern is to use an ANSI X9
approved random or pseudorandom generation method. For an example of an ANSI X9 approved
pseudorandom number generation method, see Annex A.4. Otherwise, a service that a Certificate Authority
may choose to provide for users with high security requirements is to monitor public keys to ensure that
there are no duplicates. If a duplicate public key is detected, then both parties should be told, determine if
there has been an error, try to determine the cause of the error, decide what corrective action to take (if
any), and regenerate new key pairs.

H.4 Key Establishment Schemes
This section discusses issues particularly relevant to the security of key establishment schemes.

H.4.1 The ECDLP and Key Establishment Schemes
Each of the key establishment schemes specified in this Standard is dependent for its security on the difficulty of the
ECDLP. An adversary of a scheme who is able to solve the ECDLP is able to recover the EC private key from any
EC public key, and in this way compromise any key established using the key establishment scheme.
However, there is a gap in the above statement. It says that the key establishment schemes are insecure if the ECDLP
can be solved, but does not say that the key establishment schemes are secure if the ECDLP cannot be solved
efficiently. It is conceivable that some attack could be found which compromises the security of the key
establishment scheme without contradicting the supposed difficulty of the ECDLP.
Much research has focused on closing this gap between the difficulty of the ECDLP and the security of the key
establishment schemes. At best the research has led to a proof of equivalence between the two problems in some
‘formal model’, while in other cases the equivalence remains a conjecture, albeit one that has not been disproved by
a sizeable amount of public scrutiny.

X9.63-199x

- 113 -

A relevant stepping stone between the two problems is the elliptic curve Diffie-Hellman problem (ECDHP). The

ECDHP is stated as follows: given an EC E, a base point P∈E, and k1P and k2P with k1 and k2 randomly chosen,
calculate k1k2P.
The relevance of this stepping stone is easily explained. For example, it is clearly the problem which faces a passive
adversary of the ephemeral Unified Model scheme. Other results of this kind have been justified in the literature:
[18] discusses the equivalence between the ECDHP and the asymmetric encryption schemes in Section 5.8, and [20]
the equivalence between the ECDHP and various Unified Model schemes. Both of these equivalences are proved in
a ‘formal model’. [56] and [49] discuss the conjectured equivalence between the ECDHP and the MQV schemes.
Such equivalences, whether conjectured or ‘formally’ demonstrated, should certainly be viewed with
scepticism…‘real-life’ adversaries are seldom restrained to acting within the ‘formal models’ discussed in these
results. Nonetheless, the results do instill confidence that the relationship between the difficulty ECDHP and the
security of the scheme is indeed close.
Linking the difficulty of the ECDLP to the difficulty of the ECDHP remains to be shown. A result of this type is
provided by [22]. This paper shows that provided the ECDLP is exponentially hard (as is currently believed), then
the two problems are indeed computationally equivalent.
Taken in totality these results provide some assurance of the statement that ‘the ECDLP is the basis for the security
of the EC schemes’.

H.4.2 Security Attributes and Key Establishment Schemes
What properties is it desirable for a key establishment scheme to possess?
The fundamental goal of any key establishment scheme is to distribute keying data. Ideally, the keying data should
have precisely the same attributes as keying data established face-to-face. It should be randomly distributed, and no
unauthorized entity should know anything about the keying data.
However, whilst asymmetric key establishment schemes offer many advantages over traditional face-to-face key
establishment, there is a price to pay for this added functionality. No asymmetric scheme can offer unconditional
security in an information theoretic sense…this just means that an adversary with unlimited computing power can
certainly recover the keying data. In practice this unavoidable shortcoming does not pose a major problem since it
seems reasonable to assume that practical adversaries are computationally bounded. Indeed, the security of all widely
used symmetric schemes relies on a similar computational assumption.
The goal, then, of an asymmetric key establishment scheme is to be indistinguishable from a face-to-face key
establishment as far as any computationally bounded (‘polynomial-time’) adversary is concerned. Such an abstract
goal needs to be clarified, and over the years the goal has been reformulated in terms of a number of more concrete
attributes: implicit and explicit authentication, forward secrecy, known-key security, etc.
These are typically attributes which are possessed by face-to-face key establishment, and which have been identified
as desirable in the asymmetric setting in various applications. Some of the attributes, such as explicit key
authentication, are considered to be important in almost all applications. Others, such as forward secreccy and
known-key security, are important in some environments, but less important in others.
This Standard provides a suite of key establishment schemes. All the schemes are extremely efficient among schemes
of their type. A variety of schemes has been provided so that as large as possible a selection of other desirable
attributes may be provided. Section H.4.3 provides guidance on the attributes which each of the schemes may be
used to provide.

