Accredited Standards Committee X9 January 8, 1999
Title: X9-Financial Services

Accredited by the

American National Standards Institute

Working Dr aft
AMERICAN NATIONAL STANDARD

X9.63-199x
Public Key Cryptography For The Financial ServicesIndustry:
Key Agreement and Key Transport Using Elliptic Curve Cryptography

Notice -- This document is a draft document. It has not yet been processed through the consensus
procedures of X9 and ANSI.

Many changes which may greatly affect its contents can occur before this document is completed.
The working group may not be held responsible for the contents of this document.
Implementation or design based on this draft is at the risk of the user. No advertisement or
citation implying compliance with a "Standard" should appear as it is erroneous and misleading to
so state.

Copies of the draft proposed American National Standard will be available from the X9 Secretariat
when the document is finally announced for two months public comment. Notice of this
announcement will be in the trade press.

Secretariat: American Bankers Association
Standards Department
1120 Connecticut Ave., N.W.
Woashington, DC 20036
© 1998 American Bankers Association
All rights reserved

Foreword

Business practice has changed with the introduction of computer-based technologies. The substitution of electronic
transactions for their paper-based predecessors has reduced costs and improved efficiency. Trillions of dollarsin

funds and securities are transferred daily by telephone, wire services, and other electronic communication

mechanisms. The high value or sheer volume of such transactions within an open environment exposes the financial
community and its customers to potentially severe risks from accidental or deliberate disclosure, ateration,

substitution, or destruction of data. Thisrisk is compounded by interconnected networks, and the increased number

and sophistication of malicious adversaries. Electronically communicated data may be secured through the use of
symmetrically-keyed encryption algorithms (e.g. ANSI X9.52, Triple-DEA) keyed via public-key cryptography-

based key management techniques.

This standard, X9.63-199x, Public Key Cryptography For The Financial Services Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography, defines a suite of mechanisms for use in key management
applications. These mechanisms are based on the €lliptic curve analogue of the Diffie-Hellman key agreement
mechanism. Because the mechanisms are based on the same fundamental mathematics as the Elliptic Curve Digital
Signature Algorithm (ECDSA) (see [8]), additiona efficiencies and functionality may be obtained by combining
these and other cryptographic techniques.

While the techniques specified in this standard are designed to facilitate the secure establishment of cryptographic

data for the keying of symmetrically-keyed algorithms (e.g. DEA, TDEA), the standard does not guarantee that a

particular implementation is secure. It is the responsibility of the financial institution to put an overall processin

place with the necessary controls to ensure that the process is securely implemented. Furthermore, the controls

should include the application of appropriate audit testsin order to verify compliance.

The user’s attention is called to the possibility that compliance with this standard may require use of an invention
covered by patent rights. By publication of this standard, no position is taken with respect to the validity of potential
claims or of any patent rights in connection therewith. The patent holders have, however, filed a statement of
willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to
applicants desiring to obtain such a license. Details may be obtained from the X9 Secretariat,

Suggestions for the improvement or revision of this standard are welcome. They should be sent to the X9 Secretariat,
American Bankers Association, 1120 Connecticut Avenue, N.W., Washington D.C. 20036.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on
Financial Services, X9. Committee approval of the standard does not necessarily imply that all the committee
members voted for its approval.

At the time that this standard was approved, the X9 Committee had the following members:

Harold Deal, Chairman

Alice Droogan, Vice Chairman

Cynthia Fuller, Secretariat

Organization Represented Representative

[To be furnished]

The X9F subcommittee on Data and Information Security had the following members:

Glenda Barnes, Chairman

Organization Represented Representative

[To be furnished]

The X9F1 working group, which developed this standard, had the following members:

M. Blake Greenlee, Chairman

Organization Represented Representative

[To be furnished]

1

2

3

4

Contents

SCOPKE ...ttt r e et s e ettt e e —e e —eeah—e e e teeahte e e teeahteeateeahteeateeaateeireeteeeteeeaneeaateeeareeateeenreeants 1
DEFINITIONS, ABBREVIATIONSAND REFERENCES........ccooi ittt 1
2.1 DEFINITIONS ANDABBREVIATIONS......otiiiiittieeiitteeeeeteeeeeitteeesatseeeeateeesaasseeeaasseeasatesaeaassesesassseesatseesanssesesassenas 1
2.2 SYMBOLSAND NOTATION ...cuiiiiiitiiee ettt e e eitteeeeetteeeeebeeeeeiaseeesasseeeaataeesaasseeeaassesasastaeasanssesesassseaeansaeasansseeesassenas 6
2.3 REFERENCES ... ittiee et e e ettee ettt e e e et et e e eteee et etaeeeeaabeeesaasseeeaasseeaeaabaeesanssesessseseeanbaeeeassesessseeeeansaeasassesesansenas 7
N o I T N I 1]\ S OSSRt 8
G 20 I 1= 1 = 1 S 8
3.2 THE SCHEMESIN THISSTANDARD ...ccuutttiiiitteeeiitteeeaateresassseeesasseesaastesssaassesesasssessassesssasssesesssssesssssessssnsesesssssees 8
3.3 IMPLEMENTING THE SCHEMES SECURELY ...eetiittieeeiteeeeeiueeeesiuseessateessassseeesassesssassssssssssssssssseessnsesessnsesssnnssees 9
G 20 N] N = = R 9
MATHEMATICAL CONVENTIONS ..ottt ettt ettt e et e saaeebe e e saaeebesesbseenbesesbeeebesessnees 10
4.1 FINITEFIELD ARITHMETIC. ..tteiteeiteeereeieteeetessiseesisessasesssesssessssessasessssesssessssessssessssessnsessssessasessnsessasessnsessnne 10
411 TheFinite FIEld Fp. .o 10
o A I o TN T g TR (=N = Lo N SR 10
4.2 ELLIPTICCURVES AND POINTS ..ctiiiiiitiieeiitteeeesteeessteesesteeesassseeessssseessnsaeesanssesesassesesansenesanssesesasssnessnsenesnnnes 13
421 Point Compression Technique for Elliptic Curves over Fj, (Optional) ..., 13
4.2.2 Point Compression Technique for Elliptic Curves over Fom(Optional)........ccveevereenieeninecnieeees 13
4.3 DATA CONVERSIONS......utiieiitiieeeiiteeeeeitteeesetteeeeateeesaiseeaeaataeeeaastesesassseassatseasaassesesassseesantesesaassesesasseeessntesasannes 13
431 Integer-to-OCtet-SriNG CONVENSIONoeiuirieieierieieiesiee ettt sb bbbt st b et b bbb nn e s 13
432 OCtet-Sring-t0-1NtEJEr CONVEISIONieiuiriiieieriei ettt bbbt b et be b nn e e 14
4.3.3 Field-Element-to-OCtet-SIriNg CONVEISIONcc.eeiuirieiriiieisiesie ettt 14
434 Octet-String-to-Field-Element CONVEISIONcciiieiriieireseenes e 15
435 Field-Element-to-1nteger CONVEISIONcoirieeriiieirieieesie ettt e 15
4.3.6 POINt-tO-OCtet-SriNG CONVEISIONviuviiiiieiirieieieriesse sttt st e st st e et sbe s s 15
4.3.7 OCtet-Sring-t0-POINt CONVEISIONoveuiiiiieiiriiieisiesie sttt bbbt 16
CRYPTOGRAPHIC INGREDIENTS.... ..ottt ettt sttt e st e st e s nne e sbe e sbessnbeesneesatessneesnreneenes 16
51 ELLIPTICCURVE DOMAIN PARAMETER GENERATION AND VALIDATIONuutiieiitieeeecieeeesneeeeseeeeeennseeessnnnnas 16
511 Elliptic Curve Domain Parameter Generation and Validation over F ..o, 17
5.1.2 Elliptic Curve Domain Parameter Generation and Validation over Fom........cccooeveieiinenencecceene 17
5.2 KEY PAIRGENERATION AND PUBLICKEY VALIDATION....ccciiitiieiittieeeeiteeeeeireeeseteeeeeeteeeeesseesssseeeessesesannenas 18
521 Key Pair Generation PrilmitiVeccccciiiriiiriieiriiieistese ettt 19
522 Public Key Validation PrimitiVe ..ot 19
5.3 CHALLENGE GENERATION PRIMITIVE. cttiieeiteieeeieee e ettt e eeitteeesetaeeeestaeesessesesasseesaastesesassseesssseasaastesesannenas 20
5.4 DIFFIEHELLMAN PRIMITIVE i cttieeee e e e e ettt e e e e e ettt e e e e e s e taseeeeeasseasantaeeeaaeseanntaeeeaaesasasntaneeeaesesanssrnneanans 20
5.5 IMQV PRIMITIVE ...ttt sttt sttt ettt st sb et e s be e be st e s aeesaeesae e bt e bt easeeae e eheeebe e b e e mbeeabesaeesaeesaeesaeenbeenbesntenas 21
5.6 AUXILIARY FUNCTIONS ttiiiiitie e i eieee e ettt e ettt e e ettt e e e s beeeeeaeeeesetseeeeaabeeesasseeesabseeeaanbesesasseeesansseaeasteeesannenas 21
5.6.1 ASSOCIAtE VAlUE FUNCHION.......cootiiitii ettt ettt et e et e e teeebeseeaeeebeeesseeenbeseenseesnressnreean 21
5.6.2 CryptographiC Hash FUNCIONS............ciiiiiiiicerie ettt 22
5.6.3 Key Derivation FUNCLIONScoiitiiitirtiietesieiet sttt b et ss et se e bt ss s nn e 22
D7 IMAC SCHEMESoeii ettt ettt e ettt e e ettt e e ettt eeeeate e e e eaaeeeesbeeeeaaseeeaasseeaasabeeesassseaessseeeaanbesesasseeessnbaeaeasteeesannenas 23
571 Tagging TransfOrMationcccco ittt 23
5.7.2 Tag Checking TranSfOrmMaLiONcccoirieeruirieieiesieisie st b e se et e e br e sns 23
5.8 ASYMMETRIC ENCRYPTION SCHEMES........uciiiiitiieiiieeeeeitteeeeiteeesatseeeeaiteeesesssesesassessaastesesassesssassessasssesesassens 23

5.8.1 Elliptic Curve ENCryption SChEMEcouciii e e 24

5.8.2 Elliptic Curve Augmented ENCryption SCREMEcooiiiiiriererieee s 25
5.9 SIGNATURE SCHEME.......eiiiiittiee ettt e eeteee e ettt eeeetteeeeeaeeeesabeeeeaaaseeeaasseeaeaabeeesasseeesasseeeaasbesesanseeeesbseaeastesesannenas 26
59.1 SgNing TransfOrMaLiONccoiiieiriricirie sttt bbbt nn e 26
5.9.2 Verifying TransfOorMaLioN..........coiiiiiieereet et b et 27

6 KEY AGREEMENT SCHEMES........c.oi oottt ettt sate e s ate e s ate e sane e sateesane e sateesarnneesanes 27
6.1 EPHEMERAL UNIFIED MODEL SCHEME.......cttiiiieteiiteeeesitteeseiteeesssteeessteeesasseeesaseeessassesesanssssssnssnssanssesesnnnenes 27
6.2 1-PASSDIFFIEHELLMAN SCHEMEcciiiitieee ettt e s sieee e stee e s eaee e e s sateeeeaateeesannseeessaeeesasteeesannaeeesnsenesanssesesnnnnns 28
6.2.1 Initiator TranSfOrMALIONccviiiiiiiiee ettt st s e et e e e s re e e be e e saeeebeeesaee e beresaseesnbeesnrensn 29
6.2.2 Responder TranSfOrMALIONc.eiieiieieeieeieseesee st ste e e e e e e e e teeeesraesseesreesseenseeneemneeeneesnnesnes 29
6.3 STATICUNIFIED MODEL SCHEMEuuiitiitiieeeiteeessteeeesteeeessseesesasseessastesesassesssasseessassesssasssseesnssnssanssesesansnees 29
6.4 CoMBINED UNIFIED MODEL WITHKEY CONFIRMATION SCHEME.....cccictiteeiereeesiteeeeesteeessneeessseeesenssesessnnnas 30
6.4.1 Initiator TranSfOrMALIONccviiiiiiicee et st sre e et e s ae e et e e saee e beeesaeeeeberesareesnbeesnrensn 31
6.4.2 Responder TransSfOrMALIONccviieiiesiereeie et e e seete e et e e e teeaesreesreesreesseenseensemneeeneesnnesnes 32
6.5 1-PASSUNIFIED MODEL SCHEMEuuttiiiittieeeiteeessteeeesteeesssssesesasseesssssesesasssesssassssssassesssssssssesnsssssansesesanseees 33
6.5.1 Initiator TranSfOrMALIONccviiiiiiicee et et s e et e e s e e e be e e saeeebeeesaae e beresareesnbeesarensn 33
6.5.2 Responder TransfOrMALIONcviieriereereeie e seeseese e te e e e e e e e e sseesseesreeseeensesnsemneeennesnnesnes 33
6.6 FULL UNIFIEDMODEL SCHEMEciiiiutee e ittt e eitteeessaeeeesteeessaaseessssseeesantesesassesssnsseesasssesesanssesesnssnssansesesannnees 34
6.7 FULL UNIFIED MODEL WITHKEY CONFIRMATION SCHEMEcciiittieeeiiieeesereeesnteeeeesnteeessneesssseesssnssesessnnnnas 35
6.7.1 Initiator TranSfOrMALIONcccveiiiiiicie ettt et e st e et e e re e e be e e saee e beeesaee e beresareesnbeesareesn 36
6.7.2 Responder TranSfOrMALIONc.eiieiieieereee e seeseese e ee e e e e e e te e e sraesseesreeseeanseensemneeennesnnesnes 37
6.8 STATION-TO-STATION SCHEME ...oetiiiuieeeitieeeeiteeessteeeesteeessssseeesasseeeaatesesaasseeesasseesaassesesssssssssnssnesanssesesnnsnees 37
6.8.1 Initiator TranSfOrMALIONccviiiiiiicie ettt e et e e re e e be e e saeeebeeesaeeeberesareesnbeesnrensn 38
6.8.2 Responder TranSfOrMALIONc.viieiiesiereee e seeseesre et e st e e e e te e e ssaesseesreeseeenseensemneeeneesneesnes 39
6.9 L1-PASSMQV SCHEME ..coitiiiiiiiitii e sttt ettt site bt stee s sbee e ssee s sbee e sseeasbae e sseesbee e aaeeebee e sseeaebeeenseeenbeeessteenbeeenseeebeas 40
6.9.1 Initiator TranSfOrMALIONccviiiiiiicee et s e et e s e e e be e e saee e bee e saeeeeberesareesnbeesnreean 40
6.9.2 Responder TransfOrMALIONcviierieiierieeie e see e se e e e e e e e e e aeseesreesreesaeensesneesneeeaesnnesnes 41
6.10 FULL MQV SCHEME. ..ot i iitiiie st e e ettt ettt e e e s tee e e e ete e e st e e e e antee e s enneeeesaaeeeeanteeeeanneeeesseeeeaanteneeanneeeesnnenenann 41
6.11 FULL MQV WITHKEY CONFIRMATION SCHEMEcottiiitiieeeiiieeeeieeeessteeeeessteeessnseessnsseesssnsessssnsesesnssnesnas 42
6.11.1 Initiator TranSfOrMALIONcouiiiiicce e s e e et e s e e e et e e saeeeeaeeesaaeessreesareesnbeesnrensn 43
6.11.2 Responder TransfOrMALIONccviieiieriereese e see e se e e e e e e e e steseesreesreesseensesnsmeseeaesneesnes 43

7 KEY TRANSPORT SCHEMES. ...ttt s et ate e eae e e sbaeeenee e sareeeesnreeeneas 44
7.1 1-PASSTRANSPORT SCHEME.......uuiiiiitieeeiitiieeeiteeeeeteeeeaateeeeeateeesasseeaaabeeasassesesasseeeaastesesasseesssseesanstesesannnnas 45
711 INitiator TranSfOrMALIONccveiiriieeie et eeee et eee et e e tee et s esaeeebesesseeebesesseeebesesseeeberesnseesnressnreesn 45
7.1.2 Responder TranSfOrmationoooceiieiiiie e 46
7.2 3-PASSTRANSPORT SCHEME.......uuiiiiitieeeiitieeeeiteeeeeiteeeeeeteeeeaasteeeaatseeaaateeesaassesesasseeeaastesesasseessnsseseaastesesasnenas 46
721 INitiator TranSfOrMALIONoceeicrieeeee ettt eeeeeetee e tee et e esteeebesesseeebesessseebesesseeeberesnseesnressnseesn 47
7.22 Responder TranSfOrmation ... bbb 47

8 ASN L L SY N T A X ittt et s e et e st e e e ebe e st e e s abeesabeeeaseesabeesseesabeeaaseesabesanseesabesenseaseeebeeeaaeeeseeesaneenneas 48
ANNEX A (NORMATIVE) NORMATIVE NUMBER-THEORETIC ALGORITHMS ... 49
A.1 AVOIDINGCRYPTOGRAPHICALLY WEAK CURVES......uuiiiiitiieeeiieeeeettee e ettt e e eeateeesesseeasabaeasasssesesessesesssesesannes 49
Nt R A 1 o101V (@ LV A @o g 1o [1o o [ERR 49
AL2 The ANOMAIOUS CONUITION.......ccccuiiiieccie ettt ettt eere e s e e ere e e s abe e eareesareesnseesabeseeseeesnreensees 49
A2 PRIMALITY coiiiitiie ettt e ettt ettt e ettt e e e te e e e s etaeeeeaabeeeeaaseeeesabseeeaasseeesasseeessnbeeaeaastesessseeasanbeeesassesesassenesaseeanannes 49
A21 AProbabilistic Primality TESE.... ... e 49
A2.2 Checking for NEar Primality...... oot 50
A.3 ELLIPTICCURVE ALGORITHMS......ttiiiiitteeeiitieeeeeiteteeetteeesetteeeeaaseeesaseeasaabeeasaastesesasseeasantseesaassesesasseeassnsesasanne 50
A31 Finding aPoint Of Large Prime OFOEr ...t e 50
A3.2 Sdecting an Appropriate Curve and POINTccoeoeiiriienerieneseesese e e 50
A3.3 Sdecting an Elliptic Curve Verifiably at RANAOMcciiiiiiiiiiee e 51
A3.4 Verifying that an Elliptic Curve was Generated at RANAOMccccceiireineneieneneeee e 52

A.4 PSEUDORANDOM NUMBER GENERATIONcciiuttiieieiiiiittrtiesseeisssssseesesssasssssssssesssssssssssseesssssssssssssessssssssssens 53

A4l Algorithm Derived fFromM FIPS 186ccuiiiiirieiiirieieitsiee st 53
ANNEX B (INFORMATIVE) MATHEMATICAL BACKGROUNDccocceiriiiriiinieriecsieeee s 55
B.l THEFINITEFIELD Fpueiciiiee bbb et 55
B.2 THE FINITEFIELD Fom....nueiiiiiiiei ettt ettt ettt e e ettt e e ettt e e et e e e s baeeeeeabeeeeesnseaesnbseeaansbeeesanseeeesaseeeanan 55
B.2.1 POIYNOMIAI BASES......c.ecuiiieieeieiteseeeete sttt sttt b e et b e et s b e e bt bt b e et b et b e e 56
B.2.2 Trinomial and Pentanomial BASES..........ccceiiieiereneresieeieeeeie ettt st sne s e enneeeeneas 57
2 I T o 0= = =SSR 57
B.2.4 GausSian NOIMAl BASESccueiiririeieieierieiieeeseeste st steseeeseeseeseeseessestesaeeseeneeneesessestessessesnsesneeneensenes 58
B.3 ELLIPTICCURVES OVER Fpyueiiiiietititiiii bbb 58
B.4 ELLIPTICCURVESOVER Fom .uuuiiiiiiiiiiiitiiiiei e ceiiitte e e e s e et e e e e e s s essaabaeeeesesesaaabasssesssesassbasasesesesansbasenesesssansnrens 59
ANNEX C (INFORMATIVE) TABLESOF TRINOMIALS, PENTANOMIALS, AND GAUSSIAN NORMAL
B A S E S e e R R E R e h e e e e R e bt SR e R e eRe oA e e A e e R e Ee AR e R e Rt ARt eE e eReeae et e n e beeReebenneeneenen 63
C.1 TABLEOFGNB FOR Fom.. ittt ettt ettt eb e b e b e et e et e s aeesmeesaeesaeeneeenneeanenas 63
C.2 |IRREDUCIBLE TRINOMIALS OVERFJ ..ttt sttt ettt st b e bt te s te s e s saeesaeenneenesnneeas 74
C.3 |RREDUCIBLE PENTANOMIALS OVER .. .eiiuiiitiiitieiteeie ettt ettt st sttt st saeenne e snneeas 78
C.4 TABLE OF FIELDSFomWHICH HAVE BOTH ANONB AND A TPB OVER Fpuurviiiiiiiiciiieeie e 84
ANNEX D (INFORMATIVE) INFORMATIVE NUMBER-THEORETIC ALGORITHMS........coconiniriiene, 85
D.1 FINITEFIELDS AND MODULAR ARITHMETIC ...cetttttiuttiutasteesteenteeusesseasseassesssessesssessesssesssesssesnsesnsessssssssssessses 85
D.1.1 Exponentiation in @ FiNite FIeldcooiiiiiiei e e 85
D.1.2 Inversion inaFinite FIEld ..ottt st eeneas 85
D.1.3 Generating LUCAS SEOUENCESc.coutrueieiirieiete sttt sttt sttt et se et a et b bbbt bese e b e e 85
D.1.4 Finding Sguare ROOtS MOUIO @ PIIMEc.oiiiiiiieiiereee et 86
D.15 Traceand Half-Trace FUNCLIONS.........ccciiiiiiieieeese sttt st see e eneeeeneas 86
D.1.6 Solving QuadratiC EQUatiONS OVEr oMc.cieeieeiierie e e siestee e eeseesee e e sreesaeeeeennesseesseenseesenn 87
D.1.7 Checking the Order of an Integer ModUlO @ Primeccccveiiiiesieieece e 87
D.1.8 Computing the Order of a Given Integer MOdUlOo @ Primeccccvevviieniece et 88
D.1.9 Constructing an Integer of a Given Order Modulo @ Primecccocvecieeeneecinceeseee e 88
D.2 POLYNOMIALSOVER AFINITEFIELD ..ooiteeiteeteeieereseesieesseesne e s e sseesne e sssesnesmessseesmeenneenneennesneesneennesnnens 88
D.21 GCD’sSoVer @FiNItEFIEId.. ..o 88
D.2.2 Finding a Root in Fom of an Irreducible Binary POlynomial ... 88
D.2.3 ChanQgE Of BASISc.eiuiuiitirieiirtiisiereet ettt ettt bbbt b et bt ettt e et re e 89
D.2.4 Checking Binary Polynomials for IrreduCiDility ..o 91
D.3 ELLIPTICCURVE ALGORITHMS. ...ccuuteuttattarteesteeatesseaessueesseasseaassaastassasssassesssessesssesassssessaesssesnsesnsessssssesssesssens 91
D.3.1 Finding aPoint 0n an EHIPtC CUMVEccoi ittt 91
D.3.2 Scalar Multiplication (Computing a Multiple of an Elliptic Curve Point)ccccoevvennenncneeennen 92
ANNEX E (INFORMATIVE) COMPLEX MULTIPLICATION (CM) ELLIPTIC CURVE GENERATION
Y 1 0 OSSPSR 93
E.1 MISCELLANEOUSNUMBER-THEORETIC ALGORITHMS.....ccuiitirteruieterueeseeneeseseessessessesseseensessessessessessessessennenns 93
E.11 Evaluating Jacobi SYMDOIScoiiiiieiiieeiie ettt s e st 93
E.1.2 Finding Square ROOtS MOAUIO @ POWES Of 2.......c.coiiiiiiiieieereese e 94
E.1.3 Exponentiation Modulo @ PolYNOMIAlccccoiiiiiiiiiiene e 94
E.1.4 Factoring Polynomials over Fp (Special Case).........ccovriiiiiiiiiiiiiiiiinnnns s 94
E.15 Factoring Polynomials over F, (SPECIal CaSE).....ccvrrririeirierieierieesieseete ettt sne e 95
E.2 CLASSGROUP CALCULATIONS.cutttutiattesteesterstesseasssueesseasseaaseaaseassasseasseasessesasessssssesssesssesnsessessssssesssesssens 95
2 N © = V1= SRR 95
E.22 Class Group and Class NUITDEN ..ottt sttt 95
E.2.3 Reduced Class POIYNOMIAISccoiiiiiiieiie ettt e e 96
E.3 COMPLEX MULTIPLICATION . utiutteutteuteaueasteatestessssusssaeesseasseaaseasssassasssassessesasesssessssssesssesssesnsesnsessssssesssesssens 98

-V -

[T R © Y.< Y/ 1 =YV O 98

E.3.2 Finding aNearly Prime Order oVer Fp.......cooiiiiiis s 99

E.3.3 Finding aNearly Prime Order OVEr F oM.ottt s 101

E.34 Constructing a Curve and Point (Prime CaSE)cccveeerierieerreesteeseeeseeseeseeseeesseensesnsessesssesssens 102

E.3.5 Constructing a Curve and Point (BiNary CaSE)cccceiieererieeieesesieeseestesieesreeseesseesseesseseesseenseens 103
ANNEX F (INFORMATIVE) AN OVERVIEW OF ELLIPTIC CURVE SYSTEMS......cccooiiireereeree 105
ANNEX G (INFORMATIVE) COMPARISON OF ELLIPTIC CURVESAND FINITE FIELDS.................. 106
ANNEX H (INFORMATIVE) SECURITY CONSIDERATIONS......ooiiiereceeese et 108
H.1 THEELLIPTICCURVE DISCRETE LOGARITHM PROBLEM.........ciitiitietietieiieseeasteesteebesseesessessaessseessesnsesnsenns 108
H.L1 SOMWAIE ALLACKS.......cctiecticiecie ettt ettt e e s e st e sae e s ae e te e aeesaeeebe et e enbeeasbe e beenteensesnnesas 109
H.1.2 HardWarE ALACKScciiiiieieiie ettt ettt ettt et e et e e te e sae e sreesaeetesaeesbeasbeesbeenbeeabesateenseensesnnesas 110
H.1.3 Key Length CONSIAEratioNS.c.cuiirieiriiieiriiie ettt s e 110

H.2 ELLIPTICCURVE DOMAIN PARAMETERSccutttttittertesteseesueesueasseassessesssesssasseassessessesssssasssaeesseessesnsesnsenns 110
H.3 KEY PAIRS ...ttt ettt h et b e e bt e e e s ae e s he e sae e oAt e bt eas e eaeeea e e b e e b e en b e eabesabesaeesaeesaeanbeebeanreaas 112
H.4 KEY ESTABLISHMENT SCHEMES......ccittitiettisteesteestessteseessessaessueasseanseassesssssssassesssesnsesasesssesssssesssesssesnsesnsenns 112
H.4.1 The ECDLP and Key Establishment SChemes..........c.coiiiiiiiee e 112

H.4.2 Security Attributes and Key EstablisShment SChemes ..o 113
H.4.3 Security Attributes of the Schemesin thisStandard...........cocccveineinir e 113

H.4.4 ApPropriale KeY LENGENS ..ottt b ene e 115

H.5 VALIDATIONISSUEScoitiiiteitietesieeteeiee e sie st s te sttt et e tessesaesbesaesbesaeeseeeeneesbesaeebesaeese e e ensanseseesbesaeseeeneensenes 116
ANNEX | (INFORMATIVE) ALIGNMENT WITH OTHER STANDARDS.......ccccviiiinireereeeseeesieenes 119
ANNEX J (INFORMATIVE) PATENTS. ...ttt ettt sttt se et e stesae e e eneeneeeeseesnesnas 120
ANNEX K (INFORMATIVE) EXAMPLES ...ttt st bbb 121
ANNEX L (INFORMATIVE) REFERENGCES........c.oo ottt sttt s sne e nes 122

Figures

Figure 1 — Data Types and Conversion CONVENTIONScuuiiiiiaiiiiiiiiiiiiieeie e et e e e e e e e s e s s ee b s smmmmmmmmmmeneeees
Figure 2 - Ephemeral Unified MOdel SChemM.........oooiiiiiiiii e e
Figure 3 — 1-Pass Diffie-Hellman SCheme...........ouie s e
Figure 4 - Static Unified MOl SCREME...........ooiiii e ———— e
Figure 5 - Combined Unified Model with Key Confirmation Scheme
Figure 6 - 1-Pass Unified MOElI SChEME ... ——
Figure 7 - Full Unified MOAEI SCREMEcooiiiiiiiiii et e e
Figure 8 - Full Unified Model with Key Confirmation Scheme
Figure 9 — Station-to-Station SCREMEcooi i — s
Figure 10 - 1-Pass MQV SCREIME.......cii ittt et e e e e e e e e e s s s st s emmemmenm——— e e s e e e nnnnes
Figure 11 - Full MQV Scheme
Figure 12 - Full MQV with Key Confirmation SCREME..........coiiiiiiiiii e s
Figure 13 - 1-Pass Key TranSPOrt SCREMEuuuiiiiiiiiee ettt e e e e e e e e s cmmmmmmmmmmmmmn e
Figure 14 - 3-Pass Key TranSPOrt SCREMEuuuiiiiiiiiie ettt e e e e e e st s dmmmmmmmmmmmmn e

-Vi -

Tables

Table C-1 — The type of GNB that shall be USEFEBEuviiiiiiiiiiiiceecc e 63
Table C-2 — Irreducible trNOMIAIE + X4 L OVEI Fo....oueeeeeee e ee e e e et et e e e e et et e e eee et et et eeeeeeeeeeeeee s 74
Table C-3 — Irreducible pentanomiadB + X + X2 + X% 4+ L OVEIFvovieeeeeeeeeeee et 78
Table C-4 — Values ah for which the field=,m has both an ONB and a TPB OW&Xcccceeeieeeeeiiiiieeeiiiiinnn. 84
Table G-1 —Fp* andE(Fg) Group INFOrMEatioNcccocuiiiiiiiiiiii 106
Table G-2 — Comparison of Notation in ANSI X9.42 and ANSI X9.63
Table G-3 — ANSI X9.42 and ANSI X9.63 SEIUPDeeviiiiiiiiiieiiiiiiee ettt s
Table G-4 — ANSI X9.42 and ANSI X9.63 KeY GENETALIONccccuveiiieiiiiiiiieeiiiiiet et s
Table G-5 — Comparison of the Full Unified Model Schemeoeviiiii e

Table H-1 - Computing power required to compute logarithms with the P@lardthod.cccoiiiiiineee 109

Table H-2 — Attributes Provided by Key Establishment Schemes ... s 115
Table H-3 - Validation Methods and the Risks they Mitigate.............ocooiiiiiiiiiiii e 118

- Vii -

X9.63-199x

X9.63-1998, Public Key Cryptography For The Financial Services
Industry: Key Agreement and Key Transport Using Elliptic Curve
Cryptography

1 Scope

This Standard defines key establishment schemes which employ asymmetric cryptographic techniques. The
arithmetic operationsinvolved in the operation of the schemes take place in the algebraic structure of an elliptic
curve over afinitefield.

Both key agreement and key transport schemes are specified.

The schemes may be used by two parties to compute shared keying data which may then be used by symmetric
schemes to provide cryptographic services like data confidentiality and data integrity.

Supporting mathematical definitions and examples are also provided.

2 Definitions, Abbreviations and References

2.1 Definitions and Abbreviations

addition rule

An addition rule describes the addition of two elliptic curve points P, and P, to produce athird elliptic curve point
Ps. (See Annexes B.3 and B.4.)

associate value

Given an elliptic curve point and corresponding elliptic curve parameters, the associate value is an integer associated
with the point. (See Section 5.6.1.)

asymmetric cryptographic algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key; the two keys have the property
that, given the public key, it is computationally infeasible to derive the private key.

auxiliary function

An auxiliary function is atransformation that forms part of a cryptographic scheme but is auxiliary rather than
centra to the goa of the scheme.

base point (G)

A distinguished point on an elliptic curve of large prime order n.

basis

A representation of the elements of the finite field Fom. Two specia kinds of basis are polynomial basis and normal
basis. (See Annex B.2.)

binary polynomial

A polynomia whose coefficients are in the field F,. When adding, multiplying, or dividing two binary polynomials,
the coefficient arithmetic is performed modulo 2.

bit string

A bit string is an ordered sequence of 0's and 1's.

certificate

The public key and identity of an entity together with some other information, rendered unforgeable by signing the
certificate with the private key of the Certification Authority which issued that certificate. In this Standard the term
certificate shall mean a public-key certificate.

Certification Authority (CA)

A Center trusted by one or more entities to create and assign certificates.

-1-

X9.63-199x

challenge

Data sent from U to V during an execution of a protocol which in part determines V's response. In this Standard,
challenges will be bit strings at least 80 bits in length.

characteristic 2 finitefield

A finite field containing 2 elements, whemn = 1 is an integer.

compressed form

Octet string representation for a point using the point compression technique described in Section 4.2. (See also
Section 4.3.6.)

cryptographic hash function

A (mathematical) function which maps values from a large (possibly very large) domain into a smaller range. The
function satisfies the following properties:

1. it is computationally infeasible to find any input which maps to any pre-specified output;

2. it is computationally infeasible to find any two distinct inputs which map to the same output.
cryptographic key (key)

A parameter that determines the operation of a cryptographic function such as:

1. the transformation from plaintext to ciphertext and vice versa,
2. the synchronized generation of keying material,
3. a digital signature computation or verification.

cryptographic protocol

A cryptographic scheme in which an ordered sequence of sets of data is passed between two entities during an
ordinary operation of the scheme.

cryptographic scheme

A cryptographic scheme consists of an unambigous specification of a set of transformations capable of providing a
cryptographic service when properly implemented and maintained.

cryptography

The discipline which embodies principles, means and methods for the transformation of data in order to hide its
information content, prevent its undetected modification, prevent its unauthorized use, or a combination thereof.
cryptoperiod

The time span during which a specific key is authorized for use or in which the keys for a given system may remain
in effect.

cyclic group

The group of point&(F,) is said to beyclic if there exists a poirRLIE(F,) of ordern, wheren = #E(F,). In this
caseE(Fy) = {kP: 0<k<n-1}.

data confidentiality

The assurance provided to entifythat data is unintelligible to entities other thaandV.

data integrity

The assurance provided to entifythat data has not been modified by entities otherthandV.

data origin authentication

The assurance provided to entifythat data is fronv.

digital signature

The result of a cryptographic transformation of data which, when properly implemented, provides the services of:

1. origin authentication,

2. data integrity, and

3. signer non-repudiation.

EC

Elliptic curve.

ECDLP

Elliptic Curve Discrete Logarithm Problem. (See Annex H.)
ECDSA

Elliptic Curve Digital Signature Algorithm.

eliptic curve

An dlliptic curve overFq is a set of points which satisfy a certain equation specified by 2 paramateth, which
are elements of a field,. (See Section 4.2.)

-2-

X9.63-199x

dliptic curvekey pair (Q, d)

Given particular éliptic curve domain parameters, an elliptic curve key pair consists of an elliptic curve public
key (Q) and the corresponding elliptic curve private key (d).

dliptic curve private key (d)

Given particular éliptic curve domain parameters, an elliptic curve private key, d, is a statistically unique and
unpredictable integer in theinterval [1, n-1], where nis the prime order of the base point G.

elliptic curve public key (Q)

Given particular dliptic curve domain parameters, and an dliptic curve private key d, the corresponding elliptic
curve public key, Q, isthe elliptic curve point Q = dG, where G is the base point. Note that Q will never equal ¢,
sincel<d<n-1

elliptic curve domain parameters

Elliptic curve domain parameters are comprised of afield size g, indication of basis used (in the case g = 2™), an
optional SEED, two elements a, b in Fq which define an elliptic curve E over Fq, apoint G = (Xg,Ys) of prime order
in E(F,), the order n of G, and the cofactor h.

See Sections 5.1.1.1 and 5.1.2.1 for a complete specification of elliptic curve domain parameters.

elliptic curve point

If Eisan dliptic curve defined over afield Fq, then an elliptic curve point P is either: a pair of field elements (X,, Yp)
(where x,, Y, [Fg) such that the values x = x, and y = y,, satisfy the equation defining E, or a specia point ¢ called
the point at infinity.

encryption scheme

An encryption scheme is a cryptographic scheme capable of providing data confidentiality.

entity

A party involved in the operation of a cryptographic system.

entity authentication

The assurance provided to entity U that entity U has been involved in a real-time communication with entity V.
ephemeral

Ephemeral dataisrelatively short-lived. In this Standard ephemeral datais data specific to a particular execution of a
cryptographic scheme.

explicit key authentication

The assurance provided to entity U that only entitiesU and V are possibly capable of computing the session key and
that the entities U and V are actually capable of computing the session key.

flow

A flow in aprotocol isa set of data sent from U to V or received by U from V at a particular stage of an operation of
the protocol.

forward secrecy

The assurance provided to entity U that the session key established between entitiesU and V will not be
compromised by the compromise of either entity’s static secret key in the future. Also known as perfect forward
secrecy.

Gaussian normal basis (GNB)

A type of normal basis that can be used to represent the elements of the finkerfié€Bke Section 4.1.2.2.)
hash function

See cryptographic hash function.

hash value

The result of applying a cryptographic hash function to a bit string.

hybrid form

Octet string representation for both the compressed and uncompressed forms of an elliptic curve point. (See Section
4.3.6.)

implicit key authentication

The assurance provided to entifythat only entities) andV are possibly capable of computing the session key.
initiator

An entity involved in an operation of a protocol that sends the first flow of the protocol.

X9.63-199x

irreducible binary polynomial

A binary polynomial f(x) is irreducible if it does not factor as a product of two or more binary polynomials, each of

degree less than the degree of f(X).

key

See cryptographic key.

key agreement scheme

A key agreement scheme is a key establishment scheme in which the keying data established is a function of

contributions provided by both entities in such away that neither party can predetermine the value of the keying data.
key-compromise imper sonation resilience

The assurance provided to entity U during an execution of akey establishment scheme that the compromise of U’s

static private key has not enabled the impersonatidftotJ.

key confirmation

The addition of flows to a key establishment scheme providing implicit key authentication so that explicit key
authentication is provided.

key derivation function

A key derivation function is a function which takes as input a shared secret value and outputs keying data suitable for
later cryptographic use.

key establishment schemes

A key establishment scheme is a cryptographic scheme which establishes keying data suitable for subsequent
cryptographic use by cryptographic schemes to its legitimate users. Key agreement schemes and key transport
schemes are types of key establishment schemes.

keying data

Data suitable for use as cryptographic keys.

keying material

The data (e.g., keys, certificates and initialization vectors) necessary to establish and maintain cryptographic keying
relationships.

key transport schemes

A key transport scheme is a key establishment scheme in which the keying data established is determined entirely by
one entity.

known-key security

The assurance provided to entifythat the session key established by an execution of a key establishment scheme
will not be compromised by the compromise of other session keys.

MAC scheme

A MAC scheme is a cryptographic scheme capable of providing data origin authentication and data integrity.
non-repudiation

The assurance provided to entifythatU is able to prove to a third party that data is fAdm

normal basis (NB)

A type of basis that can be used to represent the elements of the finiiediglfiee Annex B.2.3.)

octet

An octet is a bit string of length 8. An octet is represented by a hexadecimal string of length 2. The first hexadecimal
digit represents the four leftmost bits of the octet, and the second hexadecimal digit represents the four rightmost bits
of the octet. For exampleD9represents the bit string 10011101. An octet also represents an integer in the interval
[0, 255]. For example,D represents the integer 157.

octet string

An octet string is an ordered sequence of octets.

optimal normal basis (ONB)

A type of Gaussian normal basis that can be used to represent the elements of the fiRjte {®ék Section

4.1.2.2.) There are two kinds of ONB, called Type | ONB and Type Il ONB.

order of acurve

Theorder of an elliptic curve E defined over the fielé, is the number of points df includinge. This is denoted

by #E(F).

X9.63-199x

order of a point

The order of a point P isthe smallest positive integer n such that nP = ¢ (the point at infinity).

owner

The entity whose identity is associated with a private/public key pair.

pentanomial

A polynomial of the formx™ + X +x +x“+ 1, where 1 < k1 < k2 < k3< m-1.

pentanomial basis (PPB)

A type of polynomial basisthat can be used to represent the elements of the finite field Fom. (See Annex B.2.2.)
point compression

Point compression allows apoint P = (X, yp) to be represented compactly using X, and a single additional bit Yo
derived from x, and y, (See Section 4.2.)

polynomial basis (PB)

A type of basis that can be used to represent the elements of the finite field Fom. (See Annex B.2.1.)
primefinitefield

A finite field containing p elements, where p is an odd prime number.

private key

In an asymmetric (public-key) system, that key of an entity’s key pair which is known only by that entity.
protocol

See cryptographic protocol.

public key

In an asymmetric key system, that key of an entity’s key pair which is publicly known.

reduction polynomial

The irreducible binary polynomi#(x) of degreemthat is used to determine a polynomial basis representation of
Fzm.

responder

An entity involved in an operation of a protocol that does not send the first flow of the protocol.

scalar multiplication

If kis a positive integer, thed® denotes the point obtained by adding togekhmpies of the poir. The process
of computingkP from P andk is calledscalar multiplication.

SEED

Random value input into a pseudo-random bit generator (PRBG) algorithm.

session key

A key established by a key establishment scheme.

shared secret value

An intermediate value in a key establishment scheme from which keying data is derived.

signature scheme

A signature scheme is a cryptographic scheme capable of providing data origin authentication, data integrity, and
non-repudiation.

static

Static data is relatively long-lived. In this Standard static data is data common to a number of executions of a
cryptographic scheme.

statistically unique

For the generation af-bit quantities, the probability of two values repeating is less than or equal to the probability
of two n-bit random quantities repeating.

symmetric cryptographic scheme

A cryptographic scheme in which each transformation is controlled by the same key.

trinomial

A polynomial of the fornx™ + X + 1, where K k< m-1.

trinomial basis (TPB)

A type of polynomial basis that can be used to represent the elements of the finkgnfiéBke Annex B.2.2.)
typel ONB

A kind of optimal normal basis. (See Section 4.1.2.2.)

X9.63-199x

typell ONB

A kind of optimal normal basis. (See Section 4.1.2.2.)

uncompressed form

Octet string representation for an uncompressed elliptic curve point. (See Section 4.3.6.)

unknown key-shareresilience

The assurance provided to entity U that, if entities U and V share a session key, V does not mistakenly believe the
session key is shared with an entity other than U.

valid eliptic curve domain parameters

A set of eliptic curve domain parameters that have been validated using the method specified in Section 5.1.1.2
or Section 5.1.2.2.

XOR

Bitwise exclusive-or (also hitwise addition mod 2) of two bit strings of the same bit length.

x-coordinate

The x-coordinate of an éliptic curve point, P =(X,, Yp), IS X,

y-coordinate

The y-coordinate of an elliptic curve point, P =(X,, Yp), iS Y.

2.2 Symbols and Notation

[X] Indicates that the inclusion of the bit string or octet string X is optional.

[x V] Theinterval of integers between and including x and y.

Bl Ceiling: the smallest integer = x. For example, [= 5 and [5.3[F 6.

Bl Floor: the largest integer < x. For example, [5[}= 5 and [5.3[F 5.

x mod n The unique remainder r, 0 <r < n- 1, when integer x isdivided by n. For example, 23 mod 7 = 2.

XxEy(modn) xiscongruenttoy modulon. That is, (x mod n) = (y mod n).

ab Elements of F that define an elliptic curve E over F,

avf(P) The associate value of the EC point P. (See Section 5.6.1.)

B MOV threshold. A positive integer B such that taking discrete logarithms over Fs is at least as
difficult astaking elliptic curve logarithms over F,. For this Standard, B shall be =20.

d Elliptic curve private key.

E An elliptic curve over thefield Fq defined by a and b.

E(Fy The set of al points on an elliptic curve E defined over Fq and including the point at infinity 0.

#E(Fy) If E isdefined over Fq, then #E(F,) denotes the number of points on the curve (including the point
at infinity 0). #E(F,) is called the order of the curve E.

f The length of nin bits; f=[log,nL]

Fom The finite field containing g = 2™ elements, where mis a positive integer.

Fo Thefinite field containing g = p elements, wherep isaprime.

Fq Thefinite field containing g elements. For this Standard, g shall either be an odd prime number (q
=p, p > 3) or apower of 2 (q=2").