H.4.3 Security Attributes of the Schemes in this Standard
This section provides guidance to implementors about which cryptographic services each of the schemes in this
Standard may be capable of providing.
Table H-2 contains a summary of the services that may be provided by each scheme.
The services are discussed in the context of an entity U who has successfully executed the key establishment scheme
wishing to establish keying data with entity V. In the table:

— √√ indicates that the assurance is provided to U no matter whether U is the scheme’s initiator or responder.

— √? indicates that the assurance is provided modulo a theoretical technicality.

— √I indicates that the assurance is provided to U only if U is the scheme’s initiator.

— √R indicates that the assurance is provided to U only if U is the scheme’s responder.

X9.63-199x

- 114 -

— × indicates that the assurance is not provided to U by the scheme.
— n/a indicates that the assurance is not applicable.
The names of the services have been abbreviated to save space: IKA denotes implicit key authentication, EKA
denotes explicit key authentication, EA denotes entity authentication, K-KS denotes known-key security, FS denotes
forward secrecy, K-CI denotes key-compromise impersonation resilience, and UK-S denotes unknown key-share
resilience.
The provision of these assurances is considered in the case that both U and V are honest and have always executed
the scheme correctly. The requirement that U and V are honest is certainly necessary for the provision of any service
by a key establishment scheme: no key establishment scheme can protect against a dishonest entity who chooses to
reveal the session key…just as no encryption scheme can guard against an entity who chooses to reveal confidential
data.

X9.63-199x

- 115 -

Table H-2 – Attributes Provided by Key Establishment Schemes

Scheme Section IKA EKA EA K-KS FS K-CI UK-S
Ephemeral Unified Model 6.1 × × × √?1 n/a. n/a. ×
Ephemeral Unified Model
(against passive attacks)

6.1 √√ × × √√ n/a. n/a. √√

1-Pass Diffie-Hellman Scheme 6.2 √I × × × × √I ×
Static Unified Model 6.3 √√ × × × × × √?4

Combined Unified Model with
Key Confirmation

6.4 √√ √√ √√ √√ √√ × √√

Station-to-Station Scheme 6.5 √√ √√ √√ √√ √√ √√ √√
1-Pass Unified Model 6.6 √√ × × × × √I √?4

Full Unified Model 6.7 √√ × × √?1 √?2 × √?4

Full Unified Model with Key
Confirmation

6.8 √√ √√ √√ √√ √√ × √√

1-Pass MQV 6.9 √√ × × × × √I ×5

Full MQV 6.10 √√ × × √√ √?2 √√ ×5

Full MQV with Key
Confirmation

6.11 √√ √√ √√ √√ √√ √√ √√

1-Pass Key Transport 7.1 √I × × ×3 × √I ×
3-Pass Key Transport 7.2 √√ √√ √√ √√6 × √√ √√

Although schemes like the Full Unified Model scheme and the Full MQV scheme do not automatically provide
explicit key authentication, explicit key authentication is often provided when the keying data they provide is
subsequently used, for example to MAC some data.
Notes:
1. The technicality hinges on the definition of what contributes ‘another session key’. Known-key security is

certainly provided if the scheme is extended so that explicit authentication of all session keys is supplied.
2. The technicality concerns explicit authentication. Both schemes provide forward secrecy if explicit

authentication is supplied for all session keys. If explicit authentication is not supplied, forward secrecy
cannot be guaranteed.

3. The 1-pass key transport scheme can easily be implemented in a manner that provides known-key security
when the scheme is used with elliptic curve augmented encryption scheme. Simply include a counter in the
optional Text field and increment this counter each time a new session key is transported from U to V.
Provided that the responder checks that the counter has been incremented each time a new session key is
established, this prevents known-key attacks on the scheme involving the replay of previous flows.

4. These schemes are believed to provide unknown key-share when knowledge of the private key is checked
during certification of the static public keys.

5. These observations were made recently by Kaliski [44].
6. The 3-pass key transport scheme provides known-key security when used in conjunction with the elliptic

curve augmented encryption scheme.
It is also sometimes of interest to note whether key control resides with the initiator or the responder of a key
transport scheme. Of the key transport schemes specified in this Standard, key control resides with the initiator in the
1-pass key transport scheme, and with the responder in the 3-pass key transport scheme.

H.4.4 Appropriate Key Lengths
The goal of each key establishment scheme is to establish secret keying data which is shared by two entities. It
should be no easier to attack the key establishment scheme than it is to simply guess the established key. That is,

X9.63-199x

- 116 -

when one is establishing symmetric keys, one wants to ensure that the key establishment scheme is at least as strong
(i.e. takes at least as many operations to break) as the symmetric key algorithm.
This principle should be used to provide guidance on the size of the EC parameters selected. For example, while the
condition that n>2160 is currently sufficient to provide security, it does not offer the same level of security as, say, a
256-bit symmetric scheme.
This section, therefore, provides guidance on the minimum size that n should be if the key establishment scheme is
being used to establish symmetric keys of various sizes.
This guidance is made based on the following assumptions:
1. The best method to discover the value of a key for a symmetric key scheme is key exhaustion using a few

known plaintext/ciphertext pairs. That is, for a 56-bit key it takes 256 trial encryptions to ensure one
recovers the correct key, for a 128-bit key it takes 2128 trial encryptions, etc. This is a goal of any symmetric
key scheme.

2. These symmetric key trial encryptions are able to be done in parallel. That is, if one has m processors to
attempt the trial encryptions, the time needed to exhaust is reduced by a factor of m.

3. The best method for breaking the key establishment scheme is to discover the private key. This is a goal of
any asymmetric key establishment scheme.

4. The best method for recovering an EC private key is to solve the particular ECDLP associated with the key.
The best methods to solve the ECDLP are square root methods that take around a number of operations
equal to the square root of the order n of the generator.

5. These EC operations for solving the ECDLP are able to be done in parallel.
6. For simplicity, an EC operation is assumed to take the same amount of time as the symmetric key

encryption operation. In practice, this is a very conservative assumption: all known practical symmetric key
algorithms are faster than known practical public key algorithms.

The above assumptions lead to the guidance that the appropriate EC key size (that is, the size of n) is about twice the
size of the symmetric key. That is, to ensure that the EC key establishment key is at least as strong as the symmetric
algorithm key being established, the following n bounds should be adopted:
1. For establishment of a 56-bit symmetric key (e.g. DEA), n should be at least 112 bits.
2. For establishment of a 112-bit symmetric key (e.g. 2-key Triple DES), n should be at least 224 bits.
3. For establishment of a 128-bit symmetric key (e.g. AES), n should be at least 256 bits.
4. For establishment of a 168-bit symmetric key (e.g. 3-key Triple DES), n should be at least 336 bits.
5. For establishment of a 192-bit symmetric key (e.g. AES), n should be at least 384 bits.
6. For establishment of a 256-bit symmetric key (e.g. AES), n should be at least 512 bits.

H.5 Validation Issues
A number of types of validation may be performed on an implementation of the schemes in this Standard. This
section provides guidance about these types of validation and the assurances they provide.
Frequently deciding which validations to use is a business decision. In some situations the most secure choice is to
do all validations possible. In other situations, some of the validations may not add significantly to the security of the
system. Therefore one must weigh the security assurance gained versus the costs of validation.
The following four types of validation are available to an implementation of the the schemes in this Standard. The
first two validation methods may be better known than the last two, however, each validation provides assurances
that the others do not.
1. Implementation validation. These validations assert that there are no detectable implementation errors. A

trusted independent validation service usually conducts these validations. The validations are similar to UL
labels; they state that the product meets some minimum level of testing, but do not state that nothing can go
wrong. It is assumed the validation tests are complete and thorough, but there is always a chance that there
is an as-of–yet unknown weakness.
An example of implementation validation is the FIPS 140-1 validation conducted by a testing laboratory.
The FIPS 140-1 Validation procedures consist of testing:
A. Algorithm validation (e.g., for X9.30, X9.31, X9.62) to determine that a specific algorithm routine

runs as expected; and
B. Random Number Generators (RNGs) to see if the RNG performs within specifications.