G A distinguished point on an elliptic curve called the base point or generating point.

ged(x, y) The greatest common divisor of integersx and y.

h h = #E(F¢)/n, where n is the order of the base point G. h is called the cofactor.

I The length of afield element in octets; | = [1/ 8L

l o Upper bound on the largest prime divisor of the cofactor h.

log, x The logarithm of x to the base 2.

m The degree of thefinite field Fom.

mod Modulo.

mod f(x) Arithmetic modulo the polynomial f(x). If f(x) isabinary polynomial, then all coefficient
arithmetic is performed modulo 2.

mod n Arithmetic modulo n.

X9.63-199x

n The order of the base point G. For this Standard, n shall be greater than 2*®° and 4Vq, and shall be
aprime number. nisthe primary security parameter. See Annex H for more information.

0 A specia point on an elliptic curve, called the point at infinity. Thisisthe additive identity of the
elliptic curve group.

p An odd prime number.

P An EC point.

q The number of elementsin the field .

Q Elliptic Curve public key.

I min L0\l/g()er bound on the desired (prime) order n of the base point G. For this Standard r,, shall be
>2°,

t The length of afield element in bits; t = [log, gLl In particular, if g = 2", then afield element in
F.m can be represented as a bit string of bit lengtht = m.

T In the probabilistic primality test (Annex A.2.1), the number of independent test rounds to execute.
For this Standard T shall be =250.

Tr Trace function. (See Annex D.1.5.)

u,Vv An entity or a bit string denoting the identity of an entity. Usually U is used to denote the initiator
of aprotocol and V the responder.

Xo The x-coordinate of a point P.

IXIl Length in octets of the octet string X.

X||Y Concatenation of two strings X and Y. X and Y are either both bit strings, or both octet strings.

xgay Bitwise exclusive-or (also bitwise addition mod 2) of two bit strings X and Y of the same bit length.

Yo The y-coordinate of a point P.

yp The representation of the y-coordinate of a point P when point compression is used.

zorZ A shared secret value.

Z, The set of integers modulo p, where p is an odd prime number.

Positional notation is used to indicate the association of avalue to a particular entity, to indicate the life expectancy

of avalue, or to indicate the association of avalue to a particular scheme. For example:

— dy is an EC private key owned by entity

— Z.is an ephemeral shared secret value.

— Genc is an EC base point associated with an encryption scheme.

— Qsv is a static EC public key owned by entity

Occasionally positional notation is also used to indicate a counter value associated with some data, or to indicate the
base in which a particular value is being expressed if there is some possibility of ambiguity. For éXashple,
denotes the value &fash; when the counterhas value 1, and @ldenotes that the value 01 is written in

hexadecimal.

With the exception of notation that has been well-established in other documents, where possible in this Standard
capital letters will be used in variable names that denote bit strings or octet strings, and capital letters will be
excluded from variable names that denote field elements or integers. For exhispkeed to denote the integer that
specifies an EC private key, ahthcData is used to denote the bit string to be tagged using a MAC scheme.

Primed variables denote variables whose validity has not been verified. For eXdagilag’ denotes the purported

tag onMacData, andQ,,/ denotes the purported ephemeral EC public key of evitity

2.3 References

The following standards contain provisions which, through reference in this text, constitute provisions of this
American National Standard. At the time of publication, the editions indicated were valid. All standards are subject
to revision, and parties to agreements based on this American National Standard are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated below. Accredited Standards Committee
X9 (ASC X9) maintains a register of currently valid financial industry standards.

ANSI X3.92-1981 Data Encryption Algorithm.

ANSI X9.19-1996 Financial Institution Retail Message Authentication.

ANSI X9.30-1993, Part ZPublic key cryptography using irreversible algorithms for the financial services industry:

The Secure Hash Algorithm 1 (SHA-1) (Revised).

X9.63-199x

ANSI X9.62-1999, Public key cryptography for the financial servicesindustry: The Elliptic Curve Digital Sgnature
Algorithm (ECDSA).
ANSI X9.71-199x, NWI. 1998. Working draft.

3 Application

3.1 General

The explosion in the use of electronic mediato expedite commerce and financial transactions in recent years has led
to the need for well-established cryptographic schemes that can provide services such as dataintegrity and data
confidentiality.

Symmetric schemes such as Triple DEA make an attractive choice for the provision of these services - systems using
symmetric techniques are efficient, and their security requirements are well-understood. Furthermore, these schemes
have been standardized (for examplein [1] and [3]) to facilitate interoperability between systems.

However, the major drawback with the implementation of such schemesis that any two communicating entities must
establish in advance a shared secret key. Asthe size of a system or the number of entities using a system explodes,
this can lead to a key management problem.

An attractive solution to this key management problem is for a system to employ asymmetric techniques that allow
any pair of entities to establish a shared secret key suitable for use by a symmetric scheme despite the fact that the
two entities may never have previously engaged in a secure communication together.

Such asymmetric techniques are known as asymmetric key establishment schemes.

3.2 The Schemes in this Standard

This Standard specifies asymmetric key establishment schemes. Both key agreement and key transport schemes are
specified. The operation of each of the schemes employs arithmetic operations in the group of points on an elliptic
curve defined over afinite field.

The asymmetric key establishment schemes in this Standard are used by an entity U who wishes to establish a
symmetric key with another entity V. Each entity has an EC key pair. If U and V simultaneously execute a scheme
with corresponding keying materia asinput, then at the end of the execution of the scheme, U and V will share
keying data. The keying data can then be used to supply keys for symmetric algorithms. The precise method used to
keys supply for symmetric algorithms from the keying data, for exampl e setting parity bits or supplying three keys
for Triple DEA, is beyond the scope of this Standard.

This Standard specifies a variety of asymmetric key establishment schemes. Each of the mechanisms, when
implemented securely and embedded within a cryptographic system in an appropriate manner, is capable of
providing two entities with a shared secret key suitable for use in symmetric algorithms like Triple DEA.

A variety of schemes are specified because of the wide variety of servicesthat it may or may not be desirable for a
key establishment scheme to provide depending on the environment in which the schemeis going to be used. The
secret key may be agreed by both entities or transported from one entity to the other. Known-key security may be
more or less desirable. Any combination of the services of entity authentication, key-compromise impersonation, and
forward secrecy may be required. These are implementation specific decisions which this Standard attempts to
facilitate.

However, this Standard recommends that any implementation of the schemes specified provides explicit key
authentication of any key agreed using the key establishment schemes. Many of the schemes specified here do not
directly provide explicit key authentication, and thus these schemes should be embedded in systems in such away
that explicit key authentication is additionally provided unlessit is determined that explicit key authentication is not
required. For each of the schemes specified here one extension with key confirmation is provided as an example of
how explicit key confirmation may be provided. Further examples can be found in ANSI X9.70 [9].

The schemes in this Standard employ other cryptographic transformationsin their operation. The transformations
used are: the Data Encryption Algorithm (DEA) specified in [1], the DEA-based MAC specified in [3], the Secure
Hash Algorithm (SHA-1) specified in [5], the Elliptic Curve Digital Signature Algorithm (ECDSA) specifiedin [8],
and HMAC specified in [10].

X9.63-199x

3.3 Implementing the Schemes Securely

During the description of each scheme specified in this Standard, alist of prerequisites for the operation of the

scheme is given. These prerequisites must be satisfied by any implementation of the scheme.

Two common prerequisites for the implementation of schemesin this Standard are that al entitiesinvolved in the use

of the schemes are provided with an authentic copy of the élliptic curve parameters being used and that every entity

is provided with a genuine copy of every other entity’s static public key. The latter binding between an entity and its
static public key may be accomplished by using a Certification Authority which generates a certificate in accordance
with the procedures specified in [7].

However, satisfying the stated prerequisites is not enough to insure the security of an implementation.

The secure implementation of the schemes in this Standard is also dependent upon:

1. The prevention of unauthorized disclosure, use, modification, substitution, insertion, and deletion of an
entity’s static private kegls.

2. The prevention of unauthorized modification, substitution, insertion, and deletion of the elliptic curve
parameters being used.

3. The secure implementation of the transformations involved in an execution of a scheme so that the integrity

and confidentiality of the computations involved is maintained.
Note that this includes the secure destruction of any ephemeral values involved in the operation of a scheme. Note
also, however, that the effect of some of the most common breaches in the above requirements may be minimized by
the selection of an appropriate scheme that provides, for example, the service of forward secrecy or known-key
security.
Finally, secure implementation of the schemes does not guarantee the security of the operation of the
implementation. It is the responsibility of the operator to put an overall process in place with the necessary controls
to insure the secure operation. The controls should include the application of appropriate audit tests in order to verify
compliance with this Standard.

3.4 Annexes

The annexes to this Standard provide additional requirements and information on the schemes and primitives
specified in this Standard and their implementation.

The following normative annex is an integral part of the standard which, for reasons of convenience, is placed after
all other normative elements.

Annex Contents
A Normative Number-Theoretic Algorithms

The following informative annexes give additional information which may be useful to implementors of this
Standard.

Annex Contents
B Mathematical Background
C Tables of Trinomials, Pentanomials and Gaussian Normal Bases
D Informative Number-Theoretic Algorithms
E Complex Multiplication (CM) Elliptic Curve Generation

Method

An Overview of Elliptic Curve Systems
Comparison of Elliptic Curves and Finite Fields
Security Considerations

Alignment with Other Standards

Examples

Patents

References

r|X|la|—[IZ|O|T

X9.63-199x

4 Mathematical Conventions

4.1 Finite Field Arithmetic

This section describes the representations that shall be used for the purposes of conversion for the elements of the
underlying finite field F,. For this Standard, g shall either be an odd prime (q = p, p > 3) or apower of 2 (q = 2").
Implementations with different internal representations that produce equivalent results are allowed. Mathematics
background and examples are provided in Annex B.

4.1.1 The Finite Field F,
If g = pisanodd prime, then the elements of the finite field F, shall be represented by the integers0, 1, 2, ..., p—1.

1 The multiplicative identity element is the integer 1.

2. The zero element is the integer O.

3. Addition of field elementsisinteger addition modulo p: that is, if a, bLJF,, thena+ b= (a+ b) mod p.

4 Multiplication of field elements isinteger multiplication modulo p: that is, if a, bLIF,, thena. b= (a.b)
mod p.

4.1.2 The Finite Field F,,
If g = 2", then the elements of the finite field F,m shall be represented by the bit strings of bit length m.

There are numerous methods for interpreting the elements of the finite field F,m. Two such methods are a polynomial
basis (PB) representation (see Annex B.2.1) and a normal basis (NB) representation (see Annex B.2.3). A trinomial
basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases; these bases are described in
Section 4.1.2.1. A Gaussian normal basis (GNB) is a specia type of normal basis, these bases are described in
Section 4.1.2.2.

One of TPB, PPB, or GNB shall be used as the basis for representing the elements of the finite field Fomin

implementing this Standard, as described in Sections 4.1.2.1 and 4.1.2.2.

NOTES:

1. TPB, PPB, and GNB have been chosen because they are apparently the most common representations currently used for F,m
over F,, and because they lead to efficient arithmetic for Fom over F..

2. An optimal normal basis (ONB) is a specia type of Gaussian normal basis that yields efficient field arithmetic. Table C-4in
Annex C lists the values of m, 160 < m < 2000, for which the field F,m has both an ONB representation and a TPB
representation.

3. Annex D.2.3 describes one method for converting the elements of F,m from one representation to another.

4. When doing computationsin F,m, all integer arithmetic is performed modulo 2.

4.1.2.1 Trinomial and Pentanomial Basis Representation

A polynomial basis representation of F,m over F, is determined by an irreducible binary polynomial f(x) of degree
m; f(x) is called the reduction polynomial . The set of polynomials {X™, x™2, ..., x,1} forms a basis of ,m overF,,
called apolynomial basis. The elements d,m are the bit strings of a bit length which is exanthA typical
elementa [F,mis represented by the bit striag: (@mn18m2 ... 2180), Which corresponds to the polynomagk) = a,
XM a XM+ +ax + A

1. The multiplicative identity element (1) is represented by the bit string (00...001).

2. The zero element (0) is represented by the bit string of all 0’s.

3. Addition of two field elements is accomplished by XORing the bit strings.

4, Multiplication of field elementa andb is defined as follows. Le{x) be the remainder polynomial

obtained upon dividing the product of the polynomadlg andb(x) by f(x) overF, (i.e. the coefficient
arithmetic is performed modulo 2). Thanb is defined to be the bit string corresponding to the polynomial

r(x).

See Annex B.2.1 for further details and an example of a polynomial basis representation.
A trinomial overF,is a polynomial of the form™ + X + 1, where XK k< m-1. A pentanomial overF,is a
polynomial of the formx™ + X + X + X+ 1 where K< k1 <k2 <k3 < m-1.

-10-

X9.63-199x

A trinomial basis representation of Fomisa polynomial basis representation determined by an irreducible trinomial
f(x) = X"+ X + 1 of degree mover F,. Such trinomials only exist for certain values of m. Table C-2in Annex C lists

an irreducible trinomial of degree mover F, for each m, 160 < m < 2000, for which an irreducible trinomial of
degree mexists. For each such m, the table lists the smallest k for which x™ + X<+ Lisirreducible over F..

A pentanomial basis representation of F,misapolynomial basis representation determined by an irreducible
pentanomial f(X) = X" + X + X2 + X! + 1 of degree mover F,. Such pentanomials exist for all values of m = 4.

Table C-3in Annex C lists an irreducible pentanomial of degree mover F, for each m, 160 < m < 2000, for which
anirreducible trinomial of degree m does not exist. For each such m, the table lists the triple (k1, k2, k3) for which (i)
X"+ X+ X%+ ¥ + 1 isirreducible over F; (i) k1 isas small as possible; (iii) for this particular value of k1, k2 is as
small as possible; and (iv) for these particular values of k1 and k2, k3 is as small as possible.

Rulesfor selecting the polynomial basis

1 If apolynomial basis representation is used for F,m where there exists an irreducible trinomial of degree m
over F,, then the reduction polynomial f(x) shall be an irreducible trinomial of degree mover F,. To
maximize the chances for interoperability, the reduction polynomial used should be x™ + x* + 1 for the
smallest possible k. Examples of such polynomials are given in Table C-2 in Annex C.

2. If apolynomial basis representation is used for F,m where there does not exist an irreducible trinomial of
degree mover F,, then the reduction polynomial f(x) shall be an irreducible pentanomial of degree m over
F,. To maximize the chances for interoperability, the reduction polynomial used should be x™ + X + % +
X+ 1, where (i) k1 is as small as possible; (ii) for this particular value of ki, k2 is as small as possible; and
(iii) for these particular values of k1 and k2, k3 is as small as possible. Examples of such polynomials are
givenin Table C-3in Annex C.

4.1.2.2 Gaussian Normal Basis Representation
A normal basis for Fom over F,isabasis of theform N = @',0’2,0’22 ,...,a’zm_lt, wherea JF,m Normal basis

representations have the computational advantage that squaring an element can be done very efficiently (see Annex
B.2.3). Multiplying distinct elements, on the other hand, can be cumbersomein general. For thisreason, it is
common to specialize to a class of normal bases, called Gaussian normal bases, for which multiplication is both
simpler and more efficient.

Gaussian normal bases for F,m exist whenever mis not divisible by 8. The type of a Gaussian normal basisisa
positive integer measuring the complexity of the multiplication operation with respect to that basis. Generally

speaking the smaller the type, the more efficient the multiplication. For agivenmand T, the field F,m can have at
most one Gaussian hormal basis of type T. Thusit is proper to speak of the type T Gaussian normal basis over Fom.
The Gaussian normal bases of types 1 and 2 have the most efficient multiplication rules of all normal bases. For this
reason, they are called optimal normal bases. The type 1 Gaussian normal bases are called Type | optimal normal
bases, and the type 2 Gaussian normal bases are called Type Il optimal normal bases.

The elements of the finite field F,m are the bit strings of bit length which is exactly m. A typical element a [J Fomis

represented by the bit string a = (apa;. . . am28m1)-

1 The multiplicative identity element (1) is represented by the bit string of all 1's.
2. The zero element (0) is represented by the bit string of all 0’s.

3. Addition of two field elements is accomplished by XORing the bit strings.

4. Multiplication of field elements is described in Sections 4.1.2.2.2 and 4.1.2.2.3.

Rulesfor selecting the normal basis representation

1. If there exists a GNB of type 2 fBpm, then this basis shall be used.

2. If there does not exist a GNB of type 2 Fom, but there does exist a GNB of type 1, then the type 1 GNB
shall be used.

3. If neither a type 1 GNB nor a type 2 GNB existsFar, then the GNB of smallest type shall be used.

-11 -

X9.63-199x

Table C-1in Annex C lists the type of the GNB that shall be used for F,m for each m, 160 < m < 2000, for which m
isnot divisible by 8.

4.1.2.2.1 Checking for a Gaussian Normal Basis

If m> 1isnot divisible by 8, the following algorithm tests for the existence of a Gaussian normal basis for F,m of a
given type.

Input: Aninteger m> 1 not divisible by 8; apositiveinteger T.

Output: If atype T Gaussian normal basis for Fomexists, the message “true”; otherwise “false.”

Setp=Tm+ 1.

If pis not prime then output “false” and stop.

Compute via Annex D.1.8 the ordeof 2 modulop.

Seth=Tm/k.

Computed = ged f, m).

If d = 1 then output “true”; else output “false”.

S A

4.1.2.2.2 The Multiplication Rule for a Gaussian Normal Basis

The following procedure produces the rule for multiplication with respect to a given Gaussian normal basis.

Input: Integeram > 1 andT for which there exists a tygeGaussian normal badssfor Fom.
Output: An explicit formula for the first coordinate of the product of two elements with respBct to
1. Setp=Tm+ 1.
2. Generate via Annex D.1.9 an integdraving orde modulop.
3. Compute the sequenegl), F (2), ...,F (p—1) as follows:
3.1 Setw = 1.
3.2 Forj from 0 toT-1 do
321 Seh=w.
3.2.2 Fori from 0 tom-1 do
3.2.2.1 SeF (n)=i.
3.2.2.2 Seh = 2n modp.
3.2.3 Setw=uw modp.

4, If Tis even, then sét= 0, else set
m/2 h
J= Z @k—lbm/2+k—l + am/2+k—1bk—l
=1
5. Output the formula
p-2

Co=J+ Zl aFa+1bea)—kf

41.2.2.3 A Multiplication Algorithm for a Gaussian Normal Basis

The formula given in Section 4.1.2.2.2 fgrcan be used to multiply field elements as follows. For
U= (UpUy ... Up1), V={(Vo V1 ... Vi1,

let F(u, v) be the expression derived with ¢, = F (a, b).

Then the product (coC; ... Cn1) = (8 a1 . . . an1) X (o by . . . by1) can be computed as follows.

1. Set (Ug Uy ... Ung) = (8081 ... 8m1)-
2. %t(V()Vl...Vm_l):(bobl...bm_l).
3. For kfromOtom—1 do

3.1 Computes, = F (u, v).
3.2 Setu=Left Shi ft (u) andv=_Left Shi ft (v), whereLeft Shi ft denotes the circular
left shift operation.
4. Outputc = (Cy Cy ... Cn)-

-12 -

X9.63-199x

4.2 Elliptic Curves and Points
Anélliptic curve E defined over Fqisaset of points P = (x,, Y,) Where x, and y, are elements of F that satisfy a
certain equation, together with the point at infinity denoted by 6. F is sometimes called the underlying field.
If = pisan odd prime (so the underlying field is F,) and p > 3, then a and b shall satisfy 4a® + 27b” # 0 (mod p),
and every point P = (X, Yp) on E (other than the point ¢) shall satisfy the following equation in Fy:
=x,° +ax, +b.

If g=2"isapower of 2 (so the underlying field is F,m), then b shall be non-zero in F,m, and every point P = (X, Yp)
on E (other than the point o) shall satisfy the following equation in F,m:

Yo+ Xp=Xp &% + b,
For further background on elliptic curves, see Annex B.3 and B.4.
An dliptic curve point P (which is not the point at infinity 0) is represented by two field elements, the x-coordinate
of P and the y-coordinate of P: P =(x,, ¥,). The point can be represented compactly by storing only the x-coordinate
Xp and a certain bit Vp derived from the x-coordinate x, and the y-coordinate y, The next subsections describe the

technique that shall be used to recover the full y-coordinate y, from x, and yp, if point compression is used.

4.2.1 Point Compression Technique for Elliptic Curves over F, (Optional)
Let P = (X, Yp) beapoint on the elliptic curve E : y?= x>+ ax + b defined over apnmeﬂeld Fo. Then yp is defined

to be the rightmost bit of yj,. _
When the x-coordinate x, of P and the bit Yy, are provided, then y, can be recovered as follows.

1. Compute the field element O = x,° + ax, +b mod p.

2. Compute asquare root [3 of 0 mod p. (See Annex D.1.4.) It is an error if the output of Annex D.1.4 is “no
square roots exist”.

3. If the rightmost bit of3 is equal toy,,, then sey;, = 3. Otherwise, set, = p-p.

4.2.2 Point Compression Technique for Elliptic Curves over F,,(Optional)
LetP = (x,, y;) be a point on the elliptic cunie: y* + xy = x> + ax’ + b defined over a field,m. Theny, is

defined to be 0 ik, = O; if X, # 0, thenyp is defined to be the rightmost bit of the field elemgnt,™.
When thex-coordinatex, of P and the bit)~/p are provided, thew, can be recovered as follows.

1. If x, = 0, theny, = bzm. (Vp is the square root dfin F,m.)
2. If X, # 0, then do the following:
2.1 Compute the field elemeRit x,+ a + bx,® in Fom.
2.2, Find a field elememtsuch tha#? + z= B using the algorithm described in Annex D.1.6. Itis an
error if the output of Annex D.1.6 is “no solutions exist”.
2.3. LetZ be the rightmost bit of

2.4, If ypif, then sez =z + 1, where 1 is the multiplicative identity.
2.5. Computeyp= X,.Z

4.3 Data Conversions

The data types in this Standard are octet strings, integers, field elements and elliptic curve points. Figure 1 provides a
cross-reference for the sections defining conversions between data types that shall be used in the algorithms specified
in this Standard. The number on a line is the section number where the conversion technique is specified. Examples
of conversions are provided in Annex K.

4.3.1 Integer-to-Octet-String Conversion
Input: A non-negative integet, and the intended lengkhof the octet string satisfying:

-13-

X9.63-199x

2> x
Output: An octet string M of length k octets.
1. Let My, M,, ..., My be the octets of M from leftmost to rightmost.
2. The octets of M shall satisfy:
k
x=y iV

1=1

4.3.2 Octet-String-to-Integer Conversion

Input: An octet string M of length k octets.

Output: Aninteger x.

1 Let My, M,, ..., My be the octets of M from leftmost to rightmost.
2. M shall be converted to an integer x satisfying:

= i 28&—ifMi _

1=1

Field Section 435
Element

Section 4.3.3 Section 4.3.4

h 4

Section 4.3.1
——
Octet

. Integer
String g

Section 4.3.2

Section 4.3.7 Section 4.3.6

Point

Figure 1 — Data Types and Conversion Conventions

4.3.3 Field-Element-to-Octet-String Conversion
Input: Anelement O inthefield F,

Output: An octet string Sof length | = [/ 8Loctets, wheret = Llog, gLl

1 If gqisan odd prime, then 0 must be an integer in theinterval [0, g - 1]; O shall be converted to an octet
string of length | octets using the technique specified in Section 4.3.1.
2. If g=2", then O must be abit string of length mbits. Let s, S, ..., S, be the bits ofX from leftmost to

rightmostLet S, S, ..., S be the octets db from leftmost to rightmost. The rightmost jtshall become
the rightmost bit of the last oct8f and so on through the leftmost fitwhich shall become thel(8m +
1)" bit of the first octes,. The leftmost (B- m) bits of the first octe$, shall be zero.

-14 -

X9.63-199x

4.3.4 Octet-String-to-Field-Element Conversion
Input: Anindication of the field F used, and an octet string Sof length | = [/ 8[bctets, where t = [Jog, q[]

Output: Anelement O in F,.

1 If gisan odd prime, then convert Sto an integer O using the technique specified in Section 4.2.2. It isan
error if O doesnot liein theinterval [0, q - 1].
2. If g=2", then O shall be abit string of length mbits. Let s, S, ..., S be the bits oft from leftmost to

rightmost. LetS,, S, ..., S be the octets db from leftmost to rightmost. The rightmost bit of the last octet
S shall become the rightmost ki, and so on through thel(8m + 1)" bit of the first octe,, which shall
become the leftmost kit. The leftmost (B- m) bits of the first octe§, are not used.

4.3.5 Field-Element-to-Integer Conversion

Input: An elemend in the fieldF,.
Output: An integerx.

1. If g is an odd prime thex= O (no conversion is required).
2. If g = 2", thenO must be a bit string of length bits. Lets,, s, ..., sn be the bits oft from leftmost to
rightmost.d shall be converted to an integesatisfying:
m
X = Z 2&_'f$.

1=1
4.3.6 Point-to-Octet-String Conversion
The octet string representation of the point at infigighall be a single zero octe€ = 00.

An elliptic curve poinP = (X, ,) which is not the point at infinity shall be represented as an octet string in one of
the following three forms:

1. compressed form.
2. uncompressed form.
3. hybrid form.

NOTE— The hybrid form contains information of both compressed and uncompressed forms. It allows an implementation to
convert to either compressed form or to uncompressed form.

Input: An élliptic curve point P = (X, ,yp), not the point at infinity.

Output: An octet string PO of length | + 1 octetsif the compressed form is used, or of length 2| +1 octetsif the
uncompressed or hybrid form is used. (I = [{log, g)/8L)

1 Convert the field element x, to an octet string X;. (See Section 4.3.3.)

2. If the compressed form is used, then do the following:
21 Computethebit Y. (See Section 4.2.)

2.2. Assign the value 02 to the single octet PC if)7p is0, or thevalue 03 if)7p isl.

2.3. Theresult isthe octet string PO = PC || X;.

3. If the uncompressed form is used, then do the following:
3.1. Convert the field element y, to an octet string Y;. (See Section 4.3.3.)
3.2. Assign the value 04 to the single octet PC.
3.3. Theresult isthe octet string PO = PC || X ||Y1.

4, If the hybrid form is used, then do the following:
41. Convert the field element y, to an octet string ;. (See Section 4.3.3.)
42. Computethebit Y. (See Section 4.2.)

43, Assignthevalue 06 to thesingle octet if Y is0, or thevalue 07 if Y is 1.
4.4, The result is the octet string PO = PC || X¢ ||Y1.

-15-

X9.63-199x

4.3.7 Octet-String-to-Point Conversion
Input: An octet string PO of length | + 1 octets if the compressed form is used, or of length 2| + 1 octetsif the

uncompressed or hybrid form isused (I = [{log, q) / 80), and field elements a, b which define an liptic
curve over F.

Output: An elliptic curve point P = (%, , Yp), not the point at infinity.

1 If the compressed form is used, then parse PO as follows: PO = PC || X, where PC isasingle octet, and X;
isan octet string of length | octets. If uncompressed or hybrid form is used, then parse PO as follows: PO =
PC || X1 ||Y1, where PC isasingle octet, and X; and Y; are octet strings each of length | octets.

2. Convert X; to afield element x,. (See Section 4.3.4.)

3. If the compressed form is used, then do the following:
3.1 Verify that PCiseither 02 or 03. (It isan error if thisis not the case.)
32, Setthebit y tobeequal to0if PC =02, or 1if PC=03.

3.3. Convert (X, Vp) to an elliptic curve point (X, ,Yp). (See Section 4.2.)

4, If the uncompressed form is used, then do the following:
4.1, Verify that PCis04. (It isan error if thisis not the case.)
4.2, Convert Y; to afield element y,. (See Section 4.3.4.)
5. If the hybrid form is used, then do the following:
5.1 Verify that PCis either 06 or 07. (It isan error if thisis not the case.)
5.2. Perform either step 5.2.1 or step 5.2.2;
52.1. ConvertY; to afield element y,. (See Section 4.3.4.)
52.2. Setthebit Y tobeequal to 0if PC =06, or 1if PC = 07. Convert (X, Y,) to an elliptic

curve point (X, Yp). (See Section 4.2.)

6. If gisaprime, verify that yp2 = xp3 + axp + b (mod p). (It is an error if thisis not the case.)
If g =2", verify that y,* + Xoyp= X, + ax,” + bin Fom. (It isan error if thisis not the case.)
7 Theresultis P = (X, ,Yp).

NOTE— If hybrid form is used, an implementation may optionally checkRfhahd y ; are consistent (see steps 5.2.1 and
5.2.2). This may be particularly appropriate prior to elliptic curve domain parameter validation and public key validation.

5 Cryptographic Ingredients

This section specifies the various cryptographic ingredients that are required by the key agreement and key transport
schemes. These ingredients include primitives, auxiliary functions, and schemes.

These ingredients are al'so employed by various other ANSI standards - for example [9].

5.1 Elliptic Curve Domain Parameter Generation and Validation

This section specifies the primitives that shall be used to generate EC domain parameters and validate EC domain

parameters.

In this Standard, EC domain parameters will be shared by a number of entities using a particular system. In some

schemes, distinct parameter sets may be used for calculations involving entities’ static keys and for calculations
involving entities’ ephemeral keys, and in other schemes, the same parameter set must be used for both ephemeral
and static calculations.

In all cases, the EC domain parameters may be public; the security of the system does not rely on these parameters
being secret.

The primitives specified here allow EC domain parameters to be generated in any manner subject to some security
constraints. The primitives optionally support an additional feature allowing EC domain parameters to be generated
verifiably at random.

The primitives specified differ depending on the characteristic of the underlying field. Thus, Section 5.1.1 describes
the primitives that shall be used for parameter generation and validation in the case that the underlyifg field is

and Section 5.1.2 describes the primitives that shall be used in the case that the underlyirigdield is

The parameter generation primitives will be used whenever EC domain parameters are generated for a system.
Furthermore, many of the schemes specified in this Standard require a valid set of EC domain parameters to be held
by each entity involved in the operation of the scheme. Thus, in all cases, the generator of the system parameters will

-16-

X9.63-199x

use the appropriate parameter validation primitive to check the validity of the generated parameters. The validation
primitives may additionally be used by the entities using the parameters to check their validity.

Notethat in all cases nisthe primary security parameter. In general, as n increases, the security of the EC scheme
also increases. See Annex H for more information.

5.1.1 Elliptic Curve Domain Parameter Generation and Validation over F,
5.1.1.1 Elliptic Curve Domain Parameter Generation over F,Primitive
EC domain parameters over F, shall be generated using the following routine.

Input: This routine does not take any input.
Actions: The following actions are taken:

1 Choose as the field size a prime p with p>3, alower bound r ., for the point order, and atrial division
bound | s (See Annex H for advice on the implications of these decisions.)

2. Select EC domain parameters using the method described in Annex A.3.2 on input p, I'yin, @d |y

Output: This routine outputs:

1 Thefield size g = p which defines the underlying finite field F,, where p>3 shall be a prime number.

2. (Optional) A bit string SEED of length at least 160 bits, if the elliptic curve was randomly generated in

accordance with Annex A.3.3.

3. Two field elementsa and b in F, which define the equation of the elliptic curve E: y* = x*+ax+b (mod p).
4, Two field elements xg and yg in Fq which define a point G=(xg,ys) of prime order on E (note that G # 0).
5. The order n of the point G (it must be the case that n>2'% and n>4Vq).

6. The cofactor h = #E(Fg)/n.

51.1.2 Elliptic Curve Domain Parameter Validation over F, Primitive

The following transformation shall be used to validate EC domain parameters over F,,.

Input: Theinput of the validation transformation is a purported set of EC domain parameters consisting of p’, &, b,
G =(xg,Ys), n', andh’, and optionally the purported se88ED’ used in the generation process.

Actions: The following checks are made:

1. Verify thatp’ is an odd prime number. (See Annex A.2.1.)
2. Verify thata’, b, X' andyg’ are integers in the interval [;1].
3. If the EC was randomly generated in accordance with Annex A.3.3, veri§EtEat is a bit string of

length at least 160 bits, and tl@atand b’ were suitably derived frorSBEED’. (See Annex A.3.4.)
Verify that 4&)° + 270')? # 0 (modp’).

Verify that §G')? = (xG') *+(a)(xG")+(b") (mod p’).

Verify thatn’ is prime and that’>2'®. (See Annex A.2.1.)

Verify thatn’G’ = 0. (See Annex D.3.2.)

Check that'>4Vp’, computeh = [(Vp'+1)¥n’ Cand verify that'=h.

9. Verify that the MOV and Anomalous conditions hold. (See Annex A.1.)

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the EC domain parameters.
Otherwise, output ‘valid’, and accept the EC domain parameters.

NOTE— Step 8 of the above transformation (and also step 9 of Section 5.1.2.2) verifies that the value of the purported cofactor

' is correct in the case that>4V('. The case that' < 4V/q’ is excluded; there are methods for verifying the cofactar this

case, but these methods are not described here because the general methods are cumbersome and elliptic curves used in practice
usually haven = g so that the condition’>4+v/q' will be satisfied.

© No g A

5.1.2 Elliptic Curve Domain Parameter Generation and Validation over F,,

5121 Elliptic Curve Domain Parameter Generation over F,»Primitive

EC domain parameters over F,m shall be generated using the following routine.
Input: This routine does not take any input.
Actions: The following actions are taken:

-17 -

X9.63-199x

1. Choose afield size 2™, alower bound r.;,, for the point order, and atrial division bound | . (See Annex H
for advice on the implications of these decisions.)

2. Choose a basis to use to represent the elements of F,m (either TPB, PPB, or GNB). If TPB or PPB is
chosen, also choose an appropriate reduction polynomial f(x) of degree m over F, to use. (See Section
41.2)

3. Select EC domain parameters using the method described in Annex A.3.2 on input 2™, rin, and |ie.

Output: This routine outputs:

1 Thefield size g=2" which defines the underlying finite field F,,.

2. An indication of the basis to be used to represent the elements of the field (TPB, PPB, or GNB), and a
reduction polynomial f(x) of degree mover F, if TPB or PPB isindicated.

3. (Optional) A bit string SEED of length at least 160 hits, if the EC was randomly generated in accordance

with Annex A.3.3.

4. Two field elementsa and b in F, which define the equation of the elliptic curve E: y?+xy = x*+ax’+b.

5. Two field elements xg and yg in Fq which define a point G=(xg,ys) of prime order on E (note that G# 0).
6. The order n of the point G (it must be the case that n>2'% and n>4Vq).

7. The cofactor h = #E(Fg)/n.

5.1.2.2 Elliptic Curve Domain Parameter Validation over F,»Primitive

The following transformation shall be used to validate EC domain parameters over Fom.

Input: Theinput of the validation transformation is a purported set of EC domain parameters consisting of g'=2",
a, b, G=(xs,ys), ', h', and an indication of the type of basis to be used to reprEgerbgether with,
when appropriate, a purported reduction polynomial f(x)’, and optionally the purported se€8ED’ used in
the generation process.

Actions: The following checks are made:

1. Verify that 2" isa power of two.

2. If the type of basisindicated is TPB, verify that f(x)" is a trinomial of degrear which is irreducible over

F,. (See Table C-2 or Annex D.2.4.) If the type of basis indicated is a PPB, verify that an irreducible

trinomial of degreen’ does not exist, and thfi)’ is a pentanomial of degree which is irreducible over

F.. (See Table C-3 or Annex D.2.4.) If the type of basis indicated is GNB, verifgntii@not divisible by

8.

Verify thata', b’, x5’ andyg’ are bit strings of lengthn’ bits.

If the EC was randomly generated in accordance with Section A.3.3, veri§e#iatis a bit string of

length at least 160 bits, and tiatvas suitably derived frorSBEED’. (See Annex A.3.4.)

Verify thatb’Z0.

Verify that)% +X6'Ye' = (X3) **+(&) (%) *+(D') in Fom.

Verify that n" is prime and than>2'®. (See Annex A.2.1.)

Verify thatn’G'=06. (See Section D.3.2.)

Check that'>4V(q, computeh = ((Vq+1)¥n’ Cand verify that'=h.

0. Verify that the MOV and Anomalous conditions hold. (See Annex A.1.)

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the EC domain parameters.
Otherwise, output ‘valid’, and accept the EC domain parameters.

pw

B© oNo O

5.2 Key Pair Generation and Public Key Validation

This section specifies the primitives that shall be used to generate EC key pairs and to validate EC public keys.
The key pair generation primitive will be used during the generation of entities’ key pairs. In some schemes, the
primitive will be used to produce static key pairs, and in other schemes, the primitive will be used to produce
ephemeral key pairs.

Public key validation will be used during the validation of an entity’s public keys. Sometimes this validation process
will be carried out by a trusted Center such as a Certification Authority that wishes to bind an entity to its static
public key. At other times this process will be carried out by an entity who wishes to validate the purported
ephemeral public key of another entity.

-18-

X9.63-199x

5.2.1 Key Pair Generation Primitive

EC key pairs shall be generated using the following transformation:

Input: The input of the generation transformation isavalid set of EC parameters g, a, b, Xg, Vs, h, and h aong with
an indication of the basis used if g=2". Note that it is assumed that the parameters have been validated using
the primitives described in Sections 5.1.1.2 and 5.1.2.2.

Actions: The following actions are taken:

1 Select a statistically unique and unpredictable integer d in the interval [1,n-1]. It is acceptable to use a
random or pseudorandom number. If a pseudorandom number is used, it shall be generated using one of the
procedures of Annex A.4 or of an ANSI X9 approved standard. If a pseudorandom number is used, optional
information to store with the private key are the seed values and the particular pseudorandom generation
method used. Storing this optional information helps allow auditing of the key generation process.

If a pseudorandom generation method is used, the seed values used in the generation of d may be
determined by internal means, be supplied by the caler, or both - thisis an implementation choice. In all
cases, the seed values have the same security requirements as the private key value. That is, they must be
protected from unauthorized disclosure and be unpredictable.

2. Compute the point Q=(xq,y)=dG. (See Annex D.3.2.)

Output: Thekey pair (d,Q), where Q isthe public key and d isthe private key.

5.2.2 Public Key Validation Primitive

Public key validation refers to the process of checking the arithmetic properties of a public key. It prevents various
forms of attack, for example so-called small subgroup attacks, which rely on the use of an invalid public key. See
Annex H for further discussion.

When an entity U isrequired to validate a public key in this Standard, four methods of public key validation are
acceptable. Only one of the methods must be carried out, although in many cases greater assurance may be obtained
by carrying out more than one of the methods.

The four acceptable methods are:

1. U performs explicit public key validation of the public key itself by using the appropriate technique
described in Section 5.2.2.1 or 5.2.2.2.

2. U performsimplicit public key validation of the public key itself by generating the public key itself using
trusted routines.

3. U receives assurance that a party trusted for the lifetime of any key combined with the public key being

validated using the Diffie-Hellman primitives or the MQV primitive, has validated the public key by using
the appropriate technique described in Section 5.2.2.1 or 5.2.2.2.

4, U receives assurance that a party trusted for the lifetime of any key combined with the public key being
validated using the Diffie-Hellman primitives or the MQV primitive, hasimplicitly validated the public key
by generating the public key itself using trusted routines.

Typicaly when U accepts assurance from another party that party isa CA. However on occassion U may accept the

assurance of another entity aswell asa CA. For example in the Station-to-Station scheme, U receives an ephemeral

public key from V in asigned string. U combines the public key with its own ephemeral public key using the Diffie-

Hellman primitive. It is acceptable for U to accept the validity of the ephemeral public based on the knowledge that

V generated the key because V is trusted for the lifetime of U’s ephemeral public key.

5.2.2.1 Standard Public Key Validation Primitive
An EC public key shall be validated in the following manner when it is going to be used by the standard Diffie-
Hellman primitive:
Input: The input of the validation transformation is a valid set of EC domain paramgegels Xg, Y, n, andh,
along with an indication of the basis used=2", together with the purported public k&=(xq',Yq'). Note
that it is assumed that the parameters have been validated using the primitives described in Sections 5.1.1.2

and 5.1.2.2.
Actions: The following checks are made:
1. Verify thatQ'’ is not the point at infinity.
2. Verify thatxy' andyy’ are elements in the field,. (That is, verify thaky' andyg’ are integers in the

interval [Op-1] in the case thai=p is an odd prime, or that’ andyg’ are bit strings of lengtm bits in the
case thag=2")

-19-

X9.63-199x

3. If g=pisan odd prime, verify that (yg)* = (X)) *+axq+b (modp). If q=2", verify that §) *+xo'Yo' =
(Xa) 3+a(xQ’) 2+bin Fom.
4, Verify thatnQ'=0. (See Annex D.3.2.)

Output: If any one of the above verifications fail, then output ‘invalid’ and reject the public key. Otherwise output
‘valid’ and accept the public key.
NOTE— If there is more than one public key available, it may also be checked that no two public keys are the same.

5.2.2.2 Embedded Public Key Validation Primitive

An EC public key shall be validated in the following manner when it is going to be used by the Diffie-Hellman with

cofactor primitive or the MQV primitive:

Input: Theinput of the embedded validation transformation isavalid set of EC domain parameters q, a, b, Xg, Ya, N,
and h, along with an indication of the basis used if g=2", together with the purported public key
Q'=(xg',Yq). Note that it is assumed that the parameters have been validated using the primitives described
in Sections 5.1.1.2 and 5.1.2.2.

Actions: The following checks shall be made:

1. Verify thatQ'’ is not the point at infinity.

2. Verify thatxy' andyy’ are elements in the field,. (That is, verify thaky' andyg’ are integers in the
interval [Op-1] in the case thai=p is an odd prime, or that’ andyg’ are bit strings of lengtm bits in the
case thag=2")

3. If g=p is an odd prime, verify thay{)* = (xo) *+axq+b (modp). If g=2" verify that) *+xo'Yo' =
(%) *+a(xo’) +b in Fom.

Output: If any one of the above verifications has failed, then output ‘invalid’ and reject the public key. Otherwise
output ‘valid’ and accept the public key.

5.3 Challenge Generation Primitive

This section specifies the primitive that shall be used to generate challenges to be used by the schemes in this

Standard.

The challenge generation primitive will be used to generate challenges in the 3-pass key transport scheme specified

in Section 7.

Challenges shall be generated using the following transformation:

Input: An integerchallengelen which is the length in bits of the challenge requiohdllengelen shall be=80.

Actions: Select a statistically unique and unpredictable bit stCimglenge of lengthchallengelen. It is acceptable
to use a random or a pseudorandom string. If a pseudorandom string is used, it shall be generated using one
of the procedures of Annex A.4 or of an ANSI X9 approved standard. If a pseudorandom number is used,
optional information to store with the challenge are the seed values and the particular pseudorandom
generation method used. Storing this optional information helps allow auditing of the challenge generation
process.
If a pseudorandom generation method is used, the seed values used in the gen€liaditengé may be
determined by internal means, be supplied by the caller, or both - this is an implementation choice.

Output: The bit stringChallenge.
NOTE— If more than one challenge is generated, it may be checked that no two challenges are the same.

5.4 Diffie-Hellman Primitive

This section specifies the Diffie-Hellman primitive that shall be used by the key establishment schemesin this

Standard.

This primitive derives a shared secret value from one entity’s secret key and another entity’s public key when the
keys share the same EC parameters. If two entities both correctly execute this primitive with corresponding keys as
inputs, they will produce the same value.

The calculation of the shared secret value incorporates co-factor multiplication. Co-factor multiplication is
computationally efficient and helps to prevent security problems like small subgroup attacks (see [42].)

The shared secret value shall be calculated as follows:

-20 -

X9.63-199x

Prerequisites: The prerequisite is a set of EC domain parameters g, a, b, G, n, and h, along with an indication of the
basis used if g=2", which has been validated using the techniques described in Sections 5.1.1.2 and 5.1.2.2.

Input: The Diffie-Hellman primitive takes as input:

1 an EC private key d.

2. an EC public key Q.

The public key Q will have been validated as specified in Section 5.2.2.

Actions: The following actions are taken:

1 Compute the point P=hdQ. (See Section D.3.2.)
2. Check PZo. If P=0, output ‘invalid’ and stop.
3. Setz=xp, Wherexp is thex-coordinate of.

Output: zLIF, as the shared secret value.