2. Private key ownership validation. Also known as “proof of possession”. This validation asserts that the
owner possesses the corresponding secret key of a public key submitted for certification. This validation

X9.63-199x

- 117 -

states that “It looks like this user owns the private key”. A CA usually conducts these validations, although
any trusted user may do it. This validation mitigates against certain cryptographic attacks that are based on
the claimed owner not knowing the associated private key.

3. Domain Parameter Validation. These validations assert that the set of domain parameters is valid. These
validations are usually conducted by a CA, but any trusted user may do them. These validations detect
inadvertent and deliberate domain parameter errors. The validations mitigate against attacks based on using
invalid domain parameters.
When implementing this Standard, the generator of a set of elliptic curve domain parameters should
perform parameter validation and ensure that the parameters meet the elliptic curve domain parameter
validation criteria listed in Section 5.1. Whether anyone else needs to validate the elliptic curve domain
parameters is a matter of the trust relationship between the generator and the user. For example, an
untrusted party may generate a proposed set of elliptic curve domain parameters and a CA may
subsequently validate the parameters for its potential users. Whether or not it validates elliptic curve domain
parameters should be part of a CA’s policy. If a set of elliptic curve domain parameters is supplied directly
to a user in a situation where the user does not know that they are valid, then the user should validate the
parameters before use; not doing so could leave the user open to the potential of an attack.

4. Public Key Validation. These validations determine if the candidate public key is actually cryptographically
reasonable. Either the CA or an entity could conduct the validations. In general, the CA conducts these
validations for static (long term keys) and the recipient conducts the validation for ephemeral (short-term,
normally single use) keys. Public Key Validation assumes that any domain parameters have previously been
validated. Public Key Validations detect inadvertent and deliberate errors during key generation. The
validation states that “It looks like this particular public key makes sense”. It mitigates against certain
cryptographic attacks based on the public key being invalid (i.e., impossible, not conforming to the
algorithm specification). An example of this type of attack is to generate a non-conforming key pair that
when combined with a second user’s private (secret) key will expose information about the second user’s
private key.
Key owners may want to “self” validate their own keys, to provide assurance for themselves that there were
no errors in the creation of the key pairs.
Public key validation has been specified in this Standard (Section 5.2), including explicit public key
validation routines which check the range and optionally the order of a purported public key to ensure that it
is plausible that a private key could logically exist for this purported public key.

Table H-3 summarizes the various forms of validation available.

X9.63-199x

- 118 -

Table H-3 - Validation Methods and the Risks they Mitigate

Validation Method Conducted by What’s Validated What’s mitigated
Implementation
validation

An independent
laboratory

1. Algorithm works as
specified

2. Random number
generator operates as
required

Inadvertent
implementation errors

Private key ownership CA or its delegate or the
user (recipient)

The claimed public key
owner owns the
corresponding secret key

Masquerade attacks (the
purported owner of the
public key does not
know the corresponding
private key)

Domain Parameter
validation

CA or its delegate or the
user (recipient)

The domain parameters
are suitable for
cryptographic use

Cryptographic attacks
based on “out of range”
parameters

Public key validation CA or its delegate or the
user (recipient)

The public key has a
plausible value that
could have been
generated according to
specification

1. Inadvertent key
generation errors

2. Deliberately invalid
public keys that are
insecure to use

X9.63-199x

- 119 -

Annex I
(informative)

Alignment with Other Standards

One of the central goals of the standardization process is to promote interoperability while providing security.
Conformance between standards is crucial for achieving this task.
Therefore, this Standard attempts to provide conformance with as many of the other relevant standards as possible.
Within ANSI, the Standard is directly aligned with ANSI X9.42 [6], and this Standard describes many of the
analogous key agreement protocols described in ANSI X9.42. In this instance, actual conformance is not the relevant
issue, because the respective standards describe the schemes in different algebraic settings - ANSI X9.42 describes
schemes in the algebraic setting of the multiplicative group of a finite field, while in this Standard, schemes are
described in the additive group of the points on an elliptic curve.
IEEE P1363 [32] (and its proposed addendum, IEEE P1363A [33]) is a prominent public-key standardization effort
currently under way. IEEE P1363 specifies a number of elliptic curve schemes, and this Standard is composed so
that anyone implementing one of the key agreement schemes specified will automatically be conformant with the
relevant schemes in IEEE P1363. In the case of the Unified Model schemes, conformance is with either the DH1 or
DH2 scheme in IEEE P1363. In the case of the MQV schemes, conformance is with the IEEE P1363 MQV schemes.
Of the FIPS standards, the most relevant is FIPS 196 [29]. This specifies entity authentication schemes which
employ any FIPS approved signature scheme. Modulo the fact that ECDSA is not currently a FIPS approved
signature scheme, an implementation of the 3-pass key transport scheme specified here should conform with the
requirements of FIPS 196.
The appropriate ISO standards are ISO 11770-3 [35] and ISO 9798-3 [34]. These standards respectively discuss
asymmetric key establishment schemes and asymmetric schemes providing entity authentication. A number of the
key agreement schemes specified here and in particular the Station-to-Station scheme, are likely to conform with ISO
11770-3, although since ISO 11770-3 is specified in a mechanism independent manner, precise details of
conformance are sometimes hard to ascertain The Station-to-Station scheme also conforms with ISO 9798-3. Easier
to gauge are the key transport schemes. The 1-pass transport scheme in this Standard is conformant with key
transport mechanism 1 in ISO 11770-3, and the 3-pass transport scheme is conformant with key transport mechanism
5 in ISO 11770-3. The 3-pass transport scheme also conforms with the corresponding mechanism in ISO 9798-3.

X9.63-199x

- 120 -

Annex J
(informative)

Patents
[[This section will be added later.]]

X9.63-199x

- 121 -

Annex K
(informative)

Examples
[[This section will be added later.]]

X9.63-199x

- 122 -

Annex L
(informative)
References

A comprehensive treatment of modern cryptography can be found in [57].
Elliptic curve cryptosystems were first proposed in 1985 independently by Neil Koblitz [46] and Victor Miller [58].
Since then, much research has been done towards improving the efficiency of these systems and evaluating their
security. For a summary of this work, consult [54]. A description of a hardware implementation of an elliptic curve
cryptosystem can be found in [13]. ECDSA is specified in [8]. For a detailed treatment of the mathematical theory of
elliptic curves, see [66]. A less technical approach to the theory can be found in [47].
Three references on the theory of finite fields are the books of McEliece [53], Lidl and Neiderreiter [52], and
Jungnickel [43]. Lidl and Neiderreiter’s book [52] contains introductory material on polynomial and normal bases.
The article [12] discusses methods which efficiently perform arithmetic operations in finite fields of characteristic 2.
A hardware implementation of arithmetic in such fields which exploits the properties of optimal normal bases is
described in [14].
SHA-1 is specified in [5] and [27].
The SHA-1-based MAC scheme is HMAC which was introduced in [15].
The asymmetric encryption schemes specified in this Standard were introduced in [18]. Preliminary work by the
same authors can be found in [17].
The fundamental concept of asymmetric key agreement was introduced in [25]. The extensions to the traditional
Diffie-Hellman primitive specified in this Standard were introduced in [20], [26], and [56]. See also [49]. These key
agreement schemes have also been standardized in the algebraic context of the multiplicative group of a finite field
[6].
The key transport schemes specified here are based on those in [35]. Also closely related are the entity authentication
schemes specified in [36] and [34].
ASN.1 is described in [36]-[41]. BER and DER can be found in [40].
1. ANSI X3.92-1981: Data Encryption Algorithm. December 30, 1981.
2. ANSI X9.17-1985: Financial Institution Key Management (Wholesale). 1985.
3. ANSI X9.19-1996: Financial Institution Retail Message Authentication . 1996.
4. ANSI X9.30-1995, Part 1: Public Key Cryptography using Irreversible Algorithms for the Financial

Services Industry: The Digital Signature Algorithm (DSA)(Revised). 1995.
5. ANSI X9.30-1993, Part 2: Public Key Cryptography using Irreversible Algorithms for the Financial

Services Industry: The Secure Hash Algorithm 1 (SHA-1)(Revised). 1993.
6. ANSI X9.42-1996: Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric

Algorithm Keys Using Diffie-Hellman. September, 1996. Working Draft.
7. ANSI X9.57-199x: Public Key Cryptography for the Financial Services Industry: Certificate Management .