5.5 MQV Primitive
This section specifies the MQV primitive that shall be used by the key agreement schemes specified in this Standard.
This primitive derives a shared secret value from two secret keys owtkdrxytwo public keys owned when
all the keys share the same EC parameters. If two entities both correctly execute this primitive with corresponding
keys as inputs, they will produce the same value.
The calculation of the shared secret value incorporates co-factor multiplication. Co-factor multiplication is
computationally efficient and helps to prevent security problems like small subgroup attacks (see [42].)
The shared secret value shall be calculated as follows:
Prerequisites: The prerequisite is a set of EC domain paramegeasb, G, n, andh, along with an indication of the

basis used ifj=2", which has been validated using the techniques described in Sections 5.1.1.2 and 5.1.2.2.
Input: The MQV primitive takes as input:
1. two EC key pairsdy y,Q1u) and @,4,Q2,u) owned byJ.
2. two EC public key®; v andQ,, owned byV.
The key pairsdy y,Q.,u) and ¢,u,Q2u) Will have been generated using the key pair generation primitive specified in
Section 5.2.1. The public keg® v andQ,,, will have been validated as specified in Section 5.2.2.
Actions: The following actions are taken:

1. Compute the integer:
ImplICIthU = d2,U+(an(Q2,U)xdl,U) (mOd I’l).
2. Compute the EC point:

P =h X implicitsigy X (Qzv+(@vf(Qzv)*Qxv)).
(See Section D.3.2))
3. CheckP# o. If P=0, output ‘invalid’ and stop.
4, Setz=xp, Wherexp is thex-coordinate of.

Output: zLIF, as the shared secret value.

5.6 Auxiliary Functions

This section specifies three types of auxiliary functions that will be used by some of the key agreement schemes and
key transport schemes specified in this Standard: associate value functions, cryptographic hash functions and key
derivation functions.

5.6.1 Associate Value Function

This section specifies the associate value function that shall be used by the schemes in this Standard.

The associate value function will be used to compute an integer associated with an elliptic curve point.

The associate value function will be used by the MQV family of key agreement schemes specified in Section 6.
The associate value function shall be calculated as follows:

Input: The input to the associate value function is:

1. A valid set of EC domain parameters, b, G, n, h along with an indication of the basis useg=2™.

2. A pointP#o¢ on the EC defined by the parametgra, b, G, n, h.
Actions; Perform the following computations:

-21-

X9.63-199x

1. Convert xp to an integer using the convention specified in Section 4.3.5.
2. Calculate:

X' = Xp (mod 2/%).
3. Calculate:

avi(P) = xo’ + 2%
Output: The integeravf(P) as the associate valuerf

5.6.2 Cryptographic Hash Functions
This section specifies the cryptographic hash functions that shall be used by the schemes in this Standard.
The hash functions will be used to calculate the hash value associated with a bit string.
The hash functions will be used by the key derivation function specified in Section 5.6.3.
Any ANSI-approved hash function which offers 80 bits of security or more may be used, i.e. any ANSI-approved
hash function whose output is 160 bits or more. Possibilities therefore include the hash function SHA-1. SHA-1 is
specified in [5].
Hash values shall be calculated as follows:
Preprequisites: The prerequisite for the operation of the hash function is that an ANSI-approved hash function has
been chosen. We denote the maximum length of the input to the hash fundtashribgxien and the
length of the output of the hash functionHaghlen.
Input: The input to the hash function is a bit stribata of length less thahashmaxien bits.
Actions: Calculate the hash value correspondinBata as:
Hash=H(Data)
using the established hash function.
Output: The bit stringHash of lengthhashlen bits.
Note that the hash function operates on bit strings of length leskastemaxien bits. For example, SHA-1 operates
on bit strings of length less thaff Bits. In the sequel it is assumed that all hash function calls are indeed on bit
strings of length less thdmashmaxlen bits. Any scheme attempting to call the hash function on a bit string of length
greater than or equal teshmaxien bits shall output ‘invalid’ and stop.

5.6.3 Key Derivation Functions

This section specifies the key derivation function that shall be used by the schemes in this Standard.

The key derivation function will be used to derive keying data from a shared secret bit string.

The key derivation function will be used by the key agreement schemes to compute keying data from a shared secret

value. The key derivation function will also be used by the asymmetric encryption schemes.

The key derivation function that will be used is a simple hash function construct.

Keying data shall be calculated as follows:

Prerequisites: The prerequisite for the operation of the key derivation function is that an ANSI-approved hash
function has been chosen as specified in Section 5.6.2.

Input: The input to the key derivation function is:

1. A bit stringZ which is the shared secret value.

2. An integerkeydatalen less tharnashlenX(2*2~1) which is the length in bits of the keying data to be
generated.

3. (Optional) A bit stringsharedinfo which consists of some data shared by the two entities intended to share

the secret valug.
Ingredients: The key derivation function employs one of the hash functions specified in Section 5.6.2.
Actions: The key derivation function is computed as follows:

1. Initiate a 32-bit, big-endian bit strirmpunter as 00000004,
2. Fori=1 to [keydatalen/hashlenl] do the following:
2.1 ComputeHash, = H(Z || counter || [SharedInfo]).
2.2 Incrementounter.
2.3 Increment.
3. Let Hash! Geyatalenhashiend d€NOtEHaSNG e araenhasnientif keydatalen/hashlen is an integer, and let it denote the
(keydatalen - (hashlenx[Reydatalen/hashlenl))) leftmost bits oHashie,datalenhasiiens Otherwise.
4. SetKeyData = Hash;|Hashy||... |Hasheygatatenvnasnien1] HaSN! feydata envhashient

-22 -

X9.63-199x

Output: The bit string KeyData of length keydatalen bits.
Note that the key derivation function produces keying data of length less than hashlenX(2%-1) bits. In the sequel we
assume that all key derivation function calls are indeed for bit strings of length lebadfienx(2%-1) bits. Any

scheme attempting to call the key derivation function for a bit string of length greater than or bastetx(2%—
1) bits shall output ‘invalid’ and stop.

5.7 MAC schemes

This section specifies the tagging transformation and the tag checking transformation associated with the message

authentication code (MAC) schemes that shall be used by the schemes in this Standard.

Each MAC scheme will be used as follows. The sender will use the tagging transformation to compute the tag on

some data. The recipient, after being sent the data and tag, will check the validity of the tag using the tag checking

transformation.

The MAC schemes will be used by some key agreement schemes to provide key confirmation and by the augmented

encryption scheme in Section 5.8.2.

Any ANSI-approved MAC that offers 80 bits of security or more may be used, i.e. any ANSI-approved MAC that

uses keys of length 80 bits or more and that outputs tags of length 80 bits or more. Possibilities therefore include the

2-key scheme based on the DEA algorithm [1] specified in [3], and HMAC specified in ANSI X9.71 [10]. (Note that

use of the MAC specified in ANSI X9.9 is not permitted.)

The appropriate choice of MAC scheme in a particular application will depend on the operating environment. Issues

involved in the decision will often include security requirements and available cryptographic primitives.

The MAC scheme is specified as follows.

Prerequisites: The prerequisite for the operation of the MAC scheme is that an ANSI-approved MAC scheme has
been chosen. We denote ttmgickeylen the length in bits of the keys used by the MAC scheme.

5.7.1 Tagging Transformation
Data shall be tagged using the tagging transformation specified as follows:
Input: The tagging transformation takes as input:
1. A bit stringMacData to be MACed.
2. A bit stringMacKey of lengthmackeylen bits to be used as the key.
Actions: Calculate the tag as:
MacTag = MACyacke,(MacData),
whereMACya«e(MacData) denotes the computation of the taghdacData underMacKey using the
tagging transformation of the established ANSI-approved MAC scheme.
Output: The bit stringMacTag.

5.7.2 Tag Checking Transformation
The purported tag on data shall be checked using the tag checking transformation specified as follows:
Input: The tag checking transformation takes as input:

1. The data which is a bit striddacData.
2. The purported tag favlacData which is a bit stringlacTag’.
3. A bit stringMacKey of lengthmackeylen bits to be used as the key.

Actions: Calculate the tag fdvlacData under the keylacKey as:
MacTag = MACacke,(MacData)
using the tagging transformation of the established ANSI-approved MAC.
Output: If MacTag'=MacTag output ‘valid’, otherwise output ‘invalid’.

5.8 Asymmetric Encryption Schemes

This section specifies the asymmetric encryption schemes that shall be used by the schemes in this Standard.
Each of the asymmetric encryption schemes will be used as follows. The sender will use the encryption
transformation of the scheme to encrypt some data. The recipient, after being sent the encrypted data, will decrypt
the encrypted data using the decryption transformation of the scheme.

The asymmetric encryption schemes will be used by the key transport schemes specified in Section 7.

-23-

X9.63-199x

Two encryption schemes are specified. The schemes are designed to provide security against attacks of different

kinds. The Elliptic Curve Encryption Scheme is designed to provide security against passive or chosen plaintext

attacks in which attacker attempts to compromise the scheme using only knowledge of an entity’s public key. The
Elliptic Curve Augmented Encryption Scheme is designed to provide security against both chosen plaintext and
chosen ciphertext attacks in which an attacker additionally attempts to exploit knowledge gained by somehow
learning the decryption of some ciphertext.

Use of the Elliptic Curve Augmented Encryption Scheme is therefore recommended because security against chosen
ciphertext attacks is required in order for the key transport schemes in Section 7 to provide the known-key security
service. The Elliptic Curve Encryption Scheme should be used only when it is determined appropriate — for example
when known-key security is not required.

5.8.1 Elliptic Curve Encryption Scheme

The Elliptic Curve Encryption Scheme is specified as follows.

Prerequisites: The prerequisite for the operation of the Elliptic Curve Encryption Scheme is a set of EC domain
parameters, a, b, G, n, andh along with an indication of the basis used=f". The parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2. Finally, an ANSI-approved hash function shall have been chosen for use with the key derivation
function.

5.8.1.1 Encryption Transformation
Data shall be encrypted as follows:
Input: The input to the encryption transformation is:

1. A bit stringEncData of lengthencdatalen which is the data to be encrypted.
2. A EC public keyQ owned by the recipient.
3. (Optional) A bit string of dat&haredData, which is shared by the sender and the recipient.

The EC public keyQ shall correspond to the EC domain parameieasb, G, n, h. Q may have been validated as

specified in Section 5.2.2.

Ingredients. The encryption transformation employs the key pair generation primitive specified in Section 5.2.1, the
Diffie-Hellman primitive specified in Section 5.4, and the key derivation function specified in Section 5.6.3.

Actions. Encrypt the bit stringencData as follows:

1. Generate an ephemeral key pédirQe) corresponding to the EC domain parametges b, G, n, andh,
using the key pair generation primitive defined in Section 5.2.1.

2. ConvertQ, to a bit stringQE using the convention specified in Section 4.3.6.

3. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field etbifigfitom
d. andQ. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

4, ConvertzlF, to a bit stringZ using the convention specified in Section 4.3.3.

5. Use the key derivation function defined in Section 5.6.3 with the established hash function to generate
keying dateEncKey of lengthencdatalen from Z and BharedData].

6. ComputeViaskedEncData = EncDatal] EncKey.

Output: Output the bit strin@E|MaskedEncData as the encryption dncData.

5.8.1.2 Decryption Transformation
The decryption transformation shall be calculated as follows:
Input: The input to the decryption transformation is:

1. A bit stringQE’||MaskedEncData’ purporting to be the encryption of a bit string.
2. An EC private keyl owned by the recipient.
3. (Optional) A bit string of dat&haredData which is shared by the sender and the recipient.

The private keyl shall have been generated using the key pair generation primitive specified in Section 5.2.1.

Ingredients: The decryption transformation employs public key validation as specified in Section 5.2.2, the Diffie-
Hellman primitive specified in Section 5.4, and the key derivation function specified in Section 5.6.3.

Actions: Decrypt the bit strin@E’||MaskedEncData’ consisting of the encoding of a purported elliptic curve point
Q¢, and a bit stringlaskedEncData’ of lengthmaskedencdatalen as follows:

- 24 -

X9.63-199x

1. Validate the ephemeral public key Q. as specified in Section 5.2.2. If the validation primitive outputs
‘invalid’, output ‘invalid’ and stop.

2. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field etetfgfitom d
andQ.. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. ConvertzlJF, to a bit stringZ using the convention specified in Section 4.3.3.

4, Use the key derivation function specified in Section 5.6.3 with the established hash function to generate
keying dateEncKey of lengthmaskedencdatalen from Z and BharedData].

5. ComputeEncData = MaskedEncData’ [1EncKey.

Output: OutputEncData as the decryption &@E’||MaskedEncData’.

5.8.2 Elliptic Curve Augmented Encryption Scheme

The Elliptic Curve Augmented Encryption Scheme is specified as follows.

Prerequisites: The prerequisite for the operation of the Elliptic Curve Augmented Encryption Scheme is a set of EC
domain parametexg a, b, G, n, andh along with an indication of the basis useg=2™. The parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2. In addition entities using the scheme will have established which ANSI-approved MAC
scheme specified in Section 5.7 they will use. We denoteabkeylen the length in bits of the keys used
by the established MAC scheme. Finally, an ANSI-approved hash function shall have been chosen for use
with the key derivation function.

5.8.2.1 Encryption Transformation
Data shall be encrypted as follows:
Input: The input to the encryption transformation is:

1. A bit stringEncData of lengthencdatalen which is the data to be encrypted.

2. A EC public keyQ owned by the recipient.

3. (Optional) Two bit strings of dat&haredData,; andSharedData,, which are shared by the sender and the
recipient.

The EC public key shall correspond to the EC domain parameieash, G, n, h. Q may have been validated as

specified in Section 5.2.2.

Ingredients: The encryption transformation employs the key pair generation primitive specified in Section 5.2.1, the
Diffie-Hellman primitive specified in Section 5.4, the tagging transformation of the established MAC
scheme specified in Section 5.7, and the key derivation function specified in Section 5.6.3.

Actions: Encrypt the bit stringencData as follows:

1. Generate an ephemeral key pédirQe) corresponding to the EC domain parametgss b, G, n, andh,
using the key pair generation primitive defined in Section 5.2.1.

2. ConveriQ, to a bit stringQE using the convention specified in Section 4.3.6.

3. Use the Diffie-Hellman primitive defined in 5.4 to derive a shared secret field elgnfieptrom d. andQ.

If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

ConvertzLIF, to a bit stringZ using the convention specified in Section 4.3.3.

5. Use the key derivation function defined in Section 5.6.3 with the established hash function to generate
keying dataKeyData of lengthencdatalen+mackeylen from Z and BharedData;]. ParseKeyData as an
encryption keyEncKey of lengthencdatalen and a MAC keyMacKey of lengthmackeylen, i.e. parse

»

KeyData as:
KeyData = EncKey|MacKey.
6. ComputeMaskedEncData=EncDatal]IEncKey.
7. Compute the taljlacTag on the bit string:

MacData = MaskedEncData||[SharedData,]
under the MAC keylacKey using the tagging transformation of the established MAC scheme as specified
in Section 5.7.
Output: Output the bit strin@E|MaskedEncData|[MacTag as the encryption dncData.

-25-

X9.63-199x

5.8.2.2 Decryption Transformation
The decryption transformation shall be calculated as follows:
Input: The input to the decryption transformation is:

1 A bit string QE’||[MaskedEncData’||MacTag’ purporting to be the encryption of a bit string.

2. An EC private keyl owned by the recipient.

3. (Optional) Two bit strings of dat&haredData; andSharedData,, which are shared by the sender and the
recipient.

The private keyl shall have been generated using the key pair generation primitive specified in Section 5.2.1.

Ingredients. The decryption transformation employs public key validation as specified in Section 5.2.2, the Diffie-
Hellman primitive specified in Section 5.4, the tag checking transformation of the established MAC scheme
specified in Section 5.7, and the key derivation function specified in Section 5.6.3.

Actions: Decrypt the bit strin@E’||MaskedEncData’||MacTag’ consisting of the encoding of a purported elliptic
curve pointQg, a bit stringMaskedEncData’ of lengthmaskedencdatalen, and a bit strindMacTag’ of the
appropriate length as follows:

1. Validate the ephemeral public k&y using public key validation as specified in Section 5.2.2. If the
validation primitive outputs ‘invalid’, output ‘invalid’ and stop .
2. Use the Diffie-Hellman primitive defined in Section 5.4 to derive a shared secret field etetfgfitom d

andQ.. If the Diffie-Hellman primitive outputs ‘invalid’, output ‘invalid’ and stop.

ConvertzlF, to a bit stringZ using the convention specified in Section 4.3.3.

4, Use the key derivation function specified in Section 5.6.3 with the established hash function to generate
keying dataKeyData of lengthmaskedencdatal en+mackeylen from Z and BharedData;]. ParseKeyData as
an encryption ke¥ncKey of lengthmaskedencdatalen and a MAC keyMacKey of lengthmackeylen, i.e.

w

parseKeyData as:
KeyData = EncKey|MacKey.
5. ComputeEncData=MaskedEncData’ [1EncKey.
6. Verify thatMacTag' is the tag orMaskedEncData||[SharedData,] under the keylacKey using the tag

checking transformation of the established MAC scheme specified in Section 5.7. If the tag checking
transformation outputs ‘invalid’, output ‘invalid’ and stop.
Output: OutputEncData as the decryption &E’||MaskedEncData’||MacTag'.

5.9 Signature Scheme

This section specifies the signature scheme that shall be used by the schemes in this Standard.

The signature scheme will be used as follows. The sender will use the signing transformation to compute a signature

on some data. The recipient, after being sent the data and signature, will check the validity of the signature using the

verifying transformation.

The signature scheme will be used by the 3-pass key transport scheme specified in Section 7.2.

The signature scheme supported is the Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is specified in

[8]. ECDSA shall be implemented as specified in [8].

Prerequisites: The prerequisite for the operation of the ECDSA is a set of EC domain parametdssG, n, andh
along with an indication of the basis used=f™. The parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

5.9.1 Signing Transformation

The transformation specified as follows shall be used to sign data:

Input: The input to the signing transformation is:

1. A bit stringSignData to be signed.

2. An elliptic curve private kegt owned by the sender.

The private keyl shall correspond to the EC parametgrs, b, G, n, h, and shall have been generated using the
primitive specified in Section 5.2.1.

Actions: Compute the integersig andssig which comprise the signature SignData as specified in [8].

Output: The pair of integerssig andssig.

- 26 -

X9.63-199x

5.9.2 Verifying Transformation
The transformation specified as follows shall be used to verify a purported signature:
Input: The input to the verifying transformation is:

1 The datawhich is abit string SgnData.
2. A pair of integersrsig’ andssig’ which are the purported signatureSfnData.
3. An EC public keyQ owned by the sender.

The public keyQ shall correspond to the EC parametgrg, b, G, n, h, and may have been validated as specified in

Section 5.2.2.

Actions: Verify the purported signature using the verification transformation specified in [8].

Output: Output ‘valid’ if the verification transformation confirms theaig’ andssig’ are a valid signature of
SgnData, otherwise output ‘invalid'.

6 Key Agreement Schemes
This section describes the key agreement schemes specified in this Standard.
In each case, the key agreement scheme is used by an entity who wishes to agree on keying data with another entity.
In some cases the protocols specified are ‘symmetric’, and so it suffices to describe just one transformation. In other
cases the protocols are ‘asymmetric’, and so it is necessary to describe two transformations, one of which is
undertaken by if U is the initiator, and one of which is undertaken/if/ V is the responder.
In the specification of each transformation, equivalent computations that result in identical output are allowed.
Each of the key agreement schemes has certain prerequisites. These are conditions that must be satisfied by an
implementation of the scheme. However the specification of mechanisms that provide these prerequisites is beyond
the scope of this Standard.
Section H.4.3 provides guidance to the services which each scheme may be used to provide.
Each scheme is described in two ways. First a flow diagram of the ordinary operation of the scheme between two
entitiesU andV is provided. This flow diagram is for descriptive purposes only. Then a formal specification is given
which describes the actions entities must take to use the scheme to establish keying data.
The flow diagrams are intended to aid understanding of the mechanics of the ‘ordinary’ operation of the schemes in
which flows are faithfully relayed between two entities. Note that in ‘real-life’, there is no reason to assume that
flows are relayed faithfully between two entities...that is why the schemes must be formally specified in a more
technical fashion.
When examining the flow diagrams, the following points should be noted:
— For clarity of exposition, optional fields suchBext andSharedData are omitted.
— kdf(Z) denotes the output of the key derivation function specified in Section 5.6.3 called oA. input
— ENC andDEC respectively denote the encryption and decryption transformations associated with one of the
asymmetric encryption schemes specified in Section 5.8. The subscripts immmediately f&iGimgd
DEC denote the keys being used in the operation of the appropriate transformation. Sighitagignotes
the signing transformation associated with the signature scheme ECDSA specified in SectiolVbA&; and
denotes the tagging transformation of one of the MAC schemes specified in Section 5.7.

6.1 Ephemeral Unified Model Scheme
This section specifies the ephemeral Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 2 illustrates the use of the ephemeral Unified Model scheme.

Figure 2 - Ephemeral Unified Model Scheme

Next the formal specification of the scheme is given.

The scheme is ‘'symmetric’, so only one transformation is specified. An entity uses this transformation to agree on
keying data with another entity no matter whether they are the initiator or the responder.

If two entitiesU andV simultaneously execute the transformation with corresponding keying material as input, then
U andV will compute the same keying data.

-27-

X9.63-199x

Prerequisites: The following are the prerequisites for the use of the scheme: Each entity has an authentic copy of the
system’s EC domain parameters to be used with ephemeral.kayd., G, N, andh, along with an
indication of the basis usedc#2™. These parameters shall have been generated using the parameter
generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated
using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2. Finally, each entity shall have
chosen an ANSI-approved hash function for use with the key derivation function.

Note that validation of the EC domain parameters has not necessarily been carried but byay instead have

been carried out by a party trustedubyNote also that the subscripts a slight abuse of notation. It is used to

indicate that the parameters are associated with ephemeral key pairs rather than to indicate that the parameters

themselves are ephemeral.

U shall execute the following transformation to agree on keying datd/with

Input: The input to the key agreement transformation is:

1. A purported ephemeral EC public k@y,/ owned byV.

2. An integetkeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Note thatQ.\ may be received either at the start of the execution of the protocol, or at the appropriate stage during

the execution of the protocol.

Ingredients. The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public
key validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, and the key derivation function
in Section 5.6.3.

Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral kiky,8aip) for the
parameters, e, be, Ge, N, @andhe. SendQey to V.

2. Verify that the purported ka9, is a valid key for the parametenys a,, be, G, nNe, andh, as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretaalBgfrom the private key

d.u, the purported public ke®.\/, and the parameterg, a, be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convertz, to a bit stringZ, using the convention specified in Section 4.3.3.

5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valfigand the shared dat8haredData).

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.2 1-Pass Diffie-Hellman Scheme
This section specifies the 1-pass Diffie-Hellman scheme.
First the scheme is illustrated in a flow diagram. Figure 3 illustrates the use of the 1-pass Diffie-Hellman scheme.

Figure 3 — 1-Pass Diffie-Hellman Scheme

Next the formal specification of the schemeis given.

The scheme is ‘asymmetric’, so two transformations are spetifieges the transformation specified in Section

6.2.1 to agree on keying data withf U is the protocol’s initiator, andl uses the transformation specified in Section

6.2.2 to agree on keying data withif V is the protocol’s responder.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parapyetbrss, n, andh along
with an indication of the basis usedj#2". These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore the parameters shall have been
validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

-28-

X9.63-199x

2. Each entity allowed to act as a responder shall be bound to a static key pair associated to the system’s
elliptic curve domain parametegsa, b, G, n, h. The binding shall include the validation of the static public
key as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.2.1 Initiator Transformation
U shall execute the following transformation to agree on keying data/ifittl is the protocol’s initiator:
Input: The input to the initiator transformation is:

1. An integelkeydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit stringsharedData of length shareddatalen bits which consists of some data shated by
andV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, the Diffie-
Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral kiky, gaip) for the
parameters, a, b, G, n, andh. SendQ, to V.
2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretzldfygrom the private key

d.u, the static public ke@).y, and the parametegs a, b, G, n, andh. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Convertz to a bit stringZ using the convention specified in Section 4.3.3.

4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret vaiand the shared dat8haredData].

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.2.2 Responder Transformation
V shall execute the following transformation to agree on keying datd\ifitil is the protocol’s responder:
Input: The input to the responder transformation is:

1. A purported ephemeral EC public k@y,’ owned byU.

2. An integeikeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data share@/by
andV.

Ingredients: The key agreement transformation employs public key validation in Section 5.2.2, the Diffie-Hellman
primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Verify that the purported k&9, ' is a valid key for the parameteaysa, b, G, n, andh as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.
2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretadfygrom the private key

dsv, the purported public ke®. ', and the parameters a, b, G, n, andh. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Converiz to a bit stringZ using the convention specified in Section 4.3.3.

4, Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valiand the shared dat8HaredData].

Output: The bit stringkeyData as the keying data of lendtbydatalen bits.

6.3 Static Unified Model Scheme
This section specifies the static Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 4 illustrates the use of the static Unified Model scheme.

Figure 4 - Static Unified Model Scheme

Next the formal specification of the scheme is given.

-29.

X9.63-199x

The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on

keying data with another entity no matter whether they are the initiator or the responder.

If entitiesU andV simultaneously execute the transformation with corresponding keying material as input, then

andV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static
keysgs, as, bs, G, N, andhg along with an indication of the basis used42™. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keyg, a, bs, G, ns, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2.

3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

Note that validation o,y has not necessarily been carried outbyput may instead have been carried out, for

example, by the CA issuing the binding betw&emdQsy.

U shall execute the following transformation to agree on keying datd/with

Input: The input to the key agreement transformation is:

1. An integeikeydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Ingredients. The key agreement transformation employs the Diffie-Hellman primitive in Section 5.4 and the key
derivation function in Section 5.6.3.

Actions: Keying data shall be derived as follows:

1. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretafalBgfrom the private key
dsu, the public keyQsy, and the parametegs, a,, bs, G, N, andhs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

2. Convertz to a bit stringZs using the convention specified in Section 4.3.3.

3. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret vallieand the shared dat8haredDatal].

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.4 Combined Unified Model with Key Confirmation Scheme

This section specifies the combined Unified Model with key confirmation scheme. The scheme is a hybrid of the
ephemeral Unified Model scheme and the static Unified Model scheme in which a MAC is used to provide key
confirmation.

First the scheme is illustrated in a flow diagram. Figure 5 illustrates the use of the combined Unified Model with key
confirmation scheme.

Figure5 - Combined Unified M odel with Key Confirmation Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spetifieses the transformation specified in Section

6.4.1 to agree on keying data withf U is the protocol’s initiator, and uses the transformation specified in Section

6.4.2 to agree on keying data withif V is the protocol’s responder.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with
ephemeral keyge, a., be, Ge Ne, andh, along with an indication of the basis used=P™. These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.

-30-

4.

5.

6.4.1

X9.63-199x

Furthermore the parameters shall have been validated using the parameter validation primitivesin Sections
51.12and5.1.2.2.

U has an authentic copy of the system’s elliptic curve domain parameters to be used with sigfiekeys

bs, G, ng, andh, along with an indication of the basis useg4f". These parameters shall have been
generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keyg, a,, bs, Gs, N, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same lemtggh bits. EntityU’s identifier

will be denoted by the bit stringd.

Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen is used to denote the length of the keys used by the MAC scheme chosen.

Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

Initiator Transformation

U shall execute the following transformation to agree on keying data/ifittl is the protocol’s initiator:
Input: The input to the initiator transformation is:

1.
2.

An integetkeydatalen which is the length in bits of the keying data to be generated.
(Optional) A bit stringsharedData; of lengthshareddatallen bits and a bit stringharedData, of length
shareddata2len bits which consist of some data sharedJandV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key

validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

1.
2.

3.

10.

-31-

Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral kiky,aip) for the
parameters, e, be, Ge, N, @andhe. SendQey to V.

Then receive frorv a purported ephemeral public k&y,/, an optional bit string’ext;, and a purported
tagMacTag;,'. If these values are not received, output ‘invalid’ and stop.

Verify that the purported ka9, is a valid key for the parametenys a,, be, G, nNe, andh, as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretadalBgfrom the private key
dsu, the public keyQsy, and the parametegs, a,, bs, G, Ns, andhs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.
Convertzs to a bit stringZs using the convention specified in Section 4.3.3.
Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
MacKey of lengthmackeylen bits from the shared secret valfigand the shared dat8haredData,].
Form the bit string consisting of the octet0¥'s identifier,U’s identifier, the bit strinQEV’
corresponding t&'s purported ephemeral public key, the bit sti@EU corresponding ttJ's ephemeral
public key, and if presefitext;:

MacData; = 02 ||V ||U ||QEV" || QEU || [Texty].
Verify thatMacTag;’ is the tag foiMacData; under the keylacKey using the tag checking transformation
of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.
Form the bit string consisting of the octe{dB’s identifier,V's identifier, the bit stringQEU
corresponding t&J’s ephemeral public key, the bit stri@iEV’ corresponding td/'s purported ephemeral
public key, and optionally a bit strifigext,:

MacData, = 03 ||U ||V || QEU |REV" || [Text;].
Calculate the talglacTag, on MacData, under the keylacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7:

MacTag, = MACyake(MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. 9éadTag, and if presentext,
to V.

X9.63-199x

11. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value z.[IF, from the private key
d.u, the purported public key Qe\/, and the parameterg, a, be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

12. Converiz to a bit stringZe using the convention specified in Section 4.3.3.

13. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valigand the shared dat&HaredData,)].

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.4.2 Responder Transformation
V shall execute the following transformation to agree on keying dataifitl is the protocol’s responder.
Input: The input to the responder transformation is:

1. A purported ephemeral public k€’ owned byU.
2. An integeikeydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit stringsharedData, of lengthshareddatallen bits and a bit stringharedData, of length

shareddata2len bits which consist of some data sharedJgndV.

Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2.1, public key
validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

1. Verify that the purported ke, ' is a valid key for the parameteys a, be, Ge, Ne, andh, as specified in
Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.

2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral keky;0aiv)(for the
parameters, ae, be, Ge, Ne, andhe.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretaalBgfrom the private key

dsv, the public keyQsy, and the parametegs, a, b, G, ns, andh, If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

4, Converizs to a bit stringZs using the convention specified in Section 4.3.3.

5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
MacKey of lengthmackeylen bits from the shared secret valligand the shared dat8HaredData,].

6. Form the bit string consisting of the octetd¥’s identifier,U’s identifier, the bit strinQEV

corresponding t&’s ephemeral public key, the bit striQEU’ corresponding tdJ’s purported ephemeral
public key, and optionally a bit stririgext;:

MacData; = 02 ||V ||U ||QEV ||QEU’ || [Texty].

7. Calculate the talylacTag, for MacData; under the keacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.

MacTag; = MACyacke{MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Sehdttee ephemeral public
key Qev, if present the bit stringext;, andMacTag;.

8. Then receive frortd an optional bit stringext, and a purported taglacTag,'. If this data is not received,
output ‘invalid’ and stop.
9. Form the bit string consisting of the octetd®’s identifier,V's identifier, the bit stringQEU’

corresponding tdJ’s purported ephemeral public key, the bit stipigV corresponding t&’s ephemeral
public key, and if present the bit strifigxt,:
MacData, = 036 ||U ||V || QEV’ || QEV || [Texty).

10. Verify thatMacTag,’ is the valid tag oMacData, under the keacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.

11. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretafalBgfrom the private key
d.v, the purported public ke®. ', and the parameters, a., be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

12. Converiz, to a bit stringZ. using the convention specified in Section 4.3.3.

13. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valigand the shared dat8HaredData,].

-32-

X9.63-199x

Output: The bit string KeyData as the keying data of length keydatalen bits.

6.5 1-Pass Unified Model Scheme

This section specifies the 1-pass Unified Model scheme.
First the scheme isillustrated in aflow diagram. Figure 6 illustrates the use of the 1-pass Unified Model scheme.

Figure6 - 1-Pass Unified M odel Scheme

Next the formal specification of the schemeis given.

The scheme is ‘asymmetric’, so two transformations are spetifieges the transformation specified in Section

6.5.1 to agree on keying data withf U is the protocol’s initiator, andl uses the transformation specified in Section

6.5.2 to agree on keying data withif V is the protocol’s responder.

The essential difference between the role of the initiator and the role of the responder in the scheme is that the

initiator contributes an ephemeral key pair but the responder does not.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parapyetbrss, n, andh along
with an indication of the basis usedj#2". These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain pgrameters
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.
3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.5.1 Initiator Transformation
U shall execute the following transformation to agree on keying data/\ifitl is the protocol’s initiator:
Input: The input to the key agreement transformation is:

1. An integeikeydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharetby
andV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, the Diffie-
Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral keky, 8aip) for the
parameters, a, b, G, n, andh. SendQ. to V.
2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretadalBgfrom the private key

d.u, the public keyQsy, and the parametegsa, b, G, n, andh. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

3. Converiz, to a bit stringZ, using the convention specified in Section 4.3.3.

4, Use the Diffie-Hellman primitive in 5.4 to derive a shared secret \zﬁﬁag1 from the private ke, the
public keyQsy, and the parametegsa, b, G, n, andh. If the primitive outputs ‘invalid’, output ‘invalid’
and stop.

5. Converizs to a bit stringZs using the convention specified in Section 4.3.3.

6. Concatenat&, andZs to form the shared secret valde Z|Zs.

7. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of lengthkeydatalen bits from the shared secret valiand the shared dat8HaredData].
Output: The bit stringkeyData as the keying data of lendtbydatalen bits.

6.5.2 Responder Transformation
V shall execute the following transformation to agree on keying dataifitl is the protocol’s responder:

-33-

X9.63-199x

Input: The input to the responder transformation is:

1 A purported ephemeral EC public key Q' owned byU.

2. An integeikeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharetby
andV.

Ingredients: The responder transformation employs public key validation as specified in Section 5.2.2, the Diffie-
Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Verify that the purported k&9, ' is a valid key for the parameteagsa, b, G, n, andh as specified in
Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.
2. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretahlfig from the private key

dsv, the purported public ke®.’, and the parameters a, b, G, n, andh. If the primitive outputs ‘invalid’,
output ‘invalid’ and stop.

3. Converiz, to a bit stringZ, using the convention specified in Section 4.3.3.

4. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretajalBgfrom the private key
dsv, the public keyQsy, and the parametegsa, b, G, n, andh. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

5. Converizs to a bit stringZs using the convention specified in Section 4.3.3.
6. Concatenatg&, andZs to form the shared secret valde Z|Zs.
7. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data

KeyData of lengthkeydatalen bits from the shared secret valiand the shared dat8HaredData].
Output: The bit stringkeyData as the keying data of lendtbydatalen bits.

6.6 Full Unified Model Scheme

This section specifies the full Unified Model scheme.
First the scheme is illustrated in a flow diagram. Figure 7 illustrates the use of the full Unified Model scheme.

Figure 7 - Full Unified Model Scheme

Next the formal specification of the scheme is given.

The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on

keying data with another entity no matter whether they are the initiator or the responder.

If U andV simultaneously execute the transformation with corresponding keying material as inputatiedawill

compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with
ephemeral keyge, a., be, Ge, N, andh, along with an indication of the basis used4f". These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static
keysgs, as, bs, G, N, andhg along with an indication of the basis used42™. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

3. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keyg, a,, bs, Gs, N, hs. The binding shall include the validation of the static public key
as specified in Section 5.2.2.

4. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

U shall execute the following transformation to agree on keying datd&/with

Input: The input to the key agreement transformation is:

1. A purported ephemeral EC public k@y,’ owned byV.

-34-

X9.63-199x

2. An integer keydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U
and V.

Ingredients. The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public
key validation in Section 5.2.2 or the embedded public key validation primitive in Section 5.2.3, the Diffie-
Hellman primitive in Section 5.4, and the key derivation function in Section 5.6.3.

Actions: Keying data shall be derived asfollows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (dey,Qeu) for the
parameters ge, e, De, Ge, Ne, @nd he. Send Qe to V.

2. Verify that the purported key Q. is a valid key for the parametegg ae, be, Ge, Ne, andh, as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretaalBgfrom the private key

d.u, the purported public ke®.\/, and the parameterg, a, be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convertz, to a bit stringZ, using the convention specified in Section 4.3.3.

5. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretafalBgfrom the private key
dsu, the public keyQsy, and the parametegs, a,, bs, G, N, andhs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

6. Convertz; to a bit stringZs using the convention specified in Section 4.3.3.

7. Concatenatg&, andZs to form the shared secret valldie Z|[Zs.

8 Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret vaiand the shared dat8haredData].

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.7 Full Unified Model with Key Confirmation Scheme

This section specifies the full Unified Model with key confirmation scheme. The scheme adds flows to the full
Unified Model scheme so that explicit key authentication may be supplied. A MAC scheme is used to provide key
confirmation.

First the scheme is illustrated in a flow diagram. Figure 8 illustrates the use of the full Unified Model with key
confirmation scheme.

Figure 8 - Full Unified M odel with Key Confirmation Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spetifieses the transformation specified in Section

6.7.1 to agree on keying data withf U is the protocol’s initiator, andl uses the transformation specified in Section

6.7.2 to agree keying data withif V is the protocol’s responder.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with
ephemeral keyge, a., be, Ge Ne, andh, along with an indication of the basis used=f™. These parameters
shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1.
Furthermore, the parameters shall have been validated using the parameter validation primitives in Sections
5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with static
keysgs, as, bs, G, N, andhg along with an indication of the basis used42™. These parameters shall have
been generated using the parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the
parameters shall have been validated using the parameter validation primitives in Sections 5.1.1.2 and
5.1.2.2.

3. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters to
be used with static keyg, a, bs, G, ns, hs. The binding shall include the validation of the static public key

-35-

X9.63-199x

as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier
will be denoted by the bit string.

4. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen will denote the length of the keys used by the chosen MAC scheme.
5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.7.1 Initiator Transformation
U shall execute the following transformation to agree on keying data/ifittl is the protocol’s initiator:
Input: The input to the initiator transformation is:

1. An integelkeydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key
validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral kiky, gaip) for the
parameters, e, be, Ge, N, @andhe. SendQey to V.

2. Then receive frorv a purported ephemeral public k&y,/, an optional bit string’ext;, and a purported
tagMacTag;,'. If these values are not received, output ‘invalid’ and stop.

3. Verify that the purported ka9, is a valid key for the parametenys a,, be, G, ne, andh, as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4, Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretaalBgfrom the private key

deu, the purported public ke®.\/, and the parameterg, a, be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

5. Convertz, to a bit stringZ. using the convention specified in Section 4.3.3.

6. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretafalBgfrom the private key
dsu, the public keyQsy, and the parametegs, a,, bs, G, N, andhs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

7. Convertz to a bit stringZs using the convention specified in Section 4.3.3.

8. Form the shared secret bit stringsZ = Z|Z..

9. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret valiand the shared data
[SharedData).

10. Parse the leftmostacdatalen bits of KeyData! as a MAC keyMacKey and the remaining bits as keying
dataKeyData.

11. Form the bit string consisting of the octefs0?’s identifier, U's identifier, the bit strinQEV’

corresponding t&'s purported ephemeral public key, the bit sti@EU corresponding ttJ's ephemeral
public key, and if presefitext;:
MacData; = 02 ||V ||U ||QEV" || QEU || [Texty].

12. Verify thatMacTag;' is the tag folMacData; under the keylacKey using the tag checking transformation
of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.

13. Form the bit string consisting of the octefsPB’s identifier,V's identifier, the bit strinddEU
corresponding t&J’s ephemeral public key, the bit stri@iEV’ corresponding td/'s purported ephemeral
public key, and optionally a bit strifiext,:

MacData, = 036 ||U ||V ||QEU ||QEV" || [Texty].
14. Calculate the talglacTag, on MacData, under the keylacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7:
MacTag, = MACyacke(MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. 9éadTag, and if presentext,
to V.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

-36-

X9.63-199x

6.7.2 Responder Transformation
V shall execute the following transformation to agree on keying datawith U if V is the protocol’s responder:
Input: The input to the responder transformation is:

1. A purported ephemeral public k&g, owned byU.

2. An integetkeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Ingredients. The responder transformation employs the key pair generation primitive in Section 5.2.1, public key
validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

1. Verify that the purported ka9,)’ is a valid key for the parametens a,, be, G, Ne, andh, as specified in
Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral ke aiv)(for the
parameters, ae, be, Ge, Ne, andh.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretaalBgfrom the private key

d.v, the purported public ke®.,’, and the parameterg, a., be, G, Ne, andh,. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4. Convertz, to a bit stringZ, using the convention specified in Section 4.3.3.

5. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretafalBgfrom the private key
dsv, the public keyQsy, and the parametegs, a,, bs, G, N, andhs. If the primitive outputs ‘invalid’, output
‘invalid’ and stop.

6. Convertz to a bit stringZs using the convention specified in Section 4.3.3.

7. Form the shared secret bit stringsZ = Z|Z..

8. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret valiand the shared data
[SharedData].

9. Parse the leftmostackeylen bits of KeyData! as a MAC keyMacKey and the remaining bits as keying data
KeyData.

10. Form the bit string consisting of the octefs0¥’s identifier,U’s identifier, the bit strinQEV

corresponding t&'s ephemeral public key, the bit striQiEU’ corresponding tdJ’s purported ephemeral
public key, and optionally a bit strifgext;:

MacData; = 02 ||V ||U ||QEV ||QEV’ || [Texty].

11. Calculate the talglacTag; for MacData; under the keylacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.

MacTag; = MACyacke(MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Sendittee ephemeral public
key Qev, if present the bit stringext;, andMacTag;.

12. Then receive frord an optional bit strindext, and a purported taglacTag,'. If this data is not received,
output ‘invalid’ and stop.
13. Form the bit string consisting of the octefs0B’s identifier,V's identifier, the bit strindQEU’

corresponding t&J)’s purported ephemeral public key, the bit sti@EV corresponding t&'s ephemeral
public key, and if present the bit strifigxt,:
MacData, = 036 ||U ||V ||QEU’ || QEV || [Texty].
14. Verify thatMacTag;’ is the valid tag otMacData, under the keyacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.8 Station-to-Station Scheme
This section specifies the Station-to-Station scheme. The scheme uses a signature scheme to authenticate the
ephemeral Unified Model scheme and provide mutual explicit key authentication.

-37-

X9.63-199x

First the schemeisillustrated in aflow diagram. Figure 9 illustrates the use of the Station-to-Station scheme.

Figure 9 — Station-to-Station Scheme

Next the formal specification of the schemeis given.

The scheme is ‘asymmetric’, so two transformations are spedifieges the transformation specified in Section
6.8.1 to agree keying data withif U is the protocol’s initiator, andl uses the transformation specified in Section
6.8.2 to agree keying data withif V is the protocol's responder.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with
ephemeral keysg,, a., be, Ge, Ne, andh.. These parameters shall have been generated using the parameter
generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated
using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with a
signature schem®yg, asq, bsg, Gsg, Nsig @Ndhgg along with an indication of the basis useg=2™. These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

3. Each entity shall be bound to a static signing key pair associated to the system’s elliptic curve domain
parameters for Signingkg, asg, Psg, Gsgs N, @andhgg. The binding may include the validation of the public
signature as specified in Section 5.2.2. The key binding shall include a unigue identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same lemtggh bits. EntityU’s identifier
will be denoted by the bit strirngd.

4, Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen will denote the length of the keys used by the MAC scheme chosen.
5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.8.1 Initiator Transformation

U shall execute the following transformation to agree keying datayiithl is the protocol’s initiator:

Input: The input to the initiator transformation is:

1. An integerkeydatalen which is the length in bits of the keying data to be generated.

2. (Optional) A bit stringsharedData of lengthshareddatalen which consists of some data sharedJgndV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2., public key
validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, one of the MAC schemes in Section 5.7, and the signature scheme specified in Section 5.9.

Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral keky, p@ir) for the
parameterse, 8, be, Ge, Ne, andhe. SendQey to'V .
2. Then receive fror¥ a purported ephemeral public k&y,/, a pair of integerssig,” andssig,’ purporting

to be a signature, a purported fdgcTag,’, and an optional bit stringjext;. If this data is not received,
output ‘invalid’ and stop.

3. Verify that the purported ke, is a valid key for the parameteays ae, be, Ge, Ne, andh, as specified in
Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.
4, Form the bit string consisting of the bit stri@BV’ corresponding t&/'s purported ephemeral public key,

the bit stringQEU corresponding t&)’'s ephemeral public key)’s identifier, and if preseniext;:
Data; = QEV' || QEU [|U || [Texty].
5. Verify thatrsig,” andssig,” are a valid signature ddata;, underV’s public signature keQggv
corresponding to the EC domain parametggsasg, bsg, Gsg, Nsg, andhgg, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

-38-

X9.63-199x

6. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secret value z in Fq from the private key
d.u, the purported ephemeral public key Q.\/, and the parameterg, ae, be, Ge, Ne, andhe. If the primitive
outputs ‘invalid’, output ‘invalid’ and stop.