1997. Working Draft.
8. ANSI X9.62-1999: Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital

Signature Algorithm (ECDSA).
9. ANSI X9.70-199x: Management of Symmetric Keys Using Public Key Algorithms. 1998. Working Draft.
10. ANSI X9.71-199x: NWI. 1998. Working Draft.
11. ANSI X9.80-199x: Prime Number Generation. 1998. Working Draft.
12. G. Agnew, T. Beth, R. Mullin, and S. Vanstone. Arithmetic operations in GF(2m). Journal of Cryptology, 6,

pages 3-13, 1993.
13. G. Agnew, R. Mullin, and S. Vanstone. An implementation of elliptic curve cryptosystems over F

2155 . IEEE

Journal on Selected Areas in Communications , 11, pages 804-813, 1993.
14. G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone. An implementation for a fast public-key

cryptosystem. Journal of Cryptology, 3, pages 63-79, 1991.
15. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In Advances in

Cryptology: Crypto '96, pages 1-15, 1996.
16. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in Cryptology: Crypto

‘93, pages 232-249, 1993.

X9.63-199x

- 123 -

17. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In
1st ACM Conference on Computer and Communications Security , pages 62-73, 1993.

18. M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated encryption schemes. In
Proceedings of PKS ‘97, 1997.

19. S. Blake-Wilson and A.J. Menezes. Entity authentication and authenticated key transport protocols
employing asymmetric techniques. To appear in Security Protocols Workshop ‘97, Springer-Verlag, 1997.

20. S. Blake-Wilson, D. Johnson, and A.J. Menezes. Key agreement protocols and their security analysis. To
appear in Cryptography and Coding, 6th IMA Conference, Springer-Verlag, 1997.

21. M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener. Minimal key
lengths for symmetric ciphers to provide adequate commercial security. January, 1996.

22. D. Boneh and R.J. Lipton. Algorithms for black-box fields and their application to cryptography. In
Advances in Cryptology: Crypto ‘96, pages 283-297, 1996.

23. D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in Diffie-
Hellman and related schemes. In Advances in Cryptology: Crypto ‘96, pages 129-142, 1996.

24. E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast Exponentiation with precomputation. In
Advances in Cryptology: EuroCrypt ‘92, pages 200-207, 1993.

25. W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information Theory, IT-
22(6): 644-654, November 1976.

26. W. Diffie, P.C. van Oorschot, and M.J. Wiener. Authentication and authenticated key exchanges. Designs,
Codes, and Cryptography, 2: 107-125, 1992.

27. FIPS 180-1. Secure Hash Standard. Federal Information Processing Standards Publication 180-1, 1995.
28. FIPS 186. Digital Signature Standard. Federal Information Processing Standards Publication 186, 1993.
29. FIPS 196. Entity Authentication using Public Key Cryptography. Federal Information Processing Standards

Publication 196, February 18, 1997.
30. G. Frey and H.-G. Ruck. A remark concerning m-divisibility and the discrete logarithm problem in the

divisor class group of curves. Mathematics of Computation, 62, pages 865-874. 1994.
31. R. Gallant, R. Lambert, and S. Vanstone, Improving the parallelized Pollard lambda search on binary

anomalous curves, to appear in Mathematics of Computation.
32. IEEE P1363. Standard for Public-Key Cryptography. July 11, 1997. Working Draft.
33. IEEE P1363A. Standard for Public-Key Cryptography - Addendum. July 11, 1997. Working Document.
34. ISO/IEC 9798-3. Information technology - Security techniques - Entity authentication - Part 3:

Mechanisms using asymmetric signature techniques. April 1, 1997. Review document.
35. ISO/IEC 11770-3. Information technology - Security techniques - Key management - Part 3: Mechanisms

using asymmetric signature techniques. March 22, 1996.
36. ITU-T Recommendation X.680. Information Technology - Abstract Syntax Notation One (ASN.1):

Specification of Basic Notation. (equivalent to ISO/IEC 8824-1).
37. ITU-T Recommendation X.681. Information Technology - Abstract Syntax Notation One (ASN.1):

Information Object Specification. (equivalent to ISO/IEC 8824-2).
38. ITU-T Recommendation X.682. Information Technology - Abstract Syntax Notation One (ASN.1):

Constraint Specification. (equivalent to ISO/IEC 8824-3).
39. ITU-T Recommendation X.683. Information Technology - Abstract Syntax Notation One (ASN.1):

Parametrization of ASN.1 Specifications. (equivalent to ISO/IEC 8824-4).
40. ITU-T Recommendation X.690. Information Technology - ASN.1 Encoding Rules: Specification of Basic

Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER).
(equivalent to ISO/IEC 8825-1).