7. Convertz, to a bit stringZ. using the convention specified in Section 4.3.3.

8. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret valfigand the shared data
[SharedData].

9. Parse the leftmogtacdatalen bits of KeyData! as a MAC keyMacKey and the remaining bits as keying
dataKeyData.

10. Verify thatMacTag;’ is the tag foiData;’ under the keyMacKey using the tag checking transformation of

the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs ‘invalid’,
output ‘invalid’ and stop.
11. Form the bit string consisting of the bit strfPBU corresponding ttJ's ephemeral public key, the bit
string QEV’ corresponding td/'s purported ephemeral public k&ys identifier, and optionally a bit string
Text,:
Data, = QEU [|QEV' ||V || [Texty)].
12. SignData, usingU’s private signing keylsgy corresponding to the parametegs, asg, Dsg, Gsg, Nsg, and
hsg, using the signing transformation of the signature scheme in Section 5.9. If the signing transformation
outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the imggers
andssig, as the signature @ata,.
13. Calculate the talglacTag, onData, under the keylacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7:
MacTag, = MACyacke/(Datay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Ssigg, ssig,, MacTag, and if
presenflext, to V.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.8.2 Responder Transformation
V shall execute the following transformation to agree keying dateUniftN is the protocol’s responder:
Input: The input to the responder transformation is:

1. A purported ephemeral public k€’ owned byU.
2. An integeikeydatalen which is the length in bits of the keying data to be generated.
3. (Optional) A bit stringsharedData of lengthshareddatalen which consists of some data sharedJgndV.

Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2., public key
validation in Section 5.2.2, the Diffie-Hellman primitive in Section 5.4, the key derivation function in
Section 5.6.3, one of the MAC schemes in Section 5.7, and the signature scheme specified in Section 5.9.

Actions: Keying data shall be derived as follows:

1. Verify that the purported ke, ' is a valid key for the parameteys a, be, Ge, Ne, andh, as specified in
Section 5.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral keky;pQinJ for the
parametersl, ae, be, Ge, Ne, andhe.

3. Use the Diffie-Hellman primitive in Section 5.4 to derive a shared secretxatug, from the private key

d.v, the purported public ke®.,’, and the parameters, a., be, Ge, Ne, andhe. If the primitive outputs
‘invalid’, output ‘invalid’ and stop.

4, Converiz, to a bit stringZe using the convention specified in Section 4.3.3.

5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret valfigand the shared data
[SharedData].

6. Parse the leftmostacdatalen bits ofKeyData! as a MAC keyMacKey and the remaining bits as keying
dataKeyData.

7. Form the bit string consisting of the bit stri@BV corresponding t&’s ephemeral public key, the bit string
QEU’ corresponding taJ's purported ephemeral public kay's identifier, and if optionally a bit string
Texty:

Data, = QEV ||QEU" || U || [Texty].

-39-

X9.63-199x

8. Sign Data, using V's private signing keysgy corresponding to the parametegs, asg, bsg, Gsg, Nsig, and
hsg, using the signing transformation of the signature scheme in Section 5.9. If the signing transformation
outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the insgers
andssig; as the signature @ata;.

9. Calculate the taljlacTag; on Data; under the keyacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7:

MacTag; = MACyacke/(Datay).

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Sgndrsig;, ssig;, MacTag;
and if presentext; to U.

10. Then receive fror a pair of integerssig;’ andssig;’ purporting to be a signature, a purported tag
MacTag,’, and an optional bit stringjext,. If these values are not received, output ‘invalid’ and stop.

11. Form the bit string consisting of the bit strlBU’ corresponding tdJ’s purported ephemeral public key,
the bit stringQEV corresponding t&’s ephemeral public key/'s identifier, and if present the bit string
Text,:

Data, = QEU’ [| QEV ||V || [Texty)].
12. Verify thatrsig,’ andssig,’ are a valid signature data, underU’s public signature ke@Qgqu
corresponding to the EC domain parametggsasg, bsg, Gsg, Nsg aNdhgg, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.
13. Verify thatMacTag,’ is the tag foData,’ under the keyMacKey using the tag checking transformation of
the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs ‘invalid’,
output ‘invalid’ and stop.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.9 1-Pass MQV Scheme
This section specifies the 1-pass MQV scheme.
First the scheme is illustrated in a flow diagram. Figure 10 illustrates the use of the 1-pass MQV scheme.

Figure 10 - 1-PassM QV Scheme

Next a formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spetifieges the transformation specified in Section

6.9.1 to agree on keying data withf U is the protocol’s initiator, and uses the transformation specified in Section

6.9.2 to agree keying data withif V is the protocol’s responder.

The essential difference between the role of the initiator and the role of responder in the scheme is that the initiator

contributes an ephemeral key pair but the responder does not.

If U executes the initiator transformation andimultaneously executes the responder transformation with

corresponding keying material as input, thieandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parapyatbrss, n, andh along
with an indication of the basis usedj#2". These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain pgrameters
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.
3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

6.9.1 Initiator Transformation

U shall execute the following transformation to agree on keying datefittl is the protocol’s initiator:
Input: The input to the key agreement transformation is:

1. An integeikeydatalen which is the length in bits of the keying data to be generated.

- 40 -

X9.63-199x

2. (Optional) A bit string SharedData of length shareddatalen bits which consists of some data shared by U
and V.

Ingredients: Theinitiator transformation employs the key pair generation primitive in Section 5.2.1, the MQV
primitive in Section 5.5, the associate value function in Section 5.6.1, and the key derivation functionin

Section 5.6.3.

Actions: Keying data shall be derived asfollows:

1 Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral key pair (dgy,Qeu) for the
parameters g, a, b, G, n, and h. Send Q. to V.

2. Usethe MQV primitive in Section 5.5 to derive a shared secret value z[IF, from the key pairs

(d,0,Q1,0)=(dsu,Qsu) and (dz,y,Q2,0)=(deu,Qe), the public key Q1\=Q2y=Qsv, and the parameters g, a, b,
G, n, and h. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convertz to a bit stringZ using the convention specified in Section 4.3.3.

4. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret vaiand the shared dat8haredData].

Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.9.2 Responder Transformation
V shall execute the following transformation to agree on keying datd\ifitil is the protocol’s responder:
Input: The input to the responder transformation is:

1. A purported ephemeral EC public k@y,’ owned byU.

2. An integeikeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharetby
andV.

Ingredients: The responder transformation employs public key validation in Section 5.2.2, the MQV primitive in
Section 5.5, the associate value function in Section 5.6.1, and the key derivation function in Section 5.6.3.
Actions: Keying data shall be derived as follows:

1. Verify that the purported ke9.’ is a valid key for the parameteaysa, b, G, n, andh as specified in
Section 5.2.2. If the primitive rejects the key, output ‘invalid’ and stop.
2. Use the MQV primitive in Section 5.5 to derive a shared secret alEgfrom the key pair

(d1.v,Q1v)=(d2v,Q2v)=(ds v, Qsv), the public key®);)=Qsu andQ,y=Qey’, and the parameters a, b, G, n,
andh. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

3. Convertz to a bit stringZ using the convention specified in Section 4.3.3.

4, Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valiand the shared dat8HaredData].

Output: The bit stringkeyData as the keying data of lendtbydatalen bits.

6.10 Full MQV Scheme
This section specifies the full MQV scheme.
First the scheme is illustrated in a flow diagram. Figure 11 illustrates the use of the full MQV scheme.

Figure 1l - Full MQV Scheme

Next the formal specification of the scheme is given.

The scheme is ‘symmetric’, so only one transformation is specified. An entity uses this transformation to agree on

keying data with another entity no matter whether they are the initiator or the responder.

If U andV simultaneously execute the transformation with corresponding keying material as inputatiedAwill

compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parayetbrss, n, andh along
with an indication of the basis usedjf2". These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

-41 -

X9.63-199x

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain paranggters
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2.2.
3. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

U shall execute the following transformation to agree on keying dat&/with
Input: The input to the key agreement transformation is:

1. A purported ephemeral EC public k@y,’ owned byV.

2. An integeikeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Ingredients: The key agreement transformation employs the key pair generation primitive in Section 5.2.1, public
key validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section
5.6.1, and the key derivation function in Section 5.6.3.

Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral ke, 8aip) for the
parameters, a, b, G, n, andh. SendQ. to V.

2. Verify that the purported ke, is a valid key for the parametaysa, b, G, n, andh as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

3. Use the MQV primitive in Section 5.5 to derive a shared secret galEgfrom the key pairs

(dy,u,Q1u)=(dsu,Qsu) and @2y, Q2,u)=(deu,Qe), the public key®:v=Qsy andQ,=Qe\/, and the
parameters, a, b, G, n, andh. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

4, Converiz to a bit stringZ using the convention specified in Section 4.3.3.

5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData of lengthkeydatalen bits from the shared secret valiand the shared dat8HaredData].

Output: The bit stringkeyData as the keying data of lendtbydatalen bits.

6.11 Full MQV with Key Confirmation Scheme

This section specifies the full MQV with key confirmation scheme. The scheme adds flows to the full MQV scheme
so that explicit key authentication may be supplied. A MAC scheme is used to provide key confirmation.

First the scheme is illustrated in a flow diagram. Figure 12 illustrates the use of the full MQV with key confirmation
scheme.

Figure 12 - Full MQV with Key Confirmation Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spedifiases the transformation specified in Section

6.11.1 to agree on keying data withf U is the protocol’s initiator, and uses the transformation specified in

Section 6.11.2 to agree keying data witlf V is the protocol’s responder.

If U executes the initiator transformation ahdimultaneously executes the responder transformation with

corresponding keying material as input, theandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parayetbrss, n, andh along
with an indication of the basis usedji#2". These parameters shall have been generated using the
parameter generation primitives in Sections 5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have
been validated using the parameter validation primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity shall be bound to a static key pair associated to the system’s elliptic curve domain parameters
a, b, G, n, h. The binding shall include the validation of the static public key as specified in Section 5.2. The
key binding shall include a unique identifier for each entity (e.g. distinguished names). All identifiers shall
be bit strings of the same lengttlen bits. EntityU’s identifier will be denoted by the bit striry

3. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in Section 5.7.
mackeylen denotes the length of keys used by the chosen MAC scheme.
4. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function.

- 42 -

X9.63-199x

6.11.1 Initiator Transformation
U shall execute the following transformation to agree on keying datawithV if U is the protocol’s initiator:
Input: The input to the initiator transformation is:

1. An integelkeydatalen which is the length in bits of the keying data to be generated.
2. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data sharet/by
andV.

Ingredients: The initiator transformation employs the key pair generation primitive in Section 5.2.1, public key
validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section 5.6.1,
the key derivation function in Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

1. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral kiky,8aip) for the
parameters, a, b, G, n, andh. SendQ, to V.

2. Then receive fronv a purported ephemeral public k&y,/, an optional bit string’ext;, and a purported
tagMacTag;'. If these values are not received, output ‘invalid’ and stop.

3. Verify that the purported ka9, is a valid key for the parametegsa, b, G, n, andh as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

4, Use the MQV primitive in Section 5.5 to derive a shared secret zalEgfrom the key pairs

(dy,u,Q1,0)=(dsu,Qsu) and €2,u,Q2,u)=(deu,Qeu), the public key€\=Qsy andQ,y=Qeyv/, and the
parameters, a, b, G, n, andh. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

5. Convertz to a bit stringZ using the convention specified in Section 4.3.3.

6. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret valiand the shared data
[SharedData].

7. Parse the leftmostackeylen bits of KeyData! as a MAC keyMacKey and the remaining bits as keying data
KeyData.

8. Form the bit string consisting of the octe{d¥’s identifier, U’s identifier, the bit stringQEV’

corresponding t&'s purported ephemeral public key, the bit sti@EU corresponding ttJ's ephemeral
public key, and if presefitext;:
MacData; = 02 ||V ||U ||QEV" || QEU || [Texty].

9. Verify thatMacTag;’ is the tag foiMacData; under the keylacKey using the tag checking transformation
of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation outputs
‘invalid’, output ‘invalid’ and stop.

10. Form the bit string consisting of the octets0B’s identifier,V's identifier, the bit strinQEU
corresponding t&J’s ephemeral public key, the bit stri@iEV’ corresponding td/'s purported ephemeral
public key, and optionally a bit strifigext,:

MacData, = 036 ||U ||V ||QEU ||QEV" || [Texty].
11. Calculate the talglacTag, on MacData, under the keylacKey using the tagging transformation of the
appropriate MAC scheme specified in Section 5.7:
MacTag, = MACyacke(MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. 9éadTag, and if presentext,
to V.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

6.11.2 Responder Transformation
V shall execute the following transformation to agree on keying datd\ifitil is the protocol’s responder:
Input: The input to the responder transformation is:

1. A purported ephemeral public k€’ owned byU.

2. An integeikeydatalen which is the length in bits of the keying data to be generated.

3. (Optional) A bit stringsharedData of lengthshareddatalen bits which consists of some data share@by
andV.

Ingredients: The responder transformation employs the key pair generation primitive in Section 5.2.1, public key
validation in Section 5.2.2, the MQV primitive in Section 5.5, the associate value function in Section 5.6.1,
the key derivation function in Section 5.6.3, and one of the MAC schemes in Section 5.7.

Actions: Keying data shall be derived as follows:

-43-

X9.63-199x

1 Verify that the purported key Q' is a valid key for the parameteysa, b, G, n, andh as specified in
Section 5.2.2. If the validation primitive rejects the key, output ‘invalid’ and stop.

2. Use the key pair generation primitive in Section 5.2.1 to generate an ephemeral keky 0aiv)(for the
parameters, a, b, G, n, andh.

3. Use the MQV primitive in Section 5.5 to derive a shared secret galEgfrom the key pairs

(div,Q11)=(dsv,Qsv) and €2y, Q2,v)=(de,Qev), the public key€) y=Qsy andQ,u=Qeu’, and the
parameters, a, b, G, n, andh. If the MQV primitive outputs ‘invalid’, output ‘invalid’ and stop.

4. Convertz to a bit stringZ using the convention specified in Section 4.3.3.

5. Use the key derivation function in Section 5.6.3 with the established hash function to derive keying data
KeyData! of lengthmackeylen+keydatalen bits from the shared secret vaiand the shared data
[SharedData].

6. Parse the leftmostackeylen bits of KeyData! as a MAC keyMacKey and the remaining bits as keying data
KeyData.

7. Form the bit string consisting of the octe{0¥’s identifier,U’s identifier, the bit stringQEV

corresponding t&’s ephemeral public key, the bit striQiEU’ corresponding tdJ’s purported ephemeral
public key, and optionally a bit strifigext_1:

MacData; = 02 ||V ||U ||QEV ||QEU’ || [Texty].

8. Calculate the tallacTag; for MacData; under the keyacKey using the tagging transformation of the

appropriate MAC scheme specified in Section 5.7.

MacTag; = MACyacke(MacDatay).
If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Sendittee ephemeral public
key Qev, if present the bit stringext;, andMacTag;.

9. Then receive frort an optional bit stringext, and a purported tagacTag,'. If this data is not received,
output ‘invalid’ and stop.
10. Form the bit string consisting of the octefs0B’s identifier,V's identifier, the bit strindQEU’

corresponding t&J)’s purported ephemeral public key, the bit sti@EV corresponding t&'s ephemeral
public key, and if present the bit strifigxt,:
MacData, = 036 ||U ||V ||QEU’ || QEV || [Texty].
11. Verify thatMacTag;’ is the valid tag otMacData, under the keacKey using the tag checking
transformation of the appropriate MAC scheme specified in Section 5.7. If the tag checking transformation
outputs ‘invalid’, output ‘invalid’ and stop.
Output: The bit stringKeyData as the keying data of lengtbydatalen bits.

7 Key Transport Schemes

This section describes the key transport schemes specified in this Standard.

In each case, the key transport scheme is used by an entity who wishes to establish keying data with another entity.
Both protocols specified are ‘asymmetric’, so it is necessary to describe two transformations, one of which is
undertaken by if U is the initiator, and one of which is undertakentif/ V is the responder.

In the specification of each transformation, equivalent computations that result in identical output are allowed.

Each of the key transport schemes has certain prerequisites. These are conditions that must be satisfied by an
implementation of the scheme. However the specification of mechanisms that provide these prerequisites is beyond
the scope of this Standard.

Section H.4.3 provides guidance to the services which each scheme may be used to provide.

Each scheme is described in two ways. First a flow diagram of the ordinary operation of the scheme between two
entitiesU andV is provided. This flow diagram is for illustrative purposes only. Then a formal specification is given
which describes the actions entities must take to use the scheme to establish keying data.

These flow diagrams are intended to aid understanding of the mechanics of the ‘ordinary’ operation of the schemes
in which flows are relayed faithfully between two entities. Note that in ‘real-life’, there is no reason to assume that
flows are relayed faithfully between two entities...that is why the schemes must be formally specified in a more
technical fashion.

When examining the flow diagrams, the following points should be noted:

— For clarity of exposition, optional fields suchBext andSharedData are omitted.

— kdf(Z) denotes the output of the key derivation function specified in Section 5.6.3 called oA. input

X9.63-199x

— ENC andDEC respectively denote the encryption and decryption transformations associated with one of the
asymmetric encryption schemes specified in Section 5.8. The subscripts immmediately f&Gimgd
DEC denote the keys being used in the operation of the appropriate transformation. Sighitadlgnotes
the signing transformation associated with the signature scheme ECDSA specified in SectiolVbAZ; and
denotes the tagging transformation of one of the MAC schemes specified in Section 5.7.

7.1 1-Pass Transport Scheme
This section specifies the 1-pass transport scheme.
First the scheme is illustrated in a flow diagram. Figure 13 illustrates the use of the 1-pass key transport scheme.

Figure 13 - 1-PassKey Transport Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spetifiesds the transformation specified in Section

7.1.1 to establish keying data wihf U is the protocol’s initiator, and uses the transformation specified in

Section 7.1.2 to establish keying data vigtif V is the protocol’s responder.

If U executes the initiator transformation ahdimultaneously executes the responder transformation with

corresponding keying material as input, theandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with an
asymmetric encryption schemga, b, G, n, andh along with an indication of the basis useg4f". These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

2. Each entity allowed to act as a responder shall be bound to a static encryption key pair associated to the
system’s elliptic curve domain parametgrs, b, G, n, h. The binding may include the validation of the
public key as specified in Section 5.2.2.

3. Each entity allowed to act as an initiator shall be bound to a unique identifier (e.g. distinguished names). All
identifiers shall be bit strings of same lengtkien bits. EntityU’s identifier will be denoted by the bit
stringU.

4, Each entity shall have decided whether to use the Elliptic Curve Encryption Scheme in Section 5.8.1 or the
Elliptic Curve Augmented Encryption Scheme in Section 5.8.2.

5. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function

during encryption and decryption.

7.1.1 Initiator Transformation

U shall execute the following transformation to establish keying dataAifitt is the protocol’s initiator:

Input: The input to the initiator transformation is:

1. A bit stringKeyData of lengthkeydatalen bits which is the keying data to be transported.

2. (Optional) Two bit stringSharedData; andSharedData, which consist of some data shared_bgndV.

Ingredients: The initiator transformation employs the encryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions; Keying data shall be derived as follows:

1. Form the bit string consisting ofs identifier, the keying dateyData, and optionally a bit stringext:
EncData = U ||KeyData || [Text].
2. EncryptEncData underV's static public encryption ke®e.v corresponding to the EC domain parameters

g, & b, G, n, andh, with the optional inputSharedData; andSharedData,, using the encryption
transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the encryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the encryption transformation outputs
a bit stringEncryptedData as the encryption dncData.

3. SendEncryptedData to V.

Output: The bit stringKeyData of lengthkeydatalen bits as the keying data.

- 45 -

X9.63-199x

NOTE— Including a key counter field in the optiofakt field may help to prevent known key attacks.

7.1.2 Responder Transformation
V shall execute the following transformation to establish keying datawith U if V is the protocol’s responder:
Input: The input to the responder transformation is:

1. A bit stringEncryptedData’ purporting to be the encryption of a bit string.
2. An integeikeydatalen which is the length in bits of the keying data to be generated.
3. (Optional) Two bit stringSharedData; andSharedData, which consist of some data shared_bsndV.

Ingredients: The responder transformation employs the decryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions: Keying data shall be derived as follows:

1. Decrypt the bit stringncryptedData’ usingV's static private decryption ke, corresponding to the EC
domain parametexg a, b, G, n, andh, with the optional inputSharedData; andSharedData,, using the
decryption transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the decryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the decryption transformation outputs
a bit stringencData of lengthencdatalen bits as the decryption of the bit string.

2. If encdatalen<entlen+keydatalen, output ‘invalid’ and stop.

3. Parse the firgntlen bits of EncData as the purported identifié# of U, and the nexteydatalen bits of
EncData as keying dat&eyData.

4, Verify thatU’=U; if not, output ‘invalid’ and stop.

Output: The bit strlng(eyData of lengthkeydatalen bits as the keying data.

7.2 3-Pass Transport Scheme

This section specifies the 3-pass transport scheme. The scheme uses a signature scheme to provide explicit key
authentication for a session key transported using the 1-pass transport scheme specified in Section 7.1.

First the scheme is illustrated in a flow diagram. Figure 14 illustrates the use of the 3-pass key transport scheme.

Figure 14 - 3-Pass Key Transport Scheme

Next the formal specification of the scheme is given.

The scheme is ‘asymmetric’, so two transformations are spedifiases the transformation specified in Section

7.2.1 to establish keying data wihf U is the protocol’s initiator, and uses the transformation specified in

Section 7.2 to establish keying data withf V is the protocol’s responder.

If U executes the initiator transformation ahdimultaneously executes the responder transformation with

corresponding keying material as input, theandV will compute the same keying data.

Prerequisites: The following are the prerequisites for the use of the scheme:

1. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with an
asymmetric encryption schem&, enc, Denc; Genes Neney @Ndhene @long with an indication of the basis used if
g=2". These parameters shall have been generated using the parameter generation primitives in Sections
5.1.1.1 and 5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation
primitives in Sections 5.1.1.2 and 5.1.2.2.

2. Each entity has an authentic copy of the system’s elliptic curve domain parameters to be used with a
signature schenyg, agg, bsg, Gsgs Nig, @andhgg along with an indication of the basis used=2". These
parameters shall have been generated using the parameter generation primitives in Sections 5.1.1.1 and
5.1.2.1. Furthermore, the parameters shall have been validated using the parameter validation primitives in
Sections 5.1.1.2 and 5.1.2.2.

3. Each entity shall be bound to a static signing key pair associated to the system'’s elliptic curve domain
parameters for signingkg, agg, bsg, Gsg, N, andhgg. The binding may include the validation of the public
signature as specified in Section 5.2.2. The key binding shall include a unique identifier for each entity (e.g.
distinguished names). All identifiers shall be bit strings of the same lemtggh bits. EntityU’s identifier
will be denoted by the bit stringd.

- 46 -

X9.63-199x

4, Each entity allowed to act as an initiator shall be bound to a static encryption key pair associated to the
system’s elliptic curve domain parameters for encrymig @enc, Pencs Gency Nene; @Ndhene. The binding may
include the validation of the public encryption key as specified in Section 5.2.2.

5. Each entity shall have decided whether to use the Elliptic Curve Encryption Scheme in Section 5.8.1 or the
Elliptic Curve Augmented Encryption Scheme in Section 5.8.2.

6. Each entity shall have chosen an ANSI-approved hash function for use with the key derivation function
during encryption and decryption.

7. Each entity shall have decided what length the challenges it uses wliilbengelen denotes the length

chosen. Note thathallengelen must be=80.

7.2.1 Initiator Transformation

U shall execute the following transformation to establish keying dataAifitt is the protocol’s initiator:

Input: The input to the initiator transformation is:

1. An integeikeydatalen which is the length in bits of the keying data to be generated.

2. (Optional) Two bit stringSharedData, andSharedData, which consist of some data shared_bgndV.

Ingredients: The initiator transformation employs the challenge generation primitive specified in Section 5.3, the
signature scheme specified in Section 5.9, and the decryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions; Keying data shall be derived as follows:

1. Use the challenge generation primitive in Section 5.3 to generate a ch@lketigage, of length
challengelen bits. SendChallengey to V.
2. Then receive fror¥ a purported challengéhallenge,/, a bit stringEncryptedData’ purporting to be the

encryption of a bit string, an optional bit strifigxt;, and a pair of integersig,’ andssig;,” purporting to be
a signature. If this data is not received, output ‘invalid’ and stop.

3. Verify thatChallenge,/ is a bit string of lengttthallengelen bits. If not, output ‘invalid’ and stop.

4. Decrypt the bit stringncryptedData’ usingU’s private decryption kegey, corresponding to the EC
domain parametefnc, 8encs Dency Genes Nency @Ndhene, With the optional inputSharedData; and
SharedData,, using the decryption transformation of the appropriate asymmetric encryption scheme in
Section 5.8. If the decryption transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the
decryption transformation outputs a bit striericData of lengthencdatalen bits as the decryption of the bit

string.

5. If encdatalen<entlen+keydatalen, output ‘invalid’ and stop.

6. Parse the firgntlen bits of EncData as the purported identifi&f of V, and the nexteydatalen bits of
EncData as keying dat&eyData.

7. Verify thatV'=V; if not, output ‘invalid’ and stop.

8. Form the bit string consisting Ghallenge,’, Challengey, U’s identifier, the bit strindencryptedData’, and

if presentText;:
SgnData; = Challenge,/ || Challengey [|U ||EncryptedData’ || [Text,].

9. Verify thatrsig,” andssig,’ are a valid signature @gnData; underV'’s public signature keQsgy
corresponding to the EC domain parametggsasg, bsg, Gsg, Nsg aNdhgg, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

10. Form the bit string consisting Ghallengey, Challenge,/, V's identifier, and optionally a bit strinbext_»:
SgnData, = Challengey ||Challenge,/ || V || [Texty].
11. SignSignData, usingU’s private signing kegq, corresponding to the parametegg, asg, bsg, Gsg, Nsigs

andhgg, using the signing transformation of the signature scheme in Section 5.9. If the signing
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the
integersrsig, andssig, as the signature &gnDatas.

12. Send to/ the bit stringText; if present, andsig, andssig,.

Output: The bit stringKeyData of lengthkeydatalen bits.

7.2.2 Responder Transformation
V shall execute the following transformation to establish keying datdJwitl is the protocol’s responder:
Input: The input to the responder transformation is:

-47 -

X9.63-199x

1. A purported challenge Challenge,’ from U.

2. A bit stringKeyData of lengthkeydatalen bits which is the keying data to be transported.

3. (Optional) Two bit stringSharedData; andSharedData, which consist of some data shared_bgndV.

Ingredients. The responder transformation employs the challenge generation primitive specified in Section 5.3, the
signature scheme specified in Section 5.9, and the encryption transformation of the appropriate asymmetric
encryption scheme in Section 5.8.

Actions; Keying data shall be derived as follows:

1. Verify thatChallenge,’ is a bit string of lengtlthallengelen bits. If not, output ‘invalid’ and stop.
2. Use the challlenge generation primitive in Section 5.3 to generate a ch&letigage, of length
challengelen bits.
3. Form the bit string consisting Ufs identifier, KeyData, and optionally a bit stringext;:
EncData =V ||KeyData || [Texty].
4, EncryptEncData underU’s public encryption ke¥dey corresponding to the EC domain parametgrs

3ency Dencs Genes Nency @aNdhene, With the optional inputSharedData; andSharedData,, using the encryption
transformation of the appropriate asymmetric encryption scheme in Section 5.8. If the encryption
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the encryption transformation outputs
a bit stringEncryptedData as the encryption dncData.

5. Form the bit string consisting Ghallenge,, Challengey’, U’s identifier, the bit strindencryptedData, and
optionally a bit stringrext;:

SgnData; = Challengey, ||Challengey’ || U ||EncryptedData || [Texty].

6. SignSignData; usingV's private signing keylyy corresponding to the parametegs, asg, bsg, Gsg, Nsig,
andhgg, using the signing transformation of the signature scheme in Section 5.9. If the signing
transformation outputs ‘invalid’, output ‘invalid’ and stop. Otherwise the signing transformation outputs the
integersrsig; andssig; as a signature aignData;.

7. SendChallenge, the bit stringencryptedData, if presenflext;, andrsig; andssig; to U.
8. Then receive frortd an optional bit stringext,, and a purported signaturgg,’ andssig,’. If this data is
not received, output ‘invalid’ and stop.
9. Form the bit string consisting 6hallenge’, Challenge,, V's identifier, and if presenitext,:
SgnData, = Challengey’ || Challengey ||V || [Texty].
10. Verify that the pairsig,’ andssig,’ is a valid signature diignData, underU’s public signature ke@gq

corresponding to the EC domain parametggsasg, bsg, Gsg, Nsg aNdhgg, using the verifying
transformation of the signature scheme in Section 5.9. If the verifying transformation outputs ‘invalid’,
output ‘invalid’ and stop.

Output: The bit stringKeyData of lengthkeydatalen bits.

8 ASN.1 Syntax

[[This section will be added later.]]

- 48 -

X9.63-199x

Annex A
(normative)
Normative Number-Theoretic Algorithms

A.1 Avoiding Cryptographically Weak Curves
Two conditions, the MOV condition and the Anomalous condition, are described to ensure that a particular elliptic
curve is not vulnerable to two known attacks on specia instances of the elliptic curve discrete logarithm problem.

A.1.1 The MOV Condition
The reduction attacks of Menezes, Okamoto and Vanstone [55] and Frey and Ruck[30] reduce the discrete logarithm

problem in an elliptic curve over Fq to the discrete logarithm in the finite field Fqe for some B = 1. The attack is only
practical if B issmall; thisis not the case for most elliptic curves. The MOV condition ensures that an elliptic curve
is not vulnerable to these reduction attacks. Most elliptic curves over afield Fq will indeed satisfy the MOV
condition.

Before performing the algorithm, it is necessary to select an MOV threshold. Thisis a positive integer B such that
taking discrete logarithms over Fqg is at least as difficult as taking elliptic discrete logarithms over F,. For this

Standard, avalue B = 20 isrequired. Selecting B = 20 also limits the selection of curves to non-supersingular curves

(see Annex H.1). Thisagorithm isused in elliptic curve domain parameter validation (see Section 5.1) and élliptic

curve domain parameter generation (see Annex A.3.2).

Input: An MOV threshold B, a prime-power g, and aprime n. (nisaprime divisor of #E(Fg), where E is an elliptic
curve defined over Fg.)

Output: The message “true” if the MOV condition is satisfied for an elliptic curve Byaiith a base point of order
n; the message “false” otherwise.

1. Sett = 1.
2. Fori from 1 toB do

2.1. Sett = t.qg modn.

2.2. Ift = 1, then output “false” and stop.
3. Output “true”.

A.1.2 The Anomalous Condition
Smart [67] and Satoh and Araki [64] showed that the elliptic curve discrete logarithm problem in anomalous curves
can be efficiently solved. An elliptic cunkedefined ovelr, is said to bég-anomalous if #E(F;) = g. The

Anomalous condition checks that B(F,) # q; this ensures that an elliptic curve is not vulnerable to the Anomalous
attack. Most elliptic curves over a fiefg, will indeed satisfy the Anomalous condition.

Input: An elliptic curveE defined ovef,, and the orden = #E(F,).

Output: The message “true” if the Anomalous condition is satisfiet foverF,; the message “false” otherwise.

1. If u = qthen output “false”; otherwise output “true”.

A.2 Primality

A.2.1 A Probabilistic Primality Test

If nis a large positive integer, the following probabilistic algorithm Ftiiéer-Rabin test) [48] will determine

whethem is prime or composite. This algorithm is used in elliptic curve domain parameter validation (see Section
5.1), and in checking for near primality (see Annex A.2.2).

Input: A large odd integem, and a positive integdr.

Output: The message “probable prime” or “composite”.

1. Computes and an odd value fav such thah-1 = 2w.
2. Forj from 1 toT do
2.1 Choose randomin the interval [2n-1].

2.2, Setb = a" modn.

- 49 -

X9.63-199x

2.3. If b=1or n-1, goto Step 2.6.
2.4. For i from 1to v-1 do
241 Setb=b?modn.
242 Ifb=n-1,goto Step 2.6.
243 If b=1, output “composite” and stop.

2.4.4 Next.
2.5. Output “composite” and stop.
2.6. Nextj.
3. Output “probable prime”.

If the algorithm outputs “composite”, theris a composite integer. The probability that the algorithm outputs

“probable prime” whem is a composite integer isss than 2. Thus, the probability of an error can be made

negligible by taking a large enough value ToFor this Standard, a value B& 50 shall be used.

The probabilistic and deterministic primality tests to appear in a forthcoming ANSI X9 Standard on prime generation
[11] may be used instead of the test described in this section.

A.2.2 Checking for Near Primality

Given a trial division bounf,, a positive integeh is said to bé,.-smooth if every prime divisor of is at most

lex- Given a positive integer,,, the positive integeu is said to benearly prime if u= hn for some probable prime

value ofn such that 2 r,,;, and somé.,,-smooth integeh. The following algorithm checks for near primality. The

algorithm is used in elliptic curve domain parameter generation (see Annex A.3.2).

Input: Positive integers, | ay, andrn.

Output: If uis nearly prime, a probable prime r,;, and d,.-smooth integeh such thati = hn. If u is not nearly
prime, the message “not nearly prime”.

1. Setn=u,h=1.
2. Forl from 2 tol . do
2.1. Ifl is composite, then go to Step 2.3.

2.2. While (dividesn)
221 Sen=n/landh=nhl.
2.2.2 Ifn<ryy then output “not nearly prime” and stop.

2.3. Nextl.
3. If nis a probable prime (see Annex A.2.1), then outparidn and stop.
4. Output “not nearly prime”.

A.3 Elliptic Curve Algorithms

A.3.1 Finding a Point of Large Prime Order

If the order #(Fg) = u of an elliptic curveE is nearly prime, the following algorithm efficiently produces a random
point onE whose order is the large prime factoof u = hn. The algorithm is used in elliptic curve domain
parameter generation (see Annex A.3.2).

Input: A primen, a positive integeln not divisible byn, and an elliptic curv& over the field=, with #E(F) = u.
Output: If u= hn, a pointG onE of ordern. If not, the message “wrong order”.

1. Generate a random poRt(noto) onE. (See Annex D.3.1.)
2. SetG=hR.

3. If G =0, then go to Step 1.

4. SetQ =nG.

5. If Q # 0, then output “wrong order” and stop.

6. OutputG.

A.3.2 Selecting an Appropriate Curve and Point

Given a field sizey, a lower bound,,, for the point order, and a trial division boulpgd,, the following procedure
shall be used for choosing a curve and arbitrary point. The algorithm is used to generate elliptic curve domain
parameters (see Sections 5.1.1.1 and 5.1.2.1).

-850 -

X9.63-199x

Input: A field size g, lower bound r,,, and trial division bound |, (See the notes below for guidance on selecting
Fmin @Nd |y

Output: Field elementsa, b O F, which define an elliptic curve over Fq, apoint G of prime order n 2 ryp, n>4Vq on
the curve, and the cofactor h = #E(Fg)/n.

1. If it isdesired that an elliptic curve be generated verifiably at random, then select parameters (SEED, a, b)
using the technique specified in Annex A.3.3.1in the case that g = 2™, or the technique specified in Annex
A.3.3.2inthe casethat g = p isan odd prime. Compute the order u of the curve defined by a and b (see
Note 5 below).

Otherwise, use any aternative technique to select a, b O F, which define an elliptic curve of known order u.
(See Note 7 and Note 8 for two such techniques.)
2. In the case that q isa prime, verify that (4a+27b% # 0 (mod p). The curve equation for E is:
Y =x+ax+h.
In the case that g = 2™, verify that b # 0. The curve equation for E is:
V+xy=xX+at+h.

3. Test u for near primality using the technique defined in Annex A.2.2. If the result is “not nearly prime”,
then go to Step 1. Otherwise= hn whereh is | o-smooth, anah = r,;,, n>4Vq is probably prime.

4, Check the MOV condition (see Annex A.1.1) with ingBi&& 20, g, andn. If the result is “false”, then go to
Step 1.
Check the Anomalous condition (see Annex A.1.2). If the result is “false”, then go to Step 1.

5. Find a pointG onE of ordern. (See Annex A.3.1.)

6. Output the curvg, the pointG, the ordem, and the cofactdn.

NOTES:

1. rrrin shall be selected so that i, > 21%°. The security level of the resulting elliptic curve discrete logarithm problem can be
increased by selecting alarger rmin (€.9. Min > 22%).

2.1fqis pri/me, then the order u of an elliptic curve E over F, satisfies g+ 1-2Vos u < g+1+2vq. Hence for agiven g, i, should
be < g+1-2Vq.

3.1f g = 2", then the order u of an elliptic curve E over Fy satisfies g+1-2Vg< u < g+1+2Vg, and u is even. Hence for agiven g,

I'min Should be < (g+1-2/q)/2.

4. | is typically a small integer (e.Gwy = 255).

5. The orde#E(F,) can be computed by using Schoof's algorithm [65]. Although the basic algorithm is quite inefficient, several
dramatic improvements and extensions of this method have been discovered in recent years. Currently, it is feasible to compute
orders of elliptic curves ovét, wherep is as large as 19, and orders of elliptic curves ovEsm wheremis as large as 1300.
Cryptographically suitable elliptic curves over fields as largé,ascan be randomly generated in about 5 hours on a
workstation (see [50] and [51]).

6. One technique for selecting an elliptic curve of known order is to use the Weil Theorem which states the follotibg. Let
an elliptic curve defined ovét,, and lett = q + 1- #E(F,). Leta andp be the complex numbees= (t+\/(t2—4q))/2 andB = (t -
V(t2-40))/2. Then E(F) = d+1-a *-p *for all k> 1.

7. The Weil Theorem can be used to select a curveFgwarhenm s divisible by a small numbéms follows. First select a
random elliptic curvéE: y? + xy =xC + ax® + b, b # 0, wherea, b 0 F,'. Note that sincédividesm, F,' is contained irF,™.

Compute #(F,); this can easily be done exhaustively sihisesmall. Then computeEfF,™) using the Weil Theorem wittp=

2 andk = mvl. This method of selecting curves is called the Weil method.

8. Another technique for selecting an elliptic curve of known order is to use the Complex Multiplication (CM) method. This
method is described in detail in Annex E.

Annex K presents sample elliptic curves which may be used to ensure the correct implementation of this Standard.

A.3.3 Selecting an Elliptic Curve Verifiably at Random

In order to verify that a given élliptic curve was indeed generated at random, the defining parameters of the elliptic
curve are defined to be outputs of the hash function SHA-1 (as specified in ANSI X9.30 Part 2 [5]). The input
(SEED) to SHA-1 then serves as proof (under the assumption that SHA-1 cannot be inverted) that the parameters
were indeed generated at random. (See Annex A.3.4.) The algorithmsin this section are used in Annex A.3.2.

A.3.3.1 Elliptic curves over F,,

Input: A fieldsizeq=2".

Output: A bit string SEED and field elements a, b [F,m which define an elliptic curve over Fom.
Lett=m,s=[(t —1)/160[Jand h=t —160.s.

-51-

X9.63-199x

1. Choose an arbitrary bit string SEED of bit length at least 160 bits. Let g be the length of SEED in hits.
2. Compute H = SHA-1(SEED), and let b, denote the bit string of length h bits obtained by taking the h
rightmost bits of H.
3. For i from 1 to sdo:
Compute b; = SHA-1((SEED + i) mod 29).
4, Let b be the field element obtained by the concatenation of bg,by,...,bs as follows:
b=bo || by]l... || bs.
5. If b= 0, then go to step 1.
6. Leta be an arbitrary element Fpm.
7. The elliptic curve chosen ovEpmis:
E: y?+xy = x3+ax?+b.
8. Output (SEEDa, b).

A.3.3.2 Elliptic curves over F,
Input: A prime field sizep.
Output: A bit string SEED and field elemerdsb 0 F, which define an elliptic curve ové,

Lett = (bg, pLJs = [{t —1)/160[Jandh =t —160.s.

1. Choose an arbitrary bit string SEED of bit length at least 160 bitg. heethe length of SEED in bits.
2. ComputeH = SHA-1(SEED), and laty, denote the bit string of lengthbits obtained by taking the
rightmost bits oH.
3. LetW, denote the bit string of lengthbits obtained by setting the leftmost bitcgto 0. (This ensures that
r<p.)
4, Fori from 1 tos do:
ComputeW, = SHA-1((SEED +) mod 2).
5. LetW be the bit string obtained by the concatenatiogiw,, ..., W; as follows:
W= Wo [| Wa | ... | W,
t
6. Letws, Wo, . . . ,w; be the bits ofV from leftmost to rightmost. Letbe the integef = Z W, 21,
1=1
7. Choose integeis b [J Fysuch that.b? = a®>(modp). (It is not necessary thatandb be chosen at
random.)
8. If 42°+27b* = 0 (modp), then go to step 1.
9. The elliptic curve chosen ovEy is:
E : y? = X’+ax+b.

10. Output (SEEDa, b).

A.3.4 Verifying that an Elliptic Curve was Generated at Random
The technique specified in this section verifies that the defining parameters of an elliptic curve were indeed selected
using the method specified in Annex A.3.3.

A.3.4.1 Elliptic curves over F,,

Input: A bit string SEED and a field elemeit] Fom
Output: Acceptance or rejection of the input parameters.
Lett=m, s= [(t —1)/160[Jandh =t —160.s.

1. ComputeH = SHA-1(SEED), and let, denote the bit string of lengthbits obtained by taking the
rightmost bits oH.
2. Fori from 1 tos do:
Computeb; = SHA-1((SEED +) mod 2).
3. Letb’ be the field element obtained by the concatenatidmg,bf,...,bs as follows:
b =bo [by || ... || bs.
4. If b= Db, then accept; otherwise reject.

-52-

X9.63-199x

A.3.4.2 Elliptic curves over F,
Input: A bit string SEED and field elements a, bl] F,.
Output: Acceptance or rejection of the input parameters.

Let t = [log, pLJs= [{t —1)/160[Jand h =t —160-s.

1 Compute H = SHA-1(SEED) and let ¢, dencte the hit string of length h bits obtained by taking the h
rightmost bits of H.
2. Let Wy denote the bit string of length h bits obtained by setting the Ieftmost bit of cyto 0.
3. For i from 1 to sdo:
Compute W, = SHA-1((SEED + i) mod 29).
4, Let W be the hit string obtained by the concatenation of Wy, W, ..., W; as follows:
W =W [| Wi [|...]| W.
t
5. Letwy, Wy, . . . ,W; be the bits otV from leftmost to rightmost. Let be the integer’ = Z W, AR
1=1
6. If r’.b? = a3 (modp), then accept; otherwise reject.

A.4 Pseudorandom Number Generation

Any implementation of this standard requires the ability to generate random or pseudorandom integers. These
randomly or pseudorandomly generated integers are selected to be betweenlliaeidsive, whera is a prime

number. If pseudorandom numbers are desired, they shall be generated by the techniques given in this section or in
an ANSI X9 approved standard.

A.4.1 Algorithm Derived from FIPS 186

The algorithm described in this section employs a one-way fur@(ton), wheret is 160 bitsc is b bits (160< b <
512), andG(t, c) is 160 bits. One way to construgtis via the Secure Hash Algorithm (SHA-1), as defined in ANSI
X9.30 Part 2 [5]. A second method for construciigs to use the Data Encryption Algorithm (DEA) as specified in
ANSI X3.92 [1]. The construction d& by these techniques is described in Annexes A.4.1.1 and A.4.1.2,
respectively.

In the algorithm specified below, a sedvéiit seed-key XKEY is used. & is constructed via SHA-1 as defined in
Annex A.4.1.1, the shall be between 160 and 512. If DEA is used to congBad defined in Annex A.4.1.2,
thenb shall be equal to 160. The algorithm optionally allows the use of a user provided input.

Input: A prime numben, positive integel, and integeb (160< b < 512).
Output: | pseudorandom integeks ko, . . . ,k in the interval [1n-1].

1. Lets= [bg, n[K 1 andf = [$/160L]
2. Choose a new, secret value for the seed-key, XKEY. (XKEY is of |&ngjtk.)
3. In hexadecimal notation, let:

t = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1FO.
This is the initial value foHy || Hy || Hz2 || Hz || Hs in SHA-1.
4. Fori from 1 tol do the following:
4.1. Forj from 1 tof do the following:
4.1.1. XSEED, = optional user input.
4.1.2. XVAL = (XKEY + XSEED;) mod 2.
4.1.3. X =G(t, XVAL).
4.1.4. XKEY = (1 + XKEY +x) mod 2.
4.2, Setk = (X ||X2 || --- %) mod 1 - 1)) +1.
5. Output k;, ko, . . . k).
NOTE— The optional user input XSEEDn step 4.1.1 permits a user to augment the seed-key XKEY with random or

pseudorandom numbers derived from alternate sources. The values of X8&EDhave the same security requirements as the
seed-key XKEY. That is, they must be protected from unauthorized disclosure and be unpredictable.

-53-

X9.63-199x

A.4.1.1 Constructing the Function G from the SHA-1
G(t,c) may be constructed using steps (a)-(€) in Annex 3.3 of ANSI X9.30 Part 2 [5]. Before executing these steps,
{H;} and M; must beinitialized as follows:
1 Initialize the { H;} by dividing the 160-bit valuet into five 32-bit ssgments as follows:
t=tolltullt2]| ts]| ta.
Then H; = t; for j = 0 through 4.
2. There will be only one message block, M4, which isinitialized as follows:
Ml =c ” 0512-b.
(Thefirst b bits of M; contain ¢, and the remaining (512-b) bits are set to zero.)
Then steps (a) through (e) of Section 3.3 of ANSI X9.30 Part 2 [5] are executed, and G(t,c) is the 160-hit string
represented by the five words:
Ho [l H1 [Hz [Ha [l Ha
at the end of step (e).

A.4.1.2 Constructing the Function G from the DEA
G(t, c) may be constructed using the DEA (Data Encryption Algorithm) as specified in ANSI X3.92 [1].
Let a 0 b denote the bitwise exclusive-or of bit stringsa and b, and let a || b denote the concatenation of bit strings.
If by is a32-bit string, then b," denotes the 24 least significant bits of b;.
In the following, DEA (A) represents ordinary DEA encryption of the 64-bit block A using the 56-bit key K. Now
suppose t and ¢ are each 160 bits. To compute G(t,c):
1. Write:

t=t ||t ts]l ta]l ts.

c=ci]czllcsllcallCs.

In the above, t; and ¢; are each 32 bitsin length.

2. For i from 1 to 5 do:
x =t 0c.
3. For i from 1 to 5 do:

b1 = C(i+3) mod 5)+1

b, = C(i+2) mod 5)+1

a; =X

A = X mod5)+1 1 X((+3) mod 5)+1

Yia |l Yiz2 = DEAg 1n,(aul| @2),
wherey; ; and y; , are each 32 bitsin length.

4, For i from 1 to 5 do:
Z =Yi1 0 Yy modsyr12 O Yii+2) mod 5)+1,1.
5. LetG(to)=zllz|lzlz]z

X9.63-199x

Annex B
(informative)
Mathematical Background

B.1 The Finite Field F,
Let p be a prime number. There are many ways to represent the elements of the finite field with p elements. The most
commonly used representation is the one defined in this section.
Thefinite field F, is comprised of the set of integers:
{0,1,2,..., p—1}
with the following arithmetic operations:
— Addition: If a, b O Fp, thena + b = r, wherer is the remainder when the integet b is divided byp, r O
[0, p-1]. This is known as addition moduta(modp).
— Multiplication: If a, b O F,, thenab = s, wheresis the remainder when the integéris divided byp, s O
[0, p-1]. This is known as multiplication modubo(modp).
Let F, denote all the non-zero elementsFp In F, there exists at least one elemgnsuch that any non-zero
element ofF, can be expressed as a poweg.oSuch an elemer is called agenerator (or primitive element) of
Fo . Thatis:
Fo ={d:0<i<p-2}.
Themultiplicative inverse ofa= ¢ [Fp* ,Where Ei<p-—2,is:
a—l — gp-l-i'

Example 1: Thefinitefield F».
F,={0, 1}. The addition and multiplication tables fbs are:

o
[N

= O
[eoNe]
= O

Example 2; Thefinitefield Fas.
F»={0,1,2,...,22}. Examples of the arithmetic operation&ipare:

1. 12 + 20 = 32 mod 23 = 9, since the remainder is 9 when 32 is divided by 23.

2. 8.9 = 72 mod 23 = 3, since the remainder is 3 when 72 is divided by 23.

The element 5 is a generatorff . The powers of 5 modulo 23 are:
5°=1 5=5 5=2 5=10 5=4 5 =20
5°=8 5 =17 g=16 5=11 5°=9 51 =22
52=18 5% =21 54=13 5°=19 5°=3 57=15
5% =6 59=7 50=12 gl=14 52 =1,

B.2 The Finite Field F,,
There are many ways to construct a finite field witheBements. The fieléF,m can be viewed as a vector space of
dimensionm overF,. That is, there exish element®lo,d4,... 0y in Fom such that each elememtl] Fom can be
uniquely written in the form:

O = aglo + &0y + ...+an10m1, Wherea; [{0,1}.
Such a setdo, 04, ..., 0,1} of elements is called basis of Fom overF,. Given such a basis, we can represent a

field elementr as the binary vectosg, ay, ..., an1). Addition of field elements is performed by bitwise XOR-ing the
vector representations.

-B5-

X9.63-199x

There are many different bases of F,m over F,. Some bases |ead to more efficient software and/or hardware

implementations of the arithmetic in F,m than other bases. In this section, two kinds of bases are discussed. Annex
B.2.1 introduces polynomial bases which use polynomial addition, multiplication, division and remainder. Annex
B.2.2 introduces specia kinds of polynomial bases called trinomial and pentanomial bases. Annex B.2.3 introduces
normal bases. Annex B.2.4 introduces specia kinds of normal bases called Gaussian normal bases (GNB).

B.2.1 Polynomial Bases

Let f(X)= X™ fraX™+ ...+ T8+ fix+ fo (Wheref, J F,fori = 0, ..., m1) be an irreducible polynomial of degree m

over F», i.e, f(X) cannot be factored as a product of two or more polynomials over F,, each of degree less than m. f(x)

is called the reduction polynomialThe finite field Fom is comprised of al polynomials over F, of degree lessthan m:
Fom = {amX™ + amoX™? + ...+ aix + ap: & 0 {0,1}}.

Thefield element (amX™ + amX™2 + ... + ax + &) is usually denoted by the bit string (8m1...8180) of length

m, so that:

Fom = { (am1..- @180): & 0 {0,1}}.

Thus the elements of F,m can be represented by the set of all bit strings of length m. The multiplicative identity
element (1) is represented by the bit string (00...01), while the zero element is represented by the bit string of all 0’s.

Field elements are added and multiplied as follows:

B.2.1.1 Field addition
Field elements are added as follows:
(8m1--2180) + (Br1.-.010g) = (Crm1.--.C1Co)
whereg; = g [b;. That is, field addition is performed componentwise.

B.2.1.2 Field multiplication
Field elements are multiplied as follows:

(Bm1...180) . (Bm1...babg) = (rmaa...r1r0),
where the polynomial X™+ ...+ r1x+ ro) is the remainder when the polynomial:

(@mX™ +... + aX + ag) X (DpaX™ ... + bix + by)
is divided byf(x) overF..
This method of representirigm is called goolynomial basis representation, and ™, ..., X% x, 1} is called a
polynomial basis of F,m overF,.
Note thatF,m contains exactly 2elements. Lef,m denote the set of all non-zero elements.in There exists at
least one elementin F,m such that any non-zero elementgf can be expressed as a poweg.cfuch an element
g is called agenerator (or primitive element) of F,m. That is:

For={d:0<i<2" 2.
Themultiplicative inverse of a= g 0 F,m, where 0 i < 2"- 2, is:

al= gzm-l-i.
Example 3: Thefinitefield Fx using a polynomial basisrepresentation.
Takef(x) = x*+ x +1 overF,; it can be verified th&(x) is irreducible oveF,. Then the elements &4 are:

(0000) (1000) (0100) (1100) (0010) (1010) (0110) (1110)

(0001) (1001) (0101) (1101) (0011) (1011) (0111) (1111).

As examples of field arithmetic, we have:
(1101) + (1001) = (0100), and

(1101)% (1001) = (1111)

-56 -

X9.63-199x

since:

G3+x2 +1kB<3+1h: X%+ X% +x2+1
:G(“+x+1k&2+xh&3+x2+x+1h

:x3+x2+x+1modfaf

i.e, X3+ 2+ x +1 isthe remainder when (% + x? +1) x (x3+1) is divided by f(x).
The multiplicative identity is (0001).
F*24 can be generated by the element O = x. The powers of a are:

a® = (0001) a' = (0010) a’ = (0100) a® = (1000)
a*=(0011) a® = (0110) a® = (1100) a’ = (1011)
a®=(0101) a® = (1010) a'® = (0111) a' = (1110)
a'? = (1111) a®® = (1101) a'* = (1001).

B.2.2 Trinomial and Pentanomial Bases
A trinomial basis (TPB) and a pentanomial basis (PPB) are special types of polynomial bases. A trinomial over F,

isapolynomial of theform x™+ x* + 1, where 1 < k< m-1. A pentanomial over F,isapolynomial of the form x™ +
X2 +xX2 +x%+ 1, where 1< k1 <k2 < k3< m-1.

A trinomial basis representation of Fomisa polynomial basis representation determined by an irreducible trinomial
f(x) = x™ + X* + 1 of degree mover F,. Such trinomials only exist for certain values of m. Example 3 aboveisan
example of atrinomial basis representation of the finite field F4.

A pentanomial basis representation of Fomisapolynomial basis representation determined by an irreducible
pentanomial f(x) = X" + X +x +x+ 1 of degree mover F,. Such pentanomials exist for all values of m= 4.

B.2.3 Normal Bases
A normal basis of Fomover F, isabasis of the form:

(B.B" B .. B, _

1 .

where 3 O F,m. Such abasis dways exists. Given any element O 0 F.m, we can write & = Z a1,82 , Where g, [J
1=0
{0,1}. Thisfield element O is denoted by the binary string (aga;a,. . . an1) of length m, so that:

Fom = {(aa;...am1): & 0{0,1}}.

Note that, by convention, the ordering of bits is different from that of a polynomial basis representation (Annex
B.2.1).

The multiplicative identity element (1) is represented by the bit string of all 1's (11. . .11), while the zero element is
represented by the bit string of all 0’s.

Since squaring is a linear operatoiFsm, we have:
2 = 2@2i 2 _< 2 pot = 2!
=S @[=y a2 =Y 4.8 Baa,.0
with indices reduced moduhln. Hence a normal basis representatioRsfis advantageous because squaring a field

element can then be accomplished by a simple rotation of the vector representation, an operation that is easily
implemented in hardware.

-57-

X9.63-199x

B.2.4 Gaussian Normal Bases
In Example 3, the field F4 was described using polynomia multiplication, division and remainders. A Gaussian

normal basis representation, as defined in Section 4.1.2.2, may also be used to construct the field Fp.

Example 4: Thefinitefield Fx4 using a Gaussian normal basis repr esentation.
Asin Example 3, the elements of F»4 are the binary 4-tuples:

(0000) (0001) (0010) (0011) (0100) (0101) (0110) (0111)

(1000) (1001) (1010) (1011) (1100) (1101) (1110) (1112).

Field elements are added and multiplied as follows:
Field addition:
(018283) + (Pbybbs) = (CoCsC,C3)
wherec; = a [by. In other words, field addition is performed by simply X ORing the vector representation.
Field multiplication: The setup for multiplication is done as follows. See Section 4.1.2.2 for a description of the steps
that are performed.
(See Section 4.1.2.2.2 for a description of the setup steps performed below.)
For the type 3 normal basisfor F», the values of F are given by:

F()=0 F(5) =1 F(9=0
F)=1 F(6) =1 F(10)=2
F(3)=0 F(7)=3 F(11) =3
F(d)=2 F(8) =3 F(12)=2

Therefore, after simplifying one obtains:
Co = ag (by + by + 1b3) + &y (by + by) + & (b + by) + &g (g + bg).
Here ¢, isthefirst coordinate of the product:

(Co C1..-Cm1) = (a0 83...8m-1) X (bg by...b1).
The other coordinates of the product are obtained from the formulafor ¢, by cycling the subscripts modulo m. Thus:
Cy =&y (by + bz + bg) + @, (by + bg) + az (by + by) + ag (by + by),
C, =@y (b3 + by + by) + &z (b + bg) + ag (b, + bs) + &y (b, + by),
C3=ag (b + by + by) + &y (bs + by) + &g (bs + b) + a, (b + by).
(See Section 4.1.2.2.3 for a description of the setup steps performed below.)
We have F(u, V) = Up (V1 + Vo + Va) + Up (Vo + Vo) + Uz (Vo + Vi) + U3 (Vo + Va).
If:
a=(1000) and b =(1101),
then:
Co = F ((1000), (1101)) =0,
¢ = F ((0001), (1011)) =0,
¢, = F ((0010), (0111)) = 1,
¢z = F ((0100), (1110)) =0,
so that ¢ = ab = (0010).

B.3 Elliptic Curves over F,

Let p> 3 beaprime number. Let a, b O F, be such that 43+ 27b*#0in Fo. An élliptic curve E(F,) over F, defined
by the parameters a and b is the set of solutions (x, y), for x,y OF,, to the equation: y?* = x® + ax + b, together with an
extrapoint ¢, the point at infinity. The number of pointsin E(Fp) is denoted by #E(F;). The Hasse Theorem tells us
that:

p+1—2Vp S #E(F,) < p+1+2Vp.
The set of points E(F,) forms agroup with the following addition rules:

- 58 -

X9.63-199x

1. 0+0=0.
2. xy)y+o0=0+(xy)=(xy) fordl (x,y) OE(Fp).
3. (X y) + (x-y) = oforal (x,y) OE(Fp) (i.e., the negative of the point (X, y) is-(X, y) = (X,-y)).
4. (Rule for adding two distinct points that are not inverses of each other)
Let (x1,y1) U E(Fp) and (x2,y2) O E(F,) be two points such that x; # X,.
Then (X,y1) + (X2,y2) = (Xa,y3), where:
X3 = N=x=Xs, Yo = A (X4~ Xa)—yn, and A = fTh .
X, = X,
5. (Rule for doubling a point)
Let (X1, y1) O E(F,) beapoint with y; # 0.
Then 2(xy, Y1) = (X3, Y3), Where: ,
X3 = A=2xq, V3= A(Xi—%s) — yu, and A = 3+ a.
2y,

The group E(F,) is abelian, which means that P,+P, = P,+P; for all points P, and P, in E(Fp). The curve is said to
be supersingular if #E(F,) = p+1; otherwise it is non-supersingular. Only non-supersingular curves shall be in
compliance with this standard (see Annex H).

Example5: An dlliptic curve over Fs.

Lety’= x>+ x + 1 be an equation over F;. Herea = 1 and b = 1. Then the solutions over F; to the equation of the

elliptic curve are;
0,1) (0,22 @7 (1,16) (3,10 (3,13 (4,0 (54) (5,19
(6,4 (6,19) (7,11) (7,12) 9,7 (9,16) (11,3 (112,20) (12,4)
(12,19) (13,7 (13,16) (17,3 (17,20) (18,3 (18,20) (19,5 (19,18).

The solutions were obtained by trial and error. The group E(F3) has 28 points (including the point at infinity 6). The
following are examples of the group operation.
1. Let P; =(3,10), P, =(9,7), P1 + P, = (X, Y3). Compute:
- 7-10 -3 -1
A=Y T - =—=—=110F,
X, =X 9-3 6 2

Xa=A2- X% -%=11*-3-9=6-3-9=-6=17,

V3= A(Xe - Xa) - y1 = 11(3-17) - 10=11(9) - 10=89 = 20.
Therefore Py + P, = (17, 20).

2. Let P;=(3, 10), 2P; = (X3, Y3). Compute:
)_3xf+a_3@2 1 5 1
S 2y, 20 20 4

X3=A2-2%=62-6=30=7,
Y= A(X - %) - Y1 =6(3-7)-10=-24-10=-11=12.
Therefore 2P; = (7, 12).

B.4 Elliptic Curves over F,,

A non-supersingular elliptic curve E(F,m) over Fom defined by the parameters a, b O F,m, b # 0, is the set of solutions

(%, y), XOF,m, yOIF,m, to the equation y? + xy = x° + ax® + b together with an extra point ¢, the point at infinity. The

number of pointsin E(F,m) is denoted by #E(F,m). The Hasse Theorem tells us that:
q+1—2Vq<#E(F,m) < q+1+2Vq,

where g = 2™, Furthermore, #E(F,m) is even.

The set of points E(F,m) forms a group with the following addition rules:

-59-

X9.63-199x

1. 0+0=0.
2. x,y)+o=0+(xy) =(xy) foral (x,y) OE(F.m).
3. (x,y) + (x, x +y) = o for al (x, y) O E(F,m) (i.e., the negative of the point (x, y) is — (X, Y) = (x, X + y)).
4. (Rule for adding two distinct points that are not inverses of each other)
Let (X4, y1) O E(Fom) and (X, ¥») O E(F,m) be two points such that x; Z X,. Then
(X1, Y1) + (X2, Y2) = (X3, Ya), Where:
Xs= A2+ A+ X+ X +a, Vo= A(Xe + Xg) + X + yq, and A :u.
X, +X,
5. (Rule for doubling a point)
Let (x4, y1) O E(F,m) be apoint with x; Z 0. Then 2(x4, Y1) = (X3, Ya), Where:
Xs=A2+A+a ys=x2+ (A +1) x3,and)\:x1+%.
1

The group E(F,m) is abelian, which means that P, + P, = P, + P, for al points P, and P, in E(Fom).
We now give two examples of elliptic curves over F,4. Example 6 uses atrinomial basis representation for the field,
and Example 7 uses an optimal normal basis representation.

Example 6: An dlliptic curve over Fu.

A trinomial basis representation is used for the elements of F4. Consider the field F,4 generated by the root O = x of
the irreducible polynomial:

f(x) = x*+ x + 1.
(See Example 3.) The powers of a are:

a° = (0001) o' =(0010) 02 = (0100) o = (1000)

o= (0011) 0° = (0110) 0° = (1100) o’ =(1011)
o®=(0101) o° = (1010) o= (0111) o' =(1110)

o' =(1111) o= (1101) o™ =(1001) o’ =a°= (0001).

Consider the non-supersingular eliptic curve over Fx with defining equation:

Yo+ xy=x+ A%+ 1.
Here, a= a* and b = 1. The notation for this equation can be expressed as follows, since the multiplicative identity is
(0001):

(0001) y? + (0001) xy = (0001) x* + (0011) x* + (0001).
Then the solutions over F,4 to the equation of the eliptic curve are:

©,1) Lad) @Ga®) @a®) (@ a¥) (@ad) (a°a")

(GG, GS) (GG, al4) (a9, alO) (a9, alS) (alO, al) (alO, GS) (alZ, 0) (012, alZ).

The group E(F»4) has 16 points (including the point at infinity ©). The following are examples of the group
operation.
L Let P1 = (x, y1) = (0°, O°), P, = (%, ¥2) = (OF, @*), and Py + P = (X, y3). Then:
Aoty _at+a”
x,+x, a®+a®

X3= N2+ A+ x+ +a=0?+o+0%+od+a*=1,

-60 -

X9.63-199x

Ya= A+ X)) + X3+ y1= 0(0°+ 1) +1+ a®=a®.

2. If 2P; = (X3, ¥3), then:
8
a
A=+ Y =a®+ — =0,
X, a

3= AN+A+a=a’+0*+a'=a",
Y3 = X12 + ()\"' 1)X3 = alz + (CX3+1)(110 = 08.

Example 7: An dlliptic curve over Fa.

An optimal normal basis representation is used for the elements of F,4. Consider thefield Fx4 given by the Typel

optimal normal basis representation. O = (1100) is a generator for the non-zero elements, and (1111) isthe
multiplicative identity. The powers of a are:

af=(1111) o' =(1100) 0= (0110) o = (0100)
o* = (0011) 0° = (1010) 0® = (0010) o’ =(0111)
o® = (1001) o® = (1000) o= (0101) o' =(1110)
o= (0001) o= (1101) o’ =(1011) a®=a°=(1111).

Consider the non-supersingular curve over F.4 defined by the equation:

E:y+xy=x+0%
Here, a=0and b = a®. The notation for this equation can be expressed as follows since the multiplicative identity is
(1111):

(1111) y? + (1111) xy = (1111) ¢ + (0100).
The solutions over F,4 to the elliptic curve equation are:

0, 0% (0,0 (a,0) (@ a’) @ aty (@4 ad (@ a’)
(a5, GB) (a5, all) (GG, O) (GG, GG) (GS, GB) (GS, alS)
(all’ 0) (all’ ull) (GIZ’ GS) (GIZ’ GQ) (a13’ GZ) (a13’ GJA).

Since there are 19 solutions to the equation in Fy4, the group E(F») has 19 + 1 = 20 elements (including the point at

infinity). This group turns out to be a cyclic group. If we take G = (0%, a°) and use the addition formulae, we find
that:

1G = (a3, o) 2G = (0% a?) 3G = (a®, a? 4G = (a1, 0) 5G = (02, 0¥
6G = (08 ad) 7G = (0™, 0) 8G = (a°, o™ 9G = (a°, 0) 10G = (0, a®)
116=(0%0a% 12G=(0a°) 13G=(a", 0% 14G=(a%a®) 15G6=(a" a)
16G = (a,0) 17G=(a® a" 18G=(a*a’ 196=(a%a") 20G6=o0.

-61-

-62-

X9.63-199x

Annex C
(informative)

X9.63-199x

Tables of Trinomials, Pentanomials, and Gaussian Normal

C.1 Table of GNB for F,,
Table C-1 — The type of GNB that shall be used fof ,m.

Bases

Table C-1.a Thistablelists each m, 160 < m < 300, for which mis not divisible by 8.

m type m type m type m type
161 6 196 1 230 2 266 6
162 1 197 18 231 2 267 8
163 4 198 22 233 2 268 1
164 5 199 4 234 5 269 8
165 4 201 8 235 4 270 2
166 3 202 6 236 3 271 6
167 14 203 12 237 10 273 2
169 4 203 12 238 7 274 9
170 6 204 3 239 2 275 14
171 12 205 4 241 6 276 3
172 1 206 3 242 6 277 4
173 2 207 4 243 2 278 2
174 2 209 2 244 3 279 4
175 4 210 2 245 2 281 2
177 4 211 10 246 11 282 6
178 1 212 5 247 6 283 6
180 1 214 3 250 9 285 10
181 6 215 6 251 2 286 3
182 3 217 6 252 3 287 6
183 2 218 5 253 10 289 12
185 8 219 4 254 2 290 5
186 2 220 3 255 6 291 6
187 6 221 2 257 6 292 1
188 5 222 10 258 5 293 2
189 2 223 12 259 10 294 3
190 10 225 22 260 5 295 16
191 2 226 1 261 2 297 6
193 4 227 24 262 3 298 6
194 2 228 9 263 6 299 2
195 6 229 12 265 4 300 19

-63-

X9.63-199x

Table C-1.b: The type of GNB that shall be used for F,m.
Thistable lists each m, 301 < m < 474, for which mis not divisible by 8.

m type m type m type m type
301 10 345 4 388 1 431 2
302 3 346 1 389 24 433 4
303 2 347 6 390 3 434 9
305 6 348 1 391 6 435 4
306 2 349 10 393 2 436 13
307 4 350 2 394 9 437 18
308 15 351 10 395 6 438 2
309 2 353 14 396 11 439 10
310 6 354 2 397 6 441 2
311 6 355 6 398 2 442 1
313 6 356 3 399 12 443 2
314 5 357 10 401 8 444 5
315 8 358 10 402 5 445 6
316 1 359 2 403 16 446 6
317 26 361 30 404 3 447 6
318 11 362 5 405 4 449 8
319 4 363 4 406 6 450 13
321 12 364 3 407 8 451 6
322 6 365 24 409 4 452 11
323 2 366 22 410 2 453 2
324 5 367 6 411 2 454 19
325 4 369 10 412 3 455 26
326 2 370 6 413 2 457 30
327 8 371 2 414 2 458 6
329 2 372 1 415 28 459 8
330 2 373 4 417 4 460 1
331 6 374 3 418 1 461 6
332 3 375 2 419 2 462 10
333 24 377 14 420 1 463 12
334 7 378 2 421 10 465 4
335 12 379 12 422 11 466 1
337 10 380 5 423 4 467 6
338 2 381 8 425 6 468 21
339 8 382 6 426 2 469 4
340 3 383 12 427 16 470 2
341 8 385 6 428 5 471 8
342 6 386 2 429 2 473 2
343 4 387 4 430 3 474 5

-64-

X9.63-199x

Table C-1.c: Thetype of GNB that shall be used for F,m.
Thistable lists each m, 475 < m< 647, for which mis not divisible by 8.

m type m type m type m type
475 4 518 14 562 1 605 6
476 5 519 2 563 14 606 2
477 46 521 32 564 3 607 6
478 7 522 1 565 10 609 4
479 8 523 10 566 3 610 10
4381 6 524 5 567 4 611 2
482 5 525 8 569 12 612 1
4383 2 526 3 570 5 613 10
484 3 527 6 571 10 614 2
485 18 529 24 572 5 615 2
4386 10 530 2 573 4 617 8
487 4 531 2 574 3 618 2
489 12 532 3 575 2 619 4
490 1 533 12 577 4 620 3
491 2 534 7 578 6 621 6
492 13 535 4 579 10 622 3
493 4 537 8 580 3 623 12
494 3 538 6 581 8 625 36
495 2 539 12 582 3 626 21
497 20 540 1 583 4 627 20
498 9 541 18 585 2 628 7
499 4 542 3 586 1 629 2
500 11 543 2 587 14 630 14
501 10 545 2 588 11 631 10
502 10 546 1 589 4 633 34
503 6 547 10 590 11 634 13
505 10 548 5 591 6 635 8
506 5 549 14 593 2 636 13
507 4 550 7 594 17 637 4
508 1 551 6 595 6 638 2
509 2 553 4 596 3 639 2
510 3 554 2 597 4 641 2
511 6 555 4 598 15 642 6
513 4 556 1 599 8 643 12
514 33 557 6 601 6 644 3
515 2 558 2 602 5 645 2
516 3 559 4 603 12 646 6
517 4 561 2 604 7 647 14

-65-

X9.63-199x

Table C-1.d: The type of GNB that shall be used for F,m.
Thistable lists each m, 648 < m < 821, for which mis not divisible by 8.

m type m type m type m type
649 10 692 5 735 8 779 2
650 2 693 6 737 6 780 13
651 2 694 3 738 5 781 16
652 1 695 18 739 4 782 3
653 2 697 4 740 3 783 2
654 14 698 5 741 2 785 2
655 4 699 4 742 15 786 1
657 10 700 1 743 2 787 6
658 1 701 18 745 10 788 11
659 2 702 14 746 2 789 14
660 1 703 6 147 6 790 3
661 6 705 6 748 7 791 2
662 3 706 21 749 2 793 6
663 14 707 6 750 14 794 14
665 14 708 1 751 6 795 10
666 22 709 4 753 16 796 1
667 6 710 3 754 10 797 6
668 11 711 8 755 2 798 6
669 4 713 2 756 1 799 22
670 6 714 5 757 16 801 12
671 6 715 4 758 6 802 6
673 4 716 5 759 4 803 2
674 5 717 18 761 2 804 5
675 22 718 15 762 10 805 6
676 1 719 2 763 22 806 11
677 8 721 6 764 3 807 14
678 10 722 26 765 2 809 2
679 10 723 2 766 6 810 2
681 22 724 13 767 6 811 10
682 6 725 2 769 10 812 3
683 2 726 2 770 5 813 4
684 3 727 4 771 2 814 15
685 4 729 24 772 1 815 8
686 2 730 13 773 6 817 6
687 10 731 8 774 2 818 2
689 12 732 11 775 6 819 20
690 2 733 10 777 16 820 1
691 10 734 3 778 21 821 8

- 66 -

X9.63-199x

Table C-1.e The type of GNB that shall be used for F,m.
Thistable lists each m, 822 < m < 995, for which mis not divisible by 8.

m type m type m type m type
822 3 866 2 909 4 953 2
823 10 867 4 910 18 954 49
825 6 868 19 911 2 955 10
826 1 869 12 913 6 956 15
827 14 870 2 914 18 957 6
828 1 871 6 915 10 958 6
829 10 873 2 916 3 959 8
830 14 874 9 917 6 961 16
831 2 875 12 918 10 962 14
833 2 876 1 919 4 963 4
834 2 877 16 921 6 964 9
835 6 878 15 922 10 965 2
836 15 879 2 923 2 966 7
837 6 881 18 924 5 967 16
838 7 882 1 925 4 969 4
839 12 883 4 926 6 970 9
841 12 884 27 927 4 971 6
842 5 885 28 929 8 972 5
843 6 886 3 930 2 973 6
844 13 887 6 931 10 974 2
845 8 889 4 932 3 975 2
846 2 890 5 933 2 977 8
847 30 891 2 934 3 978 6
849 8 892 3 935 2 979 4
850 6 893 2 937 6 980 9
851 6 894 3 938 2 981 32
852 1 895 4 939 2 982 15
853 4 897 8 940 1 983 14
854 18 898 21 941 6 985 10
855 8 899 8 942 10 986 2
857 8 900 11 943 6 987 6
858 1 901 6 945 8 988 7
859 22 902 3 946 1 989 2
860 9 903 4 947 6 990 10
861 28 905 6 948 7 991 18
862 31 906 1 949 4 993 2
863 6 907 6 950 2 994 10
865 4 908 21 951 16 995 14

-67-

X9.63-199x

Table C-1.f: Thetype of GNB that shall be used for F,m.
Thistable lists each m, 996 < m < 1169, for which mis not divisible by 8.

m type m type m type m type
996 43 1039 4 1083 10 1126 7
997 4 1041 2 1084 3 1127 6
998 2 1042 18 1085 18 1129 4
999 8 1043 2 1086 7 1130 5
1001 6 1044 7 1087 4 1131 8
1002 5 1045 6 1089 4 1132 13
1003 4 1046 6 1090 1 1133 2
1004 5 1047 36 1091 6 1134 2
1005 4 1049 2 1092 15 1135 10
1006 3 1050 10 1093 4 1137 6
1007 18 1051 12 1094 15 1138 6
1009 10 1052 5 1095 14 1139 24
1010 5 1053 12 1097 14 1140 5
1011 6 1054 3 1098 9 1141 12
1012 3 1055 2 1099 4 1142 23
1013 2 1057 4 1100 5 1143 16
1014 2 1058 14 1101 6 1145 8
1015 6 1059 14 1102 3 1146 2
1017 16 1060 1 1103 2 1147 6
1018 1 1061 6 1105 18 1148 5
1019 2 1062 3 1106 2 1149 14
1020 9 1063 4 1107 10 1150 19
1021 10 1065 2 1108 1 1151 6
1022 3 1066 6 1109 12 1153 22
1023 4 1067 8 1110 2 1154 2
1025 6 1068 7 1111 22 1155 2
1026 2 1069 10 1113 10 1156 3
1027 6 1070 2 1114 22 1157 8
1028 17 1071 10 1115 6 1158 6
1029 8 1073 30 1116 1 1159 4
1030 7 1074 13 1117 6 1161 12
1031 2 1075 6 1118 2 1162 9
1033 4 1076 3 1119 2 1163 32
1034 2 1077 18 1121 2 1164 9
1035 6 1078 6 1122 1 1165 6
1036 7 1079 14 1123 4 1166 2
1037 8 1081 12 1124 3 1167 8
1038 6 1082 9 1125 8 1169 2

- 68 -

X9.63-199x

Table C-1.g: The type of GNB that shall be used for F,m.
Thistable lists each m, 1170< m < 1342, for which mis not divisible by 8.

m type m type m type m type
1170 1 1213 12 1257 14 1300 1
1171 6 1214 3 1258 1 1301 20
1172 3 1215 14 1259 14 1302 3
1173 6 1217 24 1260 7 1303 16
1174 7 1218 2 1261 10 1305 12
1175 24 1219 4 1262 6 1306 1
1177 18 1220 5 1263 24 1307 8
1178 2 1221 8 1265 2 1308 7
1179 8 1222 6 1266 17 1309 18
1180 21 1223 2 1267 6 1310 2
1181 12 1225 10 1268 17 1311 22
1182 3 1226 5 1269 24 1313 6
1183 10 1227 34 1270 6 1314 5
1185 2 1228 1 1271 2 1315 4
1186 1 1229 2 1273 6 1316 5
1187 8 1230 3 1274 2 1317 10
1188 19 1231 16 1275 2 1318 7
1189 24 1233 2 1276 1 1319 18
1190 3 1234 25 1277 20 1321 6
1191 28 1235 6 1278 2 1322 6
1193 6 1236 1 1279 10 1323 2
1194 2 1237 16 1281 6 1324 15
1195 12 1238 2 1282 1 1325 6
1196 17 1239 4 1283 6 1326 7
1197 4 1241 20 1284 3 1327 4
1198 7 1242 5 1285 18 1329 2
1199 2 1243 4 1286 6 1330 9
1201 6 1244 3 1287 18 1331 2
1202 5 1245 14 1289 2 1332 11
1203 4 1246 6 1290 1 1333 4
1204 3 1247 18 1291 10 1334 3
1205 12 1249 10 1292 3 1335 44
1206 6 1250 18 1293 6 1337 14
1207 6 1251 2 1294 7 1338 2
1209 38 1252 19 1295 2 1339 12
1210 9 1253 26 1297 4 1340 3
1211 2 1254 10 1298 5 1341 2
1212 1 1255 12 1299 22 1342 3

- 69 -

X9.63-199x

Table C-1.h: The type of GNB that shall be used for F,m.
Thistable lists each m, 1343 < m < 1516, for which mis not divisible by 8.

m type m type m type m type
1343 6 1387 16 1430 2 1474 9
1345 10 1388 11 1431 40 1475 8
1346 2 1389 4 1433 6 1476 25
1347 14 1390 10 1434 9 1477 6
1348 7 1391 12 1435 4 1478 2
1349 2 1393 4 1436 11 1479 8
1350 11 1394 2 1437 4 1481 2
1351 16 1395 20 1438 6 1482 1
1353 2 1396 13 1439 2 1483 10
1354 18 1397 8 1441 6 1484 17
1355 2 1398 2 1442 5 1485 10
1356 5 1399 18 1443 2 1486 15
1357 16 1401 2 1444 13 1487 6
1358 11 1402 9 1445 12 1489 10
1359 2 1403 6 1446 6 1490 5
1361 6 1404 7 1447 24 1491 16
1362 14 1405 6 1449 8 1492 1
1363 6 1406 3 1450 1 1493 14
1364 3 1407 6 1451 2 1494 3
1365 12 1409 2 1452 1 1495 6
1366 3 1410 42 1453 4 1497 18
1367 8 1411 6 1454 2 1498 1
1369 4 1412 29 1455 6 1499 2
1370 2 1413 26 1457 8 1500 7
1371 10 1414 3 1458 22 1501 6
1372 1 1415 8 1459 10 1502 3
1373 12 1417 40 1460 11 1503 10
1374 7 1418 2 1461 8 1505 2
1375 4 1419 8 1462 10 1506 10
1377 6 1420 3 1463 2 1507 4
1378 6 1421 2 1465 30 1508 5
1379 20 1422 10 1466 5 1509 2
1380 1 1423 4 1467 4 1510 10
1381 6 1425 2 1468 19 1511 2
1382 6 1426 1 1469 2 1513 4
1383 10 1427 6 1470 6 1514 9
1385 6 1428 21 1471 16 1515 12
1386 17 1429 4 1473 6 1516 3

-70-

X9.63-199x

Table C-1.i: Thetype of GNB that shall be used for F,m.
Thistable listseach m, 1517 < m < 1690, for which mis not divisible by 8.

m type m type m type m type
1517 6 1561 16 1604 3 1647 6
1518 2 1562 21 1605 32 1649 2
1519 12 1563 12 1606 7 1650 6
1521 6 1564 7 1607 6 1651 6
1522 1 1565 6 1609 10 1652 3
1523 14 1566 6 1610 6 1653 2
1524 5 1567 4 1611 8 1654 7
1525 4 1569 4 1612 15 1655 6
1526 11 1570 1 1613 6 1657 16
1527 14 1571 8 1614 7 1658 5
1529 14 1572 25 1615 16 1659 2
1530 1 1573 6 1617 4 1660 7
1531 6 1574 3 1618 1 1661 2
1532 3 1575 8 1619 8 1662 3
1533 2 1577 6 1620 1 1663 4
1534 3 1578 25 1621 18 1665 10
1535 8 1579 4 1622 6 1666 1
1537 16 1580 5 1623 10 1667 8
1538 5 1581 12 1625 8 1668 1
1539 2 1582 18 1626 2 1669 10
1540 3 1583 2 1627 18 1670 3
1541 2 1585 22 1628 9 1671 16
1542 11 1586 18 1629 8 1673 2
1543 4 1587 8 1630 7 1674 33
1545 28 1588 7 1631 6 1675 4
1546 6 1589 8 1633 12 1676 17
1547 6 1590 7 1634 5 1677 4
1548 1 1591 6 1635 38 1678 6
1549 4 1593 2 1636 1 1679 2
1550 3 1594 9 1637 38 1681 10
1551 8 1595 12 1638 10 1682 6
1553 6 1596 3 1639 28 1683 4
1554 10 1597 4 1641 28 1684 7
1555 12 1598 11 1642 9 1685 2
1556 11 1599 4 1643 6 1686 3
1557 4 1601 2 1644 3 1687 10
1558 6 1602 6 1645 6 1689 8
1559 2 1603 6 1646 15 1690 6

-71-

X9.63-199x

Table C-1.j: Thetype of GNB that shall be used for F,m.
Thistable lists each m, 1691 < m < 1863, for which mis not divisible by 8.

m type m type m type m type
1691 42 1734 2 1778 2 1821 2
1692 1 1735 10 1779 2 1822 18
1693 6 1737 4 1780 15 1823 6
1694 15 1738 6 1781 6 1825 10
1695 4 1739 8 1782 11 1826 6
1697 8 1740 1 1783 12 1827 14
1698 10 1741 22 1785 2 1828 9
1699 12 1742 3 1786 1 1829 2
1700 3 1743 6 1787 6 1830 18
1701 10 1745 2 1788 15 1831 6
1702 3 1746 1 1789 10 1833 26
1703 2 1747 10 1790 2 1834 10
1705 16 1748 5 1791 2 1835 2
1706 2 1749 2 1793 12 1836 5
1707 4 1750 6 1794 5 1837 4
1708 9 1751 8 1795 6 1838 2
1709 12 1753 4 1796 21 1839 8
1710 18 1754 9 1797 10 1841 6
1711 6 1755 2 1798 6 1842 25
1713 20 1756 21 1799 12 1843 6
1714 9 1757 8 1801 12 1844 5
1715 8 1758 2 1802 5 1845 2
1716 17 1759 18 1803 14 1846 7
1717 4 1761 6 1804 3 1847 6
1718 11 1762 9 1805 6 1849 12
1719 24 1763 2 1806 2 1850 2
1721 20 1764 5 1807 4 1851 28
1722 14 1765 18 1809 4 1852 3
1723 10 1766 2 1810 6 1853 14
1724 27 1767 4 1811 2 1854 2
1725 22 1769 2 1812 13 1855 6
1726 3 1770 14 1813 4 1857 14
1727 14 1771 40 1814 3 1858 6
1729 4 1772 5 1815 6 1859 2
1730 2 1773 2 1817 6 1860 1
1731 12 1774 3 1818 2 1861 40
1732 1 1775 6 1819 10 1862 6
1733 2 1777 4 1820 9 1863 2

-72-

X9.63-199x

Table C-1.k: The type of GNB that shall be used for F,m.
Thistable lists each m, 1864 < m < 2000, for which mis not divisible by 8.

m type m type m type m type
1865 14 1901 2 1937 8 1972 1
1866 2 1902 35 1938 2 1973 2
1867 10 1903 10 1939 4 1974 3
1868 5 1905 4 1940 11 1975 4
1869 4 1906 1 1941 18 1977 8
1870 10 1907 6 1942 3 1978 1
1871 8 1908 25 1943 20 1978 1
1873 6 1909 22 1945 16 1979 20
1874 5 1910 11 1946 6 1980 5
1875 12 1911 22 1947 4 1981 6
1876 1 1913 14 1948 1 1982 11
1877 8 1914 10 1949 18 1983 2
1878 7 1915 6 1950 3 1985 8
1879 4 1916 3 1950 3 1986 1
1881 16 1917 4 1951 22 1987 4
1882 25 1918 10 1953 2 1988 5
1883 2 1919 12 1954 10 1989 10
1884 5 1921 6 1955 2 1990 7
1885 4 1922 9 1956 3 1991 18
1886 3 1923 2 1957 4 1993 6
1887 4 1923 2 1958 2 1994 2
1889 2 1924 7 1959 2 1995 18
1890 9 1925 2 1961 2 1996 1
1891 10 1926 2 1962 50 1997 44
1892 5 1927 18 1963 4 1998 19
1893 4 1929 4 1964 29 1999 10
1894 3 1930 1 1965 2
1895 8 1931 2 1966 7
1897 4 1932 5 1967 8
1898 2 1933 12 1969 4
1899 18 1934 14 1970 5
1900 1 1935 14 1971 6

-73-

C.2 Irreducible Trinomials over F,

Table C-2 — Irreducible trinomials x™+ x“+ 1 over F..