41. ITU-T Recommendation X.691. Information Technology - ASN.1 Encoding Rules: Specification of Packed
Encoding Rules (PER). (equivalent to ISO/IEC 8825-1).

42. D. Johnson. Diffie-Hellman Key Agreement Small Subgroup Attack, a Contribution to X9F1 by Certicom.
July 16, 1996.

43. D. Jungnickel. Finite Fields: Structure and Arithmetics, B.I.Wissenschaftsverlag, Mannheim, 1993.
44. B. Kaliski. MQV vulnerability. Posting to ANSI X9F1 and IEEE P1363 newsgroups. 1998.
45. D. Knuth. The Art of Computer Programming, volume 1, Addison-Wesley, Reading, Massachusetts, 1973.
46. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48, pages 203-209, 1987.
47. N. Koblitz. A Course in Number Theory and Cryptography, Springer-Verlag, 2nd edition, 1994.
48. D. Knuth, The Art of Computer Programming, volume 2, 2nd edition, 1981.

X9.63-199x

- 124 -

49. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenticated key
agreement. Technical report CORR 98-05, Department of Combinatorics & Optimization, University of
Waterloo, March, 1998.

50. R. Lercier. Finding good random elliptic curves for cryptosystems defined over F m2
. In Advances in

Cryptology: EuroCrypt ‘97, pages 379-392, 1997.
51. R. Lercier, and F. Morain. Counting the number of points on elliptic curves over finite fields. In Advances

in Cryptology: EuroCrypt ‘95, pages 79-94, 1995.
52. R. Lidl and H. Neiderreiter. Finite Fields, Cambridge University Press, 1987.
53. R.J. McEliece. Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers, 1987.
54. A.J. Menezes. Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers, 1993.
55. A.J. Menezes, T. Okamoto, and S.A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite

field. IEEE Transactions on Information Theory, 39, pages 1639-1646, 1993.
56. A.J. Menezes, M. Qu, and S.A. Vanstone. Some new key agreement protocols providing implicit

authentication. Workshop record, 2nd Workshop on Selected Areas in Cryptography (SAC ‘95), Ottawa,
Canada, May 18-19, 1995.

57. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography, CRC Press,
1997.

58. V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology: Crypto ‘85, pages 417-426,
1985.

59. J.H. Moore. Protocol failure in cryptosystems. Chapter 11 in Contemporary Cryptology: the Science of
Information Integrity, G.J. Simmons, editor, pages 541-558, IEEE Press, 1992.

60. R. Mullin, I. Onyszchuk, S.A. Vanstone, and R. Wilson. Optimal normal bases in GF(pn). Discrete Applied
Mathematics, 22, pages 149-161, 1988/89.

61. A. Odlyzko. The Future of Integer Factorization. CryptoBytes, volume 1, number 2, pages 5-12, summer
1995.

62. J. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32, pages
918-924, 1978.

63. B. Preneel. Cryptographic Hash Functions. Kluwer Academic Publishers, Boston, (to appear).
64. T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous

elliptic curves, preprint, 1997.
65. R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of

Computation, 44, pages 483-494, 1987.
66. J. Silverman. The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1985.
67. N. Smart, The discrete logarithm problem on elliptic curves of trace one, to appear in Journal of

Cryptology.
68. P.C. van Oorschot and M. Wiener. Parallel collision search with applications to hash functions and discrete

logarithms. 2nd ACM Conference on Computer and Communications Security, pages 210-218, ACM Press.
1994.

69. P.C. van Oorschot and M. Wiener. On Diffie-Hellman key agreement with short exponents. In Advances in
Cryptology: EuroCrypt ‘96, pages 332-343, 1996.

70. M. Wiener and R. Zuccherato, Fast attacks on elliptic curve cryptosystems, to appear in Fifth Annual
Workshop on Selected Areas in Cryptography – SAC ’98, Lecture Notes in Computer Science, Springer-
Verlag.