X9.63-199x

Table C-2.a: For each m, 160 < m < 609, for which an irreducible trinomial of degree m exists,

the table lists the smallest k for which x™ + x* + 1 isirreducible over F..
m k m k m k m k m k m k
161 18 236 5 308 15 383 90 458| 203 527 47
162 27 238 73 310 93 385 6 460 19 529 42
166 37 239 36 313 79 386 83 462 73 532 1
167 6 241 70 314 15 388| 159 463 93 534| 161
169 34 242 95 316 63 390 9 465 31 537 94
170 11 244| 111 318 45 391 28 468 27 538| 195
172 1 247 82 319 36 393 7 470 9 540 9
174 13 249 35 321 31 394| 135 471 1 543 16
175 6 250 103 322 67 396 25 473 200 545 122
177 8 252 15 324 51 399 26 474| 191 550 | 193
178 31 253 46 327 34 401| 152 476 9 551| 135
180 3 255 52 329 50 402| 171 478| 121 553 39
182 81 257 12 330 99 404 65 479| 104 556 | 153
183 56 258 71 332 89 406| 141 481| 138 558 73
185 24 260 15 333 2 407 71 484| 105 559 34
186 11 263 93 337 55 409 87 486 81 561 71
191 9 265 42 340 45 412 | 147 @ 487 94 564 | 163
193 15 266 47 342 125 414 13 489 83 566| 153
194 87 268 25 343 75 415| 102 490 | 219 567 28
196 3 270 53 345 22 417 | 107 492 7 569 77
198 9 271 58 346 63 418| 199 494 17 570 67
199 34 273 23 348| 103 420 7 495 76 574 13
201 14 274 67 350 53 422 | 149 497 78 575| 146
202 55 276 63 351 34 423 25 498| 155 577 25
204 27 278 5 353 69 425 12 500 27 580 | 237
207 43 279 5 354 99 426 63 503 3 582 85
209 6 281 93 358 57 428| 105 505| 156 583 | 130
210 7 282 35 359 68 431| 120 506 23 585 88
212| 105 284 53 362 63 433 33 508 9 588 35
214 73 286 69 364 9 436| 165 510 69 590 93
215 23 287 71 366 29 438 65 511 10 593 86
217 45 289 21 367 21 439 49 513 26 594 19
218 11 292 37 369 91 441 7 514 67 596 | 273
220 7 294 33 370 139 444 81 516 21 599 30
223 33 295 48 372| 111 446| 105 518 33 601| 201
225 32 297 5 375 16 447 73 519 79 602| 215
228 | 113 300 5 377 41 449 134 521 32 604| 105
231 26 302 41 378 43 450 47 522 39 606| 165
233 74 303 1 380 47 455 38 524| 167 607 | 105
234 31 305| 102 382 81 457 16 526 97 609 31

-74 -

X9.63-199x

Table C-2.b: Irreducible trinomials X™ + X< + 1 over F».
For each m, 610 < m< 1060, for which an irreducible trinomial of degree m exists, the table
lists the smallest k for which x™ + X + 1 isirreducible over F.

m k m k m k m k m k m k

610 127 684 | 209 754 19 833| 149 903 35 988| 121
612 8l 686| 197 756 45 834 15 905| 117 990| 161
614 45 687 13 758 | 233 838 61 906| 123 991 39
615 211 689 14 759 98 839 54 908 | 143 993 62
617 | 200 690 79 761 3 841| 144 911 204 994 | 223
618 295 692 | 299 762 83 842 47 913 91 996 65
620 9 694 169 767| 168 844 | 105 916| 183 998 | 101
622 297 695| 177 769| 120 845 2 918 77 999 59
623 68 697| 267 772 7 846| 105 919 36 1001 17
625| 133 698| 215 774| 185 847 | 136 921 | 221 1007 75
626 | 251 700 7% 775 93 849| 253 924 31 1009 55
628 | 223 702 37 777 29 850| 111 926| 365 1010 99
631 | 307 705 17 778 375 852| 159 927 | 403 1012| 115
633 101 708 15 780 13 855 29 930 31 1014| 385
634 39 711 92 782| 329 87| 119 932| 177 1015| 186
636 | 217 713 41 783 68 858| 207 935| 417 1020| 135
639 16 714 23 785 92 860 35 937| 217 1022| 317
641 11 716 183 791 30 861 14 938| 207 1023 7
642 119 718| 165 793 | 253 862 | 349 942 45 1025 | 294
646 | 249 719| 150 794 | 143 865 1 943 24 1026 35
647 5 721 9 798 53 866 75 945 77 1028 | 119
649 37 722| 231 799 25 868| 145 948| 189 1029 98
650 3 724 207 801| 217 8/0| 301 951 | 260 1030 93
651 14 726 5 804 75 871| 378 953| 168 1031 68
652 93 727| 180 806 21 873| 352 954| 131 1033| 108
654 33 729 58 807 7 876 149 956 | 305 1034 75
655 88 730| 147 809 15 879 11 959 | 143 1036 | 411
657 38 732| 343 810| 159 881 78 961 18 1039 21
658 5 735 4 812 29 882 99 964 | 103 1041| 412
660 11 737 5 814 21 884| 173 966| 201 1042| 439
662 21 738| 347 815| 333 887| 147 967 36 1044 41
663 | 107 740| 135 817 52 889 | 127 969 31 1047 10
665 33 742 85 818| 119 890| 183 972 7 1049 | 141
668 | 147 743 90 820| 123 892 31 975 19 1050 | 159
670 153 745| 258 822 17 894 | 173 977 15 1052 | 291
671 15 746| 351 823 9 895 12 979| 178 1054 | 105
673 28 748 19 825 38 897| 113 982| 177 1055 24
676 31 750 309 826| 255 898| 207 983| 230 1057 | 198
679 66 751 18 828| 189 900 1 985| 222 1058 27
682 171 753 | 158 831 49 902 21 986 3 1060 | 439

-75-

X9.63-199x

Table C-2.c: Irreducible trinomials X" + X + 1 over F,.
For each m, 1061 < m< 1516, for which an irreducible trinomial of degree mexists, the table
lists the smallest k for which x™ + X + 1 isirreducible over F,.

m k m k m k m k m k m k
1062 49| 1140 | 141 1212 | 203 1287 | 470| 1366 1| 1441 322
1063 | 168 | 1142 | 357 | 1214 | 257 | 1289 99| 1367 | 134 | 1442| 395
1065 | 463 1145| 227 1215| 302| 1294 | 201| 1369 88| 1444 | 595
1071 71 1146 131 | 1217 | 393 | 1295 38| 1372 | 181 | 1446 | 421
1078 | 361 | 1148 23| 1218 91| 1297 | 198| 1374| 609 | 1447 | 195
1079 | 230 1151 90| 1220 | 413| 1298 | 399 | 1375 52| 1449 13
1081 24| 1153 | 241 | 1223| 255| 1300 75| 1377 | 100| 1452 | 315
1082 | 407 | 1154 75| 1225| 234 | 1302 77| 1380 | 183 | 1454 | 297
1084 | 189 1156 | 307 | 1226| 167| 1305| 326| 1383 | 130| 1455 52
1085 62| 1158 | 245| 1228 27| 1306 39| 1385 12| 1457 | 314
1086 | 189 | 1159 66| 1230 | 433| 1308| 495| 1386 | 219| 1458 | 243
1087 | 112 1161 | 365| 1231| 105| 1310| 333| 1388 11 1460 | 185
1089 91| 1164 19 1233 | 151 1311| 476 1390 | 129| 1463 | 575
1090 79| 1166 | 189 | 1234 | 427| 1313| 164| 1391 3| 1465 39
1092 23| 1167 | 133| 1236 49 | 1314 19 1393 | 300| 1466 | 311
1094 57| 1169 | 114 | 1238| 153| 1319| 129| 1396 97| 1468 | 181
1095 | 139 | 1170 27| 1239 41 1321 52| 1398 | 601| 1470 49
1097 141 1174 | 133 1241 54| 1324 | 337| 1399 55| 1471 25
1098 83| 1175| 476 | 1242 | 203| 1326| 397| 1401 92| 1473 77
1100 35| 1177 16 || 1246 25| 1327 | 277\ 1402 | 127 | 1476 21
1102 | 117 1178 | 375| 1247 14]| 1329 73| 1404 81| 1478 69
1103 65| 1180 25| 1249 | 187 1332 95| 1407 47 | 1479 49
1105 21| 1182 77| 1252 97| 1334| 617 1409 | 194 | 1481 32
1106 | 195| 1183 87| 1255| 589 1335| 392| 1410| 383| 1482 | 411
1108 | 327 | 1185| 134 | 1257 | 289 1337 75| 1412 | 125| 1486 85
1110 | 417 1186 | 171 | 1260 21| 1338| 315| 1414 | 429| 1487 | 140
1111 13| 1188 75| 1263 77| 1340 | 125| 1415| 282 1489 | 252
1113 | 107 1190 | 233 1265| 119 1343 | 348 1417 | 342| 1490| 279
1116 59| 1191 | 196 | 1266 71 1345| 553 1420 33| 1492 | 307
1119 | 283 1193 | 173 1268 | 345| 1348 | 553| 1422 49 | 1495 94
1121 62| 1196 | 281 | 1270| 333| 1350| 237 1423 15| 1497 49
1122 | 427 1198 | 405| 1271 17| 1351 39| 1425 28| 1500 25
1126 | 105 1199 | 114 1273| 168| 1353 | 371| 1426| 103| 1503 80
1127 27| 1201 | 171 | 1276 | 217 | 1354 | 255| 1428 27| 1505 | 246
1129 | 103 1202 | 287 1278| 189| 1356 | 131 | 1430 33| 1508 | 599
1130 | 551 | 1204 43| 1279 | 216 1358 | 117 1431 17| 1510| 189
1134 | 129 1206 | 513 1281 | 229| 1359 98| 1433 | 387 | 1511| 278
1135 9| 1207 | 273| 1282 | 231| 1361 56| 1434 | 363| 1513| 399
1137 | 277 1209 | 118 1284 | 223| 1362 | 655| 1436 83| 1514 | 299
1138 31| 1210| 243 1286| 153| 1364 | 239| 1438| 357| 1516 | 277

-76-

X9.63-199x

Table C-2.d: Irreducible trinomials X™ + x“+ 1 over F».
For each m, 1517 < m< 2000, for which an irreducible trinomial of degree m exists, the table
lists the smallest k for which x™ + X + 1 isirreducible over F,.

m k m k m k m k m k m k
1518 69 1590 | 169 1673 90 1756 99 1838 53 1927 25
1519 | 220 1591 15 1674 755 1759 | 165 1839| 836 1929 31
1521 | 229 1593 | 568 1676| 363 1764 | 105 1841 66 1932 | 277
1524 27 1596 3 1678 129 1767 | 250 1844 | 339 1934 | 413
1526 | 473 1599 | 643 1679 20 1769 | 327 1846| 901 1935| 103
1527 | 373 1601| 548 1681| 135 1770| 279 1847| 180 1937 | 231
1529 60 1602 | 783 1687 31 1772| 371 1849 49 1938 | 747
1530| 207 1604 | 317 1689 | 758 1774| 117 1854| 885 1940| 113
1534 | 225 1606| 153 1692| 359 1775| 486 1855 39 1943 11
1535 | 404 1607 87 1694 | 501 1777| 217 1857 | 688 1945 91
1537 46 1609 | 231 1695 29 1778 | 635 1860 13 1946 51
1540 75 1612 | 771 1697 | 201 1780| 457 1862 | 149 1948| 603
1542 | 365 1615| 103 1698 | 459 1782 57 1863 | 260 1950 9
1543 | 445 1617 | 182 1700| 225 1783| 439 1865 53 1951 | 121
1545 44 1618 | 211 1703 | 161 1785 | 214 1866 11 1953 17
1548 63 1620 27 1705 52 1788| 819 1870| 121 1956 | 279
1550 | 189 1623 17 1708 93 1790| 593 1871| 261 1958 89
1551 | 557 1625 69 1710| 201 1791 | 190 1873| 199 1959 | 371
1553 | 252 1628 | 603 1711| 178 1793| 114 1878| 253 1961 | 771
1554 99 1630| 741 1713| 250 1798 69 1879 | 174 1962 99
1556 65 1631| 668 1716| 221 1799| 312 1881| 370 1964 21
1558 9 1633| 147 1719 113 1801 | 502 1884 | 669 1966 | 801
1559 | 119 1634 | 227 1721| 300 1802| 843 1836| 833 1967 26
1561 | 339 1636 37 1722 39 1804 | 747 1887 | 353 1969 | 175
1562 95 1638| 173 1724| 261 1806| 101 1889 29 1974| 165
1564 7 1639 | 427 1726 753 1807 | 123 1890 | 371 1975| 841
1566 77 1641 | 287 1729 94 1809 | 521 1895| 873 1977| 238
1567 | 127 1642 | 231 1734| 461 1810| 171 1900| 235 1980 33
1569 | 319 1647| 310 1735| 418 1814| 545 1902| 733 1983| 113
1570 | 667 1649 | 434 1737| 403 1815| 163 1903| 778 1985| 311
1572 | 501 1650| 579 1738| 267 1817| 479 1905| 344 1986| 891
1575 17 1652 45 1740 | 259 1818 | 495 1906 | 931 1988 | 555
1577 | 341 1655 53 1742 | 869 1820 11 1908 | 945 1990 | 133
1578 | 731 1657 16 1743 | 173 1823| 684 1911 67 1991 | 546
1580 | 647 1660 37 1745| 369 1825 9 1913| 462 1993 | 103
1582 | 121 1663 99 1746| 255 1828| 273 1918 | 477 1994 15
1583 20 1665| 176 1748| 567 1830| 381 1919| 105 1996 | 307
1585| 574 1666| 271 1750| 457 1831 51 1921 | 468 1999 | 367
1586 | 399 1668 | 459 1751 | 482 1833| 518 1924 | 327
1588 85 1671| 202 1753| 775 1836| 243 1926| 357

-77 -

X9.63-199x

C.3 Irreducible Pentanomials over F,
Table C-3 — Irreducible pentanomialsx™ + x* + x*2 + x*! + 1 over F,.
Table C-3.a: For each m, 160 < m< 488, for which an irreducible trinomial of degree m does
not exist, atriple of exponents ki1, k2, k3 is given for which the pentanomial x™ + X + X + X
+ 1isirreducible over F,.

m (K, ko, k) m (K, ko, k) m (K, ko, k) m (K, ko, k)
160 1, 2,117 243 1,2, 17 326 1, 2,67 410 1,2, 16
163 1,2,8 245 1, 2,37 328 1,251 411 1, 2,50
164 1, 2,49 246 1,2 11 331 1,2,134 | 413 1, 2,33
165 1,2,25 248 1, 2, 243 334 1,2,5| 416 1, 3,76
168 1, 2,65 251 1, 2,45 335 1,2,250 | 419 1, 2,129
171 1, 3,42 254 1,2,7 336 1,2, 77 421 1,281
173 1,2, 10 256 1, 2, 155 338 1, 2,112 424 1,2, 177
176 1, 2,43 259 1, 2,254 339 1,2,26 | 427 1, 2,245
179 1,24 261 1,2,74 341 1, 2,57 429 1,2 14
181 1, 2,89 262 1, 2, 207 344 1,2,7 430 1, 2, 263
184 1,281 264 1, 2,169 347 1,2,96 | 432 1, 2,103
187 1,2,20 267 1,2, 29 349 1,2,186 | 434 1,2,64
188 1, 2,60 269 1, 2,117 352 1,2,263| 435 1, 2, 166
189 1, 2,49 272 1, 3,56 355 1,2,138 | 437 1,2,6
190 1, 2, 47 275 1,2,28 356 1, 2,69 440 1,2, 37
192 1,2,7 277 1, 2,33 357 1,2,28 | 442 1,2, 32
195 1, 2,37 280 1, 2,113 360 1, 2,49 443 1, 2,57
197 1,221 283 1, 2,200 361 1,2,44 | 445 1, 2,225
200 1,2,81| 285 1,2, 77| 363 1,2,38| 448 1,3,83
203 1, 2,45 288 1, 2,191 365 1, 2,109 451 1, 2,33
205 1,221 290 1,2,70 368 1,2,85| 452 1,2, 10
206 1, 2,63 291 1,2,76 371 1,2,156 | 453 1, 2,88
208 1, 2,83 293 1, 3,154 373 1,3,172 454 1, 2,195
211 1, 2, 165 296 1, 2,123 374 1, 2,109 456 1,2, 275
213 1, 2,62 298 1,2,78 376 1,2, 77 459 1, 2,332
216 1, 2, 107 299 1,221 379 1, 2,222 461 1, 2, 247
219 1, 2,65 301 1,2, 26 381 1,2,5| 464 1, 2,310
221 1,2, 18 304 1,2 11 384 1, 2,299 466 1,2,78
222 1,2,73 306 1, 2, 106 387 1,2,146 | 467 1, 2,210
224 1, 2,159 307 1, 2,93 389 1, 2,159 469 1, 2,149
226 1,2,30 309 1,2, 26 392 1,2,145| 472 1, 2,33
227 1,221 311 1, 3, 155 395 1,2,333| 475 1, 2,68
229 1,221 312 1, 2,83 397 1,2,125 | 477 1,2,121
230 1,2, 13 315 1, 2,142 398 1,3,23| 480 1, 2,149
232 1, 2,23 317 1,3,68 | 400 1,2,245| 482 1,2, 13
235 1, 2,45 320 1,2,7 403 1,2,80| 483 1, 2,352
237 1,2, 104 323 1,221 405 1,2,38| 485 1,2,70
240 1, 3,49 325 1, 2,53 408 1,2,323 | 488 1, 2,123

-78-

X9.63-199x

Table C-3.b: Irreducible pentanomials x™ + X + X2 + X + 1 over F..
For each m, 490 < m< 811, for which an irreducible trinomial of degree mdoes not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial X" + X + X¢ + X + 1is
irreducible over F,.

m (Ka, k2, ks) m (Ky, K, ks) m (Ka, K, ks) m (Ka, K, ks)
491 1,2, 270 571 1, 2, 408 653 1,2, 37 734 1, 2, 67
493 1,2 171 572 1, 2, 238 656 1,2, 39 736 1, 2,359
496 1, 3,52 573 1, 2, 220 659 1,2,25 739 1, 2,60
499 1,2, 174 576 1, 3,52 661 1, 2,80 741 1,2 34
501 1, 2,332 578 1, 2,138 664 1,2, 177 744 1, 2, 347
502 1,2, 99 579 1, 3, 526 666 1, 2,100 747 1, 2, 158
504 1, 3, 148 581 1, 2,138 667 1, 2,161 749 1, 2, 357
507 1,2, 26 584 1, 2, 361 669 1,2, 314 752 1, 2,129
509 1,2, 94 586 1,2 14 672 1,2 91 755 1,4, 159
512 1,251 587 1, 2,130 674 1,2, 22 757 1, 2,359
515 1,2, 73 589 1, 2, 365 675 1,2, 214 760 1,2, 17
517 1, 2, 333 501 1,2, 38 677 1, 2,325 763 1,2, 17
520 1,2, 291 592 1, 2, 143 678 1, 2,95 764 1,2 12
523 1, 2,66 595 1,29 680 1,2 91 765 1, 2, 137
525 1,2, 92 597 1,2, 64 681 1, 2,83 766 1, 3,280
528 1,2, 35 598 1,2, 131 683 1, 2, 153 768 1, 2,115
530 1,2, 25 600 1, 2,239 685 1,3 4 770 1, 2, 453
531 1, 2,53 603 1, 2, 446 688 1,271 771 1, 2, 86
533 1,2, 37 605 1,2, 312 691 1, 2, 242 773 1,2, 73
535 1, 2, 143 608 1,2, 213 693 1, 2, 250 776 1,251
536 1, 2, 165 611 1,2, 13 696 1, 2, 241 779 1, 2, 456
539 1,2, 37 613 1,2, 377 699 1, 2,40 781 1, 2, 209
541 1,2, 36 616 1, 2, 465 701 1, 2, 466 784 1,2,59
542 1, 3,212 619 1, 2, 494 703 1, 2,123 786 1, 2,118
544 1, 2,87 621 1,2, 17 704 1,2, 277 787 1, 2,189
546 1,28 624 1,271 706 1,2, 27 788 1, 2,375
547 1, 2, 165 627 1,2, 37 707 1,2, 141 789 1,25
548 1, 2,385 629 1,2, 121 709 1,29 790 1,2, 111
549 1, 3,274 630 1, 2,49 710 1, 3,29 792 1, 2, 403
552 1,2, 41 632 1,29 712 1, 2, 623 795 1, 2, 137
554 1,2, 162 635 1,2, 64 715 1, 3, 458 796 1,2, 36
555 1, 2, 326 637 1,2, 84 717 1, 2,320 797 1, 2,193
557 1, 2, 288 638 1,2, 127 720 1, 2,625 800 1, 2, 463
560 1, 2, 157 640 1, 3, 253 723 1, 2, 268 802 1, 2,102
562 1, 2,56 643 1, 2, 153 725 1,2, 331 803 1, 2, 208
563 1,4, 159 644 1,2, 24 728 1,251 805 1, 2, 453
565 1, 2,66 645 1, 2, 473 731 1, 2,69 808 1,3, 175
568 1,2, 291 648 1, 2,235 733 1,2, 92 811 1,2, 18

-79-

X9.63-199x

Table C-3.c: Irreducible pentanomials X" + X + X2 + X + 1 over F.
For each m, 812 < m< 1131, for which an irreducible trinomial of degree m does not exist, a
triple of exponents k1, k2, k3 is given for which the pentanomial x™ + X + X% + X + 1is
irreducible over F,.

m (Ka, k2, ks) m (Ky, K, ks) m (Ka, K, ks) m (Ka, K, ks)
813 1, 2, 802 901 1, 2,581 973 1,2,113 | 1053 1, 2, 290
816 1, 3,51 204 1, 3,60 974 1,2,211 | 1056 1,2 11
819 1, 2,149 907 1, 3,26 976 1,2,285 | 1059 1,36
821 1,2, 177 909 1, 3, 168 978 1,2,376 | 1061 1, 2, 166
824 1, 2, 495 910 1, 2, 357 980 1,2,316 | 1064 1, 2, 946
827 1, 2,189 912 1, 2, 569 981 1,2,383 | 1066 1, 2, 258
829 1, 2, 560 914 1,2 4 984 1,2,349 | 1067 1, 2,69
830 1, 2, 241 915 1,2, 89 987 1, 3,142 | 1068 1, 2, 223
832 1,2, 39 917 1,2, 22 989 1,2,105| 1069 1, 2, 146
835 1, 2, 350 920 1, 3,517 992 1,2,585 | 1070 1, 3,94
836 1, 2, 606 922 1,2, 24 995 1,3,242 | 1072 1, 2, 443
837 1, 2, 365 923 1, 2, 142 997 1,2,453 | 1073 1, 3,235
840 1,2, 341 925 1,2,308 | 1000 1,3,68| 1074 1, 2,395
843 1, 2,322 928 1,2,33| 1002 1,2, 266 | 1075 1,2, 92
848 1, 2,225 929 1,2,36 | 1003 1,2,410 | 1076 1,2, 22
851 1, 2, 442 931 1,2,72| 1004 1,2,96 | 1077 1, 2,521
853 1, 2, 461 933 1,2,527 | 1005 1,2,41 | 1080 1,2, 151
854 1,2,79 934 1, 3,800 | 1006 1,2,63| 1083 1, 2, 538
856 1, 2, 842 936 1,3,27 | 1008 1,2,703 | 1088 1, 2,531
859 1, 2,594 939 1,2 142 | 1011 1,2,17 | 1091 1,2, 82
863 1, 2,90 940 1,2,204 | 1013 1,2,180 | 1093 1,2, 173
864 1, 2, 607 941 1,2,573| 1016 1,2,49 | 1096 1, 2,351
867 1, 2,380 944 1,2,487 | 1017 1,2, 746 | 1099 1, 2, 464
869 1,2, 82 946 1,3,83| 1018 1,2, 27| 1101 1,2, 14
872 1, 2,691 947 1,2,400 | 1019 1,2,96 | 1104 1, 2, 259
874 1,2, 110 949 1,2,417 | 1021 1,2,5| 1107 1,2, 176
875 1, 2,66 950 1,2,859 | 1024 1,2,515| 1109 1, 2,501
877 1, 2, 140 952 1,3,311 | 1027 1,2,378 | 1112 1, 2, 1045
878 1, 2, 343 955 1,2,606 | 1032 1,2,901 | 1114 1, 2,345
880 1, 3,221 957 1,2,158 | 1035 1,2, 76 | 1115 1, 2, 268
883 1, 2, 488 958 1,2,191 | 1037 1,2,981 | 1117 1, 2,149
885 1, 2, 707 960 1,2,491 | 1038 1,2,41 | 1118 1, 2, 475
886 1, 2, 227 962 1,2,18 | 1040 1,2,429 | 1120 1, 3, 386
888 1, 2,97 963 1,2,145| 1043 1,3,869 | 1123 1, 2,641
891 1, 2, 364 965 1,2,213 | 1045 1,2,378 | 1124 1, 2, 156
893 1,2, 13 968 1,2,21 | 1046 1,2,39 | 1125 1, 2, 206
896 1,2, 19 970 1,2,260 | 1048 1,3,172 | 1128 1,37
899 1, 3,898 971 1,2,6 | 1051 1,3,354 | 1131 1, 2,188

-80-

X9.63-199x

Table C-3.d: Irreducible pentanomials xX™ + X + X2 + X + 1 over F..
For each m, 1132 < m< 1456, for which an irreducible trinomial of degree mdoes not exit, a
triple of exponents k1, k2, k3 is given for which the pentanomial X" + X + X + X + 1is
irreducible over F,.

m (Ka, k2, ks) m (Ky, K, ks) m (Ka, K, ks) m (Ka, K, ks)
1132 1,2,20 | 1219 1,2,225| 1296 1,2,379 | 1376 1, 2, 1201
1133 1,2,667 | 1221 1,2,101 | 1299 1,2,172 | 1378 1, 2, 362
1136 1,2, 177 | 1222 1,2,215| 1301 1,2,297 | 1379 1, 2, 400
1139 1,2,45| 1224 1,2,157 | 1303 1,2,306 | 1381 1, 2, 56
1141 12134 | 1227 1,2,361 | 1304 1,3,574 | 1382 1, 3,58
1143 1,2, 7| 1229 1,2, 627 | 1307 1,2,157 | 1384 1,2, 1131
1144 1,2,431 | 1232 1,2,225| 1309 1,2,789 | 1387 1, 2,33
1147 1,2,390 | 1235 1,2,642 | 1312 1,2, 1265 | 1389 1,2, 41
1149 1,2,221 | 1237 1,2,150 | 1315 1,2,270 | 1392 1, 2,485
1150 1,2,63| 1240 1,2,567 | 1316 1,2,12 | 1394 1,2, 30
1152 1,2,971 | 1243 1,2,758 | 1317 1,2,254 | 1395 1, 2, 233
1155 1,2,94 | 1244 1,2,126 | 1318 1,3,94 | 1397 1, 2, 397
1157 1,2,105 | 1245 1,2,212 | 1320 1,2,835 | 1400 1, 2, 493
1160 1,2,889 | 1248 1,2,1201 | 1322 1,2,538 | 1403 1,2, 717
1162 1,2,288 | 1250 1,2,37 | 1323 1,2,61198 | 1405 1, 2, 558
1163 1,2,33| 1251 1,2,1004 | 1325 1,2,526 | 1406 1,2, 13
1165 1,2,494 | 1253 1,2,141 | 1328 1,2,507 | 1408 1, 3,45
1168 1,2, 473 | 1254 1,2,697 | 1330 1,2,609 | 1411 1, 2, 200
1171 1,2,39 | 1256 1,2,171 | 1331 1,2,289 | 1413 1, 2,101
1172 1,2, 426 | 1258 1,2,503 | 1333 1,2, 276 | 1416 1, 3,231
1173 1,2,673| 1259 1,2,192 | 1336 1,2,815| 1418 1, 2, 283
1176 1,2,19 | 1261 1,2,14 | 1339 1,2,284 | 1419 1, 2,592
1179 1,2,640 | 1262 1,2,793 | 1341 1,2,53 | 1421 1,2, 30
1181 1,2,82| 1264 1,2,285 | 1342 1,2, 477 | 1424 1, 2, 507
1184 1,2, 1177 | 1267 1,2,197 | 1344 1, 2,469 | 1427 1, 2,900
1187 1,2,438 | 1269 1,2,484 | 1346 1,2,57 | 1429 1, 2, 149
1189 1,2,102 | 1272 1,2, 223 | 1347 1,2,61 | 1432 1,2, 251
1192 1,3,831 | 1274 1,2,486 | 1349 1,2,40 | 1435 1,2, 126
1194 1,2,317 | 1275 1,2,25| 1352 1,2,583 | 1437 1, 2,545
1195 1,2,293 | 1277 1,2,451 | 1355 1,2,117 | 1439 1, 2,535
1197 1,2,269 | 1280 1,2,843 | 1357 1,2,495 | 1440 1, 3, 1023
1200 1,3,739 | 1283 1,2, 70 | 1360 1,2,393 | 1443 1, 2,413
1203 1,2,226 | 1285 1,2,564 | 1363 1,2,852 | 1445 1,2, 214
1205 1,2,4| 1288 1,2,215| 1365 1,2,329 | 1448 1, 3,212
1208 1,2,915| 1290 1,2, 422 | 1368 1,2,41 | 1450 1, 2, 155
1211 1,2,373 | 1291 1,2,245| 1370 1,2,108 | 1451 1, 2,193
1213 1,2,245| 1292 1,2,78 | 1371 1,2,145| 1453 1, 2, 348
1216 1,2,155 | 1293 1,2,26 | 1373 1,2,613 | 1456 1,2, 1011

-81-

X9.63-199x

Table C-3.e: Irreducible pentanomials X" + X + X + X + 1 over F,.
For each m, 1458 < m< 1761, for which an irreducible trinomial of degree mdoes not exit, a
triple of exponents k1, k2, k3 is given for which the pentanomial X" + X + X% + X + 1is
irreducible over F,.

m (Ka, k2, ks) m (Ky, K, ks) m (Ka, K, ks) m (Ka, K, ks)
1459 1,2,1032 | 1536 1,2,881 | 1619 1,2,289 | 1690 1, 2, 200
1461 1,2,446 | 1538 1,2,6| 1621 1,2, 1577 | 1691 1, 2, 556
1462 1,2,165| 1539 1,2,80 | 1622 1,2,1341 | 1693 1, 2, 137
1464 1,2, 275 | 1541 1,2,4| 1624 1,2,1095 | 1696 1,2, 737
1467 1,2,113 | 1544 1,2,99 | 1626 1,2,191 | 1699 1, 2, 405
1469 1,2, 775 | 1546 1,2,810 | 1627 1,2,189 | 1701 1, 2, 568
1472 1,2, 613 | 1547 1,2,493 | 1629 1,2,397 | 1702 1, 2, 245
1474 1,2,59 | 1549 1,2, 426 | 1632 1,2,211 | 1704 1, 3,55
1475 1,2,208 | 1552 1,2,83| 1635 1,2,113| 1706 1,2, 574
1477 1,2,1325| 1555 1,2, 254 | 1637 1,2,234 | 1707 1,2, 221
1480 1,2,285 | 1557 1,2,20 | 1640 1,2,715| 1709 1,2, 201
1483 1,2,61077 | 1560 1,2,11 | 1643 1,2,760 | 1712 1, 2, 445
1484 1,2,61 | 1563 1,2,41 | 1644 1,2,236 | 1714 1, 2,191
1485 1,2, 655 | 1565 1,2,18 | 1645 1,2,938 | 1715 1, 2,612
1488 1, 2,463 | 1568 1,2,133 | 1646 1,2,435 | 1717 1, 2,881
1491 1,2,544 | 1571 1,2,21 | 1648 1,2, 77| 1718 1, 2,535
1493 1,2,378 | 1573 1,2,461 | 1651 1,2,873| 1720 1, 2,525
1494 1,2,731 | 1574 1,2,331| 1653 1,2,82 | 1723 1, 2, 137
1496 1,2,181 | 1576 1,2, 6147 | 1654 1,3,201 | 1725 1, 2, 623
1498 1,2, 416 | 1579 1,2, 374 | 1656 1,2,361 | 1727 1,2, 22
1499 1,2, 477 | 1581 1,2,160 | 1658 1,2,552 | 1728 1, 2,545
1501 1,2,60 | 1584 1,2,89 | 1659 1,2,374 | 1730 1, 2,316
1502 1,2,111 | 1587 1,2,433 | 1661 1,2,84 | 1731 1, 2,925
1504 1,2,207 | 1589 1,2,882 | 1662 1,3,958 | 1732 1,2, 75
1506 1,2,533 | 1592 1,2, 223 | 1664 1,2,399 | 1733 1, 2,285
1507 1,2,900 | 1594 1,2,971 | 1667 1,2,1020 | 1736 1, 2,435
1509 1,2,209 | 1595 1,2,18 | 1669 1,2,425| 1739 1, 2, 409
1512 1,2,61121 | 1597 1,2,42 | 1670 1,2,19 | 1741 1, 3, 226
1515 1,2, 712 | 1598 1,2,38 | 1672 1,2,405 | 1744 1,2, 35
1517 1,2,568 | 1600 1,2,57| 1675 1,2, 77| 1747 1, 2,93
1520 1,2,81| 1603 1,2,917 | 1677 1,2,844 | 1749 1, 2, 236
1522 1,2, 47| 1605 1,2,46 | 1680 1,2,1549 | 1752 1, 2, 559
1523 1,2,240 | 1608 1,2,271 | 1682 1,2,354 | 1754 1,2, 75
1525 1,2,102 | 1610 1,2,250 | 1683 1,2,1348 | 1755 1, 2,316
1528 1,2,923 | 1611 1,2,58 | 1684 1,2, 474 | 1757 1,221
1531 1,2,1125| 1613 1,2,48 | 1685 1,2,493 | 1758 1,2, 221
1532 1,2, 466 | 1614 1,2,1489 | 1686 1,2,887 | 1760 1, 3, 1612
1533 1,2, 763 | 1616 1,2,139 | 1688 1,2,921 | 1761 1,2, 131

-82-

X9.63-199x

Table C-3.f: Irreducible pentanomials X" + X + X2 + X + 1 over F,.
For each m, 1762 < m < 2000, for which an irreducible trinomial of degree mdoes not exit, a
triple of exponents k1, k2, k3 is given for which the pentanomial x™ + X + X¢ + X + 1is
irreducible over F,.

m (Ka, k2, ks) m (Ky, K, ks) m (Ka, K, ks) m (Ka, K, ks)
1762 1,2,318 | 1826 1,2,298 | 1883 1,2, 1062 | 1941 1,2, 1133
1763 1,2,345| 1827 1,2, 6154 | 1885 1,2,813 | 1942 1, 2, 147
1765 1,2,165| 1829 1,2, 162 | 1888 1,2,923 | 1944 1, 2,617
1766 1,2,1029 | 1832 1,3,1078 | 1891 1,2,1766 | 1947 1, 2, 1162
1768 1,2,61403 | 1834 1,2,210 | 1892 1, 3,497 | 1949 1, 2,621
1771 1,2,297 | 1835 1,2,288 | 1893 1,2,461 | 1952 1, 3,65
1773 1,2,50 | 1837 1,2,200 | 1894 1,3,215| 1954 1, 2, 1226
1776 1,2,17| 1840 1,2195| 1896 1,2,451 | 1955 1, 2,109
1779 1, 3,1068 | 1842 1,2,799 | 1897 1,2,324 | 1957 1,2, 17
1781 1,2,18 | 1843 1,2,872| 1898 1,2,613 | 1960 1, 2,939
1784 1,2,61489 | 1845 1,2,526 | 1899 1,2,485| 1963 1,2, 1137
1786 1,2,614 | 1848 1,2,871 | 1901 1,2,330 | 1965 1, 2, 364
1787 1, 2,457 | 1850 1,2,79 | 1904 1,2,337 | 1968 1, 3,922
1789 1,2,80 | 1851 1,2,250 | 1907 1,2,45| 1970 1, 2, 388
1792 1,2,341 | 1852 1,2,339 | 1909 1,2,225| 1971 1, 2,100
1794 1,2,95| 1853 1,2,705| 1910 1,3,365| 1972 1, 2,474
1795 1,2,89 | 1856 1,2,585 | 1912 1,2,599 | 1973 1, 2,438
1796 1,2,829 | 1858 1,2,1368 | 1914 1,2,544 | 1976 1, 3, 1160
1797 1,2,80 | 1859 1,2,120 | 1915 1,2, 473 | 1978 1, 2, 158
1800 1,2,1013 | 1861 1,2,509 | 1916 1,2,502 | 1979 1, 2, 369
1803 1,2,248 | 1864 1,2,1379 | 1917 1,2,485 | 1981 1, 2, 96
1805 1,2,82| 1867 1,2,117 | 1920 1,2,67| 1982 1, 2, 1027
1808 1,2,25| 1868 1,2,250 | 1922 1,2,36 | 1984 1, 2,129
1811 1,2,117 | 1869 1,2,617 | 1923 1,4,40 | 1987 1, 2,80
1812 1,2,758 | 1872 1,3,60 | 1925 1,2,576 | 1989 1,2, 719
1813 1,3,884 | 1874 1,2, 70 | 1928 1,2, 763 | 1992 1, 2, 1241
1816 1,2,887 | 1875 1,2,412 | 1930 1,2,155 | 1995 1,2, 37
1819 1,2,116 | 1876 1,2, 122 | 1931 1,2,648 | 1997 1, 2,835
1821 1,2,326 | 1877 1,2,796 | 1933 1,2,971 | 1998 1, 3, 1290
1822 1,3,31| 1880 1,2, 61647 | 1936 1,2,117 | 2000 1, 2,981
1824 1,2,821 | 1882 1,2,128 | 1939 1,25

-83-

C.4 Table of Fields F,, which have both an ONB and a TPB over F,

X9.63-199x

Table C-4 — Values oim, 160< m < 2000, for which the fieldF,m has both an ONB and a TPB ovef..

162 | 292 | 431 | 606 | 743 | 858 | 1034 | 1170 | 1306 | 1492 | 1703 | 1926
172 | 303 | 438 | 612 | 746 | 866 | 1041 | 1178 | 1310 | 1505 | 1734 | 1938
174 | 316 | 441 | 614 | 756 | 870 | 1049 | 1185 | 1329 | 1511 | 1740 | 1948
178 | 329 | 460 | 615 | 761 | 873 | 1055 | 1186 | 1338 | 1518 | 1745 | 1953
180 | 330 | 470 | 618 | 772 | 876 | 1060 | 1199 | 1353 | 1530 | 1746 | 1958
183 | 346 | 473 | 639 | 774 | 879 | 1065 | 1212 | 1359 | 1548 | 1769 | 1959
186 | 348 | 490 | 641 | 783 | 882 | 1090 | 1218 | 1372 | 1559 | 1778 | 1961
191 | 350 | 495 | 650 | 785 | 906 | 1103 | 1223 | 1380 | 1570 | 1785 | 1983
194 | 354 | 508 | 651 | 791 | 911 | 1106 | 1228 | 1398 | 1583 | 1790 | 1986
196 | 359 | 519 | 652 | 809 | 930 | 1108 | 1233 | 1401 | 1593 | 1791 | 1994
209 | 372 | 522 | 658 | 810 | 935 | 1110 | 1236 | 1409 | 1601 | 1806 | 1996
210 | 375 | 540 | 660 | 818 | 938 | 1116 | 1238 | 1425 | 1618 | 1818
231 | 378 | 543 | 676 | 820 | 953 | 1119 | 1265 | 1426 | 1620 | 1838
233 | 386 | 545 | 686 | 826 | 975 | 1121 | 1271 | 1430 | 1636 | 1854
239 | 388 | 556 | 690 | 828 | 986 | 1122 | 1276 | 1452 | 1649 | 1860
268 | 393 | 558 | 700 | 831 | 993 | 1134 | 1278 | 1454 | 1666 | 1863
270 | 414 | 561 | 708 | 833 | 998 | 1146 | 1282 | 1463 | 1668 | 1866
273 | 418 | 575 | 713 | 834 | 1014 | 1154 | 1289 | 1478 | 1673 | 1889
278 | 420 | 585 | 719 | 846 | 1026 | 1166 | 1295 | 1481 | 1679 | 1900
281 | 426 | 593 | 726 | 852 | 1031 | 1169 | 1300 | 1482 | 1692 | 1906

-84-

X9.63-199x

Annex D
(informative)
Informative Number-Theoretic Algorithms

D.1 Finite Fields and Modular Arithmetic

D.1.1 Exponentiation in a Finite Field

If aisapositiveinteger and g is an element of the field F,, then exponentiation is the process of computing g°.
Exponentiation can be performed efficiently by the binary method outlined below. The algorithm is used in Annexes
D.1.2and D.1.4.

Input: A positiveinteger a, afield Fq, and afield element g.

Output: g%

1 Set e=amod (g-1). If e= 0, then output 1.

2. Let e= ee.1...€16 be the binary representation of e, where the most significant bit e, of eis 1.
3. Setx=g.

4, For i fromr-1 downto O do

41, Setx=X.

4.2, If § =1, then set x = gx.
5. Output X.
There are several variations of this method which can be used to speed up the computations. One such method which
reguires some precomputations is described in [24]. See aso Knuth [45].

D.1.2 Inversion in a Finite Field

If g # 0isan element of the field Fy, then the inverse g™ is the field element ¢ such that gc = 1. The inverse can be
found efficiently by exponentiation sincec = g*2. Note that if qisprime and g isan integer satisfying1<g<q- 1,
then g istheinteger ¢, 1< ¢ < q- 1, such that gc = 1 (mod q).

Input: A field Fq, and anon-zero element g [F,

Output: Theinverseg™.

1 Compute ¢ = g™ (see Annex D.1.1).

2. Output c.
An even more efficient method is the extended Euclidean Algorithm [45].

D.1.3 Generating Lucas Sequences
Let P and Q be nonzero integers. The Lucas sequences Uy and V for P, Q are defined by:

Uo=0,U; =1, and Uy = PUy; - QU for k= 2.

Vo =2, V=P, and Vik=PVy1 - QVk-Z fork= 2.
Thisrecursion is adequate for computing Uy and V for small values of k. The following algorithm can be used to
efficiently compute U, and V, modulo an odd prime p for large values of k. The algorithm is used in Annex D.1.4.
Input: Anodd prime p, integers P and Q, and a positive integer k.
Output: Uy mod p and V,mod p.

1. Set A=P?-4Q.

2. Let k =k, k.1...k; ko be the binary representation of k, where the leftmost bit k, of kis 1.
3. SetU=1,V=P.

4 For i fromr - 1 downto Odo

41, Set(UV)=(UVmodp Y’ +AUthod D).
&0 +f mod p, @v +auf
4.2 If k= 1 then set (U,V) = (%Y +VI mod p, ®Y +AUI mod p).
2 2
5. Output U and V.

-85-

X9.63-199x

D.1.4 Finding Square Roots Modulo a Prime
Let p be an odd prime, and let g be an integer with 0 < g < p. A square root (mod p) of gisaninteger ywith0<y<
p and:

y* =g (mod p)
If g =0, then there is one square root (mod p), namely y = 0. If g # 0, then g has either 0 or 2 square roots (mod p).
If y is one square root, then the other is p-y.
The following algorithm determines whether g has square roots (mod p) and, if so, computes one. The algorithmis
used in Section 4.2.1 and Annex D.3.1.
Input: Anodd prime p, and an integer gwith0<g <p.
Output: A square root (mod p) of g if one exists; otherwise, the message “no square roots exist.”
Algorithm 1: for p = 3 (mod 4)that is p = 4u + 3for some positive integer u.

u+l

1. Computey =g~ modp via Annex D.1.1.
2. Computez = y* modp.
3. If z=g, then outpuy. Otherwise output the message “no square roots exist.”

Algorithm 2; for p =5 (mod 8)that is p = 8u + 5for some positive integer u.
Computey = (2g)" modp via Annex D.1.1.

Computé = 2gy* modp.

Computey = gY(i - 1) modp.

Computez = y* modp.
If z=g, then outpuy. Otherwise output the message “no square roots exist.”

arw DN R

Algorithm 3: for p =1 (mod 4)that is p = 4u + 1for some positive integer u.

1. SetQ=g.
2. Generate randowith 0S P <p.
3. Using Annex D.1.3, compute the Lucas sequence elements:
U=Uyy1 modp, V=V, modp.
4, If V = 4Q (modp) then outpuy = V/2 modp and stop.
5. If U # £1 (modp) then output the message “no square roots exist” and stop.
6. Go to Step 2.

D.1.5 Trace and Half-Trace Functions
If A is an element df,m, thetrace of A is:
2 22 2m-l
Tr(@)=a+0“+0a° +..+0° .
The value ofTr(Q) is O for half the elements &tm, and 1 for the other half. The trace can be computed as follows.
The methods are used in Annex D.1.6.

Normal basis representation used for elements of F,m:
If a has representation{d ;...a 1), then:

Tr@)=ao0a,0...0ap.
Polynomial basis representation used for elements of Fom;

1. SetT =a.

2. Fori from 1 tom- 1 do
21. T=T?+a.

3. OutputT.

If mis odd, thehalf-trace of a is:
2 4 m1
a+a? +a? +..+a?

If Fomis represented by a polynomial basis, the half-trace can be computed efficiently as follows. The method is used
in Annex D.1.6.

- 86 -

X9.63-199x

1. SetT=a.

2. For i from 1to (m- 1)/2 do
21 T=TA
22. T=T?+a.

3. Output T.

D.1.6 Solving Quadratic Equations over F,,
If 3 isan element of F,m, then the equation:
Z+z=
has 2-2T solutions over Fom, where T = Tr(3). Thus, there are either 0 or 2 solutions. If 3 = 0, then the solutions are

Oand 1. If B # 0 and zis asolution, then the other solution is z+1.

The following algorithms determine whether a solution z exists for a given 3, and if so, computes one. The
algorithms are used in point compression (see Section 4.2.2) and in Annex D.3.1.

Input: A field Fom along with abasis for representing its elements; and an element B Z 0.

Output: An element zfor which Z + z= B if any exist; otherwise the message “no solutions exist”.
Algorithm 1: for normal basis representation.

1. Let o B1.--Bm1) be the representation pf
2. Setzy = 0.
3. Fori from 1 tom-1 do
3.1. Setz =z, [B.
4, Setz= (zz...Zn1)-
5. Computey =7 +z
6. If y =, then outpuk. Otherwise, output the message “no solutions exist”.
Algorithm 2: for polynomial basis representation, with m odd.
1. Computez = half-trace of3 via Annex D.1.5.
2. Computey =2 +z
3. If y =, then outpuiz. Otherwise, output the message “no solutions exist”.

Algorithm 3: works in any polynomial basis.

1. Choose a random] Fom.
2. Setz= 0 andw = f3.
3. Fori from 1 tom- 1 do

3.1 Sez=Z+WwT.

3.2. Setw=w +B.

If w# 0, then output the message “no solutions exist” and stop.
Computey =7 +z

If y=0, then go to Step 1.

Outputz.

No o &

D.1.7 Checking the Order of an Integer Modulo a Prime

Letp be a prime and let satisfy 1 <g < p. Theorder of g modulop is the smallest positive integesuch thag“= 1
(modp). The following algorithm tests whether or gdhas ordek modulop.

Input: A primep, a positive integek, and an integey with 1 <g <p.

Output: “true” if g has ordek modulop, and “false” otherwise.

1. Determine the prime divisors kf
2. If g # 1 (modp), then output “false” and stop.
3. For each primedividing k do

-87-

X9.63-199x

31 1f g =1 (mod p), then output “false” and stop.
4. Output “true”.

D.1.8 Computing the Order of a Given Integer Modulo a Prime

Letp be a prime and laf satisfy 1 <g < p. The following algorithm determines the ordéig modulop. The
algorithm is efficient only for smafl. It is used in Annex D.1.9.

Input: A primep and an integeg with 1 <g <p.

Output: The ordetk of g modulop.

1. Setb=gandj = 1.

2. Setb =gb modp andj =j + 1.
3. If b> 1 then go to Step 2.

4, Outputj.

D.1.9 Constructing an Integer of a Given Order Modulo a Prime

Letp be a prime and léf divide p-1. The following algorithm generates an elemerit,aif orderT. The algorithm
is efficient only for smalp. The algorithm is used in Annex D.2.3.

Input: A primep and an integef dividing p—1.

Output: An integeru having ordeiT modulop.

1. Generate a random integebetween 1 ang.

2. Compute via Annex D.1.8 the ordeof g modulop.
3. If T does not dividé then go to Step 1.

4. Outputu = g“" modp.

D.2 Polynomials over a Finite Field

D.2.1 GCD’s over a Finite Field

If f(t) andg(t) # O are two polynomials with coefficients in the fiélg then there is a unique monic polynonuié)
with coefficient also i, of largest degree which divides bd¢t) andg(t). The polynomiad(t) is called the
greatest common divisor or ged of f(t) andg(t). The following algorithm (the Euclidean algorithm) computes the gcd
of two polynomials. The algorithm is used in Annex D.2.2.
Input: A finite field F, and two polynomialft), g(t) # O overF,,.
Output: d(t) = gcdf(t) , g(t)).
1. Seta(t) = f(t), b(t) = g(t).
2. Whileb(t) Z0

2.1 Seftc(t) = the remainder whea(t) is divided byb(t).

2.2. Seta(t) = b(t).

2.3. Setb(t) = c(t).
3. Letd be the leading coefficient aft) and outputt™a(t).

D.2.2 Finding a Root in F,, of an Irreducible Binary Polynomial

If f(t) is an irreducible binary polynomial of degmaethenf(t) hasm distinct roots in the fieléF,m. A random root
can be found efficiently using the following algorithm. The algorithm is used in Annex D.2.3.

Input: An irreducible binary polynomid(t) of degream, and a field~,m.
Output: A random root of(t) in Fom.

1. Setg(t) = ().
2. While degg) > 1
2.1. Choose randomn [Fom.

2.2. Seftc(t) = ut.
2.3. Fori from 1 tom-1 do

2.3.1. c(t) = (c(t)® + ut) modg(t).
2.4. Seth(t) = gedE(t), g(b)).

- 88 -

3.

X9.63-199x

25. If h(t) is constant or deg(g) = deg(h), then go to step 2.1.
2.6. If 2deg(h) > deg(g), then set g(t) = g(t)/h(t); else g(t) = h(t).
Output g(0).

D.2.3 Change of Basis

Given afield F,m and two (polynomial or normal) bases B; and B, for the field over F,, the following algorithm
allows conversion between bases B, and B..

1

-89 -

Let f(t) be the field polynomial of B,. That is,
11 If By isapolynomial basis, let f(t) be the (irreducible) reduction polynomial of degree mover F,.
12 If BisaTypel optimal normal basis, let:
f(t) = t™ t ™t ™2+ L
13 If B,isaTypell optimal normal basis, let:
f(t) = z t!

0<J<m
m—j=<m+j

where the notation a < b means that in the binary representations
a= ZUiZ',b: ZWiZ' :
we haveu; < w; for all i.
1.4. If B, isaGaussian normal basisof Type T = 3, then:

141 Setp=Tm+1
14.2. GenerateviaAnnex D.1.9 aninteger u having order T modulo p.

1.4.3. For kfrom1tomdo
T-1 kujn.i I
&= Zexp k
= P

1.4.4. Compute the polynomial

9= E!b—ng

(The polynomial g(t) has integer coefficients.)
1.45. Output f (t) =g (t) mod 2.
Note: The complex numbers g, must be computed with sufficient accuracy to identify each
coefficient of the polynomial g(t). Since each such coefficient is an integer, this means that the
error incurred in calculating each coefficient should be less than 1/2.

Let Y bearoot of f(t) computed with respect to B;. (Y can be computed using the technique defined in
Annex D.2.2.)
Let [bethe matrix:

0,0 yO,l s yO,m—l
r= 10 yll yl,:m—l
10 Vma1r 7 Vieim
where the entries Y, j are defined as follows:
3.1 If B, isapolynomial basis, then:

X9.63-199x

1= G/o,o You-- -yo,m—lh
y= G/l,o Vii-- -yl,m—lh
y? = G’z,o Vi 'y2,m—1h

-1
ym - Gm—l,o ym—l,l' . 'ym—l,m—lh

with respect to B,. (The entries Y ; are computed by repeated multiplication by y.)
3.2. If B, isaGaussian normal basis (of any type T 2 1), then:

y= G/o,o Yoi--Yoma
yz = Gl,o Via-- -yl,m—lh
yt= G’z,o Vi 'y2,m—lh

2 m-1

Yy = G/m—l,o Vi-11--¥V m—l,m—lh
with respect to B,. (The entries Y ; are computed by repeated squaring of Y.)

4, If an element has representation (3 of3 1...[3 m1) with respect to B,, then its representation with respect to B;
is
(A0 1.0) =(BoBr-Bmd) I
If an element has representation (XA 1...0 1) With respect to By, then its representation with respect to B, is
(B QB 1B m—l) = ((X o 1. m—l) r 71,
where ™ “denotesthe mod 2 inverseof I .
Example

Suppose that B, is the polynomial basis (mod t*+ t +1), and B, isthe Type | optimal normal basis for F»4. Then f(t) =

t*+ t*+ £+ t+ 1, and aroot is given by y = (1100) with respect to B,. Then:

S0 that:

and:

-90-

y = (1100)
y? = (1111)
y* = (1010)
y® = (1000)
@1 00
111
M=
010
000
00 1
L Moo
Mo 11
111

X9.63-199x

If A = (1001) with respect to By, then its representation with respect to B is:

(0100) = (1001) I".

If A = (1011) with respect to B,, then its representation with respect to B, is:

(1101) = (1012) ™

D.2.4 Checking Binary Polynomials for Irreducibility

If f(x) is abinary polynomial, then f(x) can be tested efficiently for irreducibility using the following algorithm. The
agorithmisused in Section 5.1.2.2.

Input: A binary polynomial f(x).

Output: The message “true” f{x) is irreducible oveF,; the message “false” otherwise.

1.
2.

3.

4.

D.3

Setd = degree of(x).

Setu(x) = x.

Fori from 1 to[d/2[do

3.1. Set(x) = u(x)* modf(x).

3.2. Seg(x) = ged(x) + x, f(x)).

3.3. If g(x) # 1, then output “false” and stop.
Output “true”.

Elliptic Curve Algorithms

D.3.1 Finding a Point on an Elliptic Curve
The following algorithms provide an efficient method for finding an arbitrary point (othep)hama given elliptic
curve over a finite field. These algorithms are used in Annexes A.3.1 and A.3.2.

Casel: Curvesover F,
Input: A primep and the parametessandb of an elliptic curveE overF,.
Output: An arbitrary point (other than) onE.

arw DN R

6.

Choose a random integewith 0< x <p.
Setdl =x% + ax + b modp.
If 0 = 0 then outputy, 0) and stop.

Apply the appropriate algorithm from Annex D.1.4 to look for a square root jgjnmfch.
If the output of Step 4 is “no square roots exist,” then go to Step 1. Otherwise the output of Step 4 is an

integery with 0 <y < p such thay” = a (modp).
Output &, V).

Casell: Curvesover Fom.

Input: A field F,m and the parameteasandb of an elliptic curveE overFm.
Output: A randomly generated point (other th@non E.

1.

No o M wd

© x

-01-

Choose a random elemetrin Fom.

If x =0, then output ((bzml) and stop.

Setdl =x* +ax’ +b.

If o = 0, then outputx, 0) and stop.

Setf = x?0.

Apply the appropriate algorithm from Annex D.1.6 to look for an elemfamtwhichZ + z = f.

If the output of Step 6 is “no solutions exist,” then go to Step 1. Otherwise the output of Step 6 is a solution
z

Sety =xz

Output &, y).

D.3.2

X9.63-199x

Scalar Multiplication (Computing a Multiple of an Elliptic Curve Point)

If kisapositiveinteger and P is an elliptic curve point, then kP is the point obtained by adding together k copies of
P. This computation can be performed efficiently by the addition-subtraction method outlined below.

Input: A positive integer k and an elliptic curve point P.

Output: The eliptic curve point kP.

gD

6.

Set e = kmod n, where n isthe order of P. (If nisunknown, then set e = k instead.)
Let h, h,.1 ...hy hy be the binary representation of 3e, where the leftmost bit h, is 1.
Let e e.1...6, €y be the binary representation of e.

SetR=P.

For i fromr-1downto 1 do

5.1 Set R=2R.

5.2, Ifhh=1landg=0,thenset R=R+ P.

5.3. Ifhh=0ande=1,thenset R=R-P.

Output R.

Note: To subtract the point (X, y), just add the point (x, -y) (for thefield Fp) or (x, x + y) (for the field Fom).
There are severa variations of this method which can be used to speed up the computations. One such method which
requires some precomputations is described in [24]. See aso Knuth [45].

-92-

X9.63-199x

Annex E
(informative)
Complex Multiplication (CM) Elliptic Curve Generation
Method

This Annex describes a method for generating an elliptic curve with known order. The method may be used for
selecting an appropriate elliptic curve and point (see Annex A.3.2).

E.1 Miscellaneous Number-Theoretic Algorithms
This section collects together some number-theoretic algorithms that are used in Annexes E.2 and E.3. These
algorithms are not used in any other sections of this Standard.

E.1.1 Evaluating Jacobi Symbols

The Legendre symboal:

| |
If p>2isprime, and ais any integer, then the Legendre symbol ﬁlhs defined asfollows. If p divides a, then k:

|
0. If p does not divide a, then %Requals 1if aisasguare modulo p and —1 otherwise. (Despite the similarity in

notation, a Legendre symbol should not be confused with a rational fraction; the distinction must be made from the
context.)

The Jacobi symbol:

The Jacobi symbol ﬁks a generalization of the Legendre symboh ¥ 1 is odd with prime factorization:
t

n=[1p",

anda is any integer, then the Jacobi symbol is defined to be

Rleniik

where the symbol&ikare Legendre symbols. (Despite the similarity in notation, a Jacobi symbol should not be
confused with a rational fraction; the distinction must be made from the context.)

The values of the Jacobi symbol dreif a andn are relatively prime and O otherwise. The values 1 and -1 are
achieved equally often (unlesss a square, in which case the value —1 does not occur at all).
The following algorithm efficiently computes the Jacobi symbol.

Input: An integera and an integer> 1.
Output: The Jacobi symb

1. If gcd(@, n) > 1 then output 0 and stop.
2. Setx=a,y=n,J=1.

3. Setx = (x mody).

4 If x> y/2 then

4.1 Setx =y —x.

4.2 Ify = 3(mod 4) then set=-J.
5. While 4 divides
5.1 Setx =x/4.

-03-

X9.63-199x

6. If 2 divides x then
6.1 Set x = x/2.

6.2 If y=+ 3 (mod 8) then set J = .

7. If x =1 then outpud and stop.
8. If x= 3 (mod 4) and ¥ 3 (mod 4) then set=—J.
9 Switchx andy.

10. Go to Step 3.

If nis equal to a primp, the Jacobi symbol can also be found efficiently using exponentiation via:
R: a® 2 mod p.

E.1.2 Finding Square Roots Modulo a Power of 2

If r>2and a< 2" isapositive integer congruent to 1 modulo 8, then there is a unique positive integer b less than 22
such that b®= a (mod 2"). The number b can be computed efficiently using the following algorithm. The binary
representations of the integers a, b, h are denoted as

a= a_1...a1Q,
b= br—l---blbOu
h= hr—l---hlhO-

Input: Aninteger r > 2, and apositive integer a = 1 (mod 8) lessthan 2'.
Output: The positive integer b less than 2 such that b® = a (mod 2").

1. Seth=1.
2. Setb=1.
3. Forjfrom2tor —2 do
If hjs1 # &41 then
Setbj =1.
Ifj<r/2
thenh = (h+ 2*'b — 2%) mod 2.
elseh = (h + 2"'b) mod 2.
4, If b_,=1thensetb=2""—b.
5. Outputb.

E.1.3 Exponentiation Modulo a Polynomial

If kis a positive integer arf@t) andm(t) are polynomials with coefficients in the figHg, thenf(t) modm(t) can be
computed efficiently by theinary method outlined below.

Input: A positive integek, a fieldF,, and polynomial§(t) andm(t) with coefficients irf,.

Output: The polynomiaf(t) modm(t).

1. Letk =k, k_; ... k; kg be the binary representation of k, where the most significant bit k. of kis 1.
2. Set u(t) = f(t) mod m(t).
3. For i fromr—1 downto O do

3.1 Setu(t) = u(t)> modm(t).
3.2 If k= 1 then seti(t) = u(t) f(t) modm(t).
4, Outputu(t).

E.1.4 Factoring Polynomials over F, (Special Case)

Let f(t) be a polynomial with coefficients in the figtg, and suppose th#t) factors into distinct irreducible

polynomials of degred. (This is the special case needed in Annex E.3.) The following algorithm finds a random

degreed factor off(t) efficiently.

Input: A primep > 2, a positive integed, and a polynomid{t) which factors modulg into distinct irreducible
polynomials of degree.

Output: A random degreé-factor off(t).

1. Setg(t) = f(t).

2. While degg) > d

-94-

X9.63-199x

21 Choose u(t) = arandom monic polynomial of degree2d — 1.
2.2 Compute (via Annex E.1.3.)

c(t) = u(t)(pd D2 modg(t).
2.3 Computé(t) = gede(t) — 1,9(t)) via Annex D.2.1.
2.4 If h(t) is constant or deg) = degh) then go to Step 2.1.
25 If 2 degh) > deg@) then seg(t) = g(t) / h(t); elseg(t) = h(t).
3. Outputg(t).

E.1.5 Factoring Polynomials over F, (Special Case)

Let f(t) be a polynomial with coefficients in the fidid, and suppose tht) factors into distinct irreducible
polynomials of degred. (This is the special case needed in Annex E.3.) The following algorithm finds a random
degreed factor off(t) efficiently.

Input: A positive integed, and a polynomidi(t) which factors modulo 2 into distinct irreducible polynomials of

degreed.
Output: A random degreé-factor off(t).
1. Setg(t) = f(t).
2. While degg) > d
21 Choosei(t) = a random monic polynomial of degrez-21.

2.2 Sete(t) = u(t).
2.3 Fori from 1 tod -1 do
2.3.1 c(t) = c(t)® + u(t) modg(t).
2.4 Computén(t) = gcdE(t), g(t)) via Annex D.2.1.
25 If h(t) is constant or deg) = degf) then go to Step 2.1.
2.6 If 2 degh) > deg@) then seg(t) = g(t) / h(t); elseg(t) = h(t).
3. Outputg(t).

E.2 Class Group Calculations
The following computations are necessary for the complex multiplication technique described in Annex E.3.

E.2.1 Overview

A reduced sy ric matrix is one of the form
B
S=
C

where the integers, B, C satisfy the following conditions:

1. gcd@, 2B,C) =1,
2. |B|<A<C,
3. If eitherA = || orA =C, thenB = 0.

We will abbreviates as A, B, C] when typographically convenient.

The determinand = AC —B? of Swill be assumed throughout this section to be positivesquut efree (i.e.,
containing no square factors).

GivenD, theclassgroup H(D) is the set of all reduced symmetric matrices of determDahheclass number h(D)
is the number of matrices (D).

The class group is used to constructrigdiced class polynomial. This is a polynomiahp(t) with integer
coefficients of degreb(D). The reduced class polynomial is used in Annex E.3 to construct elliptic curves with
known orders.

E.2.2 Class Group and Class Number

The following algorithm produces a list of the reduced symmetric matrices of a given deteBninant
Input: A squarefree determinabt> 0.

Output: The class groupi(D).

1. Letsbe the largest integer less thdlD /3.

-05-

X9.63-199x

2. For B from O to sdo

2.1. List the positive divisors Ay, ..., A, of D + B? that satisfy B<S A< /D + B?.
2.2. Fori from 1 tor do
2.21. SeC=(D+B?/A.
2.2.2. Ifgcdfy, 2B, C) = 1then
list [A, B, C].
if 0 <2B <A <Cthenlist i, —B, C].
3. Output list.

Example:

D = 71. We need to check®DB < 5.

— ForB =0, we have\ = 1, leading to [1,0,71].

— ForB =1, we havéA = 2,3,4,6,8, leading to [31,24] and [8£1,9].
— ForB = 2, we havéA = 5, leading to [5t2, 15].

— ForB = 3, we have\ = 8, but no reduced matrices.

— ForB = 4, we have no diviso’ in the right range.
Thus the class group is:

H(71) ={[1,0,71], [3,%1,24], [8,%1,9], [5,%2, 15]}
and the class number is:
h(71) = 7.

E.2.3 Reduced Class Polynomials
Let:

F(2) =1+ Y (~1) @72 4 207072]
5 |

=1-z2-2+2°+72" -2 -7+, ..

nd:
_ E'«/ D +Bi |
6 =exp nﬁ
A
et:

FoA B, C)=07*F(-6) 1 F(67?),

Fi(A B, C)=07F(8) 1 F(6?),

FaB.0)= V2o @4 1 R0,
Note: Since|d| < e ™32 = 0.0658287, the series F(2) used in computing the numbers f (A, B, C) converges as
/312

a

L

quickly as a power seriesin €
If [A, B, C] isamatrix of determinant D, then itsclassinvariant is
C(A B, C) = (NAB- 278 (F (A, B, ©)9°,
where:
G = gcd(D,3),

-06 -

X9.63-199x

if D=1,2,6,7mod8,

if D=3mod8and D # 0 mod3,
if D=3mod8 and D =0 mod3,
if D=5mod8,

B

:

13
for AC odd,
J= for C even,
for A even,

if D=1,2,6 modS8,
if D=3,7mod8,
if D=5mod8§,

%—C+A2C if AC odd or D =5mod8 and C even,
A +2C-AC? if D=12,36,7mod8 and C even,
%—C+5AZC if D=3mod8 and A even,
[n-c-Ac? if D=1256,7mod8 and A even,

M = %1)““’8 if A odd,

~1)(©D if A even,
? if D=5mod8
1

or D=3mod8 and AC odd

or D=7mod8 and AC even,
if D=1,2,6 mod8

or D=7mod8 and AC odd
-M if D=3 mod8 and AC even,

"

A= e_niK/24.
If [A, By, Ci, ..., [An,Bh,Ci] are the reduced symmetric matrices of (positive squarefree) determinant D, then the
reduced class polynomial for D is:

h
wp(t) = |_| (t-CA, B, G)).
=1

The reduced class polynomia has integer coefficients.

Note: The above computations must be performed with sufficient accuracy to identify each coefficient of the
polynomial wp(t). Since each such coefficient is an integer, this means that the error incurred in calculating each
coefficient should be less than 1/2.

zZ
I
)

Example;

_ 1
wr(t) = ﬁ'ﬁfo(]aojl)lk

-97-

X9.63-199x

q_ —|n/8f(3L24)@ |rr/8 1(3 :L24)k

—23| 124 23| 24

.tr 5 (8L9) €t Lg)k
Tre_jilzf (5215)@« sz (5, 215)k

= (t- 2.13060682983889533005591468688942503...)
(t — (0.95969178530567025250797047645507504...) +
(0.34916071001269654799855316293926907)...)
(t — (0.95969178530567025250797047645507504...) —
(0.34916071001269654799855316293926907)...)
(t + (0.7561356880400178905356401098531772...) +
(0.0737508631630889005240764944567675)..)
(t + (0.7561356880400178905356401098531772...) —
(0.0737508631630889005240764944567675)..)
(t + (0.2688595121851000270002877100466102...) —
(0.84108577401329800103648634224905299)...)
(t + (0.2688595121851000270002877100466102...) +
(0. 84108577401329800103648634224905299...)

= t -2ttt +t2—t— 1.

jl |

E.3 Complex Multiplication

E.3.1 Overview
If Eis a non- supersmgular elliptic curve oWgrof orderu, then:
Z=4q - (@+1-u)°
is positive by thze Hasse Theorem (see Annex C.3 and Annex C.4). Thus there is a unique factorization;
Z=DV
whereD is squarefree (i.e. contains no square factors). Thus, for each non-supersingular elliptic cufyefover
orderu, there exists a unique squarefree positive intBgauch that:
*) 4q=W?+DV?
(**) u=g+1tWwW
for someWand V.
We say that E has complex multiplication by D (or, more properly, by +/—D). Wecall D aCM discriminant for g.
If one knows D for agiven curve E, one can compute its order via (*) and (**). As we shall see, one can construct
the curves with CM by small D. Therefore one can obtain curves whose orders u satisfy (*) and (**) for small D. The
near-primes are plentiful enough that one can find curves of nearly prime order with small enough D to construct.
Over Fq, the CM techniqueis also called the Atkin-Morain method. Over F,m, it is aso called the Lay-Zimmer
method. Although it is possible (over F) to choose the order first and then the field, it is preferable to choose the
field first since there are fields in which the arithmetic is especially efficient.
There are two basic steps involved: finding an appropriate order, and constructing a curve having that order. More
precisely, one begins by choosing the field size g, the minimum point order r,, and trial division bound I Given
those quantities, we say that D is appropriate if there exists an elliptic curve over Fq with CM by D and having
nearly prime order.

Step 1:
(Annex E.3.2 and Annex E.3.3, Finding a Nearly Prime Order):

Find an appropriate D. When oneis found, record D, the large primer, and the positive integer k such that u = kr is
the nearly prime curve order.

Step 2:

-08 -

X9.63-199x

(Annex E.3.4 and Annex E.3.5, Constructing a Curve and Point):
Given D, kand r, construct an elliptic curve over Fy and apoint of order r.

E.3.2 Finding a Nearly Prime Order over F,

E.3.2.1 Congruence Conditions
A squarefree positive integer D can be a CM discriminant for p only if it satisfies the following congruence
conditions. Let;

p +1)°

rmin

— If p=3 (mod 8), thed =2, 3, or 7 (mod 8).
— If p=5 (mod 8), therD is odd.
— If p=7 (mod 8), the = 3, 6, or 7 (mod 8).
— If K=1, thenD = 3 (mod 8).
— If K=2or 3, therD # 7 (mod 8).
Thus the possible squarefrBés are as follows:
If K=1,then

D=3, 11,19, 35, 43,51, 59, 67,83, 91, 107, 115,
If p=1 (mod 8)andK = 2 or 3 then

D=1,235,6,10,11, 13, 14,17,19, 21,
If p=1 (mod 8)andK = 4, then

D=1,2356,7,10,11, 13, 14, 15, 17,
If p=3 (mod 8)andK = 2 or 3 then

D=2,3,10,11,19, 26, 34, 35, 42,43, 51, 58,
If p=3 (mod 8)andK = 4, then

D=2,3,7,10,11, 15, 19, 23, 26, 31, 34, 35,
If p=5 (mod 8)andK = 2 or 3 then

D=1,3,5,11, 13,17, 19, 21, 29, 33, 35, 37,
If p=5 (mod 8)andK = 4, then

D=1,3,5 7,11, 13,15,17,19, 21, 23, 29,
If p=7 (mod 8)andK = 2 or 3 then

D=3,6,11, 14, 19, 22, 30, 35, 38, 43, 46, 51,
If p=7 (mod 8)andK = 4, then

D=3,6,7,11, 14, 15, 19, 22, 23, 30, 31, 35,

K=

E.3.2.2 Testing for CM Discriminants (Prime Case)
Input: A primep and a squarefree positive inte@esatisfying the congruence conditions from Annex E.3.2.1.
Output: If D is a CM discriminant fop, an integekV such that:

4p =W? + DV?
for someV. (In the caseB = 1 or 3, the output also includ®y If not, the message “not a CM
discriminant.”
1. Apply the appropriate technique from Annex D.1.4 to find a square root mpdéileD or determine that
none exist.
2. If the result of Step 1 indicates that no square roots exist, then output “not a CM discriminant” and stop.

Otherwise, the output of Step 1 is an integenodulop.
3. LetA=pandC = (B> +D)/
B
4, LetS:E]%ndu =
C

-99-

X9.63-199x

5. Until |2B| < A < C, repeat the following steps.
1
5.1. Let d= Nl +=
2
2 T !
5.2. Let | =
o

5.3. Replace U by T ~U.
5.4. Replace Sby T'ST, where T' denotes the transpose of T.

6. If D=11and A= 3, let ®=0and repeat steps 5.2, 5.3 and 5.4.
7. Let X and Y begheentriesof U. That is,
e
8. If D =1 or 3then output W= 2X and V = 2Y and stop.
9. If A =1 then output W= 2X and stop.
10. If A =4 then output W= 4X + BY and stop.
11. Output “not a CM discriminant.”

E.3.2.3 Finding a Nearly Prime Order (Prime Case)

Input: A primep, a trial division bound, and lower bound,, for base point order.

Output: A squarefree positive integBx, a primer withr;, < r, and a smooth integ&rsuch thati = kr is the order
of an elliptic curve modulp with complex multiplication bp.

1. Choose a squarefree positive inteQenot already chosen, satisfying the congruence conditions of Annex
E.3.2.1.

p|
Compute Annex E.1.1 the Jacobi symbglhpklf J=-1then go to Step 1.
List the odd primekdividing D.

For eacH, compute Annex E.1.1 the Jacobi symbel ﬁklf J=-1 for somé, then go to Step 1.

Test Annex E.3.2.2, whethBris a CM discriminant fop. If the result is “not a CM discriminant,” go to
Step 1. (Otherwise, the result is the integermlong withV if D =1 or 3.)
6. Compile a list of the possible orders, as follows.
— If D = 1, the orders are:
p+1xW,p+1tV.
— If D = 3, the orders are:
p+1xW,p+1+ W+ 3V)/2,p+ 1+ (W-3V)/2
— Otherwise, the orders apet 1+ W.

a ks LD

7. Test each order for near-primality (Annex A.2.2.) If any order is nearly prime, oltgytr] and stop.
8. Go to Step 1.
Example:

Letp= 22— 2" _1. Then:
, 1+D
p = 4X2 - XY +

Y2andp+1—(X-Y)=r

whereD = 235,

X =-31037252937617930835957687234,

Y =5905046152393184521033305113,
andr is the prime:

r =6277101735386680763835789423337720473986773608255189015329.
Thus there is a curve modypoof orderr having complex multiplication b.

- 100 -

X9.63-199x

E.3.3 Finding a Nearly Prime Order over F,"

E.3.3.1 Testing for CM Discriminants (Binary Case)
Input: A field degree d and a squarefree positive integer D = 7 (mod 8).
Output: If D isaCM discriminant for 29, an odd integer W such that:
2d+2 — W2 + DVZ,
for some odd V. If not, the message “not a CM discriminant.”

1. Compute via Annex E.1.2 an intedgesuch thaB? = -D (mod 2"?).
2. LetA =222 and = B2+ DL
3. LetS= andU =
4, Until |2B| < A< C, repeatthe following steps.
1
4.1 Leto = Nl +—
2
T -1
4.2 Letl =
o

4 3 ReplacdJ by T *U.
Replace Sby T'ST, where T' denotes the transpose of T.
5. LetXand Yb entn&eof U. That is,

6. If A=1, then output W= X and stop.
7. If A=4and Yiseven, then output W= (4X + BY) / 2 and stop.
8 Output “not a CM discriminant.”

E.3.3.2 Finding a Nearly Prime Order (Binary Case)
Input: A field degreed, a trial division boundi,.,, and lower bound.,, for base point order.

Output: A squarefree positive integBx;, a primer with r;, < r, and a smooth integ&rsuch thati = kr is the order
of an elliptic curve oveF,d with complex multiplication byp.

1. Choose a squarefree positive inteQeE 7 (mod 8), not already chosen.

2. ComputeH = the class group fdd via Annex E.2.2.

3. Seth = the number of elementslih

4. If d does not dividdn, then go to Step 1.

5. Test via Annex E.3.3.1 whethris a CM discriminant for 2 If the result is “not a CM discriminant,” go
to Step 1. (Otherwise, the result is the integer

6. The possible orders ar8 2 1+ W.

7. Test each order for near-primality via Annex A.2.2. If any order is nearly prime, oDtpt) and stop.

8. Go to Step 1.

Example:

Letq = 2°. Then:
4q=X?+DY?andq+1-X=4r
where:
D = 942679,
X =229529878683046820398181,
Y =-371360755031779037497,
andr is the prime:

- 101 -

X9.63-199x

r = 11417981541647679048466230373126290329356873447.

Thusthereis a curve over Fq of order 4r having complex multiplication by D.

E.3.4 Constructing a Curve and Point (Prime Case)

E.3.4.1 Constructing a Curve with Prescribed CM (Prime Case)

Given aprimep and aCM discriminant D, the following technique produces an elliptic curve y* = X2 + agx + by
(mod p) modulo p with CM by D. (Note that there are at least two possible orders among curves with CM by D. The
curve constructed here will have the proper CM, but not necessarily the desired order. This curve will be replaced in
Annex E.3.4.2 by one of the desired order.)

For nine values of D, the coefficients of E can be written down at once:

D do by

1 1 0

2 -30 56

3 0 1

7 -35 98

11 —264 1694

19 -152 722

43 -3440 77658

67 —29480 1948226
163 —-8697680 9873093538

For other values dD, the following algorithm may be used.
Input: A prime modulup and a CM discriminard > 3 forp.
Output: ag andbg such that the elliptic curve:

n

5.

y2=x3+ agx + by (modp)
has CM byD.
Computen(t) = wp(t) modp via Annex E.2.3.
LetW be the output from Annex E.3.2.2.
If Wis even, then use Annex E.1.4 witlr 1 to compute a roatof wp(t) modulop. Let:
V= (_1)D 24K & 24(GK) 104 D,
whereG, | andK are as in Annex E.2.3. Finally, let:
ap = —-3(V + 64)(V + 16) modp,
by = 2(V + 64Y (V — 8) modp.
If Wis odd, then use Annex E.1.4 wihr 3 to find a cubic factag (t) of wp(t) modulop. Perform the
following compugations, in which the coefficients of the polynomials are integers nmdulo

V() = t** mod g(t) if 3[D,
256t° modg(t) if 3D,
ay(t) = -3(V(t) + 64) (V(t) + 256) mody(t),
by(t) = 2(V(t) + 64F (V(t) — 512) mody(t),
ag(t) = ay(t)> modg(t),

by(t) = by(t)® modg(t).

Now letO be a nonzero coefficient froey(t), and lett be the corresponding coefficient frdmt). Finally,
let:

a8, =0T modp,
by = 0T 2 modp.
Output &g, by).

Example:

If D = 235, then:

- 102 -

X9.63-199x

Wo(t) =t —1a°+22* - 24°%+ 162 - 4 + 4.
If p=2"%2 -2 _1, then:
Wo(t) = (2~ (5 +d)t? + (L —)t—2) ¢° - (5 -d)t* + (1 +P)t—2) (modp),
where¢ = 1254098248316315745658220082226751383299177953632927607231. The resulting coefficients are:

ap = —2089023816294079213892272128,
by = —36750495627461354054044457602630966837248.

Thus the curvg?® = x> + agx? + by modulop has CM byD = 235.

E.3.4.2 Choosing the Curve and Point (Prime Case)
Input: EC parameterg, k, andr, and coefficientsy, by produced by Annex E.3.4.1.
Output: A curveE modulop and a point onE of orderr, or a message “wrong order.”

1. Select an integdy with 0 <& <p.
2. If D = 1 then se& = a,€ modp andb = 0.
If D = 3 then sea = 0 andb = by modp.
Otherwise, sed = a,¢ 2 modp andb = be¢ * modp.
3. Look for a poinG of orderr on the curve:
y* =X + ax + b (modp)
via Annex A.3.1. (In the notation of Annex A.3H=k andn =r.)

4, If the output of Annex A.3.1 is “wrong order” then output the message “wrong order” and stop.
5. Output the coefficients, b and the poinG.

The method of selectingin the first step of this algorithm depends on the kind of coefficients desired. Two

examples follow.

— If D# 1 or 3, and it is desired that= —3, then také& to be a solution of the congruergg& 2 = -3 (mod
p), provided one exists. If one does not exist, or if this choidelefds to the message “wrong order,” then
select another curve as followspl& 3 (mod 4) and the result was “wrong order,” then chposé in
place of; the result leads to a curve witr —3 and the right order. If no soluti§rexists, or ifp = 1
(mod 4), then repeat Annex E.3.4.1 with another root of the reduced class polynomial. The proportion of
roots leading to a curve with= —3 and the right order is roughly one-half & 3 (mod 4), and one-quarter
if p=1 (mod 4).

— If there is no restriction on the coefficients, then chdpaerandom. If the output is the message “wrong
order,” then repeat the algorithm until a set of parametdysG is obtained. This will happen for half the
values of, unlesD = 1 (one-quarter of the values)@r= 3 (one-sixth of the values).

E.3.5 Constructing a Curve and Point (Binary Case)

E.3.5.1 Constructing a Curve with Prescribed CM (Binary Case)
Input: A field F,m, a CM discriminanD for 2", and the desired curve order
Output: a andb such that the elliptic curve:
Vt+xy=x+ax+b
overF,mhas ordeu.

1. Computen(t) = wp(t) mod 2 via Annex E.2.3.

2. Use Annex E.3.3.1 to find the smallest dividaf m greater than (logD) — 2 such thab is a CM
discriminant for 2.

3. Computep(t) = a degreel factor modulo 2 ofv(t). (If d = h, thenp(t) is justw(t) itself. If d <h, p(t) is
found via Annex E.1.5.)

4, Computed := a root inF,m of p(t) = 0 via Annex D.2.2.

5. If 3 dividesD

- 103 -

thensetb=0a
dsesetb=0°
6. If uisdivisibleby 4, thenseta=0

elseif misodd, thenseta=1
else generate via Annex D.1.5 arandom element a [F,m of trace 1.
7. Output (a, b).

Example;

If D = 942679, then:
Wot) S1+ 2+t + 10+ 2 2 0 7 (20 24 2 27 (0 4 (B 4 (4 (04 ¢ 4

X9.63-199x

t4l+t42+t43+t45+t49+t51+t54+t56+t57+t59+t6l+t65+t67+t68+t69+t70+t71+t72+t74+t75+
t76 + t82 + t83 + t87 + t91 + t93 + t96 + t99 + thO + thl + t102 + t103 + t106 + thS + t109 + tllO + t114 + t117

t119 + t121
152 + t154

+ t123
+ t155
189 + t190 + t191

125
157

126 + t128 +1
158 + t160 + t161
+ t192 + t195 + t200 + t201

129 + t130 + t133 + t134+ t140 + t141 + t145 + t146 +
t 166 + t167 + t171 + t172 + t175 176 179
t 207 + t208 + t209 + t210 + t211 219 + t221 +
t233 + t234 + t235 + t237 + t238 + t239 + t241 + t242 + t244 + t245 + t248 + t249 + t250 + t252 +
t260 262 + t263 + t264 + t272 + t273 + t274 + t276 + t281 + t284 + t287 + t288 + t289 + t290 +
t300 301 + t302 + t304 + t305 + t306 + t309 + t311 + t312 + t313 + t314 + t317 + t318 + t320 +
t
t
t
t

+t
+t

+t

+t +t +

+t

+t
+t

+t

+t

+t
327 + t328 + t329 + t333 + t335 + t340 + t341 + t344 + t345 + t346 + t351 + t353 + t354 + t355 +

360 + t365 + t366 + t368 + t371 + t372 + t373 + t376 + t377 + t379 + t382 + t383 + t387 + t388 +
98 + t401 + t403 + t406 + t407 + t408 + t409 + t410 + t411 + t416 + t417 + t421 + t422 + t423 +

Bw

459 + t460 + t462 + t464 + t465 + t466 + t467 473

t +t471+t +t475+t
t488 491 + t492 + t495 + t496 + t498 + t501 + t503 + t505 + t507 + t510 + t512 + t518 + t519 +
t536 539 + t540 + t541 + t543 + t545 + t546 + t547 + t548 + t550 + t552 + t555 + t556 + t557 +
t563

+1
+1
+UT T+t
1% + t°° (mod 2).

This polynomial factorsinto 4 irreducibles over F,, each of degree 155. One of these is:
p(t):1+t+t2+t6+t9+t10+t11+t13+t14+t15+t16+t18+t19+t22+t23+t26+t27+

565 566 568 580 585 588 589 591 592 593 596 597

+T AT AT AT AT AT AT AT U

t147 + t148 + t150
186
228
257
299
325
359
395
426

+
+
+
+
+
+
+
+

t180
t223
t253
t292
t322
t357
t389
t424

529
t

558
t

+
+

602 + t604 + t606

t185
t225
t255
t297
t323
t358
t392
t425

+t
+t
+t
+t
+t
+t
+t
+1

29+t430+t438+t439+t440+t441+t442+t443+t447+t448+t450+t451+t452+t453+t454+t456+t458
476 + t481 + t482 + t483 + t484 + t486 + t487
t531 + t533
560
610

t559 +1

+t

=+

+ + + + + o+ A+ + o+

t29+t31+t49+t50+t51+t54+t55+t60+t61+t62+t64+t66+t70+t72+t74+t75+t80+t82+t85+t86+

t88 + t89 + t91 + t93 + t97 + thl + t103 + t104 + tlll + t115 + t116 + t117 + tllS + t120 + t121

+ t127 + t128 + t129 + t130 + t131 + t132 + t134 + t136 + t137 + t138 + t139 + t140 + t143 + t145
If tisaroot of p(t), then the curve:
y2+xy =x3+£

over F,155 has order 4r, wherer isthe prime:
r = 11417981541647679048466230373126290329356873447.

E.3.5.2 Choosing the Curve and Point (Binary Case)
Input: A field size F,m, an appropriate D, the corresponding k and r from Annex E.3.3.2.

Output: A curve E over F,mand apoint G on E of order r.

1 Compute a and b via Annex E.3.5.1 with u = kr.
2. Find apoint G of order r viaAnnex A.3.1. (In the notation of Annex A.3.1, h=kandn=
3. Output the coefficients a, b and the point G.

- 104 -

+ t123

+ t154

r.)

+ t124 +1
155

+t.

126

X9.63-199x

Annex F
(informative)
An Overview of Elliptic Curve Systems

Many public-key cryptographic systems are based on exponentiation operations in large finite mathematical groups.
The cryptographic strength of these systems is derived from the believed computational intractability of computing
logarithms in these groups. The most common groups are the multiplicative groups of Z, (the integers modulo a
prime p) and F,m (characteristic 2 finite fields). The primary advantages of these groups are their rich theory, easily
understood structure, and straightforward implementation. However, they are not the only groups that have the
requisite properties. In particular, the mathematical structures known as elliptic curves have the requisite
mathematical properties, arich theory, and are especially amenable to efficient implementation in hardware or
software.

The algebraic system defined on the points of an elliptic curve provides an aternate means to implement
cryptographic schemes based on the discrete logarithm problem. These protocols are described in the literature in the
agebraic system Z,,, the integers modulo p, where p is a prime. For example, ANSI X9.42 [6] describes a suite of key
agreement mechanisms based on the Diffie-Hellman scheme defined over Z,. These mechanisms can also be defined
over the points on an elliptic curve.

Elliptic curve systems as applied to ElIGamal protocols were first proposed in 1985 independently by Neil Koblitz
from the University of Washington, and Victor Miller, who was then at IBM, Y orktown Heights. The security of the
cryptosystems using elliptic curves hinges on the intractability of the discrete logarithm problem in the algebraic
system. Unlike the case of the discrete logarithm problem in finite fields, or the problem of factoring integers, there
is no subexponential-time algorithm known for the elliptic curve discrete logarithm problem. The best algorithm
known to date takes fully exponential time.

Associated with any finite field F, there are on the order of q different (up to isomorphism) elliptic curves that can be
formed and used for the cryptosystems. Thus, for afixed finite field with q elements and with alarge value of g,
there are many choices for the elliptic curve group. Since each elliptic curve operation requires a number of more
basic operationsin the underlying finite field Fq, afinite field may be selected with avery efficient software or
hardware implementation, and there remain an enormous number of choices for the elliptic curve.

This Standard describes the implementation of a suite of key establishment schemes which use elliptic curves over a
finite field F, whereqis either a prime number or equal to 2™ for some positive integer m.

- 105 -

Annex G
(informative)

X9.63-199x

Comparison of Elliptic Curves and Finite Fields

The elliptic curve key establishment schemes described in this Standard can also be described in the more traditional
setting of Fp* (also denoted Zp*), the multiplicative group of the integers modulo a prime. For example, many of the
key agreement schemes are elliptic curve analogs of the schemes described in ANSI X9.42 [6].

The following tables show the correspondence between the elements and operations of the group Fp* and the elliptic

curve group E(Fg), as well as the correspondence between the ‘language’ of ANSI X9.42 and the ‘language’ of this

Standard.

Table G-1 compares the basic properties of the two underlying g@ipde(Fq).

Table G-1 —F, and E(F,) Group Information

Group

*

Fo

E(Fy)

Group elements

The set of integers {1,2,...,p-

1}

Points (x,y) which satisfy the defining
equation of the elliptic curve, plusthe
point at infinity 0.

Group operation

Multiplication modulo p

Addition of points

Notation

Elements: gy, 0>
Multiplication: g; X g,
Exponentiation: g

Elements. P4, P,
Addition: P, + P,

Multiple of apoint (also called scalar
multiplication): kP

Discrete logarithm
problem

Giveng; O F, and g, = g;“mod p,
find the integer k.

Given P, O E(Fq) and P, = kpl, find
the integer k.

Diffie-Hellman problem

Giveng“, g° O F,, find

kik2
g .

Givenk,P, kP O E(F)), find

kikoP.

Table G-2 compares the notation used to describe analogous key agreement schemes in two ANSI standards: ANSI
X9.42 [6] and this Standard.

- 106 -

Table G-2 — Comparison of Notation in ANSI X9.42 and ANSI X9.63

X9.42 X9.63
Notation Notation

q n

P #E(Fy)

g G

X ds

y Qs

r de

t Qe

X9.63-199x

Table G-3 continues the comparison between ANSI X9.42 and this Standard. In the table, the procedures for setting
up the key agreement schemes are compared.

Table G-3 — ANSI X9.42 and ANSI X9.63 Setup

X9.42 Setup X9.63 Setup
1. pand g are primes, q divides p-1. 1. Eisandliptic curve defined over thefield F,.
2. gisan element of order qin Fy*. 2. Gisapoint of prime order nin E(F).
3. The group used is: {d°d"
@ ..., . .
. 3. Thegroup used is: {o0G,
2G, ..., (n-1)G}.

Table G-4 compares the key generation procedure used by ANSI X9.42 and this Standard.

Table G-4 — ANSI X9.42 and ANSI X9.63 Key Generation

X9.42 Key Generation X9.63 Key Generation

1. Select arandom integer x intheinterval [1, || 1. Select astatistically unique and
g-1]. unpredictable integer d in theinterval [1,
n-1].

2. Compute Q = dG.

2. Computey = g* mod p.

3. The private key is x.
3. The private key is d.

4. The public key is Q.

4. The public key isy.

Finally Table G-5 looks more closely at one particular scheme which is specified in both ANSI X9.42 and this
Standard: the full Unified Model scheme.

Table G-5 — Comparison of the Full Unified Model Scheme

X9.42 X9.63

1. Select an ephemeral public key ty. 1. Select an ephemeral public key Qeu.

2. Receive an ephemeral public key ty. 2. Receive an ephemeral public key Qe

3. Compute the shared secret valuest,” and || 3. Compute the shared secret values
e [h]deuQeyv' and [h]dsuQsy-

4. Derive keying data from the shared secret || 4. Derive keying data from the shared sedfet
values using a key derivation function. values using a key derivation function.

- 107 -

X9.63-199x

Annex H
(informative)
Security Considerations

This appendix is provided as an initial guidance for implementors of this Standard. This information should be
expected to change over time. Implementors should review the current state-of-the-art in attacks on the schemes at
the time of implementation.

Annex H.1 summarizes the best attacks known on the elliptic curve discrete logarithm problem, which is the basis for
the security of al elliptic curve systems. Annexes H.2 and H.3 discuss security issues for elliptic curve domain
parameters and elliptic curve key pairs, respectively. The security considerations discussed in Annexes H.1, H.2, and
H.3 affect al elliptic curve systems. Annex H.4 discusses security issues specific to key establishment schemes and,
in particular, the suite to key establishment schemesin this Standard. Annex H.5 discusses issues related to
validation of implementations of the schemesin this Standard.

H.1 The Elliptic Curve Discrete Logarithm Problem

Let E be an elliptic curve defined over afinite field Fq. Let GLIE(F,) be apoint of order n, wherenisaprime
number and n>2'%,

The eliptic curve discrete logarithm problem (ECDLP) is the following: given E, G and Q LIE(F,), determine the
integer |, 0 < |1 < n-1, such that Q = |G, provided that such an integer exists.

The best general algorithms known to date for ECDLP are the Pollard- 0 method [62] and the Pollard-A method

[62]. The Pollard- © method takes about ~/ 71/ 2 steps, where each step is an elliptic curve addition. The Pollard-
© method can be parallelized (see [68]) so that if m processors are used, then the expected number of steps by each
processor before asingle discrete logarithm is obtained is (/7n/ 2) / m. The Pollard-A method takes about 2+/n
steps. It can also be parallelized (see [68]) so that if m processors are used, then the expected number of steps by
each processor before a single discrete logarithm is obtained is about (2\/ﬁ)/ m.

Some special classes of elliptic curves, including supersingular curves, have been prohibited in this Standard by the
requirement of the MOV condition (see Annex A.1.1). These curves have been prohibited because there is a method
for efficiently reducing the discrete logarithm problem in these curves to the discrete logarithm problem in afinite
field.

Also, the special class of elliptic curves called Fg-anomalous curves have been prohibited by the requirement of the
Anomalous condition (see Annex A.1.2) because there is an efficient algorithm for computing discrete logarithmsin
E(F) where E is an anomalous curve over Fq (i.e. #E(F) = 0).

In April 1998, Gallant, Lambert, and VVanstone [31], and Wiener and Zuccherato [70] showed that the best
algorithms known for the ECDLP (including Pollard- 0) can be sped up by afactor of V2. Thus the expected

running time of the Pollard- 0 method with this speedup is /7N / 4 steps. They also showed that if E isan eliptic

curve defined over F.e, then the best algorithm known for the ECDLP in E(F,d) can be sped up by afactor of V(2d).

This should be considered when doing a security analysis of curves generated using the Weil Theorem (see Note 6 in
Annex A.3.2).

- 108 -

X9.63-199x

For example, the binary anomalous curve E: y*+xy = x>+x%+1 has the property that #E(F,163) = 2n, wheren is a 162-
bit prime. The ECDLP in E(F,163) can be solved in about 2’ elliptic curve operations, which is 16 times less work

than the 2" elliptic curve operations required to solve the ECDLP for arandom curve of similar order. Now, afield
operation in F,163takes about the same time as a SHA-1 operation, and it takes about 6 field operations to do an

liptic curve operation and about 2 more field operations to operate in the equival ence relation posited by the above
improved algorithm. Hence, it turns out that the improved algorithm takes roughly the same amount of work asit
doesto find acollision in SHA-L

To guard against existing attacks on ECDLP, one should select an elliptic curve E over Fq such that:

1. The order #E(F,) isdivisible by alarge prime n > 2'%;
2. The MOV condition (Annex A.1.1) holds; and
3 The Anomalous condition (Annex A.1.2) holds.

Furthermore, to guard against possible future attacks against specia classes of non-supersingular curves, it is prudent
to select an elliptic curve at random. Annex A.3.3 describes a method for selecting an elliptic curve verifiably at
random.

H.1.1 Software Attacks
Assume that a1 MIPS (Million Instructions Per Second) machine can perform 4x10* elliptic curve additions per
second. (This estimate is indeed high — an ASIC (Application Specific Integrated Circuit) built for performing
elliptic curve operations over the fiehg155 has a 40 MHz clock-rate and can perform roughly 40,000 elliptic
additions per second.) Then, the number of elliptic curve additions that can be performed by a 1 MIPS machine in
one year is

(4% 104) [{60 x 60 x 24 x 365) = 2%,
Table H-1 shows the computing power required to compute a single discrete logarithm for various valdesof
example, if 10,000 computers each rated at 1,000 MIPS are available 24, then an elliptic curve discrete
logarithm can be computed in 85,000 years.
Odlyzko [61] has estimated that if 0.1% of the world's computing power were available for one year to work on a
collaborative effort to break some challenge cipher, then the computing power available wodl¥teSl gears in
2004 and 18 to 10" MIPS years in 2014.

TableH-1 - Computing power required to compute logarithmswith the Pollard-p method.

Field size (in Size ofn ml 4 MIPS years
bits) (in bits)
163 160 P 8.5x 10"
191 186 3 7.0x 10"
239 234 vl 1.2x 107
359 354 v 1.3x 10"
431 426 Y 9.2x 10™

Note: The strength of any cryptographic algorithm relies on the best methods that are known to solve the hard
mathematical problem that the cryptographic algorithm is based upon. The discovery and analysis of the best
methods for any hard mathematical problem is a continuing research topic. Users of this Standard should monitor the
state of the art in solving the ECDLP, as it is subject to change. The purpose of the above discussion is to describe
the current state of knowledge regarding attacks on the ECDLP.

- 109 -

X9.63-199x

H.1.2 Hardware Attacks
A more promising attack (for well-funded attackers) on elliptic curve systems would be to build special-purpose
hardware for aparallel search. Van Oorschot and Wiener [68] provide a detailed study of such apossibility. In their

1994 study, they estimated that if N =10% = 2'% | then amachine with m = 325,000 processors that could be built
for about $10 million would compute a single discrete logarithm in about 35 days.
It must be emphasized that these estimates were made for specific elliptic curve domain parameters having
n=10%* = 2" This Standard mandates that the parameter n should satisfy

n> 2160 =~ 1048
and hence the hardware attacks are infeasible.

H.1.3 Key Length Considerations

It should be noted that for the software and hardware attacks described above, the computation of asingle elliptic
curve discrete logarithm has the effect of revealing asingle user’s private key. Roughly the same effort must be
repeated in order to determine another user’s private key.

If a single instance of the ECDLP (for a given elliptic cufvand base poir) is solved using the Pollai-
method, then the work done in solving this instance can be used to speed up the solution of other instances of the
ECDLP (for the same cunieand base poirg). More precisely, if the first instance takes expected tjrititeen the

second instance takes expected t{/@ — 1)t = 0.41t. Having solved these two instances, the third instance takes
expected timg~/3 —~+/2)t = 0.32t. Having solved these three instances, the fourth instance takes expected time

(\/Z - \/§)t = (0.27t. And so on. Thus, subsequent instances of the ECDLP (for a given elliptic curve and base
point G) become progressively easier. Another way of looking at this is that s&liristances of the ECDLP (for

the same curvk and base poinb) takes only\/E as much work as it does to solve one instance of the ECDLP.

This analysis does not take into account storage requirements. Note also that the concern that successive logarithms

become easier is addressed in this Standard by ensuring that the first instance is infeasible to solve (via the

requirement that > 2'%).

In [21], Blaze et al. report on the minimum key lengths required for secure symmetric-key encryption schemes (such

as DES and IDEA). Their report provides the following conclusion:
To provide adequate protection against the most serious threats — well-funded commercial enterprises or
government intelligence agencies — keys used to protect data today should be at least 75 bits long. To
protect information adequately for the next 20 years in the face of expected advances in computing power,
keys in newly-deployed systems should be at least 90 bits long.

Extrapolating these conclusions to the case of elliptic curves, we see that n should be at least 150 bits for short-term

security, and at least 180 bits for medium-term security. This extrapolation is justified by the following

considerations:

1. Exhaustive search through a k-bit symmetric-key cipher takes about the same time as the Pollard-0 or
Pollard-A algorithms applied to an elliptic curve having a 2k-bit parameter n.
2. Both exhaustive search with a symmetric-key cipher and the Pollard-© and Pollard-A algorithms can be
parallelized with alinear speedup.
3. A basic operation with elliptic curves (addition of two points) is computationally more expensive than a
basic operation in a symmetric-key cipher (encryption of one block).
4. In both symmetric-key ciphers and elliptic curve systems, a “break” has the same effect: it recovers a single
private key.

H.2 Elliptic Curve Domain Parameters

Elliptic curve domain parameters are comprised of a fieldcsiaa indication of basis used (in the cgs&™), an
optional SEED if the elliptic curve was generated verifiably at random, two eleaéritsF, which define an

- 110 -

X9.63-199x

elliptic curve E over Fg, apoint G=(xg, Yg) of prime order in E(F), the order n of G, and the cofactor h. See
Sections 5.1.1.1 and 5.1.2.1 for a more detailed description of elliptic curve domain parameters.

1.

-111-

Choice of basis. The basis of F.m specifiesthe way of interpreting the bit strings that make up the elements

of Fom. There are two choices for the basis allowed in this Standard: a polynomial basis and anormal basis.
It is not a security consideration which basisto use, but all users of a set of elliptic curve domain parameters
must use the same basis externally. (Implementations with different internal representations that produce
equivalent results are allowed.).

Use of the canonical seeded hash (Annex A.3.3) to determine the elliptic curve equation (described by a
and b). For discrete logarithm based schemes, there is the possibility that a particularly poor choice of
domain parameters could lead to an attack. To address this, DSA for example requires the use of a

canonical seeded hash to generate the domain parameters p and g, as this provides an assurance that p and q
were generated arbitrarily. The analogous attack on elliptic curve based schemes does not apply as there are
no known poor choices for the elliptic curve domain parameters that are not already excluded by this
Standard. However, use of the canonical seeded hash can help mitigate fears about the possibility of new
specia-purpose attacks which might be discovered in the future.

The use of a specific eliptic curve may alow performance improvements over the use of an arbitrary
liptic curve. For these reasons, this Standard allows both the choice of a particular elliptic curve or the
generation of an arbitrary curve through the use of a canonical seeded hash function. An arbitrary curve may
be used when security considerations are so preeminent that the possible performance impact is not a factor
in the decision.

Choice of base point G. The choice of the base point G is not a security consideration aslong asit hasa
large prime order as required by this Standard. However, al users of a set of elliptic curve domain
parameters must use the same base point.

Elliptic curve domain parameter cryptoperiod considerations. A set of elliptic curve domain parameters may
be used by one party to generate asingle key pair or by that party to generate multiple key pairs.
Alternatively, a group of parties could use the same set of parameters to generate multiple key pairs. How
many users and how many key pairs should be allowed for a specific set of elliptic curve domain parameters
isapolicy decision.

Just asasingle elliptic curve key pair has a cryptoperiod which is deemed appropriate for its individual
strength, so a set of elliptic curve domain parameters has a cryptoperiod which is deemed appropriate for its
collective strength; that is, for al the key pairs expected to be generated using it. As noted in Annex H.1.3,

for agiven set of elliptic curve domain parameters, the cost to break k keysis only \/E times the cost to
break one key. As more and more monetary value becomes protected by a specific set of elliptic curve
domain parameters by allowing multiple users and multiple key pairs, there comes a point whereit is
appropriate for a user to use a different set of elliptic curve domain parameters (i.e. adifferent elliptic
curve). Thisfollows the general security principle of compartmentalization.

Potential concerns about breaking a second key (or subsequent keys) given that afirst key (which used the
same dliptic curve domain parameters) has been broken are addressed in this Standard by the inability of an
adversary to break the first key. Asthis Standard mandates that the order n of the base point G be greater
than 2'%°, breaking the first key is thought to be infeasible.

How large the MOV threshold B (see Annex A.1) should be. The MOV threshold B is a positive integer B

such that taking discrete logarithms over Fs is at least as difficult as taking elliptic curve discrete

logarithms over F,. For this Standard, B = 20. For example, all elliptic curves over F, that are able to be
mapped into finite fields with an order up to around 2% are eliminated from consideration. The value B =
20 isaconservative choice, and is sufficient to ensure resistance against the reduction attack.

What values to use for |, and rin, when determining n, the order of the base point G (see Annex A.3.2).
The value r, is the minimum value that is appropriate for n, the order of the base point G in the eliptic
curve domain parameters. For this Standard, r,,> 2'. For example, if the order of the underlying field is

29! an appropriate value for ry is= 2'*. When the order of the underlying field islarger, alarger rm, and
therefore alarger n is appropriate. Mitigating the choice is the fact that finding a curve satisfying stricter
requirements will take longer. Thetrial division bound | isthe maximum size of al prime factors of the
cofactor h. In this Standard, the order of an elliptic curve will be anumber u such that u = hn, wherenisa
large prime factor (and the order of the base point G) and, h is a number whose prime factors are all less

X9.63-199x

than | y. For example, if the order of the underlying field is 2'%" and ry, is 2'%, then an appropriate value
for |y IS 64.

7. Point compression. The representation of a point in compressed, uncompressed, or hybrid form is not a
security consideration.

H.3 Key Pairs

1 Associating public keys with elliptic curve domain parameters It is very important that a public key and a
private key be cryptographically bound to their associated elliptic curve domain parameters. The
cryptographic binding of a public key with its associated elliptic curve domain parameters can be done by a
CA, who includes the €elliptic curve domain parameters in the data portion of the public-key certificate.

2. Private key cryptoperiod considerations. It is appropriate to assign a cryptoperiod to a private key. That is,
explicitly state an amount of time for which the private key can be used. The cryptoperiod defined for a
particular private key is apolicy decision. The strength of the key and the amount and value of information
that will be protected by it are considerations to take into account when determining an appropriate
cryptoperiod. Following the general security principle of compartmentalization, limiting the amount of
information protected by a particular key limits the amount of damage that might occur if the private key is
compromised. As the Standard mandates that the primary security parameter n be greater than 2'%, as of
1999, it is considered infeasible for the best methods known for solving the ECDLP to discover the private
key. Users should monitor the state-of-the-art in solving the ECDLP to help determine an appropriate value

of n.

3. Public key cryptoperiod considerations. A public key can be considered valid for any period of time that the
associated private key is used.

4, Repeated private keys. If two users are using the same elliptic curve domain parameters and somehow

generate identical private key values, then compromise may occur. As the private key is avalue between 1
and n-1 (inclusive), and n is required to be greater than 2'%°, a duplicate private key is only expected to
happen by chance (due to the birthday phenomenon) after about 2%° key pairs have been generated. As 2% is
over 1 million million million million, thisis not expected to happen. However, it is possible that a private
key might repeat due to a hardware or software error or a poorly-seeded pseudorandom number generator.
If this occurred, the public key Q would also repeat. One way to address this concernisto use an ANSI X9
approved random or pseudorandom generation method. For an example of an ANSI X9 approved
pseudorandom number generation method, see Annex A.4. Otherwise, a service that a Certificate Authority
may choose to provide for users with high security requirementsis to monitor public keysto ensure that
there are no duplicates. If aduplicate public key is detected, then both parties should be told, determine if
there has been an error, try to determine the cause of the error, decide what corrective action to take (if
any), and regenerate new key pairs.

H.4 Key Establishment Schemes
This section discussesissues particularly relevant to the security of key establishment schemes.

H.4.1 The ECDLP and Key Establishment Schemes

Each of the key establishment schemes specified in this Standard is dependent for its security on the difficulty of the
ECDLP. An adversary of a scheme who is able to solve the ECDLP is able to recover the EC private key from any
EC public key, and in thisway compromise any key established using the key establishment scheme.

However, there is agap in the above statement. It says that the key establishment schemes are insecure if the ECDLP
can be solved, but does not say that the key establishment schemes are secure if the ECDLP cannot be solved
efficiently. It is conceivabl e that some attack could be found which compromises the security of the key
establishment scheme without contradicting the supposed difficulty of the ECDLP.

Much research has focused on closing this gap between the difficulty of the ECDLP and the security of the key
establishment schemes. At best the research has led to a proof of equivalence between the two problemsin some
‘formal model’, while in other cases the equivalence remains a conjecture, albeit one that has not been disproved by
a sizeable amount of public scrutiny.

-112 -

X9.63-199x

A relevant stepping stone between the two problemsis the elliptic curve Diffie-Hellman problem (ECDHP). The

ECDHP s stated as follows: given an EC E, abase point PLIE, and k;P and k,P with k; and k, randomly chosen,

calculate kik,P.

The relevance of this stepping stoneis easily explained. For example, it is clearly the problem which faces a passive
adversary of the ephemeral Unified Model scheme. Other results of this kind have been justified in the literature:

[18] discusses the equivalence between the ECDHP and the asymmetric encryption schemesin Section 5.8, and [20]

the eguivalence between the ECDHP and various Unified Model schemes. Both of these equivalences are proved in

a ‘formal model'. [56] and [49] discuss the conjectured equivalence between the ECDHP and the MQV schemes.
Such equivalences, whether conjectured or ‘formally’ demonstrated, should certainly be viewed with
scepticism...'real-life’ adversaries are seldom restrained to acting within the ‘formal models’ discussed in these
results. Nonetheless, the results do instill confidence that the relationship between the difficulty ECDHP and the
security of the scheme is indeed close.

Linking the difficulty of the ECDLP to the difficulty of the ECDHP remains to be shown. A result of this type is
provided by [22]. This paper shows that provided the ECDLP is exponentially hard (as is currently believed), then
the two problems are indeed computationally equivalent.

Taken in totality these results provide some assurance of the statement that ‘the ECDLP is the basis for the security
of the EC schemes'.

H.4.2 Security Attributes and Key Establishment Schemes

What properties is it desirable for a key establishment scheme to possess?

The fundamental goal of any key establishment scheme is to distribute keying data. Ideally, the keying data should
have precisely the same attributes as keying data established face-to-face. It should be randomly distributed, and no
unauthorized entity should know anything about the keying data.

However, whilst asymmetric key establishment schemes offer many advantages over traditional face-to-face key
establishment, there is a price to pay for this added functionality. No asymmetric scheme can offer unconditional
security in an information theoretic sense...this just means that an adversary with unlimited computing power can
certainly recover the keying data. In practice this unavoidable shortcoming does not pose a major problem since it
seems reasonable to assume that practical adversaries are computationally bounded. Indeed, the security of all widely
used symmetric schemes relies on a similar computational assumption.

The goal, then, of an asymmetric key establishment scheme is to be indistinguishable from a face-to-face key
establishment as far as any computationally bounded (‘polynomial-time’) adversary is concerned. Such an abstract
goal needs to be clarified, and over the years the goal has been reformulated in terms of a number of more concrete
attributes: implicit and explicit authentication, forward secrecy, known-key security, etc.

These are typically attributes which are possessed by face-to-face key establishment, and which have been identified
as desirable in the asymmetric setting in various applications. Some of the attributes, such as explicit key
authentication, are considered to be important in almost all applications. Others, such as forward secreccy and
known-key security, are important in some environments, but less important in others.

This Standard provides a suite of key establishment schemes. All the schemes are extremely efficient among schemes
of their type. A variety of schemes has been provided so that as large as possible a selection of other desirable
attributes may be provided. Section H.4.3 provides guidance on the attributes which each of the schemes may be
used to provide.

H.4.3 Security Attributes of the Schemes in this Standard

This section provides guidance to implementors about which cryptographic services each of the schemes in this
Standard may be capable of providing.

Table H-2 contains a summary of the services that may be provided by each scheme.

The services are discussed in the context of an éhtitho has successfully executed the key establishment scheme
wishing to establish keying data with entityln the table:

— VV indicates that the assurance is provided two matter whethed is the scheme’s initiator or responder.
— V72 indicates that the assurance is provided modulo a theoretical technicality.

— VI indicates that the assurance is provided tonly if U is the scheme’s initiator.

— VR indicates that the assurance is provided tmly if U is the scheme’s responder.

- 113 -

X9.63-199x

— X indicates that the assurance is not provided by the scheme.

— n/a indicates that the assurance is not applicable.

The names of the services have been abbreviated to save space: IKA denotes implicit key authentication, EKA
denotes explicit key authentication, EA denotes entity authentication, K-KS denotes known-key security, FS denotes
forward secrecy, K-Cl denotes key-compromise impersonation resilience, and UK-S denotes unknown key-share
resilience.

The provision of these assurances is considered in the case thdtdnudl are honest and have always executed

the scheme correctly. The requirement thandV are honest is certainly necessary for the provision of any service

by a key establishment scheme: no key establishment scheme can protect against a dishonest entity who chooses to

reveal the session key...just as no encryption scheme can guard against an entity who chooses to reveal confidential
data.

- 114 -

X9.63-199x

Table H-2 — Attributes Provided by Key Establishment Schemes

Scheme Section IKA EKA | EA K-KS FS K-CI UK-S
Ephemeral Unified Model 6.1 X X X oS n/a. n/a. X
Ephemeral Unified Model 6.1 ViV X X ViV n/a. n/a. ViV
(against passive attacks)

1-Pass Diffie-Hellman Scheme | 6.2 VI X X % % VI %
Static Unified Model 6.3 v X X X X X Ned

Combined Unified Model with | 6.4 ViV v VY v avk X vV
Key Confirmation

Station-to-Station Scheme 6.5 Vv vV vV Vv Vv Vv vV

1-Pass Unified Model 6.6 Vv X X X X Vi ok
Full Unified Model 6.7 VY X X e V2 X V7
Full Unified Model with Key 6.8 vV vV Vv Vv Vv X Vv
Confirmation

1-Pass MQV 6.9 vV X X X X VI x5
Full MQV 6.10 VY X X VY V2 avk x5
Full MQV with Key 6.11 Vv Y W W Y Y W
Confirmation

1-Pass Key Transport 7.1 Vi X X x3 X VI X
3-Pass Key Transport 7.2 W W W X W W

Although schemes like the Full Unified Model scheme and the Full MQV scheme do not automatically provide
explicit key authentication, explicit key authentication is often provided when the keying data they provideis
subsequently used, for example to MAC some data.

Notes:

1 The technicality hinges on the definition of what contributes ‘another session key’. Known-key security is
certainly provided if the scheme is extended so that explicit authentication of all session keys is supplied.

2. The technicality concerns explicit authentication. Both schemes provide forward secrecy if explicit

authentication is supplied for all session keys. If explicit authentication is not supplied, forward secrecy
cannot be guaranteed.

3. The 1-pass key transport scheme can easily be implemented in a manner that provides known-key security
when the scheme is used with elliptic curve augmented encryption scheme. Simply include a counter in the
optionalText field and increment this counter each time a new session key is transportéttfyém
Provided that the responder checks that the counter has been incremented each time a new session key is
established, this prevents known-key attacks on the scheme involving the replay of previous flows.

4, These schemes are believed to provide unknown key-share when knowledge of the private key is checked
during certification of the static public keys.

5. These observations were made recently by Kaliski [44].

6. The 3-pass key transport scheme provides known-key security when used in conjunction with the elliptic

curve augmented encryption scheme.
It is also sometimes of interest to note whether key control resides with the initiator or the responder of a key
transport scheme. Of the key transport schemes specified in this Standard, key control resides with the initiator in the
1-pass key transport scheme, and with the responder in the 3-pass key transport scheme.

H.4.4 Appropriate Key Lengths
The goal of each key establishment scheme is to establish secret keying data which is shared by two entities. It
should be no easier to attack the key establishment scheme than it is to simply guess the established key. That is,

-115-

X9.63-199x

when one is establishing symmetric keys, one wants to ensure that the key establishment schemeis at least as strong

(i.e. takes at least as many operations to break) as the symmetric key algorithm.

This principle should be used to provide guidance on the size of the EC parameters selected. For example, while the

condition that n>2"% is currently sufficient to provide security, it does not offer the same level of security as, say, a

256-bit symmetric scheme.

This section, therefore, provides guidance on the minimum size that n should be if the key establishment schemeis

being used to establish symmetric keys of various sizes.

This guidance is made based on the following assumptions:

1 The best method to discover the value of akey for a symmetric key scheme is key exhaustion using afew
known plaintext/ciphertext pairs. That is, for a 56-hit key it takes 2°° trial encryptions to ensure one
recovers the correct key, for a 128-bit key it takes 2'? trial encryptions, etc. Thisisagoal of any symmetric
key scheme.

2. These symmetric key trial encryptions are able to be done in parallel. That is, if one has m processors to
attempt the trial encryptions, the time needed to exhaust is reduced by afactor of m.

3. The best method for breaking the key establishment scheme is to discover the private key. Thisisagoal of
any asymmetric key establishment scheme.

4, The best method for recovering an EC private key isto solve the particular ECDL P associated with the key.
The best methods to solve the ECDL P are sguare root methods that take around a number of operations
equal to the square root of the order n of the generator.

5. These EC operations for solving the ECDLP are able to be donein parallel.

6. For simplicity, an EC operation is assumed to take the same amount of time as the symmetric key
encryption operation. In practice, thisis avery conservative assumption: all known practical symmetric key
algorithms are faster than known practical public key agorithms.

The above assumptions lead to the guidance that the appropriate EC key size (that is, the size of n) is about twice the

size of the symmetric key. That is, to ensure that the EC key establishment key is at least as strong as the symmetric

algorithm key being established, the following n bounds should be adopted:

For establishment of a 56-bit symmetric key (e.g. DEA), n should be at least 112 bits.

For establishment of a 112-bit symmetric key (e.g. 2-key Triple DES), n should be at least 224 hits.

For establishment of a 128-bit symmetric key (e.g. AES), n should be at |east 256 bits.

For establishment of a 168-bit symmetric key (e.g. 3-key Triple DES), n should be at least 336 hits.

For establishment of a 192-bit symmetric key (e.g. AES), n should be at |east 384 bits.

For establishment of a 256-bit symmetric key (e.g. AES), n should be at least 512 bits.

oukrwdpE

H.5 Validation Issues

A number of types of validation may be performed on an implementation of the schemesin this Standard. This

section provides guidance about these types of validation and the assurances they provide.

Fregquently deciding which validations to use is a business decision. In some situations the most secure choiceisto

do al validations possible. In other situations, some of the validations may not add significantly to the security of the

system. Therefore one must weigh the security assurance gained versus the costs of validation.

The following four types of validation are available to an implementation of the the schemes in this Standard. The

first two validation methods may be better known than the last two, however, each validation provides assurances

that the others do not.

1. Implementation validation. These validations assert that there are no detectable implementation errors. A
trusted independent validation service usually conducts these validations. The validations are similar to UL
|abels; they state that the product meets some minimum level of testing, but do not state that nothing can go
wrong. It is assumed the validation tests are complete and thorough, but there is always a chance that there
is an as-of—yet unknown weakness.

An example of implementation validation is the FIPS 140-1 validation conducted by a testing laboratory.
The FIPS 140-1 Validation procedures consist of testing:

A. Algorithm validation (e.g., for X9.30, X9.31, X9.62) to determine that a specific algorithm routine
runs as expected; and
B. Random Number Generators (RNGs) to see if the RNG performs within specifications.
2. Private key ownership validation. Also known as “proof of possession”. This validation asserts that the

owner possesses the corresponding secret key of a public key submitted for certification. This validation

- 116 -

X9.63-199x

states that “It looks like this user owns the private key”. A CA usually conducts these validations, although
any trusted user may do it. This validation mitigates against certain cryptographic attacks that are based on
the claimed owner not knowing the associated private key.

Domain Parameter Validation. These validations assert that the set of domain parameters is valid. These
validations are usually conducted by a CA, but any trusted user may do them. These validations detect
inadvertent and deliberate domain parameter errors. The validations mitigate against attacks based on using
invalid domain parameters.

When implementing this Standard, the generator of a set of elliptic curve domain parameters should
perform parameter validation and ensure that the parameters meet the elliptic curve domain parameter
validation criteria listed in Section 5.1. Whether anyone else needs to validate the elliptic curve domain
parameters is a matter of the trust relationship between the generator and the user. For example, an
untrusted party may generate a proposed set of elliptic curve domain parameters and a CA may
subsequently validate the parameters for its potential users. Whether or not it validates elliptic curve domain
parameters should be part of a CA’s policy. If a set of elliptic curve domain parameters is supplied directly
to a user in a situation where the user does not know that they are valid, then the user should validate the
parameters before use; not doing so could leave the user open to the potential of an attack.

Public Key Validation. These validations determine if the candidate public key is actually cryptographically
reasonable. Either the CA or an entity could conduct the validations. In general, the CA conducts these
validations for static (long term keys) and the recipient conducts the validation for ephemeral (short-term,
normally single use) keys. Public Key Validation assumes that any domain parameters have previously been
validated. Public Key Validations detect inadvertent and deliberate errors during key generation. The
validation states that “It looks like this particular public key makes sense”. It mitigates against certain
cryptographic attacks based on the public key being invalid (i.e., impossible, not conforming to the
algorithm specification). An example of this type of attack is to generate a non-conforming key pair that
when combined with a second user’s private (secret) key will expose information about the second user’s
private key.

Key owners may want to “self” validate their own keys, to provide assurance for themselves that there were
no errors in the creation of the key pairs.

Public key validation has been specified in this Standard (Section 5.2), including explicit public key
validation routines which check the range and optionally the order of a purported public key to ensure that it
is plausible that a private key could logically exist for this purported public key.

Table H-3 summarizes the various forms of validation available.

-117 -

X9.63-199x

TableH-3 - Validation Methods and the Risksthey Mitigate

Validation Method Conducted by What's Validated What's mitigated
Implementation An independent 1. Algorithm works as | Inadvertent
validation laboratory specified implementation errors

2. Random number
generator operates a
required

Private key ownership

CA or its delegate or t
user (recipient)

h&he claimed public key
owner owns the
corresponding secret k¢

Masquerade attacks (th
purported owner of the
ypublic key does not
know the corresponding
private key)

D

Domain Parameter
validation

CA or its delegate or the
user (recipient)

» The domain parameters
are suitable for
cryptographic use

Cryptographic attacks
based on “out of range”
parameters

Public key validation

CA or its delegate or th
user (recipient)

€The public key has a
plausible value that
could have been
generated according to

specification

1. Inadvertent key
generation errors
2. Deliberately invalid

public keys that are

insecure to use

- 118 -

X9.63-199x

Annex |
(informative)
Alignment with Other Standards

One of the central goals of the standardization process is to promote interoperability while providing security.
Conformance between standards is crucial for achieving this task.

Therefore, this Standard attempts to provide conformance with as many of the other relevant standards as possible.
Within ANSI, the Standard is directly aligned with ANSI X9.42 [6], and this Standard describes many of the
analogous key agreement protocols described in ANSI X9.42. In thisinstance, actual conformance is not the relevant
issue, because the respective standards describe the schemesin different algebraic settings - ANSI X9.42 describes
schemesin the algebraic setting of the multiplicative group of afinite field, while in this Standard, schemes are
described in the additive group of the points on an elliptic curve.

IEEE P1363 [32] (and its proposed addendum, |EEE P1363A [33]) isa prominent public-key standardization effort
currently under way. |EEE P1363 specifies a number of elliptic curve schemes, and this Standard is composed so
that anyone implementing one of the key agreement schemes specified will automatically be conformant with the
relevant schemesin |EEE P1363. In the case of the Unified Model schemes, conformance is with either the DH1 or
DH2 scheme in |EEE P1363. In the case of the MQV schemes, conformance is with the IEEE P1363 MQV schemes.
Of the FIPS standards, the most relevant is FIPS 196 [29]. This specifies entity authentication schemes which
employ any FIPS approved signature scheme. Modulo the fact that ECDSA is not currently a FIPS approved
signature scheme, an implementation of the 3-pass key transport scheme specified here should conform with the
requirements of FIPS 196.

The appropriate | SO standards are |SO 11770-3 [35] and | SO 9798-3 [34]. These standards respectively discuss
asymmetric key establishment schemes and asymmetric schemes providing entity authentication. A number of the
key agreement schemes specified here and in particular the Station-to-Station scheme, are likely to conform with 1SO
11770-3, athough since ISO 11770-3 is specified in a mechanism independent manner, precise details of
conformance are sometimes hard to ascertain The Station-to-Station scheme also conforms with 1SO 9798-3. Easier
to gauge are the key transport schemes. The 1-pass transport scheme in this Standard is conformant with key
transport mechanism 1 in SO 11770-3, and the 3-pass transport scheme is conformant with key transport mechanism
5in1S0 11770-3. The 3-pass transport scheme also conforms with the corresponding mechanism in 1SO 9798-3.

-119-

X9.63-199x

Annex J
(informative)

Patents
[[This section will be added later.]]

- 120 -

X9.63-199x

Annex K
(informative)

Examples
[[This section will be added later.]]

-121 -

X9.63-199x

Annex L
(informative)
References

A comprehensive treatment of modern cryptography can be found in [57].

Elliptic curve cryptosystems were first proposed in 1985 independently by Neil Koblitz [46] and Victor Miller [58].

Since then, much research has been done towards improving the efficiency of these systems and evaluating their

security. For a summary of thiswork, consult [54]. A description of a hardware implementation of an elliptic curve
cryptosystem can be found in [13]. ECDSA is specified in [8]. For a detailed treatment of the mathematical theory of

liptic curves, see[66]. A less technical approach to the theory can be found in [47].

Three references on the theory of finite fields are the books of McEliece [53], Lidl and Neiderreiter [52], and

Jungnickel [43]. Lidl and Neiderreiter's book [52] contains introductory material on polynomial and normal bases.
The article [12] discusses methods which efficiently perform arithmetic operations in finite fields of characteristic 2.
A hardware implementation of arithmetic in such fields which exploits the properties of optimal normal bases is
described in [14].

SHA-1 is specified in [5] and [27].

The SHA-1-based MAC scheme is HMAC which was introduced in [15].

The asymmetric encryption schemes specified in this Standard were introduced in [18]. Preliminary work by the
same authors can be found in [17].

The fundamental concept of asymmetric key agreement was introduced in [25]. The extensions to the traditional
Diffie-Hellman primitive specified in this Standard were introduced in [20], [26], and [56]. See also [49]. These key
agreement schemes have also been standardized in the algebraic context of the multiplicative group of a finite field
[6].

The key transport schemes specified here are based on those in [35]. Also closely related are the entity authentication
schemes specified in [36] and [34].

ASN.1 is described in [36]-[41]. BER and DER can be found in [40].

1. ANSI X3.92-1981Data Encryption Algorithm. December 30, 1981.

2. ANSI X9.17-1985Financial Institution Key Management (Wholesale). 1985.

3. ANSI X9.19-1996Financial Institution Retail Message Authentication. 1996.

4 ANSI X9.30-1995Part 1: Public Key Cryptography using Irreversible Algorithms for the Financial

Services Industry: The Digital Sgnature Algorithm (DSA)(Revised). 1995.

5. ANSI X9.30-1993, Part Public Key Cryptography using Irreversible Algorithms for the Financial
Services Industry: The Secure Hash Algorithm 1 (SHA-1)(Revised). 1993.

6. ANSI X9.42-1996Public Key Cryptography for the Financial Services Industry: Agreement of Symmetric
Algorithm Keys Using Diffie-Hellman. September, 1996. Working Draft.

7. ANSI X9.57-199xPublic Key Cryptography for the Financial Services Industry: Certificate Management .
1997. Working Draft.

8. ANSI X9.62-1999Public Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital
Sgnature Algorithm (ECDSA).

9. ANSI X9.70-199x: Management of Symmetric Keys Using Public Key Algorithms. 1998. Working Dratft.

10. ANSI X9.71-199x: NWI. 1998. Working Dratft.

11. ANSI X9.80-199x: Prime Number Generation. 1998. Working Draft.

12. G. Agnew, T. Beth, R. Mullin, and S. Vanstone. Arithmetic operatio@{@™). Journal of Cryptology, 6,
pages 3-13, 1993.

13. G. Agnew, R. Mullin, and S. Vanstone. An implementation of elliptic curve cryptosystenﬁzgg/.drEEE
Journal on Selected Areasin Communications, 11, pages 804-813, 1993.

14, G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone. An implementation for a fast public-key
cryptosystemJournal of Cryptology, 3, pages 63-79, 1991.

15. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In Advances in

Cryptology: Crypto '96, pages 1-15, 1996.
16. M. Bellare and P. Rogaway. Entity authentication and key distributiéwalvlmces in Cryptology: Crypto
‘93, pages 232-249, 1993.

- 122 -

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
35.
36.
37.
38.
39.

40.

41.
42.
43.
45,
46.

47.
48.

- 123 -

X9.63-199x

M. Bellare and P. Rogaway. Random oracles are practical: aparadigm for designing efficient protocols. In
1st ACM Conference on Computer and Communications Security, pages 62-73, 1993.

M. Bellare and P. Rogaway. Minimizing the use of random oracles in authenticated encryption schemes. In
Proceedings of PKS ‘Q7997.

S. Blake-Wilson and A.J. Menezes. Entity authentication and authenticated key transport protocols
employing asymmetric techniques. To appear in Security Protocols Workshop ‘93pringer-Verlag, 1997.
S. Blake-Wilson, D. Johnson, and A.J. Menezes. Key agreement protocols and their security analysis. To
appear in Cryptography and Codingsth IMA Conference, Springer-Verlag, 1997.

M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M. Wiener. Minimal key
lengths for symmetric ciphers to provide adequate commercial seciantyary, 1996.

D. Boneh and R.J. Lipton. Algorithms for black-box fields and their application to cryptography. In
Advances in Cryptology: Crypto ‘Qpages 283-297, 1996.

D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keysin Diffie-
Hellman and related schemes. In Advances in Cryptology: Crypto ‘9pages 129-142, 1996.

E. Brickell, D. Gordon, K. McCurley, and D. Wilson. Fast Exponentiation with precomputation. In
Advances in Cryptology: EuroCrypt ‘9pages 200-207, 1993.

W. Diffieand M. Hellman. New directionsin cryptography. IEEE Transactions on Information Theoiy-
22(6): 644-654, November 1976.

W. Diffie, P.C. van Oorschot, and M.J. Wiener. Authentication and authenticated key exchanges. Designs,
Codes, and Cryptographg: 107-125, 1992.

FIPS 180-1. Secure Hash Standard. Federal Information Processing Standards Publication 18Q985.
FIPS 186. Digital Signature Standard. Federal Information Processing Standards Publication ,18803.
FIPS 196. Entity Authentication using Public Key Cryptography. Federal Information Processing Standards
Publication 196, February 18, 1997.

G. Frey and H.-G. Ruck. A remark concerning m-divisibility and the discrete logarithm problem in the
divisor class group of curves. Mathematics of Computatio62, pages 865-874. 1994.

R. Gallant, R. Lambert, and S. Vanstone, Improving the parallelized Pollard lambda search on binary
anomalous curves, to appear in Mathematics of Computation

|IEEE P1363. Standard for Public-Key Cryptographyuly 11, 1997. Working Draft.

|IEEE P1363A. Standard for Public-Key Cryptography - Addenduldy 11, 1997. Working Document.
ISO/IEC 9798-3. Information technology - Security techniques - Entity authentication - Part 3:
Mechanisms using asymmetric signature technigips! 1, 1997. Review document.

ISO/IEC 11770-3. Information technology - Security techniques - Key management - Part 3;: Mechanisms
using asymmetric signature techniquiskarch 22, 1996.

ITU-T Recommendation X.680. Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notatiofequivalent to | SO/IEC 8824-1).

ITU-T Recommendation X.681. Information Technology - Abstract Syntax Notation One (ASN.1):
Information Object Specificatiorfequivalent to |SO/IEC 8824-2).

ITU-T Recommendation X.682. Information Technology - Abstract Syntax Notation One (ASN.1):
Constraint Specificationequivalent to |SO/IEC 8824-3).

ITU-T Recommendation X.683. Information Technology - Abstract Syntax Notation One (ASN.1):
Parametrization of ASN.1 Specificatioiequivalent to ISO/IEC 8824-4).

ITU-T Recommendation X.690. Information Technology - ASN.1 Encoding Rules: Specification of Basic
Encoding Rule$BER), Canonical Encoding Rulg&CER), and Distinguished Encoding RUlé3ER).
(equivalent to 1 SO/IEC 8825-1).

ITU-T Recommendation X.691. Information Technology - ASN.1 Encoding Rules: Specification of Packed
Encoding Rule$PER). (equivaent to ISO/IEC 8825-1).

D. Johnson. Diffie-Hellman Key Agreement Small Subgroup Attack, a Contribution to X9F1 by Certicom
July 16, 1996.

D. Jungnickel. Finite Fields: Structure and ArithmeticB.l.Wissenschaftsverlag, Mannheim, 1993.

B. Kaliski. MQV vulnerability. Posting to ANSI X9F1 and IEEE P1363 newsgroups. 1998.

D. Knuth. The Art of Computer Programmingolume 1, Addison-Wesley, Reading, Massachusetts, 1973.
N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computatiod8, pages 203-209, 1987.

N. Koblitz. A Course in Number Theory and Cryptography, Springer-Verlag, 2nd edition, 1994,

D. Knuth, The Art of Computer Programmingolume 2, 2nd edition, 1981.

49,

50.

51.

52.
53.

55.

56.

57.
58.
59.
60.
61.
62.

63.

65.

66.
67.

68.

69.

70.

- 124 -

X9.63-199x

L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for authenticated key
agreement. Technical report CORR 98-05, Department of Combinatorics & Optimization, University of
Waterloo, March, 1998.

R. Lercier. Finding good random elliptic curves for cryptosystems defined over F2m . In Advancesin

Cryptology: EuroCrypt ‘97 pages 379-392, 1997.

R. Lercier, and F. Morain. Counting the number of points on elliptic curves over finite fields. In Advances
in Cryptology: EuroCrypt ‘95pages 79-94, 1995.

R. Lidl and H. Neiderreiter. Finite Fields Cambridge University Press, 1987.

R.J. McEliece. Finite Fields for Computer Scientists and Engine&taiwer Academic Publishers, 1987.
A.J. Menezes. Elliptic Curve Public Key Cryptosysteméluwer Academic Publishers, 1993.

A.J. Menezes, T. Okamoto, and S.A. Vanstone. Reducing elliptic curve logarithms to logarithmsin afinite
field. IEEE Transactions on Information TheoB9, pages 1639-1646, 1993.

A.J. Menezes, M. Qu, and S.A. Vanstone. Some new key agreement protocols providing implicit
authentication. Workshop record, 2nd Workshop on Selected Areas in Cryptograf@AC ‘95, Ottawa,
Canada, May 18-19, 1995.

A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptograph€RC Press,
1997.

V. Miller. Uses of eliptic curvesin cryptography. In Advances in Cryptology: Crypto ‘8pages 417-426,
1985.

J.H. Moore. Protocal failure in cryptosystems. Chapter 11 in Contemporary Cryptology: the Science of
Information Integrity G.J. Simmons, editor, pages 541-558, |EEE Press, 1992.

R. Mullin, I. Onyszchuk, S.A. Vanstone, and R. Wilson. Optimal normal basesin GF(p"). Discrete Applied
Mathematics22, pages 149-161, 1988/89.

A. Odlyzko. The Future of Integer Factorization. CryptoBytesvolume 1, number 2, pages 5-12, summer
1995.

J. Pallard. Monte Carlo methods for index computation mod p. Mathematics of Computatio2, pages
918-924, 1978.

B. Preneel. Cryptographic Hash FunctionKIluwer Academic Publishers, Boston, (to appear).

T. Satoh and K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous
eliptic curves, preprint, 1997.

R. Schoof. Elliptic curves over finite fields and the computation of sguare roots mod p. Mathematics of
Computation44, pages 483-494, 1987.

J. Silverman. The Arithmetic of Elliptic Curvespringer-Verlag, New Y ork, 1985.

N. Smart, The discrete logarithm problem on elliptic curves of trace one, to appear in Journal of
Cryptology

P.C. van Oorschot and M. Wiener. Parallel collision search with applications to hash functions and discrete
logarithms. 2nd ACM Conference on Computer and Communications Sequaifgs 210-218, ACM Press.
1994.

P.C. van Oorschot and M. Wiener. On Diffie-Hellman key agreement with short exponents. In Advances in
Cryptology: EuroCrypt ‘96 pages 332-343, 1996.

M. Wiener and R. Zuccherato, Fast attacks on elliptic curve cryptosystems, to appear in Fifth Annual
Workshop on Selected Areas in Cryptography — SACL'8&ure Notes in Computer Science, Springer-
Verlag.

